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Abstract

Recent advances in sequencing technologies revealed the ubiquity of
genome rearrangements between each and every one of us. These large-
scale mutations rearrange segments of chromosomes and have a profound
impact on genetic variation, disease, and evolution. The study of the
consequences of rearrangements along with their molecular mechanisms,
however, is still in its infancy.

Given extant genomes, we are interested in tracing back the evolu-
tionary rearrangement scenarios that transformed their least common
ancestor into the genomes that we observe today. This not only helps to
reveal evolutionary relationships between organisms, but also provides a
window for the study of genome rearrangements themselves.

The central computational problem in this subfield of comparative
genomics is that of finding optimal rearrangement scenarios transforming
one genome into another. Historically all rearrangements were treated as
being equally possible, and optimal scenarios were those that contained
the minimum number of rearrangements. Recent advances in biology,
however, allow us to devise much more sophisticated models. We present
a short survey of the existing work on using biological constraints for
genome rearrangements, and argue that a much more flexible approach
is necessary to accompany the influx of newly available biological data.

In this work we propose an extremely general framework for genome
rearrangements with biological constraints. Our main contribution is a
polynomial time algorithm that, for an arbitrary cost function, finds a
minimum cost scenario among those of minimum length. Along the way
we establish a number of novel links between sorting genomes with dou-
ble cut and join rearrangements, sorting graphs with 2-breaks or edge
swaps, sorting permutations with mathematical transpositions, sorting
strings with interchanges, and token swapping on graphs.

Keywords: weighted genome rearrangements, double cut and join, edge
swap, minimum length transposition decomposition, minimum weight
quadrangulation.
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Résumé

Un réarrangement génomique est une mutation qui modifie la struc-
ture des chromosomes voire même leur nombre dans un génome. Outre
des fusions et des fissions de chromosomes, ces réarrangements compren-
nent des délétions, des insertions et des inversions de segments chromo-
somiques. Deux extrémités de chromosomes différents peuvent égale-
ment être échangées au cours d’une translocation. L’ensemble de ces
mutations constitue un scénario évolutif de réarrangements entre les es-
pèces. Nous nous sommes intéressés à la reconstruction des scénarios de
réarrangements entre espèces animales.

Notre projet associe des outils mathématiques et algorithmiques avec
la compréhension biologique actuelle des réarrangements génomiques.
D’un point de vue biologique, notre objectif est de lier génétique et
épigénétique aux réarrangements dans les deux sens :

• nous développons une méthodologie pour étudier des caractéris-
tiques génétiques et épigénétiques associées aux réarrangements,

• et inversement pour trouver des scénarios de réarrangements guidés
par de telles caractéristiques génétiques et épigénétiques.

La principale contribution de cette thèse est la suivante. Nous présen-
tons un cadre sur le modèle de réarrangements double cut and join avec
des poids arbitraires. Dans ce cadre un scénario de poids minimum peut
être trouvé en temps polynomial parmi les scénarios de longueur mini-
male pour deux génomes à contenu génétique identique et sans doublons.

En plus de cela, nous établissons un certain nombre de nouvelles cor-
respondances entre les divers problèmes de tri. Ces problèmes incluent
le tri des génomes avec des réarrangements dits double cut and join, le
tri des graphes avec 2-breaks ou edge swaps, le tri des permutations avec
des transpositions, le tri des chaînes avec des échanges et l’échange de
jetons sur les graphes.

Mots clés: scénario évolutif de réarrangements, double cut and join,
réarrangements génomiques pondérés, décomposition de la permutation
en transpositions, quadrangulation de poids minimum.
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Symbols

u, v, w, s, r a vertex
col a color (black or gray)
({u, v}, col) a colored edge
G,H a 2-edge-colored Eulerian multigraph
G a terminal graph
τ a 2-break
ρ a 2-break scenario or an O-scenario
d2b(G) the minimum length of a 2-break scenario for a

graph
db2b(G) the minimum length of a black-2-break scenario for

a graph
H an Eulerian decomposition or a labeled Eulerian

decomposition
c(G) the size of a Maximum Alternating Edge-

disjoint Cycle Decomposition of a graph
e(G) the number of edges in a graph divided by two
A,B,C a genome
a, b, c, d a gene extremity or a vertex label
dDCJ(A,B) the minimum length of a DCJ scenario for genomes
AG(A,B) the adjacency graph of genomes
G(A,B) the genome breakpoint graph
◦ the vertex of a breakpoint graph of black and gray

degrees higher than one
n the number of genes in a genome or the number of

vertices in a graph
δ a double cut and join
∆ a double cut and join scenario or an Eulerian tour
σ a permutation
id the identity permutation
π a transposition
H(σ1, σ2) the permutation breakpoint graph
dCayleyσ1, σ2) Cayley distance between permutations
T a transposition decomposition of a permutation
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12 Symbols

H(A,B) the internal genome breakpoint graph
D(G, ρ) the trajectory graph of a graph and its 2-break

scenario
S a simple cycle
−→
G an Eulerian orientation of a graph
C a circle
C[i, j] a sub-circle
S(C, ρ) the scenario graph of a circle and its 2-break sce-

nario
M(C, ρ) the scenario matching of a circle and its 2-break

scenario
ΣC a circular straight-line embedding of a circle
ΣV ,ΣE alphabets of edge and vertex labels
x, y, z, t, q an edge label
O a set of valid operations
λ = (λV , λE) a labeling of graph’s vertices and edges
({u, v}, col, x) a labeled edge
dOb(G, λ) the minimum 2-break-length of an O-scenario for

a labeled graph
χ a labeling of 2-break’s edges
(τ, χ) an O-break
ϕ a positive real valued cost function on a set of valid

operations O
ϕ(ρ) ϕ-cost of an O-scenario
MCSϕ(G, λ) the minimum ϕ-cost of an O-scenario for a labeled

graph
MCPSϕ(G, λ) the minimum ϕ-cost of a parsimonious O-scenario

for a labeled graph
(H, λH) a labeled subgraph of a labeled graph (G, λ)
col{i,j} the color of a colored outer edge of a sub-circle

C[i, j]
(C[i, j], λx) a labeled sub-circle with the label of the colored

outer edge equal to x
L the number of edge labels



Chapter 1

Introduction

1.1 Genome Rearrangements in an Evolutionary
Setting

A rearrangement, also known as a structural variant, is a large-scale mutation that
modifies the structure of the chromosomes or even their number in a genome. Take
for example humans and our closest living relatives chimpanzees. We have 23 pairs
of chromosomes, while chimps have 24. This difference is due to a fusion of two
non-human ancestral primate chromosomes that resulted in human chromosome
2 [36, 37]. Studying this particular event can inform us about human evolution in
multiple ways. Did this fusion lead to a speciation event that separated human
and chimp lineages, or maybe those of archaic humans? Did it have a functional
impact or trigger an advent of any phenotypic changes? If we were able to accu-
rately date this fusion, could it be used for dating other events of human evolution?
How exactly did it happen, why was it not lethal, and how did it spread within a
population? Human and chimp lineages have each accumulated a number of other
genomic rearrangements since their separation [65]. Besides chromosome fusion and
fission these rearrangements include deletions, insertions and inversions of chromo-
somal segments. Two ends of different chromosomes might also get swapped during
a translocation event. These mutations together constitute an evolutionary scenario
between the species, and in this work we will be interested in reconstructing such
scenarios between organisms.

Recent advances in sequencing technologies provide us with an unprecedented
opportunity to study the mechanisms behind genome rearrangements [71, 66], the
ways they spread in populations [40], and their evolutionary significance [74]. Meth-
ods for a systematic detection of genome rearrangements in populations and cancer
cells are emerging [60, 92], and more and more high-quality well-annotated genome
assemblies are available for comparative research. Building upon these advances
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14 Chapter 1. Introduction

recent studies started to unveil a role played in the evolutionary rearrangement sce-
narios by active chromatin, spatial proximity of loci in a genome, non-canonical
DNA structures, and such chromatin features as topologically associating domains
(TADs). Rearrangements between human and mouse have been shown to occur
in active chromatin regions coming into 3D proximity in the nucleus [99, 17, 94].
Gibbon rearrangements were shown to occur at TAD boundaries, with most TADs
maintained as intact modules during and after a rearrangement [68]. A genome-wide
depletion of deletions in active chromatin, and at TAD boundaries was observed
across primate evolution [50], while deletions causing TAD fusions were shown to be
rare and under negative selection in humans [61]. Transcriptional activity [53] and
non-canonical DNA structures [52] were both linked to rearrangements in cancer,
and the latter awaits further testing in an evolutionary setting.

Our project brings the mathematical and algorithmic tools from computer sci-
ence together with the current biological understanding behind genome rearrange-
ments. From a biological perspective, our goal is to link genetics/epigenetics to
rearrangements in both directions:

• We will develop a method for studying genetic and epigenetic patterns asso-
ciated with rearrangements in an evolutionary setting, and conversely

• for finding plausible evolutionary rearrangement scenarios informed by such
genetic and epigenetic patterns.

1.2 Mathematical Models for Genome Rearrange-
ments

There is a quarter century of mathematical and algorithmic work devoted to model-
ing rearrangements, and finding and sampling scenarios that could have transformed
the gene order of one species into the gene order of another [48].

Inversions, also known as reversals, were first observed in fruit flies in 1921 by
Sturtevant [93], and seem to be a suitable model for genome rearrangements in
this species [83]. In 1995 Hannenhalli and Pevzner [54] came up with a rearrange-
ment scenario between human and mouse genomes consisting of 131 reversals and
translocations. The latter is a rearrangement that exchanges the ends of two lin-
ear chromosomes, and in an extreme case it can reproduce chromosome fusion and
fission. Hannenhalli and Pevzner proved that for suitably represented genomes the
minimum number of reversals [55], or reversals and translocations [54] required to
transform one genome into another can be found in polynomial time. Mathematics
behind their theory is quite complicated, see Bergeron [13] for a survey.

In 2005 Yancopoulos, Attie, and Friedberg [102] proposed a mathematically dras-
tically simpler rearrangement model called double cut and join (DCJ). A DCJ cuts
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chromosomes in one or two places, called breakpoints, and joins back the result-
ing chromosomal strands. In addition to inversions and translocations, this simple
mathematical operation can reproduce such rearrangements as a circularization of
a linear chromosome, and an excision of a circular chromosome out of a linear one.
It is unclear if the latter types of rearrangements play any role in evolution, how-
ever circular DNA elements have been found in healthy human cells [76] and are
abundant in cancer cells [98].

A distance is the minimum number of rearrangements required to transform one
genome into another. Reversal, reversal/translocation and DCJ distances between
genomes can be found in polynomial time [55, 54, 15], however most of the problems
become NP-hard once more than two genomes are compared. These include the me-
dian problem, which is used for phylogenetic reconstruction, and asks for a genome
minimizing the sum of the pairwise distances to a given set of genomes [29, 97].

Single cut or join (SCJ), an even simpler model for genome rearrangements was
proposed by Feijão and Meidanis [45] in 2011. According to the authors, “this new
distance measure may be of value as a speedily computable, first approximation
to distances based on more realistic rearrangement models” [45]. This claim is
supported with a proof that the median problem is polynomial time solvable for
SCJ. New models for genome rearrangements are still being introduced. A rank
distance for genomes modeled as matrices was introduced by Zanetti, Biller and
Meidanis [105] in 2016. It relates to DCJ and is more sophisticated than SCJ while
still allowing for interesting polynomial time results on the median problem as it
was recently established by Chindelevitch, La and Meidanis [32].

1.3 Weighted Genome Rearrangements

Foundational models focused solely on the minimum length, or parsimonious, rear-
rangement scenarios transforming one genome into another [84, 54, 102]. However
the true evolutionary scenario is likely to be non-parsimonious as discussed by Lin
and Moret [69], and more recently by Biller, Guéguen, Knibbe, and Tannier [20]
and Alexeev and Alekseyev [2]. In addition to this, both for reversals and DCJ the
number of possible parsimonious scenarios was shown to grow exponentially with
respect to the distance. These results were respectively established by Bergeron,
Chauve, Hartman, and St-Onge [14], and Braga and Stoye [24]. This means that
even if the true evolutionary scenario happened to be parsimonious, then one would
still need some additional biological constraints on the rearrangement scenarios in
order to select the ones that are more likely to resemble the true one.

To this end, the study of weighted genome rearrangements was pioneered by
Blanchette, Kunisawa, and Sankoff [22] in 1996. They assigned different weights to
a reversal, a transposition and an inverse transposition, where the former swaps two
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contiguous segments of a chromosome while the latter also inverts one of them. A
greedy algorithm for minimizing the sum of the rearrangement weights in a scenario
was proposed in [22]. The rationale behind this model is that different types of
rearrangements might have different chances of appearing in the true evolutionary
scenario. Hartmann, Wieseke, Sharan, Middendorf, and Bernt [58] recently proposed
a polynomial sized ILP for solving this problem with arbitrary weights. A variant
of this problem where only transpositions and reversals are allowed, and a ratio of
their weights satisfies wtr/wrev ≤ 1.5 was proved to be NP-hard by Oliveira, Brito,
Dias, and Dias [80].

Another approach deals with a notion of a preserved gene cluster, also known
as a preserved common interval. It is a set of genes whose order might be shuffled
but that remain clustered together in both genomes. This line of work is motivated
by an observation that such conserved gene clusters sometimes contain functionally
associated proteins [96], and thus might be unlikely to get broken by a rearrange-
ment in the true evolutionary scenario. See Hartmann, Middendorf, and Bernt [57]
for a recent survey of algorithmic work related to this constraint. The same authors
in [56] provide an exact algorithm for finding a minimum weight preserving scenario,
where different weights are assigned to inversions, transpositions, inverse transpo-
sitions, and tandem duplication random loss operations, that duplicate a segment
of a chromosome and delete at random one copy of each duplicated gene. These
four operations together constitute a model for genome rearrangements that is often
used for studying the evolution of the metazoan mitochondrial genomes [16].

Blanchette, Kunisawa, and Sankoff [22] also explored an idea of weighting each
rearrangement based on its length, or the number of genes that it affects. This ap-
proach is based on the observed prevalence of short reversals in certain genomes [85,
35]. See Galvao, Baudet, and Dias [51] for a summary of the work on allowing only
reversals of length at most 3. See Lintzmayer, Fertin and Dias [70] for a summary
of the work on weighting reversals and transpositions based on their lengths.

Baudet, Dias, and Dias [9] proposed a model where reversals in bacterial genomes
are weighted both based on their length and on the symmetry around the origin
of replication. It was Ohlebusch, Abouelhoda, and Hockel [78] that first used this
symmetry to provide a polynomial time algorithm for a variant of the reversal median
problem. Their work was motivated by an observation that most of the reversals
in some circular bacterial genomes are either centered around the origin/terminus
of replication or involve a single gene [39]. As far as we are aware, this was the
first time when external biological information of any kind was used in order to
constraint a rearrangement scenario.

Over the last few years more work along these lines emerged. Biller, Guéguen,
Knibbe, and Tannier [20] pointed out that the number of nucleotides in the inter-
genic regions, or their lengths, could be used as a biological constraint for genome
rearrangements. Bulteau, Fertin, Jean and Tannier aimed to minimize the sum
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of the lengths of insertions/deletions in the intergenic regions during a DCJ sce-
nario [47, 27]. Similar ideas were later explored by Brito, Jean, Fertin, Oliveira,
Dias, and Dias for reversals and transpositions of length at most 2 [79], and for
reversals and transposition [26]. In the latter paper some possibilities for attribut-
ing different weights to reversals, transpositions and insertions/deletions were also
explored.

Véron, Lemaitre, Gautier, Lacroix, and Sagot [99] suggested that the 3D struc-
ture of a genome is partially conserved between human and mouse. Physical prox-
imity is already known to be one of the triggers for rearrangements in somatic
cells [71], and Swenson and Blanchette [94] used Hi-C data to support this hypoth-
esis in an evolutionary setting. Based on these observations our team aimed to
minimize the number of DCJ rearrangements breaking regions distant in the 3D
space [95, 91, 90, 89].

Only a tiny fraction of these weighted genome rearrangement problems have
polynomial time algorithms. These include finding a minimum length scenario for
reversals of length at most 2 [51, 10]. Also if reversal’s weight is equal to its length,
then a minimum weight reversal scenario for a binary string can be found in poly-
nomial time as shown by Bender, Ge, He, Hu, Pinter, Skiena, and Swidan [10]. In
addition to this, Bérard, Bergeron, Chauve, and Paul [11] introduced a specific fam-
ily of gene clusters for which a minimum length preserving reversal scenario can be
found in polynomial time. Other than that, all the weighted genome rearrangement
problems with efficient algorithms of which we are aware are those that search for
an optimal DCJ scenario among those that are of minimum length. These include a
work on preserving DCJ by Bérard, Chateau, Chauve, Paul, and Tannier [12], on in-
sertions and deletions in the intergenic regions by Bulteau, Fertin, and Tannier [27],
and our own work on the physical locations of the intergenic regions [95, 90, 89].

1.4 A General Framework for Cost Constrained
DCJ

We have seen that a parsimony criterion alone cannot provide a small enough sub-
set of plausible rearrangement scenarios. Models for weighting genome rearrange-
ments based on a number of biological constraints were explored with a hope that
they might help with this issue. As presented in the previous section, this led to
an accumulation of algorithmic work, however these models mostly exploited the
combinatorial properties of the gene orders and rearrangement operations, and not
the external biological constraints, such as those concerning the 3D structure of a
genome, or fragility of certain loci that might be due to transcriptional activity or
non-canonical DNA structures. In addition to this, only a handful of exact polyno-
mial time algorithms for finding a minimum weight rearrangement scenario can be
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found in the literature. However one line of work, that of weighted parsimonious
DCJ scenarios, seemed promising to us and served as a starting point for our project.

In [27] and [95] two simple ways of assigning weights to DCJ rearrangements
were introduced, while the weight of a DCJ scenario was defined to be the sum
of the weights of its constituent rearrangements. In these papers genomes were
supposed to be single-copy, meaning that they contain equal sets of genes, with
a single occurrence of each gene. For both types of weights it was shown that
finding a minimum weight scenario is NP-hard [47, 91], while a minimum weight
scenario among the parsimonious ones can be found in polynomial time [27, 95].
As in the previous models for weighting genome rearrangements, these algorithms
exploited the combinatorial properties of the models themselves and could not be
easily generalized to be used with more sophisticated ways to weight DCJs.

A catalyst for our project was the work on sorting permutations with cost con-
strained transpositions by Farnoud and Milenkovic [41]. In the field of genome
rearrangements a transposition is a rearrangement that swaps two adjacent regions
of a chromosome, where a region can contain any number of genes. However in
mathematics more broadly a transposition is a permutation that exchanges any two
elements. It is the latter notion that we will use throughout this text. Farnoud and
Milenkovic [41] allowed for an arbitrary cost function on transpositions and defined
the cost of a transposition decomposition of a permutation to be the sum of the costs
of its transpositions. Within this setting they showed that a minimum cost transpo-
sition decomposition among those of minimum length can be found in polynomial
time regardless of the cost function. The ideas encountered in [41] encouraged us to
aim for the following generalization of our work on weighting DCJs:

Project. A framework for cost constrained genome rearrangements under a DCJ
model within which a minimum cost parsimonious scenario between two single-copy
genomes could be found in polynomial time for an arbitrary cost function.

This means that our goal is not to come up with a particular mathematical model
for cost constraining DCJs in a biologically meaningful way. But rather to provide
guidelines for such a process, and ensure that no algorithmic work is needed if our
guidelines are respected. The axes of our project became the following:

1. Efficiently explore the space of the parsimonious DCJ scenarios.

2. Augment a DCJ rearrangement with information concerning the intergenic
regions that it cuts and joins, and define an arbitrary cost function on these
augmented DCJs.

3. Efficiently search for a minimum cost scenario among the parsimonious ones.

These tasks are respectively treated in Chapter 3, Chapter 4, and Chapter 5.
Our framework generalizes all three models for cost constraining DCJs of which we
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are aware. These include previously mentioned work by our own team [95], Bulteau,
Fertin, and Tannier [27], and Bérard, Chateau, Chauve, Paul, and Tannier [12].
However, as we discuss in Chapter 4, the latter model on preserving DCJs needs to
be slightly modified for it to fit into our framework.

An important feature of our framework is that it enables us to easily combine
different models for cost constraining genome rearrangement. This means, for ex-
ample, that we can assign a cost to a DCJ simultaneously based on the locations
of its breakpoint regions in the 3D space, their lengths and the number of the gene
clusters that this DCJ preserves.

Another feature is that even if a polynomial time algorithm for finding a min-
imum cost parsimonious scenario is ensured only for single-copy genomes, we still
provide an exact algorithm for genomes with multiple copies of genes and unequal
gene content.

Finally, the true evolutionary scenario might be non-parsimonious, thus a long
term goal is to move away from a parsimony criterion. To this end, it might be
possible to avoid exploring the space of all the DCJ scenarios, as was previously
done by Fertin, Jean, and Tannier [47] and our own team [91]. Statistical tools could
be used instead to estimate an upper bound l for the length of the true evolutionary
scenario [20, 2], and only the scenarios of length less than l could be explored. A
number of our results are actually proved for non-parsimonious scenarios and provide
a foundation for this future work.

In Chapter 2 we show that a DCJ can be interpreted as a graph transformation,
which is a common approach in the field of genome rearrangements [48]. In the
subsequent chapters we actually introduce a framework for cost constrained graph
transformations, and not for cost constrained genome rearrangements. This gen-
eral setting allows us to establish novel links between various sorting problems on
permutations, strings, genomes and graphs.

1.5 Sorting Graphs with 2-breaks

vu

sw

vu

sw

vu

sw

or

Figure 1.1: A 2-break transforms a pair of edges {u, v} and {w, s} of a multigraph
into either {u,w} and {v, s}, or {u, s} and {v, w}. The term 2-break was first
proposed by Alekseyev and Pevzner [1].

Work on sorting permutations [41], strings [4] and genomes [55] with various
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operations such as transpositions, interchanges and reversals relies heavily on graph
theoretic techniques and data structures. In this work we show that a 2-break,
a graph transformation that swaps endpoints of two edges as illustrated in Fig-
ure 7.1, generalizes a number of different sorting operations. These include sorting
permutations with transpositions [41], sorting strings with interchanges [4], sorting
genomes with double cut and join (DCJ) rearrangements [102], and token swapping
on graphs [23]. All of these problems have cost-constrained variants, which serves
as motivation for our choice to study cost constrained 2-breaks.

A 2-break is known under many different names across the literature: (double
edge) swap, (degree-preserving) rewiring, switch, shuffle, flip, checkerboard swap,
and is the simplest way to transform a graph without changing its degree se-
quence [49]. Besides sorting, 2-breaks are used for modeling and analyzing various
dynamic networks, notably peer-to-peer [43] and lightwave networks [19]. 2-breaks
are also widely used for generating random graphs with an empirically relevant de-
gree sequence [77], and for studying the configuration model, which is a uniform
distribution over graphs with a specific degree sequence. See [49] for a recent survey
of this line of work.

1.6 Outline

We start our work by introducing 2-breaks and a problem of finding a minimum
length 2-break scenario transforming one graph into another in Section 2.2. We pro-
ceed by showing that 2-breaks generalize various transformations of permutations,
strings, genomes and graphs in Section 2.7.

In Chapter 2 we introduce some theory concerning genomes and permutations.
We show that a DCJ scenario for a pair of genomes and a transposition decompo-
sition of a permutation can be both seen as 2-break scenarios for their breakpoint
graphs. Such observations have already been made before, however by combining
them together we establish a novel result. We show that a parsimonious DCJ sce-
nario for a pair of single-copy co-tailed genomes (these are genomes that share the
sets of genes adjacent to the ends of their linear chromosomes) can be interpreted
as a minimum length transposition decomposition of a permutation and vice versa.
We conclude this chapter with a short discussion of how this link might help us with
various median problems.

In Chapter 3 we concentrate on a parsimonious 2-break scenario for a graph, and
demonstrate that it can be partitioned into parsimonious 2-break scenarios for the
very basic subgraphs of the graph, that we call circles. We then proceed by showing
that a parsimonious 2-break scenario for a circle can be partitioned into scenarios
for smaller circles. This leads to a dynamic programming algorithm for exploring
the space of the parsimonious 2-break scenarios for a circle and, due to the previous
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observation, for any graph.
In Chapter 4 we introduce our framework for cost constraining 2-breaks that

consists of four steps:

• Labeling vertices and edges of a graph.

• Allowing a 2-break to replace a pair of labeled edges with another pair of
labeled edges.

• Allowing a label of an edge to be changed.

• Defining an arbitrary cost function ϕ on these new operations.

Within this setting we introduce the ϕ-Minimum Cost Parsimonious Sce-
nario problem (ϕ-MCPS) for a labeled graph, and show that previous work on cost
constrained DCJs [27, 95, 12] and cost constrained transposition decompositions [41]
can be interpreted as ϕ-MCPS problems.

In Chapter 5 we provide an exact algorithm for the ϕ-MCPS problem. Its worst
case time complexity for a genome breakpoint graph of a pair of single-copy genomes
with n genes is O(n5L4), where L is the number of edge labels allowed in the chosen
model for cost constraining 2-breaks. We conclude this chapter by arguing that
despite its elevated time complexity our algorithm remains of practical importance
for the study of genome rearrangements.





Chapter 2

Linking 2-breaks on Graphs,
Rearrangements on Genomes, and
Transpositions on Permutations

2.1 Introduction

We start this chapter with a presentation of the theory of sorting graphs with 2-
breaks. In Sections 2.3 and 2.4 we demonstrate that sorting genomes with double
cut and join (DCJ) rearrangements and sorting permutations with transpositions
can be both interpreted as sorting graphs with 2-breaks.

Some links between these two problems have already been explored by the people
working on the algebraic rearrangement theory [73, 46], a recent survey of which is
proposed by Bhatia, Feijão and Francis [18]. What is new here, is that we establish
a bijection between the Minimum Length Transposition Decompositions
(MLTDs) of a permutation and the parsimonious DCJ scenarios for a well chosen
pair of genomes.

This bijection facilitates an exchange of ideas between two well studied problems.
For example, the work of Farnoud and Milenkovic [41] on sorting permutations with
cost constrained transpositions informed our work in Chapter 5 on sorting graphs
with cost constrained 2-breaks. In its turn, our work generalizes that on the cost
constrained transpositions, as it will be briefly discussed in Section 2.7. On the
other hand, as we explain in Section 2.6, the complexity of the Swap Median
Permutation problem [82] remains unknown, while the DCJ Median problem is
known to be NP-hard [97]. The work on the latter problem might inform us on how
the former could be approached.

23
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2.2 Transforming Graphs with 2-breaks

2.2.1 A 2-break Scenario for a Graph

In this section we introduce the problem of sorting a 2-edge-colored graph with 2-
breaks. This sorting problem is most often seen as transforming a source object
(black edges) to the target one (gray edges), however here we will transform both
black and gray edges into some intermediate set. This way to pose the problem does
not change the length of a parsimonious 2-break scenario, however it will allow us
to impose different cost constraints on black and gray edges in Chapter 4.

Definition 1 (2-edge-colored multigraph). Take a set V of vertices and two colors
{black, gray}. An edge is an unordered pair of vertices. A colored edge is a pair of
an edge and a color. A 2-edge-colored multigraph is an ordered pair (V,E), with E
being a multiset of colored edges.

Definition 2 (Eulerian graph and alternating cycle). A 2-edge-colored multigraph is
Eulerian if its every vertex has equal black and gray degrees. A cycle is alternating
if it is Eulerian.

See Figure 2.1 a) for an example. All use of the word graph will be synony-
mous with Eulerian 2-edge-colored multigraph, and use of the word cycle will be
synonymous with alternating cycle, unless specified otherwise.

Definition 3 (Terminal graph). A graph with equal multisets of black and gray edges
is called terminal.

Definition 4 (2-break). A 2-break transforms a pair of colored edges ({u, v}, col)
and ({w, s}, col) into either ({u,w}, col) and ({v, s}, col), or ({u, s}, col) and
({v, w}, col). We denote the former of these transformations by τ =({
{u, v}, {w, s}

}
→

{
{u,w}, {v, s}

}
, col

)
. Take a graph G containing the colored

edges ({u, v}, col) and ({w, s}, col), and a graph G′ in which these edges were re-
placed with ({u,w}, col) and ({v, s}, col). We say that τ transforms G into G′, and
denote this transformation by G→ G′.

Definition 5 (Vertices, edges and color of a 2-break). The vertices and edges of a
2-break τ =

({
{u, v}, {w, s}

}
→

{
{u,w}, {v, s}

}
, col

)
, are respectively

{
u, v, w, s

}
and

{
{u, v}, {w, s}, {u,w}, {v, s}

}
. Its color is col. We say that τ replaces colored

edges ({u, v}, col) and ({w, s}, col) and introduces colored edges ({u,w}, col) and
({v, s}, col).

Definition 6 (2-break scenario for a graph and its minimum length d2b(G)). A 2-
break scenario for a graph is a sequence of 2-breaks transforming it into a terminal
graph. Denote the minimum length of a 2-break scenario for G by d2b(G).
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Observation 1. If a 2-break scenario ρ for G contains a 2-break replacing a col-
ored edge ({i, j}, col), then either it is already present in G or ρ contains a 2-break
introducing this labeled edge.

Definition 7 (Black-2-break scenario and its minimum length db2b(G)). A black-2-
break scenario is a 2-break scenario consisting entirely of black 2-breaks. Denote the
minimum length of a black-2-break scenario for a graph G by db2b(G).

2.2.2 Maximum Alternating Edge-disjoint Cycle Decompo-
sition

The problem of finding a parsimonious 2-break scenario for a graph is closely related
to that of finding its Maximum Alternating Edge-disjoint Cycle Decom-
position.

Definition 8 (Eulerian decomposition of a graph and its size c(G)). An edge-disjoint
decomposition of a graph G is a set H of subgraphs of G whose edges partition the
edges of G. H is an Eulerian decomposition (ED) if all of its subgraphs are Eule-
rian. H is a Maximum Alternating Edge-disjoint Cycle Decomposition
(MAECD) if it has the most subgraphs among the EDs of G. Denote by c(G) the
number of subgraphs in an MAECD of G.

Definition 9 (Simple cycle and circle). A graph is a simple cycle if its MAECD
is of size 1. If in addition to that the black and gray degrees of its every vertex are
equal to 1, then it is a circle.

Observation 2. An MAECD of a graph consists entirely of simple cycles due to
maximality.

See Figure 2.1 f)-g) for an example.

2.2.3 The Minimum Length of a 2-break Scenario

The problem of finding a parsimonious 2-break scenario has been treated in several
unrelated settings using different terminologies. Bienstock and Günlük [19] provide a
thorough analysis of the problem. They demonstrate that finding a minimum length
black-2-break scenario is NP-hard due to the NP-hardness of finding an MAECD
of a graph. They also provide a 7/4-approximation algorithm for finding its length.

Lemma 1 (Adapted from Bienstock and Günlük [19]). The minimum length of a
2-break scenario for a graph G is d2b(G) = e(G) − c(G), where e(G) is the number
of colored edges in G divided by two.
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Figure 2.1: An example of an Eulerian 2-edge-colored multigraph G is presented in
a). a) to e) depicts a parsimonious 2-break scenario transforming G into a terminal
graph presented in e). The first two 2-breaks of the scenario are

({
{8, 9}, {8, 9}

}
→{

{8, 8}, {9, 9}
}
, black

)
and

({
{5, 9}, {6, 7}

}
→
{
{5, 6}, {7, 9}

}
, gray

)
. Two different

Maximum Alternating Edge-disjoint Cycle Decompositions of G exist,
they are depicted in f) and g). All the graphs depicted in g) are simple cycles. The
one in the middle of g) is also a circle.

Proof. We start by showing that a 2-break increases the size of an MAECD by at
most one. Take a 2-break transforming G into G′ and an MAECDH′ of G′. Remove
from H′ a subgraph or a pair of subgraphs containing the colored edges introduced
by the 2-break, thus obtaining H, a set of edge-disjoint Eulerian subgraphs of G.
Remove them all from G to obtain its Eulerian subgraph H, and add it to H to
obtain an Eulerian decomposition of G of size c(G′) or c(G′)−1. A 2-break scenario
transforms G into a terminal graph, that, by construction, has an MAECD of size
e(G). This means that d2b(G) ≥ e(G)− c(G), as we need to increase the size of G’s
MAECD by e(G)− c(G).

Now we show that there always exists a 2-break increasing the size of an MAECD
by one. Take a non-terminal simple cycle S, its gray edge, and a pair of black
edges incident to its endpoints. Denote them by ({u,w}, gray), ({u, v}, black), and
({w, s}, black). A 2-break

({
{u, v}, {w, s}

}
→

{
{u,w}, {v, s}

}
, black

)
provides a

non-simple graph, as it contains colored edges ({u,w}, gray) and ({u,w}, black)
forming a cycle. See Figure 2.2 for an example. This establishes that d2b(S) =
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e(S) − 1. Finally, take an MAECD H of G and sort its simple cycles one by one
to obtain a 2-break scenario of length e(G)− c(G).

Corollary 1. We have shown that there exists a black-2-break scenario of length
e(G)− c(G), thus db2b(G) = d2b(G).

Corollary 2. A prefix of length m of a parsimonious 2-break scenario for a circle
transforms it into a vertex disjoint union of m+ 1 circles.

u

w

u u

u u

w w

ww

a) b) c)

d) e)

Figure 2.2: A simple cycle is depicted in a) with vertices u and w singled out. b)-d)
depicts four possible 2-breaks that each yield a graph with an MAECD size equal
to 2.

2.2.4 Equivalent 2-break Scenarios

In Chapter 4 we introduce cost constraints on the individual 2-breaks and define
the cost of a scenario to be the sum of the costs of its individual moves. In this
setting two 2-break scenarios containing the same 2-breaks, but possibly performed
in different orders, have the same cost. This motivates the following definition of an
equivalence relation between the 2-break scenarios.

Definition 10 (Equivalent 2-break scenarios). Two 2-break scenarios are equivalent
if their multisets of 2-breaks are equal.

In Chapter 3 we categorize the equivalence classes of the parsimonious 2-break
scenarios.
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2.3 Double Cut and Join Rearrangements are 2-
breaks

2.3.1 Genomes

In this section we present the theory of sorting genomes by double cut and join (DCJ)
rearrangements. We introduce the breakpoint graph, a graphical representation of a
pair of genomes, and proceed by establishing a bijection between the DCJ scenarios
for a pair of genomes and the 2-break scenarios for their breakpoint graph.

A genome consists of chromosomes that are two stranded linear or circular DNA
molecules. In the field of genome rearrangements a chromosome is usually modeled
as a circular or linear order of directed genes separated by breakpoint regions, where
the direction of a gene indicates the strand of a chromosome that it belongs to [48].
In Figure 2.3 a) the tail of an arrow represents the tail extremity, and the head of
an arrow represents the head extremity of a gene. A genome can be represented by
its adjacency set. An adjacency is either internal: an unordered pair of the gene
extremities that are adjacent on a chromosome, or external: a single gene extremity
adjacent to one of the two ends of a linear chromosome.

Denote the set of genes (or syntenic blocks) by V = {1, . . . , n}, and the sets
of their head an tail extremities by Vh = {1h, . . . , nh} and Vt = {1t, . . . , nt}. In
what follows we suppose that genomes share the same multiset of genes, however
the proposed methods also apply for the genomes with different gene content when
ghost adjacencies are introduced to account for the missing genes, as proposed by
Yancopoulos and Friedberg [103]. See Figure 2.3 for an example.

2.3.2 Double Cut and Join and the Adjacency Graph

We use double cut and join to model genome rearrangements.
Definition 11 (Double cut and join (DCJ) [102]). A DCJ transforms the adjacen-
cies of a genome in one of the four following ways:

1.
{
{a, b}, {c, d}

}
→
{
{a, c}, {b, d}

}
,

2.
{
{a, b}, {c}

}
→
{
{a, c}, {b}

}
,

3.
{
{a}, {b}

}
→
{
{a, b}

}
,

4.
{
{a, b}

}
→
{
{a}, {b}

}
,

with a, b, c, d ∈ Vh ∪ Vt. Take a genome A containing the adjacencies {a, b} and
{c, d}, and a genome A′ in which these adjacencies were replaced with {a, c} and
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{b, d}. We say that a DCJ
({
{a, b}, {c, d}

}
→
{
{a, c}, {b, d}

}
, A
)
transforms A into

A′, and denote this transformation by A→ A′.

We will mostly be interested in the genomes containing a single copy of each gene.
Such single copy genomes are uniquely represented by their sets of adjacencies, which
is not the case for the genomes in general. All the work on DCJ of which we are
aware operates on the adjacency sets and deals with the following notions of DCJ
scenario and DCJ distance.

Definition 12. A DCJ scenario is a sequence of DCJs transforming two genomes
A and B into two genomes with equal sets of adjacencies. Denote by daDCJ(A,B)
the minimum length of such a scenario for genomes A and B.

Observation 3. daDCJ(A,B) is called edit distance in [86] and generalized DCJ
distance in [88]. See Figure 2.3 for an example of non-equal genomes with daDCJ
equal to 0.

A more sophisticated DCJ distance introduced in Definition 13 that takes the
structure of the chromosomes into account remains to be studied in the future.

Definition 13. A genome DCJ scenario is a sequence of DCJs transforming two
genomes A and B into two equal genomes. Denote by dgDCJ(A,B) the minimum
length of such a scenario for genomes A and B.

Observation 4. For any pair of genomes we have daDCJ(A,B) ≤ dgDCJ(A,B),
while daDCJ(A,B) = dgDCJ(A,B) if A and B are single copy genomes. See Fig-
ure 2.3 for an example of genomes with unequal values of daDCJ and dgDCJ .

The adjacency graph introduced by Bergeron, Mixtacki, and Stoye [15] has been
widely used to represent a pair of genomes and study their DCJ scenarios. See
Figure 2.4 for an example.

Definition 14 (Adjacency graph). The graph AG(A,B) of two genomes is the bi-
partite graph whose vertices are the adjacencies of A and B. There is an edge
(respectively two edges) between the adjacencies if they share a gene extremity (re-
spectively two gene extremities).

With the help of an adjacency graph the following results were established.

Lemma 2 (Bergeron, Mixtacki, and Stoye [15]). daDCJ(A,B) for the single copy
genomes is equal to n− (C + I/2), where n is the number of genes, C is the number
of cycles of AG(A,B) and I is the number of odd length paths among the connected
components of AG(A,B).
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Lemma 3 (Shao, and Lin [86]). Computing daDCJ(A,B) for the non-single copy
genomes is NP-hard. Denote by D the set of vertex-disjoint decompositions of
AG(A,B) into cycles and paths. daDCJ(A,B) = n−maxD∈D(cD + oD/2), where cD
is the number of cycles and oD is the number of odd length paths in a decomposition
D.

These results can be seen as corollaries of Theorem 1 that we establish in what
follows.

2.3.3 The Breakpoint Graph

The adjacency graph conveniently represents genomes, however we will only be in-
terested in their adjacency sets. We find that in this setting the breakpoint graph [7],
being more concise, is much easier to work with. Here we use a variant of the break-
point graph very similar to the one introduced by Alekseyev and Pevzner [1]. See
Figure 2.4 and Figure 2.3 for examples.

Definition 15 (Genome breakpoint graph). G(A,B) for two genomes A and B
is a 2-edge-colored multigraph on vertices Vh ∪ Vt ∪ {◦}. For every internal adja-
cency {a, b} ∈ A (respectively B) there is a colored edge ({a, b}, black) (respectively
({a, b}, gray)) in G(A,B), and for every external adjacency {a} ∈ A (respectively B)
there is a colored edge ({a, ◦}, black) (respectively ({a, ◦}, gray)) in G(A,B). There
is also a number of loops ({◦, ◦}, black) and ({◦, ◦}, gray) in G(A,B) ensuring that
the black and gray degrees of ◦ are equal to 2n.

Observation 5. The genome breakpoint graph is Eulerian.

Definition 16 (AA/BB paths of AG(A,B)). Take a connected component of the
adjacency graph AG(A,B) that is an even length path. If it starts in A (respectively
B), then it is an AA (respectively BB) path of AG(A,B).

Definition 17 (AA/BB paths of G(A,B)). Take a connected non Eulerian sub-
graph H of G(A,B) in which the black and gray degrees of every vertex different
from ◦ are equal to 1. If the black and gray degrees of ◦ are respectively equal to 2
and 0, then H is an AA path of G(A,B). If these degrees are respectively equal to
0 and 2, then H is a BB path of G(A,B).

See Figure 2.4 for an example of AA and BB paths of AG(A,B) and G(A,B).

Observation 6. Every vertex of the adjacency graph AG(A,B) corresponds to an
edge of the genome breakpoint graph G(A,B). This way, for every path in AG(A,B)
there exists a corresponding path in G(A,B).

Using Lemma 2 we establish a following lemma.
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Figure 2.3: Three genomes C =
{

({4t}, {4h, 1t}, {1h, 2h}, {2t, 3h}, {3t, 1t}, {1h})
}
,

A =
{

({3t, 1t}, {1h, 2h}, {2t, 3h}), ({4t}, {4h, 1t}, {1h})
}
, and B ={

({1h, 2h}, {2t, 1t}), ({3t, 2h}, {2t, 1h}, {1t, 3h})
}

are depicted in a)-c). C con-
sists of a linear chromosome, A consists of a linear and a circular chromosome,
while B consists of two circular chromosomes. The sets of adjacencies of C and
A are the same, thus daDCJ(A,C) = 0, while dgDCJ(A,C) = 1. Take a genome
A′ =

(
{3t, 2h}, {2t, 1t}, {1h, 2h}, {2t, 3h}

)
,
(
{4t}, {4h, 1t}, {1h}

)
. The breakpoint

graphs G(A,B) and G(A′, B) are depicted in d). The vertex ◦, representing the
ends of the linear chromosomes, is colored white. Extra colored edges are added
for the missing genes (e.g. ({2t, 2h}, black) and ({4h, 4t}, gray)), called ghost
adjacencies in [86]. The operation transforming A to A′ is an insertion of gene
2. It corresponds to the 2-break G(A,B) → G(A′, B). In e) the adjacency graph
AG(A,B) is depicted with diamonds indicating the ghost adjacencies.
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1t 1h 3t 3h 2t 5h 5t 2h

AG(A,B)

4h 4t

1t1h 3t 3h2t 5h 5t2h 4h 4t

4t

3h 4h

5t

2h
1t

3t
1h

2t5h

G(A,B)

Figure 2.4: The adjacency and breakpoint graphs AG(A,B) and G(A,B) of the
single copy genomes are depicted, with A =

{
({1t}, {1h, 3t}, {3h}), ({4h}, {4t}),

({2t, 5h}, {5t, 2h})
}
and B =

{
({1h, 2t}, {2h, 1t}), ({3t}, {3h, 4t}, {4h}), ({5h}, {5t})

}
Both A and B contain a circular and 2 linear chromosomes. AG(A,B) contains
two odd paths, an AA and a BB path. The odd path ({1t}, {2h, 1t}, {5t, 2h}, {5t})
of AG(A,B), corresponds to the cycle (◦, 1t, 2h, 5t, ◦) of G(A,B). The AA path
({3h}, {3h, 4h}, {4h}) of AG(A,B) corresponds to the AA path (◦, 3h, 4h, ◦) of
G(A,B). The BB path ({3t}, {3t, 1h}, {1h, 2t}, {2t, 5h}, {5h}) of AG(A,B) corre-
sponds to the BB path (◦, 3t, 1h, 2t, 5h, ◦) of G(A,B).
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Lemma 4. For single copy genomes we have daDCJ(A,B) = d2b(G(A,B)).

Proof. Denote by C the number of cycles, and by I the number of odd paths among
the connected components of AG(A,B). There are C circles among the connected
components of G(A,B). There are also I subgraphs of G(A,B) that are circles
containing the vertex ◦. The rest of the simple cycles in G(A,B) contain a pair
of an AA and a BB path, and G(A,B) contains n − I/2 AA and BB paths in
total, thus c(G(A,B)) = C + I + n − I/2. By summing up the degrees of the
vertices and dividing them by two we obtain that e(G) = 2n, thus d2b(G(A,B)) =
e(G(A,B)) − c(G(A,B)) = n − C − I/2 due to Lemma 1. Due to Lemma 2,
daDCJ(A,B) = n− C − I/2, and thus d2b(G(A,B)) = daDCJ(A,B).

In what follows we establish that the equality d2b(G(A,B)) = daDCJ(A,B) stays
valid for the non-single copy genomes. The breakpoint graph G(A,B) is defined
in such a way, that for a DCJ A → A′, the corresponding graph transformation
G(A,B) → G(A′, B) is a black 2-break. In addition to that, for a black 2-break
G(A,B) → G′ there exists a genome A′ such that the transformation A → A′ is a
DCJ and G(A′, B) = G′.

Definition 18 (DCJ of a 2-break and 2-break of a DCJ). Take a DCJ δ transforming
adjacencies of either genome A or B. The four DCJ types presented in Definition 11
correspond to the four following 2-breaks in the same order:

1.
({
{a, b}, {c, d}

}
→
{
{a, c}, {b, d}

}
, col

)
,

2.
({
{a, b}, {c, ◦}

}
→
{
{a, c}, {b, ◦}

}
, col

)
,

3.
({
{a, ◦}, {b, ◦}

}
→
{
{a, b}, {◦, ◦}

}
, col

)
,

4.
({
{a, b}, {◦, ◦}

}
→
{
{a, ◦}, {b, ◦}

}
, col

)
,

with col = black if δ transforms A and col = gray if δ transforms B. This correspon-
dence is used to define the notions of the DCJ of a 2-break and the 2-break of a DCJ.
For example, we say that

({
{a, b}, {◦, ◦}

}
→
{
{a, ◦}, {b, ◦}

}
, black

)
is a 2-break τ(δ)

of a DCJ δ =
({
{a, b}

}
→

{
{a}, {b}

}
, A
)
, and that

({
{a}, {b}

}
→

{
{a, b}

}
, B
)
is

a DCJ δ(τ) of a 2-break τ =
({
{a, ◦}, {b, ◦}

}
→
{
{a, b}, {◦, ◦}

}
, gray

)
.

Theorem 1. Take a DCJ scenario ∆ = (δ1, . . . , δm) for genomes A and B. ρ(∆) =
(τ(δ1), . . . , τ(δm)) is a 2-break scenario for G(A,B). Take a 2-break scenario ρ =
(τ1, . . . , τm) for G(A,B). ∆(ρ) = (δ(τ1), . . . , δ(τm)) is a DCJ scenario for A and B.

Proof. Take a 2-break τ of color col transforming G(A,B) to G(A,B)′. If col is
black, then δ(τ) can be performed on A to obtain a genome A′ such that G(A,B)′ =



34 Chapter 2. 2-breaks, DCJs and Transpositions

G(A′, B). If col is gray, then δ(τ) can be performed on B to obtain a genome B′
such that G(A,B)′ = G(A,B′). This means that ∆(ρ) transforms A and B into
genomes Ā and B̄, such that G(Ā, B̄) is a terminal graph. This implies that the sets
of adjacencies of Ā and B̄ are equal, and thus ∆(ρ) is a DCJ scenario for A and B.

Now take a DCJ δ transforming A into some genome A′. If δ is among the
first three types in Definition 11, then τ(δ) can be performed on G(A,B) to obtain
G(A′, B). The only non trivial case is if δ =

({
{a, b}

}
→
{
{a}, {b}

}
, A
)
for some ex-

tremities a and b. In this case τ(δ) =
({
{a, b}, {◦, ◦}

}
→
{
{a, ◦}, {b, ◦}

}
, black

)
. In

order for τ(δ) to be a 2-break for G(A,B), it must contain a self loop ({◦, ◦}, black).
However such a loop is present, since A contains an internal adjacency {a, b}, thus
it contains at most 2n− 2 external adjacencies and the black degree of ◦ in G(A,B)
is 2n by construction. This means that a 2-break τ(δ) can be performed on G(A,B)
to obtain G(A′, B). An analogous observation stays valid for a DCJ δ transforming
genome B. This means that ρ(∆) transforms G(A,B) into a graph G(C,C) for
some genome C, and this graph is terminal by construction. Thus ρ(∆) is a 2-break
scenario for G(A,B).

Corollary 3. For genomes A and B one has daDCJ(A,B) = d2b(G(A,B)).

2.3.4 Unsigned DCJs

Due to experimental limitations the directions (also known as strandedness or signs)
of the genes might remain unknown. In such a case a chromosome can still be
modeled as a circular or linear order of unsigned genes. For example a signed
genome As =

{
({3t, 1t}, {1h, 2h}, {2t, 3h}), ({4t}, {4h, 1t}, {1h})

}
can be interpreted

as an unsigned one Au =
{

({3, 1}, {1, 2}, {2, 3}), ({4}, {4, 1}, {1})
}
. The definitions

of DCJ and the breakpoint graph remain valid for genomes containing unsigned
genes, and so does Theorem 1. Chen [31] previously established this theorem for
unsigned genomes using a slightly less general representation of a genome as a signed
permutation.

2.4 Transpositions are 2-breaks

We start by introducing the basic notions of the theory of sorting permutations with
transpositions. In the field of genome rearrangements a transposition is a rearrange-
ment that swaps two adjacent regions of a chromosome, where a region can contain
any number of genes. However in mathematics more broadly a transposition is a
permutation that exchanges any two elements. It is the latter notion that we will use
throughout this work. A permutation σ of V = {1, . . . , n} is a bijection σ : V → V .
Denote the set of permutations of V by Sn. The identity permutation, which maps
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every element onto itself, is denoted by id. The product of two permutations σ1
and σ2 is a permutation σ1σ2, such that σ1σ2(i) = σ1(σ2(i)) for any i ∈ V . Every
permutation σ has an inverse σ−1, such that σσ−1 = id. An orbit of a permutation
σ on x ∈ V is the set {σn(x)|n ∈ Z}. A permutation is a cycle if it has at most
one orbit of size larger than 1. Denote the number of the disjoint orbits of a permu-
tation σ by c(σ). Such a permutation can be written as a product of c(σ) disjoint
cycles. A transposition is a cycle of length 2. Every permutation can be written as
a product of transpositions, the minimum number of transpositions in such a prod-
uct is denoted by dCayley(σ, id). A sequence of transpositions (π1, . . . , πm), for which
πm . . . π1σ = id, withm = dCayley(σ, id), is called a Minimum Length Transposi-
tion Decomposition (MLTD) of σ. The Cayley distance dCayley(σ1, σ2) between
two permutations is defined to be dCayley(σ−1

2 σ1, id).

Lemma 5 (Cayley [30]). For every permutation σ on n elements dCayley(σ, id) =
n− c(σ).

We proceed by introducing a graphical representation of permutations, similar
to the breakpoint graph of the genomes, and by showing that there is a bijection
between the parsimonious 2-break scenarios for that graph and the MLTDs of the
permutations.

Definition 19 (Permutation breakpoint graph). For a pair of permutations (σ1, σ2)
define a graph H(σ1, σ2) on vertices Vt = {1t, . . . , nt} and Vh = {1h, . . . , nh} with
black edges {(ih, σ1(i)t)|i ∈ V } and gray edges {(ih, σ2(i)t)|i ∈ V }.

Definition 20 (Positive circular graph). A graph is circular if the black and gray
degrees of its vertices are equal to 1, which means that all of its connected components
are circles. A graph is positive if it is a bipartite graph on vertices Vh = {1h, . . . , nh}
and Vt = {1t, . . . , nt}, with Vh and Vt being independent sets.

Observation 7. H(σ1, σ2) is a positive circular graph.

See Figure 2.5 b) for an example with σ1 = (123456) and σ2 = id.

Lemma 6. For a positive circular graph H there exist unique permutations σ1 and
σ2 such that H(σ1, σ2) = H. If H is terminal, then σ1 = σ2.

Proof. For every i ∈ {1, . . . , n} there exist unique k, l ∈ {1, . . . , n} such that H
contains colored edges ({ih, kt}, black) and ({ih, lt}, gray). We define σ1(i) = k and
σ2(i) = l to obtained the required permutations.

Definition 21 (Colored transposition). A colored transposition is a pair of a trans-
position and a color col ∈ {black, gray}. A color indicates whether the transposition
applies to σ1 or σ2.
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Figure 2.5: We provide an example for a permutation σ = (123456) and a trans-
position π = (24). Their product πσ can be expressed as a product of two disjoint
cycles πσ = (1456)(23). A graphical representation of a permutation as a functional
digraph D(σ) = (V, {(i, σ(i))|i ∈ V }) is depicted in a) for D(σ) and D(πσ). The
permutation breakpoint graphs H(σ, id) and H(πσ, id) depicted in b) differ by a 2-
break

({
{1h, 2t}, {3h, 4t}

}
→
{
{1h, 4t}, {3h, 2t}

}
, black

)
. Two positive genomes (see

Definition 28) A and A′ are depicted in c). The DCJ transforming one into another
is a circular excision. A positive genome B is depicted in d). H(σ, id) in b) is an
internal genome breakpoint graph (see Definition 27) of A and B, while H(πσ, id)
in b) is that of A′ and B. A graph H ′ that can be obtained from H(A,B) via a
non preserving 2-break (see Definition 23)

{
{1h, 2t}, {3h, 4t}

}
→
{
{1h, 3h}, {2t, 4t}

}
is presented in e). This 2-break does not belong to any parsimonious 2-break sce-
nario for H(A,B). On a side note, in [46] a genome A gets assigned permutations
πchr = (1t2t3t4t5t6t)(6h5h4h3h2h1h) and πadj = (1h2t)(2h3t)(3h4t)(4h5t)(5h6t)(6h1t),
while the DCJ transforming A into A′ is interpreted as a pair of transpositions
(1h3h)(2t4t). See Section 2.8 for a quick explanation.

Definition 22 (2-break τ(π, col) of a colored transposition). Take a transposition
π = (ij), a color col and a graph H(σ1, σ2). Denote the unique edges of color col
in H(σ1, σ2) incident to vertices it and jt by ({kh, it}, col) and ({lh, jt}, col). The
2-break τ(π, col) is

({
{kh, it}, {lh, jt}

}
→
{
{kh, jt}, {lh, it}

}
, col

)
.

Observation 8. A 2-break τ(π, col) transforms H(σ1, σ2) into H(πσ1, σ2) if col is
black and H(σ1, πσ2) otherwise.

Definition 23 (Preserving 2-break). A 2-break for a positive circular graph is pre-
serving, if it transforms it into another positive circular graph.

Definition 24 (Transposition π(τ) of a preserving 2-break τ). Exactly two vertices
of a preserving 2-break τ are in Vt, denote them by it and jt. The transposition π(τ)
is (ij).
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Observation 9. Take a preserving 2-break τ for H(σ1, σ2). τ transforms H(σ1, σ2)
into H(π(τ)σ1, σ2) if it is black, into H(σ1, π(τ)σ2) otherwise.

Lemma 7. All the 2-breaks in a parsimonious 2-break scenario for a positive circular
graph are preserving.

Proof. It is enough to show that the first 2-break τ of a parsimonious 2-break sce-
nario for a positive circular graph is preserving. τ replaces two colored edges of the
same circle and transforms it into a union of vertex disjoint circles due to Corollary 2.
Figure 2.5 b) and e) illustrate that the obtained circular graph is positive.

Lemma 8. Take an MLTD (π1, . . . , πm) of σ. (τ(π1, black), . . . , τ(πm, black)) is a
parsimonious black-2-break scenario for H(σ, id). Take a parsimonious black-2-break
scenario (τ1, . . . , τl) for H(σ, id). (π(τ1), . . . , π(tl)) is an MLTD of σ.

Proof. Take a Minimum Length Transposition Decomposition (π1, . . . , πm)
of σ. Due to Observation 8, a 2-break τ(πi, black) transforms H(πi−1 . . . π1σ, id)
to H(πiπi−1 . . . π1σ, id), and thus ρ = (τ(π1, black), . . . , τ(πm, black)) transforms
H(σ, id) to H(πm . . . π1σ, id) = H(id, id), which is a terminal graph. This means
that ρ is a black-2-break scenario for H(σ, id) and establishes that m ≥ l.

Now take a parsimonious black-2-break scenario (τ1, . . . , τl) transformingH(σ, id)
into a terminal graph H(σ, id). Due to Lemma 7, all the 2-breaks in the sce-
nario are preserving. Due to Observation 9, τi transforms H(π(τi−1) . . . π(τ1)σ, id)
to H(π(τi)π(τi−1) . . . π(τ1)σ1, σ2), thus H(σ, id) = H(π(τl) . . . π(τ1)σ, id). Due to
Lemma 6, π(τl) . . . π(τ1)σ = id, thus (π(τ1), . . . , π(τl)) is a transposition decom-
position of σ. This establishes that l ≥ m, and thus m = l, which means that
(τ(π1, black), . . . , τ(πm, black)) is a parsimonious black-2-break scenario for H(σ, id)
and (π(τ1), . . . , π(τl)) is an MLTD of σ.

Lemma 8 can be easily generalized using the following definition of an MLTD
of a pair of permutations.

Definition 25 (Shuffle). A shuffle of two sequences ρ1 and ρ2 is a sequence that can
be partitioned into the sub-sequences equal to ρ1 and ρ2.

Example 1. (b1, b2, a1, b3, a2, a3, b4) is shuffle of (a1, a2, a3) and (b1, b2, b3, b4).

Definition 26 (MLTD of permutations). Take two sequences of colored transpo-
sitions T1 = ((π1

1, black), . . . , (π1
m1 , black)) and T2 = ((π2

1, gray), . . . , (π2
m2 , gray)),

such that π1
m1 . . . π

1
1σ1 = π2

m2 . . . π
2
1σ2 and m1 + m2 = dCayley(σ1, σ2). An MLTD of

σ1 and σ2 is a shuffle of T1 and T2.

Essentially the same proof as that of Lemma 8, allows us to establish a bijection
between the parsimonious 2-break scenarios for H(σ1, σ2) and the MLTDs of σ1
and σ2.
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Theorem 2. Take an MLTD ((π1, col1), . . . , (πm, colm)) of σ1 and σ2. A sequence
of 2-breaks (τ(π1, col1), . . . , τ(πm, colm)) is a parsimonious scenario for H(σ1, σ2).
Take a parsimonious 2-break scenario (τ1, . . . , τm) for H(σ1, σ2), with (col1, . . . , colm)
being the colors of these 2-breaks. A sequence ((π(τ1), col1), . . . , (π(tm), colm)) is an
MLTD of σ1 and σ2.

2.5 A Parsimonious DCJ Scenario for Co-tailed
Single Copy Genomes is a Parsimonious 2-
break Scenario for a Circular Positive Graph

2.5.1 Positive Genomes

We want to establish a link between the DCJ scenarios for single copy genomes and
the transposition decompositions of permutations. It is not an immediate task due
to the differences between the genome and permutation breakpoint graphs.

• The breakpoint graph of the single copy genomes is not circular, as it contains
a vertex ◦ with the black and gray degrees greater than one.

• The genome breakpoint graph is not necessarily positive (see Definition 20).

In what follows we show how to overcome these two differences and interpret a
parsimonious DCJ scenario as an MLTD and vice versa.

Definition 27 (Internal genome breakpoint graph). Take the genome breakpoint
graph of two genomes A and B and remove from it the connected component con-
taining ◦ to obtain the internal genome breakpoint graph H(A,B).

Observation 10. The internal genome breakpoint graph of single copy genomes is
circular.

Here we introduce positive genomes. The internal genome breakpoint graph of
positive single copy genomes is a circular positive graph.

Definition 28 (Positive genome). An adjacency of a genome is positive, if it con-
tains one head and one tail extremity. A genome is positive if all of its adjacencies
are positive.

By the end of the section we will establish that a 2-break scenario for the internal
genome breakpoint graph of two single copy genomes can be interpreted as a 2-
break scenario for the internal genome breakpoint graph of two positive single copy
genomes.
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Lemma 9. The vertices of a circular graph can be partitioned into two independent
sets of equal size.

Proof. A circular graph is a vertex disjoint union of circles, thus it is enough to
prove the statement for a circle C. C has an even number of vertices, take every
second one of them. The obtained sub-set of vertices is an independent set of C. Its
complement is also an independent set of C, thus establishing the result.

Definition 29 (Independent sets of a circular graph). The independent sets of a
circular graph are the independent sets presented in Lemma 9.

Observation 11. The independent sets of a positive circular graph are {1h, . . . , nh}
and {1t, . . . , nt}.

Lemma 10. For a circular graph there exists an isomorphic positive circular graph.

Proof. Take a circular graph G on 2n vertices. Denote its independent sets by V 1

and V 2. |V 1| = |V 2| = n, due to Lemma 9. Fix bijections f 1 : V 1 → Vh and
f 2 : V 2 → Vt. Together they define a bijection f : V 1 ∪ V 2 → Vh ∪ Vt. To every
colored edge ({u, v}, col) of G assign a colored edge ({f(u), f(v)}, col) to obtain a
positive circular graph isomorphic to G.

Theorem 3. For single copy genomes A and B there exist positive single copy
genomes Ap and Bp, such that the internal genome breakpoint graphs H(A,B) and
H(Ap, Bp) are isomorphic.

Proof. H(A,B) is a circular graph, denote its number of vertices by 2n′. Due
to Lemma 10, there exists a circular positive graph H on vertices {1h, . . . , n′h} ∪
{1t, . . . , n′t} isomorphic to H(A,B). For every colored edge ({u, v}, black) (respec-
tively ({u, v}, gray)) of H add an adjacency {u, v} to a genome Ap (respectively
Bp). The genomes Ap and Bp thus obtained are positive and H(Ap, Bp) = H.

We conclude by establishing that a 2-break scenario for H(A,B) can be inter-
preted as a 2-break scenario for H(Ap, Bp).

Definition 30 (Image of a 2-break). Take a function f : V1 → V2 between two sets
of vertices and a 2-break τ =

({
{u, v}, {w, s}

}
→
{
{u,w}, {v, s}

}
, col

)
with vertices

in V1. Denote
({
{f(u), f(v)}, {f(w), f(s)}

}
→

{
{f(u), f(w)}, {f(v), f(s)}

}
, col

)
,

a 2-break with vertices in V2, by f(τ).

Observation 12. Take two isomorphic graphs G1 and G2, their isomorphism f and
a 2-break scenario ρ = (τ1, . . . , τm) for G1. f(ρ) = (f(τ1), . . . , f(τm)) is a 2-break
scenario for G2. If ρ is parsimonious, then so is f(ρ).
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2.5.2 Co-tailed genomes

Here we introduce co-tailed genomes. A parsimonious 2-break scenario for their
breakpoint graph is also a parsimonious 2-break scenario for their internal genome
breakpoint graph and vice versa.

Definition 31 (Co-tailed genomes). Two genomes are co-tailed if their sets of ex-
ternal adjacencies are equal.

Definition 32 (Circular genome). A genome is circular if all of its adjacencies are
internal.

Observation 13. Two circular genomes are necessarily co-tailed.

The breakpoint graph G(A,B) of co-tailed genomes is a vertex disjoint union
of H(A,B) and a terminal graph. This means that d2b(G(A,B)) = d2b(H(A,B)),
which leads to Lemma 11.

Lemma 11. Take co-tailed genomes A and B, and parsimonious 2-break scenarios
ρ and ρ′ for G(A,B) and H(A,B). ρ and ρ′ are also parsimonious 2-break scenarios
for H(A,B) and G(A,B) respectively.

2.5.3 Synthesis

By now we are ready to put all the results from this section together. Take two co-
tailed single copy genomes A and B and their parsimonious DCJ scenario ∆. Due
to Theorem 1, ∆ can be interpreted as a parsimonious 2-break scenario ρ = ρ(∆)
for the breakpoint graph G(A,B). Due to Lemma 11, ρ is also a parsimonious
2-break scenario for the internal genome breakpoint graph H(A,B). Due to The-
orem 3, there exist positive genomes Ap and Bp for which H(A,B) and H(Ap, Bp)
are isomorphic. Take their isomorphism f . Due to Observation 12, f(ρ) is a par-
simonious 2-break scenario for H(Ap, Bp). The latter is a positive circular graph
by construction. Due to Lemma 6, there exist permutations σ1 and σ2 such that
H(σ1, σ2) = H(Ap, Bp). And finally, due to Theorem 2, f(ρ) can be interpreted as
a Minimum Length Transposition Decomposition of σ1 and σ2. The impli-
cated lemmas and theorems go both ways, thus ensuring that an MLTD of σ1 and
σ2 can be interpreted as a parsimonious DCJ scenario for A and B. To this end, we
obtain a stronger result. Every transposition on σ1 or σ2 can be interpreted as a 2-
break on H(σ1, σ2), and every 2-break on H(σ1, σ2) = H(Ap, Bp) can be interpreted
as a DCJ on A or B. Thus we obtain that every transposition decomposition of σ1
and σ2 can be interpreted as a DCJ scenario for A and B of the same length.
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Figure 2.6: Three single copy genomes are depicted in a). The three genomes are
circular (see Definition 32), which also means that they are co-tailed (see Defini-
tion 31). Their 3-edge-colored internal genome breakpoint graph depicted in b) is
not a bipartite graph as was always the case for the internal genome breakpoint
graphs of two genomes.

2.6 The Median and Center Problems

2.6.1 The Swap and DCJ Median Problems

The genome breakpoint graph can be easily generalized for 3 genomes. In this case
it is a 3-edge-colored multigraph. See Figure 2.6 for an example of the internal
genome breakpoint graph of three co-tailed genomes. The internal genome break-
point H(A,B,C) in the example is not bipartite. This means that the gene extrem-
ities no longer can be renamed to obtain three positive genomes with an isomorphic
internal genome breakpoint graph. This also means that there are no permutations
σ1, σ2 and σ3 with a breakpoint graph H(σ1, σ2, σ3) isomorphic to H(A,B,C). This
leads to a situation where the complexity of the Swap Median Permutation
problem [82] remains unknown, even though the DCJ Median problem is known to
be NP-hard [97].

Fix n ∈ N and denote by Gn a set of all the genomes with genes {1, . . . , n}.

Problem 1 (The Swap Median Permutation problem (SMP), open [82]).

INPUT : X ⊆ Sn, and r ∈ N.

OUTPUT : TRUE, if min
σM∈Sn

( ∑
σ∈X

dCayley(σM , σ)
)
≤ r. FALSE otherwise.

Observation 14. Popov [82] uses the term swap for what we call transposition.

Problem 2 (The DCJ Median problem for 3 circular genomes, NP-complete [97]).
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INPUT : Three circular genomes A1, A2, A3, and r ∈ N.

OUTPUT : TRUE, if min
AM∈Gn

( ∑
i∈{1,2,3}

daDCJ(AM , Ai)
)
≤ r. FALSE otherwise.

Not only is there no clear reduction from the DCJ Median problem for circular
genomes to SMP, but also the reduction from the Breakpoint Graph Decompo-
sition problem, a variant of the Maximum Alternating Edge-disjoint Cycle
Decomposition (MAECD) problem, used to establish NP-hardness of a number
of other median problems does not seem to apply to SMP.

A graphG is a balanced bicolored graph if the black and gray degrees of its vertices
are equal to 1 or 2 and it does not contain a monochromatic cycle nor parallel
edges. Caprara [28] demonstrated that the Breakpoint Graph Decomposition
problem, consisting of finding an MAECD of a balanced bicolored graph, is NP-
hard. To prove the NP-hardness of the DCJ Median problem Tannier, Zhen
and Sankoff [97] used a reduction from the Breakpoint Graph Decomposition
problem similar to the one originally introduced by Caprara [29] for the Inversion
Median problem and later used by Feijão and Araujo [44] for the Intermediate
Genome Median problem. In that reduction three genomes are associated to
a balanced bicolored graph and some properties about the median are established.
Two of the genomes and the obtained median are positive, but not the third genome,
and there does not seem to be a simple way to modify that reduction so that it could
work for SMP.

For now we pose the following question that would further our understanding of
the links between sorting genomes by DCJs and sorting permutations by transposi-
tions.

Problem 3 (open problem). Does a set of positive genomes admit a DCJ median
that is positive?

If the answer to Problem 3 is yes, then the Swap Median Permutation
problem is equivalent to the DCJ Median problem for positive genomes, which
itself is equivalent to the DCJ Median problem for the co-tailed genomes for which
the internal breakpoint graph is bipartite.

2.6.2 The Swap and DCJ Center Problems

The following problems illustrate the opposite situation, where our understanding
of sorting with transpositions might inform us on sorting with DCJs.



2.6. The Median and Center Problems 43

Problem 4 (The Swap Center Permutation problem (SCP), NP-complete [82]).

INPUT : X ⊆ Sn, and r ∈ N.

OUTPUT : TRUE, if min
σC∈Sn

(
max
σ∈X

dCayley(σC , σ)
)
≤ r. FALSE otherwise.

Problem 5 (The DCJ Closest Genome problem, open [34]).

INPUT : a set X of genomes, and r ∈ N.

OUTPUT : TRUE, if min
AC∈Gn

(
max
A∈X

daDCJ(AC , A)
)
≤ r. FALSE otherwise.

Problem 6 (open problem). Does a set of positive genomes admit a DCJ closest
genome that is positive?

If the answer to Problem 6 is yes, then SCP can be reduced to the DCJ Closest
Genome problem, which would establish its NP-hardness.

2.6.3 The Rank Median Problem

In this section we briefly discuss a recent line of work on a variant of a median
problem that is solvable in polynomial time and relates to the Swap Median Per-
mutation problem.

A square real valued matrix M is orthogonal if MTM = MMT = I, where
I is the identity matrix and MT is the transpose of M . A permutation matrix
is a binary orthogonal matrix. Such a matrix has a single 1 in each column and
each row. A permutation matrix P defines a permutation σP , with σP (i) = j
if and only if P [i][j] = 1. Analogously a permutation σ defines a permutation
matrix. The rank distance is defined for square real valued matrices M1 and M2,
with drk(M1,M2) = rank(M1 −M2). The following result relates rank distance for
permutation matrices and Cayley distance for the corresponding permutations.

Lemma 12 (Zanetti, Biller, and Meidanis [105]). For permutation matrices P1 and
P2 we have that drk(P1, P2) = dCayley(σP1 , σP2).

Denote the set of all n× n permutation matrices by Pn.

Problem 7 (The Permutation Rank Median problem for 3 permutation ma-
trices, open [32]).

INPUT : permutation matrices P1, P2, P3 ∈ Pn, and r ∈ N.

OUTPUT : TRUE, if min
PM∈Pn

( ∑
i∈{1,2,3}

drk(PM , Pi)
)
≤ r. FALSE otherwise.
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Due to Lemma 12, the Permutation Rank Median problem is equivalent to
the Swap Median Permutation problem.

Problem 8 (The Rank Median problem).

INPUT : matrices M1,M2,M3 ∈ Rn×n, and r ∈ N.

OUTPUT : TRUE, if min
MM∈Rn×n

( ∑
i∈{1,2,3}

drk(MM ,Mi)
)
≤ r. FALSE otherwise.

Chindelevitch, Zanetti, Pereira and Meidanis [33] established that the Rank
Median problem is of polynomial time complexity for three orthogonal matrices. A
Genomic matrix is defined to be a symmetric permutation matrix. Chindelevitch,
La, and Meidanis [32] provided a cubic time algorithm for the Rank Median
problem for three genomic matrices and showed that there always exists a rank
median that is symmetric and orthogonal, but not necessarily binary.

2.7 Sorting Permutations, Strings and Graphs

2.7.1 Introduction

In the previous sections we have established that the problem of sorting graphs with
2-breaks generalizes those of sorting genomes with DCJs and sorting permutations
with transpositions. In this section, without entering too much into the details,
we complement the picture by introducing the problems of sorting strings with
interchanges and swapping tokens on graphs, together with their cost constrained
variants. We also explain how the results on the cost constrained 2-breaks to be
presented in this thesis generalize the known results for these seemingly unrelated
sorting problems.

2.7.2 The Dutch National Flag Problem (DNF) [21]

Take a string x of n marbles that are either red, white or blue, and a string y with
the red marbles going first, followed by the white ones, followed by the blue ones.
Any two marbles in x can be interchanged. The Dutch National Flag problem
asks for a minimum length interchange scenario transforming x to y.

Bitner [21], represents x with a digraphD(x) on vertices {R,B,W} with directed
edges

{
(x[i], y[i])|i ∈ {1, . . . , n}

}
. See Figure 2.7 a) for an example. He proves that

the minimum length of an interchange scenario transforming x to y is equal to
n − c(D(x)), where c(D(x)) is the size of a maximum edge disjoint decomposition
of D(x)’s edges into directed cycles. Computing c(D(x)) is NP-hard and so is the
DNF problem.
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We define a 2-edge-colored graph H(x, y) on vertices {1, . . . , n}∪{R,W,B} with
black edges {i, x[i]} and gray edges {i, y[i]}. H(x, y) is Eulerian and bipartite by
construction. See Figure 2.7 b) for an example demonstrating that an interchange
on x corresponds to a 2-break onH(x, y) preserving its bipartite structure. The min-
imum length of an interchange scenario transforming x to y is equal to d2b(H(x, y)).

1 2 3 4 5 6
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1 2 3 4 5 6

R W B

R

W

B R

W
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Figure 2.7: First we illustrate how an interchange of two elements in a string
can be interpreted as a 2-break on a properly defined graph. Take strings x =
R,W,B,R,R,B and y = R,R,R,W,B,B. Interchange the second and the fourth
elements of x to obtain x′ = R,R,B,W,R,B. One can observe in a) that a trans-
formation D(x)→ D(x′) resembles a 2-break. A transformation H(x, y)→ H(x′, y)
is a 2-break that preserves the bipartite structure of a graph as shown in b). Two
interchanges are enough to transform x into y. We proceed with an illustration of
a polynomial reduction from DNF to MIN-cost-TD mentioned in Section 2.7.4.
Make the cost of a transposition (ij) to be 0 if y[i] = y[j] and 1 otherwise. Per-
mutation σ1 = (24)(35), satisfies x[i] = y[σ1(i)], and so does σ2 = (124365). The
minimum cost of a transposition decomposition for both of these permutations is
equal to 2, which is also the minimum number of interchanges required to transform
x to y. Transpositions (24) and (35) of cost 1 transform σ1 to id. Transpositions
(16) and (34) of cost 1 transform σ2 into σ′2 = (231)(56), which can be transformed
to id with the help of three transpositions of cost 0.

2.7.3 MIN-cost-MLTD [41]

Farnoud and Milenkovic [41] fix an arbitrary cost function on the set of transposi-
tions. They define the cost of a transposition decomposition to be the sum of the
costs of its transpositions. The authors propose an O(n4)-time algorithm for the
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problem of finding a minimum cost decomposition among the Minimum Length
Transposition Decompositions of a permutation (MIN-cost-MLTD) .

This work on the MIN-cost-MLTD problem influenced our research on cost
constrained 2-breaks. The results that we will present in Chapter 5 allow us to gen-
eralize the work by Farnoud and Milenkovic [41] in a number of ways. First, we allow
the cost of a transposition (ij) acting on a permutation σ to depend not only on i
and j as in [41], but also on σ−1(i) and σ−1(j), while keeping the same asymptotic
complexity for solving the MIN-cost-MLTD problem. Second, a transposition
decomposition in [41] can be seen as sorting a source permutation σ1 into a target
permutation id. Our work, on the other hand, can be interpreted as sorting two per-
mutations σ1 and σ2 into some intermediate one, with the transpositions performed
on σ1 and σ2 possibly having different costs.

2.7.4 MIN-cost-TD [41, 42]

Farnoud and Milenkovic [41] also investigate the problem of finding a minimum cost
transposition decomposition of a permutation, the MIN-cost-TD problem. They
prove that for an arbitrary cost function MIN-cost-MLTD is a 4-approximation of
MIN-cost-TD. The work on the MIN-cost-TD problem [41, 42] combined with
our results on relating transposition decompositions and 2-break scenarios could in
the future inform the search for a minimum cost 2-break scenario for a graph.

In [41] and [42] it remained open whether the MIN-cost-TD problem is NP-
hard. We provide a polynomial time reduction from DNF to MIN-cost-TD. See
Figure 2.7 for an example. Take an instance (x, y) of DNF and a permutation
σ : {1, . . . , n} → {1, . . . , n} for which x[i] = y[σ(i)]. σ is not necessarily unique,
and σ(i) fixes a position in y into which an element in position i in x must be
moved. An interchange of the elements in the positions i and j in x corresponds
to a transposition (σ(i)σ(j)) performed on σ. Make the cost of (ij) to be 0 if
y[i] = y[j] and 1 otherwise. It can be shown that for this cost function, the cost of a
minimum cost transposition decomposition of σ is equal to the minimum length of
an interchange scenario transforming x into y. This establishes that MIN-cost-TD
is NP-hard.

2.7.5 The Interchange Rearrangement Problem [4]

Take two strings x and y of length n with equal multisets of elements from a set S.
Any two elements in x can be be interchanged. Costs are associated to interchanges
and the goal is to transform x to y with a scenario minimizing the sum of the
costs of its interchanges. Amir and Levy [4] propose a detailed survey of related
Interchange Rearrangement problems. If each string has a unique occurrence
of each element, then the problem is equivalent to the MIN-cost-TD problem.
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Amir, Hartman, Kapah, Levy, and Porat [3] pose the w-Interchange Dis-
tance problem. Here the cost of an interchange of two elements at positions i and
j is equal to |i− j|α with α ≥ 0. Among other results, the authors propose a linear
time algorithm for α = 1 and show that the problem is NP-hard for α = 0. The
Dutch National Flag problem is a particular case with the set S being equal
to {R,W,B} and α = 0.

Kapah, Landau, Levy, and Oz [64] study the Interchange Rearrangement
Problem Under the Element-cost Model. Here the cost of an interchange
depends on the elements that are being interchanged and not on their positions as in
the w-Interchange Distance problem. The authors fix a non-negative function
weight : S → R+ on the elements in the set S. A symmetric function g on the pairs
of elements is said to be general if for any three elements u,w, s it satisfies that
weight(w) ≤ weight(s) if and only if g(u,w) ≤ g(u, s). The cost of an interchange
of u and w is defined to be g(u,w). If each string x and y has a unique occurrence of
each element, then a minimum cost interchange scenario for a general function can
be found in linear time. The problem becomes NP-hard for general strings, however
a 3-approximation algorithm is proposed in [64].

As in Section 2.7.2, we define a bipartite 2-edge-colored graph H(x, y) on vertices
{1, . . . , n}∪S with black edges {i, x[i]} and gray edges {i, y[i]}. H(x, y) is Eulerian
by construction. An interchange of elements in x results in a 2-break on H(x, y).
Consider the Parsimonious Interchange Rearrangement problem, where we
search for a minimum cost interchange scenario among the parsimonious ones.

If each string x and y has a unique occurrence of each element, and the inter-
change cost depends only on the positions of the elements being interchanged, then
this problem is equivalent to MIN-cost-MLTD. Our results in Chapter 5 allow us
to solve this problem for a cost function that depends both on the positions and the
elements being interchanged. Our algorithm is polynomial for the strings that have
unique occurrence of each element. The problem for general strings is NP-hard.

2.7.6 The Token Swapping Problem [100, 23, 101]

Take a connected 1-edge-colored simple graph on n vertices. Place unique tokens
on its vertices and assign each token a unique destination vertex. Two tokens lying
on adjacent vertices can be swapped. A token swap sequence is a sequence of token
swaps that move all the tokens to their destination vertices. The Token Swapping
problem [100] asks for the minimum length of a token swapping sequence. See
Figure 2.8 for an illustration of the problem.

To a token t lying on a vertex u assign a token σ(t) whose destination vertex
is u. Take two tokens t1 and t2. A swap of the tokens lying on their destination
vertices transforms σ into (t1t2)σ, and at the end of the scenario the identity permu-
tation is obtained. This means that the Token Swapping problem is equivalent to
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the MIN-cost-TD problem where some transpositions are assigned infinite cost.
The complexity of the Token Swapping problem remains unknown for trees. Ya-
manaka et al. [100] observed that there always exists a token swapping sequence of
length O(n2). This might be useful to prove Conjecture 1 from Farnoud, Milenkovic,
Puleo, and Su [42] that there always exists an O(n2) length transposition decompo-
sition of minimum cost.
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Figure 2.8: On the left we have an instance of the Token Swapping problem
where the tokens 1, 2, 3, 4, 5 are placed on the vertices 3, 5, 2, 1, 4. To this instance
we assign a permutation σ1 = (13254). A swap of the tokens lying on the vertices
4 and 5 provide us with a permutation σ2 = (1324), which is equal to (45)σ1. A
further swap of the tokens lying on the vertices 2 and 3, provide us with a permuta-
tion σ3 = (124), which is equal to (23)σ2. This instance of the Token Swapping
can be interpreted as the problem of decomposing (13254) into a product of trans-
positions from the subset {(12), (23), (34), (35), (45)}. A possible decomposition is
(45)(23)(12)(23)(34)(23) = (13254).

2.7.7 The Colored Token Swapping Problem [23, 101]

Place colored tokens on the colored vertices of a connected 1-edge-colored simple
graph. Two tokens lying on adjacent vertices can be swapped. A colored token
swap sequence is a sequence of token swaps that moves the tokens to the vertices
with corresponding colors. The Colored Token Swapping problem asks for the
minimum length of a colored token swap sequence. For two colors, the Colored
Token Swapping problem can be solved in polynomial time for general graphs and
in linear time for trees. For three colors, the problem is NP-hard even for restricted
families of graphs [101].

Enumerate the vertices of a graph and take two sequences x and y, where x[i]
is the color of the token on the vertex i and y[i] is the color of the vertex i. The
Colored Token Swapping problem can be interpreted as the Interchange
Rearrangement problem on x and y, where the interchanges of the elements at
the positions corresponding to the adjacent vertices have cost equal to 1 and other
interchanges have infinite cost.



2.8. Conclusion 49

The Dutch National 
Flag Problem (DNF) MIN-cost-TD

The Interchange Rearrangement Problem

w-Interchange Distance Problem

The Token Swapping 
Problem

The Colored Token Swapping Problem

The φ-Minimum Cost Scenario Problem

Interchange Rearrangement Problem Under the Element-cost 

MIN-cost-MLTD

The Parsimonious Interchange Rearrangement Problem

The φ-Minimum Cost Parsimonious Scenario Problem 

Figure 2.9: In Chapter 4 we introduce the ϕ-Minimum Cost Parsimonious
Scenario and the ϕ-Minimum Cost Scenario problems for cost constrained
2-breaks that generalize all of the problems presented in Section 2.7. The figure
summarizes connections between the sorting problems that we have established in
this section. Here a problem A is presented as being included into B if and only if
there exists a polynomial time reduction from A to B.

2.8 Conclusion

We have established novel links between the problems of sorting genomes with DCJs,
sorting permutations with transpositions and sorting graphs with 2-breaks. See
Figure 2.9 for a summary.

These links allow us to interpret a DCJ in a parsimonious sorting scenario for
genomes with n genes as a transposition acting on a permutation of n elements, and
vice versa. However, this symmetry breaks once a non-parsimonious DCJ scenario is
being considered. Feijão and Meidanis [46] showed that a genome with n genes can be
interpreted as a permutation of 2n elements, and that a DCJ acting on a genome can
be interpreted as a pair of transpositions acting on that permutation (see Figure 2.5
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for an example). Their work allows us to interpret a non-parsimonious DCJ scenario
as a transposition decomposition of a permutation, however the reverse problem
of interpreting a transposition decomposition as a DCJ scenario is not addressed.
Combination of these two lines of work might lead to a better understanding of the
non-parsimonious 2-break and DCJ scenarios.

Such an understanding might allow for an exchange of ideas on sampling and
estimation. For example, see a recent work by Irurozki, Calvo, and Lozano [62]
on sampling permutations based on their Cayley distance to a given permutation,
which might inform us on how to sample genomes based on their DCJ distance to
a given genome.



Chapter 3

A Parsimonious 2-break Scenario
for a Graph

3.1 Introduction

In this chapter we study in detail the structure of a parsimonious 2-break scenario.
We show that a parsimonious 2-break scenario for a graph can be interpreted as a set
of parsimonious 2-break scenarios for the circles corresponding to its simple cycles.
In addition to that, a parsimonious 2-break scenario for a circle can be partitioned
into parsimonious 2-break scenarios for its sub-circles, and this property allows for
a dynamic programming algorithm exploring the space of the parsimonious 2-break
scenarios for a circle. The main results of this chapter are the following:

1. A parsimonious 2-break scenario for a graph can be partitioned into parsimo-
nious 2-break scenarios for the simple cycles in one of its Maximum Alter-
nating Edge-disjoint Cycle Decompositions.

2. A parsimonious 2-break scenario for a simple cycle S can be interpreted as
a parsimonious 2-break scenario for a circle arising from one of the Eulerian
orientations of S.

3. A parsimonious 2-break scenario for a sub-circle of a circle C can be partitioned
into parsimonious 2-break scenarios for smaller sub-circles of C.

4. There is a bijection between the equivalence classes of the parsimonious 2-
break scenarios for a circle and the quadrangulations of a regular polygon.
There is also a bijection between the equivalence classes of the Minimum
Length Transposition Decompositions of a cyclic permutation σ and
the equivalence classes of the parsimonious 2-break scenarios for its permuta-
tion breakpoint graph H(σ, id).

51
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Taken together these results enable us to efficiently search the space of parsimo-
nious 2-break scenarios. We will build on them in Chapter 5 where we search for a
minimum cost 2-break scenario among the parsimonious ones. We have published
the initial versions of these results in [90, 89].

3.2 A Parsimonious 2-break Scenario for a Graph
is a Shuffle of the Parsimonious 2-break Sce-
narios for the Simple Cycles

In this section we show that a parsimonious 2-break scenario for a graph can be
partitioned into parsimonious 2-break scenarios for its simple cycles. We do this
with the help of the trajectory graph introduced by Shao, Lin, and Moret [87]. The
trajectory graph there is defined for a DCJ scenario, and Theorem 2 in [87] estab-
lishes that the connected components of the trajectory graph of a parsimonious DCJ
scenario are trees, and that these connected components correspond to the cycles
of the adjacency graph. We redefine the trajectory graph of a 2-break scenario for
a graph G, and show in Theorem 4 that the connected components of the trajec-
tory graph of a parsimonious 2-break scenario for G are trees corresponding to a
Maximum Alternating Edge-disjoint Cycle Decomposition of G.

Observation 15. A shuffle of the 2-break scenarios for the subgraphs in an Eulerian
decomposition of a graph is a 2-break scenario for that graph. If the scenarios for
the subgraphs are parsimonious, then the obtained scenario for the graph is also
parsimonious.

In this subsection we establish a complementary result. Namely, that for a 2-
break scenario ρ on a graph there exists an Eulerian decomposition such that ρ is a
shuffle of the 2-break scenarios for its subgraphs.

Definition 33 (Sink/source vertex and edge of a digraph). A vertex of a 2-edge-
colored digraph is a source, if its black and gray indegrees are equal to 0. It is a sink,
if its black and gray outdegrees are equal to 0. An edge of such a digraph is a source
edge, if it is incident to a source vertex, while it is a sink edge if it is incident to a
sink vertex. According to this definition an edge can be both a source and a sink at
the same time.

Denote by ρl the prefix of ρ of length l and by Gl the graph obtained from
G after ρl is performed. Construct the trajectory graph D(G, ρ) in the follow-
ing way. Start with an empty graph. For each colored edge ({u, v}, col) of G
add two new vertices connected by a directed edge of color col labeled {u, v} to
obtain D(G, ρ0). See Figure 3.1 d) for an example. For the l-th 2-break in ρ
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({u, v}, {w, s} → {u,w}, {v, s}, col), choose any two sink edges of D(G, ρl−1) of color
col labeled {u, v} and {w, s}, and merge their sink vertices. Proceed by adding two
new edges of color col labeled {u,w} and {v, s} from the merged vertex to the newly
added ones, thus obtaining D(G, ρl). Continue until D(G, ρm) is obtained, where
m is the length of ρ. Gm is terminal, thus the multisets of the labels of its sink
black and gray edges are equal. This means that there exists a bijection between
the sink vertices of D(G, ρm) incident to the edges of the same label but of different
colors. Choose such a bijection at random and merge the pairs of the sink vertices
of D(G, ρm) mapped by this bijection. Denote the obtained graph by D(G, ρ). See
Figure 3.1 for an example of D(G, ρ).

Shao, Lin, and Moret [87] prove that the connected components of the trajectory
graph for a parsimonious scenario are trees, and that they correspond to the cycles
of the adjacency graph. The following theorem can be seen as a generalization of
this result for the non-parsimonious scenarios.

Theorem 4. Take a 2-break scenario ρ of length m for a graph G. D(G, ρ) has a
number of connected components k greater than or equal to e(G)−m. Further, there
exists an Eulerian decomposition H of G of size k, such that ρ is a shuffle of the
2-break scenarios for its subgraphs. If ρ is parsimonious, then H is an MAECD of
G.

Proof. Denote by {C1, . . . , Ck} the connected components of D(G, ρ). For i ∈ J1, kK
and l ∈ J0,mK, denote by Ci

l a subgraph of D(G, ρl) consisting of its connected
components containing the source vertices of Ci. By construction, there exists a
bijection between the sink edges of the graphs in {C1

l , . . . , C
k
l } and the colored

edges of Gl, that maps a sink edge of color col labeled {u, v} to a colored edge
({u, v}, col) in Gl. Denote by H i

l a subgraph of Gl induced by the colored edges
in the image of the sink edges of Ci

l under this bijection. {H1
l , . . . , H

k
l } is an edge-

disjoint decomposition of Gl. See Figure 3.1 for an example of H i
l .

We prove that H i
0 is Eulerian by decreasing induction on l. The multisets of the

labels of the black and gray sink edges of Ci
m are equal by construction, thus H i

m is
terminal and necessarily Eulerian. Suppose that H i

l is Eulerian for an 0 < l ≤ m.
The two vertices of D(G, ρl−1) merged during the l-th 2-break in ρ either both belong
to Ci

l−1, or both are outside Ci
l−1. In the first case, H i

l can be obtained from H i
l−1

via a 2-break. A 2-break does not modify the degrees of the vertices and H i
l is

Eulerian due to the induction hypothesis, thus H i
l−1 is also Eulerian. In the second

case, H i
l = H i

l−1, thus the latter stays Eulerian. This way H i
0 is Eulerian, denote it

by H i.
D(G, ρ0) has 2e(G) connected components. The l-th 2-break of ρ merges two

vertices of D(G, ρl−1). This reduces its number of connected components by at most
one. D(G, ρ) is obtained from D(G, ρm) after merging e(G) pairs of vertices. This
reduces its number of connected components by at most e(G) and establishes that
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Figure 3.1: An Eulerian 2-edge-colored multigraph G is depicted in a). A parsimo-
nious 2-break scenario ρ =

(
({2, 3}, {4, 5} → {2, 5}, {3, 4}, gray), ({1, 2}, {5, 6} →

{1, 6}, {2, 5}, black)
)
transforms G into a terminal graph G2 depicted in c). The

prefix ρ1 of ρ of length 1 transforms G into G1 depicted in b). D(G, ρ0), D(G, ρ1),
and D(G, ρ2) are depicted in d), e), and f) respectively. All the edges of D(G, ρ0)
are both source edges and sink edges. The sink edges of D(G, ρi) correspond to the
edges of Gi, while the source edges of D(G, ρi) correspond to the edges of G. Two
possibilities for D(G, ρ) are presented in g) and h), depending on which vertices are
chosen to be merged. Denote the larger connected component of D(G, ρ) in h) by
C1. H1

0 , H1
1 and H1

2 are depicted in i), j) and k) respectively.
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k ≥ e(G) − m. If ρ is parsimonious, then m = e(G) − c(G) using Lemma 1 and
thus k ≥ c(G). Due to the maximality of c(G), G can be partitioned into at most
c(G) edge-disjoint Eulerian subgraphs. Due to the result obtained in the previous
paragraph, we obtain that k = c(G) and H = {H1, . . . , Hk} is an MAECD of
G.

Corollary 4. A parsimonious 2-break scenario for a graph having two connected
components can be partitioned into two sub-sequences that are respectively parsimo-
nious 2-break scenarios for these components.

3.3 A Parsimonious 2-break Scenario for a Break-
point Graph

Finding the size of an MAECD of a graph is NP-hard [19]. However we are in-
terested in a particular family of breakpoint graphs, corresponding to the genome
breakpoint graphs, for which the size of an MAECD can be found in linear time
and the space of all the possible MAECDs can be explored efficiently.

This subsection should sound familiar to the reader who is aware of the classical
results concerning the parsimonious DCJ scenarios sorting the adjacency graph [25].
Lemma 14 basically reformulates the statement that odd paths and cycles of the
adjacency graph are sorted on their own, while Observation 17 restates that an even
length path can be recombined with another even length path or sorted on its own
during a parsimonious DCJ scenario.

Definition 34 (Single/multiple vertex). A vertex is single if its black and gray
degrees are equal to 1 and it is multiple if these degrees are larger.

Definition 35 (Breakpoint graph). A graph is a breakpoint graph if it has at most
one multiple vertex. If such a vertex exists, denote it by ◦.

Observation 16. The genome breakpoint graph (see Definition 15) is a breakpoint
graph.

See Figure 3.2 for an example of a breakpoint graph.

Definition 36 (Simple and circle subgraphs). A subgraph is a simple subgraph if it
is a simple cycle and a circle subgraph if it a circle (see Definition 9). A subgraph
is a simple non-circle subgraph if it is a simple cycle that is not a circle.

Lemma 13. A circle subgraph of a breakpoint graph belongs to its every MAECD.

Proof. Take a circle subgraph C of a breakpoint graph G and its MAECD H. If C
does not include the multiple vertex ◦, then it is a connected component of G that
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is a simple cycle and thus appears in all the MAECDs of G. Suppose that C does
include the multiple vertex ◦. Take the black edge of C incident to ◦. This colored
edge belongs to some Eulerian simple cycle H in H. Take an Eulerian tour ∆ of H
starting from ◦ with this colored edge. All the vertices of G except ◦ are single, this
means that ∆ finishes at ◦ with a gray edge. H being a simple cycle means that
H = C, and thus C ∈ H.

We define AA and BB paths of a breakpoint graph as in Definition 16.

Definition 37 (AA/BB path of a breakpoint graph). Take a connected non Eule-
rian sub-graph H of G in which the black and gray degrees of every vertex different
from ◦ are equal to 1. If the black and gray degrees of ◦ are respectively equal to 2
and 0, then H is an AA path of G. If these degrees are respectively equal to 0 and
2, then H is a BB path of G.

Observation 17. A simple non-circle subgraph of G is a union of an AA and a
BB path.

See Figure 3.2 for an example. Denote by B(G) a complete bipartite graph having
the AA and the BB paths of G as vertices. Due to Lemma 13 and Observation 17
we obtain the following result.

Lemma 14. A Maximum Alternating Edge-disjoint Cycle Decomposi-
tion of a breakpoint graph G can be identified with a perfect matching of B(G) plus
the set of the circle subgraphs of G.

2

1

9

8
7

6

5
4

3

AA1

AA2

BB2

BB1

C

◦

Figure 3.2: An example of a breakpoint graph is depicted that contains a single
circle subgraph denoted by C. It also contains two AA paths AA1 and AA2, and two
BB paths BB1 and BB2. This breakpoint graph has only two possible MAECDs
that are {C,AA1 ∪BB1, AA2 ∪BB2} and {C,AA1 ∪BB2, AA2 ∪BB1}.
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3.4 A 2-break Scenario for a Simple Cycle is a
2-break Scenario for a Circle

3.4.1 Introduction

In Section 3.2 we have shown that a parsimonious 2-break scenario for a graph can
be partitioned into parsimonious 2-break scenarios for the subgraphs in its Maxi-
mum Alternating Edge-disjoint Cycle Decomposition. Due to maximal-
ity, these subgraphs themselves have a MAECD of size equal to 1. A graph satis-
fying this property is a simple cycle, while a circle is a simple cycle with the black
and gray degrees of every vertex equal to 1.

In this section we study simple cycles in detail and establish that a 2-break
scenario of a simple cycle S corresponds to a 2-break scenario for a circle obtained
from an Eulerian orientation of S. This relation will allow us to explore the space
of the 2-break scenarios for a simple cycle by exploring the space of the 2-break
scenarios for its circles.

The work presented in this section generalizes Proposition 6 from Braga and
Stoye [25]. There it is stated that there are two options for a parsimonious DCJ
scenario ∆ sorting the adjacency graph consisting of an AA and a BB path. Namely,
either ∆ sorts the paths separately or corresponds to a DCJ scenario for an adjacency
graph obtained by joining the paths into a cycle in one of the two possible ways. See
Figure 3.3 for an illustration that these two ways of joining the paths into a cycle
can be interpreted as two ways of splitting a simple cycle into a circle.

3.4.2 The Maximum Degree of a Simple Cycle is 2

A simple cycle might have some vertices with black and gray degrees higher than 1.
Here we establish that these degrees cannot be higher than 2.

Lemma 15. The black and gray degrees of a vertex of a simple cycle are at most
equal to 2.

Proof. Take a simple cycle S and a vertex v of S. S is Eulerian by definition, thus
the black and gray degrees of v are equal, denote them by d. Take an alternating
Eulerian tour ∆ of S starting at v, and index the colored edges incident to v based
on their order of appearance in ∆. If a loop ({v, v}, col) is present in S, then assign
it two indices as in Figure 3.4. This way we obtain a sequence (col1, . . . , col2d), where
coli is the color of the edge indexed with i.

If col2i−1 6= col2i for 0 < i < d+ 1, then a contiguous subsequence of ∆ starting
from v with a colored edge indexed 2i − 1 and finishing at v with a colored edge
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Figure 3.3: In a1) the adjacency graph AG(A,B) is depicted consisting of an AA
and a BB path. The two ways to join these paths into a cycle are depicted in a2) and
a3). In b1) a subgraph of the breakpoint graph G(A,B) is depicted. It is a simple
cycle obtained by eliminating the colored edges ({◦, ◦}, black) and ({◦, ◦}, gray). b2)
and b3) depict the circles obtained once its vertex ◦ is split into two vertices ◦1 and
◦2. These circles correspond to the cycles depicted in a2) and a3). Proposition 6
from Braga and Stoye [25] can be interpreted as stating that a parsimonious 2-break
scenario for the simple cycle in b1) corresponds to a parsimonious 2-break scenario
for one of the two circles. In this section establish an analogous result for all the
simple cycles and the 2-break scenarios that are not necessarily parsimonious.
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indexed 2i composes an alternating cycle of S. By definition, the only alternating
cycle of S is itself, thus 2i− 1 = 1, 2i = 2d and d = 1.

Half of the colors in (col1, . . . , col2d) are black and the other half are gray. Suppose
that d > 1, then we have already proven that col2i−1 = col2i for all 0 < i < d + 1.
This means that there exists 0 < i < d − 1 with col2i 6= col2i+1. We know that
col2i−1 = col2i and col2i+1 = col2i+2. This means that the contiguous subsequence
of ∆ starting from v with a colored edge indexed 2i − 1 and finishing at v with a
colored edge indexed 2i + 2 composes an alternating cycle. By definition, the only
alternating cycle of S is itself, thus 2i− 1 = 1, 2i+ 2 = 2d and d = 2.

1

2

3
4
5

678

Figure 3.4: This is an illustration for Lemma 15. It depicts an Eulerian tour ∆ start-
ing at the central vertex with black and gray degrees equal to 4. Dashed arrows here
represent the portions of the tour that do not visit v. For this example the sequence
of the colors used in the proof is {black, black, gray, gray, black, black, gray, gray}.
In this case col2i−1 = col2i, for all i, however the contiguous subsequence of ∆ start-
ing with the colored edge indexed by 1 and finishing with the colored edge indexed
by 4 comprises an alternating cycle.

3.4.3 Splitting a Double Vertex of a Simple Cycle

Definition 38 (Single/double vertex). A vertex of a graph is double if its black and
gray degrees are equal to 2, it is single if these degrees are equal to 1.

In the previous section we have established that all the vertices of a simple cycle
are either single or double. In this section we replace a double vertex v with two
single vertices v1 and v2 in a simple cycle S and its 2-break scenario ρ to obtain a
2-break scenario ρ̂ for a simple cycle Ŝ with one less double vertex than S. Once
repeated for every double vertex, this process will leave us with a 2-break scenario
for a circle of S.
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Take a double vertex v of a simple cycle S on vertices V . Replace v in V with
vertices v1 and v2 to obtain a set of vertices V̂ . Denote by M a function that
transforms a graph on vertices V into a graph on vertices V̂ by merging the vertices
v1 and v2 into v. For a 2-break τ̂ on vertices V̂ , denote byM(τ̂) a 2-break on vertices
V obtained by replacing the occurrences of v1 and v2 with v. For a sequence of 2-
breaks ρ̂ = (τ̂1, . . . , τ̂m) on vertices V̂ , denote by M(ρ̂) = (M(τ̂1), . . . ,M(τ̂m)) a
sequence of 2-breaks on vertices V .

See Figure 3.5 for all the possible cases of S and Ŝ such that M(Ŝ) = S. After
inspecting the figure it should be clear that the following observation holds.

Observation 18. There exists a simple cycle Ŝ such thatM(Ŝ) = S and its vertices
v1 and v2 are single.
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Figure 3.5: An example of a simple cycle S is depicted in a). A subgraph of S
induced by the colored edges incident to its double vertex v is presented in b). In
total, there are 6 possibilities for such an induced subgraph, modulo an inversion of
the colors of the edges. These induced subgraphs are depicted at the top parts of the
figures c)-h). At the bottom of the figures c)-h) are depicted the possibilities, modulo
an exchange of the names of the vertices v1 and v2, of such induced subgraphs of Ŝ,
that are transformed into S once their vertices v1 and v2 are merged into v.

Lemma 16. Take a simple cycle S with a double vertex v and a simple cycle Ŝ
satisfying M(Ŝ) = S. For a 2-break τ transforming S into some S ′, there exists a
2-break τ̂ transforming Ŝ into some Ŝ ′, satisfying M(Ŝ ′) = S ′ and M(τ̂) = τ .
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Proof. Take a 2-break τ =
({
{u, r}, {w, s}

}
→

{
{u,w}, {r, s}

}
, col

)
transforming

S into S ′. As M(Ŝ) = S, Ŝ contains two separate colored edges ({û, r̂}, col) and
({ŵ, ŝ}, col) that are transformed into colored edges ({u, r}, col) and ({w, s}, col)
once the vertices v1 and v2 are replaced with v. A 2-break τ̂ =

({
{û, r̂}, {ŵ, ŝ}

}
→{

{û, ŵ}, {r̂, ŝ}
}
, col

)
satisfies the statement. See Figure 3.7 a) and b) for an example.

Lemma 17. Take a simple cycle S and its 2-break scenario ρ. There exists a simple
cycle Ŝ and its 2-break scenario ρ̂ satisfying M(Ŝ) = S and M(ρ̂) = ρ.

Proof. See Figure 3.7 for an example. Denote by S the terminal graph that is
obtained from S once ρ is performed. Due to Observation 18, there exists a simple
cycle Ŝ1 on vertices V̂ satisfying M(Ŝ1) = S. Due to Lemma 16, there exists a
sequence of 2-breaks ρ̂1 transforming Ŝ1 into Ŝ1 satisfying M

(
Ŝ1

)
= S. If Ŝ1 is

terminal, then we are done as ρ̂1 is a 2-break scenario for Ŝ1.

Suppose that Ŝ1 is not terminal. If S has a black loop incident to v, then
take Ŝ2 = Ŝ1. Otherwise Ŝ1 has 2 black edges incident to v1 and v2, denote them
by ({v1, u}, black) and ({v2, w}, black), with u and w possibly equal. Replace them
with ({v2, u}, black) and ({v1, w}, black) to obtain a simple cycle Ŝ2. By construction
M(Ŝ2) = S. Transform ρ̂1 by replacing all the occurrences of v1 in the black 2-breaks
of ρ̂1 with v2 and vice versa. Denote the newly obtained sequence of 2-breaks by ρ̂2.
Denote the black edges in Ŝ1 incident to v by ({v1, u}, black) and ({v2, w}, black).
Ŝ2 can be obtained from Ŝ1 by replacing these colored edges with ({v2, u}, black)
and ({v1, w}, black). All the possible cases of S and Ŝ1 are depicted in Figure 3.6.
After inspecting the figure it should be clear that Ŝ2 is a terminal graph. Thus ρ̂2
is a 2-break scenario for Ŝ2.

3.4.4 A 2-break Scenario for a Circle of a Simple Cycle

In this subsection we introduce the notion of a circle of a simple cycle S and show
that a 2-break scenario for S corresponds to a 2-break scenario for one of its circles.

Take a simple cycle S on vertices V . All the vertices of S are either single or
double due to Lemma 15. For every double vertex v in V , replace it with v1 and v2

to obtain a set of vertices V̂ . Denote by M a function that transforms a graph on
vertices V into a graph on vertices V̂ by merging the pairs of vertices corresponding
to the double vertices of S. For a 2-break τ̂ on vertices V̂ , denote byM(ρ̂) a 2-break
on vertices V obtained by replacing the occurrences of v1 and v2 with v for every
double vertex of S. For a sequence of 2-breaks ρ̂ = (τ̂1, . . . , τ̂m) on vertices V̂ , denote
by M(ρ̂) = (M(τ̂1), . . . ,M(τ̂m)) a sequence of 2-breaks on vertices V .
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Figure 3.6: Take a simple cycle S and a 2-break scenario ρ transforming S into
a terminal graph S. There are three possibilities for a subgraph of S induced by
the colored edges incident to a double vertex v of S. These are depicted at the
top. At the bottom are the possibilities of such induced subgraphs of Ŝ, a graph
that is transformed into S once its vertices v1 and v2 are merged into v. If Ŝ is
not already terminal, then in order to obtain a terminal graph it is enough to swap
the endpoints of its black edges incident to v1 and v2. This means that if Ŝ1 in the
proof of Lemma 17 is not terminal, then Ŝ2, obtained by swapping its black edge, is
terminal.

Definition 39 (Circle of a simple cycle). A circle C (see Definition 9) on vertices
V̂ is a circle of a simple cycle S if M(C) = S.

By applying Lemma 17 for every double vertex of a simple cycle we establish the
following theorem.

Theorem 5. Take a 2-break scenario ρ for a simple cycle S. There exists a circle
C of S and its 2-break scenario ρ̂ such that M(ρ̂) = ρ.

3.4.5 A Link Between the Eulerian Orientations of a Simple
Cycle and its Circles

The motivation behind this subsection is to come up with a way to enumerate the
circles of a simple cycle S. To this end, we introduce a notion of an Eulerian
orientation of an undirected graph and show that an Eulerian orientation −→S of a
simple cycle S has a unique directed alternating Eulerian tour starting at a given
vertex. We explain how to transform such a tour into a circle of S, and prove that
all the circles of S (up to renaming of the double vertices) can be obtained this way.

Definition 40 (Eulerian orientation of a graph). An Eulerian orientation of an
undirected 2-edge-colored graph G is an assignment of a direction to each colored
edge of G satisfying that the black indegree (respectively outdegree) is equal to the
gray outdegree (respectively indegree) for every vertex v.

See Figure 3.8 for an example of an Eulerian orientation of a simple cycle and a
circle.
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Figure 3.7: A simple cycle S with double vertices r and v is depicted in a) to-
gether with a 2-break scenario ρ of length 2 transforming S into a terminal graph
S. A graph Ŝ1, that becomes S once the vertices r1 and r2 are merged into r,
is depicted in b) together with a sequence of 2-breaks ρ̂1 satisfying M(ρ̂1) = ρ.
For the first 2-break τ1 in ρ ({r, v}, {u,w} → {r, w}, {u, v}, gray) we have two op-
tions for τ̂1 satisfying M(τ̂1) = τ1: ({r1, v}, {u,w} → {r1, w}, {u, v}, gray) and
({r2, v}, {u,w} → {r2, w}, {u, v}, gray). We include the second one into ρ̂1. For
the second 2-break τ2 ({r, r}, {v, w} → {r, v}, {r, w}, black) of ρ we also have two
options for τ̂2 satisfying M(τ̂2) = τ2: ({r1, r2}, {v, w} → {r1, w}, {r2, v}, black) and
({r1, r2}, {v, w} → {r1, v}, {r2, w}, black). We include the second one into ρ̂1. ρ̂1

transforms Ŝ1 into a graph Ŝ1 that is not terminal, indicating that some of the
choices should be modified. S contains a black loop incident to r, thus we choose
Ŝ2 = Ŝ1. In the black 2-breaks of ρ̂1 we swap the vertices v1 and v2 to obtain a
2-break scenario ρ̂2 for Ŝ2 depicted in c). Denote Ŝ2 by S ′ and ρ̂2 by ρ′. We proceed
the same way in d) with a circle Ŝ ′1, that becomes S ′ once the vertices v1 and v2 are
merged into v. Once again we start by choosing ρ̂′1, that does not lead to a terminal
graph. To deal with this, we have to swap the black edges of Ŝ ′1 incident to v1 and
v2 and swap v1 and v2 in the black 2-breaks of ρ̂′1 to obtain Ŝ ′2 and ρ̂′2 as depicted
in e).
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Figure 3.8: A circle C of a simple cycle S from Figure 3.7 is presented in a). In
b) one of its two Eulerian orientations is depicted. Merge its vertices v1 and v2

into v and its vertices r1 and r2 into r to obtain an Eulerian orientation −→S in c).
The u-tour of −→S is the directed alternating Eulerian tour of −→S starting from u.
Its vertex sequence is (u,w, v, r, r, v, u). The colored directed edges of the u-tour
of −→S incident to the second occurrence of v in the vertex sequence of the tour
are ((v, u), black) and ((r, v), gray). Rename v to v2 to obtain ((v2, u), black) and
((r, v2), gray). Rename v to v1 in the rest of the colored directed edges of the tour
to obtain ((w, v1), black) and ((v1, r), gray). Proceed by renaming r to obtain an
Eulerian orientation of a circle of S depicted in d), that provides the u-circle (see
Definition 41) of −→S depicted in e) once its orientation is forgotten. The circles
depicted in a) and e) are equivalent, as it suffice to rename the vertices v1 and v2,
and r1 and r2 in order to transform one circle into another.

Lemma 18. Take an Eulerian orientation −→S of a simple cycle S and its double
vertex u. The black in and outdegrees of u in −→S are equal to 1, and so are its gray
in and outdegrees.

Proof. Either the black or the gray outdegree of u must be non-zero and without
loss of generality we can suppose that this is the case for the black outdegree. Take
a maximum length directed alternating path ∆ starting at u with a black edge. Due
to the definition of an Eulerian orientation, this path finishes at u with a gray edge.
∆ is an Eulerian tour of S due to the simplicity of S. u is a double vertex, thus ∆
must have two incoming colored edges to u, and the first one of them must be black,
while the second must be gray. This ensures that the black in and outdegrees of u
are equal to 1, and so are its gray in and outdegrees.

Corollary 5 (u-tour of −→S ). For a single vertex u of a simple cycle S there exists a
unique directed alternating Eulerian tour of −→S starting from u. For a double vertex
u of S, there exists a unique directed alternating Eulerian tour of −→S starting with a
black edge from u. We call this tour the u-tour of −→S .

Definition 41 (the u-circle of −→S and a u-circle of S). For every double vertex v
of S perform the following. Rename v with v2 in the colored directed edges of the
u-tour of −→S incident to the second occurrence of v in the vertex sequence of that
tour. Rename the rest of the occurrences of v in the colored directed edges of the
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u-tour of −→S with v1, thus obtaining a set of the colored directed edges of an Eulerian
orientation −→C of a circle C of S. C is the u-circle of −→S and a u-circle of S.

See Figure 3.8 for an example of the u-circle of −→S . We define two circles of S
to be equivalent if they are equal up to switching the names of the pairs of vertices
corresponding to the double vertices of S.

Definition 42 (Equivalent circles of a simple graph). For a simple graph S, a
graph isomorphism g : V̂ → V̂ is S-preserving if it maps each single vertex of S to
itself, and for each double vertex v of S one has either g(v1) = v1 and g(v2) = v2,
or g(v1) = v2 and g(v2) = v1. Two circles of S are equivalent if there exists an
S-preserving isomorphism between them.

Theorem 6. Take a vertex u of a simple cycle S. For a circle C of S there exists
a u-circle of S equivalent to C.

Proof. Choose an Eulerian orientation −→C of a circle C. For every double vertex v
in S, merge the vertices v1 and v2 in −→C to obtain an Eulerian orientation −→S of S.
From Figure 3.8 it should be clear that the u-circle of −→S and C are equivalent.

3.5 A Parsimonious 2-break Scenario for a Circle

3.5.1 Introduction

In Section 3.2 we have concisely represented a 2-break scenario with the help of
the trajectory graph. Shao, Lin, and Moret [87] demonstrated that the trajectory
graph D(C, ρ) of a parsimonious 2-break scenario ρ for a circle C is a tree. Here
we present the scenario graph S(C, ρ) that can be interpreted as a particular planar
embedding of the trajectory graph, and show that it is a quadrangulation of a regular
polygon. We use this enriched graphical tool to partition ρ into parsimonious 2-break
scenarios for the sub-circles of C in Theorem 8. In Chapter 5 this partition will lead
to a dynamic programming algorithm for finding a minimum cost scenario among
the parsimonious ones.

We also establish a bijection between the equivalence classes of the parsimonious
2-break scenarios for a circle and the matched quadrangulations of a regular polygon.
This work relates to that presented in Section 3 of Dulucq and Penaud [38] and Sec-
tion IV of Farnoud and Milenkovic [41]. These papers discuss a bijection between
the equivalence classes of the Minimum Length Transposition Decomposi-
tions of a cyclic permutation and a family of the spanning planar trees on a circle
is established. In Subsection 3.6.4 we combine these results to establish a bijection
between the equivalence classes of the MLTDs of a cyclic permutation σ and the
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equivalence classes of the parsimonious black-2-break scenarios for the permutation
breakpoint graph H(σ, id).

3.5.2 The Scenario Graph of a Parsimonious 2-break Sce-
nario for a Circle is Planar

In this subsection we introduce the scenario graph of a parsimonious 2-break scenario
for a circle and prove that it is planar.

Definition 43 (Scenario graph). For a circle C and its parsimonious 2-break sce-
nario ρ, define a 1-edge-colored graph S(C, ρ) on the vertices of C. If C has two
vertices, then S(C, ρ) contains a single edge incident to them. Otherwise, the edges
of S(C, ρ) are the edges of the 2-breaks in ρ.

See Figure 3.9 a) and b) for an example.

Definition 44 (Scenario matching). A parsimonious 2-break scenario ρ for a circle
C transforms it into a terminal graph that has equal sets of black and gray edges.
Delete its gray edges to obtain a perfect matching of the scenario graph S(C, ρ), that
we denote byM(C, ρ).

Observation 19. The scenario matching of a parsimonious black-2-break scenario
for a circle consists of the edges that are gray in the circle.

Definition 45 (Circular straight-line drawing of a scenario graph). A circular
straight-line drawing of a graph is a drawing on a plane with the vertices of the
graph arranged on a circle and the edges drawn as straight lines. If the edges in the
drawing do not cross, then the drawing is an embedding. Fix a circular straight-line
embedding ΣC of a circle C. The scenario graph S(C, ρ) for a parsimonious 2-break
scenario ρ for C also inherits a circular straight-line drawing ΣS(C,ρ) from ΣC.

See Figure 3.9 for an example of a scenario graph, scenario matching, and their
circular straight-line embeddings. In what follows we will suppose that a circle C
comes together with a circular straight-line embedding ΣC .

Definition 46 (Planar graph). A graph is planar if it admits an embedding. An
embedding divides the plane into regions, called faces. One of them is unbounded
or infinite, while the rest are bounded.

Theorem 7. Take a parsimonious 2-break scenario ρ for a circle C. The scenario
graph S(C, ρ) is planar and all the bounded faces of its embedding ΣS(C,ρ) are quadri-
laterals. In addition to that, there exists a bijection between the 2-breaks in ρ and
the bounded faces of ΣS(C,ρ), that associates to a 2-break in ρ the face bounded by its
edges.
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Figure 3.9: A circular straight-line embedding ΣC of a circle C is depicted
in a) on the left. This embedding divides the plane into two faces. fu is un-
bounded, while fb is bounded. The rest of a) depicts a parsimonious 2-break
scenario ρ =

(({
{1, 2}, {7, 8}

}
→

{
{1, 8}, {2, 7}

}
, black

)
,
({
{4, 5}, {6, 7}

}
→{

{4, 7}, {5, 6}
}
, gray

)
,

({
{1, 10}, {8, 9}

}
→

{
{1, 8}, {9, 10}

}
, gray

)
,({

{3, 4}, {2, 7}
}
→

{
{2, 3}, {4, 7}

}
, black

))
for C. The circular straight-line

embedding ΣS(C,ρ) of a scenario graph S(C, ρ) inherited from ΣC is depicted in
b). The edges of the scenario graph that are in the scenario matching M(C, ρ)
appear dashed in b). The first 2-break τ in ρ transforms C into a union of two
circles C1 and C2 of C depicted in c). According to the notation to be presented
in Subsection 3.5.3, C1 and C2 are the sub-circles C[8, 1] and C[2, 7] of C. What
follows is an example for Lemma 19 and Lemma 30 with i = 4 and j = 7. The
sub-circles C[7, 4] and C[4, 7] are depicted in d) and e). The first 2-break τ in ρ
transforms C[7, 4] into a union of two vertex-disjoint circles C1 and C5 as depicted
in f). ρ can be partitioned into 2-break scenarios ρ[4,7] and ρ[7,4] for the sub-circles
C[4, 7] and C[7, 4], with ρ[4,7] =

(({
{4, 5}, {6, 7}

}
→

{
{4, 7}, {5, 6}

}
, gray

))
,

and ρ[7,4] =
(({
{1, 2}, {7, 8}

}
→

{
{1, 8}, {2, 7}

}
, black

)
,
({
{1, 10}, {8, 9}

}
→{

{1, 8}, {9, 10}
}
, gray

)
,
({
{3, 4}, {2, 7}

}
→
{
{2, 3}, {4, 7}

}
, black

))
.
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Proof. The proof is by induction on the number of vertices in C. C has an even
number of vertices by construction. If C has two vertices, then ρ is empty, its
scenario graph has a single edge and no bounded faces. Suppose that the statement
is true for every circle having at most 2k − 2 ≥ 2 vertices and take a circle C with
2k vertices and its parsimonious 2-break scenario ρ.

Due to Corollary 2, the first 2-break
({
{u, v}, {w, s}

}
→

{
{u,w}, {v, s}

}
, col

)
of ρ transforms C into a union of two vertex disjoint circles. Denote them by C1
and C2. Due to Corollary 4, the rest of ρ can be partitioned into ρ1 and ρ2, that are
2-break scenarios for C1 and C2 respectively. The edges of ΣS(C,ρ) can be obtained
by adding the edges {u, v} and {w, s} to the union of the edges of S(C1, ρ1) and
S(C2, ρ2). ΣS(C1,ρ1) and ΣS(C2,ρ2) satisfy the inductive hypothesis, thus their edges
do not cross. {u, v} and {w, s} do not cross the other edges and together with {u,w}
and {v, s} bound the only face of ΣS(C,ρ) not belonging to ΣS(C1,ρ1) or ΣS(C2,ρ2).

See Figure 3.10 for an illustration of the links between the scenario and the
trajectory graphs.

3.5.3 Partitioning a Parsimonious 2-break Scenario for a
Circle into the Scenarios for its Sub-circles

In this section we introduce a notion of a sub-circle of a circle and demonstrate that
a parsimonious 2-break scenario for a circle can be partitioned into parsimonious
2-break scenarios for its sub-circles.

Definition 47 (Sub-circle). Take an odd length path in a circle. If the edges incident
to its endpoints are black (respectively gray), then join its endpoints with a gray
(respectively black) edge to obtain a circle. The added colored edge is the colored
outer edge of the sub-circle.

Fix a circular straight-line embedding ΣC of a circle C on n vertices. Number
them J1, nK while respecting their clockwise order on ΣC and ensuring that the
colored edge going clockwise from n to 1 is gray. For i, j ∈ J1, nK with i and j
of different parity, define C[i, j] to be the sub-circle of C consisting of the path
going clockwise from i to j in ΣC and the colored outer edge. By construction, it
is ({i, j}, gray) if i is odd and ({i, j}, black) otherwise. Denote this color by col{i,j},
and the opposite color by col{i,j}.

Lemma 19. Take a parsimonious 2-break scenario ρ for a circle C and an edge
{i, j} of its scenario graph. ρ can be partitioned into parsimonious 2-break scenarios
for C[i, j] and C[j, i].

Proof. The proof is by induction of the number of vertices in C. See Figure 3.9 for
an example. If C has two vertices, then the scenario graph of ρ contains a single
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Figure 3.10: An embedding of a trajectory graph D(C, ρ) for a circle C and its
parsimonious 2-break scenario ρ from Figure 3.9 is depicted in a). b) presents
another embedding of D(C, ρ), where it is drawn over the embedding ΣS(C,ρ) of the
scenario graph from Figure 3.9. To each edge and face of ΣS(C,ρ) assign a vertex as
depicted in c), and join two vertices if they correspond to a face incident to an edge.
The ternary tree thus obtained is, up to minor modifications, equal to D(C, ρ) once
the edge labels, colors and orientations are forgotten.
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edge {1, 2}, while ρ and the parsimonious 2-break scenarios for C[1, 2] and C[2, 1]
are empty. Suppose that the statement is true for any circle with at most 2k−2 ≥ 2
vertices and take a circle C on 2k vertices. The first 2-break τ in ρ transforms C into
a union of two vertex disjoint circles due to Corollary 2. Denote them by C1 and
C2. Due to Corollary 4, the rest of ρ can be partitioned into parsimonious 2-break
scenarios ρ1 and ρ2 for C1 and C2.

Due to Theorem 7, the scenario graph of ρ inherits from ΣC a circular straight-
line embedding in which all the bounded faces are quadrilaterals. The edges of τ
and the edge {i, j} all belong to the scenario graph of ρ. This means that i and j
belong either to C1 or C2, without loss of generality we can suppose that it is C2.
This also means that all the vertices of τ belong either to C[i, j] or C[j, i]. Without
loss of generality we can suppose that it is C[j, i].

The inductive hypothesis holds for the triplet (C2, ρ2, {i, j}), providing us with a
partition of ρ2 into two parsimonious 2-break scenarios for the sub-circles of (C2, λ2)
having ({i, j}, black) and ({i, j}, gray) as the colored outer edges. By construction,
one of these labeled sub-circles is C[i, j]. Denote the other one by C5, and denote
the parsimonious 2-break scenarios obtained for them by ρ[i,j] and ρ5 respectively.

By now we have established that ρ is a shuffle of τ , ρ1, ρ[i,j], and ρ5. Remove
ρ[i,j] and τ from ρ to obtain a shuffle of ρ1 and ρ5, that we denote by ρ. Due to
Observation 15, ρ is a parsimonious 2-break scenario for the union of the vertex-
disjoint circles C1 and C5, which is also the graph obtained from C[j, i] after τ is
performed. Finally, by deleting only ρ[i,j] from ρ, we obtain a shuffle of τ and ρ,
that is a parsimonious 2-break scenario for C[j, i], that together with ρ[i,j] satisfies
the statement.

Definition 48 (Matched scenario for a sub-circle). A parsimonious 2-break scenario
for a sub-circle C[i, j] is matched, if its scenario matching includes the edge {i, j}.
It is non-matched otherwise.

Theorem 8. Take a matched parsimonious 2-break scenario ρ for C[i, j] with i+3 ≤
j. ρ can be partitioned into a 2-break τ =

({
{i, k}, {l, j}

}
→
{
{i, j}, {k, l}

}
, col{i,j}

)
with i < k < l < j, a parsimonious 2-break scenario for C[k, l] and matched parsi-
monious 2-break scenarios for C[i, k] and C[l, j].

Proof. The scenario graph S(C, ρ) inherits its embedding ΣS(C,ρ) from ΣC . An
edge {i, j} is incident to a single bounded face of the embedding ΣS(C,ρ), thus due
to Theorem 7 there exists a single 2-break τ in ρ with {i, j} among its edges. τ
introduces a colored edge ({i, j}, col{i,j}), since ρ is matched. This means that there
exist i < k < l < j such that τ =

({
{i, k}, {l, j}

}
→

{
{i, j}, {k, l}

}
, col{i,j}

)
. The

scenario graph of ρ contains the edges
{
{i, j}, {i, k}, {k, l}, {l, j}

}
of τ . Applying

Lemma 19 for {i, k}, {k, l} and {l, j}, we obtain parsimonious 2-break scenarios
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ρ1, ρ2, and ρ3 for the sub-circles C[i, k], C[k, l] and C[l, j] that together with τ
partition ρ. All we have to prove now is that ρ1 and ρ3 are matched.

If k = i+ 1, then C[i, k] has two vertices and ρ1 is matched by definition. Thus
we can suppose that i + 3 ≤ k, which means that ({i, k}, col{i,j}) is not present in
C[i, j]. τ replaces this colored edge, thus due to Observation 1 ρ also contains a
2-break introducing this edge. Due to Theorem 7 there are only two 2-breaks in ρ
with {i, k} among their edges. Due to the same theorem ρ1 contains a 2-break with
{i, k} among its edges. By construction τ is not in ρ1, thus we can conclude that
ρ1 contains a 2-break introducing ({i, k}, col{i,j}), which means that ρ1 is matched.
The same analysis applies to ρ3.

Analogous arguments to those presented in proof of Theorem 8 allow us to prove
the following.

Theorem 9. Take a non-matched parsimonious 2-break scenario ρ for C[i, j] with
i + 3 ≤ j. ρ contains a 2-break τ =

({
{i, j}, {k, l} →

{
{i, k}, {l, j}

}}
, col{i,j}

)
with

i < k < l < j, and ρ can be partitioned into τ , parsimonious 2-break scenarios for
C[i, k] and C[l, j], and a parsimonious matched 2-break scenario for C[k, l].

These two theorems allow us to partition a parsimonious 2-break scenario for a
sub-circle of C into parsimonious 2-break scenarios for smaller sub-circles of C.

3.6 A Bijection Between the Equivalence Classes
of the Parsimonious 2-break Scenarios for a
Circle and its Matched Quadrangulations

3.6.1 Introduction

In Theorem 7 we have established that the scenario graph of a parsimonious 2-break
scenario for a circle is a quadrangulation of a regular polygon. We define 2-break
scenarios to be equivalent if their multisets of 2-breaks are equal and establish a
bijection between the equivalence classes of the parsimonious 2-break scenarios for
a circle and the matched quadrangulations of a regular polygon.

3.6.2 The Scenario Graphs and Matchings of Equivalent
Scenarios are Equal

Definition 49 (Equivalent 2-break scenarios). Two 2-break scenarios are equivalent
if their multisets of 2-breaks are equal.
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Definition 50 (Edge count of a 2-break scenario). Take a pair of vertices {u, v},
a color col and a 2-break τ . If τ replaces one colored edge (respectively two colored
edges) ({u, v}, col), then its ({u, v}, col)-count is -1 (respectively -2). If τ introduces
one colored edge (respectively two colored edges) ({u, v}, col), then its ({u, v}, col)-
count is 1 (respectively 2). ({u, v}, col)-count of a 2-break scenario is the sum of the
({u, v}, col)-counts of its 2-breaks.

Lemma 20. Equivalent 2-break scenarios for a graph transform it into equal termi-
nal graphs.

Proof. Take a graph G, a 2-break scenario ρ transforming G into a terminal graph
G, and two vertices {u, v} together with a color col. To the number of colored edges
({u, v}, col) in G add the ({u, v}, col)-count of ρ to obtain the number of colored
edges ({u, v}, col) in G. This quantity stays the same for an equivalent 2-break
scenario, meaning that it also transforms G into a terminal graph G.

Lemma 21. Take a parsimonious 2-break scenario ρ for a circle C and a 2-break
τ in ρ replacing two colored edges of C. The sequence of 2-breaks with τ performed
first and followed by the rest of ρ is a parsimonious 2-break scenario for C.

Proof. Without loss of generality we can suppose that τ does not replace the colored
edge ({1, n}, gray). In this case there exists i + 3 ≤ j and a color col, such that
τ =

({
{i, i+ 1}, {j, j+ 1}

}
→
{
{i, j+ 1}, {i+ 1, j}

}
, col

)
. Due to Theorem 7, there

exists a face in the embedding of the scenario graph ΣS(C,ρ) bounded by the edges of
τ . Applying Lemma 19 twice we obtain that ρ can be partitioned into parsimonious
2-break scenarios for C[j + 1, i], C[i + 1, j] and τ . Due to Corollary 4, ρ without τ
is a is a parsimonious 2-break scenario for the union of C[j + 1, i] and C[i + 1, j],
that is a graph obtained from C after τ is performed. This means that moving τ to
the beginning of ρ we obtain a parsimonious 2-break scenario for C.

Theorem 10. The scenario graphs and matchings of two parsimonious 2-break sce-
narios for a circle are equal if and only if these scenarios are equivalent.

Proof. The proof is by induction on the number of vertices in a circle C. If it has
two vertices, then its parsimonious 2-break scenario is empty and the statement is
true. Suppose that the statement is true for every circle with at most 2k − 2 ≥ 2
vertices and take a circle C on 2k vertices together with its parsimonious 2-break
scenarios ρ1 and ρ2.

First suppose that ρ1 and ρ2 are equivalent. This means that they contain exactly
the same 2-breaks but possibly in different order. By definition, the edges of ΣS(C,ρ1)
are the edges of the 2-breaks in ρ1, and these are exactly the same as the edges of
the 2-breaks in ρ2, meaning that ΣS(C,ρ1) = ΣS(C,ρ2). Due to Lemma 20, the terminal
graphs provided by ρ1 and ρ2 are equal. This means that their scenario matchings
are also equal.
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Now suppose that the scenario graphs and the scenario matchings of ρ1 and ρ2

are equal. Take the first 2-break τ 1 of ρ1. Without loss of generality we can suppose
that τ 1 does not replace ({1, n}, gray). In this case there exists i < j and a color
col, such that τ 1 =

({
{i, i + 1}, {j, j + 1}

}
→

{
{i, j + 1}, {i + 1, j}

}
, col

)
. As

({i, i+ 1}, col) is an edge of C, there is a single bounded face of ΣS(C,ρ1) incident to
{i, i + 1}. Due to Theorem 7, τ 1 is the single 2-break in ρ1 with {i, i + 1} among
its edges. This means that {i, i+ 1} is not in the scenario matching of ρ1 and thus
neither in that of ρ2.

Due to Theorem 7, there exists a face in ΣS(C,ρ1) bounded by the edges of τ 1.
ΣS(C,ρ1) = ΣS(C,ρ2), thus the latter contains the same face that we denote by f . Due
to Theorem 7, ρ2 contains a 2-break τ 2 with the edges of τ 2 bounding f , and τ 2

being the single 2-break in ρ2 with {i, i+1} among its edges. {i, i+1} is not present
in the scenario matching of ρ2, and the colored edge ({i, i+ 1}, col) is present in C,
thus τ 2 must replace this colored edge, meaning that τ 2 = τ 1, denote them by τ .

Due to Lemma 21, τ can be moved to the beginning of ρ2 to obtain an equivalent
parsimonious 2-break scenario ρ3. Due to Corollary 2, τ transforms C into a union of
vertex disjoint circles, denote them by C1 and C2. Due to Corollary 4, the rest of ρ1

(respectively ρ3) can be partitioned into two sub-sequences ρ1
1 and ρ1

2 (respectively
ρ3

1 and ρ3
2) that are parsimonious 2-break scenarios for C1 and C2. The scenario

graphs and matchings of ρ1
1 and ρ3

1 are equal, and so are those of ρ1
2 and ρ3

2. Thus ρ1
1

and ρ3
1 are equivalent, due to the induction hypothesis, and so are ρ1

2 and ρ3
2. This

allows us to conclude that ρ1 and ρ3 are equivalent, and thus are ρ1 and ρ2.

Corollary 6. Due to Observation 19, the scenario matchings of two parsimonious
black-2-break scenarios are equal by construction, thus they are equivalent if and only
if their scenario graphs are equal.

3.6.3 A Matched Quadrangulation

Definition 51 (Matched quadrangulation of ΣC). Take a circular straight-line em-
bedding ΣC of a circle C and forget the colors of its colored edges to obtain a regular
polygon. If C has two vertices, then keep a single edge joining them to obtain an
embedding ΣS. Otherwise, add straight-line edges to obtain an embedding ΣS with
all the inner faces being quadrilaterals. We call this embedding a quadrangulation
of a regular polygon. A pair of ΣS and its perfect matchingM is a matched quad-
rangulation of ΣC.

See Figure 3.11 for an example of a matched quadrangulation and an example
for Theorem 11.

Theorem 11. Take a circle C and its matched quadrangulation (ΣS,M). There
exists a parsimonious 2-break scenario ρ for which ΣS(C,ρ) = ΣS andM(C, ρ) =M.
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Figure 3.11: A matched quadrangulation (ΣS,M) of a circular straight-line em-
bedding of a circle is depicted in a) with the matched edges indicated in dashed
lines. Following the process described in Theorem 11, we obtain a parsimonious
2-break scenario ρ with the scenario graph and matching of ρ being equal to ΣS

and M. ρ is depicted in b)-f). To begin with, ΣS contains a face bounded by the
edges {1, 2}, {2, 7}, {7, 8} and {8, 1}, with ({1, 2}, black) and ({7, 8}, black) being
the colored edges of C. {1, 2} and {7, 8} do not belong toM, thus we start ρ with
a 2-break

({
{1, 2}, {2, 7}

}
→

{
{1, 7}, {2, 8}

}
, black

)
that leaves us with two sub-

circles C[8, 1] and C[2, 7], for which we proceed with the same process. ΣS contains
a face bounded by the edges {1, 8}, {8, 9}, {9, 10} and {10, 1}, with ({9, 10}, black)
and ({1, 8}, black) being the colored edges of C[8, 1]. {9, 10} and {1, 8} belong to
M, thus we proceed with a 2-break

({
{10, 1}, {8, 9}

}
→
{
{9, 10}, {1, 8}

}
, gray

)
.
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Proof. The proof is by induction on the number of vertices in C. If C has 2 vertices,
then the empty scenario satisfies the statement. Suppose that the statement is true
for every circle having at most 2k − 2 ≥ 2 vertices and take a circle on 2k vertices.

Due to Theorem 7 and Theorem 1, ΣS has k − 1 bounded face. On the other
hand, ΣS has k edges of the form {i, i+ 1} that are black in C, and such an edge is
incident to at most one bounded face of ΣS. This way we obtain that ΣS contains
a pair of edges that are black in C incident to the same bounded face f . Denote
these black edges by ({i, i+ 1}, black) and ({j, j + 1}, black) with i < j.

All the edges in ΣS, except {i, i + 1} and {j, j + 1}, are incident to an even
number of vertices of C[i+ 1, j], which itself has an even number of vertices. Thus
either both {i, i+ 1} and {j, j + 1} are inM, or both are not inM.

Denote the subgraphs of ΣS induced by the vertices of C[i+1, j] and C[j+1, i] by
ΣS1 and ΣS2 respectively. Denote byM1 (respectivelyM2) a subset ofM consisting
of the edges with both ends in C[i+ 1, j] (respectively C[j + 1, i]).

Suppose that {i, i + 1} and {j, j + 1} are not in M. In this case M1 and M2
partitionM and are the matchings of ΣS1 and ΣS2 . Due to the induction hypothesis,
there exist parsimonious 2-break scenarios ρ1 and ρ2 for C[i + 1, j] and C[j + 1, i]
satisfying the statement of the theorem. A 2-break

({
{i, i + 1}, {j, j + 1}

}
→{

{i, j+1}, {i+1, j}
}
, black

)
followed by ρ1 and ρ2 is a parsimonious 2-break scenario

for C satisfying the statement of the theorem.
Suppose that {i, i+1} and {j, j+1} are inM. In this case the vertices i+1 and

j are not incident to any edges inM1 and the vertices j + 1 and i are not incident
to any edges in M2. Add {i + 1, j} to M1 and {j + 1, i} to M2 to obtain the
matchingsM′

1 of ΣS1 andM′
2 of ΣS2 . Due to the induction hypothesis, there exist

parsimonious 2-break scenarios ρ1 and ρ2 for C[i+1, j] and C[j+1, i], satisfying the
statement of the theorem. ρ1 and ρ2 followed by a 2-break

({
{i, j+1}, {i+1, j}

}
→{

{i, i+ 1}, {j, j + 1}
}
, gray

)
is a parsimonious 2-break scenario for C satisfying the

statement of the theorem.
Corollary 7. Take a quadrangulation of a regular polygon ΣS and its matchingMg

containing the edges that are gray in C. There exists a parsimonious black-2-break
scenario ρ for which ΣS(C,ρ) = ΣS andM(C, ρ) =Mg.

3.6.4 A Bijection Between the Equivalence Classes of the
Parsimonious 2-break Scenarios and the Equivalence
Classes of the MLTDs

In Section 2.4 we have established a bijection between the parsimonious black-2-
break scenarios for the permutation breakpoint graph H(σ, id) and the MLTDs
of σ. Here we use some classical results concerning the equivalence classes of the
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MLTDs of a cyclic permutation σ to establish a bijection between them and the
equivalence classes of the parsimonious black-2-break scenarios for H(σ, id).

Definition 52 (Equivalent transposition decompositions). Two transposition de-
compositions of a permutation are equivalent if their multisets of transpositions are
equal.

Lemma 22. Take two equivalent parsimonious black-2-break scenarios for H(σ, id).
The MLTDs obtained for them in Lemma 8 are also equivalent.

Proof. Take a 2-break τ in a parsimonious black-2-break scenario ρ forH(σ, id). Due
to Lemma 8, τ is a preserving 2-break and thus of the form

({
{uh, vt}, {wh, st}

}
→{

{uh, st}, {wh, vt}
}
, black

)
for some u, v, w, s ∈ {1, . . . , n}. The bijection in Lemma 8

works by transforming τ into its transposition π(τ) = (vs). The multisets of 2-breaks
of two equivalent black-2-break scenarios are equal, this means that the multisets of
transpositions of the MLTDs obtained for them in Lemma 8 are also equal.

Using Lemma 22 we obtain a function F that assigns an equivalence class of the
MLTDs to an equivalence class of the parsimonious black-2-break scenarios. The
way that we assign a parsimonious black-2-break scenario for H(σ, id) to a given
MLTD of σ in Lemma 8 relies on the order of transpositions in the MLTD, thus
it is not immediately clear if F is a bijection. To prove this, we have to use the
machinery introduced by Dulucq and Penaud [38] and later used by Farnoud and
Milenkovic [41].

Definition 53 (The graph of an MLTD). For a permutation σ ∈ Sn and its MLTD
T define a 1-edge-colored graph T (T ) = (V,E), with V = {1, . . . , n} and E =
{{i, j}|(i, j) ∈ T}).

Definition 54 (Planar graph on a circle). Embed vertices {1, . . . , n} on a circle
while respecting their order. If a straight line drawing of a graph T on these vertices
is an embedding, then T is a planar graph on a circle.

See Figure 3.12 d) and e) for an example of a planar spanning tree on a circle.

Theorem 12 (Dulucq and Penaud [38], Farnoud and Milenkovic [41]). Take an
MLTD T of a cyclic permutation σ ∈ Sn. T (T ) is a planar spanning tree on a
circle. Now, take a planar spanning tree T on a circle. There exists an MLTD T ′

of σ satisfying T (T ′) = T . There are 1
2n+1

(
3n
n

)
planar spanning trees on a circle

with n + 1 vertices, thus this is also the number of the equivalence classes of the
MLTDs of a cyclic permutation of n+ 1 elements.

A sequence with values 1
2n+1

(
3n
n

)
is called the Fuss-Catalan sequence. As Catalan

numbers count the number of triangulations of a regular polygon, so the Fuss-
Catalan numbers count the number of quadrangulations of a regular polygon.
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Lemma 23 (Baryshnikov [8]). The number of quadrangulations of a regular polygon
on 2n+ 2 vertices is equal to 1

2n+1

(
3n
n

)
.

Corollary 6 and Corollary 7 allow us to conclude with a following lemma.

Lemma 24. The number of equivalence classes of the black-2-break scenarios for a
circle on 2n vertices is equal to the number of quadrangulations of a regular polygon
on 2n vertices.

Due to Theorem 12, Lemma 23 and Lemma 24, there is an equal number of
the equivalence classes of MLTDs of a cyclic permeation σ and the equivalence
classes of the parsimonious black-2-break scenarios for the permutation breakpoint
graph H(σ, id). Apostolakis in Section 3.3 of [5] presents a bijection between the
quadrangulations, that he calls quadrangular dissections, and the planar spanning
trees on a circle, that he calls non-crossing trees. The construction provided in [5]
and presented in Figure 3.12 establishes that F is indeed a bijection between these
equivalence classes.

3.7 Conclusion

We have shown that a parsimonious 2-break scenario for a graph can be partitioned
into parsimonious 2-break scenarios for the circles of its simple cycles. Theorem 8
allows us to partition a parsimonious 2-break scenario for a circle into parsimo-
nious 2-break scenarios for its sub-circles. In Chapter 5 this will lead to a dynamic
programming algorithm for exploring the space of the parsimonious 2-break scenar-
ios for a circle. Taken together these results allow us to explore the space of the
parsimonious 2-break scenarios for any graph.
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Figure 3.12: A black-2-break scenario ρ for the permutation breakpoint graph
H((12345), id) is depicted in a), while its scenario graph is presented in b). Using
Lemma 8, ρ provides us with a Minimum Length Transposition Decomposi-
tion T = ((45), (23), (15), (13)) of (12345). ((23), (45), (15), (13)) is an equivalent
MLTD to T . Graphically the transpositions of T can be interpreted as the diago-
nals of the bounded faces of the scenario graph joining the tail vertices, as depicted
in c). These diagonals correspond to a planar spanning tree on a circle T (T ) given
in d). T , another planar spanning tree on a circle, is depicted in e). We provide in
i) a quadrangulation of a regular polygon corresponding to an equivalence class E of
the parsimonious black-2-break scenarios for H((12345), id), for which F (E) is the
equivalence class of the MLTDs of σ corresponding to T . T partitions a circle into
5 regions and each region corresponds to an arc of the circle. To each arc/region
assign a head vertex as depicted in f). Add a gray edge between the head vertices
if their corresponding regions are separated by an edge of T . The obtained graph
κ(T ) is called the complement of T in [5]. Each edge of T intersects exactly one
edge of κ(T ) and vice versa, the pairs of the intersecting edges correspond to the
diagonals of the quadrilaterals depicted in h) and i).



Chapter 4

Cost Constrained 2-break
Scenarios

4.1 Introduction

In this chapter we present our model for assigning costs to 2-break scenarios and
introduce the problem of finding a minimum cost scenario among those of minimum
length, the ϕ-Minimum Cost Parsimonious Scenario problem, that will be
treated in Chapter 5.

In [95] we proposed a method to cost constrain DCJs based on the spatial prox-
imity of the intergenic regions, as it is one of the biological triggers for genome
rearrangements [71]. We labeled edges of the genome breakpoint graph with the
spatial positions of the corresponding genome adjacencies, and allowed a 2-break to
transform two edges labeled x and y into 2 new edges with the same labels. Within
this model the cost of a 2-break is 0 if the labels are equal and 1 otherwise. We
posed the Minimum Local Parsimonious Scenario problem (MLPS) of finding
a parsimonious 2-break scenario minimizing the sum of the costs of its 2-breaks.

Around the same time Bulteau, Fertin, and Tannier [27] proposed a method to
cost constrain DCJs based on the lengths of the intergenic regions. Here once again
edges of the breakpoint graph were labeled, however an additional operation, that
of changing an edge label, was allowed. The Sorting by wDCJs and Indels in
Intergenes problem (presented in Subsection 4.3.2), asked for an optimal 2-break
scenario among the parsimonious ones. Bulteau, Fertin, and Tannier [27] proposed
a polynomial time algorithm solving this problem for a circle.

In [95] we also started our work on MLPS by providing a polynomial time
algorithm solving it for a circle. We then proceeded by showing how this algorithm
can be used as a sub-routine to solve MLPS for the genome breakpoint graph. We
soon realized that our method could be extended beyond the breakpoint graphs,

79
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and that we could incorporate the edge label changes proposed by Bulteau, Fertin,
and Tannier [27].

In a seemingly different line of work Farnoud and Milenkovic [41] allowed for
an arbitrary positive real valued cost function on transpositions and defined the
cost of a transposition decomposition of a permutation to be the sum of the costs
of its transpositions. The authors proposed an O(n4)-time algorithm for finding
a minimum cost decomposition among the Minimum Length Transposition
Decompositions of a permutation σ ∈ Sn.

These three lines of work converged into a framework for cost constrained 2-
breaks outlined in Section 4.2 and first presented by us in [90]. The rest of the
chapter consists of novel but rather technical work aimed to better understand the
structure of the minimum cost scenarios.

4.2 An O-scenario

In this section we augment a graph with labels on both vertices and edges, and
introduce an O-scenario transforming one labeled graph into another. The labeled
edges can be modified either via an O-change, that changes the label of a single
edge, or via an O-break, that is a 2-break acting not only on the connectivity of
the edges but also on their labels. The labels of the vertices stay fixed throughout
an O-scenario, however they are used to define which O-changes and O-breaks are
allowed to transform a labeled graph.

Take alphabets of vertex and edge labels ΣV and ΣE. We will use letters
{u, v, w, s, r} to denote vertices, {a, b, c, d} to denote vertex labels and {x, y, z, t, q}
to denote edge labels. We start by introducing a set of valid operations O.

Definition 55 (Valid operations O). A valid set of operations O is a subset of
tuples

•
(
({a, b}, x); ({a, b}, y); col

)
(called edge-label change), and

•
({

({a, b}, x), ({c, d}, y)
}

;
{

({a, c}, z), ({b, d}, t)
}

; col
)

(called 2-break on labels)

for a, b, c, d ∈ ΣV , x, y, z, t ∈ ΣE, and col ∈ {gray,black}.

Having O defined on the labels of the vertices and not on the graph vertices
themselves allows us to use it for any labeled graph.

Definition 56 (Labeled graph). A labeled graph is a pair of a graph G = (V,E)
and its labeling λ = (λV , λE) with λV : V → ΣV and λE : E → ΣE. Take a
colored edge ({u, v}, col) and its label x provided by λ, we denote this labeled edge
by ({u, v}, col, x).
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Definition 57 (O-change). If a set of valid operations O contains an edge-label
change

(
({a, b}, x); ({a, b}, y); col

)
and (G, λ) contains a labeled edge ({u, v}, col, x),

with vertices (u, v) labeled (a, b), then the label of this edge can be changed into y.
We denote such a transformation of (G, λ) by ({u, v}, col, x)→ ({u, v}, col, y), and
call it an O-change.

Definition 58 (O-break). If a set of valid operations O contains a 2-break on la-
bels

({
({a, b}, x), ({c, d}, y)

}
;
{

({a, c}, z), ({b, d}, t)
}

; col
)
and (G, λ) contains labeled

edges ({u, v}, col, x) and ({w, s}, col, y), with vertices (u, v, w, s) labeled (a, b, c, d) re-
spectively, then a 2-break

({
{u, v}, {w, s}

}
→
{
{u,w}, {v, s}

}
, col

)
can be performed

on G, with the labels of the new colored edges ({u,w}, col) and ({v, s}, col) being z
and t. We call such a transformation of a labeled graph (G, λ) an O-break and denote
it
({

({u, v}, x), ({w, s}, y)
}
→
{

({u,w}, z), ({v, s}, t)
}
, col

)
.

Definition 59 (O-scenario and its 2-break-length). An O-scenario for (G, λ) is a
sequence of O-changes and O-breaks transforming it into (G, λ), with G being a
terminal graph and its multisets of black and gray labeled edges being equal. The
number of O-breaks in an O-scenario is its 2-break-length.

See Figure 4.2 for an example of an O-scenario. An O-scenario does not necessar-
ily exist for a given (G, λ), however if it exists, then the inequality dOb(G, λ) ≥ d2b(G)
holds, where dOb(G, λ) denotes the minimum 2-break-length of an O-scenario, and
d2b(G) is the minimum length of a 2-break scenario for G.

Definition 60 (Parsimonious O-scenario). An O-scenario for (G, λ) is parsimo-
nious, if its 2-break-length is exactly d2b(G). According to this definition a parsimo-
nious O-scenario can contain any number of O-breaks.

An O-break
({

({u, v}, x), ({w, s}, y)
}
→

{
({u,w}, z), ({v, s}, t)

}
, col

)
can also

be denoted by a pair of a 2-break τ =
({
{u, v}, {w, s}

}
→

{
{u,w}, {v, s}

}
, col

)
,

and a labeling χ of its colored edges. We will allow ourselves to write (τ, χ) =({
({u, v}, x), ({w, s}, y)

}
→

{
({u,w}, z), ({v, s}, t)

}
, col

)
for these different nota-

tions.

Definition 61 (Underlying 2-break scenario of an O-scenario). Take an O-scenario
ρ for a labeled graph (G, λ) and omit the O-changes to obtain a sequence of O-breaks(
(τ1, χ1), . . . , (τm, χm)

)
. The sequence of 2-breaks (τ1, . . . , τm) is a 2-break scenario

for G, we call it the underlying 2-break scenario of ρ.

In what follows, the scenario graph and the scenario matching (see Definition 43
and Definition 44) of a parsimonious O-scenario for a circle will mean the scenario
graph and the scenario matching of its underlying 2-break scenario.
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4.3 The ϕ-cost of an O-scenario

4.3.1 Optimization Problems

For an arbitrary cost function ϕ on a set of valid operations O we introduce a couple
of families of optimization problems for the O-scenarios.

Definition 62 (The ϕ-cost of an O-scenario). Take a cost function ϕ : O → R+.
The ϕ-cost ϕ(ρ) of an O-scenario ρ is the sum of the ϕ-costs of its constituent
operations.

Definition 63 (The MCSϕ-cost of a labeled graph). The MCSϕ-cost of a labeled
graph (G, λ), denoted by MCSϕ(G, λ), is the minimum ϕ-cost of an O-scenario for
(G, λ), if such an O-scenario exists, and ∞ otherwise. A ϕ-MCS O-scenario is an
O-scenario with ϕ-cost equal to MCSϕ(G, λ).

Definition 64 (The MCPSϕ-cost of a labeled graph). The MCPSϕ-cost of a labeled
graph (G, λ), denoted by MCPSϕ(G, λ), is the minimum ϕ-cost of a parsimonious
O-scenario for (G, λ), if such an O-scenario exists, and ∞ otherwise. A ϕ-MCPS
O-scenario is a parsimonious O-scenario with ϕ-cost equal to MCPSϕ(G, λ).

Problem 9 (ϕ-Minimum Cost Scenario or ϕ-MCS).

INPUT : A labeled graph (G, λ).
OUTPUT : MCSϕ(G, λ).

Problem 10 (Minimum Cost Scenario or MCS).

INPUT :A pair (O, ϕ) and a labeled graph (G, λ).
OUTPUT : MCSϕ(G, λ).

Problem 11 (ϕ-Minimum Cost Parsimonious Scenario or ϕ-MCPS).

INPUT : A labeled graph (G, λ).
OUTPUT : MCPSϕ(G, λ).

Problem 12 (Minimum Cost Parsimonious Scenario or MCPS).

INPUT :A pair (O, ϕ) and a labeled graph (G, λ).
OUTPUT : MCPSϕ(G, λ).

As we outline in the following subsection, some particular cases of ϕ-MCPS and
ϕ-MCS have already been addressed in the literature. The MCS problem is more
pertinent for the study of genome rearrangements, as the real evolutionary scenarios
might be non-parsimonious, however it is also much more difficult to approach than
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the MCPS problem. Not only have we shown MCS to be NP-complete even for
fairly simple cost functions, but there is a general lack of tools for working with
non-parsimonious 2-break scenarios.

This is why we first treat MCPS, which also serves as an upper bound for MCS.
The results established in Chapter 3 concerning the parsimonious 2-break scenarios
will lead to a polynomial time algorithm for the MCPS problem for a labeled circle
and a labeled breakpoint graph in Chapter 5.

4.3.2 ϕ-MCPS and ϕ-MCS in the Literature

Minimum Local Parsimonious Scenario

In [95] we supposed the adjacencies of a genome A to be partitioned into spa-
tial regions represented by different colors. We then developed a polynomial time
algorithm for finding a parsimonious DCJ scenario minimizing the number of rear-
rangements whose breakpoints appear in different regions. The problem, as stated
in [95], differs slightly from ϕ-MCPS, since in that study we do not have colors for
the adjacencies of genome B. We can bridge this gap as follows.

There is a single vertex label a, while edge labels ΣE = Σc∪{t} are the colors rep-
resenting the different spatial regions of a genome plus an additional terminal label
t. O contains 2-breaks on labels

(
({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y); black

)
for x, y ∈ Σc, and edge-label changes

(
({a, a}, x); ({a, a}, t); black

)
for x ∈ Σc. The

ϕc-cost of a 2-break on labels in O is 0 if the labels of the edge are equal and 1
otherwise. The ϕc-cost of an edge-label change is 0.

In [95] we presented an O(n3) time algorithm for the ϕc-MCPS problem on
a labeled circle with the gray edges labeled with t, while in [91] we established
that the ϕc-MCS problem is NP-hard. In the same paper we proposed an algo-
rithm for the ϕc-MCS problem on a breakpoint graph that is exponential in the
number of colors and not in the number of vertices. In [90] we used the same
O and an arbitrary symmetric function Φ : Σ2

E → R+, for which we defined
ϕf
(
({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y); black

)
= Φ(x, y). This drastically

enhanced the model introduced in [95] as now a rearrangement whose breakpoints
appear in the same region could have non-zero cost. In [90] we described an O(n4)
time algorithm solving ϕf -MCPS on a labeled circle on n vertices.

Sorting by wDCJs and Indels in Intergenes

Bulteau, Fertin, and Tannier [27] introduced a problem where genome adjacencies
are labeled with their genetic length (number of nucleotides). A wDCJ is a DCJ
that preserves the sum of the genetic lengths of the adjacencies and an indel δ
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increases or decreases the genetic length of an adjacency by δ. The cost of a wDCJ
is 0 and the cost of an indel δ is |δ|. A scenario of wDCJs and indels for (G, λ) is
said to be valid if its wDCJ-length is d2b(G). The paper treats a problem of finding
a minimum cost scenario among the valid ones and presents an O(n log n) algorithm
for co-tailed single-copy genomes with n genes.

Translating this into our formalism yields the following ϕ-MCPS problem. Edge
labels are the natural numbers and there is a single vertex label that we denote by a.
O contains 2-breaks on labels

(
({a, a}, w1), ({a, a}, w2); ({a, a}, w3), ({a, a}, w4); col

)
with wi ∈ N satisfying w1 + w2 = w3 + w4. O also contains edge-label changes(
({a, a}, w1); ({a, a}, w2); col

)
with wi ∈ N.

For this O we have that dOb(G, λ) = d2b(G) for any labeled graph (G, λ), since
G can be first transformed into a terminal graph using any parsimonious O-scenario
and then its labels can be adjusted. The ϕl-cost of a 2-break on labels is 0 and the
ϕl-cost of an edge-label change

(
({a, a}, w1); ({a, a}, w2); black

)
is |w1 − w2|.

For ϕl-MCPS Bulteau, Fertin, and Tannier presented an O(r log r) time algo-
rithm on a labeled circle with r vertices. Combining this algorithm with our results
from Section 5.5 provides a polynomial time algorithm for ϕl-MCPS on a labeled
breakpoint graph, while the ILP defined in Section 5.2 solves ϕl-MCPS on any
labeled graph.

wDCJ-dist

Fertin, Jean, and Tannier [47] treated a problem wDCJ-dist where wDCJs without
indels are allowed, and the sums of the genetic lengths of the adjacencies of two
genomes are equal.

In this case we keep the same ΣE,ΣV and O as in Example 4.3.2 except that
the edge-label changes are excluded from O. A labeled graph is said to be balanced
if the sums of the labels of black and gray edges are equal. wDCJ-dist is the
problem of finding dOb(G, λ) for a balanced labeled circular graph. The authors
showed that wDCJ-dist is strongly NP-complete. However, they also proved that
dOb(G, λ) = d2b(G) for a balanced labeled circular graph whose connected compo-
nents are balanced labeled circles.

Rearrangement Scenarios that Preserve Common Intervals

Another biological constraint that has been studied for genome rearrangements is
that of conserved gene clusters, or preserved common intervals [59, 12, 56]. An
interval or gene cluster of a genome is a set of consecutive genes on one of its
chromosomes. Gene clusters shared between genomes, also known as common in-
tervals, were observed to contain functionally associated proteins [96]. This moti-
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vated a search for rearrangement scenarios that preserve common intervals. Bérard,
Chateau, Chauve, Paul, and Tannier [12] studied the problem of finding such a
preserving DCJ scenario of the minimum length. In this subsection we introduce
the F-perfect DCJ problem treated in [12], and explain why it cannot be im-
mediately interpreted as a ϕ-MCPS problem. We then propose a modification of
F-perfect DCJ that resolves this conflict. At this point our goal is to demon-
strate the versatility of our method, thus further studies should be undertaken to
see how these variants of F-perfect DCJ compare to each other.

Take a subset of genes I. An adjacency is a border adjacency of I if exactly
one of its gene extremities is an extremity of a gene in I. An interval of a genome,
by definition, has zero or two border adjacencies. Take a genome with at most
two border adjacencies of I. A DCJ transforming this genome preserves I if the
resulting genome also contains at most two border adjacencies of I. According
to this definition a preserving DCJ might excise a circular chromosome out of an
interval I thus leading to a situation where I is no longer a single interval in the
obtained genome. Two sets overlap if their intersection is non-empty and properly
included in both of the sets. A family F of sets is nested, if no two sets in F overlap.
Take two single-copy genomes A and B having n genes together with a family F of
common intervals. A DCJ scenario transforming A into B is F-perfect if its DCJs
preserve the intervals in F . The authors in [12] pose the F-perfect DCJ problem
of finding a minimum length F -perfect DCJ scenario. They not only establish that
the F-perfect DCJ problem is NP-hard in general, but also show that it can be
solved in O(n2) time for a nested F . In this case the minimum length of a F -perfect
DCJ scenario is actually equal to daDCJ(A,B).

Take a DCJ δ =
{
{a, b}, {c, d}

}
→
{
{a, c}, {b, d}

}
and an interval I of a genome

A. If the number of border adjacencies among
{
{a, b}, {c, d}

}
and

{
{a, c}, {b, d}

}
is

equal, then δ is preserving. However if these numbers are not equal, then from δ and
I alone we cannot decide whether it is preserving or not, as this now depends on A
too. As a workaround we define a DCJ to strongly preserve a subset of genes if the
resulting genome preserves the number of border adjacencies. Now no information
on A is necessary to decide whether a DCJ is strongly preserving for I or not.
Define a common interval for two genomes to be strongly common if its number of
border adjacencies in both genomes is equal. If the genomes contain only linear
chromosomes, which is the case for most of eukaryotic genomes, then their common
interval is necessarily strongly common as it contains exactly two border adjacencies
in both genomes. Take a family F of strongly common intervals of A and B. A DCJ
scenario is strongly F-perfect if its DCJs are strongly preserving for the intervals in
F . We pose the strictly F-perfect DCJ problem of finding a minimum length
strongly F -perfect DCJ scenario transforming A into B.

Take two single-copy genomes A and B with genes {1, . . . , n} and a family F
of their strongly common intervals. Take a single edge label t and vertex labels



86 Chapter 4. Cost Constrained 2-break Scenarios

ΣV = {1t, . . . , nt} ∪ {1h, . . . , nh}. Construct O containing every 2-break on labels(
({a, b}, t), ({c, d}, t); ({a, c}, t), ({b, d}, t); black

)
with a, b, c, d ∈ EV . Its ϕp-cost is 0

if the number of border adjacencies in
{
{a, b}, {c, d}

}
and

{
{a, c}, {b, d}

}
is equal for

every strongly common interval in F , it is 1 otherwise. Label the colored edges of the
genome breakpoint graph G(A,B) with t and its vertices with themselves to obtain
a labeled graph (G(A,B), λ). MCPSϕp(G(A,B), λ) provides us with the minimum
number of non-strongly preserving DCJs in a DCJ scenario of length daDCJ(A,B).
Using the algorithm presented in Chapter 5 we can compute it in O(n4) time.

This approach allows for a great flexibility as we can choose arbitrary costs for
2-breaks on labels. For example, define breaking costs for the intervals in F and
define the cost of a 2-break on labels to be the sum of the breaking costs of all the
intervals that it breaks. A ϕ-MCPS problem thus defined allows us to find a DCJ
scenario of length daDCJ(A,B) that best preserves a family of common intervals in
O(n4) time.

Cost Constrained Transposition Decompositions of a Permutation

Farnoud and Milenkovic [41] fixed an arbitrary cost function ϕ on transpositions
and defined the cost of a transposition decomposition of a permutation to be the
sum of the costs of its transpositions. They proposed an O(n4) time algorithm
for the problem of finding a minimum cost decomposition among the Minimum
Length Transposition Decompositions of a permutation σ ∈ Sn, the MIN-
cost-MLTD problem. The MIN-cost-TD problem was also discussed. Farnoud
and Milenkovic showed that for an arbitrary cost function MIN-cost-MLTD is
a 4-approximation of MIN-cost-TD. In addition to that, Farnoud, Milenkovic,
Puleo, and Su [42] conjectured that there exists a MIN-cost-TD of length O(n2).

There is a single edge label x, while vertex labels are ΣV = Vt ∪ Vh, with Vt =
{1t, . . . , nt} and Vh = {1h, . . . , nh}. O consists of the 2-breaks on labels of the
form (({uh, vt}, x), ({wh, st}, x); ({uh, st}, x), ({wh, vt}, x); black

)
, where every edge

is incident to a tail and a head vertex. The ϕt-cost of such a 2-break on labels is
equal to ϕ(v, s).

Due to Lemma 8, an instance of the MIN-cost-MLTD problem for a permuta-
tion σ can be interpreted as an instance of the ϕt-MCPS problem for its permutation
breakpoint graph H(σ, id) with every edge labeled x and every vertex labeled with
itself. Analogously an instance of the MIN-cost-TD problem can be interpreted as
an instance of the ϕt-MCS problem. This way the work on MIN-cost-TD [41, 42]
can guide further work on ϕ-MCS, and our results on ϕ-MCPS can be used to
generalize those on MIN-cost-MLTD.
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Token Swapping and Interchange Rearrangement Problem

We invite the reader to revisit Section 2.7 for more examples of the problems that
can be interpreted as ϕ-MCPS or ϕ-MCS.

4.4 Change-first O-scenario

In order to solve the MCPS problem we have to search the space of the parsimonious
O-scenarios. An O-scenario, as defined in Section 4.2, might contain any number of
O-changes, thus the search space might be prohibitively large.

Among the problems discussed in Subsection 4.3.2 only Sorting by wDCJs
and Indels in Intergenes [27] (or ϕl-MCPS in our notation) allowed for O-
changes. The authors established that there exists an MCPSϕl scenario consisting
of a sequence of O-breaks followed by a sequence of O-changes. This observation
drastically reduced the search space. Along the same lines, we introduce a notion
of a change-first O-scenario. It is an O-scenario that starts with some O-changes
on the labeled edges of a labeled graph and then proceeds with O-breaks without
any more O-changes. We would like to explore the space of the change-first O-
scenarios and not that of all the O-scenarios. To this end we introduce a notion of
a complete pair (O, ϕ), and show that in this setting for every labeled graph there
exists a change-first MCPSϕ O-scenario. In the following section we demonstrate
that every pair (O, ϕ) can be transformed into a complete one in polynomial time,
which allows us to concentrate solely on the change-first O-scenarios in Chapter 5.
Definition 65 (Complete (O,ϕ)). A pair (O, ϕ) is complete if the following prop-
erties hold.

1. If O contains a pair of edge-label changes γ0 =
(
({a, b}, x0); ({a, b}, x1); col

)
and γ1 =

(
({a, b}, x1); ({a, b}, x2); col

)
, then O also contains an edge-label

change γ2 =
(
({a, b}, x0); ({a, b}, x2); col

)
, and ϕ(γ2) ≤ ϕ(γ0) + ϕ(γ1).

2. If O contains π0 =
({

({a, b}, x), ({c, d}, y)
}

;
{

({a, c}, z), ({b, d}, t)
}

; col
)
, γ0 =(

({a, c}, z); ({a, c}, z′); col
)
and γ1 =

(
({b, d}, t); ({b, d}, t′); col

)
, then O also

contains π1 =
({

({a, b}, x), ({c, d}, y)
}

;
{

({a, c}, z′), ({b, d}, t′)
}

; col
)
, for which

ϕ(π1) ≤ ϕ(π0) + ϕ(γ0) + ϕ(γ1).
Definition 66 (Change-first O-scenario). An O-scenario for a labeled graph (G, λ)
is change-first if it is a sequence of O-changes with at most one O-change per labeled
edge of (G, λ), followed by a sequence of O-breaks.

See Figure 4.2 for an example of an O-scenario and an illustration of Lemma 25
in which we provide a canonical O-scenario ρ̂ preserving some of the core properties
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Figure 4.1: In this figure we provide an example of a pair (O, ϕ) and
its completion (Oc, ϕc). For this we use a single vertex label a and edge
labels {x, y, z, t, q, qt, xyz, xyztq}. The figure itself depicts 1-edge-colored di-
rected multigraphs W black

{a,a} and W gray
{a,a} introduced in Lemma 26 whose di-

rected edges define the edge-label changes in O as follows. An edge-label
change γ1 =

(
({a, a}, x); ({a, a}, y); black

)
is in O, as a directed edge (x, y)

is in W black
{a,a} , and γ2 =

(
({a, a}, x); ({a, a}, q); black

)
is not in O, as W black

{a,a}
does not contain a directed edge (x, q). O contains the 2-breaks on la-
bels involving a single edge label. For example a 2-break on labels π1 =({

({a, a}, x), ({a, a}, x)
}

;
{

({a, a}, x), ({a, a}, x)
}

; black
)
is in O, as it involves a sin-

gle edge label x, and π2 =
({

({a, a}, x), ({a, a}, x)
}

;
{

({a, a}, y), ({a, a}, q)
}

; black
)

is not in O, as it involves 3 existing edge labels. We define the ϕ-cost of an edge-
label change in O to be equal to 1 and the ϕ-cost of a 2-break on labels to be equal
to the length of the involved edge label. For example ϕ(π1) = 1, as the length of x
is 1. We provide a short description of the completion (Oc, ϕc) of (O, ϕ) introduced
in Section 4.5. An edge-label change γ2 belongs to Oc, as there is a directed path
from x to q in W black

{a,a} . The minimum length of such a path is 2, thus ϕc(γ2) = 2. A
2-break on labels π2 is in Oc, as π1 is in O, and γ1 and γ2 are in Oc, furthermore
ϕc(π2) is equal to ϕ(π1) + ϕc(γ1) + ϕc(γ2) = 4.

of an O-scenario ρ. Lemma 25 will be used in the following chapter when solving
the ϕ-MCPS problem for a circle.

Lemma 25. Take a complete pair (O,ϕ) and an O-scenario ρ for a labeled circle
(C,λ). There exists a change-first O-scenario ρ̂ satisfying the following properties:

• ϕ(ρ̂) ≤ ϕ(ρ),

• The underlying 2-break scenarios of ρ̂ and ρ are equal,

• If ρ does not contain an O-change modifying the label of some colored edge,
then neither does ρ̂.

Proof. Take (τ, χ) =
({

({u, v}, x), ({w, s}, y)
}
→

{
({u,w}, z), ({v, s}, t)

}
, col

)
, the

first O-break in ρ. Denote by ρ{u,w} the subsequence of ρ consisting of the O-changes
applying to a colored edge ({u,w}, col). Keep only those O-changes in ρ{u,w} that
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Figure 4.2: We provide an example of an Oc-scenario for a labeled circle using
a set of valid operations Oc introduced in Figure 4.1. ρ =

(
({5, 6}, black, y) →

({5, 6}, black, x),
({

({1, 2}, x), ({5, 6}, x)
}
→

{
({1, 6}, x), ({2, 5}, x)

}
, black

)
,

({2, 3}, gray, t) → ({2, 3}, gray, q), ({2, 5}, black, x) → ({2, 5}, black, xyz),
({2, 5}, black, xyz) → ({2, 5}, black, q),

({
({2, 3}, q), ({4, 5}, q)

}
→{

({2, 5}, q), ({3, 4}, q)
}
, gray

)
, ({1, 6}, gray, z) → ({1, 6}, gray, x)

)
. A possible

change-first Oc-scenario obtained from ρ in Lemma 25 is ρ̂ =
(

({5, 6}, black, y) →
({5, 6}, black, x), ({2, 3}, gray, t) → ({2, 3}, gray, q), ({1, 6}, gray, z) →
({1, 6}, gray, x)

)
,
({

({1, 2}, x), ({5, 6}, x)
}
→

{
({1, 6}, x), ({2, 5}, q)

}
, black

)
,({

({2, 3}, q), ({4, 5}, q)
}
→
{

({2, 5}, q), ({3, 4}, q)
}
, gray

))
. It is not unique, as the

Oc-changes in the beginning of the change-first scenario can be performed in any
order.

follow (τ, χ) but precede the followingO-break replacing ({u,w}, col). If ρ{u,w} is not
empty, then denote by z′ the label provided by the last O-change in ρ{u,w}, otherwise
denote z′ = z. Due to Corollary 2 in Section 2.2, every prefix of ρ transforms
(C, λ) into a union of vertex disjoint circles, and, by definition, a circle contains at
most one copy of every colored edge. This means that all the O-changes in ρ{u,w}
apply to the same colored edge. Analogously, construct the subsequence ρ{v,s} of
the O-changes in ρ transforming the label of ({v, s}, col) from t to t′. Due to the
completeness of (O, ϕ),

({
({u, v}, x), ({w, s}, y)

}
→

{
({u,w}, z′), ({v, s}, t′)

}
, col

)
is an O-break. Transform ρ by deleting ρ{u,w} and ρ{v,s}, and replacing (τ, χ) with({

({u, v}, x), ({w, s}, y)
}
→
{

({u,w}, z′), ({v, s}, t′)
}
, col

)
, to obtain an O-scenario

of smaller or equal ϕ-cost. The underlying 2-break scenario of ρ remains unchanged.
Proceed with the rest of O-breaks in ρ.

Now take a labeled edge ({u, v}, col, x) of (C, λ). As above, construct a subse-
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quence ρ{u,v} containing the O-changes in ρ transforming the label of ({u, v}, col)
from x to x′. If ρ{u,v} is not empty, then transform ρ by adding ({u, v}, col, x) →
({u, v}, col, x′) to its beginning and deleting ρ{u,w} to obtain an O-scenario of lower
or equal ϕ-cost. The underlying 2-break scenario of ρ remains unchanged. Proceed
with the rest of labeled edges of (C, λ) to obtain a change-first O-scenario.

Corollary 8. Take a complete pair (O, ϕ) and a labeled circle (C, λ). Either there
exists a change-first ϕ-MCPS O-scenario for (C, λ), or MCPSϕ(C, λ) =∞.

4.5 Completion of (O, ϕ)

In this section we transform a pair (O, ϕ) into a complete pair (Oc, ϕc), while en-
suring that MCPSϕ and MCPSϕc costs for every labeled graph are equal.

Definition 67 (Completion of (O, ϕ)). Construct the completion (Oc,ϕc) of (O,ϕ)
as follows. To begin with, for every sequence of edge-label changes from O of the
form ((

({a, b}, x0); ({a, b}, x1); col
)
,
(
({a, b}, x1); ({a, b}, x2); col

)
, . . . ,(

({a, b}, xm−1); ({a, b}, xm); col
))

add an edge-label change
(
({a, b}, x0); ({a, b}, xm); col

)
to Oc. A number of different

sequences might result in the same edge-label change in Oc, define its ϕc-cost to be the
minimum sum of the ϕ-costs of the edge-label changes in such a sequence. For every
2-break on labels

({
({a, b}, x), ({c, d}, y)

}
;
{

({a, c}, z), ({b, d}, t)
}

; col
)
in O, and a

pair of edge-label changes
(
({a, c}, z); ({a, c}, z′); col

)
and

(
({b, d}, t); ({b, d}, t′); col

)
in Oc, add a 2-break on labels

({
({a, b}, x), ({c, d}, y)

}
;
{

({a, c}, z′), ({b, d}, t′)
}

; col
)

to Oc. A number of different combinations of a 2-break on labels in O and edge-label
changes in Oc might result in the same 2-break on labels in Oc, define its ϕc-cost
as the minimum sum of the ϕ-cost of a 2-break on labels and the ϕc-costs of the
edge-label changes invoking it.

Observation 20. (Oc, ϕc) is complete by construction.

See Figure 4.1 for an example of the completion of (O, ϕ) and an illustration for
Lemma 26.

Lemma 26. The completion (Oc,ϕc) of (O,ϕ) can be constructed in O(|EV |2|ΣE|3+
|ΣE|2|O|) time, which is O(|ΣE|6|EV |4) in the worst case.

Proof. For a color col ∈ {black,gray} and a pair of vertex labels {a, b}, define an
edge-weighted 1-edge-colored directed multigraph W col

{a,b} with a vertex set ΣE. For
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an edge-label change
(
({a, b}, x); ({a, b}, y); col

)
in O, add a directed edge (x, y) in

W col
{a,b} of weight ϕ

(
({a, b}, x); ({a, b}, y); col

)
. For a pair of edge labels {x, y}, an

edge-label change
(
({a, b}, x); ({a, b}, y); col

)
is in Oc if and only if a path from x

to y exists in W col
{a,b}. Further, its ϕ-cost is equal to the minimum weight of such

a path. Johnson’s algorithm [63] can be used to find the minimum weight paths
between all the pairs of vertices inW col

{a,b} in O(|ΣE|3) time. This operation has to be
repeated for the |EV |2 pairs of vertex labels and two different colors, thus ϕc-costs
of the edge-label changes in Oc can be computed in O(|EV |2|ΣE|3) time.

Take a 2-break on labels
({

({a, b}, x), ({c, d}, y)
}

;
{

({a, c}, z), ({b, d}, t)
}

; col
)
in

O and a pair of edge labels {z′, t′}. If edge-label changes
(
({a, c}, z); ({a, c}, z′); col

)
and

(
({b, d}, t); ({b, d}, t′); col

)
are in Oc, then it also contains a 2-break on labels({

({a, b}, x), ({c, d}, y)
}

;
{

({a, c}, z′), ({b, d}, t′)
}

; col
)
. One can iterate through 2-

breaks on labels in O and the pairs of edge labels in O(|O||ΣE|2) time. If one can
check in constant time whether an edge-label change is present in Oc, then the 2-
breaks on labels in Oc and their ϕc-costs can also be obtained in O(|O||ΣE|2) time.
The size of O is O(|ΣV |4|ΣE|4) in the worst case, which means that O(|EV |2|Σ3

E|+
|ΣE|2|O|) is O(|ΣE|6|EV |4).
Lemma 27. MCPSϕ(G, λ) = MCPSϕc(G, λ) for a labeled graph (G, λ).

Proof. MCPSϕc(G, λ) ≤MCPSϕ(G, λ) as every O-scenario for (G, λ) is also an Oc-
scenario for (G, λ). This means that if MCPSϕc(G, λ) = ∞, then MCPSϕ(G, λ)
is also ∞. Suppose that a parsimonious Oc-scenario ρ for (G, λ) exists. By con-
struction, every Oc-break in ρ can be replaced with an O-break followed by a pair
of Oc-changes, and every Oc-change can be replaced by a sequence of O-changes to
obtain an O-scenario with ϕ-cost equal to ϕc-cost of ρ.

Corollary 8 and Lemma 27 ensure that for every labeled graph there exists a
change-first Oc-scenario of ϕc-cost equal the MCPSϕ-cost of that labeled graph.

4.6 Conclusion

We have introduced a framework for cost constraining 2-breaks and demonstrated
that it generalizes previous work on cost constrained DCJ rearrangements and cost
constrained transpositions.

We have shown that when dealing with the Minimum Cost Parsimonious
Scenario problem it is enough to explore the space of the change-first O-scenarios.
These are the O-scenarios in which the O-changes precede the O-breaks. However
for this to work we first need to construct the completion (Oc, ϕc), which, as pre-
sented in Lemma 26, is a time consuming task. In practice this might prompt us
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to either start with a complete pair (O, ϕ) from the beginning, or use some ad-
ditional knowledge about a particular pair (O, ϕ) to devise a faster algorithm for
constructing its completion.



Chapter 5

Minimum Cost Parsimonious
Scenario

5.1 Introduction

In this chapter we treat the MCPS problem. The central result is a polynomial
time dynamic programming algorithm for MCPS on a labeled circle for a complete
pair (O, ϕ). The MCPS problem is NP-hard in general due to the NP-hardness of
finding a Maximum Alternating Edge-disjoint Cycle Decomposition of a
graph [19], nevertheless we demonstrate that our algorithm for a labeled circle can
be used as a subroutine to solve MCPS for any labeled graph. This results in a
proof that MCPS remains polynomial time solvable for a labeled breakpoint graph.

We build on the work presented in Chapter 3. The Labeled Eulerian decomposi-
tion, the labeled trajectory graph, the labeled circle of a simple cycle, and the labeled
sub-circle are natural generalizations of the structures previously used to study parsi-
monious 2-break scenarios. We show that the proofs from Chapter 3 can be adapted
to this labeled setting and prove the following. First we show that the MCPSϕ-cost
of a labeled graph is equal to the minimum of the MCPSϕ-costs of its labeled Max-
imum Alternating Edge-disjoint Cycle Decompositions. We proceed by
establishing that the MCPSϕ-cost of a labeled simple cycle is equal to the minimum
of the MCPSϕ-costs of its labeled circles. Finally we show that a parsimonious O-
scenario for a circle can be partitioned into parsimonious O-scenarios for its labeled
sub-circles, which leads to a dynamic programming algorithm for MCPS. Its worst
case time complexity is O(n4L4), where n is the number of vertices in a circle and
L is the number of edge labels used in O.

Our algorithm is general in that it works with an arbitrary cost function. If
a particular cost function ϕ is chosen, then its combinatorial properties might be
exploited to come up with a faster algorithm for a particular ϕ-MCPS problem. No-

93
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tably this is a case for the problems introduced in Section 4.3.2, namely Sorting by
wDCJs and Indels in Intergenes [27] and Minimum Local Parsimonious
Scenario [95]. For these problems O(n log(n)) and O(n3) time algorithms exist for
a labeled circle on n vertices. In Section 5.5 we explain how such a preexisting O(nt)
time algorithm with t ≥ 1 for ϕ-MCPS on a labeled circle can be used as a sub-
routine to obtain an O(nt+1) time algorithm for ϕ-MCPS on a labeled breakpoint
graph.

5.2 MCPS for a Graph

5.2.1 Introduction

Here we build on Theorem 4 stating that a parsimonious 2-break scenario for a
graph can be partitioned into parsimonious 2-break scenarios for the subgraphs in
its Maximum Alternating Edge-disjoint Cycle Decomposition. We adjust
its proof to show that the same holds for a labeled graph and its parsimonious O-
scenario. This allows us to prove that the MCPSϕ-cost of a labeled graph is equal
to the minimum of the MCPSϕ-costs of its labeled MAECDs. We proceed by
proposing a straightforward ILP for computing the MCPSϕ-cost of a labeled graph
once the MCPSϕ-costs of its labeled simple cycles are known.

5.2.2 The MCPSϕ-cost of a Labeled Graph is Equal to the
Minimum MCPSϕ-cost of its labeled MAECD

Definition 68 (Labeled subgraph). (H,λH) is a labeled subgraph of a labeled graph
(G, λ), if H is a subgraph of G and λH coincides with λ on the vertices and the colored
edges of H.

Definition 69 (Labeled Eulerian decomposition (ED) and its MCPSϕ-cost). H =
{(H1, λH1), . . . , (Hk, λHk)} is a labeled Eulerian decomposition of a labeled graph
(G, λ), if the following properties hold:

• {H1, . . . , Hk} is an ED of G.

• Every element in H is a labeled subgraph of (G, λ).

• For every labeled edge its multiplicity in (G, λ) is equal to the sum of multi-
plicities in {(H1, λH1), . . . , (Hk, λH1)}.

The MCPSϕ-cost of H is equal to the sum of the MCPSϕ-costs of its labeled
subgraphs.
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Observation 21. Take a labeled Eulerian decomposition of a labeled graph (G, λ)
and a set of O-scenarios for its labeled subgraphs. A shuffle (see Definition 25 in
Section 3.2) of these O-scenarios is an O-scenario for (G, λ). If the O-scenarios
for the subgraphs are parsimonious, then the obtained O-scenario for (G, λ) is also
parsimonious.

Lemma 28. Take a parsimonious O-scenario ρ for a labeled graph (G, λ). There
exists a labeled MAECD of (G, λ), such that ρ is a shuffle of the parsimonious
O-scenarios for its labeled subgraphs.

Proof. The proof is, up to minor modifications, analogous to the proof of Theorem 4.
These modifications are the following. The labels of the directed 2-edge-colored
edge-labeled trajectory graph D((G, λ), ρ) are of the form ({u, v}, x) for a pair of
vertices {u, v} of G and an edge label x. If the l-th operation of ρ is an O-change
({u, v}, col, x) → ({u, v}, col, y), then D((G, λ), ρl) is obtained from D((G, λ), ρl−1)
by choosing a sink edge of D((G, λ), ρl−1) of color col labeled ({u, v}, x), and adding
an edge of color col labeled ({u, v}, y) between its sink vertex and the newly added
one. This transformation does not modify the number of the connected components
of D((G, λ), ρl−1). Non-source and non-sink vertices of a connected component of
D((G, λ), ρ) correspond to a subsequence of ρ that is a parsimonious O-scenario for a
labeled subgraph of (G, λ). These labeled subgraphs corresponding to the connected
components of D((G, λ), ρ) form a labeled MAECD of (G, λ).

Corollary 9. A parsimonious O-scenario for a labeled graph having two connected
components can be partitioned into two sub-sequences that are parsimonious O-
scenarios for these components.

Theorem 13. The MCPSϕ-cost of a labeled graph is equal to the minimum MCPSϕ-
cost of its labeled MAECD.

Proof. For a labeled graph (G, λ), take its minimum MCPSϕ-cost labeled MAECD
H = {(H1, λH1), . . . , (Hk, λHk)}. If the MCPSϕ-cost of H is not equal to ∞, then
there exist parsimonious O-scenarios for its labeled subgraphs of the ϕ-costs equal
to the MCPSϕ-costs of those labeled subgraphs. Due to Observation 21, by per-
forming these parsimonious O-scenarios one after another we obtain a parsimonious
O-scenario ρ for (G, λ). Its ϕ-cost is equal to the MCPSϕ-cost of the labeled
MAECD under question, establishing that MCPSϕ(G, λ) is less than or equal to
the minimum MCPSϕ-cost of a labeled MAECD of (G, λ).

If MCPSϕ(G, λ) 6= ∞, then take an MCPSϕ O-scenario for (G, λ). Due to
Lemma 28, there exists a labeled MAECD of (G, λ), such that ρ is a shuffle of
the parsimonious O-scenarios for its labeled subgraphs. The ϕ-cost of ρ is equal
to the sum of the ϕ-costs of those parsimonious O-scenarios, establishing that
MCPSϕ(G, λ) is greater than or equal to the MCPSϕ-cost of a labeled MAECD
of (G, λ).
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5.2.3 An ILP for ϕ-MCPS

In the following sections we will show how to compute the MCPSϕ-costs of labeled
simple cycles of a labeled graph. Once these costs are known, Theorem 13 leads to
a straightforward ILP computing the MCPSϕ-cost of (G, λ).

Denote by S a set of the simple cycles of G. For every simple cycle S in S
assign a variable xS, with xS equal to 1 if S belongs to a cycle packing and 0
otherwise. Denote by E a set of the colored edges present in G and by mult(G, e)
the multiplicity of a colored edge e in G. Start by computing the size of an MAECD
of G by packing as many simple cycles in G as possible.

Maximize ∑S∈S xS

Subject to ∑
S:e∈S xSmult(S, e) ≤ mult(G, e) for e ∈ E,

and xS ∈ {0, 1} for S ∈ S.

Now denote by Sλ a set of the labeled simple cycles that are labeled subgraphs
of (G, λ), by Eλ a set of the labeled edges present in (G, λ), by multλ((G, λ), e) the
multiplicity of a labeled edge e in (G, λ), and by c(G) the size of an MAECD of G.
The following ILP computes MCPSϕ(G, λ).

Minimize ∑(S,λS)∈Sλ x(S,λS)MCPSϕ(S, λS)
Subject to ∑

(S,λS):e∈Sλ x(S,λS)mult
λ((S, λS), e) ≤ multλ((G, λ), e) for e ∈ Eλ,∑

(S,λS)∈Sλ x(S,λS) = c(G) and x(S,λS) ∈ {0, 1} for (S, λS) ∈ Sλ.

5.2.4 ϕ-MCPS for Isomorphic Labeled Graphs

In this subsection we introduce a notion of isomorphic labeled graphs and establish
in Lemma 29 that their MCPSϕ-costs are equal. It will be used in the following
section where we show that for a labeled circle of a labeled simple cycle there exists
an isomorphic labeled u-circle. Similarly, in Theorem 6 we have shown that for a
circle of a simple cycle there exists an equivalent u-circle.

Definition 70 (Isomorphism of labeled graphs). Two labeled graphs (G1, λ1) and
(G2, λ2) on vertices V are isomorphic if there exists a function g : V → V for which
the following properties hold:

• For every vertex v the labels of v in (G1, λ1) and g(v) in (G2, λ2) are equal.

• For every colored edge ({u, v}, col) the multisets of edge labels of ({u, v}, col)
in (G1, λ1) and of ({g(u), g(v)}, col) in (G2, λ2) are equal.
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Such a function g is an isomorphism of (G1, λ1) and (G2, λ2).

See Figure 5.1 for an example of isomorphic and non-isomorphic labeled circles.

Lemma 29. The MCPSϕ-costs of two isomorphic labeled graphs are equal.

Proof. Take a pair of isomorphic labeled graphs (G1, λ1) and (G2, λ2) together with
their isomorphism g and a labeled edge ({u, v}, col, x) of (G1, λ1). By definition
(G2, λ2) contains a labeled edge ({g(u), g(v)}, col, x) and vertex labels of u and g(u),
and v and g(v) are equal. This means that the ϕ-costs ofO-changes ({u, v}, col, x)→
({u, v}, col, y) and ({g(u), g(v)}, col, x) → ({g(u), g(v)}, col, y) are also equal. In
addition to that they transform (G1, λ1) and (G2, λ2) into isomorphic labeled graphs
with g being their isomorphism. An analogous result can be established for an O-
change transforming (G1, λ1). Taken together these observations show that to a
ϕ-MCPS O-scenario for (G1, λ1) we can assign an O-scenario for (G2, λ2) of equal
ϕ-cost. We can do the same for a ϕ-MCPS O-scenario for (G2, λ2) which finishes
the proof.

5.3 ϕ-MCPS for a Simple Cycle

Here we build on Theorem 6 in Section 3.4.5 stating that a 2-break scenario for
a simple cycle can be interpreted as a 2-break scenario for its u-circle. We adjust
its proof to show that the MCPSϕ-cost of a labeled simple cycle is equal to the
minimum of the MCPSϕ-costs of its labeled u-circles.

We start by introducing the notion of a labeled circle of a simple cycle. Take
a simple cycle S on vertices V . As defined in Section 3.4, a vertex of S is double
if its black and gray degrees are equal to two, it is single otherwise. V̂ is a set
of vertices in which every double vertex v in S replaced with new vertices v1 and
v2. M is a function V̂ → V satisfying M(v) = v for a single vertex of S, and
M(v1) = M(v2) = v for a double vertex of S.

Definition 71 (Labeled circle of a simple cycle). A labeled circle (C, λ̂) is a labeled
circle of a simple labeled cycle (S, λ) if the following properties hold:

• C is a circle of S.

• The labels given by λ and λ̂ coincide on the single vertices of S.

• For every double vertex v of S, the labels of v1 and v2 given by λ̂ are equal to
the label of v given by λ.

• Take a labeled edge ({M(u),M(v)}, col, x) for every labeled edge ({u, v}, col, x)
of (C, λ̂). A multiset of labeled edges thus obtained is equal to the labeled edges
of (S, λ).
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Figure 5.1: A labeled simple cycle (S, λ) is depicted in a) with vertex labels repre-
sented using different colors. In b) and f) two labeled circles of (S, λ) are presented.
They are not isomorphic, as a labeled circle in b) contains a vertex incident to col-
ored edges labeled y and t, while such a vertex does not exist in a labeled circle in f).
In c) and g) possible Eulerian orientations of these labeled circles are depicted. Once
pairs of vertices {v1, v2} and {r1, r2} are merged into v and r, these Eulerian orien-
tations of labeled circles become Eulerian orientations of (S, λ) depicted in d) and
h). The vertex sequences of their u-tours (u,w, v, r, r, v, u) and (u, v, r, r, v, w, u).
The labeled u-circles obtained from these u-tours following the process detailed in
Section 3.4.5 are presented in e) and i). The labeled circles presented in b) and e)
are isomorphic, while the ones presented in f) and i) are even equal.

See Figure 5.1 for an example of a labeled circle, a labeled Eulerian orientation
and its labeled u-circle.

Theorem 14. Take a vertex u of a labeled simple cycle (S, λ). MCPSϕ(S, λ) is
equal to the minimum of the MCPSϕ-costs of the labeled u-circles of (S, λ).

Proof. Take a labeled u-circle of (S, λ) and its O-scenario ρ̂. For every double vertex
v in S, replace the occurrences of v1 and v2 in ρ̂ with v to obtain an O-scenario ρ
for (S, λ). The ϕ-costs of ρ and ρ̂ are equal as the labels of v1, v2 and v are equal by
construction. This means that MCPSϕ(S, λ) is less than or equal to the minimum
MCPS-cost of a labeled u-circle of (S, λ).

In Theorem 5 to a 2-break scenario for a simple cycle we assigned a 2-break
scenario for its circle. We illustrate in Figure 5.2 an analogous process that to an



5.3. ϕ-MCPS for a Simple Cycle 99

xx

r

s

u

w

vx

z

t

x
x

y y

r

s

u

w

v

z

t
y

x x
x

r

s

u

w

v

z

t

w
x

x x

r

s

u

w

v1

v2

x

z
x

t

y
x

r

s

u

w

v
x r

s

u

w

v
x

z

x

x

x

x
x

x

r

s

u

w

v1

v2z x

x

r

s

u

w

v
x

z

x

x

x

z

tz

z

z

z

x x
x

r

s

u

w

v1

v2z y

x

z
x

t

x

r

s

u

w

v1

v2z

t

y
x

x x x

y

r

s

u

w

v1

v2

x

z
x

t
y

r

s

u

w

v1

v2z

t
y

x

xr

s

u

w

v1

v2z y

xr

s

u

w

v1

v2z x
x

z

a)

d)

b)

e)

c)

Figure 5.2: In a) an O-scenario ρ for a labeled simple cycle (S, λ) containing a
double vertex v is depicted. Vertex colors in the figure represent their labels. ρ is
not change-first, as it starts with two O-breaks and finishes with a single O-change.
b) depicts a labeled simple cycle (Ŝ1, λ̂1) and a sequence ρ̂1 of two O-breaks and an
O-change. (S, λ) can be obtained from (Ŝ1, λ̂1) by merging the vertices v1 and v2

into v. ρ can be obtained from ρ̂1 by replacing the occurrences of v1 and v2 with v.
The ϕ-costs of ρ and ρ̂1 are equal as v1, v2, and v have equal labels. In d) an Eulerian
orientation of (S, λ) is depicted. Its labeled v-circle, the circle obtained from the
Eulerian tour starting from v with a black directed edge, is (Ŝ1, λ̂1). Transform
(Ŝ1, λ̂1) by replacing the labeled edges ({v1, u}, black, t) and ({v2, w}, black, y) with
({v2, u}, black, t) and ({v1, w}, black, y) to obtain a simple labeled cycle (Ŝ2, λ̂2)
presented in d). In the black 2-breaks of ρ̂1 replace the occurrences of v1 with v2,
and those of v2 with v1, to obtain an O-scenario ρ̂2 for (Ŝ2, λ̂2) with ϕ-cost equal to
that of ρ. In e) an Eulerian orientation of (S, λ) is depicted whose labeled v-circle
is (Ŝ2, λ̂2).
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O-scenario ρ for (S, λ) assigns a labeled circle (C, λ̂) of (S, λ) and its O-scenario
ρ̂ of the same ϕ-cost as ρ. Choose a labeled Eulerian orientation (−→C , λ̂) of (C, λ̂).
For every double vertex v in S, merge the vertices v1 and v2 in (−→C , λ̂) to obtain a
labeled Eulerian orientation (−→S , λ) of (S, λ). From Figure 5.1 it should be clear that
the labeled u-circle of (−→S , λ) and (C, λ̂) are isomorphic. Finally, due to Lemma 29,
MCPS-costs of isomorphic labeled graphs are equal. This means that ϕ(ρ) is greater
than or equal to MCPS-cost of the labeled u-circle of (−→S , λ).

5.4 ϕ-MCPS for a Circle

5.4.1 Introduction

Here we build on Theorem 8 stating that a 2-break scenario for a sub-circle of a circle
C can be partitioned into 2-break scenarios for smaller sub-circles of C. We adjust
its proof to show that it stays valid for a parsimonious O-scenario on a labeled circle.
This partitioning of a parsimonious O-scenario allows for a dynamic programming
algorithm for MCPS presented in Subsection 5.4.5.

5.4.2 A Circular Straight Line Embedding of a Circle

Fix a circular straight-line embedding ΣC of a labeled circle (C, λ) on n vertices. As
in Subsection 3.5.3, number the vertices with J1, nK while respecting their clockwise
order on ΣC and ensuring that the colored edge going clockwise from n to 1 is gray.
For i, j ∈ J1, nK with i and j of different parity, define C[i, j] to be the sub-circle of
C consisting of the path going clockwise from i to j in ΣC and its colored outer edge
(see Definition 47) which is ({i, j}, gray) if i is odd, and ({i, j}, black) otherwise.
Denote the color of this edge by col{i,j}, and the opposite color by col{i,j}.

Definition 72 (x-labeled sub-circle). (C[i, j], λ̃) is a labeled sub-circle of (C, λ), if
the labels of all the colored edges of C[i, j] except ({i, j}, col{i,j}) and the labels of
its vertices coincide with the labels given by λ. If the label of the colored outer edge
({i, j}, col{i,j}) of C[i, j] is x, then (C[i, j], λ̃) is the x-labeled sub-circle of (C, λ),
we denote it by (C[i, j], λx).

5.4.3 Partitioning a Parsimonious O-scenario for a Circle
into the Scenarios for its Sub-circles

Definition 73 (outer-change-free scenario for a sub-circle). An O-scenario for a
labeled sub-circle (C[i, j], λx) is outer-change-free if it does not contain an O-change
acting on its labeled outer edge ({i, j}, col{i,j}, x).
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Figure 5.3: A parsimonious change-first O-scenario ρ =
(
({1, 2}, gray, z) →

({1, 2}, gray, x), ({1, 2}, black, y) → ({1, 2}, black, x)
)

for a labeled circle (C, λ)
having 2 vertices is depicted in a). The underlying 2-break scenario of ρ is
empty, as ρ does not contain any O-breaks. The scenario graph and the sce-
nario matching of ρ coincide and are depicted in dashed in b). The labeled sub-
circles (C[2, 1], λx) and (C[1, 2], λx) of C are depicted in c). ρ can be partitioned
into ρ1 =

(
({1, 2}, gray, z) → ({1, 2}, gray, x)

)
and r2 =

(
({1, 2}, black, y) →

({1, 2}, black, x)
)
, that are parsimonious change-first outer-change-free scenarios for

(C[2, 1], λx) and (C[1, 2], λx) respectively.

Lemma 30. Take a parsimonious change-first O-scenario ρ for a labeled circle
(C, λ) and an edge {i, j} of its scenario graph. There exists an edge label x, such that
ρ can be partitioned into parsimonious outer-change-free O-scenarios for (C[i, j], λx)
and (C[j, i], λx).

Proof. The proof is by induction on the number of vertices in C. If (C, λ) has two
vertices, then the scenario graph of ρ contains a single edge and ρ contains at most
two O-changes an no O-breaks. The label x of its colored edges obtained after the
O-changes are performed satisfies the statement. See Figure 5.3 for an example.

Suppose that the statement is true for any circle with at most 2k−2 ≥ 2 vertices
and take a circle C on 2k vertices. See Figure 3.9 for an illustration of the proof that
follows. Take the first O-break (τ ,χ) in ρ. Being change-first, ρ contains at most two
O-changes acting on the colored edges replaced by (τ ,χ), denote them by µ. Denote
by ρ′ the subsequence of ρ obtained once µ and (τ ,χ) are deleted. Denote by (C ′, λ′)
the labeled graph that is obtained from (C,λ) after µ and (τ ,χ) are performed. ρ′
is a parsimonious O-scenario for (C ′, λ′). Due to Corollary 2, it has two connected
components that are both circles, denote them by (C1, λ1) and (C2, λ2). Due to
Corollary 9, ρ′ can be partitioned into ρ1 and ρ2, that are parsimonious O-scenarios,
change-first by construction, for (C1, λ1) and (C2, λ2) respectively.

Due to Theorem 7, the scenario graph of ρ inherits from ΣC a circular straight-
line embedding in which all the bounded faces are quadrilaterals. The edges of τ
and the edge {i, j} all belong to the scenario graph of ρ. This means that both i
and j either belong to C1 or C2, without loss of generality we can suppose that it
is C2. This also means that all the vertices of τ belong either to C[i, j] or C[j, i].
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Without loss of generality we can suppose that it is C[j, i].

The inductive hypothesis holds for a triplet
(
(C2, λ2), ρ2, {i, j}

)
, providing us

with a label x, and a partition of ρ2 into two parsimonious outer-change-free sce-
narios for the x-labeled sub-circles of (C2, λ2). By construction, one of these labeled
sub-circles is (C[i, j], λx). Denote the other one by (C5, λ5) and denote the parsimo-
nious outer-change-free O-scenarios obtained for them by ρ[i,j] and ρ5 respectively.

By now we know that ρ is a shuffle of µ, (τ ,χ), ρ1, ρ[i,j], and ρ5. Remove
ρ[i,j], µ and (τ ,χ) from ρ to obtain a shuffle of ρ1 and ρ5, that we denote by ρ.
Due to Observation 21, ρ is a parsimonious O-scenario for the union of the vertex-
disjoint circles (C1, λ1) and (C5, λ5), which is also the labeled graph obtained from
(C[j, i], λx) after µ and (τ, χ) are performed. Finally, by deleting only ρ[i,j] from ρ, we
obtain a shuffle of µ, (τ, χ) and ρ, that is a parsimonious O-scenario for (C[j, i], λx),
that does not contain any O-changes acting on its colored outer edge, and together
with ρ[i,j] satisfies the statement.

Definition 74 (Matched scenario for a sub-circle). A parsimonious O-scenario for
a sub-circle C[i, j] is matched, if its scenario matching includes an edge {i, j}. It is
non-matched otherwise.

Theorem 15. Take ρ, a parsimonious matched outer-change-free change-first O-
scenario for (C[i, j], λx) with i + 3 ≤ j. ρ can be partitioned into an O-break
(τ, χ) =

({
({i, k}, z), ({l, j}, t)

}
→

{
({i, j}, x), ({k, l}, y)

}
, col{i,j}

)
with i < k <

l < j, and parsimonious outer-change-free change-first O-scenarios for (C[i, k], λz),
(C[k, l], λy), and (C[l, j], λt) with the O-scenarios for (C[i, k], λz) and (C[l, j], λt)
being matched.

Proof. Denote the underlying 2-break scenario of ρ by ρu. See Figure 5.4 for an
example of ρu. Due to Theorem 8, ρu contains a 2-break τ =

({
{i, k}, {l, j}

}
→{

{i, j}, {k, l}
}
, col{i,j}

)
with i < k < l < j. This means that ρ contains an O-break

(τ, χ) with a labeling χ of τ edges. ρ is change-first, thus it does not contain an
O-change modifying the labeled edge ({i, j}, col{i,j}, χ({i, j})) introduced by (τ, χ).
ρ is outer-change-free, thus it also does not contain an O-change modifying its la-
beled outer edge ({i, j}, col{i,j}, x). Due to Theorem 7, τ is a single 2-break in ρu

with {i, j} among its edges. This means that ρ does not contain an O-break replac-
ing labeled edge ({i, j}, col{i,j}, χ({i, j})) or ({i, j}, col{i,j}, x). Thus ρ transforms
(C[i, j], λx) into a terminal graph containing labeled edges ({i, j}, col{i,j}, χ({i, j}))
and ({i, j}, col{i,j}, x), which means that χ({i, j}) = x.

Apply Lemma 30 for {i, k}, {k, l} and {l, j} to obtain edge labels z, t, y and
parsimonious outer-change-free O-scenarios ρ1, ρ2, and ρ3 for sub-circles (C[i, k], λz),
(C[k, l], λy) and (C[l, j], λt), that together with (τ, χ) partition ρ. χ({i, k}) = z,
χ({k, l}) = y and χ({l, j}) = t, since ρ is change-first. All we have to prove now is
that ρ1 and ρ3 are matched.
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Figure 5.4: A circular straight-line embedding ΣC of a circle C is depicted in
a), while b) presents its sub-circle C[2, 11]. In c) the scenario graph and the
matching of an underlying parsimonious 2-break scenario ρu for C[2, 11] is depicted,
with ρ =

(({
{7, 8}, {9, 10}

}
→

{
{7, 10}, {8, 9}

}
, black

)
,
({
{6, 7}, {10, 11}

}
→{

{6, 11}, {7, 10}
}
, gray

)
,

({
{2, 3}, {6, 11}

}
→

{
{2, 11}, {3, 6}

}
, gray

)
,({

{3, 6}, {4, 5}
}
→

{
{3, 4}, {5, 6}

}
, gray

))
. ρu is matched and contains a 2-

break τ =
({
{2, 3}, {6, 11}

}
→

{
{2, 11}, {3, 6}

}
, gray

)
introducing a colored edge

({2, 11}, gray). ρu can be partitioned into τ and parsimonious scenarios ρu1 , ρu2
and ρu3 for sub-circles C[2, 3], C[3, 6], and C[6, 11]. These sub-circles and the
corresponding scenario graphs are depicted in d)-i). ρu1 is empty, thus matching by
definition. ρu2 =

(({
{3, 6}, {4, 5}

}
→

{
{3, 4}, {5, 6}

}
, gray

))
is a non-matching 2-

break scenario for C[3, 6], while ρu3 =
(({
{7, 8}, {9, 10}

}
→
{
{7, 10}, {8, 9}

}
, black

)
,({

{6, 7}, {10, 11}
}
→

{
{6, 11}, {7, 10}

}
, gray

))
is a matching 2-break scenario for

C[5, 11].

If k = i + 1, then ρ1 is an O-scenario for a labeled circle on two vertices and
is matched by definition. Suppose that i ≤ k + 3, meaning that a colored edge
({i, k}, col{i,j}) is not present in C. ρu contains a 2-break replacing it, thus due to
Observation 1, it must also contain a 2-break introducing it. ρu is a parsimonious
2-break scenario, thus due to Theorem 7, it contains only two 2-breaks with {i, k}
among their edges. Due to the same theorem, the underlying 2-break scenario of
ρ1 contains a single 2-break with {i, k} among its edges. That 2-break is not τ ,
which means that it introduces ({i, k}, col{i,j}), and thus ρ1 is indeed a matched
O-scenario. The same analysis applies to ρ3.

The proof of the following theorem for non-matched O-scenarios is analogous to
that of Theorem 15.

Theorem 16. Take a parsimonious non-matched outer-change-free change-first O-
scenario ρ for (C[i, j], λx) with i + 3 ≤ j. There exists an O-break (τ, χ) =
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({
({i, j}, x), ({k, l}, y)

}
→
{

({i, k}, z), ({l, j}, t)
}
, col{i,j}

)
with i < k < l < j, such

that ρ can be partitioned into (τ, χ) and parsimonious outer-change-free change-first
O-scenarios for (C[i, k], λz), (C[k, l], λy), and (C[l, j], λt) with the O-scenario for
(C[k, l], λy) being matched.

5.4.4 Minimal Weight Polygon Quadrangulation

Our algorithm to be presented in Subsection 5.4.5 can be seen as a generalization of
that for the Minimal Weight Polygon Quadrangulation problem (MWPQ)
presented by Massarwi, Sosin, and Elber in Section 3.1.2 of [72]. There arbitrary
positive weights are assigned to the quadrilaterals in a polygon, and the authors ask
for a quadrangulation minimizing the sum of the weights of its quadrilaterals.

A quadrangulation Q of a sub-circle C[i, j] contains a quadrilateral f incident
to the edge {i, j}. Suppose that its vertices are i < k < l < j. See Figure 5.5 for
an example. The weight of Q is equal to the sum of the weights of Q restricted
to C[i, k], Q restricted to C[k, l], Q restricted to C[l, j] and the weight of f . This
partition allows for an O(n4) time dynamic programming algorithm for MWPQ,
which is very similar to an O(n3) time dynamic programming algorithm for the
Minimal Weight Triangulation problem on a simple polygon presented by
Klincsek [67].
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Figure 5.5: A quadrangulation Q of C[1, 12] is depicted in a). It contains a quadri-
later f incident to edge {1, 12} that is depicted in b). When restricted to the
sub-circles C[1, 6], C[6, 9] and C[9, 12], Q provides quadrangulations depicted in c),
d) and e).
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5.4.5 A Dynamic Programming Algorithm for ϕ-MCPS for
a Circle

Introduction and Notations

We use Theorem 15 and Theorem 16 to express the minimum ϕ-cost of a parsi-
monious outer-change-free matched (or non-matched) O-scenario for a labeled sub-
circle as a sum of these costs for smaller labeled sub-circles. Once these costs are
obtained for (C[1, n], λx) for every edge label x, we combine them to obtain the
minimum ϕ-cost of a parsimonious O-scenario for (C, λ).

Take a complete (O, ϕ) and an embedding ΣC of a labeled circle (C, λ) on n
vertices as in Subsection 5.4.2. Denote by ϕm[i, j, x] (respectively ϕu[i, j, x]) the
minimum ϕ-cost of a parsimonious outer-change-free matched (respectively non-
matched) O-scenario if it exists, otherwise define ϕm[i, j, x] = ∞ (respectively
ϕu[i, j, x] = ∞). Denote by ϕ[i, j, x] the minimum ϕ-cost of a parsimonious outer-
change-free O-scenario if it exists, otherwise define ϕ[i, j, x] = ∞. By construction
ϕ[i, j, x] = min(ϕm[i, j, x], ϕu[i, j, x]). Take a labeled edge ({i, i + 1}, col, x) present
in (C, λ) and an edge label y with a and b being the labels of i and i + 1. Define
W col
{a,b}(x, x) = 0. If an edge-label change

(
({a, b}, x); ({a, b}, y); col

)
is in O, then de-

note ϕ
(
({a, b}, x); ({a, b}, y); col

)
byW col

{a,b}(x, y), otherwise, defineW col
{a,b}(x, y) =∞.

Do the same for a labeled edge ({n, 1}, gray, x) in (C, λ).

Initializing ϕm and ϕu

We start by initializing ϕu and ϕm for the labeled sub-circles of (C, λ) on two vertices.

Lemma 31. Take a labeled edge ({i, i + 1}, col, x) of (C, λ) and an edge label y.
ϕu[i, i+ 1, y] =∞ and ϕm[i, i+ 1, y] = W col

{a,b}(x, y), with a and b being the labels of
i and i+ 1.

Proof. C[i, i + 1] has two vertices. The matching of a parsimonious O-scenario for
(C[i, i+ 1], λy) contains edge {i, i+ 1} by construction, thus ϕu[i, i+ 1, y] =∞. The
labeled edges of (C[i, i+1], λy) are ({i, i+1}, col, x) and ({i, i+1}, col, y). If a parsi-
monious outer-change-free O-scenario for (C[i, i+1], λy) exists, then it is a sequence
of O-changes transforming a labeled edge ({i, i + 1}, col, x) into ({i, i + 1}, col, y).
(O, ϕ) is complete, thus if it does not exist, then ϕm[i, i+ 1, y] = W col

{a,b}(x, y) =∞.
Suppose that such an O-scenario exists and take a parsimonious outer-change-free
O-scenario for (C[i, i+ 1], λy) with ϕ-cost equal to ϕm[i, i+ 1, y]. Due to Lemma 25
there exists a parsimonious change-first outer-change-free O-scenario of the same
ϕ-cost. It consists of a single O-change, thus ϕm[i, i+ 1, y] = W col

{a,b}(x, y).

Corollary 10. Take a labeled edge ({n, 1}, gray, x) of (C, λ) and an edge label y.
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ϕu[n, 1, y] =∞ and ϕm[n, 1, y] = W gray
{a,b}(x, y), with a and b being the labels of n and

1.

Computing ϕm and ϕu

Now we show how to compute ϕm and ϕu for a labeled sub-circle of (C, λ) using
ϕm and ϕu values for its smaller labeled sub-circles. We have demonstrated in
Theorem 15 that a matched outer-change-free change-firstO-scenario for (C[i, j], λx)
contains an O-break introducing a colored edge ({i, j}, x, col{i,j}). This O-break has
the following form.

Definition 75 (matched O-break for a labeled sub-circle). An O-break (τ, χ) is
matched for (C[i, j], λx), if τ =

({
{i, k}, {l, j}

}
→

{
{i, j}, {k, l}

}
, col{i,j}

)
for i <

k < l < j with i ≡ l mod 2 and k ≡ j mod 2, and χ({i, j}) = x.

In the following lemma we iterate through the space of the matched O-breaks
for (C[i, j], λx) to compute ϕm[i, j, x].

Lemma 32. For i, j ∈ J1, nK with j ≥ i + 3 of different parity and an edge label x
we have:

ϕm[i, j, x] = min
(τ,χ)∈M

(
ϕm[i, k, z] + ϕm[l, j, t] + ϕ[k, l, y] + ϕ(τ, χ)

)
,

where M is a set of matched O-breaks for (C[i, j], λx).

Proof. First we show that ϕm[i, j, x] is greater than or equal to the proposed ex-
pression. If ϕm[i, j, x] = ∞, then this inequality is trivially true. Otherwise, due
to Lemma 25, there exists a parsimonious change-first outer-change-free matched
O-scenario ρ for (C[i, j], λx) with ϕ-cost equal to ϕm[i, j, x]. Due to Theorem 15,
it can be partitioned into a matched O-break (τ, χ) =

({
({i, k}, z), ({l, j}, t)

}
→{

({i, j}, x), ({k, l}, y)
}
, col{i,j}

)
and parsimonious outer-change-free O-scenarios ρ1,

ρ2 and ρ3 for the sub-circles (C[i, k], λz), (C[k, l], λy) and (C[l, j], λt), with ρ1 and
ρ3 being matched. This establishes an inequality ϕm[i, j, x] ≥ ϕ(τ, χ) +ϕm[i, k, z] +
ϕm[l, j, t] + ϕ[k, l, y].

Now we show that the opposite inequality holds. Take a matched O-break
(τ, χ) =

({
({i, k}, z), ({l, j}, t)

}
→

{
({i, j}, x), ({k, l}, y)

}
, col{i,j}

)
. If ϕm[i, k, z] +

ϕm[l, j, t] + ϕ[k, l, y] + ϕ(τ, χ) =∞, then this inequality is trivially true. Otherwise
take parsimonious outer-change-free O-scenarios ρ1, ρ2, and ρ3 of ϕ-costs ϕm[i, k, z],
ϕ[k, l, y], and ϕm[l, j, t], for the labeled sub-circles (C[i, k], λz), (C[k, l], λy), and
(C[l, j], λt) respectively, with ρ1 and ρ3 being matched O-scenarios. The sequence
obtained by performing ρ1 and ρ3, followed by (τ, χ) and ρ2 is a parsimonious
matched outer-change-freeO-scenario for (C[i, j], λx). Thus establishing ϕm[i, j, x] ≤
ϕ(τ, χ) + ϕm[i, k, z] + ϕm[l, j, t] + ϕ[k, l, y].
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Analogously, we introduce non-matched O-breaks and use Theorem 16 to estab-
lish Lemma 33.

Definition 76 (non-matched O-break for a labeled sub-circle). An O-break (τ, χ)
is matched for (C[i, j], λx), if

({
{i, j}, {k, l}

}
→
{
{i, k}, {l, j}

}
, col{i,j}

)
for i < k <

l < j with i ≡ l mod 2 and k ≡ j mod 2, and χ({i, j}) = x.

Lemma 33. For i, j ∈ J1, nK with j ≥ i + 3 of different parity and an edge label x
we have:

ϕu[i, j, x] = min
(τ,χ)∈M

(
ϕ[i, k, z] + ϕ[l, j, t] + ϕm[k, l, y] + ϕ(τ, χ)

)
,

where M is a set of non-matched O-breaks for (C[i, j], λx).

Computing MCPSϕ(C,λ)

Finally we use values ϕm[1, n, y] and ϕu[1, n, y] to compute MCPSϕ(C, λ).

Lemma 34. Denote the labels of the vertices 1 and n, by a and b, and denote the
label of the colored edge ({1, n}, gray) by x. MCPSϕ(C, λ) for a labeled circle is
equal to:

min
(

min
y∈ΣE

(
ϕm[1, n, y] +W gray

{a,b}(x, y)
)
, min
y∈ΣE

(
ϕu[1, n, y] +W gray

{a,b}(x, y)
))

Lemma 35. Denote the labels of the vertices 1 and n, by a and b, and denote the
label of the colored edge ({1, n}, gray) by x. MCPSϕ(C, λ) for a labeled circle is
equal to miny∈ΣE

(
ϕ[1, n, y] +W gray

{a,b}(x, y)
)

Proof. We first show that MCPSϕ(C, λ) is larger than or equal to the proposed
expression. If MCPSϕ(C, λ) = ∞, then this inequality is trivially true. Otherwise
due to Corollary 8 and the completeness of (O, ϕ) there exists a change-first ϕ-
MCPS O-scenario ρ for (C, λ). Such a ρ contains at most one O-change that
modifies a labeled edge ({n, 1}, gray, x). If such an O-change does not exist, then
ρ is outer-change-free and MCPSϕ(C, λ) is larger than or equal to ϕ[1, n, x]. If
such an O-change exists, then denote it by µ and denote the label it provides by x′.
ρ with µ removed is a parsimonious outer-change-free O-scenario for (C[1, n], λx′).
This means that MCPSϕ(C, λ) ≥ ϕ[1, n, x′] + W gray

{a,b}(x, x′) ≥ miny∈ΣE

(
ϕ[1, n, y] +

W gray
{a,b}(x, y)

)
If the proposed expression is equal to ∞, then there is nothing more to prove.

Otherwise, take an edge label x′ together with a parsimonious outer-change-free
O-scenario ρ for (C[1, n], λx′) realizing the minimum of the expression. Add an
O-change ({1, n}, gray, x)→ ({1, n}, gray, x′) to the beginning of ρ to obtain a par-
simonious O-scenario for (C, λ). This way we obtain MCPSϕ(C, λ) ≤ ϕ[1, n, x′] +
W gray
{a,b}(x, x′) = miny∈ΣE

(
ϕ[1, n, y] +W gray

{a,b}(x, y)
)
.
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The MCPS Problem

Theorem 17. The MCPS problem for a complete (O, ϕ) with L edge labels and a
labeled circle (C, λ) on n vertices can be solved in O(n4L4) worst case time.

Proof. ϕm and ϕu can be initialized for n colored edges of C and L edge labels in
O(nL) time. Then ϕm[i, j, x] and ϕu[i, j, x] for O(n2L) combinations of vertices and
edge labels are computed. For a fixed triplet [i, j, x] one has to iterate through at
most O(n2L3) matched and non-matched O-breaks. If an individual O-break can
be checked in constant time, then this results in O(n4L4) time complexity. The last
step of computing MCPSϕ(C, λ) can be performed in O(L) time.
Corollary 11. The algorithm can be easily parallelized. Take d ∈ J1, n − 1K. The
values ϕm[i, i + d, x] and ϕu[i, i + d, x] for every i ∈ J1, n − dK and every edge label
x can be computed in parallel.

5.5 ϕ-MCPS for a Breakpoint Graph

In this section we show that the ϕ-MCPS problem for a labeled breakpoint graph
can be solved using an algorithm for ϕ-MCPS on a labeled circle as a subroutine.
The latter might be either the general dynamic programming algorithm from the
previous section, or an algorithm with a lower time complexity specifically tailored
for a particular cost function as in [95, 27].

A breakpoint graph, as defined in Section 3.3, is a graph with at most one vertex
of black and gray degrees larger than 1. Denote this vertex by ◦. An AA path
(respectively a BB path) of a breakpoint graph is an alternating tour of odd length
starting from ◦ with a black edge (respectively gray edge). A simple subgraph of
a breakpoint graph is either a circle or a union of an AA and a BB path. Denote
by B(G) a complete bipartite graph having the AA and the BB paths of G as
vertices. Lemma 14 states that a Maximum Alternating Edge-disjoint Cycle
Decomposition of a breakpoint graph G can be identified with a perfect matching
of B(G) plus the circle subgraphs of G.

Take a pair (O, ϕ) and a labeled breakpoint graph (G, λ) on n vertices. Upon
inspection of Figure 5.6 it should be clear that a labeled simple subgraph (S, λS)
of (G, λ) has at most four labeled Eulerian orientations and two non-isomorphic
labeled circles. Due to Theorem 14, MCPSϕ(S, λS) is equal to the minimum of the
MCPSϕ-costs of these labeled circles. Use an algorithm for ϕ-MCPS on a labeled
circle to compute the MCPSϕ-costs of all the simple labeled subgraphs of (G, λ).
Weight the edges of B(G) with the MCPSϕ-costs of the corresponding simple labeled
subgraphs. Due to Lemma 14 and Theorem 13, MCPSϕ(G, λ) is equal to the sum
of the MCPSϕ-costs of the labeled circle subgraphs of (G, λ) plus the minimum
weight of a perfect matching of B(G).
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Figure 5.6: A labeled simple cycle of a labeled breakpoint graph is depicted in
a). Its four labeled Eulerian orientations are given in b1), b2), c1) and c2). By
inverting the directions of the labeled edges of the labeled Eulerian orientation in
b1) we obtain that in b2). Their labeled 1-circles are isomorphic, and that of b1)
is depicted in b3). The same is true for the figures in c1), c2) and c3). Due to
reasons explained in Theorem 14, every labeled circle of this labeled simple cycle is
isomorphic to either a labeled circle in b3) or that in c3).

G has O(n) AA and BB paths forming O(n2) simple non-circle subgraphs each
containing O(n) edges. If the MCPSϕ-cost of a labeled circle with r edges can be
computed in O(rt) time for some constant t ≥ 1, then B(G) edges can be weighted
in O(nt+2) time. The minimum weight perfect matching of B(G) can be found in
O(n3) time using the Hungarian algorithm, which leads to an O(nt+2) time algorithm
for the ϕ-MCPS problem on a labeled breakpoint graph. In what follows we use
amortized analysis to show that its time complexity is actually O(nt+1 + n3).

Denote by p and c the number of AA paths and circle subgraphs in a breakpoint
graph G. By construction, G has an equal number of AA and BB paths. Denote
by P the number of colored edges of G that belong to an AA or a BB path. Denote
by Q the number of its colored edges that belong to a circle subgraph.
Theorem 18. For some function f and an O(f(r)) time algorithm for ϕ-MCPS
on a labeled circle with r colored edges, there exists an O(p2f(P ) + p3 + cf(Q)) time
algorithm for ϕ-MCPS on a labeled breakpoint graph. If f(r) = O(rt) for some
constant t ≥ 1, then the MCPSϕ-cost of a labeled breakpoint graph can be computed
in O(pP t + p3 +Qt) time, which is O(nt+1 + n3).

Proof. Take a labeled breakpoint graph (G, λ). It has P + Q colored edges parti-
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tioned between AA paths, BB paths and circle subgraphs of G that can be easily
identified in O(P+Q) time. Due to Theorem 14, MCPSϕ(S, λS) is equal to the min-
imum of the MCPSϕ-costs of at most two non-isomorphic labeled circles containing
O(P ) edges. This means that the p2 edges of B(G) can be weighted in O(p2f(P ))
time. A minimum weight perfect matching of B(G) can be found in O(p3) time
using the Hungarian algorithm as it has 2p vertices. The MCPSϕ-costs of the circle
subgraphs of G can be computed in O(cf(Q)) time. Combining these results we
obtain an O(p2f(P ) + p3 + cf(Q)) time algorithm for ϕ-MCPS on (G, λ).

Now suppose that f(r) = O(rt) for some constant t ≥ 1. This means that
ϕ-MCPS for a labeled circle with r edges can be computed in k

2r
t steps for some

constant k. Let (d1, . . . , dc) denote the numbers of colored edges in the circle sub-
graphs of G. By definition ∑c

i=0 di = Q. The MCPSϕ-cost of these c circles can
be computed in ∑c

i=0
k
2d

t
i ≤ 2

4Q
t steps. Let (a1, . . . , ap) and (b1, . . . , bp) denote the

numbers of the colored edges in the AA and the BB paths. Denote ∑p
i=0 ai by PA

and ∑p
j=0 bj by PB. By definition P = PA + PB. As explained above, the MCPSϕ-

cost of a union of an AA path and a BB path having a and b colored edges can be
computed in at most k(a+ b)t steps by computing the MCPSϕ-costs of at most two
labeled circles with a + b colored edges. The MCPSϕ-cost of every pair of an AA
and a BB path can be computed in a number of steps bounded by:

p∑
i=0

p∑
j=0

k(ai + bj)t = k
p∑
i=0

p∑
j=0

t∑
l=0

(
t

l

)
alib

t−l
j = k

t∑
l=0

(
t

l

) p∑
i=0

p∑
j=0

alib
t−l
j

= k
p∑
j=0

p∑
i=0

btj + k
p∑
i=0

p∑
j=0

ati + k
t−1∑
l=1

(
t

l

) p∑
i=0

ali

p∑
j=0

bt−lj

= kp
p∑
j=0

btj + kp
p∑
i=0

ati + k
t−1∑
l=1

(
t

l

) p∑
i=0

ali

p∑
j=0

bt−lj

≤ kp(
p∑
j=0

bj)t + kp(
p∑
i=0

ai)t + k
t−1∑
l=1

(
t

l

)
(
p∑
i=0

ai)l(
p∑
j=0

bj)t−l

≤ k(pP t
B + pP t

A) + pk
t−1∑
l=1

(
t

l

)
P t−l
B P l

A = kp(PB + PA)t = kpP t

Thus B(G) edges can be weighted in O(pP t) time. This provides us with an
O(pP t + p3 + Qt) time algorithm for computing the MCPSϕ-cost of a labeled
breakpoint graph. p, P and Q are O(n), thus the worst case time complexity is
O(nt+1 + n3).

5.6 Time Complexity

We have treated the MCPS problem by proposing a polynomial time dynamic pro-
gramming algorithm solving it for a labeled circle and an ILP solving it for any
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labeled graph. The O(n4L4) time complexity of our algorithm for a labeled circle,
where n is the number of vertices and L is the number of edge labels, might seem pro-
hibitively high. However this worst case time complexity can be avoided in practice,
at least when dealing with the biological data related to genome rearrangements.

To begin with, n remains quite low in the genome breakpoint graphs of interest.
In our study [89] n did not exceed 250 even for the species as distant as human and
chicken, while for human and gibbon, a pair of species of a particular interest for
the study of genome rearrangements [68], n was found to be 80 or less. An initial
version of our algorithm, where L = 1 and only black 2-breaks are allowed, took
seconds to finish for the genome breakpoint graph of human and gibbon and minutes
for that of human and chicken. This indicates that for low L values our algorithm
stays feasible for any pair (O, ϕ).

An O-break includes 4 vertices and 4 edge labels, thus the total number B of
the O-breaks that might appear in a parsimonious O-scenario for a labeled cir-
cle is O(n4L4). In our algorithm we check every O-break exactly once, thus its
time complexity can be brought down to O(n4 + B). This can be done with the
help of an appropriately chosen data structure for O, where for every quadrilateral
we can query the O-breaks with the edges bounding that quadrilateral. Take for
example the set of valid operations O used in Minimum Local Parsimonious
Scenario [95] and introduced in Subsection 4.3.2. Here O(B) is actually O(n6),
as every O-break in a parsimonious O-scenario includes only two edge labels that
must be already present among the n edge labels of (C, λ).

Finally, once a particular pair (O, ϕ) is chosen, our algorithm can be used as
a blueprint to devise a more efficient algorithm specifically tailored for this pair.
For example the ϕ-costs of some O-breaks might be too high for them to appear in
a ϕ-MCPS O-scenario, or the vertex and edge labels of a sub-circle C[i, j] might
impose constraints on the possible labels of its outer colored edge, so we do not have
to check L different options.
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Conclusion

We have established novel links between various permutation, string, genome and
graph sorting problems, that ultimately led to our framework for cost constrained
2-break scenarios. Even if it is beyond the scope of this study to fully explore
the implications of these links, we have briefly mentioned some open optimization
problems that might benefit from our observations. These include Swap Median
Permutation, DCJ Closest Genome, Token Swapping on trees, and a con-
jecture stating that there always exists an O(n2) length transposition decomposition
of minimum cost [42]. We have not even touched upon questions related to counting,
sampling and estimating, that also hold a number of important open problems. For
example, the problem of counting the parsimonious DCJ scenarios transforming one
single copy genome into another is conjectured to be #P-complete [75]. Finally, we
believe that further investigation might reveal important connections between the
study of genome rearrangements, rank aggregation [6], and permutation codes [104]
that are not yet fully appreciated.

We have furthered our understanding of parsimonious DCJ scenarios by revealing
novel links between parsimonious 2-break scenarios, Minimum Length Transpo-
sition Decompositions and quadrangulations of regular polygons. We have de-
fined two scenarios to be equivalent if they consist of the same rearrangements, and
described the equivalence classes for this relation. There are (n+ 1)(n−1) [81] parsi-
monious black-2-break scenarios for a circle on 2n+ 2 vertices, while the number of
their equivalence classes is only 1

2n+1

(
3n
n

)
≈ 1

n3/2 (27
4 )n. This drastic reduction in the

search space was instrumental in our work on cost constrained parsimonious scenar-
ios. The true evolutionary scenario, however, is likely to be non-parsimonious [20, 2].
This prompts us to relax the parsimony criterion and the first step in this direction
could be a description of the equivalence classes of the 2-break scenarios that are
almost parsimonious.

We have introduced a framework for cost constrained DCJs, and demonstrated
that within it a particular optimization problem can be efficiently solved. Through-
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out this work we have searched to minimize the sum of rearrangement costs, however,
our algorithms can be easily modified to maximize their product. If the labels of the
intergenes were somehow linked with the probabilities for the rearrangements to oc-
cur, then our work could be used to find the most likely parsimonious rearrangement
scenarios.

We have shown that a Minimum Cost Parsimonious Scenario can be solved
in polynomial time for an arbitrary cost function. The next step is to move from
arbitrary to biologically relevant costs. Defining the latter term would require a
separate project, however for now we say that these are the cost functions for which
an MCPS scenario resembles the true evolutionary one. In [89] we briefly discussed
an idea for testing this relevance with the help of what we call sure 2-breaks. These
are 2-breaks that appear in every parsimonious 2-break scenario for a graph. Take
a circle subgraph on four vertices in a genome breakpoint graph G. Every parsimo-
nious 2-break scenario for G necessarily contains either the black or the gray 2-break
sorting this circle. This means that if the true evolutionary scenario is close to being
parsimonious, then it is likely to contain one of these 2-breaks, that we call sure. A
biologically relevant cost function then would be expected to have low value for at
least one of these sure 2-breaks, however statistical tests that would accompany this
idea are yet to be developed. In [89] we have shown that a parsimonious 2-break
scenario for human and gibbon has ~30 sure 2-breaks that comprise ~25% of its
length. By comparing multiple pairs of species we could accumulate a larger set of
sure 2-breaks for which various cost functions could be tested.

As far as we are aware, every previous model for cost constrained genome rear-
rangements was symmetric. By this we mean that for every rearrangement scenario
between genomes A and B, there exist scenarios transforming A into B, and B into
A of the same cost. Such a model does not provide any information regarding the
branch of a phylogenetic tree on which rearrangements occurred. Our models, on the
other hand, can be non-symmetric. In this case it might happen that the black sure
2-break has significantly lower cost than the gray one for the same circle subgraph
of the genome breakpoint graph. If the true evolutionary scenario is close to being
parsimonious and the cost function is biologically relevant, then this indicates that a
particular rearrangement happened on the lineage leading to genome A. In addition
to this, in our work a DCJ scenario transforms genomes A and B into some genome
C. For the true evolutionary scenario this C would be the least common ancestor
of A and B. If a biologically relevant cost function ϕ is available, then the genome
C thus obtained for a ϕ-MCPS scenario might inform us about the properties of
the least common ancestor of A and B. If we were able to enumerate or uniformly
sample the ϕ-MCPS scenarios, then we could ask various questions concerning the
gene order of the least common ancestor and the properties of its intergenic regions.
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Résumé

Les Réarrangements Génomiques Dans le Contexte
Évolutif

Un réarrangement génomique est une mutation qui modifie la structure des chromo-
somes voire même leur nombre dans un génome. Prenez par exemple les humains
et les chimpanzés. Nous avons 23 paires de chromosomes, alors que les chimpanzés
en ont 24. Cette différence est due à une fusion de deux chromosomes ancestraux
qui a donné naissance au chromosome 2 chez l’homme [37]. Les lignées humains
et chimpanzés ont chacune accumulé un certain nombre d’autres réarrangements
depuis leur séparation [65].

Outre des fusions et des fissions de chromosomes, ces réarrangements compren-
nent des délétions, des insertions et des inversions de segments chromosomiques.
Deux extrémités de chromosomes différents peuvent également être échangées au
cours d’une translocation. L’ensemble de ces mutations constitue un scénario évo-
lutif de réarrangements entre les espèces. Nous nous sommes intéressés à la recon-
struction des scénarios de réarrangements entre espèces animales.

Les progrès récents dans les technologies de séquençage nous fournissent une
occasion sans précédent pour étudier les mécanismes moléculaires de réarrangements
génomiques [71, 66], la façon dont ils se propagent dans les populations [40], et
leur importance pour l’évolution [74]. Des méthodes de détection systématique de
réarrangements génomiques dans le génome humain émergent [60] et nous informent
de leur apparition en chacun de nous. Des études récentes s’appuient sur ces avancées
pour dévoiler le rôle joué dans les scénarios évolutifs par:

• les domaines de chromatine transcriptionnellement actifs [50, 53],

• la proximité spatiale entre loci dans un génome [99, 17, 94],
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• les limites des domaines d’association topologique [68, 50, 61],

• les structures d’ADN non canoniques [52].

Notre projet associe des outils mathématiques et algorithmiques avec la com-
préhension biologique actuelle des réarrangements génomiques. D’un point de vue
biologique, notre objectif est de lier génétique et épigénétique aux réarrangements
dans les deux sens :

• nous développons une méthodologie pour étudier des caractéristiques géné-
tiques et épigénétiques associées aux réarrangements, et inversement

• pour trouver des scénarios de réarrangements guidés par de telles caractéris-
tiques génétiques et épigénétiques.

Des Modèles Mathématiques de Réarrangements
Pondérés

Les études mathématiques et algorithmiques des scénarios de réarrangements
génomiques ont commencé il y a un quart de siècle et ont conduit à un grand
nombre de problèmes combinatoires [48]. Le problème central dans ce domaine est
celui de trouver un scénario optimal transformant un génome en un autre.

Les réarrangements ont généralement été traités comme étant tout aussi prob-
ables, ou ayant des poids égaux. Dans ce cas, un scénario est optimal s’il est de
longueur minimale. Nous présentons dans la Section 1.3 un aperçu des modèles
dans lesquels des poids différents ont été attribués aux réarrangements en fonction
de certaines contraintes biologiques, dans le but de trouver des scénarios de réar-
rangement qui ressemblent mieux au véritable scénario évolutif. Cependant, dans la
plupart des cas, ces contraintes supplémentaires entraînent des problèmes difficiles.
Des algorithmes polynomiaux sont connus seulement pour quelques-uns d’entre eux:

• Un scénario le plus court composé d’inversions affectant au plus deux gènes
peut être trouvé en temps polynomial, comme le montrent Galvao, Baudet, et
Dias [51] et Bender, Ge, He, Hu, Pinter, Skiena, et Swidan [10].

• Si le poids d’inversion est égal au nombre de gènes qu’il affecte, alors un
scénario de poids minimum composé d’inversions peut être trouvé en temps
polynomial pour deux chaînes binaires [10].

• Un scénario parfait de longueur minimale composé d’inversions peut être
trouvé en temps polynomial pour une certaine famille d’intervalles communs,
comme le montre Bérard, Bergeron, Chauve, et Paul [11].
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À notre connaissance, il existe d’autres algorithmes polynomiaux pour les prob-
lèmes de réarrangements pondérés : ce sont ceux qui s’appuient sur un modèle de
réarrangements appelés double cut and join. Le double cut and join (DCJ) a été
introduit en 2005 par Yancopoulos, Attie et Friedberg [102], et est mathématique-
ment beaucoup plus simple que les modèles précédents basés sur les inversions ou les
inversions et les translocations. Le double cut and join modélise un réarrangement
en coupant des chromosomes en un ou deux endroits et en rejoignant les brins chro-
mosomiques. En plus des inversions et des translocations, cette opération simple
peut reproduire d’autres réarrangements comme une circularisation d’un chromo-
some linéaire et une excision d’un chromosome circulaire. On ne sait pas si ces
derniers types de réarrangements ont un rôle dans l’évolution, mais des éléments
d’ADN circulaires ont été trouvés dans des cellules humaines à l’état normal [76] et
sont abondantes dans des cellules cancéreuses [98]. Il existe quelques algorithmes
efficaces pour les problèmes de double cut and join pondérés :

• Un scénario parfait de longueur minimale de double cut and join peut être
trouvé en temps polynomial pour une certaine famille d’intervalles communs,
comme le montrent Bérard, Chateau, Chauve, Paul, and Tannier [12].

• Un scénario de poids minimum peut être trouvé en temps polynomial parmi
les scénarios de longueur minimale pour les double cut and join pondérés
en fonction des insertions et des suppressions dans les régions intergéniques,
comme le montrent Bulteau, Fertin et Tannier [27].

• Un scénario de poids minimum peut être trouvé en temps polynomial parmi
les scénarios de longueur minimale pour les double cut and join pondérés
en fonction d’emplacements spatiaux des régions intergéniques, comme nous
l’avons montré dans nos travaux précédents [95, 90, 89],

Nous soulignons dans la Section 1.4 que les données biologiques qui sont
disponibles aujourd’hui nécessitent des modèles de réarrangements pondérés qui sont
beaucoup plus flexibles que ceux qui ont été étudiés auparavant.

Un Cadre Général pour les Double Cut and Join
Pondérés

La principale contribution de cette thèse est la suivante :

Projet. Nous présentons un cadre sur le modèle de réarrangements double cut and
join avec des poids arbitraires. Dans ce cadre un scénario de poids minimum peut
être trouvé en temps polynomial parmi les scénarios de longueur minimale pour deux
génomes à contenu génétique identique et sans doublons.
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Cela signifie que notre objectif n’est pas de proposer un modèle particulier de
pondération de double cut and join d’une manière biologiquement significative, mais
plutôt de guider ce processus et de garantir qu’aucun travail algorithmique n’est
nécessaire si nos directives sont respectées.

Les axes principaux de notre projet sont les suivants:

1. Une méthode pour explorer efficacement l’espace des scénarios double cut and
join de longueur minimale.

2. Une méthode pour enrichir un réarrangement avec des informations concernant
les régions intergéniques qu’il coupe et rejoint, et un poids arbitraire.

3. Un algorithme efficace pour trouver un scénario de poids minimum parmi les
scénarios de longueur minimale.

Ces tâches sont traitées respectivement aux Chapitre 3, Chapitre 4, et Chapitre 5.
Notre cadre généralise les trois modèles de double cut and join pondérés précedem-
ment évoqués [95, 27, 12].

Aperçu

Au Chapitre 2, nous montrons qu’un double cut and join peut être interprété
comme une transformation de graphe. Dans ce qui suit nous introduisons en fait un
cadre de transformations pondérées des graphes et non de réarrangements pondérées
génomiques.

Un 2-break est une transformation de graphe échangeant les extrémités de deux
arêtes comme illustré en Figure 7.1. Nous montrons en Section 2.7 qu’un 2-break
généralise un certain nombre d’opérations de tri. Celles-ci incluent le tri des per-
mutations avec transpositions [41], le tri des chaînes avec échanges [4], le tri des
génomes avec double cut and join [102], et l’échange des jetons sur les graphes [23].
Des variantes pondérées pour tous ces problèmes ont été étudiées dans la littérature.
Cela a motivé notre choix d’étudier les 2-breaks pondérés et pas seulement le cas
particulier du double cut and join.

Au Chapitre 3, nous examinons un scénario de 2-breaks de longueur minimale
pour un graphe et démontrons qu’il peut être partitionné en scénarios de 2-breaks
de longueur minimale pour des cycles. Nous procédons ensuite en montrant qu’un
scénario de 2-breaks de longueur minimale pour un cycle peut être partitionné en
scénarios pour des cycles qui sont plus petits. Cela conduit à un algorithme de
programmation dynamique qui explore l’espace des scénarios de 2-breaks de longueur
minimale pour un cycle.
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Figure 7.1: Un 2-break transforme une paire d’arêtes {u, v} et {w, s} en {u,w} et
{v, s}, ou {u, s} et {v, w}.

Au Chapitre 4, nous présentons notre cadre de 2-breaks pondérés et expliquons
qu’il généralise les travaux antérieurs.

Au Chapitre 5, nous fournissons un algorithme exact pour trouver un scénario de
poids minimum parmi les scénarios de 2-breaks de longueur minimale. En l’utilisant,
nous pouvons trouver, en temps O(n5L4), un scénario de poids minimum parmi les
scénarios de réarrangements pondérés de longueur minimale pour deux génomes à
contenu génétique identique et sans doublons. Ici n est le nombre de gènes et L est
le nombre d’états différents auxquels une région intergénique est autorisée à accéder.
Le problème devient NP-difficile si les génomes ne satisfont pas à ces critères. Dans
ce cas, nous utilisons l’optimisation linéaire en nombres entiers pour résoudre le
problème de manière exacte. Nous concluons le chapitre par une discussion concer-
nant la complexité polynomial de notre algorithme. Nous montrons qu’en pratique
n est assez petit, comme on l’a déjà discuté dans [89].

Le vrai scénario évolutif pourrait être d’une longueur non minimale. Il serait
donc intéressant d’explorer l’espace de tous les scénarios, et pas seulement ceux
de longueur minimale. Cependant on sait que c’est NP-difficile de trouver un scé-
nario de réarrangements pondérés de poids minimum, même pour les modèles très
simples de pondération, comme le montrent Fertin, Jean, and Tannier [27] et nos
travaux [91].

Nous estimons qu’il n’est pas nécessaire d’explorer l’espace de tous les scénarios
possibles. D’abord, des outils statistiques pourraient être utilisés pour estimer une
borne supérieure l pour la longueur du véritable scénario évolutif, comme discuté
par Biller, Guéguen, Knibbe, et Tannier [20] et Alexeev et Alekseyev [2]. Ensuite,
seuls les scénarios de longueur inférieure à l pourraient être explorés. Un certain
nombre de nos résultats sont en fait prouvés pour les scénarios qui ne sont pas
nécessairement de longueur minimale. Ces résultats fournissent donc une base pour
les travaux futurs.

Au Chapitre 6 nous discutons comment la pertinence d’un modèle de réarrange-
ments pondérés pourrait être testée en utilisant des données biologiques. Pour con-
clure, nous expliquons comment notre cadre pourrait être utile pour les études phy-
logénétiques.
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