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Introduction

This thesis has two principal components, both concerned with the study of paths and cycles

in different contexts. The first part focuses on Hamiltonian paths and cycles of a given type

in a tournament. Here, type refers to the orientation of successive edges. Our main objective

will be to compute the number of paths and cycles of a given type in a tournament and more

generally to compute the number of copies of a given digraph in a tournament. To achieve

this end, we will exploit combinatorial techniques, involving decomposition of paths and cy-

cles into blocks. The second part of this work derives from a quadratic difference equation on

a graph with a parameter which one may interpret as curvature. On a cyclic graph (cycle),

this yields numerical sequences with rich algebraic interconnections. Complex sequences may

be interpreted as walks in the plane which, in particular cases, exploit the sides of a regular

n-sided polygon. We will see how unexpected phenomena appears when n � 12.

A path P = v1v2...vs is a graph where V (P ) = {v1, v2, ..., vs} and E(P ) = {vivi+1, 1 
i  s � 1}. Similarly, a cycle C = v1v2...vs is a graph where V (C) = {v1, v2, ..., vs} and

E(C) = {vivi+1, 1  i  s � 1} [ {v1vs}. An oriented path P (resp. cycle C) is a digraph

whose underlying graph is a path (resp. cycle). A directed path P (resp. cycle C) is an ori-

ented path (resp. cycle) whose arcs all have the same direction. An antidirected path P (resp.

cycle C) is an oriented path (resp. cycle) whose arcs have successively opposite directions. A

tournament is a complete oriented graph. Given a tournament T , an oriented Hamiltonian

path P (resp. cycle C) in T is an oriented path (resp. cycle) in T passing through all the

vertices of T .

The existence and the enumeration of Hamiltonian paths and cycles in tournaments has for

many decades intrigued combinatorists.

The first and oldest result in this area concerns the existence of directed paths. Proved

by Redei [12] in 1934, it affirms that every tournament contains a directed Hamiltonian

path. Later on, the question concerning the existence of any oriented Hamiltonian path

in tournaments arose: First of all, Grunbaüm [7] proved in 1969 that every tournament

5



INTRODUCTION

(with the exception of 3 cases, which are the directed 3-cycle, the regular tournament on

5 vertices, and the Paley tournament on 7 vertices) contains an antidirected Hamiltonian

path. Then after several attempts and partial results, the problem was completely settled

by Havet and Thomassé [8] in 1993, who proved that every tournament contains all types of

oriented Hamiltonian paths, with the exception of the same 3 cases discovered by Grunbaüm.

Regarding oriented cycles, we first have Camion’s famous result about the existence of directed

cycles: A tournament T is strong if and only if it contains a directed Hamiltonian cycle,

where a strong tournament is one where we can find a directed path between any two of its

vertices. Then, Havet [9] proved in 1999 that every tournament contains all types of oriented

Hamiltonian cycles, except possibly the Hamiltonian circuit (directed cycle) that can’t be

found in a non strong tournament.

By considering a certain type of oriented Hamiltonian path (resp. cycle), that is, by fixing

a certain orientation of their arcs, one wants to know how many copies of such paths (resp.

cycles) can be found in a tournament. Up until the present day, no exact values of these

numbers have been found. However, it is possible to find bounds for directed Hamiltonian

paths (resp. cycles). The oldest result in this direction was given more than seventy years ago

by Szele [14], who gave lower and upper bounds for the maximum number P (n) of directed

Hamiltonian paths in a tournament on n vertices:

n!

2n�1
 P (n)  c1

n!

2
3
4n

,

where c1 is a positive constant independent of n. It is easy to verify that the minimum number

of directed Hamiltonian paths in a tournament is 1, and this value corresponds to the transitive

tournament, denoted by TTn, which is a tournament of order n for which we can label the

vertices in such a way that all its arcs become forward. Using Camion’s result, we notice that

a transitive tournament is not strong, since it doesn’t contain a directed Hamiltonian cycle.

However, in the case of strong tournaments, the minimum number of directed Hamiltonian

paths increases exponentially with n. For instance, consider the nearly-transitive tournament,

which is obtained from a transitive tournament TTn by reversing the orientation of the arc

joining the extremities of the unique directed Hamiltonian path of TTn. This tournament is

strong and the number of its directed Hamiltonian paths is 2n�2+1. In 1972, Moon [10] gave

upper and lower bounds for the minimum number p(n) of directed Hamiltonian paths in a

strong tournament of order n:

↵n�1  p(n) 

8
><
>:

3 · �n�3 for n ⌘ 0 mod 3

�n�1 for n ⌘ 1 mod 3

9 · �n�5 for n ⌘ 2 mod 3
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INTRODUCTION

where ↵ = 6
1
4 ⇡ 1.565 and � = 5

1
3 ⇡ 1.710. In 2006, after finding an interesting characteri-

zation of strong tournaments, Busch [3] improved this result by proving that the value of the

minimum number p(n) for strong tournaments on n vertices is exactly the upper bound given

by Moon.

For the minimum number of directed Hamiltonian cycles in tournaments, it’s obviously

zero, since any tournament that is not strong does not contain a directed Hamiltonian cycle

(by Camion’s theorem). Considering strong tournaments, Thomassen [15] gave in 1980 an

extension of the previously mentioned result of Moon, and using this extension, he was able to

prove that every 2-connected tournament of order n contains at least ↵
n
32

�1 distinct directed

Hamiltonian cycles. In a proof analogous to the one given in the above mentioned result of

Szele, one can prove that the maximum number C(n) of directed Hamiltonian cycles in a

tournament of order n is

C(n) � (n� 1)!

2n
.

However, in 1968, in his classic book on tournaments [11], Moon discussed the question of

exhibiting tournaments having a big number of Hamiltonian cycles, and he observed that it

seems difficult to give explicit tournaments with such a large number of directed Hamiltonian

cycles.

In respect of oriented paths that are not directed paths, Rosenfeld [13] proved in 1974 that

in any tournament, the number of antidirected Hamiltonian paths starting with a forward arc

is equal to the number of antidirected Hamiltonian paths starting with a backward arc, which

can be stated as: the number of antidirected Hamiltonian paths in any tournament T is equal

to the number of antidirected Hamiltonian paths in the complement of T , denoted by T ,

where the complement of T is the tournament obtained from T by reversing the orientation

of all its arcs.

In Chapter 2, we generalize Rosenfeld’s result to any type of oriented Hamiltonian path and

cycle. That is, we prove that a tournament T and its complement T contain the same number

of oriented Hamiltonian paths (resp. cycles) of any given type.

To be more specific, let ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s; ↵i · ↵i+1 < 0, 8 i = 1, . . . , s � 1. An

oriented path P is of type P (↵1,↵2, . . . ,↵s) if P is formed by s consecutive blocks (maximal

directed subpaths) I1, I2, . . . , Is such that length(Ii) =| Ii |=| ↵i |, with ↵i > 0 if the arcs

of the block of length | ↵i | are forward, and ↵i < 0 if the arcs of the block are backward.

This is similar for cycles: let ↵ = (↵1, . . . ,↵s) 2 Z
s; ↵i · ↵i+1 < 0, 8 i = 1, . . . , s � 1, and

↵s · ↵1 < 0. An oriented cycle C is of type C(↵1, . . . ,↵s) if C is formed by s consecutive

blocks I1, I2, . . . Is, with |Ii |=|↵i |, and ↵i > 0 if the arcs of the block are forward, and ↵i < 0

otherwise.

In a tournament T , PT (↵1, . . . ,↵s) (resp. CT (↵1, . . . ,↵s)) is defined to be the set of ori-
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INTRODUCTION

ented paths (resp. cycles) in T of type P (↵1, . . . ,↵s) (resp. C(↵1, . . . ,↵s)) and fT (↵1, . . . ,↵s)

(resp. gT (↵1, . . . ,↵s)) is the cardinal of this set, that is, the number of oriented paths (resp.

cycles) of type P (↵1, . . . ,↵s) (resp. C(↵1, . . . ,↵s)) in T .

For ↵ = (↵1, . . . ,↵s) in Z
s, we denote by �↵ the tuple (�↵1, . . . ,�↵s) and by ↵ the tuple

(↵s,↵s�1 . . . ,↵1). A tuple ↵ is symmetric if ↵ = �↵. An oriented path P (resp. cycle C) is

symmetric if there exists an ↵-symmetric tuple, such that P (resp. C) is of type P (↵) (resp.

C(↵)). Otherwise, the path P (resp. cycle C) is non-symmetric.

We first prove the following:

Theorem 2.1.2. Let ↵ = (↵1, . . . ,↵s) 2 Z
s; ↵i.↵i+1 < 0, ↵1 � 0, and let T be a tournament

of order n, where n =
sP

i=1
| ↵i | +1. Then:

fT (↵) = fT (�↵).

The above theorem means that a tournament and its complement contains the same number of

oriented Hamiltonian paths of any given type, generalizing Rosenfeld’s aforementioned result.

For example, consider the following tournament on 4 vertices:

a b

c d

There are 3 paths of type P (2,�1) which are acbd, cdba, and dabc and also 3 paths of type

P (�2, 1) which are adcb, cadb, and dcab.

We then establish the same result for cycles: First, let T be a tournament on n vertices. An

oriented Hamiltonian cycle C in T is said to be generated by an oriented path P = x1x2 . . . xn

if C is the union of P and the arc joining x1 and xn in T . We write C = CP . Now remark that

given an oriented Hamiltonian path P = x1x2...xn of a certain type P (↵) in a tournament

T , then the type of the cycle CP in T can take 2 different values, C(�) or C(�0), whether

(x1, xn) or (xn, x1) is an arc in T . On the other hand, given an oriented cycle of some type

C(�), it can be generated by many paths of the same type P (↵), which we can enumerate

using the notion of "period". Distinguishing between the different cases of symmetric and

non-symmetric paths and cycles, this enables the determination of a relation between fT (↵),

gT (�) and gT (�
0), then, using Theorem 2.1.2, we obtain the following:

8



INTRODUCTION

Theorem 2.3.1. Let ↵ = (↵1, . . . ,↵s) 2 Z
s; ↵i.↵i+1 < 0, ↵1.↵s < 0, ↵1 � 0, and let T be a

tournament of order n, where n =
sP

i=1
| ↵i |. Then:

gT (↵) = gT (�↵).

By noticing that any digraph of maximal degree ∆  2 is a union of oriented cycles and paths,

we are able to further generalize Rosenfeld’s result, using Theorems 2.1.2 and 2.3.1:

Theorem 2.4.4. Let T be a tournament and let H be a digraph with ∆(G(H))  2. Then

the number of copies of H in T and its complement T is the same.

In [13], Rosenfeld proved that for any tournament T of order n, where T 6= TTn, the number

of its antidirected Hamiltonian paths is less than the number of antidirected Hamiltonian

paths in TTn.

In Chapter 3, we consider the enumeration of oriented Hamiltonian paths in transitive tour-

naments. First, we construct a combinatorial function giving us the exact number of oriented

Hamiltonian paths of any given type in a transitive tournament:

Let K = {(↵1,↵2, . . . ,↵s) 2 Z
s, ↵i.↵i+1 < 0, 8 1  i  s� 1, s 2 N

⇤}.

Let F be the following mapping:

F K �! N

(↵1,↵2, . . . ,↵s) �! F(↵1,↵2, . . . ,↵s),

defined by the recurrence relation:

F(↵1,↵2, . . . ,↵s) = F(↵1 ⇤ 1,↵2, . . . ,↵s) + F(↵1,↵2 ⇤ 1, . . . ,↵s)

+ · · ·+ F(↵1,↵2, . . . ,↵s ⇤ 1)

where ↵i ⇤ 1 = ↵i � 1 if ↵i > 0 and ↵i ⇤ 1 = ↵i + 1 if ↵i < 0, and satisfying:

1. 8 t 2 N
⇤, F(0,↵2, . . . ,↵t) = F(↵2, . . . ,↵t),

2. 8 t0 2 N
⇤, F(↵1,↵2, . . . ,↵t0 , 0) = F(↵1,↵2, . . . ,↵t0),

3. 8 r 2 N
⇤, F(↵1, . . . ,↵r, 0,↵r+2, . . . ,↵s) = F(↵1, . . . ,↵r + ↵r+2, . . . ,↵s),

4. 8 ↵ 2 Z
⇤, F(↵) = 1.

We call F the path-function. We prove the following:

9
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Theorem 3.1.1. Let TTn be a transitive tournament of order n, and ↵ = (↵1, . . . ,↵s) 2 K,

such that
sX

i=1

|↵i| = n� 1. Then:

fTTn(↵) =

8
>><
>>:

F(↵) if ↵ is non symmetric,

F(↵)

2
if ↵ is symmetric.

For example, consider the transitive tournament TT4:

a b c d

In this tournament, there are 3 paths of type P (2,�1) which are abdc, acdb and bcda, and if

we compute F(2,�1) we also get 3. (Note that the tuple (2,�1) is non symmetric).

Subsequently, we study some properties of F . Using "Python", we build a program to

compute all possible values of F(a1, . . . , as), 1  s  p, for a given p =
Ps

i=1 ai. Analysing the

results for 3  p  18, we are led to state a conjecture about paths in transitive tournaments,

and to discuss an interesting property about antidirected Hamiltonian paths in TTn:

Conjecture 3.3.1. Let TTn be a transitive tournament on n vertices.

Then 8 ↵ = (↵1,↵2, . . . ,↵s) 2 K, and
Ps

i=1 ↵i = n� 1, if n is even we have:

fTTn(1,�1, 1, . . . ,�1, 1) � fTTn(↵1,↵2, . . . ,↵s),

where (1,�1, 1, . . . ,�1, 1) has n� 1 components, while if n is odd, we have:

fTTn(1,�2, 1,�1, 1, . . . ,�1, 1) � fTTn(↵1,↵2, . . . ,↵s),

where the number of components of (1,�2, 1, . . . , 1) is n� 2.

If the conjecture is true, it means that in transitive tournaments of even order, the number of

antidirected Hamiltonian paths starting with a forward arc is the maximum of the numbers

of oriented Hamiltonian paths starting with a forward block, of any type.

The second part of the thesis has a distinctly geometric flavour. In contrast to the first part,

we will see that Eulerian digraphs provide a model for some of our constructions. Further-

more, algebraic properties of polynomials play an essential role in our proofs.

10



INTRODUCTION

Consider a finite graph G = (V,E), where V is the set of its vertices, and E the set of its

edges, and a real valued function � : V �! R, and consider the following quadratic equation

8 x 2 V, �(∆'(x))2 = (r')2(x)), (1)

where ' : V �! C is a complex valued function.

The term ∆'(x) is the Laplacian of ' at vertex x:

∆'(x) =
1

d(x)

X

y⇠x

('(y)� '(x)),

where d(x) is the degree of x, and

(r')2(x) =
1

d(x)

X

y⇠x

('(y)� '(x))2

is the symmetric square of the derivative.

The geometric spectrum of G is defined to be the set of all functions � : V �! [�1, 1],

�(x) < 1 if d(x) � 3, such that there exists a non constant function ' : V �! C, satisfying

equation (1). Consider the Euclidean space R
N , (N 2 N, N � 2). A framework in R

N is a

graph G = (V,E) realized as a subset of this space, where edges vw 2 E are straight lines

segments joining the vertices v, w 2 V . The framework G = (V,E) in R
N is invariant if there

exists a function � lying in its geometric spectrum, such that this framework satisfies equation

(1) with ' being the restriction to its vertices of an orthogonal projection in C, independently

of any similarity transformation in R
n of this framework.

The quadratic equation (1) has been first introduced in [1]. For frameworks arising from

the 1-skeleton of a regular simplex in the Euclidean 3-space, Eastwood and Penrose [5] show

that equation (1) is satisfied. This property is generalized to other (invariant) frameworks

by Baird [1]: by methods of linear algebra, he addresses the problem of when a given graph

can be realized as an invariant framework in an Euclidean space of dimension greater than

or equal to three; some of these frameworks are called the "configured stars", where a star

consists of an internal vertex v0 adjacent to n external vertices v1, v2, . . . , vn, with no other

connections. Moreover, equation (1) arises from its smooth counterpart for a hypersurface in

Euclidean space [2]:

Any regular polytope in Euclidean space provides an example of an invariant framework,

with � varying from polytope to polytope. For example, for the cube � = 0 and for the

tetrahedron � = 3/4. When one considers an orthogonal projection of a smooth hypersurface

in the Euclidean space, remarkably we find the same phenomena, namely that a smooth
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version of the equation is satisfied independently of the projection, where � = �1/H2 with

H being the mean curvature.

So-called body-bar frameworks have been studied in respect of their rigidity properties.

For such frameworks, the bars (edges) can rotate freely at each vertex and one is interested to

know if they can be deformed without changing the lengths of the bars, see for example [4].

Frameworks in the context of equation (1), in particular satisfying the invariance property,

have only been considered recently, see [1], however, the examples of the regular polytopes

can be deduced from [5], and the case of the cube goes back to the Theorem of Axonometry

of Gauss [6].

In Chapter 4 of this thesis, we are interested in studying solutions to equation (1) on cyclic

graphs (cycles), with � constant.

So let C = (V,E) be a cyclic graph on N vertices, and set V = {0, 1, 2, . . . , N � 1}, then

8 j 2 Z/NZ, the vertex j has j � 1 and j + 1 as neighbors. For � a real constant, equation

(1) takes the form:

�

2

�
2'(j)�'(j�1)�'(j+1)

�2
=
�
'(j)�'(j�1)

�2
+
�
'(j)�'(j+1)

�2 8j 2 Z/NZ (2)

where j ± 1 are calculated modulo N .

A quadratic cyclic sequence (QCS) of order N is a function ' : Z/NZ ! C solution to

equation (2).

If we define the increment uj = '(j + 1)� '(j), then the above equation reads

�

2
(uj � uj�1)

2 � uj
2 � uj�1

2 = 0. (3)

which affirms the vanishing of a linear combination of the elementary symmetric quadratic

polynomials uj
2 + uj�1

2 and ujuj�1 in the two variables uj and uj�1.

Using the Cauchy-Schwartz inequality, it follows from equation (3) that for a given j 2
{0, 1, . . . , N � 1}, if uj , uj�1 are both real, we have

uj
2 + uj�1

2 =
�

2
(uj � uj�1)

2  �(uj
2 + uj�1

2) .

In particular, for there to exist a non-constant real solution to (2), then necessarily � � 1.

Equally, if � < 1, then for any three successive terms of the QCS, at least one must be complex

with non zero imaginary part. We will also see that for the real case, � can be at most equal

2, and that this value corresponds to the case when uj or uj�1 equal zero; otherwise, � < 2.

12



INTRODUCTION

First, we examine real QCS, showing how they arise from polynomials with positive integer

coefficients. An example of an integer QCS of order 10 is given by

(0, 9, 3, 12, 6, 10, 4, 8, 2, 6)

It satisfies (2) with � = 26/25. Moreover, it may not be unique, for example the following is

another sequence of order 10 with � = 26/25:

(0, 9, 3, 7, 1, 10, 4, 8, 2, 6) .

We will see how a given polynomial can give rise to different sequences coming from legitimate

orderings (given in the following theorem) of a corresponding set of increments:

Theorem 4.1.3. (Construction of real quadratic cyclic sequences): Let q(x) = an�2x
n�2 +

an�3x
n�3 + · · · + a1x + a0 (n � 2) be any polynomial with integer coefficients all strictly

positive. Multiply by x+ 1 to obtain the new polynomial

p(x) := bn�1x
n�1 + bn�2x

n�2 + · · ·+ b1x+ b0

= an�2x
n�1 + (an�2 + an�3)x

n�2 + · · ·+ (a1 + a0)x+ a0 .

Let y be any real root of p(x) (necessarily negative). Then a quadratic cyclic sequence

(x0, x1, x2, . . . , xN�1)

of order N = 2
P

k ak is constructed by arbitrarily prescribing x0 and then requiring increments

uj = xj+1 � xj of successive terms to be taken from the set {1, y, y2, . . . , yn�1} in such a way

that each increment yk occurs precisely bk times and any two adjacent increments have powers

that differ by ±1, including the powers corresponding to the elements u0 and uN�1. This is

always possible and up to these constraints, the ordering is arbitrary. The constant � in (2)

is given by � = 2(1 + y2)/(1� y)2 < 2.

Conversely, up to addition of a constant, cyclic permutations and order reversal, a multiple

of any real cyclic sequence with � 6= 2 arises in this way from such a polynomial p(x), well-

defined up to replacement of p(x) by ep(x) := xdeg pp(1/x).

The cyclic sequences with � = 2 are characterized as those made up of connected segments

of order � 2 on which the sequence is constant. The cyclic sequences with � = 1 are, up to

normalization, equivalent to (0, 1, 0, 1, . . . , 0, 1); they arise by taking the root y = �1 of p(x).

The two real sequences given in the examples above arise from different legitimate orderings.

Furthermore, we will see how one can actually capture the legitimate orderings by Eulerian

walks in a corresponding digraph, (see Chapter 4).

13



INTRODUCTION

It is possible to combine real QCSs with common � to obtain new ones, and we show how

such concatenation of sequences is reflected in the defining polynomials:

Proposition 4.3.4. Let p1(x) and p2(x) be polynomials of degree m � 1 and n � 1 (resp.)

having the form given in Theorem 4.1.3 which define real QCS with � 6= 2, of orders M and

N (resp.) deriving from a common fundamental increment y. Then there exists a real QCS

of order M +N with defining polynomial p(x) = p1(x) + xkp2(x), where 0  k  m, obtained

by concatenation of two real QCS with defining polynomials p1(x) and p2(x) resp..

Suppose that the function � is not necessarily constant. Consider a cyclic framework in the

Euclidean space R
2. We will show that it is invariant in R

2 if and only if it is realized in the

plane as a polygon with sides of equal length. With the requirement of � to be constant, the

absolute angle ↵ 2 [0,⇡] between each two consecutive edges is constant, and we have

� =
2 cos↵

1 + cos↵
.

So now, one can picture a complex QCS (which is a solution ' : Z/NZ ! C to equation

(2) with � 2 [�1, 1]) as a closed polygon in the plane with edges the straight line segments

['(j),'(j + 1)], each having the same length, and with constant absolute angle between the

edges. We will be interested in such polygons and how they will be defined by polynomial

equations.

Complex QCS which arise from polynomials will be called algebraic. In this case, a le-

gitimate polynomial p(x) (one defining a complex QCS) determines a closed polygonal walk

in the plane with exterior angle either +✓ or �✓ for some fixed angle ✓ (the turning angle),

where ✓ = ⇡ � ↵, ↵ being the constant absolute angle between every two consecutive edges

of the polygon.

As we will see, complex algebraic QCS exist with turning angle not a rational multiple of

2⇡, (Chapter 4, Fig.4.2). In the case when ✓ = 2⇡m/n, m < n, m and n relatively prime,

necessarily the n’th cyclotomic polynomial Φn(x) must divide p(x):

Theorem 4.2.1. Let ' be a complex QCS with increment y = e2m⇡i/n (m,n relatively prime,

m < n).

(i) When n = 2k (k � 2) is even, ' is determined by a polynomial of the form

p(x) = (x+ 1)Φn(x)q(x)

where q(x) is a polynomial of degree  n� 2� degΦn(x). When n = 2, p(x) = a(x+ 1) for

some positive integer a.

14
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(ii) When n is odd, ' is determined by a polynomial of the form

p(x) = Φn(x)q(x)

where q(x) is a polynomial of degree  n� 1� degΦn(x). In the case when n is prime, then

p(x) = a(xn�1 + xn�2 + · · ·+ x+ 1)

for some positive integer a.

Conversely, polynomials of the above type (with q(x) to be made precise on a case by case

basis) yield a corresponding QCS.

Then, we discuss the conditions on the coefficients of q(x) of the above theorem.

An example of a complex QCS with � = 2/3 and n = 6 is given by

⇣
0, 1, 12 �

p
3
2 i, 0, 1, 12 +

p
3
2 i
⌘

with corresponding walk illustrated below, where we label the vertices in sequential order. In

0

3

1

4

2

5

this example, we see that the complex QCS has indeed a corresponding polygonal walk, with

6 edges of equal length 1, and whose constant absolute angle is ↵ = ⇡
3 . The polygonal walk

is defined by (1, y2, y, 1, y, y2) with y = e
2i⇡
3 , and the turning angle ✓ is ✓ = ⇡ � ↵ = 2⇡

3 . The

corresponding legitimate polynomial is p(x) = 2(1 + x+ x2); y is its root.

The problem of which polynomials give rise to complex QCS turns out to be challenging when

n becomes large and bears on the following geometric question:

One wishes to construct a polygonal path starting at the origin, with directed edges taken

from the edges of a closed regular polygon with exterior angle 2⇡/n. One may use edges as

often as one likes, but at each step, the turning angle must be either +2⇡/n or �2⇡/n (one

turns left or right through an angle 2⇡/n). In the case when the polygonal path is closed

and n is even, must each edge occur with its parallel counterpart oriented in the opposite

direction?

15
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For example, the following illustration is of a polygonal path with directed edges taken

from the edges of a closed regular polygon with exterior angle 2⇡/6:

0

In this path, the edge 1 is used twice, so is its parallel counterpart oriented in the opposite

direction, �1. Also, the edge ei⇡/3 is used once, so is the edge ei4⇡/3, and the edge ei2⇡/3

twice, just like ei5⇡/3.

Another issue is whether, to complete a circuit, all edges of the polygon are required (now

for n even or odd). We prove the following:

Proposition 4.2.10. Any complex algebraic QCS with turning angle 2⇡m/n (m,n relatively

prime with m < n) either with n  11, or n = 2r (r > 0), or n = 2p (p an odd prime), must

use all increments {y0, y1, . . . , yn�1} (y = e2⇡mi/n). Furthermore if n is even with the same

hypotheses, then for each occurrence of the increment yk, there is also an occurrence of the

increment y
n
2
+k = �yk. In particular, the corresponding polygonal walk in the plane contains

each edge with its oppositely orientated counterpart.

We will see that the above properties fail to hold when n � 12, for n 6= 2r (r > 0) and

n 6= 2p (p an odd prime), (see Chapter 4, Fig.4.1): We build a computer program using

"Rust" to find paths of smallest lengths which violate these properties.

Finally, in the last section of Chapter 4, we study the unicity of the edges used to construct

a polygonal walk that is not necessarily closed, with turning angle 2⇡/n, of given length and

end point:

We study what we refer to as 2-step walks in the plane with constant turning angle; We

consider walks as discussed above with constant turning angle ✓, and look at the corresponding

walk that occurs by taking two steps at a time. In the case when ✓ = ⇡/2, this yields the

standard planar walk, whereby one moves on the integer lattice in the plane and at each

step one chooses one of the four neighbouring points. Moreover, unicity of the edges used to

construct the polygonal walk occurs (Theorem 4.5.4).

In the case when ✓ = ⇡/3, then the corresponding 2-step walk takes place on the triangular

lattice, but is no longer a Markovian process, that is a subsequent steps depends on the

previous step and we find restrictions on the points that can be attained. Furthermore,

unicity of the edges used to attain a certain point for a given path length, no longer holds

(Example 4.5.8).
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Chapter 1

Basic definitions, historical overview

and preliminary results

This thesis has two principal components, both concerned with the study of paths and cycles

in different contexts. The first part focuses on Hamiltonian paths and cycles of a given type

in a tournament. Here, type refers to the orientation of successive edges. Our main objective

will be to compute their number in a tournament, for any given type. The second part of this

work derives from a geometric equation on a graph. On a cyclic graph (cycle), solutions to

this equation are numerical sequences, we call quadratic cyclic sequences, with rich algebraic

interconnections that we will study.

In this introductory chapter, we recall in §1.1 elementary definitions related to graphs

and digraphs. In §1.2, we give a historical overview about Hamiltonian paths and cycles in

tournaments, giving a background to the work that will be done in Chapters 2 and 3, and

introduce in §1.3 basic definitions concerning the types of oriented paths and cycles, needed

for our work. In §1.4, we talk about the quadratic difference equation defined on a graph,

frameworks in R
N , and the geometric spectrum of a graph, with some related results, and

introduce in §1.5 the materials needed to study the quadratic cyclic sequences in Chapter 4.

1.1 Generalities in Graph Theory

1.1.1 Graphs

Definition 1.1.1. (Graphs)

A graph G is a pair (V (G), E(G)) where V (G) is a finite, non empty set of elements, called ver-

tices of G, and E(G) is a set of pairs of vertices, called edges of G, i.e. E(G) ✓ {{x, y}, x, y 2
V (G)}.
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1.1. GENERALITIES IN GRAPH THEORY

Dots and lines are used to represent vertices and edges respectively, and instead of writing a

set {x, y} for an edge, we can simply write xy.

If xy 2 E(G) then x and y are said to be adjacent, and we write y ⇠ x. The edge xy is

said to be incident to x (and to y).

The order of G is v(G) = |V (G)|, and e(G) = |E(G)| is called the size of G.

Definition 1.1.2. (Complete / empty graphs)

A graph G is said to be complete if xy 2 E(G), 8x, y 2 V (G).

A complete graph of order n is denoted by Kn.

A graph G is said to be empty if xy /2 E(G), 8x, y 2 V (G).

Definition 1.1.3. (Subraphs)

Let G be a graph.

A graph H is said to be a subgraph of G if V (H) ✓ V (G) and E(H) ✓ E(G).

A graph H is said to be an induced subgraph of G if V (H) ✓ V (G) and 8x, y 2 V (H),

xy 2 E(H) , xy 2 E(G).

A graph H is said to be a spanning subgraph of G if V (H) = V (G) and E(H) ✓ E(G).

If S ✓ V (G), then the subgraph of G induced by S is denoted by < S >.

If S ✓ V (G), then G � S is the subgraph of G obtained from G by removing S and all the

edges incident to the vertices in S.

Definition 1.1.4. (Paths and cycles)

A path P = v1v2...vs of a graph G is a subgraph of G such that V (P ) = {v1, v2, ..., vs} ✓ V (G)

and E(P ) = {vivi+1, 1  i  s� 1}.

A cycle C = v1v2...vs of a graph G is a subgraph of G such that V (C) = {v1, v2, ..., vs} ✓ V (G)

and E(C) = {vivi+1, 1  i  s� 1} [ {v1vs}.

A Hamiltonian path P of a graph G is a spanning path of G, and a Hamiltonian cycle C of

a graph G is a spanning cycle of G.

The length of a path P , denoted by l(P ), is equal to l(P ) = e(P ) = v(P ) � 1, and the

length of a cycle C, denoted by l(C), is equal to l(C) = e(C) = v(C).

If P = v1v2...vs is a path, then v1 and vs are called the extremities of P and P is called

a v1vs-path. For u, v 2 V (P ), P[u,v] denotes the subpath of P with extremities u and v.
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1.1. GENERALITIES IN GRAPH THEORY

Definition 1.1.5. (Connected graphs)

A graph G is said to be connected if 8x, y 2 V (G), there exists an xy-path. Otherwise G is

said to be disconnected, and a connected component of G is a maximal connected subgraph

of G.

Definition 1.1.6. (Degrees)

Given a graph G and v 2 V (G), the neighborhood of v in G, denoted by N(v) is the set of

all x 2 V (G) such that xv 2 E(G).

The degree of v in G denoted by d(v) is equal to |N(v)|, and max
v2V (G)

d(v) and min
v2V (G)

d(v)

are denoted by ∆(G) and �(G) respectively.

We recall Euler’s famous theorem:

Theorem 1.1.7. (Euler) Let G be a graph, then

X

v2V (G)

d(v) = 2e(G).

Definition 1.1.8. (Regular graphs)

A graph G is said to be k-regular if d(v) = k, 8v 2 V (G).

A complete graph G of order n is (n� 1)-regular.

Definition 1.1.9. (Isomorphic graphs)

Two graphs G and G0 are said to be isomorphic if there exists a bijection f : V (G) �! V (G0)

such that xy 2 E(G) , f(x)f(y) 2 E(G0).

Such a bijection is called an isomorphism, and we write G ⇠ G0.

1.1.2 Digraphs and tournaments

Definition 1.1.10. (Digraphs)

A digraph D is a couple (V (D), E(D)) where V (D) is a non empty set of elements, called

vertices of D, and E(D) is a set of couples of vertices in D, i.e. E(D) ✓ V ⇥ V .

The elements of E(D) are called arcs. Let e = (a, b) 2 E(D) then e is an oriented arc

from a to b where a is called the tail of e and b is the head of e and we say that a dominates

b or b is dominated by a.
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1.1. GENERALITIES IN GRAPH THEORY

Definition 1.1.11. (Underlying graphs)

Let D be a digraph. The underlying graph of a digraph, denoted by G(D) is the graph

obtained from D by removing the orientations of its arcs.

Remarks:

1. All the definitions given about graphs in the previous section are similarly defined for

digraphs through their underlying graph.

2. Unless stated, all the digraphs we will work with are simple digraphs, that is no multiple

arcs (two or more arcs with same head and tail), no directed cycles of order 2 (see 1.1.20),

and no loops (arc whose head and tail are the same) are allowed.

Definition 1.1.12. (Tournaments)

A digraph D is said to be a tournament if and only if G(D) is complete.

Clearly, an induced subdigraph of a tournament is a tournament.

Definition 1.1.13. (Complement of a tournament)

The complement of a tournament T is a tournament obtained from T by reversing all the

orientations of its arcs. It is denoted by T .

Definition 1.1.14. (In-degrees and out-degrees)

Let D be a digraph and let v 2 V (D). We define the following:

The set N+(v) = {u 2 V (D)/(v, u) 2 E(D)} is the out-neighborhood of v in D.

The set N�(v) = {u 2 V (D)/(u, v) 2 E(D)} is the in-neighborhood of v in D.

The out-degree of v in D is d+(v) where d+(v) = |N+(v)|.

The in-degree of v in D is d�(v) where d�(v) = |N�(v)|.

∆
+(D) = max

v2V (D)
d+(v),

�+(D) = min
v2V (D)

d+(v),

∆
�(D) = max

v2V (D)
d�(v),

��(D) = min
v2V (D)

d�(v).

Note that 8v 2 D, d+D(v) + d�D(v) = dG(D)(v), where G(D) is the underlying graph of D. We

have the following property:

Proposition 1.1.15. Let D be a digraph, then

X

v2V (D)

d+(v) = e(D) =
X

v2V (D)

d�(v).
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1.1. GENERALITIES IN GRAPH THEORY

Definition 1.1.16. (Balanced digraph)

A digraph D is said to be a balanced digraph if 8 x 2 V (D), d+(x) = d�(x).

Definition 1.1.17. (Sources and sinks)

Let D be a digraph. A vertex x 2 V (D) is said to be a source if d�(x) = 0, and x is said to

be a sink if d+(x) = 0

Definition 1.1.18. (Regular tournaments)

A tournament T of odd order n is said to be regular if d+(v) = (n� 1)/2, 8v 2 T .

This obviously implies that d�(v) = (n� 1)/2, 8v 2 T , since d+(v) + d�(v) = d(v) = n� 1,

as T is a tournament.

Definition 1.1.19. (Oriented paths)

Let D be a digraph.

An oriented path P = v1v2...vs of D is a subdigraph of D in which V (P ) = {v1, v2, ..., vs} ✓
V (D) and G(P ) is a path in G(D).

A directed path P = v1v2...vs of D is an oriented path of D in which V (P ) = {v1, v2, ..., vs} ✓
V (D) and E(P ) = {(vi, vi+1), 1  i  s�1}; that is, all the arcs of P have the same direction.

If P = v1v2...vs is a directed path of D, it is called a v1vs-directed path, v1 and vs are called

the origin and destination of P respectively.

An antidirected path P = v1v2...vs of D is an oriented path of D in which V (P ) = {v1, v2, ..., vs} ✓
V (D) and 8 1  i  s� 2, the directions of the arcs h{vi, vi+1}i and h{vi+1, vi+2}i are oppo-

site.

An oriented Hamiltonian path P of a digraph D is an oriented path of D such that V (P ) =

V (D).

Definition 1.1.20. (Oriented cycles)

Let D be a digraph.

An oriented cycle C = v1v2...vs of D is a subdigraph of D in which V (C) = {v1, v2, ..., vs} ✓
V (D) and G(C) is a cycle in G(D).

A directed cycle C = v1v2...vs of D is an oriented cycle of D in which V (C) = {v1, v2, ..., vs} ✓
V (D) and E(C) = {(vi, vi+1), 1  i  s � 1}

S
{(vs, v1)}; that is, all the arcs of C have the

same direction.

An antidirected cycle C = v1v2...vs of D is an oriented cycle of D in which V (C) =

{v1, v2, ..., vs} ✓ V (D) and 8 1  i  s � 2, the directions of the arcs h{vi, vi+1}i and

h{vi+1, vi+2}i are opposite, and so are the directions of h{vs�1, vs}i and h{vs, v1}i.
An oriented Hamiltonian cycle C of a digraph D is an oriented cycle of D such that V (C) =

V (D).
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1.2. OVERVIEW: HAMILTONIAN PATHS AND CYCLES IN TOURNAMENTS

Definition 1.1.21. (Strongly connected digraphs)

Let D be a digraph and let x, y 2 V (D).

The vertex y is reachable from x in D if there exists an xy-directed path in D.

A digraph D is called strongly connected (or simply strong) if 8x, y 2 V (D) with x 6= y, y is

reachable from x.

Let D be a strong digraph and let U be a set of vertices of D. If D � U is not strong, or is

trivial, then U is called a separator of D.

For k � 1, D is k-strongly connected, if it has order at least k+1 and no set of k� 1 vertices

is a separator of D.

The strong connectivity of D, denoted by K(D) is the maximal integer k such that D is

k-strongly connected.

Definition 1.1.22. (Isomorphic digraphs)

Two digraphs D and D0 are said to be isomorphic if there exists a bijection f : V (D) �! V (D0)

such that (x, y) 2 E(D) , (f(x), f(y)) 2 E(D0).

We write D ⇠ D0.

Definition 1.1.23. (Transitive and nearly-transitive tournaments)

A tournament T of order n � 3 is said to be transitive, denoted by TTn, if its vertices can

be enumerated in such a way that V (T ) = {v1, v2, ..., vn} and E(T ) = {(vi, vj); i < j}. The

vertex v1 is then the unique source, and vn is the unique sink.

A tournament T of order n � 3 is said to be nearly-transitive, if it’s obtained from a transi-

tive tournament TTn by reversing the orientation of the arc (v1, vn), where v1 and vn are the

source and sink of TTn respectively.

Remark: After giving an enumeration for the vertices of a tournament T of order n, say

V (T ) = {v1, v2, ..., vn}, an arc e = (vi, vj) will be referred to as a forward arc if i < j, and as

a a backward arc otherwise.

1.2 Overview: Hamiltonian paths and cycles in tournaments

Since the middle of the last century, Hamiltonian paths and cycles have intrigued combina-

torists, including the existence, the parity and the enumeration of such paths and cycles in

tournaments.

The first result in this area concerns the existence of directed Hamiltonian paths. It was given

by Redei in 1934:
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1.2. OVERVIEW: HAMILTONIAN PATHS AND CYCLES IN TOURNAMENTS

Theorem 1.2.1. ([27]) Every tournament contains a directed Hamiltonian path.

Proof. Let T be a tournament of order n and let P = v1v2...vs be a longest directed path in T ,

we need to prove that s = n. In fact, if s < n then 9 v 2 V (T ) such that v /2 V (P ). Since T is

a tournament, then either (v1, v) 2 E(T ) or (v, v1) 2 E(T ). If (v, v1) 2 E(T ) then vv1v2...vs

is a path longer than P , contradiction. So (v1, v) 2 E(T ). Again, if (v, v2) 2 E(T ) then

v1vv2...vs is a path longer than P , contradiction. So (v2, v) 2 E(T ). By simple induction, we

may show that (vs, v) 2 E(T ) but in this case v1v2...vsv is a path longer than P , contradiction.

So s = n.

Later on, the question concerning the existence of any oriented Hamiltonian path in tourna-

ments arose. This problem was partially treated by many researchers, and the first result was

given by Grünbaum [17] in 1969, concerning the existence of antidirected Hamiltonian paths

in tournaments, which are oriented paths whose arcs have successively opposite directions: he

proved that with the exception of 3 cases, which are the directed 3-cycle, the regular tour-

nament on 5 vertices, and the Paley tournament on 7 vertices, every tournament contains an

antidirected Hamiltonian path. Few years later, after giving an easier proof of Grünbaum’s

result, Rosenfeld [28] conjectured that there exists some integer N , N > 7, such that every

tournament on n vertices, n > N , contains all types of oriented Hamiltonian paths. In 1986,

Thomason [32] proved this fact for some N large enough, and for a tournament of order

(n + 1). Many graph theorists kept trying to prove Rosenfeld’s conjecture, even under some

conditions, until the problem was completely settled by Havet and Thomassé in 1993:

Theorem 1.2.2. ([18]) Every tournament contains all types of oriented Hamiltonian paths,

with the exception of the directed 3-cycle, the regular tournament on 5 vertices, and the Paley

tournament on 7 vertices.

However, the proof is complicated and relies on computer analysis to enumerate the enormous

number of different cases that arise. No combinatorial proof has yet been found. In 2004,

El Sahili [11] proved Rosenfeld’s conjecture for any integer n, and for a tournament of order

2n� 2, using the notion of maximal forests in a tournament.

Concerning the existence of directed Hamiltonian cycles, we have Camion’s famous theo-

rem for strong tournaments [7]:

Theorem 1.2.3. A tournament T is strong if and only if it contains a directed Hamiltonian

cycle.

Proof. Let T be a strong tournament of order n. Since T is strongly connected then it contains

a directed cycle. In fact let e = (x, y) 2 E(T ) then 9 a yx�directed path P as T is strong, so

P [ (x, y) is a directed cycle in T . Let C = v1v2...vs be a longest directed cycle in T , we need
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to show that s = n. Suppose s < n then 9 v 2 V (T ) such that v /2 V (C). If 9 i, j such that

(vi, v) and (v, vj) 2 E(T ), then 9 1  k  s such that (vk, v) and (v, vk+1) 2 E(T ) if k 6= s,

or (vs, v) and (v, v1) 2 E(T ) if k = s, but then v1...vkvvk+1...vn or v2...vsvv1 is a directed

cycle longer than C, contradiction. So (v, vi) 2 E(T ) 81  i  s or (vi, v) 2 E(T ) 81  i  s.

Suppose (v, vi) 2 E(T ) 81  i  s, but T is strongly connected, then 9 a viv�directed path

81  i  s, so let P be a directed viv-path, i 6= s, and let vk 2 P \ C such that l(P[vk,v])

is minimum . Now set C 0 = v1...vkP[vk,v]vk+1...vn. Since P[vk,v] \ C = {vk} then C 0 is a

directed cycle, with l(C 0) > l(C), contradiction. Suppose (vi, v) 2 E(T ) 81  i  s, we reach

a contradiction too using the same arguments as previously done. So s = n.

On the other hand, it’s easy to remark that every tournament T that contains a directed

Hamiltonian cycle is strong, since this cycle induces an xy-directed path, 8x, y 2 V (T ).

Then, as for paths, the existence of any oriented cycle in tournaments was treated. In 1971,

Grünbaum [17] conjectured that every tournament T of even order n = 2k, n � 10, contains

an antidirected Hamiltonian cycle, and in 1974, Rosenfeld [29] proved this conjecture for every

order 2k � 28. Finally, In 1999, Havet proved the following:

Theorem 1.2.4. ([19]) Every tournament contains all types of oriented Hamiltonian cycles,

except possibly the Hamiltonian circuit (directed cycle) in a reducible tournament, which is a

tournament that is not strong.

Other than the existence of oriented Hamiltonian paths and cycles, researchers were interested

in guessing their parity in any tournament. The parity of paths was first studied by Redei:

Theorem 1.2.5. ([27]) The number of directed Hamiltonian paths in any tournament is

always odd.

However the proof of this simple statement was surprisingly hard and original.

Later on, on 1973, Forcade [15] proved that except for the symmetric paths (defined later

in this chapter), the parity of the number of oriented Hamiltonian paths of a given type in a

tournament depends only on the orientation of the arcs of these paths, and on the number of

the vertices of the tournament.

As a result, to study the parity of some types of non-symmetric Hamiltonian paths in a

tournament of order n, one may study this parity in the transitive tournament TTn, which is

a tournament of order n whose all arcs are forward with respect to some enumeration of its

vertices. This property of transitive tournaments makes counting oriented Hamiltonian paths

easier, and due to Forcade’s theorem, many graph theorists investigated in the parity and

the enumeration of some types of non-symmetric oriented Hamiltonian paths, in transitive

tournaments, and the last result was given by El Sahili and A. Aad [13] who proved that in

any tournament, the number of antisymmetric Hamiltonian paths is always odd.
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Concerning the parity of oriented cycles, Forcade [15] similarly proved that the parity

of the number of oriented Hamiltonian cycles of a given type in a tournament depends on

the orientations of the arcs of these cycles and on the number of Hamiltonian circuits in the

tournament. Although some researchers gave an algorithm for computing the parity of some

kinds of oriented Hamiltonian cycles in any digraph, as did Bjorklund et. al. [5], no explicit

formula about this parity has been established yet. However, a partial result about this parity

was given recently by El Sahili and A. Aad [12], who proved that the number of Hamiltonian

circuits and the number of antidirected Hamiltonian paths starting with a forward arc, in a

tournament of odd order n, n � 5, have the same parity.

Now we consider enumerating Hamiltonian paths and cycles in tournaments: Consider a cer-

tain type of oriented paths (resp. cycles) on n vertices, that is, by fixing a certain orientation

of their arcs. How many copies of such paths (resp. cycles) can be found in a tournament of

order n? Till now, no exact value of these numbers was given.

However, one can bound the number of the directed Hamiltonian paths and cycles in tour-

naments, and work on characterizing the tournaments having the minimum or the maximum

number of such paths and cycles.

The first result through this investigation was given by Szele [30], who gave lower and

upper bounds for the maximum number P (n) of directed Hamiltonian paths in a tournament

on n vertices, and which was considered to be an introduction to the probabilistic methods

in graph theory:
n!

2n�1
 P (n)  c1

n!

2
3
4n

,

where c1 is a positive constant independent of n. Then, the upper bound of P (n) was improved

by Alon [1]:

P (n)  c2.n
3
2

n!

2n�1
.

Concerning tournaments having the maximum number of directed Hamiltonian paths, an

interesting characterisation was given recently by El Sahili and Maria A.A.:

Theorem 1.2.6. ([14]) The tournaments having the maximum number of directed Hamilto-

nian paths must be strong.

For the minimum number of directed Hamiltonian paths in a tournament, we can easily prove

the following:

Theorem 1.2.7. Let T be a tournament of order n. The number of Hamiltonian paths in T

is equal to 1 if and only if T is transitive.

Proof. For the sufficient condition, suppose that T is transitive. Let P = v1v2...vn be a

directed Hamiltonian path of T . Suppose that T contains another directed Hamiltonian path
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P 0 = vi1vi2 ...vin . As T is transitive, (vik�1
, vik) 2 E(T ) ) ik�1 < ik, thus 1 6 i1 < i2 < ... <

in�1 < in 6 n and therefore ij = j 81  j  n, so P 0 = v1v2...vn and we conclude that the

number of directed Hamiltonian paths in T is equal to 1.

For the necessary condition, suppose that the number of directed Hamiltonian paths in T is

equal to 1 and let P = v1v2...vn be this Hamiltonian path. We need to prove that E(T ) =

{(vi, vj), i < j}. Suppose to the contrary that T contains a backward arc. If (vn, v1) 2 E(T )

then v2v3...vnv1 is another directed Hamiltonian path, contradiction. So (v1, vn) 2 E(T ). Let

vj be the tail of a backward arc with maximal index. If (vj , v1) 2 E(T ) then j < n and

(vj�1, vj+1) 2 E(T ) due to the maximality of j, so vjv1...vj�1vj+1...vn is another directed

Hamiltonian path, contradiction. Thus (v1, vj) 2 E(T ). Let (vj , vi) 2 E(T ) be a backward

arc such that i is minimal. We have i > 1 because (v1, vj) 2 E(T ), then (vi�1, vj) 2 E(T )

due to the minimality of i. But in this case, if j < n then v1...vi�1vjvi...vj�1vj+1...vn is

another directed Hamiltonian path, and if j = n then v1...vi�1vnvi...vn�1 is another directed

Hamiltonian path, which leads to a contradiction in both cases. Thus E(T ) = {(vi, vj), i < j}

and T is transitive.

So, a transitive tournament contains the minimum number of directed Hamiltonian paths.

Using Theorem 1.2.3, we can easily notice that a transitive tournament is not strong, since

it doesn’t contain a directed Hamiltonian cycle. However, we can observe that in the case

of strong tournaments, the minimum number of directed Hamiltonian paths increases ex-

ponentially with the order of the tournament. For example, consider the nearly-transitive

tournament, which is obtained from a transitive tournament TTn by reversing the orienta-

tion of the arc joining the extremities of the unique directed Hamiltonian path of TTn. This

tournament is strong (by Theorem 1.2.3) for it contains a directed Hamiltonian cycle formed

by the directed Hamiltonian path of TTn union the new arc. We have the following property:

Theorem 1.2.8. Let T be a nearly-transitive tournament of order n. Then the number hn of

directed Hamiltonian paths in T is

hn = 2n�2 + 1.

Proof. Let’s order the vertices of T , V (T ) = {v1, v2, ..., vn}, such that vn dominates v1, but all

other arcs forward with respect to this enumeration. First consider the directed Hamiltonian

paths of T that don’t use the arc (vn, v1). There is only one path that satisfies this condition,

that is P = v1v2...vn as if we skip some of these vertices while constructing such a path, we

can’t go back and reach them again since we can’t use the backward arc (vn, v1). Now let’s

consider the directed Hamiltonian paths of T that use the arc (vn, v1). We can choose any

set of vertices (that could be empty) from the set {v2, v3, ..., vn�1}, whose cardinal is equal to

n�2, say vi1 , vi2 , ..., vis , i1  i2  ...  is and start the path with a path P 0 = vi1vi2 ...vis then
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use the backward arc (vn, v1) to reach all the remaining vertices by respecting an increasing

order of the indexes. The number of such Hamiltonian paths is equal to
n�2P
k=0

�
n�2
k

�
= 2n�2.

So the total number of directed Hamiltonian paths in T is equal to 2n�2 + 1.

In 1972, Moon [21] gave upper and lower bounds for the minimum number p(n) of directed

Hamiltonian paths in a strong tournament of order n:

↵n�1  p(n) 

8
><
>:

3 · �n�3 for n ⌘ 0 mod 3

�n�1 for n ⌘ 1 mod 3

9 · �n�5 for n ⌘ 2 mod 3

where ↵ = 6
1
4 ⇡ 1.565 and � = 5

1
3 ⇡ 1.710. In 2006, after finding an interesting characteri-

zation of strong tournaments, Busch [6] improved this result by giving the exact value of the

minimum number p(n) for strong tournaments on n vertices:

p(n) =

8
><
>:

3 · �n�3 for n ⌘ 0 mod 3

�n�1 for n ⌘ 1 mod 3

9 · �n�5 for n ⌘ 2 mod 3

Later on, researchers tried to characterize the strong tournaments having the minimum num-

ber of directed Hamiltonian paths. An explicit construction of such tournaments was given

by Moon and Yang [23]. They constructed tournaments that they called chains, which are

obtained from a succession of nearly transitive tournaments, identifying the bottom node of

each one of them with the top node of the following one, and adding arcs directed in one

way, following the succession of the nearly-transitive tournaments, and they proved that some

kinds of these chains, which they called special chains, contain the minimum number p(n) of

directed Hamiltonian paths, and that they are the only tournaments verifying this minimum.

Concerning the minimum number of directed Hamiltonian cycles in tournaments, we first

remark that it’s equal zero, since any tournament that is not strong does not contain a directed

Hamiltonian cycle (by Theorem 1.2.3). Considering strong tournaments, Thomassen [31] gave

in 1980 an extension of the previously mentioned result of Moon, proving that if T is a strong

tournament of order n, and A is a subset of the vertices of T , then T has at least ↵n�1 directed

paths such that each one of them contains all the vertices of A, starts and terminates in A,

and such that for any two of these paths, the vertices of A occur in different order. Using

this extension, he was able to prove that every 2-connected tournament of order n contains

at least ↵
n
32

�1 distinct directed Hamiltonian cycles. Thomassen also gave a lower bound for

the minimum number of directed Hamiltonian cycles in a tournament of connectivity 1, with

given minimal in-degree. In fact, he proved first that a strong tournament with minimal
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in-degree greater than k has at least 2k�1 directed Hamiltonian paths starting at any vertex,

and as a result, he proved that a tournament of connectivity 1, and of in-degree greater than

k, k � 2, has at least 2k�1 directed Hamiltonian cycles.

On the other hand, many graph theorists tried to construct tournaments having a large

number of directed Hamiltonian cycles. With the same reasoning adopted to prove the above

mentioned result of Szele, one can prove that the maximum number C(n) of directed Hamil-

tonian cycles in a tournament of order n is

C(n) � (n� 1)!

2n
.

However Moon observed that it seems difficult to give explicit tournaments with such a large

number of directed Hamiltonian cycles. In 1968, in his classic book on tournaments [22],

Moon discusses the question of exhibiting tournaments having a large number of Hamiltonian

cycles. He poses the question (attributed to Moser) of constructing a tournament on n vertices

having at least ( n
3e)

n directed Hamiltonian cycles, and in 2015, Calkin, Novik and Ushijima-

Mwesigwa [26] showed that Moser could have even asked for more. They constructed what

we call a triangular tournament, which is a tournament obtained from three tournaments T1,

T2, and T3, by orienting all edges from T1 to T2, T2 to T3, T3 to T1, and it is denoted by

C3(T1, T2, T3). By Theorem 1.2.3, we can clearly see that such tournament is strong. They

proved that the number of directed Hamiltonian cycles in a triangular tournament of order

n can be exactly computed using the Stirling numbers of the second kind and the fact that

every directed Hamiltonian cycle C in the triangular tournament C3(T1, T2, T3) corresponds

to a k-path cover of this tournament, where k is the number of times that C visits each

subtournament Ti. They showed that in the case where the order of each subtournament Ti

is equal to n
3 , the number of directed Hamiltonian cycles happens to be greater than ( n

3e)
n.

Concerning enumerating oriented Hatmiltonian paths and cycles that are not directed,

Rosenfeld [29] proved in 1974 that the number of antidirected Hamiltonian paths starting

with a forward arc is equal to the number of antidirected Hamiltonian paths starting with

a backward arc, in any tournament, which can be stated as: the number of antidirected

Hamiltonian paths in any tournament T is equal to the number of antidirected Hamiltonian

paths in the complement of T , denoted by T .

On the other hand, for some positive integer n, Désiré André [9] studied in 1881 the

notion of alternating permutations of n distinct labelled letters. A permutation of n letters

labelled {a1, a2, . . . , an} is a given order of these letters, and for a fixed permutation of the

a0is, one defines the sequence of relative integers s1, s2, . . . , sn�1 such that 81  i  n � 1,

si = ai�ai+1. If every two consecutive elements s0is of this sequence have opposite signs, then

the corresponding permutation of the a0is is said to be alternating, and, after proving that the

number of alternating permutations of n distinct labelled letters is always even, Désiré André
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denoted this number by 2An. Moreover, the number An is given by [25]:

X An

n!
xn = sec a+ tanx.

Interestingly, for the particular case of a transitive tournament TTn, after labelling its vertices

by v1, v2, . . . , vn, such that all its arcs are forward with respect to this enumeration, it is easy

to see that each antidirected Hamiltonian path in this tournament corresponds to exactly two

alternating permutations of the n indexes, since each path has two enumerations of its vertices.

Based on this, in his paper, Rosenfeld [29] proved that in a transitive tournament TTn, the

number of distinct antidirected Hamiltonian paths is equal to An if n is even, and 2An if

n is odd. Furthermore, he proved that for any tournament T of order n, where T 6= TTn,

the number of its antidirected Hamiltonian paths is less than the number of antidirected

Hamiltonian paths in TTn.

Moreover, in the same paper [29], Rosenfield proved that the number of antidirected

Hamiltonian cycles in any tournament T of even order 2k is not greater than A(2k � 1) and

that if T 6= TT (2k), then the number of antidirected Hamiltonian cycles in T is less than the

number of those in the transitive tournament TT (2k).

1.3 Types of oriented paths and cycles

Since the orientations of the arcs of an oriented path (resp. cycle) is arbitrary, we may assign

to each path (resp. cycle) a type. In this section, we will give the explicit definitions con-

cerning the notion of the types of paths and cycles, give some related elementary results and

introduce basic notations. Most of the contents in this section were given in [12]. They will

be widely used throughout the work that will be done in Chapter 2 and Chapter 3.

Let Ks = {(↵1,↵2, . . . ,↵s) 2 Z
s, s � 1, ↵i.↵i+1 < 0, 8 1  i  s� 1}.

Let ↵ = (↵1,↵2, . . . ,↵s) 2 Ks.

Definition 1.3.1. (Type of a path.)

An oriented path P is said to be of type P (↵1,↵2, . . . ,↵s) if P is formed by s blocks (i.e.

maximal directed subpaths) I1, I2, . . . , Is such that l(Ii) =| Ii |=| ↵i | and with xi, yi being

the ends of the block Ii, Ii \ Ii+1 = {yi} = {xi+1}, the following condition is verified:

8 i = 1, . . . , s, ↵i > 0 () Ii is directed from xi to yi.

Example 1.3.2. The following digraph is an oriented path P = v1v2 . . . v9 on 9 vertices, of

type P (2,�3, 1,�2), formed by 4 blocks:

v1 v2 v3 v4 v5 v6 v7 v8 v9
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We note end(Ii) = {xi, yi}, and we write P = I1I2 . . . Is.

For u, v 2 Ii, Ii[u, v] denotes the subpath of Ii of ends u and v.

If the path is Hamiltonian in a tournament of order n, then we have

sX

i=1

|↵i| = n� 1.

This notation can be extended by allowing ↵i to be 0, by considering:

• P (↵1, ...,↵i, 0,↵i+2, ...,↵s) = P (↵1, ...,↵i + ↵i+2, ...,↵s) (remark that in this case, ↵i

and ↵i+2 have the same sign),

• P (0,↵2, ...,↵s) = P (↵2, ...,↵s),

• P (↵1, ...,↵s�1, 0) = P (↵1, ...,↵s�1).

Remark 1.3.3. Note that a path P = v1v2 . . . vr that is of type P (↵1, . . . ,↵s) with respect

to this enumeration is also of type P (�↵s, . . . ,�↵1) with respect to the other enumeration

vrvr�1 . . . v1 denoting it, so we remark that any path has at most two types.

Two paths P and P
0

in a tournament T are equal if they have the same set of arcs, i.e.

E(P ) = E(P
0

).

Definition 1.3.4. Let T be a tournament. The set PT (↵1, . . . ,↵s) is defined to be the set of

oriented paths in T of type P (↵1, . . . ,↵s) and fT (↵1,↵2, . . . ,↵s) denotes the cardinal of this

set. That is, fT (↵1,↵2, . . . ,↵s) is the number of paths in T of type P (↵1, . . . ,↵s).

Particularly, fT (n � 1) is the number of directed Hamiltonian paths in a tournament T of

order n.

For ↵ = (↵1, . . . ,↵s) in Z
s, we denote by �↵ the s-tuple (�↵1, . . . ,�↵s) and by ↵ the s-

tuple (↵s,↵s�1 . . . ,↵1).

We first give two properties about the sets of oriented paths in a tournament T .

Proposition 1.3.5. Let ↵ and � 2 K
s. We have:

PT (↵) = PT (�) () ↵ = � or ↵ = ��.

Proof. Let ↵ = (↵1, . . . ,↵s) and � = (�1, . . . ,�t). For the necessary condition, let P 2
P(↵) = P(�); P is simultaneously of type P (↵) and P (�). Since s and t both refer to the
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number of blocks in P , then s = t.

P is of type P (↵) ) P = I1I2 . . . Is, where | Ii |=| ↵i |, end(Ii) = {xi, yi} and end(P ) =

{x1, ys}. Similarly, P is of type P (�) ) P = I
0

1I
0

2 . . . I
0

s, where |I
0

i |=|�i |, end(I
0

i) = {x
0

i, y
0

i}

and end(P ) = {x
0

1, y
0

s}.

Observe that whenever P = J1J2 . . . Jk, then 8 2  i < t  k, Ji \ Jt 6= ; () t = i + 1.

Moreover, Ji \ Jt = {yl}; i < t ) i = l and t = i+ 1.

The ends of P are the vertices whose degree is one. Since P has exactly two such vertices,

then {x1, ys} = {x
0

1, y
0

s}. We have two cases:

• x1 = x
0

1 ) ys = y
0

s. Since I1 and I
0

1 are the only blocks that contain x1 and x
0

1

respectively, then I1 = I
0

1. Similarly, Is = I
0

s. Moreover, {y1} = I1 \ I2 = I
0

1 \ I2. By

the previous observation, since I
0

2 is the only block that intersects with I
0

1, then I2 = I
0

2

and {y1} = {y
0

1}. We proceed similarly to prove that Ii = I
0

i 8 i = 3, . . . , s� 1. Hence,

↵i = �i 8 i = 1, . . . , s. Thus ↵ = �.

• x1 = y
0

s ) x
0

1 = ys. This implies that I1 = I
0

s and Is = I
0

1 Again, using the

above observation, we obtain that I2 = I
0

s�1, . . . , Is�1 = I
0

2. Hence, (↵1, . . . ,↵s) =

(��s, . . . ,��1) ) ↵ = ��.

For the sufficient condition, if ↵ = �, then the result is trivial. Suppose that ↵ = �� and

let P 2 P(↵); P = x1x2 . . . xn. The path P
0

= xnxn�1 . . . x1 is of type P (�↵s, . . . ,�↵1) =

P (�), and P = P
0

since E(P ) = E(P
0

). Hence, P is also of type P (�), which proves that

P(↵) ✓ P(�). We may similarly prove that P(�) ✓ P(↵), which concludes our proof.

Proposition 1.3.6. Let T be a tournament of order n.

The sets PT (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 Ks,
sP

i=1
| ↵i |= n � 1, form a partition of the set PT

of all the oriented Hamiltonian paths in T .

Proof. Let RP be the binary relation defined on the set PT by:

P1RPP2 , P1 and P2 belong to the same set PT (↵), for some ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s,

↵i.↵i+1 < 0, 8 1  i  s� 1 and
sP

i=1
| ↵i |= n� 1.

Clearly, RP is an equivalence relation, thus the equivalence classes of PT with respect to RP ,

which are the sets PT (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 Ks,
sP

i=1
| ↵i |= n� 1, form a partition of the

set PT .

Let K
0
s = {(↵1,↵2, . . . ,↵s) 2 Z

s, s � 1, ↵i.↵i+1 < 0, 8 1  i  s� 1, ↵s.↵1 < 0}.

Let ↵ = (↵1,↵2, . . . ,↵s) 2 K
0
s.

Definition 1.3.7. (Type of a cycle.)

An oriented cycle C is said to be of type C(↵1, . . . ,↵s) if C is formed by s blocks I1, I2, . . . Is,
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with end(Ii) = {xi, yi}, | Ii |=| ↵i | and Ii \ Ii+1 = {yi} = {xi+1}, 1  i  s � 1 and

Is \ I1 = {ys} = {x1}, such that 8 i = 1, . . . , s, ↵i > 0 () Ii is directed from xi to yi.

Example 1.3.8. The following digraph is a cycle C = v1v2 . . . v10 on 10 vertices, of type

C(3,�2, 1,�4), formed by 4 blocks:

v1 v2 v3 v4

v5

v6v7

v8

v9

v10

We write C = I1I2...Is.

If the cycle is Hamiltonian in a tournament of order n, then we have

sX

i=1

|↵i| = n.

Note that for cycles, if s 6= 1, (i.e. the cycle is not a directed one), then s must be even, since

the blocks I1 and Is should have opposite orientations.

As we did for paths, we may also allow ↵i to be 0 for cycles, by considering:

• C(↵1,↵2, . . . ,↵i�1, 0,↵i+1, . . . ,↵s) = C(↵1,↵2, . . . ,↵i�1 + ↵i+1, . . . ,↵s)

(↵i�1 and ↵i+1 have same sign),

• C(0,↵2, . . . ,↵s) = C(↵2 + ↵s,↵3, . . . ,↵s�1)

(↵2 and ↵s have same sign),

• C(↵1,↵2, . . . ,↵s�1, 0) = C(↵1 + ↵s�1,↵2, . . . ,↵s�2)

(↵1 and ↵s�1 have same sign).

Remark 1.3.9. Note that a cycle C = v1v2 . . . vr = I1I2 . . . Is that is of type C(↵1, . . . ,↵s)

with respect to the enumeration v1v2 . . . vr is also of type P (↵i,↵i+1, . . . ,↵s,↵1, . . . ,↵i�1 8 2 
i  s, (since C can be read as C = IiIi+1 . . . IsI1 . . . Ii�1), and also of type P (�↵s, . . . ,�↵1)

with respect to the other enumeration v1vrvr�1 . . . v2 denoting it, and thus it is also of type

C(�↵i,�↵i�1, . . . ,�↵1,�↵s, . . . ,�↵i+1) 8 1  i  s�1. So we remark that any cycle formed

by s blocks has at most 2.s types.
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Moreover, as for paths, two cycles C and C
0

in a tournament T are equal if they have the

same set of arcs, that is,

E(C) = E(C
0

).

Definition 1.3.10. Let T be a tournament. The set CT (↵1, . . . ,↵s) is defined to be the set

of oriented cycles of T of type C(↵1, . . . ,↵s) and gT (↵1, . . . ,↵s) denotes the cardinal of this

set. That is, gT (↵1, . . . ,↵s) is the number of cycles of type C(↵1, . . . ,↵s) in T .

Particularly, gT (n) is the number of directed Hamiltonian cycles in a tournament T of order n.

Now, we also give two properties about the sets of oriented cycles in a tournament T .

Proposition 1.3.11. We have:

CT (↵) = CT (�) () � = (↵i,↵i+1, . . . ,↵s,↵1, . . . ,↵i�1)

or � = (�↵i,�↵i�1, . . . ,�↵1,�↵s, . . . ,�↵i+1),

for some 1  i  s.

Proof. The proof is similar to the proof of Proposition 1.3.5.

Proposition 1.3.12. Let T be a tournament of order n.

The sets CT (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 K
0
s,

sP
i=1

| ↵i |= n, form a partition of the set CT of all

the oriented Hamiltonian cycles in T .

Proof. Let RC be the binary relation defined on the set CT by:

C1RCC2 , C1 and C2 belong to the same set CT (↵), for some ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s,

↵i.↵i+1 < 0, 8 1  i  s� 1, ↵1.↵s < 0, and
sP

i=1
| ↵i |= n.

Clearly, RC is an equivalence relation, thus the equivalence classes of CT with respect to RC ,

which are the sets CT (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 K
0
s, and

sP
i=1

| ↵i |= n, form a partition of the

set CT .

An s-tuple ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s is said to be symmetric if ↵ = �↵. That is, if

(↵1,↵2, . . . ,↵s) = (�↵s,�↵s�1, . . . ,�↵1).

Definition 1.3.13. (Symmetric paths and cycles.)

An oriented path P (resp. cycle C) is said to be symmetric if there exists a tuple ↵ that is

symmetric, such that P (resp. C) is of type P (↵) (resp. C(↵)). Otherwise, the path P (resp.

cycle C) is non-symmetric.
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Example 1.3.14. The following path P = v1v2 . . . v7 is of type P (1,�2, 2,�1) and the

4-tuple (1,�2, 2,�1) is symmetric, so P is symmetric.

v1 v2 v3 v4 v5 v6 v7

The following cycle C is of type C(2,�2, 1,�1) with respect to the enumeration v1v2 . . . v6 of

its vertices, but (2,�2, 1,�1) is not symmetric. However, C is also of type C(�2, 1,�1, 2) with

respect to the enumeration v3v4 . . . v7v1v2, and (�2, 1,�1, 2) is symmetric, so C is symmetric.

v1 v2 v3

v4

v5v6

Definition 1.3.15. (Generated cycles.)

Let T be a tournament on n vertices {x1, x2, . . . , xn}. An oriented cycle C in T is said to be

generated by an oriented path P = x1x2 . . . xn if C = P [ < {x1, xn} >. That is, if C is the

cycle obtained from P by adding the arc in T between x1 and xn. We write C = CP .

From now on, we will write uv instead of < {u, v} >.

Definition 1.3.16. We define the relation R on the set of oriented paths in T by:

PRP
0 () CP = CP

0 .

The relation R is obviously an equivalence relation, and so is R↵, the restriction of R on the

set PT (↵). We can easily prove the following:

Proposition 1.3.17. Let P = v1v2 . . . vn and P 0 be two oriented paths in a tournament T

of order n. Then PRP
0

if and only if P = P 0 or P 0 = vivi+1 . . . vnv1v2 . . . vi�1 for some

2  i  n.

Proof. First, suppose that PRP
0

, then CP = CP
0 . Let P = v1v2 . . . vn. P

0

= CP
0 � uv =

CP �uv, where u and v are the ends of P
0

. This implies that uv = vi�1vi for some 2  i  n,

or uv = vnv1. Thus, P
0

= P or P
0

= vivi+1 . . . vnv1 . . . vi�2vi�1, for some 2  i  n.
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Conversely, suppose that P = v1v2 . . . vn and P
0

= vivi+1 . . . vnv1 . . . vi�1, then CP = P [vnv1

and CP
0 = P

0 [ vi�1vi. It follows that CP = CP
0 and PRP

0

.

Remark 1.3.18. Let P = v1v2 . . . vn be an oriented path in a tournament T , of some type

P (↵) = P (↵1, . . . ,↵s), and let C = CP be the cycle generated by P in T which is of some

type C(�). We will see what are the different values � could take:

• Case 1: s is even. Then if ↵1 > 0 (which means ↵s < 0), we have � = (↵1+1,↵2, . . . ,↵s)

or � = (↵1, . . . ,↵s�1,↵s � 1) whether (vn, v1) or (v1, vn) 2 E(T ) respectively, while if

↵1 < 0 (i.e. ↵s > 0), then � = (↵1�1,↵2, . . . ,↵s) or � = (↵1, . . . ,↵s�1,↵s+1) whether

(v1, vn) or (vn, v1) 2 E(T ) respectively.

• Case 2: s is odd. Then if ↵1 > 0 (which means ↵s > 0 also), we have � =

(�1,↵1, . . . ,↵s) or � = (↵s + 1 + ↵1,↵2, . . . ,↵s�1) whether (v1, vn) or (vn, v1) 2 E(T )

respectively, while if ↵1 < 0 (and so is ↵s), then � = (1,↵1, . . . ,↵s) or � = (↵s � 1 +

↵1,↵2, . . . ,↵s�1) whether (vn, v1) or (v1, vn) 2 E(T ) respectively.

So we remark that every oriented path P in a tournament T may generate 2 types of cycles,

that we will denote by C(�) and C(�0) later in Chapter 2.

Remark 1.3.19. If a path P has the type P (↵) = P (↵1, . . . ,↵s) where ↵ is symmetric, then

the cycle CP generated by P cannot be symmetric.

In fact, if P has the type P (↵) = P (↵1, . . . ,↵s) and ↵ is symmetric, thus ↵1 = �↵s, so ↵1

and ↵s have opposite signs, which means that s should be even. Thus by the previous remark,

CP has one of these types: C(↵1 + 1, . . . ,↵s) or C(↵1 � 1, . . . ,↵s) or C(↵1, . . . ,↵s � 1) or

C(↵1, . . . ,↵s +1). But in all these cases, and due to the fact that ↵ is symmetric, CP cannot

be written as a succession of blocks having the type C(�) where � is symmetric, thus the

cycle CP cannot be symmetric.

Let ↵ = (↵1, . . . ,↵s) 2 Z
s.

Definition 1.3.20. (Period.)

An integer 1  r  s is said to be a period of ↵ if [i ⌘ j (mod r) ) ↵is = ↵js ] where is is the

unique integer in {1, 2, . . . , s} such that i ⌘ is (mod s).

Let r(↵) = min{r; r is a period of ↵}.

Proposition 1.3.21. r is a period of ↵ () r(↵) divides r.

Proof. If r(↵) divides r, let i, j 2 N such that i ⌘ j (mod r), then i ⌘ j (mod r(↵)), and since

r(↵) is a period of ↵, ↵is = ↵js . This implies that r is a period of ↵.

Conversely, suppose that r is a period of ↵. We may write r = q · r(↵) + b; 0  b < r(↵).
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If b 6= 0, let i  j be two integers such that i ⌘ j (mod b). j = i + b · k for some k

) j = i+(r� q · r(↵)) · k = i+ k · r� q · k · r(↵). Set i
0

= i+ k · r, i
0 ⌘ i (mod r) ) ↵i

0
s
= ↵is

and i
0 ⌘ j (mod r(↵)) ) ↵i0s

= ↵js . It follows that ↵is = ↵js , then b is a period of ↵, which

is a contradiction.

As a consequence, r(↵) divides s, since s is a trivial period of ↵.

Let t(↵) =
s

r(↵)
.

Proposition 1.3.22. Let ↵ = (↵1, . . . ,↵s) 2 Z
s and ↵

0

= ↵ = (↵s, . . . ,↵1), then r(↵) = r(↵
0

)

and t(↵) = t(↵
0

).

Proof. Let ↵
0

= (↵
0

1,↵
0

2, . . . ,↵
0

s) = (↵s, . . . ,↵1), and r(↵
0

) = r
0

, r(↵) = r.

Let l, p be two integers such that p ⌘ l (mod r). We would like to prove that ↵
0

ps = ↵
0

ls
.

We have ↵
0

ps = ↵k; k = s � ps + 1, i.e. k ⌘ �p + 1 (mod s) thus k ⌘ �p + 1 (mod r).

Also, ↵
0

ls
= ↵j ; j = s � ls + 1, i.e. j ⌘ �l + 1 (mod s) thus j ⌘ �l + 1 (mod r). Now

p ⌘ l (mod r) ) �p+ 1 ⌘ �l + 1 (mod r) ) k ⌘ j (mod r) ) ↵k = ↵j ) ↵
0

ps = ↵
0

ls
.

Thus, r is a period of ↵
0

and r
0  r. Similarly, we prove that r  r

0

. Hence, r = r
0

.

Consequently, t(↵) = t(↵
0

).

We may also easily remark that t(↵) = t(�↵), and prove that

t(↵) = t(↵i,↵i+1, . . . ,↵s,↵1, . . . ,↵i�1),

and as a result we have 8 1  i  s:

t(↵) = t(�↵i,�↵i+1, . . . ,�↵s,�↵1, . . . ,�↵i�1)

= t(↵i,↵i�1, . . . ,↵1,↵s, . . . ,↵i+1)

= t(�↵i,�↵i�1, . . . ,�↵1,�↵s, . . . ,�↵i+1).

Let C = I1I2 . . . Is be an oriented cycle of type C(�) = C(�1, . . . ,�s) and let r = r(�).

Definition 1.3.23. (Similar blocks.)

For 1  i < j  s, Ii and Ij are said to be similar if j ⌘ i (mod r). This is equivalent to say

that j � i is a period of �, by Proposition 1.3.21.

For every 1  i  s, there are t(�) � 1 blocks similar to Ii. It follows that if Ii and Ij are

similar, then �i = �j , and for any nonnegative integer k, I[i+k]s and I[j+k]s are similar.
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Definition 1.3.24. (Clone vertices.)

If C = I1I2 . . . Is is an oriented cycle of type C(�) = C(�1, . . . ,�s), then two vertices u, v 2 C

are said to be clones (with respect to C) if:

• u and v belong to similar blocks, say Ii and Ij .

• l(Ii[xi, u]) = l(Ij [xj , v]).

It obviously follows that l(Ii[u, yi]) = l(Ij [v, yj ]).

Remark. If C 2 C(�), then each vertex of C has t(�)� 1 clones.

Example 1.3.25. Consider the cycle C = v1v2 . . . v9 of type C(�) = C(1,�2, 1,�2, 1,�2):

v1 v2

v3

v4

v5v6v7

v8

v9

• C is generated by 9 paths, each starting from one of its the vertices. For example, the

path P = v2v3 . . . v9v1 generates C.

• C has 6 blocks. C can be divided into three similar parts, each one formed by two

blocks. So the period r(�) = 2 and t(�) = 3.

• The blocks I2 = v2v3v4, I4 = v5v6v7 and I6 = v8v9v1 are similar blocks. The vertices

v3, v6 and v9 are clone vertices.

In order to simplify the work that will be done in the first section of Chapter 2, we may

extend the above definitions and notations given for paths and cycles in tournaments, to

enumerations of the vertices of a tournament, so we introduce the following:

Let ↵ = (↵1, . . . ,↵s); ↵i 2 Z, ↵i · ↵i+1 < 0 8 i = 1, . . . , s� 1, and let T be a tournament on

n �
sP

i=1
| ↵i | +1 vertices.

Definition 1.3.26. (Type of an enumeration.)

An enumeration E = v1v2 . . . vr of some vertices of T is said to be of type E(↵1, . . . ,↵s) if

the path P = v1v2 . . . vr is of type P (↵1, . . . ,↵s) with respect to this enumeration.
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Definition 1.3.27. Consider a tournament T of order n, then ET (↵1, . . . ,↵s) is defined to be

the set of enumerations of any m =
sP

i=1
| ↵i | +1 vertices of T , m  n, of type E(↵1, . . . ,↵s).

We denote by eT (↵1,↵2, . . . ,↵s) the cardinal of this set.

Remark that, unlike the case of paths, where every path has two types, if two enumerations

E and E0 have different types, then E 6= E0.

In fact, we have the following property:

Proposition 1.3.28. Let T be a tournament of order n, and ↵ = (↵1,↵2, . . . ,↵s), � =

(�1,�2, . . . ,�s0),
sP

i=1
|↵i|  n, and

s0P
i=1

|�i|  n, we have:

ET (↵) = ET (�) () ↵ = �.

Proof. The sufficient condition is trivial.

For the necessary condition, let E 2 ET (↵) = ET (�), then s = s0, and set E = v1v2 . . . vr.

Since E 2 ET (↵) then the path P = v1v2 . . . vr is of type P (↵) with respect to this enumer-

ation. Similarly, since E 2 ET (�) then P = v1v2 . . . vr is of type P (�) with respect to this

enumeration. Thus ↵ = �.

Proposition 1.3.29. Let T be a tournament of order n.

The sets ET (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s, ↵i.↵i+1 < 0, s � 1 that verify

sP
i=1

| ↵i |= n � 1,

form a partition of the set ET of all the enumerations on n vertices of T .

Proof. Let RE be the binary relation defined on the set ET by:

E1REE2 , E1 and E2 belong to the same set ET (↵), for some ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s,

↵i.↵i+1 < 0, s � 1, and
sP

i=1
| ↵i |= n� 1.

Clearly, RE is an equivalence relation, thus the equivalence classes of ET with respect to RE ,

which are the sets ET (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 Z
s, ↵i.↵i+1 < 0, s � 1, and

sP
i=1

| ↵i |= n� 1,

form a partition of the set ET .

1.4 Quadratic difference equation and invariant frameworks

1.4.1 The quadratic difference equation associated to a graph

Consider a finite connected graph G = (V (G), E(G)), where V (G) is the set of its vertices,

and E(G) the set of its edges, and a real valued function � : V (G) �! R. For more simplicity,

we will denote V (G) by V and E(G) by E. Consider the following quadratic equation

8 x 2 V, �(∆'(x))2 = (r')2(x), (1.1)
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where ' : V �! C is a complex valued function. The term ∆'(x) is defined to be the

Laplacian of ' at vertex x,

∆'(x) =
1

d(x)

X

y⇠x

('(y)� '(x)),

where d(x) is the degree of x, and

(r')2(x) =
1

d(x)

X

y⇠x

('(y)� '(x))2

is the symmetric square of the derivative. Equation (1.1) is then equivalent to

8x 2 V,
�(x)

d(x)

 
X

y⇠x

('(y)� '(x))

!2

=
X

y⇠x

('(y)� '(x))2 . (1.2)

Remark 1.4.1. Equation (1.2) is invariant (for fixed �) under affine linear transformations

and conjugation in the complex plane:

' 7! a'+ b and ' 7! ' , 8 a, b 2 C with a 6= 0 . (1.3)

and we refer to these freedoms as a normalization.

Recall the Cauchy-Schwarz inequality, for any set {a1, . . . , an} of non null complex numbers:

����
nX

j=1

aj

����
2

 n
nX

j=1

|aj |
2

with equality if and only if a1 = a2 = · · · = an. When the n numbers ai, 1  i  n, are real,

the Cauchy-Schwartz inequality is written as

 
nX

i=1

ai

!2

 n.

nX

i=1

a2i .

It follows from (1.2) that for a given x 2 V , if '(y)� '(x) is real 8 y ⇠ x, we have

X

y⇠x

('(y)� '(x))2 =
�(x)

d(x)

 
X

y⇠x

('(y)� '(x))

!2

 �(x)
X

y⇠x

('(y)� '(x))2 .

In particular, for there to exist a non-constant real solution ' to (1.2), necessarily �(x) � 1

8 x 2 V . If �(x) < 1, for some x 2 V , then there exists a vertex y ⇠ x such that '(y)�'(x)
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is a complex number, with Im ('(y)� '(x)) 6= 0. We allow �(x) to take the value �1 whenX

y⇠x

('(y)� '(x)) = 0.

1.4.2 Invariant frameworks in R
n and geometric spectrum of a graph

We consider the Euclidean space R
N , (N 2 N, N � 2).

Definition 1.4.2. A framework in the Euclidean space R
N , is a graph G = (V,E) realized

as a subset of this space, where edges vw 2 E are straight lines segments joining the vertices

v, w 2 V .

Let G = (V,E) be a framework in R
N .

Definition 1.4.3. The geometric spectrum of G is the set of all functions � : V �! [�1, 1],

�(x) < 1 if d(x) � 3, such that there exists a non constant function ' : V �! C, satisfying

equation (1.2).

Definition 1.4.4. A framework G = (V,E) in R
N is said to be invariant if there exists a

function � lying in its geometric spectrum, such that this framework satisfies the quadratic

equation (1.2) with ' being the restriction to its vertices of an orthogonal projection in C,

independently of any similarity transformation in R
n of this framework.

The quadratic equation (1.2) has been introduced in [3], where invariant frameworks were

actually studied. All we had at first was the Theorem of Axonometry of Gauss :

Theorem 1.4.5. ([16]) Suppose that a cube in R
3 is orthogonally projected into R

2 and

normalised so that a particular vertex v0 is mapped to the origin. If ↵, �, and � are the

images of the three neighbouring vertices of v0 on the complex plane C, then

↵2 + �2 + �2 = 0. (1.4)

Conversely, if equation (1.4) is satisfied, then one can find a cube whose orthogonal projection

is given this way.

Proof. First, let’s consider a cube in R
3 of sides’ length `, and a vertex v0 of the cube with

neighboring vertices v1, v2 and v3, normalized such that v0 is mapped to the origin. The

three vectors V1 = (x1, y1, z1), V2 = (x2, y2, z2) and V3 = (x3, y3, z3) in R
3 corresponding to

the coordinates of the three vertices v1, v2 and v3, are the columns of a 3⇥ 3 matrix A.

Since V1, V2 and V3 are pairwise orthonormal, then we can verify that AT .A = `.I3, where
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I3 is the 3⇥ 3 identity matrix, that is

0
B@

x1 y1 z1

x2 y2 z2

x3 y3 z3

1
CA .

0
B@

x1 x2 x3

y1 y2 y3

z1 z2 z3

1
CA =

0
B@

` 0 0

0 ` 0

0 0 `

1
CA . (1.5)

Equation (1.5) then implies that A.AT = `.I3, so that

0
B@

x1 x2 x3

y1 y2 y3

z1 z2 z3

1
CA .

0
B@

x1 y1 z1

x2 y2 z2

x3 y3 z3

1
CA =

0
B@

` 0 0

0 ` 0

0 0 `

1
CA . (1.6)

Henceforth, we have

x21 + x22 + x23 = y21 + y22 + y33 = ` and x1y1 + x2y2 + x3y3 = 0, (1.7)

(i.e. the vectors (x1, x2, x3) and (y1, y2, y3) are orthonormal.)

Writing ↵ = x1 + iy1, � = x2 + iy2 and � = x3 + iy3, equation (1.4) is then satisfied.

Conversely, given three complex numbers ↵ = x1 + iy1, � = x2 + iy2 and � = x3 + iy3

for which equation (1.4) is satisfied, then equation (1.7) is satisfied, where ` = ||X|| = ||Y ||,

X = (x1, x2, x3) and Y = (y1, y2, y3).

The vectors X and Y are then orthonormal in R
2, so if we consider the vector Z =

(z1, z2, z3) in R
3, where

Z =
X ^ Y

`
,

the vectors X,Y and Z form an orthonormal basis in R
3, so equation (1.6) is satisfied.

Hence, by multiplying (1.6) by AT on the left side, A on the right side, equation (1.5) is

also satisfied, and the vectors V1 = (x1, y1, z1), V2 = (x2, y2, z2) and V3 = (x3, y3, z3) in R
3 are

pairwise orthonormal, hence ↵, � and � are the orthogonal projection in R
2 of three vertices

v1, v2 and v3 of a cube, neighboring some vertex v0 of the cube.

It can be noticed that any regular polytope in Euclidean space R
3 can provide an example

of an invariant framework, with � varying from polytope to polytope. For example, for the

cube, � = 0, and it is a result of Theorem 1.4.5:

Theorem 1.4.6. Let G = (V,E) be a framework in R
3. If G is a cube then it is an invariant

framework, satisfying the quadratic equation (1.2) for � = 0.

Proof. Consider a vertex v0 of the cube with neighboring vertices v1, v2 and v3, normalized

such that v0 is mapped to the origin. Let the three vectors V1 = (x1, y1, z1), V2 = (x2, y2, z2)
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v0

v1 v2

v3

v5 v6

v4

Figure 1.1: A cube and a tetrahedron in R
3

and V3 = (x3, y3, z3) in R
3 be the coordinates of the three vertices v1, v2 and v3. Let '

be the orthogonal projection from R
3 in C, restricted to the vertices of the cube. Vertex

v0 being at the origin, we have '(v0) = 0. By Theorem 1.4.5, for ↵ = '(v1) = x1 + iy1,

� = '(v2) = x2 + iy2, and � = '(v3) = x3 + iy3 we have

↵2 + �2 + �2 = 0.

Hence equation (1.2) on vertex v0, which has the form:

�(v0)

3
('(v1)� '(v0) + '(v2)� '(v0) + '(v3)� '(v0))

2

= ('(v1)� '(v0))
2 + ('(v2)� '(v0))

2 + ('(v3)� '(v0))
2

is satisfied for � = 0 = constant. Thus, the cube is an invariant framework in R
3.

A second exemple is the tetrahedron, for which we have � = 3/4:

Theorem 1.4.7. Let G = (V,E) be a framework in R
3. If G is a tetrahedron then it is an

invariant framework, satisfying the quadratic equation (1.2) for � = 3/4.

Proof. We will picture the tetrahedron as being inside a cube and use Theorem 1.4.5.

Consider a vertex v0 of the cube with neighboring vertices v1, v2 and v3, normalized such

that v0 is mapped to the origin. Let the three vectors V1 = (x1, y1, z1), V2 = (x2, y2, z2) and

V3 = (x3, y3, z3) in R
3 be the coordinates of the three vertices v1, v2 and v3.

Let v4, v5 and v6 be the vertices of the cube of coordinates V4 = (x4, y4, z4), V5 =

(x5, y5, z5) and V6 = (x6, y6, z6) respectively, such that V4 = V1 + V2, V5 = V1 + V3 and

V6 = V2 + V3, and construct the tetrahedron on the vertices v0, v4, v5 and v6, as illustrated in
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Figure 1.1. We have:

V4 = (x1+x2, y1+y2, z1+z2), V5 = (x1+x3, y1+y3, z1+z3), and V6 = (x2+x3, y2+y3, z2+z3).

Let ' be the orthogonal projection from R
3 in C, restricted to the vertices of the cube. Vertex

v0 being at the origin, we have '(v0) = 0. Then for ↵ = '(v1) = x1+iy1, � = '(v2) = x2+iy2,

and � = '(v3) = x3 + iy3, we have

'(v4) = '(v1) + '(v2) = ↵+ �,

'(v5) = '(v1) + '(v3) = ↵+ �,

'(v6) = '(v2) + '(v3) = � + �.

Moreover, by Theorem 1.4.5 we have

↵2 + �2 + �2 = 0.

Now, equation (1.2) on vertex v0 of the tetrahedron, has the form:

�(v0)

3
('(v3)� '(v0) + '(v4)� '(v0) + '(v5)� '(v0))

2

= ('(v3)� '(v0))
2 + ('(v5)� '(v0))

2 + ('(v5)� '(v0))
2,

so we have:
�(v0)

3
(2↵+ 2� + 2�)2 = (↵+ �)2 + (↵+ �)2 + (� + �)2.

Since ↵2 + �2 + �2 = 0, we can verify that equation (1.2) is satisfied for � = 3/4 = constant,

hence the tetrahedron is an invariant framework in R
3.

The above examples of the regular polytopes can be deduced from [10], where Eastwood

and Penrose studied frameworks arising from the 1-skeleton of a regular simplex in the Eu-

clidean space R
3, showing that equation (1.2) is satisfied.

Then, this property is generalized to other invariant frameworks by Baird [3]: by methods of

linear algebra, he addresses the problem of when a given graph can be realized as an invariant

framework in an Euclidean space of dimension greater than or equal to 3. For example, some

of these frameworks are called the configured stars, which are some special cases of the stars,

where a star consists of an internal vertex v0 adjacent to n external vertices v1, v2, . . . , vn,

with no other connections. Every star is invariant at each of its external vertices of degree

1, with � taking on the value 1. However, it is not always the case at the internal vertex v0.

But each configured star is invariant:
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Theorem 1.4.8. ([3]) Let W = (�!x1,�!x2, . . . ,�!xn) define a configured star in R
N and let ' :

R
N �! C be the orthogonal projection '(y1, y2, . . . , yN ) = y1 + iy2. Then if z` = '(�!x`) =

x`1 + ix`2, we have:

�

n(� + ⇢)

 
nX

`=1

z`

!2

=
nX

`=1

z2` ,

where � and ⇢ are real constants, called the star invariants. In particular, � = �/(� + ⇢) is

real and depends only on the star invariants.

On the other hand, equation (1.2) arises from its smooth counterpart for a hypersurface in

Euclidean space [4]: When one considers an orthogonal projection of a smooth hypersurface in

the Euclidean space, remarkably we find the same phenomena, namely that a smooth version

of the equation is satisfied independently of the projection, with � = �1/H2 where H is the

mean curvature:

Theorem 1.4.9. [4] Let Mn be a smooth hypersurface in R
n+1 (n � 1) and let g denote

the metric in Mn induced from the standard metric on R
n. Let ' : (Mn, g) �! C be any

orthogonal projection, then:

(∆')2 = �H2(r')2,

where H is the mean curvature of Mn.

1.5 Quadratic cyclic sequences and cyclic graphs

In this section, we will give some definitions and properties that we will use in Chapter 4 in

order to study solutions to equation (1.2) associated to cyclic graphs.

Definition 1.5.1. A cyclic graph C = (V,E) is a finite connected graph with d(x) = 2,

8x 2 V .

That is, as defined in Chapter 1, it’s a graph where we can label the vertices such that

V = {v1, v2, ..., vN} and E = {vivi+1, 1  i  N � 1} [ {v1vN}.

Let us rewrite equation (1.2) for such a graph. Let C = (V,E) be a cyclic graph on N vertices,

and set V = {0, 1, 2, . . . , N � 1}. Then, 8 j 2 Z/NZ, the vertex j has j � 1 and j + 1 as

neighbors, and equation (1.2) has the form

�(j)

2
('(j)�'(j�1)+'(j)�'(j+1))2 = ('(j)�'(j�1))2+('(j)�'(j+1))2 8j 2 Z/NZ.

(1.8)

In this thesis, we are interested in the case when � : Z/NZ ! R is constant.
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Definition 1.5.2. For a given integer N � 2, a quadratic cyclic sequence (QCS) of order N

is a function ' : Z/NZ ! C satisfying the quadratic difference relation

�

2

�
2'(j)�'(j�1)�'(j+1)

�2
=
�
'(j)�'(j�1)

�2
+
�
'(j)�'(j+1)

�2 8j 2 Z/NZ (1.9)

for some real number � where j ± 1 are calculated modulo N .

If we define the increment uj = '(j + 1)� '(j), then the above equation reads

�

2
(uj � uj�1)

2 � uj
2 � uj�1

2 = 0. (1.10)

We recall that equation (1.8) is invariant (for fixed �) under affine linear transformations and

conjugation in the complex plane, which we refer to as normalization:

' 7! a'+ b and ' 7! ' , 8 a, b 2 C with a 6= 0 . (1.11)

Since there exists such a transformation mapping any pair of distinct points to any other pair

of distinct points, we can normalize a QCS so that two distinct terms take on two distinct

specified values.

Equation (1.8) is also invariant under cyclic permutations and order reversal of the se-

quence S = ('(0),'(1), . . . ,'(N � 1)), where a cyclic permutation of S is one of the form

('(i),'(i+1), . . . ,'(N�1),'(0), . . . ,'(i�1)) for some 0  i  N�1, and the order reversal

of S has the form ('(N � 1),'(N � 2), . . . ,'(1),'(0)).

As we mentioned previously, using the Cauchy-Schwartz inequality, it follows from (1.10)

that for a given j 2 {0, 1, . . . , N � 1}, if uj , uj�1 are both real, we have

uj
2 + uj�1

2 =
�

2
(uj � uj�1)

2  �(uj
2 + uj�1

2) .

In particular, for there to exist a non-constant real solution to (1.9), we necessarly have � � 1.

Equally, if � < 1, then for any three successive terms of the QCS, at least one must be complex

with non zero imaginary part.

An example of an integer QCS of order 10 is given by

(0, 9, 3, 12, 6, 10, 4, 8, 2, 6)

This satisfies (1.9) with � = 26/25. On applying the normalization (1.11), a QCS is defined

up to addition and multiplication by a constant. Given a rational sequence, we may therefore

multiply through by the smallest common multiple of the denominators, subtract the value
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of the first term and finally divide by any common factor in the subsequent numerators, to

obtain an integer sequence ' : Z/NZ ! N with '(0) = 0 and with no common factor. Even

then it may not be unique, for example the following is another sequence of order 10 with

� = 26/25:

(0, 9, 3, 7, 1, 10, 4, 8, 2, 6) .

Let’s reconsider the case when the function � is not necessarily constant, and consider a

cyclic framework in R
2. We want to find the conditions on this framework in order for it to

be invariant.

Since we are in the plane R
2, any orthogonal projection ' of this framework in C is the

identity, and all its similarity transformations are given by the normalization (1.11), so the

function � in equation (1.8) is invariant under any similarity transformation. So to characterize

an invariant cyclic framework in R
2, we only have to find the conditions on that framework

so that � belongs to its geometric spectrum, that is, � takes values in [�1, 1].

We have the following characterization: a cyclic framework in R
2 is invariant if and only

if it is embedded in the plane with sides of equal length. In fact, we have the following

proposition:

Proposition 1.5.3. The edges ['(j),'(j + 1)], j 2 Z/NZ, of a polygon corresponding to a

solution ' : Z/NZ ! C of (1.8), with � : Z/NZ ! [�1, 1], all have the same length.

Proof. Consider three successive non-identical terms ('(j � 1),'(j),'(j + 1)) of a polygon

corresponding to a solution ' : Z/NZ �! C that satisfies equation (1.8) for � : Z/NZ !
[�1, 1]. By normalization we can suppose that '(j) = 0 and '(j � 1) = 1. Suppose that

'(j + 1) = z = x+ iy, x and y real numbers. At the term j, equation (1.8) takes the form:

�(j)

2
(1 + z)2 = 1 + z2 .

Suppose that z 6= �1. Then the requirement that �(j) be real is equivalent to

either Im (z) = 0 or |z| = 1 .

In fact, since z 6= �1, then:

�(j)

2
(1 + z)2 = 1 + z2 , �(j) = 2� 4z

1 + z2 + 2z
.

By replacing z with x+ iy, a short calculation shows that:

�(j) is real , y = 0 or 1� x2 � y2 = 0,
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hence Im (z) = 0 or |z| = 1. If z is real and z 6= ±1, then �(j) > 1, which is not allowed.

Otherwise, we always have |z| = 1, and the result follows.

Conversely, consider a function ' : Z/NZ �! C, and a closed polygon in C whose edges

are ['(j),'(j + 1)], j 2 Z/NZ, such that they all have the same length `. Normalize such

that ` = 1. Also suppose by normalization that '(j � 1) = 0, '(j) = 1 and '(j + 1) = z.

0 ↵ 1

z

If z 6= �1, then '(j � 1), '(j) and '(j + 1) satisfy equation (1.8) for

�(j) =
2(1 + z2)

(1 + z)2
,

where �(j) 2 ]�1, 1]. In fact, since |z| = 1, replacing z by ei↵, ↵ 2 [0,⇡] being the absolute

angle between the two edges ['(j � 1),'(j)] and ['(j),'(j + 1)], we get

�(j) =
2 cos↵

1 + cos↵
=

2 cos ✓

cos ✓ � 1
(1.12)

where ✓ = ⇡ � ↵ is the exterior angle, so � is real and clearly belongs to ]�1, 1]. The two

limiting cases ↵ = 0 and ↵ = ⇡ correspond to �(j) = 1 and �(j) = �1, respectively.

As a consequence, a solution ' : Z/NZ ! C of (1.8) with � : Z/NZ ! [�1, 1] corresponds

to a polygon in the plane with sides of equal length.

In our work, we are interested in such polygons corresponding to a complex QCS, that is,

we suppose henceforth that � is constant.

So, we can picture a complex QCS with � 2 [�1, 1] as a closed polygon in the plane with

edges the straight line segments ['(j),'(j + 1)], each having the same length and where the

absolute angle ↵ between each two consecutive edges is constant, and we have

� =
2 cos↵

1 + cos↵
.

An example of a complex QCS with � = 2/3 of order 6 is given by

⇣
0, 1, 12 �

p
3
2 i, 0, 1, 12 +

p
3
2 i
⌘
.
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0 1

2

3 4

5

Figure 1.2: Complex cyclic sequence

It can be represented by a polygon illustrated in Fig.1.2, where we label the vertices in

sequential order. We can see that all edges have same length with constant absolute angle

↵ = ⇡
3 between them.
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Chapter 2

On the number of oriented

Hamiltonian paths and cycles in a

tournament and its complement

Rosenfeld [29] proved in 1974 that in a tournament T , the number of antidirected Hamiltonian

paths starting with a forward arc is equal to the number of antirected Hamiltonian paths

starting with a backward arc.

In §2.1 of this chapter, we generalize Rosenfeld’s result, proving that in a tournament

T , the number of oriented Hamiltonian paths of a given type P (↵) is equal to the number

of oriented Hamiltonian paths of type P (�↵). That way, we would have shown that every

tournament T and its complement T contain the same number of oriented Hamiltonian paths

of any given type.

In §2.2, and given any tournament T , we find a relation between the number of oriented

Hamiltonian paths of some type P (↵) in T and the number of oriented Hamiltonian cycles

of types C(�) and C(�0) in T , where C(�) and C(�0) are the two types of cycles that can be

generated by a path of type P (↵) in T .

In §2.3, and using both results of §2.1 and §2.2, we are able to establish the main result

of §2.1 for oriented cycles: We prove that a tournament and its complement contain the same

number of oriented Hamiltonian cycles of any given type.

In §2.4 of this chapter, since a digraph of maximal degree ∆  2 is a union of oriented

paths and cycles, we are able to generalize the two main results of §2.1 and §2.3 to any

digraph of maximal degree 2: Let T be a tournament and H a digraph with maximal degree

∆(G(H))  2. The number of copies of H in T and in T is the same.
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2.1 OHP in T and T : a generalization of Rosenfeld’s result

Rosenfeld’s result [29] given in 1974 can be stated as follows:

Theorem 2.1.1. Let T be a tournament of order n. We have:

fT (1,�1, 1, . . . ,±1)| {z }
n-1 components

= fT (�1, 1, . . . ,⌥1)| {z }
n-1 components

.

In this section, we generalize Rosenfeld’s result, by proving the following:

Theorem 2.1.2. Let ↵ = (↵1, . . . ,↵s) 2 Ks, ↵1 � 0, and let T be a tournament of order n;

n =
sP

i=1
| ↵i | +1. We have:

fT (↵) = fT (�↵).

Before going through the proof of our statement, we will give some related results and propo-

sitions:

Let T be a tournament of order n and let PT and ET be the sets of all oriented Hamilto-

nian paths and of all enumerations on n vertices of T respectively.

Proposition 2.1.3. We have:

| ET |= 2. | PT | .

Proof. Each enumeration v1v2 . . . vn of the n vertices of T corresponds to an oriented Hamil-

tonian path P = v1v2 . . . vn in T .

Let Φ be the correspondence:

Φ : ET �! PT ,

such that 8 E = v1v1 . . . vn 2 ET , Φ(E) is the path P = v1v2 . . . vn.

Obviously, Φ is a surjective mapping. Let E = v1v2 . . . vn 2 ET and let’s find all the other

enumerations E0 = v01v
0
2 . . . v

0
n such that Φ(E0) = Φ(E).

Let P = Φ(E) and P 0 = Φ(E0). Since Φ(E0) = Φ(E) thus P = v1v2 . . . vn = v01v
0
2 . . . v

0
n =

P 0, which implies that P = P 0 with (v01, v
0
2, . . . , v

0
n) = (v1, v2, . . . , vn) or (v01, v

0
2, . . . , v

0
n) =

(vn, vn�1, . . . , v1). Thus E0 = v1v2 . . . vn = E and E0 = vnvn�1 . . . v1 verify Φ(E0) = Φ(E),

and they are unique.

Thus we deduce that for every oriented Hamiltonian path in PT corresponds two enumerations

E and E0 in ET such that Φ(E) = Φ(E0) = P , and the result follows.
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Let ↵ = (↵1, . . . ,↵s) 2 Z
s; ↵i.↵i+1 < 0, ↵1 � 0, such that

sP
i=1

| ↵i |= n� 1.

Proposition 2.1.4. If ↵ is symmetric, then we have | ET (↵) |= 2. | PT (↵) |, while

| ET (↵) |=| PT (↵) | otherwise.

Proof. Consider the correspondence:

Φ↵ : ET (↵) �! PT (↵),

such that Φ↵(E) = Φ(E), 8 E 2 ET (↵).

The mapping Φ↵ is clearly surjective. In fact let E,E0 2 ET (↵), E = v1v2 . . . vn and

E0 = v01v
0
2 . . . v

0
n, with Φ

0(E) = P = v1v2 . . . vn and Φ
0(E0) = P 0 = v01v

0
2 . . . v

0
n). If E = E0 then

(v1, v2, . . . , vn) = (v01, v
0
2, . . . , v

0
n), thus P = P 0 so Φ

0 is an application. Let P = v1v2 . . . vn 2
PT (↵) then P 2 PT (↵) with respect to the enumeration E = v1v2 . . . vn or P 2 PT (↵) with

respect to the enumeration E0 = vnvn�1 . . . v1, so in both cases we can find an enumeration

in ET (↵) such that Φ
0(E) = P , thus Φ

0 is surjective.

Let E = v1v2 . . . vn 2 ET (↵) and let’s find all the other enumerations E0 = v01v
0
2 . . . v

0
n 2 ET (↵)

such that Φ↵(E
0) = Φ↵(E).

Let P = Φ↵(E) and P 0 = Φ↵(E
0). Since Φ↵(E

0) = Φ↵(E) thus P = v1v2 . . . vn = v01v
0
2 . . . v

0
n =

P 0, so P = P 0 with (v01, v
0
2, . . . , v

0
n) = (v1, v2, . . . , vn) or (v01, v

0
2, . . . , v

0
n) = (vn, vn�1, . . . , v1).

The first case implies that E0 = v1v2 . . . vn = E, while for the second case, E0 = vnvn�1 . . . v1,

but we need to verify that E0 = vnvn�1 . . . v1 2 ET (↵). Since E = v1v2 . . . vn 2 ET (↵) then

E0 = vnvn�1 . . . v1 2 ET (�↵), so if ↵ is symmetric, then by Proposition 1.3.28, ET (�↵) =

ET (↵) thus E0 = vnvn�1 . . . v1 2 ET (↵), while if ↵ is not symmetric, then by Proposition

1.3.28, ET (�↵) 6= ET (↵) which implies that ET (�↵) \ ET (↵) = ; by Proposition 1.3.29, thus

E0 = vnvn�1 . . . v1 /2 ET (↵), so the second case is impossible for ↵ not symmetric.

As a result, 8P 2 PT (↵), |Φ�1
↵ (P )| = 1 if ↵ is not symmetric, and |Φ�1

↵) (P )| = 2 other-

wise. Now, if P 6= P 0, then Φ
�1
↵ (P ) \ Φ

�1
↵ (P 0) = ;, hence:

|ET (↵)| =
X

P2PT (↵)

|Φ�1
↵ (P )| which is equal to

X

P2PT (↵)

1 = |PT (↵)| if ↵ not symmetric, and is

equal to
X

P2PT (↵)

2 = 2.|PT (↵)| otherwise, and the result follows.

We may now give the proof of Theorem 2.1.2:
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Proof. First of all remark that if ↵ is symmetric, so is �↵ and vice versa. Thus to prove that

fT (↵) = fT (�↵), and using Proposition 2.1.4, it is enough to prove that eT (↵) = eT (�↵).

The proof will be done by induction on s.

If s = 1, ↵ = (↵1) = (n � 1) and �↵ = (�↵1) = (1 � n). Since every directed Hamil-

tonian path P = v1v2 . . . vn in T corresponds to two enumerations E = v1v2 . . . vn and

E0 = vnvn�1 . . . v1 of types E(↵) = E(n � 1) and E(�↵) = E(1 � n) respectively, and

vice versa, thus | ET (↵) |=| ET (�↵) |=| PT (↵) | and we have eT (↵) = eT (�↵).

Suppose that the result is true when ↵ has s components, i.e. if ↵ = (↵1, . . . ,↵s) 2 Z
s;

↵i.↵i+1 < 0, ↵1 � 0, and T is a tournament of order n =
sP

i=1
| ↵i | +1, we have:

eT (↵1, . . . ,↵s) = eT (�↵1, . . . ,�↵s), and let’s prove the result for s+ 1 components.

Let ↵ = (↵1, . . . ,↵s,↵s+1) 2 Z
s+1; ↵i.↵i+1 < 0, ↵1 � 0, and T be a tournament of or-

der n =
s+1P
i=1

| ↵i | +1.

We argue by induction on ↵1. If ↵1 = 0, then by the previous induction, eT (0,↵2, . . . ,↵s+1) =

eT (↵2, . . . ,↵s+1) = eT (�↵2, . . . ,�↵s+1) = eT (0,�↵2, . . . ,�↵s+1).

So suppose that ↵1 > 0, and that the result is true when the first component is equal to

↵1 � 1, and let’s prove it when the first component is equal to ↵1.

Let X ✓ V (T ) such that | X |= ↵1. Set T 0 = T �X, and define the following sets:

AX = EhXi(↵1 � 1)⇥ ET 0(↵2, . . . ,↵s+1),

A0
X = {(E,E0) 2 AX ; E = v1 . . . v↵1 , E0 = v↵1+1 . . . vn and (v↵1 , v↵1+1) 2 E(T )},

A00
X = {(E,E0) 2 AX ; E = v1 . . . v↵1 , E0 = v↵1+1 . . . vn, and (v↵1+1, v↵1) 2 E(T )}.

Obviously we have: A0
X \A00

X = ;, and AX = A0
X [A00

X , thus

| AX |=| A0
X | + | A00

X | .

Define the following two sets:

EX(↵1, . . . ,↵s+1) = {E = v1 . . . v↵1v↵1+1 . . . vn 2 ET (↵1, . . . ,↵s+1); {v1, . . . , v↵1} = X},

EX(↵1 � 1,↵2 � 1,↵3 . . . ,↵s+1) =

{E = v1 . . . v↵1v↵1+1 . . . vn 2 ET (↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1); {v1, . . . , v↵1} = X}.
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We have that

| A0
X |=| EX(↵1, . . . ,↵s+1) |,

and that

| A00
X |=| EX(↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) | .

In fact, we just have to consider the correspondence

f : EX(↵1, . . . ,↵s+1) �! A0
X

such that 8 E = v1 . . . v↵1v↵1+1 . . . vn 2 EX(↵1, . . . ,↵s+1), f(E) = (v1 . . . v↵1 , v↵1+1 . . . vn),

and the correspondence

f 0 : EX(↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) �! A0
X

where 8 E = v1 . . . v↵1v↵1+1 . . . vn 2 EX(↵1�1,↵2�1,↵3, . . . ,↵s+1), f
0(E) = (v1 . . . v↵1 , v↵1+1 . . . vn),

and verify that they are bijective mappings.

As a result,

| AX |=| EX(↵1, . . . ,↵s+1) | + | EX(↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) | .

Now let’s consider �↵ = (�↵1, . . . ,�↵s), and let X ✓ V (T ) such that | X |= ↵1. Set

T 0 = T �X, and let’s also define the following sets:

BX = EhXi(�↵1 + 1)⇥ ET 0(�↵2, . . . ,�↵s+1),

B0
X = {(E,E0) 2 BX ; E = v1 . . . v↵1 , E0 = v↵1+1 . . . vn and (v↵1+1, v↵1) 2 E(T )},

B00
X = {(E,E0) 2 BX ; E = v1 . . . v↵1 , E0 = v↵1+1 . . . vn and (v↵1 , v↵1+1) 2 E(T )}.

We also have: B0
X \B00

X = ;, and BX = B0
X [B00

X , thus

| BX |=| B0
X | + | B00

X | .

Define the two following sets:

EX(�↵1, . . . ,�↵s+1) = {E = v1 . . . v↵1v↵1+1vn 2 ET (�↵1, . . . ,�↵s+1); {v1, . . . , v↵1} = X},

EX(�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1) =

{E = v1 . . . v↵1v↵1+1vn 2 ET (�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1); {v1, . . . , v↵1} = X}.
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Similarly as before, we can prove that

| B0
X |=| EX(�↵1, . . . ,�↵s+1) |,

| B00
X |=| EX(�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1) |,

Hence

| BX |=| EX(�↵1, . . . ,�↵s+1) | + | EX(�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1) | .

On the other hand, we have that | AX |= eX(↵1�1).eT 0(↵2, . . . ,↵s+1), and | BX |= eX(�↵1+

1).eT 0(�↵2, . . . ,�↵s+1), but since we have here less than s + 1 blocks, thus by induction,

eX(↵1 � 1) = eX(�↵1 + 1) and eT 0(↵2, . . . ,↵s+1) = eT 0(�↵2, . . . ,�↵s+1), As a result we get:

| AX |=| BX | .

Moreover, 8 � = (↵1, . . . ,↵s+1) or (↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) or (�↵1, . . . ,�↵s+1) or

(�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1), we have:

ET (�) = tX✓V (T );|X|=↵1
EX(�).

(The union is disjoint since if X 6= X 0, any two enumerations E and E0 of the vertices of X

and X 0 respectively, differ).

Since | AX |=| BX |, then

| EX(↵1, . . . ,↵s+1) | + | EX(↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) |

=| EX(�↵1, . . . ,�↵s+1) | + | EX(�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1) | .

Doing the summation over all the sets X ✓ V (T ), | X |= ↵1, we have:

X

X✓V (T );|X|=↵1

| EX(↵1, . . . ,↵s+1) | +
X

X✓V (T );|X|=↵1

| EX(↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) |

=
X

X✓V (T );|X|=↵1

| EX(�↵1, . . . ,�↵s+1) | +
X

X✓V (T );|X|=↵1

| EX(�↵1+1,�↵2+1,�↵3, . . . ,�↵s+1) |,

thus,

| ET (↵1, . . . ,↵s+1) | + | ET (↵1 � 1,↵2 � 1,↵3, . . . ,↵s+1) |

=| ET (�↵1, . . . ,�↵s+1) | + | ET (�↵1 + 1,�↵2 + 1,�↵3, . . . ,�↵s+1) |,
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And this implies that

eT (↵1, . . . ,↵s+1) + eT (↵1 � 1,↵2 � 1,↵3 . . . ,↵s+1)

= eT (�↵1, . . . ,�↵s+1) + eT (�↵1 + 1,�↵2 + 1,�↵3. . . . ,�↵s+1).

But by induction, since ↵1 � 1 < ↵1, we have that

eT (↵1 � 1,↵2 � 1,↵3 . . . ,↵s+1) = eT (�↵1 + 1,�↵2 + 1,�↵3. . . . ,�↵s+1),

So we finally get

eT (↵1, . . . ,↵s+1) = eT (�↵1, . . . ,�↵s+1),

which concludes the proof.

That way, we showed that every tournament and its complement contain the same number of

oriented Hamiltonian paths of any given type.

2.2 Oriented cycles and generating paths

Let T be a tournament. In this section we find a relation between fT (↵), gT (�) and gT (�
0),

where P (↵) is some type of oriented Hamiltonian paths in T , and C(�) and C(�0) are the

two types of cycles that can be generated by a path of type P (↵) in the tournament T , (see

Remark 1.3.18), and this result will be of great use in the next section.

We first start by the following theorem:

Theorem 2.2.1. Let P 2 PT (↵) be an oriented Hamiltonian path in a tournament T and let

CP be the cycle generated by P in T , of type C(�), such that CP has at least 2 blocks (i.e. CP

is not a circuit). Then if CP is non-symmetric, we have |P |= t(�), while if CP is symmetric,

then |P |= 2.t(�), where P is the equivalence class of P with respect to R↵.

Example 2.2.2. The following cycle C is of type C(�) = C(1,�2, 1,�2, 1,�2) with t(�) = 3:

v1 v2

v3

v4

v5v6v7

v8

v9
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The path v3v4 . . . v9v1v2 generates C and is of type P (↵) = P (�1, 1,�2, 1,�2, 1). The paths

v6 . . . v9v1 . . . v5 and v9v1 . . . v8 are the only other paths generating C of type P (↵). We have

in total t(�) paths of type P (↵) generating C.

The following cycle C 0 is of type C(�) = C(�2, 1,�2, 2,�1, 2) with t(�) = 1, and it is

symmetric:

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

The path v9v10v1 . . . v8 generates C 0 and is of type P (↵) = P (�2, 1,�2, 2,�1, 1). The path

v9v8 . . . v1v10 is the only other path of type P (↵) generating C 0. We have in total 2.t(�) paths

of type P (↵) generating C 0.

In [12], one actually proved that if CP is non-symmetric, then |P |= t(�). In the following,

we will present arguments useful for both the symmetric and the non-symmetric types.

Remark 2.2.3. If P 2 PT (↵) is an oriented Hamiltonian path in a tournament T of order n,

and CP the cycle generated by P in T , such that CP is a Hamiltonian circuit, then |P |= n,

where P is the equivalence class of P with respect to R↵.

In fact, since CP is a circuit, then P must be a directed path, also every Hamiltonian circuit is

generated by exactly n directed Hamiltonian paths, starting each from a vertex of CP . Note

that if CP is a circuit, say of type C(�), (� in this case has 1 component), then t(�) = 1.

In order to prove Theorem 2.2.1, we first give the three following lemmas:

Lemma 2.2.4. Let T be a tournament of order n, and let C = v1v2 . . . vn be a Hamiltonian

cycle in T . Then C is symmetric if and only if 8 1  i  n, and for every Hamiltonian path

P = vivi+1 . . . vnv1 . . . vi�1, there exists 1  i0  n such that P = vivi+1 . . . vnv1 . . . vi�1 and

P 0 = vi0vi0�1 . . . v1vnvn�1 . . . vi0+1 have the same type with respect to these enumerations.

Proof. For the necessary condition, since C is symmetric, we can suppose without loss of

generality that C = v1v2 . . . vn is of type C(�1,�2, . . . ,�s) = I1I2 . . . Is with respect to this
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enumeration, where � is symmetric. We have | Ij |=| �j |, and let end(Ij) = {xj , yj}, 8
1  j  s.

Suppose that vi 2 Ij , for some 1  j  s, and suppose without loss of generality that �j > 0,

(the case �j < 0 is similar).

Let i0 = n � (i � 2), (assuming that if i = 1, i0 = n + 1 simply denotes i0 = 1), so

P 0 = vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1. We will show that this value of i0 satisfies

the necessary condition.

In fact, let x = l(Ij[xj ,vi]), then the path P = vivi+1 . . . vnv1 . . . vi�1 is of type P (�j �
x,�j+1, . . . ,�s,�1, . . . ,�j�1, x� 1) with respect to this enumeration.

Since � is symmetric, then (�1,�2, . . . ,�j) = (��s,��s�1, . . . ,��s�(j�1)), so |�i| = |�s�i+1| 8
1  i  j, and since l(C[v1v2...vi]) = l(C[v1vnvn�1...vn�(i�2)]), we deduce that vn�(i�2) 2 Is�(j�1)

and l(Ij[xj ,vi]) = l(Is�(j�1)[ys�(j�1),vn�(i�2)]) = x.

As a result, the path P 0 = vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1 is of type P (��s�(j�1) �
x,��s�(j�1)�1, . . . ,��1,��s, . . . ,��s�(j�1)+1, x� 1) with respect to this enumeration.

But (�1,�2, . . . ,�s) = (��s,��s�1, . . . ,��1) (since � is symmetric), so we finally get P 0 =

vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1 is of type P (�j � x,�j+1, . . . ,�s,�1, . . . ,�j�1, x� 1)

with respect to this enumeration.

For the sufficient condition, suppose to the contrary that C is non-symmetric but 8 1  i  n,

and for every Hamiltonian path P = vivi+1 . . . vnv1 . . . vi�1, there exist some i0, 1  i0  n,

such that P = vivi+1 . . . vnv1 . . . vi�1 and P 0 = vi0vi0�1 . . . v1vnvn�1 . . . vi0 have the same type

with respect to these enumerations.

Suppose without loss of generality that vi 2 I1, and that �1 > 0. (The case �1 < 0 is similarly

treated). P = vivi+1 . . . vnv1 . . . vi�1 is of type P (�1 � x,�2, . . . ,�s, x � 1) with respect to

this enumeration, for some 0  x  �1. Thus P 0 = vi0vi0�1 . . . v1vn . . . vi0+1 has the type

P (�1�x,�2, . . . ,�s, x� 1) with respect to this enumeration. But the vertex vi0 belongs to C,

thus vi0 belongs to a block Ij of C of length | �j |, then P 0 = vi0vi0�1 . . . v1vn . . . vi0+1 is of type

P (��j � y,��j�1, . . . ,��1,��s, . . . ,��j+1, y � 1) with respect to this enumeration, where

��j > 0 in this case (since we should have �1 = ��j � y and �1 > 0), and 0  y  ��j .

We get (�1 � x,�2, . . . ,�s, x � 1) = (��j � y,��j�1, . . . ,��1,��s, . . . ,��j+1, y � 1), thus

x� 1 = y � 1 so x = y. As a result, we have:

(�1 � x,�2, . . . ,�j ,�j+1, . . . ,�s, x� 1) = (��j � x,��j�1, . . . ,��1,��s, . . . ,��j+1, x� 1).

(2.1)

Equation (2.1) implies that �1 � x = ��j � x and 8 2  p  j, �p = ��j�(p�1), thus 8
1  p  j, �p = ��j�(p�1), that is �0 = (�1,�2, . . . ,�j) = (��j ,��j�1, . . . ,��1), which

means that �0 is symmetric, and we can write �0 as (�1,�2, . . . ,� j

2
,�� j

2
, . . . ,��2,��1).

Also, equation (2.1) implies that 8 1  p0  s � j, �j+p0 = ��s�(p0�1), that is �00 =
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(�j+1, . . . ,�s�1,�s) = (��s,��s�1, . . . ,��j+1), which means that �00 is symmetric, and we

can write �00 as (��s,��s�1, . . . ,�� s�j

2
,� s�j

2
, . . . ,�s�1,�s). So finally we have:

(�1,�2, . . . ,�j ,�j+1, . . . ,�s) = (�1,�2, . . . ,� j

2
,�� j

2
, . . . ,��2,��1,��s,��s�1,

. . . ,�� s�j

2
,� s�j

2
, . . . ,�s�1,�s),

which is the type of the cycle C. If we consider

�⇤ = (�� j

2
, . . . ,��2,��1,��s,��s�1, . . . ,�� s�j

2
,� s�j

2
, . . . ,�s�1,�s,�1,�2, . . . ,� j

2
),

�⇤ is symmetric, and is also a type of the cycle C, thus C is symmetric, which leads to a

contradiction since C is non-symmetric.

Let T be a tournament of order n, and let C be a Hamiltonian cycle in T , such that

C = v1v2 . . . vn is of type C(�) with respect to this enumeration, where � is symmetric.

We know by the proof of the necessary condition of Lemma 2.2.4 that 8 1  i  n, the Hamil-

tonian paths P = vivi+1 . . . vnv1 . . . vi�1 and P 0 = vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1

have the same type with respect to these enumerations.

Let A be the set of all paths in T that generate the cycle C, have the form vivi+1 . . . vnv1 . . . vi�1

and are of a certain type P (↵) with respect to this enumeration, and let B be the set of all

paths that generate C, have the form vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1 and also have

the type P (↵) with respect to this enumeration.

Lemma 2.2.5. We have A \ B = ;, and |A| = |B|.

Proof. Suppose to the contrary that 9 P 2 A\B. Since P 2 A, then 9 1  i  n such that P =

vivi+1 . . . vnv1 . . . vi�2vi�1 and is of type P (↵) = P (↵1, . . . ,↵s) with respect to this enumera-

tion. Since P 2 B also, then P = vi�1vi�2 . . . v1vn . . . vi+1vi is of type P (↵) = P (↵1, . . . ,↵s)

with respect to this enumeration, which means that P = vivi+1 . . . vnv1 . . . vi�2vi�1 is of type

P (�↵) = P (�↵s, . . . ,�↵1). Thus, (↵1, . . . ,↵s) = (�↵s, . . . ,�↵1) which means that ↵ is

symmetric. But, since C = CP , and since P has the type P (↵) where ↵ is symmetric, then

the cycle C cannot be symmetric by Remark 1.3.19, thus � cannot be symmetric, which leads

to a contradiction since � is symmetric.

For the second part, consider the correspondence f : A �! B, such that for every P =

vivi+1 . . . vnv1 . . . vi�1 of type P (↵) with respect to this enumeration in A, corresponds the

path P 0 = vn�(i�2)vn�(i�2)�1 . . . v1vn . . . vn�(i�2)+1, which belongs to B since it is of type

P (↵) with respect to this enumeration, by Lemma 2.2.4. The correspondence f is trivially a

bijective mapping, so |A| = |B| which concludes the proof.

The last lemma is a result that was proven implicitely in [12]:
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Lemma 2.2.6. Let P = v1v2 . . . vn and P
0

= vivi+1 . . . vnv1 . . . vi�1 be two distinct oriented

Hamiltonian paths in a tournament T of order n, that generate a cycle C = CP = CP
0 in T .

Then P and P 0 have the same type with respect to these enumerations if and only if v1 and

vi are clones.

We may now give the proof of Theorem 2.2.1:

Proof. The set P contains P as well as the paths P
0

in T that have the same type as the type

of P and such that CP 0 = CP . Let CP = v1v2 . . . vn such that CP is of type C(�), with respect

to this enumeration and P = vivi+1 . . . vnv1 . . . vi�1 for some 1  i  n. If we consider all

the paths P 0 having the form vjvj+1 . . . vnv1 . . . vj�1, and that have the same type as P with

respect to these enumerations, and such that CP = CP 0 , then by Lemma 2.2.6, the number

of such paths is exactly the number of clones that an end of P could have, that is t(�)� 1.

Let A be the set of paths that generate CP and have the same type as the type of P , following

the order v1v2 . . . vn of the vertices, and B be the set of paths that generate CP and have the

same type as the type of P , following the order v1vn . . . v2 of the vertices. We have | A |= t(�).

Now we need to count the number of paths in B.

If CP is non-symmetric, then by Lemma 2.2.4, 81  i  n, the path P 0 = vivi�1 . . . v1vn . . . vi+1

cannot have the same type of P with respect to this enumeration, thus the set B is empty.

As a result, | P |=| A |= t(�).

If the cycle CP is symmetric, (we may suppose w.l.o.g. that CP = v1v2 . . . vn is of type C(�)

with respect to this enumeration, where � is symmetric) then by Lemma 2.2.4, the set B is

non empty, and by Lemma 2.2.5 we have that | A |=| B | and that the sets A and B are

disjoint, thus we deduce that | P |=| A | + | B |= t(�) + t(�) = 2.t(�).

This concludes our proof.

Note that all of the above results of this section are true for any oriented paths and cycles

that are not necessarily Hamiltonian, since any path or cycle defines a set of vertices, and

hence a subtournament in which the path and the cycle are Hamiltonian.

The following lemma, proved in [12], is of practical use in the following theorem:

Lemma 2.2.7. [12] Let ↵1,↵2, . . . ,↵s, �1, . . . ,�s 2 Z.

If (↵1,↵2, . . . ,↵s) = (�i,�i+1, . . . ,�s,�1, . . . ,�i�1), then for any non negative integer k, we

have

↵ks = �[k+i�1]s .

Proof. ↵ks = ↵p for some p ⌘ k (mod s), 1  p  s. If p  s � i + 1, then ↵p = �p+i�1.

Thus, ↵ks = ↵p = �p+i�1 = �[k+i�1]s . If p � s � i + 2, then ↵p = �p�s+i�1. Hence

↵ks = ↵p = �p�s+i�1 = �[p+i�1]s = �[k+i�1]s .
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Remark 2.2.8. We saw in the second case of Remark 1.3.18 that if ↵ = (↵1, . . . ,↵s) 2 Ks, s

is odd, T is a tournament of order n =
sP

i=1
| ↵i | +1, and P a Hamiltonian path of type P (↵)

in T , then the two types of cycles that can be generated by P have either s�1 or s+1 blocks.

So if we call C(�) and C(�0) these two types, then obviously, the sets CT (�) and CT (�
0) are

different. Remark also that when s is odd, ↵ is always not symmetric, because we can’t have

↵1 = �↵s since ↵1 and ↵s have the same sign.

However, when s is even, it’s a completely different story. We have the following result:

Theorem 2.2.9. Let ↵ = (↵1, . . . ,↵s) 2 Ks, and T a tournament of order n =
sP

i=1
| ↵i | +1.

We have:

CT (�) = CT (�
0) () ↵ is symmetric,

where C(�) and C(�0) are the two types of Hamiltonian cycles in T that can be generated by

a Hamiltonian path of type P (↵) in T .

Proof. The case where s is odd being completely settled by Remark 13, we may assume that

s is even.

By the first case of Remark 1.3.18, if ↵1 > 0, then � = (�1,�2, . . . ,�s) = (↵1 + 1,↵2, . . . ,↵s)

and �0 = (�0
1,�

0
2, . . . ,�

0
s) = (↵1, . . . ,↵s�1,↵s� 1), while if ↵1 < 0, then � = (�1,�2, . . . ,�s) =

(↵1 � 1,↵2, . . . ,↵s) and �0 = (�0
1,�

0
2, . . . ,�

0
s) = (↵1, . . . ,↵s�1,↵s + 1).

We will treat the case where ↵1 > 0, and the other case is similar.

For the sufficient condition, suppose that ↵ is symmetric, thus ↵ = (↵1, . . . ,↵s) = (�↵s, . . . ,�↵1),

which implies that CT (�) = CT (↵1 + 1, . . . ,↵s) is equal to CT (�↵s + 1, . . . ,�↵1). Moreover,

this set is equal to the set CT (�
0) = CT (↵1, . . . ,↵s � 1), thus CT (�) = CT (�

0).

For the necessary condition, suppose that CT (�) = CT (�
0), i.e. CT (↵1 + 1,↵2, . . . ,↵s) =

CT (↵1, . . . ,↵s�1,↵s�1). Thus, since ↵1 is different from ↵1+1 and �↵1�1, then (↵1, . . . ,↵s�
1) is equal to one of these tuples:

1. (↵i,↵i+1, . . . ,↵s,↵1 + 1,↵2 . . . ,↵i�1) for some 2  i  s

2. (�↵i,�↵i�1, . . . ,�↵2,�↵1 � 1,�↵s, . . . ,�↵i+1) for some 2  i  s

Suppose that the first case is true, i.e. (↵1, . . . ,↵s�1) = (↵i,↵i+1, . . . ,↵s,↵1+1,↵2 . . . ,↵i�1) =

(�i,�i+1, . . . ,�s,�1,�2 . . . ,�i�1) for some 2  i  s.

First observe that

�[i]s =

(
↵[i]s

if 1 < i  s

↵1 + 1 if i = 1
.
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We have: ↵1 = ↵1s = �[1+i�1]s
(by Lemma 2.2.7) = ↵[1+i�1]s

(since otherwise we get ↵1 =

↵1 + 1 which is a contradiction) = �[1+2(i�1)]s
(also by Lemma 2.2.7) = ↵[1+2(i�1)]s

(also so

that we don’t get ↵1 = ↵1 +1, a contradiction). And so on, we may prove by induction that

↵1 = ↵[1+k(i�1)]s
, 8 k 2 N

⇤, 8 i � 2. (2.2)

Now, observe that ↵1 = ↵i, ↵2 = ↵i+1, . . . , ↵s�i+1 = ↵s and ↵s�i+2 = ↵1 + 1.

Moreover, we can write s� i+ 2 = 1+ k0(i� 1) + �.s = [1 + k0(i� 1)]s, with k0 = s� 1 2 N
⇤

and � = 2� i 2 Z.

It follows that ↵s�i+2 = ↵[1+k0(i�1)]s
= ↵1 by (2.2). But ↵s�i+2 = ↵1 + 1, thus we reach a

contradiction. So the first case cannot occur.

Consider the second case. First suppose that i 6= s. We have ↵1 = �↵i for some 2  i  s�1,

↵2 = �↵i�1, ↵3 = �↵i�2, . . . , ↵i�1 = ↵i�((i�1)�1) = �↵2 and ↵i = �↵1 � 1. Thus ↵1 =

�↵i = ↵1+1 and we reach a contradiction. So the second case is impossible for 2  i  s�1.

If i = s, we have ↵1 = �↵s, ↵2 = �↵s�1, ↵3 = �↵s�2 . . . , ↵s�1 = �↵s�((s�1)�1) = �↵2 and

↵s � 1 = �↵1 � 1 which also means that ↵s = �↵1. Thus (↵1, . . . ,↵s) = (�↵s, . . . ,�↵1) and

as a result ↵ is symmetric.

Let � = (�1,�2, . . . ,�s) 2 Z
s; s is even, and �i�i+1 < 0 8 i = 1, . . . , s� 1. Then 8 1  i  s,

define �i ⇤ 1 as:

�i ⇤ 1 =

(
�i � 1 if �1 > 0

�i + 1 if �1 < 0

We are now ready to give the relation linking between the number of oriented Hamiltonian

paths of some type P (↵) in T and the number of oriented Hamiltonian cycles of types C(�)

and C(�0) in T :

Theorem 2.2.10. Let T be a tournament of order n, and (�1, . . . ,�s) 2 K
0
s, s even, and

sP
i=1

|�i |= n. Then:

If (�1 ⇤ 1,�2, . . . ,�s) is symmetric, we have:

fT (�1 ⇤ 1,�2, . . . ,�s) = gT (�1,�2, . . . ,�s).t(�1,�2, . . . ,�s).

Otherwise, we have:

fT (�1 ⇤ 1,�2, . . . ,�s) = �(�1,�2, . . . ,�s).gT (�1,�2, . . . ,�s).t(�1,�2, . . . ,�s)

+�(�1 ⇤ 1,�2, . . . ,�s ⇤ 1).gT (�1 ⇤ 1,�2, . . . ,�s ⇤ 1).t(�1 ⇤ 1,�2, . . . ,�s ⇤ 1)
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where �(�) =

8
><
>:

1 if � notsymmetric and is not a circuit

2 if � is symmetric
n

t(�) if � is a circuit

Proof. In order to prove this theorem, let us compute fT (�1 ⇤ 1, . . . ,�s).
Consider the set PT (�1 ⇤ 1,�2, . . . ,�s) and let P = x1 . . . xn be an element of this set. CP

is either of type C(�1, . . . ,�s) or of type C(�1 ⇤ 1,�2, . . . ,�s ⇤ 1) whether (xn, x1) or (x1, xn)

2 E(T ).

Let CT (�) = {C1, . . . , Ct} be the set of cycles of type C(�1, . . . ,�s) in T , and let CT (�
0) =

{C 0
1, . . . , C

0
r} be the set of cycles of type C(�1 ⇤ 1,�2, . . . ,�s ⇤ 1) in T .

We have two cases to consider:

1. (�1 ⇤ 1,�2, . . . ,�s) is symmetric (which implies that s is even).

Then by Theorem 2.2.9, CT (�) = CT (�
0). Hence we only have to consider one of them,

say CT (�), to avoid counting the same cycle twice in the following step.

Let CT (�) = {C1, C2, . . . , Ct}. We have that for all Ci 2 CT (�), there exists a subclass

Xi of PT (�1 ⇤ 1,�2, . . . ,�s) with respect to R(�1⇤1,�2,...,�s) such that every path in Xi

generates Ci. Thus, by Theorem 2.2.1,

| Xi |=| P |= t(�)

for some P 2 Xi, since if (�1 ⇤ 1,�2, . . . ,�s) is symmetric, none of � or �0 can be

symmetric, nor a circuit. Hence,

fT (�1 ⇤ 1,�2, . . . ,�s) =
tX

i=1

| Xi | =
tX

i=1

t(�)

= t.t(�) = | CT (�) | .t(�)

= gT (�).t(�).

2. (�1 ⇤ 1,�2, . . . ,�s) is not symmetric.

Then by Theorem 2.2.9, CT (�) 6= CT (�
0), thus CT (�) \ CT (�

0) = ; (because the sets of

every type of Hamiltonian cycles form a partition of the set of all oriented Hamiltonian

cycles in T ).

We have that for all Ci 2 CT (�), there exists a subclass Xi of PT (�1 ⇤1,�2, . . . ,�s) with

respect to R(�1⇤1,�2,...,�s) such that every path in Xi generates Ci. Thus by Theorem

2.2.1, and Remark 2.2.3, | Xi |=| P |= t(�) or n or 2.t(�) for some P 2 Xi, whether �

is not symmetric and is not a circuit, is a circuit, or is symmetric, so

| Xi |=| P |= �(�).t(�).
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Similarly, 8 C 0
j 2 CT (�

0), 9 a subclass X 0
j of PT (�1 ⇤ 1,�2, . . . ,�s) with respect to

R(�1⇤1,�2,...,�s) such that every path in X 0
j generates C 0

j . Thus

| X 0
j |=| P 0 |= �(�0).t(�0),

for some P 0 2 X 0
j . Hence,

fT (�1 ⇤ 1,�2, . . . ,�s) =
tX

i=1

| Xi | +
rX

j=1

| X 0
j |

=
tX

i=1

�(�).t(�) +
rX

j=1

�(�0).t(�0)

= t.�(�).t(�) + r.�(�0).t(�0)

= | CT (�) | .�(�).t(�)+ | CT (�
0) | .�(�0).t(�0)

= gT (�).�(�).t(�) + gT (�
0).�(�0).t(�0),

and this concludes our proof.

Moreover, for the case when the type of oriented paths in a tournament T is symmetric, we

have the following property:

Theorem 2.2.11. Let ↵ = (↵1, . . . ,↵s) 2 Ks, ↵ symmetric, and T a tournament of order

n =
sP

i=1
| ↵i | +1. Let P be a Hamiltonian path in T of type P (↵) and CP 2 CT (�). Then we

have:

t(�) = 1.

Proof. Suppose that ↵1 > 0. Since ↵ is symmetric, then s is even, and by Theorem 2.2.9, we

can assume that CP 2 CT (↵1+1, . . . ,↵s) = CT (�). If ↵1 < 0, then also by Theorem 2.2.9, we

can assume that CP 2 CT (↵1 � 1, . . . ,↵s), but we will treat the case ↵1 > 0, and the other

case is similar.

Since ↵ is symmetric then ↵ = (↵1,↵2, . . . ,↵l,�↵l, . . . ,�↵2,�↵1) where l = s
2 , and � =

(↵1 + 1,↵2, . . . ,↵l,�↵l, . . . ,�↵2,�↵1).

Set r0 = r(�), we have t(�) = s
r0 . Suppose to the contrary that t(�) > 1.

We have 2 cases:

1. t(�) is even. Set t(�) = 2k, thus � is divided into 2k tuples (�1, . . . ,�r0).

Set a be the first component of the first tuple, we have a = ↵1 + 1. Set b be the last

component of the last tuple (2kth tuple), we have b = �↵1.

Since r0 is a period, then the first component a0 of the (k+1)th tuple is equal to a, and
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the last component b0 of the kth tuple is equal to b.

But since ↵ is symmetric, a0 = �b0 because a0 = ↵l and b0 = �↵l. Thus a = �b which

implies that ↵1 + 1 = �(�↵1) = ↵1 and this leads to a contradiction. So t(�) cannot

be even.

2. t(�) is odd. Set t(�) = 2k + 1, k � 1, thus � is divided into 2k + 1 tuples (�1, . . . ,�r0),

by noting that the (k + 1)th tuple takes the form (�1, . . . ,� r0

2

,�� r0

2

, . . . ,��1) where

� r0

2

= ↵l, since ↵ is symmetric. Thus it is symmetric. (Obviously all the other 2k tuples

have this form since they are all equal).

Set a be the first component of the first tuple, we have a = ↵1 + 1. Set b be the last

component of the last tuple ((2k + 1)th tuple), we have b = �↵1.

Since r0 is a period, then the first component a0 of the (k+1)th tuple is equal to a, and

the last component b0 of the (k + 1)th tuple is equal to b.

But since the (k + 1)th tuple is symmetric, a0 = �b0. Thus a = �b which implies that

↵1 + 1 = �(�↵1) = ↵1 and this leads to a contradiction. So T (�) cannot be an odd

integer strictly greater than 1.

Thus we conclude that t(�) = 1.

And finally, with the same hypothesis of Theorem 2.2.10, we can deduce the following:

Corollary 2.2.12. If (�1 ⇤ 1,�2, . . . ,�s) is symmetric, Then:

fT (�1 ⇤ 1,�2, . . . ,�s) = gT (�1,�2, . . . ,�s)

Proof. The result follows immediately from Theorem 2.2.10 and Theorem 2.2.11.

2.3 OHC in T and T

Based on Theorem 2.2.10, linking between the number of oriented Hamiltonian paths of some

type, and the number of oriented Hamiltonian cycles that can be generated by these paths in

a tournament, we are able to establish the main result of the first section, Theorem 2.1.2, for

oriented cycles:

Theorem 2.3.1. Let ↵ = (↵1, . . . ,↵s) 2 K
0
s, ↵1 � 0, and let T be a tournament of order n;

n =
sP

i=1
| ↵i |. We have:

gT (↵) = gT (�↵).
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Proof. The proof will be done by induction on s.

If s = 1, ↵ = (↵1) = (n) and �↵ = (�↵1) = (�n) and we have gT (n) = gT (�n).

Suppose that the result is true for s � 2 blocks, s > 2, i.e. if ↵ = (↵1, . . . ,↵s�2) 2 Z
s�2;

↵i.↵i+1 < 0, ↵1 � 0, s � 2 is even, and T is a tournament of order n; n =
s�2P
i=1

| ↵i |, we

have: gT (↵) = gT (�↵), and let’s prove the result for s blocks. Let ↵ = (↵1, . . . ,↵s) 2 Z
s;

↵i.↵i+1 < 0, ↵1 � 0, and let T be a tournament of order n; n =
sP

i=1
| ↵i |. We argue by

induction on ↵1.

If ↵1 = 0, then by induction, gT (↵) = gT (0,↵2, . . . ,↵s) = gT (↵2 + ↵s,↵3, . . . ,↵s�1) =

gT (�↵2 � ↵s,�↵3, . . . ,�↵s�1) = gT (0,�↵2,�↵3, . . . ,�↵s�1,�↵s) = gT (�↵).

So suppose that the result is true when the first block is of length ↵1 � 1, and let’s prove it

when the first block is of length ↵1.

We will consider two cases:

1. The tuple (↵1 � 1,↵2, . . . ,↵s) is not symmetric.

We have ↵1 � 1 � 0, thus by Theorem 2.2.10,

fT (↵1 � 1,↵2, . . . ,↵s) = �(↵1, . . . ,↵s).t(↵1, . . . ,↵s).gT (↵1, . . . ,↵s)

+�(↵1 � 1,↵2, . . . ,↵s�1,↵s � 1).t(↵1 � 1,↵2, . . . ,↵s�1,↵s � 1)

.gT (↵1 � 1,↵2, . . . ,↵s�1,↵s � 1)

= �(�1).t(�1).gT (�1) + �(�0
1).t(�

0
1).gT (�

0
1)

where �(�) =

8
><
>:

1 if � notsymmetric and is not a circuit

2 if � is symmetric
1

t(�) if � is a circuit

Now consider the tuple (�↵1 + 1,�↵2, . . . ,�↵s) which is also not symmetric. We have

�↵1 + 1  0, thus by Theorem 2.2.10,

fT (�↵1 + 1,�↵2, . . . ,�↵s) = �(�↵1, . . . ,�↵s).t(�↵1, . . . ,�↵s).gT (�↵1, . . . ,�↵s)

+�(�↵1 + 1,�↵2, . . . ,�↵s + 1).t(�↵1 + 1,�↵2, . . . ,�↵s + 1)

.gT (�↵1 + 1,�↵2, . . . ,�↵s + 1)

= �(�2).t(�2).gT (�2) + �(�0
2).t(�

0
2).gT (�

0
2)

where �(�) =

8
><
>:

1 if � notsymmetric and is not a circuit

2 if � is symmetric
1

t(�) if � is a circuit

Since (�↵1 + 1,�↵2, . . . ,�↵s) = �(↵1 � 1,↵2, . . . ,↵s), then by Theorem 2.1.2 we have
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fT (↵1 � 1,↵2, . . . ,↵s) = fT (�↵1 + 1,�↵2, . . . ,�↵s). As a result,

�(�1).gT (�1).t(�1) + �(�0
1).gT (�

0
1).t(�

0
1) = �(�2).gT (�2).t(�2) + �(�0

2).gT (�
0
2).t(�

0
2).

But, since �2 = ��1 and �0
2 = ��0

1 thus if �1 is not symmetric and is not a circuit (resp.

is a circuit, or is symmetric), so is �2, and similarly for �0
1 and �0

2, so �(�1) = �(�2), and

�(�0
1) = �(�0

2), and also by Proposition 1.3.22 we have t(�2) = t(�1) and t(�0
2) = t(�0

1).

Moreover, since ↵1 � 1 < ↵1, then by induction gT (�
0
1) = gT (�

0
2), hence we have

gT (�1) = gT (�2).

2. The tuple (↵1 � 1,↵2, . . . ,↵s) is symmetric.

We have ↵1 � 1 � 0, thus by Corollary 2.2.12,

fT (↵1 � 1,↵2, . . . ,↵s) = gT (↵1,↵2, . . . ,↵s).

Now consider the tuple (�↵1 + 1,�↵2, . . . ,�↵s) which is also symmetric. We have

�↵1 + 1  0, thus by Corollary 2.2.12,

fT (�↵1 + 1,�↵2, . . . ,�↵s) = gT (�↵1,�↵2, . . . ,�↵s).

Since by Theorem 2.1.2 we have

fT (↵1 � 1,↵2, . . . ,↵s) = fT (�↵1 + 1,�↵2, . . . ,�↵s),

we get

gT (↵1, . . . ,↵s) = gT (�↵1, . . . ,�↵s).

This concludes the proof.

That way, we showed that a tournament T and its complement T contain the same number

of oriented Hamiltonian cycles of any given type.

2.4 Digraphs of maximal degree ∆  2

After establishing the two results in Theorem 2.1.2 and Theorem 2.3.1 about Hamiltonian

paths and cycles in tournaments, one can go further, generalizing these facts to any digraph

of maximal degree 2, that is: let H be a digraph with maximal degree ∆(G(H))  2, then

fT (H) = fT (H), where fT (H) is the number of copies of the digraph H in a tournament T .
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To this purpose, we first need to prove several lemmas:

Lemma 2.4.1. Let ↵ = (↵1, . . . ,↵s) 2 K
0
s, ↵1 � 0, and let T be a tournament of order n;

n �
sP

i=1
| ↵i | +1. We have:

fT (↵) = fT (�↵).

Proof. Let m =
sP

i=1
| ↵i | +1. Every oriented path in T of type P (↵) is a Hamiltonian

path of type P (↵) contained in a subtournament T 0 of T of order m. By Theorem 2.1.2,

fT 0(↵) = fT 0(�↵). Moreover, if we consider another subtournament T 00 of T , of order m,

T 00 6= T 0, then PT 0(↵)\PT 00(↵) = ;, because every Hamiltonian path in T 0 differs with a least

one vertex from every Hamiltonian path in T 00.

So let V (T ) =
S

X✓V (T ), |X|=m

X, we have:

fT (↵) =
X

X✓V (T ), |X|=m

fhXi(↵) =
X

X✓V (T ), |X|=m

fhXi(�↵) = fT (�↵),

and we get our result.

Similarly, we may prove the same result for cycles in tournaments:

Lemma 2.4.2. Let ↵ = (↵1, . . . ,↵s) 2 K
0
s, ↵1 � 0, and let T be a tournament of order n;

n �
sP

i=1
| ↵i |. We have:

gT (↵) = gT (�↵).

Lemma 2.4.3. Let T be a tournament, and let H be a digraph with ∆(G(H))  2 and such

that its connected components are mutually isomorphic. Then the number of copies of H in

T and that in its complement T are the same.

Proof. Since H is a digraph with ∆(G(H))  2 and such that its connected components are

isomorphic, then H = H1 [H2 [ · · ·[Hr where the digraphs Hi, 1  i  r, are its connected

components, with |Hi| = m 8 1  i  r, and such that they are either all paths of the same

type, say P (↵), or all cycles of the same type, C(�). If T contains a copy of H, then since the

digraphs Hi, 1  i  r, are disjoint, the copy of every digraph Hi is a spanning subdigraph of

a subtournament Ti of T , such that the subtournaments Ti, 1  i  r, are also disjoint, with

|V (Ti)| = m 8 1  i  r.
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Let’s consider r disjoint subtournaments of T , Ti , 1  i  r, all of order m, and sup-

pose that T contains a copy of H such that 8 1  i  r, Hi has a copy in Ti. As fTi
(Hi)

denotes the number of copies of Hi in the subtournament Ti, then the number of copies of H

in T , such that the copy of Hi is a spanning subdigraph of Ti, is:

rY

i=1

fTi
(Hi)

Now if we consider any permutation � of the subtournaments Ti, and since all the digraphs

Hi are isomorphic, then 8 1  i  r, if Hi has a copy in Ti, then Hi also has a copy in T�(i).

But, also since all the digraphs Hi are isomorphic, then the copies of H obtained in T such

that the copy of each Hi is a spanning subdigraph of Ti are the same as the ones obtained in

T such that the copy of each Hi is a spanning subdigraph of T�(i).

Let’s compute fT (H), the total number of copies of H in T .

Let L = {(T1, T2, . . . , Tr); Ti subtournament of T 8 1  i  r, Ti \ Tj = ; 8 1  i, j  r,

|V (Ti)| = m}. We have:

fT (H) =
X

(T1,T2,...,Tr)2L

Qr
i=1 fTi

(Hi)

r!

However, by Lemma 2.4.1 and Lemma 2.4.2, we have that 8 1  i  r,

fTi
(Hi) = fTi

(Hi).

So let L0 = {(T1, T2, . . . , Tr); Ti subtournament of T 8 1  i  r, Ti \ Tj = ; 8 1  i, j  r,

|V (Ti)| = m}, we get:

fT (H) =
X

(T1,T2,...,Tr)2L

Qr
i=1 fTi

(Hi)

r!
=

X

(T1,T2,...,Tr)2L0

Qr
i=1 fTi

(Hi)

r!
= fT (H),

and the result follows.

We may now give our theorem:

Theorem 2.4.4. Let T be a tournament and let H be a digraph with ∆(G(H))  2. Then

the number of copies of H in T and its complement T is the same.

Proof. Since ∆(G(H))  2, then H is a disjoint union of directed paths and cycles. Write H

as H =
St

i=1H
i, where each H i is a subdigraph of H whose all connected components are

isomorphic, and which is maximal with this property. The connected components of each H i
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are either all paths of the same type or cycles of the same type. Note that the digraphs H i,

1  i  t, are disjoint, and non-isomorphic.

If T contains a copy of H, then since the digraphs H i, 1  i  t, are disjoint, the copy of

every digraph H i is a spanning subdigraph of a subtournament T i of T , and such that the

subtournaments T i, 1  i  t, are also disjoint, with |V (T i)| = |V (H i)| 8 1  i  t.

As we did in the previous lemma, let’s consider t disjoint subtournaments of T , T i , 1  i  t,

and such that |V (T i)| = |V (H i)|, and suppose that T contains a copy of H such that 8
1  i  t, H i has a copy in T i. The number of copies of H in T , such that the copy of H i is

a spanning subdigraph of T i, is:
tY

i=1

fT i(H i)

However, if we consider any permutation � of the subtournaments T i, and since all the di-

graphs H i are non-isomorphic, then if T contains a copy of H such that 8 1  i  t, H i has

a copy in T �(i), the copies of H obtained in T such that the copy of each H i is a spanning

subdigraph of T i are all different from those obtained in T such that the copy of each H i is

a spanning subdigraph of T �(i).

Let’s compute the total number of copies of H in T , fT (H).

Let L = {(T 1, T 2, . . . , T t); T i subtournament of T 8 1  i  t, T i \ T j = ; 8 1  i, j  t,

|V (Ti)| = |V (H i)|}. We have:

fT (H) =
X

(T 1,T 2,...,T t)2L

tY

i=1

fT i(H i)

However, by Lemma 2.4.3, since the connected components of each digraph H i are isomor-

phic, we have that 8 1  i  t, fT i(H i) = f
T i(H

i).

So let L0 = {(T 1, T 2, . . . , T t); T i subtournament of T 8 1  i  t, T i \ T j = ; 8 1  i, j  t,

|V (T i)| = |V (H i)|}, we get:

fT (H) =
X

(T 1,T 2,...,T t)2L

tY

i=1

fT i(H i) =
X

(T 1,T 2,...,T t)2L0

tY

i=1

f
T i(H

i) = fT (H),

hence:

fT (H) = fT (H),

and this concludes the proof.
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Remark 2.4.5. Let T be a tournament on n+ 1 vertices, formed by a directed n-cycle C =

v1v2 . . . vn, with its internal edges, where these edges may have any orientations, and a vertex v

of in-degree equal to zero (a source), adjacent to the n vertices of the cycle (d+T (v) = n). Then

the complement T of this tournament is formed by a directed n-cycle, C 0 = v1vnvn�1 . . . v2,

and its internal edges which have opposite orientations of those of T hCi, and a vertex v of

out-degree equal to zero (a sink) adjacent to all the vertices of C 0. Also note that since C

and C 0 are directed cycles, then 8 x 2 C, d+T (x)  n� 1 and 8 y 2 C 0, d+
T
(y)  n� 1.

Thus if we consider a digraph H on n+1 vertices, formed by a vertex x and n out-neighbors

of x, which is a digraph of maximal degree ∆(G(H)) = n, the number of copies of H in T is

equal to one, while there are no such copies in T .

To conclude this chapter, and based on the remark above, we ask the following:

Let fT (H) denote the number of copies of a digraph H in a tournament T .

Problem 2.4.6. Can we characterize the set H of all digraphs H such that fT (H) = fT (H)

for any tournament T?
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Chapter 3

A computation of the number of

oriented Hamiltonian paths in

transitive tournaments

In this chapter, we are interested in counting oriented Hamiltonian paths in transitive tour-

naments.

Recall that a tournament T is transitive, denoted by TTn, if there exists an enumeration

of its vertices such that V (T ) = {v1, v2, . . . , vn} and E(T ) = {(vi, vj); i < j}. The vertices v1

and vn are the source and the sink respectively.

As we saw in Chapter 1, the number of directed Hamiltonian paths in TTn is equal to 1,

that is,

fTTn(n� 1) = 1.

Also, since a transitive tournament TTn and its complement are isomorphic, then 8 ↵ =

(↵1,↵2, . . . ,↵s) 2 Ks such that
Ps

i=1 |↵i| = n� 1, we have:

fTTn(↵) = fTTn(�↵).

Moreover, we can easily compute the number of oriented Hamiltonian paths formed of two

blocks in TTn:

Proposition 3.0.1. Let TTn be the transitive tournament on n vertices, and (↵1,↵2) 2 K2,

|↵1| 6= |↵2|. Then we have:

fTTn(↵1,↵2) = C
|↵1|
n�1.
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Proof. Let’s enumerate the vertices of TTn such that V (T ) = {v1, v2, . . . , vn} and E(T ) =

{(vi, vj); i < j}, and suppose without loss of generality that ↵1 > 0 since fTTn(↵) =

fTTn(�↵). Consider a Hamiltonian path P of TTn of type P (↵1,↵2). Since ↵1 > 0 then the

sink vn should be at the end of the first block. Now to construct the first block of P , we have

to choose any ↵1 vertices from the remaining n � 1 vertices. Once the vertices are chosen,

there is only one path P corresponding to this choice: in fact, since TTn is transitive, the

vertices chosen to construct the first block must be aligned in an increasing order of indexes,

and all remaining vertices of TTn should be aligned in a decreasing order of indexes to form

the second block. Hence, the number of paths of type P (↵1,↵2) in TTn is exactly the number

of possible choices of ↵1 vertices among n� 1, that is C
|↵1|
n�1.

Remark 3.0.2. We have fTTn(↵1,�↵1) =
C

|↵1|
n�1

2
.

In fact, following the same construction given in the proof of Proposition 3.0.1, we may re-

mark that if |↵1| = |↵2|, that is if (↵1,↵2) is symmetric, then each constructed path P of type

P (↵1,↵2) is in total counted twice, which clarify the necessity to divide the total number of

paths of type P (↵1,↵1) in TTn by 2.

As we have just noticed, a transitive tournament of order n has an interesting structure,

allowing us to count easily the number of some types of oriented Hamiltonian paths. So we

ask the following question:

Question 3.0.3. Is there a way to compute the exact number of oriented Hamiltonian paths

of any given type, in a transitive tournament?

In this chapter, we will show that it is possible, by defining a combinatorial function that will

allow us to calculate the number of any type of oriented Hamiltonian paths in TTn. We will

also build a program to compute the values of this function, and will reach some interesting

observations.

3.1 The path-function F : computing the number of OHP in

TTn

Let K = {(↵1,↵2, . . . ,↵s) 2 Ks, s 2 N
⇤}.

Let F be the following mapping:

F K �! N

(↵1,↵2, . . . ,↵s) �! F(↵1,↵2, . . . ,↵s),
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defined by the recurrence relation:

F(↵1,↵2, . . . ,↵s) = F(↵1 ⇤ 1,↵2, . . . ,↵s) + F(↵1,↵2 ⇤ 1, . . . ,↵s)

+ · · ·+ F(↵1,↵2, . . . ,↵s ⇤ 1)

where ↵i ⇤ 1 = ↵i � 1 if ↵i > 0 and ↵i ⇤ 1 = ↵i + 1 otherwise, and satisfying:

1. 8 t 2 N
⇤, F(0,↵2, . . . ,↵t) = F(↵2, . . . ,↵t),

2. 8 t0 2 N
⇤, F(↵1,↵2, . . . ,↵t0 , 0) = F(↵1,↵2, . . . ,↵t0),

3. 8 r 2 N
⇤, F(↵1, . . . ,↵r, 0,↵r+2, . . . ,↵s) = F(↵1, . . . ,↵r + ↵r+2, . . . ,↵s),

4. 8 ↵ 2 Z
⇤, F(↵) = 1.

We call F the path-function.

Theorem 3.1.1. Let TTn be a transitive tournament of order n, and ↵ = (↵1,↵2, . . . ,↵s) 2

Ks such that
sX

i=1

|↵i| = n� 1. Then:

fTTn(↵) =

8
>><
>>:

F(↵) if ↵ is not symmetric,

F(↵)

2
if ↵ is symmetric.

In order to prove this theorem, we need the following:

Definition 3.1.2. Let ↵ = (↵1, . . . ,↵s) in Z
s. For some 1  i  s, we define by ↵i the tuple

(↵1,↵2, . . . ,↵i ⇤ 1,↵i+1, . . . ,↵s), where ↵i ⇤ 1 = ↵i� 1 if ↵i > 0, and ↵i ⇤ 1 = ↵i+1 otherwise.

Proposition 3.1.3. We have the following property:

PT (↵
i) = PT (↵

j) () i = j or ↵j = �↵i.

The proof of this proposition is easy, as it is a direct consequence of Proposition 1.3.5.

Lemma 3.1.4. Let ↵ = (↵1,↵2, . . . ,↵s) 2 Ks, and i,j such that 1  i < j  s. Then:

↵i = �↵j () ↵ is symmetric and i+ j = s+ 1.
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Proof. We have ↵i = (↵1, . . . ,↵i ⇤ 1, . . . ,↵j , . . . ,↵s) and ↵j = (↵1, . . . ,↵i, . . . ,↵j ⇤ 1, . . . ,↵s)

thus �↵j = (�↵s, . . . ,�(↵j ⇤ 1), . . . ,�↵i, . . . ,�↵1).

For the sufficient condition, suppose that ↵ is symmetric and i+j = s+1 and let’s prove that

↵i = �↵j . The ith component of ↵i is ↵i ⇤ 1, and since i+ j = s+ 1, then the ith component

of �↵j is exactly �(↵j ⇤ 1), because the ith component of ↵j is the (s + 1 � i)th component

of ↵j . Moreover, since ↵ is symmetric, then ↵i = �↵s+1�i = �↵j thus if we assume without

loss of generality that ↵i > 0, we have ↵i ⇤ 1 = ↵i+1, then �(↵j ⇤ 1) = �(↵j � 1) = �↵j +1.

Now, again, since ↵ is symmetric, then (↵1,↵2, . . . ,↵s) = (�↵s,�↵s�1, . . . ,�↵1), and using

what preceded, we get (↵1, . . . ,↵i+1, . . . ,↵j , . . . ,↵s) = (�↵s, . . . ,�↵j+1, . . . ,�↵i, . . . ,�↵1)

with �↵j + 1 on the ith position, thus ↵i = �↵j .

For the necessary condition, suppose that ↵i = �↵j . The ith component of ↵i is ↵i ⇤ 1. If

i+j 6= s+1, then the ith component of �↵j is equal to some �↵t, t 6= j. On the other hand, the

(s+1�i)th component of ↵i is ↵t, and the (s+1�i)th component of �↵j is �↵i since ↵i is not

modified in ↵j because i 6= j. As a result, since ↵i = �↵j , we get ↵i ⇤1 = �↵t = �(�↵i) = ↵i

which is a contradiction. So i+j = s+1 which implies that ↵j = �↵i since the jth component

of ↵i is ↵j and the jth component of �↵j is �↵i, and ↵i = �↵j . Thus if we suppose w.l.o.g.

that ↵i > 0, then ↵i ⇤ 1 = ↵i + 1, then �(↵j ⇤ 1) = �(↵j � 1) = �↵j + 1. Since ↵i = �↵j

then (↵1, . . . ,↵i+1, . . . ,↵j , . . . ,↵s) = (�↵s, . . . ,�↵j +1, . . . ,�↵i, . . . ,�↵1) with �↵j +1 on

the ith position (since i + j = s + 1), and as a result (↵1, . . . ,↵s) = (�↵s, . . . ,�↵1) so ↵ is

symmetric which concludes the proof.

Lemma 3.1.5. Let ↵ = (↵1, . . . ,↵s) 2 Ks, we have:

↵i is symmetric ) ↵j is notsymmetric 8 1  j  s, j 6= i.

Proof. Since ↵i is symmetric, then ↵i = �↵i, hence we have (↵1, . . . ,↵i ⇤ 1, . . . ,↵s) =

(�↵s, . . . ,�(↵i ⇤ 1), . . . ,�↵1). Let �↵t be the ith component of �↵i, so ↵i ⇤ 1 = �↵t.

Suppose that 9 j 6= i such that ↵j is symmetric, then ↵j = �↵j , that is, (if we sup-

pose without loss of generality that i < j), we have that (↵1, . . . ,↵i, . . . ,↵j ⇤ 1, . . . ,↵s) =

(�↵s, . . . ,�(↵j ⇤ 1), . . . ,�↵i, . . . ,�↵1). We have two cases to consider: If ↵j is not on the

(s+ 1� i)th position of ↵, then the ith component of �↵j is �↵t. Thus, ↵i = �↵t, a contra-

diction. If ↵j is on the (s+1� i)th position of ↵, (which means that ↵i and ↵j are of opposite

signs because ↵ has an even number of components since ↵i is symmetric), then �↵j is on

the ith position of �↵i (which implies that ↵i ⇤1 = �↵j that is, if we suppose w.l.o.g. ↵i > 0,

↵i + 1 = �↵j so ↵i = �↵j � 1), and �(↵j ⇤ 1) is on the ith position of �↵j (which implies

that ↵i = �(↵j ⇤ 1) i.e. ↵i = �(↵j � 1) so ↵i = �↵j + 1), and we get a contradiction.

We may now give the proof of Theorem 3.1.1:
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Proof. We have:

F(↵) = F(↵1,↵2, . . . ,↵s)

= F(↵1 ⇤ 1,↵2, . . . ,↵s) + F(↵1,↵2 ⇤ 1, . . . ,↵s) + · · ·+ F(↵1,↵2, . . . ,↵s ⇤ 1)
= F(↵1) + F(↵2) + · · ·+ F(↵s).

We consider 2 cases:

• The tuple ↵ is symmetric (which implies that s is even).

Thus obviously, all ↵i are not symmetric.

The proof will be done by induction on the order of the tournament TTn. The small-

est case of symmetric ↵ is ↵ = (1,�1) which corresponds to a transitive tournament

of order 3 (acyclic triangle). In this tournament, fTT3(1,�1) = 1 while F(1,�1) =

F(0,�1) + F(1, 0) = 1 + 1 = 2. So fTT3(1,�1) = 1
2F(1,�1).

Suppose that the statement is true for transitive tournaments of order l  n � 1, and

let’s prove it for n.

By Lemma 3.1.4, we have that ↵i = �↵j () i+j = s+1. As a result, by Proposition

3.1.3, if we consider the transitive tournament eT = TTn� {v} where v is the source of

TTn, we have P eT
(↵1) = P eT

(↵s), P eT
(↵2) = P eT

(↵s�1), . . . , P eT
(↵

s
2 ) = P eT

(↵
s
2
+1), and

the sets P eT
(↵1), P eT

(↵2), . . . , P eT
(↵

s
2 ) are pairwise different.

Moreover, each path of type P (↵i) for some 1  i  s is a Hamiltonian path in eT , and

since all the sets of oriented Hamiltonian paths of a given type in a tournament T form a

partition of the set of all oriented Hamiltonian paths in T , then if P eT
(↵i) 6= P eT

(↵j), we

have P eT
(↵i)\P eT

(↵j) = ;, and as a result, P eT
(↵1),P eT

(↵2), . . . ,P eT
(↵

s
2 ) are all pairwise

disjoint, and similarly P eT
(↵

s
2
+1),P eT

(↵
s
2
+2), . . . ,P eT

(↵s) are pairwise disjoint.

Consider the correspondence:

g : PTTn(↵) �! [
s
2
i=1P eT

(↵i)

P �! g(P ) = P � hvi [ h{x, y}i,

where x is the predecessor of v on P , and y its successor on P if any.

Clearly, g is well defined. In fact, Let P 2 PTTn(↵1,↵2, . . . ,↵s), P = I1I2 . . . Is, and

suppose that the source v is the origin of some block Ii of P of length ↵i (↵i > 0 since

v is a source), and let x 2 Ii�1 be the predecessor of v on P and y 2 Ii its succes-

sor. If (y, x) 2 E(TTn), then g(P ) is of type P (↵1, . . . ,↵i�1,↵i � 1, . . . ,↵s), and if

77



3.1. THE PATH-FUNCTION F : COMPUTING THE NUMBER OF OHP IN TTN

(x, y) 2 E(TTn), then g(P ) is of type P (↵1, . . . ,↵i�1+1,↵i, . . . ,↵s), and both of them

belong to [
s
2
i=1P eT

(↵i), (if g(P ) 2 PeT
(↵i) for some s

2+1  i  s, then as previously men-

tioned, it belongs to a set P eT
(↵i) for some 1  i  s

2 and so it belongs to [
s
2
i=1P eT

(↵i)).

Moreover, it is obvious that g is a mapping.

The mapping g is a bijection:

It is surjective: Let P 0 2 [
s
2
i=1P eT

(↵i), then 9 1  i  s
2 such that P 0 2 PeT

(↵i). Suppose

that ↵i > 0, then P 0 2 P eT
(↵1, . . . ,↵i�1,↵i � 1,↵i+1, . . . ,↵s) and let x be the origin of

the block Ii of length ↵i�1, and y 2 Ii�1 its predecessor, and write P 0 = P1[(x, y)[P2.

Since v is a source, then (v, y) and (v, x) 2 E(TTn), thus P = P1 [ (v, y) [ (v, x) [ P2

is of type P (↵1,↵2, . . . ,↵s), and so it belongs to PTTn(↵) with g(P ) = P 0. The case

↵i < 0 is similar.

Also, g is injective: Let P and P 0 be two paths in TTn of type P (↵), such that

g(P ) = g(P 0) 2 P eT
(↵i) = P eT

(↵1, . . . ,↵i�1,↵i ⇤ 1,↵i+1, . . . ,↵s) for some 1  i  s
2 .

Suppose that ↵i > 0. So let g(P ) = I1I2 . . . Is = u1u2...uryxw1w2...wt where x is

the origin of the block Ii of length ↵i � 1, and y 2 Ii�1 its predecessor, and the

arc (x, y) replaced the arcs (v, x) and (v, y) in P = u1u2...uryvxw1w2...wt. The path

g(P ) = u1u2...uryxw1w2...wt is of type P (↵i) with respect to this enumeration. Also,

let g(P 0) = I 01I
0
2 . . . I

0
s = u01u

0
2...u

0
ry

0x0w0
1w

0
2...w

0
t where x0 is the origin of the block I 0i of

length ↵i � 1, and y 2 I 0i�1 its predecessor, and the arc (x0, y0) replaced the arcs (v, x0)

and (v, y0) in P 0 = u01u
0
2...u

0
ry

0vx0w0
1w

0
2...w

0
t. The path g(P 0) = u01u

0
2...u

0
ry

0x0w0
1w

0
2...w

0
t

is of type P (↵i) with respect to this enumeration. Since g(P ) = g(P 0) then we either

have (u1, u2, ..., ur, y, x, w1, w2, ..., wt) = (u01, u
0
2, ..., u

0
r, y

0, x0, w0
1, w

0
2, ..., w

0
t) or we have

(u1, u2, ..., ur, y, x, w1, w2, ..., wt) = (w0
t, w

0
t�1, ..., w

0
1, x

0, y0, u0r, u
0
r�1, ..., u

0
1). If the second

case is true, then the path g(P 0) = w0
tw

0
t�1...w

0
1x

0y0u0ru
0
r�1...u

0
1 is of type P (↵i) with

respect to this enumeration, which is impossible since ↵i is not symmetric. Thus, only

the first case is true, and adding the arcs (v, y) = (v, y0) and (v, x) = (v, x0) we get

P = u1u2...uryvxw1w2...wt = P 0 = u01u
0
2...u

0
ry

0vx0w0
1w

0
2...w

0
t. The case ↵i < 0 is similar.

Since g is a bijection, then fTTn(↵) =
P s

2
i=1 f eT

(↵i).

Since by induction we have f eT
(↵i) = F(↵i) because the order of eT is n � 1 and all ↵i

are not symmetric, then

fTTn(↵) =

s
2X

i=1

f eT
(↵i) =

s
2X

i=1

F(↵i) =
1

2

sX

i=1

F(↵i) =
1

2
F(↵).

78



3.1. THE PATH-FUNCTION F : COMPUTING THE NUMBER OF OHP IN TTN

• The tuple ↵ is not symmetric.

The proof will also be done by induction on the order of the tournament TTn. The

smallest case of not symmetric ↵ is ↵ = (2) (i.e. directed Hamiltonian paths) which cor-

responds also to the transitive tournament of order 3 (acyclic triangle). In this tourna-

ment, fTT3(2) = 1 and F(2) = 1 by the definition of the mapping F . So fTT3(2) = F(2).

Suppose that the statement is true for transitive tournaments of order l  n � 1, and

let’s prove it for n.

Since ↵ is not symmetric, we have by Lemma 3.1.4 that ↵i 6= �↵j 8 1  i, j  s.

As a result, if we consider the transitive tournament eT = TTn � {v} where v is the

source of TTn, then also by Proposition 3.1.3, P eT
(↵i) 6= P eT

(↵j) 8 1  i, j  s, so we

have P eT
(↵i) \ P eT

(↵j) = ; 8 1  i, j  s, hence P eT
(↵1),P eT

(↵2), . . . ,P eT
(↵s) are all

pairwise disjoint.

Consider the correspondence:

g0 : PTTn(↵) �! [s
i=1P eT

(↵i)

P �! g0(P ) = P � hvi [ h{x, y}i,

where v is the source of TTn, x is the predecessor of v on P , and y its successor on P

if any.

As in the previous case, we can prove that g0 is a surjective mapping. However, g0 is not

always injective. In fact, let P 0 2 [s
i=1P eT

(↵i), and let’s find how many P 2 PTTn(↵)

there exist, such that g0(P ) = P 0. We consider two cases:

1. All ↵i are not symmetric.

Then following the same arguments as given in the first case to prove that g0 is

injective, we may prove that P 0 has only one antecedent in PTTn(↵) thus g0 is

injective. So g0 is a bijection.

Since g0 is a bijection, then fTTn(↵) =
Ps

i=1 f eT
(↵i).

Since by induction we have f eT
(↵i) = F(↵i) (the order of eT is n� 1 and all ↵i are

not symmetric), then

fTTn(↵) =
sX

i=1

f eT
(↵i) =

sX

i=1

F(↵i) = F(↵).

2. There exists 1  i0  s such that ↵i0 is symmetric.

Then by Lemma 3.1.5, all ↵j , 1  j 6= i0  s, are not symmetric.
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Since P 0 2 [s
i=1P eT

(↵i), then 9 1  i  s such that P 0 2 P eT
(↵i). Suppose that

↵i > 0, then P 0 2 P eT
(↵1, . . . ,↵i�1,↵i � 1,↵i+1, . . . ,↵s). (The case ↵i < 0 is simi-

lar).

Write P 0 = I1I2 . . . Is = u1u2...uryxw1w2...wt where x is the origin of the block Ii

of length ↵i � 1, and y 2 Ii�1 its predecessor.

If i = i0, then ↵i is symmetric, then P 0 is also of type P (↵i) with respect to the

other enumeration: wtwt�1...w1xyurur�1...u1 and we rewrite P 0 with respect to

this enumeration as P 0 = I 01I
0
2 . . . I

0
s = z1z2...zry

0x0v1v2...vt where x0 is the origin of

the block I 0i of length ↵i�1, and y0 2 I 0i�1 its predecessor. So now, we consider the

two paths P1 = u1u2...uryvxw1w2...wt where the arc (x, y) is replaced by the arcs

(v, x) and (v, y), and P2 = z1z2...zry
0vx0v1v2...vt where the arc (x0, y0) is replaced

by the arcs (v, x0) and (v, y0). They are distinct and both of type P (↵), and they

are the only ones such that g0(P1) = g0(P2) = P 0.

If i 6= i0, then ↵i is not symmetric, thus P 0 can’t be of type P (↵i) with respect

to the other enumeration: wtwt�1...w1xyurur�1...u1. So there is only one path

P = u1u2...uryvxw1w2...wt where the arc (x, y) in P 0 is replaced by the arcs (v, x)

and (v, y), that is of type P (↵), and such that g0(P ) = P 0.

As a result, we have: fTTn(↵) = 2.f eT
(↵i0) +

Ps
i 6=i0,i=1 f eT

(↵i).

By induction, f eT
(↵i0) = 1

2F(↵i0), because ↵i0 is symmetric, and 8 i 6= i0, f eT
(↵i) =

F(↵i), because ↵i is not symmetric, thus

fTTn(↵) =
sX

i=1

F(↵i) = F(↵).

3.2 Some properties of F

In this section, we will study the path-function F , and the properties that may arise.

As we previously mentioned, we have fTTn(↵) = fTTn(�↵) 8 ↵ 2 Ks. For that reason,

we will redefine the mapping f by removing the signs of the components of the tuples.

Let N = {(↵1, . . . ,↵s) 2 N
s⇤, s 2 N

⇤}, F is defined by:

F : N �! N

(↵1,↵2, . . . ,↵s) �! F(↵1,↵2, . . . ,↵s),
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under the recurrence relation:

F(↵1,↵2, . . . ,↵s) = F(↵1 � 1,↵2, . . . ,↵s) + F(↵1,↵2 � 1, . . . ,↵s)

+ · · ·+ F(↵1,↵2, . . . ,↵s � 1)

verifying the properties:

1. 8 t 2 N
⇤, F(0,↵2, . . . ,↵t) = F(↵2, . . . ,↵t),

2. 8 t0 2 N
⇤, F(↵1,↵2, . . . ,↵t0 , 0) = F(↵1,↵2, . . . ,↵t0),

3. 8 r 2 N
⇤, F(↵1, . . . ,↵r, 0,↵r+2, . . . ,↵s) = F(↵1, . . . ,↵r + ↵r+2, . . . ,↵s),

4. 8 ↵ 2 N
⇤, F(↵) = 1.

Remark 3.2.1. With this definition of F , 8 ↵ = (↵1, . . . ,↵s) 2 Ks, the number computed

now by F is F(|↵1|, |↵2|, . . . , |↵s|), which will be either fTTn(↵) or fTTn(�↵) if ↵ is non

symmetric (resp. either fTTn(↵)
2 or fTTn(�↵)

2 if ↵ is symmetric).

Note that this does not exclude the fact that the sets PTTn(↵) and PTTn(�↵) can be either

disjoint or the same, since the sets PT (↵), ↵ = (↵1,↵2, . . . ,↵s) 2 Ks,
sP

i=1
| ↵i |= n� 1, form

a partition of the set PT of all the oriented Hamiltonian paths in a tournament T of order n.

Obviously, F(a1, a2, . . . , as) = F(as, as�1, . . . , a1), 8 ↵ = (↵1, . . . ,↵s) 2 N , since F is a

symmetric function. But, we also have the following properties:

Remark 3.2.2. For all ↵ = (↵1,↵2, . . . ,↵s) 2 N , s � 2, and for all m 2 N
⇤ we have:

F(m) < F(↵1,↵2, . . . ,↵s),

Since by the definition of F we have F(m) = 1 and F(↵1, . . . ,↵s) > 1 for s > 1.

Proposition 3.2.3. For all m,n,m0, n0 2 N
⇤, m+ n = m0 + n0, we have:

• F(m,n) = Cm
m+n,

• F(m,n) < F(m0, n0) () mn < m0n0.

Proof. The first statement is a direct result of Proposition 3.0.1, Remark 3.0.2 and Theorem

3.1.1. For the second statement, we know that for m,n,m0, n0 2 N
⇤ such that m + n =

m0 + n0 = p and mn < m0n0 we have Cm
p = Cn

p < Cm0

p = Cn0

p . This is equivalent to

F(m,n) < F(m0, n0), since F(m,n) = Cm
m+n.
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Proposition 3.2.4. For all m,n, t, a 2 N
⇤, a+m+ n = a+ t, we have:

F(a, t) < F(a,m, n).

Proof. The proof will be done by induction on p = a+ t = a+m+n, that is by induction on

the order p+ 1 of a transitive tournament.

The smallest tournament in which we can compare F(a, t) and F(a,m, n) has 4 vertices, that

is p = 3, with a = 1, t = 2, and m = n = 1.

We have F(1, 2) = F(2)+F(1, 1), while F(1, 1, 1) = F(1, 1)+F(2)+F(1, 1) and the inequality

follows.

Suppose that the inequality is true for a tournament of order less than or equal to p, and let

T be a tournament of order p+ 1, with a+ t = a+m+ n = p.

Note that we necessarily have m and n < t.

We have F(a, t) = F(a�1, t)+F(a, t�1), and F(a,m, n) = F(a�1,m, n)+F(a,m�1, n)+

F(a,m, n� 1).

First, we have F(a� 1, t) < F(a� 1,m, n). In fact, if a� 1 6= 0, it is true by induction, while

if a� 1 = 0, it follows from Remark 3.2.2 that F(t) < F(m,n).

Now, if m > 1 (resp. n > 1), we have by induction that F(a, t � 1) < F(a,m � 1, n) (resp.

F(a, t� 1) < F(a,m, n� 1)), and the inequality follows.

If m = n = 1 (which implies t = 2), then F(a, t� 1) = F(a, 1) < F(a,m� 1, n)+F(a,m, n�
1) = F(a+ 1) + F(a, 1), and we get the desired inequality.

Proposition 3.2.5. For all m,n,m0, n0, a 2 N
⇤, a+m+ n = a+m0 + n0, we have:

• F(a,m, n) < F(a,m0, n0) () (mn < m0n0) or (mn = m0n0, m < n).

• F(m, a, n) < F(m0, a, n0) () (mn < m0n0).

Proof. We begin by the first statement.

Suppose first that mn = m0n0 with m < n.

Since m + n = m0 + n0 then m = n0 and n = m0. So we need to compare F(a,m, n) and

F(a, n,m). The proof will be done by induction on p = m+ n (so by induction on the order

p+ 1 of the tournament).

If p = 4 (tournament on 5 vertices) then the initial step is to compare F(1, 1, 2) and F(1, 2, 1).

F(1, 1, 2) = F(1, 2) + F(3) + F(1, 1, 1) and F(1, 2, 1) = F(2, 1) + F(1, 1, 1) + F(1, 2). Since

F(3) < F(2, 1) by Remark 3.2.2, the result follows.

Suppose it’s true till p� 1, i.e. for a tournament of order less than or equal p. So let T be a

tournament of order p+ 1, a+m+ n = p, m < n.
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We have F(a,m, n) = F(a,m � 1, n) + F(a,m, n � 1) + F(a � 1,m, n) and F(a, n,m) =

F(a, n,m� 1) + F(a, n� 1,m) + F(a� 1, n,m).

By induction, m � 1 < n so F(a,m � 1, n) < F(a, n,m � 1) (note that if m = 1, then

F(a,m� 1, n) = F(a+ n) = 1 < F(a, n,m� 1) = F(a, n) by Remark 3.2.2), and m  n� 1

so F(a,m, n � 1)  F(a, n � 1,m), and if a � 1 6= 0, F(a � 1,m, n) < F(a � 1, n,m),

while if a � 1 = 0 then F(a � 1,m, n) = F(m,n) = F(n,m) = F(a � 1, n,m). Hence

F(a,m, n) < F(a, n,m).

Suppose now that mn < m0n0.

Since by the first case, F(a, n,m) < F(a,m, n) if n < m and F(a,m0, n0) < F(a, n0,m0) if

m0 < n0, let us suppose that n  m and m0  n0, and prove that F(a,m, n) < F(a,m0, n0).

Remark that mn < m0n0 and m+ n = m0 + n0 both imply that m� n � 2, because we can’t

find m0 and n0 such that m+ n = m0 + n0 and mn < m0n0 when m = n or m = n+1 because

m.n is maximal. We also have m0, n0 > n and m0, n0 < m.

Let p = a+m+ n = a+m0 + n0. We will also do the proof by induction on p.

The smallest tournament to satisfy mn < m0n0 has 6 vertices (i.e. p = 5). That is for m = 3,

n = 1, m0 = 2, n0 = 2, a = 1.

We have F(1, 3, 1) = F(3, 1) + F(1, 2, 1) + F(1, 3) and F(1, 2, 2) = F(2, 2) + F(1, 1, 2) +

F(1, 2, 1). By Proposition 3.2.3 we have F(3, 1) < F(2, 2) and by a simple calculation we

have F(1, 3) < F(1, 1, 2), and then we get F(1, 3, 1) < F(1, 2, 2).

Suppose that the statement is true till p � 1, that is for a tournament of order less than or

equal p. Let T be a tournament of order p+1, a+m+n = a+m0+n0 = p, with mn < m0n0.

We have:

F(a,m, n) = F(a � 1,m, n) + F(a,m � 1, n) + F(a,m, n � 1) and F(a,m0, n0) = F(a �
1,m0, n0) + F(a,m0 � 1, n0) + F(a,m0, n0 � 1).

We have F(a� 1,m, n) < F(a� 1,m0, n0) (by induction if a > 1 and by Proposition 3.2.3 if

a = 1). Now, m > n implies that

(m� 1)n =
(p� a)2 � (m� n� 1)2

4
and m(n� 1) =

(p� a)2 � (m� n+ 1)2

4
.

We will consider two cases:

• Case 1: m0 < n0. Hence

(m0 � 1)n0 =
(p� a)2 � (n0 �m0 + 1)2

4
and m0(n0 � 1) =

(p� a)2 � (n0 �m0 � 1)2

4
.

As a result, (m � 1)n < m0(n0 � 1) and m(n � 1) < (m0 � 1)n0, so by induction

we have F(a,m � 1, n) < F(a,m0, n0 � 1) (since m � 1 � n and m0  n0 � 1) and

F(a,m, n� 1) < F(a,m0 � 1, n0) (by induction if n� 1 6= 0 and by Proposition 3.2.4 if

n� 1 = 0). So we finally get F(a,m, n) < F(a,m0, n0).
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• Case 2: m0 = n0. Thus (m0 � 1)n0 = m0(n0 � 1) =
(p� a)2 � 1

4
.

If m�n > 2 then m�n�1 > 1, so (m�1)n < m0(n0�1) thus F(a,m�1, n) < F(a, n0�
1,m0) (by induction, since m� 1 � n and n0 � 1  m0) < F(a,m0, n0 � 1) (by the case

treated above). And since m(n� 1) < (m0 � 1)n0 then F(a,m, n� 1) < F(a,m0 � 1, n0)

(by induction if n � 1 6= 0 and by Proposition 3.2.4 if n � 1 = 0). We finally get

F(a,m, n) < F(a,m0n0).

If m � n = 2 then m = n + 2, ans since m > n0 = m0 > n (bc m + n = n0 + m0

and mn < m0n0) then n0 = m0 = n + 1. We have: F(a,m, n) = F(a, n + 2, n) =

F(a�1, n+2, n)+F(a, n+1, n)+F(a, n+2, n�1) and F(a,m0, n0) = F(a, n+1, n+1) =

F(a� 1, n+1, n+1)+F(a, n, n+1)+F(a, n+1, n). Now (n+2)(n� 1) = n2 +n� 2

and n(n+1) = n2+n so (n+2)(n�1) < n(n+1), so F(a, n+2, n�1) < F(a, n, n+1)

(by induction if n � 1 6= 0 and by Proposition 3.2.4 if n � 1 = 0). Finally we get

F(a,m, n) < F(a,m0n0).

For the necessary condition, suppose that F(a,m, n) < F(a,m0, n0) with mn � m0n0 and let’s

prove mn = m0n0 with m < n. If mn > m0n0 then F(a,m, n) > F(a,m0, n0) by the sufficient

condition, which is a contradiction. If mn = m0n0 and since m+ n = m0 + n0 we have many

cases: If m = m0, n = n0 then F(a,m, n) = F(a,m0, n0), a contradiction. If m = n0, n = m0

then if m > n, F(a,m, n) > F(a,m0, n0) by the sufficient condition, a contradiction too. Thus

m < n.

Now we prove the second statement.

For the sufficient condition, the proof is similar to the proof of the previous one for mn < m0n0.

Only note that if a = 1, we will have in the induction that F(m, a � 1, n) = F(m + n) and

F(m0, a� 1, n0) = F(m0 + n0), so F(m, a� 1, n) = F(m0, a� 1, n0) = 1. But this won’t cause

a problem in proving F(m, a, n) < F(m0, a, n0) for mn < m0n0 because the other terms will

lead strict inequalities. For the necessary condition, suppose that F(m, a, n) < F(m0, a, n0)

and let’s prove that mn < m0n0. If mn > m0n0 then F(m, a, n) > F(m0, a, n0) by the suf-

ficient condition, a contradiction. If mn = m0n0 and since m + n = m0 + n0, then either

m = m0, n = n0 or m = n0, n = m0. But in both cases we get F(m, a, n) = F(m0, a, n0), a

contradiction. Thus mn < m0n0.

Proposition 3.2.6. For all m,n, a, b 2 N
⇤ we have:

m < n and a < b ) F(m, a, b, n) > F(m, b, a, n).

Proof. The proof is also done by induction on p = m + a + b + n. The initial step is to

compare F(1, 2, 1, 2) and F(1, 1, 2, 2), i.e. for p = 6, m = 1, n = 2, a = 1, b = 2. We have
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F(1, 2, 1, 2) = F(2, 1, 2) + F(1, 1, 1, 2) + F(1, 4) + F(1, 2, 1, 1) and F(1, 1, 2, 2) = F(1, 2, 2) +

F(3, 2) + F(1, 1, 1, 2) + F(1, 1, 2, 1). By Proposition 3.2.3 we have F(1, 4) < F(3, 2) and by

Proposition 3.2.5 we have F(2, 1, 2) < F(1, 2, 2), moreover F(1, 1, 2, 1) = F(1, 2, 1, 1), and we

get F(1, 2, 1, 2) < F(1, 1, 2, 2).

Suppose that the statement is true till p � 1 (tournament having at most p vertices). So let

T be a tournament on p+ 1 vertices, m+ n+ a+ b = p, and suppose m < n, a < b.

We have F(m, a, b, n) = F(m�1, a, b, n)+F(m, a�1, b, n)+F(m, a, b�1, n)+F(m, a, b, n�1)

and F(m, b, a, n) = F(m� 1, b, a, n) +F(m, b� 1, a, n) +F(m, b, a� 1, n) +F(m, b, a, n� 1).

We have the following inequalities:

• F(m, a � 1, b, n) > F(m, b, a � 1, n). In fact, a � 1 < b, so: If a � 1 6= 0, by induction

we have F(m, a � 1, b, n) > F(m, b, a � 1, n). If a � 1 = 0 then F(m, a � 1, b, n) =

F(m+ b, n) and F(m, b, a� 1, n) = F(m, b+ n). However, (m+ b) + n = m+ (b+ n)

and (m + b)n = mn + bn > mn + bm = m(b + n), so by Proposition 3.2.3 we have

F(m+ b, n) > F(m, b+ n).

• F(m � 1, a, b, n) > F(m � 1, b, a, n). In fact, if m � 1 > 0 then it’s true by induction.

If m� 1 = 0 then since b > a, we have F(a, b, n) > F(b, a, n) by Proposition 3.2.5.

• F(m, a, b� 1, n) � F(m, b� 1, a, n). In fact, if a < b� 1 then by induction it’s true. If

a = b� 1, then F(m, a, b� 1, n) = F(m, a, a, n) = F(m, b� 1, a, n).

• F(m, a, b, n � 1) � F(m, b, a, n � 1). In fact, if m < n � 1 it’s true by induction. If

m = n� 1 then F(m, a, b, n� 1) = F(m, a, b,m) = F(m, b, a,m) = F(m, b, a, n� 1)

Then using all these inequalities, we get the result.

On the other hand, using a program (which will be discussed in the next section) for com-

puting the function F , one may prove the following statements wrong, despite many of them

might seem to be true:

• For ↵ = (↵1, . . . ,↵s) 2 N
s⇤ and � = (�1, . . . ,�t) 2 N

t⇤, 2  s < t,
Ps

i=1 ↵i =
Pt

i=1 �i,

then F(↵) < F(�).

Counter-example: F(3, 3) = 20 = F(1, 1, 4), F(3, 4) = 35 > F(1, 1, 5) = 27.

• For a,m, n,m0, n0 2 N
⇤ with a+m+ n = a+m0 + n0 then mn < m0n0 ) F(a,m, n) <

F(m0, a, n0).

Counter-example: F(1, 2, 4) = 85 > F(3, 1, 3) = 69 while 2.4 = 8 < 3.3 = 9.
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• For a,m, n,m0, n0 2 N
⇤ with a+m+ n = a+m0 + n0 then mn < m0n0 ) F(m, a, n) <

F(a,m0, n0).

Counter-examples: F(2, 11, 5) = 637924 > F(11, 3, 4) = 631787, F(2, 12, 5) = 1015988 >

F(12, 3, 4) = 984503, while 2.5 = 10 < 3, 4 = 12). However, for the same m,n,m0, n0 but

for a < 11, the statement is true, for example: F(2, 7, 5) = 65857 < F(7, 3, 4) = 74502,

F(2, 8, 5) = 125411 < F(8, 3, 4) = 135927, F(2, 9, 5) = 225589 < F(9, 3, 4) = 236027,

F(2, 10, 5) = 387023 < F(10, 3, 4) = 393107.

So we remark that the first term is smaller than the second term, but the difference

between them decreases as a tends to 10, and then for a = 11, the second term becomes

bigger, and the difference between the two terms will increase, as a gets bigger.

We may also notice that the number in the middle of the tuple plays a role: in the first

tuple it is a, while in the second tuple it is m0, and at some point where a becomes big

enough with respect to m0, the first term becomes bigger than the second one.

• For a, a0,m, n,m0, n0 2 N
⇤ with a + m + n = a0 + m0 + n0 then amn < a0m0n0 )

F(a,m, n) < F(a0,m0, n0).

Counter-example: F(6, 7, 3) = 835549 > F(4, 4, 8) = 614823 with 6.7.3 = 126 < 4.4.8 =

128. However, F(6, 3, 7) = 529957 < F(4, 8, 4) = 806651.

So putting the big number in the middle of the first tuple and the small number in the

middle of the second tuple is what helped to find the counter-example.

But the difference should be big enough. For example: F(5, 7, 2) = 65857 < F(4, 4, 6) =

150723 and F(5, 2, 7) = 33606 < F(4, 6, 4) = 178751 with 5.7.2 = 70 > 4.4.6 = 96.

Also, F(4, 6, 1) = 2190 < F(3, 3, 5) = 6566 and F(4, 1, 6) = 791 < F(3, 5, 3) = 8051

with 4.6.1 = 24 < 3.3.5 = 45.

• Let (↵1, . . . ,↵s) and (�1, . . . ,�s) 2 N
s, ↵i and �i 6= 0, 8 1  i  s, and

Ps
i=1 ↵i =Ps

i=1 �i. If (�1,�2, . . . ,�s) 6= (↵1,↵2, . . . ,↵s) and (�1,�2, . . . ,�s) 6= (↵s,↵s�1, . . . ,↵1),

then F(↵1, . . . ,↵s) 6= F(�1, . . . ,�s).

Counter-example: F(1, 3, 1) = F(2, 1, 2) = 19, F(1, 2, 3, 1) = F(2, 1, 2, 2) = 315,

F(2, 4, 2) = F(3, 2, 3) = 379.

However, we know nothing yet about the validity of many statements, as for example:

• For a1, ..., as, a
0
1, ..., a

0
s,m, n,m0, n0 2 N

⇤ we have F(a1, . . . , as,m, n) <

F(a1, . . . , as,m
0, n0) () (mn < m0n0) or (mn = m0n0, m < n).

• For a, b,m, n, a0, b0 2 N
⇤, we have (m < n) and (ab < a0b0) ) F(m, a, b, n) < F(m, a0, b0, n).

The function F which seems to be rich in properties, allows us to construct a program com-

puting the number of oriented paths in a transitive tournament. By comparing the different
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cases, we are led to state a conjecture about paths in transitive tournaments, and discuss an

interesting property about antidirected Hamiltonian paths in TTn.

3.3 Algorithmic approach to F and some observations

In this last section, we first introduce the program, built using Python, to compute the values

of the path-function F defined in the previous section.

Listing 3.1: Program that computes the values of the function F .

1

2 """

3 This routine represents the mapping "F ".

4 It reduces a tuple of positive integers into a single

5 positive integer according to the recurrence relation

6 and the 4 properties satisfied by "F ".

7 """

8

9 def f(a):

10 l = len(a)

11

12 assert (l > 0), "f() is undefined"

13 assert (l > 1 or a[0] > 0), "f(0) is undefined"

14

15 if l == 1:

16 return 1

17 elif a[0] == 0:

18 return f(a[1:])

19 elif a[-1] == 0:

20 return f(a[:-1])

21 else:

22 try:

23 i = a.index (0)

24 return f(

25 a[:i - 1] +

26 [a[i - 1] + a[i + 1]] +

27 a[i + 2:]

28 )

29 except ValueError:

30 # If ‘a‘ doesn ’t contain any zeros

31 return sum(

32 f(a[:i] + [a[i] - 1] + a[i + 1:])

33 for i in range(l)

34 )

35

36 import time

37 import sys
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38

39 # Change the next line to your needs

40 a = [1, 2, 1, 1]

41

42 start_time = time.time()

43 ans = f(a)

44 end_time = time.time()

45

46 print(’{} => {}’.format(a, ans))

47 print(

48 ’Took: {:.3} seconds ’.format(end_time - start_time),

49 file=sys.stderr

50 )

In order to investigate more about the properties of the path-function F , we create a new pro-

gram, based on the previous one, allowing us to compute all the possible values of F(a1, . . . , as),

1  s  p, for a given p =
Ps

i=1 ai.

Listing 3.2: Program that computes all values of F(a1, . . . , as), 1  s  p, p =
Ps

i=1 ai.

1

2 """

3 Define the memorization system

4 """

5

6 class memoize(dict):

7 def __init__(self , f):

8 self.f = f

9

10 # Will hold some statistics

11 self.total = 0

12 self.miss = 0

13

14 def __call__(self , a):

15 self.total += 1

16 return self[tuple(a)]

17

18 def __missing__(self , a):

19 self.miss += 1

20 result = self.f(list(a))

21 # Save the result for a

22 self[a] = result

23 # and for the reverse of a, since they are always equal

24 self[a[:: -1]] = result

25 return result

26

27
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28

29 """

30 This routine represents the mapping "F ".

31 It reduces a tuple of positive integers into a single

32 positive integer according to the recurrence relation

33 and the 4 properties satisfied by "F ".

34 To significantly improve the performance (speed) of this

35 routine , a memorization system is used.

36 It allows a fast answer lookup for known tuples (already seen

37 before), by saving all the results in a lookup table with

38 their corresponding tuples and their reverse (since they get

39 reduced to the same result ).

40 """

41

42 @memoize

43 def f(a):

44 l = len(a)

45

46 assert (l > 0), "f() is undefined"

47 assert (l > 1 or a[0] > 0), "f(0) is undefined"

48

49 if l == 1:

50 return 1

51 elif a[0] == 0:

52 return f(a[1:])

53 elif a[-1] == 0:

54 return f(a[:-1])

55 else:

56 try:

57 i = a.index (0)

58 return f(

59 a[:i - 1] +

60 [a[i - 1] + a[i + 1]] +

61 a[i + 2:]

62 )

63 except ValueError:

64 # If ‘a‘ doesn ’t contain any zeros

65 return sum(

66 f(a[:i] + [a[i] - 1] + a[i + 1:])

67 for i in range(l)

68 )

69

70

71 """

72 This routine generates a list of all possible tuples with

73 cardinality less than or equal to ‘p‘, having the sum of

74 all its elements equal to ‘p‘.

75 """

76
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77

78 def all_permutations(p):

79 if p > 0:

80 yield [p]

81 for s in range(p - 1, 0, -1):

82 for a in all_permutations(p - s):

83 yield [s] + a

84

85

86 """

87 This routine prints the results in a pretty format.

88 """

89

90 def print_results(p, results ):

91 iw = len(str(len(results )))

92 aw = 3 * p

93 for (i, (a, ans)) in enumerate(results ):

94 print(’{:>{iw}}: {:<{aw}} => {:,}’.format(

95 i + 1, str(a), ans , iw=iw, aw=aw

96 ))

97

98

99 """

100 This is the main routine that combines all the previous ones.

101 It generates all the permutations and their corresponding

102 results from ‘f‘, sorts them in ascending order

103 and then prints them along with some execution statistics.

104 """

105

106 def main(p):

107 import time

108 import sys

109

110 start_time = time.time()

111 results = [(a, f(a)) for a in all_permutations(p)]

112 f_time = time.time()

113

114 results.sort(key=lambda r: r[1])

115 print_results(p, results)

116 end_time = time.time()

117

118 print(

119 ’Cache hit: {:.2%} ’.format (1 - f.miss / f.total),

120 file=sys.stderr

121 )

122 print(

123 ’Took to apply f: {:.3} seconds ’.format(

124 f_time - start_time

125 ),
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126 file=sys.stderr

127 )

128 print(

129 ’Took to sort and print: {:.3} seconds ’.format(

130 end_time - f_time

131 ),

132 file=sys.stderr

133 )

134 print(

135 ’Took in total: {:.3} seconds ’.format(

136 end_time - start_time

137 ),

138 file=sys.stderr

139 )

140

141 # Change the next line to your needs

142 main (6)

Now we give the first lists of numbers computed using the above program, giving all the pos-

sible values of F(a1, . . . , as), 1  s  p, for p =
Ps

i=1 ai, and where 3  p  8. (The answers

are in ascending order).

For p = 3:

1: [3] => 1

2: [2, 1] => 3

3: [1, 2] => 3

4: [1, 1, 1] => 5

For p = 4:

1: [4] => 1

2: [3, 1] => 4

3: [1, 3] => 4

4: [2, 2] => 6

5: [2, 1, 1] => 9

6: [1, 1, 2] => 9

7: [1, 2, 1] => 11

8: [1, 1, 1, 1] => 16

For p = 5:

1: [5] => 1

2: [4, 1] => 5

3: [1, 4] => 5

4: [3, 2] => 10

5: [2, 3] => 10

6: [3, 1, 1] => 14

7: [1, 1, 3] => 14

8: [2, 1, 2] => 19

9: [1, 3, 1] => 19

10: [2, 2, 1] => 26

11: [1, 2, 2] => 26

12: [2, 1, 1, 1] => 35

13: [1, 1, 1, 2] => 35

14: [1, 2, 1, 1] => 40

15: [1, 1, 2, 1] => 40

16: [1, 1, 1, 1, 1] => 61
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For p = 6:

1: [6] => 1

2: [5, 1] => 6

3: [1, 5] => 6

4: [4, 2] => 15

5: [2, 4] => 15

6: [4, 1, 1] => 20

7: [3, 3] => 20

8: [1, 1, 4] => 20

9: [1, 4, 1] => 29

10: [3, 1, 2] => 34

11: [2, 1, 3] => 34

12: [3, 2, 1] => 50

13: [1, 2, 3] => 50

14: [2, 3, 1] => 55

15: [1, 3, 2] => 55

16: [3, 1, 1, 1] => 64

17: [1, 1, 1, 3] => 64

18: [2, 2, 2] => 71

19: [1, 3, 1, 1] => 78

20: [1, 1, 3, 1] => 78

21: [2, 1, 1, 2] => 90

22: [2, 1, 2, 1] => 99

23: [1, 2, 1, 2] => 99

24: [2, 2, 1, 1] => 111

25: [1, 1, 2, 2] => 111

26: [1, 2, 2, 1] => 132

27: [2, 1, 1, 1, 1] => 155

28: [1, 1, 1, 1, 2] => 155

29: [1, 1, 2, 1, 1] => 169

30: [1, 2, 1, 1, 1] => 181

31: [1, 1, 1, 2, 1] => 181

32: [1, 1, 1, 1, 1, 1] => 272

For p = 7:

1: [7] => 1

2: [6, 1] => 7

3: [1, 6] => 7

4: [5, 2] => 21

5: [2, 5] => 21

6: [5, 1, 1] => 27

7: [1, 1, 5] => 27

8: [4, 3] => 35

9: [3, 4] => 35

10: [1, 5, 1] => 41

11: [4, 1, 2] => 55

12: [2, 1, 4] => 55

13: [3, 1, 3] => 69

14: [4, 2, 1] => 85

15: [1, 2, 4] => 85

16: [2, 4, 1] => 99

17: [1, 4, 2] => 99

18: [4, 1, 1, 1] => 105

19: [1, 1, 1, 4] => 105

20: [3, 3, 1] => 125

21: [1, 3, 3] => 125

22: [1, 4, 1, 1] => 133

23: [1, 1, 4, 1] => 133

24: [3, 2, 2] => 155

25: [2, 2, 3] => 155

26: [2, 3, 2] => 181

27: [3, 1, 1, 2] => 189

28: [2, 1, 1, 3] => 189

29: [3, 1, 2, 1] => 203

30: [1, 2, 1, 3] => 203

31: [2, 1, 3, 1] => 217

32: [1, 3, 1, 2] => 217

33: [3, 2, 1, 1] => 245

34: [1, 1, 2, 3] => 245
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35: [2, 3, 1, 1] => 259

36: [1, 1, 3, 2] => 259

37: [2, 2, 1, 2] => 315

38: [2, 1, 2, 2] => 315

39: [1, 3, 2, 1] => 315

40: [1, 2, 3, 1] => 315

41: [3, 1, 1, 1, 1] => 323

42: [1, 1, 1, 1, 3] => 323

43: [1, 1, 3, 1, 1] => 365

44: [1, 3, 1, 1, 1] => 407

45: [1, 1, 1, 3, 1] => 407

46: [2, 2, 2, 1] => 413

47: [1, 2, 2, 2] => 413

48: [2, 1, 1, 1, 2] => 449

49: [2, 1, 2, 1, 1] => 477

50: [1, 1, 2, 1, 2] => 477

51: [2, 1, 1, 2, 1] => 531

52: [1, 2, 1, 1, 2] => 531

53: [2, 2, 1, 1, 1] => 573

54: [1, 1, 1, 2, 2] => 573

55: [1, 2, 1, 2, 1] => 589

56: [1, 2, 2, 1, 1] => 643

57: [1, 1, 2, 2, 1] => 643

58: [2, 1, 1, 1, 1, 1] => 791

59: [1, 1, 1, 1, 1, 2] => 791

60: [1, 1, 2, 1, 1, 1] => 875

61: [1, 1, 1, 2, 1, 1] => 875

62: [1, 2, 1, 1, 1, 1] => 917

63: [1, 1, 1, 1, 2, 1] => 917

64: [1, 1, 1, 1, 1, 1, 1] => 1,385

For p = 8:

1: [8] => 1

2: [7, 1] => 8

3: [1, 7] => 8

4: [6, 2] => 28

5: [2, 6] => 28

6: [6, 1, 1] => 35

7: [1, 1, 6] => 35

8: [1, 6, 1] => 55

9: [5, 3] => 56

10: [3, 5] => 56

11: [4, 4] => 70

12: [5, 1, 2] => 83

13: [2, 1, 5] => 83

14: [4, 1, 3] => 125

15: [3, 1, 4] => 125

16: [5, 2, 1] => 133

17: [1, 2, 5] => 133

18: [5, 1, 1, 1] => 160

19: [1, 1, 1, 5] => 160

20: [2, 5, 1] => 161

21: [1, 5, 2] => 161

22: [1, 5, 1, 1] => 208

23: [1, 1, 5, 1] => 208

24: [4, 3, 1] => 245

25: [1, 3, 4] => 245

26: [3, 4, 1] => 259

27: [1, 4, 3] => 259

28: [4, 2, 2] => 295

29: [2, 2, 4] => 295

30: [4, 1, 1, 2] => 350

31: [2, 1, 1, 4] => 350

32: [4, 1, 2, 1] => 370

33: [1, 2, 1, 4] => 370

34: [3, 2, 3] => 379

35: [2, 4, 2] => 379

36: [2, 1, 4, 1] => 412

37: [1, 4, 1, 2] => 412

38: [3, 1, 1, 3] => 448

39: [3, 3, 2] => 461

40: [2, 3, 3] => 461
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41: [4, 2, 1, 1] => 470

42: [1, 1, 2, 4] => 470

43: [3, 1, 3, 1] => 496

44: [1, 3, 1, 3] => 496

45: [2, 4, 1, 1] => 512

46: [1, 1, 4, 2] => 512

47: [4, 1, 1, 1, 1] => 595

48: [1, 1, 1, 1, 4] => 595

49: [1, 4, 2, 1] => 632

50: [1, 2, 4, 1] => 632

51: [3, 3, 1, 1] => 664

52: [1, 1, 3, 3] => 664

53: [1, 1, 4, 1, 1] => 685

54: [3, 1, 2, 2] => 728

55: [2, 2, 1, 3] => 728

56: [3, 2, 1, 2] => 784

57: [2, 1, 2, 3] => 784

58: [1, 4, 1, 1, 1] => 785

59: [1, 1, 1, 4, 1] => 785

60: [2, 3, 1, 2] => 812

61: [2, 1, 3, 2] => 812

62: [1, 3, 3, 1] => 880

63: [3, 2, 2, 1] => 1,016

64: [1, 2, 2, 3] => 1,016

65: [3, 1, 1, 1, 2] => 1,051

66: [2, 1, 1, 1, 3] => 1,051

67: [3, 1, 2, 1, 1] => 1,099

68: [1, 1, 2, 1, 3] => 1,099

69: [2, 2, 3, 1] => 1,100

70: [1, 3, 2, 2] => 1,100

71: [2, 1, 3, 1, 1] => 1,141

72: [1, 1, 3, 1, 2] => 1,141

73: [2, 3, 2, 1] => 1,168

74: [1, 2, 3, 2] => 1,168

75: [3, 1, 1, 2, 1] => 1,253

76: [1, 2, 1, 1, 3] => 1,253

77: [2, 1, 1, 3, 1] => 1,351

78: [1, 3, 1, 1, 2] => 1,351

79: [3, 2, 1, 1, 1] => 1,421

80: [1, 1, 1, 2, 3] => 1,421

81: [2, 2, 2, 2] => 1,456

82: [1, 3, 1, 2, 1] => 1,457

83: [1, 2, 1, 3, 1] => 1,457

84: [2, 1, 2, 1, 2] => 1,513

85: [2, 3, 1, 1, 1] => 1,519

86: [1, 1, 1, 3, 2] => 1,519

87: [1, 2, 3, 1, 1] => 1,667

88: [1, 1, 3, 2, 1] => 1,667

89: [1, 3, 2, 1, 1] => 1,735

90: [1, 1, 2, 3, 1] => 1,735

91: [3, 1, 1, 1, 1, 1] => 1,856

92: [1, 1, 1, 1, 1, 3] => 1,856

93: [2, 2, 1, 1, 2] => 1,889

94: [2, 1, 1, 2, 2] => 1,889

95: [2, 1, 2, 2, 1] => 2,051

96: [1, 2, 2, 1, 2] => 2,051

97: [2, 2, 1, 2, 1] => 2,107

98: [1, 2, 1, 2, 2] => 2,107

99: [1, 1, 3, 1, 1, 1] => 2,144

100: [1, 1, 1, 3, 1, 1] => 2,144

101: [2, 2, 2, 1, 1] => 2,261

102: [1, 1, 2, 2, 2] => 2,261

103: [1, 3, 1, 1, 1, 1] => 2,312

104: [1, 1, 1, 1, 3, 1] => 2,312

105: [2, 1, 1, 1, 1, 2] => 2,590

106: [1, 2, 2, 2, 1] => 2,701

107: [2, 1, 2, 1, 1, 1] => 2,780

108: [1, 1, 1, 2, 1, 2] => 2,780

109: [2, 1, 1, 2, 1, 1] => 2,890

110: [1, 1, 2, 1, 1, 2] => 2,890

111: [2, 1, 1, 1, 2, 1] => 2,990

112: [1, 2, 1, 1, 1, 2] => 2,990

113: [1, 2, 1, 2, 1, 1] => 3,194

114: [1, 1, 2, 1, 2, 1] => 3,194
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115: [2, 2, 1, 1, 1, 1] => 3,268

116: [1, 1, 1, 1, 2, 2] => 3,268

117: [1, 2, 1, 1, 2, 1] => 3,526

118: [1, 1, 2, 2, 1, 1] => 3,526

119: [1, 2, 2, 1, 1, 1] => 3,736

120: [1, 1, 1, 2, 2, 1] => 3,736

121: [2, 1, 1, 1, 1, 1, 1] => 4,529

122: [1, 1, 1, 1, 1, 1, 2] => 4,529

123: [1, 1, 2, 1, 1, 1, 1] => 4,985

124: [1, 1, 1, 1, 2, 1, 1] => 4,985

125: [1, 1, 1, 2, 1, 1, 1] => 5,095

126: [1, 2, 1, 1, 1, 1, 1] => 5,263

127: [1, 1, 1, 1, 1, 2, 1] => 5,263

128: [1, 1, 1, 1, 1, 1, 1, 1] => 7,936

Referring to the above data, and going on till p = 18, we may observe that 8 3  p  18,

F(1, 1, . . . , 1) (where 1 is repeated p times) always corresponds to the maximal value between

all F(a1, . . . , as), where 1  s  p, and p =
Ps

i=1 ai. Also remark that F(1, 2, 1, . . . , 1) is the

next biggest value, and F(1, 2, 1, . . . , 1) is always bigger than F(1,1,...,1)
2 . One may wonder if

these properties hold for any p.

On the other hand, if p is odd, (that is, the corresponding transitive tournament TT (p+1)

is of even order), then the tuple (1, 1, . . . , 1) is not symmetric. If p is even, (that is, TT (p+1)

is of odd order), then the tuple (1, 1, . . . , 1) is symmetric, and as a consequence, (1, 2, 1, . . . , 1)

is not symmetric.

Hence, using Theorem 3.1.1, we set the following conjecture:

Conjecture 3.3.1. Let TTn be a transitive tournament on n vertices.

Then 8 ↵ = (↵1,↵2, . . . ,↵s) 2 Ks,
Ps

i=1 ↵i = n� 1, if n is even we have:

fTTn(1,�1, 1, . . . ,�1, 1) � fTTn(↵1,↵2, . . . ,↵s),

where (1,�1, 1, . . . ,�1, 1) has n� 1 components, while if n is odd, we have:

fTTn(1,�2, 1,�1, 1, . . . ,�1, 1) � fTTn(↵1,↵2, . . . ,↵s),

where the number of components of (1,�2, 1, . . . , 1) is n� 2.

If the conjecture is true, we can deduce that in a transitive tournament of even order, the

number of antidirected Hamiltonian paths starting with a forward arc is the maximum of the

numbers of oriented Hamiltonian paths starting with a forward block, for all given types.

It seems that the path-function F holds many interesting properties that could tell a lot

about the number of oriented Hamiltonian paths in a transitive tournament. Concerning

oriented cycles:

Problem 3.3.2. Can we find a combinatorial function G, that allows us to compute the exact

number of oriented Hamiltonian cycles of any given type in a transitive tournament?
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Chapter 4

Real and complex quadratic cyclic

sequences, and cyclic graphs.

We recall that for a given integer N � 2, a quadratic cyclic sequence (QCS) of order N is a

function ' : Z/NZ ! C satisfying the quadratic difference relation

�

2

�
2'(j)�'(j�1)�'(j+1)

�2
=
�
'(j)�'(j�1)

�2
+
�
'(j)�'(j+1)

�2 8j 2 Z/NZ (4.1)

for some real number � where j ± 1 are calculated modulo N .

If we define the increment uj = '(j + 1)� '(j), then the above equation reads

�

2
(uj � uj�1)

2 � uj
2 � uj�1

2 = 0. (4.2)

Moreover, equation (4.1) is invariant (for fixed �) under affine linear transformations and

conjugation in the complex plane:

' 7! a'+ b and ' 7! ' , 8 a, b 2 C with a 6= 0 . (4.3)

Equation (4.1) is also invariant under cyclic permutations and order reversal of the sequence

S = ('(0),'(1), . . . ,'(N � 1)). We refer to these four freedoms as normalization.

We examine in §4.1 real QCS, showing how they arise from polynomials with positive in-

teger coefficients. In particular, we will see how a given polynomial can give rise to different

sequences coming from legitimate orderings of a corresponding set of increments. It turns out

that we can capture the legitimate orderings by Eulerian walks in a corresponding digraph, a

model we discuss later on in §4.4.

Then, in §4.2, we study complex QCS which arise from polynomials. They will be called
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algebraic. In this case, a legitimate polynomial p(x) determines a closed polygonal walk in the

plane with exterior angle either +✓ or �✓ for some fixed angle ✓ (the turning angle). We will

see that complex algebraic QCS exist with turning angle not a rational multiple of 2⇡. In the

case when ✓ = 2⇡/n, necessarily the n’th cyclotomic polynomial Φn(x) must divide p(x). The

problem of which polynomials can arise turns out to be challenging when n becomes large:

One wishes to construct a polygonal path starting at the origin, with directed edges taken

from the edges of a closed regular polygon with exterior angle 2⇡/n. One may use edges as

often as one likes, but at each step, the turning angle must be either +2⇡/n or �2⇡/n. In the

case when the polygonal path is closed and n is even, must each edge occur with its parallel

counterpart oriented in the opposite direction? To complete a circuit, are all edges of the

polygon required? (now for n even or odd). We will discuss these problems, showing that for

n � 12, this is not necessarily true.

In §4.3, we see how it is possible to combine quadratic cyclic sequences with common � to

obtain new sequences, and show how this process of concatenation is reflected in the defining

polynomials, and we finally study in §4.5 the unicity of the edges used to construct a walk

with turning angle 2⇡/n of given length and end point. For walks on square, triangular and

hexagonal lattices, unicity occurs when n = 4, but not in general when n = 6.

4.1 Construction of real QCS

In this section, we examine real QCS, showing how they arise from polynomials with positive

integer coefficients.

By a real QCS, we mean one in which every term is real under some normalization. As

we saw in Chapter 1, for such sequences, we must have � � 1. Below, we will see that we

necessarily have �  2. First we deal with the case when � = 2.

Proposition 4.1.1. Let (x0, x1, x2, . . . , xN�1) be a non-constant QCS (not necessarily real)

which solves (4.1) for some real �. Then � = 2 if and only if for every three consecutive

elements xj�1, xj , xj+1, j 2 Z/NZ, we have xj�1 = xj or xj = xj+1.

Proof. Consider a segment of three successive terms xj�1, xj , xj+1. On applying (4.1) at

vertex xj , we obtain the equation:

(xj+1 + xj�1 � 2xj)
2 = (xj�1 � xj)

2 + (xj+1 � xj)
2

, (xj � xj�1)(xj � xj+1) = 0 ,

so that necessarily, xj is equal to one of its neighbours. Conversely, if every coefficient xj has

at most one adjacent coefficient taking on a different value, then by evaluating equation (4.1)
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on vertex j, we have

�

2
(xj+1 + xj�1 � 2xj)

2 = (xj�1 � xj)
2 + (xj+1 � xj)

2,

and since we either have xj�xj�1 = 0 or xj�xj+1 = 0, and (x0, x1, . . . , xN�1) is non-constant,

then we get � = 2.

Clearly, for all orders � 4, non-constant cyclic sequences with � = 2 exist. We now treat

the case when � 6= 2. First, as a result of Proposition 4.1.1, we have the following:

Proposition 4.1.2. If X = (x0, x1, . . . , xN�1) is a QCS satisfying equation (4.1) with � 6= 2,

then either X is constant or no 2 consecutive terms of X can be equal.

We now give the construction of real QCS:

Theorem 4.1.3. Let q(x) = an�2x
n�2+an�3x

n�3+ · · ·+a1x+a0 (n � 2) be any polynomial

with integer coefficients all strictly positive. Multiply by x+ 1 to obtain the new polynomial

p(x) := bn�1x
n�1 + bn�2x

n�2 + · · ·+ b1x+ b0 (4.4)

= an�2x
n�1 + (an�2 + an�3)x

n�2 + · · ·+ (a1 + a0)x+ a0 .

Let y be any real root of p(x) (necessarily negative). Then a quadratic cyclic sequence

(x0, x1, x2, . . . , xN�1)

of order N = 2
Pn�2

k=0 ak is constructed by arbitrarily prescribing x0 and then requiring incre-

ments uj = xj+1 � xj of successive terms to be taken from the set {1, y, y2, . . . , yn�1} in such

a way that each increment yk occurs precisely bk times and any two adjacent increments have

powers that differ by ±1, including the powers corresponding to the elements u0 and uN�1.

This is always possible and up to these constraints, the ordering is arbitrary. The constant �

in (4.1) is given by � = 2(1 + y2)/(1� y)2 < 2.

Conversely, up to addition of a constant, cyclic permutations and order reversal, a multiple

of any non-constant real cyclic sequence with � 6= 2 arises in this way from such a polynomial

p(x), well-defined up to replacement of p(x) by ep(x) := xdeg pp(1/x).

The cyclic sequences with � = 2 are characterized as those made up of connected segments

of order � 2 on which the sequence is constant. The cyclic sequences with � = 1 are, up to

normalization, equivalent to (0, 1, 0, 1, . . . , 0, 1); they arise by taking the root y = �1 of p(x).

We refer to the increment y as a fundamental increment associated to the sequence and

the polynomial p(x) as a defining polynomial of the sequence. As we see below y is only

defined up to replacement by 1/y and p(x) up to replacement by xdeg pp(1/x). The ordering

of increments specified by the statement of the theorem will be refered to as legitimate.
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Remark 4.1.4. Since any real root y must be strictly negative and adjacent powers differ by

one, it follows that a real cyclic sequence with � 6= 2 oscillates. The length N of the sequence

is given by
P

k bk = 2
P

k ak, so that a non-trivial real QCS with � 6= 2 always has even order

(also a consequence of oscillation).

Example 4.1.5. Take q(x) = x + 2. Multiplication by x + 1 gives the polynomial p(x) =

x2+3x+2 with real root y = �2. Arrange the powers of this root with appropriate multipicity

to give the legitimate sequence of increments (1, y, 1, y, y2, y) = (1,�2, 1,�2, 4,�2). We

construct a real QCS of order 6 by first setting x0 = 0 and then proceeding so that u0 =

x1 � x0 = 1, u1 = x2 � x1 = �2, . . . , u5 = x0 � x5 = �2. We thereby obtain the QCS

(0, 1,�1, 0,�2, 2) of order 6. We can normalize the sequence in such a way that the minimum

value is 0 (that is by adding -2 to all the elements), and then applying a cyclic permutation,

we can manage that the value 0 be the first term and we get: (0, 4, 2, 3, 1, 2).

Example 4.1.6. Irrational sequences arise from irrational roots. For example, the polynomial

x2+4x+1 has root x = �2+
p
3. On multiplying by x+1 we obtain the polynomial p(x) = x3+

5x2+5x+1. A legitimate sequence of increments is given by (1, y, y2, y, y2, y, y2, y, y2, y3, y2, y)

with y = �2 +
p
3. On calculating, we can now construct a real QCS of order 12; explicitly,

it is given by (0, 1,�1+
p
3, 6� 3

p
3, 4� 2

p
3, 11� 6

p
3, 9� 5

p
3, 16� 9

p
3,�10+ 6

p
3,�3+

2
p
3,�5 + 3

p
3, 2 �

p
3). All terms of this QCS lie in the interval [0, 1]. The value of the

constant � in (4.1) is given by � = 4/3.

In order to prove Theorem 4.1.3, we give the two following lemmas.

Lemma 4.1.7. Consider a polynomial p(x) = bn+1x
n+1 + bnx

n + · · · + b1x + b0, having

strictly positive integer coefficients. Then p(x) = (x+ 1)q(x), where q(x) has strictly positive

integer coefficients if and only if we can associate to p(x) a sequence (u0, u1, . . . , uN�1) of

N =
Pn+1

k=0 bk elements, whose successive terms are taken from the set {1, x, x2, . . . , xn+1} in

such a way that each xk occurs precisely bk times and any two adjacent elements have powers

that differ by ±1, including the powers corresponding to the elements u0 and uN�1.

Proof. Suppose first that p(x) = (x+1)q(x), where q(x) = anx
n + an�1x

n�1 + · · ·+ a1x+ a0

has strictly positive coefficients. That is, the coefficients of p(x) are given by:

p(x) = bn+1x
n+1 + bnx

n + · · ·+ b1x+ b0

= (x+ 1)(anx
n + an�1x

n�1 + · · ·+ a1x+ a0)

= anx
n+1 + (an + an�1)x

n + · · ·+ (a1 + a0)x+ a0.

The polynomial p(x) can be written as:

p(x) = an(x
n+1 + xn) + an�1(x

n + xn�1) + · · ·+ a1(x
2 + x) + a0(x+ 1).
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If n is even,

p(x) = a0(1 + x) + a2(x
2 + x3) + a4(x

4 + x5) + · · ·+ an(x
n + xn+1)

+an�1(x
n + xn�1) + an�3(x

n�2 + xn�3) + · · ·+ a1(x
2 + x)

=
nX

k=0,k even

ak(x
k + xk+1) +

n�1X

k=1,k odd

ak(x
k+1 + xk).

If n is odd,

p(x) = a0(1 + x) + a2(x
2 + x3) + a4(x

4 + x5) + · · ·+ an�1(x
n�1 + xn)

+an(x
n+1 + xn) + an�2(x

n�1 + xn�2) + · · ·+ a1(x
2 + x)

=

n�1X

k=0,k even

ak(x
k + xk+1) +

nX

k=1,k odd

ak(x
k+1 + xk).

Then we construct the following sequences:

If n is even:

S = (

1, x repeated a0 timesz }| {
1, x, . . . , 1, x ,

x2, x3 repeated a2 timesz }| {
x2, x3, . . . , x2, x3 , . . . ,

xn, xn+1 repeated an timesz }| {
xn, xn+1, . . . , xn, xn+1,

xn, xn�1, . . . , xn, xn�1

| {z }
xn, xn�1 repeated an�1 times

, . . . , x4, x3, . . . , x4, x3| {z }
x4, x3 repeated a3 times

, x2, x, . . . , x2, x| {z }
x2, x repeated a1 times

),

If n is odd:

S = (

1, x repeated a0 timesz }| {
1, x, . . . , 1, x ,

x2, x3 repeated a2 timesz }| {
x2, x3, . . . , x2, x3 , . . . ,

xn�1, xn repeated an�1 timesz }| {
xn�1, xn, . . . , xn�1, xn ,

xn+1, xn, . . . , xn+1, xn| {z }
xn+1, xn repeated an times

, . . . , x4, x3, . . . , x4, x3| {z }
x4, x3 repeated a3 times

, x2, x, . . . , x2, x| {z }
x2, x repeated a1 times

),

and since 81  i  n, ai > 0, the above sequences satisfy the desired conditions.

Conversely, let X = (u0, u1, . . . , uN�1) = (xs0 , xs1 , . . . , xsN�1) be a sequence associated to

the polynomial p(x) = bn+1x
n+1+ bnx

n+ · · ·+ b1x+ b0 satisfying the above conditions. That

is, each term of X is taken from the set {1, x, x2, . . . , xn+1} in such a way that each xk occurs

precisely bk times in X, and 8 j 2 Z/NZ, sj � sj�1 = ±1.

We can be more explicit about the form of p(x). Since 8 j 2 Z/NZ, sj � sj�1 = ±1, then

the number of even powers of x is equal to the number of odd powers of x in X, so �1 is a

root of p(x) and (x+ 1) is a factor of p(x). Moreover, for n � 2, we claim that p(x) has the
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following form:

p(x) = bn+1x
n+1 + (bn+1 + 1)xn + 2xn�1 + 2xn�2 + . . .

· · ·+ 2x2 + (b0 + 1)x+ b0 +

nX

s=2

�s(x
s + xs�1)

= (x+ 1)(bn+1x
n + xn�1 + xn�2 + · · ·+ x+ b0) + (x+ 1)

nX

s=2

�sx
s�1

where bn+1, b0 are strictly positive integers and �s are integers that are � 0. To see this, for

each of the bn+1 occurrences of the maximum power xn+1, we must have at least one more

occurrence of xn. Similarly for each of the b0 occurrences of the minimum power x0, we must

have one more occurrence of x1. Moreover, necessarily each of the intermediate powers must

occur at least twice. However, we may have further oscillations between powers of xs and

xs�1 for s = 2, . . . , n, which are given by the coefficients �s.

In the case when n = 1, then we must have p(x) = (x + 1)(a1x + a0) for positive inte-

gers a1, a0, and for n = 0, p(x) = a0(x + 1) for a positive integer a0. The polynomial p(x)

then has �1 as a root, and the coefficients of q(x), such that p(x) = (x+1)q(x) are all strictly

positive integers. This concludes the proof.

The second lemma is about a recurrence relation that determines each term of a real QCS

as a function of the three previous terms.

Lemma 4.1.8. Let (x0, x1, . . . , xN�1) be a non-constant real QCS with � 6= 2, then the

increments uj = xj+1 � xj are non-zero, and satisfy u0 + u1 + · · · + uN�1 = 0 and the

recurrence relation:

uj =

(
either uj�1

2/uj�2

or uj�2 .
(4.5)

for all j 2 Z/NZ. Conversely, any real sequence (u0, u1, . . . , uN�1) with non-zero terms,

whose sum is zero, and satisfying the above recurrence relation, determines a real QCS

(x0, x1, . . . , xN�1), by arbitrary prescribing x0 and setting xj+1 = uj+xj for j = 0, . . . , N�1.

Proof. Let (x0, x1, . . . , xN�1) be a non-constant QCS with � 6= 2. Consider a particular

segment of the sequence consisting of four consecutive terms: (xj�2, xj�1, xj , xj+1). On nor-

malizing, we can suppose this segment equivalent to (u, 0, v, w), for some real numbers u, v, w.

Using Proposition 4.1.2, we have u 6= 0. Similarly v 6= 0 and more generally, two successive

terms are distinct so that the increments are all non-zero.
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On evaluating equation (4.1) at term j � 1, we obtain:

� =
2(u2 + v2)

(u+ v)2
. (4.6)

Now evaluate (4.1) at term j:

�(w � 2v)2 = 2
�
(w � v)2 + v2

�
.

On eliminating �, we obtain the quadratic equation in w:

uw2 + (u� v)2w � v(u� v)2 = 0 .

This gives two possible values of w, which are v(u � v)/u and v � u. To recover the general

case, we set u = xj�2 � xj�1, v = xj � xj�1, w = xj+1 � xj�1. This gives the two values:

xj+1 =

8
<
:

xj�1(xj � xj�1) + xj(xj�2 � xj)

xj�2 � xj�1

xj + xj�1 � xj�2

On subtracting xj from both sides, we obtain the recurrence relation (4.5) for the increments.

Conversely, given a sequence (u0, u1, . . . , uN�1) with non-zero terms whose sum is zero sat-

isfying the recurrence relation (4.5), then the sequence must alternate in sign, for otherwise,

if we have two consecutive terms of the same sign, then using the recurrence relation, all

subsequent terms would have the same sign, contradicting u0 + u1 + · · · + uN�1 = 0. It is

then easily checked that (4.2) is satisfied for � = 2(uj
2 + uj�1

2)/(uj � uj�1)
2 independently

of j. In fact, we need to prove that

uj
2 + uj�1

2

(uj � uj�1)2
=

uj�1
2 + uj�2

2

(uj�1 � uj�2)2
.

The alternance in sign means that the denominators are non-zero. If uj = uj�2, the equality

is obvious. If uj =
uj�1

2

uj�2
, then we get:

uj
2 + uj�1

2

(uj � uj�1)2
=

uj�1
4

uj�2
2
+ uj�1

2

✓
uj�1

2

uj�2
� uj�1

◆2 =
uj�1

2.(uj�1
2 + uj�2

2)

uj�1
2.(uj�1 � uj�2)2

,

which gives the desired equality. A corresponding real QCS (x0, x1, . . . , xN�1) is determined
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by arbitrarily choosing x0 and then setting xj+1 = uj+xj for j = 0, . . . , N�1. The condition

u0 + u1 + · · ·+ uN�1 = 0 means that xN = x0 and the sequence is cyclic as required.

We may now give the proof of our main theorem:

Proof of Theorem 4.1.3: Consider a polynomial q(x) = an�2x
n�2 + an�3x

n�3 + · · ·+ a1x+ a0

(n � 2) with all coefficients strictly positive, and let’s prove how one can construct a corre-

sponding QCS by proceeding as in the statement of the theorem. Multiplying q(x) by x+ 1,

we obtain the new polynomial

p(x) := bn�1x
n�1 + bn�2x

n�2 + · · ·+ b1x+ b0

= an�2x
n�1 + (an�2 + an�3)x

n�2 + · · ·+ (a1 + a0)x+ a0 .

Take any real root y of p(x) if any. The root y is necessarily negative since p(x) has positive

coefficients. Using Lemma 4.1.7, we can construct the sequence

(u0, u1, u2, . . . , uN�1)

of order N =
P

k bk = 2
P

k ak, with successive terms taken from the set {1, y, y2, . . . , yn�1} in

such a way that each increment yk occurs precisely bk times and any two adjacent increments

have powers that differ by ±1, including the powers corresponding to the elements u0 and

uN�1.

It is easy to see that every three consecutive elements uj , uj+1 and uj+2 verify the recur-

rence relation (4.5) of Lemma 4.1.8. In fact, write uj = ykj , uj+1 = ykj+1 and uj+2 = ykj+2 ,

we have four cases:

kj+1 = kj + 1 and kj+2 = kj + 2,

kj+1 = kj � 1 and kj+2 = kj � 2,

kj+1 = kj + 1 and kj+2 = kj ,

kj+1 = kj � 1 and kj+2 = kj

and we can check that in each of the above cases, the recurrence relation is satisfied. Moreover,

we have that
N�1X

j=0

uj = 0,

since
X

j

uj = p(y) = 0 as y is a root of p(x). So, by Lemma 4.1.8, there exists a real QCS

X = (x0, x1, x2, . . . , xN�1) of order N =
P

k bk = 2
P

k ak, determined by the sequence of

increments (u0, u1, . . . , uN�1), constructed by arbitrarily prescribing x0 and then requiring

xj+1 = uj + xj for j = 0, . . . , N � 1.
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Now, X being a QCS, we have by equation (4.2) that

� =
2(uj

2 + uj�1
2)

(uj � uj�1)2
,

independently of j. If we write uj = ykj and uj�1 = ykj�1 then whether kj�1 = kj � 1 or

kj�1 = kj + 1, we can prove that

� =
2.(1 + y2)

(1� y)2
,

which is clearly < 2 since y < 0.

Now let (x0, x1, . . . , xN�1) be a non-constant real QCS with � 6= 2. We will show how it

arises from a polynomial with positive integer coefficients, as described in the statement of

the theorem.

Normalize the sequence (xk)k such that x0 = 0 and x1 = 1, (that is done by dividing

(xk)k by (x1 � x0), since x1 6= x0 by Proposition 4.1.2), and let u0 = x1 � x0 = 1, and

u1 = x2 � x1 = y < 0. Note that y 6= 0 because by Proposition 4.1.2, no 2 consecutive terms

of (xk)k are equal, and y is negative since the sequence of increments uk = xk+1 � xk must

alternate in sign. In fact, using Lemma 4.1.8, the sequence (uk)k of possible elements verifies

the relation

uk =

(
either uk�1

2/uk�2

or uk�2
,

for all k 2 Z/NZ. So if two consecutive increments have the same sign, and since uk has

the same sign as uk�2, then all subsequent increments would have the same sign, and the

sequence (xk)k will be monotone increasing or decreasing, which is impossible since X is non

constant and the sequence must be cyclic (that is, we must have xN = xN�1 + uN�1 ⌘ x0).

It can be easily proved by induction that the above recurrence relation implies that 8 k 2
Z/NZ, we have

uk+1 =

(
either y.uk

or uk/y
,

so the sequence (uk)k of possible increments of the QCS is:

0
BBB@1, y,

(
y2

1
,

8
><
>:

y3

y
1
y

,

8
>>><
>>>:

y4

y2

1
1
y2

, . . . ,

(
y
1
y

1
CCCA . (4.7)

For the case when y = �1, the sequence (4.7) is (1,�1, 1,�1, . . . , 1,�1), which corresponds
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to a QCS equivalent to (0, 1, 0, 1, . . . , 0, 1) with � = 1. Furthermore, any non-constant QCS

with � = 1 is equivalent to one of this form, since if we take a segment (xk�1, xk, xk+1), then

(xk � xk�1 + xk � xk+1)
2 = 2(xk � xk�1)

2 + 2(xk � xk+1)
2 , (xk+1 � xk�1)

2 = 0 ,

so that xk+1 = xk�1. So any non-constant QCS satisfying equation (4.1) with � = 1 has a

corresponding defining polynomial p(x) = c.(x + 1) where c is the number of repetition of 1

(of �1 also) in the normalized sequence of increments. The polynomial p(x) has the form of

the statement of the theorem, and the sequence of increments arises by taking the root �1 of

p(x).

Note that the defining polynomial of a non-constant QCS with � = 1 is not unique, unlike

the case � 6= 1, which we will now discuss. (See Remark (4.1.9)).

Suppose now that y 6= �1. In particular, since y is real and negative, we cannot have

yr = 1 for any power r 6= 0, and yr 6= yr
0 8 r 6= r0.

The sequence (4.7) implies that all terms must have the form yr for some integer r and

that powers of successive terms differ by ±1, that is, an occurrence of yr must be followed

by either yr+1 or yr�1. Write the sequence of increments as (yr0 , yr1 , . . . , yrN�1) and let

t = min{rj : 0  j  N�1}. Now multiply through by y�t to obtain 1 = y0 in some position,

with all other powers of y greater than or equal to zero:

(ys0 , ys1 , . . . , 1, . . . , ysN�1) , (4.8)

where each sj � 0 and sj � sj�1 = ±1, 8 j 2 Z/NZ.

But since the sequence is cyclic, then
PN�1

j=0 uj =
PN�1

j=0 (xj+1 � xj) = 0, which implies thatPN�1
j=0 ysj = y�t

PN�1
j=0 yrj = 0 so that y satisfies a polynomial equation of the form:

p(x) := bn�1x
n�1 + bn�2x

n�2 + · · ·+ b1x+ b0 = 0

where bs is the number of occurrences of ys in (4.8) and n � 1 is the maximal power that

occurs (the choice of n�1 is to accord with later conventions). We can be more explicit about

the form of p(x): By the proof of Lemma 4.1.7 applied on the sequence (4.8), it follows that

x+ 1 is a factor of p(x), and for n � 4, p(x) has the form:

p(x) = (x+ 1)(bn�1x
n�2 + xn�3 + xn�4 + · · ·+ x+ b0) + (x+ 1)

n�2X

s=2

�sx
s�1

= bn�1x
n�1 + (bn�1 + 1)xn�2 + 2xn�3 + 2xn�4 + · · ·

· · ·+ 2x2 + (b0 + 1)x+ b0

n�2X

s=2

�s(x
s + xs�1)
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where bn�1, b0 are strictly positive integers and �s are integers that are � 0. In the case

when n = 3, then we must have p(x) = (x+ 1)(a1x+ a0) for positive integers a1, a0, and for

n = 2, p(x) = a0(x + 1) for a positive integer a0, (but this case is impossible since y 6= �1).

The polynomial p(x) is then equal to (x + 1).q(x) where q(x) has strictly positive integer

coefficients, so has the form of the statement of the theorem.

We need to show that the above procedure is well-defined, that is, if we perform the

various operations on the QCS (addition of a constant, multiplication by a constant, cyclic

permutation, order reversal), the polynomial that results is well-defined. In fact, p(x) is only

defined up to replacement by ep(x) := xdeg pp(1/x).

First note that all of the above operations on a QCS leave � invariant. The expression for

� is deduced from (4.2) and (4.7):

� = 2
(1 + y2)

(1� y)2
, (4.9)

(where we can clearly see that � < 2 since y < 0).

Thus, y < 0 is determined to be a root of the quadratic equation

(1� y)2� = 2(1 + y2) (4.10)

and the only other root is 1/y. In fact, � is invariant under y 7! y�1. Thus for given � the

only two possible fundamental increments are roots y and 1/y of (4.10).

Addition of a constant makes no difference to the sequence of increments and so leaves the

above construction of p(x) invariant. However, as we now show, up to a multiple, cyclic per-

mutations and order reversal have the same effect on the sequence of increments (see Example

4.1.13 below) which may modify p(x).

As before, begin with a real QCS which we normalize as above:

(x0, x1, . . . , xN�1) ! (0, x1 � x0, x2 � x0, . . . , xN�1 � x0)

!
✓
0, 1,

x2 � x0
x1 � x0

,
x3 � x0
x1 � x0

, . . . ,
xN�1 � x0
x1 � x0

◆
,

where, in the previous notation, y = x2�x0
x1�x0

�1 = x2�x1
x1�x0

. Then the sequence of increments has

the form

u := (u0, u1, . . . , uN�1) =

✓
1,

x2 � x1
x1 � x0

,
x3 � x2
x1 � x0

, . . . ,
xN�1 � xN�2

x1 � x0
,
x0 � xN�1

x1 � x0

◆
,
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where for the moment we don’t normalize to make y0 the smallest power of y. Suppose we

make a cyclic permutation to obtain the real QCS (xt, xt+1, . . . , xN�1, x0, x1, . . . , xt�1). Then

the same proceedure yields the sequence of increments

v =

✓
1,

xt+2 � xt+1

xt+1 � xt
,
xt+3 � xt+2

xt+1 � xt
, . . . ,

x0 � xN�1

xt+1 � xt
,
x1 � x0
xt+1 � xt

, . . . ,
xt � xt�1

xt+1 � xt

◆

=

✓
x1 � x0
xt+1 � xt

◆✓
xt+1 � xt
x1 � x0

,
xt+2 � xt+1

x1 � x0
, . . . ,

x0 � xN�1

x1 � x0
, 1,

x2 � x1
x1 � x0

, . . . ,
xt � xt�1

x1 � x0

◆

which is a multiple of a cyclic permutation of u.

Similarly, order reversal gives the QCS (xN�1, xN�2, . . . , x1, x0) which, following the same

normalization procedure, yields the corresponding sequence of increments

✓
x1 � x0

xN�1 � xN�2

◆✓
xN�1 � xN�2

x1 � x0
,
xN�2 � xN�3

x1 � x0
, . . . ,

x2 � x1
x1 � x0

, 1,
x0 � xN�1

x1 � x0

◆

which is a multiple of the sequence u with order reversed together with a cyclic permutation.

In each case we obtain a multiple of u together with a cyclic permutation and/or with order

reversal.

Now proceed as before to construct the polynomial p(x). Thus some multiple of u yields

a sequence of powers of y (respectively 1/y), the smallest being y0 (respectively (1/y)0).

Suppose as in (4.8),

cu = (ys0 , ys1 , . . . , ysN�1) ,

for some c 2 R \ {0} with min{sj : 0  j  N � 1} = 0. Let s` = max{sj : 0  j  N � 1}

and instead multiply u by cy�s` :

cy�s`u = (ys0�s` , ys1�s` , . . . , ysN�1�s`) = (eys`�s0 , eys`�s1 , . . . , eys`�sN�1)

where ey = 1/y. Note that the smallest power of ey in the sequence is ey0. Furthermore,

p(x) = xs0 + xs1 + · · ·+ xsN�1 , so that the polynomial satisfied by ey is given by

ep(x) = xs`�s0 + xs`�s1 + · · ·+ xs`�sN�1 = xs`p(1/x)

where s` = deg p. In particular these are the only two multiples of u which can be written as

powers of y or 1/y for which the lowest power is 0. As already established, cyclic permutations

and/or order reversal of the QCS yield a multiple of a cyclic permutation and/or order reversal

of the sequence of increments u. However, the number or occurrences bk of the power yk

remains invariant by these operations (up to replacement of y by 1/y and p(x) by xdeg pp(1/x)).
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In particular p(x) is well-defined up to replacement by ep(x) = xdeg pp(1/x). 2

Remark 4.1.9. Note that when given a non-constant real QCS of order N with � 6= 2,

and when the fundamental increment y is different from �1, (which is the case � 6= 1),

the polynomial p(x) which we constructed in the proof of Theorem 4.1.3 is unique, because

when y 6= �1, we can’t have yr = yr
0

for any powers r 6= r0. However, when � = 1,

the fundamental increment is y = �1 and we have yr = yr
0

= 1 for all r, r0 even, and

yr = yr
0

= �1 for all r, r0 odd, so there may be many polynomials having the form (4.4),

corresponding to the same QCS, as for example p(x) = c.(x + 1) where c is the number of

repetition of 1 (of �1 also) in the sequence of increments. More precisely, any polynomial

p(x) = (x + 1)q(x) = apx
p + ap�1x

p�1 + · · · + a1x + a0 such that
Pp

i=0 ai = N , q(x) having

strictly positive integer coefficients, will do the work.

Definition 4.1.10. We define R to be a binary relation on the set of all real QCS of some

length N such that for any two real QCS '1 = (x0, x1, . . . , xN�1) and '2 = (y0, y1, . . . , yN�1),

we have '1R'2 if and only if one can be obtained from the other by the following operations:

multiplication by a constant; addition of a constant; cyclic permutation; order reversal; legit-

imate reordering of the sequence of increments (constructed following Theorem 4.1.3).

Clearly, the relation R defined above is an equivalence relation, and any two sequences '1

and '2 such that '1R'2 are said to be equivalent.

Definition 4.1.11. Two polynomials with strictly positive integer coefficients p1(x) and p2(x)

of common degree n� 1 form a pair if p2(x) = xn�1p1(1/x),

For example p1(x) = (x+ 1)(2x+ 3) and p2(x) = (x+ 1)(3x+ 2) form a pair.

Recall that by Theorem 4.1.3, up to normalization, the sequence of increments has the form

(ys0 , ys1 , . . . , ysN�1) where all powers are integers � 0, and successive increments have powers

differing by ±1 and that there may be several different orderings possible of the elements

of the sequence of increments. In §4.4 we will explore how to characterize these different

orderings in terms of Eulerian digraphs.

In order to construct examples of real QCS, we follow the proof of Theorem 4.1.3. Given the

polynomial p(x) = (x+1)q(x) of degree n, one constructs the corresponding QCS by first con-

structing a legitimate sequence of increments (ys0 , ys1 , . . . , ysN�1) where sj 2 {0, 1, . . . , n+1}

and sj = sj�1 ± 1 and where the power yj occurs bj times.

Example 4.1.12. The example of the Introduction, in §1.5, is obtained by taking the

polynomial 3x + 2 with root y = �2/3. Multiply this by x + 1 to obtain the polynomial
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p(x) = 3x2 + 5x+ 2. Now proceed as follows:

3x2 + 5x+ 2 (defining polynomial)

#
(1, y, 1, y, y2, y, y2, y, y2, y) (sequence of increments)

=

�
1,�2

3 , 1,�2
3 ,

4
9 ,�2

3 ,
4
9 ,�2

3 ,
4
9 ,�2

3

�
(seq. of increments for given root)

#�
0, 1, 13 ,

4
3 ,

2
3 ,

10
9 ,

4
9 ,

8
9 ,

2
9 ,

2
3

�
(corresponding cyclic sequence)

#
(0, 9, 3, 12, 6, 10, 4, 8, 2, 6) (normalized cyclic sequence)

The second sequence is obtained by taking a different legitimate ordering of the powers of

y in the above construction, namely: (1, y, y2, y, 1, y, y2, y, y2, y). The two sequences are

equivalent.

As explained in the proof of Theorem 4.1.3, the defining polynomial corresponding to a

given sequence is not invariant under cyclic permutations.

Example 4.1.13. Perform a cyclic permutation on the QCS of Example 4.1.12:

(6, 10, 4, 8, 2, 6, 0, 9, 3, 12) (sequence)

#
(4,�6, 4,�6, 4,�6, 9,�6, 9,�6) (increments)

#
(1,�3

2 , 1,�3
2 , 1,�3

2 ,
9
4 ,�3

2 ,
9
4 ,�3

2) (normalization)

#
(1, y0, 1, y0, 1, y0, y02, y0, y02, y0) where y0 = 1/y.

Now the defining polynomial is given by (x+1)(2x+3) = x2p(1/x) which is the pair of p(x),

where p(x) is the polynomial of Example 4.1.12.

4.2 Complex algebraic QCS

We return to equation (4.1), but in the first instance with � : Z/NZ ! [�1, 1] (not necessarly

constant):

�(j)

2

�
2'(j)�'(j� 1)�'(j+1)

�2
=
�
'(j)�'(j� 1)

�2
+
�
'(j)�'(j+1)

�2 8j 2 Z/NZ

(4.11)
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So we can picture ' : Z/NZ ! C as a closed polygon in the plane with edges the straight line

segments ['(j),'(j+1)]. The condition that �(j)  1 for each j is imposed as a consequence

of the Cauchy-Schwarz inequality discussed in the Introduction. We allow the limiting value

� = 1.

As we saw in Chapter 1, Proposition 1.5.3, a solution ' : Z/NZ ! C of (4.11) with

� : Z/NZ ! [�1, 1] defines a polygon in C whose edges ['(j),'(j + 1)], j 2 Z/NZ all have

the same length, and conversely any polygon in C with sides of equal length corresponds to

a solution ' : Z/NZ ! C of (4.11) with � : Z/NZ ! [�1, 1]. Moreover, the expression of

�(j) is given by:

�(j) =
2 cos↵j

1 + cos↵j
=

2 cos ✓j
cos ✓j � 1

where ↵j 2 [0,⇡] is the absolute angle between the two edge ['(j � 1),'(j)] and ['(j),'(j + 1)],

and ✓j = ⇡ � ↵j is the exterior angle. The two limiting cases ↵j = 0 and ↵j = ⇡ correspond

to �(j) = 1 and �(j) = �1, respectively.

In our work, we are interested in such polygons corresponding to a complex QCS, so we

suppose that � is constant. Hence, a complex QCS with � 2 [�1, 1] will be pictured as

a closed polygon in the plane with edges the straight line segments ['(j),'(j + 1)], each

having the same length and where the absolute angle ↵ between each two consecutive edges

is constant. The expression of � is given by

� =
2 cos↵

1 + cos↵
.

Moreover, the exterior angle ✓ is then uniquely defined up to sign. In the following, we will

see that such polygons will be defined by polynomial equations.

Up to normalization, we can suppose the length of each edge is 1. The fundamental

increment y then has the form y = ei✓ and a complex QCS has corresponding sequence of

increments (ys0 , ys1 , . . . , ysN�1) where sj+1 = sj ± 1, 8 j 2 Z/NZ. We can also suppose that

s0 = 0 up to normalization, and that sj � 0 for all j = 0, . . . , N �1. Then, since the sequence

is cyclic then y satisfies the polynomial equation

bn�1y
n�1 + bn�2y

n�2 + · · ·+ b1y + b0 = 0 ,

where bk is the number of occurrences of yk in the sequence of increments. Call such a QCS

algebraic with turning angle ✓.

Remark 4.2.1. In general, a sequence of complex numbers corresponding to a solution to

equation (4.11) for � : Z/NZ �! [�1, 1] is algebraic if it is determined by a polynomial

equation, that is the edges of the corresponding polygon are powers of an increment y.
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Obviously, a complex QCS is always algebraic, since � is constant, so that the exterior angle

✓ is constant and up to normalization the QCS has as corresponding sequence of increments

(ys0 , ys1 , . . . , ysN�1) where sj+1 = sj ± 1, 8 j 2 Z/NZ, where y = ei✓.

Example 4.2.2. An example of an algebraic sequence of complex numbers corresponding to

a solution to equation (4.11) for � : Z/NZ �! [�1, 1], and which is not of constant turning

angle, is is the one defined by the polynomial

x4 + x3 + x+ 1

with fundamental increment y = ei⇡/3 (so y3 = �1). We can take the sequence of increments

(1, y, y3, y4)

which determines a parallelogram with two different turning angles, and is a solution to

equation (4.11) since edges have equal length 1, (by Proposition 1.5.3).

1

y

y3

y4

If we perturb the above parallelogram so the two parallel edges (different from 1 and �1)

have angle which is an irrational mutliple of 2⇡, the obtained sequence of complex numbers

would still be a solution to equation (4.11), but is not algebraic.

A root of a polynomial with integer coefficients is called an algebraic integer. Algebraic

integers exist of modulus 1 which are not roots of unity. We will return to complex algebraic

QCS arising from such increments at the end of this section. However, in the first instance,

we suppose that the fundamental increment y is a root of unity, that is yn = 1, and that the

sequence of increments uj = '(j + 1) � '(j) is taken from a set {1, y, y2, . . . , yn�1} where

y = e2m⇡i/n, where m and n are relatively prime with m < n. Note that since m and n are

relatively prime, we can always suppose m < n. Also, since m and n are relatively prime,

then n is the smallest positive integer for which yn = 1. The condition the sequence be cyclic

implies that y is a root of a polynomial of the form

p(x) = bn�1x
n�1 + bn�2x

n�2 + · · ·+ b1x+ b0 ,

where bk � 0 represents the number of occurences of yk in the sequence of increments.
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Note that it may happen that some coefficients vanish. Our objective is to characterize

the polynomials that determine a complex algebraic QCS with increment y = e2m⇡i/n.

For y = e2⇡i/n, the numbers 1, y, y2, . . . , yn�1 are the n’th roots of unity. A root of unity

⌫ is primitive if 1, ⌫, ⌫2, . . . , ⌫n�1 are all distinct (the order of ⌫ is n). Clearly, when m and n

are relatively prime, then y = e2m⇡i/n is primitive since n is the smallest positive integer for

which yn = 1. The n’th cyclotomic polynomial Φn(x) is the polynomial whose roots are the

n’th primitive roots of unity:

Φn(x) :=
Y

1kn

gcd(n,k)=1

⇣
x� e2⇡ik/n

⌘

Then Φn(x) is irreducible over the integers and is the minimal polynomial over the integers

of y = e2m⇡i/n (m,n relatively prime, m < n) [24].

Theorem 4.2.3. Let ' be a complex QCS with increment y = e2m⇡i/n (m,n relatively prime,

m < n).

(i) When n = 2k (k � 2) is even, ' is determined by a polynomial of the form

p(x) = (x+ 1)Φn(x)q(x)

where q(x) is a polynomial of degree  n� 2�degΦn(x) whose coefficients satisfy conditions

discussed on a case by case basis below. When n = 2, p(x) = a(x+1) for some positive integer

a.

(ii) When n is odd, ' is determined by a polynomial of the form

p(x) = Φn(x)q(x)

where q(x) is a polynomial of degree  n� 1�degΦn(x) whose coefficients satisfy conditions

discussed on a case by case basis below. In the case when n is prime, then

p(x) = a(xn�1 + xn�2 + · · ·+ x+ 1)

for some positive integer a.

Conversely, polynomials of the above type (with q(x) to be made precise) yield a corre-

sponding QCS.

Proof. Let p(x) be a defining polynomial of ', so p(y) = 0. Consider a corresponding sequence

of increments, then successive increments differ by a power of one, so each occurrence of ys

is followed by either ys�1 or ys+1. Since y is a primitive root of unity, then all terms of

the sequence of increments associated to p(x) are taken from the set {1, y, . . . , yn�1}, where
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1, y, . . . , yn�1 are all distinct. When n = 2k, if we set y = �1, the sequence of increments

has the form (1,�1, . . . , 1,�1) or (�1, 1, . . . ,�1, 1), hence p(�1) = 0, so x + 1 is a factor of

p(x), but this is not always the case when n = 2k + 1. In fact, the sequence of increments

has any two successive terms ysj and ysj+1 taken from the set {1, y, . . . , yn�1} such that

sj+1 = sj ± 1(modn). In this sequence, we might have a transition from yn�1 to y0 or not.

In the latter case, (x+ 1) must be a factor of p(x), whether n is odd or even, since powers of

y must be alternatively even and odd. However, in the former case, (x+1) is a factor of p(x)

only when n is even, since the transition from yn�1 to yn = y0 is consistent with alternation

from �1 to 1 when y = �1. On the other hand, for n being odd or even, y is a root of

p(x) so that the minimal polynomial over the integers of y must also divide p(x). However,

the minimal polynomial over the integers of y = e2m⇡i/n, m and n relatively prime, m < n,

is the nth cyclotomic polynomial Φn(x). In the case when n is prime, the nth cyclotomic

polynomial is given by xn�1 + xn�2 + · · ·+ x+ 1.

For background on cyclotomic polynomials see [24]. The first ones are given as follows

Φ1(x) = x� 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 � x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Φ8(x) = x4 + 1

Φ9(x) = x6 + x3 + 1

Φ10(x) = x4 � x3 + x2 � x+ 1

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ12(x) = x4 � x2 + 1

Φ13(x) = x12 + x11 + · · ·+ x2 + x+ 1

Φ14(x) = x6 � x5 + x4 � x3 + x2 � x+ 1

Φ15(x) = x8 � x7 + x5 � x4 + x3 � x+ 1

In general, if n is prime, then

Φn(x) = xn�1 + xn�2 + · · ·+ x2 + x+ 1 .

If n = 2r (r > 0) then

Φ2r(x) = x2
r�1

+ 1 .
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If n = 2p for p an odd prime, then

Φ2p(x) = 1� x+ x2 � · · ·+ xp�1 .

In order to determine the coefficients of the polynomial q(x) of Theorem 4.2.3 case by case,

we need to find the conditions that the coefficients of the defining polynomial p(x) should

satisfy:

Call a sequence of powers u = (ys0 , ys1 , . . . , ysN�1) legitimate if sj+1 = sj ± 1(modn). Call

a polynomial with non-negative integer coefficients legitimate if it determines a legitimate se-

quence of increments from one of its roots. First we establish an elementary recursive way to

determine if a polynomial is legitimate. For ease of notation, write the sequence of increments

as ys0ys1 . . . ysN�1 , i.e. omit brackets and commas.

Suppose that the sequence of increments ys0ys1 . . . ysN�1 contains three successive terms

. . . ykyk+1yk . . . or . . . ykyk�1yk, . . .. We call such a subsequence an elementary loop based at

yk.

Lemma 4.2.4. Let p(x) = bn�1x
n�1 + bn�2x

n�2 + · · · + b1x+ b0 be a legitimate polynomial

with root y, and let ys0ys1 . . . ysN�1 be a corresponding legitimate sequence of increments con-

taining an elementary loop . . . ykyk+1yk . . . (respectively . . . ykyk�1yk . . .) based at yk. Then

replacement of the loop by yk yields a legitimate sequence of increments with corresponding

(legitimate) polynomial

p1(x) = bn�1x
n�1 + · · ·+ bk+2x

k+2 + (bk+1 � 1)xk+1 + (bk � 1)xk + bk�1x
k�1 · · ·+ b1x+ b0 ,

(respectively,

p2(x) = bn�1x
n�1 + · · ·+ bk+1x

k+1 + (bk � 1)xk + (bk�1 � 1)xk�1 + bk�2x
k�2 · · ·+ b1x+ b0 .)

Furthermore, if p(x) = bn�1x
n�1 + bn�2x

n�2 + · · · + b1x + b0 is a legitimate polynomial

with bk � bk�1, bk+1 with not all three coefficients equal, then necessarily, any corresponding

legitimate sequence of increments contains a loop at yk.

Proof. Suppose the sequence of increments contains a loop of the form . . . ykyk+1yk . . ., so

that the sequence contains a subsequence of the form

. . .
yk+1

yk�1

)
ykyk+1yk

(
yk+1

yk�1
. . .
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Then clearly replacement of this subsequence by the subsequence

. . .
yk+1

yk�1

)
yk

(
yk+1

yk�1
. . .

yields a legitimate sequence. Similarly for a loop of the form . . . ykyk�1yk . . ..

Suppose now that bk � bk�1, bk+1 with not all three coefficients equal, and that there is

no loop at yk. Then each passage via yk has one of the forms

. . . yk�2yk�1ykyk+1yk+2 . . .

. . . yk+2yk+1ykyk�1yk�2 . . .

. . . yk+2yk+1ykyk+1yk+2 . . .

or . . . yk�2yk�1ykyk�1yk�2 . . .

which would imply in all cases that bk�1, bk+1 � bk, in contradiction to our hypothesis.

Call the process of removing a loop, that is replacing . . . ykyk+1yk . . . or . . . ykyk�1yk . . .

by . . . yk . . ., reduction.

Remark 4.2.5. In Lemma 4.2.4, the word legitimate is put between brackets because the

root y of the original polynomial might no longer be a root of the reduced polynomial (the

one obtained by reduction). So in particular, there is no guarantee that a reduced polynomial

corresponds to a quadratic sequence which is cyclic, even if the initial polynomial does. But

for ease of notation, we will keep calling a reduced polynomial legitimate when it admits a

sequence of powers (xs0 , xs1 , . . . , xsN�1) where sj+1 = sj ± 1(modn).

Remark 4.2.6. If, as in the above lemma, we have bk � bk�1, bk+1 with not all three coeffi-

cients equal, without further information, it is not possible to know if a loop goes left or right,

that is, takes the form . . . ykyk�1yk . . . or . . . ykyk+1yk . . .. For example, if all loops at yk have

the form . . . , ykyk+1yk . . ., then the following could arise with all inequalities possible:

. . . yk�1ykyk+1ykyk�1 . . . bk = bk�1 > bk+1

. . . yk�1ykyk+1ykyk+1ykyk�1 . . . bk > bk�1 = bk+1

. . . yk�1ykyk+1ykyk+1ykyk+1ykyk�1 . . . bk > bk+1 > bk�1

Remark 4.2.7. Let p(x) = bn�1x
n�1+bn�2x

n�2+· · ·+b1x+b0 be a legitimate polynomial. If

for some k, the condition "bk � bk�1, bk+1 with not all three coefficients equal" is not satisfied,
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it does not necessarily mean that there is no loop based at yk in a legitimate sequence of

increments. For example, for y = e2i⇡/4, the sequence 1y31y3y2y1yy2y3 is legitimate having

a loop based at y1 of the form y1y0y1 with corresponding legitimate polynomial p(x) =

3x3 + 2x2 + 2x+ 3 where b0 = 3, and b1 = b2 = 2.

Lemma 4.2.4 yields the following proposition:

Proposition 4.2.8. Let p(x) = bn�1x
n�1 + bn�2x

n�2 + · · · + b1x + b0 be a polynomial with

non negative integer coefficients, admitting a root y. If there exists 0  k  n � 1 such that

bk � bk�1, bk+1, with not all three coefficients equal, then:

p(x) is legitimate

m

p1(x) = bn�1x
n�1 + · · ·+ bk+2x

k+2 + (bk+1 � 1)xk+1 + (bk � 1)xk + bk�1x
k�1 · · ·+ b1x+ b0,

or

p2(x) = bn�1x
n�1 + · · ·+ bk+1x

k+1 + (bk � 1)xk + (bk�1 � 1)xk�1 + bk�2x
k�2 · · ·+ b1x+ b0

is legitimate.

Proof. If we suppose that p(x) is legitimate, and since bk � bk�1, bk+1 with not all three

coefficients equal, then by Lemma 4.2.4, there exists a loop based at yk in any corresponding

sequence of increments, and any reduction at yk yields a reduced legitimate polynomial having

one of the two forms stated above. Conversely, suppose that p1(x) = bn�1x
n�1 + · · · +

bk+2x
k+2+(bk+1�1)xk+1+(bk�1)xk+ bk�1x

k�1 · · ·+ b1x+ b0 is legitimate, then is admits a

legitimate sequence of increments, that is a sequence u = (ys0 , ys1 , . . . , ysN�1), where sj+1 =

sj ± 1(modn). If we replace some yk in u by ykyk+1yk, we get a legitimate sequence of

increments corresponding to the polynomial p(x), so p(x) is legitimate. The case is similar if

p2(x) is legitimate, by replacing yk in u with ykyk�1yk.

Even if p(x) is legitimate, if we don’t know whether a loop based at yk goes left or right,

we can’t guess which of p1(x) or p2(x) is legitimate. However, using Proposition 4.2.8, in

order to establish the legitimacy of a polynomial, it is enough to find a sequence of reductions

which yields a legitimate polynomial, as we will see in the example below.

Example 4.2.9. The following sequence of reductions shows that the polynomial p(x) =

2x5 + 2x4 + 3x3 + 2x2 + 2x + 3 is legitimate. Indeed, consider the root y = e⇡i/3 of p(x).
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Apply this sequence of reductions:

2x5 + 2x4 + 3x3 + 2x2 + 2x+ 3

#
x5 + 2x4 + 2x3 + x2 + 2x+ 2

#
x5 + x4 + x3 + x2 + x+ 1

where at the first step, we have b3 � b2, b4 (resp. b0 � b1, b5) with not three coefficients equal,

so we remove a loop based at y3 and another based at y0. At the second step, we remove

once again loops at y3 and y0. The final polynomial x5 + x4 + x3 + x2 + x + 1 corresponds

to the sequence 1yy2y3y4y5 which is clearly legitimate. So by Proposition 4.2.8, the second

polynomial x5+2x4+2x3+x2+2x+2 is legitimate, and once again by Proposition 4.2.8, we

deduce that the original polynomial p(x) is legitimate. More precisely, the third polynomial

x5+x4+x3+x2+x+1 came from reductions of the form y3y4y3 and y0yy0, so we insert these

into the legitimate sequence 1yy2y3y4y5 to obtain the legitimate sequence 1y1yy2y3y4y3y4y5.

Then the first reductions were of the form y3y2y3 and y0y5y0, so we now insert these into

the sequence 1y1yy2y3y4y3y4y5 to obtain the legitimate sequence 1y51y1yy2y3y2y3y4y3y4y5

which corresponds to the original polynomial. Hence the polynomial p(x) admitting the root

y defines a complex QCS.

Remark 4.2.10. There may be many reductions one can do to test the legitimacy of a

polynomial, but even if the original polynomial is legitimate nothing guaranties that the

reduced polynomial we get at the end is always legitimate. For example, in the above example,

at the first step, one could have gone left at y3 and left at y0, then at the second step again

left at y3 and left at y0 to get the following:

2x5 + 2x4 + 3x3 + 2x2 + 2x+ 3

#
2x5 + x4 + 2x3 + 2x2 + x+ 2

#
2x5 + x3 + 2x2 + 1

But this reduced polynomial is not legitimate, since it can’t admit a legitimate sequence.

Now, to show that a polynomial is not legitimate, then using Proposition 4.2.8, one has to

test all possible sequences of reductions where at each reduction we have two possibilities to

consider (whether to go left or right). If they all yield to a reduced non legitimate polynomial,

then the original polynomial is not legitimate (as in the following corollary).
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Corollary 4.2.11. Let p(x) = bn�1x
n�1 + bn�2x

n�2 + · · · + b1x + b0 be a polynomial with

bk � bk+1 + bk�1 for some k 2 {0, . . . , n � 1} (k ± 1 calculated modulo n). Then p(x) is not

legitimate.

Proof. First of all, since bk � bk�1 + bk+1 so in particular, for any reduction at yk we take,

we will still have in every reduced polynomial bk � bk�1, bk+1 with not all three coefficients

equal. The polynomial p(x) can be reduced recursively by removing loops at yk, but whether

we go left or right at each reduction, we will always reach at some point a reduced polynomial

where the coefficient of xk+1 (respectively xk�1) is zero, with the coefficient of xk non-zero and

greater than or equal to the coefficient of xk�1 (respectively xk+1). Now, the last polynomial

is clearly not legitimate. In fact, when the coefficient of xk+1 is zero, then in order to have

a legitimate sequence, each yk should be neighbored by yk�1 from left and right, that is the

coefficient of xk�1 should be strictly greater than the coefficient of xk, which is not the case.

Similarly for when the coefficient of xk�1 is zero. So, if we suppose that p(x) is legitimate,

then for at least one of the sequences of reduction we took, the polynomial we get at each

reduction is legitimate, so applying Proposition 4.2.8 recursively, the final polynomial should

be legitimate which is not the case. Hence p(x) is not legitimate.

Case by case analysis of the polynomials defining a complex algebraic QCS with fundamental

increment y = e2m⇡i/n (m,n relatively prime, m < n). We apply Theorem 4.2.3.

n = 3: p(x) = a(x2 + x+ 1), where a is a positive integer.

n = 4: p(x) = a(x+ 1)(x2 + 1), where a is a positive integer.

n = 5: p(x) = a(x4 + x3 + x2 + x+ 1), where a is a positive integer.

n = 6: p(x) = (x + 1)(x2 � x + 1)(ax2 + bx + c) = (x3 + 1)(ax2 + bx + c) = ax5 + bx4 +

cx3 + ax2 + bx+ c. First note that the coefficients a, b, c must be strictly positive, so as not

to disconnect powers of y in the sequences of increments. What about other constraints?

Clearly if a = b = c > 0, then we have a legitimate sequence of increments, namely the

cyclic sequence y0y1y2y3y4y5 covered a times. Suppose then that the coefficients are not all

equal, for example, suppose a � b, c with one of the inequalities strict. By Corollary 4.2.11,

we cannot have a � b + c. Suppose then that a < b + c. We claim this is legitimate. For

example if a � b, a > c, then reduce the pair ab successively a� c times until the sequence of

coefficients abcabc becomes c(b�a+c)cc(b�a+c)c. Now reduce the two pairs cc successively,

until we have all coefficients equal to b � a + c (> 0 by hypothesis). This is now legitimate,

corresponding to the cyclic sequence y0y1y2y3y4y5 taken b � a + c times. By symmetry we

have the following characterization: the polynomial p(x) is legitimate if and only if all of a, b, c

are positive integers and the maximum coefficient of {a, b, c} is strictly less than the sum of

the other two coefficients.
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For example, take a = b = 2 and c = 1 to give p(x) = 2x5 + 2x4 + x3 + 2x2 + 2x +

1. One possible sequence of increments has the form (1, y, y2, y, y2, y3, y4, y5, y4, y5) with

corresponding QCS:

n = 7: p(x) = a(x6 + x5 + x4 + x3 + x2 + x+ 1), where a is a positive integer.

n = 8: p(x) = (x+1)(x4+1)(ax2+bx+c) = ax7+(a+b)x6+(b+c)x5+cx4+ax3+(a+b)x2+

(b+ c)x+ c, where we clearly require a, c, a+ b, b+ c > 0. If a, b, c > 0, then the polynomial is

legitimate. Specifically, we first reduce the sequence of coefficients a(a+b)(b+c)ca(a+b)(b+c)c

to aaccaacc in the obvious way and then reduce to aaaaaaaa if a  c or to cccccccc if c  a.

On the other hand, b may be zero or negative. If b is zero, then p(x) = ax7 + ax6 + cx5 +

cx4+ ax3+ ax2+ cx+ c is clearly legitimate. If b is strictly negative and, say a � c, then this

is again legitimate (similarly if c � a): Write e = �b > 0. Then the sequence of coefficients

takes the form a(a�e)(c�e)ca(a�e)(c�e)c (with c�e > 0). Now reduce e times at y3 and y7

to obtain the sequence of coefficients (a�e)(a�e)(c�e)(c�e)(a�e)(a�e)(c�e)(c�e), which

then reduces to the legitimate sequence (c� e)(c� e)(c� e)(c� e)(c� e)(c� e)(c� e)(c� e).

It is worth illustrating the above construction with an example. The polynomial p(x) =

3x7+2x6+x5+2x4+3x3+2x2+x+2 is legitimate (a = 3, b = �1, c = 2). To construct a cor-

responding sequence of increments, we work backwards from the cyclic sequence by the above

procedure: 1yy2y3y4y5y6y7 ! 1yy2y3y2y3y4y5y6y7y6y7 ! 1yy2y3y2y3y4y3y4y5y6y7y6y71y7.

The corresponding QCS is illustrated below.

To summarize: the polynomial p(x) is legitimate if the coefficients a, b, c are integers with

a, c, a+ b, b+ c > 0.

n = 9: p(x) = (x6 + x3 +1)(ax2 + bx+ c) = ax8 + bx7 + cx6 + ax5 + bx4 + cx3 + ax2 + bx+ c.

This is analogeous to the case n = 6, with the same constraints on the coefficients a, b, c.
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n = 10: p(x) = (x+1)(x4�x3+x2�x+1)(a4x
4+a3x

3+a2x
2+a1x+a0) = (x5+1)(a4x

4+

a3x
3 + a2x

2 + a1x+ a0) = a4x
9 + a3x

8 + a2x
7 + a1x

6 + a0x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0.

This is analogous to the case n = 6 but more complicated. Clearly a necessary condition is

that a1, a2, a3 and a4 be strictly positive. Rather than give an exhaustive treatment of the

different cases, it suffices to apply the recursive procedure given by Proposition 4.2.8.

n = 11: p(x) = a(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+1) for a positive integer a.

n = 12: p(x) = (x + 1)(x4 � x2 + 1)(a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0). This

time (x+1)Φ12(x) has a different form to the previous cases and we don’t have an exhaustive

description of the admissible coefficients. We discuss this case further below.

The above case by case analysis exhibits certain symmetry properties that we make precise

in the following proposition. In Chapter 5, we take a different approach to these symmetry

properties involving linear algebra.

Proposition 4.2.12. Any complex algebraic QCS with turning angle 2⇡m/n (m,n relatively

prime with m < n) either with n  11, or n = 2r (r > 0), or n = 2p (p an odd prime)

must use all increments {y0, y1, . . . , yn�1} (y = e2⇡mi/n). Furthermore if n is even with the

same hypotheses, then for each occurence of the increment yk, there is also an occurence of the

increment y
n
2
+k = �yk. In particular, the corresponding polygonal walk in the plane contains

each edge with its oppositely orientated counterpart.

Proof. The proposition follows from the case by case analysis above. Specifically, for n  11,

the defining polynomial p(x) has the form p(x) = an�1x
n�1 + an�2x

n�2 + · · · + a1x + a0

with all aj > 0 for j = 0, . . . , n � 1, so that we must use all increments {y0, y1, . . . , yn�1}.

Furthermore, for n = 2` even, up to n = 10, the defining polynomial p(x) always has the form

p(x) = (x`+1)(a`�1x
`�1+a`�2x

`�2+ · · ·+a1x+a0), so that the coefficient of xk is the same

as the coefficient of x`+k, for k = 0, . . . , `� 1.

This continues to hold if n = 2r (r > 0) or n = 2p (p an odd prime). For n = 2r the

cyclotomic polynomial has the form x2
r�1

+ 1. For n = 2p, p odd prime, the cyclotomic

polynomial is given by xp�1�xp�2+ · · ·�x+1, but x+1 must also be a factor of the defining

polynomial since 2p is even, so in particular (x + 1)(xp�1 � xp�2 + · · · � x + 1) = xp + 1 is

a factor. Hence, for n = 2r and n = 2p (p odd prime), (x
n
2 + 1) is a factor of the defining

polynomial, so for each occurrence of a yk there is an occurrence of y
n
2
+k. This obviously

implies that if there is no occurrence of some increment yk, then there is also no occurrence

of the increment y
n
2
+k. which disconnects the sequence of increments. Hence, we must use

all increments {y0, y1, . . . , yn�1}.

When n = 12, the properties of the above proposition no longer hold in general. That is, it

can happen that we don’t use all increments {y0, y1, . . . , yn�1} in a corresponding polygonal
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walk in the plane, or that in this walk, each edge does not necessarily have an oppositely

orientated counterpart (the increments yk and y
n
2
+k do not necessarily have the same number

of occurences).

Consider the cyclotomic polynomial Φ12(x) = x4 � x2 + 1. This has as a root the fun-

damental increment y = e⇡i/6 corresponding to the exterior angle of a regular polygon of

12 sides. Clearly, a trivial legitimate polynomial is p(x) = c(x11 + x10 + · · · + x + 1)

where c is a strictly positive integer, for it admits the legitimate sequence of increments,

namely the cyclic sequence 1yy2 . . . y11 covered c times, and p(x) is symmetric. Let q(x) =

2x6 + 2x5 + 3x4 + 3x3 + 2x2 + 2x+ 1. Then

q(x)Φ12(x) = 2x10 + 2x9 + x8 + x7 + x6 + x5 + 2x4 + x3 + x2 + 2x+ 1,

has all coefficients strictly positive. However, it is not a legitimate polynomial. But we can

now apply Lemma 4.1.7: since all coefficients of q(x)Φ12(x) are strictly positive, multiplying

by x+ 1 we obtain the legitimate polynomial

p(x) = 2x11 + 4x10 + 3x9 + 2x8 + 2x7 + 2x6 + 3x5 + 3x4 + 2x3 + 3x2 + 3x+ 1.

This defines a complex algebraic QCS with legitimate sequence of increments, say

y0y1y2y3y4y5y6y7y8y9y10y11y10y11y10y9y10y9y8y7y6y5y4y5y4y3y2y1y2y1

for which symmetry no longer holds (left-hand path of Fig. 4.1).

Figure 4.1: The two figures represent walks with turning angle ⇡/6; the left is not symmetric;
the right doesn’t exploit all edges of a regular 12-gon.

Indeed, for k = 5 for example, the number of occurrences of y5 (in the left-hand path) is

3 while the number of occurrences of y
n
2
+k = y11 is 2.
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It is also the case that for n = 12, all edges of the corresponding regular polygon are not

required to complete a complex algebraic QCS with fundamental increment y = e⇡i/6:

Let q(x) = 2x5 + 2x4 + 3x3 + 3x2 + 2x+ 2. Then

q(x)Φ12(x) = (2x5 + 2x4 + 3x3 + 3x2 + 2x+ 2)(x4 � x2 + 1)

= 2x9 + 2x8 + x7 + x6 + x5 + x4 + x3 + x2 + 2x+ 2

is a polynomial of degree 9 with all coefficients strictly positive and with y = e⇡i/6 as a

root. Although it is not legitimate, multiplication by x+ 1 once more leads to the legitimate

polynomial

p(x) = 2x10 + 4x9 + 3x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 3x2 + 4x+ 2,

from which we can construct a complex algebraic QCS which doesn’t use the edge y11 (right-

hand path of Fig. 4.1). Computer analysis (which we will discuss further below) shows that

the right-hand path of Fig. 4.1 is the smallest length path for which this property holds, that

is it has the minimal sum of the coefficients providing we don’t use the edge y11. Furthermore,

we can show that there is no polynomial q(x) of degree  4 for which q(x)Φ12(x) has strictly

positive coefficients, so that for n = 12, any corresponding QCS may omit at most one edge.

One can proceed in an ad hoc fashion for n > 12. One easily checks that the next case

for which all edges are not required to complete a cycle is n = 18.

In fact, for n = 13 or n = 17, prime numbers, any legitimate polynomial has the form

p(x) = a(xn�1+xn�2+ · · ·+x+1) where a is a strictly positive integer, so the two properties

stated in Proposition 4.2.12 hold. For n = 14 = 2.7 where 7 is prime, or n = 16 = 24, then

by Proposition 4.2.12, the two properties also hold.

For n = 15, having as corresponding cyclotomic polynomial Φ15(x) = x8 � x7 + x5 � x4 +

x3�x+1, we can show that there is no polynomial q(x) of degree  4 such that q(x)Φ15(x) has

strictly positive coefficients, so that we can multiply by (x+1) to get a legitimate polynomial

of degree < 14, hence we must use all increments {y14, y13, . . . , y, 1}. However, note that it’s

the symmetry that don’t always hold: if we consider the polynomial

q(x) = 2x5 + 4x4 + 5x3 + 5x2 + 4x+ 2,

then multiplication by Φ15(x) yields a polynomial having strictly positive integer coefficients,

and once again multiplying by (x+1) we get a legitimate polynomial of degree 14 where there

is no symmetry.
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For n = 18, the cyclotomic polynomial is Φ18(x) = x6 � x3 + 1. Muliplication by 2x8 +

2x7 + 2x6 + 3x5 + 3x4 + 3x3 + 2x2 + 2x+ 2 yields the polynomial

2x14 + 2x13 + 2x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 2x2 + 2x+ 2

with all coefficients positive. Multiplication by x+1 yields the legitimate polynomial of degree

15 which determines a complex QCS with fundamental increment y = e⇡i/9 of length 42 which

doesn’t use the edges y16 and y17. Computer analysis shows that 2 is the most number of

edges that can be omitted for n = 18 and furthermore, the above polynomial minimizes the

length of the corresponding polygonal walk in this case. However, if we multiply Φ18(x) by

x9 + 2x8 + 2x7 + 2x6 + 3x5 + 3x4 + 2x3 + 2x2 + 2x+ 1 we obtain the polynomial

x15 + 2x14 + 2x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 2x2 + 2 + 1

with all coefficients positive. Multiplication by x+1 yields a legitimate polynomial of degree

16 which determines a complex QCS of length 40 which omits one edge. This is the minimum

length which uses 17 edges. Thus the minimum length may decrease as one allows more edges.

In the case n = 30, Φ30(x) = x8 + x7 � x5 � x4 � x3 + x + 1. Multiplication by 4x13 +

2x12 + 2x11 + 3x10 + 4x9 + 5x8 + 3x7 + 3x6 + 5x5 + 4x4 + 3x3 + 2x2 + 2x + 4 yields the

polynomial

4x21 + 6x20 + 4x19 + x18 + x17 + x16 + x15 + x14 + 2x13 + x12 + x11 + x10 + x9 + 2x8

+x7 + x6 + x5 + x4 + x3 + 4x2 + 6x+ 4 .

Multiplication by x + 1 then gives a legitimate polynomial of degree 22 which determines a

complex QCS with fundamental increment y = e⇡i/15 of length 92 which omits 7 edges. Using

computer analysis, this is the maximum number of edges that can be omitted for n = 30 and

the above polynomial minimizes the length in this case.

Method used for finding the legitimate polynomials of smallest degree and minimum sum of

coefficients:

We recall that if p(x) is a defining polynomial of a complex algebraic QCS, having a

root y = e2im⇡/n, m < n, m and n relatively prime, so if we consider a corresponding

legitimate sequence of increments {ys0 , ys1 , . . . , ysN�1}, then its elements are taken from the

set {1, y, y2, . . . , yn�1} such that sj+1 = sj±1(modn), j 2 Z/NZ. If we don’t have a transition

from yn�1 to y0 in any sequence of increments corresponding to p(x), then by Lemma 4.1.7

of §4.1, p(x) = (x+ 1)h(x) where h(x) has strictly positive integer coefficients.
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When the coefficient of xn�1 is zero in p(x), (that is when we don’t use the edge yn�1

in any corresponding polygonal walk), then we don’t have a transition from yn�1 to y0 in

any sequence of increments corresponding to p(x). So, when looking for the polynomials q(x)

of Theorem 4.2.3, when the degree of Φn(x).q(x) is strictly less than n � 2, we require that

(x+ 1) be a factor of p(x), and the coefficients of Φn(x).q(x) all be strictly positive integers.

n = 12: Φ12(x) = x4 � x2 + 1.

If q(x) = ax+ b, then

Φ12(x).q(x) = ax5 + bx4 � ax3 � bx2 + ax+ b,

if q(x) = ax2 + bx+ c, then

Φ12(x).q(x) = ax6 + bx5 + (c� a)x4 � bx3 + (a� c)x2 + bx+ c,

if q(x) = ax3 + bx2 + cx+ d, then

Φ12(x).q(x) = ax7 + bx6 + (c� a)x5 + (d� b)x4 + (a� c)x3 + (b� d)x2 + cx+ d,

if q(x) = ax4 + bx3 + cx2 + dx+ e, then

Φ12(x).q(x) = ax8+ bx7+(c�a)x6+(d� b)x5+(e� c+a)x4+(b�d)x3+(c� e)x2+dx+ e,

and in each case, there are always two coefficients that can not be > 0 at the same time.

If q(x) = ax5 + bx4 + cx3 + dx2 + ex+ f , then Φ12(x).q(x) has as coefficients:

x9 x8 x5 x6 x5 x4 x3 x2 x 1

a b c d e f

�a �b �c �d �e �f

a b c d e f

So here, we need to look for conditions on a, b, c, d, e, f such that the 10 above coefficients of

Φ12(x).q(x) be strictly positive integers, that is we have the 10 following constraints:

a � 1, b � 1,

�a+ c � 1, �b+ d � 1,

a� c+ e � 1, b� d+ f � 1,

c� e � 1, d� f � 1,

e � 1, f � 1.
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The summation of the 10 coefficients of Φ12(x).q(x) is a+ b+ c+ d+ e+ f . We want to find

the values of a, b, c, d, e, f minimizing the above sum and satisfying the 10 above inequalities.

To this end, we create the following program using an implementation of the "Cassowary"

algorithm [2] in "Rust":

Listing 4.1: Program that finds a, b, c, d, e, f , having minimal sum, under the 10 constraints.

1

2 extern crate cassowary; // ^0.3.0

3

4 use cassowary :: strength ::{ REQUIRED , STRONG };

5 use cassowary :: WeightedRelation ::*;

6 use cassowary ::{ AddConstraintError , Expression , Solver , Variable };

7 use std::vec::Vec;

8

9 fn check_satisfiability(result: Result <(), AddConstraintError >) {

10 if result.is_err () {

11 eprintln!("Unsatisfiable constraints");

12 ::std:: process ::exit (1);

13 }

14 }

15

16 fn calculate_constraint_expression(variables: &Vec <Variable >,

17 i: usize) -> Expression {

18 let vars_count = variables.len();

19 let mut exp = Expression ::new(vec![], 0.0);

20 if i < vars_count {

21 exp = exp + variables[i];

22 }

23 if i >= 2 && i < vars_count + 2 {

24 exp = exp - variables[i - 2];

25 }

26 if i >= 4 && i < vars_count + 4 {

27 exp = exp + variables[i - 4];

28 }

29 return exp;

30 }

31

32 fn main() {

33 // ///////////////////////////////////

34 // Define the variables to be used //

35 // ///////////////////////////////////

36

37 let var_names = ["a", "b", "c", "d", "e", "f"];

38

39 // ////////////////////////////////////////////////

40 // Create and add the constraints to the solver //

41 // ////////////////////////////////////////////////

126



4.2. COMPLEX ALGEBRAIC QCS

42

43 let vars_count = var_names.len();

44 let variables: Vec <Variable > =

45 var_names.iter ().map(|_| Variable ::new ()). collect ();

46 let mut solver = Solver ::new();

47 let mut sum_exp = Expression ::new(vec![], 0.0);

48 let mut i = 0;

49 loop {

50 if i < vars_count {

51 sum_exp = sum_exp + variables[i];

52 }

53

54 let exp = calculate_constraint_expression (&variables , i);

55

56 if exp.terms.len() == 0 {

57 break;

58 }

59

60 check_satisfiability(

61 solver.add_constraint(exp | GE(REQUIRED) | 1.0)

62 );

63 i += 1;

64 }

65 check_satisfiability(

66 solver.add_constraint(sum_exp | EQ(STRONG) | 0.0)

67 );

68

69 // /////////////////////////////////////////////////

70 // Get the values from the solver and print them //

71 // /////////////////////////////////////////////////

72

73 for index in 0.. vars_count {

74 println!(

75 "{} = {}",

76 var_names[index],

77 solver.get_value(variables[index ])

78 );

79 }

80 }

Applying the above program, we get

a = 2, b = 2, c = 3, d = 3, e = 2, f = 2,

hence,

q(x) = 2x5 + 2x4 + 3x3 + 3x2 + 2x+ 2.

Multiplying q(x) by Φ12(x).(x+ 1) we get a legitimate polynomial p(x) of degree n� 2 = 10
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(so we don’t use the edge y11), it has the minimal length (since we minimized the sum

a + b + c + d + e + f), and 5 is the smallest degree possible for q(x) such that p(x) =

(x+ 1).Φ12(x).q(x) is legitimate.

n = 18: Φ18(x) = x6 � x3 + 1.

As for the case n = 12, for all polynomials q(x) of degree less than or equal 7, we can verify

that Φ18(x).q(x) can not admit all coefficients strictly positive.

For q(x) = ax8+bx7+cx6+dx5+ex4+fx3+gx2+hx+i, then Φ18(x).q(x) has as coefficients:

x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x 1

a b c d e f g h i

�a �b �c �d �e �f �g �h �i

a b c d e f g h i

Requiring the coefficients of Φ18(x).q(x) to be strictly positive integers, we have 15 constraints

on the elements a, b, . . . , i. With the following suitable modifications applied on Listing 4.1,

1 // ...

2 fn calculate_constraint_expression(variables: &Vec <Variable >,

3 i: usize) -> Expression {

4 let vars_count = variables.len();

5 let mut exp = Expression ::new(vec![], 0.0);

6 if i < vars_count {

7 exp = exp + variables[i];

8 }

9 if i >= 3 && i < vars_count + 3 {

10 exp = exp - variables[i - 3];

11 }

12 if i >= 6 && i < vars_count + 6 {

13 exp = exp + variables[i - 7];

14 }

15 return exp;

16 }

17

18 fn main() {

19 // ...

20 let var_names = ["a", "b", "c", "d", "e", "f", "g", "h", "i"];

21 // ...

22 }

we minimize the sum a + b + · · · + i, which is the sum of the 15 coefficients of Φ18(x).q(x),

under the required 15 constraints, and get the desired values for the coefficients of q(x).
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We do quite the same to find the coefficients of q(x) = ax9 + bx8 + cx7 + dx6 + ex5 + fx4 +

gx3 + hx2 + ix+ j of degree 9.

n = 30: Φ30(x) = x8 + x7 � x5 � x4 � x3 + x+ 1.

As for the two above cases, for all polynomials q(x) of degree less than or equal 4, we can

verify that Φ30(x).q(x) can not admit all coefficients strictly positive.

However, when the degree of q(x) is greater than 4, it is unreasonable to check by hand

whether the coefficients of Φ30(x).q(x) can all be strictly positive. For example, when the

degree of q(x) is 7, that is q(x) = ax7+ bx6+ cx5+dx4+ex3+fx2+gx+h, then Φ30(x).q(x)

has as coefficients:

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x 1

a b c d e f g h

a b c d e f g h

�a �b �c �d �e �f �g �h

�a �b �c �d �e �f �g �h

�a �b �c �d �e �f �g �h

a b c d e f g h

a b c d e f g h

so this time with the following modifications applied on Listing 4.1, requiring that the 16

coefficients of Φ30(x).q(x) be strictly positive integers,

1 // ...

2 fn calculate_constraint_expression(variables: &Vec <Variable >,

3 i: usize) -> Expression {

4 let vars_count = variables.len();

5 let mut exp = Expression ::new(vec![], 0.0);

6 if i < vars_count {

7 exp = exp + variables[i];

8 }

9 if i >= 1 && i < vars_count + 1 {

10 exp = exp + variables[i - 1];

11 }

12 if i >= 3 && i < vars_count + 3 {

13 exp = exp - variables[i - 3];

14 }

15 if i >= 4 && i < vars_count + 4 {

16 exp = exp - variables[i - 4];

17 }

18 if i >= 5 && i < vars_count + 5 {
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19 exp = exp - variables[i - 5];

20 }

21 if i >= 7 && i < vars_count + 7 {

22 exp = exp + variables[i - 7];

23 }

24 if i >= 8 && i < vars_count + 8 {

25 exp = exp + variables[i - 8];

26 }

27 return exp;

28 }

29

30 fn main() {

31 // ...

32 let var_names = ["a", "b", "c", "d", "e", "f", "g", "h"];

33 // ...

34 }

we get no solution ("Unsatisfiable constraints") when we ask to minimize a + b + · · · + h,

which means that the coefficients of Φ30(x).q(x) can not all be strictly positive integers. This

remains the case for all degrees less than or equal 12.

Finally, when the degree of q(x) is 13, that is

q(x) = ax13 + bx12 + cx11 + dx10 + ex9 + fx8 + gx7 + hx6 + ix5 + jx4 + kx3 + lx2 +mx+ n,

then the coefficients of Φ30(x).q(x) being strictly positive integers yields 21 constraints on

a, b, . . . , n. Running the last program, but for n variables:

1 // ...

2

3 fn main() {

4 // ...

5 let var_names = [

6 "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l",

7 "m", "n",

8 ];

9 // ...

10 }

we get the desired values of a, b, . . . , n minimizing a+ b+ · · ·+ n under the 21 constraints.

Complex QCS from algebraic increments which are not roots of unity: The smallest degree of

a monic polynomial for which a unit modulus algebraic integer which is not a root of unity

can occur is 4. This can be seen by first noting that the degree must be even (since the degree
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of the minimal polynomial of an algebraic number of unit modulus is even), and then that

any unit modulus algebraic integer in a quadratic field extension must be a root of unity.

The palyndromic polynomial

q(x) = x4 + 3x3 + 3x2 + 3x+ 1 ,

irreducible over the integers, has two conjugate complex roots a, a and two real roots. Since

for each root b, one must have 1/b a root, it follows that a = 1/a so that |a| = 1. However

a cannot be an n’th root of unity for any n, since if this were the case, q(x) would divide

xn � 1 (q(x) being monic and irreducible is the minimal polynomial of a over the integers).

But this would mean that the two real roots are also roots of unity, which is not the case

since 1 and �1 are not roots of q(x). In fact the two complex roots are given approximately

by �0.191± 0.982 i, and the two real roots, approximately by �2.154 and �0.464. Although

the coefficients of q(x) do not yield a corresponding sequence of increments (see below), they

are all strictly positive and so, using Lemma 4.1.7, we can multiply by x + 1 to obtain the

polynomial

p(x) = (x+ 1)(x4 + 3x3 + 3x2 + 3x+ 1) = x5 + 4x4 + 6x3 + 6x2 + 4x+ 1

admitting, for example, the legitimate sequence of increments

y0y1y2y3y4y5y4y3y4y3y4y3y2y3y2y3y2y1y2y1y2y1 ,

where y is one of the complex roots of p(x). One then constructs a corresponding complex

algebraic QCS.

Another example arises from the palyndromic polynomial x4+2x3+2x+1. This has two

complex conjugate roots of modulus 1 (approx. 0.366 ± 0.931i) which are not roots of unity

by the same reasoning as above. Indeed, there are two real roots given approx. by �2.297

and �0.435. This time the polynomial does not have all coefficients strictly positive, however,

multiplication by x+ 1 yields x5 + 3x4 + 2x3 + 2x2 + 3x+ 1 which, although not legitimate,

does have all coefficients positive and once more multiplying by x + 1 yields the legitimate

polynomial

p(x) = x6 + 4x5 + 5x4 + 4x3 + 5x2 + 4x+ 1 .

Taking y to be one of the complex roots now yields a complex algebraic QCS, whose legitimate

sequence of increments is

y0y1y2y3y4y5y6y5y4y5y4y5y4y3y4y3y2y3y2y1y2y1y2y1

and the corresponding polygonal walk has approximate turning angle 68.5 degrees:
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0

Figure 4.2: Complex algebraic QCS not arising from a root of unity

At last, we study switching from a real QCS with fundamental increment y to an algebraic

complex QCS with fundamental increment z = e2im⇡/n, m < n, m and n relatively prime.

Proposition 4.2.13. Let X be a real QCS with � 6= 2, with corresponding defining polynomial

p(x) and fundamental increment y, where y is a real root of p(x). Then if Φn(x) divides p(x),

where Φn(x) is the nth cyclotomic polynomial for some positive integer n, then there exists

a complex algebraic QCS with fundamental increment z = e2im⇡/n, m < n, m,n relatively

prime, whose sequence of increments is the sequence of increments of X, up to replacement

of y by z = e2im⇡/n.

Proof. As we saw in §4.1, any real QCS X = (x0, x1, . . . , xN�1) with � 6= 2 has as defining

polynomial p(x) = (x + 1)q(x) where q(x) has strictly positive integer coefficients, and up

to normalization, the corresponding sequence of increments u = (u0, u1, . . . , uN�1) has the

form (ys0 , ys1 , . . . , ysN�1), where y is a real root of p(x), and sj = sj+1 ± 1, j 2 Z/NZ.

Clearly, if Φn(x) divides p(x), then any primitive nth root of unity is a root of p(x), for it

is a root of Φn(x). A primitive nth root of unity has the form z = e2im⇡/n where m < n,

m,n relatively prime, so replacing y by z in the sequence of increments u, we get a sequence

u = (u0, u1, . . . , uN�1) that has the form (zs0 , zs1 , . . . , zsN�1), where sj = sj+1 ± 1(modn),

j 2 Z/NZ. Since z is a root of p(x) then the sequence X 0 arising from the sequence of

increments u is cyclic. Hence X 0 is a complex algebraic QCS with legitimate sequence of

increments u.

Example 4.2.14. Consider the polynomial

p(x) = (x+ 1).(x2 � x+ 1).(x2 + 2x+ 2).(x+ 2)

= x6 + 4x5 + 6x4 + 5x3 + 4x2 + 6x+ 4.
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It admits y = �2 as a real root, and we can verify that (x2 � x+1).(x2 +2x+2).(x+2) has

strictly positive integer coefficients, hence by Theorem 4.1.3, p(x) defines a real QCS with

fundamental increment y = �2, and a corresponding sequence of increments is given by

y0y1y2y3y4y5y6y5y4y5y4y5y4y3y4y3y4y3y2y3y2y1y2y1y0y1y0y1y0y1.

Since the cyclotomic polynomial Φ6(x) = (x2 � x+1) divides p(x), hence z = e2i⇡/6 is a root

of p(x), and replacing y by z in the previous sequence of increments, and then z6 by z0, we

get a legitimate sequence of increments, namely the sequence

z0z1z2z3z4z5z0z5z4z5z4z5z4z3z4z3z4z3z2z3z2z1z2z1z0z1z0z1z0z1,

corresponding to an algebraic complex QCS with fundamental increment z. The legitimate

sequence of increments corresponds to the following walk with turning angle ⇡/3:

0

The legitimate defining polynomial of this algebraic complex QCS is then given by

p(x) = 4x5 + 6x4 + 5x3 + 4x2 + 6x+ 5.

Example 4.2.15. Another example is to take the polynomial

p(x) = (x+ 1)(x2 + 1)(x2 + 4x+ 3)

= x5 + 5x4 + 8x3 + 3x2 + 7x+ 3,

which admits y = �3 as a real root, and since (x2 + 1)(x2 + 4x + 3) has strictly positive

integer coefficients, then p(x) defines a real QCS with fundamental increment y = �3. A

corresponding sequence of increments is given by

y0y1y2y3y4y5y4y3y4y3y4y3y4y3y2y3y2y3y2y3y2y1y2y1y2y1y2y1y0y1y0y1.
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The cyclotomic polynomial Φ4(x) = (x2 + 1) divides p(x), so z = e2i⇡/4 is a root of p(x), and

replacing y by z in the previous sequence of increments, and then z4 by z0, and z5 by z1, we

get the legitimate sequence of increments

z0z1z2z3z0z1z0z3z0z3z0z3z0z3z2z3z2z3z2z3z2z1z2z1z2z1z2z1z0z1z0z1,

which corresponds to an algebraic complex QCS with fundamental increment z. The legiti-

mate sequence of increment corresponds to the following walk in the plane with turning angle

⇡/2:

0

The legitimate defining polynomial of the algebraic complex QCS is

p(x) = 8x3 + 8x2 + 8x+ 8.

4.3 Combining QCS

On applying the normalization (4.3), cyclic sequences with common �, can be combined to

form new sequences. We will refer to this construction as concatenation. In this section,

we show how this can be done for real QCS with � 6= 2, and explain how concatenation is

reflected in the defining polynomials. With suitable modifications, the same procedures apply

to complex algebraic QCS. We begin with an example.

Example 4.3.1. As in Example 4.1.12, take the defining polynomial (x + 1)(3x + 2) with

root y = �2/3 leading to the cyclic sequence

(0, 9, 3, 12, 6, 10, 4, 8, 2, 6). (4.12)

Normalize the sequence by dividing by 9 in order that the second term be 1:

�
0, 1, 13 ,

4
3 ,

2
3 ,

10
9 ,

4
9 ,

8
9 ,

2
9 ,

2
3

�
, (4.13)
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and the corresponding sequence of increments of (4.13) is

�
1,�2

3 , 1,�2
3 ,

4
9 ,�2

3 ,
4
9 ,�2

3 ,
4
9 ,�2

3

�
= (1, y, 1, y, y2, y, y2, y, y2, y). (4.14)

Now make another normalization of (4.12) by subtracting 6 and dividing by 4:

�
�3

2 ,
3
4 ,�3

4 ,
3
2 , 0, 1,�1

2 ,
1
2 ,�1, 0

�
, (4.15)

and the corresponding sequence of increments of (4.15) is

�
9
4 ,�3

2 ,
9
4 ,�3

2 , 1,�3
2 , 1,�3

2 , 1,�3
2

�
= ( 1

y2
, 1y ,

1
y2
, 1y , 1,

1
y , 1

1
y , 1,

1
y ). (4.16)

(Note that the sequence (4.15) has as defining polynomial (x + 1)(2x + 3), the pair of p(x),

since the fundamental increment in its sequence of increments (4.16) is 1
y .)

In so doing, we obtain the pair 0, 1 in a different location in (4.13) and (4.15). We can

visualize the coefficients of the two sequences as labels on cyclic graphs:

0

1

1

3

4

3
2

3

10

9

4

9

8

9
2

9

2

3

0

1

� 1

2

1

2

�1

0

� 3

2

3

4

� 3

4

3

2

Now switch edges as indicated to obtain a cyclic sequences of order 20:

0

1

1

3

4

3
2

3

10

9

4

9

8

9
2

9

2

3

0

1

� 1

2

1

2

�1

0

� 3

2

3

4

� 3

4

3

2

�
0, 1,�1

2 ,
1
2 ,�1, 0,�3

2 ,
3
4 ,�3

4 ,
3
2 , 0, 1,

1
3 ,

4
3 ,

2
3 ,

10
9 ,

4
9 ,

8
9 ,

2
9 ,

2
3

�
(4.17)

We can now deduce the defining polynomial of the concatenated sequence. In fact, by con-

catenating the sequences (4.13) and (4.15), the sequence (4.17) has as corresponding sequence
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of increments:

(1, 1y , 1,
1
y , 1,

1
y ,

1
y2
, 1y ,

1
y2
, 1y , 1, y, 1, y, y

2, y, y2, y, y2, y). (4.18)

By §4.1, some multiple of the corresponding sequence of increments yields a sequence of powers

of one of the fundamental increments. So if we multiply (4.18) by y2 we get the sequence

(y2, y, y2, y, y2, y, 1, y, 1, y, y2, y3, y2, y3, y4, y3, y4, y3, y4, y3),

with corresponding defining polynomial

3x4 + 5x3 + 5x2 + 5x+ 2 = (x+ 1)(x2 + 1)(3x+ 2) = (x2 + 1)p(x).

Note that if the two equivalent sequences we chose, (4.13) and (4.15), came from two

sequences of increments having the same fundamental increment y, then the corresponding

polynomial of the concatenated sequence will be 2.p(x), that is (x0 + 1)p(x), since we won’t

have to multiply the corresponding sequence of increments by a power of y to get all its

elements as positive powers of y.

An alternative construction is to combine two sequences of different lengths with common

fundamental increment.

Example 4.3.2. Consider the two defining polynomials p1(x) = (x+ 1)(x+ 2)(2x+ 1) and

p2(x) = (x+ 1)(x+ 2) with common root y = �2:

p1(x) = 2x3 + 7x2 + 7x+ 2 p2(x) = x2 + 3x+ 2

# #
(y3, y2, y3, y2, y, 1, y, 1, y, y2, y, y2, y, y2, y, y2, y, y2) (increments) (y2, y, 1, y, 1, y)

# #
(�8, 4,�8, 4,�2, 1,�2, 1,�2, 4,�2, 4,�2, 4,�2, 4,�2, 4) (y = �2) (4,�2, 1,�2, 1,�2)

# #
(0,�8,�4,�12,�8,�10,�9,�11,�10,

�12,�8,�10,�6,�8,�4,�6,�2,�4) (sequence) (0, 4, 2, 3, 1, 2)

# #
(0, 4, 2, 6, 4, 5, 92 ,

11
2 , 5, 6, 4, 5, 3, 4, 2, 3, 1, 2) (⇥ � 1

2)

We now concatenate by placing one sequence after the other:

(0, 4, 2, 6, 4, 5, 92 ,
11
2 , 5, 6, 4, 5, 3, 4, 2, 3, 1, 2, 0, 4, 2, 3, 1, 2)

with corresponding sequence of increments

(y2, y, y2, y, 1, 1y , 1,
1
y , 1, y, 1, y, 1, y, 1, y, 1, y, y

2, y, 1, y, 1, y).
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Since by §4.1, some multiple of the corresponding sequence of increments yields a sequence of

powers of one of the fundamental increments, then in this case, multiplication by �2 yields

the sequence of increments

(y3, y2, y3, y2, y, 1, y, 1, y, y2, y, y2, y, y2, y, y2, y, y2, y3, y2, y, y2, y, y2)

with defining polynomial 3x3+10x2+9x+2 = (x+1)(x+2)(3x+1) = p1(x)+x.p2(x). The

different ordering of the increments

(y3, y2, y3, y2, y, y2, y, 1, y, 1, y, 1, y, 1, y, y2, y, y2, y, y2, y, y2, y, y2),

which is obtained by placing the sequence (y2, y, 1, y, 1, y) after the fifth term of the sequence

(y3, y2, y3, y2, y, 1, y, 1, y, y2, y, y2, y, y2, y, y2, y, y2), produces the polynomial (x+1)(x+2)(2x+

2) = p1(x) + p2(x).

We can recognize concatenation by the existence of two identical adjacent pairs as de-

scribed by the following lemma, usefull for the next proposition:

Lemma 4.3.3. A real QCS X of the form (x0, x1, . . . , xk, a, b, y0, y1, . . . y`, a, b, z0, z1, . . . zm)

is the concatenation of the two QCS (a, b, y0, y1, . . . y`) and (a, b, z0, z1, . . . zm, x0, x1, . . . xk).

Proof. Since X has the form

(x0, x1, . . . , xk, a, b, y0, y1, . . . y`, a, b, z0, z1, . . . zm),

with � constant, say �c, then in particular we have

(a� xk)
2 + (a� b)2

(a� xk + a� b)2
=

(a� y`)
2 + (a� b)2

(a� y` + a� b)2
= �c.

So the two sequences (a, b, y0, y1, . . . y`) and (a, b, z0, z1, . . . , zm, x0, x1, . . . , xk) have � constant,

(= �c), so are real QCS, and vice versa.

The above examples illustrate a more general property:

Proposition 4.3.4. Let p1(x) and p2(x) be polynomials of degree m � 1 and n � 1 (resp.)

of the form (4.4) of Theorem 4.1.3 which define real QCS with � 6= 2, of orders M and N

(resp.) deriving from a common fundamental increment y. Then there exists a real QCS of

order M +N with defining polynomial p(x) = p1(x)+xkp2(x), where 0  k  m, obtained by

concatenation of two real QCS with defining polynomials p1(x) and p2(x) resp..
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Proof. Let (ys0 , ys1 , . . . , ysM�1) and (yt0 , yt1 , . . . , ytN�1) be legitimate sequences of increments

associated to real QCS deriving from p1(x) and p2(x) resp., where we suppose s0 = 0, s1 =

1, . . . , sm�2 = m� 2, sm�1 = m� 1, sm = m� 2, . . . , sM�1 = 1 and t0 = 0, t1 = 1, . . . , tn�2 =

n � 2, tn�1 = n � 1, tn = n � 2, . . . , tN�1 = 1. That is, the powers are initially monotone

increasing from 0 to m� 1 (resp. n� 1). This is always possible, see (4.19) of §4.4.

If y = �1, then the result is clear - we simply concatenate two oscillating sequences of

the form (0, 1, 0, 1, . . . , 0, 1).

A legitimate sequence of increments for p(x) is given by

(ys0 , ys1 , . . . , ysk�1 , yk+t0 , yk+t1 , . . . , yk+tN�1 , ysk , ysk+1 , . . . , ysM�1)

with corresponding QCS:

(0, ys0 , ys0 + ys1 , . . . , ys0 + ys1 + · · ·+ ysk�1 , ys0 + ys1 + · · ·+ ysk�1 + yk+t0 ,

ys0 + ys1 + · · ·+ ysk�1 + yk+t0 + yk+t1 ,

. . . , ys0 + ys1 + · · ·+ ysk�1 + yk+t0 + yk+t1 + · · ·+ yk+tN�1

| {z }
0

,

ys0 + ys1 + · · ·+ ysk�1 + yk+t0 + yk+t1 + · · ·+ yk+tN�1

| {z }
0

+ysk , . . .)

Since (yt0 , yt1 , . . . , ytN�1) is a legitimate sequence of increments associated to p2(x), we havePN�1
j=0 ytj = 0 ) PN�1

j=0 yk+tj = 0. It follows that the pairs of successive terms

(ys0 + ys1 + · · ·+ ysk�1 , ys0 + ys1 + · · ·+ ysk�1 + ysk)

and
(ys0 + ys1 + · · ·+ ysk�1 + yk+t0 + yk+t1 + · · ·+ yk+tN�1 ,

ys0 + ys1 + · · ·+ ysk�1 + yk+t0 + yk+t1 + · · ·+ yk+tN�1 + ysk)

coincide and by Lemma 4.3.3, the sequence can be obtained by concatenation of two sequences

of orders M and N , with defining polynomials p1(x) and p2(x), resp..

4.4 Eulerian digraphs

In order to better understand the correspondence between polynomials and QCS, notably

the legitimate sequences of increments that can arise, it is useful to model the collection of

increments with an Eulerian digraph.
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We recall that a digraph is a pair D = (V,A) consisting of a (finite) set of vertices V and a

set A ✓ V ⇥ V – the (oriented) arcs. We allow now multiple arcs, loops and directed cycles

of order 2. When a 2 A corresponds to an arc from x to y, we will write for more simplicity

a = xy instead of (x, y).

A directed walk in a digraph D = (V,A) is a sequence v0a1v1a2 · · · akvk where vj 2 V ,

aj 2 A and aj = vj�1vj , 1  j  k, with no arc repeated. A digraph is said to be Eulerian if

it contains a closed spanning directed walk which traverses every arc of D. Eulerian digraphs

are characterized by the following theorem [8].

Theorem 4.4.1. A digraph D = (V,A) is Eulerian if and only if D is connected and for each

of its vertices x, d�(x) = d+(x).

That is, a digraph is Eulerian if and only if it is a connected balanced digraph.

If the defining polynomial of a QCS has degree n � 1, then the digraphs we will use as

a model will have vertices {0, 1, 2, . . . , n � 1} and arcs only of the form j(j � 1) or (j � 1)j

where j and j � 1 are taken modulo n. Call such a digraph a 1-step digraph. We will view

the vertices as arranged in cyclic order. For example, take

p(x) = (x+ 1)(2x4 + 4x3 + x2 + 2x+ 2) = 2x5 + 6x4 + 5x3 + 3x2 + 4x+ 2

(with real root �2). We construct a corresponding Eulerian digraph with 22 edges as follows.

0 1

2

34

5

For any vertex j, both the in-degree and the out-degree is equal to the coefficient of xj .

Call an elementary closed directed walk between j and j + 1, one of the form ja(j + 1)bj

(a, b 2 A, a 6= b). For the above example, we have first constructed the cyclic digraph and

then added elementary closed directed walks as necessary to correspond to the coefficients.

As we see below there may be many non-isomorphic 1-step Eulerian digraphs associated to a

given polynomial.
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One can easily see that a digraph is Eulerian if and only if, after the removal of a closed

directed walk, each of the connected components that remain are Eulerian, where we consider

an isolated vertex as Eulerian. Thus we can recognize the above polynomial as being legit-

imate, if there is a corresponding associated 1-step Eulerian digraph obtained by removing

elementary closed directed walks as follows:

p(x) = 2x5 + 6x4 + 5x3 + 3x2 + 4x+ 2 ! x5 + 5x4 + 5x3 + 3x2 + 4x+ 2

! x5 + x4 + x3 + 3x2 + 4x+ 2

! x5 + x4 + x3 + x2 + 2x+ 2

! x5 + x4 + x3 + x2 + x+ 1

On the first step, we remove an elementary closed walk between 4 and 5; on the second step

we remove 4⇥ an elementary closed walk between 3 and 4; on the third step we remove 2⇥ an

elementary closed walk between 1 and 2; on the fourth step we remove an elementary closed

walk between 0 and 1. The end polynomial now has corresponding 1-step Eulerian digraph,

the cyclic digraph. The procedure of removing elementary closed walks is the analogue of re-

duction of §4.2. However, to check that a polynomial is not legitimate by this method means

checking all possible reductions of all possible Eulerian digraphs.

For a balanced digraph of order n, its degree sequence is the sequence (a0, a1, . . . , an�1)

where aj is the in-degree (= out-degree) of vertex j. To such a digraph, we associate the

polynomial p(x) = an�1x
n�1 + an�2x

n�2 + · · ·+ a1 + a0.

Given the degree sequence for the defining polynomial of a QCS, an associated Eulerian

1-step digraph may not be unique. For example the polynomial p(x) = 2 + 2x + 2x2 + 2x3

has three realizations:

The top left-hand one contains elementary closed walks, whereas the top right-hand one

contains no elementary closed walk. In this case the underlying multigraphs (the multi-

graph with the same vertex and edge set, but now with each edge undirected) are identical.

However, the lower 1-step Eulerian digraph has underlying graph non-isomorphic to the top
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two. Corresponding legitimate sequences of increments are given by 1yy2y31y3y2y (top left),

1yy2y31yy2y3 (top right), 1y1yy2y3y2y3 (bottom).

We can exploit Eulerian digraphs to see that the polynomial

p(x) = (x+ 1)(an�2x
n�2 + an�3x

n�3 + · · ·+ a1x+ a0)

= an�2x
n�1 + (an�2 + an�3)x

n�2 + · · ·+ (a1 + a0)x+ a0 ,

of Theorem 4.1.3 is legitimate. Note however, that in the real case, we are not allowed to

connect vertex n� 1 with vertex 0.

• Construct the directed edges 01, 12, . . . , (n � 2)(n � 1), (n � 1)(n � 2) (producing an

elementary closed walk between n� 2 and n� 1).

• Construct an�2 � 1 elementary closed walks between n� 2 and n� 1.

• Construct (n� 2)(n� 3).

• Construct an�3 � 1 elementary closed walks between n� 3 and n� 2.

• Construct (n� 3)(n� 4).

etc.

• Construct 10.

• Construct a0 � 1 elementary closed walks between 0 and 1.

Note in particular that this shows it is always possible (in the notation of §4.1) to begin

the sequence of increments

(1, y, y2, . . . , yn�2, yn�1, yn�2, . . .) . (4.19)

When enumerating all possible sequences of increments associated to a defining polyno-

mial, we must consider all Eulerian 1-step digraphs associated to the polynomial (we don’t

distinguish between walks which take a different arc joining the same two vertices).

Concatenation of §4.3 can be represented in terms of corresponding digraphs. Consider

the last example of §4.3, with p1(x) = 2x3 + 7x2 + 7x+ 2 and p2(x) = x2 + 3x+ 2. Each of

these has corresponding Eulerian digraphs given by the above algorithm as illustrated.
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When we concatenate the two sequences, we obtain a sequence with defining polynomial

3x3 + 10x2 + 9x+ 2, with (one of different possible) corresponding Eulerian digraph:

Similarly, we can reverse the process of concatenation by removing an Eulerian sub-

digraph. For example, if, from the left-hand digraph corresponding to the polynomial p(x) =

2x3 + 7x2 + 7x+ 2, we remove an Eulerian digraph corresponding to the right-hand digraph

corresponding to the polynomial p(x) = x2 + 3x+ 2, we obtain the Eulerian digraph:

with corresponding polynomial x3+4x2+5x+2 = (x+2)(x+1)2. However, care needs to be

taken, since we may lose the root �2 defining the QCS. If we remove another isomorphic copy

of the same digraph, depending on how this is done, we arrive either at the digraph on the

left with polynomial x2+3x+2 = (x+1)(x+2) or the digraph on the right with polynomial

x3 + 2x2 + 2x+ 1 = (x+ 1)(x2 + x+ 1) whose only real root is �1:

Note that, if the polynomial p(x) has an associated 1-step Eulerian digraph D = (V,A),

then the polynomial ep(x) = xdeg pp(1/x) has an associated 1-step Eulerian digraph eD = (eV , eA)

which is isomorphic to D. Here, isomorphism between digraphs means that the underlying

multigraphs are isomorphic in a way which preserves the orientation of edges. In fact, if

p(x) = an�1x
n�1+an�2x

n�2+· · ·+a1x+a0, then ep(x) = a0x
n�1+a1x

n�2+· · ·+an�2x+an�1.

An isomorphism from D to eD is given by mapping vertex j to n� 1� j (0  j  n� 1) and

mapping an edge j(j + 1) to (n� j � 1)(n� j � 2).
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4.5 QCS and planar walks

Let us first review the construction of a QCS, both real and complex algebraic. Upon normal-

ization (provided that � 6= 2), the QCS can be put into the form (0, 1, x2, . . .). The sequence

of increments is given 0
B@1, y,

(
y2

1
,

8
><
>:

y3

y

y�1

, . . .

1
CA

where y = x2 � 1. At each successive step, the increment ys is multiplied either by y, or by

y�1. Thus, the normalized QCS has the form

 
0, 1, 1 + y, 1 + y +

(
y2

1
, . . .

!

where y is the root of a polynomial whose coefficients are non-negative integers.

Let us now remove the requirement that the sequence be cyclic. Suppose that at each

successive step, the increment ys changes according to either ys 7! ys+1 or ys 7! ys�1, with

equal probability 1/2. This generates a random walk either along the real line, or in the

complex plane according as to whether y is real or complex, respectively. Consider such a

sequence with y = ei✓. Thus at each step we turn either right or left through an angle ✓ – we

call this the turning angle of the walk. We are particularly interested in the cases ✓ = 2⇡/n

when n = 4 or n = 6, for then the 2-step walk (the walk obtained by combining two successive

steps) corresponds to standard walks on the square lattice, or triangular lattice, resp.

Consider a walk with an even number of steps, where at each step we are obliged to turn

left or right with turning angle ⇡/2 and where we take two steps at a time. We will refer

to this as a 2-step walk with turning angle ⇡/2. We start at the origin (0, 0) and set off in

one of four directions, i.e. at the first step we arrive at one of (0,±1) or (±1, 0) with equal

probability 1/4.

Lemma 4.5.1. After an even number of steps, we arrive at (k, `) with k + ` 2 2Z.

Proof. By induction on the number of steps 2t. After two steps we arrive at one of (±1,±1).

Then each 2-step iteration replaces (k, `) by (k ± 1, `± 1).

The standard planar walk is a walk on the integer lattice, for which, if one is at position

(r, s) one moves to one of (r ± 1, s) or (r, s± 1).

Lemma 4.5.2. The 2-step planar walk with turning angle ⇡/2 determines a standard planar
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walk. Conversely, a standard planar walk corresponds to precisely two 2-step planar walks

with turning angle ⇡/2.

Proof. The walk is transformed into the standard walk by the mapping

(k, `) 7!
✓
k + `

2
,
`� k

2

◆

Note that, since k + ` 2 2Z, the right-hand side belongs to Z
2. If we set r = (k + `)/2 and

s = (` � k)/2, then the possible outcomes of a 2-step walk (below left) map to the possible

outcomes of the standard walk (below right):

(k + 1, `+ 1) 7! (r + 1, s)

(k + 1, `� 1) 7! (r, s� 1)

(k � 1, `+ 1) 7! (r, s+ 1)

(k � 1, `� 1) 7! (r � 1, s)

9
>>>=
>>>;

standard walk

For each 2-step (k, `) 7! (k ± 1, ` ± 1) there are precisely two 1-step routes. For example, if

(k, `) 7! (k + 1, ` � 1), then this is achieved by either (k, `) 7! (k + 1, `) 7! (k + 1, ` � 1) or

(k, `) 7! (k, `�1) 7! (k+1, `�1). However, which of these two occurs is determined uniquely

be the preceeding step. Thus, given a standard walk, after an initial choice is made (of two

possiblities), the 2-step walk is determined.

The diagram below gives a standard walk (blue) and one of the two possible corresponding

2-step walks (red).

If we set y = i, then the 2-step walk is given by the following sequence of increments

(i, 1, i,�1, i, 1,�i, 1,�i, 1, i, 1). The alternative choice of 2-step walk is given by (1, i,�1, i, 1, i, 1,
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�i, 1,�i, 1, i). In terms of y, these are given by (y, 1, y, y2, y, 1, y3, 1, y3, 1, y, 1) and (1, y, y2, y,

1, y, 1, y3, 1, y3, 1, y), respectively. These correspond to different legitimate arrangements of

the sequence of increments with defining polynomial p(x) = 2x3+x2+4x+5 = (x+1)(2x2�
x+ 5). Note that since the sequence is not cyclic, y is not a root of p(x).

If we are in a particular position in a standard walk (at one of the orange nodes below),

then in whatever direction we have arrived at that position in a 2-step walk, there is equal

probability 1/4 of arriving after two steps at one of the adjacent nodes in the standard walk,

as illustrated in the diagram below, where we suppose we arrive along the horizontal arrow

coming from the right.

Every standard planar walk of finite length determines a polynomial of the form p(x) =

b3x
3 + b2x

2 + b1x + b0. This is obtained by choosing one of the two corresponding 2-step

walks and setting bk to be the cardinality of ik in the sequence of increments. Then b0 and b2

correspond to horizontal increments and b1 and b3 to vertical increments. As for the example

above, x+1 must always be a factor of this polynomial, since each horizonal increment must

be matched by a vertical increment. What polynomials p(x) can arise from such a walk? In

what follows, we will identify the lattice of the standard walk with the points (k, `) in the

plane with k + ` even.

Lemma 4.5.3. Any polynomial p(x) of the form p(x) = (x + 1)(a2x
2 + a1x + a0) with

a0, a2 � 0 and �a1  min{a0, a2} determines a standard planar walk and conversely, each

standard planar walk determines such a polynomial. The length of the standard planar walk

is given by a0 + a1 + a2. The walk is closed if and only if p(x) = c(x + 1)(x2 + 1) for some

positive integer c. The end point of the walk is given by p(i).

Proof. Set p(x) = b3x
3 + b2x

2 + b1x + b0 = (x + 1)(a2x
2 + a1x + a0) where the aj satisfy

the conditions of the statement of the lemma. These conditions are equivalent to bk � 0 for
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k = 0, . . . , 3. Since x+ 1 is a factor, �b3 + b2 � b1 + b0 = 0 so that the number of horizonal

increments b0 + b2 (given by y0 = 1, y2 = �1 with y = i) is equal to the number of vertical

increments b1 + b3. Clearly these can be ordered (non-uniquely in general) to give a 2-step

walk determining a standard walk.

For the converse, given a standard planar walk, if bk is the number of occurences of yk

(k = 0, 1, 2, 3, y = i) as an increment in one of the two corresponding 2-step walks, then

p(x) = b3x
3 + b2x

2 + b1x+ b0 is a polynomial with the desired properties. The length of the

standard planar walk is given by (b0 + b1 + b2 + b3)/2 = a0 + a1 + a2.

If the walk is closed, i.e. it ends at its starting point, then y = i is a root of p(x). Since

the coefficients of p(x) are real, �i must also be a root and x2 + 1 is a factor. Thus p(x)

necessarily has the form p(x) = c(x+1)(x2+1) where c is a positive integer. Note that this is

the same polynomial given in §4.2 for the case n = 4. More generally, p(i) = �b3i�b2+b1i+b0

determines the end point of the walk.

We can be explicit about the coefficients of the defining polynomial as follows.

Theorem 4.5.4. For a 2-step walk of turning angle ⇡/2 of even length L from the origin to

k + i` (k + ` even), the defining polynomial is given by

p(x) = (x+ 1)(x� 1)

✓
� `

2
x� k

2

◆
+

L

4
(x+ 1)(x2 + 1) . (4.20)

In particular it is uniquely defined by its length and its end point and as a consequence the

(unordered) steps used to complete the walk are also uniquely defined.

Proof. Let p(x) = b3x
3 + b2x

2 + b1x+ b0 be the defining polynomial of the walk. The length

of the walk is given by L = p(1) = b3 + b2 + b1 + b0 and the end point by p(i) = k + i`, so

that k = b0 � b2 and ` = b1 � b3. Then together with �b3 + b2 � b1 + b0 = 0, we can solve for

b0, b1, b2, b3 to obtain (4.20)

For a 2-step walk of odd length from the origin to the point k + i`, we can calculate the

defining polynomial ep(x) of the walk to the preceeding step (a walk of even length) as above.

This could be one of the four possibilities: (k � 1, `), (k + 1, `), (k, `� 1), (k, `+ 1). Then we

obtain p(x) by adding on to ep(x), 1, x2, x, x3, respectively. However, now the polynomial p(x)

depends upon the path.

Lemma 4.5.5. For a given even length L, the number of 2-step paths from the origin to k+i`

is given by
2(b2 + b0)!

2

b0!b1!b2!b3!
=

2(b3 + b1)!
2

b0!b1!b2!b3!
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where b0, b1, b2, b3 are the coefficients of p(x) = b3x
3 + b2x

2 + b1x + b0 given by (4.20). The

number of standard paths of length L/2 from the origin to k + i` is half of this number.

Proof. Horizontal steps correspond to ±1 and vertical steps to ±i. These must occur alter-

nately in the walk, i.e. we must either have horizontal - vertical - horizontal - ... , or vertical -

horizontal - vertical - ... Otherwise, there is no restriction on the order in which we place +1

and �1, similary for +i and �i. Thus the number of paths corresponds to the number of differ-

ent orderings of {1, 1, . . . 1| {z }
b0

,�1,�1, . . . ,�1| {z }
b2

} multiplied by the number of different orderings of

{i, i, . . . i| {z }
b1

,�i,�i, . . . ,�i| {z }
b3

}. But the number of different orderings of {1, 1, . . . 1| {z }
b0

,�1,�1, . . . ,�1| {z }
b2

}

is given by the binomial coefficient

 
b2 + b0

b0

!
=

 
b2 + b0

b2

!

Similarly for the vertical steps. Finally, we can begin the walk with either a horizontal step

or a vertical step, so the total number of paths is given by

2

 
b2 + b0

b0

! 
b3 + b1

b1

!

as required. This can be written differently using the identity b3 + b1 = b2 + b0.

If in the 2-step walk, the first step takes place with probability 1/4 and successive steps

with probability 1/2, then each walk of length L occurs with probability

1
42

�L+1 .

Thus, for a given defining polynomial p(x) = b3x
3 + b2x

2 + b1x + b0, the probability that at

least one walk defined by the polynomial occurs is given by

2

 
b2 + b0

b0

! 
b3 + b1

b1

!
⇥ 1

42
�L+1 = 4�L/2

 
b2 + b0

b0

! 
b3 + b1

b1

!
.

Recalling that L is even, the latter expression gives the probability that one of the corre-

sponding standard walks occurs.

Example 4.5.6. There are eight 2-step walks of length 4 beginning and ending at the origin,

each occuring with probability 2�3/4. Thus, to the corresponding polynomial p(x) = x3 +

x2 + x+ 1, we associate the probability 8⇥ 2�3/4 = 1/4. On the other hand, there are four

147



4.5. QCS AND PLANAR WALKS

standard walks of length 2 beginning and ending at the origin, each with probability 4�2, thus

the probability that one of these length-2 walks occurs is 4⇥ 4�2 = 1/4.

There are two 2-step walks of length 2 from the origin to the point 1 + i, each with

associated probability 1/4 ⇥ 1/2 = 1/8 and so we associate the probability value 1/4 to the

polynomial p(x) = x+ 1. Equally, there is just one standard walk of length 1 from the origin

to 1 + i with probability 1/4 (recall, we identify the lattice of the standard walk with points

k + i` with k + ` even).

We now explore a duality between hexagonal walks and triangular walks given by algebraic

complex QCS with exterior angle 2⇡/6 = ⇡/3. It turns out that a 2-step walk on one of two

hexagonal lattices corresponds to a 1-step walk on the triangular lattice. Such lattices occur

in the theory of random walks [20].

In the illustration below, the first step could be in one of three directions 1, y2, y4 (grey),

or one of three directions y, y3, y5 (green), where y = ei⇡/3. In either case, the walk takes

place entirely on either the grey hexagonal lattice or the green hexagonal lattice. After an

even number of steps, the 2-step walk will arrive at one of the points 3
2k + i

p
3
2 ` for integers

k, ` with k + ` even, that is, at a point on the triangular lattice (red).

0
1

In fact, we have:

1 + y = 3
2 + i

p
3
2

y + y2 =
p
3i

y2 + y3 = �3
2 + i

p
3
2

y3 + y4 = �3
2 � i

p
3
2

y4 + y5 = �
p
3i

y5 + 1 = 3
2 � i

p
3
2

148



4.5. QCS AND PLANAR WALKS

So if we are at some point x = 3
2k+ i

p
3
2 l with k, l integers, k+ l even, (in particular, the point

(0, 0)), then after two steps we will add to x one of the 6 values above and get x0 = 3
2k

0+i
p
3
2 l0,

k0, l0 integers, k0 + l0 even.

If the initial step is taken with probability 1/6, then after two steps, the walk will arrive at

one of 3
2 +

p
3
2 i,

p
3 i,�3

2 +
p
3
2 i,�3

2 �
p
3
2 i,�

p
3 i, 32 �

p
3
2 i also with probability 1/6, since there

are two 2-step routes to arrive at each of the points on the red lattice each with probability

1/12. This probability distribution agrees with the case of the standard walk on the triangular

lattice.

However, unlike the case when n = 4, the triangular walk is no longer a Markovian

process, that is, one which depends only on its present position and not on past positions.

Furthermore, the relation between a walk on the triangular lattice and a 2-step walk with

turning angle ⇡/3 is more complicated. Let us examine this more closely.

0

A

B1

B2

B3

B4

B5

If we arrive at A from the origin 0 via the grey route following successive increments y0 and

y, then there is a unique route to arrive at B1, B2, B3, B4 each with probability 1/4. The nodes

B5 and 0 are inaccessible. On the other hand, if we arrive at A via the green route following

successive increments y and y0, then there is a unique route to arrive at B2, B3, B4, B5 each

with probability 1/4. Now the nodes at B1 and 0 are inaccessible. Thus, if we are engaged

in a 2-step walk with turning angle ⇡/3, the walk on the triangular lattice depends on the

previous step and the route taken to arrive.

Given a 1-step walk on the triangular lattice which has arisen from a 2-step walk with

turning angle ⇡/3, depending on the walk, there may be either a unique corresponding 2-step

walk or two such walks. For example, the walk 0AB1 is determined by a unique 2-step walk,

whereas 0AB2 is determined by two: one on the gray lattice, one on the green lattice. In

particular, if three successive steps on the triangular lattice lie on either a green, or grey
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hexagon, then the entire walk must have taken place on either the green hexagonal lattice, or

the grey hexagonal lattice, respectively.

As for the case when n = 4, we can characterize the defining polynomials of 2-step walks

with turning angle ⇡/3.

Theorem 4.5.7. Consider a 2-step walk with turning angle ⇡/3 which begins at the origin

and ends at the point 3
2k + i

p
3
2 ` with k + ` even. Let L be the length of the walk. Then the

defining polynomial is given by

p(x) = (x3 + 1)(ax2 + bx� a� b+ L
2 )� (x� 1)(x+ 1)

�
k
2 (x+ 1) + `

2(x� 1)
 

(4.21)

where a and b are non-negative integers for which if (k, `) 6= (0, 0), the following inequalities

are necessary (but not sufficient) conditions:

L � max{|k|+ |`|, 2(a+ b) + (k + `), 2(a+ b)� (k � `)}

a � max{0, k�`
2 }

b � max{0,� (k+`)
2 }

and if (k, `) = (0, 0), the inequalities a, b > 0 and 4max{a, b} < L < 4(a + b) are necessary

and sufficient.

Proof. Let p(x) = b5x
5+ b4x

4+ b3x
3+ b2x

2+ b1x+ b0 be the defining polynomial of the walk.

Then since each increment ys is followed by either ys+1 or ys�1, we must have p(�1) = 0;

also p(1) = L and p(y) = 3
2k+i

p
3
2 ` where y = ei⇡/3. This yields the underdetermined system

of equations

b0 + b1 + b2 + b3 + b4 + b5 = L

b0 � b1 + b2 � b3 + b4 � b5 = 0

2b0 + b1 � b2 � 2b3 � b4 + b5 = 3k

b1 + b2 � b4 � b5 = `

Set b5 = a and b4 = b as arbitrary parameters. Then on solving the system, the defining

polynomial is given by

p(x) = ax5 + bx4 +

✓
L

2
� a� b� (k + `)

2

◆
x3 +

✓
a� (k � `)

2

◆
x2 (4.22)

+

✓
b+

(k + `)

2

◆
x+

L

2
� a� b+

(k � `)

2
,

which yields (4.21).
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Clearly the length L must be greater than or equal to the minimum length of a path joining

the origin to 3
2k + i

p
3
2 ` which is given by |k|+ |`|. In the case when (k, `) 6= (0, 0), the other

inequalities arise from the requirement that the coefficients of p(x) must all be non-negative.

If on the other hand k = ` = 0 and the path is closed, then the condition on L is determined

by the case n = 6 in §4.2. Recall, writing the polynomial p(x) = (x3 + 1)(ax2 + bx + c), we

require a, b, c > 0 and max{a, b, c} < a + b + c �max{a, b, c}, where L = 2(a + b + c) in the

notation of §4.2.

Suppose L
2 � a� b � max{a, b}, i.e. L � 2(a+ b) + 2max{a, b}. Then we require

L

2
� a� b < a+ b , L < 4(a+ b).

On the other hand, if L
2 � a� b  max{a, b}, i.e. L  2(a+ b) + 2max{a, b}, then we require

max{a, b} <
L

2
� a� b+min{a, b} , 4max{a, b} < L .

However, for a, b > 0, we have

either 2(a+ b) + 2max{a, b}  L < 4(a+ b)

or 4max{a, b} < L  2(a+ b) + 2max{a, b}

)
, 4max{a, b} < L < 4(a+ b)

as required.

The inequalities for the case (k, `) 6= (0, 0) in the above theorem are necessary conditions

but not sufficient. For example, if we choose k = 3, ` = 5, L = 10, a = 0, b = 1, then the

inequalities are satisfied, however, the resulting polynomial given by p(x) = x4 + x2 + 5x+ 3

is not legitimate.

Note that for the case n = 6, the defining polynomial may depend on the path. As the

following example shows, this allows one to construct paths of the same length to the same

point which make use of different (unordered) edges.

Example 4.5.8. In (4.22), set k = 3, ` = 5 and L = 12. First choose a = 1 and b = 0 to

give the defining polynomial

p(x) = x5 + x3 + 2x2 + 4x+ 4

with sequence of increments

(y5, 1, y, 1, y, 1, y, 1, y, y2, y3, y2)
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corresponding to the red path in the illustration below.

0

9
2 + i5

p
3

2

Second, choose a = 0 and b = 1 to give the defining polynomial

p(x) = x4 + x3 + x2 + 5x+ 4

with sequence of increments

(y, 1, y, 1, y, 1, y, 1, y, y2, y3, y4)

corresponding to the green path in the illustration. Then the red path uses a different set of

edges to the green path, for example it exploits the edge y5 which is not used in the green

path. Note that the two paths combine to yield a closed path of length 24. As affirmed by

Proposition 4.2.12, this closed path requires each edge with its oppositely oriented counterpart.

We can proceed similarly with turning angle 2⇡/n for n = 8, 10, . . ., however in general,

there are no longer convenient tilings of the plane which support the walks. We illustrate

below part of the lattice for the case n = 8, where we see how the brown octagons begin to

interfere with the tiling. Some points of the 2-step walk are illustrated as red nodes.
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Chapter 5

Appendix

5.1 A non recursive algorithm for the path-function F

We introduce another program, this time built using "R", to compute the values of the path-

function F defined in Chapter 3. What characterizes this program is that it is non recursive,

but henceforth takes much more time for computing a desired value. This is done through

three steps:

1. Function "Zeroo".

(a) Explanation:

This function eliminates the zeroes that can be found at the extremities of a tuple

↵ 2 N . If the zero isn’t on the extremities, it sums its neighbors.

Example: for ↵ = (0, 2, 1, 0, 3, 5, 0), we get the tuple (2, 4, 5).

This function is used to reduce the number of components of a tuple ↵ when some

of them are zeroes, before using it in the principal algorithm.

(b) Code:

1 Zeroo=function(v)

2 {

3 while(v[1]==0) v=v[-1]

4 while(v[length(v)]==0) v=v[-length(v)]

5 wh=which(v %in% 0)

6 if(length(wh)>0)

7 {

8 for(k in 1: length(wh))
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9 {

10 v=v[-wh[k]]

11 v[wh[k]]=v[wh[k]-1]+v[wh[k]]

12 v=v[-(wh[k]-1)]

13 }

14 }

15 return(v)

16 }

2. Function "Minus".

(a) Explanation:

This function generates new tuples from a given one, by subtracting the number 1

from each component of the initial tuple.

Example: ↵ = (2, 4, 5) generates (1, 4, 5) and (2, 3, 5) and (2, 4, 4).

This function is also used in the principal algorithm.

(b) Code:

1 Minus=function(vecteur)

2 {

3 vecteur=Zeroo(vecteur)

4 n=length(vecteur)

5 Matvecteur=matrix(0,n,n)

6 if(length(which(vecteur >0))!=0)

7 {

8 for(k in 1:n)

9 {

10 test=vecteur

11 test[k]=test[k]-1

12 Matvecteur[k,]= test

13 }

14 vecteur=Matvecteur

15 }

16 return(vecteur)

17 }

3. Function "PathsFunction".

(a) Description:

This function computes the desired values of the paths-function F . It follows these

steps:

Given a tuple ↵ 2 N
n.
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– It uses the function Zeroo to reduce the size of ↵ if it contains zeroes so that

it becomes ready for decomposition.

– It uses the function Minus to generate k tuples from ↵. These tuples are placed

in a matrix of dimensions (k, n), where n is the size (number of components)

of ↵.

– For each of the generated tuples, it applies again the two functions Zeroo and

Minus. The new tuples are placed in a new matrix of dimensions (k0, n) where

k0 = k1 + k2 + ...kk and ki is the number of tuples generated by the tuple i of

the previous matrix.

– As long as the generated tuples contain numbers greater than 1, they undergo

Zeroo and Minus.

– The algorithm finally converges to a matrix of big dimensions. This matrix

only contains zeroes and ones. The number of lines of this matrix is equal to

the desired value.

(b) Code:

1 PathsFunction=function(vecteur)

2 {

3 library(gtools)

4 vecteur=Zeroo(vecteur)

5 n=length(vecteur)

6 X=Minus(vecteur)

7 za=1

8 while(sum(X>1) | za==1 & length(X)>1)

9 {

10 za=0

11 to=alply(X,1,Zeroo)

12 v=lapply(to ,Minus)

13 n <- max(sapply(v, nrow))

14

15 v=lapply(v, function (x)

16 rbind(x, matrix(, n-nrow(x), ncol(x))))

17

18 v=lapply(v, function (x)

19 cbind(x, matrix(, nrow(x), n-ncol(x))))

20

21 output <- do.call(rbind ,t(lapply(v,matrix ,ncol=n)))

22 output=output[apply(output , 1, function(y)

23 !all(is.na(y))),]

24 d=output

25 d[is.na(d)] <- 0

26 X=d

27 }
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28 X=data.frame(X)

29 return(nrow(X))

30 }

Now, we create the program "PFallvalues", using "PathsFunction", that computes all

the possible values of F(a1, . . . , as), 1  s  p, for p =
Ps

i=1 ai:

(a) Description:

This function is a generalization of the previous one. It gives all the values corresponding

to all the possible tuples of a given size and a given summation of the components (> 2),

(and arranges them in increasing order).

Example: One may consider the number 3. The algorithm PFallvalues finds all the

possible tuples of size 3 and whose components’ summation is 3, which are: V1 = (3, 0, 0),

V2 = (1, 2, 0), V3 = (2, 1, 0) and V4 = (1, 1, 1), and it applies the function PathsFunction

on each one of these tuples to get:

N1 N2 N3 Result

V1 3 0 0 1

V2 1 2 0 3

V3 2 1 0 3

V4 1 1 1 5

(b) Code:

1 PFallvalues=function(N)

2 {

3 library(gtools)

4 library(plyr)

5 matriceALL=list (0 ,1000)

6 k=1

7 for(i in 2:N)

8 {

9 print(i)

10 matto=permutations(n=N,r=i,repeats.allowed=T)

11 matto=cbind(matto ,apply(matto ,1,sum))

12 m=ncol(matto)

13 matto=as.data.frame(matto)

14 matriceALL [[k]]= matto[which(matto[,m]==N),1:(m-1)]

15 k=k+1

16 }

17 ###################################################
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18 v=matriceALL

19 n <- max(sapply(v, nrow))

20 m <- max(sapply(v, ncol))

21

22 v=lapply(v, function (x)

23 rbind(x, matrix(, n-nrow(x), ncol(x))))

24

25 v=lapply(v, function (x)

26 cbind(x, matrix(, nrow(x), m-ncol(x))))

27

28 for(j in 1: length(v)) v[[j]]=as.matrix(v[[j]])

29

30 output <- do.call(rbind ,t(lapply(v,matrix ,ncol=m)))

31

32 output=output[apply(output , 1, function(y) !all(is.na(y))),]

33 d=output

34

35 d[is.na(d)] <- 0

36

37 matriceFIN=rbind( c(N,rep(0,(m-1))),d)

38 matriceFIN=matriceFIN[, colSums(matriceFIN != 0) > 0]

39 ###################################################

40 #Application of PathsFunction

41 Results=NULL

42 for(i in 1:nrow(matriceFIN ))

43 {

44 vecteur=matriceFIN[i,]

45 Results[i]= PathsFunction(vecteur)

46 }

47 ###################################################

48 matriceResults=cbind(matriceFIN ,Results)

49 colnames(matriceResults )[1:m]= paste("N" ,1:m,sep="")

50 ###################################################

51 matriceResults=matriceResults[order(matriceResults[,m+1]) ,]

52

53 return(matriceResults)

54 }

5.2 On the defining polynomial of a complex algebraic QCS

As we saw in §4.2, the defining polynomial of a complex QCS with increment y = e2m⇡i/n

(m,n relatively prime, m < n) exhibits certain symmetry properties: for n  11, the corre-

sponding walk in the plane must use all increments {y0, y1, . . . , yn�1}, and when n is even,

then for each occurence of the increment yk there is an occurence of the increment y
n
2
+k = �yk.
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We will take a different approach to prove this symmetry property, regardless the fact that

the cyclotomic polynomial Φn(x) must be a factor of p(x), and this is done involving linear

algebra.

In other terms, we will prove that when n  11, n even, the defining polynomial of a

complex algebraic QCS with increment y = e2⇡i/n has the form:

p(x) = ↵0 + ↵1x+ ↵2x
2 + · · ·+ ↵n�1x

n�1

= ↵0 + ↵1x+ · · ·+ ↵n
2
�1x

n
2
�1

+↵0x
n
2 + ↵1x

n
2
+1 + · · ·+ ↵n

2
�1x

n�1,

with all ↵i strictly positive integers.

Let p(x) = ↵0 + ↵1x + ↵2x
2 + · · · + ↵n�1x

n�1 be the defining polynomial associated to

a complex algebraic QCS of order N with increment y = e2⇡i/n. That is, y is a root of

p(x) since the QCS is cyclic, and the corresponding sequence of increments has the form

{ys0 , ys1 , . . . , ysN�1} where sj+1 = sj ± 1( mod n), j 2 Z/NZ.

First, it is clear that when n is even, we have yk = �y
n
2
+k, 8k, so we write:

p(y) = ↵0 + ↵1y + ↵2y
2 + · · ·+ ↵n�1y

n�1

= ↵0 + ↵1e
2i⇡
n + ↵2e

2i⇡(2)
n + · · ·+ ↵n�1e

2i⇡(n�1)
n

= (↵0 � ↵n
2
) + (↵1 � ↵n

2
+1)e

2i⇡
n + (↵2 � ↵n

2
+2)e

2i⇡(2)
n + · · ·+ (↵n

2
�1 � ↵n�1)e

2i⇡(n2 �1)

n

= �0 + �1e
2i⇡
n + �2e

2i⇡(2)
n + · · ·+ �n

2
�1e

2i⇡(n2 �1)

n

Moreover, since y is a root of p(x), then p(y) = 0, which imply that

n
2
�1X

k=0

�ke
2i⇡k
n = 0,

As a result, we have:
n
2
�1X

k=0

�k sin(
2⇡k

n
) = 0, (5.1)

n
2
�1X

k=0

�k cos(
2⇡k

n
) = 0. (5.2)

Also, in the sequence of increments, successive terms differ by a power of one, so each oc-

currence of ys must be followed by either ys�1 or ys+1, cyclically. If we set y = �1, the

158



5.2. ON THE DEFINING POLYNOMIAL OF A COMPLEX ALGEBRAIC QCS

sequence of increments has the form (1,�1, . . . , 1,�1) or (�1, 1, . . . ,�1, 1) and it follows that

p(�1) = 0, so that x + 1 is a factor of p(x) (note that since n is even, the transition from

yn�1 to yn = y0 is consistent with alternation from �1 to 1 when y = �1).

For n = 2, the result is trivial.

For n = 4: We have

p(y) = �0 + �1e
i⇡
2 = 0,

so

�0 = �1 = 0

since the vectors (1, 0) and (0, 1) are linearly independent in R
2, and we get the desired form

of the coefficients of p(x).

Example: Consider the following walk with turning angle � = ⇡
2 ,

0

The sequence of directions is

S = (�i, 1,�i, 1,�i,�1, i, 1, i,�1,�i,�1,�i,�1, i, 1, i, 1, i,�1),

and we have

p(x) = 5 + 5x+ 5x2 + 5x3.

For n = 6: We have

p(y) = �0 + �1e
i⇡
3 + �2e

i 2⇡
3 = 0,

so equation (5.1) implies that: p
3

2
�1 +

p
3

2
�2 = 0,

thus

�1 = ��2,
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and equation (5.2) implies that:

�1 +
1

2
�1 �

1

2
�2 = 0,

and since �1 = ��2, we get

�0 = ��1.

Moreover, since �1 is a root of p(x), so

p(�1) = ↵0 � ↵1 + ↵2 � ↵3 + ↵4 � ↵5 = �0 � �1 + �2 = 0,

and since �1 = ��2 = ��0, we get that

�0 = 0,

as a result,

�0 = �1 = �2 = 0,

which is required to be proved.

Example: Consider the following walk with turning angle � = ⇡
3 ,

0

The sequence of directions is:

S = (1, ei
⇡

3 , 1, ei
⇡

3 , ei
2⇡
3 ,�1,�ei

⇡

3 ,�1,�ei
⇡

3 ,�ei
2⇡
3 ),

and the associated polynomial is:

p(x) = 2 + 2x+ x2 + 2x3 + 2x4 + x5.

For n = 8: We have

p(y) = �0 + �1e
i⇡
4 + �2e

i⇡
2 + �3e

i 3⇡
4 = 0.

equation (5.2) implies that

�0 +

p
2

2
(�1 � �3) = 0,
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and since
p
2
2 is irrational, then

�0 = 0,

and,

�1 � �3 = 0.

equation (5.1) implies that

�2 +

p
2

2
(�1 + �3) = 0,

and also since
p
2
2 is irrational, then

�2 = 0,

and,

�1 + �3 = 0.

We finally get:

�0 = �1 = �2 = �3 = 0,

and we get our result.

For n = 10: We have

p(y) = �0 + �1e
i⇡
5 + �2e

i 2⇡
5 + �3e

i 3⇡
5 + �4e

i 4⇡
5 = 0.

Note that

cos
⇡

5
=

p
5 + 1

4
,

so

sin
⇡

5
=

s

(1� 6 + 2
p
5

16
) =

p
10� 2

p
5

4
.

Moreover, sin 2⇡
5 = 2 cos ⇡

5 sin
⇡
5 , and recall that sin ⇡

5 = sin 4⇡
5 , and sin 2⇡

5 = sin 3⇡
5 .

As a result, equation (5.2) implies that:

(�1 + �4) sin
⇡

5
+ (�2 + �3)2 sin

⇡

5
cos

⇡

5
= 0,

which is equivalent to

(�1 + �4) + (�2 + �3)

p
5 + 1

2
= 0,

and since
p
5+1
2 is irrational, we get that

�1 + �4 = �2 + �3 = 0,
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so we have

�1 = ��4,

and

�2 = ��3.

Now, recall that cos ⇡
5 = � cos 4⇡

5 , cos 2⇡
5 = � cos 3⇡

5 .

As a result, equation (5.1) implies:

�0 + (�1 � �4) cos
⇡

5
+ (�2 � �3) cos

2⇡

5
= 0.

Since �1 = ��4 and �2 = ��3, then we get:

�0 + (2�1) cos
⇡

5
+ (2�2) cos

2⇡

5
= 0.

Now, cos 2⇡
5 = 2 cos2 ⇡

5 � 1 =
p
5�1
4 , as a result we have now:

�0 +

p
5 + 1

2
�1 +

p
5� 1

2
�2 = 0,

thus, since
p
5 is irrational, we get:

(
1

2
�1 �

1

2
�2) = 0

so

�1 = �2,

and

(�0 +
1

2
�1 +

1

2
�2) = 0.

As �1 = �2, it implies that

�0 = ��1 = ��2.

On the other hand, since �1 is a root of p(x), we have:

p(�1) = 0

, ↵0 � ↵1 + ↵2 � ↵3 + ↵4 � ↵5 + ↵6 � ↵7 + ↵8 � ↵9 = 0

, �0 � �1 + �2 � �3 + �4 = 0,
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and since �3 = ��2 = �0 = ��1 = �4, we get:

�0 = 0,

as a result we have:

�0 = �1 = �2 = �3 = �4 = 0,

and the result follows.

Obviously, after the symmetry was settled, it is clear that all ↵i must be strictly positive,

for if some ↵k = 0, then ↵k+n
2
= ↵k = 0, and this will clearly disconnect the sequence of

increments, which is impossible.

For n � 12, we can see that we don’t have enough conditions to settle the symmetry of

the coefficients, (which as we saw in §4.2, is no more true for n � 12):

For n = 12: We have

p(y) = �0 + �1e
i⇡
6 + �2e

i 2⇡
6 + �3e

i 3⇡
6 + �4e

i 4⇡
6 + �5e

i 5⇡
6 = 0.

equation (5.1) implies that:

1

2
�1 +

p
3

2
�2 +

p
3

2
�4 +

1

2
�5 = 0,

which implies, as
p
3
2 is irrational, that

�3 = �1

2
�1 �

1

2
�5, (a)

and

�4 = ��2. (b)

equation (5.2) implies that:

�0 +

p
3

2
�1 +

1

2
�+ 2� 1

2
�4 �

p
3

2
�5 = 0,

which implies, also since
p
3
2 is irrational, that

�0 =
1

2
�4 �

1

2
�2, (c)
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and

�1 = �5. (d)

Now combining (a) with (c) and (d) with (b), we get

�3 = ��1,

and

�0 = ��2.

We finally get:

�4 = �0 = ��2,

and

�5 = �1 = ��3,

which is a sub-determined system.
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propriétés géométriques de tels cycles polygonaux. 
Notamment, lorsque la marche exploite les côtés 

d'un polygone régulier avec angle extérieur 2 , 

on trouve des phénomènes non anticipés lorsque n 

12. 
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Abstract : The work in this thesis concerns the 

combinatorial theory of graphs, algebraic 
combinatorics and discrete geometry. On one side, 
it is about enumerating Hamiltonian paths and 
cycles of a given type in a tournament; On the other 
side, it studies numerical sequences verifying a 
quadratic difference equation. 
Concerning the results of the first part, we find: an 
equality between the number of Hamiltonians paths 
(resp. cycles) of a given type, in a tournament and 
its complement; an expression of the number of 
Hamiltonian oriented paths of a given type in a 
transitive tournament in terms of a recursive 
function F called the « path-function »; and the 
construction of an algorithm to compute F. 
In the second part of the work, we study cyclic 
graphs altogether with a solution to a quadratic 
difference equation.  

A parameter of this equation distinguishes real and 
complex sequences. A correspondence between 
real solutions and a class of polynomials with 
positive integer coefficients is established. To 
complete the correspondence, 1-step Eulerian 
digraphs interfere. A complex solution determines a 
closed planar walk in the plane, for which at each 
step we turn either left or right by a constant angle 
(the turning angle). This time, cyclotomic 
polynomials play a major role. Characterizing 
polynomials that determine such a solution is a 
problem that we study to the end of finding 
geometric properties of such polygonal cycles. 
When the walk exploits the sides of a regular 

polygon with exterior angle 2 , we find 

unexpected phenomena when n 12. 


