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POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX
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Abstract

Robust detection of astronomical sources using
convolution neural networks

Extracting reliable source catalogs from images is crucial for a broad range of astronomical
research topics. However, the efficiency of current source detection methods becomes severely
limited in crowded fields, or when images are contaminated by optical, electronic and environ-
mental defects. Performance in terms of reliability and completeness is now often insufficient
with regard to the scientific requirements of large imaging surveys. In this thesis, we develop
new methods to produce more robust and reliable source catalogs. We leverage recent advances
in deep supervised learning to design generic and reliable models based on convolutional neural
networks (CNNs). We present MaxiMask and MaxiTrack, two convolutional neural networks
that we trained to automatically identify 13 different types of image defects in astronomical ex-
posures. We also introduce a prototype of a multi-scale CNN-based source detector robust to
image defects, which we show to significantly outperform existing algorithms. We discuss the
current limitations and potential improvements of our approach in the scope of forthcoming large
scale surveys such as Euclid.

Keywords: Image processing - Deep learning - Convolutional neural networks - Source
detection - Wide field surveys
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Résumé

Détection robuste de sources astronomiques par
réseaux de neurones à convolutions

L’extraction de catalogues de sources fiables à partir des images est cruciale pour un large
éventail de recherches en astronomie. Cependant, l’efficacité des méthodes de détection de source
actuelles est sérieusement limitée dans les champs encombrés, ou lorsque les images sont con-
taminées par des défauts optiques, électroniques et environnementaux. Les performances en ter-
mes de fiabilité et de complétude sont aujourd’hui souvent insuffisantes au regard des exigences
scientifiques des grands relevés d’imagerie. Dans cette thèse, nous développons de nouvelles
méthodes pour produire des catalogues sources plus robustes et fiables. Nous tirons parti des
progrès récents en apprentissage supervisé profond pour concevoir des modèles génériques et fi-
ables basés sur des réseaux de neurones à convolutions (CNNs). Nous présentons MaxiMask et
MaxiTrack, deux réseaux de neurones à convolutions que nous avons entrainés pour identifier
automatiquement 13 types différents de défauts d’image dans des expositions astronomiques.
Nous présentons également un prototype de détecteur de sources multi-échelle et robuste vis-à-
vis des défauts d’image, dont nous montrons qu’il surpasse largement les algorithmes existants
en terme de performances. Nous discutons des limites actuelles et des améliorations potentielles
de notre approche dans le cadre des prochains grands relevés tels que Euclid.

Mots clés: Traitement d’images - Apprentissage profond - Réseaux de neurones à convolutions
- Détection de sources - Relevés grand champ
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de thèse, Hervé Bouy et Emmanuel Bertin, ainsi que de membres du CNES, cofinanceur de la
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workshops, etc.
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Chapter 1

Introduction

Much of the science carried out in Astrophysics depends on source catalogs. The vast majority
of astronomical sources cataloged so far have been detected in wide-field images taken at visible
and Near-InfraRed (NIR) wavelengths. Source detection is a crucial stage in the exploitation of
imaging data, especially in large sky photometric surveys. However, the current detection per-
formance in terms of reliability and completeness is now insufficient with regard to the scientific
requirements of current and forthcoming experiments, e.g., HSC (Aihara et al., 2018), Euclid
(Racca et al., 2016), or LSST (Ivezić et al., 2019). A performance leap is necessary, which must
also satisfy the processing time constraints imposed by the large amount of data to be processed.

In this context, we aim to design the most universal possible source detector for optical and
NIR wide-field instruments. By universal, we mean that it must be able to work with various
telescopes, cameras and observing conditions without requiring extensive tuning. We also aim
to make a robust detector regarding whatever defects or imperfections may affect images.

This project was initiated in the context of two particular surveys: Cosmic-DANCe (Bouy
et al., 2017), standing for Dynamical Analysis of Nearby Clusters, hereafter written COSMIC-
DANCE, and Euclid (Laureijs et al., 2012).

The primary goal of the COSMIC-DANCE survey is to recover the initial stellar mass func-
tion, i.e., the function describing the formation rate of stars as a function of mass, by studying
young and nearby open clusters. COSMIC-DANCE focuses on the lowest mass stars, below
the Gaia (Gaia Collaboration et al., 2016) magnitude limit. This population is poorly known
because of the high contamination and incompleteness rates in this observation regime. COSMIC-
DANCE gathers wide-field imaging data of nearby open clusters and star-forming regions from a
large range of ground-based observations and data archives. These data are used to compile star
catalogs with proper motion measurements, i.e., the apparent motion of stars in the sky, and
cluster membership probabilities, i.e., the probability for a star to belong to the cluster. It is
thus critical for COSMIC-DANCE to have a universal source detection tool, capable of handling
the wide heterogeneity of the data to be processed. Robust and reliable tools are also required
to manage the unknown and variable image quality of the data retrieved from the archives.

The Euclid mission relies on a space-based telescope developed and operated by ESA, with
both optical and NIR wide-field cameras onboard. Euclid primarily aims at understanding the
nature of dark matter and dark energy by measuring precisely the accelerated expansion of the
Universe. Weak galaxy lensing (the tiny distortion of galaxy shapes due to the deviation of light
rays by massive structures along the line of sight) and galaxy clustering are two major probes
of dark matter and dark energy used by Euclid. Therefore, the robust detection of galaxies and
the precise estimation of their positions and shapes are among the strong requirements of the
Euclid mission (Amiaux et al., 2010).

In addition to these particular surveys, many upcoming surveys plan to gather tremendous
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amounts of data, making the design of reliable, robust, automatic and fast source detection tools
necessary.

In practice one must distinguish point-like sources, i.e., stars and quasars, from extended
sources, which are mainly galaxies but can also include compact nebulae or stellar clusters whose
stars are unresolved. Currently, methods exist that are known to be optimal for detecting isolated
point sources, such as algorithms based on the matched filter (Woodward, 1953, 2014; Bertin
and Arnouts, 1996). Yet, the efficiency of these methods becomes severely limited in crowded
fields (i.e., when the source density is so high that source images overlap, a phenomenon known
as blending), or when images are contaminated by optical, electronic and environmental defects.
Some limitations of matched filter-based detection in such regimes are shown in Fig. 1.1.

Figure 1.1: Illustrations of the main limitations of current source detection algorithms. Yellow
circles are SDSS detections (12th data release, Alam et al., 2015) while red circles are Pan-
STARRS detections (1st data release, Flewelling, 2017, 2018), excepted for the right images
which present SExtractor detections in CFHTLS (Cuillandre and Bertin, 2006). Left images
show contaminant issues. Top left: false detections on the star diffraction spikes and saturated
core. Note also how sources around the bright star are missed. Bottom left: false detections on
a trail crossing the image. Middle images show deblending issues. Top middle: the neighbor of
the central source is not well detected in Pan-STARRS and even missed in the SDSS. Bottom
middle: Pan-STARRS over deblending in the NGC 5466 globular cluster while the SDSS simply
ignores this area. Right images show both contaminant and deblending issues. Top right: sources
around the bright star are ignored. Bottom right: sources around the most extended ones are
not detected. Images are seen through Visiomatic 2 (Bertin et al., 2019a).

Stellar crowding is particularly problematic in low-galactic latitude fields, where confusion
noise defines the detection limit and largely dominates the photometric and astrometric error
budgets. The situation is more severe in the NIR domain, where extinction due to interstellar
dust is significantly reduced. As of 2020 the best performing methods in crowded images are still
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largely empirical and consist in iteratively subtracting point-sources, from the brightest to the
faintest, using a Point Spread Function (PSF) model (Stetson, 1987; Schechter et al., 1993; Zhang
and Kainulainen, 2019). The detection of the faintest stars is also complicated by the presence
of contaminants. The most troublesome contaminants are: optical ghosts, especially in wide-
field cameras; cosmic rays and hot pixels in under-sampled images; and nebulae. With current
algorithms, the smaller and sharpest contaminated areas can be recovered through interpolation
(Popowicz et al., 2013), provided they have been formerly identified. On the other hand, the most
extended contaminants like nebulae are currently handled with complex background estimation
techniques (Popowicz and Smolka, 2015) or Bayesian models Knollmüller et al. (2018). In this
context, having reliable and versatile tools to detect and manage contaminants is essential.

Unlike stars that are point-like sources, galaxies appear extended. For extended objects
detection completeness does not only depend on magnitude, i.e., total flux, but also on surface
brightness, i.e., the measure of brightness per unit of detector area (or solid angle). The detection
selection function of galaxies is thus two dimensional (Driver et al., 2005), as shown in Fig. 1.2.
Even when isolated, low surface brightness galaxies can easily be missed by simple thresholding
algorithms operating at a single detection scale, as Fig. 1.2 shows.

Figure 1.2: Left: simplified view of the galaxy detection selection function in the Millennium
galaxy catalog (Driver et al., 2005). Because galaxies are extended sources, there is a detection
limit in magnitude and a detection limit in surface brightness. The slanted bottom left line
defines a maximal size detection limit: if a galaxy is too extended, it cannot be detected. The
slanted top right lines define minimal size detection limits: if a galaxy is too small, it can be
confused with a point-like source, especially with poor seeings. Right: an example of missed low
surface brightness galaxy in the SDSS and Pan-STARRS catalogs. There are even some noise
peak false detections within the galaxy. The right image is seen through Visiomatic 2 (Bertin
et al., 2019a).

Yet, those objects are of great importance in astrophysics. Indeed, according to observational
cosmology, the most prominent galaxy formation scenarios derived from the cold dark matter
model predict that such objects are abundant, in the form of satellite galaxies or in “pearled”
galaxy filaments, both dominated by dark matter (Kauffmann et al., 1993; Moore et al., 1999).
Though, apart from the low surface brightness, the detection of such objects is also complicated
by the presence of intra-cluster light (Contini et al., 2014), galaxy collision residuals such as
shells, tails or stream structures (Hendel and Johnston, 2015), and diffuse galactic cirrus from
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cold dust clouds (Miville-Deschênes et al., 2016). Illustrations of such features are shown in
Fig. 1.3.

Figure 1.3: Example of galaxy images from the MATLAS survey (Duc et al., 2015) illustrating low
surface brightness artifacts. Left: NGC 0474. The galaxy shows several shells and radial streams.
Right: NGC 2592. Cirrus is spread over the field. Other images are available at http://irfu.cea.
fr/Projets/matlas/public/Atlas3D/atlas3d-pXXIX.html. Images are seen through Visiomatic 2
(Bertin et al., 2019a).

A lot of efforts are put into the inventory and measurements of these objects through cur-
rent or upcoming experiments, including Dragonfly (Abraham and van Dokkum, 2014), Messier
(Valls-Gabaud and MESSIER Collaboration, 2017), Huntsman (Spitler et al., 2019), MATLAS
(Duc, 2020) and CASTLE (Lombardo et al., 2020). One may consider increasing the detectabil-
ity of these objects by leveraging multi-scale approaches (Starck et al., 2000). However, besides
the aforementioned physical objects, many low surface brightness contaminants interfere with
the detection of these galaxies in practice, including star halos and ghosts, fringing and flat field
residuals. As no automatic algorithms capable of working in this regime are available in detection
pipelines, visual inspection remains necessary (B́ılek et al., 2020). It is thus essential to develop
multi-scale detection algorithms that are “intelligent” enough to handle such complex situations.

Furthermore, crowding also affects galaxy detection and measurements. Galaxies are not
distributed independently across the sky. Through the action of gravity on primordial Universe
density fluctuations, they distribute in clusters, sheets and filaments. Galaxy images are thus
likely to overlap, or even blend, possibly with foreground stars. This blending strongly affects
the statistics derived from galaxy catalogs, in particular in observational cosmology, e.g., when
measuring the galaxy correlation function, cluster richness (Gruen et al., 2019) or weak lensing
magnifications (Gaztanaga et al., 2020). This is how approximately 20% of the sources identified
as galaxies in the deepest ground-based survey catalogs end up being removed from weak lensing
measurement datasets because of blending (Chang et al., 2013), even though this mainly concerns
source measurements and not detections. At the detection level, the statistic biases caused by
blending can be estimated using image simulations (Chang et al., 2015; Suchyta et al., 2016).
There is even good hope to get free from these biases with Approximate Bayesian Computation

http://irfu.cea.fr/Projets/matlas/public/Atlas3D/atlas3d-pXXIX.html
http://irfu.cea.fr/Projets/matlas/public/Atlas3D/atlas3d-pXXIX.html
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methods (Carassou et al., 2017; Kacprzak et al., 2020; Tortorelli et al., 2020).
All these current challenges and constraints will be even more important to face with upcom-

ing large scale surveys like Euclid or the LSST. Analyzing the unprecedented amount of data
obtained in these surveys requires new, fast, reliable and unattended detection tools for both
sources and contaminants.

In this PhD work, we aim to exploit the new data-driven approaches that have emerged
recently. We aspire to take advantage of supervised learning techniques and convolutional neural
networks (LeCun et al., 1995), which have proven effective in computer vision tasks such as image
classification (assigning labels to images, Krizhevsky et al., 2012; Simonyan and Zisserman, 2014),
image segmentation (assigning labels to pixels, Ronneberger et al., 2015; Badrinarayanan et al.,
2017), and instance-aware object detection (Redmon et al., 2016; Ren et al., 2015; He et al.,
2017), where each object is individually detected and eventually segmented. This is a complete
paradigm shift from more traditional algorithmic approaches, changing the way problems are
addressed.

This manuscript is divided in chapters organized as follows: in Chapter 2, I introduce our
model describing optical and NIR wide-field images. This will help us identify the most relevant
features of astronomical images and pose the problem of source detection. After reviewing
possible solutions to this problem in Chapter 3, I justify our choice of a machine learning based
approach. In Chapter 4, I introduce the necessary concepts related to the supervised machine
learning techniques that we apply to images: convolutional neural networks. This brings us to
Chapter 5, where I tackle the identification of contaminants with MaxiMask and MaxiTrack.
In Chapter 6 I focus on the problem of source detection, and present our new detector prototype
based on convolutional neural networks. Finally, I provide a summary of our results and discuss
future work directions in Chapter 7.



Chapter 2

Astronomical images and the source
detection problem

Astronomical images are the result of several processes. Fig. 2.1 illustrates a simplified view of
an astronomical observation made from the ground:

Astronomical
objects

PhotonsAstronomical
objects Atmosphere

Telescope Camera
Computer

Digital image

Figure 2.1: Schematic and simplified representation of a ground-based astronomical observation.

Photons emitted by astronomical objects are collected by a telescope pointing in their direc-
tion. They travel through space and the atmosphere until the optics of the telescope focus them
on a camera constituted of pixels. In each pixel, they are counted and each count is converted
into a number to build a digital image, i.e., an array of numbers.

Our aim is to design a universal source detector, in the sense that it should be able to adapt
to various telescopes, cameras and ambient conditions. With this in mind, I first present our
simplified yet generic model of optical and NIR wide-field images.

2.1 Image model

Having a good model of astronomical images is essential for several purposes, including under-
standing how images form, what is at stake in the source detection problem, and having the
necessary information to realistically simulate astronomical image features if necessary.

As depicted in Fig. 2.1, the light emitted by the observed astronomical objects first travels
through space and the atmosphere until it reaches the telescope. The image formation process
in the telescope and instrument is linear and translation equivariant (at least locally). In that
respect, the contributions of the various sources add up in the image and a translation in the
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object plane results in a translation in the image plane. The image of the light emitted by
astronomical objects can therefore be described as a linear combination of the impulse response
of the system at each point: it is a convolution. In optical astronomy, the impulse response is
called the Point Spread Function (PSF hereafter). Photons hitting the detector are counted and
converted into numbers in each pixel. This introduces shot noise, which I describe in Section
2.3. Regarding the camera, we assume that all image pixels are independent and arranged in a
homogeneous grid: they do not influence each other and they all have the same response and
sensitivity. Under this assumption the resulting digital image is a regularly sampled version of
the convolution of the light signal with a PSF (which now includes the intra-pixel response) up to
a multiplicative conversion factor and additional readout noise. In real detectors, there may be
crosstalk between pixels due to inter-pixel capacitance, so that pixels are no longer independent.
Also, distinct pixels may have different sensitivities, breaking the homogeneity hypothesis. This
can be partially mitigated by image calibrations seen in Section 2.6.

Within this framework, we can describe astronomical images as the regular sampling of a noisy
realization of the result of the convolution of the object signals with the PSF of the instrument,
as well as an additional readout noise:

y = N(ШS(h ∗ x)) + n, (2.1)

where:

• y is the observed signal.

• ∗ denotes the convolution operator.

• h is the total PSF of the instrument, depending on the telescope optics, the atmosphere
and the detector.

• x is the true signal.

• ШS() denotes the Shah function, also known as Dirac comb, impulse train or sampling
function. It samples the continuous signal into a discrete signal, where S is the sampling
period and corresponds to the camera pixel size.

• N() denotes a random process intrinsic to the counting of photons.

• n is the additional readout noise due to the reading of the photon counts by the camera.

I describe the convolution, the intrinsic noise, the additive readout noise and the PSF of the
instrument in more details in the next sections.

2.2 Convolution operation

In the continuous domain, the convolution operation of f and g is defined as:

c(t) = (f ∗ h)(t) =

∫ ∞
−∞

f(t− τ) · h(τ)dτ =

∫ ∞
−∞

f(τ) · h(t− τ)dτ, (2.2)

where c is the convolution of f and h. The convolution operation is a translation invariant
linear operator1. Reciprocally, any translation invariant linear operator is a convolution. It is

1Rigorously, the convolution operation is a translation equivariant linear operator.
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the mathematical representation of a linear filter. Another useful property of the convolution is
that it is a multiplication in the Fourier space:

C(k) = F (k)H(k), (2.3)

where C, F and H are the Fourier transforms of c, f and h, respectively. Reasoning in Fourier
space can provide interesting insights but more practically, this is a way to compute faster
convolution operations.

In pixelated images, the image is discrete and the convolution is written:

I[p] = (S ∗H)(p) =
∑
q∈P

S[p− q] ·H[q] =
∞∑

q=−∞
S[q] ·H[p− q], (2.4)

where I is the final convolved image, S the source image, H the convolution kernel which is the
PSF of the instrument and P is the set of pixels.

Or rather:

I[x, y] = (S ∗H)[x, y] =
∑
h<H

∑
w<W

S[x− w, y − h] ·H[w, h], (2.5)

where W and H are the image width and height, respectively. Each new value of pixel at [x, y]
is recomputed as the weighted sum of the neighboring pixels by the PSF values.

A comprehensive description of the characteristics of the PSFs encountered in astronomy is
given later in Section 2.4.

2.3 Noise model

Our astronomical image model features two sources of noise.
Firstly, as mentioned earlier in Section 2.1, counting photons induces shot noise originating

from the discrete nature of light. It can be modeled by a Poisson distribution with parameter λ,
where λ is the expected number of collected photons during a given time interval (the exposure
time in our case). The Poisson distribution probability density pP (k) is defined as:

pP (k) =
λk

k!
exp (−λ). (2.6)

It gives the probability that k photon(s) are collected during the exposure time. The standard
deviation being

√
λ, the signal-to-noise ratio is

√
λ. When λ is large (high photon counts, long

exposure times), Poisson noise can be approximated by Gaussian noise.
The second source of noise affecting astronomical images is the additive noise due to the cam-

era readout electronics, which has a Gaussian distribution. The Gaussian distribution probability
density pG(x) is defined as:

pG(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.7)

where µ and σ are the expected mean and standard deviation of the distribution, respectively.
An important distinction to make between these two sources of noise is that Poisson noise

is intrinsic to the signal while Gaussian readout noise is not: it is simply an additive term in
the image model. This makes photon noise more difficult to manage compared to readout noise.
However, in situations where sources are sufficiently faint compared to the sky background,
considering photon noise as additive and stationary is a good approximation. This will generally
be the case for this work, as our main observational data set consists of wide band imaging in
the optical and NIR domains with long exposure times. This is an important assumption as it
makes the matched filter the optimal linear filter for detecting faint isolated sources as we shall
see later.
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2.4 Point spread function

The PSF incorporates two main components: one comes from the instrument while the other
comes from the atmosphere (only in the case of ground based observations). For more details
about both components, see for instance Wilson (2000, 2001) and Roddier (1981), respectively.

2.4.1 Optical instruments

Telescopes are optical instruments made of lenses and/or mirrors. A telescope has several func-
tions:

• Light grasp: gather a maximum of light.

• Angular resolution: resolve very close or small objects.

• Magnification: zooming details that cannot be seen with the naked eye.

There are two main types of telescopes: refracting and reflecting telescopes. Most professional
wide-field instruments are mounted on reflective telescopes that use large mirrors to focus light,
and a combination of smaller lenses to correct for field aberrations.

The two main optical characteristics of a telescope are the diameter D of the main aperture,
which sets the light grasp power and the resolution of the telescope, and the effective focal length
F of the optical combination which defines the magnification (the pixel scale in arcseconds).
Another useful parameter is the focal ratio (or f-ratio) F/D. The higher the f-ratio, the lower
the illuminance of an extended source, i.e., the amount of light or photons received per unit area
on the focal plane.

2.4.2 Diffraction and aberrations

A major part of the PSF is defined by the telescope optics. Assuming a point-source located
at an infinite distance of the telescope, the optical PSF is the Fraunhofer diffraction pattern
produced by the entrance pupil of the telescope. For a circular aperture the pattern is known
as the Airy disk (Airy, 1835), shown in Fig. 2.2. The size of the Airy pattern depends on the
wavelength and aperture diameter:

θ =
1.22λ

D
, (2.8)

where θ is the angle defining the first light minimum, measured from the center, λ the wavelength,
and D the telescope diameter.

Figure 2.2: A simulated Airy disk.
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The Airy disk is the result of an infinitely far point-source for an instrument limited by
diffraction, that is, an instrument with perfect optics, without atmosphere. It defines the minimal
size to which an optical system can focus light, i.e., its resolution. In practice, the diffraction
pattern of large instruments is seldom a perfect Airy disk.

Firstly, in reflective telescopes the circular aperture is obstructed by the secondary mirror
and its support. This results in a slightly softer diffraction pattern with long diffraction spikes.

Secondly, the optics are not perfect and may suffer from various aberrations:

• Defocus: when the image is not acquired at the focal position.

• Spherical aberrations: an aberration due to different striking light rays on spherical sur-
faces.

• Coma: an aberration due to the fact that incoming parallel rays striking the spherical
surface with an angle are not all reflected to the same point.

• Astigmatism: an aberration where rays from two perpendicular planes are focused at dif-
ferent locations.

A convenient way to model these features is to work with the optical transfer function of the
system in Fourier space. The PSF may be computed as the (inverse) Fourier transform of the
autocorrelation of the complex entrance pupil, including the phase variations due to aberrations.
This is how it is modeled in the SkyMaker astronomical image simulation software (Bertin,
2009),. Illustrations are presented in Fig. 2.3.

Figure 2.3: Real part of the pupil functions (top) and the corresponding PSFs (bottom) in the
perfect case and in the presence of aberrations. Image credits: Bertin (2009).

Thirdly, other imperfections affecting the PSF include:

• Field curvature (also known as Petzval field curvature), which happens when the image
surface is curved.

• Distortion, which happens when magnification varies across the focal plane.

2.4.3 Atmospheric turbulence

Apart from the instrument itself, which is generally well known, the other component of the PSF
for ground-based observations originates from the turbulence of the atmosphere.
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Because of air layers having different temperature and humidity levels, the refraction index
is constantly changing throughout the atmosphere, distorting the path of light and thus the
images. Wind is also playing a role by driving the turbulent pattern at different speeds and in
different directions. Turbulence occurs at different heights: close to the ground (dome, surface
boundary layer or due to ground convection), in the planetary boundary layer or associated with
orographic disturbances (mountain ridges), and in the tropopause or above (Roddier, 1981).

The Kolmogorov model developed by Tatarskii (1961) and inspired by the studies of Kol-
mogorov (1941a,b) gives a mathematical description of the atmospheric turbulence which is
found in reasonably good agreement with observations (Racine, 1996) for scale-lengths up to
a few meters. It models the average width of a turbulence cell, r0, also called Fried’s seeing
parameter, Fried’s coherence length or Fried’s r0 as:

r0 = 0.184λ6/5(cos γ)3/5

[∫
path

dh(CN (h))2

]−3/5

, (2.9)

where:

• λ is the wavelength.

• γ is the angular distance from the zenith.

• h is the altitude.

• CN (h)2 is the refractive structure index coefficient, which models the average difference of
refraction index between two points within the turbulent layer.

CN (h)2 can be measured using various methods that are not described here or modeled using
mathematical functions which are often data measurement fits. A common model is the Hufnagel-
Valley (Hufnagel, 1974; Valley and Wandzura, 1979). The coefficient is integrated across all the
atmospheric layers in the optical path.

The optical transfer function (OTF) of atmospheric blurring in long exposures under a Kol-
mogorov model is written (Roddier, 1981):

OTF(f) ∝ exp

(
− 3.442

(
λf

r0

)5/3)
, (2.10)

where ‖f‖ is the angular frequency. This is the contribution of the atmospheric turbulence to
the PSF. The larger the r0, the better the conditions. It varies from about one centimeter in the
worst sites in the blue band to tens of centimeters in the best sites at NIR wavelengths. Note
that this is when pointing to zenith; r0 increases with the zenith angle as the light path through
the atmosphere lengthens.

In practice, turbulence has a major impact on the images from instruments with large aper-
tures. The instantaneous effect for apertures >> r0 is the presence of speckles characterized by
an irregular distribution of bright stains and dark areas. This effect is due to the diffusion and
the interference of the wave front occurring in turbulent cells throughout the atmosphere.

This can be really serious on very short exposures, as turbulence makes the “PSF” a stochastic
process which may vary over very small angles (for high altitude layers). Yet, in our observation
regime, i.e., wide-field optical and NIR images with long exposure times, numerous speckles
stack up during the exposure so that the PSF results in a large blurred stain, called seeing disk.
The full width at half maximum (FWHM) of the seeing disk, or simply seeing, is often used as
an empirical measure of the quality of the atmosphere. The higher the amount of atmospheric
turbulence, the larger the FWHM. It is related to r0 with:

FWHM ≈ 0.98λ

r0
. (2.11)
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Seeing is generally the dominant contributor to the spread of the PSF as shown in Fig. 2.4.

Figure 2.4: Illustration of the various contributions to the PSF that are taken into account in
the PhoSim image simulation software (Peterson et al., 2015), including atmospheric turbulence.
Image credits: Peterson et al. (2015).

2.4.4 Aureole

Diffusion effects dominate the PSF beyond several FWHMs from the center, causing a faint halo
called aureole. Even though the exact origin of the aureole is not well understood, it is believed
to originate from a combination of instrumental and atmospheric light scattering (Racine, 1996).
It generally follows a power law (King, 1971; Racine, 1996).

2.4.5 Pixel response

Finally, the PSF must also account for the intra-pixel response function, i.e., the variation of
detector sensitivity below the scale of a pixel. It is particularly significant in critically undersam-
pled instruments such as Euclid because the actual optical PSF is concentrated over a few pixels
(Shapiro et al., 2018). A perfect pixel response function would correspond to a door function of
the size of the detector’s pixels. Because of charge diffusion, the pixel response function often
shows a tail that extends beyond the pixel footprint.

2.5 Electronic detectors

After traveling through space and the atmosphere and being focused by the telescope, photons
emitted by astronomical objects are transformed into a numerical image by electronic detectors
at the focal plane. The electronic detector is either a CCD (charge-coupled device), or a CMOS
(complementary metal oxide semi-conductor) device. Both types of detectors are arrays of electric
potential wells, that define the pixels, where light is converted into a voltage. Both use the
photoelectric effect: incident photons hit the substrate, commonly silicium, where they excite
electrons that enter the conduction band. These electrons are then collected in each well and
read. In CCDs charges are transferred from well to well to an output amplifier whereas in CMOS
this process is done at each pixel independently. Fig. 2.5 shows an illustration of both reading
techniques.
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Figure 2.5: Comparison of CCD and CMOS detector readout strategies. Image credit: Stefano
Meroli (CERN).

Both types of detectors introduce additional “signals”:

• Bias: this is the offset signal emitted by the electronics which does not depend on the
exposure time.

• Dark offset: this is the signal due to the dark current, i.e., to the spontaneous and random
generation of electrons in the detector even when no photons are collected. This process is
of thermal origin and amplifies with detector temperature.

• Readout noise: this is the Gaussian noise generated by the on-chip amplifiers and the
sampling process.

The continuous voltage signal generated by the accumulated charges is transformed into a
discrete digital signal by the analog-to-digital converter. This quantification process introduces
a quantization error corresponding to the rounding error between the analog voltage and the
digitized values. Astronomical images are generally stored using single-precision floating-points
in FITS format (Wells et al., 1981), standing for Flexible Image Transport System.

2.6 Image calibrations

At a given pixel i, detector measurements can be written as:

yi = aixi + bi + ni, (2.12)

where:

• yi is the observed value of the pixel.

• xi is the “true” value of the pixel.

• ai is a multiplicative gain factor which incorporates the quantum efficiency of the pixel as
well as local attenuation due to optical vignetting and dust or spots in the optical path.

• bi is the additive term corresponding to the bias of the detector and the mean dark current
offset.

• ni is a random variable introduced by the Gaussian readout noise.
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For the whole image:

y = a� x + b + n, (2.13)

where � denotes the point-wise product.
The usual correction procedure is:

y′ = (m(y − d))� (f − d), (2.14)

where:

• � denotes the point-wise division.

• y′ is the corrected or reduced image.

• y is the raw image as defined in Eq. 2.13.

• d is a dark frame: an exposure of the same duration as y with the shutter closed. It is
subtracted from y to correct for the bias and dark offset.

• f is a flat field: an exposure of a angularly uniform light. It is bias-subtracted and
normalized by m.

• m is an arbitrary factor, generally taken as the median of f − d.

The image y′ is said to be bias and flat field corrected. Note that raw d and f exposures are
also subject to noise themselves. A common procedure to reduce noise is therefore to average
several dark and flat-field exposures to generate “master” dark and flat frames. The corrected
images y′ are usually called “science” images, as opposed to the raw images y. From now on,
the images discussed in this work are considered to be science images. In such images, only the
contribution of the sky background and sources remains.

2.7 Sources in astronomical images

The two main types of sources of interest for detection are stars (point-sources) and galaxies
(extended sources).

2.7.1 Stars

Stars (and quasars) are point-sources at the scale of a fraction of an arcsecond (the typical
angular pixel size for optical and near-infrared wide-field cameras on large telescopes). As stated
in Section 2.1, in our simplified and generic image model, we describe the resulting image as
the convolution of true star signals with the PSF of the instrument, (ignoring the two sources of
noise). A basic example is shown in Fig. 2.6.
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Figure 2.6: Simplified illustration of the image of stellar sources obtained with a telescope. Left:
true signal. Middle: PSF of the instrument. Right: result image. The result image is the
convolution of the true signal with the PSF. I do not include sky background, noise and pixel
sampling in this representation. Note how the two close sources in the top left are blended in
the result image.

Figure 2.7: Examples of the 3 main morphological types of galaxies. Top: spiral. Middle:
elliptical. Bottom: irregular. Images credits: EFIGI project (Baillard et al., 2011).
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2.7.2 Galaxies

Galaxies have a more complex appearance. They show up as extended sources that can have
various shapes: elliptical, spiral or irregular as shown in Fig. 2.7. Some galaxies can exhibit
several components, be asymmetric or non convex.

Even within each morphological type a galaxy may look very different depending on the
point of view and on the peculiarities within each type. For example, spiral galaxies can exhibit
different arm patterns, have different bulge sizes, and can be seen under various orientations
(face-on, on the edge, etc); elliptical galaxies may appear more or less flattened, etc.

Within our image model, we obviously describe galaxy images as the convolution of the true
light distribution with the PSF. However, except for the closest galaxies, they cannot be resolved
in stars, at least from the ground.

2.8 Conclusion

In the scope of designing a robust and universal source detector for optical and NIR wide-
field images, we have defined a simplified yet generic image model. Astronomical images can
be modeled as the result of the convolution of the true signal of interest with the PSF of the
instrument plus an additional noise. The PSF depends on the instrument and generally varies
within the field of view. It is often dominated by atmospheric turbulence which varies with time,
for ground-based instruments. Sources lie on top of a sky background, which is often made uneven
from contamination by stray light and extended nebulae. In practice, most faint sources look like
small blurs, more or less diffuse, with no clear boundaries. Complicating this, background noise
(Poisson noise from the sky plus readout noise) makes the object even more elusive. Finally,
source blending in dense regions makes it challenging to detect individual objects, let alone
individual contributions to the total light.

Because of all these issues, identifying sources in images is not an easy task, and raises
questions such as: given the nature of astronomical images, what is the best feature for identifying
a source ? Existing solutions rely on at least one of the following source features:

• Source peak: a source can be identified by the mode of the light distribution. This can be
problematic regarding some extended sources that do not exhibit a unique intensity peak.

• Source centroid: a source can be identified by its central part, generally defined as the
barycenter of the light distribution. This may be inappropriate for strongly skewed source
profiles.

• Source pixels: a source can be identified by a pixel mask. The mask may correspond to,
e.g., an area enclosing some fraction of the estimated source flux, or a set of connected
pixels with values exceeding some threshold above the sky level.

With a proper model of astronomical images in hand, let me now review the existing solutions
to source detection.



Chapter 3

Existing solutions to source detection

In this chapter, I review the state-of-the-art of source detection techniques from the past decades1.
One may distinguish two main types of approaches: basic detection algorithms, consisting of

background estimation, filtering, local peak search or thresholding, and multiscale approaches,
mainly based on wavelet transforms. I review all these techniques in the following sections,
indulging in a few digressions on related methods or topics where applicable.

Note that some of the cited methods are also applied to X-ray or radio images even if this
project is more about optical and NIR data.

3.1 Basic detection algorithms

Basic detection algorithms involve several of the following steps:

• Sky background estimation and subtraction or other preprocessing,

• Matched filter.

• Local peak search.

• Thresholding.

• Source fitting.

• Deblending.

3.1.1 Preprocessing and sky background estimation

In order to be able to detect the faintest objects and/or to derive accurate photometry, i.e.,
estimate source light intensities (fluxes), it is essential to have a precise measurement of the
contribution of the sky background. Theoretically, there should be one background map per
source, each describing how the image would appear without the source. However, no methods
have been developed to achieve it. This is why most approaches compute a single background
map per image.

To retrieve the sky background level from images, most methods rely on the assumption that
if the image is made mostly of “background” pixels, the histogram mode of the image can provide
an appropriate estimate of the sky background level. Therefore, the aim of the majority of sky

1Bertin (2001) and Masias et al. (2012) are valuable resources reviewing source detection methods until the
last decade.
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background estimation methods is to fit models to the image histogram or to design algorithms
to estimate its mode.

For instance, Bijaoui (1980) uses a Bayesian model to fit the image histogram and derive
several sky background parameters such as the sky background level from this model. Even
though it is used in several other studies (Irwin, 1985; Le Fevre et al., 1986; Slezak et al., 1988),
it proved too computational expensive for most applications at the time.

Thus, simpler and faster methods based on mode estimations have been preferred in practice.
In addition, since the sky background may vary across the field, most of these methods make local
estimates of the sky background level. Thereby, the entire field is divided into smaller images
and a sky background value is estimated within each of these images. A full sky background
map can then be built by interpolating these values, using, e.g., bicubic spline interpolation.
Sometimes, the local values are also median or Gaussian filtered prior to interpolation in order
to mitigate local overestimates.

Some of the early methods processing this way relied on the local mean (Herzog and Illing-
worth, 1977; Kron, 1980). However, since the mean is very sensitive to outliers, the median is
often preferred, e.g., in Damiani et al. (1997) after smoothing with a Gaussian filter, in Mopex
(Makovoz and Marleau, 2005), or in Lang et al. (2010), the latter estimating the standard devi-
ation of the sky background by picking random pixel pairs.

Other methods estimate the sky background level after pre-detection of sources, like Buo-
nanno et al. (1983a), Daophot (Stetson, 1987) and Yee (1991) that estimate the sky background
value as the mode of an annular region around the stars. This method is also used in Vikhlinin
et al. (1995) and Szalay et al. (1999) to compute the sky background level in X-ray images and
for faint object detection, respectively.

A better compromise between accuracy and speed is reached with iterative estimations of the
mode of the image histogram. Differences between mean, median and mode for sky background
estimation are illustrated in Fig. 3.1. We can clearly see that the mean and median are poor
approximations of the mode in crowded fields. Moreover, the mode may not be a good estimator
of the sky background level in this regime.

In order to make more robust estimations of the sky background level, a lot of methods use
algorithms to discard some image pixels. For example, Lasker et al. (1990) simply take the mean
of empirically clipped histogram values. On the other hand, SExtractor (Bertin and Arnouts,
1996) uses an automatic procedure called k-σ clipping. This procedure consists of discarding
pixels which values are above the sum of the mean and k-σ. This process is iterated until no
more pixels can be discarded and the remaining pixels are used to estimate the sky background
level, using the following criterion: if σ changed less than 20% during the k-σ clipping procedure,
the field is considered uncrowded and the retained sky background value is the mean of the clipped
histogram. Otherwise, the sky background value b is given by

b = 2.5×median− 1.5×mean, (3.1)

a modified version of Person’s rule (Pearson, 1895), which normally uses 3 and 2 as approximation
coefficients, as in, e.g., Kendall and Stuart (1977) and later versions of Daophot. The k-σ
clipping procedure has also been used in Lazzati et al. (1999) for X-ray images and in Perret
et al. (2009).

Finally, some alternative histogram model fitting are still used in Szalay et al. (1999) and
Hopkins et al. (2002) with radio images. A Gaussian of parameter (µ, σ) is fitted to the histogram.
The original image is then normalized by subtracting µ and dividing by σ.

After having estimated and subtracted the sky background from the image, most “classical”
methods rely on the matched filter.
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Figure 3.1: Illustration of different sky background approximations. Top: a low density stellar
field and its histogram. Bottom: a high density stellar field and its histogram. Mode, median
and mean are represented in each histogram. In the low density stellar field, the median and
the mean can make good approximations of the mode but it is not the case in the high density
stellar field.

3.1.2 Matched filter

The matched filter (Woodward, 1953, 2014; Turin, 1960) is used to enhance the contrast of
known patterns in noisy images. It consists in correlating the input with a template to detect
the presence of the pattern in the input. In the one-dimensional continuous case, cross-correlation
is defined as:

c(t) = (f ∗ h)(t) =

∫ ∞
−∞

f(τ + t) · h∗(τ)dτ =

∫ ∞
−∞

f(τ) · h∗(τ − t)dτ, (3.2)

where h∗ denotes the conjugate of h.
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When searching for a correlation template hm maximizing the signal-to-noise ratio of a signal
s in the presence of stationary noise (in the least square sense), one finds:

Hm =
S∗

P
, (3.3)

where P is the noise power spectrum and Hm and S are the Fourier transform of hm and s,
respectively. In the case of a point-source over white noise, the power spectrum P is constant
and the template is simply the instrument’s PSF. As the PSF is often symmetric, applying the
matched filter consists in convolving the input with the PSF (a simple point-wise product in
Fourier space). An illustration of the 1D matched filter is shown in Fig. 3.2.

The matched filter is optimal only in the presence of (wide-sense) stationary noise, i.e., a
noise that keeps the same (2nd order) statistical properties across the image. In our case, this
condition is generally verified over vast portions of wide-field optical and NIR images with long
exposure times, as already stated in Section 2.3.
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Figure 3.2: Illustration of the 1D matched filter. The sky background value is assumed to be
zero. The observed signal is comprised of sources with Gaussian profiles with unit standard
deviation on top of white Gaussian noise with σSKY = 0.5. Matched filtering is carried out by
convolving the signal with a Gaussian kernel with unit standard deviation.

Yet, a strong limitation of the matched filter is that it is ideal only to detect isolated signals.
It is thus well suited to identify isolated sources, but it is limited in crowded fields where sources
overlap because the noise is not stationary anymore.

Confusion noise regime: An extreme case of crowding is the confusion noise regime. It
happens in very dense fields when the sky background is dominated by the faintest unresolved
sources. Illustrations of this regime are shown in Fig. 3.3. In such a regime, the noise cannot be
approximated as white noise. Instead, it is a Poisson noise convolved with the local PSF so that
its power spectrum P is no longer flat. Then the optimal filter is in fact the direct deconvolution
of the image with the PSF and only the brightest peaks are detected in the image.
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One of the first use of the matched filter for automatic astronomical source detection is
done in Irwin (1985), suggesting the seeing function as template, which can be estimated by
“directly averaging suitable stellar profiles or by an analytic model fit to these profiles”. Daophot
(Stetson, 1987) and Hopkins et al. (2002) filter the image with a Gaussian kernel while a Gaussian
fit of the PSF is done in Slezak et al. (1988) as template filter. Mighell (1989a, 1999) suggests
smoothing high frequencies, that are likely to be noise, by using a low pass filter template.
The matched filter is extensively used, e.g., in Vikhlinin et al. (1995) with X-ray images or in
SExtractor (Bertin and Arnouts, 1996). The matched filter is still the basis for contemporary
source detection algorithms (Maddox and Dunne, 2020).

Figure 3.3: Illustrations of the confusion noise regime. Left: Baade’s window. Right: Lockman’s
hole. Image credits: Adam Block/Mount Lemmon SkyCenter/University of Arizona and SPIRE
instrument (Griffin et al., 2010).

Variations to the basic matched filter have been developed. A non-linear matched filter
(Makovoz, 2005), less computationally extensive, is implemented in Mopex (Makovoz and Mar-
leau, 2005). Matched filters have also been used in multi-channel images. Melin et al. (2006)
filter each channel independently and create a single filtered image. Herranz and Sanz (2008);
Herranz et al. (2009) use Nc×Nc filters, called matrix filters, to compute one filtered image per
channel using all channels.

Once the image is filtered and source contrast is enhanced, two main methods are used to do
the detection: local peak search and thresholding.

3.1.3 Local peak search

Local peak search, or maximum search, consists of finding peak pixels, i.e., local maxima.

Ilp(p) =

{
1 if ∀q ∈ Np, I(p) ≥ I(q)
0 otherwise

(3.4)

where Np is the set of pixels neighboring p. An illustration of local peak search is shown in
Fig. 3.4 below, reusing the example of Fig. 3.2.

For instance, Herzog and Illingworth (1977) and (Newell and O’Neil, 1977) define peaks
using two criteria: the pixel value must be greater than a constant above the sky background
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Figure 3.4: Illustration of a local 1D peak search. Peak pixels are defined as having values higher
than those of the two immediate neighbors. Adding a threshold condition may help refine the
selection of detected peaks.

and its eight closest neighbors. Kron (1980) and Yee (1991) use the latter criterion and then
verify that the average of the given pixel and its eight neighbors is greater than some fraction
of the sky background value. Buonanno et al. (1983a) identify pixel values higher than that of
their neighbors, retaining only those above some value and using a contiguity criterion to avoid
multiple detections of the same object. Daophot (Stetson, 1987) checks for pixel value above a
predefined threshold and above those of neighbors closer than a distance d, where d is estimated
using a user-supplied FWHM. Lang et al. (2010) retain pixels above 8σ of the sky background
and pick those that have higher values than the neighbors. They trim the smaller peaks by
looking for those that are joined to smaller peaks by saddle points within 3σ of the larger peak
(or 1% of the larger peak’s value, whichever is greater). Other studies supporting local peak
search include Mighell (1989a,b); Vikhlinin et al. (1995); Mighell (1999).

The main weakness of local peak search comes from not being suited to extended objects
with diffuse patterns and no clear maximum.

3.1.4 Thresholding

The thresholding operation turns an image into a binary image, also called a segmentation map.
It operates on background-subtracted, matched filtered pixels. Each pixel is assigned a binary
value in the segmentation map depending on whether it sits above or below the threshold:

It(p) =

{
1 if I(p) > t
0 otherwise

(3.5)

where t is the threshold value. The two resulting classes of pixels usually end up being objects
and background. An illustration of thresholding is shown in Fig. 3.5.

The most critical point when using thresholding is to define an appropriate threshold: too low
and noise peaks may trigger false detections, too high and the faintest sources may be missed.
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Figure 3.5: Illustration of 1D thresholding. Values above the threshold are set to 1 while values
below are set to 0.

Irwin (1985) simulates sources with Gaussian distribution and random noise to estimate the
completeness and contamination levels for different thresholds.

Le Fevre et al. (1986) use the standard deviation of a Gaussian model adjusted to the his-
togram of the sky background to define the threshold. The threshold is set to 1.5σ by default,
which is quite low but false positives are prioritized over false negatives in their study. Slezak
et al. (1988) also use the standard deviation of a Gaussian fit, but the latter is made on a 8
maximum neighbors histogram. The threshold is set at 3.8σ.

Lasker et al. (1990) simply threshold at 125% of the sky background value. This threshold
is increased for crowded fields.

Szalay et al. (1999) use a threshold to retain pixels that are unlikely to be background assum-
ing that the sky background is Gaussian distributed. It optimally happens at the intersection
between a sky background Gaussian histogram and the image histogram (Fukunaga, 1990). In
practice, it corresponds to 2.43σ of the sky background in their application. Hopkins et al. (2002)
choose a similar criterion to define the threshold in radio images.

Detection thresholds, performance metrics and ROC curves: Various detection thresh-
olds may be used, resulting in different performance trade-offs. Detectors can be seen as 2-class
classifiers and their performance is usually assessed by counting how many true and false objects
are detected. These are referred as true positives and false positives, respectively. After thresh-
olding, pixels above the threshold are considered as predicted positive, i.e., objects, while pixels
below are considered as predicted negative, i.e., background. If one knows the ground truth of
each pixel, i.e., if each pixel is actually object or background, then one can count the number
of true positive (TP), false positive (FP), true negative (TN) or false negative (FN) pixels as
shown in Table 3.1.

Common performance metrics can be derived from TP, FP, TN, and FN:
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Actual class
Positive/Object Negative/Background

Predicted Positive/Object TP FP
class Negative/Background FN TN

Table 3.1: Basic performance metrics (see text).

True positive rate: TPR =
TP

TP + FN
=

TP

P
(3.6)

False positive rate: FPR =
FP

FP + TN
=

FP

N
(3.7)

Purity: PUR =
TP

TP + FP
(3.8)

Accuracy: ACC =
TP + TN

TP + FP + TN + FN
=

TP + TN

P + N
, (3.9)

where P and N denote the number of actual positives and negatives, respectively. The true-
positive rate is the ratio of true positives to all the actual positives. The closer to 1, the better
the classifier or detector. It is also referred as sensitivity or recall. The false-positive rate is
the ratio of false positives to all the actual negatives: the closer to 0, the better. Purity is the
ratio of true positives to all the predicted positives; the closer to 1, the better. It is also referred
as precision. Accuracy is a global performance measure. It gives a quick idea of the classifier
performance; the closer to 1, the better.

A common practice is to represent the classifier performance using a ROC (Receiver Operating
Characteristic) curve. It represents the TPR versus the FPR for various detection thresholds.
Examples of ROC curves are given in Fig. 3.6.
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Figure 3.6: Examples of ROC curves. The more a curve bends towards the top left, the better
the classifier performance is. Each point in a ROC curve corresponds to a (FPR,TPR) couple
at a given probability threshold in [0, 1].



Chapter 3. Existing solutions to source detection 25

The more a ROC curve bends towards the top left, the better the classifier is because it
means that the TPR and FPR get closer to 1 and 0, respectively. Another performance metric
derived directly from the ROC curve is the AUC, standing for area under curve, which is simply
the area under the ROC curve. The closer it is to 1, the better the classifier or detector is. All
these performance metrics can be used to assess the performance of a detector or to compare
several detectors.

The segmentation map obtained after thresholding gives the list of pixels considered as objects
and those considered as background. However, it is far more convenient to assess the performance
of a detector at the object level rather than at the pixel level. For that, pixels need to be assigned
to individual objects. This can be done using a connected component analysis (Rosenfeld and
Pfaltz, 1966). Pixels are grouped according to a connectivity criterion. The most widely used
criteria are 4-neighbor connectivity and 8-neighbor connectivity, using 3 × 3 cross and square
shapes, respectively. It is then more suitable to compute the performance metrics mentioned
above at the object level.

While isolated objects can be properly identified through connected component analysis,
blended objects remain identified as single objects at this point. This is why deblending proce-
dures are also applied to separate multiple objects detected as single ones.

3.1.5 Deblending procedures and source fitting

Deblending procedures can take place before or during source fitting. Source fitting aims to find
the light profiles that best fit the sources.

Newell and O’Neil (1977) and Herzog and Illingworth (1977) were among the first to design
a deblending procedure, called DOG (Data Over Gradient), after local peak search. The idea
behind the DOG procedure comes from the observation that a Gaussian distribution divided by
its gradient is the inverse function, which provides much sharper maxima. Assuming that source
profiles are Gaussian, the transformation is applied to the image and a second local peak search
is done.

Other methods address deblending via multiple source fitting. For instance, Buonanno et al.
(1983a) define an “action area” radius for each source during the local peak search. A deblending
procedure is then run if several sources have overlapping action areas. The procedure consists
in fitting multiple components (Fraser and Suzuki, 1966), later extended to two dimensions.
Components are analytical approximations of the PSF (King, 1971). The components are circular
Gaussian functions in Buonanno et al. (1979), and Moffat profiles in Buonanno et al. (1983b);
Moffat functions are known to be good approximations of ground-based PSFs (Moffat, 1969).
Moffat profiles are also used in Mighell (1989a,b) while Penny and Dickens (1986) is another
method using Gaussian profiles. Lorentzians, which are particular Moffat profiles, have also
been used, e.g., in Franz (1973), and Penny (1979). Daophot (Stetson, 1987) applies a similar
strategy for deblending, but using a more sophisticated PSF model derived from a selection of
stars in the field.

Le Fevre et al. (1986) propose an algorithm to detect blends that will later go through visual
inspection: it starts from the maximum of each detected component during thresholding and
iteratively extends radially in each direction to fit an ellipse. If a good fit happens before reaching
an intensity of 2σ of the estimated sky background, then the source is considered multiple and
is stored for visual inspection, where it is manually delimited by an ellipse. Lasker et al. (1990)
apply a local peak search on the thresholded connected pixels to find blended sources. After this,
they correlate the detected sources with predefined clean source profiles from a library. Slezak
et al. (1988) directly fit ellipses to the thresholded pixels and tries to tackle blended objects
during a star/galaxy separation procedure.
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Another method commonly used by several authors is multi-thresholding. Indeed, blended
sources detected as a single object at a given threshold may be separable at a higher threshold.
The multiple thresholds used are usually logarithmically spaced. For instance, Irwin (1985) uses
logarithmically spaced thresholds every quarter magnitude interval. The potential deblended
sources are then fitted with circular Gaussian profiles. SExtractor (Bertin and Arnouts,
1996) also uses multi-thresholding followed by bivariate Gaussian fits, while Mopex (Makovoz
and Marleau, 2005) applies a multi-component fit based on the number of deblended sources
by multi-thresholding. If the fitting quality is below a user specified threshold, the number of
component is incremented to check if it fits better with one more source in the blend. If it does
not, it reverts to the initial number of sources in the blend. An illustration of multi-thresholding
is shown in Fig. 3.7.
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Figure 3.7: Illustration of deblending with multi-thresholding. The multiple source is detected
as a single object with threshold 1 but it is well detected as a multiple object at higher threshold
2.

Even recently, multi-thresholding is still used for deblending purposes (Zheng et al., 2015).
Yet, some new techniques for deblending have been developed. For example, the Lupton algo-
rithm2 (unpublished) detects the individual sources of a blend by finding peaks. Then, it models
the blend as the linear combination of each detected source and fits a template for each source us-
ing a symmetry hypothesis. Recently developed methods also include Muscadet (Joseph et al.,
2016) that uses a morpho spectral component analysis based on morphological dictionaries and
SCARLET (Melchior et al., 2018) that uses constrained matrix factorization. Both assume that
a blended image is the linear combination of the contributions of each individual source. Their
aim is then to recover the individual source images.

At this point, it is important to discuss the two different levels of deblending, changing the
meaning of the word when employed in the literature. Indeed, there is the deblending at the
detection level and the deblending at the measurement level. Those imply two different tasks, so
that the word deblending in the literature can implicitely refer to one or the other. In particular,

2https://www.astro.princeton.edu/ rhl/photomisc/deblender.pdf
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in the most recent literature, deblending almost always refers to the measure and the deblending
task consists of recovering the individual fluxes of the blended sources. On the other hand,
deblending at the detection level consists of detecting that some image is made of a blend of
several sources. In this work, we focus on tackling deblending at the detection level, and there
are no recent works tackling deblending at this level to our knowledge.

3.1.6 Discussion

One strong limitation of all the previous techniques is that they remain quite empirical and
heuristic based, i.e., they use practical methods that are not guaranteed to be optimal, such as
the background estimation techniques, thresholding or the deblending routines. Each one must
apply small changes and variations to each method to make it work better with their application.
The size of the local area of background estimation, the kernel to use in the matched filter, the
setting of the detection threshold, etc. Each step in the whole processing depends on parameters
that need to be tuned to work well with given data in practice. Especially, extensive tuning is
necessary when processing higher source density regions or to detect particular objects such as low
surface brightness galaxies. Thus, one must constantly inject prior knowledge, tune parameters
to make it work on its data and make compromises between the types of objects to detect.

Among the tunable parameters, a non exhaustive list counts a parameter to ignore a certain
number of the higher pixels in the median filter evaluation of the sky background in Makovoz
and Marleau (2005), the sharpness and roundness criteria in Daophot (Stetson, 1987) to avoid
detecting cosmic rays or bleeding saturations, the minimal size of objects to consider as true
detections after thresholding in SExtractor (Bertin and Arnouts, 1996), etc. Each pipeline
has a lot of tuning routines like those to adapt to its data.

The whole reduction from an image to a source catalog relies on the chain of all these
processes, where any parameter change at one stage can have consequences later in the pipeline.
Two pipeline examples are given in Fig. 3.8.

Figure 3.8: Two examples of source detection pipelines. Left: Irwin (1985). Right: SEx-
tractor (Bertin and Arnouts, 1996). The purpose is just to show the complexity of the
pipelines. Each block is heuristic based and the final detection results rely on each of the
processing blocks. Images credits: Irwin (1985) and AstrOmatic SExtractor documentation:
https://www.astromatic.net/software/sextractor.

The quality of the detection also depends on the sky background and PSF estimations, which
both remain challenging and open problems.

https://www.astromatic.net/software/sextractor
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3.2 Methods using mathematical morphology

Mathematical morphology (Serra, 1982, 1988) is a theory based on set theory and topology, cre-
ated by J. Serra and G. Matheron in 1964 (Matheron and Serra, 2002) for analysing geometrical
structures.

3.2.1 Mathematical morphology

Mathematical morphology (MM) was first designed around binary images, where 1 may be
considered as a foreground and 0 as background. MM operators are based on the presence of a
pattern, called the structuring element. The two main morphology operations are erosion and
dilation, which reduce and increase the footprint of foreground pixels, respectively. Formally,
the operations are defined as:

Erosion: εS(I) = I 	 S = {p ∈ I|Sp ⊆ I} (3.10)
Dilation: δS(I) = I ⊕ S = {p ∈ I|Sp ∩ I 6= ∅}, (3.11)

where I is the input image and S the structuring element. The structuring element is moved
across all positions in the image for both operations. For the erosion, the new pixel p value is 1 if
Sp, the structuring element at this position, is included in the input foreground, and 0 otherwise.
For the dilation, the new pixel p value is 1 if Sp has at least one pixel in common with the input
foreground, and 0 otherwise. An illustration of these operations is given in Fig. 3.9.

Figure 3.9: Examples of erosion and dilation, the most common mathematical morphology op-
erations. In both row, from left to right: input binary image, structuring element, erosion of the
input image by the structuring element, dilation of the image by the structuring element. Gray
pixels denote pixels set to 0 in the erosions and pixels set to 1 in the dilations.

Common morphological operations also include opening and closing, which are combinations
of erosion and dilation:

Opening: γS(I) = δS(εS(I)) (3.12)
Closing: φS(I) = εS(δS(I)). (3.13)
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These operations can be extended to grayscale images. If I is the image function, assigning
a real value to each pixel p, then the operations are defined as:

Erosion: εS(I) = inf
q∈DI

[I(q)− S(q − p)] (3.14)

Dilation: δS(I) = sup
q∈DI

[I(q) + S(p− q)], (3.15)

where DI is the domain of I and S is the function defining the structuring element. Usually, flat
structuring elements are used:

S(p) =

{
0 ifp ∈ E
−∞ otherwise

(3.16)

where E ⊆ DI .

3.2.2 Application to source detection

Aptoula et al. (2006) use the morphological smoothing OCCO filter (Peters, 1995) with a disk
structuring element as a preprocessing step. OCCO stands for Open-Close Close-Open and is
defined as:

OCCOS(I) =

⌊
1

2
γS(φS(I)) +

1

2
φS(γS(I))

⌋
. (3.17)

Then, a watershed transform (Beucher and Lantuejoul, 1979; Beucher and Meyer, 1993) is
applied. The name refers to geology topography, where different high reliefs separate drainage
basins. In image processing, the watershed transform handles grayscale images like topographic
maps and finds ridge lines using virtual “flooding” to achieve image segmentation. It is also used
by Zheng et al. (2015) to divide the image in sub-regions around bright stars to tune the rest of
the analysis on each particular sub-region.

In a simpler way, Yang et al. (2008) use an opening with a circle structuring element to
extract the sky background component after a value-stretching operation to evenly distribute
image pixel values. Classical detection techniques (see section 3.1) are then applied to extract
sources.

After some classical preprocessing, Perret et al. (2009) use the hit-or-miss transform, a widely
used pattern recognition operation in mathematical morphology. Given two structuring elements
H and M with H ∩M = ∅, the hit-or-miss transform of I is:

HM(I) = (I 	H) ∩ (IC 	M), (3.18)

where IC is the complement of the set I. The result is given by the points that fit in H and do
not fit in M , hence the name.

Berger et al. (2007); Baillard et al. (2007) propose an algorithm that computes the component
tree of an image. This is a representation of an image where the child relations between the tree
nodes define spatial inclusions while nodes at the same level in the tree represent connected
components. This representation makes possible to identify objects and the authors present a
quick application to astronomical images. Connected trees are also used in Perret et al. (2010).

Yet, all those methods have limitations similar to the ones described in 3.1. They are all based
on heuristics, need to manage parameters and are tuned for a particular cases. Furthermore,
they are almost all combined with the basic detection methods described in Section 3.1.
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3.3 Multiscale approaches

Another interesting category of source detection techniques is the multiscale approach. One
major drawback of the basic detection techniques described above is that they do not handle
very well objects that show up at different scales in images, especially galaxies. Multiscale
methods try to overcome this by detecting objects at different scales.

The general principle of multiscale approaches is to decompose the images into components
at different scales and to detect objects that stand out the most from the noise at those scales.
Most multiscale methods are based on wavelet decompositions. In the following, I will focus on
such methods because these are the most popular but other multiscale techniques exist, such as
the pyramidal median transform (Starck et al., 1999), or iterative Gaussian smoothing (Kaiser
et al., 1995).

3.3.1 Wavelet transform

Image decomposition is performed in a so-called wavelet space, where the wavelets are scaled
and shifted versions of an analyzing wavelet ψ, or mother wavelet, which has zero mean:

ψs,l(x) =
1

s1/2
ψ
(x− l

s

)
, (3.19)

where s defines the scaling, l defines the shifting, ψs,l are the wavelets, and ψ is the mother
wavelet. Dyadic scales are generally used, i.e., two consecutive scales are related by a factor
two. The wavelet coefficients representing a function f in the wavelet space are obtained by
correlating the function with the wavelets:

cf,ψ(s, l) = 〈f, ψs,l〉 =

∫
R

f(x)ψs,l(x)dx (3.20)

One of the most used analyzing wavelet, especially in astronomy, is the Mexican hat. In two
dimensions, it is defined as:

ψ(x, y) =

(
1− 1

x2 + y2

)
e−

1
2

(x2+y2) (3.21)

Representations of the function and its corresponding wavelets in one dimension are shown
in Fig. 3.10.

In practice with images, the shifting parameter is just equivalent to moving each wavelet at
each pixel. A different scaling can be used along each of the two dimensions, but it is rarely done
because most objects to detect are isotropic. Thus, wavelet analysis often consist of correlating
the image with different scaled wavelets. It results in different maps which correspond to filtered
versions of the original image by the scaled wavelets.

3.3.2 Applications in astronomy

Wavelets have been extensively used in astronomy, especially for detecting galaxies, where several
scales help to detect the different structures, and with X-ray and high energy imaging. For
instance, Slezak et al. (1990) apply it in galaxy clusters and Damiani et al. (1997); Freeman
et al. (2002) with X-ray images, all using a Mexican hat mother wavelet. Very recently, wavelets
are still used for source detection in X-ray images (Nanni et al., 2020). Other methods have
used b-spline interpolations (Unser and Aldroubi, 1992) as mother wavelet, like the multiscale
vision model of Bijaoui and Rué (1995) or Lazzati et al. (1999); Slezak et al. (1994); Peracaula
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Figure 3.10: Some Mexican hat wavelets in one dimension. Green curves are the same and
represent the mother wavelet in each graph. In the left graph, it is represented with two scaled
versions of it. In the right graph, there are two shifted versions of the mother wavelet.

et al. (2011), the latter searching for extended structures in images. An example of wavelet
decomposition of an image is shown in Fig. 3.11.

A significance level can be computed in each scale. See for example Starck and Pierre (1998).
Afterwards, methods similar than those seen in Section 3.1 for thresholding and segmentation
can be applied in each scale. A simple approach consists of detecting each source in its maximal
appearance scale. More complex reconstructions are needed when one wants to recover the full
object structures, as in Bijaoui and Rué (1995). However, there has never been a proper recon-
struction scheme to fuse the extracted multiscale source components, which prevented multiscale
approaches to be used in practice. Among the applications that were used for production one
can mention: the identification of point-like sources in the cosmic microwave background (Cayón
et al., 2000) in the context of the Planck mission and the detection of faint sources in ISOCAM
data (Starck et al., 2003).

Multiscale approaches based on wavelets are also limited when it comes to detecting anisotropic
features such as lines, curves and edges in images. This issue has motivated research on other
sets of functions such as ridgelets and curvelets, which are extensions of wavelets. Ridgelets
include rotation as an additional transformation of the mother ridgelet. While they are better
ways of representing lines, ridgelets still struggle with curves and curved edges. Curvelets have
been designed to use ridgelets locally, at a scale small enough to approximate curves as straight
lines. See Fadili and Starck (2009) for more details.

3.3.3 Sparse representations and compressed sensing

Compressed sensing is a framework where signals can be sparsely represented, with fewer samples
than the Shannon and Nyquist sampling theory states, using sets of functions or dictionaries
(Bobin et al., 2008). It is based on the compressibility property of the data, i.e., the existence
of a dictionary where the signal is sparsely encoded (Starck and Bobin, 2009), and has mainly
applied to data reconstruction or denoising. Sparse coding techniques were partly motivated by
experiments such as Olshausen and Field (1996) who found that searching for a sparse coding
representation of natural scene images would lead to filters similar to what is observed in the V1
cortex receptive fields. Some astronomical applications have been developed, like denoising with
dictionary learning (Beckouche et al., 2013). However, when it comes to building a vision model
that could be used, e.g., for detecting sources, these approaches suffer from the same limitations
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Figure 3.11: Left: a wavelet decomposition of a galaxy in seven scales. The top left image is
the original galaxy image. Right: a tree built from the segmentation at each scale. Large scale
features like the galaxy bulge appear at the bottom while small scale features like stars appear
on the top. Images credits: www.multiresolution.com and Bertin (2001).

as multiscale methods: no generic solutions were found for reconnecting the extracted signal
components.

3.3.4 Probabilistic catalogs

Before concluding, we must mention a particular point of view which is that of probabilistic
catalogs. Hobson and McLachlan (2003) present two ways to detect sources. Firstly, an iterative
method that stops using a Bayesian evidence criterion. This method has later been optimized
(Carvalho et al., 2009, 2012). Secondly, a method detecting all objects at once, tested on a toy
problem, linking with probabilistic catalogs.

More recently, Bayesian statistics have been used for source detection via probabilistic cat-
aloging. It consists of inferring catalogs as posteriors and was first designed by Brewer et al.
(2013). It has been applied to optical (Portillo et al., 2017), X-ray (Jones et al., 2015) and
gamma (Daylan et al., 2017) data. An extension of Portillo et al. (2017) to multi-band data has
been proposed in Feder et al. (2020).

www.multiresolution.com
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3.4 Conclusion

The source detection methods currently in production mostly rely on (fixed) matched filtering
and thresholding. Although this approach is the linear optimal solution for detecting isolated
sources with known profiles (in the presence of stationary noise), it is not optimal in various
other regimes where images are contaminated, crowded, or containing sources of various shapes
and sizes. In order to adapt the detection to the latter issue, multiscale methods have been
developed. They are mainly based on classical bases of functions such as wavelets and have
evolved to sparse representations and the search for relevant data features.

By aspiring to use deep learning techniques, we follow a similar direction. Indeed, the essence
of deep learning is to find abstract representations of the data to solve a particular task. Yet, this
is a big paradigm change compared to classically designed algorithms because the representations
are not handcrafted but directly learnt from raw data. The approaches that we will use now will
consist of data-driven forward models instead of algorithms.

In the next chapter, I present the machine learning concepts that we will need for the rest of
the manuscript.



Chapter 4

Feedforward neural networks applied to
images: from the single neuron to
convolutional neural networks

The purpose of this chapter is to introduce the terminology and concepts that we will use in the
remaining of this manuscript. In the context of supervised machine learning, I review the main
stages in the history of feedforward neural networks, from the most basic systems to the deep
architectures used for modern image classification1. I focus on some aspects regarding activation
functions, cost functions and regularization. Emphasis is put on the ability of neural networks
to act as Bayesian classifiers under specific conditions. Finally, I introduce convolutional neural
networks that are the supervised feedforward neural networks of choice when dealing with images.

4.1 Overview and supervised learning

In the scope of this work, feedforward neural networks are used as supervised learning systems.
Supervised learning itself is already part of a bigger family which also includes unsupervised
machine learning and reinforcement learning.

The gist of supervised learning with feedforward neural networks, represented in Fig. 4.1, is to
fit a function that maps inputs to outputs based on a data set of known input-output pairs. This
fitting process, known as learning or training, is an iterative process that uses a loss function (or
cost function) and an optimization method: training steps are iterated over the data samples. At
each learning step, predictions are made by the model, and a cost function evaluates how good
or bad the predictions are. Based on this evaluation, the model parameters are updated using an
optimization method to fit better the input-output pairs in the future. The optimization method
is usually based on gradient descent (at first order) because it is the only tractable method for
training large networks.

The two main tasks that are learnt by feedforward neural networks through supervised learn-
ing are classification, that is, deriving class membership, and regression, that is, fitting an arbi-
trary function between the input and the output.

The type of models that are used here are feedforward neural networks, i.e., neural networks
where the connections between nodes are organized in layers and do not form a cycle. Within a
layer, the node inputs are fed from the previous layer and their outputs are fed to the next layer,
hence the name feedforward. There are no connections between the nodes of the same layer.

1For a thorough introduction to pattern recognition, machine learning and deep learning, see, e.g., Bishop
(2006) and Goodfellow et al. (2016). For a more historical point of view, see, e.g., Schmidhuber (2015).
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Figure 4.1: Scheme representing supervised learning with feedforward neural networks.

This differs from, e.g., Hopfield networks (Little, 1974; Hopfield, 1982) which are a form of
recurrent neural networks where all nodes are interconnected, or Kohonen networks (Kohonen,
1982), also known as self organizing maps, which are unsupervised learning networks ruled by
neighborhood constraints.

Machine
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Figure 4.2: Diagram illustrating the place of feedforward neural networks in the machine learn-
ing systems. Note that some feedforward neural networks, such as autoencoders (Kingma and
Welling, 2013), are unsupervised models.

Feedforward neural networks have then been extended to Convolutional Neural Networks
(CNNs, LeCun et al., 1990), which are particularly suited to processing regularly sampled data
such as images. CNNs have contributed to the rise of deep learning, using models with a large
number of layers to capture more abstract features in the data. Fig. 4.2 gives a simplified overview
of all these fields.

4.2 Feedforward neural networks and how they operate

Feedforward neural networks have been developed in several steps during the 20th century and
the beginning of the 21st century.
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4.2.1 The beginning of neural networks: the artificial neuron

Let us start by the beginning: the artificial neuron (McCulloch and Pitts, 1943) and the particular
case of the Perceptron (Rosenblatt, 1958).

The neuron

A model of the artificial neuron is represented in Fig. 4.3. The behavior of the neuron is controlled
by a weight vector w. The neuron performs the dot product2 of w with the input vector x, adds
a bias b, and passes the result through an activation function f .

Activation function f

ŷ = f(h(x)) = f(b+
n∑
i=1

wixi)
∑

w1x1

...
...

wnxn

b1

Inputs Weights

Figure 4.3: Schematic representation of the formal neuron.

Artificial neurons were originally conceived as simplified models of biological neurons. How-
ever, even though artificial neuron networks share characteristics with what is understood to
happen in the brain, contemporary neural networks have become closer to pure machine learning
models rather than brain models.

The Perceptron

The Perceptron model (Rosenblatt, 1958) is an artificial neuron with f being the Heaviside
function, that is:

f(z) =

{
0 if x < 0
1 if x ≥ 0.

(4.1)

Or:

f(z) =


0 if x < 0

0.5 if x = 0
1 if x > 0.

(4.2)

Although (Hebb, 1949) already proposed a neuron learning rule, Rosenblatt (1958) was prob-
ably the first to propose a training algorithm with a practical implementation. Given a set of N
input-output pairs (xk, yk), Rosenblatt (1958) adjusts the weights wi and the bias b iteratively
by applying the following rules for each pair in the data set:

w
(t+1)
i = w

(t)
i + η(yk − ŷk)xki (4.3)

b(t+1) = b(t) + η(yk − ŷk), (4.4)

2Note that other combinations of weights and input are possible, e.g., radial basis functions (Broomhead and
Lowe, 1988b,a).
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where η, the learning rate, controls the amplitude of the weight updates. η is one of the model
hyperparameters, i.e., variables that control the training process without being part of the trained
parameters themselves (the weights and the bias). The number of training steps is another
example of a hyperparameter. Fig. 4.4 shows an example of a training data set of 100 points x
where x = (x1, x2) with two classes: points above and below x2 = x1.
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Figure 4.4: Example of training set with two classes.

Using this set to train a Perceptron with three parameters, w1, w2, b, one can reach a solution
like the one shown in Fig. 4.5. In this case, convergence as defined in (Rosenblatt, 1958) is reached
in 52 iterations using η = 0.01. Note that this can vary depending on η, the picking order of
the data samples during training and the initial parameter values (0 for all parameters, following
Rosenblatt (1958)). It is nevertheless common to apply random values at start, especially in
multilayered neural networks (as we will see later), so that all neurons do not compute the same
outputs.

Fig. 4.6 shows the evolution of the parameters and the accuracy during training. Weights
are converging toward -0.018, 0.021, and 0.000 for w1, w2, andb, respectively, which makes sense
as the Perceptron looks at the sign of x2 − x1 to separate the two classes.
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Figure 4.5: Linear separation learnt by a Perceptron.
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Figure 4.6: Evolution of Perceptron parameters and accuracy during training.

Learning with gradient descent

The continuous Perceptron (Rosenblatt, 1958) is a Perceptron that uses an activation function
f : Rn → [0, 1]. It can be trained using a cost function and gradient descent. Gradient descent
involves minimizing a function by iteratively adjusting the weights in the direction opposite to
the error gradient. Given a function f : R → R, an initial point x0 is randomly picked, and at
each step the following update:

xn+1 = xn − η
df

dx
(xn) (4.5)

makes the function closer to its (local) minimum. Obviously, f must be differentiable. This is
the basic gradient descent algorithm but a lot of variations and improvements exist, especially
regarding convergence. In practice one uses more sophisticated gradient descent techniques.
Ruder (2016) provides a good overview of the existing gradient descent algorithms.
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For example, given the single variable function f so that ∀x ∈ R, f(x) = x2, the aim is to
find x∗ so that f(x∗) = 0. The process consists then of starting with a random x0 and to use
the rule xn+1 = xn − 2ηxn. Fig. 4.7 illustrates this process using η = 0.25:
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Figure 4.7: Example of a gradient descent. The algorithm starts from the point 0 and iterates
to get closer to the minimum of the function.

Even in this simple example, a bad choice for η can prevent the method from converging
satisfactorily: very high η values will make the cost oscillating between the two sides of the
curve, while very low values will make the convergence excessively slow. Learning rate decay is
a common way to address these issues.

Let’s apply gradient descent to an artificial neuron. An artificial neuron makes a prediction
for a single data sample (xk, yk) as follows:

ŷk = f(h(xk)) = f(b+ w.xk). (4.6)

An example of a cost function is the squared error:

Ek(xk,w, b) =
1

2
(ŷk − yk)2. (4.7)

The gradient descent update writes:

w
′
i = wi − η

∂Ek(x,w, b)

∂wi
(4.8)

b
′

= b− η∂Ek(x,w, b)
∂b

. (4.9)

For writing convenience, the variable which Ek depends on can be omitted. Remember that
Ek is a function of the input x and the parameters of the model. The gradient here is:

∂Ek
∂wi

= (ŷk − yk)f ′(h(x))xik (4.10)

∂Ek
∂b

= (ŷk − yk)f ′(h(x)). (4.11)
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This can be derived directly from Eq. 4.6 or using the chain rule:

∂Ek
∂wi

=
∂Ek
∂ŷ

∂ŷ

∂h

∂h

∂wi
, (4.12)

with

∂Ek
∂ŷ

= (ŷk − yk) (4.13)

∂ŷ

∂h
= f ′(h(x)) (4.14)

∂h

∂wi
= xi,k. (4.15)

Using the chain rule may appear excessive here but we do so in anticipation of the optimization
of multilayered neural network that we will see later.

So the update rules are:

w
′
i = wi − η(ŷk − yk)f ′(h(x))xi,k (4.16)

b
′

= b− η(ŷk − yk)f ′(h(x)). (4.17)

Such a process, iterating and updating the parameters sample by sample, is called online
learning.

However the cost function can also be summed over the N input-output pairs of the data
set:

E(x,w, b) =
N∑
k

Ek(x,w, b) =
N∑
k

1

2
(yk − ŷk)2, (4.18)

and the gradient can be computed as:

∂E

∂wi
=

N∑
k

(yk − ŷk)f ′(h(x))xi,k (4.19)

∂E

∂b
=

N∑
k

(yk − ŷk)f ′(h(x)), (4.20)

so that the update can be made for the all the data at once:

w
′
i = wi + η

N∑
k

(ŷk − yk)f ′(h(x))xi,k (4.21)

b
′

= b+ η

N∑
k

(ŷk − yk)f ′(h(x)). (4.22)

This way of processing is called batch (or deterministic) learning. In practice, batch learning
cannot be performed with very large data sets and can easily get stuck in local minima. On the
other hand, online learning can lead to a very “noisy” learning process because of updates moving
from one direction to another, especially if there are outliers (this may however be mitigated by
using a very small learning rate).

Fortunately a compromise can be achieved through mini-batch learning3, which consists in
updating the weights using small subsets of the data. In the case of online and mini-batch

3Confusingly, mini-batch learning is often simply referred to as “batch learning”. It is also common to refer to
the size of the subsets used at each training step as the “batch size”.
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learning, gradient descent is called Stochastic Gradient Descent (SGD), because samples are
randomly selected at each training step, unlike batch learning.

Batch gradient descent always converges to the minimum of a convex cost function in single-
layer networks. Using stochastic approximation theory (Robbins and Monro, 1951; Blum et al.,
1954), it can also be shown that convergence to local extrema is guaranteed for non-convex cost
functions (Bottou, 1998)4.

The Perceptron learning rule (Eq. 4.4) can be derived from Eq. (4.17). As the activation
function f is monotonously increasing, the first derivative is positive and can be omitted from
Eq. 4.17. Gradient descent provides a generic way to train an artificial neuron or a Perceptron.
The only requirement is that the activation function must be differentiable5.

Limitations of the Perceptron

By construction, a (first-order) Perceptron can only draw linear separations of the input space.
In other words, it can only classify patterns that can be separated with a hyperplane in the input
space (Minsky and Papert, 1969). For example, it fails to emulate the logical XOR operation,
which is a non-linearly separable problem, as shown in Fig. 4.8.
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Figure 4.8: Example of an XOR-like problem.

Higher order Perceptrons have been proposed (e.g., Minsky and Papert, 1969), which in
addition to the linear combination of inputs also combine products of inputs of degree 2, 3 or
more:

ŷ = f

 N∑
i

wixi +

N∑
i, j=1, i≤j

wi,jxixj +
∑

i, j, k=1, i≤j≤k
wi,j,kxixjxk + ...

 . (4.23)

4Latest version at https://leon.bottou.org/publications/pdf/online-1998.pdf
5Several popular activation functions such as ReLU do not meet this requirement in 0, but it does not impact

stochastic gradient descent in practice.

https://leon.bottou.org/publications/pdf/online-1998.pdf
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This increases the capabilities of the Perceptron but it is limited to polynomial combinations
of the inputs that are chosen beforehand.

Instead, more complex functions can be learnt by adding “hidden” neuron layers to obtain
multilayered feedforward neural networks. The idea was already present in Minsky and Papert
(1969), but doubts about the existence of a converging algorithm to train such systems were too
high at the time.

4.2.2 Multilayered feedforward neural networks

The principle of multilayered feedforward neural networks is simply to insert one or several layers
in the original Perceptron, which is why they are often referred to as MultiLayer Perceptrons
(MLPs). In such networks, the inputs of a given layer are the outputs of the previous layer
(except for the first layer, directly connected to the inputs).

Universal approximation theorem

Adding extra layers makes it possible to solve non-linearly separable problems, but how complex
can these problems be ? The universal approximation theorem (Hornik et al., 1989; Cybenko,
1989) provides elements of answer. It states that, under some conditions, feedforward neural
networks with at least one hidden layer are universal approximators, meaning that they can
approximate any continuous function over a compact subset of the input space. The conditions
are a linear output, a non-polynomial activation function in the hidden layer (such as the sigmoid
or tanh, see below), and an arbitrary large number of neurons per layer. It was later shown
that the defining constraint is not a specific category of activation functions, but rather the
architecture of the network (Hornik, 1991).

Despite the convenient theoretical fact that feedforward neural networks with hidden layers
can act as universal approximators, one must keep in mind that the number of neurons that can
be managed in practice may be too small, and the training algorithm not powerful enough for
some functions to be mapped with sufficient accuracy.

Forward pass in a multilayered feedforward neural network

Let’s consider the multilayered feed forward neural network in Fig. 4.9:
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Figure 4.9: Diagram of a multilayered feedforward neural network.

This multilayered feedforward neural network takes a two-dimensional vector as input and
returns another two-dimensional vector as output. It has 2 hidden layers with 3 artificial neu-
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rons each. For clarity, the biases of all neurons and the weights connecting the two hidden
layers are not represented in Fig. 4.9. These weights would be noted w(2)

j,i , with i indicating the
corresponding neuron in the first hidden layer while j would indicate the one in the second layer.

The following feedforward equations can be written to make a prediction:

o(1) = fh(1)(W
(1)x + b(1)), (4.24)

o(2) = fh(2)(W
(2)o(1) + b(2)), (4.25)

ŷ = fy(W
(y)o(2) + b(y)), (4.26)

where fh(1) , fh(2) , and fy are the activation functions of the first hidden layer, second hidden
layer, and output layer, respectively, and

W(1) =

w
(1)
1,1 w

(1)
1,2

w
(1)
2,1 w

(1)
2,2

w
(1)
3,1 w

(1)
3,2

 ,W(2) =

w
(2)
1,1 w

(2)
1,2 w

(2)
1,3

w
(2)
2,1 w

(2)
2,2 w

(2)
2,3

w
(2)
3,1 w

(2)
3,2 w

(3)
3,3

 ,W(y) =

(
w

(y)
1,1 w

(y)
1,2 w

(y)
1,3

w
(y)
2,1 w

(y)
2,2 w

(y)
2,3

)
(4.27)

x =

(
x1

x2

)
, b(1) =

b
(1)
1

b
(1)
2

b
(1)
3

 , b(2) =

b
(2)
1

b
(2)
2

b
(2)
3

 , b(y) =

(
b
(y)
1

b
(y)
2

)
(4.28)

o(1) =

o
(1)
1

o
(1)
2

o
(1)
3

 ,o(2) =

o
(2)
1

o
(2)
2

o
(2)
3

 , ŷ =

(
ŷ1

ŷ2

)
. (4.29)

Backpropagation for multilayered neural network learning

Keeping the squared error cost function, we have:

E(x, θ) =
1

2
‖y − ŷ‖22, (4.30)

where x is the input sample, y its “ground truth” output, ŷ is the prediction and ‖ ‖2 denotes
the l2 norm, that is:

‖z‖2 =

√√√√ n∑
i

z2
i . (4.31)

From what was seen in 4.2.1, it is quite straightforward to update the parameters W(3) and
b(3). The gradient descent method states:

w
′y
j,i = w

(y)
j,i − η

∂E

∂w
(y)
j,i

(4.32)

b
′y
j = b

(y)
j − η

∂E

∂b
(y)
j

, (4.33)

where:
∂E

∂w
(y)
j,i

=
∂E

∂ŷj

∂ŷj

∂h
(y)
j

∂h
(y)
j

∂w
(y)
j,i

, (4.34)
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with:

∂E

∂ŷj
= (yj − ŷj) (4.35)

∂ŷj

∂h
(y)
j

= f ′y(h
(y)
j (x)) (4.36)

∂h
(y)
j

∂w
(y)
j,i

= o
(2)
i (x). (4.37)

Using the same process for the bias, the following update rules can be obtained:

w
′y
j,i = w

(y)
j,i − η(yj − ŷj)f ′y(h

(y)
j (x))o

(2)
i (x) (4.38)

b
′y
j = b

(y)
j − η(yj − ŷj)f ′y(h

(y)
j (x)), (4.39)

which are quite similar to those of the single neuron in Eq. 4.17. The only difference is that the
update is guided by the output of the previous layer o(2)

i (x) instead of being directly connected
to the input xi.

Now, the weights of the hidden layers must be updated. Always with the gradient descent
method:

w
′(2)
j,i = w

(2)
j,i − η

∂E

∂w
(2)
j,i

(4.40)

b
′(2)
j = b

(2)
j − η

∂E

∂b
(2)
j

, (4.41)

using the chain rule:
∂E

∂w
(2)
j,i

=
∂E

∂o
(2)
j

∂o
(2)
j

∂h
(2)
j

∂h
(2)
j

∂w
(2)
j,i

, (4.42)

with:

∂E

∂o
(2)
j

= ??? (4.43)

∂o
(2)
j

∂h
(2)
j

= f ′h2(h
(2)
j (x)) (4.44)

∂h
(2)
j

∂w
(2)
i,j

= o
(1)
i (x). (4.45)

In this case of an hidden layer, the first term is less straightforward than in the output layer
where o(2)

j is in fact ŷj .
This is where the final error has to be backpropagated through the neural network to the

current hidden layer. This is done by applying the chain rule a second time:

∂E

∂o
(2)
j

=

n(y)∑
k

∂E

∂ŷk

∂ŷk

∂h
(y)
k

∂h
(y)
k

∂o
(2)
j

(4.46)

=

n(y)∑
k

(yk − ŷk)f ′h(y)(h
(y)
k (x))w

(y)
k,j . (4.47)
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This is the so-called error backpropagation algorithm proposed by Rumelhart et al. (1985, 1988)
(efforts along those lines can also be found in LeCun (1985b) LeCun (1985a), and Le Cun (1986)).

The output error is backpropagated to the previous layers. Note that the term ∂E

∂h
(y)
k

=

(yk − ŷk)f
′
h(y)

(h
(y)
k (x)) has already been computed when updating the weights of the output

layers. But instead of being used with the output o(2)
j,i to update the weights of the output layer,

these are backpropagated to the previous layer using w(y)
k,j . So the rules are finally:

w
′2
j,i = w2

j,i − ηf ′h2(h
(2)
j (x))

n(y)∑
k

(
(yk − ŷk)f ′h(y)(h

(y)
k (x))w

(y)
k,j

)
o

(1)
i (x) (4.48)

b
′2
j = b2j − ηf ′h2(h

(2)
j (x))

n(y)∑
k

(
(yk − ŷk)f ′h(y)(h

(y)
k (x))w

(y)
k,j

)
. (4.49)

For the first hidden layer, the same process is applied. The gradient descent method states:

w
′1
j,i = w1

j,i − η
∂E

∂w
(1)
j,i

(4.50)

b
′1
j = b1j − η

∂E

∂b
(1)
j

, (4.51)

and:
∂E

∂w
(1)
j,i

=
∂E

∂o
(1)
j

∂o
(1)
j

∂h
(1)
j

∂h
(1)
j

∂w
(1)
j,i

, (4.52)

with:

∂E

∂o
(1)
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=
nh

2∑
k
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∂o
(2)
k
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(2)
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(4.53)

=
nh

2∑
k

∂E

∂o
(2)
k

f ′
h(2)

(h
(2)
k (x))w

(1)
k,j (4.54)

∂o
(1)
j

∂h
(1)
j

= f ′h1(h
(1)
j (x)) (4.55)

∂h
(1)
j

∂w
(1)
j,i

= xi, (4.56)

where we know each ∂E

∂o
(2)
k

from the previous update as
n(y)∑
k

(yk − ŷk)f ′h(y)(h
(y)
k (x))w

(y)
k,j . So finally

the update rules are:

w
′1
j,i = w1

j,i − ηf ′h1(h
(1)
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xi (4.57)

b
′1
j = b1j − ηf ′h1(h

(1)
j (x))
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2∑
k
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∂E

∂o
(2)
k

f ′
h(2)

(h
(2)
k (x))w

(1)
k,j

)
. (4.58)
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One common and more convenient way to summarize all the update rules consists of using
the following notations:

∂E

∂wLj,i
= δLj o

L−1
i =

(
∂E

∂oLj

∂oLj

∂hLj

)(
∂hLj

∂wLj,i

)
, (4.59)

with:

δLj =
∂E

∂oLj

∂oLj

∂hLj
=


(yj − ŷj)f ′L(hLj ) if L is the last layer

f ′L(hLj )
nL+1∑
k

δL+1
k wLk,j if L is an hidden layer

(4.60)

oLi =
∂hL+1

j

∂wL+1
j,i

=

{
xi if L is the first layer
oLi if L is not the first layer (4.61)

so that the update rules are simply written:

w
′L
j,i = wLj,i − ηδLj oL−1

i (4.62)

b
′L
j = bLj − ηδLj . (4.63)

Then, a learning step consists of 3 passes over the whole network:

• Forwarding the input through the whole network.

• Backpropagating the error by computing all the δLj terms.

• Updating all the parameters wLj,i and b
L
j .

The performance of the backpropagation algorithm relies on three important ingredients:
activation functions, cost functions and regularization. Let us now review each of them. As we
will see, important developments have occurred over the past ten years that have significantly
improved learning performance.

4.2.3 Activation functions

Various functions can be used as an activation functions in a feedforward neural network. How-
ever in practice some functions are preferred for several reasons.

Most common activation functions

Here is a list of the most commonly used activation functions:

Identity function: f(h) = h (4.64)

Logistic or Sigmoid: f(h) = σ(h) =
1

1 + e−h
(4.65)

Hyperbolic tangent: f(h) = tanh(h) =
eh − e−h

eh + eh
(4.66)

Rectified linear unit: f(h) =

{
0 if h < 0
z if h ≥ 0.

(4.67)

Softmax: fi(h) =
ehi∑
j
ehj

(4.68)
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Choosing the right activation functions

Several factors must be taken into account when choosing the activation functions of the various
layers.

The ReLU (Rectified Linear Unit) function is currently one of the most commonly used acti-
vation function in hidden layers. It has been shown to run faster and provide better performance
for neural networks with many layers (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al.,
2011), compared to the sigmoid and tanh activation functions that were used in the past. The
latter saturate in both directions and their derivatives get very close to 0 for large positive or
negative values. Weights are updated proportionally to the partial derivative of the error func-
tion, hence this “vanishing gradient” results in very slow updates and neurons getting stuck for
specific combinations of weights. Such neurons are called “dead” neurons. The problem gets
worse as the number of layers increases. The ReLU activation function partially solves this issue
as it does not saturate on the positive side. However a ReLU neuron may still “die” if it gets in a
state where the output is 0 for any input. Variants to the ReLU have been proposed to mitigate
this problem, such as the leaky ReLU (Maas et al., 2013), which produces small negative values
for negative inputs, softplus (Dugas et al., 2001), and ELU (Clevert et al., 2015, Exponential
Linear Unit,):

Leaky ReLU: f(h) =

{
ah if h < 0
h if h ≥ 0.

(4.69)

Softplus: f(h) = ln(1 + exp(h)), (4.70)

ELU: f(h) =

{
b(exp(h)− 1) if h < 0

h if h ≥ 0
(4.71)

The a parameter of the leaky ReLU can be made a trainable parameter (parametric ReLU,
or PReLU, He et al., 2015).

Maxout is another trainable activation function (Goodfellow et al., 2013):

Maxout: fi(h) = max
j∈[1,k]

hij . (4.72)

For example, in a layer composed of n neurons fully connected to the inputs, the idle output
h is of dimension n. This idle output h can be divided into n

k groups of k idle outputs. The
maxout activation function takes the maximum values within each group: the i indices refer to n

k
while the j indices refer to k. The outputs are linear within each of the n

k groups of k idle outputs.
Maxout can be trained to combine these outputs and form a piece-wise linear approximation of
a (convex) activation function. One drawback it that extra parameters are required for making
the groups.

The choice of the activation functions for the last layer depends on the task at hand. For
regression the identity function (linear neurons) is often the best choice. For mutually exclusive
multiclass problems, the softmax function (Bridle, 1990; Jacobs et al., 1991), when paired with
the proper cost function (see below), provides positive outputs that sum to 1 (Eq. 4.68) and
facilitates the convergence toward posterior probabilities.

4.2.4 Cost functions

The cost function, or loss function, is one of the most important ingredients in neural network
training. The most common cost functions are the quadratic cost and the cross entropy; they
are used for regression and classification problems, respectively.
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Quadratic cost

The quadratic cost is defined as the sum of squared differences between predictions and ground
truth outputs, as seen in Section 4.2.1:

C =
1

2N

N∑
k

‖yk − ŷk‖22, (4.73)

where:

• N is the batch size at the given training step.

• yk is the k-th ground-truth vector.

• ŷk is the k-th predicted vector.

• ‖‖2 denotes the l2 norm, as presented in Eq. 4.31.

From a statistical standpoint, minimizing the quadratic cost function is equivalent to max-
imizing the likelihood that the predicted output matches the output data, assuming that the
latter are subject to Gaussian errors (e.g., Bishop et al., 1995). The main inconvenient of the
quadratic cost function is that it is very sensitive to outliers and mislabeled samples.

More general cost functions, build on arbitrary norms, may be used. For instance, the
Minkowski error

C =
1

2N

N∑
k

|yk − ŷk|R (4.74)

is the natural cost function for generalized Gaussian distributions (Bishop et al., 1995). R = 2
corresponds to the quadratic cost. Using R < 2 reduces the sensitivity to outliers.

Cross entropy

Cross entropy (Hopfield, 1987; Baum and Wilczek, 1988; Solla et al., 1988; Hinton, 1989; Rubin-
stein, 1999) is the cost function of choice for classification problems. As an information theory
measure it may be used to quantify the difference between two probability distributions, here
the ground truth probabilities yk and the predicted probabilities ŷk. For a binary classification
problem, cross entropy is defined as:

C = − 1

N

N∑
k

(
yk log(ŷk) + (1− yk) log(1− ŷk)

)
. (4.75)

From a statistical standpoint, minimizing binary cross entropy is equivalent to maximizing
the probability that the predicted output matches the output data in the two-class problem,
assuming that samples are independent (Bishop et al., 1995). Contrary to quadratic cost, cross
entropy does not have the same relative cost near small and large ground truth values. Therefore
it is more successful at estimating small ground truth values, i.e., small probabilities. In addition,
cross entropy combines well with sigmoid activations and makes the gradient easier to compute.

Softmax cross entropy is defined as:

C = − 1

N

N∑
k

C∑
c

yk,c log(ŷk,c), (4.76)

where C is the number of classes. It is the “natural” cost function for mutually exclusive multiclass
problems (just as binary cross entropy is for binary classification problems). It also pairs well with
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softmax activations (Bishop et al., 1995), hence the name “softmax cross entropy” (or categorical
cross entropy).

In non mutually exclusive multiclass problems, where a sample can belong to several classes
at the same time, one can use sigmoid cross entropy, which is defined as:

C = − 1

N

N∑
k

C∑
c

(
yk,c log(ŷk,c) + (1− yk,c) log(1− ŷk,c)

)
. (4.77)

It is the sum of the binary cross entropies of all outputs. Each output is treated independently
as a binary classification task, using sigmoid activation functions. Hence the name: “sigmoid
cross entropy”.

4.2.5 Regularization

In this section, I introduce the concepts of overfitting and underfitting as well as common regu-
larization techniques that tackle overfitting.

Generalization, model capacity, underfitting, overfitting and testing set

Regularization techniques aim at reducing a possible network overfitting. Overfitting happens
when the network exhibits excellent performance on the training set but poor performance on
data not used for training. In order to detect overfitting, a common practice is to divide the
data set in two: a training set containing data samples used for training the neural network, and
a testing set containing data samples not used for training. The fraction of the data used for
testing typically ranges from 20 to 40 percent. After or during learning, one can compare the
performance obtained on the training and testing sets to make sure that they roughly match,
indicating that no significant overfitting occurs.

Overfitting occurs when the capacity of the network, that is its ability to recover complex
relations between inputs and outputs, is higher than the complexity of the task it must solve. In
the extreme case where the network has more free parameters than training samples, learning
“by heart” may occur. Such a trained network is very likely to perform poorly on test data as it
does not catch the underlying trends. It is illustrated in Fig. 4.10.

On the contrary, underfitting happens if the capacity of the network is too low for the task
complexity. The network is unable to fully solve the task.

From the statistical standpoint, the compromise between underfitting and overfitting (perfect
training) represents a trade-off between bias and variance for the estimator formed by the trained
network (see,e.g., Goodfellow et al., 2016).

These concepts are strongly related to the notion of generalization, which is the holy grail
of machine learning. Generalization is the ability of the network to perform well not just on
training data, but also on new, unseen data.

Overfitting can be particularly problematic when dealing with complex tasks that necessitate
large networks. In such cases, it becomes mandatory to use regularization techniques that can
help mitigating overfitting.



50 4.2. Feedforward neural networks and how they operate

Figure 4.10: Example of overfitting. The underlying separation between blue and red points is
drawn in black. An overfitting network learns the green delineation that perfectly classifies each
training point but does not catch the underlying trend of the data. Image credits: Wikipedia.

l2-norm regularization

One of the simplest regularization techniques is l2-norm regularization, also known as Tikhonov
regularization, ridge regression (Hoerl and Kennard, 1970) or weight decay (Plaut et al., 1986).
l2-norm regularization was shown empirically to improve generalization in complex tasks (Hinton,
1987). It consists in adding to the cost function a contribution of the l2-norm of the network
weight parameters, i.e., the following term:

L2reg = λ
∑
w∈W

‖w‖2, (4.78)

where W is the set of network weights and λ a hyperparameter defining the regularization
strength. The value of λ may differ from one layer to the next (MacKay, 1992).

When using a quadratic cost, the effect of l2-norm regularization is to shrink the weights that
do not contribute significantly to the cost function (see Goodfellow et al. (2016) for a demonstra-
tion). In a Bayesian framework, l2-norm regularization can be interpreted as a Gaussian prior
on the weights (e.g., Bishop, 2006).

l1-norm regularization

Another way of penalizing weight values is l1-norm regularization (Tibshirani, 1996). Similarly
to the l2 norm, it consists in adding the l1-norm of the network weight parameters to the cost
function:

L1reg = λ
∑
w∈W

‖w‖1, (4.79)

where W is the set of network weights, λ is a hyperparameter that defines the strength of the
regularization, and ‖ ‖1 denotes the l1-norm, defined as:

‖z‖1 =
n∑
i

|zi| (4.80)

When combined with a quadratic cost function, l1-norm regularization favors sparse solutions
(Goodfellow et al., 2016). This sparsity property may also be used to enhance feature selection.
l1 and l2 norm regularizations behave slightly differently, as shown in Fig. 4.11.
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Figure 4.11: Illustration of l1 and l2 norm regularizations in a 2-dimensional weight space. Red
ellipses trace identical cost values, and β̂ is the position where the (unregularized) cost is minimal.
Blue areas illustrate the constraint brought by l1 and l2 norm regularization: |β1| + |β2| ≤ R
and β2

1 + β2
2 ≤ R2. Image credit: Hastie et al. (2009).

Early stopping

One may think that the longer the training, the better the performance, as the network keeps
learning. In most cases, training and testing errors are both decreasing with the number of
iterations. However the testing error may start increasing at some point, while the training error
keeps decreasing: the network starts overfitting the training set. Early stopping is a common
technique to avoid this. It simply consists in stopping the training before the network starts
overfitting. First uses of this technique were found in Morgan and Bourlard (1990) and Weigend
et al. (1990). An illustration is shown in Fig. 4.12.

To decide when to stop, a common practice is to use a validation data set. The validation
set is a subset of the training set. It usually represents about 20 percent of the training set. It
is used during training, but not for optimizing the model parameters. Instead, its purpose is to
check for overfitting during training in order to tune the network hyperparameters (e.g., training
duration). Training must generally be stopped when the validation loss starts increasing again.
One may wonder whether the testing set could not be used for that. As a matter of fact, when
possible, the testing data set should be used only for assessing the performance of the network,
and not influence the training, including hyperparameter tuning. An additional criterion for
early stopping is the training loss itself: it may be preferable to stop training if a plateau is
reached.

Bishop et al. (1995) and Sjöberg et al. (1995) give clues as to why early stopping acts as
a regularizer: stopping the training procedure prevents the network from using all its degrees
of freedom and reaching a higher complexity. It forces some of the parameters to remain close
to the initial values. One can show that early stopping acts as an l2-norm regularization on a
quadratic cost function.
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Figure 4.12: Illustration of overfitting due to overtraining. At some point the training error
(solid line) is still decreasing while the validation error (dashed line) starts increasing. Image
credit: Sjöberg et al. (1995).

In practice, even if early stopping is simple and efficient, it remains essentially empirical. The
validation loss may be noisy, and there does not exist a specific rule to decide precisely when to
stop Weigend et al. (1990); Sjöberg et al. (1995); Prechelt (1998).

Ensemble methods and dropout

The dropout regularization technique (Hinton et al., 2012; Srivastava et al., 2014) consists of
ignoring a fraction of the units of a given layer by setting them to zero. The given fraction
becomes a hyperparameter of the network and the ignored units set to zero are randomly picked
at each training step. Doing so, only a subset of the layer is trained at each training step.
The dropout algorithm shares similarities with ensemble methods (e.g., training a network on
different subsets of the data and averaging the predictions at test time, a technique originally
known as bagging Breiman (1996), or more generally model averaging). The idea behind ensemble
methods is that several models may not fail on the same samples, i.e., that their errors may be
uncorrelated. Averaging their result leads to better performance. However, this can be very
expensive and not feasible with very large networks.

Instead, the purpose of the dropout method is to prevent neurons from co-adapting. By
decoupling neurons that activate the same output together, the dropout technique makes each
neuron more robust by forcing it to operate on its own. It has been empirically shown to greatly
reduce overfitting and overcome other regularization techniques on various tasks (Srivastava
et al., 2014). Interestingly, dropouts lead to a sparse solution, with fewer neurons being active
at the same time (Srivastava et al., 2014).

The dropout technique has its drawbacks; it often requires more neurons and more training
iterations. It does not work well with very small data sets, and is outperformed by other methods
in this regime. Yet, it is computationally cheap and is now one of the most popular regularization
techniques.

Data augmentation and noise injection

The regularization techniques we have described so far work by modifying the training procedure.
Nevertheless, one may also act at the data level to reduce overfitting and improve generalization.
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Some of the following techniques can be seen as data augmentation techniques, that is, meth-
ods that generate new training samples by modifying existing ones. For instance, in an image
classification task, one may want to identify objects regardless of scale, location or orientation.
This can be done by creating a new sample from a rescaled, shifted or rotated version of a pre-
existing image, without changing the label. Such a process makes the network become invariant
under the applied transformations.

Data augmentation is widely used for image classification as it is very easy to set up and
achieves convincing results (Baird, 1995; Yaeger et al., 1997; Krizhevsky et al., 2012; Wang and
Perez, 2017; Taylor and Nitschke, 2017). See Cao and Chen and Cabrera-Vives et al. (2017)
for astronomical applications. Another data augmentation technique applicable to images is to
erase random parts of images to increase robustness to occlusion (Zhong et al., 2017).

More sophisticated means to augment data involve dedicated neural networks to generate
new samples: GANs (Generative Adversarial Networks, Goodfellow et al., 2014a; Brock et al.,
2018) as used by, e.g., Antoniou et al. (2017) and Bowles et al. (2018), or style transfer networks
(Gatys et al., 2015, 2016; Novak and Nikulin, 2016; Jing et al., 2019), as used by Miko lajczyk
and Grochowski (2018) to create new data from existing data sets. The augmentation process
may also be automated to optimize accuracy with the validation data set (Lemley et al., 2017;
Tran et al., 2017; DeVries and Taylor, 2017; Cubuk et al., 2019).

Adding noise to the input data is also used as a regularization technique to make the model
more robust to small changes in the input. Tiny, targeted changes to the input data have been
shown to disrupt the results of image classification by a neural network (Szegedy et al., 2013).
These new image samples are called adversarial examples. They cannot be distinguished from the
original samples with the naked eye. Goodfellow et al. (2014b) hypothesize that neural networks
have close to linear behavior for very small changes in input: this makes it possible to craft a
small perturbation with a specific pattern, which thanks to a high dimensional weight vector can
lead to large changes in output. Adding a targeted noise pattern to the inputs can be a way
to make the network more robust to this type of attack (adversarial training). Increasing the
generalization abilities is another motivation for adding a small amount of noise to the inputs
(Sietsma and Dow, 1991). It has been shown to work as a regularization process in the case of
a quadratic cost function (Bishop et al., 1995).

Noise can also be injected directly into the hidden neurons (Poole et al., 2014), or into network
weights. It can be shown to act as a regularization process that makes the network parameters
less sensitive to small perturbations (Goodfellow et al., 2016).

Finally, for classifiers one may also introduce changes to the ground truth used for training
outputs. The process known as label smoothing (Szegedy et al., 2016) “softens” the initial ground
truth values by replacing 0’s and 1’s with ε and 1− ε, preventing the neural network to express
overconfidence, especially in the presence of mislabeled samples. Interesting thoughts about label
smoothing are presented in Müller et al. (2019).

Weight sharing techniques

The presence of a huge number of free parameters is often the cause of overfitting in neural
networks, and reducing this number can have a strong regularization effect. Such a reduction
may be achieved through weight sharing techniques. Weight sharing can happen in different
ways. One possible way is to share some parts of the network to perform several tasks at the
same time, a process known as multitask learning (Caruana, 1993). Such a type of sharing
has been shown to improve generalization (Baxter, 1995). Another way to achieve this is to
incorporate it directly in the network architecture, as we will see in Section 4.3.

Another kind of weight sharing is soft weight sharing (Nowlan and Hinton, 1992), which is a
regularization technique where groups of weights are constrained to have similar values.
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4.2.6 Estimating posterior probabilities

All the cost functions described in section 4.2.4 lead to an interesting property of neural network
classifiers: in the conditions of perfect training, the outputs will estimate Bayesian posterior
probabilities (Richard and Lippmann, 1991; Hampshire II and Pearlmutter, 1991; Miller et al.,
1991; Rojas, 1996). This means that it should possible to adapt the outputs to new priors, i.e.,
new expected class proportions, after training. This is of great importance in many astronomical
applications, where one has to deal with highly unbalanced data sets (e.g., when searching for rare
events). Indeed, current neural network mini-batch training algorithms have issues when dealing
with strong class imbalance (Japkowicz and Stephen, 2002; He and Garcia, 2009; Krawczyk, 2016;
Khan et al., 2017). Minority classes can end up being “ignored”, i.e., the classifier converges to
a solution where it assigns all samples to the majority class. In order to avoid this behavior
and reach a proper convergence, one must train the neural network with a more balanced data
set. As a consequence, the training data do not reflect the expected class proportions (prior
membership probabilities) found in the real data.

Fortunately, if one can assume that the trained classifier behaves as a perfect Bayesian classi-
fier, i.e., that it returns the posterior probability P (ωc|x, T ) of an input vector x to be a member
of the class ωc when trained on the training set T , one may update the output probabilities with
the correct priors so that they better reflect the expected class proportions. From Bayes’ rule
P (ωc|x, T ) can be written:

P (ωc|x, T ) =
L(x|ωc)P (ωc|T )∑
i L(x|ωi)P (ωi|T )

, (4.81)

where L(x|ωc) is the likelihood of a sample x with class ωc, and P (ωc|T ) is the prior probability
of any training sample with class ωc, that is, the fraction of samples with class ωc in the training
set. If all classes are equally represented, we have:

P (ωc|x, T ) =
L(x|ωc)∑
i L(x|ωi)

. (4.82)

Now, with the real (observed) data we have:

P (ωc|x, O) =
L(x|ωc)P (ωc|O)∑
i L(x|ωi)P (ωi|O)

, (4.83)

where the P (ωc|O)’s may differ a lot from class to class. We can rewrite P (ωc|x) as:

P (ωc|x, O) =
P (ωc|x, T )LT (x)P (ωc|O)∑
i P (ωi|x, T )LT (x)P (ωi|O)

=
P (ωc|x, T )P (ωc|O)∑
i P (ωi|x, T )P (ωi|O)

, (4.84)

where LT (x) =
∑

ωc
L(x|ωc). In the case where all classes are not equally represented in the

training set, that is when:

L(x|ωc) = P (ωc|x, T )

∑
i L(x|ωi)P (ωi|T )

P (ωc|T )
, (4.85)

we have:
P (ωc|x, O) =

P (ωc|x, T )P (ωc|O)

P (ωc|T )
∑

i P (ωi|x, T )P (ωi|O)
P (ωi|T )

. (4.86)

In the binary classification problem, i.e., a problem with two classes ωc and ω̄c (not ωc), we have:

P (ωc|x, O) =
P (ωc|x, T )P (ωc|O)

P (ωc|T )(P (ωc|x, T )P (ωc|O)
P (ωc|T ) + P (ω̄c|x, T )P (ω̄c|O)

P (ω̄c|T ) )
, (4.87)
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which may also be written:

P (ωc|x, O) =
P (ωc|x, T )

P (ωc|x, T ) + P (ω̄c|O)
P (ωc|O)

P (ωc|T )
P (ω̄c|T )P (ω̄c|x, T )

. (4.88)

5 and 6 will give us an opportunity to check whether this Bayesian approach works or not in
practice.

4.2.7 Multi-layered neural networks in practice

In this section, I describe the practical use and limitations of multilayered neural networks.

Training aspects

LeCun et al. (2012) provide many useful training tips that remain essential today. Two important
points stand out:

• Input pre-processing: it is recommended that input values be small and around zero. If for
instance all inputs are positive, all the weight updates will have the same sign, leading to
inefficient learning. Plus, neural networks use a combination of small and precise thresholds
on values. It therefore advised to reduce the dynamic range of input data, which is naturally
high in astronomical images.

• Weight initialization: weights should be initialized randomly within a small range so that
they remain in the linear regime of the activation functions, especially when using tanh or
sigmoid. Values should be small enough so that activation functions do not saturate but
not too small to avoid very shallow gradients and slow updates.

Other points of interest are discussed in LeCun et al. (2012), like choosing the right learn-
ing rate and the behavior of gradient descent. Ruder (2016) provides more insights into the
optimization algorithms.

The batch normalization algorithm (Ioffe and Szegedy, 2015) appeared after LeCun et al.
(2012) was published. As the name suggests, it consists of normalizing the data between each
network layer. The normalization aims to overcome potential changes of the distribution of data
across the network (a phenomenon known as internal covariate shift) so that each layer does
not need to adapt to possible shifts in the distribution. It has been shown to make the training
procedure faster and more stable, even though the underlying reasons of this success are still
debated (Santurkar et al., 2018).

Applications and limitations of multilayered neural networks

Multilayered neural networks were used in various industry tasks throughout the 1990s (Wong
et al., 1997), including computer vision problems such as image recognition (Khotanzad and
Chung, 1998), object pose estimation (Khotanzad and Liou, 1996), handwritten or spoken digit
and letter recognition (Burr, 1988), and image compression (Qiu et al., 1993). A well known
example in astronomy, still in use today, is SExtractor’s star/galaxy classifier (Bertin and
Arnouts, 1996).

Still, these applications operate on very simple images, most of the time binary images, and
not directly on pixels. Indeed, multilayered neural networks do not handle high dimensional
inputs like images very well. Connecting each neuron to every pixel requires a very high number
of weights. Such a high number of free parameters would inevitably lead to overfitting, or a
network that fails to converge.
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One would use pre-computed image features as network inputs instead. For example, Khotan-
zad and Chung (1998) use image moments (Teh and Chin, 1988) and Burr (1988); Qiu et al.
(1993) use discretized versions of the images, recoded in small dimensional spaces. These features
are handcrafted and problem dependent. SExtractor’s star galaxy classifier uses isophotal ar-
eas of the source, the maximum pixel value and the seeing. See Xu et al. (1992) for a list of
features used in early works involving multilayered neural networks in computer vision.

PCA (Principal Component Analysis, Wold et al., 1987; Abdi and Williams, 2010) was first
introduced by Pearson (1901), and can be used to select decorrelated features. It is used in NExt
Andreon et al. (2000), one of the first astronomical source detectors based on multilayered neural
networks.

Handcrafted features can be extremely efficient but they still have limitations. They suffer
from the curse of dimensionality and quickly become computationally expensive. In addition,
they must be designed with great care. In practice, the neural network (or another type of
classifier) is often mostly limited by the ability of these handcrafted features to characterize the
data in a way which is relevant to the given task.

As we will see in the next section, convolutional layers provide an elegant solution to this
problem for sampled input data such as images or time sequences, by giving the neural network
the ability to learn directly from the pixels or measurements.

4.3 Convolutional neural networks

As their name suggests, Convolutional Neural Networks (CNNs) are based on the convolution
operation (see section 2.2), which serves as a feature extractor. As we already saw in section
3.1.2, convolution with an appropriate kernel has the ability to enhance a specific pattern in the
image. An example of a convolution kernel acting as a basic edge detector is shown in Fig. 4.13.
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Figure 4.13: Left: source image. Center: spatial convolution applied to an image using an
edge detector kernel. Right: image convolution using a Gaussian blurring kernel (Image credits:
Wikipedia).

A CNN is a feedforward network containing computational layers. It may also contain the
usual fully connected layers described in section 4.2.2 (where each neuron is connected to all the
features, hence the expression “fully connected”).

In a convolutional layer one takes advantage of weight sharing by having a single neuron
moved across all locations in the image. It turns out that this way to process is equivalent to a
convolution, where the neuron weights are the convolution kernels. As the same set of weights is
used across the whole image, it becomes possible to process high dimensional inputs like image
rasters with a very small number of adjustable parameters. In comparison, a traditional layer
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would use an intractable number of weights to connect each neuron to all the image pixels.
Convolutional layers inherit the intrinsic translation equivariance property of convolution, which
is convenient for object detection tasks, where features should be detected independently of their
position in images.

Figure 4.14: LeNet-5: a typical CNN architecture for image classification. Image credit: LeCun
et al. (1998).

4.3.1 Basic architecture

The first convolution layer, computes multiple convolutions of the input data, called feature maps.
A non-linear activation function is then applied element-wise to the convolved images. Once
activated, a subsampling layer reduces the dimensions of the feature maps. Subsampling relies
on pooling operations (Fig 4.15), which generally consist of taking the mean or the maximum of
input tiles. Subsampling layers serve several purposes:

• Reducing the dimension of the feature maps, hence the number of parameters that are
needed in the remaining part of the CNN. This reduces the computational cost and prevents
potential overfitting.

• Allowing the convolutional kernels in subsequent layers to deal with larger spatial scales

• Introducing a level of translation invariance at small scales.

• Selecting the most important features at the current kernel scale.
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Figure 4.15: Examples of max pooling and average pooling applied to a 4×4 feature map. Since
the 2× 2 pooling kernel is moved every 2 pixels, pooling tiles are not overlapping and result in
2× 2 feature maps. Note that the stride (step between two consecutive tiles) may not always be
identical to the pooling kernel size, resulting in different output sizes.
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CNNs generally stack several groups of convolutional, activation and subsampling layers6.
Features are combined from one group to the next, allowing more and more abstract representa-
tions of the input data to be built. The succession of layers also makes the CNN able to process
information over a wide range of spatial scales and capture more contextual information.

After several stacks of convolutional, activation and subsampling layers, features may be
fetched into a series of fully connected layers to perform classification or regression tasks (Table
4.1).

Layer Size Kernel Stride Activation #Parameters
Input Image 1× 32× 32 - - - -
C1 Conv 6× 28× 28 5× 5 1 tanh 156
S1 Pool 6× 14× 14 2× 2 2 - -
C2 Conv 16× 10× 10 5× 5 1 tanh 2416
S2 Pool 16× 5× 5 2× 2 2 - -
C5 Conv 120× 1× 1 5× 5 1 tanh 48, 120

F6 FC 84 - - tanh 10, 164

Output FC 10 - - softmax 850

Table 4.1: Table summing up the LeNet-5 (LeCun et al., 1998) CNN architecture for image
classification. The output size of each layer is indicated as well as convolution and pooling
kernel sizes, convolution and pooling stride sizes, activation functions and number of learnable
parameters. Conv, Pool and FC stand for convolution layer, pooling layer (or subsampling layer)
and fully connected layer, respectively.

4.3.2 Early CNN models

The first CNNs were designed for classifying handwritten digits (LeCun et al., 1989, 1990, 1995)7.
The MNIST (Modified National Institute of Standards and Technology) database was used as a
training set. MNIST is derived from an earlier NIST data set Grother (1995) and has been used
for a long time as a benchmark, although it has since been overtaken by other more complex
data sets. Fig. 4.14 shows LeNet-5, which is the archetype of basic CNN architectures for image
classification.

Other early successful applications include face recognition Lawrence et al. (1997); Kwolek
(2005); Osadchy et al. (2007) or speech recognition Sukittanon et al. (2004). The first application
to natural scenes was done by Fu Jie Huang and LeCun (2006), who showed that CNNs could
also learn features invariant under changing viewpoint and illumination. Their data set had 6
classes: human figures, four-legged animals, airplanes, trucks, cars and “none of the above”.

In astronomy, an early convolutional model was developed in 1997 by E. Bertin: EyE 8,
(Enhance your Extraction). EyE is a multilayered neural network connected to a moving window
(retina). It was used for many years to identify cosmic-ray hits in large imaging surveys (e.g.,
Nonino et al., 1999).

While these are some early successes of CNNs, the latter have really started shining with the
arrival of deep learning.

6The expression “convolutional layer” sometimes actually encompass the convolution, activation and subsam-
pling layers.

7A convolutional architecture has already been proposed by Fukushima (1980), but it did not benefit from the
efficient backpropagation algorithm.

8https://www.astromatic.net/software/eye

https://www.astromatic.net/software/eye
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4.3.3 Deep learning models

With time, increasing computing power and the availability of larger labeled data sets allowed the
scientists to start exploring more complex neural network models. In the early 2010’s, deeper
network models (i.e., models with more layers) became manageable and were found to allow
much more abstract and complex representations of the data compared to previous, shallower
models. For a comprehensive view of early deep learning techniques and machine learning, see,
e.g., Goodfellow et al. (2016).

In the following, we will focus on the application of deep neural networks to image analysis,
although deep nets have been applied to many other domains like audio classification Lee et al.
(2009) or language processing Collobert and Weston (2008), just to name a few.

The ImageNet challenge

Even though other data challenges existed before, like the PASCAL VOC challenge (Evering-
ham et al., 2010) that started in 2005, it is the ImageNet challenge, or ILSVRC (ImageNet
Large Scale Visual Recognition Challenge), which provided the clear-cut demonstration of the
superior performance of deep CNNs. The ILSVRC is an image classification challenge held since
2010 (Russakovsky et al., 2015). It is based on one of the largest image classification bench-
mark databases Deng et al. (2009). During the first two years, the two winning methods Lin
et al. (2011); Sánchez and Perronnin (2011) were classical methods based on handcrafted feature
extractors. The real turning point in the challenge was in 2012 with the arrival of AlexNet
model (Krizhevsky et al., 2012), the first deep CNN to compete at the ILSVRC9. AlexNet won
the challenge by a huge margin, suddenly decreasing the top-5 error rate from 25.8% in 2011 to
16.4%, while it was still 28.2% the year before (the top-5 error rate is measured by considering
the five most probable classes predicted by the classifier).

The AlexNet architecture is shown in Fig. 4.16. It follows a classical CNN architecture as
seen in Section 4.3.2. However it contains a larger number of convolution and pooling layers than
LeNet-5. The last three fully connected layers are also much wider as there are 1, 000 classes.
AlexNet contains more than 60 millions parameters, the majority being in the fully connected
layers. Having as many parameters can lead to significant overfitting, which is mitigated with
dropout Hinton et al. (2012) and data augmentation techniques (see section 4.2.5).

Figure 4.16: AlexNet was the first deep CNN to win the Imagenet challenge in 2012, decreasing
the error rate from 25.8% to 16.4%. There are two data streams because computations were
shared between two GPUs. Image credit: (Krizhevsky et al., 2012).

Since 2013, there has been an increase in the number of teams competing for ILSVRC, mostly
9A shallower CNN had already been run on ImageNet the year before (Ciresan et al., 2011).
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using deep CNNs, and deep CNNs have since kept winning the challenge and decreasing the error
rate, eventually surpassing humans.

Additional computer vision tasks have been held at the ImageNet challenge and won by deep
CNNs (single object localization and object detection, where one must predict one bounding box
per object class present in the image, or all the bounding boxes of all the objects present in the
image, respectively). Over the years, the ILSVRC challenges have led to a lot of innovations
and ideas for deep CNNs architectures. Some of the winning methods have become classical
architectures used as bases to further works, sometimes referred as backbone networks. Two of
this backbone networks are presented in the next section.

Classical deep CNN architectures for image classification

The first very deep CNN to win the Imagenet challenge was GoogLeNet (Szegedy et al., 2015)
in 2014. GoogleNet is based on the Inception architecture, which consists of repeated building
blocks called Inception modules (Appendix A.1). Each inception block concatenates feature maps
obtained through different filterings of the input. The overall architecture of GoogLeNet is
presented in Appendix A.2.

In 2014, GoogLeNet was in competition with VGG (Simonyan and Zisserman, 2014), which
made an honorable second place in 2014 and has also become a widely used architecture. VGG
is lighter than GoogleNet and uses smaller convolutional kernels. VGG-19 is described in
Appendix A.2.

In 2015, the ILSVRC was won by ResNet (He et al., 2016). It uses residual blocks shown
in Appendix A.1, where the feature maps of a given layer are reused again by addition to other
feature maps downstream in the network. The overall architecture is shown in Appendix A.2. It
was extended in Xie et al. (2017) by combining Inception-like blocks and skipped connections.

4.4 Conclusion

I have reviewed the history and the main concepts of feedforward and convolutional neural net-
works in the context of supervised learning and image classification. Thanks to the combination
of clever training and regularization algorithms, deep convolutional neural networks have unques-
tionably become the most efficient algorithms for complex image recognition tasks. The superior
efficiency of these models in computer vision tasks, combined with their ability to estimate pos-
terior probabilities, matches well our requirements in terms of adaptability and robustness. This
makes deep convolutional neural networks particularly attractive for our source detection project.
In the next chapters, I discuss further state-of-the-art models going beyond image classification.
I also come back to the Bayesian handling of neural network outputs when I present the practical
applications that we have developed.



Chapter 5

Contaminant identification:
MaxiMask and MaxiTrack

Astronomical images are far from perfect. A significant fraction of wide-field images of the deep
sky are contaminated by defects (hereafter “contaminants”). These defects can easily trigger false
detections, prevent detections or bias source measurements. The corresponding contamination
introduced in the output source catalogs compromises the performance and scientific objectives
of not only the COSMIC-DANCE and Euclid surveys, but also of many other surveys with
strict science requirements. For example, in the Canada France Hawaii Telescope Lensing survey
(Heymans et al., 2012), about 19% of the survey had to be discarded because of image defects.

Contaminants greatly complicate the source detection task, however none of the methods seen
in Chapter 3 addresses them directly. Following our objective of robustness and universality, we
thus aim at designing a tool capable of identifying contaminants prior to source detection. We
want this tool to be capable of detecting a broad diversity of contaminants commonly found
in astronomical images and to perform well under various optical and ambient conditions or
detector properties, with minimal tuning.

In this chapter, I present our solution to this problem and its implemention in the form of
two software packages: MaxiMask and MaxiTrack. I first review the various contaminants
commonly affecting astronomical images that we chose to study. I describe how they are managed
by existing methods. After describing the training data set, I present the CNN architectures
of MaxiMask and MaxiTrack. I explain how we deal with strong class imbalance, which
is a major challenge for MaxiMask, and how both packages can be operated in a Bayesian
framework. I give a detailed report of the identification accuracy obtained on various types of
test images and real data. Finally, I present the released packages1 and conclude this chapter by
discussing possible future developments.

The results of this study have been published in Astronomy & Astrophysics (Paillassa et al.,
2020, , F).

5.1 Contaminants in astronomical images

Contaminants in astronomical images originate from various sources. We classify them in two
categories: local and global contaminants. Local contaminants occur at the pixel level over a
fraction of the image, while global contaminants affect the entire image.

All the contaminants presented hereafter are illustrated with images originating from the
various instruments that have been used in our study. The references of these instruments are

1https://github.com/mpaillassa/maximask

https://github.com/mpaillassa/maximask
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given later when describing our work. The list of contaminants included here is not exhaustive.
Nevertheless, it covers the most frequently found contaminants in images, including the COSMIC-
DANCE and Euclid surveys.

5.1.1 Electronic contaminants

Electronic contaminants are local contaminants caused by defects or characteristics of the camera,
which in our case can be a CCD or a CMOS, as described in Section 2.5.

Hot and dead pixels

Hot and dead pixels are the most common electronic contaminants. They come out as pixels
having an anomalous response, either much higher or lower than expected, hence the names hot
and dead, respectively. In most cases, they affect single pixels or columns because of the way
CCDs are read. Yet, these can also appear as rows or as small clusters (Fig. 5.1).

Figure 5.1: Examples of hot and dead pixel defects. Top: three examples from Megacam. Bottom
left: an example from INT-WFC. Bottom right: an example from VST. Note that hot and dead
columns are sometimes touching.

Saturated pixels and bleeding trails

Saturation and bleeding trails are local contaminants related to the detector’s properties. Because
the potential well in each pixel can only accumulate a limited number of electrons, the recorded
value reaches a limit and stops increasing. In CCDs, wells can easily overflow, producing a
saturation (or bleeding) trail along the direction of charge transfer. In CMOSes, the saturation
pattern does not necessarily bleed and saturated pixels often exhibit non-physical values. Both
types of saturation are shown in Fig. 5.2.
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Figure 5.2: Left: typical bleeding trails in a Megacam image. Right: saturation pattern in a
WFCAM image (infrared camera).

Persistence effect

Persistence is a local contaminant appearing as a remnant pattern caused by pixels exposed to
a very bright star in a previous exposure that still emit signal. Persistence effects can vary a lot
from a camera to another2. Examples are shown in Fig. 5.3.

Figure 5.3: Left: example of persistence effects in a DECam image. Right: example of a
persistence effect in a WFCAM image.

Crosstalk

Crosstalks are local contaminants related to the electronics. CCDs are sometimes divided in
quadrants to improve readout speed, and each of them is in turn divided into channels corre-
sponding to different reading ports. Since all the channel ports are read simultaneously, there

2See, e.g., http://casu.ast.cam.ac.uk/surveys-projects/wfcam/technical/persistence

http://casu.ast.cam.ac.uk/surveys-projects/wfcam/technical/persistence
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can be some crosstalk, i.e., a channel reading output can be influenced by neighboring channels.
Typically, a bright source in one channel will generate a donut-like pattern in the direction of
the neighboring reading channels. An example is shown in Fig. 5.4. The pattern usually repeats
at regularly spaced locations and becomes fainter at larger distances.

Figure 5.4: Example of a crosstalk pattern between channels in a WFCAM image.

Crosstalk can sometimes occur at the quadrant level. In this case, a bright star produces a
negative mirror image with respect to the quadrant separation, as shown in Fig. 5.5.

Figure 5.5: Example of crosstalk patterns between two quadrants in the WFC3 camera onboard
HST. The separation between the two quadrants is in the middle of the image. Four bright stars
from the left quadrant generate crosstalk patterns in the right quadrant. One star from the right
quadrant produces a crosstalk pattern in the left quadrant.

5.1.2 Optical contaminants

Optical contaminants are caused by various features occurring in the optics of the telescope.

Residual fringing patterns

Fringes are local contaminants caused by thin-film interference in the detector. It is generated
at the boundary between the electronics and the optics. The resulting patterns depend on the
small detector thickness variations. Fringes are an additive feature and are generally removed
right after the flat-fielding procedure thanks to fringing maps that are computed by combining a
large number of exposures to be able to remove all the sources. Yet, the fringing map estimation
and thus the subtraction procedure are not perfect and sometimes residual fringing patterns can
still be found in images, as shown in Fig. 5.6.
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Figure 5.6: Left: fringing pattern residuals in a DECam image. Right: fringing pattern residuals
in a Megacam image.

Diffraction spikes

Diffraction spikes are local contaminant appearing around bright stars caused by light diffraction
from the spider supporting the secondary mirror. The shape is directly related to the geometry
of the spider arms, and the number of spikes varies from one instrument to another. While many
instruments exhibit four spikes in the form of a ’+’ or a ’x’, others like WFCAM (Fig. 5.2) and
Euclid (Fig. 5.8) have 3 spider arms, producing 6 diffraction spikes. This diversity adds another
level of difficulty in our quest for a universal and generic tool capable of detecting spikes for any
instrument. To add even more complexity, spikes can be variable in time or across the focal
plane. In some instruments, diffraction spikes are indeed affected by a combination of various
effects including distortions, telescope position, the presence of rough edges, cables around the
spider arms, reflections on other telescope structures that make it variable. In the case of alt-
azimuthal mounts the pattern will also rotate during an exposure. All of these variations can
make the pattern change significantly and greatly complicate its identification. Typical examples
of diffraction spikes are shown in Fig. 5.7.
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Figure 5.7: Examples of diffraction spikes. Top left: Megacam, an instrument where spikes
are ‘+’-shaped and thus overlap with bleeding saturation patterns. Top right: DECam, an
instrument with ‘x’-shaped spikes that sometimes also exhibits an additional horizontal spikes.
Bottom left: HSC, an instrument where the spike pattern can vary a lot from an exposure to
another but also within the focal plane. Note also the small clumpy spikes along the diagonal.
Bottom right: VISTA, an instrument where multiple spikes appear during exposures. Note the
different saturation pattern as it is an infrared camera.
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Figure 5.8: Example of diffraction spikes in a Euclid simulated image. Image credit: Euclid
simulation group (IAP).

Star halos and ghosts

Star halos, also sometimes called “ghosts”, are local contaminants produced by bright stars in
or near the focal plane. Very bright stars do not only produce bleeding trails and diffraction
spikes but also halos, which are images of the pupil of the telescope produced because of the
light of the bright star. Their position and focusing depend on the inclination of the light-rays
and the brightness of the star. Several halos may be present, they may be strongly defocused,
and located far away from the bright star that causes them (Fig. 5.9).
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Figure 5.9: Examples of star halos and ghosts. Top: two examples from Megacam images.
Note how the left halo is defocused and how the right example exhibits several defocused halos.
Bottom left: an example from DECam where the resulting ghost occurs in a different CCD than
the bright star causing it. Bottom right: an example from WFCAM.

Reflections, flares and scattered light

Undesired reflections in the telescope can result in local contaminants, including flares and scat-
tered light patterns in images. They are even more prevalent in wide-field instruments which
often use complex combinations of coated lenses to correct for field aberrations. Scattered light
can also occur when a bright star is outside the field of view but close enough that some rays
enter the telescope through series of reflections on its structure. Examples of flares are shown in
Fig. 5.10.
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Figure 5.10: Examples of reflections in HSC. Left: a reflection pattern spreading over a large part
of the CCD. Top right: another reflection pattern. Bottom right: a fainter reflection pattern.
These are related to the numerous lenses present in the HSC wide-field corrector.

5.1.3 Contaminants due to external events

The following contaminants are signals related to external physical processes not linked to the
instrument itself.

Cosmic rays

Cosmic-ray hits are local contaminants related to high energy particles. They appear as bright
and sharp patterns in images. The patterns can be almost point-like, straight lines or curved
lines depending on their incidence angle with the detector (Fig. 5.11). They actually often result
from the decay of radioactive atoms in materials near the detector, for example anti-reflection
coatings.
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Figure 5.11: Examples of cosmic-ray hits in DECam exposures. Left: a point-like cosmic ray hit.
Middle: a straight cosmic-ray track. Right: a worm-like cosmic ray feature (a speck-like impact
is also visible).

Figure 5.12: Left: example of a blinking trail in a ZTF survey image (https://www.ztf.caltech.
edu/). Right: example of multiple trails in DECam images (train of Starlink satellites).

https://www.ztf.caltech.edu/
https://www.ztf.caltech.edu/
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Trails

Trails are local contaminants caused by meteors, satellites or planes crossing the field of view
during an exposure. They appear as long rectilinear trails in images. Trails due to plane or
satellites are sometimes discontinuous or variable in amplitude (Fig. 5.12).

Nebulosities

From the astrophysical point of view, nebulosities are not contaminant but genuine astrophysical
objects. Regarding the main objectives of the COSMIC-DANCE and Euclid surveys (as well as
many other surveys interested in stars and galaxies), nebulosities are nevertheless a major source
of nuisance and in this work we consider them as contaminants that greatly complicate or bias
the source detection and measurement processes. Examples of nebulosities in images are shown
in Fig. 5.13.

Figure 5.13: Three examples of nebulosities in DECam images.

5.1.4 Global contaminants

In addition to the local contaminants mentioned above there are also global contaminants affect-
ing the entire image rather than a fraction of its pixels.

Tracking errors

The analysis of hundreds of thousands of archival and private exposures by the COSMIC-DANCE
survey showed that telescope tracking or guiding errors happen from time to time, either because
of a hardware/software failure, earthquakes (many observatories are located in seismically active
areas, e.g. Hawaii, La Palma or the Chilean Andes), or wind gusts. Tracking/guiding errors
result in images where all the sources are blurred and elongated along the telescope motion
direction. Examples of images suffering such tracking errors are presented in Fig. 5.14.

Note that the non-sidereal tracking used for solar-system observations produces the same
effect and cannot be distinguished from the above mentioned problems. Given that neither
the COSMIC-DANCE or Euclid surveys are interested in this type of observations, we do not
attempt to distinguish them from truly problematic images and include them in the tracking
error category.
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Figure 5.14: Left: tracking error in a CTIO-Mosaic2 image. Right: tracking error in a VISTA
image.

Defocusing

Defocusing occurs when the detector is not perfectly positioned at the focal plane. It can happen
either because the position of the focus has changed due to variations of ambient conditions,
because of a human or software error while setting the focus, or purposely in some specific
scientific cases. Examples of defocused images are shown in Fig. 5.15.

Figure 5.15: Left: defocusing in a KPNO-Mosaic1 exposure. Right: defocusing in a VIMOS
exposure.
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5.2 Identifying contaminants

Addressing the problem

Up to recently some pipelines have used visual inspection (e.g., Erben et al., 2005; Heymans
et al., 2012) to identify and mask contaminants. But the amount and rate of astronomical data
produced in current and upcoming surveys such as LSST (Ivezić et al., 2019) and Euclid (Racca
et al., 2016) make visual inspection absolutely impossible. It is therefore crucial to develop fully
automatic methods to detect the contaminants and separate them from the true astrophysical
sources.

Our original motivation came from the COSMIC-DANCE survey (Bouy et al., 2013). It
quickly became clear that contaminants were a major source of errors for the astrometric and
photometric analysis of the tens of thousands of images obtained at many observatories and with
many cameras. Detecting contaminants was particularly important in the case of archival images
which had been obtained by other persons with observing strategies sometimes incompatible with
the COSMIC-DANCE requirements.

The variety of the (non-exhaustive) list of contaminants given in Section 5.1 led most existing
approaches to either:

• Be focused on a specific contaminant.

• Be tailored to a specific instrument by relying on prior knowledge of its properties.

Let me now discuss both approaches and come up with a new proposal.

Modern pipelines

A classic observing strategy employed in modern survey consists in taking multiple exposures of
the same field. A small offset is usually applied between each of these exposures. This method,
called "dithering", is particularly useful to detect transient defects that are likely to affect only
one of the individual images such as cosmic rays or trails. By comparing the individual images
with the stacked image, one can identify these types of defects. This is one of the solutions
chosen for the LSST (Bosch et al., 2019). Methods developed in that sense also include Gruen
et al. (2014) and Desai et al. (2016). The drizzle algorithm (Fruchter and Hook, 2002) originally
designed to improve the sampling of under-sampled dithered images also provides means to
manage cosmic rays by taking advantage of the timeline.

Yet, not all the surveys adopt this strategy or simply cannot afford to take multiple exposures
of the same field. This is why modern pipelines also rely on a strong prior knowledge of their
instruments and are finely tuned for their images. For example, the HSC pipeline (Bosch et al.,
2018) and the DECam pipeline (Morganson et al., 2018) detect and mask electronic contaminants
and to some extent optical contaminants (Kawanomoto et al., 2016a,b). Using such knowledge
makes them very efficient on their data but the downside is that the analysis becomes instrument
dependent and cannot be directly applied to other data.

Methods focusing on a specific contaminant

Some methods chose to be more universal (in the instrumental sense) but focus on detecting
specifically a given type of contaminant. Cosmic-ray detection algorithms are probably the
most illustrative example of this class of software tools. They include simple linear filtering and
thresholding (Rhoads, 2000) to identify cosmic ray impacts in well sampled images, Laplacian
edge detection in LACosmic (van Dokkum, 2001) or bright outlier search in histograms (Pych,
2004). Farage and Pimbblet (2005) propose a comparison of these techniques. The method
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implemented in LACosmic has become very popular in spite of its sluggishness (van Dokkum
et al., 2012), even in its more modern and optimized Python version astroscrappy (McCully and
Tewes, 2019).

Some other methods have been designed to identify trails, that are becoming more and
more numerous in images. Algorithms based on the Hough transform (Hough, 1962) to detect
lines have been developed (Cheselka, 1999; Vandame, 2002; Storkey et al., 2004; Bektešević and
Vinković, 2017). In most of these approaches, the Hough transform is also applied to detect
other trail-like features such as bad columns or diffraction spikes. The Radon transform (Radon,
1917, 1986) has also been used to detect trails (Nir et al., 2018).

Finally, some multiscale methods using wavelets are used (Ordénovic et al., 2008) to detect
glitches.

Our strategy

Following our original goal of designing a universal (meaning not instrument-specific), unsuper-
vised and robust source detector, we want to overcome the drawbacks of the above presented
methods. Several reasons mentioned in Section 3.4 led us to chose a data driven approach instead
of more classical algorithmic approaches. The main motivations include:

• The data volume produced by COSMIC-DANCE and Euclid as well as other modern
surveys that leave no other choice than to develop largely automatic and unsupervised
tools.

• The superior efficiency of recent data-driven approaches in various computer vision tasks.

• The need for a generic tool that could ideally detect all contaminants at once and for a
wide range of instruments without any instrument-specific input parameters.

All these reasons led us to experiment with CNNs. Neural networks and CNNs have already
been introduced in Chapter 4 for image classification. Here we do not aim at performing image
classification but we want to know whether and where contaminants are present in an image at
the pixel level. To do so, CNNs are modified to output prediction maps at the same resolution as
the input image instead of predictions at the image level. The corresponding task of classifying
pixels is called semantic segmentation. We must now introduce some concepts complementary
to those introduced in Chapter 4 to extend the use of CNNs to semantic segmentation.

5.3 CNNs for semantic segmentation

Let us start with a brief review of CNNs for semantic segmentation, focusing only on fully
convolutional networks. For a broader and more exhaustive review of semantic segmentation
deep learning techniques, I refer the reader to Garcia-Garcia et al. (2017).

5.3.1 Fully convolutional neural networks for semantic segmentation

The main difference between CNN classifiers and semantic segmentation CNNs is the ability of
the latter to recover predictions at the same spatial resolution as that of the input image. To
achieve this, a new type of layer is introduced to upsample the feature maps, i.e., to increase
their spatial resolution back to the initial spatial resolution. In a classical CNN for image
classification, several convolution layers are stacked and the resulting feature maps are fetched
into fully connected layers for classification. In a fully convolutional neural network, there are
no fully connected layers: instead, there are stacks of upsampling layers, each one corresponding
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to a subsampling layer of the first part of the CNN. Doing so, the feature maps from the last
convolution layer are progressively upsampled to recover the initial image spatial resolution.

Basic upsampling

There are several ways to construct upsampling layers. The most basic one is to directly increase
the size of the feature maps and interpolate the missing values, usually with nearest neighbor
or bilinear interpolations. But it is far from ideal because the upsampling operation is fixed
and not learnable by the CNN. Ideally, one would want to learn the upsampling operation by
introducing learnable parameters for upsampling. This is why other upsampling techniques have
been preferred.

Upsampling with transposed convolutions

It is possible to learn the upsampling layer thanks to the deconvolution layer, which is not a very
appropriate name as it does not perform a deconvolution as defined in signal theory. Instead,
the operation should be more wisely named “transposed convolution” (it is also known as frac-
tional convolutional layer and up- or backward-convolutional layer). The transposed convolution
consists of swapping the forward and backward passes of a regular convolution. A good resource
explaining transposed convolutions is Dumoulin and Visin (2016)3. Even if in practice it is not
implemented as such, transposed convolution can be seen as a regular convolution applied to a
padded input, as shown in Fig. 5.16.

Long et al. (2015) were among the first to introduce such upsampling layers to make dense
predictions with a fully convolutional network. It was later improved in the U-net architecture
(Ronneberger et al., 2015), which remains one of the main references in semantic segmentation.
A U-net exhibits the typical semantic segmentation network architecture, and is divided in two
parts. The first part uses classical convolution and pooling layers and progressively decreases the
spatial resolution of the feature maps. The second one uses upsampling and convolution layers
and progressively increases the spatial resolution of the feature maps. Each layer in the first part
has a corresponding layer in the second part, hence recovering the initial spatial resolution in
the last layer. It also uses skip connections: the feature maps of the first part of the network
are concatenated with the upsampled feature maps of the second part of the network which have
the same spatial resolution. It makes it possible to use the maximum of information present
in the network and to have a better error gradient propagation to the first layers. The overall
architecture is shown in Fig. 5.17.

3https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic
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Figure 5.16: Top: tranposed convolution with stride one. Bottom: tranposed convolution with
stride two. The operations are equivalent to regular convolutions with appropriate padding.
Images credit: Dumoulin and Visin (2016).

Figure 5.17: U-net-like architecture with four resolution levels. Each convolution layer of the
first part of the network has a corresponding upsampling layer in the second part. There are
also skip connections between the same spatial resolution feature maps. Image credit: https:
//www.depends-on-the-definition.com/about/.

https://www.depends-on-the-definition.com/about/
https://www.depends-on-the-definition.com/about/


Chapter 5. Contaminant identification: MaxiMask and MaxiTrack 77

Upsampling with unpooling

Finally, another upsampling technique is unpooling. The feature maps of the second part of
the network are upsampled using the recorded max pooling indices from the corresponding fea-
ture maps of the first part of the network. The feature-map values are simply placed at the
corresponding locations in the higher resolution feature map, as shown in Fig. 5.18.
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Figure 5.18: Unpooling operation. The pooling indices at a given spatial resolution are stored
to upsample to this resolution in the second part of the network.

Although it has already been used in Zeiler et al. (2011) and Zeiler and Fergus (2014), unpool-
ing has been popularized in semantic segmentation by SegNet (Badrinarayanan et al., 2015,
2017), which has also become a classical semantic segmentation network architecture (Fig. 5.19).
SegNet is very similar to U-net, it but does not use the same upsampling layers and does not
use skip connections. Both architectures are often used with the VGG (Simonyan and Zisserman,
2014) backbone architecture presented in Section 4.3.3.

Figure 5.19: SegNet architecture. Max pooling indices from the first part of the CNN are
reused in the second part for upsampling the feature maps to higher spatial resolutions. Image
credit: Badrinarayanan et al. (2015, 2017).

The loss functions used to train these models are similar to the commonly used loss functions
for classification discussed in Section 4.2.4, except that those are applied at the pixel level: each
classified instance is a pixel and not an image.

5.3.2 Applying CNNs to the identification of astronomical contaminants

CNN-based methods have rarely been used for the identification of astronomical contaminants so
far. Besides the “venerable” EyE package already mentioned in section 4.3.2, only a handful of
tools were available at the time of writing this thesis. Only one performs semantic segmentation,
and none deals with more than one type of contaminants.
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In addition to cosmic-ray detection in HST images, deepCR (Zhang and Bloom, 2020) can
do inpainting, i.e., replacing pixels hit by a cosmic-ray with the expected uncontaminated values.
deepCR is however restricted to cosmic rays and tailored to HST data so that it may not adapt
well to other instruments. Finally, it is also likely to trigger false detections on other artifacts
like bleeding trails or hot columns.

Other approaches have used CNNs for image classification in order to predict the presence of
contaminants without performing semantic segmentation. Paranjpye et al. (2020) perform image
artifact classification using a CNN and Teimoorinia et al. (2020) detect tracking errors and bad
seeing images with a hybrid method using self organizing maps (Kohonen, 1982) and a CNN.

5.3.3 MaxiMask and MaxiTrack

In view of the above, we must address the issues of local and global contaminants separately.
The identification of local contaminants will be based on semantic segmentation (MaxiMask),
while that of global contaminants will rely on image classification (MaxiTrack), which will
require different CNN architectures.

5.4 Data sets

In order to train our CNNs, we prepare our own data samples. Independently from the local
or global nature of contaminants, we aim to use real data as much as possible to maximize the
inference capabilities of MaxiMask and MaxiTrack with real data. Whenever real data is
gathered to build learning samples, we reserve 75% of the data to build training samples and
25% to build testing samples.

5.4.1 Overview of the data

We mainly use data from the COSMIC-DANCE (Bouy et al., 2013) wide-field private archives. A
list of the COSMIC-DANCE instruments used in this work is presented in Table 5.1. They include
modern and first generation CCD and NIR detectors encompassing 20 years of technological
development.

Images from all instruments are reduced with an updated version of Alambic (Vandame,
2002), except for:

• Megacam images that are reduced with the Elixir pipeline (Magnier and Cuillandre,
2004).

• DECam images that are reduced with the DECam community pipeline (Valdes et al., 2014).

• UKIRT images that are reduced by the Cambridge Astronomical Survey Unit and retrieved
from the WFCAM Science archive.

• HSC images that are reduced by the HSC pipeline (Bosch et al., 2018).

In order to build the MaxiMask and MaxiTrack training samples, we adopt the following
strategies:

• MaxiMask: we build training samples by adding contaminants to uncontaminated images.
As none of our images comes perfectly uncontaminated, we identify the cleanest images
among our data. We opt for images from the CFHT-Megacam, CTIO-DECam and Subaru-
HSC instruments as a basis for uncontaminated images. We use the instrument’s pipelines
to identify the main artifacts like cosmic rays and bad pixels, which are replaced using
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Telescope Instrument Type Platescale Ref.
[pixel−1]

CTIO Blanco DECam CCD 0.′′26 (1)
CTIO Blanco MOSAIC2 CCD 0.′′26 (2)
KPNO Mayall MOSAIC1 CCD 0.′′26 (2)
KPNO Mayall NEWFIRM IR 0.′′40 (3)
CFHT Megacam CCD 0.′′18 (4)
CFHT CFH12K CCD 0.′′21 (5)
CFHT UH8K CCD 0.′′21 (6)
INT WFC CCD 0.′′33 (7)
UKIRT WFCAM IR 0.′′40 (8)
LCO Swope Direct CCD CCD 0.′′43 (9)
VST OmegaCam CCD 0.′′21 (10)
Subaru HSC CCD 0.′′17 (11)
VISTA VIRCAM IR 0.′′34 (12)

Table 5.1: Imaging instruments used from the COSMIC-DANCE survey. References:
(1) Flaugher et al. (2010) ; (2) Wolfe et al. (2000) ; (3) Autry et al. (2003) ; (4) Boulade
et al. (2003) ; (5) Cuillandre et al. (2000) ; (6) Metzger et al. (1995) ; (7) Ives (1998) ; (8) Casali
et al. (2007) ; (9) Rheault et al. (2014) ; (10) Kuijken et al. (2002) ; (11) Miyazaki et al. (2018)
; (12) Dalton et al. (2006). Table credit: Paillassa et al. (2020)

Gaussian interpolation (Williams, 1998). Additionally, we use LACosmic (van Dokkum,
2001; McCully and Tewes, 2019) to identify cosmic rays that would not have been detected
by the instrument’s pipelines. The contaminant addition procedures are explained in more
details in the next section.

• MaxiTrack: we build training samples by simply gathering the images visually identified
as affected by tracking errors through the years. These visual inspections were mainly made
in the context of the COSMIC-DANCE survey and by Mike Read at the UKIRT telescope.
For now MaxiTrack remains limited to identifying tracking errors and does not include
the identification of defocused images as not enough defocused images could be gathered.
Note that as the main use of MaxiTrack is to detect images affected by tracking errors
prior to any further data processing, it must be able to work with images affected or not by
local contaminants. Thus, the MaxiTrack training should ideally contain both images
affected by local contaminants and images that are not.

The list of archive images from the COSMIC-DANCE survey used to build our training data
sets is presented in Table 5.2, while an overview of the training sample production is shown in
Fig. 5.20.
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Instrument Clean CR No TR TR
DECam X X
MOSAIC2 X
MOSAIC1 X
NEWFIRM X X
Megacam X X X X
CFH12K X X X
CFH8K X
WFC X X
WFCAM X X
Direct CCD (LCO Swope) X X
VST X X X
HSC X X X
VIRCAM X X

Table 5.2: COSMIC-DANCE archive usage per imaging instrument: Clean is for uncontaminated
images, CR for dark images used for cosmic-ray addition, No TR is for images not affected by
tracking errors, and TR for images affected by tracking errors. Table credit: Paillassa et al.
(2020).

Cosmic Dance private archives

Global
contaminants

images

Sky background
maps

Skymaker
and 

Simulated data

Local
contaminants

images

Cleaned  
images

Local
contaminants

samples 

Global
contaminants

samples 

CR darks  
FR maps 

NEB examples Herschel
archives

Figure 5.20: Overview of the sample generation pipeline. See Table 5.3 for translations of the
acronyms. Image credit: Paillassa et al. (2020).

Note that the sky background of the images and its standard deviation are estimated. This
is made using a method similar to SExtractor’s (Bertin and Arnouts, 1996), i.e., using k-σ
clipping and mode estimations. It serves two purposes. Firstly, the standard deviation of the
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sky-background is widely used in the contaminant-addition procedures described in Section 5.4.2.
Secondly, background subtraction is part of the image preprocessing (Section 5.4.2).

5.4.2 MaxiMask training samples

As mentioned in Section 5.4.1, the strategy to build the MaxiMask training samples is to
contaminate uncontaminated images. In the same way that we favor real data to gather uncon-
taminated images, we also aim to retrieve the contaminants from real data as much as possible.
A list of all the contaminants currently included in MaxiMask is presented in Tab. 5.3, along
with their provenance.

Contaminant Abbreviation Data origin
Cosmic rays CR Real: dark images
Hot columns/lines HCL Simulations
Dead columns/lines/clusters DCL Simulations
Hot pixels HP Simulations
Dead pixels DP Simulations

Persistence P Simulations from model (1)
and SkyMaker (2)

Trails TRL Simulations with SkyMaker (2)
Fringes FR Real: fringing maps
Nebulosities NEB Real: Herschel SPIRE (3) (4)
Saturated pixels SAT Inherent
Diffraction spikes SP Inherent
Overscanned pixels OV Simulations
Bright background BBG Inherent
Background BG Inherent

Table 5.3: List of all the contaminants along with their abbreviated names and the origin of
the data. The “inherent” origin means that the contaminant is naturally present in the images.
References: (1) Long et al. (2015) (2) Bertin (2009) (3) (Pilbratt et al., 2010) (4) (Griffin et al.,
2010). Table credit: Paillassa et al. (2020).

Most contaminants are added directly in the uncontaminated images given an adequate scal-
ing. Yet, the contaminants that are marked “inherent” in Table 5.3 are already present in the
uncontaminated images. Therefore, they must be identified within the uncontaminated image,
before the addition of any contaminant. This is the case for saturated pixels, diffraction spikes
and “bright backgrounds”. The latter contains the astrophysical objects already present in the
image. This category was created with the sole purpose of improving the training performance
(which it did).

Added contaminants

The added contaminants are almost all scaled in the uncontaminated image with respect to the
sky-background standard deviations of the images. In the following equations, the uncontami-
nated image is noted U , the contaminated image is noted C and the standard deviation of the
uncontaminated image sky background is noted σU .

Cosmic ray hits: In order to add realistic cosmic ray hits, we extract them from dark images
from the CFH12K, HSC, Megacam, MOSAIC and OmegaCam cameras (Table 5.2). These
instruments include both thick, red-sensitive CCDs and thin, blue-sensitive CCDs, providing
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instances of all the types of cosmic rays described in Section 5.1.3. As dark images are taken
with a closed shutter, only the contribution of the offset, the dark current and cosmic-ray hits
remain in the images, as well as Poisson noise and Gaussian readout noise. This allows us to
easily identify the cosmic rays using thresholding: the dark image D is background-subtracted
and we set a threshold to 3σD above the median value mD of the dark image:

∀p, Mp =

{
1 if Dp > mD + 3σD
0 otherwise. (5.1)

Among all the masks computed from the dark data, we make a selection based on two criteria.
Firstly, we reject masks where columns or lines contain too many pixels identified as cosmic rays
to avoid getting false detections of hot columns, lines or other defect features. Secondly, we
retain only the masks containing a minimum fraction of pixels identified as cosmic rays of 0.0002
to make sure to add a minimum number of cosmic rays in the uncontaminated images.

Within the retained dark images and masks, a bit more than 900 million cosmic-ray pixels
are detected after thresholding. Considering that the average footprint area of a cosmic-ray hit
is 15 pixels, this represents a richly diversified population of about 60 million cosmic-ray objects
instances.

Then we dilate these masks with a 3 × 3 square structuring element. The resulting masks
are used both to add the cosmic rays in the uncontaminated image and to be the ground truth
masks in order to generously mask these defects. The addition to the uncontaminated image U
is done by rescaling according to the standard deviations of the images (Fig. 5.21):

C = U + kC
σU
σD

D �M (D), (5.2)

where σD is the standard deviation of the dark image background, M (D) is the dilated cosmic-ray
mask and kC is an empirical scaling factor set to 1/8.

Figure 5.21: Example of cosmic-ray hits added to an HSC exposure. From left to right: the
uncontaminated image, the dark image, the cosmic-ray contaminated image, the cosmic-ray
ground-truth mask.

Hot and dead pixels: Both hot and dead pixels are simulated. We simulate different shapes
of hot and bad pixels to be able to detect all the cases encountered in real images. These include
columns, lines, point-like pixels for hot and dead pixels. We also simulate some small dead-pixel
clumps and dead-pixel clusters (see Paillassa et al. (2020) for more technical details about all
the simulations).

Even if all shapes of hot or dead pixels share a common origin, point-like defects are treated
as a separate class by MaxiMask because or their distinctive pattern. This explains why there
are two different ground-truth masks in the examples of hot and dead pixels of Fig. 5.22 and
Fig. 5.23, respectively.
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Figure 5.22: Examples of hot pixels added to a DECam exposure. From left to right: the
uncontaminated image, the hot-pixel contaminated image, the hot column and line ground-truth
mask, the point-like hot-pixel ground truth mask. The point-like hot-pixel ground-truth mask
has been dilated for visualization.

Figure 5.23: Examples of dead pixels added to a DECam image. From left to right: the un-
contaminated image, the dead-pixel contaminated image, the dead column, line and cluster
ground-truth mask, the point-like dead-pixel ground-truth mask. The point=like dead pixel
ground truth mask is dilated for visualization.

Persistence: Persistence effects are simulated using the “Fermi model” developed by the STScI4

for the HST WFC instrument. See Long et al. (2015) and Paillassa et al. (2020) for more techni-
cal details about the model. To simulate the footprints of the persistence patterns, we simulate
saturated stars using SkyMaker (Bertin, 2009) that act as the virtual sources of a previous
exposure causing the persistence effect. The simulations use the same pixel size and FWHM as
the uncontaminated image. The FWHM retained for an image is the mean of the FWHM of
the stars computed using PSFEx (Bertin, 2011). The saturated pixels of the stars define the
persistence footprint as well as the ground-truth persistence mask. The pattern is added to the
uncontaminated image according to:

C = U + kP σU
P − Pmin

(Pmax − Pmin)
, (5.3)

where P are the persistence values computed with the “Fermi model” (Long et al., 2015; Paillassa
et al., 2020), Pmin and Pmax are the minimum and maximum of these values and kP is a scaling
factor empirically set to 5. An example of a simulated remnant is shown in Fig. 5.24.

4https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/ir-persistence

https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/ir-persistence
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Figure 5.24: Example of persistence effects added to a Megacam image. From left to right: the
uncontaminated image, the simulated saturated stars, the contaminated image, the persistence
ground-truth mask.

Trails: Trails are simulated as motion-blurred artifacts using SkyMaker: close stars with
identical magnitudes are simulated along a line with a small amount of Gaussian noise added to
the source’s positions to simulate jittering from atmospheric turbulence. Three types of trails
are simulated:

• Trails exhibiting a constant brightness.

• Trails exhibiting brightness variation with a linear transition between the different bright-
ness parts.

• Trails simulating close objects and thus exhibiting defocusing. The amount of defocusing
θ, expressed as the apparent width of the pupil pattern in arc-seconds, is given by:

θ =
180

π
× 3600× D

d
, (5.4)

where D is the diameter of the primary mirror and d is the distance between the object and
the instrument, uniformly picked in [2, 8] and [80, 000, 120, 000], respectively, in meters.

Since the publication of the MaxiMask paper, there have been some additional work and
improvements concerning trails, among which including fainter trails and making the ground-
truth masks larger. For fainter trails, it is difficult to obtain a clean ground-truth mask by simply
thresholding as described in Paillassa et al. (2020), even if the trail is isolated in the image. Thus,
we now build the trail ground-truth mask from the positions of the sources that are simulated to
form the trail: pixels corresponding to these source’s positions are set to one and the resulting
source-position map is dilated to build the trail ground-truth mask.

All types of trails are scaled with respect to their sky-background standard deviation σT :

C = U +
σU
σT

T . (5.5)

An example of an added trail is shown in Fig. 5.25.
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Figure 5.25: Example of a trail added to a DECam image. From left to right: the uncontaminated
image, the simulated trail, the trail-contaminated image, the trail ground-truth mask.

Fringes: Residual fringing patterns are added from real fringing maps. We use fringing maps
computed at the preprocessing level by the instrument’s pipelines. As they are often affected
by white noise, we smooth the maps with a top-hat kernel of size seven pixels. We mainly use
fringing maps from the HSC instruments.

As fringing patterns and especially residual fringing patterns do not necessarily affect the
whole image, we use a 3rd degree 2D-polynomial envelope to add fringing patterns only in some
parts of the images. The envelope is rescaled over the interval [−5, 5] and passed through a
sigmoid function to draw a clear separation between the fringing and non fringing areas. The
residual fringing pattern is then added to the image according to:

C = U + kF
σU
σF

F �E (F), (5.6)

where F is the fringe image, E (F) is the normalized sigmoid polynomial envelope, σF is the
standard deviation of the fringe pattern and kF is an empirical scaling factor set to 0.7. The
ground-truth mask is obtained by thresholding the 2D-polynomial envelope to −0.025. An
example of such a residual fringing pattern is shown in Fig. 5.26.

Figure 5.26: Example of a residual fringing pattern added to an HSC image. From left to right:
the uncontaminated image, the smoothed fringing map, the fringe contaminated image, the fringe
ground-truth mask.

Nebulosities: We choose as source of nebulosities far-infrared images of molecular clouds
around star forming regions. More precisely, we retrieve from the science-archive pipeline the
processed 250 µm images from the SPIRE instrument (Griffin et al., 2010) of the Herschel survey
(Pilbratt et al., 2010). We make this choice for several reasons. Firstly, because the thermal
distribution of dust corresponds well to the reflection nebulae at shorter wavelengths (Ienaka
et al., 2013). Secondly, because there are mainly extended emission and few point sources at
these low-latitude fields. Finally, because the 250µm channel offers the best compromise between
signal-to-noise ratio and spatial resolution.
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Taking advantage of the scale invariance of dust emission at the arcsecond level in molecular
clouds (Miville-Deschênes et al., 2016), we do not resize or reconvolve the SPIRE images. The
whole nebulosity image is background-subtracted using a SExtractor-like background estima-
tion to form the final nebulosity pattern N which is then added to the uncontaminated image
according to:

C = U + kN
σU
σN

N , (5.7)

where σN the sky-background standard deviation of the nebulosity image and kN is an empirical
scaling factor set to 0.5. The ground-truth mask is computed by thresholdingN above zero. This
mask is then eroded with a 6-disk diameter structuring element to remove spurious individual
pixels, and dilated with a 14-disk diameter structuring element. An example of nebulosity added
to an image is shown in Fig. 5.27.

Figure 5.27: Example of a nebula added to an HSC image. From left to right: the uncontaminated
image, the nebulosity image, the nebulosity-contaminated image, the nebulosity ground-truth
mask.

Overscan: Overscan pixels are present in most CCDs. They are simply strips of very low pixel
values at the borders of images. In order to avoid false detections in these regions, we include
such features as an additional class. We simply simulate pixel strips with widths uniformly
distributed between 15 and 50 pixels at the image borders (Fig. 5.28). Values follow the same
rules as dead pixels.

Figure 5.28: Example of an overscan added to a Megacam image. From left to right: the
uncontaminated image, the simulated overscan, the overscan ground-truth mask. Overscan pixels
are shown in gray for better visualization.

Inherent contaminants

As stated earlier, there are also contaminants that are “inherent” to images. These are directly
identified in the images, before any other contaminant is added.
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Saturation: Saturated pixels are simply identified in each uncontaminated image by using the
known-saturation value of each instrument. Pixels above this limit are labeled as saturated and
set to one in the saturation ground-truth mask (Fig. 5.29).

Figure 5.29: Examples of saturated pixels identified in a DECam image. Left: the input image.
Right: the saturation ground-truth mask.

Diffraction spikes: As the Megacam and DECam instruments are mounted on Equatorial
telescopes, they exhibit spike patterns that remain more or less identical across all images,
consisting of ‘+’ and ‘x’ cross shapes, respectively5. Unfortunately, it is not the case for HSC
which is mounted on a telescope with an alt-azimuth mount, resulting in a diffraction spike
pattern that can vary a lot across images. To identify the diffraction spikes for these three
instruments, we use a two-step approach.

Firstly, we empirically identify diffraction spikes in Megacam and DECam images. To do so,
we run SExtractor on the images to identify the brightest stars, i.e., the stars that are more
likely to exhibit diffraction spikes, and extract 300× 300 stamps centered on these bright stars.
We threshold these stamps to 3σ above the sky background to obtain a first mask. We then
compute the element-wise products of these masks with large centered ‘+’ and ‘x’ patterns to
isolate the potential diffraction spikes from the rest of the image. The resulting mask is matched-
filtered with small horizontal and vertical line patterns and the result is thresholded to 15 ADU in
order to remove eventual stars along the spikes. This final mask is used to compute an empirical
diffraction-spike size. The length of each spike is measured from the center of the image to the
borders as a contiguous block. To avoid measuring too large a size due to a neighboring star, the
final spike size is taken as the maximum length found in all directions. If this length is too small,
we consider it a false positive and no diffraction spikes are assigned to this star. An overview of
the whole process is shown in Fig. 5.30.

Secondly, we use a U-net-like CNN architecture to identify the diffraction spikes in HSC
images. To do so, we build a training set from the diffraction spikes empirically identified in
Megacam and DECam. We rotate the 300 × 300 bright-star stamps and their corresponding
diffraction-spike masks using random angles uniformly chosen between 0◦ and 360◦ so that the
CNN can learn to detect diffraction spikes in all directions. The CNN uses a classical semantic
segmentation architecture (Ronneberger et al., 2015; Badrinarayanan et al., 2015, , see Section
5.3.1). It is shown in Fig. 5.31. It contains 8, 16, 32 and 32 feature maps built with 21 × 21,
11× 11, 7× 7 and 5× 5 convolution kernels. All activation functions are ELU except on the last
layer where softmax is applied to make predictions. We minimize the softmax cross entropy loss
using the Adam optimizer (Kingma and Ba, 2014). In order to compensate for the unbalance
between pixels with and without a spike, each pixel is weighted by 1−ps or ps depending if it has
a spike or not, where ps is the proportion of spike pixels in the training set. We will come back
to class imbalance and cost weighting issues in more details when dealing with MaxiMask.

5DECam images sometimes also exhibit an horizontal spike Melchior et al. (2016) of unknown origin.
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Figure 5.30: Empirical flagging process for diffraction spikes. From left to right: the source image
centered on a bright star candidate, the same image thresholded, the two point-wise products,
the matched-filtered point-wise products, the final mask drawn from the empirical size computed
with the two previous masks.

The CNN is implemented in Python with the TensorFlow library (Abadi et al., 2016). Once
trained, we run it on the HSC bright-star candidates previously detected with SExtractor
to compute their diffraction-spike ground-truth mask for MaxiMask. The probabilities are
thresholded based on the MC coefficient (Matthews, 1975) to create a binary mask (the MC
coefficient is an accuracy estimator that takes class imbalance into account. We will come back
to it in more details later when dealing with MaxiMask results). The mask is then eroded
and dilated to remove any small isolated component and obtain a cleaner mask. An example is
shown in Fig. 5.32.

Bright background and background

The bright-background ground-truth mask is simply obtained by thresholding the uncontam-
inated image at 10σU and dilating the resulting mask. An example of an identified bright-
background pixel is shown in Fig. 5.33.

Figure 5.33: Example of bright-background pixels identified in a DECam image. Left: the input
image. Right: the bright-background pixels ground-truth mask.

Finally, the background ground-truth mask is obtained by retaining the pixels that are not
affected by any contaminant.
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Figure 5.31: CNN used for diffraction-spike identification in HSC images. Image credit: Paillassa
et al. (2020).

Figure 5.32: An example of cleaned diffraction-spike inference made on an HSC image by the
CNN presented in Fig. 5.31. Images credit: Paillassa et al. (2020).

Dynamic compression

As mentioned in 4.2.7, normalizing the input data generally helps with training procedures. In
our case, we have experimentally verified that the high-dynamic range of astronomical images
is indeed an obstacle to the convergence of the neural-network. To mitigate this, we use an
image normalization and dynamic-compression procedure. Our preprocessing procedure is the
following:

C̃ = arsinh

(
C −B +N (0, σ2

U )

σU

)
. (5.8)

We normalize the images by subtracting the sky background and dividing by the standard
deviation of the sky-background noise. In order to make the training robust regarding small biases
in the sky-background estimation, a small random offset is added between the sky-background
subtraction and the division by the standard deviation.

The dynamic compression is done by applying the arsinh function, which has the interesting
property of being logarithmic for extreme values and linear around zero.
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Data augmentation

In order to increase the diversity of the data without gathering more images, we leverage
some of the data augmentation techniques described in Section 4.2.5. We use two main data-
augmentation procedures.

Firstly, we apply random rotations with angles multiple of 90◦ wherever it makes sense:
cosmic rays, fringe patterns and nebulosity patterns.

Secondly, we rebin some images to include more critically sampled images in the training set:
50% of the uncontaminated images where the stellar FWHM remains greater than two pixels
after rebinning are 2 × 2 rebinned. The stellar FWHMs are obtained using PSFEx (Bertin,
2011).

Examples of MaxiMask training samples

Fig. 5.34 shows some MaxiMask training samples along with their contaminant ground truths
presented in the form of a single-color map. Each pixel is assigned a color depending on its class.
If it belongs to several classes, it is shown in black. Pixels affected by fringes or nebulosities and
another contaminant are shown with the color of the other contaminant only.

All the images contain all contaminants, except for residual fringing patterns, nebulosities,
overscan regions and the inherent contaminants. Residual fringing patterns, nebulosities and
overcan regions are added in 25% of the images. In addition, residual fringing patterns and
nebulosities are mutually exclusive. Among the inherent contaminants, diffraction spikes are
required in 75% of the images. Depending on the uncontaminated image, there are images
without saturated pixels and there might be images without bright-background pixels.

5.4.3 MaxiTrack training samples

As mentioned in Section 5.4.1, we simply build the MaxiTrack training samples by gathering
visually-inspected images affected by tracking error. Examples of training samples for Maxi-
Track are shown in Fig. 5.35.

Figure 5.35: Examples of MaxiTrack training samples. Left and middle: two images affected
by tracking error. Right: an image not affected by tracking error. Note that these images can
contain local contaminants, like the right image that contains dead pixels.

We use for MaxiTrack the same dynamic-compression procedure as for MaxiMask (section
5.4.2).
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Figure 5.34: Examples of MaxiMask training samples. The contaminant ground-truth masks
are all represented in a unique color map where each pixel is assigned a color depending on its
class(es). The color code is: red: CR, dark green: HCL, dark blue: BCL, green: HP, blue: BP,
yellow: P, orange: TRL, gray: FR, light gray: NEB, purple: SAT, lightpurple: SP, brown: OV,
pink: BBG, dark gray: BG. Pixels belonging to several classes are black. Isolated hot and dead
pixel masks have been dilated for visualization.

5.5 CNN architectures

5.5.1 MaxiMask CNN architecture

The MaxiMask CNN architecture is similar to the classical semantic segmentation architectures
presented in Section 5.3.1 like U-net (Ronneberger et al., 2015) or SegNet (Badrinarayanan
et al., 2015). It adopts the encoder-decoder architecture with a VGG backbone (Simonyan and
Zisserman, 2014).

The encoder part is made of convolution and pooling layers and the decoder part is made of
convolution and unpooling layers that use the max pooling indices of the same resolution feature
maps from the encoder part, as explained in Fig. 5.18. All layers use ReLU activations, except
the last one that uses the sigmoid to make predictions.

We also set skip connections between the two parts of the CNN: the feature maps at a given
resolution in the encoder part are summed up with the unpooled feature maps of the same
resolution in the decoder part. The purpose of these skip connections is to explicitly make use
of the features captured in the first layers of the CNN that would not be forwarded up to the
second part of the CNN.

Following Yang et al. (2018), we also use extra Unpooling Convolution Paths (UCP): the
higher resolution predictions are recovered from each feature map resolution of the decoder part
to form a total of five prediction maps. These five prediction maps are then fused into single-
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Figure 5.36: MaxiMask CNN architecture. Image credit: Paillassa et al. (2020).

prediction maps. The idea here is to extract the maximum of information from each resolution.
The overall architecture is illustrated in Fig. 5.36 and Table 5.4.

5.5.2 MaxiMask loss function and class imbalance

Raw loss function

As we are using sigmoid activations in the last layer, the loss function is the common sigmoid
cross entropy as defined in Section 4.2.4:

Lr = − 1

card(B)

∑
b∈B

∑
p∈P

∑
ωc∈C

(
yb,p,ωc log ŷb,p,ωc + (1− yb,p,ωc) log(1− ŷb,p,ωc)

)
, (5.9)

where:

• B is the set of batch images.

• P is the set of all image pixels.

• C is the set of all contaminant classes.

• ŷb,p,ωc is the sigmoid prediction for class ωc of pixel p of image b in the batch.

• yb,p,ωc is the ground-truth label for class ωc of pixel p of image b, defined as:

yb,p,c =

{
1 if ωc ∈ Cp,b
0 otherwise , (5.10)

where Cp,b ⊂ C is the set of contaminant classes labeling the pixel p of image b in the batch.
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Layer Size UCP from each resolution
Input 400x400x1
Conv 400x400x32

Maxpool 200x200x32
Conv 200x200x64

Maxpool 100x100x64
Conv 100x100x128
Conv 100x100x128

Maxpool 50x50x128
Conv 50x50x256
Conv 50x50x256

Maxpool 25x25x256
Conv 25x25x256
Conv 25x25x256

Maxpool 13x13x256
Conv 13x13x256

Unpooling 25x25x256
Conv 25x25x256
Conv 25x25x256 UCP

Unpooling 50x50x256 Idem
Conv 50x50x256 None
Conv 50x50x128 Idem UCP

Unpooling 100x100x128 Idem Idem
Conv 100x100x128 None None
Conv 100x100x64 Idem Idem UCP

Unpooling 200x200x64 Idem Idem Idem
Conv 200x200x32 Idem Idem Idem UCP

Unpooling 400x400x32 Idem Idem Idem Idem
Conv 400x400x14 Idem Idem Idem Idem
Concat 400x400x70
Conv 400x400x14

Table 5.4: Description of the MaxiMask CNN architecture along with feature map dimensions.
All convolution kernels are 3× 3 and max-pooling kernels are 2× 2. UCP stands for Unpooling
Convolution Path.

Similar losses can be computed for each of the five prediction maps derived from the unpool
convolution paths. The final total loss is a combination of the sigmoid cross entropy computed
on the final prediction maps and the five sigmoid cross entropies computed from the five UCP
predictions. This is done to improve the back propagation of the gradients to the lowest layers
of the CNN.

There are plenty of possibilities to combine these losses. After some experiments, we adopt a
combination similar to Yang et al. (2018). The best combination consist of having an equal weight
between the main loss and the UCP losses and using only the smallest spatial resolution UCP
losses, the latter idea being that the predictions from higher resolution provide less additional
information because they are closer to the final ones. Finally, we find that adding 33% of the
three smallest UCP spatial-resolution losses or 50% of the two smallest are the best tuning and
I retain the first one.
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Class imbalance

One of the main problem encountered with our data is the strong class imbalance between positive
and negative samples. Pixels without cosmic ray hits are for example far more frequent than
pixels without them, with the ratio reaching typically 1/1000 in the training set, which makes
the contaminant class statistically insignificant. This can easily lead the classifier to behave as
if all pixels were uncontaminated.

The class-imbalance problem has been tackled in the literature at both the data level and the
algorithmic level. The main and simplest strategies used in deep learning are data sampling and
cost-sensitive learning. The first one consists of resampling the data to eliminate the imbalance by
either over sampling the minority class or undersampling (in the statistical senses) the majority
class. For example, SMOTE (Chawla et al., 2002) synthesizes samples of the minority classes.
But undersampling may imply loss of useful information and oversampling is not always feasible
and may cause overfitting.

To avoid these drawbacks the second method consists of weighting the cost of the different
classes according to their representation in the data set (Xu et al., 2014; Badrinarayanan et al.,
2017).

More sophisticated methods have been investigated either by improving or combining these
strategies. For example the max-pooling loss method (Bulo et al., 2017) combine the two previous
approaches by sampling the costliest pixels and applying a weighting scheme on the remaining
pixels. On the other hand, the focal-loss method (Lin et al., 2017) quickly eliminate the well
classified samples so that the neural network can focus on the harder ones. The method described
in (Ando and Huang, 2017) choses to oversample the data in feature space.

All these methods are quite empirical and their application can be very problem-dependent.
After extensively experimenting the max-pooling loss, the focal loss and sampling methods, we
conclude that cost-sensitive learning provides the best performance for our problem.

Our weighting scheme is as follows. Firstly, a weight is applied to each pixel according to its
class representation in the training set, that is each pixel p of batch image b belonging to classes
in Cp,b is weighted by wp,b defined as:

wp,b =
∑

ωc∈Cp,b

wωc , (5.11)

where each wωc is the weight of class ωc defined as:

wωc =

(
P (ωc|T )

∑
i

1

P (ωi|T )

)−1

, , (5.12)

P (ωc|T ) being the fraction of pixels labeled with class ωc in the training data set T . As some
pixels may belong to several classes, the P (ωc|T )’s do not sum to one. We find that using the
class proportions of the whole training set gives better performance than computing dynamically
the class proportions for each batch of images.

Eq. 5.12 may not be very intuitive but this results in a weighting scheme so that the following
conditions are satisfied:

∀ωi ∈ C, ∀ωj ∈ C,
wωi
wωj

=
P (ωj |T )

P (ωi|T )
and

∑
ωc∈C

wωc = 1, (5.13)

that is to say that if a class is twice more represented than another one, its weight is twice
smaller than the other class and the weights of all the classes sum up to one.

One problem encountered with such a weighting scheme is that non-contaminant pixels end
up having a very low weight because they are statistically more represented in the training set,
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leading to improper segmentation delineation. It leads to undesired effects and wrong classifica-
tions around some class of contaminants. There is for example a confusion between point-like
cosmic rays (normal incidence) and hot pixels because cosmic rays are generously flagged and
MaxiMask therefore tends to classify pixels around hot pixels as cosmic rays. The result is
almost invisible for the loss function, as pixels around hot pixels are not contaminated and thus
have a very low weight, but this behavior is problematic and not satisfactory. We therefore
decided to smooth the weight maps so that non-contaminated pixels in the immediate surround-
ings of contaminated pixels have a higher weight. We find that smoothing with a 3× 3 Gaussian
kernel with unit standard deviation yields the best results.

Noting w′p,b the resulting weights of this smoothing, the raw loss Lr defined in Eq. 5.9 becomes:

Lw = − 1

card(B)

∑
b∈B

∑
p∈P

w′p,b
∑
ωc∈C

(
yb,p,ωc log ŷb,p,ωc + (1− yb,p,ωc) log(1− ŷb,p,ωc)

)
. (5.14)

Finally, we regularize the loss by the l2 norm introduced in Section 4.2.5, i.e., we add the l2
norm of all the N network weights to the loss Lw defined in Eq. 5.14:

L2reg = λ

N∑
i

‖ki‖2, (5.15)

where the ki’s are the convolution kernel vectors and λ is a scaling factor. We find λ = 1 to
provide the best results.

Other experiments and conclusions on the treatment of class imbalance Note that
we also experimented the following loss function:

L = − 1

B

∑
b≤B

∑
p∈P

∑
c≤C

(
1

P (ωc|T )
yb,p,c log ŷb,p,c +

1

1− P (ωc|T )
(1− y b,p,c) log(1− ŷb,p,c)

)
,

(5.16)
where for each class ωc, each class and non-class pixel are weighted according to the proportion of
class ωc only. Within each class ωc, we find that it gives slightly better results on pixels belonging
to ωc but poorer results on pixels not belonging to ωc, i.e., we gain a bit of true-positive rate at
the cost of a higher false-positive rate. Thus, we do not retain this weighting scheme.

In fact, there are two different ways to see the loss function of this multi-labeling problem.
One that I call the class view, seeing it as the sum of each class loss Lωc :

L =
∑
ωc∈C

Lωc =
∑
ωc∈C

(∑
p∈P

(
yb,p,ωc log ŷb,p,ωc + (1− yb,p,ωc) log(1− ŷb,p,ωc)

))
, (5.17)

and the other one that I call the pixel view, seeing it as the sum of each pixel loss across all
classes:

L =
∑
p∈P

Lp =
∑
p∈P

(∑
ωc∈C

(
yb,p,ωc log ŷb,p,ωc + (1− yb,p,ωc) log(1− ŷb,p,ωc)

))
. (5.18)

Both result in the same loss and it just comes back to swapping the
∑
p∈P

and
∑
ωc∈C

symbols.

Yet, this results in different ways to see the problem, and different ways to think about possible
weighting schemes. In the class view, classes are seen independently one from another, which is
effectively the case since we use sigmoid activations. The weighting scheme presented in Eq. 5.17
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is following this view: each class ωc is managed independently, i.e., the weights of the pixel costs
for a given class ωc only depend on the ωc class proportion. As a result, pixels not belonging to
ωc are all weighted in the same way, by 1

1−P (ωc|T ) . However, these pixels may be very different,
in the sense that they can belong to various other class ω′c. Treating them equally may therefore
not be ideal and this is what causes this loss to produce a solution with more false positives. On
the other hand, the weighting scheme that we retain, defined by Eqs. 5.11 to 5.13 and resulting
in the loss given in Eq. 5.14 is more related to the pixel view and accounts for all the classes of
a given pixel within every class ωc.

5.5.3 MaxiMask training

MaxiMask is trained for 30 epochs with 50, 000 images and a mini-batch size of 10. It is
optimized with Adam (Kingma and Ba, 2014) and implemented using TensorFlow (Abadi et al.,
2016). Fig. 5.37 shows a typical evolution of the loss function during training.

Figure 5.37: Typical evolution of the loss-function during training for MaxiMask.

I discuss some potential overfitting issues and sanity checks later in Section 5.6.1. Two
examples of qualitative results after training are shown in Fig. 5.38, as well as some of their
first-layer pooled feature maps.
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Figure 5.38: Two examples of MaxiMask results on test images. Top: ground truth, input
image, predictions. Bottom: six examples of the first layer pooled feature maps.

5.5.4 MaxiTrack CNN architecture and training

The MaxiTrack CNN architecture is a classical CNN architecture for image classification (see
section 4.3). It is made of several convolution and pooling layers followed by fully-connected
layers (Fig. 5.39 and Table 5.5). We use dropout (section 4.2.5) to regularize the CNN in the
fully-connected layers, with a dropping rate of 0.4.

The MaxiTrack loss function is the softmax cross entropy. It is optimized with Adam
(Kingma and Ba, 2014) and implemented in Python using the TensorFlow library (Abadi et al.,
2016). MaxiTrack is trained over 192 epochs with 50, 000 images, using a batch size of 128.
Using a batch size a large as possible was found to provide better performance.
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Figure 5.39: MaxiTrack CNN architecture.

Layer Size
Input 400x400x1
Conv 400x400x16

Maxpool 200x200x16
Conv 200x200x32

Maxpool 100x100x32
Conv 100x100x64

Maxpool 50x50x64
Conv 50x50x128

Maxpool 25x25x128
Conv 25x25x128

Maxpool 13x13x128
Flatten 21632

Fully connected 64
Fully connected 64
Fully connected 2

Table 5.5: Description of the MaxiTrack CNN architecture along with feature-map dimensions.
All convolution kernels are 9× 9 and max-pooling kernels are 2× 2.

5.5.5 Modification of the priors

As we saw in 4.2.6, in the conditions of perfect training the outputs of MaxiMask and Maxi-
Track can be interpreted as posterior probabilities. Under this assumption, we can modify the
priors, i.e., the expected proportion of each class, using the following:

P (ωc|x, O) =
P (ωc|x, T )

P (ωc|x, T ) + P (ω̄c|O)
P (ωc|O)

P (ωc|T )

P ( ¯ωc|T )
P (ω̄c|x, T )

(5.19)

=
1

1 +
(

1
P (ωc|x,T ) − 1

)
P (ωc|T )
P (ωc|O)

1−P (ωc|O)
1−P (ωc|T )

, (5.20)

where T denotes the training set and O the observed data set we wish to run with MaxiMask
or MaxiTrack. In order to modify priors, we need first to know the training priors P (ωc|T ).

The situation for MaxiTrack is particularly simple: the training set is half tracking expo-
sures and half non-tracking exposures. Therefore, we can just apply Eq. 5.20 using P (ωc|T ) = 0.5
and P (ωc|O) = r, where r is the expected ratio of exposures affected by tracking errors.



Chapter 5. Contaminant identification: MaxiMask and MaxiTrack 99

Things are not as simple for MaxiMask, because the weighting scheme that we apply in
the loss function (Eq. 5.14) affects the training priors. To recover the effective priors P (ωc|T ),
we follow Bailer-Jones et al. (2008)’s approach and use the posterior mean on the test set as an
estimator:

P̂ (ωc|T ) =
1

card(T ′)

∑
x∈T ′

P (ωc|x, T ′). (5.21)

It might be counter intuitive to recover priors from the posteriors. Yet, if the posteriors are
perfect, we actually get the class proportions by computing the mean of the posteriors.

5.6 Results

5.6.1 MaxiMask

We first perform a quantitative analysis of the MaxiMask classification performance on a bench-
mark testing set containing 5, 000 images. We also check that MaxiMask is not overfitting.
Then, we check for the robustness of MaxiMask regarding the context, i.e., if it is able to
perform well on images that do not contain all contaminants. Next, the cosmic-ray detection is
compared to a state-of-the-art approach: LACosmic (van Dokkum, 2001; McCully and Tewes,
2019). Finally, I show some qualitative results on various instruments, including instruments not
used to build the MaxiMask training set, demonstrating the ability of MaxiMask to generalize
to other data.

Quantitative results

As MaxiMask acts as a binary classifier for each contaminant class, we can compute a ROC
curve for each class, i.e., the true-positive rate TPR versus the false-positive rate FPR at every
output threshold, as introduced in section 3.1.4:

TPR =
TP

TP + FN
=

TP

P
, (5.22)

FPR =
FP

FP + TN
=

FP

N
. (5.23)

The ROC curves can be found in Appendix B.1, along with the AUCs (Areas Under the
Curve, see section 3.1.4). We plot the false-positive rates in logarithmic scale to better visualize
the low values that we are interested in. Indeed, even though the true and false positive rates
do not suffer from class imbalance (they are simply ratios), one must remember that the true-
positive rate is a ratio to the positives P while the false-positive rate is a ratio to the negatives
N. Thus, since N is much greater than P because of the class imbalance, it is important that the
false-positive rate remains very low to ensure good performance.

For example, assuming we have P = 1, 000 pixels in the contaminant class and N = 159, 000
pixels in the non-contaminant class for a 400× 400 pixel image, a true-positive rate TPR = 99%
and a false-positive rate FPR = 1% would represent 990 true positives, 10 false negatives,
157,410 true negatives, and 1590 false positives, so that there would be more false positives than
true positives. This is why very low false positive rates are so important here.

However, it is important to note that performance are likely to be underestimated for the
larger contaminants in the sense that it is almost impossible to recover their exact footprint
down to the pixel. This is particularly true for the trails, residual fringing patterns, nebulosities,
diffraction spikes and background classes.
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We also draw two additional ROC curves restricted to the brighter instances of cosmic-ray
and trail classes. More precisely, the ROC curves are computed by retaining only those instances
that are 3σU above the sky background. As expected, MaxiMask is able to flag the most
obvious cases more easily.

In addition to the true and false positive rates, we compute two other performance metrics.
Firstly, the purity (see section 3.1.4):

PUR =
TP

TP + FP
. (5.24)

Taking back the example with P = 1, 000, N = 159, 000, TPR = 99% and FPR = 1%, the
resulting purity is PUR = 38%, that better highlights the poor performance of this hypothetical
classifier. I draw TPR versus PUR curves for MaxiMask. These are shown in Appendix B.2.

Secondly, we compute the Matthews correlation coefficient (MCC, Matthews, 1975), as a
replacement to the accuracy metric, which is not well suited to unbalanced data sets:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (5.25)

The MCC ranges from -1 to 1 (the higher, the better). It is similar to a correlation coefficient
between the prediction and ground truth distributions. The MCC takes into account the four
cases of TP, FP, TN, FN as well as the ratio between the amounts of positive and negative
samples so that it gives a more informative and truthful score than commonly used metrics such
the accuracy and the F1 score, especially with unbalanced data sets (Chicco, 2017; Chicco and
Jurman, 2020). Taking back again the example with P = 1, 000, N = 159, 000, TPR = 99% and
FPR = 1%, the resulting Matthews correlation coefficient would be MCC = 0.61, illustrating
the mediocre performance of this hypothetical classifier. We compute the Matthews correlation
coefficient for each MaxiMask class and plot it against the probability thresholds in Appendix
B.3. The threshold giving the best Matthews correlation coefficient is annotated on each plot.
Note that the probability priors are modified prior to computing these curves (unlike ROC or
Purity, the MCC plots are sensitive to the priors)

Overfitting and sanity checks

The fact that the performance metrics are roughly the same on training and test data, and that
we obtain very similar ROC curves and AUCs compared to testing data tells us that MaxiMask
is not in the overfitting regime.

As a sanity check, we can test MaxiMask on non astronomical images (Fig. 5.40). We can
observe that MaxiMask’s output is consistent with the input, and that no unexpected pattern
pops out. For instance, it “properly” identifies the cat’s whiskers as cosmic rays and the darker
areas of the image as dead pixels. The results are of course not optimal as the image does not
have the same dynamic range as the astronomical image.
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Figure 5.40: Example of MaxiMask inference with default priors and thresholds on a non-
astronomical image.

Robustness regarding the context

In the training and testing sets, apart from some contaminants (section 5.4.2), all images contain
all contaminants. Thus, we may wonder if MaxiMask is not conditioned to work only in this
context. In order to verify that it is not the case, we generate a specific testing set of 1, 000 images,
where each image contains a single type of contaminant, and check the results. Saturated pixels
and background classes are evaluated with the same testing set. The corresponding AUC for
each individual testing set is reported in Table 5.6. In all the classes except residual fringing
patterns and nebulosities, the AUC is slightly higher when it is measured in the contaminant
specific testing sets, but we can confirm that MaxiMask is not conditioned to the specific
training images context. The slight improvement may be due to the fact that there are less
ambiguous cases in the contaminant specific testing sets. The corresponding ROC curves are
shown in Appendix B.4.

Class All contaminant Single contaminant
set AUC set AUC

CR 0.96927 0.98314
HCL 0.99763 0.99957
DCL 0.99872 0.99976
HP 0.99741 0.99965
DP 0.99739 0.99975
P 0.99352 0.99951

TRL 0.99511 0.99813
FR 0.98057 0.93326
NEB 0.97895 0.84575
SAT 0.99965 0.99974
SP 0.96125 0.98061
OV 0.99997 1.00000
BBG 0.98484 0.99165
BG 0.96895 0.98371

Table 5.6: AUC of each class depending on the testing set context.
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Comparison with LACosmic

In order to assess the cosmic-ray detection performance of MaxiMask, we can compare it to the
state-of-the-art cosmic-ray detector LACosmic (van Dokkum, 2001; McCully and Tewes, 2019).

We compare both methods using two testing sets, each with a different pixel sampling regime.
The first one is made of 1, 000 images that are well sampled, i.e., with a minimal FWHM
of 2.5 pixels, while the second one is made of images that are critically sampled, i.e., with a
maximal FWHM of 2.5 pixels. We run LACosmic with default parameters and dilate its output
binary masks to match the behavior of MaxiMask on cosmic-ray flagging. The performance
of LACosmic along with the MaxiMask ROC curve are plotted in Fig. 5.41. We find that
MaxiMask exhibit slightly higher performance in both regimes.
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Figure 5.41: MaxiMask cosmic-ray detection performance comparison with LACosmic. Image
credit: Paillassa et al. (2020).

Qualitative results on real data

The purpose of these tests is to illustrate how MaxiMask behaves on a representative set of
archive and simulated image data.

DECam DECam is the archetypal wide-field, ground-based imaging instrument. Results on
selected images are shown in Fig. 5.42 and Fig. 5.43, the latter showing the whole DECam mosaic
with a train of satellites from the Starlink constellation. Satellite constellations are expected to
increasingly affect ground-based imaging in the coming years.

HST ACS HST ACS (Advanced Camera for Surveys) exposures are rather different from the
ground-based images that MaxiMask was trained on, and particularly challenging because of the
undersampling and the huge amount of cosmic ray tracks. Still, as Fig. 5.44 shows, MaxiMask
has no trouble making the difference between small stars and point-like cosmic rays.
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Euclid VIS: Finally, we run MaxiMask on simulated Euclid SC4 images (Zoubian et al.,
2014). Examples are shown in Fig. 5.45. Present Euclid simulations mainly contain cosmic rays
along with ground-truth masks so that we can compute a ROC curve.

Figure 5.42: Example of MaxiMask predictions on a DECam image.
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Figure 5.43: Example of MaxiMask trail prediction on the DECam mosaic contaminated by
the Starlink satellites. Image credit: CTIO/AURA/DELVE (PI: Alex Drlica-Wagner).
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Figure 5.44: Two examples of MaxiMask predictions on HST images. From left to right: input
image, MaxiMask predictions, HST pipeline processed input image.
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Figure 5.45: Top: qualitative example of MaxiMask cosmic-ray detection on a simulated Euclid
image. From left to right: the simulated ground-truth cosmic-ray mask, the input image, the
MaxiMask cosmic ray predictions. Bottom: a ROC curve computed on a whole field of 36 CCDs
of 4k×4k pixels. The simulated cosmic rays are perfectly sharp. As a result, most MaxiMask
false negatives correspond to perfectly point-like, vertical or horizontal cosmic ray instances.

5.6.2 MaxiTrack

Similarly to MaxiMask, we assess MaxiTrack’s performance using a testing set containing
5, 000 images. MaxiTrack’s ROC curve for detecting tracking errors performance is shown in
Fig. 5.46.
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Figure 5.46: MaxiTrack ROC curve. Image credit: Paillassa et al. (2020).

5.7 The MaxiMask and MaxiTrack software packages

The MaxiMask and MaxiTrack Python packages are available at https://www.github.com/
mpaillassa/MaxiMask. They were publicly released in July 2019. Both rely on the TensorFlow
(Abadi et al., 2016) and Astropy (Astropy Collaboration et al., 2013; Price-Whelan et al., 2018)
libraries. They can be readily applied to FITS images thanks to the provided compute graphs
and weight sets.

MaxiMask outputs the contaminant probability maps from FITS images. It can manage
various types of inputs such as multi-extension files and specific image extensions (HDUs). It
can also process all the files within a given directory or a given file list. Unless a specific image
extension is given, MaxiMask will try to process every HDU that seems to be an image, i.e.,
that contains 2D data. It will output a FITS file exhibiting the same HDU structure than the
input file. By default, MaxiMask outputs all contaminants, updates the priors, and applies a
default probability threshold to create one binary mask per contaminant. Thanks to command
line arguments and simple configuration files, the user can request specific classes, change the
expected priors and/or the probability thresholds. One may also disable the prior modification
and/or the thresholding. Finally, an option can be set to request a single output map using
a binary code for each contaminant. Such a map can easily be used as a flag map for, e.g.,
SExtractor. All the options and configuration parameters are stored in the output header.
The code can work both with CPUs or GPUs, although the CPU version is generally much
slower: MaxiMask processes about 1.2 megapixel per second with an NVidia Titan X GPU,
and about 60 times less on a 2.7GHz Intel i7 dual-core CPU. Yet further optimizations could
probably be done to improve the processing efficiency of both the CPU and GPU versions.

Even if MaxiMask is fully convolutional and could run on images of arbitrary sizes, it has
been noticed that predictions are not exactly the same depending on the input image size. While
the difference is negligible, it is not perfectly clear why it happens and it is preferable to use
MaxiMask on sub-images with 400× 400 pixels, which is the size of the training images. This

https://www.github.com/mpaillassa/MaxiMask
https://www.github.com/mpaillassa/MaxiMask
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is why internally, the field images are divided in blocks of 400× 400 pixels. Inference is made on
each of these blocks, which are then stitched together again for generating the whole prediction
maps. In order to avoid some boundary artifacts, we decide to space the 400 × 400 blocks by
200 pixels and to keep only the inner predictions in each block.

MaxiTrack can be used in the same way as MaxiMask, in the sense that it accepts multi-
extension files, specific image extensions, a directory or a file list as input. Yet, it does not output
prediction maps but simply a text file that contains the probability that the input image(s) are
affected by tracking errors. Priors can also be modified. MaxiTrack also runs inferences on
blocks of 400× 400 pixels internally. The resulting tracking-error probability for a whole field is
then the mean of all the block predictions. This increases the robustness of MaxiTrack as few
errors on some image blocks may not impact dramatically the final result. MaxiTrack runs
at 60 megapixels/s with an NVidia Titan X GPU and is 9 times slower on a 2.7GHz Intel i7
dual-core CPU. In order to use it even faster, the user can specify a smaller number of HDUs
to compute the tracking error probability. In this case, MaxiTrack will randomly pick the
requested number of HDUs to make its prediction.

5.8 Conclusion and perspectives

We have developed MaxiMask and MaxiTrack, two fully convolutional neural networks that
automatically identify a wide range of contaminants by scanning astronomical images. Maxi-
Mask and MaxiTrack were trained using a custom-built data set from a large collection of
ground-based images. To train MaxiMask, we developed a solution to mitigate the problem of
class imbalance in the context of semantic segmentation. Thanks to the probabilistic outputs of
MaxiMask and MaxiTrack, one can set appropriate priors and thresholds to target specific
true and false positive rates depending on scientific requirements. To our knowledge this is the
first time that such a generic approach is taken to tackle this problem. We have shown that
MaxiMask and Maxitrack perform as well and even better than previous state-of-the-art de-
fect detectors, while requiring no or little tuning. Both codes are already running in production
on exposures from the COSMIC-DANCE survey (tens of thousands of exposures so far) and
MaxiMask is currently being tested by the Dark Energy Survey data management team for the
identification of satellite trails.

A valuable extension to MaxiMask would be an inpainting module for correcting the pixels
affected by contaminants, instead of just flagging them.

However, MaxiMask still misses several important contaminants. In particular, we plan to
include bright star halos, optical ghosts, as well as reflections and scattered lights in a future
version. This type of contaminant is particularly harmful, especially in wide-field cameras such
as HSC (Fig. 5.10), but preparing ground truths for such contaminants will be challenging. Other
defects not yet flagged by MaxiMask include crosstalks (Figs. 5.4 and 5.5), and saturation pat-
terns in infrared cameras (Fig. 5.2). Crosstalks create transient patterns in images, which may
interfere with searches for astrophysical transients such as supernovae or counterparts to gravita-
tional wave events. They also affect high precision astrometric and photometric measurements.
These contaminants should in principle be easily added to MaxiMask provided that a training
set is available.

MaxiMask seems to perform well right out of the box on exposures from spaced-based
instruments, although performance is probably degraded due to data mismatch. Use for produc-
tion with, e.g., Euclid data would require re-training with image simulations containing defects
specific to the mission. However, this should not require a huge amount of work, as ground
truths will readily be available.

Finally, as far as our project is concerned, the main benefits from this work are not Maxi-
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Mask and MaxiTrack themselves, but the training set, the neural network architectures, and
the training procedures that we will partly reuse in the next chapter.



Chapter 6

Source detection

In Chapter 3, we saw that the matched filter is the optimal linear filter for detecting isolated
sources of known profiles in the background noise limited regime. Currently, it is the most widely
used method for source detection in image analysis pipelines. Unfortunately, as we also saw in
3, the matched filter approach becomes inefficient for sources with varying shapes or scales, or
when images are contaminated or crowded.

After having addressed the question of contaminants in Chapter 5, I will now focus on the
issue of source deblending and detection. Compared to MaxiMask and other generic semantic
segmentation methods which do not distinguish between individual objects of the same class, we
now have the additional requirement that the source detector must be “instance-aware”, i.e., it
must be able to detect and isolate each source individually.

However, it must also be able to deblend and recover overlapping sources, which makes the
design of the source detector more complicated than that of conventional instance-aware segmen-
tation CNNs (a similar problem occasionally dealt with in natural scenes is object occlusion).

In this chapter, I first explore several approaches, starting with a simple identification of
centroids. I review existing techniques based on instance-aware semantic segmentation and
examine their relevance in the context of the detection of astronomical sources. I then present
our solution for multiscale object detection and deblending, and outline the architecture of a
prototype CNN in details. After describing the construction of the training data set, I assess
the performance of the prototype in different observation regimes, comparing the results with
those obtained from a conventional source extraction package. Finally, I conclude this chapter
by pointing out some limitations of the current prototype and discussing future developments.

6.1 Detecting source centroids

This project finds its origin in a 2016 internship (Paillassa and Bertin, 2019). At the time,
we circumvented the instance-aware requirement by identifying sources by their centroids, via
semantic segmentation. Indeed, each source can be individually identified by its centroid and
any source blend can be disentangled as long as the blended source centroids remain distincts.
Despite the simplistic CNN architecture and training data sets that were just simulations of
stellar fields, we showed that a unique CNN could outperform SExtractor on all test images.

Taking back this approach with a more complex CNN and training set, we found that we
could achieve very good detection performance for point-like sources even in crowded fields. In
particular, applying loss sampling to address the strong imbalance between centroid and non-
centroid pixels was found to work well. However, we could not find any suitable configuration to
produce satisfactory results with extended sources. This is because the centroid is not the best
feature for characterizing extended sources. More generally, a single point does not characterize
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well extended sources since they do not represent a particular intensity peak, nor any particular
feature down to the pixel level.

In addition, using source centroids poses other problems. Since the source centroid is defined
by the barycenter of the source pixels, it may not fall perfectly on a given pixel and a rounding
must be done to assign it to a given pixel. This strongly non-linear behavior can certainly be
learnt by a CNN but it is not using its capacity to good effect. Furthermore, a small error in the
position of the centroid prediction would have a big impact on the CNN cost function, while a
precision down to the pixel is not required for detecting an extended source. These issues quickly
had us move away from this approach and turn to more classical instance-aware object detection
techniques.

6.2 Deep learning methods for instance aware object detection

With the advancement of deep learning, instance-aware object detection and segmentation has
become a very active and profuse area of research. In the following, I present the most iconic
approaches for instance-aware object detection and discuss their potential application to source
detection. I divide the approaches in three categories: two-stage detectors, one-stage detectors
and other approaches.

6.2.1 Two-stage detectors

Many approaches for instance-aware object detection are based on two-stage detectors. One of
the most representative two-stage detector is Faster R-CNN (Ren et al., 2015), which is an
improvement of Fast R-CNN (Girshick, 2015) and R-CNN (Girshick et al., 2014). It works in
two steps. The first step uses a CNN known as Region Proposal Network (RPN), which produces
object region proposals in the form of bounding boxes. The positions of the bounding boxes are
predicted by a fully convolution neural network, via regression. In a second step the proposals
are classified by another CNN that shares feature maps with the RPN. Before being fetched
into the classification CNN, bounding-box proposals are resized to a fixed size via the Region of
Interest pooling layer (RoI pooling). Note that a proposal may be rejected in the second step.
An illustration of the Faster R-CNN architecture is shown in Fig. 6.1.

Faster R-CNN has also been extended to Mask R-CNN (He et al., 2017) to perform
instance-aware object segmentation by simply adding a segmentation CNN in parallel with the
classification CNN of the second stage.

These types of approaches build upon previous work in the literature concerning object
detection via bounding boxes. However, bounding boxes are not very suitable to characterize
astronomical objects, as the latter do not have clear boundaries or can be made of multiple
components. In addition, the RPN introduces several limitations. First, it tends to produce
many close proposals for the same object. In order to eliminate spurious proposals, the non-
maximum suppression procedure is applied (Canny, 1986). Based on a matching criterion with
predefined bounding boxes called anchors, it consists in ignoring the majority of proposals to
retain only one per object. This procedure is not suitable for deblending because it cannot really
distinguish if two close proposals relate to a single object or to different objects. Second, the
RPN is constrained to search for object bounding boxes that correpond to predefined bounding
boxes (the anchors). Even if one can predefine anchors of different shapes and scales, it is still
a limitation as their number needs to be limited. In addition to that, the RoI pooling layer can
introduce quantization of the feature maps and limit segmentation capabilities. Even though
the operation has been improved as RoI Align in Mask R-CNN (He et al., 2017), bilinear
interpolation is used instead which is far from optimal for achieving precise object segmentation.
Therefore, these techniques do not seem very suitable for our source detection problem.
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Figure 6.1: Faster R-CNN (Ren et al., 2015) architecture. Image credit: Ren et al. (2015).

6.2.2 One-stage detectors

The main other instance-aware object detection methods are one-stage detectors, such as YOLO
(You Only Look Once, Redmon et al., 2016). The principle of YOLO is to avoid the two-step
approaches from section 6.2.1 by detecting and classifying objects simultaneously. To do so, it
divides the input image into blocks. In each block, bounding-box proposals are predicted in the
same way as an RPN. At the same time, each block is also assigned an object class. This makes
it possible to match the classes with the bounding boxes by their location. An illustration of
YOLO is shown in Fig. 6.2.

Figure 6.2: YOLO (Redmon et al., 2016) architecture. Image credit: Redmon et al. (2016).

Note that YOLO has been improved as YOLO9000, a.k.a YOLOv2 (Redmon and Farhadi,
2017), YOLOv3 (Redmon and Farhadi, 2018) and even more recently YOLOv4 (Bochkovskiy
et al., 2020). Since YOLO9000, it also uses box anchors.

The advantages of YOLO are that it is fast and it can use the image context in a better way
than Faster R-CNN because all the object-prediction procedure is obtained from the whole
image. However, it can only predict a limited number of objects in each block and it is bad
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at detecting small objects, which are two important drawbacks in the context of point-source
detection.

6.2.3 Other approaches

Besides the two main instance-aware object detection techniques above, alternative methods
exist, in particular methods that do not use bounding boxes.

Recurrent instance segmentation

A potentially interesting instance-aware object detection method is to use recurrent neural net-
works to segment objects one by one (Romera-Paredes and Torr, 2016). Recurrent neurons
exhibit two properties that are used in recurrent instance segmentation. First, they can handle
sequential inputs and outputs. Second, they use a memory state to store features encountered in
the input sequence. In the recurrent instance segmentation method, feature maps are extracted
from the input image using a CNN and are fed to recurrent neurons. The recurrent neurons then
predict one object at a time as well as a score indicating whether there are still objects left in
the image. These can loop an arbitrary number of times to sequentially detect all objects in the
image.

However, this behavior imply some complications in the loss function. Indeed, as objects are
predicted in an arbitrary order, it is necessary to know to which ground truth object corresponds
a given predicted object. When having N predicted objects and M ground truth objects, the
question to be answered is: given a measure of cost between a pair of predicted and ground-
truth objects, how to match the predicted and ground-truth objects so that the global cost is
minimized ? This problem is an assignment problem, that can be solved via the Hungarian
algorithm (Kuhn, 1955). It is used in the recurrent instance segmentation approach.

Even if this approach is original, it is quite complex and it can be very slow because the
processing time depends directly on the number of objects in the image.

Objects as points

Another possible approach to avoid bounding boxes consists in modeling objects as points (Zhou
et al., 2019). An object is defined by its center and other properties such as the size or orientation.
The latter are regressed from the features near the detected center. Object centers are predicted
via keypoint estimation, a widely used technique in, e.g., human pose estimation techniques. The
ground truth to train the CNN consists of a heatmap made of Gaussians at the center of each
location. During inference, peaks in the heatmap are considered as object centers. Regression
maps of the same size than the keypoint heatmap are used to predict the object properties.

One limitation of a direct application of this approach to source detection is that objects are
detected in feature maps at a lower spatial resolution than the initial input image spatial resolu-
tion. This greatly limits the number of objects that can be detected and requires additional offset
regression to recover the exact position of the detected objects in the initial spatial resolution.
Also, regressing the object properties in a map at the same resolution as the heatmaps does not
seem optimal as only few values corresponding to the detected peaks are of interest. Finally, the
ground truth keypoints can overlap so there may be ambiguities to separate objects. Detecting
peaks in the heatmap is equivalent to non maximum suppression and must to be finely tuned.

Deep coloring

Deep coloring (Kulikov et al., 2018) may be the most promising method to segment and deblend
sources directly. In this approach, objects are segmented in different colors, i.e., in different
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output maps or classes. By using a color assignment criterion based on the proximity of objects,
close objects are constrained to be identified in different colors.

More precisely, let’s assume we have N objects in an image, each having its segmentation
mask M (k). Another mask M (k)

halo is defined as:

M
(k)
halo = dilation(M (k))−M (k). (6.1)

M
(k)
halo represents a more or less the close neighborhood of object k, that is to say pixels that, if

they belong to another object, should be identified in another color.
Assuming that there are C colors, the CNN predicts C + 1 maps: C colors where objects are

flagged and one for the background. Let’s call y the prediction, y(c, p) designing the prediction
of pixel p of color c. The background prediction is the last map: C + 1.

During training, in order to compute the loss of each object k, the color ck is found using the
following color criterion:

ck = arg C
max
c

1

|M (k)|
∑

p∈M(k)

log(y(c, p)) + µ
1

|M (k)
halo|

∑
p∈M(k)

halo

log(1− y(c, p)). (6.2)

In other words, the criterion favors the coloring of neighboring objects in a different color.
Then, the cost function of the network is simply:

L(x, θ) = −
N∑
k

1

|M (k)|
∑

p∈M(k)

log(y(ck, p))−
∑
p∈back

log(y(C + 1, p)), (6.3)

which is the softmax cross entropy where the cost of each object is dynamically computed over
its color map defined by the criterion of Eq. 6.2.

The main obstacle to adapting this approach to source detection is that the softmax activation
function requires that pixels be assigned a single object. Therefore, in the present state it is
impossible to manage blends where pixels must belong to several objects simultaneously.

To circumvent this, one could use a sigmoid activation function so that a given pixel could
belong to several objects and different colors. However, sigmoid activations pose a problem
because all colors become independent and it is possible for the network to flag all the objects
in all colors.

We are looking into an adaptation of the loss function to sigmoid activations by adding a
term requiring that when an object is identified in a given color, it should not be identified
in any other colors (except for the pixels that belong several objects). Yet, we haven’t found
any configuration or weighting between the different cost function terms leading to satisfactory
results. It seems that when the dependency of each color is broken, the CNN cannot converge to
a good solution. It is possible that further experiments will make this method work for source
detection but for the time being we will take another direction.

6.3 Deep learning applications to the detection of astronomical
sources

Despite the fact that we have not yet found any suitable approach directly applicable to source
detection, there have been some deep learning experiments in the field, whether or not following
the aforementioned approaches.

Some of the techniques described above have been directly applied to source detection. For
instance, González et al. (2018) detect and classify galaxies with YOLO (Redmon et al., 2016),
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Burke et al. (2019) apply Mask R-CNN (He et al., 2017) to source detection and segmentation,
and Jia et al. (2020) use Faster R-CNN (Ren et al., 2015) to detect point-like and streak-like
sources. However, in addition to having the shortcomings already mentioned, these solutions
were all designed to work with specific data. Moreover, González et al. (2018) are limited to
galaxies while Jia et al. (2020) are limited to point-like and streak-like sources. Therefore, none
of these applications meet our requirement to design a universal detector.

Another method (Hausen and Robertson, 2020) uses semantic segmentation to classify pixels
depending on the morphological type, such as spheroid, disk, irregular, point-like source and
background. Yet, the background segmentation map is post-processed with watershed trans-
forms to segment and deblend objects, so that the approach falls back to the empirical methods
described in Chapter 3. Other types of approaches solely use semantic segmentation to identify
sources by their centroid, similarly to our experiments mentioned earlier (Paillassa and Bertin,
2019). They are effective at detecting point-sources and have been particularly used with radio
images (Vafaei Sadr et al., 2019; Lukic et al., 2019).

Deep learning techniques have also been leveraged to specifically tackle deblending. However,
as already discussed in Section 3.1.5, there are two levels of deblending: the detection level
(detecting sources in crowded regions) and the measurement level (correcting measurements for
the presence of close neighbors). Although we are interested in deblending at the detection
level, all the existing deep learning approaches so far have been dealing with deblending at the
measurement level.

For example, Lanusse et al. (2019) deblend with autoregressive models (Oord et al., 2016;
Salimans et al., 2017; Chen et al., 2018). The method is designed to make use of prior knowledge,
which does not match our requirements in this work. Using more classical semantic segmentation
methods, Boucaud et al. (2020) segment and measure the photometry of pairs of blended galaxies.
Even more recently, Arcelin et al. (2020) use variational auto-encoders (Kingma and Welling,
2013) to recover the individual images of the brightest source from a blended image.

To conclude this overview of existing instance-aware detection techniques, it seems that none
at this stage fits perfectly our requirements, namely to be versatile and robust to contaminants,
while being able to deblend close or overlapping sources at the same time.

6.4 Our solution

6.4.1 A multiscale approach

The basic principle of our approach to detection/deblending is to identify each source by a single
component footprint that is small enough to be separated from other close source footprints by
connected component labeling (Rosenfeld and Pfaltz, 1966).

In complement to this procedure for isolating sources, we set up a multiscale detector: sources
of different scales are identified in different output maps. While this complicates the building of
training samples because sources are assigned different scales, this provides a natural deblending
scheme for overlapping objects with dissimilar sizes. For instance, a point-source located in the
wings of an extended source can be naturally deblended as both are identified in different output
maps.

The core of our algorithm resides in the definition of the source footprints and in the source
scale affectation procedure.

6.4.2 Source footprints

A source footprint can be defined in different ways. The main difficulty is in defining footprints
that remain meaningful enough to the CNN so that even the most peculiar sources such as
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asymmetric multi-component or non-convex sources can be detected.
We identify two relevant and easy ways to define footprints:

• Retaining the brightest pixels forming some percentage pF of the total flux F of the source.

• Retaining the pixels brighter than some fraction fIM of the maximum pixel intensity IM
of the source.

In both cases the footprint is guaranteed to overlap bright regions of the object. This would
not be the case if, e.g., the footprint was defined by pixels around the source centroid, or by a
rescaling of a larger footprint, because of a possibly non-convex object shape.

Footprint area (defined by the number of footprint pixels) is critical, and can be adjusted
using pF and fIM . Smaller footprints improve the deblending capabilities of the CNN. However
they make the recovery of the most diffuse sources harder, and they increase the relative cost
of footprint errors on the CNN loss function. Conversely, for larger footprints the CNN is less
affected by small positional errors but deblending capabilities are reduced.

We also note that favoring too much deblending with really small footprints may induce a
strong prior on the source shapes, which is not ideal in the optic of designing a universal detector.
For instance, two close circular extended sources can appear as a single source with an elliptical
shape in an image. In this case, it can be difficult to decide if there are two close circular sources
or a single elliptical source. We thus may wonder if the detector should predict it as a single
source or two sources and we can intentionally favor one behavior by tuning the sizes of the
ground truth footprints.

If the source footprints overlap, we may use smaller footprints so that they become distinct by
connected component labeling, the risk being that the detector may overdeblend other elliptical
looking sources that should not be. After experimenting with various footprint areas, we find
that footprints defined by pF = 25% represent a good trade-off. We also find that dilating the
footprints of the two first scales give better performance as it mitigates imbalance issues.

6.4.3 Source scale assignment

Within our multiscale framework, each source must be assigned a particular scale. We have
experimented with different assignment procedures based on the area of the source footprints.
One could think of sorting all sources by footprint area and making one group for each of the three
scales, each containing an identical number of sources. However this relies on the distribution
of source sizes, which in practice is extremely field- and instrument-dependent. We eventually
opted for an arbitrary criterion based on dyadic scales in footprint size (prior to dilation). We
first define a maximum footprint area of 9 pixels for the first scale: sources which footprint
contain less than 9 pixels are assigned to that scale. The following footprint limits are obtained
by multiplying the maximum area of the previous scale by 4. Sources with footprints containing
less than 36 pixels are thus assigned to the second scale while the third scale includes sources
with footprints having more than 36 pixels and so on. Example of footprint ground truths are
shown in Fig. 6.8.

6.4.4 CNN architecture

The CNN detector architecture is a classical semantic segmentation architecture (Ronneberger
et al., 2015; Badrinarayanan et al., 2017), as described in Section 5.3.1. The first part of the CNN
is made of convolutional and pooling layers. The second part of the CNN is made of unpooling
and convolutional layers to recover the initial spatial resolution and make pixel-wise predictions.
We follow the unpooling procedure which consists of using the max-pooling indices of the first
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part of the network to upsample the feature maps (Badrinarayanan et al., 2017). We also use
skip connections between the two parts of the CNN: we add the feature maps of the first part of
the CNN at the same spatial resolution in the second part of the CNN. The hyperparameters of
the network are based on the VGG architecture (Simonyan and Zisserman, 2014). The detailed
architecture of the CNN is shown in Fig. 6.3 and described in Table 6.1.

Convolution + ReLU

Max pooling

Unpooling

Splitting Softmax

Convolution

Max pooling indices
Input image Multi-scale source footprints

Figure 6.3: CNN architecture of the multiscale source detector.

Layer Size
Input 400x400x1
Conv 400x400x32

Maxpool 200x200x32
Conv 200x200x64

Maxpool 100x100x64
Conv 100x100x128

Maxpool 50x50x128
Conv 50x50x128

Maxpool 25x25x128
Conv 25x25x128

Maxpool 13x13x128
Conv 13x13x128
Unpool 25x25x128
Conv 25x25x128
Unpool 50x50x128
Conv 50x50x128
Unpool 100x100x128
Conv 100x100x64
Unpool 200x200x64
Conv 200x200x32
Unpool 400x400x32
Conv 400x400x6

Table 6.1: Description of the CNN source detector architecture along with feature-map dimen-
sions. All convolution kernels are 3× 3 and max-pooling kernels are 2× 2.
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6.5 Image simulations

Our training and testing data sets consist of images simulated from scratch using noise-free
images of isolated sources. The absence of noise makes it possible to generate the ground truth
of an arbitrary footprint for every individual source. Noise and contaminants are added later to
generate realistic astronomical images. In summary, our image simulation process contains the
following steps:

• Adding the noise-free images of isolated sources in a single image.

• Simulating and adding a sky background flux.

• Making the Poisson noise realization.

• Applying a gain transformation.

• Adding Gaussian readout noise.

• Adding possible contaminants.

Fig. 6.4 illustrates the image simulation pipeline. Simulated image parameters are listed in
Table. 6.2.

Noise-free
image 

of source 1

Noise-free
image

of source N

Noise-free
image

of source i

Noise-free
source image

Empty
image

Noise-free
background

image

Poisson noise
Gain

Readout noise

Noise-free
image

Uncontaminated
final image

Contaminants

Final
image

Figure 6.4: Schematic diagram of the image simulation pipeline.

Parameter Range of values
Gain U(0.1, 10) e−/ADU

Readout noise N (0, 5) in e−

Magnitude zero point 30
Pixel size U(0.2, 0.4) arcseconds

Seeing FWHM U(0.2, 1.5)

Background magnitude 20 mag/arcsec2, ±10%

Star magnitude U(17, 26) or U(12, 17) with 1% chance
Galaxy magnitude U(17, 22)

Spider arm number 4 or 6

Spider arm angle U(0, 90) or U(0, 60) degrees
Spider arm thickness U(3, 7) millimeters

Table 6.2: Description of the image simulation parameters.

6.5.1 Noise-free images of isolated sources

The core of our simulations is based on noise-free images of isolated sources.



Chapter 6. Source detection 119

Stars

We simulate noise-free images of isolated stars with SkyMaker (Bertin, 2009).
In order to scale the image to a proper flux, a random magnitude m is picked in the range

[17, 26] (uniform distribution) for 99% of the sources. The faint limit has been chosen empirically
so that a small but significant fraction of the stars remain virtually undetectable. For the
remaining 1%, the magnitude is picked over the magnitude interval [12, 17] (“bright stars”). The
corresponding total flux F of the star is then computed as:

F = 100.4(z−m), (6.4)

where z is the zero point, set to 30 (which represents the typical zero-point for a unit gain
detector on a professional telescope). The noise-free image I(s) is finally:

I(s) =
F∑

p I
(sky)
p

I(sky), (6.5)

where I(sky) is the noise-free image simulated by SkyMaker and I(sky)[p] denotes the pixel p
of the set of pixels P of the image I(sky). Examples of resulting noise-free images are shown in
Fig. 6.5.

Figure 6.5: Examples of noise-free star images.

Galaxies

As we mentioned in the introduction, contrary to stars galaxies appear in a variety of shapes
and sizes in astronomical images. Although analytical models exist (e.g., Sersic profiles (Sérsic,
1963)) that provide good fits to the observed light distributions of galaxies, they are far too
basic to provide a good match to the images of real objects, unless they are so distant that they
appear barely resolved.

There exist several compilations of real galaxy images. For instance, the EFIGI data set
(Baillard et al., 2011) or the CANDELS data set (Dimauro et al., 2018), from which Boucaud
et al. (2020) made a selection of 2, 000 galaxies. GalSim (Rowe et al., 2015) is a software package
which can be used with galaxy image thumbnails from HST observations (Mandelbaum et al.,
2018) to simulate new galaxy images, as if observed with another instrument. Unfortunately,
none of the solutions above offers realistic, noise-free images of isolated galaxies.

For this work we eventually chose to work with a set of 146, 000 rasterized galaxy images
coming from a snapshot at redshift z = 0.5 of a large n-body simulation (Horizon-AGN), kindly
provided by Clotilde Laigle (IAP). This approach obviously has its own shortcomings. Specifi-
cally, current numerical simulations do not capture all the features found in the images of real
galaxies, and the lower mass objects have a particulated aspect when viewed at high resolution.
However, this represents an improvement over basic profiles at intermediate image resolutions.
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Another strategy would be to simulate noise-free images of isolated galaxies with deep gen-
erative models (Lanusse et al., 2020), but this is not an option we have yet had the time to
investigate.

The galaxy image simulation procedure is as follows. We convolve the high resolution galaxy
images with the same PSF as the one used for stars. We then rescale the images to the simulated
image pixel grid using Lanczos resampling. Beyond this point, the processing becomes very
similar to that of stars, i.e., a magnitude m is picked in the range [17, 22], the total flux F of the
galaxy is computed as in Eq.6.4 and the final noise-free image I(g) is:

I(g) =
F∑

p∈P
I(gal)[p]

I(gal), (6.6)

where I(gal) is the isolated noise-free image obtained after rescaling and convolution with the
PSF and I(gal)[p] denotes the pixel p of the set of pixels P of the image I(gal). As with stars,
the faint limit has been chosen empirically so that a small but significant fraction of the galaxies
remain virtually undetectable. Examples of simulated images are shown in Fig. 6.6.

Figure 6.6: Examples of noise-free galaxy images.

For the sake of including low surface brightness objects, we also simulate another population
of more diffuse “galaxies”, by smoothing the raw galaxy images with a large Gaussian (15 pixel
standard deviation), and zooming the result 5× compared to “regular” galaxies. We empirically
limit the magnitude of such galaxies to 20 to avoid ending up with too large a number of
undetectable sources.

6.5.2 Final noise-free image

In order to simulate a whole image, the noise-free images of isolated sources are added in a single
image at random, independent and uniformly distributed positions. We simulate five types of
fields, depending on the number of stars Ns and galaxies Ng added in the image:

• Type 1: low density star and galaxy fields, i.e., (Ns, Ng) ∈ J1, 15K2.

• Type 2: average low density fields, i.e., Ns ∈ J20, 45K and Ng ∈ J1, 5K.

• Type 3: average high density, i.e., Ns ∈ J1, 5K and Ng ∈ J20, 45K.

• Type 4: crowded star fields, i.e., Ns ∈ J100, 150K and Ng = 0.

• Type 5: crowded galaxy fields, i.e., Ns = 0 and Ng ∈ J100, 150K.

The final noise-free image I(sources) is:

I(sources) =

Ns∑
n

I(s)
n +

Ng∑
n

I(g)
n , (6.7)
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where I(s)
n is the n-th noise-free star image and I(g)

n is the n-th noise-free galaxy image. An
example of a noise-free image is shown in Fig. 6.7.

6.5.3 Sky background flux

Once all the noise-free source images are added in a single image, a sky background corresponding
to a surface brightness of magnitude 20 per square arcsecond (typical of a red band image) is
added.

For 50% of the images we modulate the background by a random 3rd degree 2D-polynomial
envelope with a peak-to-peak amplitude of ±10%, to simulate background gradients.

6.5.4 Noise and gain

The final processes to make a realistic image first include the Poisson noise realization:

∀p ∈ P, I(photons)[p] = Pois(I(fluxes)[p]), (6.8)

where Pois(λ) is a Poisson realization of parameter λ.
Then, a gain transformation is applied:

I(ADU) =
1

G
I(photons), (6.9)

where G ∼ U(0.1, 10). Since the magnitude zero point is constant in ADUs, this gain transfor-
mation is equivalent to modulating the exposure time (putting aside the dynamic range).

Finally, Gaussian readout noise is added:

∀p ∈ P, I(f)[p] = I(ADU)[p] +R, (6.10)

where R ∼ N (0, 5) in e−. An xample of final image is shown in Fig. 6.7.

Figure 6.7: Left: noise-free source image. Right: the final image once sky background and noise
are added.
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6.5.5 Adding contaminants

We add a subset of contaminants to 75% of the images, so that the detector is trained to trigger
only on sources that look like astronomical objects. The contaminants are:

• Bad pixels: hot and dead pixels as in the MaxiMask data set.

• Trails: as in the MaxiMask data set.

• Residual fringing patterns: as in the MaxiMask data set

• Nebulosity patterns: as in the MaxiMask data set.

• Saturation (bleed trails): each image is given a 50% chance to present saturation features,
using a limited well capacity randomly selected in the range [16000, 32000] e−.. The noise-
free image is simulated without saturation so that the source ground truth lacks the bleed
trail.

Each of the contaminants above has a 50% chance to be present in a contaminated image,
except for fringes and nebulosities that are mutually exclusive.

Fig. 6.8 shows examples of final images along with their ground-truth source footprints. We
use a similar ground-truth representation than for MaxiMask where each scale is assigned a
color: red, green, blue from the smaller to the larger. Pixels belonging to several footprints
having different scales are shown with the smaller scale footprint color so that we can see the
smaller objects above the larger ones.

6.5.6 Training

The CNN loss function is the sum of the softmax cross entropies of all scales. It is optimized
with Adam (Kingma and Ba, 2014) and implemented in Python, using the TensorFlow library
(Abadi et al., 2016). The CNN is trained for 32 epochs with 50, 000 images using a batch size of
32 (as large as possible on our GPUs). Images are dynamically compressed using the procedure
introduced in Section 5.4.2. We comparing the performance on the training and testing sets, and
obtain very similar numbers, which suggests that the CNN is not overfitting.

Examples of qualitative results obtained on the testing set after training are shown in Fig. 6.9.
Prediction maps are built by thresholding the probability maps according to the best MC coef-
ficient computed at the pixel level on test data.
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Figure 6.8: Examples of final training samples. Left: input images. Right: multiscale ground-
truth footprints. Each scale is associated a color: red, green and blue from the lower to the
higher scale. Pixels belonging to several footprints at different scales are shown with the color
of the lower scale.
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Figure 6.9: Examples of qualitative source detection results. From left to right: ground truth,
input image, predictions. Color coding for the footprints is identical to that of Fig. 6.8.

Figure 6.10: Two examples showing the main failures of SExtractor when used with default
settings. SExtractor triggers false detections on contaminants and cannot detect the faintest
diffuse sources. From left to right: SExtractor detections at 1.5σ with a 5×5 Gaussian filter,
input image, CNN predictions.
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6.6 Results

6.6.1 Qualitative comparison with SExtractor

We first qualitatively compare the CNN predictions to catalogs obtained from the same test
images using the SExtractor source extraction software package (Bertin and Arnouts, 1996),
run with default settings.

Fig. 6.10 shows two of the main weaknesses of SExtractor compared to the CNN in this
context: it is likely to trigger false detection on contaminants and it tends to miss the faintest
diffuse sources. However, SExtractor usually performs correctly on uncontaminated images.

6.6.2 Quantitative comparison with SExtractor

We examine the detection performance of the CNN and SExtractor in more details with
quantitative measurements on a testing set containing 1, 000 images.

As the CNN detector performs semantic segmentation, i.e., pixel labeling, the most straight-
forward solution is to measure the performance at the pixel level. However, for more consistency
regarding source detection and the comparison with SExtractor we decide to measure perfor-
mance at the source level, using the same criterion for both detectors. Sources detected by the
CNN at a given threshold are identified via connected component labeling. At each scale, we
reject the connected components that are too small, using as minimum areas 1, 9 and 36 pixels
for the first 3 scales.

To assess the performance of both detectors at the object level, we count the number of
true positives TP, false positives FP, and false negatives FN based on the Euclidean distances
between the ground truth sources and the barycenters of the predicted footprints (for the CNN),
or the catalog coordinates (for SExtractor).

At every detection threshold, for every scale, we loop through all the predicted sources,
matching the predicted and the ground-truth sources at the same scale if their distance is less
than 3 pixels.

We then make a second pass through the data, this time by looping through every ground-
truth source, and count the TPs, FPs, and FNs according to the three following cases: (1) if the
ground-truth source matches one predicted source or more, one true positive is counted; (2) if
the ground-truth source does not match any predicted source, one false negative is counted; (3) if
during the first pass, a predicted source did not match any ground-truth source, one false positive
is counted. In the later case, we check if the predicted source possibly matches a ground-truth
source in an adjacent scale, in which case we consider it as a true positive.

From the TP, FP, and FN counts we derive the completeness (CP) and the contamination
rate (CT), defined as:

CP =
TP

TP + FN
, (6.11)

CT =
FP

TP + FP
. (6.12)

We compute CP and CT for different detection thresholds. For the CNN, the probability
thresholds are chosen in the interval [0.01, 0.99] every 0.01. For SExtractor, the thresholds are
levels above the sky background, quantified according to the sky-background standard deviation
σB computed by SExtractor. We use levels from 0.25σB to 10σB, regularly spaced of 0.25σB.

We compare the performance of the CNN and SExtractor in two different configurations.
In the first configuration, the testing set contains only uncontaminated images. In the second
configuration, the testing set contains 25% of uncontaminated images, and 75% of contaminated
images, like the training set. Results are shown in Fig. 6.11.
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Figure 6.11: CNN and SExtractor performance comparison. Left: completeness versus con-
tamination rate in the contaminated image regime. Right: completeness versus contamination
rate in the uncontaminated regime (see text).

In the uncontaminated image regime, the CNN exhibits a ≈ 30− 100% higher completeness
at a given contamination rate, compared to SExtractor. With contaminated images, the
CNN clearly shows a natural robustness compared to SExtractor by reaching 20× lower
contamination rates. In fact the CNN performance is very similar in the two regimes.

Since completeness measurements are affected by the presence of undetectable sources, we
also measure performance at multiple magnitude limits. To do this, we simply ignore sources
above the given magnitude limit in the TP and FN counts. The corresponding plots are shown
in Fig. 6.12.
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Figure 6.12: Comparison of the performance of the CNN and SExtractor at different limits
in magnitude. Left: completeness versus contamination rate in the contaminated image regime.
Right: completeness versus contamination rate in the uncontaminated image regime.

As expected the completeness of both detectors improves with brighter limits, although only
the CNN is able to achieve near 100% completeness.

6.6.3 Qualitative test on real data

Finally, we apply the source detector to a selection of real images: a DECam exposure (Fig. 6.13)
and images extracted from a much deeper r-band stack from the CFHTLS D1 field (Figs. 6.14 and
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6.15). Reassuringly, we find that the detector is able to detect most sources, without triggering
on trails. Some very large objects (the brightest star in Fig. 6.14 and the brightest galaxy in
Fig. 6.15) are not detected, most likely because objects so large are not part of the current
training set.

Figure 6.13: Example of a qualitative result of the CNN detector on a DECam exposure. Note
how the detector does not trigger on the trail.
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Figure 6.14: Example of a qualitative result of the CNN detector on a CFHTLS image (D1 field,
r channel). Note how the detector accurately detects sources around the bright star compared
to Fig. 1.1.
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Figure 6.15: Example of a qualitative result of the CNN detector on a CFHTLS image (D1 field,
r channel). Note the deblending capabilities of the detector compared to Fig. 1.1.
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6.7 Conclusion and perspectives

We have designed a fully convolutional neural network for generic and robust multiscale source
detection in astronomical images. The resulting detector performs semantic segmentation and
identifies sources by their footprint. Using sufficiently small footprints, sources can be individu-
ally identified via connected component labeling. The multiscale aspect of the detector makes it
possible to manage several object scales within the same neural network and to naturally deblend
sources having different scales. In order to train our detector, we built a large training set from
scratch. Starting from noise-free images of isolated sources, we were able to easily compute the
ground truth (footprint and effective scale) of each source, and simulate realistic images, some
of which are affected by contaminants. After training, we compared the CNN performance to a
classical source extraction algorithm (SExtractor) and found that the CNN performs signif-
icantly better, especially with contaminated images. Similar to MaxiMask and MaxiTrack,
the CNN assigns probabilities to every pixel, and one can adapt the prior probabilities to target
different image regimes and the thresholds to target specific completeness or contamination rates.
The source detector will be made available on GitHub1 and an article is in preparation.

Although the current prototype already seems to work well with real data and to perform
much better than existing algorithms, there is still room for several improvements. First of all,
the source footprint criterion remains very basic and could certainly be improved. For instance,
it has not yet been tested with large, “fluffy” galaxies, and is likely to generate splits in some of
these objects. The scale range will also have to be revisited and extended with larger objects
included in the training set.

Nevertheless the training set is certainly the main limitation of the current prototype. The
distributions of stars and galaxies, as well as the galaxy shapes, are unrealistic. The next
step for improving the detector and its usability for astronomical applications is therefore to
build more astrophysically-minded simulations. In particular, more realistic number counts, size
distribution of galaxies (e.g., Windhorst et al., 2008), and galaxy correlation functions would
provide the detector with more educated priors for identifying real blends. The same goes for
crowded star fields, globular clusters and star formation regions. This will require a fair amount
of collaborative work. Finally, the detector could easily be extended to manage multispectral
images. However, while multiple bands would provide additional information to the CNN, this
would also make the detector much more instrument dependent, and the training set would have
to be tuned accordingly.

1https://github.com/mpaillassa

https://github.com/mpaillassa
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Conclusion

In this thesis, we designed new algorithms to extract more reliable catalogs from astronomical
images. Taking advantage of deep learning and convolutional neural network techniques (LeCun
et al., 1995; Krizhevsky et al., 2012; Badrinarayanan et al., 2017), we developed state-of-the-art
models that can readily be applied to a broad range of optical and NIR wide-field images, in a
fully automated way.

This work was largely data driven, and is illustrative of a new approach to develop data
processing tools. Indeed, data-driven models mostly rely on carefully designed training data sets
and training procedures. Data sets must be large enough and representative of the task that
must be solved to provide generalization, i.e., the ability of the trained models to perform well
on new data. During the duration of the thesis, more than 50 TB of heterogeneous image data
were processed, either by custom data analysis programs or through training procedures.

Our first realizations, MaxiMask and MaxiTrack (Paillassa et al., 2020), are contaminant
detectors. MaxiMask and MaxiTrack allow for a large variety of image defects and exposures
to be flagged, and can be used in complement to traditional source detection algorithms or for
automated image quality control. For training MaxiMask and MaxiTrack CNNs, we built
realistic data sets covering a wide diversity of images retrieved from various instruments of the
COSMIC-DANCE survey, as well as image simulations.

Facing strong class imbalance issues with astronomical image pixels, we defined an empirical
cost weighting strategy and proposed a rescaling scheme of the detector outputs based on a
Bayesian approach. This approach allows different image regimes to be managed by simply
updating a set of priors, and appears to work well in practice.

Our analysis of MaxiMask inferences showed that it generalizes well on real data, including
data originating from instruments not used for training. MaxiMask and MaxiTrack are
publicly available for inference1.

We are aware that contaminants particularly harmful to wide-field images, such as optical
ghosts, reflections and scattered light are not yet taken into account by MaxiMask. Since they
are difficult to simulate or to isolate from images, building a training set requires a significant
amount of work, similar to what had to be done for diffraction spikes. This is an endeavor that
I am ready to undertake in the near future, as I will be working on HSC images as part of
my post-doctoral studies. Provided additional data is incorporated into the training set, other
serious contaminants such as crosstalks could also be taken into account by MaxiMask, while
performance on existing contaminants could be improved, especially for diffraction spikes.

Our second realization is a robust multiscale detector for astronomical sources. Our detector
is able to deal with various issues that hamper traditional source detection algorithms such as
extended, low surface brightness objects, source blending, and contamination by image defects.

1https://github.com/mpaillassa/MaxiMask

https://github.com/mpaillassa/MaxiMask
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The multiscale aspect of our approach allows the source detector to recover sources at different
scales in separate output maps. We assessed the performance of the new detector on test data
and found a ≈ 30− 100% higher completeness, and a 20× lower contamination rate compared
to a traditional source extraction algorithm (SExtractor). A paper is in preparation and the
CNN source detector will be available for inference on GitHub.

Work is also ongoing to implement it in the SourceXtractor++ source package (Bertin
et al., 2019b), which will be extensively used to analyze imaging data from a variety of sources
in the context of the Euclid mission. The output footprint maps of the CNN detector are similar
to the segmentation map produced by the current SourceXtractor++ detector so that they
can almost be used as a drop-in replacement, and will provide initial guesses for the source fitting
procedures.

Although the performance of the current CNN detector is already satisfying, there is room
for improvements at the data level. In particular, we are aware that our galaxy images and their
distribution are unrealistic, which necessarily impacts the behavior of the detector. More work
is clearly needed to include astrophysical models in the simulations. Additionally, and although
it is not our primary goal, specific training sets could also be built for targeted instruments
or scientific goals. Finally, we note that catalogs produced by a multiscale, highly robust and
adaptive detector such as ours potentially have a more complex selection function than, e.g.,
surface brightness or magnitude-limited catalogs produced by simpler algorithms. Simulated
image datasets will also be necessary at this level for deriving the selection functions and taking
full advantage of the new catalogs.
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Figure A.1: Top: the two versions of Inception blocks in GoogLeNet. Image credit: Szegedy
et al. (2015). Bottom: Resnet (He et al., 2016) and ResNeXt (Xie et al., 2017) residual blocks.
Image credit: https://missinglink.ai/guides/keras/.

https://missinglink.ai/guides/keras/
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Figure A.2: Overall representations of GoogLeNet (Szegedy et al., 2015), VGG-19 (Simonyan
and Zisserman, 2014) and ResNet (He et al., 2016) architectures. Images credits: Szegedy et al.
(2015) and He et al. (2016).
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Figure B.1: ROC curves: TPR vs FPR. The FPR axis in in logarithmic scale so that very
low FPR are best visualized. The ROC curve and the AUC are provided for each class. Images
credit: Paillassa et al. (2020).
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Figure B.2: Purity curves: TPR vs PUR. Images credit: Paillassa et al. (2020).
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Figure B.3: MC coefficient curves: MC coefficient vs Detection threshold. On each curve is
annotated the threshold for which the MC coefficient is the highest. These curves were computed
using the probabilities corrected from priors using empirical training priors. Images credit:
Paillassa et al. (2020).
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Figure B.4: ROC curves computed on the context robustness test sets from Section 5.6.1.



Appendix C

Introduction en français

Une grande partie de la science menée en Astrophysique dépend des catalogues de sources.
La plupart des sources astronomiques cataloguées à ce jour ont été détectées dans des images
grand champ prises dans les longueurs d’onde visible et proche infrarouge (PIR). La détection de
sources est donc une étape cruciale dans l’exploitation des données d’imagerie, en particulier dans
les grands relevés photométriques du ciel. Cependant, les performances de détection actuelles
en termes de fiabilité et de complétude sont désormais insuffisantes au regard des exigences
scientifiques des expériences en cours et à venir, comme par exemple, HSC (Aihara et al., 2018),
Euclid (Racca et al., 2016), ou le LSST (Ivezić et al., 2019). Un gain en performance est
nécessaire, en prenant en compte les contraintes de temps imposées par la grande quantité de
données à traiter.

Dans ce contexte, notre but est de concevoir un détecteur de source le plus universel pos-
sible pour les instruments grand champ dans les domaines optique et PIR. Par universel, nous
entendons qu’il doit être capable de fonctionner avec des images provenant de divers télescopes,
caméras et conditions d’observations, sans nécessiter de réglages importants. Nous visons également
à réaliser un détecteur robuste vis-à-vis des défauts ou imperfections pouvant affecter les images.

Ce projet a été initié dans le cadre de deux relevés en particulier : Cosmic-DANCe (Bouy
et al., 2017), pour Dynamical Analysis of Near Clusters, ci-après écrit COSMIC-DANCE, et
Euclid (Laureijs et al., 2012).

Le but principal du relevé COSMIC-DANCE est de retrouver la fonction de masse stellaire
initiale, c’est-à-dire la fonction décrivant le taux de formation des étoiles en fonction de leur
masse, en étudiant les amas ouverts jeunes et proches. COSMIC-DANCE se concentre en par-
ticulier sur les étoiles de faible masse, allant au-dessous de la limite de magnitude de la mission
Gaia (Gaia Collaboration et al., 2016). Cette population est mal connue en raison des taux élevés
de contamination et d’incomplétude dans ce régime d’observation. COSMIC-DANCE rassemble
des données d’imagerie grand champ d’amas ouverts proches et de régions de formation d’étoiles
à partir d’une large gamme d’observations au sol et d’archives de données. Ces données sont
utilisées pour compiler des catalogues d’étoiles incluant des mesures de mouvement propres,
c’est-à-dire le mouvement apparent des étoiles dans le ciel, et les probabilités d’appartenance
à l’amas, c’est-à-dire la probabilité qu’une étoile appartienne à l’amas en question. Il est donc
essentiel pour COSMIC-DANCE de disposer d’un outil de détection de source universel, capa-
ble de gérer la grande hétérogénéité des données à traiter. Des outils robustes et fiables sont
également nécessaires pour gérer la qualité d’image inconnue et variable des données extraites
des archives.

La mission Euclid utilisera un télescope spatial développé et exploité par l’ESA, embarquant
des caméras grand champ optiques et PIR. Euclid vise principalement à comprendre la nature de
la matière noire et de l’énergie noire en mesurant précisément l’expansion accélérée de l’Univers.
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La mesure du cisaillement gravitationnel en régime faible des galaxies (la faible distorsion des
formes des galaxies due à la déviation des rayons lumineux par des structures massives le long de
la ligne de visée) et l’étude de la répartition des galaxies représentent deux sondes cosmologiques
majeures qui seront utilisées par Euclid pour étudier la matière noire et l’énergie noire. Par
conséquent, la détection robuste des galaxies et l’estimation précise de leurs positions et formes
font partie des exigences principales de la mission (Amiaux et al., 2010).

En plus de ces relevés, de nombreux autres futurs relevés prévoient de collecter d’énormes
quantités de données, rendant nécessaire la conception d’outils de détection de sources fiables,
robustes, automatiques et rapides.

En pratique, on peut distinguer deux types de sources : les sources ponctuelles, c’est-à-dire
les étoiles et les quasars, et les sources étendues, qui sont principalement des galaxies, mais qui
peuvent aussi être des nébuleuses compactes ou des amas stellaires dont les étoiles ne sont pas
résolues. Actuellement, il existe des méthodes optimales pour détecter des sources ponctuelles
isolées, tels que les algorithmes basés sur le filtrage adapté (Woodward, 1953, 2014; Bertin and
Arnouts, 1996). Cependant, l’efficacité de ces méthodes est très limitée dans d’autres régimes,
comme dans les champs encombrés (c’est-à-dire lorsque la densité de la source est si élevée
que les images de sources se recouvrent, un phénomène connu sous le nom de recouvrement,
ou blending), ou lorsque les images sont contaminées par des défauts optiques, électroniques et
environnementaux. Ces limitations sont illustrées sur la Figure. C.1.

L’encombrement stellaire est particulièrement problématique dans les champs de basse lati-
tude galactique, où le bruit de confusion définit la limite de détection et domine largement les
erreurs photométriques et astrométriques. La situation est encore plus grave dans le domaine
PIR, où l’extinction due à la poussière interstellaire est considérablement réduite. Actuellement,
les méthodes de détection de sources les plus performantes dans les images encombrées sont en-
core largement empiriques et consistent à soustraire de manière itérative les sources ponctuelles,
des plus brillantes aux plus faibles, en utilisant un modèle de fonction d’étalement de point (ou
PSF pour point spread function) (Stetson, 1987; Schechter et al., 1993; Zhang and Kainulainen,
2019). La détection des étoiles les plus faibles est également compliquée par la présence de
contaminants. Parmi les contaminants les plus gênants, on peut compter les halos optiques,
en particulier dans les caméras à grand champ; les rayons cosmiques et pixels chauds dans les
images sous-échantillonnées; et les nébuleuses. Avec les algorithmes actuels, les plus petites
zones contaminées peuvent être interpolées (Popowicz et al., 2013), à condition qu’elles aient été
préalablement identifiées. Les contaminants les plus étendus comme les nébuleuses sont quant
à eux traités par des techniques d’estimation de fond de ciel complexes (Popowicz and Smolka,
2015) ou des modèles bayésiens Knollmüller et al. (2018). Dans ce contexte, disposer d’outils
fiables et versatiles est essentiel pour identifier les contaminants.

Contrairement aux étoiles qui sont des sources ponctuelles, les galaxies sont des sources
étendues. Pour les objets étendus, la complétude ne dépend pas seulement de la magnitude des
sources, c’est-à-dire de leur flux total, mais également de leur brillance de surface, c’est-à-dire
de la mesure de la luminosité par unité de surface du détecteur (ou angle solide). La fonction
de sélection de détection des galaxies est donc bidimensionnelle (Driver et al., 2005). Elle est
illustrée en Figure. C.2. Même lorsqu’elles sont isolées, les galaxies à faible brillance de surface
peuvent donc facilement être manquées par de simples algorithmes de seuillage fonctionnant à
une seule échelle de détection, comme le montre la Figure. C.2.
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Figure C.1: Illustrations des principales limites des algorithmes de détection de sources actuels.
Les cercles jaunes représentent les détections du SDSS (12th data release, Alam et al., 2015) tan-
dis que les cercles rouges représentent les détections de Pan-STARRS (1st data release, Flewelling,
2017, 2018), à l’exception des images de droite qui présentent des détections de SExtractor
dans des images du CFHTLS (Cuillandre and Bertin, 2006). Les images de gauche montrent
des problèmes liès aux contaminants. En haut à gauche : exemples de fausses détections sur
les aigrettes de diffraction des étoiles et dans le noyau saturé. On peut également noter que les
sources autour de l’étoile brillante ne sont pas détectées. En bas à gauche : exemples de fausses
détections sur une trâınée traversant l’image. Les images au milieu montrent des problèmes de
séparation de sources. En haut au milieu : la source voisine de la source centrale n’est pas bien
détectée dans Pan-STARRS et même ratée dans le SDSS. En bas au milieu : le séparateur de
sources de Pan-STARRS produit énormément de détections dans l’amas globulaire NGC 5466,
alors que le SDSS ignore simplement cette zone. Les images de droite montrent à la fois des
problèmes liés aux contaminants et à la séparation de sources. En haut à droite : les sources
autour de l’étoile brillante sont ignorées. En bas à droite : les sources autour des sources plus
étendues ne sont pas détectées. Les images sont vues via l’outil de visualisation Visiomatic 2
(Bertin et al., 2019a).

Pourtant, ces objets sont d’une grande importance en astrophysique. En effet, d’après la
cosmologie observationnelle, les scénarios de formation de galaxies les plus probables dérivés du
modèle de matière noire froide prédisent que ces objets sont abondants, à la fois sous forme
de galaxies satellites ou dans les filaments perlés de galaxies, tous deux dominés par la matière
noire (Kauffmann et al., 1993; Moore et al., 1999). Mise à part leur faible brillance de surface, la
détection de tels objets est également compliquée par la présence de lumière intra-amas (Contini
et al., 2014), de résidus de collision de galaxies tels que des coquilles (Hendel and Johnston,
2015) et des cirrus galactiques diffus provenant de nuages de poussière froide (Miville-Deschênes
et al., 2016). Des illustrations de ces phénomènes sont présentées dans la Figure. C.3.
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Figure C.2: À gauche : version simplifiée de la fonction de sélection de détection de galaxies
dans le cadre du catalogue de galaxies Millennium (Driver et al., 2005). Étant donné que les
galaxies sont des sources étendues, il existe une limite de détection en magnitude et une limite
de détection en brillance de surface. La ligne inclinée en bas à gauche définit une limite de
détection en taille maximale : si une galaxie est trop étendue, elle ne pourra pas être détectée.
Les lignes inclinées en haut à droite définissent des limites de détection en taille minimale : si une
galaxie est trop petite, elle peut être confondue avec une source ponctuelle, en particulier quand
la qualité d’image (seeing) est mauvaise. À droite : un exemple de galaxie à faible brillance de
surface non détectée dans les catalogues SDSS et Pan-STARRS. On peut aussi noter les fausses
détections sur les pics de bruit dans la galaxie. Cette image est vue via Visiomatic 2 (Bertin
et al., 2019a).

De nombreux efforts sont consacrés à l’inventaire et aux mesures de ces objets à travers des
relevés en cours ou à venir, comme Dragonfly (Abraham and van Dokkum, 2014), Messier (Valls-
Gabaud and MESSIER Collaboration, 2017), Huntsman (Spitler et al., 2019), MATLAS (Duc,
2020) et CASTLE (Lombardo et al., 2020). Il est aussi envisageable d’augmenter la détectabilité
de ces objets en utilisant des approches multi-échelles (Starck et al., 2000). Cependant, outre les
complications mentionnées ci-dessus, de nombreux contaminants de faible brillance de surface
interfèrent avec la détection de ces galaxies dans la pratique, comme les halos d’étoiles, ainsi que
les résidus de franges et de calibrations. Même à ce jour, comme il n’existe aucun algorithme
automatique capable de fonctionner dans ce régime, l’inspection visuelle reste nécessaire (B́ılek
et al., 2020). Il est donc essentiel de développer des algorithmes de détection multi-échelles
suffisamment “intelligents” pour gérer ces situations complexes.

De plus, l’encombrement affecte également la détection et les mesures des galaxies. Les
galaxies ne sont pas distribuées indépendamment dans le ciel. Par l’action de la gravité sur les
fluctuations de densité de l’Univers primordial, elles se répartissent en amas, feuilles et filaments.
Les images de galaxies sont donc susceptibles de se recouvrir, voire de se mélanger, éventuellement
avec des étoiles du premier plan. Ceci affecte fortement les statistiques dérivées des catalogues
de galaxies, en particulier en cosmologie observationnelle, par exemple, lors des mesures de
la fonction de corrélation des galaxies, de la richesse des amas (Gruen et al., 2019) ou des
magnifications gravitationnelles (Gaztanaga et al., 2020). C’est ainsi qu’environ 20% des sources
identifiées comme des galaxies dans les catalogues de relevés au sol les plus profonds finissent par
être supprimées des ensembles de données de mesures des lentille gravitationnelles faibles à cause
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Figure C.3: Exemples d’images de galaxies du relevé MATLAS (Duc et al., 2015) illustrant des
artefacts de faible brillance de surface. À gauche : NGC 0474. La galaxie montre plusieurs
coquilles et flux radiaux. À droite : NGC 2592. Le cirrus est répandu sur la majeure partie du
champ. D’autres images sont disponibles sur http://irfu.cea.fr/Projets/matlas/public/Atlas3D/
atlas3d-pXXIX.html. Les images présentées ici sont vues via Visiomatic 2 (Bertin et al., 2019a).

du mélange des sources (Chang et al., 2013), même si cela concerne principalement les mesures
de sources et non les détections. À ce niveau, les biais statistiques causés par les recouvrements
de sources peuvent être estimés à l’aide de simulations d’images (Chang et al., 2015; Suchyta
et al., 2016). Il est même envisageable de se libérer de ces biais grâce aux méthodes de calcul
bayésiens approximatifs (Carassou et al., 2017; Kacprzak et al., 2020; Tortorelli et al., 2020).

Tous ces défis et contraintes vont devenir encore plus importants pour les prochain relevés à
grande échelle comme Euclid ou le LSST. La quantité de données sans précédent que ces relevés
vont fournir nécessite de nouveaux outils de détection de sources et de contaminants rapides,
fiables et automatique.

Dans ces travaux de thèse, nous proposons d’aborder ces problèmes avec les approches ori-
entées données qui ont émergées récemment. Plus particulièrement, nous aspirons à tirer parti
des techniques d’apprentissage supervisé et des réseaux de neurones à convolutions (LeCun et al.,
1995), dont les performances sont avérées dans les tâches de vision par ordinateur telles que la
classification d’images (attribution d’étiquettes aux images, Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014), la segmentation d’images (attribution d’étiquettes aux pixels, Ronneberger
et al., 2015; Badrinarayanan et al., 2017) et la détection d’objets instance aware (Redmon
et al., 2016; Ren et al., 2015; He et al., 2017), où chaque objet est détecté individuellement et
éventuellement segmenté. Il s’agit d’un changement de paradigme complet par rapport aux ap-
proches algorithmiques plus traditionnelles, modifiant la façon dont les problèmes sont abordés.

Ce manuscrit est divisé en chapitres organisés de la façon suivante : dans le Chapitre 2, je
présente notre modèle décrivant les images grand champ optique et PIR. Cela nous aidera à
identifier les caractéristiques principales des images astronomiques et posera le problème de la
détection de sources. Après avoir examiné les solutions possibles à ce problème dans le Chapitre
3, je justifie notre choix d’approche basée sur l’apprentissage automatique. Dans le Chapitre

http://irfu.cea.fr/Projets/matlas/public/Atlas3D/atlas3d-pXXIX.html
http://irfu.cea.fr/Projets/matlas/public/Atlas3D/atlas3d-pXXIX.html
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4, j’introduis les concepts nécessaires liés aux techniques d’apprentissage automatique supervisé
que nous appliquons aux images : les réseaux de neurones à convolutions. Cela nous amènera
au Chapitre 5, où j’aborde l’identification des contaminants avec MaxiMask et MaxiTrack.
Dans le Chapitre 6 je me concentre le problème de détection de sources et présente notre nouveau
prototype de détecteur basé sur des réseaux de neurones à convolutions. Enfin, je résume nos
résultats et discute des futures lignes directrices des travaux dans le Chapitre 7.
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Résumé substantiel

Modèle d’image : Nous commençons par expliciter le modèle d’image qui va nous servir
à plusieurs égards. Ce modèle nous permet d’abord de comprendre comment les images as-
tronomiques se forment, ainsi que de définir leurs caractéristiques pour poser le problème de
détection de sources. Il est également important de connâıtre la formation des images as-
tronomiques dans le but de pouvoir en simuler de manière réaliste.

Dans l’optique de concevoir un détecteur de sources universel, nous développons un modèle
simplifié mais générique de la formation des images astronomiques. En faisant les hypothèses
que le processus de formation d’image est linéaire et équivariant par translation et que tous les
pixels du détecteurs sont indépendants, de même sensibilité et arrangés sur une grille homogène,
nous avons :

y = N(ШS(h ∗ x)) + n, (D.1)

où y est le signal observé, ∗ désigne l’opérateur de convolution, h est la réponse impulsion-
nelle de l’instrument ou fonction d’étalement de point, incluant les caractéristiques optiques de
l’instrument et les perturbations de l’atmosphère dans le cas d’observations au sol, x est le vrai
signal, ШS() désigne la distribution cha d’échantillonnage (ou peigne de Dirac) de période S
correspondant à la taille de pixel du détecteur, N() désigne le bruit intrinsèque de Poisson lié au
compte de photons et n est le bruit additionnel Gaussien de lecture du détecteur.

Les deux principaux types de sources à détecter dans les images sont les étoiles et les galaxies.
Là où les premières sont ponctuelles et apparaissent comme une tache correspondant à la réponse
impulsionnelle de l’instrument, les secondes sont étendues et peuvent présenter des structures
complexes (bulbes, disques, bras spiraux) à plusieurs échelles.

Méthodes de détection de sources existantes : Dans le cas où les sources sont faibles par
rapport au fond de ciel (ce qui est généralement le cas dans notre cadre d’observation d’images
grand champ à longs temps d’exposition dans les domaines optique et proche infrarouge), nous
pouvons faire l’approximation que le bruit des images est additif et stationnaire. Sous cette hy-
pothèse, le filtre linéaire (corrélateur) qui maximise le rapport signal à bruit des sources présentes
dans les images de manière optimale est le filtre adapté (Woodward, 1953, 2014; Turin, 1960).
Celui-ci consiste à corréler l’image par le profil des sources recherchées, c’est-à-dire par la réponse
impulsionnelle de l’instrument dans le cas de sources ponctuelles. Appliqué après d’éventuels pré-
traitements (consistant généralement à estimer et soustraire la composante de fond de ciel) et
combiné à des méthodes de seuillage ou de détection de pics, c’est une des méthodes les plus
utilisées pour la détection de sources (Bertin and Arnouts, 1996). Cependant, le filtrage adapté
n’est optimal que pour détecter des sources ponctuelles isolées en présence d’un bruit station-
naire. Ainsi, dès lors que les champs sont encombrés, contaminés, ou présentent des objets à
plusieurs échelles, le filtrage adapté devient limité.

152
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Pour résoudre les problèmes liés à l’encombrement, des procédures de séparation de sources
sont utilisées après la détection des sources (Bertin and Arnouts, 1996). Cependant, tout comme
les méthodes déjà mentionnées, elles restent très empiriques et se basent sur des heuristiques,
c’est-à-dire qu’elles ne sont pas garanties d’être optimales et que leurs paramètres doivent être
adaptés à chaque application.

Pour pallier aux problèmes d’échelles, des approches multi-échelle principalement basées sur
les ondelettes ont été développées Bijaoui and Rué (1995). Même si quelques-unes ont été utilisées
en pratique avec des objectifs bien précis (Cayón et al., 2000; Starck et al., 2003), la fusion des
composantes des sources identifiées à chaque échelle n’a jamais trouvé de réelle solution, limitant
fortement ces approches. Cependant, leur développement a poussé des recherches vers les do-
maines d’acquisition comprimée et de codage parcimonieux (Bobin et al., 2008; Beckouche et al.,
2013), dans lesquels on cherche à exprimer un signal à l’aide d’un dictionnaire de fonctions per-
mettant de représenter des caractéristiques des images pertinentes pour effectuer un traitement
donné.

En ce sens, nous suivons cet esprit en explorant des méthodes d’apprentissage supervisé, en
particulier d’apprentissage profond, dont l’essence est d’apprendre une représentation des données
pour résoudre une tâche. Nous nous dirigeons aussi vers ces méthodes dans l’espoir de concevoir
des outils de détection de sources plus universels (pouvant s’adapter à divers instruments et
conditions ambiantes sans avoir à faire des nombreux ajustements), plus robustes vis-à-vis des
nombreuses complications au problème de détection de sources (contaminants, recouvrement
de sources, caractère multi-échelle des objets) et de manière générale plus efficaces. En effet,
ces méthodes ont largement prouvé leur potentiel dans de multiples domaines de vision par
ordinateur, comme la classification d’images (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014) ou la segmentation d’images (Ronneberger et al., 2015; Badrinarayanan et al., 2017). Ces
approches sont néanmoins très différentes des approches algorithmiques plus classiques. Ici, il
s’agit d’apprendre une représentation des données à partir des données (brutes) elles-mêmes.

Apprentissage supervisé et réseaux de neurones à convolutions : Ayant à disposition
une base de données contenant des couples entrée-sortie, le but de l’apprentissage automatique
supervisé est d’apprendre à prédire les sorties à partir des entrées via un modèle. Le proces-
sus d’apprentissage consiste à itérer des étapes d’apprentissage. Le modèle est préalablement
initialisé avec des paramètres aléatoires. À chaque étape d’apprentissage, une prédiction est
effectuée et l’erreur de prédiction est quantifiée grâce à la connaissance de la vérité terrain et à
une fonction de coût. En fonction de l’erreur de prédiction, tous les paramètres du modèle sont
alors mis à jour via une méthode d’optimisation de manière à améliorer les futures prédictions.

Dans le cadre de ces travaux, nous utilisons comme modèles les réseaux de neurones multi-
couches à propagation avant. Il s’agit de réseaux de neurones acycliques utilisant comme élément
de base le neurone artificiel (McCulloch and Pitts, 1943). Un neurone artificiel est un noeud qui
reçoit un certain nombre d’entrées, les multiplie par ses poids, ajoute un biais et applique une
fonction d’activation. Ceux-ci sont organisés en couches : tous les neurones d’une couche donnée
prennent comme entrée les sorties des neurones de la couche précédente, et envoient leur sortie
aux neurones de la couche suivante. Les neurones d’une même couche ne sont pas connectés entre-
eux. Les neurones de la couche de sortie produisent un vecteur dont les valeurs correspondent
à des valeurs réelles pour résoudre une tâche de régression ou à des scores d’appartenance à
des classes (assimilables à des probabilités d’appartenance selon les fonctions d’activation) pour
résoudre une tâche de classification. Les poids et le biais de chaque neurone sont les paramètres
qui sont appris par le réseau de neurones. La méthode de descente de gradient et l’algorithme de
rétropropagation du gradient (Rumelhart et al., 1985, 1988) sont utilisés pour les mettre à jour
à chaque étape d’apprentissage en fonction de l’erreur de prédiction calculée par la fonction de
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coût.
Les réseaux de neurones multi-couches à propagation avant ne peuvent cependant pas être

utilisés directement sur des images brutes dont la dimension (nombre de pixels) est beaucoup
trop grande. Ce n’est qu’à l’arrivée des réseaux de neurones à convolution (LeCun et al., 1995),
utilisant des couches convolutives et des couches de mise en commun, que cela a été possible.
L’architecture classique d’un réseau de neurones à convolutions utilise un empilement de couches
convolutives suivies de couches de mise en commun. L’opération de convolution, dont les valeurs
de noyau sont les paramètres d’apprentissage, permet de traiter une image avec un petit nom-
bre de paramètres et de détecter des caractéristiques particulières dans les images. Une fois
convoluées et activées, les différentes versions de l’image d’entrée sont appelées cartes de car-
actéristiques. Comme de nombreuses convolutions de chaque carte de caractéristiques sont faites
à chaque couche, des couches de mise en commun permettent de réduire leur taille au fil de
l’avancée dans le réseau. La mise en commun permet également d’effectuer une sélection parmi
les motifs détectés. Au fil des couches, le réseau combine les motifs qu’il détecte pour créer des
représentations des données d’entrées de plus en plus complexes. Celle-ci sont finalement trans-
mises à des couches complètement connectées, similaires à des réseaux de neurones multi-couches
à propagation avant plus classiques, qui produisent la sortie du réseau.

Identification des contaminants : Dans l’optique de résoudre le problème de détection de
sources de manière robuste, nous nous attaquons d’abord aux contaminants qui polluent les im-
ages. Ces contaminants sont nombreux et d’origines variées. Nous les classons en deux catégories
principales. D’une part, les contaminants locaux, qui affectent les images au niveau du pixel, et
d’autre part, les contaminants globaux, qui affectent les images en entier. Parmi les contaminants
locaux nous considérons les contaminants liés à l’électronique du détecteur (mauvais pixels, satu-
ration, effets de persistence, interférences entre ports de lecture), ceux liés à l’optique du téléscope
(franges, aigrettes de diffraction, halos d’étoiles, lumière diffuse) et ceux liés à l’environnement
(rayons cosmiques, trâınées, nébuleuses). D’autre part, les contaminants globaux, qui affectent
les images dans leur entiereté, et parmi lesquels nous pouvons principalement compter les erreurs
de guidage de téléscope et les erreurs de mise au point.

Il existe peu d’approches qui s’attaquent aux contaminants de manière générique dans la
littérature. La plupart des méthodes existantes se résument en deux catégories. D’abord, il
existe des méthodes qui se focalisent sur un contaminant en particulier, comme les rayons cos-
miques (van Dokkum, 2001) ou les trâınées (Bektešević and Vinković, 2017). Ensuite, il y a
les chaines de traitement des plus grands relevés qui utilisent une connaissance précise de leur
instrument pour identifier les principaux contaminants (Bosch et al., 2018; Morganson et al.,
2018). Certains grands relevés se basent aussi sur des observations multi-époque pour identifier
les contaminants transitoires, comme ce sera le cas du LSST (Bosch et al., 2019). Cependant,
aucune de ces approches ne reprend nos objectifs d’universalité consistant à concevoir un outil
unique pouvant gérer un maximum de contaminants sans nécessiter d’importants ajustements
selon les cas d’applications.

Pour réaliser ces ambitions, nous avons développé MaxiMask et MaxiTrack, deux réseaux
de neurones à convolutions (Paillassa et al., 2020). MaxiMask effectue de la segmentation
sémantique : il associe des étiquettes aux pixels d’une image (pour ce faire, les réseaux de
neurones à convolution classiques incluent des couches de sur-échantillonnage pour retrouver
la résolution d’image intiale et effectuer des prédictions à l’échelle du pixel). Actuellement,
MaxiMask peut détecter les rayons cosmiques, les mauvais pixels, les effets de persistence, les
trâınées, les franges, les nébuleuses, les pixels saturés et les aigrettes de diffractions. MaxiTrack
effectue quant à lui de la classification d’images et peut détecter la présence d’erreurs de guidage
de téléscope.
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Pour entrainer MaxiMask et MaxiTrack, nous avons principalement utilisé des données
du relevé COSMIC-DANCE (Bouy et al., 2013) provenant de nombreux instruments ainsi que
des simulations faites avec SkyMaker (Bertin, 2009). Nous construisons des échantillons
d’apprentissage nous-mêmes en ajoutant des contaminants dans des images (réelles) non con-
taminées. De cette manière, nous savons exactement quels pixels sont affectés par quels contam-
inants et pouvons construire des masques de vérité terrain pour chacun des contaminants. Les
pixels saturés et aigrettes de diffractions nécessitent néanmoins d’être préalablement identifiés
dans les images non contaminées.

Un des principaux problème rencontré pour l’apprentissage de MaxiMask est la forte dis-
proportion de classe : pour chaque contaminant, il y a beaucoup plus de pixels étiquetés non
contaminés que de pixels étiquetés contaminés. Le réseau a ainsi un très fort a priori statistique
pour classer les pixels et tombe facilement dans la solution qui consiste à tous les classer comme
non contaminés. Nous réduisons cet effet de manière empirique en appliquant un poids au coût
de chaque pixel en fonction de la représentativité de ses classes d’appartenance dans l’ensemble
des échantillons d’entrainement.

Une fois entrainés, nous vérifions que MaxiMask et MaxiTrack ne souffrent pas de sur-
apprentissage Nous évaluons leur performance sur des données de test en utilisant des mesures
appropriées à la forte disproportion de classe. MaxiMask et MaxiTrack affichent des perfor-
mances satisfaisantes et nous montrons que MaxiMask n’est pas limité au régime des images
d’apprentissages qui contiennent la majorité des contaminants. Nous montrons aussi que Maxi-
Mask est compétitif avec l’état de l’art au niveau de la détection de rayons cosmiques (McCully
and Tewes, 2019).

Nous décrivons également une méthode pour adapter les probabilités de sortie de MaxiMask
et MaxiTrack à des nouveaux a prioris, c’est-à-dire à des nouvelles proportions de contam-
inants dans les données. Ceci est possible dans un cadre Bayésien, où il est démontrable que
sous l’hypothèse d’un apprentissage parfait, les réseaux de neurones classifieurs produisent des
probabilités a posteriori (Richard and Lippmann, 1991; Hampshire II and Pearlmutter, 1991;
Rojas, 1996).

Enfin, nous évaluons qualitativement les performances de MaxiMask en l’appliquant à des
nouvelles données. MaxiMask est notamment capable de détecter les satellites Starlink (DE-
Cam), de s’adapter à un régime d’images sous-échantillonnées (HST) et détecter les rayons cos-
miques dans des simulations Euclid. Notons qu’aucune image de ces deux derniers instruments
n’est utilisée dans l’ensemble d’apprentissage de MaxiMask. MaxiMask et MaxiTrack sont
également disponibles sous forme de modules d’inférence python sur GitHub1.

Détection de sources : Dans la deuxième partie des travaux, nous abordons la détection
de sources. S’étant déjà attaqué aux contaminants, il reste deux principaux défis à relever
concernant la détection de sources : la séparation de sources et l’aspect multi-échelle des objets.

En plus de cela, le détecteur de sources ne doit pas seulement segmenter les sources dans
les images mais doit pouvoir détecter chaque source individuellement, une propriété appelée
conscience d’instance (instance aware). Malgré l’abondance de méthodes développées en ap-
prentissage automatique profond sur le sujet, nous ne trouvons pas d’approche satisfaisante pour
une application directe à la détection de sources, en particulier en ce qui concerne la séparation
de sources.

Nous concevons donc une nouvelle approche multi-échelle de détection de sources basée sur
les réseaux de neurones à convolutions. Le principe de notre détecteur est d’identifier chaque
source par une empreinte d’une seule composante assez petite pour la distinguer des autres
sources par analyse en composante connectées (Rosenfeld and Pfaltz, 1966). Le réseau effectue

1https://github.com/mpaillassa/MaxiMask

https://github.com/mpaillassa/MaxiMask
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de la segmentation sémantique : chaque source est identifiée par son empreinte dans un plan
correspondant à son échelle. Le coeur de l’approche réside alors dans la définition des empreintes
de sources et dans la procédure d’affectation des sources aux échelles. Après de nombreuses
expérimentations, nous retenons comme définition d’empreinte de source les pixels plus brillants
formant 25% du flux total de la source. L’affectation de chaque source à une des trois échelles
gérées par le réseau se fait par octave en fonction des tailles d’empreinte des sources : les sources
dont l’empreinte représente moins de 9 pixels sont affectées à la première échelle, celles dont
l’empreinte représente entre 9 et 36 pixels sont affectées à la deuxième échelle, et les restantes
sont affectées à la troisième.

Pour entrainer notre détecteur, nous construisons des échantillons d’apprentissage en simulant
des images entières à partir d’images non bruitées de sources isolées. Pour les sources ponctuelles,
nous utilisons le logiciel SkyMaker (Bertin, 2009). Dans le cas des sources étendues, nous
utilisons des simulations de cônes de lumière provenant de simulations à N corps (C.Laigle,
communication privée). Grâce à ces images non bruitées, nous pouvons à la fois calculer les
empreintes et échelles de chaque source et simuler des images astronomiques réalistes.

Après entrainement, nous évaluons les performances de notre détecteur et les comparons à
SExtractor. En mesurant les taux de complétude et de contamination à différents seuils de
détection sur des échantillons de test, nous montrons que notre détecteur présente de meilleures
performances que SExtractor, que ce soit dans un régime d’images contaminées ou pas. En
particulier, la présence de contaminants dans les échantillons d’apprentissage de notre détecteur
le rend naturellement robuste à ceux-ci, ce qui n’est pas le cas de SExtractor qui nécessite
des outils externes pour gérer les contaminants. Malgré les limitations de nos échantillons
d’apprentissage, nous notons également que le détecteur affiche des performances très satis-
faisantes à l’occasion de tests sur des données réelles, laissant entrevoir de très bonnes perspec-
tives pour cette approche.
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Conclusion en français

Dans cette thèse, nous avons conçu de nouveaux algorithmes pour extraire des catalogues plus
fiables à partir des images astronomiques. En tirant parti des techniques d’apprentissage profond
et des réseaux de neurones à convolutions (LeCun et al., 1995; Krizhevsky et al., 2012; Badri-
narayanan et al., 2017), nous avons développé des modèles de pointe qui peuvent être facilement
appliqués à une large gamme d’images optiques et PIR grand champ de manière entièrement
automatisée.

Ce travail a été axé en grande partie sur les données et illustre une nouvelle approche pour
développer des outils de traitement de données. En effet, les nouvelles approches orientées
données reposent principalement sur des ensembles de données et des procédures d’entrainement
conçus avec minutie. Les ensembles de données doivent être suffisamment grands et représentatifs
de la tâche à résoudre pour permettre la généralisation, c’est-à-dire la capacité des modèles
entrainés à bien fonctionner sur de nouvelles données. Pendant la durée de la thèse, plus de 50
To de données d’images hétérogènes ont été traitées, à la fois par des programmes d’analyse de
données personnalisés et par des procédures d’apprentissage.

Nos premières réalisations, MaxiMask et MaxiTrack (Paillassa et al., 2020), sont des
détecteurs de contaminants. MaxiMask et MaxiTrack permettent d’identifier une grande
variété de défauts dans les images, et peuvent être utilisés en complément des algorithmes de
détection de sources traditionnels ou pour un contrôle automatisé de qualité d’image. Pour
entrainer les réseaux MaxiMask et MaxiTrack, nous avons construit des ensembles de données
réalistes couvrant une grande diversité d’images en utilisant des données extraites de divers
instruments du relevé COSMIC-DANCE, ainsi que des simulations d’images.

Pour faire face aux problèmes de déséquilibre de classe présents dans les image astronomiques,
nous avons défini une stratégie empirique de pondération des coûts des pixels et proposé une
méthode de réequilibrage des sorties du détecteur basé sur une approche Bayésienne. Cette
approche permet de gérer différents régimes d’image en mettant simplement à jour un ensemble
d’a prioris, et semble bien fonctionner dans la pratique.

Notre analyse des inférences de MaxiMask a montré qu’il généralise bien sur des données
réelles, y compris pour des données provenant d’instruments non utilisés pour l’entrâınement.
MaxiMask et MaxiTrack sont publiquement accessibles en tant que modules d’inférence1.

Nous sommes conscients que des contaminants particulièrement problématiques pour les im-
ages grand champ, tels que les halos optiques, les reflets et lumières diffuses ne sont pas encore
pris en compte dans MaxiMask. Comme ceux-ci sont difficiles à simuler ou à isoler à partir
d’images, la construction d’un ensemble d’apprentissage nécessite une quantité de travail impor-
tante, similaire à ce qui a été fait pour les aigrettes de diffraction. C’est un projet que j’envisage
d’entreprendre dans un futur proche, car je travaillerai sur des images HSC dans le cadre de mes

1https://github.com/mpaillassa/MaxiMask
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recherches post-doctorales. À condition que des données supplémentaires soient disponibles et
incorporées dans l’ensemble d’apprentissage, d’autres contaminants problématiques tels que les
interférences entre ports de lecture pourraient également être pris en compte par MaxiMask,
tandis que les performances sur des contaminants déjà pris en compte pourraient être améliorées,
en particulier pour les aigrettes de diffraction.

Notre deuxième réalisation est un détecteur de sources astronomiques robuste et multi-échelle.
Notre détecteur est capable de traiter divers problèmes qui entravent les algorithmes de détection
de sources traditionnels tels que les objets étendus et à faible luminosité de surface, le recou-
vrement de sources et la contamination par des défauts. L’aspect multi-échelle de notre ap-
proche permet au détecteur d’identifier des sources à différentes échelles dans des cartes de sortie
différentes. Nous avons évalué les performances du détecteur sur des données de test et avons
trouvé une complétude 30 à 100% plus grande, ainsi qu’un taux de contamination environ 20 fois
plus faible par rapport à un algorithme d’extraction de source traditionnel (SExtractor). Un
article est en préparation et le détecteur de source sera disponible pour inférence sur GitHub.

Des travaux sont également en cours pour l’implémenter dans le logiciel SourceXtrac-
tor++ (Bertin et al., 2019b), qui sera largement utilisé pour analyser les données d’imagerie
provenant de diverses sources dans le cadre de la mission Euclid. Comme les cartes d’empreintes
de sortie du détecteur sont très similaires aux cartes de segmentation produites par SourceX-
tractor++, elles peuvent pratiquement les remplacer directement. De plus, elles fournissent
des informations additionnelles pour les procédures de mesures de sources.

Bien que les performances actuelles du détecteur soient déjà satisfaisantes, des améliorations
sont possibles au niveau des données. En particulier, nous sommes conscients que nos images
de galaxies et leur distribution sont irréalistes, ce qui impacte nécessairement le comportement
du détecteur. Des travaux supplémentaires sont clairement nécessaires pour inclure des modèles
astrophysiques dans les simulations. De plus, et bien que ce ne soit pas notre objectif principal,
des ensembles d’entrainement spécifiques pourraient également être construits pour cibler des
instruments ou des objectifs scientifiques en particulier.

Enfin, il est important de noter que les catalogues produits par un détecteur multi-échelles,
robuste et adaptatif comme le nôtre ont potentiellement une fonction de sélection plus complexe
que, par exemple, des algorithmes plus simples basés sur des seuils en brillance de surface ou
magnitude. Des ensembles de données d’images simulées seront donc également nécessaires pour
dériver les fonctions de sélection et tirer pleinement parti des catalogues.
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ABSTRACT

In this work, we propose two convolutional neural network classifiers for detecting contaminants in astronomical images. Once
trained, our classifiers are able to identify various contaminants, such as cosmic rays, hot and bad pixels, persistence effects, satellite
or plane trails, residual fringe patterns, nebulous features, saturated pixels, diffraction spikes, and tracking errors in images. They
encompass a broad range of ambient conditions, such as seeing, image sampling, detector type, optics, and stellar density. The first
classifier, MaxiMask, performs semantic segmentation and generates bad pixel maps for each contaminant, based on the probability
that each pixel belongs to a given contaminant class. The second classifier, MaxiTrack, classifies entire images and mosaics, by
computing the probability for the focal plane to be affected by tracking errors. We gathered training and testing data from real data
originating from various modern charged-coupled devices and near-infrared cameras, that are augmented with image simulations. We
quantified the performance of both classifiers and show that MaxiMask achieves state-of-the-art performance for the identification
of cosmic ray hits. Thanks to a built-in Bayesian update mechanism, both classifiers can be tuned to meet specific science goals in
various observational contexts.

Key words. methods: data analysis – techniques: image processing – surveys

1. Introduction

Catalogs extracted from astronomical images are at the heart of
modern observational astrophysics. Minimizing the number of
spurious detections in these catalogs has become increasingly
important because the noise added by such contaminants can,
in many cases, compromise the scientific objectives of a sur-
vey. Properly identifying and flagging spurious detections yields
substantial scientific gains, but it is complicated by the numer-
ous types of contaminants that pollute images. Some of them
stem from the detector electronics (e.g., dead or hot pixels, per-
sistence, saturation), from the optics (diffraction along the opti-
cal path, scattered and stray light), from post-processing (e.g.,
residual fringes), while others are the results of external events
(cosmic rays, satellites, tracking errors). The amount of data pro-
duced by modern astronomical surveys makes visual inspection
impossible in most cases. For this reason, developing fully auto-
mated methods to separate contaminants from true astrophys-
ical sources is a critical issue in modern astronomical survey
pipelines.

Most current pipelines rely on a fine prior knowledge of
their instruments to detect and mask electronic contaminants
(e.g., Bosch et al. 2018; Morganson et al. 2018) and to some
extent optical contaminants (e.g., Kawanomoto et al. 2016a,b).
Cosmic ray hits can be identified by rejecting outliers in the time-
line, provided that multiple consecutive exposures are available,
by using algorithms sensitive to their peculiar shapes, such as
Laplacian edge detection (e.g., LA Cosmic, van Dokkum 2001)
or wavelets (e.g., Ordénovic et al. 2008). The Radon transform
or the Hough transform have often been used to detect streaks
caused by artificial satellites or planes in images (e.g, Vandame
2002; Nir et al. 2018).

In this work, we want to overcome some of the drawbacks
of the above mentioned methods. First, the typical data volume
produced by modern surveys requires that the software is largely
unsupervised and as efficient as possible. Second, we aim to
develop a robust and versatile tool for the community at large
and therefore want to avoid the pitfall inherent in software that
is tailored to a single or a handful of instruments, without com-
promising on performance. Third, we would like to have a uni-
fied tool able to detect many contaminants at once. Finally, we
want to assign to each pixel a probability of belonging to a given
contaminant class rather than Boolean flags. These constraints
lead us to choose machine learning techniques and in particular
supervised learning and convolutional neural networks (CNNs).

Supervised learning is a field of machine learning dealing
with models that can learn regression or classification tasks
based on a data set containing the inputs and the expected out-
puts. During the learning process, model parameters are adjusted
iteratively to improve the predictions made from the input data.
The learning procedure itself consists of minimizing a loss
function that measures the discrepancy between model predic-
tions and the expected values. Minimization is achieved through
stochastic gradient descent. We recommend Ruder (2016) for an
overview of gradient descent based optimization algorithms.

Convolutional neural networks (LeCun & Bengio 1995) are
particulary well-suited for identifying patterns in images. Unlike
previous approaches that would involve hand crafted feature
detectors, such as SIFT descriptors (Lowe 1999), CNN models
operate directly on pixel data. This is made possible by the use of
trainable convolution kernels to detect features in images. Con-
volution is shift-equivariant, which allows the same features to
be detectable at any image location.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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CNNs are now widely used in various computer vision tasks,
including image classification, that is assigning a label to a whole
image (Krizhevsky et al. 2012; Simonyan & Zisserman 2014;
Szegedy et al. 2015), and semantic segmentation, that is assign-
ing a label to each pixel (Long et al. 2015; Badrinarayanan et al.
2017; Garcia-Garcia et al. 2017).

In this work, we propose to identify contaminants using both
image classification and semantic segmentation.

In the following, we first describe the images that we used
and how we built our data sets. Then, we focus on the neural
network architecture that we used. Finally, we evaluate the mod-
els performance on test sets and on real data.

2. Data
In this section we describe the data used to train our two neural
networks. We distinguish between two types of contaminants:
On the one hand, local contaminants, that affects only a fraction
of the image at specific locations. This includes cosmic rays, hot
columns and lines, dead columns and lines, dead clustered pix-
els, hot pixels, dead pixels, persistence, satellite trails, residual
fringe patterns, “nebulosity”, saturated pixels, diffraction spikes,
and over scanned pixels. These add up to 12 classes. On the other
hand, global contaminants, that affects the whole image, such as
tracking errors.

2.1. Local contaminant data
For local contaminants, we choose to build training samples
by adding defects to uncontaminated images in order to have
a ground truth for each contaminant. In this section we first
describe the library of astronomical images used for our anal-
ysis, then focus on the selection of uncontaminated images, and
finally describe the way each contaminant is added.

2.1.1. Library of real astronomical images
In an effort to have the most realistic dataset, we choose to use
real data as much as possible and take advantage of the private
archive of wide-field images gathered for the COSMIC-DANCE
survey (Bouy et al. 2013). The COSMIC-DANCE library offers
several advantages. First, it includes images from many past
and present optical and near-infrared wide-field cameras. Images
cover a broad range of detector types and ground-based observ-
ing sites, ensuring that our dataset is representative of most
modern astronomical wide-field instruments. Table 1 gives an
overview of the properties of the cameras used to build the
image database. Second, most problematic exposures featur-
ing tracking/guiding loss, defocusing or strong fringing were
already identified by the COSMIC-DANCE pipeline, providing
an invaluable sample of real problematic images.

In all cases except for Megacam, DECam, UKIRT and HSC
exposures, the raw data and associated calibration frames were
downloaded and processed using standard procedures with an
updated version of Alambic (Vandame 2002), a software suite
developed and optimized for the processing of large multi-chip
imagers. In the case of Megacam, the exposures processed and
calibrated with the Elixir pipeline were retrieved from the CADC
archive (Magnier & Cuillandre 2004). In the case of DECam, the
exposures processed with the community pipeline were retrieved
from the NOAO public archive (Valdes et al. 2014). UKIRT
exposures processed by the Cambridge Astronomical Survey
Unit were retrieved from the WFCAM Science Archive. Finally,
the HSC raw images were processed using the official HSC
pipeline (Bosch et al. 2018). In all cases, a bad pixel map is

Table 1. Instruments used in this study.

Telescope Instrument Type Platescale Ref.
[pixel−1]

CTIO Blanco DECam CCD 0′′.26 (1)
CTIO Blanco MOSAIC2 CCD 0′′.26 (2)
KPNO Mayall MOSAIC1 CCD 0′′.26 (2)
KPNO Mayall NEWFIRM IR 0′′.4 (3)
CFHT MegaCam CCD 0′′.18 (4)
CFHT CFH12K CCD 0′′.21 (5)
CFHT UH8K CCD 0′′.21 (6)
INT WFC CCD 0′′.33 (7)
UKIRT WFCAM IR 0′′.4 (8)
LCO Swope Direct CCD CCD 0′′.43 (9)
VST OmegaCam CCD 0′′.21 (10)
Subaru HSC CCD 0′′.17 (11)
VISTA VIRCAM IR 0′′.34 (12)

References. (1) Flaugher et al. (2010); (2) Wolfe et al. (2000);
(3) Autry et al. (2003); (4) Boulade et al. (2003); (5) Cuillandre et al.
(2000); (6) Metzger et al. (1995); (7) Ives (1998); (8) Casali et al.
(2007); (9) Rheault et al. (2014); (10) Kuijken et al. (2002); (11)
Miyazaki et al. (2018); (12) Dalton et al. (2006).

associated to every individual image. In the case of DECam and
HSC, a data quality mask is also associated to each individual
image and provides integer-value codes for pixels which are not
scientifically useful or suspect, including in particular bad pix-
els, saturated pixels, cosmic ray hits, satellite tracks, etc. All the
images in the following consist of individual exposures and not
co-added exposures.

2.1.2. Non-contaminated images

None of the exposures in our library are defect-free. The first
step to create the non-contaminated dataset to be used as “refer-
ence” images consists in identifying the cleanest possible subset
of exposures. CFHT-Megacam (u, r, i, z bands), CTIO-DECam
(g, r, i, z,Y bands) and Subaru-HSC (g, r, i, z, y bands) exposures
are found to have the best cosmetics and are selected to create
the non-contaminated dataset. The defects inevitably present in
these images are handled as follows.

First, dead pixels and columns are identified from flat-
field images and inpainted using Gaussian interpolation (e.g.,
Williams et al. 1998). Then, the vast majority of cosmic rays
are detected using the Astro-SCRAPPY Python implementa-
tion (McCully et al. 2018) of LA Cosmic (van Dokkum 2001)
and also inpainted using Gaussian interpolation. Finally, given
the high performance of the DECam and HSC pipelines,
the corresponding images are perfect candidates for our non-
contaminated datasets. These two pipelines not only efficiently
detect but also interpolate problematic pixels (in particular satu-
rated pixels, hot and bad pixels, cosmic ray hits). Such interpo-
lations being a feature of several modern pipelines (e.g., various
NOAO pipelines, but also the LSST pipeline), we choose to treat
these pixels as regular pixels so that the networks are able to
work with images originating from such pipelines.

Patches of size 400×400 pixels are randomly extracted from
the cleaned images. 75% of them are used to generate training
data and the remaining 25% for test data.

The final non-contaminated dataset includes 50 000 individ-
ual images, ensuring that we have a sufficiently diverse and large
amount of training data for our experiment.
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Fig. 1. Examples of contaminants and their ground truth. Top row: cosmic ray hits, hot columns, bad columns. Bottom row: bad lines, persistence,
satellite trails.

A non-representative training set can severely impact the per-
formance of a CNN and result in significant biases in the clas-
sification task. To prevent this, we measure a number of basic
properties describing prototypical aspects of ground-based astro-
nomical images to verify that their distributions in the uncontam-
inated dataset are wide enough and reasonably well sampled.

The measured properties include, for example, the average
full-width at half-maximum (FWHM) of point-sources is esti-
mated in each image using PSFEx (Bertin 2013). This allows us to
ensure that the training set covers a broad range of ambient (see-
ing) conditions and point spread functions (PSFs) sampling. Also,
the source density (number of sources in the image divided by
the physical size of the image) is measured to make sure that our
training set encompasses a broad range of source crowding, from
sparse cosmological fields to dense, low-galactic latitude stellar
fields.

Additionally, the background is modeled in all the images
following the method used by SExtractor (Bertin & Arnouts
1996), i.e. using a combination of κ.σ-clipping and mode estima-
tion. The background model provides important parameters such
as the standard deviation of the background which is required in
most of the data-processing operations that follow.

2.1.3. Cosmic rays (CR)

“Cosmic ray” hits are produced by particles hitting the detector
or by the photons resulting from the decay of radioactive atoms
near the detector. They appear as bright and sharp patterns with
shapes ranging from dots affecting one or two pixels to long
wandering tracks commonly referred to as “worm”, depending
on incidence angle and detector thickness.

We create a library of real CRs using dark frames with long
exposure times from the CFH12K, HSC, MegaCam, MOSAIC,
and OmegaCam cameras. These cameras comprise both “thick”,
red-sensitive, deep depletion charged-couple devices (CCDs),
more prone to long worms, and thinner, blue-sensitive devices,
more prone to unresolved hits. Dark frames are exposures taken
with the shutter closed, so that the only contributors to the content
of undamaged pixels are the offset, dark current, and CR hits (plus
Poisson and readout noise). A mask M of the pixels affected by
CR hits in a given dark frame D can therefore easily be generated
by applying a simple detection threshold. We conservatively set
this threshold to 3σD above the median value mD of D:

∀p, Mp =

{
1 if Dp > mD + 3σD
0 otherwise. (1)

Among all the dark images used, a bit more than 900 million
cosmic ray pixels are detected after thresholding. Considering
that the average footprint area of a cosmic ray hit is 15 pixels,
this represents a richly diversified population of about 60 million
cosmic ray “objects”.

Next we dilate M with a 3 × 3 pixel kernel to create the
final M (D) mask. This mask is used both as ground truth for the
classifier, and also to generate the final “contaminated” image C
by adding CR pixels with rescaled values to the uncontaminated
image U:

C = U + kC
σU

σD
D � M(D), (2)

where σU is the estimated standard deviation of the uncontam-
inated image background, � denotes the element-wise prod-
uct and kC is a scaling factor empirically set to 1/8. D
has been background-subtracted before this operation, using a
SExtractor-like background estimation.

A typical CR hit added to an image and its ground truth mask
are shown in Fig. 1.

2.1.4. Hot columns and lines, dead columns, lines, and
clustered pixels, hot pixels, and dead pixels (HCL,
DCL, HP, DP)

These contaminants mainly come from electronic defects and the
way the detectors are read. They correspond to pixels having a
response very different from that of neighbors, either much lower
(bad pixels, traps) or much noisier (hot pixels). These blemishes
can be found as single pixels, in small clusters, or affecting a
large fraction of a column or row. We treat single pixels and
clumps, columns, and lines separately, although they may often
share a common origin.

All these hot or dead pixels added to the uncontaminated
images are simulated. The number of these pixels is set as follow.

For columns and lines, a random number of columns and
lines is chosen with a uniform distribution over [1,4]. Each col-
umn or line has a uniform length picked between 30 and the
whole image height or width. It has a uniform thickness in [1,3].
For punctual pixels, a random fraction of pixels is chosen with a
uniform distribution between 0.0002 and 0.0005. Pixels are uni-
formly distributed over the image. Clustered pixels are given a
rectangular or a random convex polygonal shape. The random
convex shapes are constrained to have 5 or 6 edges and to fit in
20 × 20 bounding boxes.
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The values of these pixels are computed as follows. For
hot values, a uniformly distributed random base value v is cho-
sen in the interval [15σU, 100σU]. Then hot values are gen-
erated according to the normal law N(v, (0.02v)2) so that hot
values are randomly distributed over [0.9v, 1.1v]. For dead val-
ues, one of the following three equiprobable recipes is chosen
at random to generate bad pixel values. Either all values are
exactly 0. Either values are generated according to the normal
law N

(
0, (0.02σU)2

)
so that these are close to 0 values but not

exactly 0. Either a random base value v is chosen with a uni-
form distribution in the interval [0.1mU, 0.7mU], where mU is
the median of the uncontaminated image sky background. In
this case, dead pixel values are generated using the normal law
N

(
v, (0.02v)2

)
, so that values fall in the interval [0.9v, 1.1v].

Example of such column and line defaults are shown in
Fig. 1.

2.1.5. Persistence (P)

Persistence occurs when overly bright pixels in a previous expo-
sure leave a remnant image in the following exposures.

To simulate this effect in an uncontaminated image, we
applied the so-called “Fermi model” described in Long et al.
(2015). Persistence, in units of e−.s−1), is modeled as a function
of the initial pixel level xp and time t:

f (xp, t) = Ap


1

exp (− xp−x0

δx ) + 1


(

xp

x0

)α ( t
1000

)−γ
. (3)

The goal of Long et al. (2015) was to fit the model parame-
ters x0, δx, α, γ using observations to later predict persistence for
their detector. In our simulations, parameter values are random-
ized to represent various types and amounts of persistence (see
Table 2). To compute the pixel value of the persistence effect,
we derive the number of electrons emitted by the persistence
effect during the exposure. In the following, we note T the dura-
tion of the exposure in which the persistence effect occurs, and
∆t the delay between that exposure and the previous one. We
obtain the number of ADUs collected at pixel p during the inter-
val [∆t,∆t+T ] by integrating Eq. (3) and dividing by the gain G:

Pp =
1
G

∫ ∆t+T

∆t
f (xp, t) dt (4)

=
Ap

G


1000γ

exp (− xp−x0

δx ) + 1


(

xp

x0

)α (
(∆t + T )1−γ − ∆t1−γ

1 − γ
)
. (5)

These pixel values are then added to the uncontaminated
image:

C = U + kP σU
P − Pmin

(Pmax − Pmin)
, (6)

where P are the persistence values computed in Eq. (5), Pmin and
Pmax are the minimum and maximum of these values, and kP is
a scaling factor empirically set to 5.

Images of saturated stars are simulated using SkyMaker
(Bertin 2009) and binarized to generate masks of saturated pix-
els. The masks define the footprints of persistence artifacts,
within which the xp’s are computed (Table 2). An example is
shown in Fig. 1.

Table 2. Parameters used for the generation of persistence.

Ap 1

xp (e−) Poisson(xm) with xm ∼ N(15.105, (0.02 × 15.105)2)
x0 (e−) N(9.104, (0.02 × 9.104)2)
δx (e−) N(18.103, (0.02 × 18.103)2)
α 0.178
γ 1.078
G (e−.s−1) N(10, 1)

2.1.6. Trails (TRL)

Satellites or meteors, and even planes crossing the field of view
generate long trails across the frame that are quasi-rectilinear.
We simulate these motion-blurred artifacts by generating close
star images with identical magnitudes along a linear path using
once again SkyMaker. We also generate a second population
of trails with magnitude changes to account for satellite “flares”.
A random, Gaussian-distributed component with a ≈1 pixel stan-
dard deviation is added to every stellar coordinate to simulate
jittering from atmospheric turbulence, so that the stars are not
aligned along a perfect straight line. For meteors, defocusing
must be taken into account (Bektešević et al. 2018). The amount
of defocusing θ, expressed as the apparent width of the pupil
pattern in arc-seconds, is:

θ =
180
π
× 3600 × D

d
, (7)

where D is the diameter of the primary mirror, and d the meteor
distance, both in meters. D and d are randomly drawn from flat
distributions in the intervals [2, 8] and [80 000, 120 000], respec-
tively.

The ground truth mask is obtained by binarizing the satel-
lite image at a small and arbitrary threshold above the simulated
background. This mask is then dilated using a 7 × 7 pixel struc-
turing element.

To avoid any visible truncation, we add the whole simulated
satellite image multiplied by a dilated version M(S) of the ground
truth mask to the uncontaminated image:

C = U + kT
σU

σT
T � M(T), (8)

where σS is the standard deviation of the satellite image back-
ground, σU the standard deviation of the uncontaminated image
background, and kT is a scaling factor empirically set to 6. An
example of a satellite trail is shown in Fig. 1.

2.1.7. Fringes (FR)

Fringes are thin-film interference patterns occurring in the detec-
tors. The irregular shape of fringes is caused by thickness vari-
ations within the thin layers. To add fringing to images, we
use real fringe maps produced at the pre-processing level by
Alambic for all the optical CCD cameras of Table 1. These
reconstructed fringe maps are often affected by white noise,
which we mitigate by smoothed using a top-hat kernel with
diameter 7 pixels. The fringe pattern F can affect large areas
in an image but not necessarily all the image. To reproduce this
effect, a random 3rd-degree 2D polynomial envelope E that cov-
ers the whole image is generated. The final fringe envelope E (F)
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Fig. 2. Examples of added fringes and nebulosities. Top: fringes; uncontaminated input exposure, smoothed fringe pattern, contaminated image,
ground truth mask, polynomial envelope. Bottom: nebulosities; uncontaminated input exposure, Herschel 250 µm molecular cloud image, contam-
inated image, ground truth mask.

is computed by normalizing E over the interval [−5, 5] and flat-
tening the result using the sigmoid function:

E(F)
p =

(
1 + exp

(
−5

2Ep − Emax − Emin

Emax − Emin

))−1

, (9)

where Emin and Emax are the minimum and maximum values of
Ep, respectively.

The fringe pattern, modulated by its envelope, is then added
to the uncontaminated image:

C = U + kF
σU

σF
F � E (F), (10)

where σF is the standard deviation of the fringe pattern and kF is
an empirical scaling factor set to 0.6. The ground truth mask is
computed by thresholding the 2D polynomial envelope to −0.20.

An example of a simulated contamination by a fringe pattern
can be found in Fig. 2.

2.1.8. Nebulosity (NEB)

Extended emission originating from dust clouds illuminated by
star light or photo-dissociation regions can be present in astro-
nomical images. These “nebulosities” are not artifacts but they
make the detection and measurement of overlapping stars or
galaxies more difficult; they may also trigger the fringe detector.
Hence, it is useful to have them identified and properly flagged.
Because thermal distribution of dust closely matches that of
reflection nebulae at shorter wavelength (e.g., Ienaka et al.
2013), we use far-infrared images of molecular clouds around
star-forming regions as a source of nebulous contaminants. We
choose pipeline-processed 250 µm images obtained with the
SPIRE instrument (Griffin et al. 2010) on-board the Herschel
Space Observatory (Pilbratt et al. 2010), which we retrieve from
the Herschel Science Archive. The 250 µm channel offers the
best compromise between signal-to-noise ratio and spatial res-
olution. Moreover, at wavelengths of 250 µm and above, low
galactic latitude fields contain mostly extended emission from
the cold gas and almost no point sources (apart from a few
proto-stars and proto-stellar cores). Therefore, they are perfectly

suited to being added to our optical and near-infrared wide-
field exposures. We do not resize or reconvolve the SPIRE
images, taking advantage of the scale-invariance of dust emis-
sion observed down to the arcsecond level in molecular clouds
(Miville-Deschênes et al. 2016).

We add the nebulous contaminant data to our uncontami-
nated images in the same way we do for fringes, except that there
is no 2D polynomial envelope. The whole nebulosity image is
background-subtracted (using a SExtractor-like background
estimation) to form the final nebulosity pattern N which is then
added to the uncontaminated image:

C = U + kN
σU

σN
N, (11)

where kN is an empirical scaling factor set to 1.3. The ground
truth mask is computed by thresholding N at one sigma above
0. This mask is then eroded with a 6 disk diameter structuring
element to remove spurious individual pixels, and dilated with a
22 disk diameter structuring element. An example of added neb-
ulosity is shown in Fig. 2. The light from line-emission nebulae
may not necessarily exhibit the same statistical properties as the
reflection nebulae targeted for training. However line-emission
nebulae are generally brighter and in practice the classifier has
no problem detecting them.

2.1.9. Saturation and bleeding (SAT)

Each detector pixel can accumulate only a limited number of
electrons. Once the full well limit is reached, the pixel becomes
saturated. In CCDs, charges may even overflow, leaving satura-
tion trails (a.k.a bleeding trails) along the transfer direction. Such
pixels are easily be identified in clean images knowing for each
instrument the saturation level.

2.1.10. Diffraction spikes

Diffraction spikes are patterns appearing around bright stars
and caused by light diffracting around the spider supporting
the secondary mirror. Given the typical cross-shape of spi-
ders, the pattern is usually relatively easy to identify. In some
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Fig. 3. Neural network used specifically for spike detection.

cases, the pattern can deviate significantly from a simple cross
because it is affected by various effects, such as distortions,
telescope attitude, the truss structure of spider arms, rough
edges, or cables around the secondary mirror support, reflections
on other telescope structures,. . . A specific strategy was put in
place to build a spikes library to be used to train the CNN.

On the one hand, MegaCam and DECam are mounted on
equatorial telescopes and the orientation of spikes is usually
(under standard northeast orientation) a “+” for Megacam and an
“x” for DECam1. On the other hand, HSC is mounted on the alt-az
Subaru telescope, and spikes do not display any preferred orien-
tation, making their automated identification more complicated.
For this reason, we define a two-step strategy, in which, first, sam-
ples of “+”- and “x”-shaped spikes are extracted from DECam
and Megacam images, and randomly rotated to generate a library
of diffraction spikes with various orientations. The library is then
used to train a new CNN that for identifying spikes in HSC images.

MegaCam and DECam analysis. We first identify the
brightest stars using SExtractor and extract 300 × 300 pixel
image cutouts around them. The cutouts are thresholded at three
sigma above the background and binarized. Element-wise prod-
ucts are computed between these binary images and large “+”-
shaped (Megacam) or “x”-shaped (DECam) synthetic masks to
isolate the central stars. Each point-wise product is then matched-
filtered with a thinner version of the same pattern and binarized
using an arbitrary threshold set to 15 ADUs. The empirical size of
the spike components is estimated in these masks by measuring
the maximum extent of the resulting footprint along any of the
two relevant spike directions (horizontal and vertical or diago-
nals). Finally, the maximum size of the two directions is kept and
empirically rescaled to obtain the final spike length and width. If
the resulting size is too small, we consider that there is no spike
in order to avoid false positives (e.g., a star bright enough to be
detected by SExtractor but without obvious spikes). Figure 5
gives an overview of the whole process.

HSC analysis. We train a new neural network to identify
spikes in all directions. For that purpose, we build a new train-
ing set using the spikes identified in MegaCam and DECam
images as described above and apply a random rotation between
0◦ and 360◦ to ensure rotational invariance. The neural network
has a simple SegNet-like convolutional-deconvolutional archi-
tecture (Badrinarayanan et al. 2015), but it is not based on VGG
hyper-parameters (Simonyan & Zisserman 2014). It uses 21×21,
11 × 11, 7 × 7 and 5 × 5 convolutional kernels in 8, 16, 32 and
32 feature maps, respectively. The model architecture is shown

1 DECam images sometimes also exhibit a horizontal spike of unknown
origin (Melchior et al. 2016).

Fig. 4. Example of a spike mask obtained by inference of the separate
neural network.

in Fig. 3. Activation functions are all ELU except on the last
layer where it is softmax. It is trained to minimize the soft-
max cross entropy loss with the Adam optimizer (Kingma & Ba
2014). Each pixel cost is weighted to balance the disproportion
between spike and background pixels. If ps is the spike pixel pro-
portion in the training set, then spike pixels are weighted with
1 − ps, while background pixel are weighted with ps (this is the
two-class equivalent of the basic weighting scheme described
in Sect. 3.1). Once trained we run inferences on all the bright-
est stars detected with SExtractor in the HSC images. Output
probabilities are binarized based on the MCC (see Eq. (22)) and
the resulting mask is empirically eroded and dilated to obtain a
clean mask. An example is given in Fig. 4.

2.1.11. Overscan (OV)
Overscan regions are common in CCD exposures, showing up as
strips of pixels with very low values at the borders of the frame. To
avoid triggering false predictions on real data, overscans must be
included in our training set. Doing so, and although these are not
truly contaminants, we find it useful to include an “overscan” class
in the list of identified features. Overscan regions are simulated by
including random strips on the sides of images. Pixel values in the
strips are generated in the same way as bad pixel values.

2.1.12. Bright background (BBG) and background (BG)
The objects of interest in this study are the contaminants. Hence,
following standard computer vision terminology, all the other
types of pixels, including both astronomical objects and empty
sky areas, belong to the “background”.

We find that defining a distinct class for each of these types
of background pixels helps with the training procedure. We thus
define the “bright background” (BBG) pixels as pixels belong-
ing to astronomical objects2 (except nebulosity) present in the
uncontaminated images, and background pixels (BG) as pixels
covering an empty sky area.

Ground truth masks for bright background pixels are
obtained by binarizing the image before adding the contaminants
to 10σU. The remaining pixels are sky background pixels, which
are not affected by any labeled feature.

2.2. Global contaminants

We now describe the data used to identify global contaminants.

2 Including astrophysical sources in the “background” class can seem
somewhat counter-intuitive in a purely astronomical context, but for
consistency we choose to follow the computer vision terminology and
meaning.
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Fig. 5. Empirical spike flagging process. From left to right: source image centered on a bright star candidate, the same image thresholded, the two
pointwise products, the matched filtered pointwise products, the final mask drawed from the empirical size computed with the two previous masks.

Fig. 6. Examples of images affected by tracking errors.

Tracking errors happen when the telescope moves during an
exposure due to, for instance, telescope guiding or tracking fail-
ures, wind gusts, or earthquakes. As illustrated in Fig. 6, this
causes all the sources to be blurred along a path on the celes-
tial sphere generated by the motion of the telescope. Because
tracking errors affect the entire focal plane, the analysis is per-
formed globally on the whole image. The library of real images
affected by TR events is a compilation of exposures identified
in the COSMIC-DANCE survey for the cameras of Table 1, and
images that were gathered over the years at the UKIRT telescope,
kindly provided to us by Mike Read.

2.3. Generating training samples
Both types of contaminants – global and local contaminants –
must be handled separately: they require different neural network
architectures, and different training data sets as well.

Cosmic Dance private archives

Global
contaminants

images

Sky background
maps

Skymaker
and 

Simulated data

Local
contaminants

images

Cleaned  
images

Local
contaminants

samples 

Global
contaminants

samples 

CR darks  
FR maps 

NEB examples Herschel
archives

Fig. 7. Schematic view of the sample production pipeline. All
COSMIC-DANCe archive images have their background map com-
puted. Clean images are built from the COSMIC-DANCe archives.
Contaminants from diverse sources (COSMIC-DANCe archives,
Herschel archives or simulations) are added to clean images; this step
uses the background maps. The resulting local contaminant images are
dynamically compressed (see Sect. 2.3.3) and ready to be fetched into
the neural network. Global contaminant samples are directly obtained
from the COSMIC DANCe archives and dynamically compressed.

Figure 7 gives a synthetic view of the sample production
pipeline and the various data sources.

The breakdown per imaging instrument of the COSMIC
DANCe dataset is listed Table 3.

The following subsections treat about some special features
of the sample generation.

2.3.1. Local contaminants
The order in which local contaminants are added is important.
Bad columns, lines, and pixels are added last because they are
static defaults defining the final value of a pixel, no matter how
many photons hit them.

In our neural network architecture contaminant classes do
not need to be mutually exclusive. Each pixel can be assigned
several classes as several defaults can affect a given pixel
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Table 3. COSMIC-DANCE archive usage per imaging instrument.

Instrument Clean CR No TR TR

DECam X X
MOSAIC2 X
MOSAIC1 X
NEWFIRM X X
Megacam X X X X
CFH12K X X X
CFH8K X
WFC X X
WFCAM X X
Direct CCD (LCO Swope) X X
VST X X X
HSC X X X
VIRCAM X X

Notes. Clean is for uncontaminated images, CR for dark images used
for cosmic ray identification, No TR is for images not affected by track-
ing errors, and TR for images affected by tracking errors.

Table 4. All the contaminants and their abbreviated names.

Contaminant Abbreviation

Cosmic rays CR
Hot columns/lines HCL
Dead columns/lines/clusters DCL
Hot pixels HP
Dead pixels DP
Persistence P
Trails TRL
Fringes FR
Nebulosities NEB
Saturated pixels SAT
Diffraction spikes SP
Overscanned pixels OV
Bright background BBG
Background BG

(e.g., fringes and cosmic ray hit). On the other hand, the faint
background class that defines pixels not affected by any default
excludes all other classes. A list of all the contaminants included
in this study are presented in Table 4.

Figure 8 shows examples of local contaminant sample input
images, each with its color-coded ground truth.

2.3.2. Global contaminants
The global contaminant dataset contains images that have been
hand labeled as affected by tracking errors or not. The images,
taken from the COSMIC DANCe archives, are not cleaned,
hence they are potentially affected by preexisting local con-
taminants. This is because the global contaminant detector is
intended to be operated before the local one.

2.3.3. Dynamic compression
All images are dynamically compressed before being fed to the
neural networks using the following procedure:

C̃ = arsinh


C − B +N(0, σ2
U)

σU

.

Fig. 8. Examples of input (left) and their ground truth (right). Each class
is assigned a color so that the ground truth can be represented as a single
image (red: CR, dark green: HCL, dark blue: BCL, green: HP, blue: BP,
yellow: P, orange: TRL, gray: FR, light gray: NEB, purple: SAT, light
purple: SP, brown: OV, pink: BBG, dark gray: BG). Pixels that belong to
several classes are represented in black. In the interest of visualization,
hot and dead pixel masks have been morphologically dilated so that they
appear as 3 × 3 pixel areas in this representation.

The aim of dynamic compression is to reduce the dynamic
range of pixel values, which is found to help neural network
convergence. The image is first background subtracted. Then, a
small random offset is added to increase robustness regarding
background subtraction residuals. The resulting image is nor-
malized by the standard deviation of the background noise and
finally compressed through the arsinh function, which has the
property to behave linearly around zero and logarithmically for
large (positive or negative) values.

2.3.4. Data augmentation
We deploy data augmentation techniques to use our data to the
maximum of its information potential. The two following data
augmentation procedures are applied to the set of local contam-
inant training samples. First, random rotations, using as angles
multiples of 90◦, are applied to cosmic ray, fringe patterns, and
nebulosity patterns. Secondly, some images are rebinned. When
picking up a clean image, we check if the image can be 2 × 2
rebinned with the constraint that the FWHM remains greater
than 2 pixels – the FWHM of the image was previously estimated
using SExtractor (Bertin & Arnouts 1996). This value is cho-
sen on the basis of the plate sampling offered by current ground-
based imagers. If the image can be 2× 2 rebinned while meeting
the condition above, it has a 50% probability to be rebinned.

3. Convolutional neural networks

In this section, we describe the convolutional neural networks
used for our analysis. The first one, MaxiMask, classifies pixels
(“local contaminants”) while the second one, MaxiTrack, clas-
sifies images (“global contaminants”).
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Fig. 9. Example of an unpooling process. Indices of max-pooling are
kept up and reused to upsample the feature maps.

3.1. Local contaminant neural network

3.1.1. Architecture

The model used for the semantic segmentation of the local
contaminants, MaxiMask, is based on Badrinarayanan et al.
(2015) and Yang et al. (2018), which both rely on a VGG-like
architecture (Simonyan & Zisserman 2014). It consists of three
parts.

The first part contains single and double convolutional layers
followed by max-pooling downsampling. This enables the net-
work to compute relevant feature maps at different scales. During
this step, max-pooling pixel indices are kept up for later reuse.

The second part also incorporates convolutional layers and
recovers spatial resolution by upsampling feature maps using
the max-pooling indices. An example of unpooling is given in
Fig. 9. At each resolution level, the feature maps of the first part
are summed with the corresponding upsampled feature maps to
make use of the maximum of information.

The third part is made of extra unpool-convolution paths
(UCPs) that recover the highest image resolution from each
feature map resolution so that the network can exploit the
maximum of information of each resolution. Thus, it results 5
pre-predictions, one for each resolution.

The 5 pre-predictions are finally concatenated and a last con-
volution layer builds the final predictions. The sigmoid acti-
vation functions in this last layer are not softmax-normalized,
to allow non-mutually exclusive classes to be assigned jointly
to pixels. All convolutional layers use 3 × 3 kernels and apply
ReLU activations. The architecture is represented in Fig. 10 and
hyperparameters are described more precisely in Table 5. The
neural network is implemented using the TensorFlow library
(Abadi et al. 2016) on a TITAN X Nvidia GPU.

3.1.2. Training and loss function

Training is done for 30 epochs on 50 000 images, with mini-
batches shuffled at every epoch. The batch size is kept small (10)
to maintain a reasonable memory footprint. The model is trained
end-to-end using the Adam optimizer (Kingma & Ba 2014). The
loss function L is the sigmoid cross-entropy (Rubinstein 1999)
summed over all classes and pixels, and averaged across batch
images:

L = − 1
card(B)

∑

b∈B

∑

p∈P
w′p,b

∑

ωc∈C

(
yb,p,c log ŷb,p,c

+ (1 − yb,p,c) log(1 − ŷb,p,c)
)
, (12)

where B is the set of batch images, P is the set of all image
pixels, C is the set of all contaminant classes, w′p,b is a weight
applied to pixel p of image b in the batch (see below), ŷb,p,c is
the sigmoid prediction for class ωc of pixel p of image b in the

batch, and yb,p,c is the ground truth label for class ωc of pixel p
of image b defined as:

yb,p,c =

{
1 if ωc ∈ Cp,b
0 otherwise , (13)

where Cp,b ⊂ C is the set of contaminant classes labeling pixel p
of image b in the batch. In order to improve the back-propagation
of error gradients down to the deepest layers, several losses are
combined. In addition to the main sigmoid cross-entropy loss
L computed on the final predictions, we can compute a sigmoid
cross-entropy for each of the 5 pre-predictions. There are several
ways to associate all of these losses. Like Yang et al. (2018), we
find that adding respectively 33% or 50% of each of the 3 or 2
smallest resolution losses to the main loss works best. The two
main rules here are that the additional loss weights should sum
to 1 and that higher resolution pre-predictions become less infor-
mative as they get closer to the one at full resolution.

Basic training procedures are vulnerable to strong class
imbalance, which makes it more likely for the neural network
to converge to a state where rare contaminants are not properly
detected. Contaminant classes are so statistically insignificant
(down to one part in 106 with real data, typically) that the clas-
sifier may be tricked into assigning all pixels to the background
class. To prevent this, we start by applying a basic weighting
scheme to each pixel according to its class representation in the
training set, that is each pixel p of batch image b belonging to
classes in Cp,b is weighted by wp,b defined as

wp,b =
∑

ωc∈Cp,b

wc, (14)

with

wc =

P(ωc|T )
∑

i

1
P(ωi|T )


−1

, (15)

where P(ωc|T ) is the fraction of pixels labeled with class ωc
in the training dataset T . The P(ωc|T )’s do not sum to one as
many pixels belong to several classes and are thus counted sev-
eral times. We find that the weighting scheme brings slightly
better results and less variability in the training if weights are
computed at once from the class proportions of the whole set,
instead of being recomputed for each image. From Eq. (15) we
have:

∀i ∈ C,∀ j ∈ C, wi

w j
=

P(ω j|T )
P(ωi|T )

and
∑

ωc∈C
wc = 1. (16)

However, with this simple weighting scheme, background
class pixels that are close to rare features are given very low
weights, although they are decisive for classification. To circum-
vent this, weight maps are smoothed with a 3 × 3 Gaussian ker-
nel with unit standard deviation so that highly weighted regions
spread over larger areas. Other kernel sizes and standard devia-
tions were tested but we find 3 and 1 to give the best results. The
resulting weights of this smoothing are the w′p,b presented in the
loss function of Eq. (12).

Finally, the solution is regularized by the l2 norm of all the N
network weights, by adding the following term to the total loss:

L2reg = λ

N∑

i

‖ki‖2, (17)

where the ki’s are the convolution kernel vectors. λ sets the reg-
ularization strength. We find λ = 1 to provide the best results.
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Fig. 10. Scheme representation of the local contaminants neural network architecture.

Table 5. Description of the local contaminants neural network architec-
ture, including map dimensions.

Layer Size UCP from each resolution

Input 400× 400× 1
Conv 400× 400× 32
Maxpool 200× 200× 32
Conv 200× 200× 64
Maxpool 100× 100× 64
Conv 100× 100× 128
Conv 100× 100× 128
Maxpool 50× 50× 128
Conv 50× 50× 256
Conv 50× 50× 256
Maxpool 25× 25× 256
Conv 25× 25× 256
Conv 25× 25× 256
Maxpool 13× 13× 256
Conv 13× 13× 256
Unpooling 25× 25× 256
Conv 25× 25× 256
Conv 25× 25× 256 UCP
Unpooling 50× 50× 256 Idem
Conv 50× 50× 256 None
Conv 50× 50× 128 Idem UCP
Unpooling 100× 100× 128 Idem Idem
Conv 100× 100× 128 None None
Conv 100× 100× 64 Idem Idem UCP
Unpooling 200× 200× 64 Idem Idem Idem
Conv 200× 200× 32 Idem Idem Idem UCP
Unpooling 400× 400× 32 Idem Idem Idem Idem
Conv 400× 400× 14 Idem Idem Idem Idem
Concat 400× 400× 70
Conv 400× 400× 14

Notes. All convolution kernels are 3 × 3 and max-pooling kernels are
2× 2. All activation functions (not shown for brevity) are ReLU, except
in the output layer where the sigmoid is used.

3.2. Global contaminant neural network architecture

The convolutional neural network that detects global contami-
nants (tracking errors), MaxiTrack, is a simple network made
of convolutional layers followed by max-pooling and fully con-
nected layers. The architecture of the network is schematized
in Fig. 11 and detailed in Table 6. Because the two classes are
mutually exclusive (affected by tracking errors or not), we adopt
for the output layer a softmax activation function and a softmax
cross-entropy loss function (Rubinstein 1999). Training is done
for 48 epochs on 50 000 images with a mini-batch size of 64
samples, using the Adam optimizer.

4. Results with test data and quality assessment

4.1. Local contaminants neural network

We evaluate the quality of the results in several ways. First, we
estimate the performance of the network on test data, both quan-
titatively through various metrics, and qualitatively. We verify
that there is no over-fitting by checking that performance on the
test set is comparable to that on the training set. Next, we show
that performance is immune to the presence or absence of other
contaminants in a given image. We finally compare the perfor-
mance of the cosmic ray detector to that of a classical algorithm.

4.1.1. Performance metrics

We first estimate classification performance on a benchmark test
set comprising 5000 images. Because the network is a binary
classifier for every class, we can compute a Receiver Operating
Characteristic (ROC) curve for each of them. ROC curves rep-
resent the True Positive Rate (TPR) vs. the False Positive Rate
(FPR):

T PR =
T P
P

=
T P

T P + FN
, (18)

FPR =
FP
N

=
FP

T N + FP
, (19)
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Fig. 11. Scheme representation of the global contaminants neural network architecture.

Table 6. Description of the global contaminant neural network architec-
ture, including map dimensions.

Layer Size

Input 400× 400× 1
Conv 400× 400× 16
Maxpool 200× 200× 16
Conv 200× 200× 32
Maxpool 100× 100× 32
Conv 100× 100× 64
Maxpool 50× 50× 64
Conv 50× 50× 128
Maxpool 25× 25× 128
Conv 25× 25× 128
Maxpool 13× 13× 128
Flatten 21 632
Fully connected 64
Fully connected 64
Fully connected 2

Notes. All convolution kernels are 9 × 9 and max-pooling kernels are
2× 2. All activation functions (not shown for brevity) are ReLU, except
in the output layer where predictions are done using softmax.

where P is the number of contaminated pixels, TP is the num-
ber of true positives (contaminated pixels successfully recov-
ered as contaminated), FN is the number of false negatives
(contaminated pixels wrongly classified as non-contaminated),
N is the number of non-contaminated pixels, FP is the
number of false positives (non-contaminated pixels wrongly
classified as contaminated), and TN is the number of true neg-
atives (non-contaminated pixels successfully recovered as non-
contaminated).

The accuracy (ACC) is subsequently defined as

ACC =
T P + T N

P + N
· (20)

The more the ROC curve bends toward the upper left part
of the graph, the better the classifier. However with strongly
imbalanced datasets, such as our pixel data, one must be very
cautious with the TPR, FPR and ACC values for assessing the
quality of the results. For example, if one assumes that there are
1000 pixels of the contaminant class (P) and 159 000 pixels of
the background class (N) in a 400× 400 pixel sub-image, a TPR
of 99% and a FPR of 1%, corresponding to an accuracy of 99%,
would actually represent a poor performance, as it would imply
990 true positives, 10 false negatives, 157 410 true negatives, and
1590 false positives. In the end, there would be more false pos-
itives FP (pixels wrongly classified as contaminated) than true
positives TP.

For this reason the ROC curves in Fig. A.1 are displayed
with a logarithmic scale on the FPR axis. We require the FPR to
be very low (e.g smaller than 10−3) to consider that the network
performs properly.

On the other hand, recovering the exact footprint of large,
fuzzy defects is almost impossible at the level of individual
pixels, which makes the classification performance for persis-
tence, satellite trails, fringes, nebulosities, spikes and back-
ground classes look worse in Fig. A.1 than it really is in practice.

Also, two ROC curves are drawn for cosmic rays and trails.
The second one (in green) is computed using only the instances
of the class that are above a specific level of the sky background.
These instances were defined by retaining those which had more
than a half of their pixels above 3σ. These second curves shows
that the network performs better on more obvious cases.

In addition to the FPR, TPR, ACC and AUC, we use two
other metrics helpful for assessing the network performance:
the purity (or precision), representing the fraction of correct
predictions among the positively classified samples, and the
Matthews correlation coefficient (MCC, Matthews 1975), which
is an accuracy measure that takes into account the strong imbal-
ance between classes.

PUR =
T P

T P + FP
= Purity or Precision, (21)

MCC =
T P × T N − FP × FN√

(T P + FP)(T P + FN)(T N + FP)(T N + FN)
. (22)

In the above example, the purity would reach only 38% and
the MCC only 61%, highlighting the classifier poor positive class
discrimination.

Figure A.3 shows the true positive rate against the purity.
Again, the purple curve represents how a random classifier
would perform. In these curves the best classifier would sit in
the top right (T PR = 1 and PUR = 1). The darkest points also
represent lowest thresholds while the lighter are the highest ones.

Some qualitative results are presented in Fig. 12. A given
pixel is assigned a given class if its probability to belong to this
class is higher than the best threshold in the sense of the MCC.

Finally, MCCs are represented in Fig. A.2, as a function of
the output threshold. In each curve, the threshold giving the best
MCC is annotated around the best MCC point. It is important to
note that the best threshold depends on the modification of the
prior that has been applied to the raw output probabilities. This
update of the prior is explained in Sect. 5.

4.1.2. Robustness regarding the context

The MaxiMask neural network is trained using mostly images
that include all contaminant classes. Hence, we must check if
the network performs equally well independently of the context,
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Fig. 12. Examples of qualitative results on test data. Left: input; middle: ground truth; right: predictions. Each class is assigned a color so that the
ground truth can be represented in one single image. Class predictions are done according to the threshold giving the highest MC coefficient. The
color coding is identical to that of Fig. 8.

that is if it delivers equally good results for images containing,
for example, a single class of contaminant.

To this aim, for every contaminant class, we generate a
dataset of 1000 images affected only by this type of contaminant
(except saturated and background pixels), and another dataset
of 1000 images containing only saturated and background pix-
els. We then compare the performance of MaxiMask for each
class with the that obtain on the corresponding dataset. We find
that performance (AUC) is similar or even slightly higher for the
majority of the classes. This shows that the network is not con-
ditioned to work only in the exact context of the training. The
results are presented in Table 7.

As it can be seen, for all classes but fringes and nebulos-
ity, performance improves when a single type of contaminant is
present. The slight improvement may come from the fact that
ambiguous cases (when pixels are affected by more than one
contaminant class, e.g., a cosmic ray or a hot pixel over a satellite
trail) are not present in the single contaminant test set.

4.1.3. Cosmic rays: effect of PSF undersampling and
comparison with LA Cosmic

Undersampling makes cosmic ray hits harder to distinguish from
point-sources. To solve this issue, van Dokkum (2001) has devel-
oped LA Cosmic, a method based on a variation of Laplacian
edge detection. It is largely insensitive to cosmic ray morphology
and PSF sampling. LA Cosmic thus offers an excellent oppor-
tunity to test the performance of MaxiMask on undersampled
exposures.

Table 7. AUC of each class depending on the test set context.

Class All contaminant Single contaminant
set AUC set AUC

CR 0.96927 0.98314
HCL 0.99763 0.99957
DCL 0.99872 0.99976
HP 0.99741 0.99965
DP 0.99739 0.99975
P 0.99352 0.99951
TRL 0.99511 0.99813
FR 0.98057 0.93326
NEB 0.97895 0.84575
SAT 0.99965 0.99974
SP 0.96125 0.98061
OV 0.99997 1.00000
BBG 0.98484 0.99165
BG 0.96895 0.98371

To do so, we generate two datasets containing only the
cosmic ray contaminant class (plus object and background). A
well sampled set of images with FWHMs larger than 2.5 pixels,
and an undersampled image set with FWHMs smaller than
2.5 pixels. We run MaxiMask and the Astro-SCRAPPY Python
implementation LA Cosmic. To make a fair comparison, LA
Cosmic masks are dilated in the same way as the ground truth
cosmic ray masks of MaxiMask. However, while MaxiMask
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Fig. 13. CR detection performance comparison with LA Cosmic.
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Fig. 14. Global contaminant neural network ROC curve; the steps are a
consequence of limited statistics.

generates probability maps that can be thresholded at different
levels, LA Cosmic only outputs a binary mask. To compare the
results we therefore build ROC curves for the neural network
and over-plot a single point representing the result obtained with
LA Cosmic.

Figure 13 shows that the neural network performs better than
LA Cosmic in both regimes with our data.

4.2. Global contaminants neural network

The ROC curve for the global contaminant neural network is
shown in Fig. 14. It is computed from a test set of 5000 images.

5. Modifying priors

If one knows what class proportions are expected in the obser-
vation data, output probabilities can be updated to better match
these priors (e.g., Saerens et al. 2002; Bailer-Jones et al. 2008).

The outputs of a perfectly trained neural network clas-
sifier with a cross-entropy loss function can be interpreted
as Bayesian posterior probabilities (e.g., Richard & Lippmann
1991; Hampshire & Pearlmutter 1991; Rojas 1996). Under this

assumption and using Bayes’ rule, the output for the class ωc
of the trained neural network model defined by a training set T
writes:

P(ωc| x,T ) =
p(x|ωc,T )P(ωc|T )∑

ω∈{ωc,ω̄c}
p(x|ω,T )P(ω|T )

, (23)

where x is the input image data around the pixel of interest,
p(x|ωc,T ) is the distribution of x conditional to class ωc in the
training set T , and P(ωc|T ) is the prior probability of a pixel to
belong to the class ωc in the trained model.

As each output acts as a binary classifier, the sum is done on
the class ωc (contaminant) and its complementary ω̄c (“not the
contaminant”).

With the observation data set O we may similarly write:

P(ωc|x,O) =
p(x|ωc,O)P(ωc|O)∑

ω∈{ωc,ω̄c}
p(x|ω,O)P(ω|O)

, (24)

where P(ωc|O) is the expected fraction of pixels with class
ωc in O.

Now, if the appearance of defects in O matches that in the
training set T , we have p(x|ωc,T ) = p(x|ωc,O), and we can
rewrite (24) as:

P(ωc|x,O) =
P(ωc|x,T ) P(ωc |O)

P(ωc |T )
∑

ω∈{ωc,ω̄c}
P(ω|x,T ) P(ω|O)

P(ω|T )

(25)

=
1

1 +
(

1
P(ωc |x,T ) − 1

)
P(ωc |T )
P(ωc |O)

1−P(ωc |O)
1−P(ωc |T )

. (26)

If pixels were all weighted equally, the training priors
P(ωc|T ) would simply be the class proportions in the training
set. However, this is not the case here, and pixel weights have
to be taken into account. To do so, we follow Bailer-Jones et al.
(2008)’s approach, by using as an estimator of P(ωc|T ) the poste-
rior mean on the test set T ′ (which by construction is distributed
identically to the training set):

P̂(ωc|T ) =
1

card(T ′)

∑

x∈T ′
P(ωc|x,T ′). (27)

These corrected probabilities are used to compute the MC
coefficient curves in Fig. A.2 (whereas the prior correction does
not affect the ROC and purity curves).

MaxiMask comes with the P(ωc|T ) values already set,
therefore one only needs to specify the expected class propor-
tions in the data, that is the P(ωc|O)’s.

6. Application to other data

As a sanity check, we apply MaxiMask to data obtained from
different instruments not part of the training set. Examples of the
resulting contaminant maps are shown in appendix.

Our first external check is with ZTF (Bellm et al. 2019) data.
The MaxiMask output for a science image featuring a promi-
nent trail with variable amplitude is shown in Fig. A.4. We can
note the ability of MaxiMask to properly flag both the trail and
overlapping sources.

Our second external check is with the ACS instrument
onboard the Hubble Space Telescope (Fig. A.5 and A.6). This
test illustrates MaxiMask’s ability to distinguish cosmic rays
from poorly sampled, diffraction-limited point source images.
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Given the seemingly good performance of MaxiMask on
images from instruments not part of the training set, one ques-
tion that may arise is whether MaxiMask can readily be used on
production for such instruments, without any retraining or trans-
fer learning. Our limited experience with MaxiMask seems to
indicate that this is indeed the case, although retraining may
be beneficial for specific instrumental features. As shown here,
excellent performance can be reached by training with 50 000
400 × 400 images taken from three different instruments. We
think that a minimum of 10 000 400 × 400 would be a good
start to train on a single instrument. Assuming CCDs of approxi-
mately 2000×2000 pixels, thus containing 25 400×400 images,
it would just need 400 CCDs, equivalent to 10 fields for a 40
CCD camera.

Our last series of tests is conducted on digital images of nat-
ural scenes (landscape, cat, human face), to check for possible
inconsistencies on data that are totally unlike those from the
training set. Reassuringly, the maps produced by MaxiMask
are consistent with the expected patterns. For instance, the cat’s
whiskers are identified as cosmic ray impacts, and pixels with
the lowest values as bad pixels.

7. Using MaxiMask and MaxiTrack

MaxiMask and MaxiTrack are available online3.
MaxiMask is a Python module that infers probability
maps from FITS images. It can process a whole mosaic, a
specific FITS image extension, or all the FITS files from a
directory or a file list. For every FITS file being processed a
new FITS image is generated with the same HDU (Header
Data Unit) structure as the input. Every input image HDU has
a matching contaminant map HDU in output, with one image
plane per requested contaminant. The header contains metadata
related to the contaminant, including the prior and threshold
used. An option can be set to generate a single image plane for
all contaminants, using a binary code for each contaminant.
Such composite contaminant maps can easily be used as flag
maps, for example, in SExtractor. Based on command
line arguments and configuration parameters, one can select
specific classes, apply updates to the priors and thresholds
to the probability maps. The code relies on the TensorFlow
library and can work on both CPUs or GPUs, although the CPU
version is expected to be much slower: MaxiMask processes
about 1.2 megapixel per second with an NVidia Titan X GPU,
and about 60 times less on a 2.7 GHz Intel i7 dual-core CPU.
Yet, there is probabily room for improvement in processing
efficiency for both the CPU and GPU versions.

MaxiTrack is used the same way as MaxiMask, except
that the output is a text file indicating the probability for the input
image(s) to be affected by tracking errors (one probability per
extension if the image contains several HDUs). It can also apply
an update to the prior. It runs at 60 megapixels s−1 with an NVidia
Titan X GPU and is 9 times slower on a 2.7 GHz Intel i7 dual-
core CPU.

8. Summary and perspectives

We have built a data set and trained convolutional neural net-
work classifiers named MaxiMask and MaxiTrack to iden-
tify contaminants in astronomical images. We have shown that
they achieve good performance on test data, both real and sim-
ulated. By delivering posterior probabilities, MaxiMask and
MaxiTrack give the user the flexibility to set appropriate

3 https://www.github.com/mpaillassa/MaxiMask

threshold levels and achieve the desired TPR/FPR trade-offs
depending on the scientific objectives and requirements. Both
classifiers require no input parameters or knowledge of the cam-
era properties.

Even though the mix of contaminants in the training set is
unrealistic, being dictated by training requirements, we have
checked that this does not impact performance. Output proba-
bilities can be corrected to adapt the behavior of MaxiMask to
any mix of contaminants in the data.

We are aware that several types of contaminants and images
are missing from the current version and may be added in the
future.

Local contaminants include two particularly prominent
classes of contaminants: optical and electronics ghosts.
Unwanted reflections within the optics result in stray light in
exposures. These reflections can produce spurious images from
bright sources commonly referred to as “optical ghosts”. Some-
times, reflections from very bright stars outside of the field may
also be seen. Detectors read through multiple ports also suffer
from a form of electronic ghost known as cross-talk. Electronic
cross-talk causes bright sources in one of the CCD quadrants to
generate a ghost pattern in other quadrants. The ghosts may be
negative or positive and are typically at the level of 1:104. Both
effects are a significant source of nuisance in wide field expo-
sures, especially in crowded fields and deep images, where they
generate false, transient sources, and can affect high precision
astrometric and photometric measurements.

Another category of common issues is defocused or exces-
sively aberrated exposures, as well as trails caused by charge
transfer inefficiency, all of which which could easily be imple-
mented in MaxiTrack.

Also, the training set used in the current version of
MaxiMask and MaxiTrack does not include images from
space-born telescopes nor, more generally, diffraction-limited
imagers. Therefore, they are unlikely to perform optimally with
such data, although limited testing indicates that they may
remain usable for most features, an example of prediction on
HST data is shown in Figs. A.5 and A.6.

Finally, MaxiMask could be extended to not only detect
contaminants, but also to generate an inpainted (i.e., “corrected”)
version of the damaged image areas wherever possible.
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Appendix A: Performance metric curves and qualitative tests
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Fig. A.1. ROC curves: TPR vs. FPR. The FPR axis in in logarithmic scale so that very low FPR are best visualized. The ROC curve and the AUC
are provided for each class.
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Fig. A.1. continued.
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Fig. A.2. MC coefficient curves: MC coefficient vs. detection threshold. On each curve is annotated the threshold for which the MC coefficient is
the highest. These curves were computed using the probabilities corrected from priors using empirical training priors.
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Fig. A.3. Purity curves: TPR vs. PUR.
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Fig. A.4. Prediction example for an instrument not used in training: ZTF (Bellm et al. 2019). Left: a science image exposure. Top right: mask from
the ZTF pipeline. Bottom right: flagging by MaxiMask; the trail is correctly recovered. Also, MaxiMask CNN is able to correctly flag pixels
where the trail overlaps sources whereas in the ZTF pipeline, all pixels (i.e., pixels belonging only to the trail, pixels belonging only to sources,
and pixels belonging to both the trail and sources) are flagged as both trail and source.
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Fig. A.5. Example of a prediction for a space instrument (HST) not used in training (ACS exposure). Left: a calibrated (flat-fielded, CTE-corrected)
individual exposure of a stellar field in the Pleiades. Top right: fully calibrated, geometrically-corrected, dither-combined image where cosmic rays
and artifacts have been removed. Bottom right: MaxiMask contaminant identification. Each class is assigned a color so that the ground truth can
be represented as a single image (red: CR, dark green: HCL, dark blue: BCL, green: HP, blue: BP, yellow: P, orange: TRL, gray: FR, light gray:
NEB, purple: SAT, light purple: SP, brown: OV, pink: BBG, dark gray: BG). Pixels that belong to several classes are represented in black. For the
sake of visualization, hot and dead pixel masks have been morphologically dilated so that they appear as 3 × 3 pixel areas in this representation.
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Fig. A.6. Same as Fig. A.5 at a different location in the field to illustrate the ability of MaxiMask to differentiate poorly sampled stellar images
from cosmic rays.
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osi, T. S. Rodrigues, S. Rodŕıguez-Torres, N. A. Roe, A. J. Ross, N. P. Ross, G. Rossi, J. J.
Ruan, J. A. Rubiño-Mart́ın, E. S. Rykoff, S. Salazar-Albornoz, M. Salvato, L. Samushia, A. G.
Sánchez, B. Santiago, C. Sayres, R. P. Schiavon, D. J. Schlegel, S. J. Schmidt, D. P. Schneider,
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wachs, N. C. Hambly, D. L. Harrison, M. Hauser, D. Hestroffer, S. T. Hodgkin, H. E. Huckle,
A. Hutton, G. Jasniewicz, S. Jordan, M. Kontizas, A. J. Korn, A. C. Lanzafame, M. Manteiga,
A. Moitinho, K. Muinonen, J. Osinde, E. Pancino, T. Pauwels, J. M. Petit, A. Recio-Blanco,
A. C. Robin, L. M. Sarro, C. Siopis, M. Smith, K. W. Smith, A. Sozzetti, W. Thuillot, W. van
Reeven, Y. Viala, U. Abbas, A. Abreu Aramburu, S. Accart, J. J. Aguado, P. M. Allan,
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zollini, M. Cropper, S. Pottinger, K. Jahnke, A. Ealet, T. Maciaszek, F. Pasian, A. Zacchei,
R. Scaramella, J. Hoar, R. Kohley, R. Vavrek, A. Rudolph, and M. Schmidt. The Euclid mis-
sion design. In Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter
Wave, volume 9904 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, page 99040O, July 2016. doi: 10.1117/12.2230762. 1, 5.2, C

R. Racine. The Telescope Point Spread Function. PASP, 108:699, Aug. 1996. doi: 10.1086/
133788. 2.4.3, 2.4.4

J. Radon. Uber die bestimmung von funktionen durch ihre integralwerte langs gewissez mannig-
faltigheiten, ber. Verh. Sachs. Akad. Wiss. Leipzig, Math Phys Klass, 69, 1917. 5.2

J. Radon. On the determination of functions from their integral values along certain manifolds.
IEEE transactions on medical imaging, 5(4):170–176, 1986. 5.2

J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7263–7271, 2017. 6.2.2

J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018. 6.2.2

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 779–788, 2016. 1, 6.2.2, 6.2, 6.3, C

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. arXiv e-prints, art. arXiv:1506.01497, June 2015. 1, 6.2.1,
6.1, 6.3, C

J. P. Rheault, N. P. Mondrik, D. L. DePoy, J. L. Marshall, and N. B. Suntzeff. Spectrophoto-
metric calibration of the Swope and duPont telescopes for the Carnegie supernova project 2.
In Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 91475L, Aug. 2014.
doi: 10.1117/12.2063560. 5.1

J. E. Rhoads. Cosmic-Ray Rejection by Linear Filtering of Single Images. PASP, 112(771):
703–710, May 2000. doi: 10.1086/316559. 5.2

M. D. Richard and R. P. Lippmann. Neural network classifiers estimate bayesian a posteriori
probabilities. Neural computation, 3(4):461–483, 1991. 4.2.6, D

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951. 4.2.1

F. Roddier. The effects of atmospheric turbulence in optical astronomy. Progess in Optics, 19:
281–376, Jan. 1981. doi: 10.1016/S0079-6638(08)70204-X. 2.4, 2.4.3, 2.4.3

R. Rojas. A short proof of the posterior probability property of classifier neural networks. Neural
Computation, 8(1):41–43, 1996. doi: 10.1162/neco.1996.8.1.41. URL https://doi.org/10.1162/
neco.1996.8.1.41. 4.2.6, D

B. Romera-Paredes and P. H. S. Torr. Recurrent instance segmentation. In European conference
on computer vision, pages 312–329. Springer, 2016. 6.2.3

https://doi.org/10.1162/neco.1996.8.1.41
https://doi.org/10.1162/neco.1996.8.1.41


Bibliography 213

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015. 1, 5.3.1, 5.4.2, 5.5.1, 6.4.4, C, D

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958. 4.2.1, 4.2.1, 4.2.1, 4.2.1, 4.2.1

A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture processing. J. ACM, 13
(4):471–494, Oct. 1966. ISSN 0004-5411. doi: 10.1145/321356.321357. URL https://doi.org/
10.1145/321356.321357. 3.1.4, 6.4.1, D

B. T. P. Rowe, M. Jarvis, R. Mandelbaum, G. M. Bernstein, J. Bosch, M. Simet, J. E. Meyers,
T. Kacprzak, R. Nakajima, J. Zuntz, H. Miyatake, J. P. Dietrich, R. Armstrong, P. Melchior,
and M. S. S. Gill. GALSIM: The modular galaxy image simulation toolkit. Astronomy and
Computing, 10:121–150, Apr. 2015. doi: 10.1016/j.ascom.2015.02.002. 6.5.1

R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1(2):127–190, 1999. 4.2.4

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016. 4.2.1, 4.2.7

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985. 4.2.2, D

D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1, 1988. 4.2.2, D

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015. 4.3.3

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017. 6.3

J. Sánchez and F. Perronnin. High-dimensional signature compression for large-scale image
classification. In CVPR 2011, pages 1665–1672. IEEE, 2011. 4.3.3

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help opti-
mization? In Advances in Neural Information Processing Systems, pages 2483–2493, 2018.
4.2.7

P. L. Schechter, M. Mateo, and A. Saha. DoPHOT, A CCD Photometry Program: Description
and Tests. PASP, 105:1342, Nov. 1993. doi: 10.1086/133316. 1, C

J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015. 1

J. Serra. Morphology for grey-tone functions. Image analysis and mathematical morphology,
pages 424–478, 1982. 3.2

J. Serra. Image Analysis and Mathematical Morphology: Vol.: 2: Theoretical Advances. Academic
Press, 1988. 3.2

https://doi.org/10.1145/321356.321357
https://doi.org/10.1145/321356.321357


214 Bibliography
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J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.-Y. Glorennec, H. Hjalmarsson,
and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview.
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