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Abstract

Test infrastructures are crucial to the modern Integrated Circuits (ICs) industry. The
necessity of detecting manufacturing defects and preventing system failures in the field,
makes their presence inevitable in every IC and its sub-modules. Unfortunately, test
infrastructures also represent a security threat due to the augmented controllability and
observability on the IC internals that they typically provide. In this thesis, we present a
comprehensive analysis of the existing threats and the respective countermeasures, also
providing a classification and a taxonomy of the state-of-the-art. Furthermore, we propose
new security solutions, based on lightweight cryptography, for the design of test
infrastructures. All proposed countermeasures belong to the category of scan encryption
solutions and their purpose is to guarantee data confidentiality and user authentication.
Each proposed solution is evaluated in terms of implementation costs and security
capabilities. The results presented in this thesis, indicate that scan encryption is a
promising solution for granting a secure design of test infrastructures.






Résumé

Le test est une étape fondamentale dans le développement
des circuits intégrés modernes. Afin de pouvoir tester effi-
cacement des circuits d'une grande complexité interne, il
est nécessaire de concevoir des infrastructures de test appro-
priées au sein de ces circuits. Si ces infrastructures permettent
des pratiques de test simples et efficaces et ce, tout au long
du cycle de vie du produit, elles offrent également une porte
dérobée qui peut étre exploitée pour des attaques. C’est
pourquoi il est nécessaire de concevoir des infrastructures de
test en adoptant une approche axée sur la sécurité. De nom-
breuses techniques existantes utilisent des implémentations
cryptographiques pour empécher tout accés non autorisé, ou
pour assurer la confidentialité et I'intégrité des données de
test transmises entre 'utilisateur et le dispositif. Parmi toutes
les contre-mesures existantes, 1'une des plus prometteuses
est le chiffrement des chaines de scan ou scan encryption. Cette
contre-mesure est basée sur le chiffrement des données de
test, ce qui garantit la confidentialité des données et prévient
d’une utilisation frauduleuse l'infrastructure de test. Dans
cette these, nous abordons en détail les techniques de scan
encryption. Les contributions de cette thése peuvent étre
résumées comme suit:

1. Nous proposons un examen approfondi del’état del’art
en matiére de sécurité des infrastructures de test. Nous
proposons une nouvelle classification des menaces de
sécurité et des contre-mesures. Sur la base de cette
classification, nous effectuons une comparaison entre
les contre-mesures existantes, et nous identifions la
technique de scan encryption comme une approche
prometteuse pour la sécurisation des infrastructures
de test.

2. Nous analysons en profondeur les techniques de scan
encryption les plus récentes, en identifiant deux ap-
proches différentes pour le chiffrement des données de
test (c’est-a-dire, respectivement, le chiffrement par flot
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etle chiffrement par bloc). En outre, nous mettons en év-
idence une vulnérabilité affectant les implémentations
existantes de scan encryption basées sur le chiffrement
par flot.

3. Nous proposons des nouvelles techniques de scan en-
cryption basées sur le chiffrement par flot, en surmon-
tant la vulnérabilité présente dans les propositions les
plus récentes. Les implémentations proposées visent
différentes infrastructures de test. Leur cotit est évalué
en termes de surface et de temps de test.

4. Nous comparons les techniques proposées basées sur
le chiffrement par flot, avec les techniques existantes
basées sur le chiffrement par blocs. Nous soulignons les
avantages et les inconvénients des deux implémenta-
tions, en fournissant des recommandations permettant
aux concepteurs d’opter pour la technique de scan
encryption la plus adaptée a leurs besoins.

5. Nous analysons la sécurité des techniques de scan en-
cryption étudiées, et nous identifions une catégorie
d’attaques qui peuvent étre menées sur les circuits
intégrés protégés par la scan encryption. Cette vul-
nérabilité affecte toutes les implémentations de scan
encryption et provient d'un manque de vérification de
'intégrité des données.

6. Nous améliorons la scan encryption, en ajoutant un
mécanisme de controle d’'intégrité léger basé sur des
codes de parité. Cette version améliorée de la scan
encryption offre une protection complete contre toutes
les menaces connues.

1 Test des Systémes Numériques

Le test numérique est une pratique fondamentale pour dé-
tecter la présence de défauts apres production des circuits
intégrés, il permet d’effectuer un tri entre circuits bons et
défectueux. Les entreprises doivent faire face a des cofits élevés
pour garantir un flot de tests efficace, mais cela ne peut étre
évité. C’est pourquoi les ingénieurs de test font de gros efforts
pour garantir une détection maximale des fautes avec un cofit
de test minimal en termes de développement et d"application
sur 'ensemble d’une production. La procédure de test de
base consiste a stimuler le dispositif testé avec des séquences
de test, qui stimulent la logique interne du circuit intégré
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et propagent tout effet de fautes éventuelles vers les sorties.
Ainsi, il est possible de détecter la présence d"une faute en
comparant les réponses des tests obtenues sur un circuit avec
celles dérivées des spécifications. L'objectif est de maximiser
la couverture des fautes (c’est-a-dire le pourcentage de fautes
détectées par rapport au total des fautes possibles), et de
réduire au minimum la durée du test. Cependant, la généra-
tion des séquences de test et la mesure de la couverture des
fautes sont des questions qui sont loin d’étre négligeables.

La génération de séquences de test nécessite 1'utilisation
d’algorithmes spécifiques, appelés générateurs automatiques de
séquences de test (en anglais Automatic Test Pattern Generator
ou ATPG), qui sont capables de traiter la netlist des circuits
et de générer un ensemble de vecteurs de test qui sont en
mesure de fournir la couverture de fautes la plus élevée. Les
algorithmes ATPG fonctionnent tres bien et efficacement sur
la logique combinatoire, mais il n’en va pas de méme dans le
cas de la logique séquentielle. C’est ici que les infrastructures
de test entrent en jeu. Les concepteurs doivent employer la
conception pour la testabilité (en anglais Design-for-Testability
ou DfT) pour pouvoir générer et acheminer les vecteurs
efficacement au sein du circuit. Il s’agit de modules supplé-
mentaires qui sont ajoutés durant la conception du circuit
intégré.

La technique de DfT la plus courante pour tester les cir-
cuits séquentiels est I'insertion des chaines de scan. Dans ce
scénario, les bascules du circuit sont remplacées par des
bascules dit bascules scan. Ces bascules possedent une entrée
supplémentaire, appelée scan-in, qui est connectée a la sortie
d’une autre bascule du circuit de facon créer un long registre
a décalage appelé une chaine de scan. Un signal scan-enable
permet de faire passer toutes les bascules du mode fonctionnel
(c’est-a-dire que le circuit fonctionne normalement et que
les bascules fonctionnent de maniere traditionnelle) au mode
test (c’est-a-dire que toutes les bascules sont configurées en
mode scan, et qu’elles sont déconnectées de la logique com-
binatoire). La premiére et la derniére bascule de la chaine de
scan sont connectées aux pins externes du circuit intégré par
les pins scan-in et scan-out respectivement. Cette architecture
permet au testeur de décaler directement les valeurs dans les
registres internes du circuit en utilisant 1’acces scan-in. De
méme, le pin de scan-out permet au testeur de décaler vers
I'extérieur le contenu des registres internes.
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Des standards de test ont été élaborés par l'institut des ingénieurs
en électricité et en électronique (IEEE) dans le but de fournir des
interfaces et des procédures de test universelles. L'élaboration
des normes de test de I'I[EEE a commencé dans les années
1980 avec le groupe d’action conjointe sur le test (en anglais Joint
Test Action Group ou JTAG), qui a commencé a développer la
norme IEEE 1149.1, publiée en 1991 [1]. L'objectif du standard
JTAG était le développement d"une interface de test pour les
circuits intégrés qui peut étre accessible lorsque les dispositifs
sont soudés sur une carte électronique. Ce travail a abouti
a la mise au point de la porte d’accés au test (en anglais Test
Access Port ou TAP), qui représente aujourd’hui une interface
universelle pour les infrastructures de test dans les circuits
intégrés. Plus récemment, en 2005, la norme IEEE 1500 a été
publiée [2]. Cette norme n’a pas eu la chance d’étre associée a
un acronyme pratique, c’est pourquoi tout le monde 'appelle
encore simplement IEEE 1500. Cette norme a été développée
afin de surmonter certaines limitations de la norme JTAG
dans les applications liées aux systémes sur puce (en anglais
Systems on Chip ou SoC). Enfin, en 2014, la norme IJTAG (en
anglais Internal JTAG) a été publiée [3]. Cette norme introduit
un nouveau type d’infrastructure de test qui représente un
réel progres par rapport a la logique du JTAG. Lobjectif est
de fournir une infrastructure flexible permettant d’atteindre
différents types de modules et d'instruments intégrés dans
les SoC.

2 Menaces pour la Sécurité des
Infrastructures de Test

La DfT contraste de maniere décisive avec la nécessité de
confidentialité et de restriction d’accés qui est requise dans
tout type de circuit intégré. L'infrastructure de test donne
généralement a l'utilisateur une contrdlabilité et une observ-
abilité accrues sur les détails internes du circuit. En outre,
la configuration en chaine, typique des infrastructures de
test standard, garantit que plusieurs entités indépendantes
a l'intérieur du systéme partagent la méme connexion de
données. Ce scénario peut entrainer de graves vulnérabilités,
lorsque des données sensibles sont déplacées a travers le
réseau scan. D"un point de vue général, les menaces impli-
quant l'infrastructure de test d'un circuit intégré appartien-
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nent a deux grandes catégories:

» Menaces externes: utilisateur non autorisé qui a le con-
trole de l'interface TAP du dispositif.

» Menaces internes: dispositif malveillant ou cceur interne
implanté dans le systéme par une entité tierce. Dans ce
cas, le dispositif malveillant peut accéder a des données
propagées par l'infrastructure a laquelle il est connecté.

Les attaques externes et internes peuvent étre classées en
différentes catégories, selon le type d’action effectuée par
I'attaquant et les ressources auxquelles il a acces.

Dans les menaces externes, tous les composants du systéme
sont censés étre fiables. Toutefois, si I’attaquant a un acces
physique au dispositif, il est en mesure de se connecter a
l'interface TAP et d’exploiter la contrdlabilité et 'observabilité
mises en évidence sur le dispositif par l'infrastructure de
test. En accédant a I'interface TAD, il est possible d’atteindre
potentiellement chaque infrastructure qui y est connectée.
Dans la littérature, nous avons identifié trois cibles différentes
qui sont exploitées par les attaquants: les chaines de scan,
I'infrastructure de debug, le réseau reconfigurable IJTAG.

La tendance actuelle dans I'industrie des circuits intégrés
est la globalisation de la conception et de la production.
Pour cette raison, les produits finaux proviennent d’un flot
de production qui implique de nombreuses entreprises dif-
térentes. Les entreprises de conception sans usine fournissent
généralement des cceurs de propriété intellectuelle (IP) aux
intégrateurs de SoC. Dans un flot de conception typique,
I'intégrateur de SoC assemble tous les cceurs IP, provenant
de différents fournisseurs, et congoit les circuits au niveau du
SoC pour garantir une intégration correcte. C’est au cours de
cette phase, que l'infrastructure de test au niveau du SoC est
insérée. L'infrastructure est connectée aux interfaces de test de
chaque cceur IP (par exemple, le controleur TAP, I’enveloppe
de test IEEE 1500). L'interaction entre toutes ces parties est
d’une extréme importance pour la sécurité du matériel. Par
exemple, l'intégrateur de SoC ne fait pas nécessairement con-
fiance aux fournisseurs de cceur IP. De méme, les vendeurs
de cceur IP ne se font pas confiance entre eux. Cependant,
les cceurs IP sont généralement connectés a l'infrastructure
de test en chaine. Lorsque le testeur envoie des données a un
cceur IP cible par I'intermédiaire de l'interface TAP du SoC,
celles-ci sont partagées avec d’autres cceurs IP. Le niveau de
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confiance de l'intégrateur du SoC a 1'égard des fournisseurs
d’IP peut varier selon différents scénarios: 1) les cceurs IP sont
vendus a l'intégrateur SoC sans enveloppes de test. Dans ce
cas, I'intégrateur SoC doit lui-méme envelopper les cceurs
IP avec des interfaces de test fiables; 2) les cceurs IP sont
vendus a l'intégrateur SoC avec des enveloppes de test. Dans
ce cas, I'intégrateur SoC ne peut pas non plus faire confiance
a la fonctionnalité correcte des cceurs IP, ce qui fait que les
interfaces de test des dispositifs connectés a l'infrastructure
de test sont considérées comme non fiables. Les mémes con-
sidérations s’appliquent au niveau de carte électronique, ot
des circuits intégrés provenant de différents fournisseurs
sont montés sur la méme carte. En général, lorsque les don-
nées de test sont transférées par l'infrastructure de test d'un
cceur IP non fiable, il n’est pas certain que celui-ci les traitera
selon des regles prédéfinies. Deux menaces possibles ont été
envisagées dans la littérature jusqu’a présent:

» le cceur IP non fiable sniffs espionne les données qui sont
transférées et vole éventuellement des informations
sensibles;

» le cceur IP non fiable falsifie les données de test pen-
dant qu’elles sont transférées, et peut éventuellement
corrompre leurs informations.

Pour autant que nous sachions, il n’y a aucune trace dans la
littérature de dispositifs malveillants qui ont été réellement
pris en train de saboter une infrastructure de test. Toutefois,
certains auteurs ont publié plusieurs scénarios d’attaque
impliquant des dispositifs malveillants exploitant leur con-
nexion a l'infrastructure de test. Ces modeles de menace ont
été largement utilisés par les chercheurs afin de motiver leurs
contre-mesures.

3 Contre-mesures de Sécurité pour les
Infrastructures de Test

Nous nous intéressons dans ce paragraphe aux techniques
de sécurité visant les infrastructures de test complexes basées
sur les standards de test de I'IEEE. Une classification et une
taxonomie de ces contre-mesures est proposée. Nous avons
montré que les menaces affectant les infrastructures de test
peuvent étre divisées en menaces externes et internes. Dans la
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littérature, nous pouvons trouver des propositions de contre-
mesures concernant les deux catégories d’attaques: 1) les
attaques externes sont principalement contrecarrées par les
techniques de "authentification de I'utilisateur et de la détection
des attaques; 2) les attaques internes sont contrecarrées en
accordant la confidentialité des données, l'intégrité des données
et V'authentification des dispositifs.

Nous avons divisé ces contre-mesures en sept catégories
différentes.

Authentification de 1'Utilisateur Cette catégorie de contre-
mesures vise a éviter que des entités non autorisées
n’accédent a l'infrastructure de test. Si lutilisateur n’est
pas autorisé, le controleur TAP est désactivé et les
instructions JTAG ne peuvent pas étre exécutées. De
cette fagon, il n’est pas possible d’accéder aux coeurs
IP internes ou au réseau IJTAG reconfigurable. En con-
séquence, I'exploitation des chaines de scan internes
ou de l'infrastructure de debug est empéchée. Deux
catégories de techniques d’authentification ont été iden-
tifiées. La premiere repose sur l'insertion d"un mot de
passe a l'intérieur du contrdleur TAP afin de le ver-
rouiller ou de le déverrouiller completement. L'autre
catégorie regroupe une série de techniques basées sur
des protocoles de réponse aux défis mettant en ceuvre des
primitives cryptographiques.

Authentification des Utilisateurs pour les Réseaux IJTAG
Trois catégories de techniques d’authentification pour
les réseaux IJTAG ont été identifiées dans la littérature.
La premiere est basée sur des SIB verrouillés qui ouvrent
'acces aux régions privées du réseau. La connaissance
d’un mot de passe secret est nécessaire pour ouvrir
ces SIB. La deuxieme catégorie est basée sur les
protocoles de questions/réponse, ou challenge/response en
anglais, qui permettent 1’acces au réseau (ou a de plus
petites parties de celui-ci) uniquement aux utilisateurs
autorisés. La derniére catégorie vise a obfusquer la
structure du réseau, en augmentant la complexité de
sa rétro-ingénierie.

Authentification basée sur les Privileéges Les contre-
mesures regroupées dans cette catégorie sont une
extension des techniques d’authentification des
utilisateurs. Dans ce cas, tous les utilisateurs n’ont pas
le méme type d’authentification, mais ils obtiennent

ix



des privileges différents sur l'infrastructure de test en
fonction du niveau de confiance dont ils disposent.

Confidentialité des Données Lorsque des données sensi-
bles sont échangées entre 1'utilisateur et l'appareil, la
possibilité d’écoute ou sniffing a partir d"une troisiéme
entité malveillante représente une menace. Ce risque
est présent a la fois dans un environnement carte et
dans un SoC, ou l'entité malveillante est un coeur IP
interne. En outre, les réseaux IJTAG doivent étre pro-
tégés lorsque des données confidentielles pourraient
étre transférées par des instruments embarqués non
fiables. Nous avons identifié deux catégories de contre-
mesures qui assurent la confidentialité des données
d’essai. La premiére catégorie repose sur le cryptage des
séquences de test et peut étre appliquée a toutes sortes
d’infrastructures. Il s’agit des techniques dites de scan
encryption. La deuxiéme catégorie est plus orientée vers
la protection des réseaux IJTAG. La configuration du
réseau re-configurable de scan (en anglais Reconfigurable
Scan Network ou RSN) est correctement modifiée afin
d’isoler les instruments non fiables lorsque des données
confidentielles y sont transférées.

Authentification des Dispositifs L'authentification de
I'appareil est fondamentale pour lutter contre la
présence d’appareils non fiables. L'utilisateur qui com-
munique avec un dispositif cible sur une infrastructure
de test doit étre stir que la cible est un dispositif
authentique et non un faux dispositif issu d'un
processus de contrefacon. Certaines contre-mesures de
ce type ont été proposées dans la littérature.

Intégrité des Données Le fait de garantir 1'intégrité de la
communication permet a l'utilisateur et/ou a l’appareil
de s’assurer que les données échangées n’ont pas été
modifiées pendant la transmission. Une technique
courante consiste a utiliser un code d’authentification
de message (en anglais Message Authentication Code
ou MAC) attaché a la fin de chaque message transmis.
Le MAC est une signature unique qui est calculée en
fonction du contenu du message. L'algorithme MAC le
plus utilisé dans ce domaine est le Hash MAC (HMAC).
Le HMAC est basé sur des fonctions de hachage, telles
que SHA-256. Lorsqu’un message est recu, I’appareil
calcule en interne la signature HMAC du message. Si
celle-ci est égale a la signature qui a été regue en an-
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nexe au message, cela signifie que le message est intact.
Dans le cas contraire, cela signifie que le message a été
altéré. La sécurité de cette primitive réside dans la clé
secrete partagée utilisée a la fois par 1'utilisateur et par
le dispositif pour calculer la signature HMAC.

Détection des Attaques Toutes les contre-mesures présen-
tées jusqu’a présent visent a éviter les attaques sur le
systeme cible. Cependant, il est possible de trouver
dans la littérature une catégorie de techniques visant
a détecter 1'exécution des attaques pendant qu’elles
sont en cours. Ceci est réalisé par une surveillance du
comportement de 1'utilisateur sur la puce. Lorsque le
comportement de 1'utilisateur est considéré comme
illégitime, le systéme détecte une attaque et passe en
mode protection. Les techniques de détection peuvent
étre divisées en deux catégories. La premiére catégorie,
comprend toutes les méthodes de détection basées sur
des regles statiques. Des que ces regles ne sont pas re-
spectées, l'utilisateur est considéré comme un attaquant.
La deuxiéme catégorie comprend les méthodes basées
sur l'apprentissage automatique.

Les techniques de scan encryption ont connu un développe-
ment relativement récent en raison de leurs caractéristiques
prometteuses. Du point de vue de la sécurité, elles reposent
sur un chiffrement des données basé sur du chiffrement
symétrique. Le chiffrement symétrique peut étre facilement
utilisé pour mettre en place un flot de test sécurisé. En fait, le
processus de test peut étre considéré comme une communi-
cation entre un testeur et un dispositif. Le testeur peut étre
un utilisateur autorisé accédant a I'infrastructure de test sur
le terrain, ou un équipement de test automatique effectuant
un test apres fabrication. L'appareil cible peut étre un circuit
intégré ou un coeur IP spécifique a I'intérieur d’un SoC dont
lI'infrastructure de test interne est protégée. La technique de
scan encryption fusionne l'authentification des utilisateurs
et la confidentialité des données en une contre-mesure de
sécurité unique. En fait, tout dispositif malveillant ou utilisa-
teur malveillant qui tente de sniffer le canal de test n’est pas
en mesure de comprendre le contenu du message transmis.
En outre, un utilisateur non autorisé qui ne connait pas la
clé secrete qu’il a utilisée n'est pas en mesure de chiffrer
avec succes les données de test. Il convient de souligner
que le chiffrement du scan d’entrée est toujours présent. Par
conséquent, sa fonction de déchiffrement ne peut pas étre
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évitée le long du canal de test. Pour cette raison, la seule
fagon de communiquer avec succes avec le dispositif cible est
de connaitre la clé secrete et de chiffrer correctement toutes
les données qui sont introduites par le pin de scan-in.

4 Scan Encryption Sécurisé Basée sur
le Chiffrement par Flot

Les techniques de scan encryption existantes sont toutes
basées sur le chiffrement par flot TRIVIUM (en raison de
sa faible empreinte silicium) et elles représentent apparem-
ment une solution moins cotiteuse que les techniques de
scan encryption basées sur le chiffrement par blocs. Nous
avons montré que les solutions basées sur le chiffrement par
blocs doivent étre accompagnées de circuits supplémentaires
pour étre compatible avec l'interface série des infrastructures
de test. Ce surcotit est particulierement évident lorsqu’il
s’agit de chaines de scan multiples. Les solutions basées
sur des flots ne présentent pas ce probleme, mais les implé-
mentations existantes n’ont pas été développées de maniere
approfondie comme cela a été fait pour les solutions basées
sur des blocs. Pour cette raison, nos recherches se sont orien-
tées vers 1’exploration de nouvelles possibilités d"utilisation
de chiffrement par flot dans la scan encryption, mais, a notre
surprise, certains problémes ont été découverts. Le chiffre-
ment par flot est considéré comme stir si deux conditions sont
remplies: 1) que le flot de clés ou keystream soit imprévisible
par 'attaquant; 2) le méme flot de données ne doit pas étre
utilisé plus d’une fois. Si I'une de ces conditions n’est pas
respectée, il est possible d’effectuer une attaque, appelée
two times pad. Les trois implémentations de la scan encryp-
tion basée sur les flots, présentes dans la littérature pour
sécuriser les chaines de scan, peuvent toutes étre exploitées
pour réaliser 1’attaque two times pad. Dans la proposition
de K. Rosenfeld et R. Karri [4], la clé du chiffrement TRIV-
IUM est établie par 1'utilisateur au moyen d’un protocole
de défi-réponse. Le vecteur d’initialization (IV) est fixe. Cela
signifie que si l'utilisateur envoie deux fois le méme défi a
I'appareil, il est stir que la méme clé est utilisée deux fois
pour le chiffrement des données de test. Ainsi, I’attaquant
peut forcer le dispositif & générer le méme flot de clés, méme
sans connaitre sa valeur. La technique décrite dans [5] permet
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a l'utilisateur de définir directement la clé de chiffrement du
flot. En fait, cette solution ne garantit pas I’authentification
de l'utilisateur. Dans ce cas, on ne peut que supposer que
I'attaque par scan pourrait étre effectuée par un dispositif
de sniffage. La vulnérabilité two times pad est présente si
l'utilisateur ne modifie pas la clé avant d’envoyer un nouveau
message au dispositif. La contre-mesure présentée dans [6]
est basée sur un chiffrement par flots dont la clé secrete et
le vecteur d’initialization sont soit cablées avec des fusibles,
soit produites par une procédure de défi-réponse basée sur
des fonctions physiques non clonables (en anglais Physically
Unclonable Function ou PUF). Chaque appareil posséde un
ensemble unique de clés secretes et de circuits intégrés at-
tribués aux différents instruments du réseau reconfigurable
IJTAG. Malheureusement, les auteurs ne précisent aucune
précaution prise pour changer les valeurs des clés ou des IV
entre les différentes sessions de chiffrement. Par conséquent,
'attaque two times pad peut étre effectuée, détruisant I'effet
du schéma de scan encryption. Il est clair que les mises en
ceuvre modernes du scan encryption par flots ont négligé le
soin qui doit étre apporté a la bonne gestion des clés qu’exige
le chiffrement par flots. En revanche, la scan encryption par
blocs ne souffre pas d"une telle faiblesse. En fait, le chiffre-
ment par blocs peuvent réutiliser la méme clé tout au long
de la durée de vie du dispositif sans entrainer de problemes
de sécurité connus. C’est une premiere indication du fait
que préférer la scan encryption basée sur le chiffrement par
flots n’est pas aussi évident qu’il n'y parait a premiere vue.
Cependant, nous avons décidé de donner une autre chance
au chiffrement par flot et nous avons proposé une nouvelle
facon de mettre en ceuvre la scan encryption basée sur le
chiffrement par flots.

La contre-mesure proposée consiste a ajouter deux chiffre-
ments de flot a I'entrée et a la sortie de la chaine de scan
respectivement. Un attaquant qui ne connait pas la clé secréte
utilisée pour le chiffrement des données de test n’est pas en
mesure d’insérer les séquences de test souhaitées a l'intérieur
du circuit. De plus, I’attaquant n’est pas en mesure de com-
prendre le contenu des données de test qui sont transférées
hors de l'infrastructure de test. Seuls les utilisateurs ayant
connaissance de la clé secrete sont autorisés a accéder aux
chaines de scan. En réutilisant la gestion de la clé du circuit
d’origine, la solution n’introduit pas de nouveaux problémes
dans la manipulation de la clé secrete. Le dispositif fournit
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une clé de scan encryption dédiée aux utilisateurs autorisés.
LIV utilisée pour initialiser le chiffrement de la chaine est
générée par un générateur de nombres aléatoires véritables
(enanglais True Random Number Generator ou TRNG). Ce IV
aléatoire est envoyé a l'utilisateur externe par l'intermédiaire
du pin de scan-out. De cette facon, 1'utilisateur est en mesure
de chiffrer correctement les séquences de test. LIV est totale-
ment aléatoire et il est différent apres chaque réinitialisation
du circuit, mais il n’est pas secret. Le seul secret est la clé,
qui n’est connue que des utilisateurs autorisés. Comme les
chiffreurs par flots sont initialisés avec une IV différente
a chaque initialisation du dispositif, le méme flot de clés
n’est jamais généré deux fois. Ainsi, cette solution n’est pas
vulnérable a la faiblesse du two times pad, ce qui empéche
tout attaquant d’effectuer des attaques de scan différentiel.
La premiere étape de la nouvelle procédure de test consiste a
générer des vecteurs de test pour le circuit testé, et a calculer
les réponses de test attendues par simulation. Avant toute
opération de scan, les chiffreurs par flots sont initialisés en
générant un nombre aléatoire utilisé comme IV. Le testeur
récupere 'V aléatoire généré par le biais du pin scan-out,
et il chiffre les vecteurs de test hors puce en utilisant I'TV
aléatoire et la clé secrete. Une fois l'initialisation du chiffre-
ment par flots terminée, le testeur peut transférer les vecteurs
de test chiffrés dans l'infrastructure de test. Chaque vecteur
de test chiffré est d’abord déchiffré a I'aide du flot de clés
d’entrée généré par le chiffreur par flot. Ensuite, il est déplacé
dans les chaines de scan de I’appareil. Les vecteurs de test
sont appliqués au circuit testé et des réponses de test sont
obtenues. Pendant l'opération de décalage, les réponses de
test sont chiffrées a I'aide du flot de clés généré par le chiffre-
ment par flots placé a la sortie du scan. Les réponses de test
chiffrées sont décalées hors du circuit afin d’étre déchiffrées
hors puce par le testeur. Une fois déchiffrées, les réponses au
test peuvent étre comparées avec les réponses attendues.

Nous avons montré que les solutions de scan encryption
basées sur le chiffrement par flot sont un choix attrayant
pour assurer la sécurité des infrastructures de test. Cela est
vrai a condition de gérer correctement la génération des IV,
contrairement a ce qui avait été proposé précédemment par
d’autres auteurs. Cependant, la génération des IV aléatoires
n'est pas gratuite. Dans les techniques présentées, nous
avons proposé la mise en ceuvre d’'un TRNG pour générer
un IV toujours différent. Comme les TRNG sont souvent
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déja présents a l'intérieur des circuits intégrés, nous ne
considérons pas nécessairement cet élément comme un coftit
exclusivement di a la présence de la scan encryption. A
ce stade, nos recherches ont été guidées par le désir de
donner une image claire aux ingénieurs intéressés par la
mise en ceuvre d’une contre-mesure de scan encryption.
Nous résumons ici les conclusions que nous avons tirées de
la comparaison des techniques de scan encryption par flot et
en bloc :

Sécurité La scan encryption par flot et en bloc assure la
sécurité contre les attaques externes et les attaques
internes basées sur le sniffage de données de test. Dans
le cas des attaques par scan différentiels, la solution
proposée basée sur le flot est la seule solution de scan
encryption sécurisée existante de ce type, car elle ne
permet pas l'attaque two times pad. Les deux solutions
nécessitent une clé secréete intégrée dans le dispositif
cible, dont la gestion peut bénéficier de la politique de
gestion des clés fournie par le dispositif cible.

Testabilité les deux techniques garantissent la testabilité
complete du dispositif cible, tant a la fabrication que
sur le terrain. Le test de fabrication n’est pas affecté par
la perte de couverture des fautes induite par 1'ajout de
la solution de scan encryption. La scan encryption par
flot a besoin d"une méthode permettant de contourner
la génération aléatoire du IV lorsque le test in-wafer est
effectué. Le test sur le terrain est accordé, car ’accés a
I'infrastructure de test est laissé ouvert, méme si seuls
les utilisateurs autorisés peuvent communiquer avec
succes avec l'infrastructure de test.

Cofit en Surface la scan encryption par flot mis en ceuvre
avec le chiffrement par flot TRIVIUM est égal a la moitié
du cofit en surface induit par la scan encryption en bloc
mise en ceuvre avec le chiffrement par bloc SKINNY
(c’est-a-dire le chiffrement par bloc le plus léger que
nous avons utilisé dans nos expériences). En fait, il est
possible d’observer qu'un chiffrement par blocs léger,
tel que le chiffrement SKINNY, a la méme empreinte de
surface que le chiffrement TRIVIUM. Toutefois, dans le
cas de scan encryption basée sur des flots, il est suffisant
d’implémenter un seul chiffrement générant deux flots
de clés, alors que dans le cas de chiffrement par blocs,
il est obligatoire d’implémenter un chiffrement lors
du scan-in et un chiffrement lors du scan-out. Il en
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résulte que la scan encryption par flot cotite la moitié
de la scan encryption en blocs. D’autre part, si l'on
considére le cotit du TRNG comme un cofit induit par
la mise en ceuvre de la scan encryption par flot, son
coit augmente considérablement et devient jusqu’a
trois fois supérieur a celui d"une solution par blocs. Par
conséquent, il est clair que la scan encryption par flot
n’est pratique du point de vue du cotit de la surface que
si un TRNG est déja disponible dans 1'implémentation
du dispositif cible.

Cofit en Temps de Test la scan encryption par flot a un

grand avantage du point de vue du temps. Cela est
possible parce que le chiffrement par flot bénéficie
de son adéquation naturelle avec I'interface série des
infrastructures de test standard. Pour cette raison, la
pénalité de temps de test induite par la solution basée
sur le flot est un temps d’initialisation constant qui est
négligeable par rapport au temps de test total du dis-
positif cible. Les solutions de scan encryption par blocs
doivent adapter le chemin de données des chiffrages
par blocs a l'interface série de 'infrastructure de test.
Pour cette raison, la nécessité de compléter les vecteurs
de test par des bits supplémentaires pénalise fortement
le temps de test. Cette surcharge peut étre réduite par
I’ajout de points de test, modifiant ainsi l'infrastructure
de test du dispositif cible.

Chaines de Scan Multiple lorsque plusieurs chaines de

scan sont présentes, la scan encryption par flot peut
bénéficier de sa capacité a générer plusieurs flots de
clés a partir du méme chiffrement par flot. Pour cette
raison, il est possible de gérer jusqu’a 32 chaines de scan
mettant en ceuvre un seul chiffrement de flot TRIVIUM.
Dans le cas de la scan encryption en bloc, la gestion de
plusieurs chaines de scan est définitivement plus com-
pliquée. En effet, les chiffrages par blocs doivent étre
pilotés par une fréquence d’horloge plus élevée que le
reste de l'infrastructure de test. Cela entraine une con-
sommation d’énergie plus élevée et une modification
plus profonde de la conception du circuit intégré.
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La scan encryption offre une protection contre la plupart des
attaques connues visant les infrastructures de test. D’une part,
le chiffrement des données de test compromet la faisabilité
des attaques basées sur le sniffage du canal de communica-
tion entre l'utilisateur et le dispositif cible. D’autre part, les
attaques externes ne sont pas réalisables, car 'attaquant
n‘a pas de controle sur les données qui sont envoyées
a l'infrastructure de test, il ne peut donc pas compren-
dre les résultats produits par le dispositif cible et lus par
I'infrastructure de test. La sécurité de la scan encryption
s’articule autour de deux points clés : confidentialité des don-
nées et authentification de I'utilisateur. La confidentialité des
données transmises est une caractéristique clé du chiffre-
ment en lui-méme. En effet, lorsque 1'utilisateur et ’appareil
échangent des données cryptées avec une clé secrete, per-
sonne d’autre n’est en mesure de comprendre les informa-
tions transmises. Cela signifie que toute tentative d’attaque
faite par des entités malveillantes au sein du systéme, et
connectées a l'infrastructure de test, ne peut aboutir. En
outre, toutes les attaques basées sur 1'observation des états
internes du circuit sont rendues impossibles par le fait que
tout ce qui est déplacé hors de l'infrastructure de test est
chiffré. L'authentification de 'utilisateur est obtenue grace
au fait que la connaissance de la clé secrete est fondamentale
pour pouvoir communiquer efficacement avec le dispositif.
Si 'utilisateur ne connait pas la clé que le dispositif utilise
pour le déchiffrement, il ne pourra pas prévoir la forme
que prendront les données entrantes une fois qu’elles seront
arrivées dans l'infrastructure de test. Il est donc impossible
de forcer un état spécifique sur les registres internes du cir-
cuit. La seule possibilité qui reste a I'utilisateur non autorisé
est d’entrer des données aléatoires dans l'infrastructure de
test.

La seule capacité qui reste a I’attaquant est la possibilité de
déplacer les données a travers des pins de scan, qui sont
déchiffrées en interne, les rendant ainsi imprévisibles pour
l'utilisateur non autorisé. La plupart des modeles de menaces
que nous avons présentés sont basés sur 1’hypothese que
'attaquant peut insérer des modeles spécifiques a l'intérieur
de I'infrastructure de test. Cependant, nous avons identifié
certains scénarios dans lesquels méme l'insertion de bits
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aléatoires a l'intérieur de l'infrastructure de test pourrait
constituer une menace pour la sécurité si des contre-mesures
appropriées ne sont pas mises en ceuvre. C’est le cas de
certains systémes a base de microprocesseurs, ou des modes
opérationnels protégés sont activés et désactivés en modifiant
la valeur d’un seul bit dans un registre. Dans ce cas, méme
lI'insertion de valeurs aléatoires a l'intérieur des chaines de
scan interne pourrait conduire a une attaque, rendant ainsi
la contre-mesure de scan encryption inefficace. La scan en-
cryption permet a l’attaquant d’entrer des données aléatoires
dans l'infrastructure de test. Cela est possible car quelles
que soient les informations que l'attaquant tente d’entrer
par le pin de scan-in, elles seront corrompues de maniere
imprévisible par le chiffrement d’entrée. Malheureusement,
les techniques de scan encryption n’offrent en aucune fagon
la possibilité d’empécher un acces non autorisé, il est donc
nécessaire de comprendre si I'insertion de contenu aléatoire
dans l'infrastructure de test peut constituer une menace. Cela
se produit dans les cas ot1, pour réaliser 'attaque, il suffit
de forcer, au travers des chaines de scan, un nombre limité
de bascules a une valeur spécifique. Si le reste de 'attaque
peut étre effectué en mode fonctionnel, la présence de la scan
encryption n’est pas suffisante pour empécher 'attaquant
d’entrer, apres un certain nombre de tentatives, la valeur
souhaitée a l'intérieur du dispositif. Dans cette thése, nous
avons émis 1’hypothése d"un tel scénario, en utilisant un
microprocesseur équipé dun environnement d’exécution
de confiance (en anglais Trusted Execution Environment
ou TEE) comme dispositif victime. En fait, dans ce type de
microprocesseur, nous avons un seul bit contenant la valeur
binaire qui détermine 'activation du TEE.

Nous avons montré plusieurs mécanismes d’authentification
des utilisateurs visant a empécher 1'utilisation de
l'infrastructure de test par des utilisateurs malveillants. Nous
avons vu que ces techniques sont principalement basées sur
I'insertion d’une clé secréte ou d’un mot de passe, et sur
des protocoles de défi-réponse. De notre c6té, nous avons
identifié une opportunité offerte par le chiffrement, dans le
but d’obtenir une forme d’authentification de 1'utilisateur
qui va au-dela des techniques standards traditionnelles. Plus
précisément, il est possible de s’appuyer sur le dispositif qui
déchiffre passivement les données d’entrée a 1’aide d'une
clé secrete. Par conséquent, en supposant qu'un attaquant
n’ait aucun controdle sur le processus de déchiffrement, il
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est possible d’imposer des régles de format que les don-
nées saisies doivent respecter pour étre acceptées par le
dispositif. Ce faisant, le dispositif est capable de reconnaitre,
apres le déchiffrement, si les données ont été envoyées par
un utilisateur en possession de la clé secrete, ou par un
utilisateur malveillant qui tente d’entrer des données aléa-
toires. Dans cette these, nous présentons la technique de
scan encryption avec contrdle de parité (en anglais Scan
Encryption with Parity check ou SEP), afin de contrecarrer
I'attaque par scan présentée. L'hypothése clé qui sous-tend
la faisabilité de l'attaque par scan proposée, est que les
schémas de chiffrement symétrique manquent d’un mécan-
isme d’authentification, de sorte que le destinataire accepte
toujours le message recu. Avec la technique SEP, nous pro-
posons d’améliorer la scan encryption en ajoutant une véri-
fication légére de l'intégrité des données transférées dans
I'infrastructure de test. L'idée de base consiste a encoder,
avant le chiffrement, les vecteurs de test en texte clair avec
un algorithme de codage connu du public. Le dispositif des-
tinataire, apres déchiffrement, décode les vecteurs de test
obtenus et vérifie leur conformité avant de les appliquer
a la logique du circuit. Dans la technique SEP, nous avons
choisi d"utiliser un code de parité couplé a un chiffrement par
blocs afin de mettre en ceuvre ce schéma d’authentification.
La sécurité de ce schéma repose sur 1’hypothese suivante:
un utilisateur non autorisé n’est pas capable de créer un texte
chiffré, de sorte qu'une fois déchiffré, le texte en clair qui en résulte
est conforme au format souhaité. Dans la technique SEP, on
a recours au calcul de code de parité sur chaque bloc de
chiffrement. Le décodage de la parité est effectué en con-
jonction avec le mécanisme de déchiffrement de 1'entrée du
scan. Un attaquant qui ne connait pas la clé de chiffrement
n’est donc pas en mesure de produire des vecteurs de test
chiffrés valides qui passent avec succes la vérification de
parité apres le déchiffrement. Des que le module de déchiffre-
ment détecte un mauvais bit de parité, il léve un drapeau
al'intérieur du circuit. Lorsque le chargement de la chaine
de scan est terminé et que l'attaquant fait passer le circuit
en mode fonctionnel, la présence du drapeau fait passer le
circuit en état de protection. La technique SEP garantit les
exigences de sécurité suivantes:

1. Les utilisateurs non autorisés ne peuvent pas con-
troler ou observer 1’état interne du circuit. En héritant
du chiffrement de la chaine de scan, nous nous as-
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surons que toutes les données qui sont extraites par
l'infrastructure de test ne sont pas compréhensibles par
I'attaquant. En outre, apres le déchiffrement des don-
nées d’entrée, 1'exactitude des bits de parité est vérifiée.
Cela empéche I'attaquant d’insérer des vecteurs de test
avec un contenu aléatoire dans la chaine de scan ;

2. Les messages échangés par le biais de l'infrastructure
de test ne doivent pas étre compréhensibles par des
tiers. Cette propriété est assurée par le chiffrement des
données de test effectué par un chiffrement par blocs
standard. Ainsi, la sécurité sémantique du chiffrement
est garantie. Notamment, méme si l’attaquant est ca-
pable d’interroger le chiffrement par blocs interne et
de prendre plusieurs paires texte clair/texte chiffré
(c’est-a-dire un attaque a texte clair connu), il n’est pas
possible de trouver une corrélation entre eux, d’ot1 la
clé secrete.

6 Conclusions

La nécessité d'un test conscient de la sécurité est une ques-
tion urgente pour tous les systémes électroniques modernes.
Les infrastructures de tests invasifs sont obligatoires pour
garantir la production de circuits intégrés a faible cotit. Dans
la plupart des applications, il n’est plus possible d’imaginer
un systéme sans acces TAP. Dans cette these, nous montrons
que la sécurité est un probleme majeur qui affecte toutes les
infrastructures de test. Pour cette raison, le flot DfT devrait
prendre en considération la sécurité dés les premiéres étapes
du développement des circuits intégrés. Dans cette these,
nous avons montré que de nombreuses contre-mesures exis-
tantes pour les infrastructures de test sont basées sur ’ajout de
modules cryptographiques pour I’authentification des utilisa-
teurs. La plupart de ces mécanismes d’authentification sont
basés sur un matériel cryptographique complexe, représen-
tant un cott insupportable en dehors de certains marchés
de niche spécifiques. De la méme maniere que la DfT a
connu un processus d’automatisation au cours des derniéres
décennies, qui a permis son utilisation massive dans tous
les segments du marché, nous voulons souligner que la né-
cessité d'une DfT sécurisé devrait également connaitre une
telle diffusion. Bien qu’il y ait maintenant de nombreuses
propositions dans la littérature dans ce sens, le scénario est



encore trop fragmenté, et composé de techniques qui offrent
une protection partielle et/ou dont la sécurité est difficile
a prouver. Nous avons identifié la scan encryption comme
une technique trés prometteuse pour sécuriser facilement
les infrastructures de test. La scan encryption est basée sur
I'ajout de matériel cryptographique dont le cotit peut étre
maintenu marginal selon le besoin du concepteur. Son dé-
ploiement est extrémement simple et facile a automatiser. Le
concepteur de la DfT établit les clés secretes qui sont utilisées
par le dispositif, et I'ensemble du flot de test est chiffré en
conséquence. Cela empéche a la fois I’acces non autorisé par
des utilisateurs malveillants et la fuite d’informations dans
le canal de communication.

Dans cette these, nous avons analysé en profondeur les
techniques de scan encryption et essayé de résoudre les prob-
léemes qui ont été identifiés. Dans un premier temps, nous
avons inspecté les techniques de pointe, en identifiant deux
catégories : la scan encryption basée sur le chiffrement par flot et
basée sur le chiffrement par blocs. Alors que la scan encryption
par blocs avait déja fait 1'objet d’une analyse minutieuse et
d’une activité expérimentale étendue, la scan encryption par
flot a été proposée dans de nombreux travaux, mais n’a ja-
mais fait 'objet d"une analyse de sécurité approfondie. C’est
pourquoi nous avons proposé de nouvelles implémentations
de scan encryption basées sur le chiffrement par flot, cor-
rigeant ainsi certains problemes de sécurité que nous avons
trouvés dans l'état de 1’art. La scan encryption proposée est
basé sur la génération aléatoire d'un IV différent au début
de chaque communication entre 1'utilisateur et l’appareil.
Bien que cela implique des cofits de mise en ceuvre plus
élevés également pour la scan encryption par flot, les deux
techniques ont été amenées au méme niveau de sécurité
et peuvent toutes deux étre envisagées sans risque pour
le déploiement d"une DfT sécurisé. Nous avons largement
comparé la nouvelle méthode de scan encryption par flot et
la méthode de scan encryption par blocs déja existante. Nous
avons mis en évidence les avantages et les inconvénients
des deux solutions, afin de fournir une ligne directrice aux
concepteurs qui souhaitent utiliser la scan encryption pour
sécuriser leur DfT.

La scan encryption, tant dans sa mise en ceuvre par flot que
par blocs, est capable de contrecarrer la plupart des attaques
impliquant des infrastructures de test. En fait, tant la con-

6 Conclusions
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trolabilité que 'observabilité des ressources internes sont
considérablement entravées. L'attaquant n’a aucun contréle
sur I'opération de déchiffrement qui est effectuée au niveau
du port d’entrée. Ainsi, sa seule capacité est d'insérer des
données aléatoires a l'intérieur de l'infrastructure de test.
D’autre part, le chiffrement des données garantit la confiden-
tialité des données de test en dehors des limites du dispositif
cible. Ainsi, toutes les tentatives de piratage et d’acces illégal
a le pin de sortie de scan n’entrainent aucune menace. Malgré
la sécurité étendue offerte par la scan encryption, son ab-
sence de mécanisme de controle de 1'intégrité des données la
rend potentiellement vulnérable aux acces non désirés. Dans
cette theése, nous avons exploré les scénarios possibles dans
lesquels un utilisateur malveillant peut exploiter la capacité
d’insérer des données aléatoires dans l'infrastructure de test
pour réaliser une attaque. Nous avons identifié une catégorie
d’attaques, dans laquelle 'attaquant exploite les chaines de
scan interne afin de forcer un nombre tres limité de bas-
cules a une valeur spécifique. Dans ce cas, la contre-mesure
de scan encryption ne suffit pas pour éviter un scénario
similaire. Nous avons proposé un exemple d’attaque visant
I'environnement d’exécution de confiance d’un micropro-
cesseur. Si 'attaquant regle correctement la mémoire du
microprocesseur, il est possible de déclencher I'exécution
d’un code malveillant par 'insertion de données aléatoires
dans les chaines de scan. Pour cette raison, nous avons pro-
posé une amélioration de la scan encryption comprenant
un mécanisme de controle d’intégrité trés léger. Dans cette
technique, nous proposons d’inclure une regle de format
aux données de test en texte clair que le dispositif cible peut
facilement vérifier apres le déchiffrement. Si ces regles sont
respectées, les données regues sont valides, sinon, elles sont
considérées comme des données malveillantes envoyées par
un attaquant. La sécurité de cette technique repose sur le
fait qu'un attaquant ne peut pas produire un message valide
qui résulterait en un format correct apreés décryptage, sans
connaitre la clé de scan encryption. Nous avons mis en ceuvre
cette technique en ajoutant des bits de parité dans les données
de test. Au prix d’un léger surcofit en termes de temps et
de surface de test, la scan encryption obtient une propriété
de sécurité qui la rend robuste contre tout type d’accés non
autorisé.

Nous pensons que la scan encryption est une technique trés
prometteuse pour protéger les infrastructures de test. Ses



caractéristiques lui permettent de fournir une DfT consciente
de la sécurité, méme dans des appareils peu cotiteux. Sa
flexibilité et la variété des mises en ceuvre sont des car-
actéristiques qui permettent d’adapter la contre-mesure a
différents besoins de conception. Nous pensons également
que le développement d'un standard de test conscient de la
sécurité est inévitable a 1’avenir, et la scan encryption pour-
rait étre un point de départ prometteur pour raisonner a ce
sujet.

6 Conclusions
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Introduction

The test is a fundamental step in the development of modern
integrated circuits (ICs). In order to be able to effectively
test circuits with high internal complexity, it is necessary to
design appropriate test infrastructures within them. While
these infrastructures make lean and effective testing practices
possible throughout the entire product life cycle, they also
offer an unwanted security backdoor. For this reason, there
is a need to design test infrastructures using a security-aware
approach. Many existing techniques use cryptographic im-
plementations to prevent unauthorized access, or to provide
confidentiality and integrity to test data transmitted between
the user and the device. Among all the existing counter-
measures, one of the most promising is the scan encryption.
This countermeasure is based on the encryption of test data,
which guarantees the confidentiality of test data and does
not allow unauthorized use of the test infrastructure. In this
thesis, we extensively discuss scan encryption techniques.

The contributions made by this thesis can be summarized as
follows:

1. We provide an extensive review of the state-of-the-art
on the security of test infrastructures. We propose a
new classification of the security threats and coun-
termeasures. Based on this classification, we perform
a comparison between the existing countermeasures,
and we identify the scan encryption technique as a
promising approach for securing test infrastructures.

2. We thoroughly analyze state-of-the-art scan encryption
techniques, identifying two different approaches for
the encryption of test data (i.e., stream cipher and block
cipher encryption respectively). Furthermore, we point
out a vulnerability affecting existing scan encryption
implementations based on stream ciphers.

3. We propose new scan encryption techniques based
on stream cipher encryption, overcoming the vulnera-
bility present in the state-of-the-art implementations.
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The proposed implementations target different test in-
frastructures. Their cost is evaluated in terms of area
and test time.

4. We compare the proposed techniques based on stream
cipher encryption, with the existing techniques based
on block cipher encryption. We highlight pros and
cons of both implementations, providing a guideline
to allow designers to opt for the most suitable scan
encryption technique for their needs.

5. We analyze the security of the discussed scan encryp-
tion techniques, and we identify a category of attacks
that can be carried out on ICs protected with scan
encryption. This vulnerability affects all scan encryp-
tion implementations and stems from a lack of data
integrity check in the scan encryption mechanism.

6. We enhance the scan encryption, adding a lightweight
integrity check mechanism based on parity codes. This
improved version of scan encryption offers a complete
protection against all known threats.

This thesis is organized as follows. In Chapter 1, we provide
a background on testing, and we describe the existing test
infrastructures that are the object of the whole thesis. In
Chapter 2, we review the existing security threats on test
infrastructures. In Chapter 3, we describe the state-of-the-art
security countermeasures for the test infrastructure design.
We present a new classification of the existing techniques,
and we focus on scan encryption techniques. In Chapter 4,
we highlight a vulnerability affecting state-of-the-art scan
encryption techniques based on stream ciphers. Furthermore,
we present new scan encryption implementations based on
stream ciphers overcoming the presented vulnerability. Fi-
nally, we compare stream and block based scan encryption
techniques. In Chapter 5, we discuss the security properties of
scan encryption techniques. We highlight the consequences
of the lack of data integrity check, presenting an attack model
on some secure microprocessors. Finally, we propose an en-
hanced scan encryption providing data integrity check based
on parity coding. In Chapter 6, we draw the conclusions.



Test of Digital Systems

The development of test techniques for integrated circuits
goes hand in hand with the innovations in semiconductor
technology. The deployment of Moore’s Law has been possi-
ble thanks to the constant reduction of the transistors size.
However, this fast development has always been coupled
with the presence of fabrication defects that necessarily affect
cutting-edge semiconductor technologies. For this reason,
digital testing is a fundamental practice for detecting the pres-
ence of defects on the production output and classifying ICs
into good and faulty. Companies face high costs for guaran-
teeing an efficient test flow, but this cannot be avoided. For
this reason, test engineers make big efforts in order to guar-
antee maximum fault detection with minimum test cost. The
basic test procedure consists in stimulating the device under
test (DUT) with test patterns, which stimulate the internal
logic of the IC and propagate any possible fault effect on the
outputs. Thus, it is possible to detect the presence of a defect
comparing the test responses with reference results derived
from the specifications. The objective is maximizing the fault
coverage (i.e., the percentage of faults that are detected out
of the total possible faults) while minimizing the test time.
However, generating test patterns and measuring the fault
coverage are issues that are far from trivial. In order to mea-
sure the fault coverage, it is necessary to determine a fault
model, i.e., a model that correlates the physical defects with
a logical behavior that can be represented and simulated at
design time. The most popular fault model is the stuck-at
fault model, where faults are represented as constant binary
values imposed on the circuit interconnections. Generating
test patterns requires the usage of specific algorithms, called
automatic test patterns generators (ATPG), which are able to
process the circuit netlist and generate a set of test vectors
(i.e., input patterns for test purposes) that are able to provide
the highest fault coverage. ATPG algorithms work very well
and efficiently on combinational logic, but this is not the
case for sequential logic. For this reason, test infrastructures
come into play. Designers must employ design-for-testability
(DAT) practices for efficiently generating test vectors. These
are additional modules that are added to the IC design, in
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order to support the generation and the application of the
test [7, 8] .

In this chapter, we introduce the most common DT tech-
niques and the related test infrastructures, which play a
crucial role in this thesis. At first, we describe the overall
test flow and its configuration in the production model of a
typical integrated circuit. Finally, we describe in more detail
some test infrastructures that are implemented inside the
device at design time allowing the overall feasibility of the
test procedures.

1.1 Testing in the IC Production Flow

The main objective of IC design and manufacturing flow
is maximizing the production yield, which is the percent-
age of valid IC samples coming out from the production
plant. For this reason, it is fundamental to be able to distin-
guish between good and faulty circuits as soon as possible
in the production flow. During manufacturing, the test is
performed resorting to the automatic test equipment (ATE), a
programmable machine that sends test stimuli to the DUT.
When the test procedure is started, the device inputs start
being stimulated with test vectors and the results present on
the output signals are recorded. Finally, test responses are
compared with the expected outputs stored inside the ATE
memory. If any mismatch is observed between the obtained
responses and the expected ones, this means that the DUT
is faulty. When silicon dies are still attached to the wafer,
they are already submitted to a first test, called in-wafer test.
In this phase, special probes, called flying probes, are used
to reach the pads of the dies and to stimulate the circuit
with test vectors. Using flying probes, it is possible to test
multiple dies simultaneously and save time. After being cut
from the silicon wafer, only dies that passed the test are sent
for packaging, the others are discarded. After IC packaging,
another test is performed. This kind of test is traditionally
called post-manufacturing test and it can be performed by
the manufacturing company or outsourced to specialized
companies in the testing domain [7, 8].

When the device is shipped to the customer, this undergoes
other tests that can be done to verify the compliance of the
device to the specifications. Moreover, the target device can
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contain some special configuration registers that must be
set by the customer. This is carried out through a special
procedure that is called silicon bring-up. Through this con-
figuration, it is possible to configure special instruments
embedded inside the IC (i.e., voltage regulation, current
metering, internal sensors) [9] .

When the device is deployed in the field, its testing necessities
do not deplete. For instance, it is important for companies
to be able to test faulty devices returned by customers. This
must be assured in order to provide assistance and repairing
damaged systems, and for providing feedback that is useful
to the vendor. In the case of ICs equipped with microproces-
sors, it is also important to guarantee debug capabilities that
can be exploited by software developers. Another scenario
where testing in the field is crucial involves all the applica-
tions regarding safety-critical systems. The most prominent
example in this direction is offered by ICs for automotive
applications. In this case, it is common that at the system
power-on all the ICs of the system are quickly tested and
the integrity of all the functionalities is checked. This allows
the system to detect the presence of faults before starting
the car. Moreover, automotive subsystems that require the
highest reliability levels (e.g., engine control unit, assisted
break system) also need to perform on-line tests all along their
operational activity [10] . In this scenario, it is common that
specific circuit modules are periodically stopped in order
to perform an on-line self-test. The most crucial assets in
automotive systems must perform on-line tests providing
almost total fault coverage up to five times per second [11].

All scenarios described in this section show that test is a
fundamental element of the IC development flow. From
the very beginning, when silicon dies are still attached to
their wafer, up to the last moments of operation in the field.
All these test phases have the same objective of detecting
possible faults in the circuit logic that could lead the system
to a malfunction. They also share the same constraint on the
test time, which must be as short as possible. In the next
section, we describe more thoroughly how tests are generated
and which are the kind of infrastructures included in the
devices that are needed in order to support testability.

[9]: Portolan (2019), ‘Automated
Testing Flow: the Present and the
Future’

[10]: Psarakis et al. (2010),
‘Microprocessor Software-Based
Self-Testing’
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1.2 Design-for-Testability

Test generation is based on ATPG algorithms. These algo-
rithms take as input the circuit netlist and the fault model.
After a structural analysis of the netlist, a fault list is deter-
mined, containing all the possible faults that could affect the
circuit. For each fault in the fault list, the ATPG searches for
an input pattern (i.e., test vector) that is able to stimulate the
target fault and to propagate its effect on the circuit output.
The final response of the ATPG is the smallest subset of
test vectors that is able to detect all the faults. A fault is
testable only if it is both controllable from the input signals and
observable on the output signals. Thus, the overall testability
of a circuit (i.e., the easiness for the ATPG to generate test
vectors) depends on the controllability and observability on
the internal logic that is achievable acting on the primary in-
puts. In the case of combinational circuits, ATPG algorithms
are capable of efficiently computing test vectors providing a
very high fault coverage. On the other hand, this is a lot more
difficult for sequential circuits. In fact, for testing a fault in
sequential circuits, it is often necessary to run the circuit for
several clock cycles, in order to drive the circuit into a specific
state where the internal registers contain the correct values
that are needed for stimulating the fault. After that, other
several clock cycles can be needed in order to reach a state
where the perturbation induced by the fault is observable
on the circuit primary outputs. This problem leads, in the
fortunate cases, to the generation of very long test sequences
[7, 8]. Unfortunately, it is common that running the ATPG
on a medium-complexity sequential circuit, the algorithm
is not able to find any solution in a reasonable amount of
time. For this reason, it is necessary to directly act on the
design of the circuit logic in order to facilitate the task of
the ATPG. In few words, we need to insert a backdoor on
sequential circuits that allows the testers to transform the
circuit into a combinational one.

Scan Chains

The most common DT technique that is used for testing
sequential circuits is the scan chain insertion. In this scenario,
the flip-flops of the circuit are replaced by scan flip-flops.
These flip-flops have an additional input, called scan-in, that
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is connected to the output of another flip-flop of the circuit.
The result is that all the flip-flops in the circuit are connected
serially, similarly to a long shift register, and they form what
is called a scan chain. A scan enable signal switches all the
flip-flop between functional mode (i.e., the circuit is working
normally and the flip-flops operate in the traditional way)
and test mode (i.e., all flip-flops are configured in the scan
mode, and they are disconnected from the combinational
logic). The first and the last flip-flops of the scan chain are
connected to the external pins of the IC through the scan-in
and the scan-out pins respectively. This architecture allows
the tester to directly shift values into the internal registers of
the circuit using the scan-in access. Similarly, the scan-out
pin allows the tester to shift out the content of the internal
registers. This enables a test procedure that is carried out in
the following steps:

1. The scan enable signal is set in order to switch the
circuit to test mode.

2. Test vectors are shifted into the scan chain through the
scan-in pin.

3. The circuit is switched back to functional mode for
one or two clock cycles, according to the fault model
that is used. In this phase, the values that have been
imposed on the internal flip-flops are applied to stimu-
late the combinational logic. Thus, the test responses
are captured in the internal flip-flops and on primary
outputs.

4. The circuitis switched back to test mode and the content
of the scan chain is shifted out through the scan-out
pin. At the same time, the next test vector is shifted-in
through the scan-in pin and the procedure restarts
from point 2.

Let us suppose that a circuit has N flip-flops. The total test
time is:
T=NK+1)+K (1.1)

where K is the number of test vectors generated by the
ATPG. It is evident that the length of the scan chain (i.e.,
the number of flip-flops of the circuit) strongly determines
the test duration. This issue can be solved by spreading the
circuit flip-flops over multiple scan chains. In this scenario,
if N flip-flops are equally partioned into L scan chains, the

5
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[13]: Rajski et al. (2004), ‘Embed-
ded deterministic test’

total test time becomes:
T = %(K +1)+K (1.2)

In the case of complex circuits, where N > K, dividing the
test infrastructure into a few scan chains can reduce the test
time of one order of magnitude, which represents a strong
gain in the production cost [7].

The major drawback of using multiple scan chains is the
need of multiple scan-in and scan-out pins. This represents
a serious problem in complex ICs, where the number of ex-
ternal pins is very reduced compared to the number of logic
elements that are present in the netlist. This problem is solved
using fest compaction techniques based on XOR operations [12,
13] . At first, the ATPG generates test vectors for multiple
scan chains. After that, each set of multiple test vectors is
compacted in order to fit into a smaller number of bitstreams.
The same operation is performed on the test responses. On
the IC, a few scan-in pins are interfaced with a hardware
decompressor that unravels the input bitstreams and gener-
ates the decompressed test vectors for the inner scan chains.
Before the scan-out pin, test responses are compressed into
a few bitstreams that are retrieved by the tester. Common
hardware implementations of the compaction mechanisms
are based on trees of XOR gates.

Scan chains play a strategic role for the testability of digital
logic, in all kinds of circuits. We have seen that scan chains
have a very simple interface based on possibly two pins for
scan-in and scan-out, and one pin for scan-enable. However,
despite its easiness of management from an ATE point of
view, this very simple interface has many limits. For instance,
it is common that complex Systems on Chip (SoCs) are
composed of several intellectual property (IP) cores supplied
by third-party developers, whose netlist is already provided
and equipped with scan chains. The IP core developers
also provide test patterns related to their own sub-module
to be used for post-manufacturing testing, and these are
integrated into the test patterns targeting other parts of the
SoC. In this scenario, it is not possible for the ATE to directly
access the scan-in and scan-out pins of each internal IP core
without the need of additional DfT structures. In the next
section, we present the test standards that have been developed
by the Institute for Electrical and Electronics Engineers (IEEE)
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with the purpose of providing universal test interfaces and
procedures.

1.3 IEEE Test Standards

The development of the IEEE test standards started in the
1980s with the Joint Test Action Group, abbreviated in JTAG,
which started to develop the IEEE Std. 1149.1, published in
1991 [1] . The objective of the JTAG standard was the devel-
opment of a test interface for integrated circuits that can
be accessed when the devices are soldered on an electronic
board. This work resulted in the development of the Test
Access Port (TAP) mechanism, which represents today a uni-
versal interface for test infrastructures in integrated circuits.
More recently, in 2005, the IEEE Std. 1500 was released [2] .
This standard did not have the chance to be associated to a
practical acronym, thus everyone still refers to it simply as
IEEE 1500. This standard was developed in order to overcome
some limitations of the JTAG standard in SoC applications.
Finally, in 2014, the IJTAG (Internal JTAG) standard was
released [3] . This standard introduces a new kind of test
infrastructure that represents a real advancement with re-
spect to the logic of the JTAG. The aim is to provide a flexible
infrastructure for reaching different kinds of modules and
embedded instruments inside SoCs. In this Section, we give
some details on these test standards, highlighting the features
that are essential for understanding the following chapters
of this thesis.

JTAG

The JTAG standard was primarily conceived for electronic
boards testing. The key elements of this standard are the
TAP controller, the Instruction Register (IR) and several Data
Registers (DRs). The TAP controller is driven by an external
signal and it executes an instruction, stored into the IR,
selecting the DR that must be serially connected between the
Test Data Input (TDI) and the Test Data Output (TDO) pins
[14]. The TAP controller implements the finite state machine
(FSM) that is depicted in Figure 1.1.

[1]: Andrews (1991), ‘IEEE
Standard Boundary Scan 1149.1
An Introduction’

[2]:  (2005), ‘IEEE Standard
Testability Method for Embedded
Core-based Integrated Circuits’

[3]: (2014), ‘IEEE Standard for
Access and Control of Instru-
mentation Embedded within a
Semiconductor Device’
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Figure 1.1: Finite state machine
implemented by the TAP con-
troller of the IEEE Std. 1149 (JTAG)
[1].
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The Test Mode Signal (TMS) is used to drive the TAP controller
through all its states. The Test Clock (TCK) and Test Reset
(TRST) are the other two signals of the TAP interface. In
a typical test procedure, the user loads an instruction into
the IR, through the TDI pin (i.e., Shift- IR instruction). An
internal decoder accordingly selects the DR that must be
connected between the TDI and the TDO when the controller
is in the Select-DR state. Data registers can be of different
kinds, and they can be personalized according to the needs
of the designer. However, there are a few DRs that are
recommended and defined by the JTAG standard:

» the bypass register is a single flip-flop that is inter-
posed between the TDI and the TDO pin. This is selcted
when data must be shifted through the device without
any operation performed.

» the IDCODE register contains the device ID. This
register cannot be overwritten, but the user can only
shift its content out.

» the boundary scan register (BSR) is a special DR that
is made of boundary scan cells located on the internal
pins of the device. This allows the tester to serially
access device pins and shifting values in and out of
them.

The presence of the BSR enables the execution of the INTEST
and EXTEST instructions. The EXTEST instruction is conceived
to test the metal lines of the electronic board where the device
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is soldered on. The INTEST instruction is fundamental for
testing purposes. In fact, it is possible to exploit the presence
of the BSR to feed data inside the internal scan chains. When
multiple devices with a TAP controller are mounted on the
same electronic board, there are different choices that can
be made in order to interface them. The objective is having
a TAP port at board level that allows the access to the JTAG
infrastructures of all the devices on the board. Thus, it is very
practical to configure the devices in a daisy-chain connection,
where the TDO pin of a device is connected to the TDI pin
of the next one. This way, it is possible to build a serial
scan connection that traverses all the ICs on the system.
Therefore, when test data are sent to one IC, they are shifted
through all the other devices connected to the same JTAG
infrastructure.

IEEE 1500

One limitation of the JTAG standard consists in its purely
serial interface. If a user needs to test a device, test vectors
must be integrated inside the serial JTAG interface. This
means that a test vector, targeting L parallel scan chains, must
be shifted into the device one bit at a time through the TDI
pin. The same must be done for the test responses, shifted out
through the TDO pin. This represented a problem, mostly for
SoCs, where the presence of several internal IP cores, made
the test access capability of the JTAG interface too limited. For
this reason, the IEEE Std. 1500 was specifically developed for
testing embedded cores inside SoCs. The main novelty of this
standard is the presence of parallel test input and test output
ports, which allow parallel access to the core under test. Thus,
test vectors can be sent to the target core, provided by external
pins or from other IP cores in functional mode. The other
elements of the IEEE 1500 standard are inherited from the
JTAG. Each IP core compliant with this standard is equipped
with a test wrapper that is accessed through the wrapper serial
port (WSP). The WSP can be serially accessed from external
pins or from a SoC level JTAG infrastructure. Through the
WSP, it is possible to access a wrapper instruction register (WIR)
and some wrapper data registers (WDR). Amongst the WDRs,
we find the wrapper boundary register (WBR), which has the
same function of the boundary scan register in the JTAG
standard [2]. It is evident that the IEEE 1500 standard does

9



10

1 Test of Digital Systems

not represent a radical change with respect to the logic of the
JTAG. However, the main innovation is represented by the
standardization of a test wrapper that can be implemented
by IP core designers and integrated inside a wider test
infrastructure. In fact, at SoC level, it is common to have
a TAP interface that is connected to a board level JTAG
infrastructure. Inside the SoC level JTAG infrastructure, the
SoC integrator can introduce custom instructions that enable
the access to the WSP of specific IP cores for testing purposes.
This way, IP cores equipped with an IEEE 1500 compliant test
wrappers can be perfectly integrated inside a higher level
JTAG infrastructure and accessed from the board level TAP
interface.

IJTAG

With the rising in complexity of SoCs, the traditional JTAG
infrastructure became a bottleneck for test procedures. In fact,
numerous sub-modules in a typical SoC need access from
the external for testing and configuration purposes. These
modules can be IP cores with a dedicated test procedure
or embedded instruments that must be configured during
silicon bring-up or in the field. When the number of these em-
bedded instruments reaches the order of hundreds, or even
thousands, connecting them all to the same TAP controller
using the JTAG standard is impossible. In that case, all the
embedded instruments and IP cores are serially connected
in a daisy-chain connection. This implies that each operation
that must be done on one of these instruments would need
to shift test data through all the other instruments, resulting
in very long test times. The IEEE Std. 1687, known as Internal
JTAG (IJTAG), has been developed in order to deal with this
kind of problems. The main idea behind IJTAG is the intro-
duction of a dynamic test network with configurable length,
opposed to the fixed-length network of the traditional JTAG.
The IJTAG standard introduced the concept of Reconfigurable
Scan Network (RSN), which is composed of many Test Data
Registers (TDR). Each TDR is a register that represents the
interface of the target instrument. Once data are shifted into
a TDR, its value is updated into the target instrument register.
Each TDR can be serially connected to the TDI and TDO pin
of the TAP interface. However, each TDR can be gated using
a Segment Insertion Bit (SIB), which is a modified scan cell,



1.3 IEEE Test Standards

which can be configured in order to bypass or not the portion
of RSN that is connected to it. A possible scenario is the
presence of a SIB for each TDR. When all SIBs are closed, the
RSN has minimal length, because it composed only of SIBs.
When the user wants to access a specific TDR, it is necessary
to open the corresponding SIB (i.e., updating the value 1’
into it) and, at that point, the target TDR is connected into the
RSN, whose length is increased. In another scenario, multiple
TDRs can be gated by the same SIB. In this case, the set of
TDRs gated by the same SIB must be accessed at the same
time by the tester [3]. Exploiting the IJTAG standard and
its RSN, it is possible to schedule the test in different ways,
accessing different instruments in parallel or not, according
to the tester choices. This allows a radical optimization of the
test time at the cost of an increase in complexity of the test
scheduling [15-19].

In light of what has been said about test infrastructures,
it is clear that they facilitate access to a large number of
resources within integrated circuits. Specifically, scan chains
offer an augmented controllability and observability on the
internal flip-flops of the circuits. Moreover, test standards
offer a universal port that allows the access to a plethora
of internal resources from the external pins. Test networks,
which are typical in the standard test infrastructures, facilitate
the sharing of test data between different resources and
intellectual properties. As we will show in the next chapter, all
these features make test infrastructures an issue for security
and trust in integrated circuits.
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Security Threats in Test
Infrastructures

The fact that test infrastructures pose a security problem in
the integrated circuits design became clear since the early
days of hardware security. In the last years of the 20" century,
cybersecurity experts started turning their attention to the
hardware implementations of cryptographic functions. In
1999, P. Kocher et al. published a milestone paper that intro-
duced the notion of side-channel attack [20] . It was shown that
measuring and observing the power consumption profile of
a running cryptographic IC could easily reveal its secret key.
Thereafter, the same attack was proposed for a plethora of
physical quantities (e.g., electromagnetic emissions, acoustic
waveforms), so called side-channels, that can be exploited for
the same purpose. This full-fledged revolution in the cyber-
security field unveiled the weakness of the existing hardware
implementations, extending the security burden to IC de-
signers. It was only a matter of time before the accessibility,
provided by test infrastructures, started being considered a
security threat, in the same way as side-channels [21] .

The first attack exploiting the scan chains, called differential
scan attack, was published in 2004 by B. Yang et al. [22]
This attack and the others published in a first period, fo-
cused on exploiting scan chains to steal the secret key from
cryptographic ICs. At the same time, in parallel with the
development of the test standards, the pervasiveness of com-
plex test infrastructures gave the opportunity to conceive a
plethora of different attack scenarios. The access provided
by the TAP interface and the debug port, the interconnec-
tion between different IP cores made possible by the RSNs
in the IJTAG standard, were all regarded as fertile ground
for different attack scenarios. Since the beginning, research
on the security of test infrastructures stood out from the
research on side-channel attacks. In fact, while side-channel
attacks necessarily involve physical properties of the ICs,
scan attacks are studied at the architectural level, indepen-
dently of the physical implementation. For this reason, most
of the achievements in the test security literature sit on the
statement (often implicit) that side-channel attacks are out
of the scope [23, 24] .

[20]: Kocher et al. (1999), ‘Differ-
ential Power Analysis’

[21]: Hely et al. (2004), ‘Scan
design and secure chip [secure IC
testing]’

[22]: Bo Yang et al. (2004), ‘Scan
based side channel attack on ded-
icated hardware implementations
of Data Encryption Standard’

[23]: Da Rolt et al. (2014), “Test
Versus Security: Past and Present’
[24]: Valea et al. (2019), ‘A
Survey on Security Threats and
Countermeasures in IEEE Test
Standards’
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[25]: Daemen et al. (2002), The
Design of Rijndael
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7

2 Security Threats in Test Infrastructures

In this chapter, we present an exhaustive summary of the
known threats involving test infrastructures. We discuss
vulnerabilities regarding test infrastructures of different com-
plexities, from simple scan chains to complex test networks
based on the IEEE test standards. A classification and a taxon-
omy of these threats is proposed as one of the contributions
of this thesis. However, before this summary, we thoroughly
describe the differential scan attack on the Advanced Encryp-
tion Standard (AES) [25] , which is important in order to
understand many contributions of this thesis.

2.1 Differential Scan Attack on AES

The first scan attacks, exploited the presence of scan chains in-
side crypto-processors. In security applications, it is common
to require the hardware implementation of cryptographic
primitives. These can be stand-alone ICs or IP cores inte-
grated inside a SoC. One of the most common cryptographic
primitives are block ciphers. They are used to encrypt and
decrypt data for confidential communications and their hard-
ware implementation is able to reach higher troughput with
respect to software implementations. This is very useful, for
instance, for circuits involved in telecommunication systems.
Crypto-processors base their security on the presence of a
secret key, which is stored inside a secure memory in the
IC, and it is shared with the parties that are involved in the
communication. One of the most common block ciphers is
the Advanced Encryption Standard (AES), which has been
widely implemented in hardware [26] .

Similarly to all block ciphers, the AES encrypts plaintext
data per blocks, which are processed for a certain number of
clock cycles and then transformed into blocks of ciphertext.
In the case of AES, the size of the processed blocks is 128
bits. Figure 2.1 represents the block diagram of a typical
hardware implementation of AES. The secret key (whose
size can be 128 or 256 bits) is loaded from the memory
and it is processed by the key scheduler, in order to generate
many 128-bit round keys. At the beginning of the operation,
the input plaintext (a) is combined with the first round key
with an XOR operation. After that, data is processed by a
round operation which is repeated ten times, in order to
guarantee the required security level. In each round, the
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final AddRoundKey operation is performed with a different
round key. The result of each round operation is stored inside
a round register. After ten rounds, the value on the round
register is the final ciphertext. In pipelined implementations,
the same architecture from Figure 2.1 is unfolded into ten
stages, each of them storing the result of the correspondent
round inside a different round register [27] .

Round keys can be precomputed and stored into an on-chip
RAM (Random Access Memory), or computed on-the-fly. The
attackers are interested in retrieving the master key or one
of the round keys. In fact, reversing the key scheduling
algorithm is a trivial operation. the registers containing the
master key, or the round keys, are included in the scan chains,
they can be easily observed by the attacker. The attacker
simply needs to switch the circuit to test mode, shift out the
scan chain content and identify the flip-flops corresponding
to the key registers. This has been the case in some satellite
TV hacks that were popular in the past [28] . In 2006, B. Yang
et al. published a paper showing that the secret key could
be retrieved even if its registers were not directly accessible
through the scan chains [29] . The attack is based on the
differential analysis of the partial results that are stored into
the round register after the first encryption round. Hence,

Figure 2.1: Block diagram repre-
senting AES operations

[27]: Mangard et al. (2003), ‘A
highly regular and scalable AES
hardware architecture’

[28]: (), Maestra Comprehensive
Guide to Satellite TV Testing

[29]: Yang et al. (2006), ‘Secure
Scan: A Design-for-Test Architec-
ture for Crypto Chips’
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[30]: Standards
Encryption Standard
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this attack and all its derivatives were named differential
scan attacks. The attack on AES published in 2006 was built
upon the previously published attack on the simpler Data
Encryption Standard (DES) [30] . However, we are going
to focus on the AES attack, because this is still a widely
implemented cipher in modern applications.

Let us suppose that the attacker already knows the AES
architecture that is implemented inside the crypto-processor.
However, the structure of the scan chain is not known. Thus,
as first thing, the attacker needs to know the exact position of
the round register FFs (flip-flops) in the scan chain content.
This is done by exploiting the following property: if we
change one byte of the plaintext, this leads to the change of
four bytes (i.e., 32 bits) on the partial result that is obtained
after one encryption round. The attacker can send several
input plaintexts, all equals except on one specific byte, and
scan out the respective response from the round register.
Observing the bits that differs between all the responses, it
is possible to identify the position of the corresponding 32
FFs on the scan chain content. Simulations have shown that
it is possible to retrieve the position of all 32 FFs using, on
average, 6 patterns. Repeating this procedure for every group
of 32 FFs in the round register, requires 24 patterns. At this
point, the attacker can start the main phase of the attack and
correlate the value of 32 FFs on the round register to one byte
of the round key. The attack can be run with a very simple
procedure. Different couples of plaintext patterns (a1, a2),
having Hamming distance equal to 1 (i.e., dy(a1, a2) = 1), are
processed by the round function and their partial results are
shifted out by the attacker. After that, the attacker computes
the Hamming distance between the retrieved partial results
(f1, f2). If the computed value is equal to one of the values
from Table 2.1 on the facing page, it is possible to derive
the input values of the SubBytes operation (i.e., (b1, b2)).
Taking one between by and by, it is possible to add it to the
corresponding input value (i.e., 41 or a;) in order to derive
the corresponding byte of the round key that is involved in
the pre-round AddRoundKey operation. Statistically speaking,
32 patterns are needed, on average, in order to determine one
byte of the round key. The same procedure can be repeated
for each byte of the round key, giving a total of 512 patterns
needed to retrieve the entire key. Adding the time required
for the first phase, it is possible to prove that inserting
544 plaintexts and retrieving their partial encryption result



2.2 Classification of Threats 17

du(fi, f2) 9 12 23 24
(b1, by) | (226,227) | (242,243) | (122,123) | (130, 131)

through the scan chains, allows the attacker to completely
derive the secret key, thus breaking the security of the whole
system [22].

After AES, many other cryptographic circuits have been
attacked exploiting some form of differential scan attack [31,
32]. In all cases, the feasibility of the attack is based on a
similar procedure. The attacker runs the circuit in functional
mode and, after a certain number of cycles, he/she switches it
to test mode. The test mode offers the needed observability of
the internal registers allowing the shifting out of their content
through the scan chains. At this point, it is already possible
to figure out some possible directions that could be taken,
in order to build countermeasures against such attacks. One
possibility consists in limiting the possibility for the attacker
to switch between functional and test mode without being
authenticated, or without losing the information that is stored
inside the scan chains. A second possibility is to provide
some form of confidentiality to the data that are shifted in
and out the circuit in test mode. In the next chapters, we
will better discuss this aspect. Differential scan attacks are an
example of what can happen if unauthorized access to the
scan chains is allowed in secure crypto-processors. However,
test infrastructures are a security concern in any kind of
IC, not only the ones targeting security applications. If we
enlarge our vision to larger test infrastructures, such as the
IEEE standards, it is possible to identify many more threats
involving any kind of IC.

2.2 Classification of Threats

Design-for-Test goes decisively into contrast with the need
for confidentiality and access restriction that is required in
any kind of IC. The test infrastructure typically gives the user
augmented controllability and observability on the internal
details of the circuit. Moreover, the daisy-chain configuration,
typical of the standard test infrastructures, ensures that
multiple independent entities inside the system share the
same data connection. This scenario can lead to serious

Table 2.1: Correlation between
AES partial results and their plain-
text [29].
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Figure 2.2: Vulnerabilities in test
infrastructures can be originated
by (i) an external threat, caused
by an unauthorized user access-
ing the IC; (ii) an internal threat,
caused by malicious hardware
planted inside the IC.

vulnerabilities, when sensitive data are shifted through the
scan network. From a general point of view, the threats
involving the test infrastructure of an IC belong to two main
categories (Figure 2.2):

» External threats: unauthorized user that has the control
over the TAP interface of the device.

» Internal threats: malicious device or IP core that is
planted inside the system by a third-party entity (3PIP).
In this case, the malicious device can access data prop-
agated through the infrastructure it is connected to.
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Both external and internal attacks can be further classified
into different categories, according to the kind of action that is
performed by the attacker and the resources that are accessed
(Figure 2.3). In this section, we will show this classification,
and we will give some details about the known threats and
the attacks belonging to each category.

External Threats

In this category of attacks, all the components of the system
are supposed being trusted. However, if the attacker has
physical access to the device, he/she is able to connect to
the TAP interface and to exploit the highlighted controlla-
bility and observability on the device provided by the test
infrastructure. Accessing the TAP interface it is possible to
potentially reach every infrastructure that is connected to it.
In the literature, we have identified three different targets
that are exploited by the attackers:

» scan chains, which can be accessed from the TAP
controller through the INTEST instruction;



2.2 Classification of Threats 19
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» the debug infrastructure, which is present on
microprocessor-based systems for software develop-
ment purposes;

» the IJTAG reconfigurable network, which is con-
nected to the TAP controller and it is accessed through
a dedicated instruction.

For this reason, we have classified external attacks in three
sub-categories according to the kind of infrastructures that
the attacker needs to access for succeeding.

Scan Chains

Internal scan chains of a target device can be accessed through
the TAP controller. Executing some specific instructions on
a JTAG infrastructure, such as the INTEST instruction, scan
chains are connected to the TDI/TDO pins of the test interface.
In another scenario, IP cores equipped with an IEEE 1500
test wrapper expose their internal scan chains to the TAP
interface at SoC level. In both these cases, the attacker that has
the control over the TAP controller is able to shift arbitrary
values into the scan chains, and observe their content at any
time through the TDO pin. This procedure is at the base of
all the scan attacks, which aim to steal secret keys from crypto-
processors. Another possible threat consists in using the scan
chains in order to stimulate and observe the responses of the
internal logic of the target device in order to perform reverse
engineering.

Figure 2.3: Taxonomy of the
known threats on standard test
infrastructures.
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[22]: Bo Yang et al. (2004), ‘Scan
based side channel attack on ded-
icated hardware implementations
of Data Encryption Standard’
[29]: Yang et al. (2006), ‘Secure
Scan: A Design-for-Test Architec-
ture for Crypto Chips’

[31]: Liu et al. (2011), ‘Scan-Based
Attacks on Linear Feedback Shift
Register Based Stream Ciphers’

[32]: Da Rolt et al. (2012), ‘A scan-
based attack on Elliptic Curve
Cryptosystems in presence of
industrial Design-for-Testability
structures’

Scan Attacks When crypto-processors are present inside a
device, secret keys are usually stored inside integrated secure
memories. Even if these secure memories are excluded from
the scan chain insertion, scan attacks allow the attacker
to retrieve the secret key. Several scan attacks have been
proposed in the literature, targeting both symmetric and
asymmetric cryptography implementations. We have already
mentioned the most prominent attacks of this category, which
targeted DES and AES block ciphers [22, 29] . These attacks,
published by B. Yang et al. in 2004 and 2006 respectively,
represent the beginning of a long series. In the following
years, the same principle was applied to other kinds of
crypto-processors, different from block ciphers.

Y. Liu et al. presented an attack targeting stream ciphers
based on Linear Feedback Shift Registers (LFSR) [31] . In
this kind of ciphers, an LFSR produces a pseudo-random
bitstream that is used to encrypt the plaintext. The objective
of attackers is finding the internal structure of the LFSR (i.e.,
the implemented polynomial). The scan attack can be carried
out running the LFSR in functional mode. After a certain
number of clock cycles, the circuit is switched to test mode
and the content of the LFSR is shifted out through the scan
chains. The authors have brought to light some correlations
between the internal states of the LFSR, that can be useful for
the attacker to derive the structure of the LFSR and predict
the generated keystream.

The scan attack concept was extended to asymmetric cryp-
tography as well. For instance, J. Da Rolt et al. presented a
differential scan attack on Elliptic Curve Cryptography (ECC)
[32] . The core of the computation in ECC crypto-processors
is a point multiplication between the secret key and a scalar
value. This operation is performed in several iterations, each
involving a different portion of the key. Thus, the attacker
can exploit the scan chain access to observe the intermediate
results and derive the secret key.

For some time after the publication of the first scan attacks,
companies in the EDA (Electronic Design Automation) do-
main and their tools for the DfT automatic insertion were
particularly affected. However, they were quick to reply that
industrial DfT solution keep their security, because they
always employ some form of compression/decompression,
X-masking and X-tolerance, in order to deal with multiple
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scan chains and complex test infrastructures. All these fea-
tures were considered as a built-in protection mechanism,
because the attacker was not able to directly observe the con-
tent of the scan chains, since they were processed by some
compression circuitry before being shifted out. However, J.
Da Rolt et al. [33] (further extensions in [34, 35]) extended
the concept of scan attack to all kinds of test infrastructures,
even the industrial DfT solutions that had been declared
being secure by the EDA vendors. Successively, A. Das et
al. [36] successfully implemented these attacks on real test
infrastructures provided by the main EDA tools.

All described scan attacks are possible as long as the attacker
has the capability of switching the circuit from functional
mode to test mode and vice versa without losing the compu-
tation state. For this reason, some countermeasures have been
developed, based on the idea of resetting the scan chains
when the circuit is switched from functional to test mode.
To overcome this countermeasure, S. Ali et al. conceived a
scan attack on AES that is entirely executed in test mode
[37, 38] . In test mode, the AES plaintexts are loaded into
the input registers through the scan chains. However, if the
target crypto-processor completely disconnects the key (or
uses a dummy test key) during test mode, this attack is
ineffective.

Reverse Engineering The unauthorized access to the scan
chains represents a threat not only for crypto-processors. In
fact, any IC internals can be explored and reverse engineered
exploiting the observability provided by the scan chain access.
An attacker can set specific state values and retrieve the
response of the combinational layers of the circuit. Hence,
it is possible to build a database with stimuli/responses
couples. A thorough analysis of these data allows the attacker
to exactly reverse engineer the netlist of the circuit. Even
if this scenario has been assumed as a threat model by
many authors, only L. Azriel et al. in [39, 40] showed an
implementation of the attack.

Debug Interface

Most modern ICs integrate a microprocessor and a debug
infrastructure, which is essential in these systems. The debug-
ging capability must be granted by the hardware designer, in
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order to assist the software development process. The JTAG
interface allows the user to access the debug infrastructure
and perform On-Chip Debugging (OCD). If the debug inter-
face is left accessible when the device is sent to the market,
malicious users can exploit it. OCD tools allow the user to
tamper the code execution at very low level. This means
that security mechanisms implemented at software level
can be overcome by OCD. Halting the software execution,
a malicious debugger can modify and read the content of
specific addresses of the memory, in order to cause unwanted
behaviour in the system. All these operations can be easily
performed using automated tools and high-level program-
ming languages. In the literature, we have identified two
kinds of attacks that stand on the possibility of performing
OCD through the JTAG interface. The first category aims at
performing the memory dumping of the system in order to
clone it or steal valuable intellectual property. The second
category uses debug access as an entry point to tamper the
memory and obtain privilege escalation on the system.

Memory Dumping The first documented memory dumps
relying on JTAG were performed by S. Willassen and M.F.
Breeuwsma [41, 42] . The objective in both cases was to
dump the whole content of a mobile phone memory for
forensic purposes. In [42], the target device was a Nokia 5110
mobile phone. The author explains a detailed procedure,
in order to access the external flash memory through the
CPU (Central Processing Unit) JTAG controller and read
all data out. However, the procedure presented in [41] is
more comprehensive. It shows a more general attack that
can be carried out on any portable device with JTAG access.
A complete JTAG reverse engineering flow is presented,
including the employed technique to find the TAP pins on
the board. Once the JTAG infrastructure is accessed, the
EXTEST or the DEBUG instructions are selected through
the TAP controller. At this point, the attacker is able to send
commands to the flash memory and dump all its content.

F. Domke presented in [43] a reverse engineering procedure
to explore undocumented JTAG instructions. Hardware man-
ufacturers usually implement custom instructions in the TAP
controller. They are meant for private in-house utilization, for
this reason they are not referred in the device documentation.
However, this paper shows a procedure that explores all
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the undocumented instructions with a brute-force approach.
The final result is that the attacker was able to find undocu-
mented instructions that gave access to the scan chains and
the internal bus, hence memory data could be read out.

JTAG related vulnerabilities have also affected high-security
range devices. In [44] , S. Skorobogatov and C. Woods dis-
covered a backdoor in a military chip. The victim device
was an Application Specific Integrated Circuit (ASIC) from Mi-
crosemi, including a secure Field Programmable Gate Array
(FPGA). The authors reverse engineered the JTAG infrastruc-
ture and found some undocumented instructions. Through
these instructions, it was possible to download or overwrite
the FPGA configuration, overcoming all the security fea-
tures. Exploiting this backdoor, the ASIC producer could
virtually retrieve all proprietary designs that their customers
synthesized on their products.

Privilege Escalation Penetration testers find serious vulner-
abilities on consumer electronics devices on a day-to-day
basis. In low-cost devices, producers keep the production
costs to a minimum, necessarily scarifying the efforts for
security. Some security companies publish on-line a selection
of their most prominent attacks for advertisement purposes.
For instance, the company in [45] published a JTAG attack
performed on a very popular TPLink Router. The objective
of this attack is gaining root access to the device. Once the
JTAG interface is found, OCD allows the attacker to halt the
execution of the bootloader at any moment. At this point,
the memory can be conveniently tampered, in order to force
the Linux kernel to run in Single User Mode, i.e., with root
privileges.

F. Majéric et al. presented in [46] a JTAG attack exploiting a
vulnerability of the Android kernel. Changing some specific
values in the memory, it is possible to unlock the visualization
of kernel modules addresses. Knowing the exact memory
location of kernel modules is the starting point of several
software attacks (i.e., buffer overflow). This vulnerability
affected an Android build for Samsung Exynos SoCs and
it was patched via software as soon as it was disclosed.
However, the authors of this paper showed how, acting
through OCD, it was still possible to perform the attack on
these SoCs bypassing the software patch.

[44]: Skorobogatov et al. (2012),
‘Breakthrough Silicon Scanning

Discovers Backdoor in Military
Chip’

[45]: Senrio (2018), JTAG explained
(finally!): Why “IoT” software secu-
rity engineers and manufacturers
should care

[46]: Majeric et al. (2016), JTAG
Combined Attack - Another
Approach for Fault Injection’



24 2 Security Threats in Test Infrastructures

[47]: Zorian (1993), ‘A distributed
BIST control scheme for complex
VLSI devices’

[48]: Dworak et al. (2013), ‘Don’t
forget to lock your SIB: hiding
instruments using P1687’

IJTAG Network

The attacker who manages to take control over the TAP
controller of a SoC can also access the IJTAG reconfigurable
network, if this is present. Since the IJTAG standard is rela-
tively new, its application in commercial SoCs is still limited
and not well documented. For this reason, we can find many
attack scenarios in the literature, but there is still no knowl-
edge of real implementations of these attacks. In these attack
models, the target of the attacker is to access the configura-
tion registers of specific instruments embedded in the target
SoC. Since the design of the RSN is not known a priori, the
attacker needs at first to reverse engineer it and figure out
the arrangement of the SIBs. After that, the attacker can con-
figure them in order to have access to the target instruments.
Existing attack scenarios evaluate the kind of damage that
can be done if certain kinds of instruments are accessed by
malicious entities.

Hundreds of embedded instruments can be connected to
a reconfigurable network. These instruments can be, for
instance, BIST (Built-In Self Test) configuration registers.
BIST circuits are used for on-line testing of specific IP cores.
When the BIST is activated, it starts sending test stimuli to
the target IP and it checks the test responses in order to
determine the result of the test procedure. The tester can
access the IJTAG RSN and writes the right value on the
associated instrument to start the BIST procedure. While the
BIST is running, the tester can configure the RSN in order
to perform other tasks at the same time. In on-line testing
applications, the tester is a circuit that schedules the test at
the board level or at the SoC level. Since the BIST engines
cause high power adsorption from the device under test,
their activation must be carefully scheduled during the test
phase [47] . If a malicious user is able to access the I[JTAG
network, many BIST engines can be activated at the same
time and possibly cause overheating of the whole circuit. This
scenario can lead to a Denial of Service (DoS) attack on the
system. Even though any implementation of this attack has
never been published, it has been mentioned as a threat in
several publications. For example, in [48] the authors present
an IJTAG security countermeasure as the main contribution
of the paper, and they mention this attack scenario in order
to justify the proposed countermeasure.
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Embedded instruments connected to the IJTAG network
also comprise SoC configuration registers. These configu-
ration registers may be used to tune SoC parameters (e.g.,
internal voltage levels, clock frequencies) during the silicon
debug phase, which is carried out by the hardware integrator
after manufacturing. These configurations are part of the
intellectual property of the SoC vendor. The authors of [48]
mention this scenario as another possible menace affecting
non-protected IJTAG infrastructures.

Internal Threats

The actual trend in the IC industry is the globalization of
design and production. For this reason, the final products
come from a production flow that involves many different
companies. Fabless design companies usually provide pro-
prietary IP cores to SoC integrators. In a typical design flow,
the SoC integrator assembles all the IP cores, coming from
different vendors, and designs the SoC level circuitry to grant
the correct integration. In this phase, the SoC level testing
infrastructure is inserted inside the design. The infrastructure
is connected to the test interfaces of each IP core (e.g., TAP
controller, IEEE 1500 test wrapper, BIST). The interaction be-
tween all these parties is of extreme importance for hardware
security purposes. For instance, the SoC integrator does not
necessarily have trust in the IP core vendors. Similarly, the IP
core vendors does not have trust in each other. However, the
IP cores are usually connected to the test infrastructure in a
daisy-chain fashion. When the tester sends data to a target IP
core through the TAP interface of the SoC, these are shared
with other IP cores. The trust level of the SoC integrator with
respect to the IP vendors can change according to different
scenarios:

1. the IP cores are sold to the SoC integrator without test
wrappers. In this case, the SoC integrator itself must
wrap the IP cores with trusted test interfaces;

2. the IP cores are sold to the SoC integrator with test
wrappers. In this case, the SoC integrator cannot equally
trust the correct functionality of the IP cores, thus the
test interfaces of the devices connected to the test
infrastructure are considered untrusted.

25



26 | 2 Security Threats in Test Infrastructures
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The same considerations hold at board level, where ICs
coming from different suppliers are mounted on the same
board. In general, when test data are shifted through the test
infrastructure of an untrusted IP core, there is no certainty
that this will handle them according to predefined rules.
Two possible threats have been envisaged in the literature so
far:

» the untrusted IP core sniffs test data that are shifted
through, and possibly steals sensitive information;

» the untrusted IP core tampers with test data while
they are shifting through, and possibly corrupt their
information.

As far as we know, there is no record in the literature of
malicious devices that have been actually caught tampering
with a test infrastructure. However, some authors have pub-
lished several attack scenarios involving malicious devices
exploiting their connection to the test infrastructure. These
threat models have been largely used by researchers in order
to motivate their countermeasures.

Sniffing

Each time a user wants to start a communication with a target
device connected to the test infrastructure, he or she loads a
certain instruction in the IR of the target. The other devices
on the same network are programmed in BYPASS mode. A
malicious device can be designed in order to store a copy
of the data that are shifted through the bypass register. The
stolen data can be used by the malicious device in different
ways, according to the attack scenario. For instance, test
data can be properly filtered in order to store the sensitive
information into an internal memory, which is read by the
attacker in a second moment. In more complex scenarios,
the malicious device can even be able to send the data to a
remote server. The attacker can process the collected data
and retrieve sensitive information about the SoC and the
other IP cores.

K. Rosenfeld and R. Karri presented in [4] a threat model
involving malicious devices connected to a board level JTAG
infrastructure. One of the presented attacks involves a sniffing
device recording test vectors sent to another device connected
to the same infrastructure. The malicious device must be
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upstream the victim in order to make the attack success-
ful. They state that illegally recording test vectors can leak
confidential information on the design of the device under
test. In a more complex scenario, two colluding devices, one
upstream and one downstream the device under test, can
record respectively test vectors and responses. This gives
even more information about the internal logic structure of
the victim.

Many boards on the market embed both a microprocessor
and an FPGA, which is used to accelerate part of the com-
putation. The FPGA is usually configured by downloading
a bitstream through the JTAG interface. The content of the
configuration bitstream consists in confidential information
about the IP core implemented on the FPGA. Moreover, sen-
sitive information about the internal structure of the FPGA
is also contained inside the configuration bitstream. If the
TAP port of the JTAG is connected to the same network
where other devices are connected, the bitstream can be the
target of a sniffing attack. In other cases, the configuration
bitstream is stored into an external non-volatile memory and
it is loaded into the FPGA at the system power-on. In this
case, the content of this memory can be accessed through the
JTAG interface of the system. It is possible to document the
importance of this threat model in the technical documen-
tation of FPGA manufacturers. For instance, Altera in [49]
presents this kind of threat model, in order to motivate the
importance of the security features that they implement on
their FPGA.

More recently, S. Kan et al. and R. Elnaggar et al. [6, 50] pro-
posed a threat model involving malicious instruments con-
nected to the IJTAG reconfigurable network. In this scenario,
sniffing instruments can read out confidential configuration
data that are shifted through the reconfigurable network.

Tampering

Malicious devices connected to the test infrastructure can
modify the content of the shifted data when they are in
BYPASS mode. In the case of sniffing attacks, the behavior
of the malicious device is completely passive. The sniffing
action has no consequences on the behavior of the system. In
the case of tampering devices, the behavior of the malicious
device is the same as if it was set in BYPASS mode (i.e., it
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shifts the values from the TDI pin to the TDO pin in one clock
cycle). However, data that are shifted out the TDO pin are
different with respect to the data entering the TDI pin. This
kind of attack causes a different behavior of the system.

K. Rosenfeld and R. Karri described in [4] a possible data
corruption scenario. If the tampering device is upstream the
victim one, the data shifted into the victim can be corrupted.
If the tampering device is able to smartly elaborate the
modification of the data, it can lead the victim device to
behave incorrectly. For example, the target device can be
a microprocessor whose firmware is loaded via the test
infrastructure. If the content of the firmware is modified
while loading, it can be replaced with any malicious code
that can cause a very different behaviour of the system.

Another hypothetical scenario presented in [4] can lead to a
DoS attack involving a malicious device. The test infrastruc-
ture can be exploited to perform the on-line testing of an IP
core inside a SoC. In this scenario, test vectors are stored into
an internal memory. When the testing procedure starts, the
test vectors are shifted through the test infrastructure and
loaded into the DUT. When the responses of the DUT are
ready, they are shifted out and compared with the golden
ones. In an on-line testing scenario, the comparison is per-
formed on-chip. If the tampering device is downstream the
victim, corrupted responses can be delivered to the compara-
tor. If the tampering device is properly programmed, test
responses generated by the DUT can be modified into always
being equal to the golden ones. At this point, if the DUT is
faulty, the comparator is not able to detect it. This can lead
to dangerous situations where the system goes into failure
without the possibility for the system to detect it. However,
the malicious device must know the test responses and the
exact moment when the test is run, in order to successfully
fake them.

The same principle can be exploited to threaten data integrity
in IJTAG RSNs. In [50] , R. Elnaggar et al. presented a
threat model involving malicious instruments connected to a
reconfigurable network. Untrusted instruments are supposed
to be capable of changing the value of specific bits that are
shifted through their internal TDRs. This capability can be
exploited in order to maliciously change the configuration of
the RSN. A possible scenario is the following: a user starts a
configuration session in order to include a set of instruments
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in the RSN. During this process, the configuration bits are
shifted through the malicious instrument, which changes the
value of specific bits. The result is that an unwanted set of
instruments is included in the RSN, without the user even
realizing it.

Summary

The presence of test infrastructures makes ICs vulnerable to
several kinds of attacks. In this chapter, we have classified
all the threats that have been reported in the literature. We
have noticed that some vulnerabilities are well-established in
the scientific literature, and several attacks have been carried
out. Other vulnerabilities identified in the literature involve
trust issues that are more difficult to witness on commercial
products, but they represent an equally important threat
that must be addressed. For these reasons, IC designers
are compelled to take security issues into account when
dealing with test infrastructures of any kind. Starting from
the classification proposed in this chapter, it is possible to
derive two main objectives that should be pursued in order
to obtain a security-aware DfT:

1. authentication mechanisms are necessary in order to
avoid malicious users to access the test infrastructures
and perform any kind of external threat;

2. data confidentiality and integrity are necessary to avoid
internal threats based on malicious devices that sniff
and/or tamper with data.

In the next chapter, we show the state-of-the-art countermea-
sures for securing test infrastructures, and we evaluate them
relying on the security objectives outlined in this chapter.
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Security Countermeasures
for Test Infrastructures

When IC designers realized the risks caused by unprotected
test infrastructures, the need for a security-aware DfT became
pressing. At first, it was observed that the removal of the
scan chains access could be an effective solution, because
there could be no security risks if the scan chains were not
connected to the IC pins. However, the scientific community
quickly understood that this solution had a lot of drawbacks.
First of all, disconnecting test infrastructures does not per-
mit their exploitation after the manufacturing phase. This
prevents any kind of usage of the test infrastructures in the
tield, strongly limiting the possible use cases. Even if it is
possible to renounce to on-line test or debug functions for
some specific applications, disconnecting scan chains poses
another security risk that cannot be ignored. In fact, if the
attacker has the capability of opening the IC package and
probing the internal pads of the circuit, it is possible to bypass
the countermeasure [51] . For these reasons, the scientific
community started working hard to find secure design tech-
niques for test infrastructures. The fundamental principle
driving this kind of research is granting the presence and
the usability of any kind of test infrastructure, making all
known attacks impossible (or very hard) to perform.

In this chapter, we present a summary of the most prominent
countermeasures that are present in the literature. Our focus
is on security techniques targeting complex test infrastruc-
tures based on the IEEE test standards. A classification and
a taxonomy of these countermeasures is proposed as one
of the contributions of this thesis. At the end of the chapter,
we will better describe a particular countermeasure, called
scan encryption, which will be the focus of the following
contributions of this thesis.

3.1 Classification of Countermeasures

In Chapter 2, we have shown that threats affecting test in-
frastructures can be divided into external and internal threats.

[61]: Kémmerling et al. (1999),
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Figure 3.1: Taxonomy of the exist-
ing security countermeasures for
standard test infrastructures.

In the literature, we can find proposals of countermeasures
addressing both attack categories:

» external attacks are mainly thwarted by user authentica-
tion and attack detection techniques;

» internal attacks are counteracted granting data confiden-
tiality, data integrity and device authentication.

We have divided these countermeasures into seven different
categories (Figure 3.1). In this Section, we show the proposed
classification, and we describe the most prominent state-of-
the-art proposals.
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This category of countermeasures aims avoiding unautho-
rized entities to access the test infrastructure. If the user is
not authorized, the TAP controller is disabled and the JTAG
instructions cannot be executed. This way, further access to
the internal IP cores or to the IJTAG reconfigurable network
is not possible. As a consequence, the exploitation of the in-
ternal scan chains or of the debug infrastructure is prevented.
An authorized user is defined as someone that accesses the
test infrastructure without causing any damage to all the
parties involved in the development of the system.
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Two categories of authentication techniques have been iden-
tified. One is based on the insertion of a password inside
the TAP controller in order to lock or unlock it completely.
The other category regroups a series of techniques based on
challenge-response protocols and cryptographic primitives.

Password

Testing infrastructures protected by a password have their
TAP controller locked by default. In the locked state, the
execution of the JTAG instructions is not permitted, except
from instructions that do not give access to sensitive data.
In order to unlock the TAP controller, a secret password (or
secret key) must be shifted inside a dedicated register. If the
password is correct, the test infrastructure is unlocked and
the authenticated user can access all its functionality. We
recall two solutions based on this principle, one targeting the
JTAG TAP controller of a generic device, the other targeting
the IEEE 1500 test wrapper of an IP core integrated inside a
SoC.

F. Novak and A. Biasizzo [52] presented a solution based
on a modifies TAP controller. This TAP controller is able to
execute two extra instructions, LOCK and UNLOCK. When
the LOCK instruction is executed, the user must insert a
password inside a specific register. When this operation is
completed, the TAP controller is in a locked state. While in the
locked state, the TAP controller decodes all the instructions
into the BYPASS instruction. This condition does not allow
the access to the test infrastructure. When the UNLOCK
instruction is executed, the user is asked to insert the correct
password. If the inserted password matches the one used
to lock the system, the TAP controller is unlocked and full
access is granted to the user.

G. Chiu and ]. Li [53] proposed a solution based on the
integration of an LFSR inside the IEEE 1500 test wrapper. The
polynomial implemented by the LFSR is secret. When the test
infrastructure is in idle state, the test wrapper is locked. The
user who wants to unlock the test wrapper must send a seed
value to the LFSR. After that, the LFSR is run and a golden
key is produced and stored inside the test wrapper. Then, the
user shifts into the test wrapper a value that matches the
golden key produced by the LFSR. If the value is correct, the
test wrapper is unlocked. The efficacy of this countermeasure
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is based on the secrecy of the LFSR structure. Only the user
that knows the LFSR polynomial is able to derive the right
combination seed/key to unlock the test interface.

All the countermeasures of this category base their efficacy
on the presence of a secret element that is shared between the
target device and the authorized user. The efficacy of these
methods can be easily jeopardized if the secret is leaked
to unauthorized entities. It is possible to observe that in
the solution [52] the secret can be dynamically changed
programming each device with a different password. In this
case, the leakage of one password undermines the security
of only one specific device and it does not affect the whole
production. The password can be changed every time the TAP
controller is unlocked and relocked. This gives the possibility
to the producer to easily change the protection password
when needed. In the solution [53] the secret element is the
structure of the LFSR. According to the design choices, each
IP core can be sold with a different LFSR structure, in order
to limit the damage in the case of leakage. However, if the
LFSR structure of a specific IP core is leaked, this cannot be
changed during the device lifetime.

Challenge-Response Protocol

In order to improve the security of password based tech-
niques, more complex countermeasures have been proposed.
These techniques are based on challenge-response protocols.
The device sends a challenge to the user, which needs to
prove his authenticity sending the right response back. The
different countermeasures differ according to the kind of
cryptographic primitive that is employed (e.g., symmetric or
asymmetric cryptography) and the kind of tools that the user
needs to authenticate. In the simplest cases, the user directly
performs the challenge-response exchange with the device
and personally holds the secret key that is required for the
authentication. There are also more complex solutions where
the user needs to obtain credentials from a secure server that
holds the secrets required to compute the response. Only if
the user successfully authenticates himself with the server,
the latter computes the response and sends it to the device.
This way the user does not need to directly hold the secrets
and the risk of leakage is drastically decreased.
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K. Park et al. [54] proposed an authentication protocol for
the activation of the TAP controller. The protocol relies on
symmetric cryptography and on the verification of credentials
based on a secure server. The authentication procedure is
based on two steps. In the first step, the user is authenticated
by the server and obtains a credential that is stored into the
device. An authentication between the server and the device
is also performed. The device holds a secret key and the
server stores a database with the key associated with each
device ID. In the second step, the user asks the device for
access. The access is granted only if both the user and the
device hold a valid credential.

CJ Clark [55] proposed an authentication protocol relying on
the computation of the hash function of a random number.
The challenge is a random number that is generated by the
device. The challenge is sent to the user who appends a secret
key to it. The resulting message is hashed with the SHA-256
algorithm. The result is sent back to the device, which verifies
its validity computing the hash function itself resorting to the
internally stored key. The authentication process is therefore
based on the knowledge by the user of the secret key stored
inside the device.

A. Das et al. [56] presented an authentication protocol based
on Physical Unclonable Functions (PUFs) to protect the access
to IEEE 1500 test wrappers. A PUF is a circuit element whose
behavior depends on physical characteristics that are unique
for each single device. Input challenges can be sent to the PUF,
which gives unique responses as output. Nevertheless, the
user must have access to a database containing all Challenge-
Response Pairs (CRPs) of the target PUF. When the access to
the target test wrapper is needed, the user must send a request
to the device. At this point, the device sends a random value
A to the user. The user searches through the CRP database
for two responses having distance A. The two corresponding
challenges are sent to the device, which are processed by
the PUF. The device verifies if the produced responses have
distance A. In the affirmative case, the access to the test
wrapper is granted. The PUF must be queried at production
time in order to create the CRP database. For this reason, a
read-out system for the PUF response must be implemented
and permanently disabled after manufacturing.

R. Buskey and B. Frosik [57] proposed an authentication
protocol based on asymmetric cryptography. In this solution,
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the device holds the public key and a secure server holds
the private key. The device sends a challenge to the server
together with the device ID and the credentials of the user.
The server checks if the user has the authorization for the
requested operation. In the affirmative case, the server com-
putes a response using the private key associated to the target
device. This response is sent to the device. Finally, the device
evaluates the authenticity of the response using its public
key. The challenge-response protocol is based on ECC.

A. Das, J. Da Rolt et al. [58] proposed another authentication
protocol based on asymmetric cryptography. The utilization
of the Schnorr protocol is proposed. This implements a
signature algorithm based on ECC cryptography, called
ECDSA (Elliptic Curve Digital Signature Algorithm). Using
this primitive, an authentication scheme has been designed.
The user and the device hold both a public key and a private
key. At first, the user sends its public key and ID to the device.
The device sends its ID and a challenge to the server in order
to verify if the public key of the user is linked to a valid
certificate. The server retrieves the public key associated with
the device ID from its internal storage. After that, it creates
a signature using the ECDSA scheme based on the public
key itself, the ID and the challenge. This signature is then
sent to the device that checks its validity. At this point, the
device knows the public key of the user. The device then
starts the Schnorr authentication procedure. In this exchange,
the device, knowing the public key of the user, is able to
verify the validity of its private key.

The key management is simpler for authentication protocols
based on asymmetric cryptography. This is due to the fact
that the public key does not need to be kept secret. In the
solution [57], for instance, the device stores the public key,
and there is no need to keep it secret. The only secret is the
private key, which is stored into a secure server. The solutions
based on symmetric cryptography have the advantage of a
low implementation cost. For example, the solution [55] is
based on hash functions. The implementation cost of hash
functions is decisively lower than asymmetric cryptography,
such as ECC.
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User Authentication for IJTAG Networks

SoC designers can decide to apply different policies to access
embedded instruments connected to the IJTAG reconfig-
urable network. This network is usually accessible through
the TAP controller of the IC. When a specific JTAG instruc-
tion is executed, the RSN is connected between the TDI and
TDO pins. However, the policy used to secure the access to
the whole JTAG infrastructure can be different with respect
to the one used for the IJTAG network. For instance, the
designer could be interested in protecting only the IJTAG
network, while there is no interest in limiting the access
to the TAP controller. This is the case when the security is
already provided by the IP cores integrated inside the SoC. In
another possible scenario, the access to the IJTAG network is
granted to a subset of the entities that have access to the TAP
controller. In this case, the secret to access the TAP controller
is handed out to authorized users, but only a subset of these
users also owns the secret to access the IJTAG network. For
this reason, several authentication mechanisms have been
proposed in the literature to specifically secure the access to
the IJTAG RSN. When an attacker tries to illegally access the
RSN network, he/she does not know the exact structure of
the RSN. At first, the attacker has to figure out the length
of the network in its default configuration. After that, he
or she tries to spot the SIBs and to open them, in order to
progressively reverse engineer its structure.

Three categories of authentication techniques for IJTAG
networks have been identified in the literature. The first
one is based on locking SIBs that gate the access to private
regions of the network. The knowledge of a secret password
is necessary in order to open these SIBs. The second category
is based on challenge-response protocols that enable the access to
the network (or to smaller parts of it) only to authorized users.
The last category aims to obfuscate the structure of the network,
increasing the complexity of its reverse engineering.

Locking SIB

It is possible to restrict the access to specific instruments
connected to the IJTAG network hiding them behind special
SIBs. These SIBs are locked by default and only authorized
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users, who know a specific secret, can open them. This pre-
vents the attackers from accessing the embedded instruments
connected to the RSN.

J. Dworak et al. [48] proposed a special SIB, called Locking
SIB (LSIB). The LSIB is a modified SIB with additional logic
that enables its opening only if a predefined value is sent
to the additional key ports. The key is stored into add-on
FFs in the RSN that are connected to the key ports of the
target LSIB. When the right value is loaded into these FFs,
the target LSIB is opened. The LSIBs protect segments of the
network that can be accessed only by authorized users that
know the secret key.

H. Liu and V. Agrawal [59] proposed a different kind of LSIB
that relies on a Secure LFSR (SLFSR) integrated in the scan
network. The SLFSR is placed downstream the LSIB that must
be protected. When the LSIB is closed, the SLFSR is activated
and the data that are shifted through it are scrambled. This
way, the attacker is confused while trying to reverse engineer
the network. The parallel output of the SLFSR is connected to
the key pins of the LSIB. When the right value is generated by
the SLFSR, the LSIB is unlocked. Once the LSIB is unlocked,
the SLFSR switches to a simple shift mode and data passing
through the RSN are not perturbed anymore. The security of
this solution relies on both the knowledge of the secret key
to unlock the LSIB and the knowledge of the structure of the
SLFSR that must generate the secret key.

N. Satheesh et al. [60] presented a countermeasure in which
the LSIB is unlocked resorting to a PUF-based security mod-
ule. The security module receives a challenge from the user.
This challenge is sent to the PUF, which generates a response.
The response is compared with the output of an LFSR. If
they are equal, the LSIB is opened. The LFSR produces the
same output as the PUF when the user clocks it for n cycles.
The value 7 is a secret that the authorized user must know.
The secret n depends on the challenge given to the circuit.
Since the PUF does not have any connection with the external
pins of the IC, its CRPs cannot be collected at manufacturing
time. The value 1 associated with each challenge is measured
at post-manufacturing running the LFSR until the LSIB is
unlocked. This system provides weak security, because its
complexity needs to be kept low for the feasibility of the key
determination procedure.
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The techniques based on LSIBs presented in [48] and [59]
rely on a secret password established at design time and
hardwired inside the logic of the LSIB. In [61] , the authors
show a side-channel attack targeting the LSIB technique.
Moreover, the solution [59] also relies on an LFSR whose
structure is established at design time. For this reason, any
leak of this information undermines the security of all the
samples that share the same design. The same can be said for
the solution [60], even if the behavior of the PUF is different
in each device. In any case, retrieving the secret for a single
device is not hard, because the complexity of the attack is
equal to the complexity of the procedure executed at design
time for retrieving the device key.

Challenge-Response Protocol

The IJTAG network can be also protected by an authentica-
tion module that implements a challenge-response protocol.
According to the implementation, the authentication proce-
dure can protect the whole RSN, a part of it, or a specific
embedded instrument.

The solution proposed by CJ Clark in [55] can be applied
to the IJTAG network or to a specific instrument connected
to it. The authentication mechanism is the same as for the
JTAG infrastructure (see Chapter 2). The difference is that
each instrument owns a different key. However, the SHA-256
engine, used to verify the validity of the response, can be
shared by all the instruments.

R. Baranowski et al. [62] presented an authentication protocol
that gives the access to a secure region of the IJTAG network.
In the first step of the protocol, the device sends a challenge
to the user. The challenge is a random number produced
by a True Random Number Generator (TRNG). The user
concatenates the received challenge with the keys associated
to the target instruments. After that, the resulting message is
hashed to obtain the response that is sent back to the device.
The device checks if the hash is valid; if this is the case, the
user is authorized to access the target instruments. When the
authentication is successful, the controller opens the section
of the RSN containing the secured instruments.

The techniques based on challenge-response protocols re-
quire each instrument to have a secret key associated with
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it. Therefore, each instrument must manage its access rights
independently. For example, in the solution [55], each instru-
ment has to manage the verification of the response sent by
the user. This means that each instrument has necessarily an
area overhead due to the verification logic. In the solution
[62], the authentication controller is centralized. Nonetheless,
in this case it is necessary to guarantee a path in the RSN
where only the accessible devices are connected. This leads
to non-negligible routing issues.

RSN Obfuscation

Another way to secure the access to the IJTAG network is
increasing the complexity of the exploration algorithms that
are necessary to perform an attack. The attacker who does
not know the design of the circuit tries to figure out the
structure of the RSN in order to spot the position of the SIBs
and open them to access the associated instruments. If the
geometry of the RSN is unpredictable, the time required by
an attacker to reverse engineer it increases considerably.

A couple of design techniques for complicating the structure
of the RSN were presented in [48] . In order to make the
attack more difficult, trap bits are introduced. These special
cells are inserted in the RSN if the wrong value is updated
into them, the output of the cell gets irreversibly stuck to
a fixed value until a global reset is issued. Trap bits can be
connected to a key input of the LSIB to prevent the attacker
from unlocking them even if the right key is set in the key
bits. Another solution is to use the trap bits to activate an
alternative path, in order to put the key bits of the LSIB out
of the scan path. This way it is impossible for the attacker to
continue forcing the key without a reset of the whole circuit.
Trap bits can also be used independently of the LSIBs. For
instance, it is possible to connect them to simple SIBs in order
to force their closure. Alternatively, they can be set in order to
block the shifting of the RSN. Another technique proposed
in the same paper is the implementation of hierarchical locks.
They are structures where the key bits are spread on multiple
levels of the network. For this reason, it is necessary to unlock
specific LSIBs before being able to access all the key bits that
are needed to unlock the target LSIB.

A. Zygmontowicz et al. proposed in [63] other techniques
to combine with the LSIBs. The first one is the introduction
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of special LSIBs, called honeypots (HLSIB). HLSIBs provide
access to a sub-network that does not contain any instruments.
Instead, a target LSIB is disabled as far as the HLSIB stays
open. This gives a fake feedback to the attacker, who may
think to have successfully opened the LSIB. In this case, the
attacker is motivated to explore the sub-network opened by
the HLSIB without knowing that this has no instruments
connected (i.e., a honeypot). The second proposal consists
in creating a network where some LSIBs are opened by
default, and they need to be closed in order to be able to
open other LSIBs. This should confuse the attacker who
does not expect to have to reduce the length of the network
in order to completely open it. The third proposal consists
in introducing switching LSIBs (SLSIB) that open different
networks according to the value that is updated into them.
One of the hidden networks is a dead end, the other gives
access to the protected instrument. If both the networks
have the same length, the attacker does not realize that an
LSIB was there because the length of the network does not
change.

S. Kan et al. proposed in [6] a technique that gives the
possibility to program the geometry of the RSN at post-
manufacturing. The authors proposed the insertion of stub
chains. They are additional portions of the scan network that
can have different lengths. The configuration of the stub
chains is set selecting multiplexers that convey the scan flow
on stubs of different lengths. This configuration is decided
at manufacturing time using fuses or PUFs. This way, each
sample of the device has a different configuration of the stub
chains. Therefore, the attacker who is able to reverse engineer
the RSN of one device is not able to perform the same attack
on all the others.

In the solutions [48] and [63] the countermeasure is coupled
with the use of the LSIBs. The time required to open an LSIB
with a brute force attack is proportional to 2", where n is
the number of bits of the secret key. These techniques aim at
increasing the attack time. In the solution [6], the structure of
the RSN is simply made unpredictable because it is different
on each sample of the target device.

[6]: Kan et al. (2016), ‘Echeloned
IJTAG data protection’
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Privilege Based Authentication

The countermeasures grouped in this category are an ex-
tension of the user authentication techniques. In this case,
all the users do not have the same kind of authentication,
but they get different privileges on the testing infrastructure
according to the trust level they have.

The authentication protocol presented in [55] allows the
system to provide different authentications according to
the group of JTAG instructions that can be executed. For
example, each set of private instructions can be associated
with a different key. This way, the users are authorized to use
a set of instructions by knowing the associated keys.

J. Backer et al. presented in [64] an authentication mechanism
for the debug infrastructure. The debug infrastructure is
accessed resorting to the JTAG port of the IC. The aim is
to filter out sensitive assets that can be retrieved from the
system in debug mode. Each asset has a tag, linking it to its
owner. The user must be authenticated to access the debug
infrastructure. At the end of the authentication procedure, a
privilege level is assigned to the user. Each asset that is read
from the system is checked at runtime to verify that the
privilege level of the user allows him/her to be an owner of
that asset.

L. Pierce and S. Tragoudas presented in [65] a technique based
on a module that manages the authentication protocol and
gives the user a privilege level. Moreover, an access monitor
filters the update signal of the boundary scan cells. The
access level of each resource is stored into a memory. When
the resource is accessed, its access level is compared with
the actual privilege level of the user. The update signal is
forwarded only if the access level of the resource is less or
equal than the privilege level of the user.

The solution proposed in [62] expects each instrument con-
nected to the IJTAG network to have a secret key, which is
used for the user’s authentication. At the end of the authenti-
cation procedure, the user can access only the instruments
that he/she is authenticated for. In order to guarantee this
condition, a Secure Scan Chain (SSC) is activated. The SSC
only connects the instruments for which the user has been
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authenticated. The other instruments are connected to an-
other portion of the RSN that is not physically reachable by
the SSC.

The solutions proposed in [55] and [65] target the JTAG infras-
tructure. In [55], the privilege level of the user determines the
kind of JTAG instructions that can be executed, regardless
the content of the accessed data. In [65], the user having
access to the TAP controller can execute any instruction.
However, the content of the accessed data is checked. For
example, two users having different privilege levels can both
perform debugging, but only one of them may be allowed to
access a range of memory locations containing confidential
data. The solution [64] is specifically related to the debug
infrastructure, which is accessed by the JTAG interface. In the
solution [62] the instruments in the IJTAG network must be
grouped in different chains, each one accessible only by the
users having some specific privileges. The user that wants to
obtain the privilege to access a specific SSC must know the
secret keys of all the instruments attached to it. In the case
in which an instrument belongs to more than one privilege
group, it must be necessarily reached by more than one SSC.
This may cause non-negligible routing issues.

Data Confidentiality

When sensitive data are exchanged between the user and
the device, the possibility of sniffing from a third malicious
entity represents a threat. This risk is present both in a board
environment and inside a SoC, where the malicious entity
is an internal IP core. In addition, the IJTAG networks need
to be protected when confidential data could be shifted
through embedded instruments that are not trusted. Coun-
termeasures to provide data confidentiality have been largely
developed by researchers.

We have identified two categories of countermeasures that
provide confidentiality of test data. The first category relies on
the encryption of the test patterns and it can be applied to all
kinds of test infrastructures. These are called scan encryption
techniques. The second category is more oriented to protect
the IJTAG networks. The configuration of the RSN is properly
modified in order to isolate the untrusted instruments when
confidential data are shifted through it.
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Scan Encryption

In this thesis, we will present new security techniques for test
infrastructures that belong to the category of scan encryption.
For this reason, we will detail the state-of-the-art about
scan encryption in the following section. Here, we give
a short introduction about the security properties of this
technique.

Scan encryption techniques are based on the deployment of
encryption primitives to encrypt all data that is involved in
the test infrastructure. The IC designer must set up a secret
key, which is securely stored inside the device. After that, the
designer must encrypt the test data using the secret key. The
encrypted data are sent to the target device, which decrypts
them, processes them and produces encrypted responses for
the user. Here, we point out the security properties that are
granted from an encrypted communication with the device.
In fact, this approach leads to a twofold protection:

1. data confidentiality is provided, since no unauthorized
entity can understand the content of the communica-
tion between the user and the test infrastructure;

2. user authentication is partially provided because unau-
thorized users, which do not know the secret key, do
not have controllability on data that is inserted through
the TDI pin.

It is possible to appreciate how scan encryption potentially
covers a greater number of threat scenarios than already
mentioned user authentication techniques.

Secure Configuration

When dealing with IJTAG networks, it is possible to exploit
the reconfiguration capability of the RSN not including
untrusted instruments when a confidential communication
is carried out.

The countermeasure proposed in [62] allows the designer to
keep the untrusted instruments away from the secure scan
chains. If an instrument deals with confidential data, it can
be connected to a secure scan chain. This way, the user is
sure that sensitive data are not shifted through untrusted
devices. Only authenticated users have access to the secure
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scan chains. Further developments have been proposed in
[66, 67]

M. Kochte et al. proposed in [68] a design technique for
secure IJTAG networks. Secure access patterns can be gen-
erated, such that untrusted instruments are not involved
in the network when confidential data are present in the
communication. The secure patterns configure the network
in order to keep untrusted instruments isolated. When this
configuration cannot be achieved due to the structure of the
network, a modification of the design is performed and a
bypass segment is added in order to redirect the data flow.
When confidential data are shifted through the network, the
bypass segments are activated and the data are not shifted
through the untrusted instruments.

The solution [62] is very efficient when the untrusted in-
struments do not belong to the set of devices that need the
user authentication. In this case, they are not part of the
secure scan chain. Thus the confidential data, which are
shifted through the secure scan chain, are not exposed to the
untrusted instruments. The solution [68] is more versatile,
because any instrument considered untrusted can be isolated
from the confidential data. The main limitation is that this
technique is applied at design time, without the possibility
to update the security policies at a later stage. Moreover, the
insertion of bypass segments does not avoid the possibility
to electrically leak the confidential data on the untrusted
branch.

Device Authentication

The authentication of the device is fundamental in order to
fight the presence of untrusted devices. The user communi-
cating with a target device on a testing infrastructure, needs
to be sure that the target is an authentic device, not a fake
one coming from a counterfeiting process. Some countermea-
sures of this kind have been proposed in the literature.

In [4], the authors propose a technique for device authentica-
tion. The user sends a challenge to the device. The challenge is
sent to the key port of a stream cipher. The device computes
the response using the initialization phase of the stream
cipher. The user checks the associated response using a ref-
erence database. This way, the user is able to check if the
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device has given the right response. The relation between
the challenge and the response depends on the initialization
value of the stream cipher, which is hardwired in the de-
vice using fuses. This configuration is secret and it is set at
manufacturing time.

The solution proposed in [58] , based on the Schnorr pro-
tocol, can be also used for the authentication of the device.
This protocol has a bidirectional property that allows the
authentication of both the user and the device. The already
mentioned user authentication procedure can be performed
on the other way around to allow the user to verify the
authenticity of the device.

J. Dworak et al. proposed in [69] a technique to provide
the authentication of a device mounted on a board. Each
device owns a unique and secret ID number. When the tester
wants to start a communication with a target device, the ID
number is requested and checked against the correct one. An
attacker, who wants to fake the target device, has to know
the right ID associated with it. Hence, the ID must be kept
confidential. For this reason, the ID number is encrypted in
the transmission, in order to avoid other entities sniffing the
JTAG network to steal its value. The encryption is performed
by the device. The ID is added to the secret key, which must
be as long as the ID. At the beginning of the authentication
session, the user sends the secret key. In order to protect the
key from sniffing, the sent key is obfuscated spreading it
inside a random stream of bits. The obfuscation rule is secret
and chosen at design time. A hardware module implemented
inside the device performs the de-obfuscation of the received
key.

The solution presented in [4] does not show high implemen-
tation cost, because the stream cipher used for computing
the response is also used for encrypting test data, as we will
explain later in this chapter. In [58], the ECC cryptography
needed for the implementation of the Schnorr protocol leads
to use a high amount of resources. The solution presented in
[69] proposes the obfuscation of the key, which does not pro-
vide high security. Moreover, the constraint of implementing
the obfuscation algorithm inside the device at design time
does not permit flexibility.
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Data Integrity

When test data are sent to a target device in the test infrastruc-
tures, these are often shifted through other IP cores or device
that are connected to the same network. Malicious devices
can corrupt test data in order to falsify test procedures and
tamper with the communication. Granting the integrity of
the communication allows the user and/or the device to be
sure that the exchanged data have not been modified during
the transmission. One common technique consists in using a
Message Authentication Code (MAC) appended at the end
of each transmitted message. The MAC is a unique signature
that is computed as a function of the message content. The
most used MAC algorithm in this field is the Hash MAC
(HMAC). The HMAC is based on hash functions, such as
SHA-256. When a message is received, the device internally
computes the HMAC signature of the message. If it is equal
to the signature that has been received appended to the
message, it means that the message is intact. In the opposite
case, it means that the message has been tampered with.
The security of this primitive lies in the shared secret key
used by both the user and the device to compute the HMAC
signature.

The countermeasure proposed in [4] also provides the in-
tegrity of the exchanged messages between user and device.
This is performed by appending a MAC signature to the
message. The key used to compute the signature comes from
the internal stream cipher employed for data encryption and
device authentication. A challenge is sent by the user, which
is used as a key by the stream cipher. The initialization value
is hardwired at post-production using fuses. The stream
cipher produces 80 bits of keystream depending on the input
key and the initialization value. The produced keystream is
used as secret key for HMAC. The user knows the value of
the key because he or she owns the challenge-response pairs
that depend on the configuration of the fuses.

R. Elnaggar et al. proposed in [50] a countermeasure that
provides integrity in IJTAG reconfigurable networks. Un-
trusted embedded instruments are supposed to tamper with
data, when shifted through their TDR. Therefore, the au-
thors of the present paper proposed to create an alternative
path that circumvents untrusted instruments. The alternative
path is inserted by the SoC integrator, which is supposed

[4]: Rosenfeld et al. (2010),
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ing IJTAG against data-integrity
attacks’



48 3 Security Countermeasures for Test Infrastructures

[70]: Baranowski et al. (2014),
‘Access Port Protection for
Reconfigurable Scan Networks’

being trusted. The implementation of this solution relies
on doubling each untrusted TDR, adding a trusted dummy
TDR in parallel. This way, when data are shifted through the
untrusted TDR, the alternative path is activated and only the
alternative trusted TDR is visible from the RSN.

The usage of the MAC for integrity is based on a shared secret
between the user and the device. The MAC also provides
a weak authentication of the user. In fact, an unauthorized
user, who does not know the key to compute a valid MAC,
can only send invalid messages to the device.

Attack Detection

All countermeasures presented so far aim to avoid attacks
on the target system. However, some other techniques in
the literature aim to detect the execution of attacks. This is
achieved by on-chip monitoring of the user behavior. When
the behavior of the user is considered illegitimate, the system
detects an attack and it goes into protection mode.

Detection techniques can be divided in two categories. The
tirst category, comprises all the detection methods based
on static rules. As soon as these rules are not respected, the
user is considered to be an attacker. The second category
comprises methods based on machine learning.

Static Detection

Static detection techniques are based on rules that are set at
design time. Static detectors are synthetized during the de-
sign flow of the device. These detectors usually take as input
the patterns sent by the user. If the patterns are not consid-
ered compliant to a legitimate behavior, the user is classified
as an attacker trying to exploit the test infrastructure.

R. Baranowski et al. proposed in [70] a detection technique
for filtering the access to the test infrastructure. This solution
is based on sequence filters that are placed on the TAP con-
troller. They prevent the access to protected instruments and
restrain it for instruments that are not completely protected.
The filters take as input the sequence of instructions and data
at the TDI port to decide whether the access pattern is allowed
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or forbidden. If the user tries to access a forbidden instru-
ment, the operation is not allowed by the filter. The filters are
deactivated by default to enable post-manufacturing test. Af-
ter that, they can be activated by blowing fuses. Alternatively,
an authentication mechanism could be integrated in order to
manage the activation of the filters. Further developments of
this technique have been presented in [71-75].

In [6] the authors proposed a detection technique for the
identification of attempts to reverse engineer the IJTAG re-
configurable network. A checker counts the number of shift
cycles that are performed by the user during the RSN con-
figuration. A legitimate user knows the structure, hence the
length, of the RSN. Therefore, the number of shift cycles
necessary to configure the RSN are exactly known. On the
opposite, when the attacker explores the RSN, he/she per-
forms several attempts. Thus, an inexact number of shift
cycles is necessarily spent in the configuration process. When
the checker detects this situation, the user is considered an
attacker.

X. Ren at al. presented in [76] a detection technique based
on representative sequences of instructions. These sequences
are chosen at design time as representative of legitimate
operations. If the behavior of the user goes sideways for long
time with respect to the representative sequences, an attack
is detected. In the implementation, a counter is associated
with each representative sequence. When all counters stop
incrementing, it means that a non-representative sequence is
being performed by the user, thus the circuit is subject to an
attack.

The countermeasure proposed in [50] can be expanded in
order to also detect attempts of data tampering. Genuine
instrument responses (not shifted through the internal TDR
of the untrusted instruments) are compared with the re-
sponses coming from the internal TDR of the instrument. If
a difference, is detected a tainted bit is set in an extra RSN.
When the tester collects the test responses, the presence of
a taint bit indicates that an instrument has tried to tamper
with some data.

The rules that underlie the static detection techniques must
be set at design time. This implies that it is not possible to
change the access policies without a complete redesign of the
detectors. In the solution [70] the possibility of performing
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post-manufacturing test using different policies is contem-
plated. Nevertheless, once the filters are activated, it is not
possible to obtain higher privileges on the test infrastructure
anymore.

Machine Learning

Detection techniques based on machine learning require the
implementation of on-chip binary classifiers. They are special
circuits that are able to evaluate the sequences of instructions
sent by the user and label them as normal or abnormal behavior.
The classifiers must be trained before being operative. During
the training phase, instruction sequences belonging to both
categories are labeled and sent to the classifier. In this way,
the classifier sets its internal classification parameters. After
that, the classifier is able to successfully classify the sequences
autonomously in the operative phase. Input data are pre-
processed in order to obtain the so-called feature vectors,
which are a different representation of the data. The feature
vectors are the input of the classifier in both the training and
operative phase.

In [76] , the authors presented two detection techniques
based on machine learning. They proposed the deployment
of two different classifiers, the random forest and the Support
Vector Machine (SVM). The random forest classifier is based
on decision trees. Each tree takes as input a feature vector (or
a part of it) and outputs a binary value that corresponds to its
classification. The result of each tree is then sent to a majority
voter that establishes the final result. The feature vectors,
given as input to the random forest classifier, are extracted by
the executed JTAG instructions. These features are derived
from static elements extracted by the instruction, plus one
transition bit. The transition bit indicates if the transition
from the previous instruction to the present one is typical or
not. The SVM is a classifier that defines a decision boundary
during the training phase. The decision boundary separates
the two classes of samples such that the smallest distance
between the decision boundary and any of the samples is
maximized. The input of the SVM is a sequence of JTAG
instructions. The optimal length of the sequences, which is
equal to 4 instructions, has been determined empirically by
the authors. The present technique has been further extended
by the authors in [77-79].



3.1 Classification of Countermeasures

While the detector based on the random forest classifier is
able to provide a classification based on static features of the
instruction under execution, the SVM relies on sequences
of several instructions. This makes the classification based
on the SVM more efficient against attacks that are unknown
in the training phase. A common drawback of these two
solutions is that each time a new attack is conceived, it could

be necessary to perform the whole training process again.

Moreover, machine-learning techniques show more efficiency
if coupled with other protections. This is due to the fact that
in some situations the detection can fail because the attack is
not recognized. Once the classifier has detected that the user
is performing an attack, the system must activate a locking
feature or going into a protected mode.

Summary

In Table 3.1 on the next page, we have regrouped all the
countermeasure categories and the known security threats
from Chapter 2. The first conclusion that can be drawn
is that there is no countermeasure able to cover all the
existing threats. All user authentication and attack detection
techniques are able to protect the test infrastructures against

external threats, but they leave the internal threats uncovered.

On the other hand, device authentication, data confidentiality
and data integrity techniques are able to cover some kind
of internal threats each. For the purpose of this thesis, it is
important to notice that scan encryption and data integrity
techniques are the only countermeasures that are able to
thwart both external threats and sniffing (or tampering). For
this reason, the contributions of this thesis moved towards
scan encryption countermeasures, since they were considered
promising techniques for achieving a complete protection
for test infrastructures.

51



52 3 Security Countermeasures for Test Infrastructures

Table 3.1: Analysis of the pro-

. External Threats Internal Threats
tection granted from each coun- — -
termeasure against the known Sniffing | Tampering
threats User Authentication

IJAG User Autentication
Privilege Based
Authentication
Scan
Encryption
Data i
. L. Secure
Confidentiality ] .
Configuration
Device Authetication
Data Integrity
Attack Detection

3.2 Scan Encryption

Scan encryption techniques have known a relatively recent
development due to their promising characteristics. From
a security perspective, they rely on data encryption based
on symmetric ciphers. In this section, we introduce all the
basic concepts that will be useful to the reader for deeply
understanding the proposed scan encryption techniques. We
start by providing a summary on symmetric encryption from a
purely cryptographic point of view. After that, we show how
the symmetric encryption concept can be applied to the test
flow of integrated circuits. Finally, we present scan encryption
techniques from the literature, which were the state-of-the-art
before the contributions of this thesis came out.

Symmetric Encryption

Understanding some key differences between the existing
ciphers that are used for symmetric encryption is of fun-
damental importance to appreciate the peculiarities of the
proposed scan encryption techniques. We focus on symmet-
ric ciphers since their operations (e.g., same key used for
both encryption and decryption) fit with the requirements
coming from the test communication scenario. Moreover,
symmetric ciphers propose a lower cost in terms of area and
computation time than asymmetric ciphers. First, we recap
the rationale of symmetric data encryption. Then, we provide
a brief introduction on block and stream ciphers in order to
set the terminology and highlight the key features.



In general, a cipher allows the sender to transform an input
message 11, called plaintext, in a ciphered version ¢, called
ciphertext, using a secret key k. The receiver must be able to
rebuild m from ¢ upon the knowledge of the same k. A cipher
is composed of two functions: E, called encryption function,
and D, called decryption function, such that:

» The encryption function takes as input the message m
and the secret key k, and outputs a ciphertext c, so that
E(k,m) = c.

» The decryption function takes as input the ciphertext c
and the secret key k, and outputs the plaintext m, so
that D(k, c) = m.

The encryption of a message followed by the decryption
of the correspondent ciphertext must result in the initial
message, i.e., D(k, E(k, m)) = m. Ciphers that are used for
providing confidentiality in the test infrastructures are stream
ciphers and block ciphers.

Stream Ciphers

Stream ciphers are based on a theoretical cipher, called One
Time Pad (OTP). In the OTP, the secret key must be as long as
the message m. The encryption function is defined as:

E(lk,m)=me&k=c (3.1)
the decryption function is defined as:
D(k,c)=c®k=m (3.2)

If k is perfectly random (i.e., according to the uniform dis-
tribution), the OTP has perfect secrecy. This means that the
produced ciphertext is indistinguishable from a random se-
quence (this is due to the properties of the XOR operator). In
this case, it is impossible for an attacker that intercepts the
ciphertext to derive any information neither on the message
nor on the key. However, from a practical point of view, the
OTP is not implementable because of the key length. In fact,
it is impracticable for the sender and the receiver to exchange
a secret key that is as long as the message they want to
transmit. Stream ciphers are implementations of the OTP.
Instead of processing a random key k that is as long as the
plaintext, a Pseudo-Random Generator (PRG) generates a

3.2 Scan Encryption
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Figure 3.2: High-level architec-
ture of a generic stream cipher

[80]: De Canniere et al. (2005),
TRIVIUM Specifications

Stream
Cipher

S(k)

N
m N ¢

pseudo-random sequence of bits called keystream. The PRG
takes as input a value k, called seed of the stream cipher, and
outputs the keystream S(k) (Figure 3.2). The encryption and
decryption functions are thus defined as:

E(k,m)=m® S(k) =c (3.3)
D(k,c)=c® S(k)=m

As far as the PRG produces a keystream that is unpredictable,
the resulting stream cipher is considered secure.

The TRIVIUM [80] stream cipher is widely used in the context
of scan chain protection due to its low implementation cost
(i.e., 3 AND gates, 11 XOR gates and 288 flip-flops). It is based
on a Non-Linear Feedback Shift Register (NLFSR) used as PRG.
The seed of the TRIVIUM PRG is made by an 80-bit secret
key K, and an 80-bit Initialization Value (IV'), which is publicly
known. The generated keystream is denoted as S(K, IV).

Block Ciphers

Block ciphers are based on mathematical objects called Pseudo
Random Permutations (PRP). They are invertible functions that
take as input an n-bit value m and a secret key k, and output
an n-bit value c. A PRP is considered secure if, fixed a key
k, the resulting function is indistinguishable from a random
bijective function on n-bit values. Block ciphers implement
a secure PRP. They are made of an encryption function that
is able to encrypt a plaintext block into a ciphertext block
using a secret key; and a decryption function that performs



Block
Cipher

the inverse operation and retrieves the plaintext block from
the ciphertext (Figure 3.3).

One of the most common block ciphers is the Advanced En-
cryption Standard (AES), which we have already encountered
in Chapter 2. However, while in Chapter 2 we have discussed
how crypto-processors, such as AES, can be the victims of
scan attacks, here we are using cryptographic circuits in
order to protect the circuits against such attacks. Other block
ciphers have been proposed, which target lightweight hard-
ware implementations. For instance, PRESENT and SKINNY
block ciphers have a lower cost in terms of area and power
consumption.

Testing with Encrypted Data

Symmetric ciphers can be easily employed to set up a secure
test flow. In fact, the test process can be seen as a commu-
nication between a tester and a device. The tester can be an
authorized user accessing the test infrastructure in-the-field,
or an ATE performing post-manufacturing test. The target
device can be an integrated circuit, or a specific IP core in-
side a SoC that has its internal test infrastructure protected.
The designer chooses a secret key that is stored inside the
device. Subsequently, this key must be handed out to all the
parties that are authorized to access the test interface of the
device. Figure 3.4 shows a scan encryption scheme that could
be employed for post-manufacturing test. It consists of the
following steps:

1. the designer generates test patterns for the device and
computes the expected fault-free test responses;
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Figure 3.3: High-level architec-
ture of a generic block cipher
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Figure 3.4: Functional scheme of
scan encryption

2. test patterns are encrypted by the designer resorting
to the chosen cipher and using the secret key that has
been stored inside the circuit under test;

3. the tester receives the encrypted test patterns that
are shifted into the device during the test procedure.
The encrypted test patterns are decrypted internally
through the input scan cipher;

4. once the test has been applied, test responses are en-
crypted resorting to the output scan cipher;

5. encrypted test responses are decrypted off-chip to ob-
tain the actual responses of the circuit and compare
them with the expected ones.
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The scan encryption technique merges both user authenti-
cation and data confidentiality into a unique security coun-
termeasure. In fact, any malicious device or malicious user
trying to sniff the test channel is not able to understand the
content of the transmitted message. Moreover, an unautho-
rized user that does not know the secret key it is not able to
successfully encrypt test data. It is worth pointing out that
the input scan cipher is always there. Hence, its decryption
function cannot be avoided along the test channel. For this
reason, the only way to successfully communicate with the
target device is to know the secret key and to properly encrypt
all data that is introduced through the TDI pin.

Scan encryption schemes can be implemented using both
block and stream ciphers. In the following, we will describe
all the scan encryption techniques, based on both ciphers,
that existed in the literature before the contributions of this
thesis were published.
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Figure 3.5: Scan encryption based on block ciphers [82]

Block Based Scan Encryption

Scan encryption based on block ciphers was proposed the
tirst time in 2017 by Mathieu Da Silva et al. [81] . This work
started from a collaboration between researchers from the
Polytechnic University of Turin and our team at LIRMM lab-
oratory. This first paper was well-acclaimed by the scientific
community and, in 2019, it was extended with an important
publication that extensively describes the scan encryption
concept [82] . In addition, it shows how block ciphers can be
employed to efficiently encrypt data that are involved in a
test infrastructure based on single or multiple scan chains.

As shown in Figure 3.5, two block-ciphers are added to the
original circuit. The input scan cipher decrypts data sent
by the tester, while the output scan cipher encrypts the test
responses before transmission to the tester. Each cipher has
two N-bit round registers (R1 and R2 in Figure 3.5) with
two operating modes: load and shift. In load mode, the
result of the round operation is stored. In shift mode, the
round register is connected between the TDI/TDO pin and
the internal test infrastructure. Two registers, alternating the
load and shift modes, are essential in order to not incur
in excessive test time overhead. This way, the scan ciphers
can perform the decryption/encryption operations and the
shifting operations in parallel. For instance, in the input scan
cipher, while R1 is in shift mode and it receives new data
shifted in from the TDI pin, R2 is used as round register of
the block cipher and it stores the decrypted result of the test
data block received during the N previous clock cycles. A
controller is in charge of enabling the correct sequence of
operations.

Test time takes 2 X N extra clock cycles at the beginning of the

[81]: Da Silva et al. (2017), ‘Scan
chain encryption for the test,
diagnosis and debug of secure
circuits’

[82]: Da Silva et al. (2019),
‘Preventing Scan Attacks on
Secure Circuits Through Scan
Chain Encryption’
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test procedure for loading R1 and R2 registers with the first
two blocks to decrypt. The same additional overhead of 2 X N
extra clock cycles is required at the end of the test procedure
to read-out the last response stored inside the R1 and R2
registers of the output scan cipher. The scan chain is filled
one bit per clock cycle, thus the scan ciphers can be clocked at
the same frequency as the scan chains. After each encryption,
one segment consisting of N bits (i.e., one encryption block)
is available on the round register and it is shifted into the
scan chain in N clock cycles. Scan chains whose length is
a multiple of N can be filled without penalties. However,
it is also possible to manage the encrypted test with scan
chains whose length is not a multiple of N, paying a penalty
in terms of test time overhead.

Block cipher based scan encryption can be extended to mul-
tiple scan chains. However, this extension is not trivial, since
it requires the implementation of a dedicated architectural
solution. When multiple scan chains are present, each scan
chain must be filled with a new bit in each clock cycle. Hence,
the input block cipher must fill the scan chains one slice
at a time. For this reason, the scan encryption operations
must be performed at higher clock frequency. In fact, two
clock sources are needed in the multiple scan chain scenario:
a slower test clock for the scan chains and a faster scan
encryption clock for the scan ciphers.

Block based scan encryption can be deployed after that the
whole test infrastructure has already been designed. In fact,
the scan encryption feature is a wrapper (made of the two
block ciphers and the controller) that can be added to the
circuit in the final steps of the design flow. Block based
scan encryption can be easily applied to test compression
methods as well, regardless of the test decompressor and
compactor that are used. The tester generates the compressed
stimuli used to test the device. These compressed stimuli
are encrypted by the tester and decrypted by the device
before being decompressed. The decrypted test stimuli are
then processed by the test decompressor. The encryption of
the scan output is performed on the already compacted test
responses. Therefore, it is possible to conclude that block
based encryption is transparent to any kind of advanced test
infrastructure.



Stream Based Scan Encryption

Scan encryption techniques based on stream ciphers are
all implemented with the TRIVIUM cipher. The TRIVIUM
stream cipher is based on a NLFSR that takes a seed as input
and produces a pseudo-random keystream as output. The
seed is made by an 80-bit secret key and an 80-bit Initialization
Vector (IV). While the key is secret, the IV can be public. The
only requirement is that the same IV should not be used
more than once.

K. Rosenfeld and R. Karri proposed in [4] an encryption
technique that targets the JTAG infrastructure. The IV of
the TRIVIUM cipher is hardwired on the device using fuses.
The configuration of the fuses is secret and established at
manufacturing time and it never changes during the device
lifetime. The key is established before each encryption ses-
sion with a challenge-response protocol. The user sends a
challenge to the device, which is sent to the key input of the
TRIVIUM cipher. This is run for a specific number of clock
cycles in order to generate the first 80 bits of the keystream.
This 80-bit value is used as the encryption key for the com-
munication with the user. Unauthorized users that do not
know the hardwired IV are not able to derive the encryption
key used for the encryption.

In [5] , the same approach is used for securing the test in
IEEE 1500 compliant IP cores. The encryption is performed
with the TRIVIUM stream cipher. The management of the
IV is not specified by the authors. The secret key is chosen
randomly by the user and loaded into the cipher through a
dedicated scan chain designed in order to prevent other IP
cores from sniffing the key. In this case, the scan encryption
technique does not provide user authentication, but it only
protects test data against sniffing from malicious devices.

S. Kan et al. proposed in [6] the encryption of the IJTAG
reconfigurable network. Also in this case, the TRIVIUM
stream cipher is used. The secret key and the IV are both
fixed and stored inside the device.

The presented stream based scan encryption techniques are
chronologically older than block based solutions. In fact,
stream ciphers have been preferred by the researchers due
to their lower cost and their easiness of implementation.
However, in the following of this thesis, we show that the
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[4]: Rosenfeld et al. (2010),
‘Attacks and Defenses for JTAG’

[5]: Rosenfeld et al. (2011),
‘Security-aware SoC test access
mechanisms’

[6]: Kan et al. (2016), ‘Echeloned
IJTAG data protection’
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choice between block and stream ciphers is not as easy as it
looks like.

Summary

In this chapter, we have identified the scan encryption as a
promising technique for securing test infrastructures. In fact,
scan encryption is able to protect test infrastructures from
external attacks and internal attacks based on the sniffing of
test data. Furthermore, the usage of symmetric encryption
primitives makes it a low-cost technique with respect to
complex authentication mechanisms based on asymmetric
cryptography. We have identified two different approaches
for scan encryption. One is based on block cipher encryption,
the other is based on stream cipher encryption. Block based
scan encryption has been the subject of some publications that
thoroughly analyzed its implementation costs and its security
properties. On the other hand, stream based scan encryption
has been proposed by different authors, but its security
properties have not been the object of extensive research.
From an implementation point of view, stream ciphers have a
smaller area cost with respect to block ciphers. Furthermore,
the serial interface of stream ciphers better fits with the data
flow in test infrastructures. For these reasons, we believe that
stream based scan encryption should be better evaluated and
considered for scan encryption implementations.



Secure Stream Based
Scan Encryption

Existing stream cipher based scan encryption techniques
(all based on the TRIVIUM algorithm) present a lower cost
solution than scan encryption techniques based on block
ciphers. In Chapter 3, we have shown that block based solu-
tions must be accompanied by additional circuitry in order to
cope with the serial interface of the test infrastructures. This
overhead is particularly evident when dealing with multiple
scan chains. Stream based solutions do not have this problem,
but the existing implementations have not been thoroughly
developed like it was done for block based solutions. For
this reason, our research moved towards an exploration of
new opportunities for employing stream ciphers in the scan
encryption but, to our surprise, some problems were found
out.

In this chapter, we show that the choice between block and
stream based scan encryption is not as easy as it seems. At
tirst, we show that the existing stream based techniques
are subject to a serious vulnerability which makes them
completely unsecure. After that, we propose new stream
based scan encryption techniques targeting different kinds
of test infrastructures and supporting a test protocol that can
be employed at any level of the design hierarchy. Finally, we
compare the implementation costs of both block and stream
based scan encryption, and we will show that the best choice
is not straightforward [83-86] .

4.1 Scan Encryption Vulnerability

The stream cipher is considered secure as far as two condi-
tions are satisfied:

1. the keystream is unpredictable by the attacker;
2. the same keystream must not be used more than once.

If one of these conditions is not respected, it is possible
to perform an attack, called two times pad. Let us suppose
that two messages t; and f, are encrypted using the same

[83]: Da Silva et al. (2018), ‘A New
Secure Stream Cipher for Scan
Chain Encryption’

[84]: Valea et al. (2019),
‘Encryption-Based Secure JTAG’
[85]: Valea et al. (2019), ‘Stream vs
block ciphers for scan encryption’
[86]: Merandat et al. (2019), ‘A
Comprehensive Approach to a
Trusted Test Infrastructure’
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keystream S(k, IV). If the attacker is able to observe the two
resulting ciphertexts, the following operation is possible:

Sk, IV)e(t,dSk,IV)=t &t 4.1)

This means that simply performing an XOR operation be-
tween two ciphertexts results in the XOR of the two original
plaintexts (i.e., their Hamming distance). This information
can be exploited in many scenarios. For example, in the case
of textual plaintexts, it is possible to retrieve some statis-
tical information from the Hamming distance of the two
messages that can lead to retrieve the content of the two
plaintexts. However, in the context of test infrastructures, we
already know a scenario where an attack of this kind would
be detrimental for the security of the scan encryption. Let us
consider the differential scan attack on the AES crypto-core.
As we have detailed in Chapter 2, the attack is performed
computing the Hamming distance of two consecutive partial
responses. Let us assume that t; and t, are two partial encryp-
tion results that have been shifted out from the scan chains
of the crypto-processor. It is evident that the two times pad
attack allows the attacker to obtain the desired Hamming
distance information, even if the single test responses are
encrypted. Assuming that the stream cipher can be reset
between two test sessions, the attack will be carried out as
follows:

1. a plaintext m; is sent as input to the device;

2. after the first round of computation, the result of the
first encryption round is stored into the round register,
and the circuit is switched to test mode;

3. the content of the round register is shifted out of the
scan chain and is encrypted by the stream cipher before
being delivered to the circuit output;

4. the circuit is reset, in order to force the stream cipher
to generate the same keystream again;

5. the same procedure from points 1 to 3 is performed
using a second plaintext m1,, related to m1y;

6. the XOR operation between the two encrypted test re-
sponses is performed.

The obtained result is equivalent to the Hamming distance of
the two unencrypted test responses. This means that the scan
encryption countermeasure, if implemented in this way, is
totally useless for protecting the circuit from the differential
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scan attack.

The three implementations of stream based scan encryption,
presented in Chapter 3 for securing scan chains, can all
be exploited to perform the two times pad attack. In the
proposal from K. Rosenfeld and R. Karri [4] , the key of
the TRIVIUM cipher is established by the user through a
challenge-response protocol. The IV is fixed. This means that
if the user sends the same challenge to the device twice,
he/she is sure that the same key is used twice for encrypting
test data. Thus, the attacker can force the device to generate
the same keystream, even without knowing its value. The
technique described in [5] allows the user to directly set the
stream cipher key. In fact, this solution does not guarantee
user authentication. In this case, we can only suppose that
the scan attack could be performed by a sniffing device. The
two times pad vulnerability is present if the user does not
change the key before sending a new message to the device.
The countermeasure presented in [6] is based on a stream
cipher whose secret key and IV are either hardwired with
fuses or produced through a challenge-response procedure
based on PUFs. Each device has a unique set of secret keys
and IVs assigned to the different instruments of the IJTAG
reconfigurable network. Unfortunately, the authors do not
specify any precaution taken to change values of the keys or
the IV between different encryption sessions. Hence, the two
times pad attack can be carried out, destroying the effect of
the scan encryption scheme.

It is clear that state-of-the-art implementations of stream
based scan encryption have underestimated the care for the
right key management that is demanded by stream ciphers.
On the other side, block based scan encryption does not suffer
such a weakness. In fact, block ciphers can reuse the same
key all along the lifetime of the device without incurring
into known security problems. This is a first indication of
the fact that preferring stream based scan encryption is not
self-evident as it seems at first glance. However, we have
decided to give another chance to stream ciphers and we
have proposed a new way of implementing stream based
scan encryption.

[4]: Rosenfeld et al. (2010),
‘Attacks and Defenses for JTAG’

[5]: Rosenfeld et al. (2011),
‘Security-aware SoC test access
mechanisms’

[6]: Kan et al. (2016), “‘Echeloned
IJTAG data protection’
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4.2 New Secure Scan Encryption
Solution

In order to overcome the vulnerability showed in the last
section, we proposed a new scan encryption solution based
on stream ciphers. We assume that the original circuit embeds
at least one cryptographic IP core, a secure storage for all the
secret keys, and a Secret Key Management Unit (SKMU). We
also assume that the circuit implements a scan chain and at
least some FFs of the cryptographic core are included in the
scan network.

The proposed countermeasure is shown in Figure 4.1. It
consists in adding two stream ciphers at the input and at the
output of the scan chain respectively. An attacker unaware
of the secret key used for encryption of the test data is not
able to load the patterns he/she wants inside the scan chain.
Moreover, the attacker is not able to understand the content of
test data that are shifted out from the test infrastructure. Only
users with the knowledge of the secret key are authorized to
access the scan chains. The secret key of the stream ciphers
is stored and managed by the SKMU of the protected crypto-
core. By re-using the key management of the original circuit,
the solution does not introduce new issues in handling the
secret key. The SKMU delivers a dedicated scan encryption
key to authorized users. The IV used to initialize the stream
cipher is generated by a TRNG. This random IV is sent to
the external user through the TDO pin. This way, the user
is able to properly encrypt test patterns. The IV is totally
random and it is different after each circuit reset, but it is not
secret. The only secret is the key, which is known only by the
authorized users. Since the stream ciphers are initialized with
adifferentIV at each device initialization, the same keystream
is never generated twice. Thus, this solution is not vulnerable
against the two times pad attack, preventing any attacker
from carrying out differential scan attacks. The first step of
the new test procedure consists in generating test vectors
for the DUT, and computing the expected test responses by
simulation. Before any scan operation, the stream ciphers
are initialized by generating a random number used as IV.
The tester retrieves the generated random IV through the
scan-out pin, and he/she encrypts test vectors off-chip using
the random IV and the secret key. Once the stream cipher
initialization is finished, the tester can shift the encrypted
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test vectors into the test infrastructure. Each encrypted test
vector is first decrypted using the keystream S;;, generated
by the stream cipher. After that, it is shifted into the scan
chains of the device. Test vectors are applied to the circuit
under test and test responses are obtained. During the shift
out operation, the test responses are encrypted with the
keystream S,,; generated by the stream cipher placed at
scan output. The encrypted test responses are shifted out
of the circuit in order to be decrypted off-chip by the tester.
Once decrypted, the test responses can be compared with
the expected ones.

Nevertheless, the proposed test procedure shows inefficiency
when multiple devices must be tested in parallel. This is
the case when in-wafer test is performed during manufac-
turing. Newly fabricated integrated circuits are tested the
tirst time when the silicon dies are still on the wafer. In this
scenario, several dies are tested in parallel by applying the
same patterns using flying probes. As explained above, im-
plementing the proposed scan encryption technique forces
the applied test patterns to be unique for every single cir-
cuit. In fact, they must be encrypted resorting to a random
number that differs from one circuit to the other. Therefore,
the proposed solution cannot be used for parallel testing of
multiple circuits. To thwart this disadvantage, we propose
to disable the use of the TRNG during the manufacturing
process and to use a predefined hardwired IV for all circuits.
This way, all keystreams are identical and all test patterns
can be encrypted in the same way. Thus, we need a system
that is able to electrically bypass the TRNG during in-wafer
test. We propose to use in-wafer sensors, which are able to
automatically determine whether the die is still attached to
the wafer. These sensors are either based on one time pro-
grammable memories, or on the so-called saw bow. The latter

Figure 4.1: Schematics of the pro-
posed stream based scan encryp-
tion. A TRNG produces the IV
that is used to seed the stream
cipher, together with the secret
key.
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Figure 4.2: Schematics of the saw
bow technique for isolating the
TRNG when the die is still con-
nected to the wafer.

[87]: Di Natale et al. (2017),
‘Manufacturing  Testing and
Security Countermeasures’
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is based on an electrical connection made by two resistive
elements: a strong pull-up and a weak pull-down (see Figure
4.2). These elements are physically interconnected by a metal
line across the sawing lines of the wafer. The strong pull-up
resistance sets a logic value on the line when the sawing
line is intact. When the dies are sawed, the weak pull-down
resistance sets the opposite value on the line [87] . This way,
a fixed IV can be used during in-wafer test. However, as soon
as the dies are cut off from the wafer, the TRNG becomes the
only IV generator on the IC.

In the following, we present two different implementations
of this new stream based scan encryption solution. The
first implementation targets very simple test infrastructures,
where scan chains are directly interfaced with the external
world. The second implementation has been developed to
propose a modified TAP interface for JTAG infrastructures.
In this case, we show a new JTAG implementation that is
able to efficiently support the proposed stream based scan
encryption solution. Both implementations are accompanied
by experimental results.

Secure Scan Chain

We propose to encrypt the scan chain content using the
TRIVIUM stream cipher. The keystream is generated relying
on an 80-bit secret key and an 80-bits IV. This stream cipher
has been chosen due to its low cost implementation. Moreover,
the TRIVIUM cipher allows the designer to implement the
generation of different keystreams using the same cipher (see
Figure 4.3). This way, there is no need of implementing one
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stream cipher at scan-in and another at scan-out. In fact, the
implementation of one TRIVIUM is sufficient to generate two
non-correlated keystreams for a marginal additional cost of
3 AND gates and 11 XOR gates [80] .

Sout

Sl

One TRIVIUM stream cipher generates the keystream S,
for the decryption of test vectors at scan input, and the
keystream S,;; for the encryption of test responses at scan
output. An initialization procedure must be run each time
the device is powered-on. This implies the presence of a
test time overhead at the beginning of the test procedure.
The TRNG must have a sufficiently high entropy before
starting the generation of really random bits. This implies
a first term in the test time overhead TrrnGinit. Once the
randomness of the generated bits has been reached by the
TRNG, the IV is shifted into a dedicated shift register (IV
Shift Register in Figure 4.3). At the same time, this is
shifted out from the device by the tester. The second term
in the test time overhead, called Tiyspifting, is due to the
time needed to shift the IV into the IV Shift Register.
Finally, the last term in the test time overhead, called Tscsetup,
is due to the initialization of the TRIVIUM stream cipher
with the generated IV and the secret key, which is securely
stored in the circuit. In the case of the TRIVIUM stream
cipher, Tryspifting is equal to 80 clock cycles, since the IV is
80 bits long. Tscsetup is equal to 1152 clock cycles. This is
the time needed by the TRIVIUM stream cipher in order to
correctly set the initial state of its internal NLFSR. Once the
initialization process is completed, the stream cipher is ready
to generate the two keystreams for test data encryption and
decryption. During the following phases of the test procedure,
the proposed solution does not infer any additional overhead

Figure 4.3: Architecture of the
stream based encryption based
of a scan chain infrastructure.

[80]: De Canniere et al. (2005),
TRIVIUM Specifications
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on the test time. In fact, the encryption and decryption
operations simply consists in combinational circuits (XOR
gates) interposed between the external and the scan chain,
thus no timing penalty is inflicted. The proposed architecture
for the stream based scan encryption is represented in Figure
4.3. This implementation is composed of a TRNG, a shift
register containing the generated IV, the stream cipher and a
control unit.

At circuit reset, the control unit starts the initialization of
the scan encryption as soon as the circuit is switched from
normal to test mode. During the entire initialization process,
the scan chain is kept inaccessible since the stream cipher
does not generate the keystreams. Both the scan-in and
the scan-out pins are connected to the TRNG through the
multiplexers that are visible in Figure 4.3. This way, an
attacker is not able to insert malicious data inside the scan
chain, nor to observe its content. The only thing that the
attacker can see, is the bitstream generated by the TRNG and
the IV value, when this is available. At first, the IV is stored
into the IV Shift Register before the initialization of the
stream cipher. Once the stream cipher setup is finished, the
multiplexers are connected to the scan-in and scan-out pins.
After that, the stream cipher generates the two keystreams.
The keystream S;,, is combined bit-to-bit to the test vectors
at scan input. The keystream S,,; is combined bit-to-bit to
the test responses of the circuit. The control unit keeps the
stream cipher encryption active only during test mode. If
the circuit switches to normal mode, the scan encryption is
frozen and resumed as soon as the circuit goes to test mode
again.

The proposed countermeasure requires the implementation
of a TRNG, a shift register, a stream cipher and a control unit.
We have summarized the costs of these submodules in Table
4.1 on the facing page. We have expressed the cost in terms
of footprint area (expressed in gate equivalent) and impact on
the initialization time (expressed in clock cycles). The TRNG
model has been taken from the DesignWare IP library from
Synopsys [88], where they provide a TRNG model of 15000
GE. The other submodules have a total area cost of 2600 GE:
300 GE for the IV shift register, 2048 GE for the TRIVIUM
stream cipher generating two keystreams and 252 GE for the
control unit. Concerning the test time overhead, the TRNG
initialization time is dependent on the implementation, thus
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Area Cost Initialization Time
Submodules
(Gate Equivalent) (clock cycles)
TRNG 15 000 TTRNGinit
IV Shift Register 300 Tivsnifting = 80
TRIVIUM 2 048 Tscsetup = 1152
Control Unit 252 /
Total 17 600 TrrNGinit + 1232
L. Triple | Pipelined | Pipelined
Circuit RSA 1024 LEON 3
DES AES-128 AES-256
Cell Area
) 187 494 367 926 669 193 464 415 | 1902 095
(um?)
Test Time
c.c) 687101 | 1944877 | 4559845 | 39405239 | 11612 051
c.C.

it cannot be estimated at architectural level. The IV shifting
and the TRIVIUM initialization take 1232 clock cycles in total.
The most incumbent cost of the proposed stream based scan
encryption solution is clearly the TRNG implementation.
However, if the target IC already embeds a TRNG (this is
a very likely scenario in ICs for secure applications), this
can be re-used during test mode by the scan encryption
architecture. In this scenario, the TRNG will not introduce
any area overhead. For this reason, we will not consider the
TRNG cost as an overhead brought by the scan encryption
implementation. We have implemented the proposed stream
based scan encryption technique on five different ICs that we
use as a benchmark for the evaluation of security solutions
in test infrastructures. In these target devices we can find
four crypto-processors implementing both symmetric (triple-
DES, pipelined AES with 128-bit and 256-bit secret key) and
asymmetric (RSA with 1024-bit private key) cryptography,
and one microprocessor based SoC for aerospace applications
(LEONS3). The synthesis has been performed using a 65 nm
library on Synopsys Design Compiler [89]. Test patterns
have been generated using the ATPG tool from Synopsys
TetraMAX [90]. Table 4.2 shows the area and the test time
of the chosen benchmarks in their unprotected version. The
proposed stream based scan encryption solution consists of
532 combinational cells and 382 flip-flops, when synthesized
on the same technology library, corresponding to a constant
area cost of 5409 um? to be summed to the total area of the
target IC.

Table 4.1: Cost of the submodules
composing the proposed counter-
measure

Table 4.2: Benchmark ICs used
to evaluate the implementation
cost of the TRIVIUM based scan
encryption
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Table 4.3: Cost of the scan chain
encryption with the TRIVIUM
stream cipher on the chosen
benchmarks

Pipelined | Pipelined

Circuit Triple-DES RSA 1024 | LEON 3
AES-128 | AES-256
Cell Area 2.88 % 1.47 % 0.81 % 115 % 0.28 %
Test
100 % 100 % 100 % 100 % 100 %
Coverage
Test Time 0.18 % 0.06 % 0.03 % 0.003 % 0.01 %

Table 4.3 reports the overhead, in percentage, introduced by
the stream based scan encryption. In the Triple-DES (i.e., the
smallest circuit) the area cost represents an overhead of 2.88%.
In the LEONS3 processor (i.e., the largest circuit) the area of
the proposed solution represents merely a 0.28% overhead
on the total surface. The test time overhead introduced by the
stream based scan encryption is due to the initialization time
at the beginning of the test procedure. Without considering
the TRNG initialization, the proposed solution requires 1232
clock cycles for the initialization. This extra test time repre-
sents an overhead of 0.18% on the smallest benchmark (i.e.,
the fastes to be tested).

We have used the ATPG for generating test patterns for the
target ICs. The generated test patterns are able to achieve 100%
of stuck-at fault coverage. The additional scan encryption
logic must be tested as well. Obviously, scan chains cannot
be inserted into the scan encryption logic, otherwise the
internal states of the stream cipher could be observed by an
attacker with access to the scan chains. Therefore, the test
of the scan encryption logic must be performed differently.
Luckily, the stream cipher can be functionally tested using
the test patterns of the original circuit. In fact, since the
TRIVIUM stream cipher is based on an NLFSR, a potential
fault on the cipher logic is easily propagated to the generated
keystreams. Therefore, during the test data encryption and
decryption, the stream based scan encryption solution is
tested simultaneously with the original circuit. We have
validated this assertion on the benchmark circuits. The test
sequence of each circuit has been applied to the stream
based scan encryption. The test patterns are processed by the
keystream at scan-in and the test responses are processed
by the keystream at scan-out. As expected, the same test
sequence detects 100% of the stuck-at faults in both the
original circuit and the additional scan encryption circuitry.
No additional test patterns are needed to test the proposed
countermeasure. These results are marked in the Table 4.3.
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Multiple Scan Chains Implementation

The stream based scan encryption can be easily adapted
to multiple scan chains. The only limitation is related to
the number of keystreams that the stream cipher is able to
generate. Let us consider a circuit where L scan chains are
accessible through L scan-in pins and L scan-out pins, as
shown in Figure 4.4. In this scenario, the stream cipher must
generate two L-bit keystreams. The proposed solution can
also be applied when a test decompressor is implemented at
scan-in, and a test compressor at scan-out. In this scenario, the
tester generates compressed test vectors for the circuit under
test. Generated test vectors are encrypted with the TRIVIUM
stream cipher. The encrypted compressed stimuli are shifted
into the circuit and decrypted by the keystreams generated for
the scan-in. The decrypted test stimuli are then applied to the
test decompressor. The test responses are compressed before
being encrypted on-chip with the keystreams generated for
the scan-out. Finally, the tester decrypts the compacted test

responses in order to compare them with the expected ones.

The number of possible keystreams depends on the used
stream cipher. For instance, the TRIVIUM can compute up
to 64 keystream bits in one clock cycle. Therefore, 32 parallel
test data can be decrypted at scan-in and 32 parallel test data
encrypted at scan-out.

Figure 4.4: Stream based scan
encryption applied to multiple
scan chains supporting test com-
paction.
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Figure 4.5: High-level architec-

ture of Secure JTAG

ncrypt module
Sin Sout
start_SC Stl'(‘illll Ox0
cipher

TRNG-ready of
y

TDO

TAP

controller

|
TCK TMS

Secure JTAG

The proposed stream based scan encryption is based on a
new test protocol, which implies the circuit sending the IV
to the user before starting the encryption. This implies a
modification of the test protocol. When it comes to protecting
simple scan chains, this problem can be easily solved adding
a multiplexer and some additional control logic, as we have
shown in the previous section. On the other hand, if we want
to protect a standard test infrastructure based on the TAP
interface, this becomes more challenging. For this reason, we
have proposed a new secure JTAG infrastructure supporting
the stream based scan encryption.

In Figure 4.5, it is possible to observe the high-level architec-
ture of the secure JTAG infrastructure. This solution includes
a TAP controller that gives access to the other test features
included in the IC, such as scan chains (through the INTEST
instructions) or IJTAG RNS. The main idea is to protect only
a set of the JTAG instructions that are considered as private
instructions. All the other instructions (i.e., public instruc-
tions) can be accessed by any user. The utilization of the
proposed countermeasure consists in an initialization phase
and an encryption phase. During the initialization phase,
the TRNG generates the IV and sends it to the stream cipher
circuit, in order to perform its setup. During this phase, the
TAP controller locks the use of the private instructions and
remains set on bypass mode. When the initialization phase
is completed, the user can ask for the access to the private
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instructions. To do so, the user has to execute a specific
instruction, called GETIV. When executed, this instruction
connects a special register, containing the generated IV value,
to the TDI and TDO pins. This way, the tester can shift out
the IV that has been produced by the TRNG during the ini-
tialization phase. If the GETIV instruction is executed before
the initialization phase is completed, a sequence of 0 values
is returned as response. During the encryption phase, the
tester knows both the secret key (if the tester is authorized)
and the IV obtained via the GETIV instruction. At this point,
it is possible to encrypt off-chip the test patterns using the IV
recovered from the device. The test patterns, shifted through
the TDI pin, are decrypted on-chip before being introduced
into the corresponding TDR. During the scan-out operation,
the test responses are encrypted on-chip. The tester collects
encrypted responses from the TDO interface that can be
decrypted off-chip, using the same IV and secret key used
for the off-chip encryption. The solution can be extended to
a whole set of protected instructions whose involved data
need confidentiality. The designer has to define a set of pri-
vate instructions. For example, the protected instructions
can include (1) the INTEST instruction for accessing the scan
chains; (2) the instruction accessing the IJTAG RSN, which
includes critical instruments; (3) any instruction accessing a
TDR containing confidential data, such as firmware updates
of the device.

The stream cipher initialization procedure is controlled by an
FSM, whose state transition graph is given in Figure 4.6. The

Figure 4.6: Finite State Machine
controlling the initialization pro-
cedure
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FSM is composed of four states (i.e., START_TRNG, SHIFT_1IV,
SC_SETUP, SC_ENCRYPT) and it outputs three control signals
(i.e., enable_reg, start_SC, init_completed). All of them
are initialized to the logic value 0. At reset, the TRNG starts
the initialization, while in the START_TRNG state. TRNGs have
usually an initial set-up time during which the generated
numbers are not random enough. They require some time to
reach sufficient entropy. Therefore, during this period, the
generated value cannot be used. As soon as the TRNG reaches
a good entropy (i.e., TRNG_ready = 1), the IV generation
begins. During the SHIFT_IV state, the shift register (Shift
Reg in Figure 4.5) receives the random bitstream generated
by the TRNG (enable_reg = 1). A counter (cnt in Figure 4.5)
is launched at the same time. When cnt reaches the value N,
the TRNG stops generating the random bitstream. N is equal
to the number of bits of the IV. When the N bits of the random
IV are generated, the TRNG is no longer used and it becomes
available to other applications, if needed. Otherwise, it can
be turned off. Once the counter have reached the value N,
the control unit goes to the SC_SETUP state and starts the
stream cipher initialization (i.e., start_SC = 1). The FSM
remains in this state for a time equal to Tsc_setup, needed
for the stream cipher setup. Once the counter reaches the
value N + Tsc_setup, the initialization process is completed
(i.e., init_completed = 1). The stream cipher encrypts the
data passing through the TDI and TDO pins of the protected
TDRs. The keystreams are generated only in the case in which
the TAP controller is in the Shift-DR state and a protected
TDR is selected by the instruction under execution. In the
other cases, the encryption is not needed, thus the stream
cipher is deactivated and it generates no keystream. During
the SC_ENCRYPT state, the user can write into a protected
TDR. This is done by executing at first the GETIV instruction
to read the IV, in order to encrypt data using the shared key.
After that, the user executes the wanted private instruction,
in order to access the corresponding TDR. The user places
the IC into the Shift-DR state, where the stream cipher
generates the keystream. The user shifts in the encrypted
data, which are decrypted before being sent to the TDR. After
that, the user places the IC into the Exit-DR state, in which
the stream cipher stops the keystream generation. At the end
of the operations, the TDR contains the plaintext data. The
initialization process cannot be interrupted. The control unit
ensures the setup completion before any possible operation
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on the private TDRs can be executed. If a circuit reset occurs,
the control unit is reinitialized and the TRNG generates a
new IV for the stream cipher.

We have chosen the TRIVIUM stream cipher for the im-
plementation of the proposed solution, due to its low area
overhead. The security level that this cipher guarantees is
enough for the target threat model. However, the proposed
solution can be implemented with any kind of stream cipher,
without changing the presented test protocol. This allows
the designer to be able to immediately support any new
stream cipher that would be released in the future. We do not
consider the cost of the TRNG in the experimental results.
If a TRNG is already implemented in the original circuit,
the proposed countermeasure can exploit this TRNG during
the initialization process, implying no cost overhead for the
random number generation. After the generation of the IV,
the TRNG is no longer useful for the proposed solution, and
it can be used by another module of the SoC. On the other
hand, if no TRNG is available in the circuit, implementing
this technique implies an additional area cost. This has been
estimated as 15000 GE, as is the case of the TRNG that we
have taken from the Synopsys DesignWare IP library [88].
To evaluate the area overhead, we have considered a simple
JTAG wrapper implementing a TAP controller, the instruc-
tion register, the bypass register and the IDCODE register.
The JTAG wrapper is modified to include the GETIV instruc-
tion and its associated register. Moreover, some modules
are added in addition to the modified JTAG wrapper: the
TRIVIUM stream cipher, the register containing the random
IV and the control unit. Table 4.4 on the following page
reports the area cost of the proposed solution compared to
the original JTAG wrapper without any security countermea-
sure. The induced area overhead is 500%. Obviously, this
solution is intended for large SoC designs, where such an
overhead on the TAP controller represents a negligible part
of the footprint area. For instance, we have implemented the
proposed solution on a LEON3 SoC, which has an area of
1,902,095 um?, when synthesized on a 65 nm technology
library. Adding the secure JTAG solution increases the total
area of 7794 um?, which corresponds to a 0.41% overhead on
the area cost of the whole IC.

Concerning the test time cost, the proposed solution in-
troduces an overhead that is only due to the initialization

75
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Table 4.4: Area cost of the pro-
posed countermeasure compared
to an unprotected JTAG wrapper

Unprotected JTAG | Secure JTAG
Modules

(GE) (GE)
JTAG Wrapper 625 1147
TRIVIUM / 2048
IV Register / 300
Control Unit / 252
Total 625 3747

process. This process takes 80 clock cycles to shift the ran-
dom IV into the dedicated register, and 1152 clock cycles
for the TRIVIUM initialization. After this setup, the user
must recover the IV executing the GETIV instruction before
starting the encrypted test communication with the device.
This takes 80 clock cycles for shifting the content of the IV
register out. In addition to the time required to prepare the
random number generation, the secure JTAG implies a test
time overhead of 1312 clock cycles at the beginning of the
test procedure. This test time overhead must be compared
with the time taken to run the whole test sequence. For in-
stance, the generated test patterns for the LEON3 SoC run in
11,612,051 clock cycles. Thus, the secure JTAG infrastructure
introduces a 0.01% overhead on the total test time, without
considering the initialization time of the TRNG.

The stream cipher based encryption of the JTAG interface
does not affect the testability of the original circuit. The test
coverage of the whole circuit is not reduced. However, the
logic of the proposed countermeasure must be tested without
the help of scan chains, because that would expose the stream
cipher to scan attacks. We propose to functionally test the
stream cipher using the same test data that are generated for
the target device. Stream ciphers based on NLFSR, such as
the TRIVIUM stream cipher, are easily testable because all
the states of the stream cipher are correlated to the keystream
content. The consequence is that errors generated by possible
faults on the stream cipher are easily propagated to the circuit
output during the encryption. To validate this assumption,
we have evaluated the test coverage on the TRIVIUM stream
cipher using the test sequences of some benchmark ICs. At
scan-in, test patterns are processed by the input keystream
generated by the stream cipher, and the test responses are
processed by the output keystream. We have performed
experiments with the test sequences targeting several circuits
(i.e., pipelined AES-256, triple-DES, pipelined AES-128, RSA
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1024 and LEON3 SoC). In all cases, the fault coverage for
stuck-at faults in the secure JTAG is 100%.

4.3 Stream vs Block based Scan
Encryption

In the previous sections of this chapter, we have shown that
stream based scan encryption solutions are an appealing
choice for providing security to test infrastructures. This is
true at the condition of properly managing the IV generation,
in contrast to what had been previously proposed by other
authors. However, random IV generation does not come
for free. In the presented techniques, we have proposed
the implementation of a TRNG to generate an IV that is
always different. Since TRNGs are often already present
inside integrated circuits, we do not necessarily account this
element as a cost that is exclusively due to the scan encryption
presence. At this point, our research has been guided by the
desire of giving a clear picture to engineers interested in
implementing a scan encryption countermeasure. In this
section, we present multiple implementations of both block
and stream based scan encryption, in order to highlight the
differences in terms of design and implementation costs
between these two techniques.

Block ciphers are stronger primitives than stream ciphers.
Differently from stream ciphers, they can perform the encryp-
tion of many plaintexts using the same secret key, without
penalizing their security. However, according to their mode
of operation, the attacker may be able to identify similarities
between the ciphertext blocks. In fact, when the encryption
is performed with a constant key, a certain block of plain-
text is always transformed into the same ciphertext. Thus,
if two plaintext blocks are equal, this relation is kept in the
corresponding blocks of ciphertext. This mode of operation
is called electronic codebook (ECB) mode, in which data are
divided into blocks, which are then encrypted independently
using the same key. Several other modes of operation exist
for block ciphers in order to prevent the kind of vulnera-
bility offered by the ECB mode. In the cipher block chaining
(CBC) mode, the encryption of a plaintext block depends
on both the key and all the ciphertext blocks that have been
processed up to that point. CBC mode does not allow the
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[82]: Da Silva et al. (2019),
‘Preventing Scan Attacks on
Secure Circuits Through Scan
Chain Encryption’

attacker to identify repeated data blocks in the encrypted
communication, since each encrypted block of data depends
on the previous ciphertext blocks. Differential scan attacks
are ineffective no matter which block cipher mode of oper-
ation is employed in the scan encryption implementation.
However, the ECB mode gives the possibility for an attacker
to identify bits of interest in the encrypted test data. Let us
assume that data shifted out from the device include bits of
the round register of a crypto-processor. Stimulated with two
different plaintexts, the crypto-processor will produce two
different round register values, while the other data stored
in the scan chain will remain the same. After the encryption
of the shifted out scan data in ECB mode, non-changing data
were encrypted in the same way (i.e., resulting in the same
ciphertext). On the other hand, round register data, which
differ due to the application of two different plaintexts, result
in two different encrypted blocks, revealing the bits of inter-
est in the scan chain. Consequently, running two different
plaintexts can allow the attacker to identify the encrypted
segments in the scan chain containing at least one bit of the
round register. In the case where such information could
allow the attacker to carry out a new threat, CBC mode is
a more secure implementation. Block ciphers can also be
configured in order to operate like stream ciphers. Block
ciphers in counter mode (CTR) are used as pseudo-random
generators in order to produce the keystream one block at a
time.

We have implemented the secure JTAG using the block cipher
based scan encryption presented in [82] for performing test
data encryption using lightweight block ciphers. Two block
ciphers are implemented, one for the decryption performed
at scan-in, another for the encryption performed at scan-out.
Each of these two ciphers have two round registers with two
operating modes, load and shift. The load mode is used
to perform the encryption and decryption operations, while
the shift mode is used to acquire the data shifted through
the scan chain. The two operating modes are performed in
parallel in order not to waste test time. In this case, differently
from [82], we have implemented the block ciphers in CBC
mode in order to provide a more secure implementation.
The use of block ciphers implies the padding of test data
to reach the block size. The scan chain is filled segment by
segment, each segment consisting of N bits, i.e., the block
size. When the scan chain length is not a multiple of the
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block size, the solution still works, but each test pattern is
padded with extra bits. Thus, the tester has to complete the
shift operations employing additional clock cycles, resulting
in a test time overhead on each test pattern. Let us consider a
circuit with a number of flip-flops equal to:

F=S-N+R (4.2)

where S is the number of N-bit segments, and R = F
(mod N). The test time overhead Tyyerneqad introduced by
the block based scan encryption over K test patterns is equal
to:

overhead = 2.2N+(N—R)(K+1) ifR>0 .

The authors in [82], propose a solution in order to do not
waste the additional clock cycles used to synchronize the
scan chain encryption scheme with constant segment length
N.These N — R extra clock cycles are actually exploited for
testability improvement without requiring any additional
test time. Indeed, by adding N — R dummy scan flip-flops
to the original scan chain, these extra flip-flops can be used
as observation points to the circuit logic. The observation
points permit to improve the propagation of test responses to
the scan flip-flops, without any impact on the test time. The
goal of the observation point insertion is to reduce the test
sequence length, i.e., to reduce the number K of test patterns
guaranteeing the same fault coverage. We present the results
of this optimization showing that the additional flip-flops,
used as observation points, can compensate the additional
shift operations required by the scan encryption.

We compare block based and stream based scan encryption
solutions using some benchmarks: triple-DES, pipelined
128-bit AES, pipelined 256-bit AES, 1024-bit RSA and the
LEONS3 SoC. In these first experiments, all the circuits are
equipped with a single scan chain. These benchmarks have
been synthesized using a 65 nm technology library. We have
implemented the stream based scan encryption with the
TRIVIUM stream cipher and two block ciphers in CTR mode:
PRESENT and AES. The block based scan encryption has
been implemented with the PRESENT and the SKINNY
block ciphers in CBC mode. Concerning the stream based
scan encryption, we do not consider the cost of the TRNG
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Table 4.5: Area overhead of differ-
ent block and stream based scan
encryption techniques.

Table 4.6: Test time overhead of
different block and stream based
scan encryption techniques.

) Pipelined | Pipelined | RSA
Triple-DES LEON 3
AES-128 | AES-256 1024
AES-128
25.66 % 13.08 % 719 % | 10.27 % 2.53 %
CTR
PRESENT
3.64 % 1.86 % 1.02% | 146 % 0.36 %
CTR
TRIVIUM 2.88 % 1.47 % 081% | 115% 0.28 %
PRESENT
5.82 % 2.97 % 1.63 % | 2.33% 0.57 %
CBC
SKINNY
5.43 % 2.76 % 1.52% | 217 % 0.53 %
CBC
) Pipelined | Pipelined RSA
Triple-DES LEON 3
AES-128 | AES-256 1024
AES-128
0.020 % 0.007 % 0.003 % | 0.0004 % | 0.001 %
CTIR
PRESENT
0.014 % 0.005 % 0.002 % | 0.0002 % | 0.0008 %
CTR
TRIVIUM 0.18 % 0.06 % 0.03% | 0.003 % 0.01 %
PRESENT
0.31% 0.81% 0.006 % 0.33% | 0.004 %
CBC
SKINNY
0.31% 0.81 % 0.006 % 0.33% | 0.004 %
CBC

in the experimental results. In the case where a TRNG is
already implemented in the original circuit, the proposed
countermeasure can exploit this TRNG during the test mode,
implying no overhead for the random number generation.
If a TRNG has to be implemented, the related area cost is
evaluated to be 15000 GE from the Synopsys DesignWare IP
library [88]. This value is equivalent to 31200 ymz on the 65
nm technology library adopted for the experiments.

Area overheads are reported in Table 4.5 for both stream
and block based solutions. It must be noted that the block
based scan encryption requires the implementation of two
ciphers, one for decrypting input test patterns, the other for
encrypting test responses. The stream based scan encryption
requires the implementation of only one cipher to deliver
two keystreams. Furthermore, in our experiments, we have
not considered the key management, because we suppose
to use the key management policy adopted in the target
device. Concerning test time, we consider test sequences
for the detection of stuck-at faults, obtained through the
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ATPG from Synopsys TetraMAX [90]. Table 4.6 on the facing
page reports the test time overhead of the proposed scan
encryption countermeasures. The test time overhead of the
stream based scan encryption is due to the initialization
phase: the TRNG initialization, the shifting of the random
IV and the stream cipher setup (in the case of the TRIVIUM
stream cipher). Without considering the TRNG initialization,
we obtain 138, 95 and 1232 clock cycles of initialization
times for AES-128 CTR, PRESENT-128 CTR, and TRIVIUM
respectively. In any case, they represent a marginal overhead
on the total test time needed to test the whole IC. In block
based solutions, test patterns must be padded in such a way
that their total length is a multiple of the block size, i.e., 64
bits in the case of PRESENT and SKINNY. This induces a
test time overhead for each pattern. This overhead can be
reduced adding test points. The DfT tool from Synopsys
TetraMAX [90] is used for selecting observation points in the
circuit logic and for generating new test patterns. We have
constrained the tool to use only the N — R extra flip-flops for
testability improvement, i.e., we have forced the scan chain
length to be a multiple of 64. Observation points drive extra
logic cones that connect them to the added scan flip-flops,
thus allowing their observability at test time. For instance, the
triple-DES core has 8808 scan flip-flops that can be divided
into 137 segments of 64 bits. This implies the adding of 24
scan flip-flops with the corresponding observation points.
The new test time cost has an overhead of 0.038% with respect
to the unprotected scenario. If we would not have added the
observation points, we would have lost 24 clock cycle on each
test vector, inducing a test time overhead of 0.31%. Therefore,
we can state that using this optimization based on observation
points can decrease the test time overhead up to one order
of magnitude. It is clear that scan ciphers outperform block
ciphers in scan encryption implementations. This is mainly
due to the difficulty for block based solutions to be adapted
to the serial interface offered by all test infrastructures.

The scan encryption enables testing without incurring in
fault coverage reduction, since the original test patterns
are applied as they are. However, the logic that is involved
in the scan encryption circuitry must be tested without
the help of scan chains that would expose the ciphers to
scan attacks. We propose to functionally test the ciphers
using the same test patterns used to test the target device.
The test of block ciphers, such as PRESENT, SKINNY and
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AES, is facilitated by the diffusion properties of the crypto-
algorithms, as described in the literature [91-93] . Stream
ciphers based on NLFSRs, such as the TRIVIUM cipher, are
also easily testable since all the states of the stream cipher are
propagated to the keystream. Therefore, both ciphers easily
propagate the possible errors to the circuit outputs when
an encryption is performed. To validate the assumption,
we have evaluated the test coverage on all the proposed
ciphers (i.e.,, TRIVIUM, PRESENT, SKINNY and AES) by
applying the test sequence of the target devices.In fact, both
test patterns and responses are processed by the scan ciphers
at scan-in and scan-out respectively. We have performed the
experiments using the test sequences that had been generated
for the benchmark circuits (i.e., pipelined AES-256, triple-
DES, pipelined AES-128, RSA 1024 and LEON3 SoC). In
all cases, the fault coverage for stuck-at faults in the scan
encryption circuitry is 100%. In other words, the ciphers are
tested for free, with no additional test patterns required.

When executing the test procedure, the tester has to encrypt
and decrypt test patterns and responses off-chip. The off-
chip decryption is performed for comparing the obtained
responses with the expected ones. However, this computation
is not always necessary and it depends on the choice between
stream and block based scan encryption. In fact, expected
test responses can contain unknown values, called X-values,
describing an unknown binary state. These unknown bits are
ignored during the comparison between the obtained test
responses and the reference ones. Due to the confusion and
diffusion properties of block ciphers, the block based scan
encryption spreads the unknown bits to the entire encrypted
response. For this reason, the off-chip decryption for block
based scan encryption is mandatory in order to perform
the comparison with the plaintext responses. In the case
of stream based scan encryption, the unknown bits remain
at the same position, since the encryption operates bitwise.
Therefore, the unknown bits can directly be ignored in the
encrypted test responses, avoiding the need for the tester
to decrypt every obtained test response from the circuit.
Therefore, the comparison can be performed between the
encrypted responses and the encrypted expected ones.

Integrating scan encryption techniques in an IC design sim-
ply consists in adding ciphers at the input and output of the
scan chains. In the case of stream based scan encryption, it
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also requires some modifications of the JTAG test wrapper,
but no modification on the internal logic of the target device
is needed. Therefore, both solutions can be applied without
modifying the original circuit design. In the case of SoCs,
each IP core has its test interface connected in a daisy-chain
fashion. This way, the internal DfT resources of each core
are serially connected to the TAP interface of the SoC. When
the scan encryption is implemented on one IP core, all the
other IP cores included in the test infrastructure receive test
data in an encrypted form, thus providing protection against
internal threats. The stream cipher encryption operates in
a stream-like fashion, thus no issue is present when imple-
menting stream based scan encryption on a test daisy-chain
connection. Contrarily, in the case of block based scan en-
cryption, test data are padded to a multiple of the block size.
Thus, the extra data used for padding is shifted through the
other IP cores in the test daisy-chain, resulting in possible
security issues. Therefore, the designer has to be aware of the
potential problems when the block based scan encryption
is implemented. A way to avoid this issue is to design scan
chains in order to have length multiple of the block size (e.g.,
resorting to adding observation points), thus modifying the
DT flow of the circuit design.

Summary

Here, we summarize the conclusions that we have drawn
from comparing stream and block based scan encryption
techniques:

Security both stream and block based scan encryption pro-
vide security against external attacks and internal at-
tacks based on test data sniffing. In the case of differen-
tial scan attacks, the proposed stream based solution is
the only existing secure scan encryption solution of this
kind, because it does not allow the two times pad attack.
Both solutions need a secret key integrated inside the
target device, whose management can benefit from the
key management policy that is provided by the target
device.

Testability both techniques guarantee the full testability of
the target device, both at manufacturing and in the field.
Manufacturing test is not impacted by any loss of fault
coverage induced by the adding of the scan encryption
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solution. Stream based scan encryption needs a method
to bypass the random IV generation when in-wafer test
is performed. Test in the field is granted, because the
access to the test infrastructure is left open, even though
only authorized users can successfully communicate
with the test infrastructure.

Area Cost stream based scan encryption implemented with

the TRIVIUM stream cipher has an area cost which is
one half of the area cost induced by the block based
scan encryption implemented with the SKINNY block
cipher (i.e., the lightest block cipher that we have used
in our experiments). Actually, it is possible to observe
that a lightweight block cipher, such as the SKINNY
cipher, has the same area footprint of the TRIVIUM
cipher. However, in the stream based scan encryption,
it is sufficient to implement only one cipher generating
two keystreams, while in the case of block ciphers, it
is mandatory to implement a cipher at scan-in and a
cipher at scan-out. This results in the stream based scan
encryption costing the half of the block based one. On
the other hand, if we account the cost of the TRNG as
a cost induced by the implementation of the stream
based scan encryption, its cost increases drastically and
it becomes up to three times higher than a block based
solution. Therefore, it is clear that stream based scan
encryption is convenient from an area cost perspective
only if a TRNG is already available in the target device
implementation.

Test Time Cost stream based scan encryption has a big ad-

vantage on a timing point of view. This is possible
because the stream cipher encryption benefits from its
natural fit with the serial interface of the standard test
infrastructures. For this reason, the test time penalty
induced by stream based solution is a constant ini-
tialization time that is negligible with respect to the
total test time of the target device. Block based scan
encryption solutions need to adapt the block based
datapath of block ciphers to the serial interface of the
test infrastructure. For this reason, a strong penalty
on the test time is induced by the need of padding
test vectors with extra bits. This overhead can be re-
duced by adding test points, thus modifying the test
infrastructure of the target device.

Multiple Scan Chains when multiple scan chains are
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present, stream based scan encryption can benefit from
its capability of generating multiple keystreams from
the same stream cipher. For this reason, it is possible to
manage up to 32 scan chains implementing only one
TRIVIUM stream cipher. In the case of block based scan
encryption, the management of multiple scan chains
is definitely more complicated. In fact, block ciphers
must be driven by a higher clock frequency than the
rest of the test infrastructure. This leads to a higher
power consumption and a deeper modification of the
IC design.






Scan Encryption Security

Scan encryption provides protection against most of the
known attacks targeting test infrastructures. On one side, the
encryption of test data hinders the feasibility of attacks based
on sniffing the communication channel between the user
and the target device. On the other side, external attacks are
not feasible, because the attacker does not have control over
the data that are sent to the test infrastructure, thus he/she
cannot understand the results produced by the target device
and read out through the test infrastructure. The only capa-
bility that is left to the attacker is the possibility of shifting
data through the scan-in pin, which are internally decrypted,
thus unintelligible to the unauthorized user. Most threat
models that we have presented in Chapter 2 are based on
the assumption that the attacker can insert specific patterns
inside the test infrastructure. However, we have identified
some scenarios where even inserting random bits inside the
test infrastructure could pose a security threat if appropriate
countermeasures are not implemented. This is the case in
some microprocessor based systems, where protected oper-
ational modes are activated and deactivated changing the
value of a single bit in a register. In this case, even inserting
random values inside the internal scan chains could lead
to an attack, thus making the scan encryption countermea-
sure ineffective. In Chapter 3, we have shown several user
authentication mechanisms aiming at hindering the usage
of the test infrastructure by malicious users. We have seen
that these techniques are mostly based on the insertion of a
secret key or password, and on challenge-response protocols.
On our side, we have identified an opportunity offered by
the encryption, with the aim of obtaining a form of user
authentication that goes beyond the traditional stand-alone
techniques. Specifically, it is possible to rely on the device
passively decrypting input data using a secret key. Therefore,
assuming that an attacker has no control over the decryption
process, it is possible to impose format rules that the entered
data must comply with in order to be accepted by the device.
By doing so, the device is able to check, after the decryption,
if the data has been sent by an authorized user owning the
secret key, or by a malicious user.
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In this chapter, we discuss the security strength and weak-
nesses of scan encryption. At first, we are going to provide
a security analysis of the scan encryption techniques that
have been discussed so far. We show the efficiency of this
technique against the known attacks. After that, we present a
new attack model that exploits the capability, offered by scan
encryption, of inserting random bits inside the scan chains.
We discuss the context of the attack and its implementation
on a simple microprocessor. Finally, we present a technique
based on the insertion of parity bits in convenient points of
the test data, in order for the device to check whether the
input data come from an authorized user.

5.1 Security analysis against different
attacks from the state-of-the-art

Scan encryption security revolves around two key points:
data confidentiality and user authentication. The confidentiality
of transmitted data is a key feature of encryption itself. In fact,
when the user and the device exchange encrypted data with
a secret key, no one else is able to understand the information
transmitted. This means that any attack attempt made by
malicious entities within the system, and connected to the
testing infrastructure, cannot be successful. Furthermore,
all attacks based on observation of the internal states of
the circuit are made impossible by the fact that everything
that is shifted out of the test infrastructure is encrypted.
User authentication is obtained thanks to the fact that the
knowledge of the secret key is fundamental to be able to
communicate effectively with the device. If the user does not
know the key that the device uses for decryption, the user will
not be able to predict the form the incoming data will take
once they arrive within the test infrastructure. This makes it
impossible to force a specific state on the internal registers
of the circuit. In fact, for the attacker it is impossible to
predict the decryption result without knowing the secret key.
Moreover, the decryption operation can be seen as a random
permutation of bits. For this reason, the only capability left
to the unauthorized user is to enter random data into the test
infrastructure. Below, we are going to discuss the feasibility
of the attacks mentioned in Chapter 2 on a system where
scan encryption is implemented.
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Differential Scan Attacks require that the attacker can
switch the circuit in test mode at the appropriate time
and extract the contents of the scan chains. Scan en-
cryption does not prevent this practice. Nevertheless,
the content of the scan chains is encrypted during the
extraction, so the attacker is not able to perform the nec-
essary post-processing to obtain the key. In this context,
we have shown in Chapter 4 that stream based scan
encryption requires a careful implementation of the ini-
tialization vector management, otherwise differential
scan attacks remain implementable despite encryption.
As far as test mode only attacks are concerned, these
require the attacker to completely operate in test mode
and insert the crpyto-processor’s inputs through the
scan chains. Scan encryption places a strong barrier in
front of this practice, because the attacker loses control
of the values sent to the crypto-processor and it is not
possible to impose the desired values that are needed
to successfully perform the attack.

Reverse Engineering is performed by stimulating the cir-
cuit logic with appropriate inputs and recording the
respective responses. The use of scan encryption com-
pletely invalidates the feasibility of such an attack.
The encryption and decryption operations that are
performed on the data do not allow to obtain any
correlation between input and output data.

Debug Access to a protected circuit with scan encryption is
only allowed using the correct key. Usually, debugging
is done using support software that automatically gen-
erates low-level commands to communicate with the
TAP controller. The attacker who does not provide the
correct key to the debugging software will not be able
to send valid commands to the circuit. If we imagine a
scenario where encryption only involves the internal
scan chains, such as the Secure JTAG, an attacker may
be able to establish a correct communication with the
debug interface, however the extracted data will be
encrypted, so it will not be possible to extract any useful
information from the internal memory. However, the
lack of an input integrity check may allow the inser-
tion of random data that could, for example, lead to
the insertion of corrupted data in the memory in an
unpredictable way.

IJTAG Access is extremely limited if scan encryption is im-
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plemented. To attack an IJTAG network, the first step
is to reverse engineer the RSN and understand the
organization of the various SIBs in order to access the
different TDRs. In this step, the attacker progressively
inserts bits with value '1” into the network and observes
how the length of the network varies, to identify the
position of the SIBs. By implementing scan encryption,
this reverse engineering process is severely compro-
mised, as it is extremely difficult, if not impossible,
for the attacker to find useful patterns to perform an
attack.

Sniffing the communication channel is a threat that is effec-
tively removed by the presence of scan encryption. In
fact, the encryption itself has the primary purpose of
making the data unintelligible during their transmis-
sion. Any attacker who tries to spy on the transmitted
data will not be able to obtain any information without
knowing the key.

Tampering test data has been considered a danger by mul-
tiple attack models proposed in the literature. For in-
stance, corrupting the test input and the corresponding
responses can lead to falsified test outcome. In this sce-
nario, scan encryption is only partially able to prevent
possible attacks. In fact, it is possible for the attacker to
modify the value of test data without the target device
realizing it. Even if it is not possible to foresee the result
of the applied corruption, it is however possible to
apply a random corruption to test data.

5.2 Security Threat against Scan
Encryption

Scan encryption allows the attacker to enter random data
into the test infrastructure. This is possible because all data
that the attacker tries to insert through the scan-in pin, are
unpredictably corrupted by the input cipher. Unfortunately,
the scan encryption techniques do not offer in any way the
possibility to prevent unauthorized access. We show in the
following how the insertion of random data may pose a
threat. This occurs in cases where, in order to carry out an
attack, it is sufficient to force, through the scan chains, a
limited number of flip-flops to a specific value. If the rest of
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the attack can be carried out in functional mode, the presence
of scan encryption is not enough to prevent the attacker from
entering, after a certain number of attempts, the desired
value inside the device. In this thesis, we hypothesized such
a scenario, using a microprocessor equipped with Trusted
Execution Environment (TEE) as a victim device. In fact, in
this kind of microprocessors, we have a single bit containing
the binary value which determines the activation of the TEE.
In the following, we briefly describe such systems, and we
show a case study that we have conceived to perform some
experiments.

Trusted Execution Environment

Nowadays, many microprocessor architectures are equipped
with Trusted Execution Environments, which permit the
execution of both secure and non-secure applications on the
same microprocessor core. The ARM TrustZone is an example
of TEE [94, 95]. Two separate execution environments are
present in the processor: the secure mode and the normal
mode. The code executed in secure mode is not accessible
by the code executed in normal mode. This way, the same
microprocessor core can securely execute code both in the
secure and non-secure environments in a time-sliced fashion.
The switch between these two modes is performed by setting
a bit in a specific configuration register of the CPU. In the
ARM TrustZone, this bit is called NS-bit (Non-Secure bit),
which is placed in the Secure Configuration Register. When
the NS-bit has value "1, the microprocessor executes code in
the non-secure environment, and vice versa. The NS-bit can
be overwritten exclusively by special kernel routines. Both
peripherals and memory addresses are marked as secure
or non-secure relying on an additional address bit. Only
processes from the secure environment can access secure
resources.

From now on, we refer to a generic microprocessor architec-
ture equipped with TEE, as depicted in Figure 5.1. A Security
Bit (SB) is placed in the Configuration Register (CR). The SB
drives the switching between secure and non-secure environ-
ments. When the processor is in normal mode (i.e., SB=0), the
applications executed from the user-space memory cannot
access the protected addresses, where secured resources are
allocated. The term secured resources can refer to both memory
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Figure 5.1: Functional scheme of
a generic microprocessor system
implementing a Trusted Execu-
tion Environment. The Security
Bit (SB) in the Configuration Reg-
ister (CR) determines if appli-
cations executed from the user-
space memory can access the pro-
tected resources.
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segments and memory mapped peripherals that can only be
accessed by trusted software. When the processor is switched
to secure mode (i.e., SB=1), the applications fetched from
the user-space memory are considered trusted, thus secured
resources can be accessed.

Working Principle

The presence of scan chains inside the CPU makes the SB
controllable by the external world. If the access to the test
infrastructure is not protected, an attacker can stop the ex-
ecution of the processor at any convenient moment, switch
it to test mode and shift in the desired data. This allows the
attacker to load all the processor flip-flops to predetermined
values. This would force the processor to start its execu-
tion from a predetermined internal state, potentially from
a prohibited state (i.e., a processor state that would never
be reachable in functional mode). For instance, by properly
setting the right values in the scan flip-flops, an attacker
could force the SB to ‘1" and the program counter to a prede-
termined address. This, then, would fetch instructions from
the unprotected user-space memory. At this point, it would
be sufficient for the attacker to previously load a malicious
piece of code, which accesses secured resources, into the
memory. The value of the program counter could be set to
an entry point of the malicious code. This way, the malicious
code would be executed in secure mode, making the secured
resources accessible. Hence, the security of the system would
entirely be annihilated.

As already discussed, protecting the test infrastructure with
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scan encryption prevents the attacker from controlling the
scan chain content in a predefined way, but it still makes the
attacker capable of inserting random bits into the test infras-
tructure. We adapted the aforementioned attack to a scenario
where scan encryption is implemented. For the attack to be
successful, the attacker that inserts random values into the
processor scan chain must satisfy three requirements:

1. Setting the SB to '1’;

2. Loading the program counter with the address of an
entry point to the malicious code;

3. Setting the overall state of the microprocessor to a valid
state (i.e., the microprocessor does not crash).

It is worth highlighting that each flip-flop in the scan chain
can be set independently of the others. For this reason, the
probability of setting a specific flip-flop to a fixed value is
equal to % Knowing this, the probability that the condition 1)
is verified is equal to % The probability that the condition 2) is
verified is equal to p X 2~Nrc where Npc is the number of bits
of the program counter and p is the number of entry points
to the malicious code. The probability that the condition
3) is verified cannot be analytically computed, due to its
complexity.

In order to increase the probability associated to the con-
dition 2), we have increased the number of entry points to
the malicious program. This is achieved by writing into the
memory a large number of jump instructions, which redirect
the execution flow to the beginning of the malicious code. At
this point, the probability that the condition 2) is verified in-
creases proportionally with the number of jump instructions
that have been added into the memory. Figure 5.2 shows the
principle of the attack.

Attack Implementation

We have implemented the proposed attack on a
microprocessor-based system that we have designed. The
target system is based on a 32-bit MiniMIPS CPU, which
has been modified in order to integrate a TEE. The CPU is
connected to an external bus. On the same bus, the user-
space unprotected memory is connected, which contains the
code executed in normal mode. Secured peripherals are also
connected to the system bus. Their programming interface is

93



94 5 Scan Encryption Security

Figure 5.2: Functional scheme of
the architecture under attack. The
user-space unprotected memory
is filled with jump instructions
redirecting to the malware in-
structions, which access the pro-
tected resources if SB=1.
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provided by configuration registers that are memory mapped
to the address space of the CPU. If SB=0and the CPU accesses
memory addresses that are mapped to the secured resources,
an interrupt is generated and the execution is halted.

We have synthesized the target architecture on a 65nm
standard-cell library resorting to Synopsys Design Compiler
[89]. Scan chain insertion has automatically been performed
using the same tool. Hence, scan-in (SI), scan-out (5O) and
scan-enable (SE) pins are added to the CPU. The attack has
been simulated resorting to the Mentor ModelSim logic sim-
ulator [96]. After the scan chain insertion, we have obtained
a unique scan chain traversing all the flip-flops of the CPU,
i.e., 1938 flip-flops. The user-space memory has been loaded
with the malicious program extended with jump instructions.
The target address of all the jump instructions is the memory
location of the malware instruction. The malware instruction
is a single load instruction that reads the value stored into an
address, mapped on the secured resources.

Once the setup is done, the attack is performed through the
following procedure:

1. Switching the CPU to test mode (i.e., SE=1);

2. A random bit stream is shifted into the scan chain
through the scan-in pin;

3. When the scan chain is full (i.e., after 1938 clock cycles)
the circuit is switched to functional mode (i.e., SE=0);

4. After five clock cycles (i.e., the time needed to execute
the malicious program) the system bus is probed. If
the CPU is trying to access the secured resource, and
the operation is successful, the attack is done. In any
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Memory Size | Probability | Attack Time @ 10 MHz
4 MB 0.03% 647.7 ms
8 MB 0.05% 388.6 ms
16 MB 0.06% 323.8 ms
32 MB 0.2% 97.2 ms
64 MB 0.4% 48.6 ms

other situation, the attempt has failed. Hence, we go
back to step 1) for another attempt.

In order to evaluate the success probability of the attack, we
have measured how many times the attack was successful
out of the total number of attempts. We have bounded the
number of attempts to 10%, according to the computational
resources at our disposal. The probability of successfully
performing the attack depends on the number of entry points
to the malware instruction that are present in the user-space
memory. In fact, the higher is the number of entry points, the
higher the probability is that the random address inserted
into the program counter starts a code execution that is
redirected to the malware instruction. Table 5.1 shows the
obtained results. The first column reports the size of the
user-space memory that has been filled with entry points
(i.e. jump instructions) to the malware instruction. In the
third column, we have reported the average time needed to
perform the attack on a physical implementation, clocked at
10 MHz. This value is computed as the average number of
attempts needed to succeed with the attack, multiplied by
the time needed to perform one attempt. The time needed by
the attacker to perform one attempt is equal to

T = Tex X (1938 + 5) (5.1

Where Tck is the clock period, 1938 is the number of clock
cycles needed to shift the test vector in the scan chain, and
5 is the required number of clock cycles needed to execute
the malicious program (i.e. the jump instruction plus the
malware instruction). At a clock frequency of 10 MHz the
required time to perform one attempt is 194.3 us.

It can be observed that increasing the memory size filled with

jump instructions leads to a higher probability of success.

If the available memory for the malicious program is at
least 4 MB, the average attack time is never greater than
one second. This means that the present scan attack has

Table 5.1: Complexity of the scan
attack performed on a secure mi-
croprocessor based on the Min-
iMIPS CPU
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a very low complexity. The easiness of implementation of
this attack shows that scan encryption is not sufficient to
protect integrated circuits. In fact, leaving the attacker free to
insert random data into the test infrastructure exposes the
protected device to the present scan attack.

5.3 Scan Encryption with Parity Check

In this section, we present the Scan Encryption with Parity
check (SEP) technique, in order to thwart the scan attack
presented in the previous section. The key hypothesis that
underpins the feasibility of the proposed scan attack, is that
symmetric encryption schemes lack of an authentication
mechanism, thus the recipient always accepts the received
message. With the SEP technique, we propose to enhance
scan encryption adding a lightweight integrity check of the
data shifted into the test infrastructure. The basicidea consists
in encoding, before the encryption, the plaintext test vectors
with a publicly known encoding algorithm. The recipient
device, after decryption, decodes the obtained test vectors
and checks their compliance before applying them to the
circuit logic. In the SEP technique, we have chosen to use a
parity code coupled with block cipher encryption in order to
implement this authentication scheme.

The security of this scheme relies on the following assump-
tion: an unauthorized user is not capable of crafting a ciphertext,
so that, once decrypted, the resulting plaintext is compliant with
the desired format. The paper in [97] reports an attack where
the stream cipher encryption used in the GSM protocol is
broken due to the application of an error correcting code
before encryption. However, we have no knowledge of simi-
lar attacks on block cipher implementations. Therefore, we
believe that the introduction of redundant bits (in our case,
the parity bits) into the test vectors before the encryption
process does not jeopardize the overall security.

In the SEP technique, we resort to parity code computation
on each encryption block [98] . Parity decoding is performed
in conjunction with the scan input decryption mechanism.
An attacker who does not know the encryption key is there-
fore not able to produce valid encrypted test vectors which
successfully pass the parity verification after decryption. As
soon as the decryption module detects a wrong parity bit,
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it rises a flag inside the circuit. When the loading of the
scan chain is finished and the attacker switches the circuit to
functional mode, the presence of the flag makes the circuit
turn into a protection state. The SEP technique guarantees
the following security requirements:

1. Unauthorized users cannot control or observe the in-
ternal state of the circuit. Inheriting the encryption of
the scan chain, we ensure that all data that is extracted
through the test infrastructure is not understandable
by the attacker. Furthermore, after the input decryp-
tion, the correctness of the parity bits is checked. This
prevents the attacker from inserting test vectors with
random content in the scan chain;

2. Exchanged messages through the test infrastructure
must not be understandable by third-parties. This prop-
erty is ensured by the encryption of test data performed
by a standard block cipher. Thus, the semantic security
of the encryption is guaranteed. Notably, even if the
attacker is able to query the internal block cipher and
take multiple plaintext/ciphertext pairs (i.e., known-
plaintext attack), it is not possible to find a correlation
between them, hence the secret key.

General Overview of the SEP Technique

For the sake of clarity, we present the implementation of
the SEP technique referring to a generic application. The
target test infrastructure is based on a single scan chain and
its interface is accessible from the outside. We use a scan
encryption implementation based on block cipher encryp-
tion. Encryption and decryption operations are performed
resorting to the SKINNY block cipher which encrypts 64-bit
blocks of the plaintext into 64-bit blocks of the ciphertext in
36 clock cycles [99] .

Parity encoding is performed by the user before encryption
of the test vectors. Parity decoding is performed by the SEP
architecture after on-chip decryption. The security of the SEP
technique is based on the fact that the unauthorized insertion
of test data inside the test infrastructure can only result in
a random sequence of bits. Hence, the probability for the
attacker to send a random message with correct parity bits
at the end of each encryption block is negligible. In fact, if

[99]: Beierle et al. (2016), ‘The
SKINNY Family of Block Ciphers

and Its Low-Latency Variant
MANTIS



98

5 Scan Encryption Security

L is the length of the scan chain and b is the block length,
the number N of parity bits that must be added to the test
vectors is equal to:

L
V=[] 2
When N parity bits are added, the probability for the attacker
to guess a valid ciphertext (i.e., a ciphertext that shows valid
parity bits after decrytpion) is 27V. Referring to the scan
attack presented in the previous section, the introduction
of the SEP technique leads to a drastically lower attack
probability. In fact, if the SEP technique is implemented, the
attacker must satisfy at the same time i) all the conditions
necessary to achieve the attack, ii) guessing the right value
of the parity bits.

Usually, the length of the scan chains leads to test vectors
made of a high number of encryption blocks. In that case, the
value N may be uselessly high. In the following, we show
how a big value of N leads to a non-negligible overhead on
the test time. For this reason, it can be convenient for the
designer to insert a smaller number of parity bits according to
the desired security level. We have proposed an architecture
of the SEP module that allows the designer to choose the
minimum value of N at design time.

Parity bits are only computed on a subset of equally spaced
blocks. If p is the distance between two blocks with parity
bits, then the SEP module performs parity checking each p
decrypted block. This way, the test time overhead is drastically
reduced.

SEP Architecture

The SEP architecture has been implemented on a test infras-
tructure made of one scan chain. The external interface of
the test infrastructure consists in the scan-in, scan-out and
scan-enable pins. Figure 5.3 shows a high-level view of all the
sub-modules.

The SI input receives the encrypted data. These data are then
decrypted by the DEC (DEcryption Cipher) module. The
DEC module integrates a SKINNY block cipher that decrypts
blocks of 64 bits in parallel. These blocks are processed 36
times by the same round function, hence taking 36 clock cycle
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for a single encryption/decryption operation. Inside the DEC
module there are two 64-bit registers, R1 and R2, as shown
in Figure 5.4. Both registers can be configured in shift or
load mode. When R1 is in shift mode, R2 is in load mode
and vice-versa. This means that when the ciphertext stored
into R2 is processed by the round function, the plaintext
stored into R1 (decrypted previously) is shifted into the scan
chain. At the same time, the next ciphertext block is shifted
in R1. Both registers are connected to a parity checker. The
parity counter (parity_cntr in Figure 5.3) increments with
each decrypted block. At each p block, the Control Unit (CU)
is alerted that the DEC operation must take into account the
parity bit. When a parity block is decrypted, the last cycle
of the shift operation is performed with the scan chain
disabled (in order not to introduce the parity bit in the scan
chain). After that, the CU checks the parity value sent by the
DEC module. If the parity is not correct, the CU sends an
error message to the Attack Detector (AD).

While the scan chain is loaded with a new test vector, the

Figure 5.3: Schematics of the SEP
architecture. SI and SO pins (in
red) carry encrypted test data and
responses. The dashed line repre-
sents the parity signal, which is
asserted by the decryption unit to
the control unit.

Figure 5.4: High-level schematic
of the DEC and ENC units. Parity
signals are not present in the ENC
unit.
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response of the previous test vector is shifted out through the
SO pin. The ENC (ENcryption Cipher) module performs the
encryption of these data using the same principle as in the
DEC module. Finally, encrypted data are shifted out via the
SO pin. When a parity block is decrypted by the DEC module,
the scan chain is put in hold mode for one clock cycle. This
induces the insertion of a bubble inside the response that is
being shifted out through the ENC unit. For this reason, test
responses have the same additional number of bits as test
vectors. For testing purposes, these additional bits can be
treated as X-values.

The key expander module (key_exp in Figure 5.3) takes as input
the secret key, stored into a tamper-proof secure memory,
and generates the round keys needed at each round of the
encryption/decryption operations.

The CU takes as input the SE signal (driven by the tester)
plus the control signals coming from the ciphers and the
counters. The SE acts as the enable signal of the CU and, as
soon as this is reset, the CU guarantees that the scan chain is
disabled and the circuit is turned into functional mode.

The AD receives parity error messages from the CU. When
the scan chain is totally loaded (condition notified by the
scan counter), the AD checks if it has received at least one
error message. In the affirmative case, an attack is reported
to the system. If the SE signal is reset before the scan chain
loading is finished, an attack is reported to the system as well.
This does not allow the attacker to have a feedback from the
system related to a number of parity bits smaller than N.

Security Analysis

When the SEP technique is implemented, the average time
required to send a valid test vector to the target device grows
exponentially, proportionally to 2V. We have implemented
the MiniMIPS CPU with N = 31. In this case, the choice of N
was bounded by the scan chain being relatively short. In fact,
each test vector is made of 31 encryption blocks. If clocked at
10 MHz, the average time needed to guess a valid test vector
in the MiniMIPS CPU is almost 10 months, on average.

If we consider the scan attack on the TEE as our threat
model, the probability of performing the attack is the product
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Memory Size | Probability | Attack Time @ 10 MHz
4MB 1.4x10718 1.4 x 10%s
8MB 2.3%x10713 8.4 x 108s
16MB 2.8x10713 6.9 x 108s
32MB 9.3x 10713 2.1x108s
64MB 1.8 x 10712 1.0 x 108s

between the probability of the brute force attack on the parity
bits and the probability of success of the original scan attack
(without the SEP protection). Table 5.2 shows the scan attack
performance if performed on a device protected with the SEP
technique. If you compare these figures with the ones in Table
5.1 on page 95, it is possible to appreciate the effectiveness of
the SEP technique. The required time to perform the attack
goes from the range of tens of milliseconds (without the SEP
technique) to years (with the SEP technique).

DT Flow with SEP Insertion

When the DUT netlist is available, the scan chain (containing
a number L of flip-flops) is inserted, and the test sequence
(containing a number T of test vectors) is obtained from
the ATPG. After that, the designer can choose the desired
number N of parity bits, according to the required security
level. The expanded test vectors have now L + N bits. Since
the decryption and encryption operations are performed per
block, the length of each encrypted test vector must be a
multiple of the cipher block length b. Now, we assume that
the value L + N is a multiple of b. Hence, L + N = xb. For
L + N = xb + y, the scan chain can be completed by y extra
flip-flops, allowing the designer to insert observation points
and consequently reduce the number of test vectors [100] .

Given the parameters L, b and N, it is possible to make an
automated procedure that creates the SEP-compatible test
vectors. Let 1, be the number of cipher blocks composing
each test vector

_L+N

ny = b

Let p be the distance (in cipher blocks) between two consecu-
tive parity bits on the test vector

|2

(5.3)

Table 5.2: Complexity of the scan
attack on TEE performed on a se-
cure microprocessor based on the
MiniMIPS CPU protected with
the SEP technique

[100]: Da Silva et al. (2017),
‘Experimentations on scan chain
encryption with PRESENT’
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Table 5.3: Benchmarks Character-
istics

Table 5.4: SEP Insertion Overhead

SC Length | Area [mm?] | Test Time [cc]

AES-256 12736 0.672 4 559 845
3DES 8 808 0.187 687 101
AES-128 7873 0.368 1944 877
RSA-1024 16 459 0.463 39 405 239
LEON3 107 518 3.956 11 612 051
MiniMIPS 1938 0.07 752 331

N | Area Overhead [%] | Test Time Overhead [%]

AES-256 | 33 0.67 0.27
3DES 34 2.40 0.43
AES-128 34 1.22 0.55
RSA-1024 | 33 0.97 0.23
LEON3 30 0.24 0.03
MiniMIPS | 31 13.56 1.63

Since the | | operation is performed, the actual number of
inserted parity bits will be N;;s > N. Notably

np —1

As mentioned earlier, N;;; test responses blocks present an
extra X-value bit.

Area and Test Time Overhead

The SEP module has been modeled at the RT-level and
wrapped on different benchmark ICs. The ICs have been
synthesized and the scan chain has been inserted using the
Synopsys Design Compiler suite [89]. The synthesis has been
performed on a 65 nm standard-cell library. Table 5.3 shows
basic characteristics of the chosen ICs in terms of scan chain
(SC) length (expressed in number of flip-flops), area and test
time (when traditional test is employed).

The first four circuits in the table are cryptographic processors.
LEONS is a complex SoC for aerospace applications. The
MiniMIPS CPU is the same that has been used to implement
the scan attack in Chapter 5. The reported test time has
been obtained generating test sequences with the Synopsys
TetraMax ATPG [90].
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Table 5.4 on the preceding page shows the area and test time
overhead due to the insertion of the SEP countermeasure.
The chosen value of N is also reported. The SEP parameters
np, p and N;;,s have been computed resorting to the model
reported previously. The number of added parity bits has
been established setting the expected attack time, in the case
of brute force attack, to about 1 year. The area footprint of
the SEP module is almost constant. It slightly grows with
the length of the scan chain. This is due to the fact that two
counters (i.e., the scan counter and the parity counter in Figure
5.3) have one more flip-flop when the length of the scan chain
doubles. However, related to the footprint of complex SoCs,
the overhead is kept very low. The MiniMIPS CPU, in Table
5.4 on the facing page, shows the highest overhead. This must
not mislead the interpretation of the results. In fact, we have
evaluated the implementation cost of the SEP technique on
the MiniMIPS CPU for the sake of exhaustiveness, this being
the employed benchmark for the evaluation of the scan attack
on the TEE. However, this is a very simple and small CPU
that it is very unlikely implemented as a stand-alone CPU.
On the other hand, its integration into a far more complex
SoC is a more realistic scenario.

Without any security feature, the test time (in clock cycles) is
equal to
trest =LX(T+1)+T (5.6)

Adding the SEP technique, the actual test time becomes
t,ss = (L+ Nins) X (T+1)+T +4b (5.7)

The term 4b comes from the presence of the block cipher
registers at the scan-in and scan-out of the device. For this
reason, loading the first test vector inside the scan chain
and downloading the last response will take L + N5 + 2b
clock cycles in both cases. Table 5.4 on the preceding page
shows that the test time overhead is kept very small in all
the benchmarks. The only exception is the MiniMIPS CPU,
because of its short scan chain. In fact, in this case one parity
bit in each encryption block has been added. These results
allow us to remark the importance of carefully optimizing
the number of inserted parity bits. As the example of the
scan attack on the MiniMIPS CPU has shown, a real attack
is way more complex than a brute force attack. Hence, the
number of parity bits can be kept lower and the test time
overhead can be further reduced.
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Discussion

It is worth considering that complex SoCs are the ones that
usually have the highest demands in terms of security because
of the heterogeneity of their functionality. For this reason,
microprocessors with trusted execution environments are
widely employed. We have shown that this kind of devices is
vulnerable to scan attacks, even if scan encryption is imple-
mented. Thus, we have proposed the SEP module to enhance
the overall security at the cost of negligible implementation
overhead. The advantages in terms of security are relevant
due to the twofold nature of the countermeasure:

1. Unauthorized users cannot read out the content of
the test infrastructure nor insert illegal test data. The
encryption offered by the ENC unit, right upstream the
scan-out pin, grants confidentiality of all the content
that is extracted by the scan chain. Moreover, random
ciphertexts cannot be inserted inside the test infrastruc-
ture. The parity bit check assures that sent data have
the right format (i.e., the inclusion of a predetermined
number of parity bits) and malicious replications of this
format cannot be performed because of the encryption
function that breaks, as far as we have experimented,
every relationship between the ciphertext and the plain-
text contents;

2. The authorized user is able to set a completely en-
crypted communication with the target device, making
sniffing attempts useless by both untrusted devices and
malicious users. The deployment of a standard block ci-
pher assures that the encryption of the communication
has reasonable security against known cryptanalysis.

One limit of the SEP technique is due to the parallel interface
of the encryption primitive, which necessarily performs a
per-block encryption scheme. If exchanged test data are too
short (i.e., n, < N), it is impossible to embed the required
number of parity bits. For example, when dealing with
a test infrastructure equipped with a TAP controller, the
test sequences used to load the instructions into the TAP
instruction register are very short. These scenarios would
require to set the SEP module so that it is effective only
when test data are loaded inside test data registers that are
sufficiently long.



Conclusions

The need for a security-aware testing is a pressing matter
for all modern electronic systems. Invasive test infrastruc-
tures are mandatory for granting the successful production
of defect-free integrated circuits. In most applications, it is
not possible to imagine a system without a TAP access any-
more. In this thesis, we show that digital security is a major
problem affecting all test infrastructures. For this reason, the
DT flow should take security into consideration since early
IC development steps. In this thesis, we have shown that
many existing countermeasures for test infrastructures are
based on the add-on of cryptographic modules for the user
authentication. Most of these authentication mechanisms
are based on complex cryptographic hardware, representing
an unbearable cost outside of certain specific niche markets.
In the same way that DfT has experienced a process of au-
tomation in recent decades, which has allowed its massive
use in all market segments, we want to emphasize that the
need for a secure DfT should also know such a spread. Al-
though there are now numerous proposals in the literature
in this direction, the scenario is still too fragmented, and
composed of techniques that offer partial protection and/or
whose security is difficult to prove. We identified the scan
encryption as a very promising technique for easily making
test infrastructures secure. Scan encryption is based on the
add-on of cryptographic hardware whose cost can be kept
marginal according to the designer need. Its deployment is
extremely simple and easy to automatize. The DfT designer
establish the secret keys that are used by the device, and
the whole test flow is encrypted accordingly. This hinders
both unauthorized access from malicious users and infor-
mation leakage in the external and internal communication
channels.

In this thesis, we have thoroughly analyzed scan encryption
techniques and tried to solve the problems that have been
identified. At first, we have inspected the state-of-the-art
techniques, identifying two categories: stream based and block
based scan encryption. While block based scan encryption had
already been the subject of a careful analysis and extensive
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experimental activity, stream based scan encryption had
been proposed in numerous works, but never subjected
to a thorough security analysis. For this reason, we have
proposed new scan encryption implementations based on
stream ciphers, fixing the security problems identified in the
state-of-the-art. The proposed stream based scan encryption
is based on the random generation of a different IV at the
beginning of each communication between the user and
the device. Although this implies higher implementation
costs, the stream based and block based approaches have
been brought to the same security level, and they can both be
safely considered for the deployment of a secure DfT. We have
extensively compared the new stream based scan encryption
and the already existent block based scan encryption. We
have highlighted pros and cons of the two solutions, in order
to provide a guideline for the designers that are interested in
employing scan encryption for securing their DfT.

Scan encryption, both in its stream based and block based im-
plementation, is able to thwart most of the attacks involving
test infrastructures. In fact, both controllability and observ-
ability on the internal resources is drastically hindered. The
attacker has no control over the decryption operation that is
performed at the scan-in port. Thus, his/her only capability
is inserting random data inside the test infrastructure. On the
other side, data encryption guarantees the confidentiality of
test data outside the boundaries of the target device. Thus, all
attempts of sniffing and illegal access to the scan-out pin do
not lead to any threat. Despite the extensive security offered
by scan encryption, its lack of a data integrity check mecha-
nism makes it potentially vulnerable to unwanted accesses.
In this thesis, we have explored possible scenarios in which a
malicious user can exploit the capability of inserting random
data in the test infrastructure to perform an attack. We have
identified a category of attacks, in which the attacker ex-
ploits the internal scan chains in order to force a very limited
number of flip-flops to a specific value. In this case, the scan
encryption countermeasure is not enough to avoid a scenario.
We have proposed an example attack targeting the Trusted
Execution Environment of a microprocessor. If the attacker
appropriately sets the microprocessor memory;, it is possi-
ble to trigger the execution of malicious code through the
insertion of random data in the scan chains. For this reason,
we have proposed an enhancement of the scan encryption
including a very lightweight integrity check mechanism. In



this technique, we propose to include a format rule to the
plaintext test data that the target device can easily check after
decryption. If these rules are respected, the received data are
valid, otherwise, they are considered malicious data sent by
an attacker. The security of this technique lies on the fact that
an attacker cannot produce a valid message that would result
in the correct format after decryption, without knowing the
scan encryption key. We implemented this technique adding
parity bits in the test data. At the cost of a little overhead in
test time and area, scan encryption acquires a security prop-
erty that makes it robust against any kind of unauthorized
access.

We believe that scan encryption is a very promising technique
for protecting test infrastructures. Its characteristics make it
suitable for providing a security-aware DfT even in low-cost
devices. Its flexibility and the variety of implementations,
are characteristics that allow to adapt the countermeasure to
different design needs. We also think that the development
of a security-aware test standard is unavoidable in the future,
and scan encryption could be a promising starting point for
reasoning about this.

6.1 Future Perspectives

If we extrapolate the scan encryption from its application as
a security-aware DfT technique, we obtain a security method
that can be applied to any communication protocol involving
a serial interface on the IC. Due to its low implementation
cost, symmetric encryption is a valid option for providing a
good security level in domains where the implementation
costs are a critical issue, such as small devices for the Internet
of Things (IoT).

We have found an alternative application of the scan en-
cryption technique in the domain of intermittent computing
systems. These are embedded systems whose power supply
is not stable over time, usually because it relies on energy
harvesting techniques. For this reason, the system must be
ready to be interrupted at any time, and it must be able to
recover its computation state at the power-on incurring in
minimal loss of information [101-104]. Numerous techniques
proposed in the literature aim at providing an efficient mech-
anism to store the computation state of the CPU when the

6.1 Future Perspectives
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[109]: Hager et al. (2017), ‘A
scan-chain based state retention
methodology for IoT processors
operating on intermittent energy’

[112]: Valea et al. (2018), “SI ECCS:
SECure context saving for IoT
devices’

[113]: Valea et al. (2019), ‘Provid-
ing Confidentiality and Integrity
in Ultra Low Power IoI Devices’

power supply is going to be interrupted soon, and recover
it as soon as the power supply is available again [105-108].
Some of these techniques rely on the scan chains in order
to quickly access the CPU’s flip-flops and download their
content on a target non-volatile memory (NVM) [109] . In
this scenario, it is necessary to properly secure the content
of the scan chains while it is stored into the target NVM. In
fact, target NVMs in this kind of applications are usually
based on ferromagnetic RAMs (FeRAM), which can be easily
tampered with relying on low-cost physical attacks [110, 111].
We think that the stream based scan encryption is a suitable
proposal for protecting against this kind of procedures. A
preliminary work has been done in this direction. [112, 113]
When the system is going to be turned down, the content
of the scan chain is shifted out and encrypted by a stream
cipher. Furthermore, a MAC is appended to the end of the
message as an integrity mechanisms. This way, the NVM
stores encrypted data that cannot be tampered with by the
attackers. When the system is ready to recover its computa-
tion state, the content of the NVM is decrpyted and shifted
back into the scan chains. Moreover, the MAC signature is
checked in order to prove the integrity of the information.
The key generation can be managed using a PUF.

In this thesis, we have proposed to enhance the scan encryp-
tion technique adding a parity coding to the plaintext before
its encryption (i.e., the SEP technique). After decryption,
the value of the parity bits is checked and, if their value is
incorrect, this indicates a corruption of the encrypted data
and/or an unauthorized user sending a message that has
not been encrypted with the correct key. Apparently, the SEP
technique can be seen as an integrity technique addressing
the same threat model as integrity techniques based on hash
functions and message authentication codes. In cryptography,
we also reckon the existence of authenticated encryption (AE)
techniques, which provide both data encryption and their
signature based on a MAC code. Further research could be
pointed out to provide an extensive comparison between the
SEP technique and AE techniques based on state-of-the-art
cryptographic functions. Parity bits coding has been cho-
sen for the implementation of the SEP technique because
of its easiness of use and its popularity in the design of
integrated digital systems. However, it would be interesting
to explore other possibilities that could even lead to a smaller
cost of implementation. For instance, adding constant bits



to a specific value inside the test vectors could be equally
effective, as far as the number of added bits is big enough
in order to counteract brute force attacks. More generally
speaking, we believe that further research should be done in
order to better evaluate the security of symmetric encryption
schemes against the presence of known patterns inside the
plaintext.

6.1 Future Perspectives
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