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Considerate la vostra semenza;
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

— Dante Alighieri, Inferno

A mon grand-pére, Gérard Pertica
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RESUME

La résistance aux antibiotiques est reconnue comme 1'un des
plus grands dangers contemporains de santé publique. Dans
les laboratoires hospitaliers, la susceptibilité d"une souche bac-
térienne a un antibiotique donné est quantifiée par sa Concentra-
tion Minimale Inhibitrice (CMI) : la dose minimale d’antibiotique
nécessaire pour inhiber la croissance de la souche pendant 24
heures. Cette valeur joue un role central dans les décisions de
traitements prises par le personnel soignant.

Or, la CMI est une mesure reposant sur un unique point de
temps, et ne peut pas rendre compte de tous les aspects de
la réponse d’une souche a un traitement. Pourrait-on obtenir
une évaluation plus informative de la résistance d'une souche a
un antibiotique, en exploitant sa courbe de croissance entiere ?
Pourrait-on également faire en sorte que ce diagnostic soit réali-
sable dans un environnement hospitalier, ot la densité optique
de la culture est souvent la seule observable disponible ? Ce
probleme est complexe, notamment parce que les antibiotiques
-lactams provoquent la filamentation des cellules, ce qui dé-
correle la densité optique de la culture du nombre de cellules
vivantes qu’elle contient.

Dans cette these, nous développons un modele mathématique
de la réponse de populations bactériennes a des 3-lactams, qui
rassemble les différents types de résistance (résistance, tolé-
rance, résilience) au sein d’'un méme cadre. Considérant les
trois échelles : moléculaire, de la cellule et de la population,
ce modele offre des prédictions simultanées de la densité op-
tique et du nombre de cellules, ainsi que de leur distribution de
longueurs. Son cceur est constitué d’un modele dit de croissance-
fragmentation : une équation aux dérivées partielles considé-
rant explicitement la distribution des tailles des cellules et son
évolution en réponse a l’antibiotique qui déclenche leur fila-
mentation. Or, le modele & dérivées partielles n’est pas idéal
pour l'optimisation numérique, et notamment pour l'inférence
de parametres. Nous décrivons donc le passage a un modele
compagnon a équations différentielles ordinaires, qui se préte
mieux a une calibration efficace. Ce passage est réalisé a 'aide
d’approximations soigneuses des moments partiels de la dis-
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tribution des longueurs des cellules. On montre alors que les
deux modeles, a dérivées partielles et ordinaires, satisfont quan-
titativement diverses observations empiriques réalisées sur des
populations bactériennes, et bien connues dans le domaine.

La calibration de ce modele sur un ensemble d’isolats cli-
niques a été rendue possible par I’analyse en rétro-ingénierie
d’un lecteur de plaques commercial et le développement d'un
pilote open source pour celui-ci, nous permettant d’en faire un
usage programmatique, ainsi que par le choix d’algorithmes
d’optimisation numérique efficaces et robustes. Nous mon-
trons que les valeurs estimées de plusieurs des parametres du
modele peuvent étre expliquées par la présence de genes et
de mutations facteurs de résistance. Alors que tous les para-
metres du modeéle sont en principe identifiables, la plupart des
isolats cliniques n’expriment qu'un sous-ensemble des compor-
tements autorisés par le modele. Par conséquent, les valeurs
estimées pour les parametres inutilisés par une souche donnée
sont aléatoires et inutilisables. Nous proposons une méthode
pour regrouper les souches similaires, malgré la présence de
telles non-identifiabilités, en utilisant les intervalles de confiance
des valeurs estimées plutdt que les valeurs elles-mémes. Nous
observons alors 1'émergence de trois classes distinctes : sen-
sibles, tolérantes et résilientes, et résistantes. En comparaison
avec le systéme classique SIR (susceptibles, intermédiaires, et
résistantes), ces classes dégagent des explications plus riches du
comportement des isolats, et permettent également une exploi-
tation directe pour du traitement optimal.
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INTRODUCTION

1.1 MOTIVATION

Antibiotic resistance is widely recognized as one of the biggest
threats to global health. The first strain resistant to penicillin
was discovered in 1942, only one year after the release of the
drug. Since then, not one antibiotic was spared by resistant
strains, to a point where antibiotic resistance has become a
norm rather than an exception among pathogens, a situation
unlikely to ever change. The United States public health institute
(Centers for Disease Control (CDC)) even refers to our times as a
“post-antibiotic era” (Centers for Disease Control and Prevention
(U.S.) 2019).

Antibiotic resistance claims more than 700 ooo lives every
year, globally, and this toll is estimated to surge in the next
years, reaching 10 million lives per year by 2050 (“Tackling
Drug-Resistant Infections Globally: Final Report and Recom-
mendations” 2016). This plague does not know continents,
borders, age, health or immunity: it threatens literally everyone,
everywhere, at all time. The discovery of new antibiotics, either
fortuitous or deliberate, seems to become increasingly challen-
ging as time passes. An important concept appeared in response
to this assessment is antibiotic stewardship. In the words of the
CDC, it is an effort to measure and improve how antibiotics are
prescribed and used.

Antibiotic treatment is indeed a double-edged sword. While
the purpose of antibiotic treatments is to decrease the bacterial
charge of infections, a side effect of antibiotic exposure is a
selection pressure driving the evolution of mutations decreasing
the susceptibility of the bacteria to the drug (Greulich, Waclaw,
and Allen 2012; Baym et al. 2016). This puts clinicians in the
delicate situation of trying to fill the two objectives, not always
compatible, of healing a person of a specific infection, and pro-
tecting the population by preventing the emergence of resistant
mutants. Guidelines are published and regularly updated by
public health agencies, based on a metric quantifying the resist-
ance of a strain, the Minimum Inhibitory Concentration (MIC):

To put this number
into perspective,
over 1 million people
died of COVID-19
this year.



the minimal antibiotic dose needed to inhibit the growth of a
given cell inoculum for 24 hours (Gould and MacKenzie 2002).

However, antibiotic response is multidimensional, and quanti-
tying it only with the 24-hour time point is a gross approxima-
tion (Brauner et al. 2016; Balaban et al. 2019). Indeed, under the
umbrella term “antibiotic resistance,” one traditionally separ-
ates the possible responses in different components: resistance,
tolerance, persistence, and resilience. Resistance, strictly speak-
ing, is the ability of strains to grow under high antibiotic doses.
Resistant strains under high antibiotic dose behave in similar
ways than without antibiotic, in general thanks to mutations
making their constituents much less sensitive to the drug. Tol-
erant strains, however, are defined by the ability to survive a
transient exposure to antibiotic. The antibiotic might affect them,
but not kill them instantly, such that their growth can restart
once the antibiotic is removed. Persistence is an extreme case of
tolerance, and caused by a genetically identical, but phenotypic-
ally different, subpopulation of cells with an almost zero growth
rate. Not growing often confers a protection from the antibi-
otic. Non-growing cells are then virtually immortal. By unclear
mechanisms, persisters are formed, and woken up stochastically
(Harms, Maisonneuve, and Gerdes 2016). If a persister wakes
up after the antibiotic was removed, it can grow and reconstitute
the cell population. Finally, resilience, a term borrowed from pop-
ulation ecology, refers to the capacity of a population to recover
from a perturbation. Population regrowth being only possible
after the removal of the antibiotic, mechanisms implemented by
the cells to actively degrade the antibiotic can be understood as
participating in the resilience of the population. Starting here,
in this document, “resistance” alone will refer to this specific
definition, but “antibiotic resistance” has to be understood as
the umbrella term.

The variety of possible responses makes it challenging to
identify quickly and accurately the efficiency of a given antibi-
otic on a given strain. Comparing the MIC with two tabulated
breakpoints defined by the public health agencies, one can as-
sign to each pair strain/antibiotic a label “S” for Sensitive, “I” for
Intermediate, or “R” for Resistant. The antibiogram, a standard
technique used in all clinical laboratories around the world, also
delivers the same information. The Sensitive / Intermediate /
Resistant (SIR) classification is the basis of decision for choosing
an appropriate antibiotic to treat a given infection. However, as
the “S” treatment options become increasingly rarer, clinicians



are driven to start considering “I” options as possible treatment
opportunities, requiring stronger doses.

One of the most used families of antibiotics is 3-lactams. They
contain antibiotics such as penicillin, ampicillin, amoxicillin, or
cefotaxime. They are known to interfere with the cell wall form-
ation, which eventually leads to cell lysis. The main bacterial de-
fence mechanism against this type of antibiotic is the expression
of an enzyme able to degrade the antibiotic, called 3-lactamase.
-lactamases are known to be active both in the periplasm of
cells, and in the environment, where they are released upon cell
lysis. Outside the cells, the enzymes continue to degrade the an-
tibiotic to the benefit of other cells. This mutualistic mechanism
is called Collective Antibiotic Tolerance (CAT).

This complex dynamics is the consequence of the interplay
between three fundamental scales. The lowest level is that of
biochemical molecular reactions between the antibiotic and the
molecules that it binds to, targets or (3-lactamases. The middle
level is that of the cell itself, experiencing direct consequences
of the biochemical level ranging from changes in growth rate or
cell morphology, to lysis. Finally, the highest level is that of the
cell population, and is necessary to explain CAT.

Quantifying this system with only the MIC is not fully satisfy-
ing. Indeed, although low MICs (category “S”) lend themselves
well to treatment, intermediate and high MICs (categories “1”
and “R”) do not really describe the behaviour of the strains,
because the MIC is a final time point. We lack an understanding
of the dynamics of “I” and “R” strains, which is why treatments
in “I” conditions are often gambles. Our assessment is that
neither the MIC nor the SIR system are explainable, and that
the antibiogram is possibly not appropriate any more for the
post-antibiotic era. However, the full 24-hour dynamics of a
culture of cells treated with antibiotics is much richer than just
its final state.

Acquiring a full growth curve in a clinical setting can be done
with an automated optical plate reader: alternating incubation
and measurement phases, this device can record the Optical
Density (OD) of a number of cell cultures (typically 96) every
couple of minutes over several days, the OD of a cell culture
being considered approximately proportional to its biomass.
Acquiring other types of data, like microscopy or growth curve
in cell numbers, seems too costly either in equipment or time for
a typical hospital laboratory. Despite this, the data contained in
24 hours of optical density measurements “only” remains much



richer than just its final point, thus, the exploitation of an optical
plate reader became our model of data acquisition.

However, we quickly discovered a modelling barrier prevent-
ing the use of this data. As we saw, 3-lactams, through the
disruption of cell wall related activity, cause drastic changes in
the cell morphology. These changes result in a decorrelation
of biomass and number of cells: as a matter of fact, the ratio
between the observed optical density and the number of living
cells can change by 3 to 4 orders of magnitude over the first few
hours of an experiment. To our knowledge, inferring cell num-
bers from optical density data in presence of 3-lactam-induced
cell filamentation has never been successfully addressed.

In summary, motivated by the rise of antibiotic resistance im-
posing to treat cells with antibiotics towards which they are ever
less susceptible, we resolved to try improving the explainability
of the response of strains to antibiotics. Could we get a more
informative assessment of antibiotic resistance by exploiting the whole
growth curve? Importantly, we should limit ourselves to OD data,
since only this is directly applicable in a clinical setting.

1.2 APPROACH

The data that we want to use is both rich and poor. Rich, because
it is a full 24-hour optical density growth curve. Poor, because
it shows only one surface view of a system with much more
depth. In fact, we are actually facing an information challenge,
and our capacity to overcome the modelling challenges will
be dependent on the quality of the data. The necessary first
step will then be to ensure excellent experimental conditions
allowing the acquisition of informative data over long time
periods. Notably, the automation of data acquisition is a key
factor of experimental reproducibility.

Secondly, we need to acquire a global picture of the behaviour
of the system, at all scales involved: molecular, cell-level and
population. The best way to assess our knowledge about a sys-
tem is to recreate it. Mathematical modelling is the framework
of choice to create and simulate systems. We will then build a
model of antibiotic resistance, ideally sufficiently generic to be
applied to a large class of antibiotics and isolates. To stay relev-
ant to clinical measurements, we have to consider that the input
of this model could exclusively consist in OD growth curves.



Thus, the model needs to bridge the apparent decorrelation
between the OD and the number of cells.

To challenge the model and verify both its generality and
practical use, we need to assemble samples of various pathogenic
strains as diverse as possible. The automated experimental
platform built for this purpose will help carry out quantitative
measurements on these strains, while a robust, versatile and
efficient optimization framework will help fit the model to the
data. In this way, we could describe strains by their associated
model parameters, instead of just the value of the MIC.

Once confirmed that the mathematical model is a reliable de-
scription of the response of the strains to antibiotic treatments,
we can use it to answer the original question: How much in-
formation can we get by exploiting the full OD response? More
specifically, can we make sense of parameter values, better than
of the MIC? Could we propose a classification that is more ex-
ploratory and more explainable than SIR? And what could we
learn from the model about the respective roles of resistance,
tolerance, resilience or persistence in the responses of the strains
to treatment?

1.3 CONTRIBUTIONS

This thesis presents several methodological and theoretical con-
tributions made on the way to answer these questions. These
developments were both inspired and validated by original data
collected from a collection of clinical isolates.

We propose to our knowledge the first model of bacterial
resistance, tolerance and resilience to 3-lactams able to predict
simultaneously the number of cells and optical density of a
cell culture submitted to complex antibiotic treatments. This
Partial Differential Equation (PDE) model, based on a growth-
fragmentation equation, describes the evolution of the length
distribution of the population of cells. It relies on a limited
number of simple biological hypotheses, backed up by both
data and literature. The PDE model is not very practical for
numerical optimization, notably for parameter inference. We
therefore describe the passage to a companion Ordinary Differ-
ential Equation (ODE) model, involving careful approximations
of the partial moments of the first model. Both of these models
behave as expected by several well-known phenomenological
observations in the (3-lactam literature.



The experimental validation of these models was performed
through its application to a collection of pathogenic clinical
isolates of E. coli. The experimental conditions were carefully
choosen to create highly informative experiments. Notably, we
propose methods improving the reliability of cell counting with
Colony Forming Units (CFUs), and of plate reader experiments.
First, we describe a bayesian method for cell counting allowing
the computation of estimates of cell number and confidence
intervals from any number and combination of dilutions and
platings, starting with one unique count. Second, we show
how to reverse engineer a commercial plate reader, in order to
develop an Application Programming Interface (API) offering
a full programmatic control of the machine through a custom
Python library, platerider.

For our work, assessing the identifiability of the model is
critical. After consideration of the noise model of the observation
process, following the approach of A. Raue et al. (2009), we
demonstrate with a profile likelihood analysis that it is possible
to recover most parameters of the model on a simulated dataset.
For this, we had to give great care to the robustness of the
global optimization problems, as well as to the efficiency of local
optimization problems.

Finally, we show that our approach is superior to the standard
MIC metric and SIR classification with respect to understanding
and being able to predict both intuitively and quantitatively the
response to a treatment in vitro. On real datasets, we found a
good agreement between measurable predictions of the model
and experiments, even beyond OD (microscopy, cell number).
We also found a tight agreement between the parameters of
the model and the antibiotic resistance genes contained in each
cell’s genome. This inspires confidence in the fact that the in-
ferred model parameters are a mapping of concrete biological
properties of the strains. We also propose a clustering method
robust to unidentifiabilities that allows to separate the collection
into three classes of strains of noticeably different phenotypes,
and responsive to different treatment strategies. The three phen-
otypes can be described as sensitive, tolerant/resilient and res-
istant. The model itself has value, since it contributes to the
understanding of these three separated classes as three parts
of a shared continuum. Notably, the rate of cell death depends
only on their length, which makes tolerance by filamentation an
essential factor of the effectiveness of the treatment.



1.4 OUTLINE

After this introduction, the second chapter (2) describes the
experimental conditions that we engineered in order to make
experiments as reproducible as possible. After discussions on
the medium composition, the influence of preculture, and the
steps taken to avoid excessive evaporation, we discuss the cal-
ibration of the plate reader. Then, we introduce the bayesian
cell counting method. In a second part, we present the process
of reverse-engineering of the plate reader and introduce the
custom driver platerider.

The third chapter (3) is dedicated to the models. After a
theoretical introduction on the necessary biological notions,
we derive the growth-fragmentation model, with the detail of
each of its constituents. In the following part, we derive its
companion ODE model. This involves the extraction of partial
moments from the main model, which we do by partially solving
it in appropriate conditions. We then demonstrate the agreement
of the model with several well-known observations.

The fourth chapter (4) starts with the detail of the optimization
methods required to fit the model to data efficiently. In a second
part, we employ the profile likelihood framework to understand
the specific unidentifiabilities of the model, which becomes
important later. We also show that the calibration of the model
on OD and number of cells first, then on OD only, is doable.

In the fifth chapter (5), we combine the theoretical and meth-
odological work exposed on the first three chapters, and apply
them to the characterization of a collection of nine pathogenic
clinical isolates. After a description of the strains and their
antibiotic resistance enzymes, we present the ensemble of the
data obtained on them and how they guided us in the model
development. We discuss then the biological relevance of the
calibrated parameter values. Then, we discuss clustering meth-
ods to organize the nine 17-parameter vectors, and show that we
can categorize them in three classes: sensitive, tolerant/resilient,
and resistant. Finally, we present two experimental artefacts
that the model does not capture.

Finally, in the sixth and last chapter (6), we explicit the gains
in explainability and practicality offered by this unifying model
encompassing resistance, tolerance and resilience. We also dis-
cuss the theoretical and practical contributions of this thesis and
suggest further research perspectives as well as applications of
the model.






QUANTITATIVE MEASUREMENTS

The purpose of science being to understand the world, progress
in science is deeply connected with progress in theories and
technologies that enable the recording of accurate data about
the world.

The earliest traces of systems of measurements date as early
as the 3rd or 4th millennia BC, from Ancient Egypt and Meso-
potamia and were developed to quantify goods such as cattle
or seeds, or to keep track of the passage of time. Most measure-
ment systems at the time were based on objects readily available
by anyone anywhere, such as body parts. The practicality of this
kind of measurement unit comes with obvious reproducibility
issues. An early measurement system less prone to observer
variability was that of time, that consisted during the night of
the observation of the time of rise of a set of chosen stars above
the horizon.

Many scientific discoveries were concomitant with the inven-
tion of the technology that enabled them. To cite only a few
of the best known, Galileo’s telescope allowed him in 1610 to
discover notably the phases of Venus and the moons of Jupiter,
two observations which led him to refute Ptolemy’s geocentric
model of the solar system. The precise interferometer developed
by Albert Abraham Michelson and Edward Morley allowed
them in 1887 to exhibit an evidence against the theory of ether
(a medium supposedly necessary for the propagation of light).
More recently, the construction of LIGO, a light interferometer of
outstanding precision, enabled the observation of gravitational
waves, a prediction of general relativity.

Although a technological development seems to be the cause
of a scientific breakthrough in a large quantity of cases, scientific
discoveries are sometimes made through not technological but
methodological advances. From a strictly technological stand-
point, Louis Pasteur’s experiments on spontaneous generation
in 1859 (Pasteur 1922-1939) only required him to slightly modify
standard glassware, which someone could have done decades, if
not centuries earlier. But it is his protocol and rigour that were
the main ingredients in his discovery.
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Sometimes even, the experimental data is available and the
discovery is just waiting for it to be examined under a new light.
This new light can be provided by a change of paradigm in the
underlying model of the system, or by technological advances
in data analysis. Munafo et al. (2017) cite several examples of
breakthroughs achieved by reinterpretation of preexisting data.
Recently, the rise of machine learning and artificial intelligence
allowed revisiting quantities of existing data and extract from
them new information unreachable so far, from planet discov-
ery (Shallue and Vanderburg 2018) to dolphin communications
(Frasier et al. 2017).

In some cases, the careful revisiting of data collection and
analysis methods also allows detecting and correcting mistakes
or misinterpretations that were done by the authors of the ori-
ginal analysis. Houle et al. (2011) cites a series of examples
caused by either sloppy data collection, mishandling of units
or logical flaws in the data analysis. Popular statistical tools
such as p-values are reportedly often misused or misunderstood
(Colquhoun 2014; Greenland et al. 2016).

In the context of a reproducibility crisis (Ioannidis 2005; Baker
2016), researchers began to automate and standardize the main
parts of scientific data processing. Reproducible automated
data collection relies on the use of open lab equipment with
accessible APIs allowing seamless integration in a heterogeneous
experimental platform. Open hardware allows unlimited cus-
tomization with widely accessible tools such as 3d-printers and
cheap electronic cards. Lab equipment with open software can
be made to work in use cases not envisioned by their construct-
ors.

Experimental and computational protocols themselves are
freely exchanged on several emerging dedicated platforms,
either community-driven or backed by scientific publishers.
Quantitative models are also shared on open repositories such
as Biomodels (Li et al. 2010) in the standardized format SBML,
allowing an easier reproducibility of simulations.

As robotic lab equipment is starting to appear to enable re-
searchers to automate themselves their processes, some com-
panies emerged (Transcriptic n.d.) to propose fully integrated
solutions for on-demand cloud lab, the experiments being done
in fully automated robotic labs supposedly improving the con-
ditions of reproducibility.

These solutions can be expensive and not practical to set up
in a lab with limited space or resources. Wanting to design a



dynamical model of antibiotic resistance bridging the individual
cell and cell population levels, we investigated a few relevant
data collection options. One tool to observe the behaviour of
individual cells can be an optical microscope associated with
microfluidic chips known as mother machines (P. Wang et al.
2010). Acquiring the microscope and designing and building
the chips are expensive and time-consuming processes that not
every lab can afford. To track the growth of a population of cells,
a microplate reader is typically used. This device repeatedly
measures the absorbance of wells where cells grow in culture
medium. The growing biomass in the well diffuses light and
the data collection can happen without intervention for long
durations (several days), which makes this a good way to obtain
longitudinal temporal data. A flow cytometer is a third kind of
device that can bridge both individual cell and population levels
by collecting individual cell data for several tens of thousands of
cells. The type of data collected by flow cytometers are typically
related to the fluorescence of individual cells, as well as their
forward and side scatters, loosely linked to dimensions and
composition of the cell.

Each of these tools (microscope, plate reader and flow cyto-
meter) would be a valuable asset for the study of our system.
But we decided to explore what was possible to be done with
only the most common and most affordable one, the plate reader.
Indeed, a quality absorbance plate reader can be acquired for a
couple of tens of thousand of euros, a fraction of the cost of a mi-
croscope or of a flow cytometer. Affordability, low maintenance
and easy handling make of this device the most effective option
to study this kind of system. It is conceivable for example, to
install a plate reader in a medical laboratory. This is why our
experimental platform and processes gravitate around a plate
reader as the main measuring instrument.

To extract the most of the data, appropriate experimental
conditions ensuring suitable levels of reproducibility need to be
carefully designed and respected. The purpose of this chapter
is to account for this work.

Our main measurement device is a multimode micro-plate
reader of model Spark and brand Tecan (Ltd n.d.), bought in
late 2017 for this work. The majority of experiments performed
consist in growing pathogenic bacteria in a solution of culture
medium, and applying antibiotics at different times while track-
ing the growth of the cells by absorbance measurements. Cells
were occasionally counted by spreading a known volume of the

1
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solution on an agar plate and counting the number of colonies
after incubation. We also occasionally used a microscope to
determine estimates of the length distribution and viability of
cells.

The sources of measurement errors in these processes are
the biological systems themselves and the way that they are
handled, the measurement devices, and the data analysis. In
the first part of this chapter we describe the actions we took
to make the measurements as meaningful and reproducible as
possible. In the second part we introduce platerider, a custom
driver that we wrote for the plate reader to allow its integration
in the context of an automated lab.

21 EXPERIMENTAL CALIBRATIONS

2.1.1  Choice of the medium composition

Two main classes of media are used to grow microorganisms:
defined and complex media. A defined medium is one that was
prepared by adding in known quantities its constituents to pure
water. The nature and quantities of nutrients and salts are just
sufficient to support growth, or to reach a given physiological
state. A complex medium is one created with a number of highly
nutritious substances such as digests of microbial, animal, or
plant products, but whose exact compositions are unknown
(Madigan et al. 2017).

Lysogeny Broth (LB), a complex medium introduced by Ber-
tani (1951), is one of the most used media to grow microor-
ganisms. However, the physiology of bacteria growing in LB
changes when some of its several constituents starts lacking,
which happens as early as OD = 0.3 (C. H. Wang and Koch 197§;
Sezonov, Joseleau-Petit, and D’Ari 2007). The complexity of
the medium also creates reproducibility issues and makes it
inappropriate for quantitative studies (Hiroshi 2009). A clinical
argument also suggests, contrary to common practice, that MICs
should be measured in poor rather than rich media (Elf et al.
2006).

The use of a defined medium seemed a necessity for our study.
Mg is a minimal medium also widely used. It is composed of a
mixture of salts (Merck n.d.)

6.78 /L Na,HPO,
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3g/L KH,PO,

1g/L NH,Cl

0.5g/L NaCl

0.24 g/L MgSO, (optional)
0.01g/L CaCl, (optional)

to which one can add the required amount of glucose, possibly
completed with casamino acids.

The use of a culture medium instead of another, besides the
difference in growth rates, can also cause significant qualitative
behaviour changes, as shown in figure 2.1. Two strains (IB34
and IB36) were grown in the same conditions except for the
culture medium (Mg with 1% glucose, or LB). The growth of
both of these strains is much faster in LB than in Mg. For both

strains, the death phase is more pronounced in LB than in Mg.

Lastly, the resistant strain IB36 appears much more resistant in
LB than in Mg, as a 8 mg/L antibiotic dose can prevent its full

growth for more than 16 hours in Mg but doesn’t affect it in LB.
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Figure 2.1: Comparison of Mg and LB for the growth of two strains
with X mg/L of cefotaxime.

The standard recipe for Mg does not specify the concentration
of glucose, which is left free for the experimentalist to adapt to
their requirements. Our goal was to pick a glucose concentration

that would facilitate the modelling and the analysis of the data.

To do so, growth curves were measured in Mg prepared with
different glucose concentrations, as shown on figure 2.2. The
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initial growth phase is carried at identical growth rates for the
different concentrations. The only notable difference between
the different media is the OD where the growth of the population
stops. This optical density is the carrying capacity of the medium.

IB32 grown in M9 with X g/ glucose
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Figure 2.2: Growth of a strain in Mg with increasing glucose concen-
trations.

The sharp growth arrests seen from 0g/L to 1g/L are charac-
teristic of a carbon-limited medium (Wanner and Egli 1990). The
softer deceleration observed for 2 g/L and above reveals that at
these concentrations, growth is eventually limited by something
else than glucose: either the depletion of some other nutrient,
or the acidification of the medium.

The cell population eventually settles for a steady-state dens-
ity, that is a function of the initial concentration of glucose. This
function is plotted in figure 2.3.

The strict proportionality between the initial glucose con-
centration and the carrying capacity of the medium, at low
concentrations, confirms that the glucose is limiting in this re-
gion. The proportionality law seems valid until 2g/L, but for
this value, the carrying capacity is reached after a slow down of
the growth, as seen on figure 2.2. At4g/L, we can guess that a
significant amount of glucose remains unused even after a long
time.

To not overcomplexify the model, we chose to use the max-
imum glucose concentration that resulted in a clear carbon-
limited growth, i.e. 1g/L, because this type of dynamics is



2.1 EXPERIMENTAL CALIBRATIONS |

usually well described by simple mathematical models (Monod
1949; Senn et al. 1994; Lendenmann, Snozzi, and Egli 2000). It
has also the advantage to maintain the whole curve in the linear
zone of the plate reader, as demonstrated in section 2.1.4.

0.0042 + 0.41 glu
1.50 A
a
Q1.25'
=
= 1.00 ]
g,
g 0.751 e
20
g
2> 0.50
=  J
O
0.25 1 ®
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1 2 3 4

Glucose concentration [g/L]

Figure 2.3: Carrying capacity for IB32 in Mg as a function of the
glucose concentration. A fresh culture of cells in Mg 1g/L
glucose was diluted 100 times to prepare these cultures,
which explains the value of the y-axis intercept.

2.1.2 Assessment of the influence of preculture

Life phases of a cell culture in batch® are usually described by
a succession of phases described first in detail by Buchanan
(1918). A complete and accurate model of the ensemble of this
process would be a huge task. Usually, one or two consecutive
phases are considered at a time. Their mathematical description
can involve complex mathematical techniques (Alonso, Molina,
and Theodoropoulos 2014 for example use stochastic differential
equations to model the lag phase).

Again to make the interpretation of the observations as easy as
possible, an effort was made to simplify the observed dynamics.
The lag phase was completely avoided by a 3-hour preculture

Batch culture and continuous culture are two modes of cultures of cells.
In batch, the culture medium is in limited quantity and available from the
beginning of the experiment. In continuous culture, fresh culture medium is
added to the culture at a given rate as used medium and cells are flushed
away from the bioreactor at the same rate.
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of the cells in the morning of the experiment, following an
overnight, as shown in figures 2.4 where the inoculum? consisted
of cells directly resuspended from an overnight, and 2.5, where
the cells were first resuspended in fresh medium, then diluted 5
times, and let grow for 3 hours prior to starting the experiment.
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Figure 2.4: Cells starting directly from the overnight culture without
preculture.
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Figure 2.5: Cells starting after a 3-hour preculture.

2 The inoculum is the starting cell density in an experiment.



There is a difference of one hour between the instants when
these two cultures reach an optical density of 1072. It is clear
that the preculture manages to avoid the lag phase, because
in this case the experiment starts with cells that are already
in exponential phase. This makes their growth much easier to
model.

Another notable observation from these figures is that the
state of the cells at the beginning of the experiment influences
their resistance to antibiotics. Indeed, 4 mg/L of cefotaxime can
prevent the growth of cells (below 0.1) starting from stationary
state for 14 hours, but the same dose of antibiotic can only
maintain exponentially growing cells below the same threshold
for 10 hours.

A determination of MIC would then yield different results
depending on the state of the cells at the beginning of the
experiment. To avoid these issues, cells are precultured after
overnight for most of the experiments in this work.

2.1.3 Quantification of evaporation

The typical growth rate of bacteria is on the order of one genera-
tion per hour. Starting from 5 x 10° cells/mL which is the recom-
mended starting inoculum for MIC determination by EUCAST
(2020b), 11 generations are needed to go to 1 x 10° cells/mL,
which is the typical carrying capacity for the medium used.
With a generation time of around an hour, at least a dozen of
hours are required to observe an unperturbed cell growth. Upon
antibiotic exposure, the growth is altered and a full population
recovery can be delayed by several hours too. It is then reason-
able to expect to be able to measure cell growth over 24 hours
in good conditions.

The optimal growing temperature for enterobacteria being
37 °C, the growth medium is subject to significant evaporation
throughout the experiment. Without precaution, the whole plate
(96 wells of 200 uL each) dries out in 14 to 19 hours.

Common solutions to this problem involve covering each well
with a couple of drops of mineral oil, or using a transparent
plate lid. These methods make evaporation almost negligible
at the timescale of a day, but they do not allow to perform a
crucial operation in our experiments: the automatic injection of
antibiotic during the experiment. However, the plate reader3

3 Tecan Spark
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that we chose to acquire comes equipped with a “humidity
cassette”: a metallic box where the plate is kept closed between
measurements. The cassette has compartments that can be filled
with water, to saturate the surroundings of the plate with water
vapour and slow down the evaporation of the wells. The lid of
the cassette can be removed and replaced by the plate reader
with an electromagnet to allow for measurements and injections.

Figure 2.6: Humidity cassette. Picture credit: Chetan Aditya.

The question is to determine whether the use of the cassette
has any noticeable effect compared to the sole plate, and how to
use it at best.

To evaluate its effectiveness, a 96-well plate was prepared with
200 uL of water per well. The plate was weighted empty and
with the water. The plate reader was programmed to incubate
the plate at 37°C for 5 or 10 minutes, then to open the lid
of the cassette and make a full OD scan of the plate, at two
different speeds. In one case, the box was opened for 33 s with
a periodicity of 645s, and in the other, the box was opened for
52 s with a periodicity of 352s.

At different points during the experiment, the plate was taken
out of the device and weighted to measure the remaining volume
of water. We noted that the water evaporated faster for the more
open schedule, as seen in figure 2.7.



2.1 EXPERIMENTAL CALIBRATIONS | 19

=
]
L

®  open 33s/645s
open 52s/352s

Proportion of water remaining
© o o © o ©
AN ot (@) =~ oo Ne)

o
w
1

0 10 20 30 40
Time [h]

Figure 2.7: Proportion of water remaining in the plate as a function
of time.

Plotted as a function not of the experiment time but of the cu-
mulative open time of the cassette, the two evaporation profiles
overlap, as seen in figure 2.8.

o 1.0 ®  open 33s/645s
E open 52s/352s
=
= 0.8
&
) ¥
= e
Z oo
S
=
2
2041
e
A
0 1 2 3 4 5 6

Time open [h]

Figure 2.8: Proportion of water remaining in the plate as a function
of open lid time.

Consequently, evaporation happens at a constant speed, and
only when the lid is lifted. This information is crucial in the



The purpose of
testing cells in
stationary and
exponential phase
was to check if the
quadratic coefficient
depended on the size
of the cells (cells in
stationary phase
being smaller than
cells in exponential
phase). It seems that
this is not the case.
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design of long experiments, where a compromise has to be
found between the frequency of measurements and the speed
of evaporation. Indeed, although evaporation does not affect
the OD in first approximation (because it increases the density
of cells by the same factor that it reduces the light path), it does
concentrate the chemicals in the well.

2.1.4 Correction of the non-linearity of OD

The optical density is a convenient, quick and non-destructive
method to measure the biomass of cells in solution. Although
usually considered as a proxy for the number of cells when the
morphology of cells is constant, in the general case, as put by
Koch (1961), “Absorbancy measurements [...] are more nearly
a measure of bacterial mass than of bacterial numbers.”

This was demonstrated by a number of theoretical studies
on optical considerations of the scattering of light by colloidal
particles of different shapes and sizes (Koch 1961, 1968), as well
as by experimental studies (Koch 1970; Stevenson et al. 2016;
Beal et al. 2019).

A calibration process of OD measurement devices is recom-
mended. Following Stevenson et al. (2016) and Koch (1961),
the optical density measured from a solution with a density of
bacteria of n (cells/mL) can be written as

OD =kn(1—an)+ ODy

where k and a depend on the size and shape of the bacteria.
The constant offset ODy was added to take into account the
absorbance of the non-biological components in the light path,
such as the bottom of the plate and the culture medium itself.
To identify these parameters, two strains in different conditions
were diluted by different factors from a highly concentrated
culture. The optical density values returned by the plate reader
were plotted accordingly in figure 2.9.

The parameters k and « are different for each strain and each
cell morphology. The determination of k, the proportionality
constant between the number of cells and their optical dens-
ity, for many strains and many conditions, would require an
infeasible number of cell counts.

Although the linear coefficient k varies widely as shown by
Stevenson et al. (2016), it is possible that the coefficient of the
quadratic term is less subject to change. To check that, the
measured optical density is plotted against the linear term of
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the OD, kn. This term is proportional with the number of cells
because it is also proportional with the dilution factor. The
plotted equation on figure 2.10 is then

OD = ODp + x — 22
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Figure 2.9: Measured optical density of cells after a dilution of a given
factor, for two strains and two conditions.
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Figure 2.10: Measured optical density plotted as a function of its
linear part. The dashed lines mark the tangents at the
origin. The Coefficient of Variation (CV) of the fits on
the constant term is 40%, whereas it is only 10% on the
quadratic factor.
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The superposition of the curves in this figure show that ¢ is
a conserved quantity for our experimental setup, equal to 0.2.
This figure also shows that the linear approximation is valid up
to ODs around 0.3.

If we stay within this region, which is the case with the chosen
concentration of glucose, the quadratic correction is not needed.
We then come back to a relation OD = ODgy + kn = ODy + k'm
where m is the biomass of the bacteria. This last relation is more
appropriate for our study where cell size is expected to vary
widely during the course of the experiment, as a consequence k
varies as well. On the contrary, k' is assumed constant.

2.1.5 An economical bayesian cell counting method

Although OD is a reliable way to measure the biomass of a
cell culture, relating this information to the number of cells
is difficult when the biomass per cell is changing during the
experiment. This happens during normal growth curves, as cells
go from a growing phase to the next, and this also happens as a
result of antibiotic action, since 3-lactams are known to induce
severe morphological changes in bacteria. To know the number
of cells, we are then reduced to counting them.

State of the art

Whether for sanitary checks of water and food, for scientific
research on soil samples, or for routine health analyses, counting
cells is one of the most classical problems in microbiology. Non-
etheless, counting protocols have been identified for at least a
century as problematic with respect to accuracy and reproducib-
ility (Wyant 1921; Pamphilon et al. 2013), and new methods as
well as technological advances never stopped being developed
as ways to make this process more practical and trustworthy.

A plethora of methods have been developed to count cells,
directly or indirectly, by various physical phenomena (Patterson
1979). The specificities of some of these methods allow different
features such as the ability to assess not only the number but the
viability of cells, or the possibility to count inanimate particles
like pollens or colloidal spheroids. Some of these methods are
more suitable for eukaryotes than prokaryotes notably because
of the size of the cells.

The most intuitive counting method is probably direct visual
counting, such as can be done under a microscope. In order to
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determine a density of cells, a hemocytometer is typically used,
which provides chambers of defined volumes where cells can be
counted. A direct counting method that doesn’t require the use
of a hemocytometer is called the ratio method, and consists of
mixing the unknown sample with a colloidal solution of given
density and counting the ratio of particles (Takahasi, Ishida, and
Kurokawa 1964). Direct counting of cells can also be done by a
device designed to manipulate individual cells, such as a flow
cytometer.

Cells being too small to be identified without this kind of
precision devices, all the other counting methods can only be
indirect.

Figure 2.11: A few agar plates with bacterial colonies for the CFU
counting method. Picture credit: Andela Davidovi¢.

The most employed of the indirect methods is the CFU method.
It relates with the observation that a single cell deposited at the
surface of an agar plate will, after 12 to 16 hours of incubation,
form a colony of several billions of bacteria, visible to the naked
eye. Spreading on an agar plate a small volume of the initial
solution will then provide a number of dots easy to enumerate,
and working backwards with the dilution factor allows to estim-
ate the cell density in the original sample. Several methods exist
to perform this operation, among which the “pour-plate” (where
the cells are mixed with the gel) and “surface-spread” (where
the cells are spread on top of it) methods (Hedges 2002). When
no prior information is available about the expected number of
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cells, the operator performs serial dilutions and prepares several
plates with different dilution factors, in order to maximize the
chances to obtain a plate with a number of cells suitable for
manual counting (not too high for time reasons and to prevent
crowding of cells, and not too low for statistical reasons). A
number of authors have for a century analysed this problem,
since the pioneering statistical analysis of Fisher, Thornton, and
Mackenzie (1922). Jennison and Wadsworth (1940) discuss the
contributions of the two main sources of uncertainties in this
process: the dilution error, coming from the imprecision of the
pipettes used by the operator to perform the dilutions, and the
distribution error, intrinsic error due to the sampling of a finite
number of discrete entities. In a thorough analysis, Hedges
(2002) adds a third source of uncertainty which is the possibility
that two cells randomly land close to each other on the plate,
growing into a single colony. This leads to an underestima-
tion of the number of plated bacteria. Hedges then computes
optimal number of CFUs to aim for in order to minimize the
error, for given experimental conditions. More recently, Ben-
David and Davidson (2014) proposed an algorithm to choose the
serial dilution that minimizes the error made in the cell count
estimation.

Counting CFUs by eye and hand for this common technique
can be tedious. This is why recent years have seen the devel-
opment of several automated or semi-automated techniques to
make this task easier. Clarke et al. (2010) developed a MAT-
LAB script to analyse pictures and detect colonies automatically.
Brugger et al. (2012) have an integrated hardware and software
platform facilitating the task of taking correct pictures of the
agar plates and analysing them. Geissmann (2013) developed
the open software OpenCFU in an attempt to push a wider adop-
tion of automated image analysis methods. Machine-learning
approaches have also been proposed in (Hilsenbeck et al. 2017;
Khan et al. 2018; Berg et al. 2019).

All these methods require the use of numerous plates espe-
cially for the first run of an experiment, when the expected
number of cells is unknown. For this reason, more efficient
methods have been developed which consist in performing all
the serial dilutions on the same plate (Miles, Misra, and Irwin

1938; Jett et al. 1997).

The other counting methods are even more indirect as they
do not permit the visualization of cells nor colonies.



Methylene Blue Dye Reduction Test (MBRT) is a chemical
method allowing a coarse estimation of the quantity of microor-
ganisms in a sample and is typically used for milk. The OD is
a broadly used measurement that relies on the fact that cells
in suspension diffuse incident light. Although efficient and
practical, this method suffers from flaws. Indeed, it is difficult
to calibrate, and the OD relates rather to the biomass than to
the cell number (Stevenson et al. 2016). In presence of cells of
varying sizes and shapes, the number of cells is then difficult
to access. Another physical method relies on the propagation
in the culture not of light, but of electrical current (DeBlois and
Bean 1970).

Two rather exotic but ingenuous methods allow the estimation
of cell count without actually counting them. One of them
relies on the time that it takes to a cell sample to grow to a
set threshold (Hazan et al. 2012). If we assume exponential
growth, this time is an affine function of the logarithm of the
initial number of cells. Another one, dating more than a century,
has been named the “most probable number” method (Phelps
1908). It consists, like the CFU method, of serial dilutions, but
the cells are not counted. Rather, the cells are kept in liquid
phase and the dilutions are labelled as “positive” or “negative”
whether they contain at least a cell or none (whether bacterial
growth happened or not is visible without instrument after
incubation). The proportions of positive and negative samples
at different dilutions permits a probabilistic evaluation of the
initial number of cells, as explained thoroughly by McCrady
(1915) and Cochran (1950).

A review on a number of these methods considering their
different features has been done by Hazan et al. (2012). It can
be noted that several commercial devices have been developed
to make cell counting more convenient and reliable, such as
(Johnston 2010). A review of two of these semi-automated
or automated measurement devices can be seen in (Cadena-
Herrera et al. 2015).

Bayesian estimation for CFU counting

We do not know of a statistical study of cell counting done in a
Bayesian framework. This is surprising, because it seems quite
a natural approach, as in contrast with frequentist methods, it
allows to easily combine the knowledge of several observations
to improve the accuracy of the estimation.
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Vi

Volume V;
Cell number Ny

0O; CFUs counted

Figure 2.12: Schematical representation of the problem.

Consider an initial volume Vj containing Np cells. A smaller
volume V; is sampled from Vj with Nj cells, which is a random
variable. This volume is spread on a plate and the cells are
counted after incubation. What can we say about the initial
number of cells Ny after observing O; colonies on the plate?

We search for the probability p(Ng = N|N; = O;). This
probability can be expressed with Bayes’ theorem:

p(N1 = O1|Nyg = N)p(Np = N)
p(N1=01)

The denominator can be expanded by summing over all the
possible initial numbers of cells:

p(No = N|N1 = Ol) =

p(N1 = 01|Np = N)p(Np = N)
No = N|N; = 0;) =
p(No = N[N = O1) Ymen P(N1 = O1]No = M)p(No = M)

The direct problem that appears on the right-hand side of
the equation, consists of calculating the distribution of sampled
cells from a known initial problem. Except in the two extreme
cases where all or none of the volume is sampled (that would
result in all or none of the cells sampled), the ratio of sampled
cells can be quite different from the ratio of volumes, because
of the distribution error (Jennison and Wadsworth 1940; Hedges
2002). This effect is exacerbated by low numbers of cells. A
more accurate model for the sampling of cells is one where each
cell has the same probability to be sampled, this probability
being equal to the ratio of volumes. So if we sample half the
volume, each cell has a 50% chance of being sampled, which
does not mean that half the cells will necessarily be sampled.
In this context, the probability that a given number of cells is
sampled is given by the binomial distribution:
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Hedges (2002) suggests that the distribution error dominates
the dilution error. This observation seems to be confirmed by
nine plating replicates from a single well. As can be seen in
tigure 2.13, the spread of the resulting distribution of colony
numbers is comparable to what it would be accounting for only
the distribution error.

Loy — Experimental error

Distribution error
0.8

0.6 1

0.4+

0.2+

Cumulative distribution function

0.0 1

0 50 100 150 200 250
Number of colonies counted

Figure 2.13: Nine plates were spread one after each other from the
same cell culture, with a dilution factor of 1/1000. The
initial culture has an OD of 0.0005 and contains about
130000 cells.

The binomial distribution can then be considered as a reason-
able model for the cell sampling.

The original conditional probability can be rewritten, in all
generality:
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p(No = N|N; = Oy)
G (- 8)" o= 1)
Saen G (1) (1-4)" " pvo = M)
B (1-4%)"p = N)

Eaen (3 (1= )" p(No = M)

Choosing a prior can be a delicate problem. In our case, we
know that the initial number of bacteria is necessarily larger
or equal than the number of colonies counted. We also know
that it cannot exceed a reasonable biological limit. The maximal
optical density measured in our experimental setting is in the
order of 1, which corresponds at best to a billion of bacteria per
cubic millilitre. The initial volume being a fifth of a millilitre, the
maximum possible number of bacteria in the original sample is
on the order of 200 millions. We will use a uniform prior over
the interval [O1, L] where L is this upper limit.# The uniform
prior is typically used to describe a lack of information.

p(No = N[Ny = Oy)

Ne—
G (1-%) 2o

Thio, (- 8) " =i
(gl)( - %)N(@(L ~N)

Y M=0, (gi) (1 — %)M = XM=L+1 (gb (1 - %)M

The first term of the denominator can be expressed with the
negative binomial formula: W =Y, (];)xk_’

In reality, if the optical density is also measured, one can have some inform-
ation on the number of cells. Knowing that the average length of bacteria
can go from a couple to a hundred of micrometers for extremely elongated
cells, the prior can be restricted to two decades instead of 6 or 7. In practice,
the uniform prior is sufficiently robust so that this doesn’t change much the
results.
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p(No = N[Ny = O1)
(gl)(l—%)N@(L—N)
<%)ol+1(1_%1J O iy L+1(£)<1—%>M

G)(#)"(1-8) e

EM . (Ol) <1 )M O1 <%)Ol+1
1

T e
ERNOYANT Vo 1—-Y(0y,L, V1 /Vp)

where Y corresponds to the sum in the denominator in the
previous line.

The last fraction tends towards 1 when L — oo. For N < L,
this fraction doesn’t depend on N and acts as a normalizing
factor. Consequently, for L sufficiently large such that it doesn’t
touch the posterior (L > O; %)), we can ignore this factor.

We then have the final formula, that allows to express the ini-
tial conditional probability as a negative binomial distribution®
of parametersn = O; +1, k=N —-0O; and p = V1

} } N\ (W O1+1 v\ V-0
=== ()04

This formula allows to determine the expected value of the
initial number of cells, which is the average of the distribution.

The average of k in the negative binomial distribution is @,
to which we have to add O; to obtain the average of N, which
gives, after calculation:

Vo, -V

E —
[No|N; = Oq] = Olvl v

In this parameterization, the negative binomial distribution describes the
number of failures k in iid Bernoulli trials before n successes occur, if the
probability of success of each trial is p.
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n(l—r)):

The standard deviation of this distribution® is given by g

The cumulative distribution function of this distribution is
I,(r,k + 1) where Ic(a,b) is the regularized incomplete beta
function?:

CDF(N) = Iﬁ(ol +1,N—-01+1)

Yo

Its quantiles can be extracted by root finding of the function
scipy.special.betainc. Even more conveniently, everything can
be solved with the stats module of scipy:

from scipy.stats import nbinom

def n0_95ci(dilution, cfus):
Returns (mean, 1b95ci, ub95ci) for the inferred
distribution of number of cells before a dilution
that leads to a given cfu count.
dist = nbinom(n=cfus+1l, p=dilution, loc=cfus)
return (dist.mean(), =xdist.interval(0.95))

6 We can check here that these two values make sense on a few extreme cases.
In the first case, V7 = 0. If no volume was sampled, nothing can be deduced
about the initial culture, and consequently the distribution diverges. In the
second case, V; = Vj. This corresponds to spreading the total volume of the
solution. In this case, we find E[Ny|N; = O1] = O and ¢ = 0, as expected.

7 The incomplete beta function is defined in terms of the beta function
B(a,b) = fol t7=1(1 — t)*~1dt and the incomplete beta function B(x;a,b) =

fox tu—l(l — t)b*1 dt as Iy(a,b) = %'
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PARALLEL DILUTIONS The same framework can be applied
just as easily to more complex sampling scenarios, for example
if two plates are spread one after each other from the same
culture with possibly different dilution factors. As an example,
consider that after the first volume V; was sampled, another
volume V, is sampled from the same culture and spread on
another plate. Then we have:

O; CFUs 7c/ounted

Volume Vj
Cell number Ny

O, CFUs gounted

Figure 2.14: Schematical representation of the problem of parallel
dilutions.

p(N() = N|N1 =01 ANy = Oz)
p(Nl =01 ANy = Oz|No = N)p(No = N)
p(N1 =01 AN, = O2)
p(Nz = Oz|N() =NAN; = Ol)p(Nl = Ol|N0 = N)p(No = N)
p(Nl =01ANp = Oz)

o () (=) GI() () =)
P(Nl =01 ANy = Oz)

The denominator, expressed as a sum over M like previously,
can be simplified as following, if we again take the uniform
prior:

p(Nl =01 ANy = Oz)

(1) (%) (o) (i) (70
Vo Vo Vo— Wi Vi+W Oq
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This goes back in the original formula:

p(N() = N‘Nl =01 AN, = Oz)

(v

N-0
Qe

V2
vy,
h 04 1 ﬂ 0Oy Vv, 0Oy Vo 1+01+0, (OH—Oz)
Vo Vo Vo—V1 Vi+V; 0O
N—Op\ (N 1_ v N—-01—-0, 1_ v N—-0O
50 (1 vy 7

1
(Ol(-)‘rlOZ) (1 B %>Oz (V‘fv > +014+0,
0 1 2

< N ) (Vl + V2)1+01+02 <1 B Vi + V2>N—Ol—02
01+ 07 Vo Vo

Where we recognize, as previously, a negative binomial dis-
tribution of parameters n = 01 + O+ 1,k = N — O; — O3 and
@. This shows that in this framework, sampling two
different volumes and counting them independently is exactly
equivalent as sampling the sum of the volumes in one time.
When appropriate, one could take advantage of this property by
summing the counts of several plates sampled from the same
well, to improve the accuracy of the estimation. A frequentist
investigation on the usefulness of averaging over dilutions can
be found in (Hedges 2002).

SERIAL DILUTIONS In another typical situation, the dilution
factor necessary to sample a countable number of bacteria from
a well is too large to do it in one step. Then a first volume V;
is sampled, fresh medium is added to this volume to reach a
volume Vé, and a second volume V5 is taken from this interme-
diate sample and then spread on a plate. We only count the
number of cells contained in V, and observe O, colonies. In
these conditions,

0, v \N-01-02 7, \O1 s\ N-01
) (-win)  ew) (1)

(o) (-wn)  (-w) (e
01+ 0y VWo—W Vo Vo

) 1+01+0,



2.1 EXPERIMENTAL CALIBRATIONS | 33

N Vo 1
N1 N2 \

Volume V; Volume Vj
Cell number Ny Cell number Ny

0Oy CFUs counted

Figure 2.15: Schematical representation of the problem of serial dilu-
tions.

p(No = N|N; = Oy)
p(N2 = O2|Nog = N)p(Ng = N)

p(N2 = O2)
 X0,—0, P(N2 = 03Ny = O1)p(Ny = 01Ny = N)p(No = N)
B p(N2 = O2)
01-0, O1 N-0O;
250,80 (%) (- 8) " @) (1) o =)
B p(Ny = Oy)

The sum in the numerator can be written
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Leading to the same answer as before, the dilution factor
being the product of the serial dilutions:

INAVAA R S ViV, \ V02
Ny = NIN, = 0,) = 2 1_1"
P = NNz = 02) (Oz><V0V6> VoV

coMBINATIONS We saw that in parallel, dilutions factors are
added to each other, and in series, they are multiplied together.
One can show that these two laws combine as expected.

If, from a volume V), a volume V; is extracted and completed
until Vé with fresh medium, then from this new volume V; is
sampled and plated, and from the initial volume, V3 is directly
sampled and plated, and the two plates are counted with re-
spectively O; and O3 colonies, then the probability distribution
on the initial number of cells is

p(N() = N‘Nz = 0Oy AN3 = 03)

- \02+03)\Vy WV Vo WV}

PROBABILISTIC PROGRAMMING These derivations, although
tedious, are tractable. To investigate more complex situations,
for example to integrate the dilution errors, probabilistic pro-
gramming is the ideal tool. PyMC3 (Salvatier, Wiecki, and Fonnes-
beck 2016) is one of the most accessible frameworks allowing to
describe these problems in Python.

To go back to the case of a simple dilution, with a normal
multiplicative dilution error, the program that computes the
mean and the 95% confidence interval is the following:
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import pymc3 as pm
from scipy.stats.mstats import mquantiles

def nO_95ci_pymc(dilution, cfus, nmax=1e9, nbsamples=10000):

Returns (mean, 1b95ci, ub95ci) for the inferred

distribution of number of cells before a dilution

that leads to a given cfu count.

With probabilistic programming.

with pm.Model():
nO® = pm.DiscreteUniform(’'n®’, lower=0, upper=nmax)
dilf = pm.Normal('dilf’, mu=1l, sigma=0.02)
pm.Binomial(’obs’, n0, dilutionxdilf, observed=cfus)
trace = pm.sample(nbsamples, tune=nbsamples//2)

mean = trace[’'n0’].mean()

1b95ci, ub95ci = mquantiles(trace[’'n0’], [0.025, 0.975])

return (mean, 1b95ci, ub95ci)

CONCLUSION OF CELL COUNTING As we will see in chapter 4,
model calibration relies not only on data values but also on
their uncertainties. Evaluating uncertainties with CFU counting
is classically done by making typically 3 replicates of each plate.
However, if we want data on the number of cells every two
hours during 24 hours, in an experiment done with 6 antibiotic
concentrations, the number of time points is 78. Replicating
each plate 3 times is infeasible experimentally, so we needed a
way to compute confidence intervals with only one plate.

Moreover, the first time that we do an experiment, we do not
really know what number of cells to expect, and the dilutions
are not optimized. Being able to infer average numbers and
confidence intervals from only one plate per time point allows to
optimize the dilutions in case we want to repeat the experiment,
without spending too much time or resources in the preview
experiment.
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2.2 DEVELOPMENT OF A CUSTOM PLATE
READER DRIVER

The instrument that we chose to carry out our experiments,
Tecan Spark (figure 2.16), is a versatile multimode plate reader
that can be purchased with an injector module able to dispense
in the plate small volumes of up to two reagents, at any time
during the experiment.

e ——

Figure 2.16: Tecan Spark with injectors. Picture credit: Chetan Aditya.

It is an automated device controlled by a computer to whom
it is connected via USB. The programming of the device is
done through the Windows software SparkControl, licensed
by Tecan, offering a graphical programming interface and a
live visualization of results. A protocol is specified in this
software as a sequence of instructions (such as taking an OD
measurement, shaking the plate, or incubating it) assembled
by dragging graphical blocks in succession to create a program
(figure 2.17).

It is difficult to make a software both accessible for novice
users, and powerful for power-users. In this case, it is clear that
the engineers and developers of SparkControl made the choice to
enable people without programming experience to easily design
protocols for the plate reader. Unfortunately, SparkControl is of
limited help for complex static protocols (through limitations
in the nesting of loops for example), and almost unable to



implement any dynamic protocols, i.e. protocols that might
depend on the data measured.
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Figure 2.17: SparkControl, the Tecan software to program the plate
reader. This protocol represents 400 OD measurements
of the whole plate, separated with 5 minutes of shaking.

A classical way to enable tech-savy users to use a piece of
equipment as they please, is to expose to them a documented
and updated low-level programming API.

Unfortunately, Tecan was unable to propose us an API satisfy-
ing our requirements. A meager Visual Basic API exists but only
allows to perform a couple of high-level operations, like execute
a protocol already programmed with SparkControl.

Without any help from the constructor, we then undertook to
reverse-engineer the plate reader in order to build ourselves a
suitable API. The reverse-engineering of a device is a process
consisting of its careful auscultation in order to build a precise
understanding of its hidden internal functions. This understand-
ing is needed to gain the ability to interact with the device,
disguised as the official driver, in order to make it execute any
arbitrary succession of commands, that could not be done in
the official way. It is also a risky process, because it is a non
recognized use of the device that might void its guarantee, and
give direct access to potentially dangerous low-level functions of
the device, without the safety checks performed by the official
interface.
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2.2.1  Reverse-engineering of a lab device
General informations

The Spark plate reader has a modular design and can be bought
with in one of several configurations consisting of a list of mod-
ules. The base module, necessary for the use of the plate reader,
is the “Plate transport” module. We bought the plate reader
with the optional “Absorption,” “Fluorescence” and “Injectors”
modules.

Upon connection of the Spark USB cable to a computer,
three USB devices appear and introduce themselves with their
idvendor and idProduct numbers, that all USB devices possess,
and that uniquely identify respectively their manufacturer and
their model. Tecan has its own idVendor, the hexadecimal num-
ber 0x0c47, registered under the description TECAN AUSTRIA. It is
common to the three devices. They have their specific idProduct
numbers:

0x8026 corresponds to ABSORPTION;
0x8027 corresponds to FLUORESCENCE;
0x8028 corresponds to PLATE_TRANSPORT.

Interestingly, the injectors module does not have a dedicated
USB device; upon further inspection we discovered that the
injectors are managed by the plate transport module.

First contact

The easiest way to understand how to communicate with the
plate reader is to observe how the official software SparkControl
does it. This can be done with the open-source software Wire-
shark (Combs 2020), specialized in the interception and analysis
of network packets, but which can also be used for USB.

Wireshark is opened and setup to spy on the USB connection
used between the computer and the plate reader. The recording
is launched, then the plate reader is connected to the computer
and SparkControl automatically starts an initialization phase
which is entirely recorded by Wireshark.

During this phase, SparkControl and the plate reader ex-
change messages in a custom protocol. Some of the bytes can
be interpreted as ascii characters. An extract of the initialization
sequence is reproduced below, together with the decoded ascii
on the right. The non-printable bytes are marked with a dot.



computer -> Spark 01:01:00:11:3f:49:4e:53 ....7INS
54:52:55:4d:45:4e:54:20 TRUMENT
53:54:41:54:45:4c STATEL

computer <- Spark 81:01:00:0b:53:54:41:54 ....STAT
45:3d:52:45:41:44:59:aa E=READY .

computer -> Spark 01:02:00:15:48:57:42:55 ....HWBU
54:54:4f:4e:20:41:4c:4c TTON ALL
3d:44:49:53:41:42:4c:45 =DISABLE
44:53 DS

computer <- Spark 81:02:00:00:83  .....

After investigation, guessing and error, the general structure
of a message appeared:

81:01:00:0b:53:54:41:54:45:3d:52:45:41:44:59:aa
AA CCOO LL _________ Message text___________ XX

AA is a message identifier, with a value either o1, 81, 82, 83,
84, 85, 86, 87 or 88 depending on the type of message;

CC is a message counter, incremented by 1 at each message.
A message answering to another one shares the same
message counter;

00 is always 00;

LL is the length of the text length in this message;

After the length comes the text of the message;

The messages ends with XX which is a message checksum:
it is the binary XOR of all the rest of the message, in such
a way that the binary XOR of all the message including
this byte is 06.

With this information and the library PyusB (PyUSB (version
1.0) 2020), we were able to craft and send our own USB mes-
sages for the plate reader, as well as read its answers. With
the example of the recorded initialization sequence, we were
also able to write a python script to initialize the plate reader
ourselves.

Format of the data

The next step is to understand how to interpret the data sent by
the plate reader following a request for an absorbance reading.
The message text corresponding to absorbance readings cannot
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be interpreted as ascii: it is a binary blob which we must learn
how to make sense of.

SparkControl has a setting that allows choosing how many
reads per well the plate reader will do. We noticed that the size
of the packets changes for different values of this setting: 8o
bytes for 20 reads, and 4 bytes for 1 read. Which must mean
that each read is sent individually and represented over 4 bytes.

Setting up a plate with high OD and low OD wells, we could
then compare the values themselves, read per read.

high 0D low OD
hex: 9f:01:0d:95 9f:94:75:34
hex: 9c¢:55:0d:57 a0:fe:76:7c

I

I
hex: 9f:db:0d:9%9e | a3:05:78:33
hex: 9e:96:0d:7a | al:17:77:14

The four high OD reads correspond to the same well, and
likewise for the low OD reads. Their values should then be
similar. Looking at these values, what jumps to the eye is that
the first and third bytes are almost constant, whereas the second
and fourth are more variable. This is a hint that the first and
third bytes can be the most significant bits of a number, and the
second and fourth are the least significant ones. It leads into
interpreting these four bytes as two 2-byte integers:

high 0D low OD
hex: 9f:01|0d:95 | 9f:94|75:34
int: 40705| 3477 | 40852|30004
hex: 9c:55|0d:57 | a0:fe|76:7c

I
I
I
int: 40021| 3415 | 4121430332
hex: 9f:db|0d:9%9e | a3:05|78:33
int: 40923| 3486 | 41733|30771
hex: 9e:96|0d:7a | al:17|77:14
int: 40598| 3450 | 41239|30484

The values of these numbers remind of the way that optical
density is measured, as a function of the ratio of the incident
and transmitted lights. We understand that the first number is a
measurement of the power of the incident light, and the second
is a measurement of the transmitted light. Hence the first result,
that looks like an optical density:

1 Pin
0810 Dy,

high 0D low 0D
hex: 9f:01|0d:95 | 9f:94|75:34
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int: 40705| 3477 | 40852|30004
log: 1.068 0.132
hex: 9c:55|0d:57 | a0:fe|76:7c
int: 40021| 3415 | 4121430332
log: 1.069 0.133
hex: 9f:db|0d:9%9e | a3:05|78:33
int: 40923| 3486 | 41733|30771
log: 1.070 0.132
hex: 9e:96|0d:7a | al:17|77:14
int: 40598| 3450 | 41239|30484
log: 1.071 0.131

Measurement model

At this point, one needs to understand how the data is measured
in order to properly interpret it. The absorbance is defined as
the logarithm of the ratio of the power of the incident over
transmitted light by a sample. One can imagine measuring
these quantities with one light source and two photodetectors
arranged as presented in the figure 2.18.

light
source

Figure 2.18: Measurement model.

However, the idealized relationship OD = log,, (%‘r‘) is not

valid in the real world where neither light source or detectors
are ideal. The light source emits variable amounts of light, and
the detectors do not necessarily have the same gain, and also
measure different background noises.

The photodetectors can be activated with the sample out of
the light path, and with or without light. This mode can be used
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to understand the behaviour of the different components of the
design.

A series of 50 flashes was recorded, with light off, and with
light on. With light off, ®;, = 417 £+ 3 and & = 620 = 8. With
light on, ®;,, = 41688 + 1058 and &y, = 41283 £ 1056 (average +
standard deviation). The variability of the values with light on
can seem important, and an important question is to determine
where it comes from.

Although the measurements of incident and transmitted light
with light off seem uncorrelated (correlation coefficient of 0.22),
they are extremely correlated with light on (correlation coeffi-
cient of 1 — 10™%). This shows that most of the variability in the
measurements comes from the light source and not from the
detectors.

More formally, if x is the power emitted by the light source,
then we can model the value measured by the incident light
detector as

Cpin - Gin X+ Oin

with Gj, the gain of the detector and Oy, its offset value due to
background noise. Similarly,

Oy = G x107°P 4+ Oy

if OD is the optical density of the sample.

It is useful to make a calibration run with the sample out of
the light path, to obtain values that we will call B for black (light
off) and W for white (light on), where z (different from x) marks
the power sent by the light source to perform this particular
measurement:

Bin = Oin By =Ou Win = Ginz+Oin Wi = Grz+ Oy
Extracting the value of OD from these measurements requires

the use of all of these variables, and it can be verified that in
these conditions,

b, — Bin, Wy —B
D= 1 n in tr tr
© Oglo ( q)tr - Btr Wi - Bin

The detectors are here supposed noiseless, but it would be
interesting to investigate how to explicitly handle measurement
noise, and how to make the best use of several measurements.




From our investigations it appears that SparkControl uses this
formula, but with for ®;, and Py respectively the average of
the incident and transmitted light beams.

It is not very clear why taking the average of the intensities
first, and then computing the OD would be better than comput-
ing the OD for all the reads, and then taking the average of the
ODs obtained.

As a first approach, we did compute the individual ODs for
each reading, from what we extracted not the average but the
median, in order to limit the influence of outliers.

2.2.2 Design of the library platerider

We implemented a driver and API for the plate reader in about a
thousand significant lines of code, in the programming language
Python 3.

Logging is done both to the terminal (at a configurable level)
and to a file (at the most detailed level), such as to not clutter
the terminal with logging information, but still have everything
recorded in case of need. In fact, the library has a replay mode
where it reads an existing log file in place of the plate reader, re-
playing the exchange as it happened. This mode was especially
useful for debugging.

The code is structured as follows

platerider/
__init__.py 320 sloc
bufread.py 80 sloc
errors.py 30 sloc
util.py 50 sloc
module.py 150 sloc
absorption.py 200 sloc
fluorescence.py 10 sloc
injectors.py 90 sloc

plate_transport.py 140 sloc

—init__.py

This file is the entry point of every library in Python. It defines
a class Spark and the code necessary to detect the plate reader,
perform the initialization dialogue, and create as many objects
as there are modules (absorption, fluorescence, plate transport,
injectors). A short extract of this file is featured below.
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class Spark:

def

def

__init (self, cassette: bool = False) -> None:
# skipped lines

self.cassette = cassette

self.abs = absorption.Absorption(self)

self.flu = fluorescence.Fluorescence(self)
self.plt = plate_transport.PlateTransport(self)
self.inj = injectors.Injectors(self)
LOGGER.info('Modules acquired and configured’)

__enter__(self):
self.plt._send_raw(b’'\x02\x00\x00\x00\x02")
LOGGER.info('Hello?")

msg = self.plt.read(timeout=3)

assert len(msg) ==

LOGGER.info('Hello!")

sel.plt.check('?INSTRUMENT STATE’, 'STATE=READY’)
LOGGER.info('Instrument ready.’)

# skipped lines

bufread.py

The file

bufread.py implements the class BufferedReader, which

is a wrapper around a USB reader, with a buffer that it uses to fix
broken messages or messages that arrive in several USB packets.
It runs in its own thread and continuously polls its attributed
USB endpoint, stacking them up in a queue in case they are not
read fast enough. This avoids the loss of messages written over
by the next one in the USB port. A simplified implementation is
reproduced below.

class BufferedReader(Thread):

Runs in a thread, listens to the specified endpoint,

fixes incomplete and multiple packages and buffers them.

def

def

__init__(self, endpoint) -> None:
Thread.__init _(self)

self.endpoint = endpoint

self.messages = queue.Queue()
self._is_running = True
LOGGER.info('Buffered reader created.’)

run(self) -> None:
LOGGER.info('Buffered reader running.’)
while self._is_running:
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try:
packet = self._read()
self.messages.put(packet)
except usb.USBError:
pass
LOGGER.info('Buffered reader stopping.’)

def stop(self) -> None:
LOGGER.info('Asking buffered reader to stop.’)
self._is_running = False

def read(self, block: bool = True, timeout: int = None):
return self.messages.get(block=block, timeout=
timeout)

def _read(self, timeout: int = 1000):
# Calls ‘self.endpoint.read’ sufficiently many times
# to get a complete message, checks that it is well-
# formed and not corrupted before returning it.

errors.py

This file defines the errors used in the module, for example
USBTimeoutError raised when the plate reader does not answer,
or ModuleTimeoutError, when the plate reader says that one of
its internal modules does not answer.

util.py

The file util.py contains the definition of two decorators used
to lift and close the lid automatically. Decorators in Python
are wrappers around functions. Some functions of the plate
reader can only be done with the lid of the plate open, such
as dispensing reagents with the injectors, or measuring the
absorbance of some wells (if the humidity cassette was used). In
order to avoid repeating the code for the lid opening or closing
for each function that needs it, Python offers the possibility to
annotate them with these decorators (examples of their use are
given in the file absorption.py):

from functools import wraps

def needs_1lid_open(function):
"Decorator to mark that this method needs the lid open."
@wraps (function)
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def wrapper(self, xargs, **xkwargs):
if self.spark.cassette:
self.spark.plt.lid_lift()
return function(self, xargs, *xkwargs)
return wrapper

module. py

This file defines the abstract class Module, that Absorbance, Fluorescence

, and PlateTransport inherit of. It contains the code to initialize

the module, retrieve its USB endpoints and communicate with it.

The module exposes among others the functions check (command,
answer) that sends a command and verifies that the answer is

the one expected, ask(command) that sends a command and re-

turns the answer. Every incoming and outgoing communication

is logged automatically.

absorption.py

The file absorption.py specializes the class Module for its absorb-
ance configuration. Notably, it adds a function to make the
calibration described in 2.2.1, as well as functions to measure
the optical density of a well, a row of wells, or the entire plate.
A short extract is featured below.

class Absorption(module.Module):
def __init__(self, spark) -> None:
super().__init__(spark, idvendor=0x0c47,
idproduct=0x8026)

self.bin = None
self.btr = None
self.win = None

self.wtr = None

def od(self, inc: float, tra: float) -> float:
return np.loglo(
(inc - self.bin) / (tra - self.btr) =*
(self.wtr - self.btr) / (self.win - self.bin))

def prepare_reference(self) -> None:
"Fills up bin, btr, win, wtr"
# skipped lines

@util.needs_lid_open
def scan_well(self, well: util.Well) -> float:
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X, Y, z =well.xyz()
self.spark.plt.send(f'SCAN X={x} Y={y} Z={z}')
# skipped lines

msg = self.read()

lights = list(struct.iter_unpack('>HH’, msg))
ods = [self.od(i, t) for i, t in lights]

# skipped lines

return np.median(ods)

fluorescence. py

I never used the fluorescence module, so the code for this mod-
ule is not implemented yet.

plate_transport.py

This file implements the communications with the plate trans-
port module, which is the most important as it centralizes and
coordinates the work of the other modules, and also forwards in-
formation about temperature and motors. A few representative
functions of this module as reproduced below.

class PlateTransport(module.Module):
def __init__(self, spark) -> None:
super().__init__(spark, idvendor=0x0c47,
idproduct=0x8028)

def hwbutton(self, enable: bool,
button: str = "ALL’) -> None
action = ['DISABLED’, 'ENABLED'’][enable]
self.check(f'HWBUTTON {button}={action}’)

def plate_out(self, side: str = 'RIGHT’) -> None
self.check(
f'ABSOLUTE MODULE=MTP POSITION=0UT_{side}’)

def plate_in(self) -> None
self.check(
f’ABSOLUTE MODULE=MTP POSITION=PLATE_IN’)

def shake(self, mode: str = 'LINEAR’,
amplitude: int = 800,
frequency: int = 240,
duration: int = 3) -> None:
self.check(
"ABSOLUTE MODULE=MTP POSITION=INCUBATION’)
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self.check(f'MODE SHAKING={mode}’)
self.check(f’'SHAKING AMPLITUDE={amplitude} '
f’FREQUENCY={frequency}’)
self.check(f’SHAKING TIME={duration}')
LOGGER.info(f’'Shaking starts ({duration} s).’)
self.check(’SHAKING STARTS’, timeout=duration+2)
LOGGER.info('Shaking ends.’)

2.2.3 Applications of platerider

Basic example

This library enables the full control of the plate reader in a con-
venient way. For example, the full script that sets the incubation
temperature to 37 °C, takes the plate in, and measures the full
plate 400 times, then dispenses antibiotics in some of the wells
as a function of the latest plate measurement, with 5 minutes of
incubation between each measurement is the following;:

from platerider import Spark

with Spark(cassette=True) as spark:

spark.set_temperature_control(37)

spark.plt.plate_out()

input(’Place plate on tray and press Enter.’)

spark.plt.plate_in()

for _ in range(400):
plate = spark.abs.measure_plate()
injections = compute_injections(plate)
for well, volume in injections.items():

spark.inj.inject(well, disp_vol=volume)

spark.plt.incubate(duration=300)

The full log is automatically saved in a file .log, the plate
measurements are also automatically saved in a file .csv, as well
as the injection log that is saved in another .csv file. Because of
the dynamic nature of the protocol, this program is impossible
to implement with the official software.

Dilution helper

One of the most common tasks in any microbiology laboratory
is the dilution of an overnight culture to a specific optical density.
Because of the non-linearity of OD (see 2.1.4), when the initial
culture is of high density, it is advised to first bring it to an




intermediate OD (around 0.1), and then to the target density, in
order to improve the precision of the dilution.

It is to the experimentalist to figure out the dilution factors for
these two dilutions. Although not difficult, this task is somewhat
tedious and prone to mistakes. The existence of a plate reader
API allowing to write any arbitrary program is ideal to remedy
this situation.

We wrote a command-line utility to automate this process and
make it more efficient and accurate. It takes arguments to select
a blank well (one filled with only medium and no cells), the
target optical density desired, and the target dilution volume.
The script corrects for the quadratic nonlinearity measured in
2.1.4 with a quadratic coefficient of —0.2. For example, the
command to generate the instructions to follow to obtainl mL
of culture at an OD of 0.05 is the following, assuming that the
blank well is F1 and the wells containing the cultures to dilute
are F2 and F3:

dilution --blank F1 --target 0.05 --volume 1 F2 F3

2.3 CHAPTER SUMMARY

This chapter detailed all the work necessary for the obtention
of high-quality experimental data. As explained in section 1.1,
the data consists mostly of OD growth curves acquired with
an optical plate reader, but it is supplemented by cell counting
experiments in order to assess and challenge the model.

In a first part, we lay out our experimental setup, starting
with the medium composition that we chose to measure only
what is directly relevant to antibiotic resistance (2.1.1). Then,
we discuss the influence of the history of the cell culture at the
start of the experiment (2.1.2). In the next subparts, we focus on
issues more directly related to the measuring devices: how to
optimize measurements to minimize water evaporation (2.1.3),
and how to correct for the non-linearity of OD measurements
(2.1.4). Finally, we introduce a bayesian method of cell counting
allowing to compute confidence intervals on the results, starting
from one plate, and also able to combine several plates (2.1.5).

The second part of the chapter is dedicated to the reverse-
engineering of the plate reader. After a tutorial on reverse-
engineering a USB device, we present the library platerider that
we developed, serving as an API allowing to programmatically
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control the plate reader. Finally, we show a couple of practical
applications of platerider.



RESISTANCE MODELS

As argued by Allen and Waclaw (2016), LukaciSinova and Bollen-
bach (2017), Lopatkin and Collins (2020) and others, quantitative
modelling is a tool so important in physical and life sciences that
some phenomena can escape understanding until proper care is
given to the development of an appropriate mathematical model.
Multiscale systems almost always fall in this category, and the
development of their models is often challenging at the same
time conceptually, mathematically and numerically. Although
bacteria are one of the simplest life forms that we know, they
possess several thousands of genes (Serres et al. 2001) and about
the same number of encoding proteins. This creates several
millions of potential biochemical reactions, that all happen at
the same time, and of which we can observe only a fraction,
with highly specialized methods.

The interactions between molecules, characterized by reaction
rates and molecular constants, combine at the microscopic level
of a cell into processes involving cell-level structures like cell
compartments, cell wall, or microscopic quantities like the length
of a cell. Further, bacteria live in populations, whether dense as
in biofilms, or spread as in liquid cultures, whose macroscopic
features are not to be neglected to understand the full behaviour
of the system.

None of these three scales —molecular-, cell- and population-
level— should be overlooked in a model with the ambition to
capture the main features of the system. However, although full
mappings of one level at a time have been attempted (Bhat and
Balaji 2020), modelling perfectly more than one level at the same
time seems irrealistic. Modelling in biology is then the art of
formulating a problem, setting a bar, and knowing to pick not
too little nor too much in order to answer the original question.

The goal of this chapter is to present the models that we de-
veloped during this thesis, but also the reasons that led us to
add new resistance models to an growing collection, and the
process that enabled us to build one, followed by another. After
a short review on the current models of cell populations and
of antibiotic resistance, we describe the limitations of existing
models that we wanted to overcome with our approach. Then,
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we explain how we adapted, modified and configured a generic
growth-fragmentation model to fit our system of study, and
verify that the resulting model complies with notable experi-
mental observations. However, the simulation of this model is
too costly and prevents an adequate calibration to experimental
data. In a last part, we show how to decrease the complexity of
the model while conserving its main features, by reducing the
simulation of a whole distribution to the simulation of its first
moments only.

3.1 STATE OF THE ART IN BACTERIAL POP-
ULATION MODELLING

The dynamics of a population of cells treated with antibiotics
can only be understood knowing how untreated cells grow
(section 3.1.1), the molecular and cell-level actions of antibiotics
(section 3.1.2), and also the modes of defence of bacteria, which
includes the population effects (section 3).

3.1.1  Models of growth

The first non-trivial situation to study is the simple growth of
cells in a liquid culture medium. The exponential growth is one
of its most typical features (Neidhardt 1999).
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Figure 3.1: Schematic of a typical growth curve (Buchanan 1918).



Besides exponential growth, the typical growth curve is com-
posed of several successive phases, including, such as pictured
in figure 3.1:

lag phase: the part leading to exponential growth, where
the growth rate is ramping up (ab);

exponential growth, featuring constant growth rate (bc);
stationary phase: the part with null growth rate (de),

The universality of this curve is remarkable. Shared by
most living beings including humans (Roser, Ritchie, and Ortiz-
Ospina 2013), it also applies to the spread of inanimate objects
such as viruses, fashions or cultural trends.

It has been extensively studied, qualitatively and quantit-
atively, with the first breakthrough probably being made by
Monod (1941) who found an empirical mathematical relation
between the concentration of nutrients in the culture medium s,
and the growth rate of the bacterial population feeding on it y,
the famous Monod equation:

s
Ks+s

where K; is the concentration of nutrient enabling the microor-
ganism to grow at half its maximal speed.

Despite its age and some criticism (Condrey 1982), the Monod
equation is still overwhelmingly used to model the growth of
microorganisms, and efforts to improve it are generally failing
to gain traction, probably because of the diminishing return that
a complexification of this equation would bring (Lendenmann
et al. 2000). The competing framework to model cell growth is
the family of logistic functions, where the limiting growth factor
is not the depletion of the nutrients but the overcrowding of the
culture medium (Zwietering et al. 1990).

However, extensions to the Monod equation have been pro-
posed to also describe the growth of cells over several substrates
at the same time, situation known to provoke multiple successive
exponential phases (Tsao and Hanson 1975; Egli, Lendenmann,
and Snozzi 1993).

As basic as this system may seem, it already hides a great
complexity. Further complexity lies in the relationship between
the individual and population scales. Firstly, the individual
growth rate of a cell shows periodic perturbations induced by
the cell cycle. But even individual growth rates averaged over
the cell cycle are in general different from one cell to another

]/[:
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in the same population. To a given distribution of individual
growth rates corresponds a population growth rate which is in
general not the average growth rate of the cells (Hashimoto et
al. 2016).

3.1.2 Models of antibiotic effect

An antibiotic is a substance that disrupts one or several of the
biochemical processes at play within a bacterium cell, leading to
a stop or a slowing down of its growth (bacteriostatic antibiotics),
or to its death (bacteriolytic antibiotics).

Several classes of antibiotics exist, that target different pro-
cesses of the cell (Finberg et al. 2004). The main targeted system
by the bacteriostatic antibiotics is the protein synthesis ma-
chinery (this is the mode of action of tetracyclines, chloramphen-
icol, macrolides, oxazolidinones, lincosamides and streptogram-
ins). Antibiotics with a bacteriolytic action may target the syn-
thesis of the cell wall (3-lactams or glycopeptides), the proper-
ties of the cell membrane (lipopeptides), the DNA replication
(quinolones) or RNA synthesis (ansamycins).

-lactams are one of the clinically most important classes of
molecules, and were estimated to have saved directly between
8o and 200 million lives in under 8o years. Although their
general mechanism of action, through interfering with the cell
wall synthesis, has been known for decades, molecular details of
their mechanisms, or of the role of the enzymes that they target,
Penicilin Binding Proteins (PBPs), keep being discovered until
today (Chung et al. 2009; Cho, Uehara, and Bernhardt 2014, Wu
et al. 2014; Vigouroux et al. 2020).

Penicillin-binding proteins

A thorough review on the roles of PBPs can be found in (Sauvage
et al. 2008). In E. coli, the consensus is that PBP3 is exclusively
required for cell division (Botta and Park 1981). Inhibition of
PBP3 consequently results in cell filamentation (Buijs et al. 2008).
Besides PBP3, and with different affinities, 3-lactams also target
PBP1 and PBP2. The morphological effects induced on the cells
at different antibiotic concentrations can allow to determine the
relative affinities of an antibiotic on these three enzymes (Spratt
1975). The enzymes PBP1 and PBP2 are respectively involved
in the reparation of wall defects (Vigouroux et al. 2020) and
the maintenance of the rod cell shape (Sauvage et al. 2008).



Inhibition of PBP1 results in rapid cell lysis (Buijs et al. 2008),
while inhibition of PBP2 makes cells spherical.

PBPs and (-lactams react together with an acyl-enzymatic
reaction that consumes the antibiotic (Chambers, Sachdeva, and
Hackbarth 1994). The PBP is inactivated while bound in the
complex, which is relatively stable.

Multi-scale interactions

Even with the perfect knowledge of molecular processes, the
story would be incomplete without the study of the effects that
are implied at the cell level. A notable characteristic of 3-lactams,
because of their interference with the cell wall mechanisms, is to
dramatically change the shape of the treated bacteria, creating
either filaments or spheroids, depending on the main target
PBP of the drug (Greenwood and Eley 1982; Buijs et al. 2008;
Fredborg et al. 2015). As put by Greenwood (1977), “unless
morphological observations are made, important features of
antibiotic response may be missed.”

A cell-level view is necessary to complement the understand-
ing of molecular processes, as illustrated by the phenomenon
of phenotypic tolerance. A cell is said to exhibit phenotypic tol-
erance when its current physiological state allows it to tolerate
antibiotics. Non-growing cells (also called persisters), are prime
examples of phenotypic tolerance (Wood, Knabel, and Kwan
2013), as well as auxotrophic cells (Elaine Tuomanen 1986).

The presence of persisters in a population brings the need to
consider a third plane of interest: the level of the population
itself. Indeed, a genotypically homogeneous, but phenotypic-
ally heterogeneous cell population made of sensitive cells and
persisters, might recover thanks to stochastic awakening of the
persisters (Windels et al. 2019), once the antibiotic passed. The
dynamics of the population then cannot be understood by only
considering molecular or cell-level processes. A complete model
of the response of cells to antibiotics must then include aspects
of the three levels: molecular, cell, and population (Allen and
Waclaw 2016).

3.1.3 Antibiotic resistance models

As put by Levy and Marshall (2004), on the 15 known classes
of antibiotics, none has escaped to resistance so far. Resistance
mechanisms are of diverse origins and modes of actions (Hogan

55



56

and Kolter 2002). Among the most common are the expression
of efflux pumps extracting antibiotics out of the cell, modifica-
tion of porins or cell permeability to antibiotic, modification or
change of the target protein to foil the antibiotic attacks. The
acquisition of these defences can be made by de-novo mutation
or horizontal gene transfer (transfer of genetic material between
cells of the same population).

Biofilms, or compact 3-dimensional bacterial assemblies are
also known to defy antibiotic treatments. The limited antibiotic
penetration, the accumulation of resistance enzymes and the
decreased growth rate are all factors increasing the tolerance of
a biofilm to antibiotics, making them effective illustrations of
CAT.

The major mechanism of defence for Gram-negative against
-lactams is the secretion of an enzyme able to actively degrade
the antibiotic: the 3-lactamase (Bush 2018). Reported almost at
the same time as the beginning of use of antibiotics (Abraham
and Chain 1940), a range of enzymes as varied as the antibiotics
themselves has now been observed in bacteria around the world
(Bush and Jacoby 2010).

B-lactamases are not only active in the cell, but also outside.
Indeed, once produced in the cytoplasm, (3-lactamases are trans-
ported through the cytoplasmic membrane. In gram-positive
bacteria, 3-lactamases can either adhere electrostatically to the
cell wall, or be released in the cell culture. In gram-negative
bacteria, that possess another membrane outside of the cell
wall, they are not released outside the cell until the cell lyses
(Livermore 1997).

In both cases, once in the environment, (3-lactamase is able
to degrade the antibiotic that has not yet entered cells. This
mechanism can lead to a curious dynamics: the more cells are
lysed in the first place, the more enzyme is released, and the
more effective is the antibiotic degradation. 3-lactamases are
one of the possible explanations of the Eagle effect, a paradoxical
degradation of an antibiotic efficiency at high doses (Eagle 1948;
Eagle and Musselman 1948).

This already links the three scales again: a molecular factor is
released into the environment at the occasion of cell lysis, and
degrades then the remaining antibiotic for the benefit of the
population. Most resistance phenomena are direct consequences
of the deep interconnection of the molecular, cell and population
levels (Srimani et al. 2017; Artemova et al. 2015).



Different approaches have been tried in order to describe
the variety of possible responses of bacterial populations to
antibiotic treatments. Bottom-up approaches simulating indi-
vidual cells in order to generate a population dynamics include
cellular automata (Ben-Jacob et al. 1994) and agent-based sim-
ulations (Murphy, Walshe, and Devocelle 2008). This angle
elegantly illustrates the emergence of complexity, but requires
massive computational resources. On the opposite, top-down
approaches explicit the dynamics of state variables such as the
population size. More efficient from a computational point of
view, they often take the form of systems of ODEs. They however
hardly cover more than the population scale, ignoring largely
the molecular and cell levels and thus cannot be rich enough to
encompass the full spectrum of the antibiotic response. Between
these two kinds of approaches, PDE models can bridge the scales
of population and individual, by considering a spatial dimen-
sion as in the case of biofilms or cultures on gelose, or describe
a heterogeneity in the population (Pienaar et al. 2009).

However, starting this thesis, we did not know of a model
rooted in molecular mechanisms, considering the changes in the
cell morphology subsequent to these processes, and describing
population-level observables accessible by measurement such
as optical density or number of viable cells. This chapter is
dedicated to the development of such a model.

3.1.4 A resistance and resilience model

Most recently, in collaboration with Hannah R. Meredith et
al. (2018), we contributed to the development, calibration and
interpretation of a model of antibiotic resistance allowing us to
introduce to the community the notion of resilience, borrowed
from ecology.

Calibrating this model to clinical isolates, a global sensitivity
analysis allowed us to classify its parameters into the ones
contributing mostly to resistance, or mostly to resilience.

However, this first model conflates the notions of number of
cells and optical density into a single variable 7, ignoring the
filamentation that can cause the optical density to increase while
n remains constant. Moreover, it makes the assumption that
the bacteriolytic action of the antibiotic is immediate. Indeed,
as soon as the variable a is updated with the concentration of
antibiotic in the medium, the lysis rate I becomes positive, which
causes an instantaneous decrease of the net growth rate g — I,
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and an increase of everything that is a consequence of cell lysis,
such as releasing of 3-lactamase or recycled nutrients in the
culture medium.

As shown on figure 3.2, we know from growth curves that the
effect of antibiotic treatment on the optical density can follow
the treatment by several hours, and we also know from CFU
counts that the antibiotic can immediately stop the growth of
the number of cells, but does not make this number decrease
until the moment when the optical density drops too.
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Figure 3.2: Simultaneous measurements of optical density and num-
ber of cells for a resistant strain treated at t = 0 with
increasing doses of cefotaxime. The error bars are the
95% confidence intervals computed with the method in
section 2.1.5.

The inability for the model to describe the first “lag” phase,
before the antibiotic-induced death affects the OD, forced us to
set the initial time of our simulations at the moment when the
OD drops, on this graph at t = 6 h. Starting from this point, we
could model the rest of the OD but parameters obtained from
fitting this model were difficult to interpret biologically, because
the number of viable cells at this point depends strongly on
the antibiotic dose, in a range covering two or three orders of
magnitude.

Moreover, not being able to simulate the bacterial response
for 3 to 6 hours following the addition of antibiotic prevents the
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simulation of experiments involving repeated treatments, which
are the basis for the search of optimal treatment regimens.

The inability to properly calibrate biologically meaningful
parameters, the awkwardness of ad-hoc manual fitting proced-
ures, the impossibility to access the actual number of cells, and
the inability to simulate the entirety of the bacterial response,
then pushed us to search for an improved model.

3.2 A TOLERANCE, RESISTANCE AND RE-
SILIENCE MODEL

3.2.1  The growth-fragmentation equation

Hall and Wake (1989) popularized in mathematical biology a fun-
damental equation otherwise known as growth-fragmentation,
describing the distribution of entities experiencing continuous
growth and sudden divisions. This framework seems perfectly
suited to describe a bacterial population, especially when the
length of the cells takes an important role in their dynamics,
like in our system where antibiotics cause the cells to filament,
which affects their viability as well as their optical density.

Hall and Wake (1989) start with a very general setting where
the density of cells of length /¢ at time ¢ is represented by the
function n(¢,t)*. Formally, for an infinitesimally small d/, if
Ny 0+ag(t) is the number of cells of length comprised between
¢ and ¢ + d/ at time t, then

Nioyan(t) =n(l,t)dl

The cells experience a continuous elongation with a speed
g(¥,t) that depends on their length. This means that g(¢,¢) is
the temporal derivative of the length ¢ of a cell.

With a rate f(/, t) that also depends on its length, a cell also
experiences fission into a cells of equal sizes (each of them
a fraction 1/« of the dividing cell). The original paper did
not include a death rate, but we will add it as d(¢,t), as it is
necessary to account for the effect of a bacteriolytic antibiotic.

To derive the PDE, it is useful to draw a diagram with the
flows between infinitesimal elements, like in figure 3.3.

Formally, this means that at time f, the number of cells of length comprised
between ¢ and ¢ + d/ is equal to n(¢,t) d/, in the limit where d/ tends to
zZero.

The division rate in
the original paper is
noted b(¢,t). We
changed it here to
f(¢,t) because b is
more natural for
[B-lactamase.
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The first o in the
term o comes from
the size o d¢ of the
infinitesimal
element containing
the cells of size al
that can divide into
cells of size £. The
second « comes from
the fact that each of
these cells divides
into a smaller cells.
The correctness of
this factor becomes
clear in the
calculation of the
evolution of the total
number of cells
(equation 3.3).
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n(l+ de, £)df

- nal,t)d(al)

) af(eb:t)

n(L,t+dt)d(L) -

n(l — df,t + dt)df

n(6,t+d)dl n(0+de,t+ dt)de

Figure 3.3: Diagram of the flows between infinitesimal elements. Con-
tributions to n(¢,t + dt) d/ come from the neighbouring
infinitesimal elements, and also from n(a/,t) d(af), the
element containing the cells of sizes af to af 4 « d/ that
can divide into cells of sizes ¢ to ¢ + d/.

This schematic allows to establish the infinitesimal equation

n(6, £+ ) de = n(C —de, 1) de g0 —de,6) S

+n(l, 1) de (1 e, t)% —F(6, ) dE—d(61) dt)

+an(al,t)d(al) f(al,t)dt

that leads to the PDE

on . a(gn)

st = —n(l,t)f(6,t) —n(l,t)d(C,t) + a’n(al, t)f(al,t)

(3.1)

One can introduce here the variable N(t) = [;°n(¢(,t)d¢
representing the total number of cells at the time t. As Hall and
Wake (1989) state, as this study is done in simplified conditions
with infinite nutrient supply, there is no non-trivial steady-
state of this equation: only in very specific conditions will
the number of cells remain constant. The interesting object is
0]
that [;”y(¢)d¢ = 1. Unlike n, which grows exponentially just
like the number of cells, y is normalized and will stabilize to
the stationary size distribution if it exists. If it exists, we can
then separate variables and write 11 (¢, t) = Yoo (¢) Neo(t). Like
Hall and Wake (1989), we will qualify this regime of steady size
regime.

Hall and Wake (1989) then go on with the search of y« in the
particular case f(/,t) = f and g(¢,t) = g. But we can push the
general case a bit further:

rather the normalized size distribution: y(¢,t) = , such

Equation 3.1 can be rewritten in terms of y:
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1 dN 0
Nay—l- a—]: + % =—y((,)f(¢,t)—y(L,t)d(L, 1)+ txzy(océ, £)f(al, t)
(3-2)

It is possible to find an expression for C}i—]}], by integrating
equation 3.1 taking boundary conditions to forbid cells of zero

or infinite sizes: n(0,t) = n(co,t) =0

[7 % as [TU8M e~ [T vapmacs [T et 0t
oy = [T ramacra [TnenfenS

d—N+oz/0°°(f(a—1)—d)nde

hence O}i—f _ N/Ooo (e —1)f(L8) —d(L,Dly(L,Hdl (33)

The average length L(t) = [;” ¢y({,t)dl is an important
quantity to compute. Integrating equation 3.2 after multiplying
it by ¢, we now need the boundary condition lim,_,. £ y(¢,t) =
0. Because the integral of y is finite, y is integrable, which gives
this limit. The detail of the calculations follows:

dL [} a(gy) . [}
5, [® _1dN
+0¢/0 Cy(al,t)f(al, t)dl _N_dtL

dL o0 o
E+0—/0 gyde_—/o (f +d)lyde
d¢ 1dN

~ ¢
2 —_— —_—— ——
v [y nfen T - 5L

dL o o L dN
G, syae=- [ eayar- g

With equation 3.3, we get

% _ /0°° 9(0,8) — (— 1) F(£, )L +d(£, )L — £d(6,1)]y(L, 1) A
(3.4)
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Another quantity of interest is the optical density of the solu-
tion, which is proportional to its biomass: OD o« N L (Koch
1961). The net growth rate is defined by the logarithmic derivat-
ive of the optical density:

1 dOD 1 dNL_ld_N_i_l%
OD dt NL dt Ndt Ldt
With equations 3.3 and 3.4, we obtain

1 doD 1 [
o_DT:Z/o g6, t) —Ld(L, )]yl t)dl (3.5)

We can see here that if g, f and d are chosen independent of
time, y can reach a steady state y. In this case, in the limit of
large time, we have

Noo(t) o e’of

ODeo(t) o< Mot

Loo(t) = —

where x — /O " g(0) = £d(0)]yeo(£) A0

and Ao = [ (@ =1 F(0) — d(D]yes(0) ¢

are two constants independent of time. A is called the Malthus
exponent. This shows, as expected, an exponential growth (or
decay, depending on the sign of Ag) of the number of cells and
of the optical density, with the same growth rate Ay.

The objective of the next three subsections is to find appropri-
ate forms for the three functions of the model g(¢,t), f(¢,t) and
d(/,t). We will then find that &, the division factor, also needs a
special treatment.

3.2.2 Elongation speed g(/,t)

Hall and Wake (1989) investigated the case of a constant elong-
ation speed: g(¢,t) = g. In this case, cells elongate at a speed
that does not depend on their length. However, several studies
showed (Collins and Richmond 1962; Rolinson 1980; Tanouchi
et al. 2017) that the elongation speed of a cell is rather propor-
tional to the cell length itself, and remains mostly unperturbed
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by antibiotic treatment. As we saw in the last section, whether
the elongation of a single cell constant or linear in ¢, or any
other function, y., adapts to produce eventually an exponen-
tial increase of the number of cells and the optical density, of
rate A9, which does not depend on g. One can then wonder
where g, a single-cell quantity, can induce a change in N or OD,
population-level variables.

The influence of g can be seen in the transient filamentation
phase following an addition of antibiotic, where different elong-
ation speeds can provoke different population-level behaviours.

Indeed, in this initial regime of a few hours, cell death can
be neglected. The antibiotic affecting the division rate, let us
imagine a concentration of antibiotic high enough to reduce
this rate to zero. We will study how taking f(¢,t) = 0 and
d(¢,t) = 0 affects the evolution of the number of cells, optical
density, and of the average length of cells.

For the number of cells, equation 3.3 reduces to dN = 0, which
makes sense because new cells are only produced as a result of
cell divisions. From equations 3.4 and 3.5, the average length
and the optical density increase following

dOD—N——N/ (6, (L, t) de
dt
With a constant elongation speed g(¢,t) = g1, we have
dOD dL
“ar Ng TN

hence L(t) = L(0) + g1t and OD(t) = OD(0) + N(0) g t.
With a linear elongation speed g(¢,t) = ge ¢, we have

dOD dL
ar Na Ng.L

hence L(t) = L(0) e$c! and OD(t) = OD(0) e$¢".

As shown in figure 2.5, the OD in the initial growth phase
is always exponential, which rules out the constant elongation
speed, while a function of the form g(¢,t) = ge ¢ is compatible
with the experiments.

In reality, we work in batch, so the growth conditions change
drastically throughout the experiment. Bacterial growth trans-
forms an initial state with fresh medium and available nutrients
into a depleted environment unsuitable for more growth in
about ten hours. The change of state of the growth medium has
to be reflected in the growth rate of the population and one of
the most common ways to do so is to use Monod’s equation,

63

Cell death can be
ignored for a few
hours following
addition of
antibiotic, because
as we will see

in 3.2.4, cells do not
die until they reach
a certain length.
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that relates the net growth rate of a cell population G(t) to the
concentration of sugar in the environment s(t): G(t) = u K:—&(-ts)( ik
The net growth rate of the population is the logarithmic derivat-
ive of the optical density, the quantity shown on equation 3.5.
Ignoring death for an instant and taking g(/,t) = g ¢, we can

compute

(1) 1L doD
~ 0D di
1 o0
:Z/o e Ly(6, 1) df
_ 8 [
=5 [Teyena
G(t) = ge

This shows that in reality, we have to consider ge not as a
constant but as a function of time, which we just determined as
being equal to G(t). Hence, our final elongation speed is

(0 = 60 = i 56

3.2.3 Division rate f(¢,t)

The original article of Hall and Wake (1989) considers the di-
vision rate constant and independent of ¢. Even outside the
antibiotic context, this assumption can seem a little strong and
disconnected from biological realities. Indeed, it is well estab-
lished that cells do not divide at any time, but only during a
particular phase of the cell cycle (J. D. Wang and Levin 2009).
However, tracking the details of the cell cycle for each cell would
require the model to account not only for the length of the cells
but also for their cell-cycle age. In practice, similar models with
a continuous division rate, smoothed over the cell cycle, man-
age to approximate the steady-state distribution to a satisfying
amount (Cullum and Vicente 1978).

In fact, it is difficult to see how to improve substantially the
model while conserving a similar complexity for the division
rate, or what benefits a complexification of this function would
bring. We will then take

flet) = f(t)



where the dependency in t stands for the effect of the antibiotics
and remains to be determined. As shown by several studies,
one of the actions of 3-lactams is to bind to PBP3, disrupting
the activity of the division machinery (Chung et al. 2009; Cho,
Uehara, and Bernhardt 2014). The question is then to quantitat-
ively link the concentration of antibiotics in the solution to the
division rate of the cells.

The binding of 3-lactams to PBPs follows Michaelis-Menten
kinetics, this result in a proportion of inactivated PBPs equal
to ﬁ (Chambers, Sachdeva, and Hackbarth 1994). Although
the division rate of the cells has to depend on the ratio of func-
tioning PBPs, there is no reason to believe that this dependency
should be linear. To model this relation, we decided to use a
generalization of the Michaelis-Menten dynamics: a Hill func-
tion. We therefore chose to model the division rate as a Hill
function parameterized by three values: the maximal division
rate B, the half-rate parameter k; and the Hill exponent ;.
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(3-7)

3.2.4 Death rate d(¢,t)

Cell death is intuitively associated to antibiotic activity. But in
the case of 3-lactams, the main direct antibiotic activity seems to
be the disruption of the PBP activity, which is not directly lethal
for the cell. A recent article (Vigouroux et al. 2020) shows that
PBPs normally act to repair defects that naturally occur in the
cell wall. Such defects left unattended could eventually cause
the death of the cell.

The careful observation of the initial growth phase under anti-
biotics, until death occurs, for several strains including sensitive
and resistant ones, can help to develop an intuition of the death
mechanism.
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Figure 3.4: Four strains grown in the same conditions, with different
initial amounts of cefotaxime. The two on the top do not
possess resistance genes and are then sensitive (low MIC).

The two on the bottom have the 3-lactamase CTX-M-15,
and CNR 94G8 additionally has OXA-181. They can be

qualified as resistant strains (high MIC).

As shown in figure 3.4, the death phase seems to obey two
different behaviours depending on the resistance of the strain.
For weakly resistant strains, the death phase is triggered earlier
with increasing antibiotic doses. For highly resistant strains, the
death phase timing does not depend on the antibiotic quantity.
An intermediate behaviour is observed for some mildly resistant
strains. In all cases, the brusque change in net growth rate
indicates that death is never established progressively but rather
abruptly, like if d(¢, t) jumped suddenly from 0 to a non-null
positive value that we will call v, a constant independent on
the antibiotic concentration. We now need to understand what
causes this jump.

One possible explanation is a time delay, necessary for the
cells to die after being penetrated with antibiotic. In this hypo-
thesis, a series of biochemical reactions taking a given amount
of time are proceeding and eventually lead to the cell lysis, in-
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dependently of its other activities. As shown by the response
of the sensitive strains in figure 3.4, the antibiotic, at high dose,
has the ability to act almost instantly on sensitive cells: this
delay would then decrease with increasing concentrations of
antibiotic.

Another possible explanation is a mechanism triggered by
the length of the cell. In this hypothesis, cells filament until
they reach a critical length which they cannot sustain any more
under this amount of antibiotic. This critical length decreases
with increasing doses of antibiotic for sensitive cells, but does
not depend on the antibiotic concentration for strains expressing
a B-lactamase.

Whether the delay is time-based or length-based is a delicate
question. However, Boman and Eriksson (1963) showed that for
a given antibiotic concentration, the time to lysis is inversely
proportional to the growth rate. This is consistent with the
length hypothesis, as the time T to reach a length Ly, from a
starting length Ly with an exponential filamentation of rate y is
T = %ln Ii—fg This calls for a death function of the form

0 forx<O

d((,t) =70l — Lm) with O(x) =

1 forx>0

However, as figure 3.4 shows, L, depends not only on the
strain (see ANSES 32139 and CNR 94G8), but also, for sensitive
strains, on the antibiotic dose. In fact, plotting the ratio of optical
densities when death occurs, to the initial optical density, for
the two sensitive strains, yields curves that can be accurately
modelled with sigmoid functions such as Hill’s, as shown on
tigure 3.5.

Here, we will model the death rate as

A(0,1) = yO(f — Lw) with Lm = Lyin +

1+ £

L - Lmin
—ma_min (3.8)

This is assuming
that the
concentration of
antibiotics in the
culture does not
change significantly
during the initial
growing phase:
because it is stable
enough (d, low),
and cell lysis did not
occur yet (b low).
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— Luyn=25
L = 134
k=14mg/L
Lpin =5
Liax = 87
k =30mg/L

We will see on
section 5.3 that
these two antibiotic
effects can be linked
to two different
molecular targets of
the antibiotic,
inhibited at different
concentrations.
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Figure 3.5: Ratio of the optical density when death occurs by the
initial optical density, as a function for the antibiotic dose,
for two sensitive strains. Since cells do not divide during
the filamentation phase, the ratio of the optical densities
is comparable with the ratio of the lengths.

For resistant strains, this ratio is independent on the antibiotic.
Two ways for the formula to account for that is to either set
Lmin = Lmax, or set ky to a very large value.

A simple model for the emergence of this function can be seen
as following: as per (Vigouroux et al. 2020), the role of some PBPs
is to repair damages that naturally occur in the cell wall with a
rate dy £. Assuming unimpeded PBPs can repair rmax wall defects
per unit of time, and that antibiotics bind to PBPs following
the kinetics of protein-ligand binding, then the effective repair
capacity of the cell in the presence of antibiotics becomes r =
{‘jr‘—akﬁ. Cell lysis occurs when the rate of creating cell wall defects
overcomes the rate of repairing them, hence at a length L, =
r“‘j‘% T J:%, which corresponds exactly to equation 3.8.

We identified so far two parameters related to a with the di-
mension of a concentration: ki, involved in equation 3.7, and ky,
in equation 3.8. Intuitively, k; is the concentration of antibiotics
that blocks the division mechanism, and k; is the concentration
of antibiotics that disrupts the activity of wall-repairing proteins.
These two parameters determine the shape of the antibiotic re-
sponse: for resistant strains, k; is approachable as one of the
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tirst concentrations of antibiotics that produces a growth curve
different from the control. However, k; is too high to be meas-
ured. For sensitive strains, kj is very low, but k; has a finite
value that produces the intermediate response in the sheaf of
curves such as seen on the top row of figure 3.4.

3.2.5 Division factor a

Having determined the three unknown functions g (equation 3.6),
f (equation 3.7) and d (equation 3.8), we can now insert them
in the general PDE (equation 3.1). To start, let us consider the
simple case of growth without antibiotics. In this case, we have
g, t)=g¢, f(¢,t) =Band d(¢,t) = vO({ — Ly,). Within nor-
mal growth conditions, filamentation is unexpected to happen
and the length of cells remains safely under Ly, so we will also
take d(¢,t) = 0.

In these conditions, equations 3.3, 3.4 and 3.5 become

dN dL dOD

E:N(zx—l)ﬁ, E:(g—(uc—l)ﬁ)L and F:gOD

Although N and OD are allowed to grow exponentially as
long as the nutrients are not lacking, the average length of cells
L is also exponentially growing, which is a problem. Indeed,
we would expect the distribution of lengths of cells in these
conditions to reach a steady state, which can only be the case if
% = 0. But this condition is equivalent to a strict relation on the
parameters of the system: ¢ = (a« —1)B. An equilibrium should
be found for any combination of g, « and B, which shows that

one of the hypotheses considered so far is wrong.

The wrong hypothesis is that a is constant. We left it un-
specified so far. Intuitively, « is the number of cells that result
from the division of a larger cell. In normal conditions in bac-
teria, this number is 2. However, it was shown recently that not
only filamenting cells contain multiple copies of their genome,
they are also able to divide into multiple individuals when the
antibiotic is removed (Wehrens et al. 2018).
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In the most classical
growth-
fragmentation
equation, cells grow
linearly and divide
exponentially. This
leads to a stable
steady state. Here,
cells grow and
divide exponentially,
which intuitively
explains why the
steady state only
exist under the
condition of a kind
of balance between
growth and division.

Surprisingly,
bacteria do not
always divide in
two, and this is
needed for the model
to work.
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Figure 3.6: Top: relative positions of the divisions when a filamenting
cell divides. Example: cells of sizes between 2 and 3
divide into 3 smaller cells, sizes between 3 and 4 divide
into 4 smaller cells, etc. Figure adapted from Wehrens et
al. (2018). Bottom: approximation of this mechanism to
make analytical and numerical computations easier. Here,

cells can only divide in a number of smaller cells that is a
power of 2, depending on their length.

Figure 3.6 shows on the top panel how a changes with the
cell length £. In arbitrary units of length, this shows that cells
of sizes between 1 and 2 divide into cells of sizes between 1/2
and 1, cells of sizes between 2 and 3 divide into cells of sizes
between 2/3 and 1, and in general cells of sizes ranging from
i — 1 to i where i is a strictly positive integer divide into cells of
sizes comprised between % and 1. Although the representation
of this mechanism in mathematical terms is possible, analytical
and numerical analyses of this process seem complex. This is
why we will prefer the slightly simpler mechanism appearing
on the bottom of figure 3.6. In this way, cells of sizes comprised
between 272 and 2/~!, with i a strictly positive integer, divide
into 2/~ smaller cells, of sizes between 1/2 and 1.2 The length 1

In this way of writing, i = 1 corresponds to cells with a length comprised
between 1/2 and 1, and that divide in 1 cell of the same size. This leads to
two cancelling terms in the equation, so it does not matter if n starts at 1 or
2.
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can be seen as the minimal length that a cell can have to divide.
Cells of sizes lower than 1/2 do not divide.3

Equation 3.1 then becomes the following equation, where
the sum in the domain [1/2,1] represents the contribution of
the cells from all the upper domains, that divide in increasing
numbers of cells of sizes between 1/2 and 1, like pictured in
tigure 3.7.

(

0 for0§€<%
aa_n_i_gf?)_z_'_gn _ YR, (@-)2n(2i71,t) fori<t<1
t —nf for1 </ <Ly
(—n(f+7) for Ly </
(3.9)

Figure 3.7: Schematic representation of the flows of cells in the model.

Although Wehrens et al. (2018) note that the fissions inside
a filamented cell rarely happen all at once, they noticed that
the time between divisions decreases when the length of the
filament increases. For a normal cell cycle time of 60 min, the
average interdivision time quickly decreases with the birth size
of the cell to reach 10 min at around ¢ = 10. At this rate, the
time required for a filamented cell of size ¢ = 16 to fully divide
into individual cell units of size £ = 1 is comparable to a normal
cell cycle time. This justifies this simplified assumption that
tilamented cells can divide atomically into & > 2 smaller cells.

It also does not really matter what cells smaller than 1/2 do, because the
steady state in the domain of ¢ ranging from 0 to 1/2 is n(¢,t) = 0. Indeed,
cells in that domain at t = 0 grow and eventually become larger than 1/2,
and no new cell is ever added because all new cells have sizes between 1/2
and 1.
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By this mechanism,
exponential growth
of cells is balanced
by a division greater
than exponential,
which is sufficient to
create a stable
steady distribution,
as we will see in
section 3.3.



72

3.2.6 Completing the model

Equation 3.9 describes the dynamics of the cell population, but
the system contains other variables that we also need to describe.

First, the antibiotic concentration. It is a chemical species
that only disappears, by two different processes: its natural
degradation with a rate d,, and its active degradation by f3-
lactamase contained in the environment and noted b, with a
mass action law of rate k;,. The equation for a is then

% = —kpba—d,a

The lysed cells and debris of lysing contribute to the optical
density of the solution, they have then to be taken into account.
Some debris are quickly degraded by the agitation, but some
are not and remain in suspension. We note p. the proportion of
debris that are formed resistant to breaking down. We represent
with the variable c the quantity of debris with a short half life,
and ¢, the quantity of debris that accumulate. The equations for
¢ and ¢, are then

de,

7(1—pc)/Lm£nd£—dcc and E:'pr/LmEndE

de _
dt

Lysed cells release (3-lactamase in the environment. Since
filamenting cells duplicate their genetic material, it can be as-
sumed that they also duplicate their proteome, meaning that
the quantity of B-lactamase in a cell is proportional to its length.
B-lactamase is then degraded naturally with a rate di,. We can
then establish

db S
= Bm/Lmende—dbb

Finally, the concentration of glucose in the environment, noted
s, decreases when it is consumed. Noting A the conversion factor,
it comes

ds g [®
<= X/0 tnde

The complete PDE system is then the following:
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(

0 for0§€<%
3—n+853—z+8”: FYe, 2702n(27,t) fori<i<1
t —fn forl1 </ <Lp

(—(f+7)n for Ly, < ¢
ds ¢ [® . _ S
T Al {ndl Wlthg—st_l_s
40k ba—daa R
dt 2\

1+ (£)

db_ . 0 . . ) Lmax_Lmin
E—'me/LmEndﬂ dy b Lin = Lunin + ITE
de - )/wﬁndé—dc
dt—’)’ Pc L c
de, © B *©
E_'ypc/LmEndﬁ OD—U(/O End€+c(t)+cr(t)>

Some initial conditions are set by the experiment: s(0), a(0),
N(0), and b(0) = ¢(0) = ¢x(0) = 0. For n, because we start  In practice, it is
the experiment with cells in exponential state (see section 2.1.2),  more often OD(0)
we take the steady size distribution with no death, that we 4t is known
. . . . experimentally. In
will compute in the next section (see equation 3.13): n(¢,0) = which case, N(0)
N(0) Yoo y=0(£). can be computed
from OD(0) and
The right-hand side of the PDE involves the value of n(¢,t)  therest of the initial
in an infinite number of values of £. It is a particular case of ~ cOitions.
equations known as pantograph equations. This kind of depend-
ency prevents the use of most common PDE solvers, hence we
decided to implement a custom numerical method. The method
used is an explicit, upwind, first order finite-difference scheme.
A natural change of variables allows to simulate each domain
(0Oto1/2,1/2to 1,1 to 2, 2 to 4, etc.) with the same number
of points, which makes the simulation efficient. We can in this
way simulate until a length L, in a time proportional to log L: in
practice this allows to choose the upper limit of simulation as
high as necessary.

This model is able to exhibit behaviours similar to sensitive,
as well as resistant strains, as shown on figure 3.8.
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Figure 3.8: On the left are two clinical isolates (top sensitive, bottom
resistant). On the right are simulations of the PDE model
with similar behaviours.

3.2.7 Parameters of the PDE model

The variables and parameters of the model are presented in the
following tables.

Variable Unit Comment

t h Time
12 1 Cell length [au]
n(l,t) 1 Population density
s(t) g/L  Concentration of nutrients
a(t)  mg/L Concentration of antibiotics
b(t)  mg/L Concentration of 3-lactamase
c(t) 1 Dead degradable biomass

cr () 1 Dead non-degradable biomass
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Parameter Unit Comment

0% 1/h Death rate

B 1/h Maximal division rate

U 1/h Maximal growth rate

Ks g/L Half-velocity constant of nutrients

A L/g Conversion factor from nutrients

kq mg/L  Conc. of antibiotics needed to stop cell division
hy 1 Hill coefficient of this antibiotic action

ko mg/L  Conc. of antibiotics needed to stop defect repair
Bin mg/L  Conc. of B-lactamase released by a cell of length 1
ky, L/mg/h Activity rate of 3-lactamase

da 1/h Degradation rate of antibiotics

dy, 1/h Degradation rate of (3-lactamase

de 1/h Elimination rate of dead biomass

Pec 1 Proportion of non-degradable dead biomass
Lmin 1 Minimal cell length where lysis can occur
Lmax 1 Maximal viable cell length

n 1 Conversion between biomass and OD

3.3 SIMPLIFYING THE MODEL

It takes a few seconds to solve the PDE model for one initial
condition, but it takes more than a minute to solve it for 12,
which is useful to fit a range of antibiotic concentrations at
the same time. In these conditions and with this number of
parameters to search, an automated parameter search becomes
difficult. This is because of the nature of the model: being a
population model, a whole distribution needs to be simulated. It
would be much more convenient to fit an ODE model containing
only population-level variables such as the total number of cells
N, or their average length L.

Integrating equation 3.9 on ¢ gives the expression of the tem-
poral derivative of the total number of cells:
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/oo and£+gN
_fz(zl 1)ﬁ @l pae—f [nde- 7/ nde

After integration by parts on the left and change of variable
on the right, we have

21'71

dN Sl
P — 21—1/
F =L

2i—2

nde—f/ nd(—’y/ ndf
1 Lm
Introducmg y(l,t) = % the normalised cell density, and

= [y L. (¢,t)d¢, the proportion of cells longer than Ly,
we get

2i-1

—_fN22’1/ yde — fN/ ydl —yNY-

Or written differently,

dN © 2 00
ar _N[ (Z%zl /2142 ydﬁ—/% yd£> —7Ys
1=

Because the steady-state solution for length less than 1/2 is 0,
we will consider in all the following that V¢ < %, Vi, y(¢,t) = 0.
This allows to say that the sum of integrals is nothing else than
« averaged over the distribution y, that we will note a(t). The
other integral is equal to 1. Finally,

WoNOFGED-D-1-0] (o)

Let us now express equation 3.9 in terms of y:

%)
+ 805+ (g +a(Df —Ys)y

YR, 272y (271, t) fori<i<1
=40 forl </< Lpy

Iy
ot

(3.11)

-y for Ly, </
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Multiplying this equation by ¢ and integrating it over ¢ brings
the equation for the evolution of the average cell length:

=l r@® -0y [ (- Dy

that we can also write with the help of L (t) = ff; Cy(L,t)de:

dL

S =8 f@EO-DIL-(La() —LYo(1)  (12)

For an ODE model, we need to know the temporal evolution of
N and L, only as a function of other population-level quantities.
Equations 3.10 and 3.12 are not satisfying yet, because they
include functions whose dynamics depends on the distribution
y,such as &, Y~ and L. The goal of the rest of this section is to
find how to remove y from these equations.

3.3.1  An approximation for the average division factor &

Let us first study the steady-state if there was no death: e ,—o.
First, since Lo ,—0 must be constant, then 3.12 provides a con-
dition on the average division factor at steady state: Xeoy—0 =
1+ g/f. Consequently, from 3.10 we have Neo,—o(t) = NpeS'.
The general PDE 3.11 simplifies and its analytical solution is
now tractable:

i > 21‘_120072i—1€ fOI'l<f<1
gyloo/720(€)+2yoo,'y:0(€) = {gzlz( ) y ,’Y—O( ) 5 S

_Jé Yoo,y—0(£) for1 </

The general solution of this equation for 1 </ is

A
Yooy=0({) = 12+ f738

Replacing this expression in the first branch of the differential
equation, we now have to solve for % < ¢ < 1 the following:

, _ flg A
Yoo,=0(£) + 2 Yeop=0(£) = 2+f/8 2f/8 — 1

The general solution of this equation, valid for % </l<1,is
the following:

l) = b 4 :
]/00,720( ) = 2 02+f/8 2f/8 —1
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The continuity of
the solution in 1 can
be proved by
conservation of the
flux of cells
through 1.

It would be very
interesting to make
the calculations with
the original division
factor, featured on
top of figure 3.6,
because in this case,
the relation between
L and & is much
tighter:
L<a<L+11t
is also possible that
it would remove the
factor In2
throughout the
calculations, caused
by the discrepancy
between the two
scales for o shown
on this figure.
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The value of one of the integration constants can be obtained
by continuity of the solution in 1: A = B(1— 2178 ), and the
value of the other constant is found by normalization of ye ,—0
integrated over /:

1= [ yoro()de
1/2]/ =0(£)
_p L L A2 p gy [T
B /1/2 02 2+f/8 2f/8 —1 /1 2+f/g
—B_2f/sp_8 (pl+f/s _1y1 B(1—2f/8)_8 _
f+g( )+ B( )f+g
8
1=B—B—>—
f+g
hence B =1+ g/ f, and finally
13 _p—f/
(0) = %% for; <0<1 (3.13)
A T L P 7
TW or 1

From the steady-state distribution, it is possible to compute
the steady-state average cell length:

+
L&%O:ffg

In2 = &eoy—In2 (3.14)

That the average cell length is proportional to the average
division factor is understandable, because as figure 3.6 shows,
a () closely follows £. In fact, whatever the distribution y, with
or without death, their ratio is bounded: ¢ < a(¢) < 2¢, which
bounds the integrals in the same way: Vt,L < &(t) < 2L, the
limit cases happening for very tight distributions. Wider cell
length distributions make an average that comes closer to the
center of the interval.

With 1/ In2 ~ 1.44, the relation # = L/ In 2 actually holds not
only for the stationary distribution of cell lengths without death,
but it is also a very good approximation of the non-steady state,
even including death. In fact, on the numerical computations of
tigure 3.8 for example, this ratio is accurate at all time within
1% of relative deviation. Consequently, we will assume the
following relation to always hold:

(3-15)
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Figure 3.9: Steady-state cell size distribution without death, for sev-
eral growth and cell division rates. Different parameter val-
ues can generate distributions of relatively similar shapes,
albeit with different average lengths.

3.3.2 Extraction of partial moments Y- and L~

It would be tempting to compute Y~ and L~ on the steady state
without death 3.13 and use these values in the equations 3.10
and 3.12. This would be making the approximation that at any
time during the experiment, if the average cell length is L, then
the distribution of cells is close to the steady-state distribution
with the same average length L. However, as figure 3.10 shows,
the transition from a steady-state distribution with low average
length to another steady-state with a larger average length does
not in general go through a path of steady-state distributions of
intermediate average lengths.

What actually happens is that cells do not divide almost at
all any more but still elongate, so the whole distribution is
shifted as a block towards increasing lengths, until f a? becomes
sufficiently high to repopulate the short lengths region despite
the low division rate. The distribution is then first shifted to
larger lengths, then becomes bimodal, and finally the first peak
regrows to fill the target distribution while the second peak
vanishes at extremely long lengths.
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Figure 3.10: Snapshots of successive cell length distributions when
an exponentially growing cell culture is treated with a
dose of antibiotics that dramatically reduces its division
rate, increasing its average length. Although the average
length is continuously increasing from the first value (red
curve, L = 1.25) to the last (blue curve, L = 2067), the
transient distributions do not take the path of steady-
state distributions with intermediate lengths pictured in
figure 3.9.

We can model the shifted distribution, applying equation 3.11
without death or division to the initial distribution that we
assume stationary and representative of conditions without

antibiotics:
Btg eh/s—o Pz 1 <y 1
3_]: +g£g_:z+gy =0 with y(gl 0) = ‘Bi szr,://gg " -
Tglzﬁﬂ/g forl </
(3.16)

The solution of this differential equation is the following:

—BtpB/g_»—B/ t
ﬁ+gefgte/5€ﬁ3 2-B/8 for%§g<egt

_ B e—(25+B)t 2+p/g
e P (3.17)
B e (28+P)t p2+B/g -

We can now compute the partial moments of this distribution:
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.
B/g_
%2B/ZgLi1—+1ﬁ7ge(ﬁ+g)t for e$% < Lin
_ t (B+g)t t
Y>(t)_ %%— —%W for%<Lm<egt
\1 for Ly < egt
g(%jﬁ) (Zﬁ/g)_ﬁ}ge(g+ﬁ)t for est <Lm
_ Bt t
L>(t) = (%jﬁ <1—|—,Bt—élnL W)egt for%<L < e8!
\L for L, < egt

Observing that L(t) = e8fLy with Ly = % In2, we can
replace the variable t in the equations above with its expression
as a function of L and Ly, which gives

148/
%( 2-P/5) ( LOLm> for L < LoLm
148/
(L) =3 (14 §) i —1 - 27784 () P78 for Lolm < L < 2LoLm
\1 for 2LgL, < L
(L - L \P/¢
s (1 27F) <L0Lm) y for L < LoLm
8
Lo(L) = ¢ & [% +1In - — z—ﬁ/g%< LOLLm> ] for LoLm < L < 2LgLm
L for 2LoLy < L

Finally, to reduce visual noise, it can be convenient to make

the double change of variable x = L()LLm and v = g. Then we

have

(

%(xv — (%)V> forx <1
vo(x=p) = 1+5(1—-(2)") for1<x<2
. LoLm - +?< _(§)> orl<x<

\1 for2 < x

(3.18)

(

vlfﬂ(xv - (Jz—c)v) forx <1

L> X = L — Inx X 1 x\V f 1< <2
LoLm LoLm x1n2+m( —(§)> orl<x<
x for 2 < x

\

(3-19)
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We have now closed the three terms missing to express Cll—lf

and % as functions of N, L and Ly, only. Figure 3.11 shows
these three functions.

1_

Ys

0.0+ : ; : . :
0.0 0.5 1.0 1.5 2.0 2.5

_L
ToLm

Figure 3.11: The partial moments Y-, L~ and L~ — LY~ as a function
of L, for different values of the parameters.

With these expressions for &, Y~ and L, equations 3.10 and
3.12 become respectively

‘% = N[f(ﬁ —1> —7Y>(L)}
Ccll_I; - L[g—f(ﬁ —1)} —y(L>(L) = LY (L))

with Ys and L. as described in 3.18 and 3.19.

We can show that the term appearing in %, —y(Ls —LYs),
is always negative, which shows that the lysis of long cells can
only decrease the average length#.

On real cases, these approximations are particularly accurate
for small (which do not lead to death) and very large doses

4 From the definition of the partial moments,

Lo~ LY. = / (6 —L)y(f)dr
Lm
If L, <L, then

Lo —LY- 2/ (6—L)y()dl =0
0
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(close to the limit case considered in the approximation) of anti-
biotics, but less for intermediate doses like 8 mg/L, as shown on
figure 3.12. Indeed, we based our calculations on the assump-
tion that the length distribution moves as a block. This only
happens for very low division rates: high antibiotics. Of course,
for low antibiotics, the perturbation to the system is minimal,
which is also well captured by these formulas. In intermediate
cases, when f/p is neither 0 nor 1, since the behaviour of the
system is not a limit case, it is less adequately described by these
terms.

0.0 0.5 1.0 15 2.0 2.5
L

L() Lm

Figure 3.12: Comparison of Y-, L> and L. — LY. given by the PDE
simulation, and by the formulas computed in this section.
The system was run with no death, no antibiotic degrad-
ation and unlimited nutrients, similarly to the conditions
of figure 3.10.

It is interesting to check the accuracy of these approximations
on a real case, allowing the nutrient and antibiotic concentra-
tions to evolve as well.

The match between the PDE and the partial moment approx-
imation is worse on figure 3.13 than on figure 3.12. Indeed, the

And if L < L, then

Lm
(L—L)y(L)de

[eo]

(6—L)y(6)dl =0

L>—LY>:/OOO(€—L)y(£)d£—

z/ooo(é—L)y(E)dé—

),
)
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PDE 8 mg/L
PDE 16 mg/L
PDE 32 mg/L
PDE 512 mg/L

formula (g = 1.25)
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PDE 8 mg/L
PDE 16 mg/L
PDE 32 mg/L
PDE 512 mg/L

formula (% = 1.25)
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combined effects of cell death (which deforms the cell distri-
bution, and generates (3-lactamase that degrade the antibiotics,
changing the value of the division rate f), and of the batch
culture (the nutrients are depleted, which changes the value of
the growth rate g) draw the system away from the idealized
case pictured above in figure 3.12.

1_

0.0 0.5 1.0 15 2.0 2.5
L

L() Lm

Figure 3.13: Comparison of Y-, L> and L. — LY. given by the PDE
simulation, and by the formulas computed in this section.
The system simulates a batch experiment, similarly to
the conditions of figure 3.8 (resistant case).

The loops seen on 3.13 show that the path taken for the
cell distribution to increase its length is not the same as the
path taken to decrease it. The simplified ODE model assumes
that the same path is taken to go up and down (shown as
the black curve). However, even though the path taken by
the cell distribution to come back to a normal length while
recovering from filamentation is quite different from the one
that the ODE model assumes, this happens after massive cell
death, so it only concerns very few cells, and this is what allows
this approximation to work.

Knowing this, it might be possible to find simpler functions
that would be equally or more performant at this dimensionality
reduction. For this, one would need to determine where the
function needs to be accurate and where it does not, and simplify
where it can be.
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3.3.3 Completing the model

We complete the model similarly as for the PDE version: the
equation for the antibiotics is unchanged. The other equations
have integral terms, that are substituted with their expression
with the partial moments:

dc dey

dt—')’(l_pc)NL>( ) —dcc and E:'YPCNL>(L)
A similar substitution leads to fjl—"t’ and %:
db ds g
dt—’)’BlnNL>( )—dbb and E——XNL

Finally, we come to the complete ODE model.
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The substitutions
Jo 4ndl - NL
and

f p, {ndl— NL-
are the only changes
in the equations for
s, a,b, cand c.. The
only real change of
this model compared
with the PDE is the
replacement of the
PDE on n with two
ODEs on N and L.

dN L

& =Nlma 1) e

dL

-t (-] s -
ds ¢ B 5 B
a - ANk §TFK 15 V_g
44 kba—daa fo— b
dt 2\

H(E)

db L X_Lmin
a:’)/BinNL>_dbb Lm:Lmin+mi+—,?—2

de B 7

acr BHINL+ () + ce()

N =9p.NL- OD =

forx <1

x—1—i—§<1—(§)v> for1<x<2

X for2 <x

\1 for2 < «x
,
v
) ) (- )" forx <1
(= pr) = e+ (1-3)) fri<x<o
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Similar initial conditions apply as for the PDE model: N(0),
s(0) and a(0) are known experimentally, b(0) = ¢(0) = ¢;(0) =
0, and because we start the experiment with exponentially grow-
ing cells, we consider that they reached the steady size distribu-
tion, where L(0) = Lo.

3.3.4 Parameters of the ODE model

The two models share exactly the same variables and parameters,
except for ¢ and n (¢, t) which are specific to the PDE model, and
N(t) = [5 n({,t)dl, the total number of cells, and L(t) =
f0°° n(¢,t)d¢, the average cell length in the population, specific
to the ODE model. For other variables and parameters, see
section 3.2.7.

3.3.5 Agreement of PDE and ODE models

Figure 3.14 compares the PDE and ODE models on a typical para-
meter set. Different colours represent different initial antibiotic
doses, spaced between each other by a factor 2.

The overall shapes of these state variables are conserved
between the two models. Globally, it seems that only the green
curve, the lowest antibiotic dose that dose an effect, is in dis-
agreement between the PDE and ODE models.

We can observe that cells gives impossible values to N. This
is a typical problem of simulations that represent the number of
cells as a continuous quantity, rather than a discrete one. Both
the PDE and ODE models are affected by this problem.

The average cell length is also too high for some parameter
values, for both models. Under the microscope, it is rare to see
cells longer than a couple of hundreds of times their normal
length. In this light, both models are wrong when they predict
an average length larger than about 300. For the highest antibi-
otic doses, the predicted cell lengths are particularly unrealistic,
but this is not so impactful because at this time, as the cell num-
ber suggests, there is probably not a single cell alive any more.
Generally, while the antibiotic subsists, the average length tends
to augment and the number of cells to decrease, and they both
do so exponentially. If the antibiotic subsists for too long, both
average length and cell numbers reach unrealistic values.
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Figure 3.14: Comparison of the PDE and ODE models on the same
parameters, chosen to exhibit all of the model features.
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In retrospect, the fact that we were able to make this dimen-
sionality reduction: going from a 1-dimensional PDE model to
a o-dimensional ODE one without losing too much information,
means that the original problem was very constrained. In this
case, the whole shape of the distribution of cell lengths at any
time can be almost completely specified by a couple of scalar
variables. However, from a modelling perspective, it is far from
obvious how it would have been possible to come up with the
reduced model, or another one with similar features, without
first developing the population model.

3.4 VALIDATION OF THE MODEL

Numerous previous studies made an ensemble of observations
on the response of bacteria to 3-lactams. In this section, we
check if the model satisfies these constraints and whether it
can help acquire new insight with respect to these previous
observations.

3.4.1  Combined OD, cell number and length predictions

The link between OD and cell number during (3-lactam treatment
is a notoriously difficult problem because of cell filamentation.
As a result, B-lactam-resistance models either conflate number
of cells with optical density, or do not attempt to model the
temporal dynamics of the response. Interpreting the OD as a
number of cells can lead to wrong parameters or erroneous con-
clusions. Moreover, the ability to quickly and reliably measure
length distributions is only recent (Fredborg et al. 2015). Now
that specialized devices allow for successive whole cell length
distributions to be acquired quickly and automatically, there is
a need for models able to incorporate data coming from mul-
tiple observables: optical density readings (for measurement of
biomass), viable cell counts (for measurement of cell number),
and length distributions. We do not have the ability to reliably
measure the average cell length, but our simultaneous measure-
ments on OD and cell number are well-matched by the model,
as shown in figure 3.15.
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Figure 3.15: ODE model fit to both optical density and cell number
for a resistant strain.

3-4.2 Inoculum effect

Active antibiotic degradation is known to cause what is called
the inoculum effect. First described by Kirby (1945), this effect
relates to the decrease of antibiotic efficacy as the initial cell
density increases. It is seen as one of the effects of collective
antibiotic tolerance (Vega and Gore 2014; Hannah R. Meredith
2015). The understanding and quantitative characterization of

this effect has been the subject of several studies (Artemova et al.

2015; Salas et al. 2020), as the precise knowledge of this effect
would give an edge for the development of optimal treatments
(Hannah R. Meredith et al. 2015).

Figure 3.16 shows a resistant strain treated with the same
antibiotic doses, starting from three different cell densities. The
model, plotted over the measured OD, shows that it is able
to exhibit a behaviour compatible with the inoculum effect
(observe in particular how the regrowths of 4, 8 and 16 mg/L
are predicted and observed at different times for the two lowest
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ODs, and how the OD curves for the highest initial condition are
indistinguishable from untreated cells).
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Figure 3.16: Representation of the inoculum effect. The dose of an-
tibiotic sufficient to inhibit the growth of cells during
20 hours increases dramatically as the cell inoculum in-
creases. The model is shown in dashed lines and data for
OD in plain lines.

3.4.3 Single-cell MIC

Modelling attempts of the inoculum effect are often phenomeno-
logical: Salas et al. (2020) for example study which of six general
functions can better account for the relation between the MIC
and the starting cell density. However, Artemova et al. (2015)
manage to explain this relation with a simple model of antibiotic
diffusion through the cell wall, the assumption being that cells
start dying when their internal antibiotic concentration crosses
a threshold. They also introduce the single-cell MIC (scMIC), the
limit of the MIC when the inoculum tends to zero. Their model
predicts an exponential increase of the MIC with the inoculum
at low inocula, and a linear increase at high inocula. This is in
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exact agreement with figure 3.17 which shows the prediction of
the ODE model for increasing inocula.
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Figure 3.17: Extrapolation of MIC measurements for increasing in-
ocula of a resistant strain. The two orange points are
the actual measurements that correspond to figure 3.16.
The model shows what MICs it predicts for very large in-
ocula, if these hypothetical antibiotic concentrations were
achievable in practice. The inset for small inocula shows
the exponential behaviour of the MIC in this region. With
these parameters, the scMIC is 5.8 mg/L.

3.4.4 Proportionality of lysis and growth rates

Another remarkable property of the bacterial response to 3-
lactams, reported as early as by G. L. Hobby, Meyer, and Chaffee
(1942); Gladys L. Hobby and Dawson (1944) and further studied
by E. Tuomanen et al. (1986) and Lee et al. (2018), is the
relationship between the lysis rate and the growth rate. As put
by Gladys L. Hobby and Dawson (1944), “Conditions which
increase the rate of growth of bacteria increase the rate at which
penicillin acts. Conditions which decrease the rate of growth
decrease also the rate at which penicillin acts. Penicillin is most
effective when active multiplication takes place.” The effect of
penicillin was quantified in this study by counting viable cell
numbers at different times after addition of the antibiotic. E.
Tuomanen et al. (1986) did the study on cultures experiencing

balanced growth, in chemostat, also by counting cell numbers.
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Lee et al. (2018) exploited an automated handling robot to make
the same study, this time on batch cultures, and through OD
measurements.

Since our model allows easy access to number of cells as well
as OD, it is an ideal candidate to test this relationship. Because of
the filamentation of cells, the quantitative effects of the antibiotic
on N or on the OD are not similar and whether we consider the
growth rate of N or of the OD might lead to different conclusions:
we will then study these two quantities. The OD of the model
includes the OD of dead biomass, so we will also consider the
growth rate of a third quantity, the live biomass (N L).

It is useful to first compute the instantaneous net growth rate
of these three quantities. From the ODE model,

1 dN L
ﬁa—f(m—l)—%

1 dNL L.
NL dr ¢ 7T

1 dOD g(c+cr) +dec
oD dar ¢~ OD

The three net growth rates have the form of the difference of
two terms: the normal growth rate, and the antibiotic-induced
lysis rate. We can then define the three lysis rates:

g(c+cr)+dec
OD

L
ILn=7Y>, LNL:7T> and Lop =

Lee et al. (2018) suggest studying the maximum lysis rate
occurring during the course of an experiment. Applying this
definition, we obtain figure 3.18 which shows that although the
maximum lysis rates increases with the basal growth rate of
the cells y, it hits a threshold of value vy in the case of Ly and
Lnp. Only the lysis rate measured through the optical density
is a linear function of i on an extended range. This graph also
shows for the OD lysis rate a similar dependency to the antibiotic
dose as noted by Lee et al. (2018): “The slope becomes smaller
and the y-intercept becomes larger with increasing antibiotic
concentrations.”
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Figure 3.18: Maximum lysis rates of OD, live biomass and number of

cells shown as a function of the basal growth rate of the
cells.

3.5 CHAPTER SUMMARY

Because cell length changes dramatically during antibiotic treat-
ment, the measured OD is not an accurate representation of
the number of cells. In order to disentangle the complex link
between these two quantities, a growth-fragmentation PDE model
based on Hall and Wake (1989) was derived (section 3.2.1). The
main assumptions are an exponential elongation unperturbed by
the antibiotic treatment (3.2.2), a division rate directly affected
by the antibiotic (3.2.3), a death rate dependent on the length of
the cell (3.2.4), and that filamented cells are able to divide into
several small cells once the antibiotic is gone (3.2.5). The model
of action of antibiotic: inhibition of division and blocking of the
cell wall repair mechanism, is justified by its molecular binding
with two different enzymes: respectively PBP3 and PBP1.

The model is able to fit experimental data, as well as exhibit
several notable features reported in the literature (3.4).
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However, the simulation of the PDE system being compu-
tationally expensive, we found approximations to reduce the
simulation of the whole length distribution to the simulation of
only two scalar variables: the total number of cells, and their
average length (section 3.3). Both PDE and ODE models share ex-
actly the same parameters, and agree on validation experiments.



MODEL CALIBRATION

The resistance models contains 17 parameters, unique to each
combination of bacterial strain and antibiotic used. In order to
make the model perform predictions relevant to clinical isolates,
it should be used with the appropriate parameters. However,
although some parameters can be calibrated independently of
the others, a large proportion cannot, and taking literature val-
ues for those is not possible because of the wide range that
they span in wild strains. For the parameters that cannot be
measured easily, or only through complex or expensive meth-
ods, the only possibility is to simulate an experiment with the
model repeatedly with different parameter values, compare the
output of the simulation to the real experiment, and choose the
parameter set that provides the best fit. A naive approach would
be to select a few values in the plausible variation range of each
parameter, and try all these combinations. But this approach
is only realistic at low dimensions: for 17 parameters, even
choosing only 3 values for each, the time needed to simulate all
these combinations is counted in years.

Besides the computational challenge, there is also an informa-
tion problem. The model contains 7 state variables: number of
cells, average length, nutrients, antibiotic, 3-lactamase, and two
kinds of cell debris. Most of these quantities are in principle
observable, but some are much easier than others. As explained
in the introduction, we deliberately chose to focus on the plate
reader as main measurement instrument. However, the readings
of optical density are combined readings of four of the state
variables of the model: number of cells, length, and the debris.
Another possible observable is the number of cells, but from
dilutions, calibrations, and repetitions, to counting tens of thou-
sands of cells on plates, the amount of tedious work involved
in frequent measurements of the number of cells could be done
for a couple of strains at maximum, during the development
of the model, but not to characterize unknown strains. The
question is then whether and how it is possible to estimate the
model parameters, and make accurate predictions for all the
state variables, based solely on the optical density.
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Furthermore, unlike what the chapter division of this docu-
ment suggests, the processes of model development and model
calibration cannot simply be split into separated processes that
are done one after the other. These processes are done simultan-
eously and feed one another, they are actually also interleaved
with data acquisition. This makes model calibration an essential
lever of model development itself: the inability for a model to
fit experimental data can be interpreted as a sign of a mistake in
the modelling or the implementation. Therefore, reliability and
efficiency are indispensable features of the model calibration
framework. In this particular case, the scale of the model, its
subtle dynamics, and the data available all participate in making
this problem even more challenging.

This chapter explains how we tackled these problems. First,
we explain our whole setup of optimization methods for para-
meter inference. Then, we assess the identifiability of the model
on restricted data.

4.1 DESIGN OF AROBUST AND EFFICIENT
MODEL CALIBRATION FRAMEWORK

The adjustment of a model to data is an optimization problem
consisting in finding a set of parameters 0* minimizing the
distance between the predicted and observed data points, for
some notion of distance.

The best known problem of this type is linear regression,
where the model consists of an affine relation with two para-
meters y = ax +b. One can define here the residuals, the
differences between the data and the model at each data point.
It is common to use the sum of squared residuals to assess the
quality of the fit. Some algorithms to solve this type of problems
are known under the name of linear least squares and allow to
find the globally optimal solution efficiently.

However, most complex models, or models involving ODEs,
are not linear in their parameters and require other optimizers.
The first generalization of linear least squares methods is non-
linear least squares methods, that rely on the knowledge of
the jacobian of the model. The jacobian can either be given by
the user in analytical form when it is tractable, or estimated
numerically.



Alternatively, a general scalar optimization algorithm can be
used to minimize the sum of the squares of the residuals. Some
scalar algorithms need a way to know or estimate the gradient
vector (analogue of the jacobian for a scalar multi-parameter
function), and some also use, or compute on the fly the Hessian
matrix, which informs on the second derivatives of the function
with respect to its parameters. Algorithms known as “black-
box” do not require any information about the derivatives of
the function.

There is a gradation between algorithms who require deep
knowledge about the function to minimize and its derivatives,
and exploit it to converge efficiently to a local optimum, and
algorithms who only use the values of the function, but are
sometimes better at finding global optima. It can be counterintu-
itive to think that the algorithms using fewer data can find better
optima, but this is because derivatives are local information and
are of little use to explore the parameter space. Unless in special
cases, there is in general no way to reliably reach the global
optimum of a non-linear optimization problem.

The choice of algorithm can be daunting. Even the choice
of the cost function needs careful consideration. In the next
subsection, we will describe the choices that we made relatively
to the fitting strategy. In order to reliably obtain good fits, it
is crucial to put thought in the three components of fitting a
given model to data besides the model itself: the data, the
parameters, and the fitting algorithms. Then, we will elaborate
on the intrinsic difficulty of the task of fitting this particular
model. Finally, we will consider the problem of fitting this
model with only optical density data.

4.1.1  Choice of the cost function

The purpose of the cost function is to quantify the match
between the simulated model for a given parameter set, and the
experimental data points. The data points are available from
two sources: the plate reader, reading the optical density of
wells at regular intervals of time, and the CFU counts, giving
access to the number of living cells in each well. The CFU counts
are done manually, which limits the frequency of observation,
compared to the optical density measurements. Formally, we
can have Kop OD measurements OD; made on times tiOD, and

KN CFU counts N; performed on times t{\l' The numerical simu-
lation of the model gives access to continuous functions OD(t)
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and N(t) which we ideally want as close as possible from the
experimental data points.

In the general case, let’s assume that we have N observations
y; taken at times t;, each marred by independent normal obser-
vation noise of standard deviation ¢;. One can then define the
likelihood L£(0) of a set of parameters 6: L(0) = f(y|0) where
f(y|0) is the probability density of making the observations v;
from a model parameterized by 6:

1 1 (vo(t)—;)?

L(B) = —e 1
(0) \/EN U o) (4.1)
The objective of the parameter search is to find 0 that max-
imizes the likelihood, this is the Maximum Likelihood Estim-
ator (MLE). For numerical reasons, because of the range of
variation of the likelihood, one often maximize instead the log-
arithm of £ (Andreas Raue et al. 2013):

2
log £(0) = cst — % ; (ye(tl;%yl) = cst — cost (4.2)
where the constant term is independent on 6. Maximizing the
likelihood then amounts to minimizing the second term, that
we will from now call the cost.

If this is a mathematically well-defined problem, there is a
number of details that one needs to take care of to allow its

easier numerical resolution.

Noise model

Determining the uncertainty of the observed data can be crucial
to the success of the optimization function. The uncertainty dis-
tributions on the cell counts have been the object of section 2.1.5,
where we derived a distribution, which is not normal, but which
can be very satisfyingly approximated by a normal distribution.

The standard deviations o} for the numbers of cells are then
estimated through this distribution.

Concerning the OD, the measurement noise of the plate reader
can be estimated with repeated OD measures of colloidal solu-
tions. We found that it can be approximated with the sum of
a 2% multiplicative gaussian noise and an additive gaussian
noise of standard deviation 10~*. Formally, we modelled the ob-
served value y; as y(t;) + 6; with §; a random value distributed
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according to a normal law of zero mean and standard deviation
ol = ¥ 4 104,

However, the measurement noise alone does not account for
all the variations observed experimentally on technical replic-
ates. The preparation of the experiment introduces experimental
errors related to the handling of fluids by micropipettes. Mi-
cropipette constructors advertise both accuracy and precision of
their instruments to a few percents. Following this specification,
adding a multiplicative noise of 5 % to the initial number of cells
and antibiotic concentration produces results consistent with
the observed experimental noise, of up to 20 % on the time of
regrowth, as shown on figure 4.1.

100 J

Optical Density
Technical replicates
—_
S

Optical Density
Simulation
—_
S

0 ) 10 15 20

Figure 4.1: Top: technical replicates, bottom: simulation of the experi-
ment. The noise model on the simulation consists of a 2 %
multiplicative gaussian noise on the OD, and 5 % on the
initial values of 2 and N.

Factoring this dilution noise in the likelihood function is
doable, but requires another nested optimization procedure, as
described in appendix A. Further code optimization is needed
to make this feasible in practice. Until then, unless specified
otherwise, the only noise considered is the measurement noise

through o{,, and O'I]\I.

The distribution
error (see 2.1.5) is
here negligible in
front of the dilution
error, by a factor 20.

The results of
adding this noise
only to N or a are
comparable. Hence,
these two variables
contribute equally to
the dilution noise.

—— 0O mg/L
—— 1mg/L
—— 2mg/L
—— 4 mg/L
—— 8 mg/L
—— 16 mg/L



100 | MODEL CALIBRATION

Residuals scaling

The first question to consider is the natural scaling of the data.
There are theoretical and practical reasons to argue that OD and
number of cells should be considered on a logarithmic scale.

First, the number of bacteria N in a well can vary, in principle,
from 1 to billions: over 9 decimal orders of magnitude. Accur-
ately representing variations of this order is impossible with
a linear scale, which can hardly display information spanning
more than 1 or 2 orders of magnitude.

Secondly, the simplest equation to describe the unrestricted
growth of a cell population is the exponential equation which
indicates that the derivative of N is directly proportional to N,
and therefore spans a range as wide as N itself: %—T = uN.

This equation can be rewritten in order to exhibit the derivat-
ive of the logarithm of N, which is now just constant and equal
to the intensive variable y. This is arguably the most natural

i dInN
formulation: <3~ = p.
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Figure 4.2: Top: linear, bottom: logarithmic scaling. With linear scal-
ing, the exponential growth is invisible, as well as the
low stationary level of the 16mg/L curve (above 10~2).
With logarithmic scaling, everything is visible, and less
importance is given to the late stationary phase which is
not the focus of the model.

Experimentally, as demonstrated by figure 4.2, a linear scale
disproportionately emphasizes the late features of the growth
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curves, while masking the early exponential phase, as well as
fine but important points such as the optical density reached at
6 h when the curves start to split, and the stationary level where
the 16 mg/L establishes while the antibiotic dose is still too high
to allow regrowth.

If the logarithmic scale is the natural scale of these quantities,
it is more relevant to take y = log OD, in the least squares
equation, instead of y = OD, and to adapt the uncertainties
appropriately. With X the random variable representing the
measured value of optical density or number of cells, we need
then to compute pjox and ojog x, the average and standard
deviation of log X, as a function of ux and ¢, average and
standard deviation of X. Given in these terms, this problem
is ill-posed, because X being normally distributed, it can take
negative values, which prevents in principle to take its logarithm.
However, under the assumption that the negative support of X is
negligible, a first-order Taylor expansion of log(ux + (X — px))
allows deriving;:

HiogX = E[log(X)]
= E[log(px + (X — px))]

X —
~E {log(yx) + VX}

~ E[log(x)] +E [%}

Hiog x ~ log(px)
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These average and standard deviation are those of the normal
noise model on log X approximating the best, at first order, the
normal noise model on X. With our noise model of o5y, =
% +107* (see 4.1.1), this approximation becomes increasingly
wrong for smaller ODs (when the negative support of the normal
distribution cannot be neglected any more), because 050D
diverges whereas oop should tend to a finite value. Fortunately,
the main measurement range for optical densities spans 1073 to
10!, where this problem is not the most important.

Besides the scaling of the data, another point to consider, since
the variance of the noise depends on the data, is whether to
use the simulated point y(¢;) or the experimental point y; to
compute the noise.

y(t:) — i (noise on y) y(t:) — v (noise on ;)
1010_ ]
R
< 10%
g
T 102 —
<
s
%1072
logy(t;) — logy; (noise on y) logy(t;) — logy; (noise on y;)
1010_ ]
E
= 106_
g
T 10%
z 7\
g \
wn 1072_ /{ |
10-0 102 10° 10-0 102 10°
Simulated value y(t;) Simulated value y(t;)

Figure 4.3: For five different experimental values y;, this figure shows
the behaviour of the squared residual as a function of the
simulated value y(t;). Top: linear OD, bottom: logarithmic
OD. Left: noise applied on y(t;), right: noise applied on y;.

Although these four different noise models all allow the resid-
uals to admit the value 0 when the simulation agrees with the
experiment, they have different behaviours when the simulation
and data do not agree perfectly, as shown on figure 4.3. The op-
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timization algorithm heavily relies on the behaviour of the cost
function away from the optimum to find a way to the optimum.
Consequently, when possible, it is important to optimize this
behaviour in order to facilitate the optimization. In general,
the cost function should be continuously decreasing towards its
minimum, like a funnel.

Both linear versions are flat on at least one side, which can
prevent convergence. The first logarithmic version presents two
minima and could then drag the optimizer into nonsensical
regions. The second logarithmic version is very well-behaved
for optimization: a unique minimum, and slopes on both sides
to guide the optimization like in a funnel. This is the one that
we used. Finally, the residuals for OD and N are written:

log N(t{\l) —log N;

_ log OD(t{,) —log OD;
(9D: 4 10-4)/0D;

i
OD

j
'N

Finally, both non-linear least squares optimization algorithms
(who work on the whole array of residuals) and scalar func-
tion optimization algorithms (who only take a scalar cost) then
minimize the same function, extracted from 4.2:

1 . .2
cost = 5 (ZrloDz + Zr{\I )
i j

4.1.2 Parameter scaling

The 17 parameters of the model have widely different ranges
of biologically relevant units and values. For example, A, the
conversion factor from cells to nutrients, is a quantity on the
order of 0.5L/g, while K, the half-velocity nutrient constant, is
around 1 mg/L. Some are better known than others: this is the
case for A which is easy to estimate from any curve; inversely
Ks has a range of different reported values in the literature
spanning 3 orders of magnitude, and in this range has little
effect on the simulations, which leads to uncertain estimations
of this parameter.

All 17 parameters: concentrations, rates, lengths or Hill expo-
nents, are bounded below by zero. Some of them are bounded
above, like p., by 1. The others do not really have an upper
limit, but one can define biologically plausible regions outside
which it is not useful to search. The restriction of the search

As a matter of fact,
when using the top
right noise model, it
is not uncommon to
see some simulated
ODs lower than the
data. The optimizer
misses these points
because their cost
function is locally

flat.
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to reasonable bounded regions does not only make for a more
efficient parameter search, it also limits the risk of numerical
instabilities caused in the integration of the ODE system by ex-
cessive parameter values, which could perturb or even stop the
parameter search before its term.

However, the diversity in units and uncertainty ranges in
the parameters is transposed in the axes of the resulting 17-
dimensional box where the search is to be conducted. Simultan-
eously estimating parameters over disproportionate regions is
known to pose numerical problems to most optimizers. There-
fore, a parameter preconditioning is needed to rescale the rect-
angular box into a hypercube.

For similar reasons as for the data, the natural scale of some
parameters is logarithmic, notably the parameters assimilable
with an antibiotic concentration: ki and ky. The parameters kj, et
K, that can vary within large ranges, are also better expressed
with a logarithmic scaling. On the contrary, Hill exponents like
hy and parameters that have limited ranges of variation between
strains, like y and A, are best fit within a linear space.

It is convenient to distinguish unscaled parameters, as they
appear in the model, and scaled parameters, as they are used
in the search, by the respective notions of “phenotype” and
“genotype.” The genotype versions of the parameters are all
bounded between 0 and 10.

In order to convert parameters from phenotype p (with lower
bound /b and upper bound ub) to genotype g and inversely, one
of the following linear or logarithmic transformations is applied,
depending on the parameter:

10% linear
g =
10% logarithmic
Ib+ (ub—1b)£; linear
P=1 1 [0 .
Ib (”l‘—b> logarithmic

4.1.3 Integration of the ODE

The ODE model is implemented in Python and solved with the
function solve_ivp using the method LS0DA, which is a widely
used integration algorithm implemented in FORTRAN (Hind-



marsh 1983). LSODA automatically detects the stiffness of the prob-
lem, and switches appropriately between the explicit Adams
integration method, and the implicit BDF for stiff parts (Petzold
1983). The problem is stiff notably around the time of exhaustion
of glucose when g, and several derivatives change abruptly.

However, even stiff solvers fail to integrate the model as it is,
because of the disproportion between its variables. The variable
N represents a number of cells, and can then take values up
to 10°, whereas the variables representing concentrations like
s, a and b take much smaller values (typically lower than 1)
in the units chosen for them. Numerical solvers cannot be
simultaneously accurate over such a range of magnitudes. For
this reason, we pass to the numerical solver a rescaled version
of the model, with several variables changed in order to make
their ranges similar: N = y N, A = yA, By = B/, 1 = 1,
=1nc, 6 =1cr.

4.1.4 Choice of fitting algorithms

The scientific computing library scipy provides a variety of di-
verse optimization algorithms, among which local optimization
algorithms for scalar functions through the function minimize,
local least-squares methods through least_squares, and global
optimization methods for scalar functions such as basinhopping,
dual_annealing or differential_evolution. Another powerful
optimization algorithm for scalar functions is Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen 2006), imple-
mented in the python package cma.

Several of these algorithms can be leveraged for different pur-
poses. Searching for the best fit in a vast and multi-dimensional
parameter space can be decomposed in two successive tasks:
first, finding a region where parameters produce good fits, and
secondly, finding the best fit in this region. The first task requires
a global optimization algorithm, whereas the second needs a
local algorithm.

A comprehensive comparison of optimization methods for
a simpler biological problem can be found in (Andreas Raue
et al. 2013). For our case, we found experimentally that three
strategies worked well for the search of the first approximate fit:

CMA-ES setup to initially span the whole parameter hyper-
cube (o = 2);
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the basinhopping algorithm of scipy, modified in order to
use a non-linear least squares method as local optimizer;

“multistart local search” consisting of successively calling
least_squares (method="trf’) from several predetermined
initial positions, generated with Latin Hypercube Sampling
(LHS) of the search region.

These three methods were the most successful at finding fits,
generally within 5 or 10% of the estimated optimum (best fit
ever found). In order to refine these first fits, the modified
basinhopping algorithm with smaller step size and temperature
settings was sometimes used.

Finally, as developed in 4.2.1, profile likelihood computations
require numerous successive parameter readjustments starting
from very close initial positions. For this application, we can
make the hypothesis that with sufficiently small steps, the local
minimum does not change from an iteration to the next, and
that it is then sufficient to call a local solver such as least_
squares(method="trf’) at each step, starting from the best fit at
the previous iteration, which is two orders of magnitude faster
than the full fitting procedure from scratch.

4.2 ASSESSMENT OF THE MODEL IDEN-
TIFIABILITY

It is not always possible to infer all the parameters of a model
from the observation of its behaviour. Parameters whose values
cannot be inferred are called unidentifiable, for two kinds of
reasons: structural and practical.

Structural unidentifiability is a mathematical property of the
model that expresses that no estimate of the value of a para-
meter is possible to be made from a given set of observations.
This might be because the parameter is only involved in an
observable that cannot be measured, or because the parameter
is mixed with another one such that only a relation between
these two parameters can be inferred but not their individual
values.

Practical unidentifiability concerns parameters that are math-
ematically identifiable, but whose estimation with the available
data can be done at best with an uncertainty interval so large
that it is unexploitable. This happens in cases where a para-
meter plays a very small, but non-zero, role in the behaviour of
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the model, and this role is masked by measurement or intrinsic
noise.

Model unidentifiabilities are in general to avoid, because if
the value of a parameter cannot be determined, then a simpler
model that would not include this parameter would probably
tit the data just as well, and be more satisfying from the point
of view of model parsimony. From a computational point of
view, an optimization problem in a multi-dimensional space
degenerated by unidentifiabilities can be much more difficult
than in the space restricted to the identifiable parameters.

Finally, parameter identifiability depends on the available set
of observables. We will consider for all this section that under
the noise model described in 4.1.1, we have access to:

a temporal series of OD readings,

a temporal series of CFU counts of the number of cells N,
the initial glucose concentration s(0),

the initial antibiotic concentration a(0).

In these conditions, there exists a structural unidentifiability
in the model, concerning the parameters B;, and k;,. Indeed,
those are the only parameters that relate to the concentration of
[-lactamase of the culture medium, b, but b is not observable
with our experimental platform. With no way to make any
measurement involving the concentration of (3-lactamase, no
parameters measured in units involving the concentration of
this enzyme can be estimated. Dimensional analysis addition-
ally suggests that their product is the quantity that could be
identifiable. This can be shown rigorously by performing the
change of variables b =1b/B;, and kAb = kpBin, which completely
removes Bj, from the model. Without knowledge of the values
of ky or b, this prevents recovering the one of Bj,. It is then
useless to search for both k;, and Bj,, and we could fix the value
of either without loss of generality.

The identifiability of a model also depends on the data values
themselves. Taking the example of the mechanism of debris
elimination: one of the hypotheses of the model is that when
a cell lyses, it creates a proportion p. of debris that never de-
grade, while the rest has a half-life d.. We can imagine a strain
with p. = 1, or d. = 0: in these cases, the other parameter,
respectively p. or d., would not be identifiable.

Both of these hypothetical strains would be described equally
well with a subset of the original model. Actually, we will
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see later that this phenomenon will play a large role in the
explanation of the data.

The PDE and ODE models share exactly the same parameters,
that interact in the same ways. Without access to experimental
length distributions, they are then equivalent with respect to
parameter identifiability, and although the simulations in this
section have been performed with the ODE model, similar results
should be expected with the former.

Most complex biological models are partially unidentifiable,
and this one is not an exception. This problem is particularly
intensified by the use of less data, as in our OD-based approach.
Therefore, before using it, and trusting its inferred parameter
values, we need to understand what is, or is not identifiable.

4.2.1  Profile likelihood

Although structural unidentifiabilities can be detected by ex-
amining the mathematical structure of the model, practical
unidentifiabilities are dependent on the quality of the data fed to
the model. A way to quantify practical identifiability is to link it
to confidence intervals, a parameter 6; being said unidentifiable
if its confidence interval @;" with confidence level « is infinite,
or too large to be useful.

Deciding whether a parameter is inside an interval or outside
is a problem known as nested model discrimination. This is
typically solved with a likelihood-ratio test, as following. Let
Hy, the null hypothesis, be that the value of the parameter 0; is
outside of the a confidence interval for this parameter @f. Then,
we can define the following ratio:

The numerator is the maximum of the likelihood for 6; outside
of its confidence interval. The likelihood reaches its maximum
on the boundaries of this confidence interval 67, . The denom-
inator is the maximum of the likelihood, without restriction on
6;. We will note it £(6*), 6* being the optimal parameter set.
Introducing the cost function with equation 4.2, we can then
write:

L£(6%)
L(67)

AR = 2 log = 2(cost(6,) — cost(6%))
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The theory of the likelihood-ratio test states that under the
null hypothesis, A g converges to be x*-distributed (Wilks 1938).
Consequently, to compute the values of the boundaries of the
confidence interval with the level of confidence « and df degrees
of freedom, we need to solve the following equation:

X*(a,df)

cost(0.) — cost(6%) = Y (4.3)

From here, two approaches can be followed: the asymptotic
approximation, and the profile likelihood method. The asymp-
totic approximation consists of approaching the cost function
with its 2nd-order Taylor expansion around 67, the value of 6;
in 6*.

02cost

90;>
with no linear term, and a non-negative quadratic coefficient
because 07 is a minimum of the cost function.

We can now look at the extrapolation of the cost function
from this curvature, and compare this to the critical x> value
from equation 4.3. This leads to expressions of the bounds of
the uncertainty interval ©f:

(6: = 67)°

1

cost(0}) ~ cost(0*) +

f‘izé)fj:

This approach is convenient because all it requires is the
knowledge of the optimal parameter set 6%, and the curvature
matrix of the cost function around this point, which some op-
timization solvers estimate during their work, and can return as
a side-product of the optimization.

However, in the presence of limited data, and when the ob-
servables are non-linear functions of the parameters 6, this ap-
proximation is often not accurate. A. Raue et al. (2009) showed
that the direct exploitation of equation 4.3 allows a better de-
tection of the structural and practical unidentifiabilities of a
model in degraded conditions. Repeatedly optimizing the cost
function along in one direction allows to generate a profile of
the likelihood along this axis, hence the name of the method.

These profiles can then be compared to a threshold defined
as in equation 4.3. The parameter «a sets the difficulty of the
test: it is easier to randomly pass the test for a 68% confidence
interval than for a 95% interval. The parameter df has clas-
sically one of two values: 1 or #0, the number of parameters

109

To compute a
reliable estimate of
the curvature
matrix,
least_squares
has to be called with
the option
jac='3-point’.
Even better, one
could use
autodifferentiation
or a sensitivity
solver like
CVODES.
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A possible
improvement would
be to generate data
with two different
initial densities, in
order to feed the fit
with data related to
inoculum effect,
instead of leaving it
to be predicted by
the model.
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in the model. Selecting a value of 1 gives so-called pointwise
confidence intervals: the intervals that hold for each parameter
separately. A value equal to the number of parameters in the
system allows to compute the simultaneous confidence intervals,
that hold for each parameter considering the possible variations
of the others. Allowing the values of other parameters to change
enlarges the confidence interval of parameters. We chose to
judge identifiability of parameters against the simultaneous 95%
confidence intervals.

4.2.2 Model calibration restricted to OD and N

To check our ability to reliably and accurately infer the para-
meters of an unknown model, we generated synthetic data with
the ODE model, a set of parameters with biologically plausible
values, and the full noise model identified in 4.1.1: with both
measurement noise and dilution error. We also generated data
only stained with measurement noise, and no dilution error,
since this reflects the construction of the cost function (see 4.1.1).

The data was generated in order to simulate a real experiment:
an exponential scale of antibiotics spanning from 0.5mg/L to
512mg/L was used as initial doses, with a starting cell inoculum
of 5-10~% oD.

Plate reader OD measurements were simulated to be taken
every 5 minutes, at the same frequency as actual measurements,
and cell counts were simulated to be performed every 2 hours,
the maximal frequency that a human experimenter can perform
this tedious manual task over 24 hours.

The following table presents the initial values of parameters,
and the best fits obtained, on data (OD and N) generated without
and with dilution noise.
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Parameter Reference value Meas. noise only Dil. + Meas. noise
v (1/h) 1.65 1.65 1.65
B (1/h) 5 5.03 5.37
1 (1/h) 0.8 0.800 0.800
Ks (g/L) 1074 1.07-10~4 1.06-10~4
A(L/g) 8.5-107 8.54-107 8.41-107
ki (mg/L) 1.2 1.19 1.05
hi (1) 8 8.02 7.24
ky (mg/L) 42 41.42 40.7
Bin (mg/L) 1010 9.91-10~10 1.47-10710
ky, (L/mg/h) 300 300 209
d, (1/h) 0.05 0.0511 0.0560
dp (1/h) 0.1 0.100 0.107
de (1/h) 15 15.15 12.5
pe (1) 0.2 0.201 0.202
Lnin (1) 5 5.10 5.07
Lmax (1) 120 120 117
1 (1) 108 9.96-107° 1.01-1078
cost (meas.) 1794.2 1785.2
cost (dil.+meas.) 47468 6281.9

The best fit of noisy data remains in the vicinity of the para-
meter set used to generate the data. This test does not show
anything about unidentifiability, because a fit almost as good
or exactly as good could possibly have been generated with
vastly different parameters. However, it shows that at least for
these particular parameter values, dilution noise present in the
data (as in the last column) and fitted with a cost function that
ignores this error (see 4.1.1) does not in principle prevent the

recovery of the cell parameters.

Profile likelihood analysis was performed on these two data-
sets and results are presented in the next pages. The dataset with
measurement noise only is the easiest to interpret (figure 4.4).
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Figure 4.4: Identifiability analysis on synthetic data (OD and N) with
measurement noise and no dilution noise. The orange
dashed line is the parabolic approximation from the di-
agonal of the curvature matrix at minimum. The blue
solid line is the profile likelihood. The two dashed gray
horizontal lines are the two thresholds for identifiability:
pointwise (lower) and simultaneous (higher) at « = 0.95
confidence level. Parameter values are normalized with
respect to the reference value.

Here, we can see that the two measures of identifiability (quad-
ratic approximation and profile likelihood) give similar tight
confidence intervals for 7y, u, A, dc, pe, Lmin- For B, k1, hy, ko, da,



dp, Lmax and 7 the quadratic approximation slightly underestim-
ates the range of the confidence interval, which might be either
caused by an error of estimation of the curvature matrix, or by
interplay with other parameters. Finally, Ks, Bin, k, are fully
unidentifiable, despite tight confidence intervals estimated by
the parabolic approximation for B, and kj,. These two paramet-
ers sharing an unidentifiability (their product is constrained),
it is understandable that both of their individual variances are
limited, the other being fixed. This is what is represented by the
parabolic approximation. In the case of Ks however, the asymp-
totic approximation gives a huge confidence interval, which is
only limited by the fact that it reaches 0.

Although the parabolic approximation underestimates the
confidence intervals, its off-diagonal elements give information
that the profile likelihood does not, related to the correlations
between parameters. Indeed, correlations can be computed from
the curvature matrix, giving insight into the structure of the
model and the pairs of unidentifiable parameters.

On this synthetic data, the two highest correlation coefficients
in absolute values are:

OB, k, = —1, which reflects the structural unidentifiabil-
ity between the parameters By, and k. The sign of the
correlation indicates that an identifiable parameter can be
formed with their product (if the correlation was positive,
it is their quotient that would be involved).

py,a = —0.97 close to —1, this correlation indicates a prac-
tical unidentifiability. It says that the product of #7 and A is
approximately conserved in good fits neighbouring the op-
timal. This comes from the fact that to increase the OD of
the culture, one can either decrease the conversion factor
from nutrients to cells A (to create more biomass from
the same quantity of nutrients), or increase the propor-
tionality constant between biomass and OD. These factors
are difficult to disentangle in these experimental condi-
tions, however, the two parameters remain identifiable as
attested by their profile likelihood.
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Figure 4.5: Identifiability analysis on synthetic data with measure-
ment and dilution noise.

To test the influence of the dilution noise on the identifiability
of the parameters, we also ran the profile likelihood analysis on
the data generated with dilution noise (figure 4.6).

The results are a bit more difficult to interpret, probably
because the optimization problem solved to compute the profile
likelihood at each point is more difficult. However, parameters
identified as identifiable remain identifiable. There seems to
be a tendency for parameters to appear more identifiable than
they really are in this setting, because of shortcomings in the
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optimization procedure that gets stuck more easily in local
minima. This is particularly noticeable for the parameter k;
whose 95% confidence interval is ten times smaller with dilution
noise than without. Likewise, the unidentifiable parameters
B, and ky,, nonetheless display a semblant of identifiability. It
is unclear if this really comes from the inability of the search
function to follow the global minimum, or from some more
fundamental reason.
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Figure 4.6: Identifiability analysis on synthetic data with measure-
ment and dilution noise.
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We already knew from section 4.2 that in the absence of any

measurement of b, Bi, and ky, form a structurally unidentifiable

Values of Ksare  pair. The parameter K is not surprising, since it only affects the
very difficult to slow down of growth when the nutrient concentration is similar
m;i;”;i@”;g;;lh’ to Ks, which happens very shortly during the last cell generation
determined iZ and then has in general very little effect on the output of the
continuous cultures. model'. The parameters k, and d, acting both on antibiotic
degradation, k;, by active degradation caused by {3-lactamase,

and d, by natural degradation, it is possible that both form a

practically unidentifiable pair.

4.2.3 Model calibration restricted to OD only

As explained earlier (general introduction, and introduction of
this chapter), the ambition of the approach is to be deployable in
a context that does not allow more measurements than optical
density growth curves. As we saw in the last section, calibrating
a model of this complexity on only OD and N data is a chal-
lenging problem, so calibrating it on OD only is probably even
more difficult. To assess this, we performed the same tests as in
the last section, on the same synthetic experiments, but without
including the data on cell number in the cost function. First, we
searched for the globally best fits.

Parameter Reference value Meas. noise only Dil. + Meas. noise
v (1/h) 1.65 1.65 1.64
B (1/h) 5 5.37 441
1 (1/h) 0.8 0.800 0.800
Ks (g/L) 104 1.06-10~4 1.43-1074
A(L/g) 8.5 - 107 8.41 - 107 6.66 - 107
ki (mg/L) 1.2 1.05 1.18
hy (1) 8 7.25 9.98
ky (mg/L) 42 40.7 45.1

1 Seeing the almost nonexistent influence of K in the model of growth, one
could wonder whether it was judicious to choose Monod’s growth model
instead of a logistic growth model, since the logistic growth model only
requires one parameter, the growth rate y, and no K. It does seem necessary,
because the advantage of Monod’s model is not only to better model the
slow down of the growth when the nutrients get depleted, it also allows
to track the level of nutrients, whereas the logistic model only slows down
the growth based on the number of cells. In presence of antibiotics and
important death, the difference between these two approaches matters.
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Parameter Reference value Meas. noise only Dil. + Meas. noise
Bin (mg/L) 1010 1.47-10710 5.03-10~11
ky (L/mg/h) 300 209 723
da (1/h) 0.05 0.0560 0.0632
d, (1/h) 0.1 0.107 0.0664
d. (1/h) 15 12.48 14.1
pe (1) 0.2 0.202 0.201
Lmin (1) 5 5.07 3.33
Lmax (1) 120 117 119
17 (1) 10-8 1.01-10°8 1.28 1078
cost (meas.) 1706.0 1702.2
cost (dil.+meas.) 51179 2956.7

Then, we computed profile likelihood around these two op-
tima (figure 4.7)..

Without data from cell number, it is understandably more
difficult to infer parameters, and more unidentifiabilities will
form. In fact, the correlation matrix showed the same two
correlations as for the case fitted with OD and N (o, A = —1,
OBy, k, = —0.56), plus some others.

® P4, p. = —0.95. Both parameters are related to dead bio-
mass. This means that without the information of live cells
provided by N, the model has more difficulty to recognize
whether the OD is constituted of live cells or dead biomass.

e There is a cluster of five parameters linked by strong cor-
relation coefficients (|p| > 0.85): da, dy, k1, ko and hy. This
is the marker of a cluster of unidentifiable parameters.
The correlations are positive between d, and dy,, and inside
the trio kq, k and hy. All the other relations are negative.
Dimensionally, d, and d}, share the same units, so do k;
and kjp, and h; is dimensionless. From this dimensional
argument, but also from the signs of the correlations, we
can conclude that the invariant related to this unidentifiab-
ility is a function of the three quantities d,/dy, k1/k2 and
hy. Further study could reveal the shape of this function.
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Figure 4.7: Identifiability analysis on synthetic data with measure-
ment and no dilution noise, on optical density data only.

For completeness, we also run the profile likelihood analysis
on the same dataset, with only OD and no cell number, but with
dilution noise. The results are shown on figure 4.8.
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Figure 4.8: Identifiability analysis on synthetic data with measure-
ment and dilution noise, on optical density data only.

Obviously, unidentifiable parameters do not become identi-
tiable thanks to the noise, but identifiable parameters without
dilution noise remain identifiable with it, which is a good sign
for the parameter inference strategy.

4.2.4 The role of unidentifiabilities in the model

Seeing unidentifiabilities in the model, one could be tempted to
reformulate it until it becomes completely identifiable. Except
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for structural unidentifiabilities like B;, and ki, the merits of this
strategy are not obvious. Actually, a parameter identifiable on
one dataset can be unidentifiable on another. The problem is one
of model calibration with restricted information, on strains that
often exhibit only subsets of the model, but different subsets
depending on the strain.

For example, Ly, cannot be estimated if we do not probe
the system with antibiotic concentrations higher than k,. We
might not be able to do that if the strain is very resistant. Like-
wise, the efficiency of the 3-lactamase cannot be determined
precisely on very sensitive strains. It is possible to find strains
and experimental conditions to make every parameter identi-
fiable, but most isolates exploit only a subset of the model. It
is then important to not reduce the model too much, to not
lose its generality. We will actually find in section 5.3.2 that
we can exploit the parameter unidentifiabilities as recognizable
signatures of the isolates.

4.3 CHAPTER SUMMARY

This chapter enables to build the link between the data and
the model, in fact, to find the set of parameters with which the
model best reproduces a given experimental growth curve. This
problem can be tackled with one or several techniques from
an overwhelming diversity of optimization methods. However,
some algorithms perform better than others depending on the
problem.

In a first part, we describe the parameter inference infra-
structure, that we engineered in order to satisfy variable goals:
robustness for the global parameter inference problems, and
efficiency for the local ones. In a second part, we use these meth-
ods to tackle the problem of model identifiability. Because the
data is poor and noisy, some parameters cannot be fit accurately,
and we determine which ones, on synthetic data as close as
possible from the real data. We show that most parameters are
identifiable notwithstanding the noise, and on data limited to
OD only.



EXPERIMENTAL CALIBRATION OF
CLINICAL ISOLATES

The number of different (3-lactamases synthesised by bacteria is
expressed in hundreds. Their kinetic parameters and affinity to
various [3-lactam antibiotics are the object of numerous studies
(Felici et al. 1993; Nitanai et al. 2010; Page 2008). Among them,
some of the most active on a diversity of 3-lactams are classified
as Extended Spectrum (-lactamases (ESBLs). ESBL-producing
bacteria being resistant to several classes of 3-lactams, infections
involving ESBLs are particularly dreaded in the clinic. However,
there is not a country in the world not plagued by a 5% to
30% prevalence of ESBL-producing strains in the wild and in
medical centres (Paterson and Bonomo 2005). Some studies
even report that up to 70% of the population of healthy adults
of some countries are ESBL carriers (Savard and Perl 2012). This
prevalence makes of ESBLs-producing bacteria one of the main
actors of bacterial infections globally, and places them at the
centre of medical attention.

Special dispositions can be taken in hospitals to avoid the
spread of some classes of ESBLs-producing bacteria. To apply
these measures as efficiently as possible, effective and sensit-
ive detection protocols are required. One of the most widely
used screening techniques is the disk diffusion method, or an-
tibiogram. Paper disks soaked with antibiotics are deposited
at the surface of a lawn of bacteria on a gel. A region of in-
hibition is formed around each paper disk, and its measured
diameter can be compared to tabulated values (EUCAST 2020a)
to determine the status (sensitive, intermediate, resistant) of this
strain to the antibiotics tested. The commercial Etest relies on
the same principle but allows a direct reading of the MIC of the
strain on a paper strip. These methods require 18 to 24 hours of
incubation. Other commercial tests such as Vitek or Phoenix can
give an answer in 4 to 15 hours. The common characteristics of
these tests is that they all take decisions based on the phenotypic
behaviour of the strain at a single point in time.

Relying on a single point to characterize the behaviour of a
strain can separate resistant from sensitive strains, but it does
not allow to differentiate between different response mechan-
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isms, in particular resistance, tolerance, persistence or resilience.
Indeed, if a strain is shown to have grown after an antibiotic
treatment, it could be because the population is resistant to the
antibiotic (few cells died), or because it is tolerant and resili-
ent (some cells died, but some survived, and the population
recovered to untreated levels before the end of the incubation).
In this example, although the resistant population did not re-
spond to the treatment, the tolerant and resilient population
showed a response that could be exploited in the design of a
treatment. Such behaviours are often characteristic of strains
neither sensitive nor resistant but qualified as intermediate.

In the context of the resistance crisis, intermediate strains are
increasingly considered as cases where a high concentration
antibiotic treatment could be attempted. Distinguishing res-
istant from intermediate strains, and accurately characterizing
intermediate strains, is then a current problem.

Besides phenotypic approaches detecting either bacterial growth
or the presence of a beta-lactamase, the second realm of ESBL
detection is genotypic. The complete sequencing of a strain al-
lows to detect all known genes coding for a resistant trait in the
genome of this strain. However, this approach could potentially
miss unknown resistance genes, as well as report the presence
in the genome of resistance genes that are not expressed in a
particular isolate, or that are not as potent as expected, because
of interactions with other mechanisms. It is a mostly qualitative,
and not quantitative approach: the same gene in two different
strains could lead to two different phenotypical responses.

Between the MIC, a quantitative measurement relying on a
unique datapoint, and a full sequencing, difficult to relate to a
quantitative response, we need another approach that can articu-
late the differences between the different types of response: res-
istance, resilience, tolerance and persistence, while considering
all the scales of this response: molecular, cell and population-
level. The ambition of our approach is that our model could help
dissect the behaviour of cells at all of these levels, strengthening
the intuitive understanding of what could happen for a given
strain treated with different doses.

In this chapter, after an introduction on the biology of f3-
lactamases, we will present the nine strains of our collection,
their antibiotic resistance properties, and the antibiotics that we
chose to test them. In a second part, we will present all the
original data that we collected and that helped us to develop the
model as it is. In a third part, we will show the parameter sets



inferred on all the strains, discuss their compatibility with the
genetic information that we have on the strains, and show that
we can identify three main types of response, that correspond
to sensitive, tolerant/resilient, and resistant strains.

Panorama of B-lactamases

Since the early reports of the first 3-lactamase by Abraham and
Chain (1940), at least 5000 others have been observed (Naas et
al. 2017). Expressed by various bacterial strains, they fall into
two different but largely correlated classification schemes: the
Ambler classification (Ambler, Baddiley, and Abraham 1980), de-
scribing four classes based on their molecular structure, and the
Bush-Jacoby-Medeiros classification (Bush 1989; Bush, Jacoby,
and Medeiros 1995; Bush and Jacoby 2010), identifying in its last
version 3 groups and 16 subgroups distinguished by functional
characteristics.

The review of Tooke et al. (2019) is useful to acquire a general
vision of the Ambler classification. Without diving into unne-
cessary detail, 3-lactamases can be structurally separated into
two distinct groups: serines and metallo-3-lactamases. Serines
correspond to the molecular classes A, C and D of the Ambler
classification, and are chemical analogues of the PBPs, target
enzymes of the (3-lactams. They compete with PBPs for the
binding of -lactams, and hydrolyse antibiotics with an acyl-
enzymatic reaction (Bush and Sykes 1986). Class A contains
the better studied of these enzymes, and regroups families of
enzymes among which CTX-M, TEM, SHV are some of the best
known. They are in general held not by the chromosome of
the bacteria, but by a plasmid. In contrast, class C enzymes
are chromosomic and contain CMY, FOX, AmpC among others.
Class D enzymes are the most diverse and least understood of
the 3-lactamases. The most famous class D enzyme family is
OXA, which regroups almost a thousand {3-lactamases, some of
them showing a particular activity against carbapenems.

In contrast, 3-lactamases of class B are unrelated to PBPs, and
bear the name of metallo-f3-lactamases because of the zinc atoms
that participate in their structure. Class B enzymes such as VIM,
IMP or NDM are known to be effective against an exceptionally
broad spectrum of 3-lactams, including carbapenems, with kin-
etics that can also be modelled as acyl-enzymatic (Felici et al.

1993).
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The second, orthogonal classification is functional: it groups
families of 3-lactamases together based on their relative activit-
ies against different 3-lactams, and their resistance to 3-lactamase
inhibitors such as clavulanic acid, tazobactam or Etylenediaminetetraacetic
acid (EDTA). It is mostly correlated with the molecular classifica-
tion. Updated twice, the latest revision is described in details
by the authors (Bush and Jacoby 2010).

The mode of action of 3-lactamase on (3-lactam is known to
match one of an acyl-enzyme, where the 3-lactamase is the en-
zyme and the antibiotic is the substrate. In a first reversible step,
the enzyme binds to the antibiotic to form a Michaelis complex.
This complex can commit to the hydrolysis reaction through
a succession of two irreversible steps, releasing eventually the
regenerated enzyme and the inactivated antibiotic molecule (the
product of the reaction) (Bush and Sykes 1986).

The rate of this reaction follows Michaelis-Menten kinetics,
which can be expressed as

_diA]

- - Vmax

dt

[A] [A]
Ky + [A] "Ku + [A]

where [A] is the molar concentration of antibiotic and [B]y is
the molar concentration of enzyme, free or in a complex. The
two constants ket and Ky are respectively the maximal number
of hydrolysis events that a single molecule of 3-lactamase can
perform per unit of time, and the concentration of antibiotic that
allows the enzyme to work at half of this speed.

For antibiotic concentrations exceeding Ky, the dynamics
becomes of order o in the antibiotic, which is to say that it
decreases linearly, and we have

= kcat[B]

d[A]

dt

For antibiotic concentrations negligible in front of Ky, the

dynamics appears of order 1 in the antibiotic, or of order 2 if we
include the enzyme, and we have

- _kcat[B]O

A _ K
dt ~ Ky °
where the constant kcat/ Ky, the apparent 2nd-order constant, is
often reported as well as ket and Ky in biochemical studies.
These constants are of course unique to every pair of (3-
lactamase and (3-lactam. They are biochemical constants that

reflect the behaviour of a simple chemical reaction. To make this



information clinically relevant, one also needs to consider not
only the biology of the organism that expresses the (3-lactamase,
but also its population response.

5.1 BIOLOGICAL MATERIAL

5.1.1  Strains

With the help of Philippe Glaser, we could access a part of the
collection of isolates of the French National Reference Centre for
antibiotic resistance. We chose several strains expressing a panel
of different families of 3-lactamases, including carbapenemases,
and some expressing several of them simultaneously. As shown
in section 5.3, the chosen strains range from fully sensitive to
highly resistant. All are Escherichia coli ST410. From all the
strains used to develop and calibrate the model, five strains are
human isolates from the reference centre, four are isolates of
animal origin from the ANSES collection, and one is a refer-
ence strain supplied by the Collection of Institut Pasteur. The
nine isolates have been the object of previous studies (Patifio-
Navarrete et al. 2020).

Table 5.1: Designation of the nine isolates.

ID Other references
[B31 / #256 ANSES 28668
IB32 / IB36 / #259 ANSES 32139
IB34 / #257 ANSES 29401
IB35 / #258 ANSES 30599
IB37 / #281 CNR 49A5

IB38 / #152 CNR 94G8

IB39 / #273 CNR 82A2
IB310 / #130 CNR 84G4
IB311 / #144 CNR 92Bs5

Most strains contain gene mutations contributing to (3-lactam
response, such as mutations on ftsl (gene coding for PBP3, pro-
tein responsible for cell division), ompC, ompF (genes coding for
porins, proteins restraining the diffusion of antibiotic through
the cell membrane), displayed below (see appendix B for the
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full description of the strains). Each mutation has been reported
to decrease the susceptibility of the strain to 3-lactams. YRIK is
a mutation that appears on top of YRIN_349-532, and therefore
is even more effective than YRIN_349-532.

Table 5.2: Mutations contributing to 3-lactam susceptibility, detected
in the strains.

ID ftsl ompC ompF
IB31  none none none
IB32  none none none
IB34 none none  none
IB35 none none  none
IB3y  YRIK none none
IB38 YRIK none  none

IB39 YRIN_349-532 Rigs5L -46; C->T (OmpR F3)
IB310 YRIN_349-532 Rigs5L -46; C->T (OmpR F3)
IB311  YRIN_349-532 Rigs5L -46; C->T (OmpR F3)

They also contain genes coding for several (-lactamases,
which are reproduced in the table below.

Table 5.3: 3-lactamases, including carbapenemases®, expressed by the
strains.

-lactamase IB31 IB32 1IB34 IB35 IB3y IB38 IB3g IB310 IB311

CTX-M-1 X
CTX-M-15 X X X
CTX-M-55 X X
TEM-1 X X X X X X X
NDM-5* X
CMY-2 X X X
CMY-42 X X
OXA-1* X X X X

OXA-181* X X X X




5.1.2 Antibiotics

The antibiotics chosen to challenge these strains are ampicil-
lin and cefotaxime, two widely used -lactams, both figuring
among the WHO Essential Medicines List (WHO 2019b), and
the Critically Important Antimicrobials for Human Medicine
(WHO 2019a). They are recommended as first or second-line
drugs.

Both are relatively inexpensive, and available as generic med-
ication. Their wide range of action allows their use in a variety
of situations: respiratory or urinary tract infections, meningitis,
joint infections or pneumonia, among others.

Within -lactams, ampicillin and cefotaxime belong to two
different families: extended-spectrum penicillins for ampicillin,
and 3rd generation cephalosporins for cefotaxime. We hoped
to cover a number of situations as representative as possible in
limited time, with only two (3-lactams. Ampicillin turned out
to have little effect on the strains other than the most sensitive
ones. Consequently, a majority of experiments was carried out
with cefotaxime.

5.1.3 P-lactamases

The strains of the collection express several [3-lactamases, act-
ing on the antibiotics with different efficiencies. All these f3-
lactamases are well known and have been extensively studied.

Classification

Using the B-lactamase database (Naas et al. 2017), we could
determine that the -lactamases expressed by the strains in our
possession belong to three different groups in both classification
schemes, molecular and functional.

Table 5.4: Classification of the (-lactamases, including car-
bapenemases*, expressed by the strains.

B-lactamase Molecular class Functional group

CTX-M-1 A 2be

CTX-M-15 A 2be

CTX-M-55 A 2be
TEM-1 A 2b

NDM-5* B1 3a
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Because some
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carbapenem-
resistant, it would
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more expensive, to
also include a
carbapenem in this
drug arsenal.
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B-lactamase Molecular class Functional group

CMY-2 C 1 & 1e

CMY-42 C 1 & 1€

OXA-1* D 2d
OXA-181*% D 2df

From this table, NDM-5 is a metallo-p-lactamase and the eight
others are serines. The functional group 2be is characterized
by a particular activity against oxymino-f-lactams, including
cefotaxime. The functional group 2df targets particularly car-
bapenems. The group 3a is characterized by a broad activity
spectrum, including on carbapenems (Bush and Jacoby 2010).

Reaction kinetics on ampicillin

Besides the qualitative summary given by the Bush-Jacoby clas-
sification, kinetic parameter values help to understand the dif-
ferences between the enzymes in a more quantitative way. As
explained in section 5, the hydrolysis action of (3-lactamases
on (-lactams can be quantified by two values: ket and Ky,
respectively the maximal number of hydrolysis events that a
single molecule of 3-lactamase can effectuate per unit of time,
and the concentration of antibiotic that allows the enzyme to
function with half of its efficiency. Whereas Ky is usually given
in molar units, we chose here to express it in massic units, to
relate more easily to the concentrations measured in the wet
lab. The molar mass of ampicillin used for these calculations is
mapp = 349.406 g mol L.

Table 5.5: Kinetic constants of some of the 3-lactamases expressed,
with respect to ampicillin.

B-lactamase  kcat mamp Km keat/Km  Reference

CTX-M-1 94571 9mg/L 355 'uM~! Pérez-
Llarena et
al. (2011)

CTX-M-15 57s7! 5mg/L 38s 'uM~! Faheem et
al. (2013)

CTX-M-55 423571 40mg/L  3.7s'puM~! Shen et al.
(2017)
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B-lactamase k¢t mamp Km kecat/Km  Reference
NDM-5 103s~! 148mg/L  02s 'pM~! Liuetal
(2018)
OXA-1  520s7! 73mg/L 255 'uM~! Leonard et
al. (2008)
OXA-181 200s~! 45mg/L 1.5s 'uM~! Potron et
al. (2013)

Reaction kinetics on cefotaxime

The following table displays the kinetic parameters of the 3-

lactamases in our collection against cefotaxime. The molar mass
of cefotaxime used for these calculations is mcrx = 455.465 g mol 1.

Table 5.6: Kinetic constants of the 3-lactamases expressed, with re-

spect to cefotaxime.

B-lactamase kcat mcrx Km keat/Kym  Reference
CTX- 1141s7! 59mg/L 8.8s !uM~! Pérez-
M-1 Llarena et
al. (2011)
CTX- 22257} 27mg/L 3.7s7'uM~! Faheem et
M-15 al. (2013)
CTX-  126s7! 8mg/L 7.6s"'uM~!  Shen et al.
M-55 (2017)
TEM-1  21s7!  683mg/L 0.0014s 'uM~1 Palzkill
(2018)
NDM-5 195! 9mg/L 0955 'uM~! Liuetal.
(2018)
CMY-2 0.01s~! 0.0023mg/L 25 'uM~!  Hentschke
et al.
(2011)
CMY-42 02s~! 0.036mg/L 29s 'uM~! Hentschke
et al.
(2011)
OXA-1 535! 16mg/L 0155 'uM~! Leonard
et al.
(2008)
OXA-181 457! 34mg/L  0.055s 'pM~! Potron et

al. (2013)
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Seeing that some of the values of antibiotic used in experi-
ments (0.5g/L to 512 g/L) cannot be neglected in front of Ky,
one could wonder whether the choice to take the order 2 dy-
namic was a judicious one. For reminder, we chose to model
the dynamics of the antibiotic as

da
T —kpab—dya

but as explained in section 5, this is an approximation that only
holds well for a < Ky.

However, most strains express more than one (-lactamase,
while the model only has one variable b. The modelled dynamics
is then already an approximation of the real one, which does
not really have any reason to look more like Michaelis-Menten
than mass-action law. By parsimony, we preferred the model
with fewer parameters.

5.2 DATA USED TO DEVELOP AND CHAL-
LENGE THE MODEL

As much as the model is used to predict the data, the data tells a
story that develops the model. In our case, the model was in the
making for several years and as data was being produced, some
modelling choices imposed themselves. Starting from our early
work (Hannah R. Meredith et al. 2018), we knew that the re-
sponse of the population was mediated by at least two different
processes: resistance and resilience. Resistance is the individual
ability of cells to grow unperturbed by the antibiotic. Resilience
is the collective ability of the population to recover from a per-
turbation. We also knew that a simple model considering only
the number of cells was failing to explain the initial pre-crash
phase, because of antibiotic-induced filamentation. This phase
is less trivial than it seems and is starting to be understood as
a driver of antibiotic tolerance (Yang, Blair, and Salama 2016;
Zahir et al. 2020).

The purpose of this section is to exhibit the succession of new
observations that led to the current model.
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5.2.1 First scan of clinical isolates

A first scan of g clinical isolates with OD growth curves was done
with two different initial cell densities and 11 initial antibiotic
concentrations spaced by factors of 2, covering 3 decades of
concentration.

This scan revealed differences between resistant and resilient
strains exhibiting the familiar crash and recovery pattern, and
sensitive strains showing a pattern that we did not see any-
where before. Figure 5.1 shows four representative strains: one
sensitive, two resilient, one highly resistant.
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Figure 5.1: Representative growth curves from the first scan of the
collection of clinical isolates. The cells were submitted to
a scale of initial antibiotic concentrations ranging 3 orders
of magnitude by factors of 2, with two different initial cell
densities (only ODg = 5-10~* is shown here).

5.2.2 Wider scan of sensitive isolates

To investigate whether these two behaviours could be under-
stood together, increasingly smaller doses of antibiotics were
applied to sensitive strains.

As shown on figure 5.2, three regimes appear distinctively
on these curves. The first regime is the one where the cells
are unperturbed by the low antibiotic concentration (yellow).

131



132

| EXPERIMENTAL CALIBRATION OF CLINICAL ISOLATES

Cells finish with a high optical density (around 0.2). The second
regime, intermediary, is pictured by curves in light green and
leaves the final optical density at 0.02 on the top, 0.002 on the
bottom. The last regime is the one of high antibiotic concen-
tration (dark green) and the cells finish with the lowest optical
density.
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Figure 5.2: Two sensitive strains submitted to a scale of initial anti-
biotic concentrations ranging 6.5 orders of magnitude by
factors of 2, with two different initial cell densities (top
ODy =5-107%, bottom ODy = 5-107).

The transitions between the three regimes are interesting to
observe. While the transition between the first two regimes is
sharp (done within a factor 2 to 4 of antibiotic for the two strains
of figure 5.2, from 0.008 mg/L to 0.031mg/L), the transition
between the last two is much more gradual (4 to 5 curves, which
corresponds to a factor 16 to 32 in antibiotic, for figure 5.2 from
1mg/L to 16 mg/L).

The three distinct regimes, including the unperturbed one,
are a sign that two different processes triggered at different
antibiotic doses. Knowing that 3-lactams mode of action is to
inhibit PBPs, we tried to identify the relevant PBPs based on the
inhibition thresholds: from observation of the figure 5.2, the
first transition occurs around 0.016 mg/L while the second one
occurs around 4mg/L. Kocaoglu and Carlson (2015) measured
the IC50 (concentration of antibiotic inhibiting half of the target)
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of inhibition of all PBPs in E. coli by various 3-lactams, including
cefotaxime (reproduced below).

The values observed on the graph point to PBP3 for the PBP
responsible for the first transition, and PBP1 for the second
transition.

Table 5.7: Half-maximal inhibitory concentrations for the main PBPs
by cefotaxime.

PBP PBPia PBPib PBP2 PBP3 PBP4

IC50 by CTX (mg/L) 09 02 3 001 3

The transitions between them also give hints on the nature of
these processes. Indeed, the sharp transition between the first
two regimes shows that PBP3, inhibited first, is either active
or inhibited, whereas the gradual transition between the last
two regimes shows that the PBPs targetted at these doses can
function partially.

Furthermore, the first two regimes now look a bit like the
pattern observed for resistant strains (see top right or bottom
left panels of figure 5.1). Noting this similitude, we started to
understand a global view that can be schematically explained
with figure 5.3.
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Figure 5.3: Schematic view of the general behaviour of a strain treated
with increasing concentration of 3-lactams.

Highly resistant strains such as CNR 82A2 observe, for all
antibiotic doses, a behaviour similar to untreated cells (blue
curve). Resilient strains (like ANSES 32139 or CNR 49A5) obey
the pattern of the top half of the figure, and further increasing
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the antibiotic concentration does not seem to generate the lower
half. Finally, sensitive strains, in general do not recover: they are
not resilient. Sensitive strains skip the pattern of resistant cells
and only behave as in the lower half of the figure. Resilient as
well as sensitive strains can be qualified tolerant, because they
are able to survive a transient lethal dose of antibiotics.

Another interesting observation is the consistency of the crash,
the point where the OD leaves the initial exponential growing
phase, between all the isolates and antibiotics tested. Except
for highly resistant strains where the crash is not observed,
sensitive and moderately resistant strains alike show a crash
that happens between 6 and 7 hours of the addition of antibiotic.
This time did not depend neither upon the initial cell density.
As explained in section 3.2.4, this could be interpreted either
by a time delay or a critical length. However, literature points
in the direction of a critical length, by showing that the time to
lysis is inversely proportional to the growth rate, which we also
observed when replaced the minimal medium Mg with a richer
medium LB, as shown on figure 2.1: with approximately twice
the growth rate, the crash happened in half the time. Another
hypothesis, suggested by Yao, Kahne, and Kishony (2012), is
related with the formation of a bulge. However, it is a bit more
difficult to see what would be the underlying reason for the
synchronization of the formation of the bulges.

All cells belonging to the E. coli ST410 cell type, it is reas-
onable to assume that this critical length is one that filaments
cannot sustain any more, and that it depends on cell type. On
K. pneumoniae and cefotaxime with a similar growth rate, the
crash consistently happened at 3 hours rather than 6-7 (Hannah
R. Meredith et al. 2018).

5.2.3 Microscope snapshots

To better confirm our understanding of the morphological changes
occurring during the initial filamentation phase, we sampled
wells containing a resistant strain (ANSES 32139) at different
times following an antibiotic treatment, and observed the cells
under an optical microscope. Some pictures are shown on fig-
ure 5.4.

We clearly observed filamentation, even at sub-MIC antibiotic
concentrations. Higher drug concentrations led to longer cells,
up to more than 100 times the size of the smallest cells observed.
After an initial global increase of the size of cells, the regrowth of
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the population was mediated by the reappearance of normally
sized cells, in between long filaments (see the pictures taken at
8 hours, notably for 2 mg/L). A quantitative analysis of these
pictures could be insightful to access the length distributions of
cells, but would require a segmenting software able to deal with
cells with highly atypical morphologies.
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Figure 5.4: Microscope pictures (x600) of samples of batch cultures of
ANSES 32139, taken using IBIDI slides at different times
after treatment with cefotaxime. Image processing with
help of Andela Davidovic¢.

This bimodal distribution challenged our intuitive idea of
the notion of an average length increasing then decreasing, as
shown by Fredborg et al. (2015), and led us to decide that the
distribution of lengths in the population should be properly
modelled in order to grasp an understanding of the processes
at play.
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5.2.4 CFU experiments

Knowing that the OD and number of cells are decorrelated,
measuring the optical density was not sufficient to understand
the behaviour of the system, and we needed to find another
quantitative observable. The length of cells can be observed
semi-quantitatively with a microscope, but the number of cells
is accessible through CFU counts, albeit less automatically than
the OD. We then carried out experiments with regular sampling
of cells, that we diluted by a proper factor before spreading
on agar plates, and this every two hours for 16 to 22 hours.
After 12 to 16 hour incubation, colonies growing on the agar
plates could be counted, and we obtained like that simultaneous
readings of optical density and number of cells for two isolates
and six initial antibiotic concentrations. One of these isolates
was presented on figure 3.2, the other is on figure 5.5.
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Figure 5.5: Simultaneous OD and number of cells measurements for
IB31. The error bars are the 95% confidence intervals
computed with the method presented in section 2.1.5.

It is clear on these figures that the initial increase of OD is
not necessarily caused by an increase in the number of cells.
Actually, for initial concentrations higher or equal than 2mg/L



for this strain, the number of cells remains constant for the first
tive hours, and only starts to decrease later. This led us to the
mechanism described in section 3.2 of an immediate inhibition
of division (by inactivation of PBP3), followed by cell lysis when
a certain length is reached (this critical length being affected by
PBP1, that can also be inhibited with higher antibiotic doses).

Besides, the observation of cell number reveals other beha-
viours invisible on the OD curve. Firstly, judging by the OD,
the cells are unperturbed by a concentration of antibiotics of
1mg/L (yellow curve). The cell number curve shows that it is
not the case. Secondly, as it is apparent for the green and purple
curves (probably for the red also: the low red point could be
an experimental mistake), the regrowth of the population can
start several hours before it is picked up by the plate reader, this
is because the regrowth is driven by a small number of cells
concealed within a larger amount of dying biomass.

Understanding this, it seems interesting to split the treatment
in two, and reserve the second half for the moment where the
cells are few, because we know, with the inoculum effect, that
this is when the antibiotic is the most efficient. This is why we
then passed to multidosing experiments.

5.2.5 Multidosing

Multidosing experiments are important because the ability of the
model to predict the response of the population after multiple
injections of antibiotic is a requirement in order to exploit it to
compute optimal treatment profiles. However, it is not obvious
to think that a model developed through the observation and
interpretation of growth curves following a unique initial treat-
ment will be capable to handle the addition of antibiotics after
time zero. Moreover, one can wonder whether growth curves
of initial treatments with no drug reinjections are informative
enough to enable parameters inferred only on them, to make
accurate predictions on dynamics that they did not see during
the calibration.

This is why we thought that multitreatment experiments were
an ideal test of the model and parameter estimation strategy. We
then configured the custom driver platerider (see section 2.2.2)
to apply multiple treatments to the cells. To test the most of the
model, while the plate reader measured OD, we also sampled
regularly the plate to count cells.
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For five total antibiotic amounts, three treatment strategies
have been implemented:

o All the antibiotic was present in the culture at start;

o All the antibiotic was injected in the culture 4 hours after
the beginning of the experiment;

o Half was present from the beginning, and the other half
was injected at 4 hours.

All these situations have been represented on figure 5.6. The
standard situation with only the initial dose is on the left column.
Both OD and cell numbers follow the experimental points. The
time shifts are within the range of experimental dilution mis-
takes of up to 5% in both inoculum and antibiotic concentration,
as explained in section 4.1.1.
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Figure 5.6: Different multidosing strategies, compared for OD and
number of cells. Dashed lines are the model predictions.

The situation with a unique injection of antibiotic at 4 hours is
in the middle column. During this initial delay, cells grew by 5
generations. Because of the inoculum effect, the injection of this
dose, on an inoculum 32 times larger, affected the population
less than the previous situation. The prediction of the OD is



not different from untreated cells, we can see that the number
of cells is perturbed. For 8 mg/L and above, the experimental
data suggests that the number of live cells is actually decreasing
after 6 hours (the low green point is most certainly a fluke).
The model predicts a stop of the growth of these cells at the
same time. One can note that the model also predicts that the
antibiotic is not flushed in these conditions.

The third situation, with two injections of antibiotics, corres-
ponds to the column on the right. As shown by the predicted
antibiotic course, the initial dose of antibiotics is sufficient to
inhibit PBP3 and trigger filamentation, but the antibiotic is not
degraded in the first four hours because no cell deaths happened
yet. The second dose is injected shortly before the cells reach
their critical length, and we then find ourselves in a situation
similar to the left column, with as much antibiotic to degrade,
which explains why the time to regrowth is similar in these two
situations.

These experiments are preliminary, and there would be many
other multidosing strategies to test. However, the success of
these predictions was a good sign of the relevance of the model
and encouraged us to try applying it to optimal treatment prob-
lems.

5.3 CHARACTERIZATION OF STRAINS

Numerical fits were performed on 9 of the 10 clinical isolates
described in section 5.1.1. As shown in section 5.2.1, various
behaviours have been observed, and there would be several
ways to cluster the isolates. A first, classical classification is
based on MIC as defined by EUCAST (2020a), and allows to sort
the strains into Sensitive, Intermediate or Resistant. However, as
explained in the introduction of this chapter, this phenotypical
classification relies on one unique data point per strain, which
reveals itself challenging to describe a complex panorama of
resistance, tolerance and resilience. Our approach uses complete
OD data over 36 hours, and extracts from this data 17 parameters
per model. Not all parameters in these 17 are linked to antibiot-
ics resistance (for example the growth rate y or the conversion
factor A), but one could cluster the strains based on some of
these parameters of interest. In this section, we will see if we
can find notable phenotypical differences between the strains of
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our collections, which would all be classified “R” by EUCAST,
except IB34 and IB35 which would be labelled “S.”

5.3.1  Clustering with parameter values

Figure 5.7 is a graphical representation of all the parameters
fitted on all the strains, one by one. IB31N and IB32N are fits of
IB31 and IB32, including also the number of cells, because we
have them for these strains. All the others are fitted on only OD.

Parameter values
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Figure 5.7: Values of the best fits found on the isolates.

It is difficult to identify related strains by eye. One difficulty
comes from the presence of unidentifiable parameters: because
no value is significantly better than the others, these parameters
are assigned values influenced by all the noise and undetermin-
ism in the system, essentially random values.

Nonetheless, a natural idea would be to cluster strains ac-
cording to parameter values. Figure 5.8 shows the result of
Principal Component Analysis (PCA) applied to the logarithms
of the parameters.
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PCA on parameter values
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Figure 5.8: PCA on (the logarithms of) the parameter values.

This PCA splits the isolates into three groups: IB31 alone, a
cluster of IB34 and IB35, and the rest of the strains. Although
IB34 and IB35 are the two least resistant strains of the group
(expressing only TEM-1, a weak 3-lactamase, as shown in sec-
tion 5.1.1), singling out IB31 is a bit more difficult to understand.
Although it is the only one to express the (3-lactamase CTX-M-1,
its phenotypical profile is very resemblant to IB32.

It turns out that the parameter values of IB31 are very differ-
ent from the rest of the values, because the fit of the model on
this strain is the worst of all the strains. For some reason, either
because the global optimum was not found by the search, or
because the model does not describe accurately the behaviour of
this strain, the fit is not as good as for the others, and the para-
meters are consequently significantly different, which explains
why the PCA isolated it.

PCA being a linear dimensionality reduction technique, it
is notably sensitive to outliers, like IB31. The parameters of
IB31 are so different from the others that this strain “steals”
the first axis of the PCA. This calls for the use of t-distributed
Stochastic Neighbour Embedding (t-SNE), a non-linear dimen-
sionality reduction technique, which can isolate outliers without
compromising too much the rest of the elements. Figure 5.9
shows a result of t-SNE on the same dataset.
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t-SNE on parameter values
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Figure 5.9: +-SNE on (the logarithms of) the parameter values.

IB31 is still isolated, and the rest is split into two groups.
One contains notably IB34, IB35 and IB311, strains that show
profiles similar to the sensitive isolates described in section 5.2.2.
The other contains, among others, IB3g and IB310, the two
most resistant strains of the collection. IB32 and IB32N appear
separated, which seems difficult to explain.

Actually, it is probable that this clustering is heavily biased
by the values of unidentifiable parameters, which can take a
wide range of values, as we have seen in sections 4.2.2 and 4.2.3.
Hence, relying only on the estimates on the parameter values to
categorize clinical isolates is difficult.

5.3.2 Clustering with parameter uncertainties

We saw on the previous section that the uncertainties on the
parameter estimates can work against an efficient dimension-
ality reduction of the space of parameter values. However,
there is a correlation between the true parameter values and
the unidentifiability of the parameters. Indeed, for a highly
resistant strain, mostly unperturbed by antibiotic treatments,
most parameters linked to PBPs are unidentifiable, because the
dynamics following the inhibition of these enzymes are never
observed.

Uncertainties in the parameter estimates could then work bet-
ter than the parameter values themselves to categorize strains.
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Figure 5.10 shows the values of the half-width of the 95% con-
fidence intervals, estimated with the asymptotic approximation
described in section 4.2.1.
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IB311
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Figure 5.10: Half width of the 95% global confidence intervals on the
best fits for each isolate, computed with the asymptotic
method.

Similarly, a PCA can be computed on these uncertainties. The
first two axes are presented on figure 5.11.
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Figure 5.11: PCA on (the logarithms of) the parameter uncertainties.

Like for the parameter values (figure 5.8), the outlier IB31 is
isolated. Another group is formed of IB39 and IB310, the two
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most resistant strains in the group. The rest of the strains forms
a compact third group.

To reduce the influence of the outlier IB31, we also performed
a t-SNE analysis on the uncertainties, shown on figure 5.12.

t-SNE on parameter uncertainties
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Figure 5.12: t-SNE on (the logarithms of) the parameter uncertainties.

Unlike all others approaches, three distinct and robust clusters
emerge from this dimensionality reduction. A cluster is consti-
tuted of IB34 and IB35, the two most sensitive strains (green).
Another is made of IB39 and IB310, the two most resistant strains
(red). The last group contains the rest of the strains, of similar
behaviour (yellow). Finally, both IB31 and IB31N, and IB32 and
IB32N, are neighbours, which reassures both on the ability to fit
the model on OD only, and on the relevance of the clustering
approach which correctly manages to put them together.

5.3.3 Comparison of measured and inferred P-lactamase
efficiency

Because we had access through the literature to the kinetic
constants of all the 3-lactamases expressed by the isolates in our
collection (see section 5.1.3), we wanted to compare them to the
values that our model inferred for these quantities.

Because most strains express several (3-lactamases, but our
model only assumes one, we chose to compare the value of
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our model to the sum of the kq¢/ Ky of all the B-lactamases
expressed by a strain.

The corresponding model variable is k,, but it forms a struc-
turally unidentifiable pair with B;,, the concentration of f3-
lactamase inside one cell (see section 4.2). Their product repres-
ents the 3-lactamase efficacy contributed by one bacterium. This
is the variable that we chose to compare against the tabulated
-lactamase efficiency.

As shown on figure 5.13, we found a clear correlation between
the literature and the parameter estimates from the model.

1
1

1073_
& 10771
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Literature values keat /K
Figure 5.13: Comparison of the efficiency of p-lactamase per cell,
from the model and from the literature. The Pearson

correlation coefficient between kot /Ky and log(Bin - ky)
is 0.72, and the associated p-value of correlation is 0.013.

The same three groups also emerge here: the sensitive strains
IB34 and IB35, producing few and very weak 3-lactamases, the
highly resistant IB39 and IB310 characterized by the expression
of CTX-M-55, a powerful 3-lactamase on cefotaxime, and the
rest of the strains with intermediate resistance. We can also note
that for IB31 and IB32, fitting with or without the cell number
data seems to make little difference.

Figures 5.12 and 5.13 suggest a separation into three groups:
sensitive strains (IB34 and IB35), highly resistant (IB3g and
IB310), and the rest. We will detail their respective parameters
and behaviours in the next three sections.
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5.3.4 Sensitive strains

The following table shows the best fit found for two strains that
we can qualify as sensitive. In the following three tables, stars*
indicate a parameter constrained by a bound of the search space.

Parameter IB34 IB35
B 4.4 1.7
v 20* 11
T 0.81 0.90
K 104 10—
A 21-107  1.7-107
ki 0.006 0.001
h 8.6 3.3
ko 25 0.86
Bin 1018 1016
ky, 1634 102
da 0.0094 0.023
dy, 20* 16
de 0.35 20*
Pe 0.34 0.097

Lmin 10 34
Lmax 87 468
1 1.5-1078% 2.0-10°8

The common characteristic of these strains is that they both
carry only the resistance enzyme TEM-1, a weak (3-lactamase.
As shown by figure 5.13, the product of the pair of unidentifiable
parameters Bj, - k,, which informs on the effectiveness of the
-lactamase produced by one cell, is correctly almost zero for
these isolates.

For these two strains, k; and k; correspond to the order of
magnitude of the respective inhibition of PBP3 (0.01 mg/L) and
PBP1 (0.9mg/L) by cefotaxime, as shown in table 5.7. This
indicates that for these strains, these PBPs are likely inhibited at
these antibiotic concentrations.
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5.3.5 Tolerant and resilient strains

Because these strains do not exhibit the sensitive-like pattern of
the bottom half of figure 5.3, the parameters k, and Ly, are not
observable.*

Parameter IB31 IB32 IB37 IB38 IB311
B 20* 3.6 0.36 2.2 1.7
v 1.0 2.8 3.2 20* 20*
1 0.79 0.81 1.56 0.79 0.86
Ks 1074 1074 1074 1074 1074
A 30-108 12-108 71-107 71-107 7.1-107
kq 0.16 0.83 77 8.5 42
h 4.6 5.6 9.4 3.0 10*
k> 7.0 9893 125 0.002 54
Bin 1.6- 15-107° 7.7 - 3.6- 10714

10—11 10—12 10—12
ky, 104 283 229 6788  1.2-10°
d, 35-1078 0.051 0.019 0.029  0.00026
d, 6.0-107° 22 20* 20* 20*
de 20* 0.12 0.06 20* 20*
Pe 0.05 0.13 10~° 0.18 0.094

Lomin 10 30 115 79 2.3

Lmax 170 51 115 213 354
7 20-107° 53.107° 63- 19-107% 7.1-107°

10—10

Even though k; is random because unidentifiable for these
isolates, ki should be observed because it corresponds to the
inhibition of PBP3 (which causes filamentation), which occurs
within the range of antibiotics concentrations tested. However,
for these strains, unlike for the sensitive ones, the values of k;

In principle, for these strains, k; is higher than k;, because the inhibition
of PBP3 is observed but not of PBP1. However, the model needs L, that is
decided by Lin, Lmax and ky. For this class of strains, Ly, is constant over
the range of antibiotics used, meaning that the optimization will push k;
to either very high or very low values compared to the range of antibiotics
used experimentally. If k; is high, Ly, = Lmax, which is what should be;
but if by chance during the parameter estimation, k, becomes small, then
Lmax = Lmin. In which case one should interpret the value returned by the
optimizer for Lyin as Lmax.
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do not correspond any more to the literature value for the inhib-
ition of PBP3 reported in table 5.7. This is because for strains
expressing efficient (3-lactamases, the concentration of antibiotic
in the periplasm, at the contact of the PBPs, is much lower than
the concentration of antibiotics outside the cell. However, we
only model the outside antibiotic concentration, so the model
overestimates the periplasmic antibiotic concentration, which
should actually depend on the quantity of 3-lactamase inside
the cell, Bj,, and its efficiency, ky,.

In the current model, all of this complexity is hidden into k;
and kp, which become compound parameters expressing the
susceptibility of the PBPs to the outside antibiotic concentration.

If k1 is influenced by other resistance mechanisms of the strain,
it should be possible to explain its variations in this table by the
presence of mutations, or antibiotic resistance genes. Indeed,
the two highest values of k; correspond to the strains IB3y
and IB38, which, according to table 5.2, possess the mutation
“YRIK” of ftslI (the gene coding for PBP3) decreasing strongly
the sensitivity of PBP3 to 3-lactams. The third highest value
of ky is given to IB311, which also features a mutation of ftsl,
“YRIN_349-352,” less effective than “YRIK,” and also mutated
porins, which slow down the entry of antibiotics in the cell.

5.3.6 Resistant strains

Because these strains almost do not react to the antibiotic, the
dynamics is little informative and many parameters are uniden-
tifiable, notably the parameters related to inhibition of PBPs: the
only piece of knowledge earned about them is that they must
be higher than the highest concentration of antibiotics used
experimentally. Ly and Lmax are completely unidentifiable, as
well as the degradation rates of antibiotics, 3-lactamase and cell
debris, but also 7y because no death is observed.

Parameter IB39 IB310
B 3.3 7.0
v 16 0.06
i 0.86 0.87
Ks 6-107% 4.107*
A 55-107  6.2-107

k1 0.036 4228



Parameter IB39 IB310
h 0.30 0.04
ko 453 9169
Bin 42-107° 6.4-10710
ke, 49-106  9.3-10°
da 0.10 0.093
dp, 1.9 18
de 0.16 0.51
Pe 0.86 0.98

Linin 490 444
Linax 607 513
n 87-107% 9.0-107°

The distinctive characteristic of these strains in our collection
is that they carry the 3-lactamase CTX-M-55, especially efficient
against cefotaxime. As a result, from OD data only restricted to
the range 0.5 mg/L to 512mg/L, few parameters are identifiable.
We only know that the (3-lactamase is effective, as attested by
the product B, - k,. However, this antibiotic range was not able
to perturb the system enough to identify the other antibiotic-
related parameters.

5.4 UNEXPLAINED AND INTERESTING DATA

Although the model explains the main trends present in the
data, some details escaped our understanding so far.

5.4.1 Stationary phase behaviour

The first is related to the behaviour of cells depleting the environ-
ment and reaching stationary phase. We observed a behaviour
common to almost all strains of the collections, and reproducible
one day to the next. Several examples are shown on figure 5.14,
for two sensitive strains and two resistant.
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Figure 5.14: Zoom on the stationary phase of the growth curves of

different stains submitted to different concentrations of

antibiotics.

It looks like the population hesitates between two carrying
capacities, spaced by a factor of 3. It eventually settles for
the lower one, after a time that seems to increase with the
initial antibiotic concentration. This looks like the transition
between stationary phase and long-term stationary phase, which
is a death phase, as shown in (Navarro Llorens, Tormo, and
Martinez-Garcia 2010; Pletnev et al. 2015). However, the reason
why the death phase is further delayed by increasing quantities
of antibiotics is unknown.

5.4.2 Partial regrowth for a sensitive strain

One of the sensitive strains, ANSES 30599 (IB35), seemed to
exhibit a reproducible partial regrowth around 20 hours after the
beginning of the experiment for some antibiotic concentrations,
as shown on figure 5.15 (teal curves).
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Figure 5.15: Apparent partial regrowth in the optical density, 16 to
20 hours after the initial treatment.

The hypothesis that appears the most likely is that this re-
growth is linked to the degradation of the antibiotic, either by its
natural decay rate, or by the effect of the weak 3-lactamase TEM-
1 produced by these cells. Following this decay, cell division is
restored, which allows filamenting cells to divide into smaller
cells and the growth of the population to restart. However, this
regrowth does not reach the carrying capacity of the population,
by at least one order of magnitude. This could for example
result from a change of the medium preventing cells to consume
all the nutrients.

5.5 CHAPTER SUMMARY

A collection of E. coli clinical isolates, each of them expressing
multiple B-lactamases, including carbapenemases, was consti-
tuted (5.1). We described the series of experiments done on these
strains that led us to developing the antibiotic resistance model
described in chapter 3: growth curves observed through optical
density (5.2.1 and 5.2.2), number of cells (5.2.4) and microscope
snapshots (5.2.3). We could relate macroscopic observations to
molecular properties of cell-wall enzymes, and specific para-
meters of the model (5.2.2). The model was also verified on a
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multiple dosing experiment, which enables its use for optimal
treatment design (5.2.5).

Inferring parameters for all nine strains, we proposed a method
of clustering in presence of unidentifiable parameters, based on
the parameter confidence intervals (5.3.2). We showed that the
parameter values inferred on OD only, or on OD and number
of cells were consistently neighbours, meaning that it is pos-
sible to calibrate the data with OD only. This clustering method
allowed us to distinguish cells into three categories: sensitive,
tolerant/resilient and resistant (5.3.4, 5.3.5 and 5.3.6). We ex-
hibited a link between the inferred values of k;, the parameter
associated to the inhibition of PBP3, and mutations of ftsI (the
gene coding for PBP3) detected in the genome of the strains. We
also verified a correlation between the inferred values of B;, and
ky,, and their literature values (5.3.3).

Finally, we proposed hypotheses for two experimental obser-
vations not captured by the model (5.4).



DISCUSSION AND CONCLUSION

In this chapter, after a brief summary of the contributions of this
thesis, we will discuss the model and how it helps to explain
the response of cell populations to antibiotic treatments. We
will raise several points that the model does not address, and
discuss its generality and applications. A conclusion follows.

6.1 THESIS SUMMARY

In the first chapter, we formulated the central problem of this
thesis: getting a more informative assessment of antibiotic res-
istance by exploiting the whole growth curve, while limiting
ourselves to optical density to simulate the conditions of a hos-
pital laboratory.

We introduced a growth-fragmentation model accounting for
the filamentation of cells, which is a mechanism of tolerance.
We then derived a companion ODE model more amenable for
optimization and parameter inference.

Calibrating a model of this size and complexity is not trivial.
This led us to develop an efficient and robust optimization
framework, which we exploited for an in-depth analysis of
the unidentifiabilities of the model with the profile likelihood
method.

We applied this approach to E. coli treated with cefotaxime,
and found that the parameters inferred correspond to biochem-
ical properties of the proteins expressed by the strains. We
showed that these parameters can lead to a more meaningful
classification than SIR in terms known by the community: sens-
itive, tolerant/resilient, and resistant strains.

Finally, we demonstrated that this model, based on a limited
number of simple hypotheses, provides a comprehensive pic-
ture of the enzyme-mediated response of bacteria to 3-lactam
treatments.
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All B-lactams
inhibit PBPs to
various levels: the
order described here
(PBP3 then PBP1)
is specific to some of
them, including at
least AMP and
CTX.
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6.2 A UNIFYING MODEL OF ANTIBIOTIC
RESPONSE

6.2.1 Modelling assumptions and model overview

We proposed in this thesis a model of tolerance, resistance and
resilience of a population of cells to a 3-lactam treatment. Al-
though its derivation is mathematically involved, the model as
its core relies on a limited number of simple biological hypo-
theses on cell physiology, and can be schematically illustrated
by figure 6.1.

elongation g ¢
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Figure 6.1: Graphical representation of the core principles of the
model. Elongation proceeds at a speed g ¢ that depends
only on the nutrients. Above a concentration k, the anti-
biotic inhibits PBP3, which deprives the cells from their
capacity to divide. Cells who cannot divide filament until
they reach a critical length L.« where they experience a
death rate . Higher concentrations of antibiotics, around
ko, inhibit PBP1 which has for effect to reduce this critical
length, hence cells die earlier. On the right are pictured
schematic representations of the OD of the cell culture
with the corresponding initial dose of antibiotic.

The core hypotheses of the model are the following;:

o Growth: the rate of biomass formation per cell (elongation)
is proportional to the cell length, and not affected by the
antibiotic.

e Division: the antibiotic, through its action on PBP3, affects
the ability of the cells to divide. Therefore, 3-lactams act



as a switch to direct the neverstopping biomass formation
into either new cells (A < ki) or filamenting cells (A > ky).
Death: the antibiotic is not the direct cause of cell death. Cell
death is mediated solely by their length: above a critical
length, cells experience a constant death rate. This crit-
ical length can eventually be decreased by large doses of
antibiotic, when this one becomes sufficient to disrupt
the activity of the wall-repairing enzyme PBP1 (gradient
around kj).

Most of these hypotheses are standard and rather well known
in the field, but the most original is the one related to death. The
mechanism that it describes is extremely simple, yet manages to
account for most experimental observations.

The rest of the model is less original, and made of very stand-
ard hypotheses including the action of 3-lactamases that enables
CAT:

-lactamases: cells produce enzymes that reduce their
susceptibility. They are also released into the environment
upon cell lysis and hydrolyse the antibiotic there.

Both 3-lactam and (3-lactamase also follow natural expo-
nential decay.

Growth follows Monod’s law.

6.2.2 Absent players: persisters

One dimension of antibiotic response is absent from this model:
persistence. Persistence is an extreme case of tolerance and
corresponds to a subpopulation of cells with a distinctively dif-
ferent phenotype than the rest of the population: a substantially
lower, or even null growth rate. We understand that cells who
do not elongate at all are not concerned by length-induced lysis.
They can then persist under an arbitrary concentration of an-
tibiotic for as long as necessary, until a persister stochastically
awakens and switches to a normally growing phenotype. If this
switch happens after the antibiotic disappeared, the population
experiences regrowth.

The multidimensionality of antibiotic response prompted
Brauner et al. (2016) to propose a framework for the measure-
ment of resistance, tolerance and persistence. This framework ex-
ploits the MIC but also the Minimum Duration for Killing (MDK)
to categorize strains into sensitive, resistant, tolerant or persist-
ent. However, this framework does not seem adapted to strains
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expressing enzymes degrading the antibiotic. Indeed, it does
not mention the possibility of regrowth of the population, as-
suming that the cells either die (above the MIC) or thrive (below
the MIC). It is unclear how to follow their framework in the case
of resilient strains. The same article also describes biphasic kill
curves as a sign of existence of a persistent subpopulation, killed
less efficiently. In our system, the kill curve is monophasic, until
the antibiotic is flushed and the population regrows.

The fact that persisters do not seem part of the dynamics of
this system, and that our model is able to explain it without
persistence, shows that resistance, tolerance and persistence are
not the only axes of antibiotic response, and that a sufficiently
tolerant population, even homogeneous in growth rate, can also
exhibit the ability “to survive exposure to high concentrations
of an antibiotic,” a trait characteristic of persistence (Brauner et
al. 2016).

6.2.3 Mathematical formulation of the ODE model

Although the model is conceptually rather simple (as seen on
figure 6.1), its mathematical expression under the ODE form can
be slightly surprising, for at least two reasons. The first is the
factor In 2 in the differential equations for N and L, the second
is the expression of the partial moments Y= = | LO; y(¢)dl and

L. = ff; Cy(¢) d¢, for reminder:

sl (s-1) v

T =t r (g 1) | -7 1w
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The inelegant factor In2 can be understood as resulting from
the simplification of the increase of the division factor with
the length of the filamented cell, as described in figure 3.6. It
could probably be concealed by rescaling L. A better but harder
approach could be to make the calculations with the original
linear scale.

The dependency of these derivatives on Y~ and L. can be
understood intuitively. The partial moments have v in factor,
and are then clearly related to cell death, y being the death rate
above Ly,. Reading this equation as %—1;] =---—79Y- N, we can
interpret v Y~ as a death rate applying on N, proportional to
the proportion of cells longer than Ly,.

However, death is in reality not applied uniformly on the
population, but just to the longest cells. Killing the longest cells
makes the average cell length L decrease, and this is what is
expressed by the term —y (L~ — LY~) in the second equation. It
is possible to show from the definitions of the partial moments
that this term can only be negative, which confirms this intuitive
interpretation.

Moreover, the limit cases where no cell is longer than Ly,
(Ys = 0and L. = 0), or wher all cells are longer than L
(Ys =1and L. = L), correspond to cases where this term is
zero, leading to no change on the average length L, which is
what we expect from these cases.

As for the involved mathematical expression of the partial
moments Y~ and L~, one can wonder if it counts towards the
model complexity. It can be argued that the complexity of the
model lies only in its hypotheses, and in the number of its para-
meters. These two mathematical functions are approximations
of the real dynamics contained in the PDE model, and do not
introduce extra parameters. Moreover, they are used to reduce
the number of variables of the model, from an uncountable
number (PDE model), to a finite number (ODE model). Therefore,
it can even be argued that the ODE model, despite taking more
space on paper, is actually less complex than the PDE model.

6.2.4 Generality of the model

The model was designed for in vitro batch experiments. This
is a convenient condition for an experimentalist, but it is not
necessarily very realistic with respect to the location of the infec-
tion: typically a human organ. More realistic conditions could
involve a periodic influx of nutrients, spatial heterogeneity, in-
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teractions with the immune system of the host organism, and

more involved drug dynamics. However, the multi-scale aspect

of interaction between the molecular, cell and population levels

is present in both of these conditions. Most of the constituents

are there, and it should be possible to plug components to this

model, or to couple it with a Pharmacokinetic/Pharmacodynamic
(PK/PD) model to have a first approximation of the response to

treatment of an infection in some organs where spatial hetero-
geneities are not an issue, for example the bladder.

It however makes strong assumptions on the physiology of
cells, notably that filamentation is the driver of tolerance. How-
ever, filamentation is just observed on certain strains and certain
antibiotics: in general, enterobacteriae (such as E. coli, used
through this work, and K. pneumoniae, used in the beginning
of this thesis with a similar model (Hannah R. Meredith et al.
2018)) treated with some -lactams such as ampicillin, cefo-
taxime, or ceftazidime. Some other 3-lactams, binding to PBPs
in a different order, cause not filamentation but the formation
of spheroplasts (spherical cells without a wall). In this case,
biomass is still being formed at the same rate as normal cells,
but the cell morphology is different. It remains to be seen if this
model can be transposed to this setting too.

An obvious and immediate test of the generality of the model
would be to try more strains (including Gram Positive) and more
B-lactams (including antibiotics known to cause spheroplast
formation rather than filamentation). It could also be valuable
to make more counting cell experiments, to get more data on N.
Other observables could also be considered in order to confirm
the model predictions, like the antibiotic concentration or the
proportion of dead cells.

One of the least satisfying parts of the model is the omission
of the fact that 3-lactamases protect not only the environment
once released, but also the cells themselves when they are in
their periplasm. So Bj,, the amount of (3-lactamase in a cell,
and ky, its efficiency, should be involved in the division rate
f and in the critical length Ly,. In this way, k1 and k; would
really represent the susceptibility of PBPs to antibiotics, and not
be overestimated because of the presence of -lactamase. It
should be possible to arrange the model in the direction that is
explained by Livermore (1997).



6.2. Perspectives: optimal experimental design and op-
5 P P P g p
timal treatment

The work done on section 4.2.1 on profile likelihood and identi-
tiability analysis showed that parameter identifiability depend
not only on the strain tested, but also on the experiments done
on the strain. A fascinating direction of research lies in optimal
experimental design. This consists in solving the problem of
tinding an optimally informative experiment, given time and
resource constraints. The availability of a programmable plate
reader capable of injecting antibiotic on request in certain wells,
which was made possible by the platerider library, introduced
in section 2.2, enables the implementation of arbitrarily complex
experiments.

For example, one can decide a priori on a sequence of injec-
tions engineered to be informative on most expected strains.
While performing this experiment on a given strain, as the
first few measurement points become available, an optimization
solver connected to the plate reader can refine the sequence of
injections to adapt it more specifically to the strain being tested.
The new instructions are sent to the plate reader that carries
on with the experiment with the updated instructions. With
our experimental platform, this “measure, learn, optimize” loop
could occur every 5 minutes over 24 hours, or until the strain
parameters are perfectly identified. Experiments taking place in
96-well plates, one can of course also envision performing this
in parallel, with several parallel experiments on the same strain,
or by experimenting on different strains at the same time.

Optimal treatment also comes to mind as a direct application
of the model, at least in the conditions of the experiments: in
vitro and for batch experiments. Antibiotic treatments are not
innocuous, most drug being susceptible to cause undesirable
side effects at high dose. It was even shown that inappropriate
treatments can facilitate the evolution of resistance (Gould and
MacKenzie 2002; Wistrand-Yuen et al. 2018; Levin-Reisman et al.
2017). The criteria to optimize treatments could be for example
to minimize the total dose of antibiotic used, or the time it takes,
or the time spent above the MIC, to reduce the number of cells
under a defined threshold. We already computed optimal treat-
ments on a previous model, appearing in (Hannah R. Meredith
et al. 2018), but computing them on the model presented in this
thesis, and testing them in vitro, should be doable. A success of
the optimal treatment would confirm the relevance of the model,
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and be a concrete demonstration of the information earned on
the clinical isolate through parameter inference.

6.3 CONCLUSION

Antibiotic resistance is a challenging and threatening problem
spanning multiple fields of research: pharmacology, biochem-
istry, microbiology, biophysics, medicine, epidemiology and
more. Although research is being done in each of them indi-
vidually, the key to this global problem is crosswork. For this,
communication is needed across disciplines. In this respect,
reviews and consensus papers are needed to push for the use of
a shared vocabulary (Balaban et al. 2019).

The literature is a mine of data on almost all the elements in
the system. For example, is easy to find two or three references
for almost any kinetic parameter concerning any particular 3-
lactamase or PBP. But it seems that this enormous and valuable
amount of data is not exploited as it could. It cannot, unless
we try explaining the data with a view transcending the layers
(Greulich et al. 2015). Often however, biology is more complex
than one [3-lactamase or one PBP, or even one antibiotic. In this
case, the way forward is to understand how several elements
interact (Bollenbach 2015).

With this work, we try to provide an explanation of the re-
sponse of enterobacteriae to (3-lactams, encompassing the di-
mensions of resistance, tolerance, and resilience. It is evidently
not a final view on the question, as some aspects are missing,
and some others are not optimally represented. However, it
seems possible to start building on this to start improving how
we both intuitively and quantitatively understand the dynamics
of this system, which can lead to progress in the design of treat-
ments more efficient and less susceptible to increase the overall
antibiotic resistance.



7 REFERENCES

Abraham, Edward P, and Ernst Chain. 1940. “An Enzyme from
Bacteria Able to Destroy Penicillin.” Nature 146 (3713): 837.
https://doi.org/10.1038/146837a0.

Allen, Rosalind, and Barttomiej Waclaw. 2016. “Antibiotic Res-
istance: A Physicist’s View.” Physical Biology 13 (4): 045001.
https://doi.org/10.1088/1478-3975/13/4/045001.

Alonso, Antonio A., Ignacio Molina, and Constantinos Theodoro-
poulos. 2014. “Modeling Bacterial Population Growth from
Stochastic Single-Cell Dynamics.” Applied and Environmental
Microbiology 8o (17): 5241-53. https://doi.org/160.1128/
AEM.01423-14.

Ambler, R. P, James Baddiley, and Edward Penley Abraham.
1980. “The Structure of B-Lactamases.” Philosophical Transac-
tions of the Royal Society of London. B, Biological Sciences 289
(1036): 321-31. https://doi.org/10.1098/rstb.1980.0049.

Artemova, Tatiana, Ylaine Gerardin, Carmel Dudley, Nicole M
Vega, and Jeff Gore. 2015. “Isolated Cell Behavior Drives the
Evolution of Antibiotic Resistance.” Molecular Systems Biology
11 (7). https://doi.org/10.15252/msb.20145888.

Baker, Monya. 2016. “1,500 Scientists Lift the Lid on Reprodu-
cibility.” Nature News 533 (7604): 452. https://doi.org/10.
1038/533452a.

Balaban, Nathalie Q., Sophie Helaine, Kim Lewis, Martin Acker-
mann, Bree Aldridge, Dan I. Andersson, Mark P. Brynildsen,
et al. 2019. “Definitions and Guidelines for Research on
Antibiotic Persistence.” Nature Reviews. Microbiology 17 (7):
441—48. https://doi.org/10.1038/s41579-019-0196- 3.

Baym, Michael, Tami D. Lieberman, Eric D. Kelsic, Remy Chait,
Rotem Gross, Idan Yelin, and Roy Kishony. 2016. “Spati-
otemporal Microbial Evolution on Antibiotic Landscapes.”
Science (New York, N.Y.) 353 (6304): 1147-51. https://doi.
org/10.1126/science.aag0822.

Beal, Jacob, Natalie G. Farny, Traci Haddock-Angelli, Vinoo
Selvarajah, Geoff S. Baldwin, Russell Buckley-Taylor, Markus
Gershater, et al. 2019. “Robust Estimation of Bacterial
Cell Count from Optical Density.” bioRxiv, October, 803239.
https://doi.org/10.1101/803239.

161


https://doi.org/10.1038/146837a0
https://doi.org/10.1088/1478-3975/13/4/045001
https://doi.org/10.1128/AEM.01423-14
https://doi.org/10.1128/AEM.01423-14
https://doi.org/10.1098/rstb.1980.0049
https://doi.org/10.15252/msb.20145888
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1038/s41579-019-0196-3
https://doi.org/10.1126/science.aag0822
https://doi.org/10.1126/science.aag0822
https://doi.org/10.1101/803239

162

| REFERENCES

Ben-David, Avishai, and Charles E. Davidson. 2014. “Es-
timation Method for Serial Dilution Experiments.” Journal
of Microbiological Methods 107 (December): 214—21. https:
//doi.org/10.1016/j.mimet.2014.08.023.

Ben-Jacob, Eshel, Ofer Schochet, Adam Tenenbaum, Inon Cohen,
Andras Czir6k, and Tamas Vicsek. 1994. “Generic Mod-
elling of Cooperative Growth Patterns in Bacterial Colon-
ies.” Nature 368 (6466): 46—49. https://doi.org/10.1038/
368046a0.

Berg, Stuart, Dominik Kutra, Thorben Kroeger, Christoph N.
Straehle, Bernhard X. Kausler, Carsten Haubold, Martin
Schiegg, et al. 2019. “llastik: Interactive Machine Learn-
ing for (Bio)image Analysis.” Nature Methods 16 (12, 12):
1226—32. https://doi.org/10.1038/541592-019-0582-9.

Bertani, Giuseppe. 1951. “Studies on Lysogenesis.” Journal
of Bacteriology 62 (3): 293—300. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC386127/.

Bhat, Nayana G., and S. Balaji. 2020. “Whole-Cell Modeling and
Simulation: A Brief Survey.” New Generation Computing 38 (1):
259—81. https://doi.org/10.1007/s00354-019-00066-y.

Bollenbach, Tobias. 2015. “Antimicrobial Interactions: Mech-
anisms and Implications for Drug Discovery and Resist-
ance Evolution.” Current Opinion in Microbiology, Antimi-
crobials ¢ Microbial systems biology, 27 (October): 1—9.
https://doi.org/10.1016/j.mib.2015.05.008.

Boman, H. G., and K. G. Eriksson. 1963. “Penicillin Induced
Lysis in Escherichia Coli.” Journal of General Microbiology 31
(3): 339-52. https://doi.org/10.1099/600221287-31-3-339.

Botta, G A, and J T Park. 1981. “Evidence for Involvement
of Penicillin-Binding Protein 3 in Murein Synthesis During
Septation but Not During Cell Elongation.” Journal of Bacteri-
ology 145 (1): 333—40. https://doi.org/10.1128/3B.145.1.
333-340.1981.

Brauner, Asher, Ofer Fridman, Orit Gefen, and Nathalie Q. Bal-
aban. 2016. “Distinguishing Between Resistance, Tolerance
and Persistence to Antibiotic Treatment.” Nature Reviews
Microbiology 14 (5, 5): 320-30. https://doi.org/10.1038/
nrmicro.2016.34.

Brugger, Silvio D., Christian Baumberger, Marcel Jost, Werner
Jenni, Urs Brugger, and Kathrin Miithlemann. 2012. “Auto-
mated Counting of Bacterial Colony Forming Units on Agar
Plates.” PLoS ONE 77 (3). https://doi.org/10.1371/journal.
pone.0033695.


https://doi.org/10.1016/j.mimet.2014.08.023
https://doi.org/10.1016/j.mimet.2014.08.023
https://doi.org/10.1038/368046a0
https://doi.org/10.1038/368046a0
https://doi.org/10.1038/s41592-019-0582-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC386127/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC386127/
https://doi.org/10.1007/s00354-019-00066-y
https://doi.org/10.1016/j.mib.2015.05.008
https://doi.org/10.1099/00221287-31-3-339
https://doi.org/10.1128/JB.145.1.333-340.1981
https://doi.org/10.1128/JB.145.1.333-340.1981
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.1371/journal.pone.0033695
https://doi.org/10.1371/journal.pone.0033695

REFERENCES |

Buchanan, Robert E. 1918. “Life Phases in a Bacterial Culture.”
Journal of Infectious Diseases 23 (2): 109—25. https://doi.org/
10.1086/infdis/23.2.1009.

Buijs, J., A. S. M. Dofferhoff, J]. W. Mouton, J. H. T. Wagen-
voort, and J. W. M. van der Meer. 2008. “Concentration-
Dependency of p-Lactam-Induced Filament Formation in
Gram-Negative Bacteria.” Clinical Microbiology and Infection
14 (4): 344—49. https://doi.org/10.1111/j.1469-0691.2007.
01940.x.

Bush, Karen. 1989. “Characterization of B-Lactamases.” ANTI-
MICROB. AGENTS CHEMOTHER. 33: 5.

. 2018. “Past and Present Perspectives on p-Lactamases.”
Antimicrobial Agents and Chemotherapy 62 (10). https://doi.
org/10.1128/AAC.01076-18.

Bush, Karen, and George A. Jacoby. 2010. “Updated Func-
tional Classification of p-Lactamases.” Antimicrobial Agents
and Chemotherapy 54 (3): 969—76. https://doi.org/10.1128/
AAC.01009-09.

Bush, Karen, George A. Jacoby, and Antoine A. Medeiros. 1995.
“A Functional Classification Scheme for Beta-Lactamases
and Its Correlation with Molecular Structure.” Antimicrobial
Agents and Chemotherapy 39 (6): 1211—33. https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC162717/.

Bush, Karen, and Richard B. Sykes. 1986. “Methodology for
the Study of B-Lactamases.” Antimicrobial Agents and Chemo-
therapy 30 (1): 6-10. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC176424/.

Cadena-Herrera, Daniela, Joshua E. Esparza-De Lara, Nancy D.
Ramirez-Ibafiez, Carlos A. L6pez-Morales, Néstor O. Pérez,
Luis F. Flores-Ortiz, and Emilio Medina-Rivero. 2015. “Val-
idation of Three Viable-Cell Counting Methods: Manual,
Semi-Automated, and Automated.” Biotechnology Reports 7
(September): 9—16. https://doi.org/10.1016/j.btre.2015.
04.004.

Centers for Disease Control and Prevention (U.S.). 2019. “Anti-
biotic Resistance Threats in the United States, 2019.” Centers
for Disease Control and Prevention (U.S.). https://doi.org/
10.15620/cdc:82532.

Chambers, HF, M ] Sachdeva, and C ] Hackbarth. 1994. “Kinet-
ics of Penicillin Binding to Penicillin-Binding Proteins of Sta-
phylococcus Aureus.” Biochemical Journal 301 (July): 139—44.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137153/.

163


https://doi.org/10.1086/infdis/23.2.109
https://doi.org/10.1086/infdis/23.2.109
https://doi.org/10.1111/j.1469-0691.2007.01940.x
https://doi.org/10.1111/j.1469-0691.2007.01940.x
https://doi.org/10.1128/AAC.01076-18
https://doi.org/10.1128/AAC.01076-18
https://doi.org/10.1128/AAC.01009-09
https://doi.org/10.1128/AAC.01009-09
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162717/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162717/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC176424/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC176424/
https://doi.org/10.1016/j.btre.2015.04.004
https://doi.org/10.1016/j.btre.2015.04.004
https://doi.org/10.15620/cdc:82532
https://doi.org/10.15620/cdc:82532
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137153/

164 | REFERENCES

Cho, Hongbaek, Tsuyoshi Uehara, and Thomas G. Bernhardt.
2014. “B-Lactam Antibiotics Induce a Lethal Malfunctioning
of the Bacterial Cell Wall Synthesis Machinery.” Cell 159
(6): 1300-1311. https://doi.org/10.1016/j.cell.2014.11.
017.

Chung, Hak Suk, Zhizhong Yao, Nathan W. Goehring, Roy
Kishony, Jon Beckwith, and Daniel Kahne. 2009. “Rapid -
Lactam-Induced Lysis Requires Successful Assembly of the
Cell Division Machinery.” Proceedings of the National Academy
of Sciences 106 (51): 21872—77. https://doi.org/10.1073/
pnas.0911674106.

Clarke, Matthew L., Robert L. Burton, A. Nayo Hill, Maritoni
Litorja, Moon H. Nahm, and Jeeseong Hwang. 2010. “Low-
Cost, High-Throughput, Automated Counting of Bacterial
Colonies.” Cytometry Part A 77A (8): 790—97. https://doi.
org/10.1002/cyto.a.20864.

Cochran, William G. 1950. “Estimation of Bacterial Densities by
Means of the "Most Probable Number".” Biometrics 6 (2): 105.
https://doi.org/10.2307/3001491.

Collins, J. E, and M. H. Richmond. 1962. “Rate of Growth of Ba-
cillus Cereus Between Divisions.” Journal of General Microbio-
logy 28 (1): 15—33. https://doi.org/10.1099/00221287-28-1-15.

Colquhoun, David. 2014. “An Investigation of the False Discov-
ery Rate and the Misinterpretation of p-Values.” Royal Society
Open Science 1 (3). https://doi.org/10.1098/rsos.140216.

Combs, Gerald. 2020. Wireshark (version 3.2). Wireshark Found-
ation. https://code.wireshark.org/review/wireshark.

Condrey, Richard E. 1982. “The Chemostat and Blackman
Kinetics.” Biotechnology and Bioengineering 24 (7): 1705—9.
https://doi.org/10.1002/bit.260240720.

Cullum, John, and Miguel Vicente. 1978. “Cell Growth and
Length Distribution in Escherichia Coli.” Journal of Bacteri-
ology 134 (1): 330-37. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC222250/.

Daniels, H. E. 1954. “Saddlepoint Approximations in Statistics.”
Annals of Mathematical Statistics 25 (4): 631-50. https://doi.
org/10.1214/aoms/1177728652.

DeBlois, Ralph W., and Charles P. Bean. 1970. “Counting
and Sizing of Submicron Particles by the Resistive Pulse
Technique.” Review of Scientific Instruments 41 (7): 909—16.
https://doi.org/10.1063/1.1684724.


https://doi.org/10.1016/j.cell.2014.11.017
https://doi.org/10.1016/j.cell.2014.11.017
https://doi.org/10.1073/pnas.0911674106
https://doi.org/10.1073/pnas.0911674106
https://doi.org/10.1002/cyto.a.20864
https://doi.org/10.1002/cyto.a.20864
https://doi.org/10.2307/3001491
https://doi.org/10.1099/00221287-28-1-15
https://doi.org/10.1098/rsos.140216
https://code.wireshark.org/review/wireshark
https://doi.org/10.1002/bit.260240720
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC222250/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC222250/
https://doi.org/10.1214/aoms/1177728652
https://doi.org/10.1214/aoms/1177728652
https://doi.org/10.1063/1.1684724

REFERENCES |

Eagle, Harry. 1948. “A Paradoxical Zone Phenomenon in the
Bactericidal Action of Penicillin in Vitro.” Science 107 (2767):
44—45. https://doi.org/10.1126/science.107.2767.44.

Eagle, Harry, and A. D. Musselman. 1948. “The Rate of Bacter-
icidal Action of Penicillin in Vitro as a Function of Its Con-
centration, and Its Paradoxically Reduced Activity at High
Concentrations Against Certain Organisms.” The Journal of
Experimental Medicine 88 (1): 99—131. https://doi.org/10.
1084/jem.88.1.99.

Egli, Thomas, Urs Lendenmann, and Mario Snozzi. 1993. “Kin-
etics of Microbial Growth with Mixtures of Carbon Sources.”
Antonie van Leeuwenhoek 63 (3-4): 289—98. https://doi.org/
10.1007/BF00871224.

Elf, Johan, Karin Nilsson, Tanel Tenson, and Mdns Ehrenberg.
2006. “Bistable Bacterial Growth Rate in Response to An-
tibiotics with Low Membrane Permeability.” Physical Re-
view Letters 97 (25): 258104. https://doi.org/10.1103/
PhysRevLett.97.258104.

EUCAST. 2020a. “Breakpoint Tables for Interpretation of MICs
and Zone Diameters.” https://www.eucast.org/fileadmin/
src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_
Breakpoint_Tables. pdf.

. 2020b. “EUCAST Reading Guide for Broth Microdilu-

tion.” https://www.eucast.org/fileadmin/src/media/PDFs/

165

EUCAST_files/Disk_test_documents/2020_manuals/Reading_

guide BMD_v_2.0_2020.pdf.

Faheem, Mohammad, Md Tabish Rehman, Mohd Danishuddin,
and Asad U. Khan. 2013. “Biochemical Characterization of
CTX-M-15 from Enterobacter Cloacae and Designing a Novel
Non-B-Lactam-p-Lactamase Inhibitor.” Edited by Hendrik
W. van Veen. PLoS ONE 8 (2): €56926. https://doi.org/10.
1371/journal.pone.0056926.

Felici, Antonio, Gianfranco Amicosante, Arduino Oratore, Roberto
Strom, Philippe Ledent, Bernard Joris, Laurence Fanuel, and
Jean-Marie Frere. 1993. “An Overview of the Kinetic Para-
meters of Class B B-Lactamases.” Biochemical Journal, no. 291:
151-55.

Finberg, Robert W., Robert C. Moellering, Francis P. Tally, Wil-
liam A. Craig, George A. Pankey, E. Patchen Dellinger, Mi-
chael A. West, et al. 2004. “The Importance of Bactericidal
Drugs: Future Directions in Infectious Disease.” Clinical In-
fectious Diseases 39 (9): 1314—20. https://doi.org/10.1086/
4250009.


https://doi.org/10.1126/science.107.2767.44
https://doi.org/10.1084/jem.88.1.99
https://doi.org/10.1084/jem.88.1.99
https://doi.org/10.1007/BF00871224
https://doi.org/10.1007/BF00871224
https://doi.org/10.1103/PhysRevLett.97.258104
https://doi.org/10.1103/PhysRevLett.97.258104
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Reading_guide_BMD_v_2.0_2020.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Reading_guide_BMD_v_2.0_2020.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Reading_guide_BMD_v_2.0_2020.pdf
https://doi.org/10.1371/journal.pone.0056926
https://doi.org/10.1371/journal.pone.0056926
https://doi.org/10.1086/425009
https://doi.org/10.1086/425009

166

| REFERENCES

Fisher, R. A., H. G. Thornton, and W. A. Mackenzie. 1922.
“The Accuracy of the Plating Method of Estimating the Dens-
ity of Bacterial Populations.” Annals of Applied Biology 9 (3-
4): 325-59. https://doi.org/10.1111/j.1744-7348.1922.
tb05962. x.

Frasier, Kaitlin E., Marie A. Roch, Melissa S. Soldevilla, Sean
M. Wiggins, Lance P. Garrison, and John A. Hildebrand.
2017. “Automated Classification of Dolphin Echolocation
Click Types from the Gulf of Mexico.” Edited by Herve
Glotin. PLOS Computational Biology 13 (12): €1005823. https:
//doi.org/10.1371/journal.pcbi.1005823.

Fredborg, Marlene, Flemming S. Rosenvinge, Erik Spillum,
Stine Kroghsbo, Mikala Wang, and Teis E. Sondergaard.
2015. “Automated Image Analysis for Quantification of
Filamentous Bacteria.” BMC Microbiology 15 (1). https:
//doi.org/10.1186/s12866-015-0583-5.

Geissmann, Quentin. 2013. “OpenCFU, a New Free and Open-
Source Software to Count Cell Colonies and Other Circular
Objects.” PLOS ONE 8 (2): e54072. https://doi.org/10.
1371/journal.pone.0054072.

Gould, I. M., and F. M. MacKenzie. 2002. “Antibiotic Exposure
as a Risk Factor for Emergence of Resistance: The Influ-
ence of Concentration.” Journal of Applied Microbiology 92
(s1): 785-84S. https://doi.org/10.1046/j.1365-2672.92.
5s51.10.x.

Greenland, Sander, Stephen J. Senn, Kenneth J. Rothman, John B.
Carlin, Charles Poole, Steven N. Goodman, and Douglas G.
Altman. 2016. “Statistical Tests, P Values, Confidence Inter-
vals, and Power: A Guide to Misinterpretations.” European
Journal of Epidemiology 31 (4): 337-50. https://doi.org/10.
1007/s10654-016-0149-3.

Greenwood, David. 1977. “Response Profiles: A Method of
Evaluating the Activity of B-Lactam Antibiotics Against En-
terobacteria.” Chemotherapy 23 (1): 11-18. https://doi.org/
10.1159/000221965.

Greenwood, David, and Adrian Eley. 1982. “A Turbidimetric
Study of the Responses of Selected Strains of Pseudomonas
Aeruginosa to Eight Antipseudomonal B-Lactam Antibiot-
ics.” Journal of Infectious Diseases 145 (1): 110-17. https:
//doi.org/10.1093/infdis/145.1.1160.

Greulich, Philip, Matthew Scott, Martin R. Evans, and Rosalind
J. Allen. 2015. “Growth-Dependent Bacterial Susceptibility to


https://doi.org/10.1111/j.1744-7348.1922.tb05962.x
https://doi.org/10.1111/j.1744-7348.1922.tb05962.x
https://doi.org/10.1371/journal.pcbi.1005823
https://doi.org/10.1371/journal.pcbi.1005823
https://doi.org/10.1186/s12866-015-0583-5
https://doi.org/10.1186/s12866-015-0583-5
https://doi.org/10.1371/journal.pone.0054072
https://doi.org/10.1371/journal.pone.0054072
https://doi.org/10.1046/j.1365-2672.92.5s1.10.x
https://doi.org/10.1046/j.1365-2672.92.5s1.10.x
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1159/000221965
https://doi.org/10.1159/000221965
https://doi.org/10.1093/infdis/145.1.110
https://doi.org/10.1093/infdis/145.1.110

REFERENCES |

Ribosome-Targeting Antibiotics.” Molecular Systems Biology
11 (3). https://doi.org/10.15252/msb.20145949.

Greulich, Philip, Barttomiej Waclaw, and Rosalind | Allen. 2012.
“Mutational Pathway Determines Whether Drug Gradients
Accelerate Evolution of Drug-Resistant Cells.” PHYSICAL
REVIEW LETTERS, 5.

Hall, Alistair J., and Graeme C. Wake. 1989. “A Functional
Differential Equation Arising in Modelling of Cell Growth.”
The Journal of the Australian Mathematical Society. Series B.
Applied Mathematics 30 (4): 424-35. https://doi.org/10.
1017/50334270000006366.

Hansen, Nikolaus. 2006. The CMA Evolution Strategy: A Compar-
ing Review.

Harms, Alexander, Etienne Maisonneuve, and Kenn Gerdes.
2016. “Mechanisms of Bacterial Persistence During Stress
and Antibiotic Exposure.” Science 354 (6318): aaf4268. https:
//doi.org/10.1126/science.aaf4268.

Hashimoto, Mikihiro, Takashi Nozoe, Hidenori Nakaoka, Reiko
Okura, Sayo Akiyoshi, Kunihiko Kaneko, Edo Kussell, and
Yuichi Wakamoto. 2016. “Noise-Driven Growth Rate Gain
in Clonal Cellular Populations.” Proceedings of the National
Academy of Sciences 113 (12): 3251-56. https://doi.org/10.
1073/pnas.1519412113.

Hazan, Ronen, Yok-Ai Que, Damien Maura, and Laurence G
Rahme. 2012. “A Method for High Throughput Determ-
ination of Viable Bacteria Cell Counts in 96-Well Plates.”
BMC Microbiology 12 (November): 259. https://doi.org/10.
1186/1471-2180-12-259.

Hedges, Alan ]J. 2002. “Estimating the Precision of Serial Di-
lutions and Viable Bacterial Counts.” International Journal of
Food Microbiology 76 (3): 207-14. https://doi.org/16.1016/
S0168-1605(02)00022-3

Hentschke, Moritz, Stathis D. Kotsakis, Manuel Wolters, Peter
Heisig, Vivi Miriagou, and Martin Aepfelbacher. 2011. “CMY-
42, a Novel Plasmid-Mediated CMY-2 Variant AmpC Beta-
Lactamase.” Microbial Drug Resistance 17 (2): 165-69. https:
//doi.org/10.1089/mdr.2010.0137.

Hilsenbeck, Oliver, Michael Schwarzfischer, Dirk Loeffler, Sotiris
Dimopoulos, Simon Hastreiter, Carsten Marr, Fabian J. Theis,
and Timm Schroeder. 2017. “fastER: A User-Friendly Tool
for Ultrafast and Robust Cell Segmentation in Large-Scale
Microscopy.” Bioinformatics (Oxford, England) 33 (13): 2020—28.
https://doi.org/10.1093/bioinformatics/btx107.

167


https://doi.org/10.15252/msb.20145949
https://doi.org/10.1017/S0334270000006366
https://doi.org/10.1017/S0334270000006366
https://doi.org/10.1126/science.aaf4268
https://doi.org/10.1126/science.aaf4268
https://doi.org/10.1073/pnas.1519412113
https://doi.org/10.1073/pnas.1519412113
https://doi.org/10.1186/1471-2180-12-259
https://doi.org/10.1186/1471-2180-12-259
https://doi.org/10.1016/S0168-1605(02)00022-3
https://doi.org/10.1016/S0168-1605(02)00022-3
https://doi.org/10.1089/mdr.2010.0137
https://doi.org/10.1089/mdr.2010.0137
https://doi.org/10.1093/bioinformatics/btx107

168 | REFERENCES

Hindmarsh, Alan C. 1983. “ODEPACK, A Systematized Col-
lection of ODE Solvers.” Scientific Computing, IMACS Transac-
tions on Scientific Computation, 1: 55-64. https://computing.
llnl.gov/casc/nsde/pubs/u88007.pdf.

Hiroshi, Nikaido. 2009. “The Limitations of LB Medium.” Small
Things Considered. November 9, 2009. http://schaechter.
asmblog.org/schaechter/2009/11/the-limitations-of-1b-medium.
html.

Hobby, G. L., K. Meyer, and E. Chaffee. 1942. “Observations
on the Mechanism of Action of Penicillin.” Experimental Bio-
logy and Medicine 50 (2): 281-85. https://doi.org/10.3181/
00379727-50-13773.

Hobby, Gladys L., and Martin H. Dawson. 1944. “Effect of Rate
of Growth of Bacteria on Action of Penicillin.” Experimental
Biology and Medicine 56 (2): 181-84. https://doi.org/10.
3181/00379727-56-14643.

Hogan, Deborah, and Roberto Kolter. 2002. “Why Are Bacteria
Refractory to Antimicrobials?” Current Opinion in Microbio-
logy 5 (5): 472—77. https://doi.org/10.1016/51369-5274(02)
00357-0.

Houle, David, Christophe Pélabon, Giinter P. Wagner, and
Thomas F. Hansen. 2011. “Measurement and Meaning
in Biology.” The Quarterly Review of Biology 86 (1): 3—34.
https://doi.org/10.1086/658408.

Ioannidis, John P. A. 2005. “Why Most Published Research
Findings Are False.” PLoS Medicine 2 (8). https://doi.org/
10.1371/journal.pmed.0020124.

Jennison, Marshall W., and George P. Wadsworth. 1940. “Evalu-
ation of the Errors Involved in Estimating Bacterial Numbers
by the Plating Method.” Journal of Bacteriology 39 (4): 389—97.
https://doi.org/10.1128/3B.39.4.389-397.1940.

Jett, Bradley D., Kenneth L. Hatter, Mark M. Huycke, and Mi-
chael S. Gilmore. 1997. “Simplified Agar Plate Method for
Quantifying Viable Bacteria.” BioTechniques 23 (4): 648-50.
https://doi.org/10.2144/97234bm22.

Johnston, Grace. 2010. “Automated Handheld Instrument
Improves Counting Precision Across Multiple Cell Lines.”
BioTechniques 48 (4): 325-27. https://doi.org/10.2144/
000113407.

Khan, Arif ul Maula, Angelo Torelli, Ivo Wolf, and Norbert Gretz.
2018. “AutoCellSeg: Robust Automatic Colony Forming Unit
(CFU)/Cell Analysis Using Adaptive Image Segmentation


https://computing.llnl.gov/casc/nsde/pubs/u88007.pdf
https://computing.llnl.gov/casc/nsde/pubs/u88007.pdf
http://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html
http://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html
http://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html
https://doi.org/10.3181/00379727-50-13773
https://doi.org/10.3181/00379727-50-13773
https://doi.org/10.3181/00379727-56-14643
https://doi.org/10.3181/00379727-56-14643
https://doi.org/10.1016/S1369-5274(02)00357-0
https://doi.org/10.1016/S1369-5274(02)00357-0
https://doi.org/10.1086/658408
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1128/JB.39.4.389-397.1940
https://doi.org/10.2144/97234bm22
https://doi.org/10.2144/000113407
https://doi.org/10.2144/000113407

REFERENCES |

and Easy-to-Use Post-Editing Techniques.” Scientific Reports 8
(1): 7302. https://doi.org/10.1038/s41598-018-24916-09.

Kirby, William M. M. 1945. “Bacteriostatic and Lytic Actions of
Penicillin on Sensitive and Resistant Staphylococci.” Journal
of Clinical Investigation 24 (2): 165-69. https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC435445/.

Kocaoglu, Ozden, and Erin E. Carlson. 2015. “Profiling of -
Lactam Selectivity for Penicillin-Binding Proteins in Escheri-
chia Coli Strain Dc2.” Antimicrobial Agents and Chemotherapy
59 (5): 2785—-90. https://doi.org/10.1128/AAC.04552-14.

Koch, Arthur L. 1961. “Some Calculations on the Turbidity of
Mitochondria and Bacteria.” Biochimica Et Biophysica Acta
51 (3): 429—41. https://doi.org/10.1016/0006-3002(61)
90599-6.

. 1968. “Theory of the Angular Dependence of Light

Scattered by Bacteria and Similar-Sized Biological Objects.”

Journal of Theoretical Biology 18 (1): 133—-56. https://doi.org/

10.1016/0022-5193(68)90174-4.

. 1970. “Turbidity Measurements of Bacterial Cultures in
Some Available Commercial Instruments.” Analytical Biochem-
istry 38 (1): 252—-59. https://doi.org/10.1016/0003-2697(70)
90174-0.

Lee, Anna J., Shangying Wang, Hannah R. Meredith, Bihan
Zhuang, Zhuojun Dai, and Lingchong You. 2018. “Ro-
bust, Linear Correlations Between Growth Rates and g-
Lactam-mediated Lysis Rates.” Proceedings of the National
Academy of Sciences 115 (16): 4069—74. https://doi.org/10.
1073/pnas.1719504115.

Lendenmann, Urs, Heinrich Senn, Mario Snozzi, and Thomas
Egli. 2000. “Dynamics of Mixed Substrate Growth of Escheri-
chia Coli in Batch Culture: The Transition Between Simultan-
eous and Sequential Utilisation of Carbon Substrates,” July,
11.

Lendenmann, Urs, Mario Snozzi, and Thomas Egli. 2000. “Growth
Kinetics of Escherichia Coli with Galactose and Several Other
Sugars in Carbon-Limited Chemostat Culture.” Canadian
Journal of Microbiology 46 (1): 72-80. https://doi.org/10.
1139/cjm-46-1-72.

Leonard, David A, Andrea M Hujer, Brian A Smith, Kyle D
Schneider, Christopher R Bethel, Kristine M Hujer, and
Robert A Bonomo. 2008. “The Role of OXA-1 f-Lactamase
Asp66 in the Stabilization of the Active-Site Carbamate Group
and in Substrate Turnover,” 8.

169


https://doi.org/10.1038/s41598-018-24916-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC435445/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC435445/
https://doi.org/10.1128/AAC.04552-14
https://doi.org/10.1016/0006-3002(61)90599-6
https://doi.org/10.1016/0006-3002(61)90599-6
https://doi.org/10.1016/0022-5193(68)90174-4
https://doi.org/10.1016/0022-5193(68)90174-4
https://doi.org/10.1016/0003-2697(70)90174-0
https://doi.org/10.1016/0003-2697(70)90174-0
https://doi.org/10.1073/pnas.1719504115
https://doi.org/10.1073/pnas.1719504115
https://doi.org/10.1139/cjm-46-1-72
https://doi.org/10.1139/cjm-46-1-72

170 | REFERENCES

Levin-Reisman, Irit, Irine Ronin, Orit Gefen, Ilan Braniss, Noam
Shoresh, and Nathalie Q. Balaban. 2017. “Antibiotic Tol-
erance Facilitates the Evolution of Resistance.” Science 355
(6327): 826—30. https://doi.org/10.1126/science.aaj2191.

Levy, Stuart B, and Bonnie Marshall. 2004. “Antibacterial Res-
istance Worldwide: Causes, Challenges and Responses.”
Nature Medicine 10 (S12): S122-29. https://doi.org/10.
1038/nm1145.

Li, Chen, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri,
Lukas Endler, Vijayalakshmi Chelliah, Lu Li, et al. 2010. “Bio-
Models Database: An Enhanced, Curated and Annotated
Resource for Published Quantitative Kinetic Models.” BMC
Systems Biology 4 (June): 92. https://doi.org/10.1186/
1752-0509-4-92.

Liu, Zhihai, Jiyun Li, Xiaoming Wang, Dejun Liu, Yuebin Ke,
Yang Wang, and Jianzhong Shen. 2018. “Novel Variant of
New Delhi Metallo-B-Lactamase, NDM-2o0, in Escherichia
Coli.” Frontiers in Microbiology 9. https://doi.org/10.3389/
fmicb.2018.00248.

Livermore, David M. 1997. “B-Lactamases: Quantity and Resist-
ance.” Clinical Microbiology and Infection 3 (January): 4510-19.
https://doi.org/10.1016/51198-743X(14)65031-X.

Lopatkin, Allison J., and James ]. Collins. 2020. “Predictive
Biology: Modelling, Understanding and Harnessing Micro-
bial Complexity.” Nature Reviews Microbiology, May, 1-14.
https://doi.org/10.1038/s41579-020-0372-5.

Ltd, Tecan Group. n.d. “Multimode Microplate Reader, Live Cell
Assays.” Accessed June 17, 2020. https://lifesciences.
tecan.com/multimode-plate- reader.

Lukacisinova, Marta, and Tobias Bollenbach. 2017. “Toward a
Quantitative Understanding of Antibiotic Resistance Evol-
ution.” Current Opinion in Biotechnology 46 (August): 9o—97.
https://doi.org/10.1016/j.copbio.2017.02.013.

Madigan, Michael T., Kelly S. Bender, Daniel H. Buckley, W.
Matthew Sattley, and David A. Stahl. 2017. Brock Biology of
Microorganisms. 15 edition. NY, NY: Pearson.

McCrady, M. H. 1915. “The Numerical Interpretation of Fermentation-
Tube Results.” The Journal of Infectious Diseases 17 (1): 183—212.
https://www.jstor.org/stable/30083495.

Merck. n.d. “Mg, Minimal Salts, 5x M6030.” Mg media. Ac-
cessed July 1, 2020. https://www.sigmaaldrich.com/catalog/
product/sigma/m6030.


https://doi.org/10.1126/science.aaj2191
https://doi.org/10.1038/nm1145
https://doi.org/10.1038/nm1145
https://doi.org/10.1186/1752-0509-4-92
https://doi.org/10.1186/1752-0509-4-92
https://doi.org/10.3389/fmicb.2018.00248
https://doi.org/10.3389/fmicb.2018.00248
https://doi.org/10.1016/S1198-743X(14)65031-X
https://doi.org/10.1038/s41579-020-0372-5
https://lifesciences.tecan.com/multimode-plate-reader
https://lifesciences.tecan.com/multimode-plate-reader
https://doi.org/10.1016/j.copbio.2017.02.013
https://www.jstor.org/stable/30083495
https://www.sigmaaldrich.com/catalog/product/sigma/m6030
https://www.sigmaaldrich.com/catalog/product/sigma/m6030

REFERENCES |

Meredith, Hannah R. 2015. “Collective Antibiotic Tolerance:
Mechanisms, Dynamics and Intervention.” Nature Chemical
Biology 11: 7.

Meredith, Hannah R., Virgile Andreani, Helena R. Ma, Allison ].
Lopatkin, Anna J. Lee, Deverick J. Anderson, Gregory Batt,
and Lingchong You. 2018. “Applying Ecological Resistance
and Resilience to Dissect Bacterial Antibiotic Responses.” Sci-
ence Advances 4 (12): eaau1873. https://doi.org/10.1126/
sciadv.aaul873.

Meredith, Hannah R., Allison ]J. Lopatkin, Deverick J. Anderson,
and Lingchong You. 2015. “Bacterial Temporal Dynam-
ics Enable Optimal Design of Antibiotic Treatment.” PLOS
Computational Biology 11 (4): €1004201. https://doi.org/10.
1371/journal.pcbi.1004201.

Miles, A. A., S. S. Misra, and J. O. Irwin. 1938. “The Estimation
of the Bactericidal Power of the Blood.” The Journal of Hy-
giene 38 (6): 732—49. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2199673/.

Monod, Jacques. 1941. “Recherches sur la croissance des cul-
tures bactériennes.” Paris: Hermann.

. 1949. “The Growth of Bacterial Cultures.” Annual Review
of Microbiology 3 (1): 371—94. https://doi.org/10.1146/
annurev.mi.03.100149.002103.

Munafo, Marcus R., Brian A. Nosek, Dorothy V. M. Bishop, Kath-
erine S. Button, Christopher D. Chambers, Nathalie Percie
du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J.
Ware, and John P. A. Ioannidis. 2017. “A Manifesto for
Reproducible Science.” Nature Human Behaviour 1 (1): 0021.
https://doi.org/10.1038/s541562-016-0021.

Murphy, James T., Ray Walshe, and Marc Devocelle. 2008. “A
Computational Model of Antibiotic-Resistance Mechanisms
in Methicillin-Resistant Staphylococcus Aureus (MRSA).”
Journal of Theoretical Biology 254 (2): 284-93. https://doi.
org/10.1016/j.jtbi.2008.05.037.

Naas, Thierry, Saoussen Oueslati, Rémy A. Bonnin, Maria Laura
Dabos, Agustin Zavala, Laurent Dortet, Pascal Retailleau,
and Bogdan I. Iorga. 2017. “Beta-Lactamase Database (BLDB)
— Structure and Function.” Journal of Enzyme Inhibition and
Medicinal Chemistry 32 (1): 917-19. https://doi.org/10.
1080/14756366.2017.1344235.

Navarro Llorens, Juana Maria, Antonio Tormo, and Esteban
Martinez-Garcia. 2010. “Stationary Phase in Gram-Negative

171


https://doi.org/10.1126/sciadv.aau1873
https://doi.org/10.1126/sciadv.aau1873
https://doi.org/10.1371/journal.pcbi.1004201
https://doi.org/10.1371/journal.pcbi.1004201
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199673/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199673/
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1016/j.jtbi.2008.05.037
https://doi.org/10.1016/j.jtbi.2008.05.037
https://doi.org/10.1080/14756366.2017.1344235
https://doi.org/10.1080/14756366.2017.1344235

172 | REFERENCES

Bacteria.” FEMS Microbiology Reviews 34 (4): 476—95. https:
//doi.org/10.1111/j.1574-6976.2010.00213.x.

Neidhardt, Frederick C. 1999. “Bacterial Growth: Constant Ob-
session with dN/Dt.” Journal of Bacteriology 181 (24): 7405-8.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC94194/.

Nitanai, Yasushi, Tatsuro Shimamura, Takuro Uchiyama, Yoshi-
kazu Ishii, Michiyo Takehira, Katsuhide Yutani, Hiroshi
Matsuzawa, and Masashi Miyano. 2010. “The Catalytic
Efficiency (Kcat/Km) of the Class A B-Lactamase Toho-1
Correlates with the Thermal Stability of Its Catalytic Interme-
diate Analog.” Biochimica Et Biophysica Acta (BBA) - Proteins
and Proteomics 1804 (4): 684—91. https://doi.org/10.1016/
j -bbapap.2009.10.023.

Page, M. G. P. 2008. “Extended-Spectrum p-Lactamases: Struc-
ture and Kinetic Mechanism.” Clinical Microbiology and In-
fection 14 (January): 63-74. https://doi.org/10.1111/j.
1469-0691.2007.01863.x.

Palzkill, Timothy. 2018. “Structural and Mechanistic Basis for
Extended-Spectrum Drug-Resistance Mutations in Altering
the Specificity of TEM, CTX-M, and KPC B-Lactamases.”
Frontiers in Molecular Biosciences 5 (February): 16. https:
//doi.org/10.3389/fmolb.2018.00016.

Pamphilon, Derwood, Eileen Selogie, David McKenna, Jose A.
Cancelas-Peres, Zbigniew M. Szczepiorkowski, Ron Sacher,
John McMannis, et al. 2013. “Current Practices and Pro-
spects for Standardization of the Hematopoietic Colony-
Forming Unit Assay: A Report by the Cellular Therapy
Team of the Biomedical Excellence for Safer Transfusion
(BEST) Collaborative.” Cytotherapy 15 (3): 255-62. https:
//doi.org/10.1016/j.jcyt.2012.11.013.

Pasteur, Louis (1822-1895) Auteur du texte. 1922-1939. Oeuvres
de Pasteur. Tome 2 / Réunies Par Pasteur Vallery-Radot,... https:
//gallica.bnf.fr/ark:/12148/bpt6k7357p.

Paterson, David L., and Robert A. Bonomo. 2005. “Extended-
Spectrum B-Lactamases: A Clinical Update.” Clinical Microbi-
ology Reviews 18 (4): 657-86. https://doi.org/10.1128/CMR.
18.4.657-686.2005.

Patifio-Navarrete, Rafael, Isabelle Rosinski-Chupin, Nicolas Cabanel,
Lauraine Gauthier, Julie Takissian, Jean-Yves Madec, Monzer
Hamze, Remy A. Bonnin, Thierry Naas, and Philippe Glaser.
2020. “Stepwise Evolution and Convergent Recombina-
tion Underlie the Global Dissemination of Carbapenemase-


https://doi.org/10.1111/j.1574-6976.2010.00213.x
https://doi.org/10.1111/j.1574-6976.2010.00213.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC94194/
https://doi.org/10.1016/j.bbapap.2009.10.023
https://doi.org/10.1016/j.bbapap.2009.10.023
https://doi.org/10.1111/j.1469-0691.2007.01863.x
https://doi.org/10.1111/j.1469-0691.2007.01863.x
https://doi.org/10.3389/fmolb.2018.00016
https://doi.org/10.3389/fmolb.2018.00016
https://doi.org/10.1016/j.jcyt.2012.11.013
https://doi.org/10.1016/j.jcyt.2012.11.013
https://gallica.bnf.fr/ark:/12148/bpt6k7357p
https://gallica.bnf.fr/ark:/12148/bpt6k7357p
https://doi.org/10.1128/CMR.18.4.657-686.2005
https://doi.org/10.1128/CMR.18.4.657-686.2005

REFERENCES |

Producing Escherichia Coli.” Genome Medicine 12 (1): 10.
https://doi.org/10.1186/s13073-019-0699-6.

Patterson, Manford K. 1979. “Measurement of Growth and Viab-
ility of Cells in Culture.” In Methods in Enzymology, 58:141-52.
Cell Culture. Academic Press. https://doi.org/10.1016/
S0076-6879(79)58132-4.

Petzold, Linda. 1983. “Automatic Selection of Methods for
Solving Stiff and Nonstiff Systems of Ordinary Differential
Equations.” SIAM Journal on Scientific and Statistical Comput-
ing 4 (1): 136—48. https://doi.org/10.1137/0904010.

Pérez-Llarena, Francisco José, Frédéric Kerff, Olga Abidn, Susana
Mallo, Maria Carmen Fernandez, Moreno Galleni, Javier
Sancho, and German Bou. 2011. “Distant and New Muta-
tions in CTX-M-1 B-Lactamase Affect Cefotaxime Hydro-
lysis.” Antimicrobial Agents and Chemotherapy 55 (9): 4361-68.
https://doi.org/10.1128/AAC.00298-11.

Phelps, Earle B. 1908. “A Method of Calculating the Numbers of
B. Coli from the Results of Dilution Tests.” American Journal
of Public Hygiene 18 (2): 141—45. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2543481/.

Pienaar, Elsje, Scott E. Whitney, Hendrik J. Viljoen, and Nico-
laas F. J. van Rensburg. 2009. “A Model of the Complex
Response of Staphylococcus Aureus to Methicillin.” Journal
of Theoretical Biology 257 (3): 438—45. https://doi.org/10.
1016/j.jtbi.2008.12.003.

Pletnev, P., I. Osterman, P. Sergiev, A. Bogdanov, O. Dont-
sova, Moscow State University, Chemistry Department, Mo-
scow, 119991, Russia, A. Bogdanov, Moscow State University,
Chemistry Department, Moscow, 119991, Russia, O. Dont-
sova, and Moscow State University, Chemistry Department,
Moscow, 119991, Russia. 2015. “Survival Guide: Escheri-
chia Coli in the Stationary Phase.” Acta Naturae 7 (4): 22-33.
https://doi.org/10.32607/20758251-2015-7-4-22-33.

Potron, Anais, Emilie Rondinaud, Laurent Poirel, Olivier Bel-
monte, Sophie Boyer, Sabine Camiade, and Patrice Nord-
mann. 2013. “Genetic and Biochemical Characterisation of
OXA-232, a Carbapenem-Hydrolysing Class D p-Lactamase
from Enterobacteriaceae.” International Journal of Antimicrobial

173

Agents 41 (4): 325—29. https://doi.org/10.1016/j.ijantimicag.

2012.11.007.
PyUSB (version 1.0). 2020. https://github.com/pyusb/pyusb.
Raue, A., C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmiiller, and J. Timmer. 2009. “Structural and Prac-


https://doi.org/10.1186/s13073-019-0699-6
https://doi.org/10.1016/S0076-6879(79)58132-4
https://doi.org/10.1016/S0076-6879(79)58132-4
https://doi.org/10.1137/0904010
https://doi.org/10.1128/AAC.00298-11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2543481/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2543481/
https://doi.org/10.1016/j.jtbi.2008.12.003
https://doi.org/10.1016/j.jtbi.2008.12.003
https://doi.org/10.32607/20758251-2015-7-4-22-33
https://doi.org/10.1016/j.ijantimicag.2012.11.007
https://doi.org/10.1016/j.ijantimicag.2012.11.007
https://github.com/pyusb/pyusb

174

| REFERENCES

tical Identifiability Analysis of Partially Observed Dynamical
Models by Exploiting the Profile Likelihood.” Bioinformatics
25 (15): 1923—29. https://doi.org/10.1093/bioinformatics/
btp358.

Raue, Andreas, Marcel Schilling, Julie Bachmann, Andrew
Matteson, Max Schelke, Daniel Kaschek, Sabine Hug, et
al. 2013. “Lessons Learned from Quantitative Dynamical
Modeling in Systems Biology.” PLOS ONE 8 (9): e74335.
https://doi.org/10.1371/journal.pone.0074335.

Rolinson, G. N. 1980. “Effect of f-Lactam Antibiotics on Bac-
terial Cell Growth Rate.” Journal of General Microbiology 120
(2): 317-23. https://doi.org/10.1099/00221287-120-2-317.

Roser, Max, Hannah Ritchie, and Esteban Ortiz-Ospina. 2013.
“World Population Growth.” Our World in Data, May. https:
//ourworldindata.org/world-population-growth.

Salas, Jessica R., Majid Jaberi-Douraki, Xuesong Wen, and Vic-
toriya V. Volkova. 2020. “Mathematical Modeling of the
‘Inoculum Effect”: Six Applicable Models and the MIC Ad-
vancement Point Concept.” FEMS Microbiology Letters 367 (5).
https://doi.org/10.1093/femsle/fnaa0l2.

Salvatier, John, Thomas V. Wiecki, and Christopher Fonnesbeck.
2016. “Probabilistic Programming in Python Using PyMC3.”
Peer] Computer Science 2 (April): e55. https://doi.org/10.
7717/peerj-cs.55.

Sauvage, Eric, Frédéric Kerff, Mohammed Terrak, Juan A. Ayala,
and Paulette Charlier. 2008. “The Penicillin-Binding Proteins:
Structure and Role in Peptidoglycan Biosynthesis.” FEMS
Microbiology Reviews 32 (2): 234-58. https://doi.org/10.
1111/j.1574-6976.2008.00105. x.

Savard, Patrice, and Trish M. Perl. 2012. “A Call for Action:
Managing the Emergence of Multidrug-Resistant Enterobac-
teriaceae in the Acute Care Settings.” Current Opinion in
Infectious Diseases 25 (4): 371—77. https://doi.org/10.1097/
QC0.0b013e3283558c17.

Senn, Heinrich, Urs Lendenmann, Mario Snozzi, Geoffrey Hamer,
and Thomas Egli. 1994. “The Growth of Escherichia Coli
in Glucose-Limited Chemostat Cultures: A Re-Examination
of the Kinetics.” Biochimica Et Biophysica Acta (BBA) - Gen-
eral Subjects 1201 (3): 424—36. https://doi.org/10.1016/
0304-4165(94)90072-8.

Serres, Margrethe H., Shuba Gopal, Laila A. Nahum, Ping Li-
ang, Terry Gaasterland, and Monica Riley. 2001. “A Func-
tional Update of the Escherichia Coli K-12 Genome.” Genome


https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1099/00221287-120-2-317
https://ourworldindata.org/world-population-growth
https://ourworldindata.org/world-population-growth
https://doi.org/10.1093/femsle/fnaa012
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1111/j.1574-6976.2008.00105.x
https://doi.org/10.1111/j.1574-6976.2008.00105.x
https://doi.org/10.1097/QCO.0b013e3283558c17
https://doi.org/10.1097/QCO.0b013e3283558c17
https://doi.org/10.1016/0304-4165(94)90072-8
https://doi.org/10.1016/0304-4165(94)90072-8

REFERENCES |

Biology 2 (9): researchoo3s.1. https://doi.org/10.1186/
gb-2001-2-9-research0035.

Sezonov, G., D. Joseleau-Petit, and R. D’Ari. 2007. “Escheri-
chia Coli Physiology in Luria-Bertani Broth.” Journal of Bac-
teriology 189 (23): 8746—49. https://doi.org/10.1128/JB.
01368-07.

Shallue, Christopher J., and Andrew Vanderburg. 2018. “Identi-
tying Exoplanets with Deep Learning: A Five-Planet Reson-
ant Chain Around Kepler-8o and an Eighth Planet Around
Kepler-9o.” The Astronomical Journal 155 (2): 94. https:
//doi.org/10.3847/1538-3881/aa9%¢e09.

Shen, Zhen, Baixing Ding, Yingmin Bi, Shi Wu, Su Xu, Xiaogang
Xu, Qinglan Guo, and Minggui Wang. 2017. “CTX-M-190, a
Novel B-Lactamase Resistant to Tazobactam and Sulbactam,
Identified in an Escherichia Coli Clinical Isolate.” Antimi-
crobial Agents and Chemotherapy 61 (1). https://doi.org/10.
1128/AAC.01848- 16.

Spratt, B. G. 1975. “Distinct Penicillin Binding Proteins Involved
in the Division, Elongation, and Shape of Escherichia Coli
K12.” Proceedings of the National Academy of Sciences 72 (8):
2999-3003. https://doi.org/10.1073/pnas.72.8.2999.

Srimani, Jaydeep K., Shugiang Huang, Allison ]J. Lopatkin, and
Lingchong You. 2017. “Drug Detoxification Dynamics Ex-
plain the Postantibiotic Effect.” Molecular Systems Biology 13
(10): 948. https://doi.org/10.15252/msb.20177723.

Stevenson, Keiran, Alexander F. McVey, Ivan B. N. Clark, Peter
S. Swain, and Teuta Pilizota. 2016. “General Calibration of
Microbial Growth in Microplate Readers.” Scientific Reports 6
(December): 38828. https://doi.org/10.1038/srep38828.

“Tackling Drug-Resistant Infections Globally: Final Report and
Recommendations.” 2016. https://amr-review.org/sites/
default/files/160525_Final%20paper_with%20cover.pdf.

Takahasi, K., S. Ishida, and M. Kurokawa. 1964. “Statistical
Considerations on Sampling Errors in Total Bacterial Cell
Count.” Japanese Journal of Medical Science & Biology 17 (June):
73—-86. https://doi.org/10.7883/yoken1952.17.73.

Tanouchi, Yu, Anand Pai, Heungwon Park, Shugiang Huang,
Nicolas E. Buchler, and Lingchong You. 2017. “Long-Term
Growth Data of Escherichia Coli at a Single-Cell Level.”
Scientific Data 4 (1): 1-5. https://doi.org/10.1038/sdata.
2017.36.

Tooke, Catherine L., Philip Hinchliffe, Eilis C. Bragginton, Char-
lotte K. Colenso, Viivi H. A. Hirvonen, Yuiko Takebayashi,

175


https://doi.org/10.1186/gb-2001-2-9-research0035
https://doi.org/10.1186/gb-2001-2-9-research0035
https://doi.org/10.1128/JB.01368-07
https://doi.org/10.1128/JB.01368-07
https://doi.org/10.3847/1538-3881/aa9e09
https://doi.org/10.3847/1538-3881/aa9e09
https://doi.org/10.1128/AAC.01848-16
https://doi.org/10.1128/AAC.01848-16
https://doi.org/10.1073/pnas.72.8.2999
https://doi.org/10.15252/msb.20177723
https://doi.org/10.1038/srep38828
https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
https://doi.org/10.7883/yoken1952.17.73
https://doi.org/10.1038/sdata.2017.36
https://doi.org/10.1038/sdata.2017.36

176 | REFERENCES

and James Spencer. 2019. “B-Lactamases and B-Lactamase
Inhibitors in the 21st Century.” Journal of Molecular Biology
431 (18): 3472-3500. https://doi.org/10.1016/j.jmb.2019.
04.002.

Transcriptic. n.d. “Powering On-Demand Biology.” Transcriptic.
Accessed August 30, 2020. https://transcriptic.com/.
Tsao, George T., and Thor P. Hanson. 1975. “Extended Monod
Equation for Batch Cultures with Multiple Exponential Phases.”

Biotechnology and Bioengineering 17 (11): 1591-98. https:
//doi.org/10.1002/bit.260171104.

Tuomanen, E., R. Cozens, W. Tosch, O. Zak, and A. Tomasz.
1986. “The Rate of Killing of Escherichia Coli by g-Lactam
Antibiotics Is Strictly Proportional to the Rate of Bacterial
Growth.” Journal of General Microbiology 132 (5): 1297-1304.
https://doi.org/10.1099/00221287-132-5-1297.

Tuomanen, Elaine. 1986. “Phenotypic Tolerance: The Search
for B-Lactam Antibiotics That Kill Nongrowing Bacteria.”
Reviews of Infectious Diseases 8 Suppl 3 (July): S279—291.
https://doi.org/10.1093/clinids/8.supplement_3.s279.

Vega, Nicole M, and Jeff Gore. 2014. “Collective Antibiotic
Resistance: Mechanisms and Implications.” Current Opinion
in Microbiology, Antimicrobials, 21 (October): 28-34. https:
//doi.org/10.1016/j.mib.2014.09.003.

Vigouroux, Antoine, Baptiste Cordier, Andrey Aristov, Laura
Alvarez, Gizem Ozbaykal, Thibault Chaze, Enno Rainer
Oldewurtel, et al. 2020. “Class-A Penicillin Binding Pro-
teins Do Not Contribute to Cell Shape but Repair Cell-
Wall Defects.” Edited by Anna Akhmanova, Jie Xiao, Jie
Xiao, and Tobias Dorr. eLife 9 (January): e51998. https:
//doi.org/10.7554/elLife.51998.

Wang, C. Houston, and Arthur L. Koch. 1978. “Constancy of
Growth on Simple and Complex Media.” Journal of Bacteri-
ology 136 (3): 969—75. https://doi.org/10.1128/JB.136.3.
969-975.1978.

Wang, Jue D., and Petra A. Levin. 2009. “Metabolism, Cell
Growth and the Bacterial Cell Cycle.” Nature Reviews Microbi-
ology 7 (11): 822—27. https://doi.org/10.1038/nrmicro2202.

Wang, Ping, Lydia Robert, James Pelletier, Wei Lien Dang, Fran-
cois Taddei, Andrew Wright, and Suckjoon Jun. 2010. “Ro-
bust Growth of Escherichia Coli.” Current Biology 20 (12):
1099—-1103. https://doi.org/10.1016/j.cub.2010.04.045.

Wanner, Ursula, and Thomas Egli. 1990. “Dynamics of Microbial
Growth and Cell Composition in Batch Culture.” FEMS Mi-


https://doi.org/10.1016/j.jmb.2019.04.002
https://doi.org/10.1016/j.jmb.2019.04.002
https://transcriptic.com/
https://doi.org/10.1002/bit.260171104
https://doi.org/10.1002/bit.260171104
https://doi.org/10.1099/00221287-132-5-1297
https://doi.org/10.1093/clinids/8.supplement_3.s279
https://doi.org/10.1016/j.mib.2014.09.003
https://doi.org/10.1016/j.mib.2014.09.003
https://doi.org/10.7554/eLife.51998
https://doi.org/10.7554/eLife.51998
https://doi.org/10.1128/JB.136.3.969-975.1978
https://doi.org/10.1128/JB.136.3.969-975.1978
https://doi.org/10.1038/nrmicro2202
https://doi.org/10.1016/j.cub.2010.04.045

REFERENCES | 177

crobiology Letters 75 (1): 19—43. https://doi.org/10.1016/
0378-1097(90)90521-Q.

Wehrens, Martijn, Dmitry Ershov, Rutger Rozendaal, Noreen
Walker, Daniel Schultz, Roy Kishony, Petra Anne Levin, and
Sander J. Tans. 2018. “Size Laws and Division Ring Dynam-
ics in Filamentous Escherichia Coli Cells.” Current Biology 28
(6): 972—979.e5. https://doi.org/10.1016/j.cub.2018.02.
006.

WHO. 2019a. Critically Important Antimicrobials for Human Medi-
cine. 6th revision. https://www.who.int/foodsafety/publications/
antimicrobials-sixth/en/.

2019b. “Report of the 22nd WHO Expert Commit-
tee on the Selection and Use of Essential Medicines.” WHO
Headquarters, Geneva. https://apps.who.int/iris/bitstream/
handle/10665/325773/WHO-MVP-EMP-IAU-2019.05-eng. pdf.

Wilks, S. S. 1938. “The Large-Sample Distribution of the Like-
lihood Ratio for Testing Composite Hypotheses.” Annals
of Mathematical Statistics 9 (1): 60—62. https://doi.org/10.
1214/aoms/1177732360.

Windels, Etthel M., Zacchari Ben Meriem, Taiyeb Zahir, Kevin
J. Verstrepen, Pascal Hersen, Bram Van den Bergh, and
Jan Michiels. 2019. “Enrichment of Persisters Enabled by
a SS-Lactam-Induced Filamentation Method Reveals Their
Stochastic Single-Cell Awakenin.” Communications Biology 2
(1, 1). https://doi.org/10.1038/s42003-019-0672- 3.

Wistrand-Yuen, Erik, Michael Knopp, Karin Hjort, Sanna Koskiniemi,
Otto G. Berg, and Dan I. Andersson. 2018. “Evolution of
High-Level Resistance During Low-Level Antibiotic Expos-
ure.” Nature Communications 9 (April). https://doi.org/10.
1038/s41467-018-04059-1.

Wood, Thomas K., Stephen ]J. Knabel, and Brian W. Kwan. 2013.
“Bacterial Persister Cell Formation and Dormancy.” Applied
and Environmental Microbiology 79 (23): 7116—21. https://
doi.org/10.1128/AEM.02636-13.

Wau, Siva, Xiaojin Li, Manjula Gunawardana, Kathleen Maguire,
Debbie Guerrero-Given, Christoph Schaudinn, Charles Wang,
Marc M. Baum, and Paul Webster. 2014. “B-Lactam Antibi-
otics Stimulate Biofilm Formation in Non-Typeable Haemo-
philus Influenzae by Up-Regulating Carbohydrate Metabol-
ism.” PLOS ONE 9 (7): €99204. https://doi.org/10.1371/
journal.pone.0099204.

Wyant, Zae Northrup. 1921. “A Comparison of the Technic
Recommended by Various Authors for Quantitative Bacteri-



https://doi.org/10.1016/0378-1097(90)90521-Q
https://doi.org/10.1016/0378-1097(90)90521-Q
https://doi.org/10.1016/j.cub.2018.02.006
https://doi.org/10.1016/j.cub.2018.02.006
https://www.who.int/foodsafety/publications/antimicrobials-sixth/en/
https://www.who.int/foodsafety/publications/antimicrobials-sixth/en/
https://apps.who.int/iris/bitstream/handle/10665/325773/WHO-MVP-EMP-IAU-2019.05-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/325773/WHO-MVP-EMP-IAU-2019.05-eng.pdf
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1038/s42003-019-0672-3
https://doi.org/10.1038/s41467-018-04059-1
https://doi.org/10.1038/s41467-018-04059-1
https://doi.org/10.1128/AEM.02636-13
https://doi.org/10.1128/AEM.02636-13
https://doi.org/10.1371/journal.pone.0099204
https://doi.org/10.1371/journal.pone.0099204

178

| REFERENCES

ological Analysis of Soil.” Soil Science 11 (April): 295-304.
https://doi.org/10.1097/00010694-192104000-00005.
Yang, Desirée C., Kris M. Blair, and Nina R. Salama. 2016. “Stay-
ing in Shape: The Impact of Cell Shape on Bacterial Survival
in Diverse Environments.” Microbiology and Molecular Biology
Reviews: MMBR 80 (1): 187—203. https://doi.org/10.1128/

MMBR.00031-15

Yao, Zhizhong, Daniel Kahne, and Roy Kishony. 2012. “Distinct
Single-Cell Morphological Dynamics Under B-Lactam Anti-
biotics.” Molecular Cell 48 (5): 705-12. https://doi.org/10.
1016/j .molcel.2012.09.016.

Zahir, Taiyeb, Dorien Wilmaerts, Sabine Franke, Bram Weytjens,
Rafael Camacho, Kathleen Marchal, Johan Hofkens, Maarten
Fauvart, and Jan Michiels. 2020. “Image-Based Dynamic
Phenotyping Reveals Genetic Determinants of Filamentation-
Mediated B-Lactam Tolerance.” Frontiers in Microbiology 11.
https://doi.org/10.3389/fmicb.2020.00374.

Zwietering, M. H., I. Jongenburger, E. M. Rombouts, and K.
van 't Riet. 1990. “Modeling of the Bacterial Growth Curve.”
Applied and Environmental Microbiology 56 (6): 1875-81. https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC184525/.


https://doi.org/10.1097/00010694-192104000-00005
https://doi.org/10.1128/MMBR.00031-15
https://doi.org/10.1128/MMBR.00031-15
https://doi.org/10.1016/j.molcel.2012.09.016
https://doi.org/10.1016/j.molcel.2012.09.016
https://doi.org/10.3389/fmicb.2020.00374
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184525/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184525/

A DILUTION ERROR IN LIKELIHOOD

In section 4.1.1, we described a noise model consistent with the
experimental data. Besides the measurement noise, the main
source of day-to-day variability is the dilution noise due to the
handling of micropipettes. This dilution error can be modelled
by a 5% multiplicative gaussian noise on the initial optical
density, and antibiotic concentration. Figure A.1, reproduced
here from the main text, shows the two sources of noise.

ANSES 32139 / Cefotaxime

—_
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Optical Density
Technical replicates
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0 5 10 15 20
Figure A.1: Top: technical replicates, bottom: simulation of the experi-
ment. The noise model on the simulation consists of a 2 %

multiplicative gaussian noise on the OD, and 5% on the
initial values of 2 and N.

The strategy for the parameter estimations was to neglect the
dilution noise; however this noise can influence the regrowth
time of a replicate to up to 20 %. The purpose of this section is
to explain how this dilution error could be taken into account
in the likelihood function.

We will assume that we are estimating the parameters of the
model based on the data, OD and number of cells, from several
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experiments, with L different initial antibiotic doses and M
different initial ODs.

The noise model described in 4.1.1 specifies that the actual
values of ag and Ny, dp and Nj, are linked with the desired
values ag and Nj by the equations 4y = ag(1+ ¢ x) and Ny =
No(1+ oy), with x and y two random values, specific to each
experiment, and distributed according to a standard normal
distribution.

A1 ADDING VARIABLES

The first straightforward approach is to estimate the noise at the
same time as the model parameters. For this, each experiment
adds its two variables x;,, and y;,,, to the set of parameters to be
estimated. To specify that x;,, and y;,, should be distributed on
a standard normal distribution, one should just append each of
them to the existing array of residuals to be minimized.

For two initial ODs and 12 initial antibiotic conditions, this
methods amounts to adding 48 variables to the 17 of the model.
A non-linear optimization problem of this size is at the edge
of the possible, in the best case. Given the relative difficulty of
already estimating 17 parameters, this does not seem a reason-
able approach.

A.2 DIRECT LIKELIHOOD ESTIMATION

Another approach does not require to add parameters. Here, for

a given set of parameters of the model 6, we want to estimate
the likelihood L(6):

L(0) = f(datalf)
= Il—[f(datalm|9)

2 2
*lm Yim

1 —_— —
- %H//f(datalmwr xlm/ylm)e 2 e 2 dxlmdylm
Im

where f(data;, |0, X1, Vi) is the density probability to observe
the data of the experiment Im with the initial antibiotic dose
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specified by x;,, and the initial OD given by y;,,, according to
equation 4.1. We can continue the derivation

2
(mOdelgfxlm'ylm (t;)—datay,,;)
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1 1 - X Vi
,C(Q) = // e 207,,i% e 2 e 2 dxl d |
oY aam IZ;I U imi e
1 H B (mOdelefxlm'ylm (ti)—datalml-)2 B Xl‘énz %
_ ' 20] i dx;,,d
N+2 / / € Im9Yim
V27T T limi Otmi m
1
— _gelm(xlmrylm)d d
- N2 H / € XimAYim
V271 Tl Otmi Im
(modelg v, (t) — datag,)*  x,2  yp,,2
where Xy, = L
g@lm( Im ylm) ; ZUlmiz 2 + 2
The log-likelihood of this function is then the following;:
log L’,(Q) = cst + Zlog // e_gelm(xlmrylm)dxlmdylm
Im
With a fixed 6, each integral is independent and can then be
computed independently, by integrating on the pair of variables
X, and y;,. However, the integrals should be done on the
infinite plane, and the exponential in the integrand can pose
numerical stability issues, so we need a more direct method to
compute these integrals. The saddlepoint
A classical method to integrate exponentials is the saddlepoint ”meximafion
allows to

approximation (Daniels 1954). Because of the fast decrease of
the exponential, the whole integral is dominated by the point
where gg;;, is minimal. In two dimensions, if x,,, vy, are the
coordinates of the point where gy, takes its minimum, and
Hyy,,, is the hessian of gy, on that point, then

// e_gglm(xlmrylm)dxlmdylm — e—gez;n(xé‘;m,yglm)

v/ [ Hoim|

So we can write

* ES 1
log £(8) = cst — Y _ Sorm (Xgims Yorm) — 5 Y _log |Hgi|
Im Im

approximate an
infinite integral
based on the
information around
a unique point!
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This means that to compute the log-likelihood of a set of
parameters of the model, we need to know in what point each
of the gy, reach their minimum, and their hessian. These 2-
dimensional optimization problems can be efficiently solved
with non-linear least squares solvers, that can also return the
hessian at the minimum, since they typically estimate this matrix
during the optimization.

However, these albeit short 2D optimizations should be done
for each parameter set, which multiplies the number of in-
tegrations of the ODE system by a factor between 20 and 100.
However, they can be done in parallel, so on a 12-core computer,
the overhead of this method compared to the one that we used,
can be brought back to an order of magnitude only. Because of
time constraints, the optimization and parallelization of the code
necessary to make this method feasible could not be done, and
we did not attempt to estimate parameters with this likelihood.



B CHARACTERISTICS OF STRAINS

The strains used in this work and described in section 5.1.1 have
been sequenced as part of another study (Patifio-Navarrete et
al. 2020), hence their full genetic information is available and all
antibiotic-related genes and mutations are known.

The 3-lactamases have been enumerated in section 5.1.1, but
the strains also exhibit several other mutations and genes modi-
tying their antibiotic susceptibility. For completeness, the full
information is detailed here.

ftsl is the gene coding for PBP3. In these tables, it can have
three possible states: “none,” indicating wild type, “YRIN_349-
532,” indicating a mutation, and “YRIK,” indicating a mutation
occuring over “YRIN_349-532” and conferring an even reduced
susceptibility of PBP3 to 3-lactams.

ompC and ompF respectively code for a precursor of the outer
membrane porins C and F. Their mutations can play a role on
antibiotic susceptibility because they might prevent the entrance
of antibiotic molecules in the cell.

gyrA and parC are genes coding for a DNA gyrase and topoi-
somerase, enzymes that participate in the winding and unwind-
ing of DNA. These mutations are not involved in the resistance
to B-lactams, but rather to fluoroquinolones.

o IB31 / ANSES 28668

- carbapenemases: none

— B-lactamases: CTX-M-1, TEM-1A

— other genes contributing to antibiotic susceptibility:
aadAs, aadA1, mph(B), sul2, dfrA1, suli, dfrA1y,
tet(A), tet(M)

mutations contributing to antibiotic susceptibility:

ftsi  ompC ompF gyrA parC

none none none S83L/D87N  S8ol

e IB32 / ANSES 32139
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carbapenemases: OXA-1

B-lactamases: CTX-M-15, TEM-1B

other genes contributing to antibiotic susceptibility:
aac(6)Ib-cr; dfrA17; sul2; aad As; aac(3)-11d; strA; sult;
strB; tet(B); mph(A)

mutations contributing to antibiotic susceptibility:

ftsl  ompC ompF gyrA parC

none none none S83L/D87N  S8ol

e IB34 / ANSES 29401

carbapenemases: none

B-lactamases: TEM-1B

other genes contributing to antibiotic susceptibility:
strB; sul2; aph(3’)-1a; strA; tet(A)

mutations contributing to antibiotic susceptibility:

ftsl  ompC ompF gyrA parC

none none none none none

e IB35 / ANSES 30599

carbapenemases: none

B-lactamases: TEM-1B

other genes contributing to antibiotic susceptibility:
aph(3’)-1a; sulz; strA; strB; tet(A)

mutations contributing to antibiotic susceptibility:

ftsi ompC ompF gyrA parC

none none none none none

e IB37 / CNR 49A5

— carbapenemases: NDM-5, OXA-1

— B-lactamases: CTX-M-15, TEM-1B, CMY-42

— other genes contributing to antibiotic susceptibility:
aadA2; dfrA17; aac(6)Ib-cr; tet(A); erm(B); strA; tet(B);
sul1; sul2; aadAs; strB; mph(A); qepA; dfrA12
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- mutations contributing to antibiotic susceptibility:

ftsl  ompC ompF gyrA parC

YRIK none none S83L/D87N S8o0l/E84

e IB38 / CNR 94G8

— carbapenemases: OXA-181

- B-lactamases: CTX-M-15, CMY-42

— other genes contributing to antibiotic susceptibility:
QnrS1; sul2; mph(A); tet(A); sul1; aadAs; dfrA1y

- mutations contributing to antibiotic susceptibility:

fts  ompC ompF gyrA parC

YRIK none none S83L/D87N S8o0l/E84

e IB39 / CNR 82A2

- carbapenemases: OXA-1, OXA-181

- B-lactamases: CTX-M-55, CMY-2

— other genes contributing to antibiotic susceptibility:
strB; QnrS1; catA2; aac(6”)Ib-cr; mph(A); sul2; aac(3)-
I1d; tet(B); strA

- mutations contributing to antibiotic susceptibility:

ftsl ompC ompF gyrA parC

YRIN_349-532 Rigs5L -46; C->T (OmpR F3) S83L/D87N S80l/E84

e IB310 / CNR 84G4

- carbapenemases: OXA-1, OXA-181

- PB-lactamases: TEM-1B, CMY-2, CTX-M-55

— other genes contributing to antibiotic susceptibility:
OnrS1; catAz; dfrA1y; mph(A); aac(6’)Ib-cr; sulz;
aadAs; aac(3)-11d; strA; suli; strB; tet(B)

- mutations contributing to antibiotic susceptibility:
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ftsl ompC ompkF gyrA parC

YRIN_349-532 Ri19gs5L -46; C->T (OmpR F3) S83L/D87N S80l/E84

e IB311 / CNR 92B5

— carbapenemases: OXA-181

— B-lactamases: TEM-1B, CMY-2

— other genes contributing to antibiotic susceptibility:
QnrSs; tet(B); dfrA17; mph(A); sul2; aadAs; aac(3)-11d;
strA; sul1; strB

— mutations contributing to antibiotic susceptibility:

ftsl ompC ompF gyrA parC

YRIN_349-532 Ri19gs5L -46; C->T (OmpR F3) S83L/D87N S80l/E84




Si tu vas a Paris,
Dis bonjour aux amis.
Dis bonjour a la Seine,
Au bois de Vincennes.
Va revoir ma chambre, sous les toits,
D’ou I'on voit les étoiles.

Porte a tous de bonnes nouvelles de moi,
Dis-leur : « Il reviendra. »
Pose-toi dans le ciel,

En haut de la tour Eiffel,

Au printemps qui sourit,

Et chante avec tous les oiseaux de Paris.

— Charles Trénet, Les Oiseaux de Paris
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Titre : Modélisation et caractérisation efficace de la réponse bactérienne aux antibiotiques
Mots clés : résistance aux antibiotiques, tolérance par filamentation, modéle de croissance-fragmentation,

identifiabilité de parametres, E. coli, B-lactames

Résumeé : La résistance aux antibiotiques est connue
comme l'un des plus grands dangers de santé pu-
bligue. Dans les hopitaux, la susceptibilité d’'une
souche a un antibiotique est quantifiée par sa
Concentration Minimale Inhibitrice (CMI) : la dose mi-
nimale d’antibiotique nécessaire pour inhiber la crois-
sance de la souche pendant 24 heures. Cette valeur
joue un réle central dans les décisions de traitements.
Or, la CMI est une mesure reposant sur un unique
point de temps. Pourrait-on obtenir une évaluation
plus informative de la résistance d’une souche, en ex-
ploitant sa courbe de croissance entiere, observée
par densité optique (DO) ? Cette donnée pourrait
étre disponible dans un contexte clinique, ce qui
est nécessaire pour la pertinence de I'approche. Le
probléme est complexe, notamment parce que les an-
tibiotiques B-lactames provoquent la filamentation des
cellules, ce qui décorrele la DO du nombre de cellules
vivantes.

Dans cette these, nous développons un modele
mathématique de la réponse de populations
bactériennes a des PB-lactames, qui rassemble les
différents types de résistance. Unifiant les échelles
moléculaire, de la cellule et de la population, ce
modele offre des prédictions simultanées de la DO

et du nombre de cellules. Son cceur est un modéle de
croissance-fragmentation : une équation aux dérivées
partielles considérant explicitement la distribution des
tailles des cellules. Or, le modele a EDP n’est pas
idéal pour I'optimisation numérique, et notamment
pour l'inférence de paramétres. Nous décrivons donc
le passage a un modéle compagnon a équations
différentielles ordinaires, pour une calibration efficace.
Apres calibration de ce modéle sur un ensemble
d’isolats cliniqgues a l'aide d'un pilote sur mesure
permettant 'automatisation d'un lecteur de plaques,
nous montrons que nous pouvons relier plusieurs pa-
ramétres du modele aux genes et mutations contri-
buant a la résistance des souches aux antibio-
tiques. Nous proposons ensuite une méthode per-
mettant de catégoriser les souches, en dépit de la
présence de paramétres non identifiables, et obser-
vons I'’émergence de trois classes : les souches
sensibles, les souches tolérantes et résilientes, et
les résistantes. En comparaison avec le systeme
classique définissant les souches susceptibles, in-
termédiaire, et résistantes, ces classes fournissent
une explication plus riche du comportement des iso-
lats, et offrent un débouché direct sur I'optimisation de
traitements.
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Abstract : Antibiotic resistance is widely recognized
as one of the biggest threats to global health.

In hospitals, the susceptibility of a strain to an anti-
biotic is quantified by its Minimum Inhibitory Concen-
tration (MIC): the minimal concentration of antibiotic
necessary to inhibit the growth of the strain during
24 hours. This value plays a central role for treatment
decisions.

However, the MIC is a measure relying on a unique
timepoint. Could we get a more informative assess-
ment of antibiotic resistance by exploiting the whole
growth curve, observed by optical density? This infor-
mation could be available in a clinical context, which is
a requirement of the approach. The problem is com-
plex, notably because B-lactam antibiotics induce cell
filamentation, which decorrelates the optical density
from the number of live cells.

In this thesis, we build a mathematical model of the
response of bacterial populations to B-lactams, en-
compassing the different kinds of antibiotic resistance
under a unifying framework. Bridging the three scales:
molecular-, cell-, and population-level, this model pro-

vides simultaneous predictions of the optical den-
sity and the number of cells. Its core is a growth-
fragmentation equation: a partial differential equation
that considers explicitly the distribution of cell lengths.
The PDE model is not very practical for numerical op-
timization, notably for parameter inference. Therefore,
we describe the passage to a companion ODE model
for efficient calibration.

After calibrating this model on a library of clinical iso-
lates with the help of a custom driver allowing the
programmable use of a commercial plate reader, we
show that we can relate several parameters to the
antibiotic resistance genes and mutations present in
the strains. We then propose a method to cluster the
strains despite the presence of unidentifiable parame-
ters, and show that three classes emerge: sensitive,
tolerant/resilient, and resistant strains. In comparison
with the classical system susceptible, intermediate,
and resistant, these classes provide a richer explana-
tion of the behaviour of the isolates, and allow a direct
exploitation for treatment optimization.
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