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Calcul stochastique dans les variétés et application aux inégalités
fonctionnelles

Résumé : Cette thèse explore les liens entre le calcul stochastique et l’analyse, dans
un cadre géométrique riemannien. Nous nous attelons à étendre des résultats connus et
des méthodes rodées, pour l’espace euclidien Rn, en de nouveaux résultats et méthodes
pour les variétés riemanniennes.

Les interactions considérés dans cette thèse seront de deux natures. D’une part, nous
étudions l’interprétation stochastique des semi-groupes, de l’équation de la chaleur et ses
applications aux inégalités fonctionnelles telles que Poincaré and FKG. Nous étudions
les entrelacements entre diffusion et transport parallèle déformé, entre générateurs et
entre semi-groupes. Le critère classique assurant ces relations est le critère de Bakry-
Émery. Notre contribution principale est une généralisation de ce critère par la méthode
de torsion (twisting). Nos donnons une condition générale pour obtenir des résultats
d’entrelacement, d’inégalité fonctionnelle ou de trou spectral. Nous présentons comment
utiliser ce résultat théorique sur des exemples explicites. Notre méthode illustre alors
son efficacité en améliorant les résultats précédant sur les mesures de Cauchy généralisée.

D’autre part, nous étudions le problème de Brenier-Schrödinger, vu comme la relax-
ation du problème de minimisation associé aux équations de Navier-Stokes. Notre étude
se place dans le cadre des variétés compactes à bords et nous traitons deux principales
questions : les solutions du problèmes de Brenier-Schrödinger sont-elles solutions (et
en quel sens?) des équations de Navier-Stokes et le problème de Brenier-Schrödinger
admet-il une (unique?) solution? Ce travail généralise des résultats précédents dans le
cadre euclidien ou le cadre du tore Tn. Nos deux principales contributions sont l’étude du
comportement des vitesses aux frontières du domaine et la méthode de quotient qui per-
met d’obtenir des espaces sur lequel le problème de Brenier-Schrödinger incompressible
admet une unique solution.

Mots-clés : variété riemannienne, semi-groupe, diffusion, entrelacement, inégalité de
Poincaré, problème de Brenier-Schrödinger
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Stochastic calculus on manifold and application to functional inequalities

Abstract:This thesis explores the links between stochastic calculus and analysis, in
a Riemannian geometric framework. We are working on extending known results and
tried and tested methods for the Euclidean space Rn into new results and methods for
Riemannian manifolds.

We consider two kinds of interactions. On the one hand, we study the stochas-
tic interpretation of semi-groups and its applications to functional inequalities such as
Poincaré and FKG. We study intertwining relations between diffusion and deformed
parallel transport, between generators and between semi-groups. The classical crite-
rion ensuring these relations is the Bakry-Émery criterion. Our main contribution is a
generalisation of this criterion by the twisting method. We give a general condition to
obtain intertwining, functional inequality and spectral gap results. We present how to
use this theoretical result on explicit examples. Our method illustrates its efficiency by
improving previously known results on generalized Cauchy measures.

On the other hand, we study the Brenier-Schrödinger problem, seen as a relaxation
of the minimization problem associated with Navier-Stokes equations. Our study takes
place within the framework of compact manifolds with boundaries and we address two
main questions. Are the solutions of the Brenier-Schrödinger problem solutions of the
Navier-Stokes equations and in which sense? Does the Brenier-Schrödinger problem
admit a (unique?) solution? This work generalises previously known results on the Eu-
clidean and torus framework. Our two main contributions are the study of the behaviour
of velocities at the boundaries of the domain and the quotient method which allows to
obtain spaces on which the incompressible Brenier-Schrödinger problem admits a unique
solution.

Keywords: Riemannian manifold, semi-group, diffusion, intertwining, Poincaré in-
equality, Brenier-Schrödinger problem
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"Arma dedi vobis : dederat Vulcanus
Achilli;
Vincite numeribus, vicit ut ille, datis."
Ovide, Artis Amatoriae

Part I

Introduction
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Introduction en français

Nous présentons les deux axes de cette thèse : les entrelacement appliqués aux
inégalités fonctionnelles et le problème de Brenier-Schrödinger. En partant de
l’état de l’art, nous expliquons notre approche et nos résultats.

Introduction
Cette thèse explore les liens entre le calcul stochastique et l’analyse. Les inter-
actions considérés dans cette thèse seront de deux natures. D’une part, il y a
l’interprétation stochastique des semi-groupes, de l’équation de la chaleur et ses
applications aux inégalités fonctionnelles telles que Poincaré and FKG. Ses ques-
tions seront traitées en Partie II font l’objet de l’article [47]. D’autre part, il y a
la relaxation de problèmes variationnels. Ces problèmes sont liés à la dualité entre
mécanique classique (seconde loi de Newton) et mécanique analytique (principe de
moindre action). Ces questions seront traitées en Partis III et dans l’article [42].

Pour chacun des deux sujets, notre travail se place dans le cadre de géométrie
riemannienne. Nous nous attelons à étendre des résultats connus et des méthodes
rodées, pour l’espace euclidien Rn, en de nouveaux résultats et méthodes pour
les variétés riemanniennes. Si la plupart de nos interrogations se prêtent bien au
passage riemannien, certaines notions, tel que la croissance au Chapitre 5, sont
fortement dépendantes de la structure vectorielle et ne sont pas aisées à traduire.

Le but de ce chapitre est de présenter les deux problèmes étudiés dans cette
thèse ainsi que notre contribution.

Entrelacement et inégalité fonctionnelle

S.C.E.P. : Semi-groupe, Chaleur, Exponentielle, Pollen
Partant d’un opérateur différentiel de second ordre, noté L, deux chemins s’offrent
à nous : le probabiliste et l’analytique. Le premier nous conduit vers un pro-
cessus stochastique, la diffusion de générateur L. Le second, à travers l’équation
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∂tu = Lu, mène au semi-groupe Pt = etL. Une représentation stochastique du
semi-groupe, faisant intervenir la diffusion, boucle le chemin. Nous avons décrit
ici des liens entre trois types d’objet : la diffusion, le générateur et le semi-groupe.
L’illustration classique des ces relations est le triplet mouvement brownien, lapla-
cien and semi-groupe de la chaleur. Ces relations donnent lieu à des transferts de
propriétés entre les différents niveaux, en particulier, entre la convergence de la loi
du processus stochastique vers sa mesure réversible µ, les propriétés spectrale du
générateur et la convergence à l’équilibre du semi-groupe.

Dans cette thèse, nous nous intéressons à l’opérateur différentiel

L = ∆− 〈∇V,∇·〉,

où V est un potentiel lisse, défini sur une variété riemannienne M . Nous recher-
chons des résultats sur le spectre de L, ou bien des inégalités fonctionnelles sur
Covµ, en utilisant les liens entre ces trois niveaux. Notre approche se base sur les
entrelacements.

Entrelacement
L’idée de base des entrelacements est de pouvoir réécrire la différentielle du semi-
groupe agissant sur les fonctions, dPf comme l’action d’un semi-groupe Q agissant
sur la forme différentielle df :

dPf = Qdf.

Les semi-groupes P est Q sont alors entrelacés. L’enjeu est alors d’étudier l’action
de la différentielle sur les deux autres niveaux. Ces relations sont au cœur des
travaux de thèse de Xue-Mei Li [58] et de ses travaux ultérieurs (Cf [59] ou [60]).
L’étude des ses relations appliquée aux inégalités fonctionnelles a été abordée dans
[25] pour les processus de vie ou de mort et dans [18] pour le cas unidimensionnel.
Les diffusions réversibles et ergodiques dans Rn font l’objet de l’article [2]. Notons
que le concept d’entrelacement étaient déjà sous-jacent dans l’étude du Γ2 de
Bakry, avec des formules de sous-commutation entre |∇Pf | et P|∇f | (Cf [8]).

Sur les deux premiers niveaux, les relations d’entrelacement sont réalisées sans
plus d’hypothèses. Le générateur L est entrelacé à un laplacien à poids agis-
sant sur le 1-formes, noté LW . Une étude approfondie de ce générateur peut être
trouvé dans les travaux de Hellfer, avec une application à la décroissance de la
corrélation dans les systèmes de spin ([45]). Au niveau des processus stochas-
tique, LW est le générateur, sur les 1-formes, du transport parallèle déformé. Dans
[3], ce processus est interprété comme la dérivée spatiale d’un flot convenable de
la L-diffusion. Ces entrelacements aux niveaux des processus et des générateurs
suggèrent l’entrelacement au niveau des semi-groupes ainsi qu’une représentation
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stochastique de cet entrelacement. Cependant, cela n’est vraiment pas automa-
tique. Si le semi-groupe Q peut toujours être défini au sens L2, sa représentation
stochastique ou la relation d’entrelacement ne sont pas nécessairement valides. La
situation se résume ainsi.

Xt

E

��

d //Wt

?

��

L

__

d //

et·��

LW

==

et·

!!
Pt

? //Qt

Le critère de Bakry-Émery est une hypothèse classique et utile garantissant
l’existence du C0-semi-groupe Q, la relation d’entrelacement et des inégalité fonc-
tionnelles classiques (Poincaré, Log-Sobolev). Il s’agit d’une condition de minora-
tion de la partie potentiel de LW . Dans R. ce potentiel est la hessienne de V . Dans
une variété riemannienne, la géométrie agit via le courbure de Ricci. Nous nous
intéressons au cas où ce critère n’est pas vérifié. Est-il toujours possible d’obtenir
des inégalités fonctionnelles? Une réponse est proposée à travers les entrelacements
tordus, exposés dans [2]. Le principe est le suivant : si l’on ne peut pas montrer
que la différentielle dP est entrelacé alors remplaçons d par une différentielle tor-
due (B∗)−1d, où B est une section de GL(TM). Manifestement, le semi-groupe
entrelacé en sera plus Q mais un nouveau dont on espère tirer profit. Le but est de
trouver une torsion B idoine, permettant au nouveau semi-groupe QB de vérifier
un critère de Bakry-Émery généralisé. Sous des hypothèses de symétrie et des
contraintes sur les valeurs propres, une inégalité de Brascamp-Lieb généralisée est
démontrée dans [2], avec des exemples concrets.

Contributions de cette thèse
Dans cette thèse, nous présentons le transport parallèle déformé comme un outil
pour obtenir des entrelacements. Dans le Chapitre 3, il permet de retrouver
des démonstration entièrement probabilistes de résultats classiques sous le critère
de Bakry-Émery, comme l’inégalité de Brascamp-Lieb asymétrique du Théorème
3.4.4. NotonsM la partie potentiel de LW et ρ un minorant deM.

Théorème 1 (Théorème 3.4.4). Si ρ > 0,alors pour toutes f, g ∈ C∞c (M),on a :

Covµ(f, g)| ≤ 1
ρ
‖dg‖∞

∫
M
|df | dµ.
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Poursuivant le travail de [2], dans le Chapitre 4, nous généralisons la méthode de
torsion (twisting) aux variétés riemannienne et à une plus vaste classe de torsion.
Nous rattachons cette méthode à l’étude du transport parallèle déformé tordu.
Cela donne une nouvelle interprétation aux opérateurs en jeu. Notre principale
résultat est un critère de Bakry-Émery généralisé et l’inégalité de Brascamp-Lieb
du théorème 4.5.4. Notons MB le potentiel tordu et B l’opérateur caractéristique
de la symétrie.

Théorème 2 (Théorème 4.5.3). Si B = 0 et MB est défini positif, alors pour toute
f ∈ C∞0 (M), on a :

Varµ(f) ≤
∫
M
〈df,

(
B∗MB(B∗)−1

)−1
df〉 dµ.

Les hypothèses de ce théorème peuvent être affinées (Théorème 4.6.3) pour
obtenir un énoncé stable sous perturbations. Ces résultats sont illustrés par
plusieurs exemples de modèle variété-mesure pour lesquels le critère de Bakry-
Émery n’est pas vérifié, ou pas optimal, de différente manière. L’exemple le plus
notable est celui des mesures de Cauchy généralisées R2. Nous améliorons les
bornes précédemment connues du trou spectral (Corollaire 4.7.1).

Le Chapitre ?? s’intéresse à un autre type d’inégalité fonctionnelle : l’inégalité
FKG. Dans l’esprit de [39], nous donnons ue démonstration stochastique du lien
avec la préservation de la monotonicité par le semi-groupe de la chaleur. Cette
notion peut être étendue aux groupes de Lie et nous obtenons un critère similaire
sur ces espaces (Théorème 5.5.3) .

Problème de Brenier-Schrödinger

Une approche variationnelle de Navier-Stokes
Un même phénomène physique peut être décrit de manière for différentes. A con-
templer le cours de la blonde Garonne, d’aucuns verront un champ de vitesse, so-
lution d’une équation newtonienne, quand d’autres observeront un flot paresseux,
minimisant ses efforts à travers le port de la Lune. Les premiers ont une visons
eulérienne de l’écoulement : ils décrivent l’évolution par son champ de vitesse et
par les équations qu’il vérifie. Ces équations ont été introduite par Euler au XVIIIe
siècle pour des fluides parfaits. Ce n’est que près d’un siècle plus tard que sera in-
troduit la notion de viscosité par Navier et Stokes. Ces questions sont notoirement
difficiles et la résolution des équations de Navier-Stokes est un problème du prix
du millénaire. Notre approche de ces équations n’a ni pour but ni la prétention de
les résoudre.
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Les seconds ont une vision lagrangienne de l’écoulement : ils décrivent l’évolution
par les trajectoires de chaque particules dont le mouvement respect un principe de
moindre action. Cette approche physique a été appliquée aux équation d’Euler par
Arnold dans [7] et aux équations de Navier-Stokes par Yasue dans [77]. Dans ce
dernier cas, l’action minimisée est une version stochastique de l’énergie cinétique,
définie avec la vitesse de Nelson. Sous cette formulation, ces problèmes restent
ardue et il existe plus de résultats de non-existence au problème d’Arnold ([73] ou
[74]) que d’existence.

Adirant le cours de la rivière, il y a un troisième groupe de personnes. Ils
n’y voient pas un champ de vitesse, ils n’y voient pas une trajectoire. Ils observe
une distribution de trajectoires. Brenier introduisit en premier cette relaxation
du problème d’Arnold dans [21]. Une solution P du problème de Brenier est une
mesure sur les trajectoires minimisant l’énergie cinétique moyenne

EP
[∫ 1

0
Ẋt dt

]
,

tout en respectant une contrainte de préservation de volume sur ses marginale et
une prescription du couplage P01. Il obtient une bonne correspondance entre les
solutions de son problème et les solutions des équations d’Euler. Dans cette thèse,
nous nous intéressons à une généralisation du problème de Brenier pour prendre
en compte la viscosité.

Problème de Brenier-Schrödinger
Les équation de Navier-Stokes sont le système différentiel suivant :

∂tv +∇vv − a�v +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v, ν〉 = 0, (t, x) ∈ [0, 1]× ∂M
v(0, ·) = v0, x ∈M

où M est une variété riemannienne compacte à bord„ ν un champ de vecteur dont
la restriction à ∂M est le vecteur normal entrant et v0 une condition initiale. Les
inconnues de ce système sont la pression p et le champ de vitesse v. Ces équations
peuvent être vues comme une perturbation des équations d’Euler par un terme de
viscosité −a�v.

La première généralisation des idées de Brenier aux équations de Navier-Stokes
vient de [1]. Le problème est alors présenté comme une minimisation d’une énergie
cinétique moyenne, sur les loi de mouvement brownien avec dérive, avec des con-
traintes de marginale. Cette énergie cinétique stochastique est alors définie avec
la dérive en lieu et place de la vitesse classique. Depuis cet article, de nombreux

8



auteurs se sont penchés sur le problème, lui donnant sa formulation actuelle et son
nom. Parmi eux, je pense à [4], [15], [16], [17], les thèse de Baradat [14] et Nenna
[66] ainsi que l’article [5] qui inspire notre travail.

L’énergie cinétique moyenne de [1] peut être exprimée comme une entropie
relative au mouvement brownien. Le problème devient donc une minimisation de
l’entropie sur les mesures de probabilité sur l’espace des chemins Ω, sous contraintes
de marginale. Il se formule ainsi :

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt, ∀t ∈ T ], Q01 = π.

où π ∈ P(M2) est la mesure sur les extrémités et µt ∈ P(M) les contraintes de
marginale. Ainsi exprimé, les prioblème est un mix entre le problème de Brenier
et le problème de Schrödinger.

En tant que problème en soit, il y a trois questions principales :

a) Admet-il une (unique) solution?

b) Quelles sont les caractéristique des solutions?

c) Peut-on faire de simulations numériques?

L’interprétation du problème comme une minimisation d’entropie sous con-
trainte linéaire apporte des réponses à ses trois questions. En particulier, dans [5],
il est démontré que le problème incompressible sur le tore Tn admet une unique
solution si et seulement si une condition d’entropie finie est satisfaite par la mesure
π.

En tant qu’approche variationnelle des équations de Navier-Stokes, il y a deux
principales questions :

d) Une solution de Navier-Stokes est-elle solution du problème de Brenier-
Schrödinger (et en quel sens)?

e) Une solution de Brenier-Schrödinger est-elle solution de Navier-Stokes (et en
quel sens)?

Le cas de la question d) est traité dans [4] pour le tore Tn. La question e) est traité
dans [5] pour le tore et l’espace euclidien Rn avec la notion de solution régulière.

Contributions de cette thèse
Le but de notre travail est de généralisé l’étude du problème de Brenier-Schrödinger
aux variétés compactes à bord. L’entropie relative est alors définie en référence à
la mesure du mouvement brownien réfléchi. Nous nous intéressons aux questions
a), b) et e).
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La question de l’existence est le sujet du Chapitre 9. Nous généralisons l’argument
pour le tore développé dans [5], aux espaces symétriques. Nous obtenons le même
critère d’entropie sur π.

Corollaire 3 (Corollaire 9.2.2). Le problème de Brenier-Schrödinger incompress-
ible sur M admet une unique solution si et seulement si H(π|R01) <∞.

Nous développons ensuite une stratégie qui permet de passer des espaces symétriques
à des variétés à bord via des quotients. Cela apporte de nombreux exemples tels
que le triangle équilatéral, les parallélépipède de dimension n ou le disque. Enfin,
nous étudions un problème plus exotique, sur Rn, pour lequel les arguments de
compacités ne sont plus utilisables.

La question de la caractérisation des solutions est l’objet du Chapitre 7. Nous
montrons que les solutions sont des semi-martingale et nous reprouvons le lien
entre le problème de minimisation d’entropie et le problème de minimisation de
l’énergie cinétique.

Le Chapitre 8 traite de la question e). Notre principale apport est le com-
portement des solution sur la frontière du domaine. Nous montrons que la vitesse
stochastique rétrograde vérifie la partie newtonienne des équations de Navier-
Stokes ainsi que la condition d’imperméabilité.

Théorème 4 (Théorème 8.4.2). Pour P0 presque tout y ∈ M , la vitesse stochas-
tique rétrograde ↼y

v vérifie :

(
∂t +∇↼y

v

) ↼y
v = a

2�
↼y
v −1T (t)∇(ap), 0 ≤ t < 1, t /∈ S, z ∈M,

↼y
v t −

↼y
v t−= θt(.), t ∈ S, z ∈M,

〈
↼y
v , ν(z)〉 = 0, z ∈ ∂M,
↼y
v 0= −∇η(., y), z ∈M.

De plus il existe un potentiel scalaire ϕy tel que

↼
v
P

t (X) = −a∇ϕX1
t (Xt), P -p.s.

Nous montrons aussi une équation de continuité pour la vitesse de courant
(Théorème 8.5.1).
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Chapter 1

Synopsis and latest developments

We present the two main topics of this thesis : intertwining applied to functional
inequalities and Brenier-Schrödinger problem. We recall the state of art and
present our approach and results.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Intertwining and functional inequalities . . . . . . . . . 12

1.2.1 The Heat, the Seed and the Exponential . . . . . . . . . 12
1.2.2 Intertwining . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Contributions of this thesis . . . . . . . . . . . . . . . . 13

1.3 Brenier-Schrödinger problem . . . . . . . . . . . . . . . 14
1.3.1 A variational approach of Navier-Stokes . . . . . . . . . 14
1.3.2 Brenier-Schrödinger problem . . . . . . . . . . . . . . . 15
1.3.3 Contributions of this thesis . . . . . . . . . . . . . . . . 17

1.1 Introduction
This thesis examines interactions between stochastic calculus and analysis. The
interactions considered in this thesis can be classified in two kinds. On the first
side, we have the stochastic interpretation of semi-groups, heat equation and its
applications to functional inequalities as Poincaré and FKG. These questions are
the subject of Part II and of the article [47]. On the other side, we have relax-
ations of variational problem. Those problems are linked to the duality between
classical mechanics (Newton’s second law) and analytical mechanics (principle of
least action). Those questions are the subject of Part III and of the article [42].
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A shared axis of our work on these two topics is the manifold background. We
work on extension of known results or methods, for the Euclidean space Rn, to
results and methods on Riemannian manifolds. If the majority of our questions
lends themselves to a manifold translation, some notions, as increasing function in
Chapter 5, rely on the vectorial structure and are not so easy to transfer.

The goal of this chapter is to present the two problems treated in our work and
our main contributions.

1.2 Intertwining and functional inequalities

1.2.1 The Heat, the Seed and the Exponential
From a second order differential operator L, there are two paths : the probability
one and the analysis one. The first one leads to a stochastic process, a diffusion
with generator L. The second one leads, through the equation ∂tu = Lu, to a semi-
group Pt = etL. A stochastic representation of the semi-group depending on the
diffusion rounds everything off. This procedure links three levels of objects : the
diffusion, the generator and the semi-group. A classical example of such relation is
given by the Brownian motion, the Laplacian and the heat semi-group. There are
transfers of properties between these levels, in particular between the convergence
of the diffusion measure to its reversible measure µ, the spectral properties of the
generator and the convergence to equilibrium of the semi-group.

In this thesis, we work on the differential operator

L = ∆− 〈∇V,∇·〉,

where V is a smooth potential, defined on a Riemannian manifold. We try to
obtain some spectral results for L, or functional inequality on Covµ, using the
links between the three levels. Our approach is based on the intertwining method.

1.2.2 Intertwining
The principle of intertwining is to study the action of differentiation on the three
levels and especially at the semi-group level. The goal is to rewrite the derivative
of a the semi-group acting on function dPtf as a semi-group acting on differential
forms Qtdf . These relations form a important part of Xue-Mei Li PhD thesis [58]
and work (see [59] or [60]). They have been applied to functional inequalities firstly
in the discrete case for birth-death processes in [25] and in the one dimensional
case in [18]. The case of reversible and ergodic diffusions in Rn is treated in [2].
Remark that the material of intertwining was already underlying in the Γ2 theory
with sub-commutation formulae between |∇Ptf | and Pt|∇f | as in [8].
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At the two first levels, intertwining relation occurs without further assump-
tions. The generator L is intertwined to a weighted Laplacian acting on 1-forms,
denoted LW , unitary equivalent to the Witten Laplacian. A large study of this
operator can be found in the work of Helffer, with applications to correlation decay
in spin systems (see [45]). At the level of stochastic processes, LW is the generator
on 1-forms of the deformed parallel translation. In [3], this process is proved to be
the spacial derivative of an appropriate flow of the L-diffusion. These intertwining
relations at these two levels suggest an intertwining relation at the level of the
semi-group and a stochastic representation of the intertwined semi-group. How-
ever, it is not automatic. The semi-group Q can be defined as a L2 semi-group but
its stochastic representation or the intertwining relation are not necessarily true.
The situation can be resume as follow.

Xt

E

��

d //Wt

?

��

L

__

d //

et·��

LW

==

et·

!!
Pt

? //Qt

The Bakry-Émery criterion is a classical and handy assumption which guar-
antees the existence of the C0 semi-group Q, intertwining relation and classical
inequalities (Poincaré, Log-Sobolev). It is a lower-boundedness condition on the
potential part of LW . In the Euclidean case, this potential is the Hessian of V .
In a manifold, the geometry plays a part through Ricci curvature. The interesting
situation comes when Brakry-Émery criterion is not satisfied. Is it still possible
to obtain spectral gap properties? An answer is given by the twisting approach
developed in [2]. The idea is the following : if we cannot reach the intertwining
relation with the differential d, let us use a twisted differential (B∗)−1d, where
B is a section of GL(TM). Obviously, the intertwined semi-group will no longer
be Q but a new one. The goal is to find twist B such that the new semi-group
has Bakry-Émery like properties. Under symmetry and eigenvalue conditions, a
generalized Brascamp-Lieb inequality is proved in [2]. This approach is strongly
linked to Lyapunov functions from [24], especially for homothetic twists.

1.2.3 Contributions of this thesis
In this thesis, we present the deformed parallel translation as a tool for intertwin-
ing. In Chapter 3, it allows us to develop only stochastic proofs of some well-known
results, under Bakry-Émery criterion, as the asymmetric Brascamp-Lieb inequal-
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ity of Theorem 3.4.4. We denote byM the potential part of LW , ρ(x) the smallest
eigenvalue ofM(x) and ρ its infimum on M .

Theorem 1.2.1 (Theorem 3.4.4). Assume that ρ > 0, then for all f, g ∈ C∞c (M),
we have :

|Covµ(f, g)| ≤ 1
ρ
‖dg‖∞

∫
M
|df | dµ.

Following the work of [2], in Chapter 4, we generalise the twisting method, to
Riemannian manifolds and to a wider class of twistings. Our approach starts from
a twisted deformed parallel translation which shades a new light on the operators
and potentials. The main result of this chapter is the generalised Brascamp-Lieb
inequality of Theorem 4.5.4. We denote by MB the potential of the intertwined
generator and by B the operator characterising symmetry and positiveness :

B =
(
(∇B∗)(B∗)−1

)t
− (∇B∗)(B∗)−1.

Theorem 1.2.2 (Theorem 4.5.3). Assume that B = 0 and that MB is positive
definite, then for every f ∈ C∞0 (M), we have :

Varµ(f) ≤
∫
M
〈df,

(
B∗MB(B∗)−1

)−1
df〉 dµ.

The conditions of this theorem can be relaxed (Theorem 4.6.3). It shows the
stability of the twisting method under perturbations. These results are illustrated
by examples. We present cases where the Bakry-Émery criterion is not satisfied
in different ways and we propose appropriate twistings. The most remarkable
example is our Riemannian approach of Cauchy measure in R2. We obtain in
Corollary 4.7.1 some improvement of the lower bound for the spectral gap. Our
examples also show that even if Bakry-Émery criterion is satisfied, twistings can
be used to obtain better bounds.

In the spirit of [13], we use intertwinings and deformed parallel translation
to study the FKG inequality. We show its link to the preservation of positive
vectors. This notion can be defined in Lie groups. We obtain a generalisation
of this property for Brownian motion in Proposition 5.3.3 and for more general
diffusions in Theorem 5.5.3.

1.3 Brenier-Schrödinger problem

1.3.1 A variational approach of Navier-Stokes
A same phenomenon can be describe from different points of view. Looking at our
blonde Garonne, some will see a velocity field satisfying some differential system,
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while others will grasp a flow minimising its efforts in its way through the port
de la Lune. The first ones have the Eulerian point of view. Its is a description
of the flow by its velocity and by a differential system. Euler proposed, in 1757,
his equations for incompressible inviscid fluids. It was not until the 19th century
that the concept of viscosity was introduced into this model, by Navier in 1823
and Stokes in 1845. These problems are notoriously difficult and the resolution of
Navier-Stokes equation is a Millennium Prize Problem. This is not the pretension
nor the goal of our approach to solve it.

The second group has a Lagrangian point of view. They describe the flow
by the trajectories of its particles, moving according to the least action principle.
This general physical principle, firstly inspired by philosophical and theological
conceptions, was mathematically formulated in 1756 and proved to be equivalent
to Newton principles in 1788, by Lagrange. This approach have been applied to
Euler equation by Arnold in [7]. In his track, Yasue give a variational formulation
to Navier-Stokes equation in [77]. In his formulation, the action derived from a
stochastic kinetic energy, defined with the Nelson velocity instead of the usual
velocity. These problems, even with these formulations, stay arduous. There are
few results of existence for Arnold problem ([31]) and more results of non-existence
([73] or [74]).

Staring at the river, there is a third group of persons. They do not see a
velocity field. They do not see a trajectory. They see a distribution of trajectories.
Brenier introduced this relaxation of Arnold problem in [21]. A solution P of his
problem is a path measure minimizing the mean kinetic energy EP [

∫ 1
0 |Ẋt|2 dt],

with a volume preservation constraint Pt = vol and an endpoints prescription on
P01. He obtains a good back an forth between solutions of his problem and Euler
equation. In this thesis, we look at an application of Brenier’s ideas to viscous
fluids.

1.3.2 Brenier-Schrödinger problem
By the Navier-Stokes equation, we refer to the system :

∂tv +∇vv − a�v +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v, ν〉 = 0, (t, x) ∈ [0, 1]× ∂M
v(0, ·) = v0, x ∈M

(1.3.1)

whereM is a compact Riemannian manifold with boundary ∂M , ν is a vector field
whose restriction to ∂M is the inward pointing vector field and v0 is a given initial
condition. The unknowns are p, the scalar pressure, and v the velocity vector field.
The viscosity terms a� is given by the Hodge-de Rham Laplacian.
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The first generalization of Brenier’s ideas to Navier-Stokes equation comes
from [1]. In their work, they consider a minimisation problem on manifold without
boundary. A solution is a measure of Brownian motion with drift, minimizing a
stochastic kinetic energy where the usual velocity, undefined on Brownian paths,
is replaced by the drift.

From this initial article, other authors have taken on the question, giving it its
actual formulation and its denomination as Brenier-Schrödinger problem or the
portmanteaus Brödinger and Bredinger. Among them, we think to [4], [15], [16],
[17], the PhD thesis of A. Baradat [14] and L. Nenna [66] and the article [5] which
inspired our work.

The stochastic kinetic energies from [1] and [77] can be expressed as the relative
entropy with respect to the reversible Brownian measure R. The variational prob-
lem becomes an entropy minimisation problem. The class of measure on which
the minimisation is considered is the set P(Ω) of probability measures on the path
space Ω = C0([0, 1],M). The problem is formulated as :

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt, ∀t ∈ T ], Q01 = π. (1.3.2)

where π ∈ P(M2) is the endpoints distribution, T ⊂ [0, 1] is measurable and
(µt)t∈T is a family in P(M) indexed by T . This problem is a mix between Bre-
nier problem, minimization of energy under marginal and endpoint constraints,
and Schrödinger problem, minimisation of entropy under marginal constraints
(see [41]).

Seen as a problem of his own, there are three main questions :

a) Does it admit a unique solution (or even solutions)?

b) What are the characteristics of a solution?

c) Can we obtain numerical simulations of solutions?

The formulation as a strictly convex minimisation problem brings answers to
the three of them. In [16], it is proved that if a solution exist, it is unique and there
is a criterion of existence, although not very handy. There is also a characterisation
of solutions as reciprocal measures. In [5], is proved a criterion of existence in
the torus for the incompressible problem (∀t ∈ [0, 1], µt = vol). In this same
article, Girsanov theorem gives a characterisation of solutions as semi-martingale.
Numerical approach of the problem are treated in [17] with Sinkhorn algorithm.

Seen as a variational approach of Navier-Stokes equation, the two main ques-
tions are the back and forth between solutions:

d) Is a classical solution of Navier-Stokes equation a solution (and in which
sense?) of Brenier-Schrödinger problem?
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e) Is a solution of Brenier-Schrödinger problem a solution (and in which sense?)
of Navier-Stokes equation?

There is an answer to question d) in [4], for the torus Tn (see Theorem 6.5.3). Re-
mark that their definition of Navier-Stokes equation is slightly different from our :
they do not use the Hodge-de Rham Laplacian. Yet it does not have incidence in
flat spaces as toruses. The reversed question is treated in [5], for Rn and Tn, with
the introduction of regular solution. They prove that the backward stochastic ve-
locity satisfies the Newton part of Navier-Stokes equation and the current velocity
satisfies the continuity equation.

1.3.3 Contributions of this thesis
In our work, we extend the result of [5] to compact manifold with boundary. In
our case, the reference measure R is the reversible measure of reflected Brownian
motion. We mostly contribute to questions a), b) and e). The question of existence,
and of a good criterion for existence is treated in Chapter 9. We extend the result
of [5] from Tn to compact manifold on which transitively acts a group of isometries,
for the incompressible problem. We obtain a finite entropy criterion.

Corollary 1.3.1 (Corollary 9.2.2). The Brenier-Schrödinger problem (IBS) ad-
mits a unique solution if and only if H(π|R01) <∞.

Then, we develop a method to obtain existence result on compact manifold
with boundary (or with corners) by quotient. It is applied to the segment [0, 1],
rectangular boxes of n-dimension, regular triangles or n-ball. We finish this study
of existence by a problem in a non compact space, Rn :

H(P |R)→ min; [Pt = N (0, 1/4 id),∀0 ≤ t ≤ 1], P01 = π.

We obtain the same criterion (Corollary 9.4.2) although the arguments are slightly
different.

The question of characterisation have been deeply resolved by the previous
authors yet. In Chapter 7, we re-prove the semi-martingale characterisation in our
case. It enlightens the link with variational problem in the manifold setting.

In Chapter 8, we come up to question e) with the stochastic velocity approach
of [5]. Our main contribution to this question is the behaviour at the boundary.
In Navier-Stokes equation, the impermeability condition states that the velocity
is tangent to the boundary. We show that backward (and also forward) velocity
has this property. More precisely, we prove the following result.
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Theorem 1.3.2 (Theorem 8.4.2). For P0 almost all y ∈M , the backward stochas-
tic velocity ↼y

v satisfies :

(
∂t +∇↼y

v

) ↼y
v = a

2�
↼y
v −1T (t)∇(ap), 0 ≤ t < 1, t /∈ S, z ∈M,

↼y
v t −

↼y
v t−= θt(.), t ∈ S, z ∈M,

〈
↼y
v , ν(z)〉 = 0, z ∈ ∂M,
↼y
v 0= −∇η(., y), z ∈M.

Furthermore, there exists a scalar potential ϕy satisfying a second order Hamilton-
Jacobi equation, such that

↼
v
P

t (X) = −a∇ϕX1
t (Xt), P -a.s.

We also prove the continuity equation again for the current velocity in Theo-
rem 8.5.1.
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Chapter 2

Preliminary concepts

The goal of this chapter is to recall the main notions and properties of
Riemannian geometry and stochastic calculus on manifolds and fix some
notations.
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2.5 Interlude - On "The" Laplacian on Γ(T ∗M) . . . . . . . 33

2.1 Riemannian manifold
In this first section, we recall the notions of Riemannian manifolds, connections
and characteristic tensors. As reference, see [30], [46], [50] or [69].

2.1.1 Connection
Let M be a smooth manifold of dimension n. We denote by C∞(M) the space of
smooth function from M to R. The tangent space at x ∈ M is denoted by TxM
and the tangent bundle by TM . A vector field on M is a smooth section of TM .
The set of vector field is denoted by Γ(TM). For (xi)1≤i≤n a local chart on an open
set U , the vector fields Di = ∂xi span TxM for all x ∈ U . As vector spaces, tangent
spaces have dual, denoted T ∗xM for x ∈ M . A 1-form is an element of Γ(T ∗M),
smooth section of T ∗M .

Unlike in vector spaces, there is not any natural way to add or subtract two
elements of TM . For that, we need a convention, a choice : a connection. The
easier way to define a connection is as a map ∇ : Γ(TM) × Γ(TM) → Γ(TM)
satisfying the following properties : for X, Y, Z ∈ Γ(TM) and f, g ∈ C∞(M),

∇fX+gYZ = f∇XZ + g∇YZ

∇X(Y + Z) = ∇XY +∇XZ

∇XfY = f∇XY +X.fY

(2.1.1)

Defined as above, a connection is a way of differentiating vector field. For two
vector fields X, Y ∈ Γ(TM), ∇XY is the derivative of Y in the direction X. In
the local chart (xi)i, the connection is characterised by its Christoffel symbols Γkij
defined by :

∇DiDj =
n∑
k=1

ΓkijDk, ∀1 ≤ i, j ≤ n. (2.1.2)

Given a curve γ on M and a connection ∇, a vector field X is said parallel
along γ if at every point of γ, we have : ∇γ̇X = 0. We say that the covariant
derivative of X along γ vanishes. In this case, X is said to be the parallel trans-
lation of X(γ(0)) along γ. Locally, the parallel translation is uniquely defined.
Then, a connection defines a notion of transporting vectors along C1 curves. A
connection also define a notion of straight lines in M : its geodesics. A curve is a
geodesic if its velocity is parallel.
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A (r, s)-tensor at x ∈ M is an element of TxM⊗r ⊗ T ∗xM
⊗s. The bundle

of (r, s)-tensor is denote by T r,sM . A connection can be extended naturally as an
application from (r, s)-tensor fields to (r, s+ 1)-tensor fields as a derivation which
commute with contraction : for all tensor θ, ψ, and X ∈ Γ(TM)

∇X(θ ⊗ ψ) = (∇xθ)⊗ ψ + θ ⊗ (∇Xψ)

and for tensor fields in dual bundles,

∇X〈θ, ψ〉 = 〈∇Xθ, ψ〉+ 〈θ,∇Xψ〉.

A very common example is the Hessian tensor ∇2f of f ∈ C2(M) defined as the
covariant derivative of the differential form df : for all X, Y ∈ Γ(TM) we have

∇2f(X, Y ) = 〈∇Xdf, Y 〉 = X.Y.f − 〈df,∇XY 〉.

2.1.2 Torsion
To a connection ∇ is attached several tensor fields which describe its properties.
The first one is the torsion T . It is the (1, 2)-tensor defined by :

T (X, Y ) = ∇XY −∇YX − [X, Y ], ∀X, Y ∈ Γ(TM), (2.1.3)

where [·, ·] denotes the Lie bracket. The torsion characterises the symmetry of a
connection. A connection is said torsion-free or symmetric if T vanishes. It this
case, Christoffel symbol is symmetric :

Γkij = Γkji, ∀i, j, k (2.1.4)

The torsion characterises the lack of symmetry of the Hessian tensor : for all
function f ∈ C2(M) and X, Y ∈ Γ(TM), we have

∇2f(X, Y ) = ∇2f(Y,X) + 〈df, T (X, Y )〉. (2.1.5)

We finish with an interpretation, more geometric, of the torsion, from [69]. The
torsion control the closing of small parallelogram. Let x ∈ M and A,B ∈ TxM .
Given an arbitrary chart (xi)i on U , an open neighbourhood of x, there exists a
vector field X on U such that X(x) = A and the coordinate of X is the chart (Di)
are constant, equal to the coordinates of A. For t sufficiently small, we can define
the integral curve u of X starting from (x,A) and the vector field along u, Bt by
parallel translation. For a fixed time t, we can iterate the procedure : there exists a
vector field Y on U which coincides with Bt at u(t) and with constant coordinates.
We can define v the integral curve of Y starting from u(t). We denote pt = v(t).
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Figure 2.1: Construction of a parallelogram

The same construction, switching the role of A and B, leads to the construction
of a point qt. See Figure 2.1.

In the familiar Euclidean space, we have solely drawn a closed parallelogram.
But, in a manifold, pt and qt may not be equal. Actually, it is possible to com-
pute the coordinates of these points in our chart and the difference between the
i-th coordinate is : T (A,B)it2 + O(t3). Then, the torsion control closing of par-
allelograms. With a symmetric connection, parallelograms a closed up to third
order.

2.1.3 Metric and Levi-Civita connection
Tangent spaces are merely vector spaces of finite dimension. So as to deal with
norm or orthonormal basis, we need to endow them with an inner-product. A
metric on M is a smooth family of inner-products gx on TxM for all x ∈ M .
In other terms, it is a (0, 2)-tensor field. A manifold M with a metric g is a
Riemannian manifold. A metric allows to define a volume measure vol, on M . In
a local chart, we have : vol(dx) =

√
det(g)dx, where dx is the Lebesgue measure.

A connection is compatible with the metric if ∇g = 0.

Theorem 2.1.1. On a Riemannian manifold (M, g), there exists a unique torsion-
free connection compatible with g.

The proof of this theorem consists of showing that such a connection satisfies
the Koszul formula : for all X, Y, Z ∈ Γ(TM)

2g(∇XY, Z) = X.g(Y, Z) + Y.g(X,Z)− Z.g(X, Y )
+ g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X).

(2.1.6)
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This connection is called the Levi-Civita connection, or Riemannian connection.
Let γ : [a, b]→M be a smooth curve, its length is defined by

L(γ) =
∫ b

a
|γ̇s| dt

and its kinetic energy by
E(γ) = 1

2

∫
|γ̇t|2dt

The geodesics of the Levi-civita connection are exactly the critical points of E and,
locally, curves of minimal length L.

The Laplace-Beltrami operator ∆, or more shortly Laplacian, of a function f
is the trace of the Hessian relative to the Levi-Civita connection. If (Xi)i is an
orthonormal basis of TxM , we have :

∆f =
∑
i

∇2f(Xi, Xi).

2.1.4 Exponential and normal coordinates
Given x ∈ M and v ∈ TxM , there exists a unique geodesic γ starting from the
initial condition (x, v), defined on some open interval I. For t ∈ I, we define the
exponential at x of tv by

expx(tv) = γt.

From the properties of geodesics, we know that the map expx is defined on some
neighbourhood Nx of 0 ∈ TxM .

Proposition 2.1.2 ([50]). For every x ∈ M , expx is a diffeomorphism from a
neighbourhood Nx of 0 ∈ TxM to a neighbourhood Ux of x ∈M .

The injectivity radius at x, iM(x), is the biggest radius such that the ball
centered in x with radius iM(x) is included in Nx. The injectivity radius iM is
the infimum of iM(x) over x ∈ M . Considering the union over x ∈ M of all
this expx and identifying M as a sub-manifold of TM , we can define exp from a
neighbourhood of M in TM to TM , although iM is not necessarily positive. The
exponential allows us to define a system of coordinates on M . Let (ei) be a basis
of TxM , the linear isomorphism (xi)i ∈ Rn 7→ ∑

i xiei ∈ TxM and the exponential
map determine an unique system of coordinates : (xi)i 7→ expx (∑i xiei). It is the
normal coordinates system in x associated to (ei)i. In this system, the coordinates
of the geodesic γ starting from (x,∑ viei) are xi(γt) = vit for all i. The main
interest of this system is the vanishing of the Christoffel symbols at x.

23



Proposition 2.1.3 ([46]). Let {xi} a normal coordinates system at x ∈M and Γ
the Christoffel symbols of the Levi-Civita connection then :

Γkij(x) = 0, ∀i, j, k.

Remark that if we work with a different connection than the Riemannian one,
the Christoffel symbols are only anti-symmetric at x and if the connection is also
symmetric (as the Levi-Civita’s one), we obtain the same result.

As a local diffeomorphism, expx admits an inverse. For y ∈ Ux, we denote
by logx(y) the unique vector v ∈ Nx such that the geodesic γ, starting from (x, v),
satisfies γ1 = y. This explains the usual notation for logx(y) as −→xy.
Proposition 2.1.4. For all x ∈M , we have :

d logx(x) = idTxM and ∇2 logx(x) = 0.

2.1.5 Curvature and Ricci tensor
The second characterising tensor is the curvature tensor. It is the (1, 3)-tensor
defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, ∀X, Y, Z ∈ Γ(TM). (2.1.7)

This object is significantly complex and does not have elegant interpretations as
torsion. A convenient way to deal with big tensors as R is to contract them. This
is how is constructed the most important tensor in the following work : the Ricci
curvature tensor Ric. For X, Y ∈ Γ(TM), Ric(X, Y ) is defined as the trace of
the operator Z 7→ R(Z,X)Y . In a Riemannian manifold, the Ricci tensor has the
following expression :

Ric(X, Y ) =
∑
i

g(R(X,Xi)Xi, Y ), (2.1.8)

where (Xi)i is any orthonormal basis of TxM . This tensor has several interpre-
tation. Locally, it is linked to the volume measure. In a normal coordinates
chart (xi)i, we have :

vol(dx) =
(

1− 1
6 Ricij xixj +O(|x|3)

)
dx. (2.1.9)

This means that in positive Ricci curvature spaces, as Sn, Riemannian balls are
smaller than Euclidean balls and in negative Ricci curvature spaces, as Hn, Rie-
mannian balls are bigger. Globally, if Ric is bounded from below by a positive
constant, the Bonnet-Myer theorem states that M is compact (with a bound on
the diameter depending on Ric). Finally, Ric is linked to the spectrum of Lapla-
cian via Weitzenböck formula. This last interpretation will be deeply studied in
Part II.
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2.2 The case of Lie groups
Interesting examples of manifolds are the Lie groups. In this section, we recall some
facts on Lie group and Lie algebra and connection on Lie groups. For references,
see [26] and [69]. This material will be mostly used in Chapter 5.

A Lie group is a group G endowed with a structure of manifold with compat-
ibility between those structures : the application (x, y) ∈ G2 7→ xy−1 is smooth.
The common examples of Lie groups are Lie groups of matrices : GLn(R), and its
closed sub-groups. Lie groups are parallelizable : there exists a family of vector
fields (Xi) such that for all g ∈ G, (X(g) is a basis of TgG. In other words, the tan-
gent bundle is trivial. The simplest way to prove it, is to construct left-invariant
vector fields. For g ∈ G the left multiplication Lg : x ∈ G 7→ gx is an isomor-
phism. Its differential acts on vectors. For v ∈ TeG, tangent space at the identity
element e, dLgv is a vector in TgG. The left-invariant vector field Lv is defined as
Lv(g) = dLgv for all g ∈ G. If (vi) is a basis of TeG, then (Lvi) parallelize TG.
The property of parallelizability is somehow a weaker version of the existence of
global chart.

To a Lie group G is associated a Lie algebra G defined as its tangent space TeG.
The Lie bracket on G is the Lie bracket of left-invariant vector in TeG. Seen as a
vector space, G can be endowed with an inner-product 〈·, ·〉 which can be extended
to the whole tangent bundle by the formula :

〈X, Y 〉g = 〈dL−1
g X, dL−1

g Y 〉, ∀g ∈ G,∀X, Y ∈ TgG. (2.2.1)

This metric is left-invariant : left-multiplications are isometric isomorphisms. It
endows G with a structure of Riemannian manifold. To this structure is associ-
ated a unique Levi-Civita connection whom expression is given by Koszul formula.
Yet, this connection has a little problem : its geodesics and the one-parameter
subgroups are not necessarily the same curves. There, Riemmanian and group
structures show discrepancies. There are connections for which, these curves co-
incide : the Cartan connections. Among them the left-connection ∇L and the
right-connection ∇R. They are defined on left-invariant vector fields by

∇L
XY = 0 and ∇R

XY = [X, Y ]. (2.2.2)

Left-connection is obviously compatible to the metric, then it cannot be torsion-
free. Right-connection has also some torsion. For all left-invariant X, Y , we have :

TL(X, Y ) = −[X, Y ] = −TR(X, Y ), (2.2.3)

Notice that the covariant derivatives of their torsions ∇T vanish. Their curva-
ture tensors also vanish. These connections, ∇L and ∇R, satisfy an interesting
commutation formula.
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Proposition 2.2.1. For all X, Y ∈ Γ(TM), we have :

∇R
XY + TR(X, Y ) = ∇L

YX.

Proof. Let X, Y be two left-invariant vector fields and f, g two smooth functions.
We have :

∇R
fXgY + TR(fX, gY ) = fg∇R

XY + f(X.g)Y + fgTR(X, Y )
(a)= fg(∇R

XY + TR(X, Y )) + f(X.g)Y
= f(X.g)Y
= ∇L

fXgY

where in (a), we use the formula (2.2.3), valid uniquely for left-invariant vector
fields. The R-bilinearity ends the proof.

2.3 Semi-martingale on a manifold
In this section, we introduce the notion of semi-martingale in a manifold and
the two calculus, Ito and Stratonovich, and the particular case of diffusions. See
references in [36] and [46].

2.3.1 Semi-martingale
In a vectorial space as Rn, a semi-martingale X of a filtered space (Ω,F , (Ft)t,P) is
a continuous adapted process admitting a decomposition as a sum of local martin-
gale and process with finite variations, called Doob-Meyer decomposition. Semi-
martingales are "good integrators" : it is possible to define a notion of integral
against them. A semi-martingale on Rn satisfies the Ito formula : for all C2 func-
tion f , we have :

f(Xt) = f(X0) +
∫ t

0
〈df(Xs), dXs〉+ 1

2

∫ t

0
∇2f(dXs, dXs).

This formula can be interpreted as the stability of the class of semi-martingales
under C2 functions. The definition of semi-martingale as a sum highly depends on
the additive structure of the space and cannot be extended to general manifolds.
There, the notion of semi-martingale will come up from the idea of stability under
smooth functions.

Definition 2.3.1. A semi-martingale is a process X such that for all f ∈ C∞(M),
the real process f ◦X is a semi-martingale.
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The class of "test functions" can be restricted to compactly supported smooth
functions C∞c (M). If (xi) is a chart, then X is a semi-martingale if and only if
its coordinates X i = xi ◦ X are semi-martingales. This definition "by duality"
of semi-martingales is very important. It will be adapted to define martingales,
solutions of stochastic differential equations or diffusions. Semi-martingales do
not have finite variations but they admit a quadratic variation. It can be seen as
a linear map from bilinear forms b to a processes. The b-quadratic variation is
denoted : ∫

b(dX, dX).

In a local chart, it has a closed expression. Let (xi)i be a local chart, Di = ∂xi
the moving basis of TM , dxi the dual basis and X i the coordinate of the semi-
martingale X. If b = bijdxi ⊗ dxj, the b-quadratic variation is defined by∫ t

0
b(dX, dX) =

∫ t

0
bij(Xs)d〈X i, Xj〉s. (2.3.1)

We will see a more intrinsic definition in Chapter 7 when we deal with martin-
gale problems. Now we have semi-martingales, we want to do some calculus as
stochastic integration and stochastic differential equation.

2.3.2 Ito differential
We assume that M is endowed with a connection ∇. Let X be a M -valued semi-
martingale. The Ito differential of X, denoted d∇X is, formally, an infinitesimal
vector. In a chart (xi), it is defined as :

d∇X =
(
dX i + 1

2Γijkd〈Xj, Xk〉
)
Di. (2.3.2)

This differential extends the notion of Ito stochastic integral in Rn. It satisfies the
generalized Ito formula : for all f ∈ C2(M) :

f(Xt)− f(X0) =
∫ t

0
〈df, d∇Xs〉+ 1

2

∫ t

0
∇2f(dX, dX).

As the coordinates X i are real semi-martingales, they admit a Doob-Meyer decom-
position X i = M i + Ai. The infinitesimal vector dmX = dM iDi is the martingale
part of the Ito differential. The advantage of Ito integral is the preservation of
martingales. A martingale in a manifold endowed with a connection is a process
such that for all function f ∈ C∞(M), we have

f(X(t) (m)= f(X0)− 1
2

∫ t

0
∇2f(dXs, dXs)

where (m)= means "up to a local martingale". Then, Ito integral against a martingale
is a martingale.
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2.3.3 Stratonovich differential
As in the vectorial case, there is an other way to define the stochastic integral, more
adapted to calculation : the Stratonovich integral. The Stratonovich differential
of X is denoted ◦dX. In a local chart, it is given by ◦dX = ◦dX iDi, where ◦dX i

is the Stratonovich differential of the real semi-martingale X i. It follows that
Stratonovich calculus respect the chain rule : for all f ∈ C∞(M) :

f(Xt) = f(X0) +
∫ t

0
〈df, ◦dX〉.

Yet, the drawback of Stratonovich caluculus is that integral against martingales
are no longer martingales. Remark that Stratonovich calculus is defined in a
manifold without a connection structure. More than the chain rule, the major
interest of Stratonovich calculus is the Stratonovich transfer principle resume by
Emery in [38] as : "geometric constructions performed on differential curves extend
intrinsically to random curves by replacing ordinary differentials with Stratonovich
stochastic differentials". See [37] for more details.

2.3.4 SDE
The Stratonovich calculus is useful to defined stochastic differential equations
(SDE) on manifold. Let (Vi)1≤i≤l smooth vector fields, Z a semi-martingale in
Rl and ξ a random variable on M . A process X is a solution of the SDE

◦dXt = Vi ◦ dZi
t ,

up to a stopping time τ , if for all f ∈ C∞(M), we have :

f(Xt) = f(ξ) +
∫ t

0
〈df, Vi〉 ◦ dZi

s, ∀0 ≤ t ≤ τ.

Theorem 2.3.2 ([46]). There exists a unique solution of the SDE ◦dXt = Vi ◦dZi
t

uo to its explosion time.

Idea of the proof. The idea is to use the result of existence and uniqueness in
Rn. The manifold M is embedded in some Rn. Then we show that the unique
solution stays in M by a Grönwall argument on the square distance from M :
f = dRn(·,M)2.

2.3.5 Diffusion and its semi-group
An important class of semi-martingale is the class of diffusions. Let L be a second
order operator on C∞(M). A L-diffusion is a process X such that for all f ∈

28



C∞(M), the semi-martingale

M f
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds, ∀0 ≤ t ≤ τ

is a local martingale. Under some regularity conditions on L, there are results of
existence and uniqueness of the L-diffusion measure.

Theorem 2.3.3 ([46]). Let L be a smooth second order elliptic operator and µ0 a
probability measure on M . There exists a unique L-diffusion measure with initial
distribution mu0.

The uniqueness property allows to define the semi-group P associated to L, on
bounded continuous functions. For all f ∈ C0

b (M), t ≥ 0 and x ∈M , we have :

Ptf(x) = E [f(Xx
t )1t≤τx ] , (2.3.3)

where (Xx
t )t is a L-diffusion, starting from x, defined up to an explosion time τx.

Diffusion processes satisfy the Strong Markov property. It justifies the designation
as "semi-group" : for all s, t ≥ 0, Pt+sf = Pt(Psf). It also prove the heat-like
equation : for all f ∈ C∞c (M), we have

∂tPtf(x) = LPtf(x) = PtLf(x). (2.3.4)

2.3.6 Explosion time
As we explained, solutions of SDE or diffusions can be defined up to an explosion
time. We present here a criterion of non-explosion for diffusion. We consider a
L-diffusion X, starting from x ∈M , defined up to an explosion time τx.

Proposition 2.3.4. If there exists a smooth function F : M → R, non negative,
such that limd(x,y)→+∞ F (y) = +∞ and a, c ∈ R such that LF ≤ cF + a, then
τx = +∞ a.s.

Proof. Without any loss of generality, we can assume that a = 0. First we define
the auxiliary semi-martingale Yt = e−ctF (Xt). According to Ito formula, for all
t ≥ 0, we have :

Yt = F (x)− c
∫ t

0
e−csF (Xs)ds+Mt +

∫
0
LF (Xs)ds

≤ F (x) +Mt
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whereMt is a local martingale. As Y is non negative, with Fatou lemma, it proves
that Yt ∈ L1 for all t ≥ 0. Now, we are going to show that (Yt1t≤τx)t≥0 is a
supermartingale. For all 0 ≤ s, t, we have :

E[Yt+s1t+s≤τx|Fs] = e−c(t+s)E[F (Xt+s)1t+s≤τx|Fs]
= e−c(t+s)EXs [F (Xt)1t≤τ ]1s≤τx
= e−cse−ctPtF (Xs)1s≤τx

where P is the semi-group associated to the L-diffusion. Then for all y ∈ M , we
have :

PtF (y) = F (y) +
∫ t

0
LPsF (y)ds. (2.3.5)

According to Grönwall lemma, we have : PtF (y) ≤ F (y)ect a.s. Then, (Yt1t≤τx)t≥0
is a supermartingale. Now, we defined the following family of stopping times : for
all n ∈ N∗

Tn =∈ {t ≥ 0 : F (Xt) ≥ n}. (2.3.6)

By definition, (Tn)n≥0 is increasing and converge to τx. For all n ≥ 0, we have :

nP(t > Tn) = E[F (XTn)1t>Tn ]
≤ E[F (Xt∧Tn)]
≤ ectE[Yt∧Tn1t∧Tn≤τx ]
≤ ectF (x)

Then, for all t ≥ 0, P(t > Tn)→ 0 as n→ +∞. By monotonous convergence, for
all t ≥ 0, P(t > τx) = 0.

2.4 Horizontal lift
In this section, we construct the parallel translation � over a semi-martingale.
When the semi-martingale is a diffusion process, we recall the diffusion properties
of �. For more details on this construction, see references in [46].

2.4.1 Connection (bis)
Definition 2.1.1 is handy for calculation but not very meaningful. We make it
clearer with the notion of horizontal vector. In a manifold M endowed with a
connection ∇, let x ∈M and v ∈ TxM . Among the curve in TM starting from v,
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we call vertical those which stay in TxM . The tangent vector of a vertical curve
in v is called a vertical vector. We denote by VvTM the subspace of TvTM of
vertical vector field. A curve in TM is horizontal if it is parallel to its projection
in M . We denote by HvTM the space of horizontal vectors in TvTM , tangent to
horizontal curves. These two vector spaces are supplementaries :

VvTM ⊕HvTM = TvTM.

The space VvTM is canonical. The choice of a connection ∇ is equivalent to the
choice of a supplementary to VvTM for all v ∈ TM .

This decomposition extends to the frame bundle F(M). A frame above x ∈M
is an isomorphism u : Rn → TxM . The fibres, F(M)x, are isomorphic to GLn(R).
For u in F(M), we denote π(u) the projection in M . The tangent space TuF(M)
admits a decomposition as vertical and horizontal vectors. A vector is vertical
if it is tangent to the fibre F(M)π(u). A curve ut in F(M) is horizontal if for
all e ∈ Rn, the vector field ute in TM is parallel along the curve π(ut) in M . A
vector in TuF(M) is horizontal if it is tangent to an horizontal curve. We denote
by HuF(M) the space of horizontal vector. We have :

TuF(M) = VuF(M)⊕HuF(M).

An argument of dimension shows that HuF(M) is isomorphic to Tπ(u)M . We de-
note by π∗ the isomorphism induced by π and hu its reciprocal : for all v ∈ Tπ(u)M ,
the unique vector in HuF(M) such that π∗(Hu(v)) = v is denoted by hu(v).
Let (ei)i be the canonical basis of Rn, we defined a basis of HuF(M) for all
frame u ∈ F(M) by :

Hi(u) = hu(uei), ∀1 ≤ i ≤ n.

2.4.2 Horizontal lift - C1 case
A curve in a manifold is, by nature, a complex object. The idea of horizontal
lift is to summarize a curve in M in a curve in Rn. Given a curve γ ∈ M and
a frame u0 ∈ F(M)γ(0) , there exists a unique parallel curve u in F(M) such
that π(u(t)) = γ(t) and u(0) = u0. This curve is called the horizontal lift of γ
starting from u0. Uniqueness and existence come from the resolution of differential
equation satisfied by u. The application ut ◦ u−1

0 : Tγ(0)M → Tγ(t)M is the parallel
translation along γ as defined in Section 2.1.1. In particular, it does not depend
on the choice of u0. The anti-development of γ (or of u), is the vectorial curve w
defined by :

ẇt = u−1
t γ̇t, w0 = 0.

Rewriting this equation, we have :

u̇t = Hi(ut)ẇit. (2.4.1)

31



In the case of Riemannian manifold endowed with its Levi-Civita connection,
it become more relevant to restrict our study on the orthonormal frames bun-
dle O(M). If u ∈ O(M) the vectors Hi(u) are tangent to O(M) and form an
orthonormal basis. A major property of parallel translation in the Riemannian
case is its respect of the metric.

Proposition 2.4.1. Let γ : I → M be a C1 curve. If Xt and Yt are vector fields
parallel along γ for the levi-Civita connection, then :

〈Xt, Yt〉 = 〈X0, Y0〉, ∀t ∈ I.

Proof.
d

dt
〈Xt, Yt〉 = ∇γ̇t〈Xt, Yt〉

= 〈∇γ̇tXt, Yt〉+ 〈Xt,∇γ̇tYt〉
= 0

Remark that this calculation stays true for any connection adapted to the
metric.

2.4.3 Horizontal lift - Stochastic case
The construction of horizontal lift and anti-development of a semi-martingale inM
is an example of Stratonovich transfer principle application. An horizontal semi-
martingale in F(M) is a solution to the SDE

◦dUt = Hα(Ut) ◦ dWα
t (2.4.2)

where W is a semi-martingale in Rn, called the anti-development of U in Rn. The
semi-martingale U is called the development of W in F(M) and the horizontal lift
of its projection X = π(U). X is the development of W in M . This construction
can be traced back, in an uncanonical way though, if M is embedded in some RN .
We denote P (x) : RN → TxM the orthogonal projection and P ∗ its horizontal lift,
we have :

Z

◦dUt=Hα(Ut)◦dZαt
		

U

X=π(U)
		

◦dZt=U−1Pα(Xt)◦dXα
t

HH

X

◦dUt=P ∗α(Ut)◦dXα
t

HH
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This shows that once a starting frame U0 is fixed, there is a one-to-one correspon-
denceX ↔ U ↔ W . Remark that, as in the smooth case, if U0 is in O(M), U stays
in O(M) and keeps preserving the metric. Horizontal lift and anti-development
keep the properties of the semi-martingale X. For example, X is a martingale
if and only if W is a local martingale. This is the case for diffusion properties.
Let L = ∆ + b be a second order operator, with b ∈ Γ(TM) and X a diffusion with
generator L. Let U its horizontal lift with starting frame U0 ∈ O(M). Then U is
a diffusion on O(M). Its generator is LO = ∆O + ∇b, where ∆O is the Bochner
Laplacian defined as :

∆O =
∑
i

H2
i .

This Laplacian is intertwined to the Laplace-Beltrami Laplacian by the projection
π :

∆M(f ◦ π) = (∆Of) ◦ π.
The parallel translation above X is defined, as in the smooth case, by :

�t = UtU
−1
0 , ∀0 ≤ t ≤ τ.

It is an isometric isomorphism between TX0M and TXtM . If X is a diffusion, �
can be seen as a diffusion on TM . Its generator on 1-forms is given by :

L� = ∆h +∇b, (2.4.3)

where ∆h is the horizontal Laplacian on 1-form :

∆hα =
∑
i

∇2α(Xi, Xi), ∀α ∈ Γ(T ∗M),

with (Xi)i any orthonormal basis.

2.5 Interlude - On "The" Laplacian on Γ(T ∗M)
In this section we discus the notion of Laplacian on 1-forms and we compare the
two classical Lapalcians : horizontal and Hodge-de Rham. The key Weitzenböck
formula from Theorem 2.5.1. See [46] for references.

The horizontal Laplacian ∆h defined above is a natural extension of Laplace-
Beltrami operator. It is the trace of the Hessian ∇2. Yet, this operator does
not have good geometric properties and is often leaved in favor of the Hodge-de
Rham Laplacian. This Laplacian has a Hilbertian construction. Let d the exterior
differentiation on Λ(M) and δ its adjoint for the inner-product

(α, β) =
∫
M
〈α, β〉 dx.
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The the Hodge-de Rham Laplacian is defined by :

� = −(d+ δ)2. (2.5.1)

Remark that it coincides with ∆M on functions (i.e, on 0-forms). Also remark that
Hodge-de Rham Laplacian satisfies the fundamental commutation formula :

d∆M = �d. (2.5.2)

This operator is linked to the horizontal Laplacian by the Weitzenböck formula.

Theorem 2.5.1 (Weitzenböck formula -[46]). For all α ∈ Γ(T ∗M), we have :

�α = ∆hα− Ric# α, ∀α ∈ Γ(T ∗M).

Idea of the proof. A straightforward proof is the computational one. Let (xi)i a
normal chart, Di the associated basis of TxM and dxi the dual basis of T ∗M .
For all α ∈ Γ(T ∗M), we show that : dα = dxj ∧ ∇Djα and δα = −i(Dj)∇Djα
where i(X) is the interior product : i(X)θ(·) = θ(X, ·). Then, we show :

�Mα = ∇Dj∇Djα + dxj ∧ i(Dk)
(
∇Dj∇Dk −∇Dk∇Dj

)
.

We can recognise the terms.
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"You see, it is simply a very young
girl’s record of her own thoughts and
impressions, and consequently meant
for publication. When it appears in
volume form I hope you will order a
copy."
Oscar Wild, The importance of bee-
ing earnest

Part II

Intertwining and functional
inequalities

35



Chapter 3

Deformed parallel translation and
intertwining

We define the deformed parallel translation and the intertwining relation at the
level of processes, generators and semi-group under Bakry-Émery criterion. It is
applied to functional inequalities and concentration result.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Deformed parallel transport and Commutation . . . . 38
3.3 A covariance representation . . . . . . . . . . . . . . . . 40
3.4 C0 semi-group under Bakry-Émery criterion . . . . . . 41

3.1 Introduction
This chapter is an introduction to intertwining and a stochastic study of it. It
motivates Bakry-Émery criterion as pivotal point in functional inequalities and
prepare our major contribution presented in Chapter 4. There are different types
of intertwining. It can be through a function between two manifold p : N → M
as in [61], or it can be through a derivative. To a differential operator on smooth
functions, it is possible to associate a diffusion process in one hand and a semi-
group acting on function on the other hand. We are looking to the action of
the differentiation on this three levels. The goal is to rewrite the derivative of a
smooth Markov semi-group acting on functions as a Markov semi-group acting on
differential forms. Unlike in the one-dimensional case, where functions and their
derivatives have the same nature, in a manifold setting, the two intertwined semi-
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groups act on different spaces. Actually, we look at semi-groups on 1-forms which
restrictions on differential forms satisfy an intertwining relation. As we want to
stress on the action on 1-forms, we do not look into Bismut type formulae (see [35]
or [34]).

These relations have been first investigated in the discrete case for birth-death
processes in [25] and in the one dimensional case in [18]. The case of reversible
ergodic diffusions in the Euclidean space Rn is treated in [2]. In this chapter,
we also investigate the case of reversible and ergodic diffusions, on a complete
connected Riemannian manifold M , with generator

Lf = ∆f − 〈∇V,∇f〉,

where V is a smooth potential on M . Such diffusions admit a unique invariant
measure, µ, absolutely continuous with respect to the Riemannian measure, with
density proportional to e−V .

At the level of operators, the intertwining relation occurs without further as-
sumptions. The generator L is intertwined with a weighted Laplacian acting on 1-
forms, LW , unitary equivalent to the Witten Laplacian. A large study of this
operator can be found in the work of Helffer, with application to correlation decay
in spin systems (see [45]). At the level of stochastic processes, LW is the generator
on 1-forms of a diffusion on the tangent bundle: the deformed parallel translation
(or geodesic transport in [62]). In [3], this process appears naturally as a spacial
derivative of a flow of the diffusion with generator L. These intertwining relations
at the level of processes and generator suggest an intertwining relation at the level
of the semi-groups and a stochastic representation of the intertwined semi-group.
However, at the level of semi-group, this relation is not so obvious: more assump-
tions are required. In the Euclidean space, the classical assumption is the strong
convexity of the potential V or, in other way to say it, the positiveness of its
Hessian. A classical generalization of this condition on Riemannian manifolds is
the positiveness of an operator depending on Hessian and Ricci curvature, known
as the Bakry-Émery criterion (see [8]). The stochastic approach of intertwining
relation is an important part of Li’s PhD thesis [58], in which many results of
this chapter have already been proved, and works ([59], [60]) and the books of
Elworthy, Le Jan and Li [32] and [33].

Let us summarize the content of this chapter. In Section 3.2, we define the de-
formed parallel translation and the intertwining relation at the level of processes
and generators. In Section 3.3, we make a link between covariance representa-
tion and intertwining at the level of semi-group. It is a motivation to look at
intertwining by differentiation. In Section 3.4, we study the commutation of the
C0-semi-group under the Bakry-Émery criterion. We obtain new proofs of some
well-known results, using only stochastic tools.
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3.2 Deformed parallel transport and Commuta-
tion

In this section, we introduce the deformed parallel translation. It is defined as
a stochastic process by a covariant differential equation. The goal is to estab-
lish intertwining relations at the level of stochastic processes and at the level of
generator.

On a connected complete Riemannian manifold (M, 〈·, ·〉), endowed with its
Levi-Civita connection ∇, let C∞(M) be the space of smooth real-valued functions
and C∞c (M) its subspace of compactly supported functions. We consider the second
order diffusion operator defined on C∞(M) by

Lf = ∆f − 〈∇V,∇f〉, (3.2.1)

where V is a smooth potential. We denote by µ the measure on M with den-
sity e−V . On C∞c (M), the operator L is symmetric with respect to µ, that is for
all f, g ∈ C∞c (M), ∫

M
Lfg dµ = −

∫
M
〈df, dg〉 dµ =

∫
M
fLg dµ. (3.2.2)

Let Xx
t be a diffusion process with generator L, started at x ∈ M . Such a

process exists and is unique in law, up to an explosion time τx. We define the
associated semi-group (Pt)t≥0 on the space of bounded continuous functions as in
(2.3.3) :

Ptf(x) = E [f(Xx
t )1t≤τx ] .

Above the process Xx
t , one can construct the parallel translation �t. It is an

isometric isomorphism from TxM to TXx
t
M but in a stochastic point of view, it

can be seen as a diffusion on the tangent bundle. Its generator on 1-forms is given
by :

L�α = ∆hα−∇∇V α, ∀α ∈ Γ(T ∗M) (3.2.3)
where ∆h is the horizontal Laplacian on 1-forms. For more details on the con-
struction of this object, see Chapter 2.

The parallel translation is the first step to define a more relevant translation, in
terms that will be explained bellow : the deformed parallel translation, or damped
parallel translation, Wt. It is the linear map TxM → TXx

t
M determined by the

differential equation: {
DtWtv = −M∗Wtvdt

W0 = idTxM
, (3.2.4)

where
DtWtv = �td

(
�−1
t Wtv

)
(3.2.5)
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stands for the covariant derivative of Wtv and the operator M∗ is a section
of End(TM) defined by

M∗w = ∇w∇V + Ric(w), ∀w ∈ TM. (3.2.6)

Its adjoint operator, a section of End(T ∗M) is denoted M. Remarks that both
translations �t and Wt depend on the initial point x but we avoid any reference to
it when it is obvious. As an alternative definition or a major property, Theorem
2.1 in [3] shows that for all x ∈M and v ∈ TxM , Wtv is the spatial derivative of a
flow of the diffusion with generator L, obtained from Xx

t by parallel coupling. In
some way, the processes Xx

t and Wt are intertwined. As the parallel translation,
the deformed parallel translation can be seen as a diffusion on the tangent bundle.

Proposition 3.2.1. The generator on 1-forms of the deformed parallel translation
is given by :

LWα = L�α−Mα, ∀α ∈ Γ(T ∗M). (3.2.7)

Proof. This result is just an application of Ito formula to 1-form (see [58]). Let us
detail a bit. Let α be a 1-form and v ∈ TxM , we have :

d〈α,Wtv〉 = d〈α�t,�−1
t Wtv〉

=
〈
d (α�t) ,�−1

t Wtv
〉

+
〈
α�t, d

(
�−1
t Wtv

)〉
+
〈
d(α�t), d(�−1

t Wt)
〉

= 〈Dtα,Wtv〉+ 〈α,DtWtv〉+ 〈Dtα,DtWt〉,

where Dtα = d (α�t) �−1
t stands for the covariant differential of α along Xx

t . As
parallel translation is a diffusion with generator L�, we have :

〈Dtα,Wtv〉
(m)= 〈L�α,Wtv〉dt,

where (m)= means "up to a local martingale". As Wt(x) satisfies equation (3.2.4),
we obtain the second term and the quadratic term 〈Dtα,DtWt〉 vanishes as DtWt

has finite variation.

For now, the operator LW has been defined only on smooth 1-forms. We extend
it in a L2-sense. Let L2(µ) be the space of measurable 1-forms α such that∫

M
|α|2 dµ < +∞.

Following the ideas of [28], Li proved in [58] the following result.

Theorem 3.2.2. The operator LW is essentially self-adjoint on L2(µ).
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We give some ideas of the proof.

Proof. We denote by δV the adjoint of the exterior derivative on forms for the
scalar product on L2(µ). Some calculation shows that, for all smooth compactly
supported 1-forms α, we have:

LWα = −(dδV + δV d)α (3.2.8)

Then LW is unitary equivalent to a Witten Laplacian and so is essentially self-
adjoint (see [45] for more details).

Then, without any assumptions, the deformed parallel translation defines a
semi-group (Qt)t≥0 on L2(µ). We will see in Section 3.4 that under suitable con-
ditions on the potentialM, it also generate a C0 semi-group, on bounded continu-
ous 1-forms with a stochastic representation as (2.3.3). Remark that a continuous
bounded 1-form is not bounded as an element of C0(TM) and this is the major
obstruction to the definition of a C0 semi-group.

The generator of the deformed parallel translation satisfies a commutation
formula. For all f ∈ C∞(M), one has:

dLf = LWdf. (3.2.9)

This is an intertwining relation at the level of generators. This commutation for-
mula on generators and the intertwining relation at the level of stochastic processes
suggest an intertwining relation between the semi-groups P and Q.

3.3 A covariance representation
In this section, we present a well-known integral representation of the covariance
Covµ and explain our motivation to obtain intertwining relations. We assume that
µ is a probability measure. Then, it makes sense to look forward bounds on it
variance. We also assume that the diffusion is ergodic i.e for all f ∈ C∞c (M) :

lim
t→+∞

Ptf = µ(f) a.s. (3.3.1)

This notion of ergodicity is implied by coupling property. Usually, speaking of
ergodicity, we refer to a stronger notion, with L2 convergence which is not necessary
here.

Proposition 3.3.1. For all f, g ∈ C∞c (M) we have the following covariance rep-
resentation:

Covµ(f, g) =
∫ +∞

0

(∫
M
〈df, dPtg〉 dµ

)
dt.
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Proof. Using ergodicity and the relation (2.3.4), for all f, g ∈ C∞c (M) we have :

Covµ(f, g) =
∫
M
f(g − µ(g)) dµ

= lim
t→+∞

∫
M
f(g −Ptg) dµ

= −
∫
M

∫ +∞

0
fLPtg dt dµ

=
∫ +∞

0

(∫
M
〈df, dPtg〉 dµ

)
dt

This covariance representation enlightens the necessity of understanding the
differential dPt. We finish with a heuristic calculation. Assume that the inter-
twining relation is satisfied, we formally have :

Varµ(f) =
∫ +∞

0

(∫
M
〈df,Qtdf〉 dµ

)
dt

=
∫
M
〈df, (LW )−1df〉 dµ

≤
∫
M
〈df,M−1df〉 dµ

The last inequality is the Brascamp-Lieb inequality. This is the kind of functional
inequalities we are interested in. This calculation can be rigorously establish under
the Bakry-Émery criterion, presented in the next section. It is developed in [12]
for instance. This idea will be the core of Chapter 4.

3.4 C0 semi-group under Bakry-Émery criterion
The main goal of this section is to motivate the use of intertwining relation for
functional inequalities and the role of Bakry-Émery Here, we obtain an asym-
metric Brascamp-Lieb inequality in the spirit of Ledoux (see [54] or [23]). This
inequality is called asymmetric because it gives an L1-L∞ bound of the covariance.
The Brascamp-Lieb inequality will be treated in Section 4.5 and 4.6 with an L2

approach of the semi-group. This section is also the opportunity to give a proof
of the intertwining relation for the C0 semi-groups, using only the stochastic tools
presented in Section 3.2. Firstly, we have to find a condition so as to properly
define the semi-group. As an endomorphism of T ∗xM ,M(x), defined in (3.2.6), is
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symmetric with respect to the metric. We denote by ρ(x) the smallest eigenvalue
ofM(x) and by ρ, its infimum over M :

ρ = inf
x∈M
{smallest eigenvalue ofM(x)} (3.4.1)

The key assumption of this section is the Bakry-Émery criterion, also known
as CD(ρ,∞) condition in [12].

Assumption 3.4.1 (Bakry-Émery criterion). Let us assume that the operatorM
is uniformly bounded from below, i.e ρ > −∞.

It is a sufficient condition for hypercontractivity of the diffusion and allows to
prove Poincaré or Log-Sobolev inequalities (see [11]). Bakry proves in [8] that,
under this criterion, the diffusion X does not explode (i.e for all x ∈M , τx = +∞
almost surely). It is not a necessary condition. The following intertwining results
are proved in [58] with a finite moment criterion, weaker but less handy, and for
other flow (see also the concept of p-completeness in [59]), or in [35] with finer
bounds.

Proposition 3.4.2. Under the Bakry-Émery criterion, the semi-group Q has the
stochastic representation : for all bounded 1-form α, for all x ∈ M , for all v ∈
TvM ,

〈Qtα, v〉 = E [〈α,Wtv〉] , (3.4.2)
and we have: for all 1-form α, for all t ≥ 0,

‖Qtα‖∞ ≤ e−ρt‖α‖∞.

Proof. The heart of the proof is to show that under this criterion, the deformed
parallel translation is bounded. For all x ∈M and all v ∈ TxM , one has

d|Wtv|2 = 2 〈Wtv,DtWtv〉
= −2 〈Wtv,M∗Wtv〉 dt
≤ −2ρ|Wtv|2dt.

By Grönwall lemma, this yields

|Wtv| ≤ e−ρt|v|, a.s. (3.4.3)

Remark that this bound does not depend on the initial point x. This shows that
the stochastic representation (3.4.2) is well-defined and concludes the proof.

Proposition 3.4.3. Under the Bakry-Émery criterion, the semi-groups P and Q
are intertwined by the derivative of functions: for all f ∈ C∞c (M),

dPtf = Qtdf. (3.4.4)
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Proof. Let x ∈ M , v ∈ TxM and γ : I → M a smooth curve such that γ(0) = x
and γ′(0) = v. According to [3], there exists a flow Xt(a) of the L-diffusion such
that Xt(0) = Xx

t , X0(a) = γ(a) and ∂aXt(a) = Wt(a)γ′(a) where Wt(a) is the
deformed parallel translation above Xt(a). For any f ∈ C∞c (M) and t > 0, we
have :

〈dPtf, v〉 = d

da

∣∣∣∣∣
a=0

Pt(γ(a))

= d

da

∣∣∣∣∣
a=0

E [f(Xt(γ(a)))]

The bound 3.4.3 and the regularity of f guarantee the differentiation under the
expectation. We have :

〈dPtf, v〉 = E [〈df,Wtv〉]
= 〈Qtdf, v〉

This result has also been proved for q-form in [32]. Armed with it, it is possible
to obtain several result in analysis. Amongst them, there are finiteness results of
volume and homotopy group (see [60]). We are going to use this intertwining
relation to obtain functional inequalities, in the spirit of Chapter 4. We get back
to the assumptions of ergodicity and finite measure from Proposition 3.3.1. To
begin with, we can rewrite the integral representation of the covariance using the
intertwining. For all f, g ∈ C∞c (M), we have :

Covµ(f, g) =
∫ +∞

0

∫
M
〈df,Qt(dg)〉 dµ dt. (3.4.5)

It is the key argument to prove the following asymmetric Brascamp-Lieb inequality.

Theorem 3.4.4 (Asymmetric Brascamp-Lieb inequality). Assume that ρ > 0,
then for all f , g ∈ C∞c (M), we have

|Covµ(f, g)| ≤ 1
ρ
‖dg‖∞

∫
M
|df | dµ.

Proof. From Hölder inequality, for all f, g ∈ C∞c (M) and t ≥ 0, we have :∣∣∣∣∫
M
〈df,Qt(dg)〉 dµ

∣∣∣∣ ≤ ‖Qt(dg)‖∞
∫
M
|df | dµ.
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Using the bound from Proposition 3.4.2, we have :

|Qt(dg)‖∞ ≤ e−ρt‖dg‖∞.

With the representation (3.4.5) of the covariance, it ends the proof.

Remark that in [8], the assumption of finiteness of µ is proven to be implied
by the positivity of ρ.

A consequence of Theorem 3.4.4, is the Gaussian concentration of the probabil-
ity µ. This concentration result has been shown by Ledoux in [51] for the volume
measure of a compact Riemannian manifold under the condition of positive Ricci
curvature and in [52] in the Euclidean space under the condition of strictly convex
potential. This inequality is deeply exposed in [53]. Our proof gives a new outlook
of the result, with only stochastic tools.

Proposition 3.4.5. If ρ > 0, then for all 1-Lipschitz f ∈ C∞c (M) and for all r > 0,

µ (|f − µ(f)| > r) ≤ 2e−ρ r
2
2 . (3.4.6)

Proof. The idea of the proof is to bound the Laplace transform. Let f be a smooth
compactly supported 1-Lipschitz function. Without any loss of generality, we can
assume that f is centered. For any λ > 0, we have:

d

dλ
Eµ[eλf ] = Covµ(f, eλf )

≤ 1
ρ
‖df‖∞

∫
M
λ|df |eλf dµ

≤ λ

ρ
Eµ
[
eλf

]
.

By Grönwall lemma, it yields :

Eµ[eλf ] ≤ eλ
2/2ρ. (3.4.7)

The proof ends by using Markov’s inequality and optimizing in λ.
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Chapter 4

Twistings and intertwined
semi-groups

So as to obtain intertwining, we defined a twisted semi-group. It is applied to
functional inequality as Poincaré and illustrated with examples in radially
symmetric surface. This chapter exposes the main results of [47].

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Twisted processes and semi-groups . . . . . . . . . . . . 46
4.3 Existence of the C0 semi-group . . . . . . . . . . . . . . 49

4.4 Symmetry and positiveness of −L
�
B . . . . . . . . . . . . 52

4.5 Intertwining: a symmetric positive case . . . . . . . . . 54
4.6 Intertwining: general case . . . . . . . . . . . . . . . . . 61
4.7 Examples in radially symmetric surfaces . . . . . . . . 65

4.1 Introduction
The Bakry-Émery criterion and the strict convexity ofM appeared in Chapter 3
as natural conditions for intertwinings and functional inequalities for the mea-
sure µ. Yet, these conditions are quite limiting and unnecessary. For example, the
potential V (x) = x4/4 on R is not strictly convex but the associated measure has a
good spectral gap property. In this chapter, we present a method which oversteps
this problem. While we considered the C0-semi-group in Chapter 3, we are now
interested in the L2 one. In this chapter, we extend a strategy presented in [2]
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on Rn, to manifold, so as to obtain intertwined semi-groups even if the Bakry-
Émrey criterion is not fulfilled. We consider twisted gradients, or equivalently,
twisted metrics on the tangent space, by a section of GL(TM). This operation
does not change the stochastic diffusion onM but creates a new translation on the
tangent space, with associated generators and semi-groups. Under assumptions on
these twists, which replace the Bakry-Émery condition, we can obtain intertwining
relations at the level of semi-groups, between P and a the new semi-group QB.
This intertwining can be translated to Brascamp-Lieb type inequalities for the
measure µ, extending the unreachable ones, satisfied under the strict convexity
assumption of the potential. This method has been developed in [2] is the case of
Euclidean space and shows it potential their. In our work, we extend the method
to manifold and to a larger class of twistings.

Let us summarize the content of this chapter. In Section 4.2, we introduce
twisting, the associated semi-group and its generator. In Section 4.3 we have a
discussion on the stochastic representation of the semi-group on bounded 1-forms.
It gives rise to a decomposition of the generator. The goal of Section 4.4 is to find
conditions for this decomposition to be the sum of a symmetric positive second
order generator and a zero order potential. In Sections 4.5 and 4.6, we obtain
conditions to have intertwining relations for the L2 semi-groups on 1-forms. Theo-
rem 4.5.2 is a generalization of Theorem 2.2 in [2], in a manifold setting, with the
same kind of assumptions: conditions of symmetry and positiveness of the second
order operator and bound on the potential. Theorem 4.6.1 extends this result
when the second order operator is not symmetric nor non-negative. We achieve to
release all assumptions over the second order operator by a stronger bound on the
potential. These intertwinings are applied in Theorems 4.5.3 and 4.6.3 to obtain
generalized Brascamp-Lieb and Poincaré inequalities. We finish in Section 4.7 with
several illustrations of measure which fail Bakry-Émery criterion in different ways
and for which our method brings bounds on the spectral gap.

4.2 Twisted processes and semi-groups
Let B be a smooth section of GL(TM), i.e for all x ∈M , B(x) is an isomorphism
of TxM . The section B is used to twist the semi-group so as to obtain an intertwin-
ing relation even when the Bakry-Émery criterion is not satisfied. In this section,
we are going to construct the tree levels, process, generator and semi-group, and
prove a commutation at the level of generators. The intertwining relation at the
level of semi-groups will be treated in Section 4.5 and 4.6. Firstly, we define
the B-parallel translation above Xx by conjugation as:

�B
t = B(Xx

t ) �t B(x)−1 : TxM → TXx
t
M. (4.2.1)
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This new translation is also a diffusion on TM and we can calculate its generator
on 1-forms, denoted by L�,B.

Proposition 4.2.1. The generator on 1-forms of the B-parallel translation is
given by

L�,Bα = L�α + 2(B−1)∗∇B∗ · ∇α + (B−1)∗(L�B∗)α, ∀α ∈ Γ(T ∗M).

with the contraction ∇B∗ · ∇α = ∑
i∇eiB

∗ · ∇eiα for any orthonormal basis (ei)i.

Proof. For all 1-form α, w ∈ TxM and t ≥ 0, we have :

〈α,�B
t w〉 = 〈α,B(Xx

t ) �t B
−1(x)w〉

= 〈B∗α,B(x)−1w〉

Using the diffusion property of �t, we have :

d〈α,�B
t w〉

(m)= 〈L�(B∗α),�tB
−1(x)w〉dt.

By definition of L�,B, we have :

d〈α,�B
t w〉

(m)= 〈L�,Bα,�B
t w〉dt.

Together, it yields :
L�,Bα = (B∗)−1L� (B∗α) .

This ends the proof.

Unlike the parallel translation, the B-parallel translation is not an isometry
for the Riemmanian metric. Actually, it is not adapted to the Riemannian metric.
To get back to a notion of isometric translation along curves, we need to twist the
metric too and use the B-twisted metric: for all v, w ∈ TxM

〈v, w〉B = 〈B−1(x)v,B−1(x)w〉. (4.2.2)

However, the twisted-parallel translation �B is still not the Levi-Civita parallel
translation associated to the B-metric but we have a simple relation between them.
Let us denote ∇B the connexion associated to �B. It satisfies :

∇B = ∇− (∇B)B−1. (4.2.3)

Its torsion TB is generically non-vanishing and satisfies : for all X, Y ∈ Γ(TM),

TB(X, Y ) = (∇YB)B−1X − (∇XB)B−1Y. (4.2.4)
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On the other hand, the Levi-Civita connexion ∇BLC, satisfies : for all X, Y, Z ∈
Γ(TM),
〈
∇BLC
X Y, Z

〉
B

=
〈
∇B
XY −

1
2T

B(X, Y ), Z
〉

+1
2
〈
TB(X,Z), Y

〉
B

+1
2
〈
TB(y, Z), x

〉
B
.

(4.2.5)
Hence both connexions differ not only from a torsion term but also from a sym-
metric part. It is not a torsion skew symmetric case (see [32]). This also means
that a twist is not only a change of metric.

Now, as in the non-twisted case, the next step is to define the B-deformed
parallel translation as:

WB
t = B(Xx

t )Wt(x)B−1 : TxM → TXx
t
M. (4.2.6)

This definition uses the previous definition of the deformed parallel translation,
but, as a straightforward calculation shows,WB

t could have been defined as in (3.2.4)
by a stochastic covariant equation :

DB
t W

B
t = −M∗

BW
B
t (4.2.7)

whereDB
t stands for the B-covariant derivative �B

t d
(
�B
t
−1) andM∗

B is the adjoint
of

MB = (B∗)−1MB∗. (4.2.8)

Again, this translation is a diffusion in TM . As for �B
t , the same calculation

shows that its generator on 1-forms, LW,B, is conjugated to the generator LW :

LW,B = (B∗)−1LWB∗.

This gives a first decomposition of LW,B.

Proposition 4.2.2. The B-deformed parallel translation is a diffusion with gen-
erator on 1-forms

LW,B = L�,B −MB (4.2.9)

The argument of conjugacy shows that LW,B and L are intertwined by (B∗)−1d:

(B∗)−1dL = LW,B(B∗)−1d. (4.2.10)

The generator LW,B can be extended in a L2-sense. We denote by 〈·, ·〉B the
intertwined-metric on 1-forms: for two 1-forms α, β,

〈α, β〉B = 〈B∗α,B∗β〉, (4.2.11)
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and by L2(B, µ) the space of measurable 1-forms α such that∫
M
|α|2B dµ < +∞. (4.2.12)

As LW , LW,B is also essentially self-adjoint, on L2(B, µ) and is associated to a L2

semi-group of diffusion on 1-forms, QB
t . Under suitable conditions, it would gen-

erates a semi-group on smooth compactly supported 1-forms, also denoted by QB
t ,

with the stochastic representation

〈QB
t α, v〉 = E

[
〈α,WB

t v〉1t<τx
]
. (4.2.13)

It is the topic of next section.

4.3 Existence of the C0 semi-group
In this section, we look for criterion of existence of the C0-semi-group QB. As
for the non-twisted case, the existence of the L2-semi-group is not a problem but
additional assumptions come out when we want a stochastic representation of the
semi-group on bounded 1-forms or when we want to prove an intertwining relation.
It also appear that in the non-twisted case, a unique assumption, the Bakry-Émery
criterion, solves both questions. In our twisting method, we hope that we can find
a new criterion as substitution.

Firstly, let us remark that the Bakry-Émery criterion is still a a sufficient
condition of existence and intertwining.

Proposition 4.3.1. Under the Bakry-Émery criterion, QB is well-defined by the
formula (4.2.13) and is intertwined to P by (B∗)−1d, i.e. for all f ∈ C∞c (M), for
all t ≥ 0,

(B∗)−1dPtf = QB
t

(
(B∗)−1df

)
.

Proof. As in Proposition 3.4.2, the Bakry-Émery criterion prove the existence of
the stochastic representation (4.2.13). For all f ∈ C∞c (M), we have:

(B∗)−1)dPtf = (B∗)−1Qtdf

= (B∗)−1E [〈df,Wt·〉]
= E

[
〈df,WtB

−1(x)·〉
]

= E
[
〈(B∗)−1df,B(Xx

t )WtB
−1(x)·〉

]
= E

[
〈(B∗)−1df,WB

t ·〉
]
.
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As explained, this results is not very satisfying because the goal of twisting is to
obtain bypass the Bakry-Émery criterion. Furthermore, the potentialMB appear-
ing in (4.2.7) is conjugated to M so they have the same eigenvalues. Then MB

does not seem useful to improve inequalities such as in Section 3.4 even if we could
obtained the intertwining relation without using the Bakry-Émery criterion. In
order to find a more relevant potential, we get back to the definition of WB

t . The
twisted covariant equation (4.2.7) hide the role of twisting . Let us establish the
non-twisted one.

Proposition 4.3.2. The B-deformed parallel translation satisfies the stochastic
covariant equation :

DtW
B
t = −

(
MB − L�(B)B−1

)
WB
t v dt+

(
∇dmXx

t
B
)

(B−1)WB
t v, (4.3.1)

where dmXx
t is the martingale part of the Ito derivative of Xx

t .

Proof. For all x ∈M ; v ∈ TxM and t ≥ 0, we have :

DtW
B
t v = �td

(
�−1
t WB

t v
)

= �td
(
�−1
t B(Xx

t ) �t �−1
t WtB(x)−1v

)
= �td

(
�−1
t B(Xx

t )�t

)
�−1
t WtB(x)−1v +B(Xx

t )DtWtB(x)−1v + 0

In the first term, we recognize the stochastic covariant derivative in End(TM) :

DtB(Xx
t ) = �td

(
�−1
t B(Xx

t )�t

)
�−1
t .

The second term is given by (3.2.4). There is no quadratic term as Wt has finite
variations. Then we have :

DtW
B
t v =

(
L�B(Xx

t )dt+∇dmXx
t
B(Xx

t )
)
WtB(x)−1v −B(Xx

t )MWtB(x)−1vdt.

This equation is less easy to handle because of the martingale terms which does
not vanish. The potential involved in the finite variations part of DtW

B
t is a new

one. We denote it by
MB =MB − (B∗)−1L�(B∗). (4.3.2)

Thinking to the calculation of Section 3.4, this potential seems more relevant in
a stochastic point of view : the growth of |WB

t |2 will be controlled by its first
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eigenvalue. In fact, we have something a bite more complicated becauseMB is not
necessarily symmetric and because the martingale part will take part. We denote

ρB = inf
x∈M

{
smallest eigenvalue of

(
B∗MB(B∗)−1

)s}
, (4.3.3)

the analogous of ρ. We denote equally ‖·‖HS the Hilbert-Schmidt norm on End(TM)
and the associated operator norm on L(TM,End(TM)). ‖ ·‖HS,∞ is its supremum
over M .

Proposition 4.3.3. Assume that ρB−‖(∇·B∗)(B∗)−1‖2
HS,∞ > k > −∞, then QB

is well-defined by (4.2.13) and for all t ≥ 0 and α continuous bounded 1-form, we
have :

‖QB
t α‖∞ ≤ e−kt‖α‖∞.

Proof. For all x ∈M and v ∈ TxM , we have :

d|WB
t v|2 = 2〈WB

t v,DW
B
t v〉+ 〈DWB

· v,DW
B
· v〉t

= −2〈WB
t v,MBW

B
t v〉dt+ (m) + 2

∑
i

|(∇eiB
∗(Xt))(B∗)−1(Xt)WB

t v|2dt

= −2〈WB
t v,MBW

B
t v〉dt+ (m) + 2‖(∇·B∗(Xt))(B∗)−1(Xt)WB

t v‖2
HSdt

with (ei)i an orthonormal basis. Let τn be a localizing sequence for the martingale
part. We have :

E
[
|WB

t v|21t≤τn
]
≤ |v|2 − 2k

∫ t

0
E
[
|WB

s v|21s≤τn
]
ds. (4.3.4)

By Grönwall lemma and monotonous convergence, we have :

E
[
|WB

t v|21t≤τ
]
≤ e−2kt|v|2. (4.3.5)

This is sufficient to defined the semi-group as (4.2.13) and obtain the upper bound.

This condition is sufficient for the existence of the semi-group QB but is not
sufficient to prove the intertwining. That is why we will focus on the L2-semi-group
in the next sections. The main interest of this

The new multiplicative potential MB leads to a second decomposition of the
generator LW,B :

LW,B = L
�
B −MB. (4.3.6)

where L�
B is defined by :

L
�
B = L� + 2(B∗)−1∇B∗ · ∇· (4.3.7)
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From the operators point of view, this new split seems more satisfying too.
Indeed, the potentialMB contains all the zero-order terms of LW,B and only them.
Of course, this potential is also more relevant in an heuristic way, if we think about
the Euclidean study [2]. It is also linked to the work on Lyapunov functions in [10]
and [24] as we will see in Section 4.4. So, this potential is the natural candidate
for a generalization of Bakry-Émery criterion.

4.4 Symmetry and positiveness of −L�
B

First, as we noticed, LW,B is conjugated to LW , and so, is self-adjoint in L2(B, µ).
For the same reason, in the subspace of twisted differential-forms

{(B∗)−1df ; f ∈ C∞c (M)},

we additionally prove the non-positiveness of LW,B:∫
M
〈(B∗)−1df, LW,B(B∗)−1df〉B dµ =

∫
M
〈df, LWdf〉 dµ

=
∫
M
〈df, d(Lf)〉 dµ

= −
∫
M

(Lf)2 dµ.

The classical result, in non-twisted cases, use the decomposition of LW as the
sum of a symmetric non-positive operator and a potential bounded from below.
So we are looking for conditions such that L�

B is symmetric with respect to the B-
twisted metric. This is not trivial, even in the subspace of twisted gradients. First,
by integration by parts for the horizontal Laplacian, we have∫

M
〈(−L�)α, β〉 dµ =

∫
M
〈∇α,∇β〉 dµ (4.4.1)

with 〈∇α,∇β〉 = ∑
i 〈∇eiα,∇eiβ〉, with (ei)i any orthonormal basis. Then, on one

hand, we have :∫
M
〈(−L�)α, β〉B dµ =

∫
M
〈(−L�)α, (B∗)tB∗β〉 dµ

=
∫
M
〈∇α,∇((B∗)tB∗β)〉 dµ

=
∫
M
〈∇α, (B∗)tB∗∇β〉 dµ+

∫
M
〈∇α,∇((B∗)tB∗)β〉 dµ

=
∫
M
〈∇α,∇β〉B dµ+

∫
M
〈∇α,∇(B∗)tB∗β〉 dµ
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+
∫
M
〈∇α, (B∗)t∇(B∗)β〉 dµ

where (B∗)t denotes the dual map of B∗ with respect to scalar products on T ∗M .
On the other hand, we have :

−
∫
M

〈
2(B−1)∗∇B∗ · ∇α, β

〉
B
dµ = −2

∫
M
〈∇B∗ · ∇α,B∗β〉 dµ

= −2
∫
M

〈
∇α, (∇B∗)tB∗β

〉
dµ.

This yields∫
M

〈(
−L�

B

)
α, β

〉
B
dµ =

∫
M
〈∇α,∇β〉B dµ−

∫
M
〈B∗∇α,B(B∗β)〉 dµ. (4.4.2)

where
B =

(
(∇B∗)(B∗)−1

)t
− (∇B∗)(B∗)−1 (4.4.3)

We immediately get this first criterion of symmetry and non-negativeness.
Proposition 4.4.1. If B = 0, then the generator −L�

B is symmetric with respect
to 〈·, ·〉B, non-negative and we have:

−
∫
M
〈L�

Bα, β〉B dµ =
∫
M
〈∇α,∇β〉B dµ (4.4.4)

The criterion of Proposition 4.4.1 is obviously not necessary but it gives a
condition easy to check and not to constraining as we will see.

On other way to find a condition of symmetry is to look at the potential rather
than the operator. The operator LW,B and the potentialMB are symmetric with
respect to the B-metric and we have :

L
�
B = LW,B +MB − (B∗)−1L�(B∗). (4.4.5)

So a necessary and sufficient condition for the B-symmetry of L�
B is the B-

symmetry of the potential (B∗)−1L�(B∗). But unlike the condition of Proposi-
tion 4.4.1, this is not a sufficient condition for positiveness. For example, one can
look at (R∗+)2 with the potential V (x, y) = x+ y and the twist

B∗ =
(
ϕ ϕ
1 eV

)
,

where ϕ is positive such that Lϕ 6= 0. The associated L�
B is symmetric but is not

non-negative.
The following result is immediate and gives examples satisfying the condition

of Proposition 4.4.1.
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Proposition 4.4.2. If B(x) = b(x) idTxM for some b ∈ C∞(M), then B = 0.

Proof. For all x ∈ M , we have (∇B∗)(B∗)−1 = b−1∇b⊗ idT ∗xM . It is clearly sym-
metric.

In the same spirit, we have a result for product manifolds endowed with a
product-compatible metric.

Proposition 4.4.3. Let (Mi, gi)1≤i≤n be Riemmanian manifolds and (M, g) the
product manifold endowed with the product metric. If B(x) = ∑n

i=1 bi(x) idTxiMi

for some functions bi ∈ C∞(M), then B = 0.

This results allows us to consider non-homothetic diagonal twists in Rn. Keep
in mind that for non-product manifolds, this result may be invalid. For example,
in the Heisenberg group endowed with its canonical left-invariant metric (see Sec-
tion 5.4), a straightforward calculation proves that the only diagonal twists satisfy-
ing B = 0 are homothetic. It seems difficult to find other kinds of examples of twist
satisfying the criterion B = 0. Nevertheless, this class of twists is directly linked to
the study of Lyapunov functions in [24]. Actually, for a twist B(x) = b(x) idTxM ,
the eigenvalues ofMB are the eigenvalue ofM shifted by −b−1L(b), which appears
in their calculation. We will see in the last section that this class of twists allows
us to treat various types of examples.

Finally, remark that the tensor B ∈ T ∗M ⊗ TM ⊗ T ∗M can be related to the
torsion TB, or more easily to the difference between ∇ and ∇B. Indeed, we have
: for all X, Y ∈ Γ(TM),

B#(X, Y [) = B−1
(
∇X −∇B

X

)
BY −B−1

(
∇X −∇B

X

)t
BY. (4.4.6)

Thought, this formula does not really clarified this link.

4.5 Intertwining: a symmetric positive case
The goal of this section, is to prove the intertwining relation and Poincaré in-
equality under the assumption B = 0. According to Proposition 4.4.1, −L�

B is
symmetric, non-negative, with respect to 〈·, ·〉B. As LW,B is symmetric with re-
spect to this metric, thenMB is symmetric too. We still denote by ρB the infimum
over M of the smallest eigenvalue of B∗MB(B∗)−1:

ρB = inf
x∈M

{
smallest eigenvalue of B∗MB(B∗)−1

}
. (4.5.1)

We also assume that ρB is bounded from below. As we already said, the
generator LW,B is essentially self-adjoint. With this new assumption, LW,B is
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the sum of a symmetric non-negative operator L�
B and a bounded from below

potential MB. So we could obtain a new proof of the the essential self-adjointness
as a generalization of proof of Strichartz in [75]. In order to obtain the intertwining
relation, we need to show that (B∗)−1dPtf is the unique L2 strong solution to the
Cauchy problem {

∂tF = LW,BF

F (·, 0) = G ∈ L2(B, µ)
where the mapping t 7→ F (·, t) is continuous from R+ to L2(B, µ). Remark that
we are looking for a strong solution : in this Cauchy problem, LW,B has to be
understood as a differential operator and not an L2 operator. Actually, as we
do not know the domain of LW,B, we cannot use the uniqueness in the sense of
self-adjoint operator.

Proposition 4.5.1. Assume that B = 0 and that MB is uniformly bounded from
below. Let F be a solution of the L2 Cauchy problem above. Then, we have

F (·, t) = QB
t (G), t ≥ 0.

Proof. We generalize the argument of [57] and [2] which deal respectively with the
case of a Laplacian in a Riemannian manifold and the case of our operator LW,B
in Rn. By linearity, it is sufficient to show the uniqueness of the solution for the
zero initial condition. Replacing the solution F by e−ρBtF , let us assume that MB

is positive semi-definite. For every φ ∈ C∞c (M) and τ > 0, we have:∫ τ

0

∫
M
φ2〈F,L�

BF 〉B dµ dt =
∫ τ

0

∫
M
φ2〈F, (LW,B +MB)F 〉B dµ dt

=
∫ τ

0

∫
M
φ2 1

2∂t|F |
2
B dµ dt+

∫ τ

0

∫
M
φ2〈F,MBF 〉B dµ dt

≥
∫
M
φ2 1

2 |F (·, τ)|2B dµ.

On the other hand, by the integration by parts formula of Proposition 4.4.1,
we have ∫ τ

0

∫
M
φ2〈F,L�

BF 〉B dµ dt = −
∫ τ

0

∫
M
〈∇(φ2F ),∇F 〉B dµ dt

= −
∫ τ

0

∫
M
φ2|∇F |2B dµ dt

− 2
∫ τ

0

∫
M
〈∇φ⊗ F, φ∇F 〉B dµ dt.

By Cauchy-Schwarz inequality, we have for every λ > 0,

2 |〈∇φ⊗ F, φ∇F 〉B| ≤ λ|∇φ|22|F |2B + 1
λ
φ2|∇F |2B. (4.5.2)
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Combining the above inequalities, in the particular case of λ = 2, we obtain

1
2

∫
M
φ2|F (·, τ)|2B dµ ≤ −

1
2

∫ τ

0

∫
M
φ2|∇F |2B dµ dt

+ 2
∫ τ

0

∫
M
|∇φ|22|F |2B dµ dt.

By completeness of M , there exists a sequence of cut-off functions (φn)n∈N
in C∞c (M) such that (φn)n converge to 1 pointwise and ‖∇φn‖∞ → 0 as n → ∞.
Plugging this sequence in the previous inequality, gives∫

M
|F (·, τ)|2B dµ = 0, τ > 0. (4.5.3)

Hence F = 0 in C0 (R+, L
2(B, µ)).

Theorem 4.5.2. Assume that B = 0 and that MB is uniformly bounded from
below. Then the semi-groups P and QB are intertwined by (B∗)−1d : for all t ≥ 0
and f ∈ C∞c (M)

(B∗)−1dPtf = QB
t

(
(B∗)−1df

)
.

Proof. The main argument is to prove that F (·, t) = (B∗)−1dPtf is a solution of
the previous L2 Cauchy problem with initial condition G = (B∗)−1df . First, G is
in L2(B, µ) since f is compactly supported. For all t > 0, we have:∫

M
|F (·, t)|2B dµ =

∫
M
|(B∗)−1dPtf |2B dµ

=
∫
M
|dPtf |2 dµ

= −
∫
M

PtfLPtf dµ,

which is finite since Ptf ∈ D(L) ⊂ L2(µ). So F (·, t) is in L2(B, µ) for every
t > 0. Besides, the L2 continuity is proven by the same calculation, since for every
t, s ≥ 0,∫

M
|F (·, t)− F (·, s)|2B dµ = −

∫
M

(Ptf −Psf)L(Ptf −Psf) dµ. (4.5.4)

By spectral theorem, this is upper bounded by (supx∈R+ |
√
x(e−tx − e−sx)|)2‖f‖2

2
which tends to zero as s tends to t > 0 (see [70] for more details on spectral
theorem). For the right-continuity in t = 0, we use that∫

M
(Psf − f)L(Psf − f) dµ =

∫ s

0

∫ s

0

∫
M

PtLfPuL
2f dµ du dt. (4.5.5)
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Finally, the commutation property (4.2.10), yields

∂tF = (B∗)−1dLPtf = LW,B
(
(B∗)−1dPtf

)
= LW,BF.

The result follow by the uniqueness of the solution of the Cauchy problem.

With this intertwining relation, we are now able to prove some functional in-
equalities. We get back to the assumptions of ergodicity and finite measure from
Proposition 3.3.1. We have an integral representation of the covariance, using the
semi-group QB instead of Q: for all f, g ∈ C∞c (M),

Covµ(f, g) =
∫ +∞

0

(∫
M

〈
(B∗)−1df,QB

t ((B∗)−1dg)
〉
B
dµ
)
dt. (4.5.6)

The main application of this covariance’s representation is a generalization of an
inequality due to Brascamp and Lieb, in [20], known as Brascamp-Lieb inequality.

Theorem 4.5.3 (Generalized Brascamp-Lieb inequality - symmetric case). As-
sume that B = 0 and that MB is positive definite, then for every f ∈ C∞0 (M), we
have :

Varµ(f) ≤
∫
M
〈df,

(
(B∗MB(B∗)−1

)−1
df〉 dµ.

Firstly, we need a little lemma.

Lemma 4.5.4. Let C and D be symmetric non-negative operators such that D
and C +D are invertible. Then we have

0 ≤ D−1 − (C +D)−1.

Proof. We have:

D−1 − (C +D)−1 = (C +D)−1CD−1,

and we have

〈(C +D)−1CD−1α, α〉 = 〈CD−1α, (C +D)−1α〉.

Letting (C +D)−1α = β this rewrites as

〈CD−1(C +D)β, β〉 = 〈CD−1Cβ, β〉+ 〈Cβ, β〉
= 〈D−1Cβ,Cβ〉+ 〈Cβ, β〉 ≥ 0,

since D−1 and C are non-negative.
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Proof of Theorem 4.5.3. First, let assume that ρB is positive. This implies that
for all 1-form α, we have∫

M
〈(−LW,B)α, α〉B dµ ≥ ρB

∫
M
|α|2B dµ. (4.5.7)

So −LW,B is essentially self-adjoint and bounded from below by ρB id. Then it
is invertible in L2(B, µ) i.e given any smooth compactly supported 1-form α, the
Poisson equation −LW,Bβ = α admits a unique solution β in the domain of LW,B
which has the following integral representation:

β =
∫ +∞

0
QB
t (α) dt = (−LW,B)−1α. (4.5.8)

Using the variance representation formula (4.5.6), we have

Varµ(f) =
∫ ∞

0

(∫
M

〈
(B∗)−1df,QB

t

(
(B∗)−1df

)〉
B
dµ
)
dt

=
∫
M

〈
(B∗)−1df,

∫ ∞
0

QB
t

(
(B∗)−1df

)
dt
〉
B
dµ

=
∫
M

〈
(B∗)−1df, (−LW,B)−1

(
(B∗)−1df

)〉
B
dµ

=
∫
M

〈
(B∗)−1df, (−L�

B +MB)−1
(
(B∗)−1df

)〉
B
dµ

Using Lemma 4.5.4 to C = −L�
B and D = MB, we have:

Varµ(f) ≤
∫
M

〈
(B∗)−1df,M−1

B

(
(B∗)−1df

)〉
B
dµ

≤
∫
M

〈
df,
(
B∗MB(B∗)−1

)−1
df
〉
dµ

Now, when the operatorMB is not uniformly bounded from below by a positive
constant, we need to regularize. For all ε > 0, the operator ε id−LW,B is invertible
and we have the following integral representation for all 1-form α:

(ε id−LW,B)−1α =
∫ +∞

0
e−εtQB

t α dt. (4.5.9)

Similarly, (ε id−L) is invertible on the sub-space of centred functions and we have
the integral representation for all centred f ∈ C∞c (M):

(ε id−L)−1f =
∫ +∞

0
e−εtPtf dt := gε. (4.5.10)
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We have:

Varµ(f) =
∫
M
f 2 dµ

=
∫
M
f(ε id−L)gε dµ

= ε
∫
M
fgε dµ+

∫
M
f(−L)

(∫ +∞

0
e−εtPtf dt

)
dµ

= ε
∫
M
fgε dµ+

∫ +∞

0
e−εt

∫
M
f(−L)Ptf dµ dt

= ε
∫
M
fgε dµ+

∫ +∞

0
e−εt

∫
M

〈
(B∗)−1df,QB

t ((B∗)−1df)
〉
B
dµ dt

= ε
∫
M
fgε dµ+

∫
M

〈
(B∗)−1df,

∫ +∞

0
e−εtQB

t ((B∗)−1df) dt
〉
B
dµ

= ε
∫
M
fgε dµ+

∫
M

〈
(B∗)−1df, (ε id−LW,B)−1((B∗)−1df)

〉
B
dµ.

We can apply Lemma 4.5.4 to ε id−LW,B = ε id−L�
B +MB. We have:

Varµ(f) ≤ ε‖f‖L2(µ)‖gε‖L2(µ) +
∫
M

〈
(B∗)−1df, (MB)−1((B∗)−1df)

〉
B
dµ.

Finally, we have

ε‖gε‖L2(µ) =
∥∥∥∥∫ +∞

0
e−tPt/εf dt

∥∥∥∥
L2(µ)

≤
∫ +∞

0

∫
M
e−t(Pt/εf)2 dµ dt.

By ergodicity of P and dominated convergence, this term converges to 0 as ε→ 0.
This ends the proof.

An immediate corollary of this theorem is the Poincaré inequality.

Theorem 4.5.5 (Poincaré inequality - symmetric case). Assuming that B = 0 and
that ρB is positive, for all f ∈ C∞c (M), we have

Varµ(f) ≤ 1
ρB

∫
M
|df |2 dµ,

In the case where MB is only positive and not uniformly bounded from below
(i.e ρB = 0), this inequality is trivially true. Let us give an alternative proof
which does not use the generalized Brascamp-Lieb inequality, and thus, avoids the
inversion of LW,B and its integral representation.
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Proof. Using a time change and the symmetry of the semi-group QB, we have a
new representation of the variance:

Varµ(f) = 2
∫ ∞

0

(∫
M

〈
(B∗)−1df,QB

2t((B∗)−1df)
〉
B
dµ
)
dt

= 2
∫ ∞

0

(∫
M

∣∣∣QB
t ((B∗)−1df)

∣∣∣2
B
dµ
)
dt.

Let
φ(t) =

∫
M

∣∣∣QB
t ((B∗)−1df)

∣∣∣2
B
dµ. (4.5.11)

We have

φ′(t) = 2
∫
M

〈
QB
t ((B∗)−1df), LW,BQB

t ((B∗)−1df)
〉
B
dµ

= 2
∫
M

〈
QB
t ((B∗)−1df), (L�

B)QB
t ((B∗)−1df)

〉
B
dµ

− 2
∫
M

〈
QB
t ((B∗)−1df),MBQB

t ((B∗)−1df)
〉
B
dµ

= −2
∫
M

∣∣∣∇QB
t ((B∗)−1df)

∣∣∣2
B
dµ

− 2
∫
M

〈
QB
t ((B∗)−1df),MBQB

t ((B∗)−1df)
〉
B
dµ

≤ −2
∫
M

〈
QB
t ((B∗)−1df),MBQB

t ((B∗)−1df)
〉
B
dµ

≤ −2ρBφ(t)

By Grönwall lemma, this implies

φ(t) ≤ e−2ρBtφ(0) = e−2ρBt
∫
M
|df |2 dµ. (4.5.12)

Integrating on R+ ends the proof.

We finish with an interpretation of the Poincaré inequality in terms of spectral
gap.

Proposition 4.5.6. Assume that B = 0 and that ρB is positive then the spectral
gap satisfies

λ1(−L, µ) ≥ ρB (4.5.13)

This is a generalization to Riemannian manifolds of the Chen and Wang for-
mula established in the one dimensional case in [27]. This spectral gap gives an
exponential rate of convergence to equilibrium to the semi-group P in norm L2 :

‖Ptf − µ(f)‖L2(µ) ≤ e−ρBt‖f − µ(f)‖L2(µ), (4.5.14)

much stronger than our ergodicity assumption.
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4.6 Intertwining: general case
The goal of this section is to extend the results of Section 4.5 without the strong
condition of Proposition 4.4.1. These results are more theoretical because we will
not apply it to any example but they show that our twisting method is strong
to perturbations and could be applied to a more general class of twist than the
class of Proposition 4.4.2. Actually, we can release all assumptions on the second
order operator if we are ready to strengthen the conditions on the potential MB.
In this case, the eigenvalue ρB is not a good criterion anymore. We need to find a
quantity which offsets the lack of symmetry. For all 1-form α, according to (4.4.2),
we have:∫

M
〈L�

Bα, α〉B dµ = −
∫
M
|B∗∇α|2 dµ+

∫
M
〈B∗∇α,B(B∗α)〉 dµ

= −
∫
M

∣∣∣∣B∗∇α− 1
2BB

∗α

∣∣∣∣2 dµ+
∫
M

1
4 |BB

∗α|2 dµ

≤
∫
M
〈B∗α,NBB

∗α〉 dµ

with B defined in (4.4.3) and NB the section of End(T ∗M) defined by

NB(x) = 1
4B(x)t · B(x) ∈ End(T ∗xM). (4.6.1)

Hence, we have the following lower bound:∫
M

〈(
−LW,B

)
α, α

〉
B
dµ ≥

∫
M

〈
B∗α,

[(
B∗MB(B∗)−1)

)s
−NB

]
B∗α

〉
dµ. (4.6.2)

where (B∗MB(B∗)−1))s is the symmetric part of B∗MB(B∗)−1 with respect
to the Riemannian metric. So the quantity we need to control seems to be the
following:

ρ̃B = inf
x∈M

{
smallest eigenvalue of

(
B∗MB(B∗)−1)

)s
−NB

}
. (4.6.3)

First, as in the symmetric case, we show the intertwining relation.

Theorem 4.6.1. Assume that (B∗MB(B∗)−1))s−(1+ε)NB is bounded from below
for some ε > 0. Then the semi-groups P and QB are intertwined by (B∗)−1d, i.e
for every f ∈ C∞c (M) and t ≥ 0 we have :

(B−1)∗dPtf = QB
t

(
(B−1)∗df

)
.

Proof. The core of the proof is still the uniqueness of the solution of the same L2

Cauchy problem. We assume that (B∗MB(B∗)−1))s − (1 + ε)NB is non-negative
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without any loss of generality. Let F be a solution with the zero initial condition.
For φ ∈ C∞c and τ > 0, as in the proof of Proposition 4.5.1, we have∫ τ

0

∫
M
φ2〈F, (L�

B − (1 + ε)(B∗)−1NBB
∗)F 〉B dµ dt ≥

∫
M
φ2 1

2 |F (·, τ)|2B dµ. (4.6.4)

On the other hand, according to the formula (4.4.2), we have∫
M
φ2〈F,L�

BF 〉B dµ = −
∫
M
〈∇(φ2F ),∇F 〉B dµ+

∫
M
〈B∗∇F,B(B∗φ2F )〉 dµ

= −
∫
M
φ2|∇F |2B dµ+

∫
M
φ2〈B∗∇F,B(B∗φ2F )〉 dµ

− 2
∫
M
〈∇φ⊗ F, φ∇F 〉B dµ

= −
∫
M
φ2|B∗∇F − 1

2BB
∗F |2 dµ+

∫
M
φ2〈F,NBF 〉 dµ

− 2
∫
M
〈∇φ⊗ F, φ(∇F − 1

2(B∗)−1BB∗F )〉B dµ

− 2
∫
M
〈∇φ⊗ F, φ1

2(B∗)−1BB∗F 〉B dµ.

According to Cauchy-Schwarz inequality, for every λ, k > 0, we have:

2|〈∇φ⊗ F, φ(∇F − 1
2(B∗)−1BB∗F )〉B| ≤ λ|∇φ⊗ F |2B + 1

λ
φ2|B∗∇F − 1

2BB
∗F |2

2|〈∇φ⊗ F, φ1
2(B∗)−1BB∗F 〉B| ≤ k|∇φ⊗ F |2B + 1

k
φ2|12BB

∗F |2

So, we have:∫
M
φ2〈F,L�

BF 〉B dµ ≤
(1
λ
− 1

) ∫
M
φ2|B∗∇F − 1

2BB
∗F |2 dµ

+
(

1 + 1
k

) ∫
M
φ2〈F,NBF 〉 dµ+ (λ+ k)

∫
M
|∇φ|2|F |2B dµ.

Combining the above inequalities, we obtain that there exists a c > 0 such that
for every φ ∈ C∞c (M), and every τ > 0

1
2

∫
M
φ2|F (·, τ)|2B dµ ≤ c

∫ τ

0

∫
M
|∇φ|2|F |2B dµ dt. (4.6.5)

Using a sequence of cut-off functions, we prove that F = 0. The end of the
proof follows the proof of Theorem 4.5.2 without any differences.
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Remark that under the condition of Proposition 4.6.1, ρ̃B is bounded from
below, since NB is non-negative. But unlike in Theorem 4.5.1, this proof requires
a stronger condition.

Back to our assumptions of ergodicity and probability measure, the intertwining
relation of Proposition 4.6.1 implies the covariance’s representation (4.5.6). This
brings Brascamp-Lieb and Poincaré type inequalities.

Theorem 4.6.2 (Poincaré inequality - general case). Assume that for some ε > 0,
(B∗MB(B∗)−1))s − (1 + ε)NB is bounded from below and that ρ̃B is positive. Then
for all f ∈ C∞c (M), we have :

Varµ(f) ≤ 1
ρ̃B

∫
M
|df |2 dµ.

Proof. Let f ∈ C∞c (M) and Ft = QB
t ((B∗)−1df). As in (4.5.8), we set

φ(t) =
∫
M
|Ft|2B dµ (4.6.6)

and we have the following representation of the variance

Varµ(f) =
∫ +∞

0
φ(t) dt. (4.6.7)

We have:

φ′(t) = 2
∫
M

〈
Ft, L

W,BFt
〉
B
dt

≤ −2
∫
M

〈
B∗Ft,

[(
B∗MB(B∗)−1)

)s
−NB

]
B∗Ft

〉
dµ

≤ −2ρ̃Bφ(t)

So we have
φ(t) ≤ e−2ρ̃Bt

∫
M
|df |2 dµ. (4.6.8)

Integrating on R+ gives the results.

As for Theorem 4.5.3, the result still make sense when ρ̃B = 0. With the same
kind of hypothesis ,we can also prove a generalized Brascamp-Lieb inequality.

Theorem 4.6.3 (Generalized Brascamp-Lieb inequality - General case). Assume
that (B∗MB(B∗)−1))s − (1 + ε)NB is bounded from below for some ε > 0 and that
(B∗MB(B∗)−1))s −NB is positive definite, then for every f ∈ C∞c (M) we have :

Varµ(f) ≤
∫
M

〈
df,
[(
B∗MB(B∗)−1)

)s
−NB

]−1
df
〉
dµ. (4.6.9)

63



Proof. First, let assume that ρ̃B is positive. Equation (4.6.2) implies that for
all 1-form α we have:∫

M
〈(−LW,B)α, α〉B dµ ≥ ρ̃B

∫
M
|α|2B dµ. (4.6.10)

As in the proof of Theorem 4.5.3, −LW,B is invertible with the same integral
representation. So

Varµ(f) =
∫
M

〈
(B∗)−1df, (−LW,B)−1

(
(B∗)−1df

)〉
B
dµ. (4.6.11)

Furthermore, we have:∫
M
〈α, (−LW,B)α〉B dµ ≥

∫
M

〈
B∗α,

[(
B∗MB(B∗)−1

)s
−NB

]
B∗α

〉
dµ

≥
∫
M

〈
α, (B∗)−1

[(
B∗MB(B∗)−1

)s
−NB

]
B∗α

〉
B
dµ.

As (B∗)−1
[
(B∗MB(B∗)−1)s −NB

]
B∗ is symmetric with respect to 〈·, ·〉B and

positive by assumption, we can use Lemma 4.5.1 to obtain

Varµ(f) ≤
∫
M

〈
(B∗)−1df, (B∗)−1

[(
B∗MB(B∗)−1

)s
−NB

]−1
B∗

(
(B∗)−1df

)〉
B
dµ.

Now, if ρ̃B = 0, we regularize as in the proof of Theorem 4.5.3. It ends the
proof.

We also obtain a bound for the spectral gap.

Proposition 4.6.4. Assume that (B∗MB(B∗)−1))s − (1 + ε)NB is bounded from
below for some ε > 0 and that ρ̃B is positive. Then the spectral gap λ1(−L, µ)
satisfies:

λ1(−L, µ) ≥ ρ̃B. (4.6.12)

Remark that if the hypothesis of Proposition 4.4.1 are satisfied, then NB = 0
and ρB = ρ̃B. In particular, Theorem 4.6.2 (respectively 4.6.3 and 4.6.4) can be
interpreted as stability to small perturbations of the condition B = 0. The bounds
obtained are stable with respect to perturbations.

We finish with a toy example which illustrate the use of NB when B does not
vanish. Let θ : R2 → R a smooth function and let us define the twist

B∗ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.
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The associated tensor B satisfies :

B = −2∇B ⊗
(

0 1
−1 0

)
.

As it does not vanish, we must compute the correction term :

NB = |∇θ|2 id . (4.6.13)

The twisting term is :

(B∗)−1L�(B∗) = L(θ)
(

0 1
−1 0

)
− |∇θ|2 id .

Its symmetric part is exactly compensated by NB. Thus, for rotation, ρ̃B = ρ.
This phenomenon can be interpreted as the following : using only rotations, we do
not change the metric. So it is impossible to improve the contraction properties
of WB.

4.7 Examples in radially symmetric surfaces
In this section, we illustrate our results with three examples. Each one corresponds
to a different case where Bakry-Émery criterion is not satisfied : strictly convex
in each point but ρ = 0, strictly concave in a compact region and a not upper
bounded ρ, and strictly concave in a compact region and ρ upper bounded. We
also give heuristic ideas to find adequate twists. We even improve a lower bound
in a classical example. The difficulty is to find a concession between interesting ex-
amples (manifold and measure) and calculability. In our examples, the measure µ
will be classical but the manifold will be from casual (as hyperbolic plan) to quite
exotic. Our manifold M will be a two dimensional radially symmetric space with
global polar chart (r, θ) ∈ R+ × S1, such that, in this coordinates, the metric is
given by :

ds2 = dr2 + f(r)2dθ2 (4.7.1)
where f : R+ → R+ is a smooth function satisfying f(r) = 0 if and only if r = 0
and f ′(0) = 1. This model includes the surfaces of constant curvature : hyper-
bolic plan H2 with f(r) = sinh(r) or Euclidean plan R2 with f(r) = r. It also
includes surfaces of revolution. The Riemanian volume measure of such a mani-
fold is : vol(drdθ) = f(r)drdθ. For every smooth function φ, in the orthonormal
basis (∂r, 1

f(r)∂θ), we have :

∇φ =

 ∂rφ1
f
∂θφ

 , (4.7.2)
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∇2φ =
 ∂2

rφ
1
f
∂2
r,θφ− f ′

f2∂θφ
1
f
∂2
r,θφ− f ′

f2∂θφ
1
f2∂

2
θφ+ f ′

f
∂rφ

 , (4.7.3)

Ric = −f
′′

f
id . (4.7.4)

For more details on radially symmetric manifold see [46], [58] or [72]. In all our
examples, twists have the form of Proposition 4.4.2 : B(x) = b(x) idTxM with b =
exp(U) a radial positive function. With this special form of twist, we have :

(B∗)−1L�(B∗) = b−1L(b) idTxM , (4.7.5)

and
b−1L(b) = ∆U − 〈∇V,∇U〉+ |∇U |2. (4.7.6)

As in the Euclidean case, a usual choice of twist is U = εV but we will also see
some cases where it is not enough to obtain a positive ρB. As metrics, measures
and twists are radial, we will only use the variable r with a slight abuse of notation.

Our first example is the case of generalized Cauchy measures on R2. It have
been studied in [68] for weighted Poincaré inequalities and in [19] for bounds on
the spectral gap, both in any dimension n ≥ 2. We show that our method can
improve the previous lower bounds for n = 2. This example also illustrate how
using Riemannian geometry can help for measures in an Euclidean space. On R2,
we define the function σ2(x) = 1 + |x|2. For β > 1, we define the differential
operator Lβ by :

Lβf(x) = σ2(x)∆Ef(x)− 2(β − 1)x.∇Ef(x), ∀f ∈ C∞(R2), ∀x ∈ R2, (4.7.7)

where ∆E and ∇E stand for the Euclidean Laplacian and gradient. This oper-
ator admits a unique invariant probability µβ whose density with respect to the
Lebesgue measure is proportional to (σ2)−β. Remark that for β ≤ 1, it does not
define a finite measure any more. The form of the generator Lβ suggests that
the Euclidean geometry is not adapted to the problem. The relevant space is the
manifold M which have a global Cartesian chart R2 and whose metric is given by

ds2 = dx2
1 + dx2

2
σ2 .

In order to obtain an expression of the metric as in (4.7.1), we use the appropriate
generalized polar coordinates :

(x1, x2) = (sinh(r) cos(θ), sinh(r) sin(θ)) , (r, θ) ∈ R∗+ × S1. (4.7.8)

In the chart (r, θ), the metric has the desired form, with f = tanh. Geometrically,
we work on the revolution surface

S =
{

(tanh(r)cos(θ), tanh(r)sin(θ), g(r)); (r, θ) ∈ R+ × S1
}
, (4.7.9)
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with g(r) = argsinh(cosh(r))− cosh−2(r)
√

cosh2(r) + 1. It is a regularisation of a
cylinder with a closed end (see Figure 4.1).

Figure 4.1: Riemannian surface associated to σ2∆E.

Then, we need to find the density of µβ with respect to the Riemannian volume.
We have :

dµβ = Z(σ2)−βdxdy
= Z cosh−2β sinh cosh drdθ
= Z cosh−2(β−1) tanh drdθ
= Z cosh−2(β−1) vol(drdθ),

with Z the normalization constant. Then, if we set V (r) = 2(β − 1) ln(cosh(r))
for (r, θ) ∈ R+, the generator Lβ has the expression (3.2.1) and we can apply our
method. Firstly, the operatorM is an homothetic transformation :

M = 2β
σ2 id . (4.7.10)

For each x ∈ M , M is strictly convex but globally, M is only convex : ρ = 0.
We try a twist of the shape exp(εV ). Using the formula (4.7.6), for all r ≥ 0, we
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have :

ρB(r) = 2β− 4ε(β− 1) + [4ε(1− ε)(β− 1)2− (2β− 4ε(β− 1))] tanh2(r). (4.7.11)

The function ρB is monotonous and can be bounded from below by the minimum
between its value in r = 0 and its limit as r → +∞ :

ρB ≥ min {2β − 4ε(β − 1), 4ε(1− ε)} . (4.7.12)

The optimal parameter is :

ε0 =


1
2 if 1 < β ≤ 1 +

√
2

β+
√

(β−1)2−1
2(β−1) if 1 +

√
2 ≤ β

(4.7.13)

.

Corollary 4.7.1. The spectral gap of the operator Lβ is bounded from below by :

λ1(Lβ) ≥

 (β − 1)2 if 1 < β ≤ 1 +
√

2
2
√

(β − 1)2 − 1 if 1 +
√

2 ≤ β
. (4.7.14)

Back to Rn, this spectral gap is interpreted as weighted Poincaré inequality :

Varµ(f) ≤ 1
ρB

∫
M
|∇Ef |2σ2dµβ, ∀f ∈ C∞0 (M).

Remark that for β ≥ 1 +
√

2, the optimal ε0 corresponds to the case where ρB is a
constant function. The best lower bound known for this spectral gap, in [19], are :

λ1(Lβ) ≥
{

(β − 1)2 if 1 < β ≤ 3+
√

5
2

β if 3+
√

5
2 ≤ β

.

So our method improves the result for β ≥ 3+
√

5
2 . Actually, [19] also gives upper

bounds :
λ1(Lβ) ≤

{
(β − 1)2 if 1 < β ≤ 3+

√
5

2
2(β − 1) if 3+

√
5

2 ≤ β
,

and for β ≥ 3, it is proved in [68] that λ1(Lβ) = 2(β − 1). This shows that our
lower bound is optimal for β ≤ 1 +

√
2 and has the good asymptotic for β → +∞,

even if our choice of twist, a priori, cannot pretend to be optimal.
Our second example is the case of exponential power measures on the hyperbolic

plan. We set M = H2, f = sinh and for α > 2,

V (r) = rα

α
, ∀r ∈ R+.
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Remark that the measure associated to V is finite for α > 1. The generator
associated to this measure is

Lα = ∂2
r + 1

tanh(r)∂r + 1
sinh2(r)

∂2
θ − rα−1∂r. (4.7.15)

Using a result from [76], these measures satisfy a Log-Sobolev inequality for α ≥ 2.
The limit case α = 2, corresponds to the radial hyperbolic Ornstein-Uhlenbeck
process. We will discuss at the end why it must be excluded by our method. The
smallest eigenvalue of the potentialM is :

ρα(r) = min
{

(α− 1)rα−2,
rα−1

tanh(r)

}
− 1, ∀r ∈ R+, (4.7.16)

so its infimum is ρ = −1. Then, we know that the semi-groups P and Q are
intertwined but as ρ is not positive, we cannot directly use it in terms of functional
inequalities. It is a case where twisting is needed. In these cases, the operatorM
is concave in a neighbourhood of the origin and strictly convex outside . We need a
choice of b which counter the negativity of Ric around r = 0. A direct calculation
show that U = εV cannot achieve this goal. We propose the following function :

Uε,η(r) = 1
2V (r)− εr

2

2 + η ln(cosh(r)), ∀r ∈ R+,

with ε and η parameters which should be fitted. Let us explain this choice. In
the expression (4.7.6) there is the beginning of the square |∇U − ∇V/2|2 which
explains the term V/2. The second term is inspired by the one-dimensional case
in [18]. Its Laplacian should help in r = 0 because it will not vanish there. The
third term is directly linked to the metric : it is a primitive of f/f ′. This makes
appear the Ricci curvature in the expression of b−1L(b). With this choice of U , for
all r ∈ R+, we have :

b−1Lα(b)(r) = 2η − ε+ α− 1
2 rα−2 + ε2r2 − r2α−2

4 + rα−1 − 2εr
2 tanh(r)

− 2εηr tanh(r)− η(1− η) tanh2(r).

Now, we need to find whether there exists coefficient ε and η such that ρB is
positive and for which coefficient it is optimal. Unfortunately, it seems difficult
to give explicit bounds in all generality. Nevertheless, numerically, we find the
following bounds :

α 2.01 3 3.5 4 4.5
(ε, η) (0.5,−0.007) (1.59, 0.8) (1.83, 1.15) (2.45, 1.84) (2.78, 2.279)

λ1(Lα) ≥ · 6.10−4 0.47 0.34 0.21 2.10−3
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Remark that the method developed in [19] needs α > 3 to obtain results. These
bounds do not pretend to be optimal. Perhaps another kind of b could have
brought better results, especially for α = 4.5, or α = 5 for which we did not
find good parameters. It could be interesting to bring some upper-bound on the
spectral gap, by a testing on examples or by other means, to discuss the relevancy
of our lower-bound. Concerning the decay of our bounds for α near 2, it was
expected. Indeed, for α = 2, ρ2 is a constant function, equal to zero. But as
explained in [2], an integration by parts shows that∫

M
−b−1L(b) dµ = −

∫
M
|db|2 dµ. (4.7.17)

If b is not constant, it will be negative in a region and so ρB. Twisting with a
function absolutely needs a region whereM is strictly convex. It is not the case
of the hyperbolic Ornstein-Uhlenbeck generator. It could be interesting to look at
more complex B, in the way of Section 4.6.

In our last, example, we have a similar situation : bounded region of strict
concavity and strict convexity elsewhere but with another constraint : ρ is upper
bounded. Let M be the revolution surface of Figure 4.2 generated by the rotation
around the ordinates axis of the curve

y = 1√
1 + x2

, x ∈ R+. (4.7.18)

It is a regularized version of the surface generated by y = 1/x. In an adapted
polar chart, its metric has the form (4.7.1) but we don’t have any explicit formula
for f . However, we can find sufficiently sharp estimates of it. For a surface in R3

parametrized as

S =
{

(f(r) cos(θ), f(r) sin(θ), g(r)) : (r, θ) ∈ R+ × S1
}
, (4.7.19)

the metric has the form : ds2 = (f ′2+g′2)dr2+f 2dθ2. Using the relation between f
and g given by the generating curve, we can prove that f satisfies the equation :

f ′ = 1√
1 + f2

(1+f2)3

.

We obtain the following bounds : for all r ∈ R+,

αr ≤ f(r) ≤ r

1√
1 + r2

(1+α2r2)3

≤ f ′(r) ≤ 1√
1 + α2r2

(1+r2)3
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Figure 4.2: Revolution surface associated to y = 1√
x2+1 .

,

with α =
√

27
31 . The Ricci curvature has an explicit formula in function of f :

Ric = (1− 2f 2)(1 + f 2)2

(f 2 + (1 + f 2)3)2 . (4.7.20)

This formula gives us lower and upper bounds on Ric. In particular, we know
that Ric(0) = 1, then it decreases to a negative minimum (which is numerically
in the range −0.050 < minRic < −0.049) and then it increases and vanishes (see
Figure 4.3).

We are interested in radial Gaussian measures on this manifold : for γ > 0,

Vγ(r) = γr2

2 , ∀r ∈ R+.

The smallest eigenvalue ofM is :

ρ(r) = γmin
{

1, r f
′(r)
f(r)

}
+ Ric(r), ∀r ≥ 0.

If αγ is bigger to −minRic, ρ will be positive. So we are mainly interested in the
case of small γ such that twistings are unavoidable, but also in cases of "big" γ
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Figure 4.3: Upper-bound (in red) and lower bound (in blue) of Ricci curvature.

as we shall see. Thanks to the Ricci curvature, we know that ρ(r) is positive for
small r and tends to γ > 0 as r tends to +∞. We need to compensate a compact
region of negativity. Here, we use the radial function Uε,ω,k defined by

Uε,ω,k(r) =
∫ r

0
ε sin(ωt)e−kt dt, ∀r ∈ R+, (4.7.21)

where ε, ω and k are parameters. This goal of this quite unusual function is to give
to b−1L(b) the shape of Ric. The decreasing exponential term is explained by the
vanishing of Ric, it is linked to the boundedness of ρ. The goal of the sinusoidal
term is to create a peak, compensating Ricci’s minimum. The exponential has to
damp the following peaks. According to equation (4.7.6), for all 0 ≤ r, we have :

b−1L(b)(r) = ε

[
ω cos(ωr) + sin(ωr)

(
−k + f ′(r)

f(r) − γr + ε sin(ωr)e−kr
)]

e−kr.

(4.7.22)
Again, we can obtain numerical lower bound of the spectral gap. With the

parameters ε = 0.217, ω = 2.022, k = 1.7, we have :

γ 0.01 0.02 0.03 0.04 0.06
λ1(Lγ) ≥ · 7.10−3 0.01 0.02 0.03 0.05

As expected, this bound are smaller than γ, the Euclidean bound, although they
do not seem very sharp, in particular, for very small γ. It could be linked to
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the choice of twist b. When γ become smaller, the region where M is strictly
concavity become larger. This explains why our choice of twist is less adapted
for small γ. To finish, this example shows that twisting is not the last resort
method of spectral gap research and can also be interesting even if the Backy-
Émery criterion is satisfied. Looking at αγ slightly bigger than −minRic, the
upper bound ρ ≤ γ + minRic of Bakry-Émery is very small but as shown in the
array above, we still obtain reasonable bounds (γ = 0.06). For γ = 1, where we
have more room for our parameters, we can obtain a lower bound λ1(L) ≥ 0.98
(here, we use k = 2.5) while ρ is in the range 0.95 < ρ < 0.951.

73



Chapter 5

Intertwining and preservation of
positivity

In this chapter we present some work around FKG inequality. The main result is
a criterion of positivity preservation by some deformed parallel translation on Lie
groups. This work does not have lead to a publication yet.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 FKG inequality on Rn . . . . . . . . . . . . . . . . . . . . 75
5.3 Brownian motion on Lie groups. . . . . . . . . . . . . . 77
5.4 Interlude - On Heisenberg group. . . . . . . . . . . . . . 81
5.5 Deformed parallel translation on Lie groups . . . . . . 87
5.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Introduction
This chapter is motivated by the article [13] about the Fortuin-Kastelyn-Ginibre
inequality, or FKG inequality. Unlike the inequalities seen in Chapter 3 and Chap-
ter 4, which give upper bound of the covariance, the FKG inequality states the
non-negativity of it. This inequality comes from the study of Gibbs measures on
spin system. It was introduced in [39] for partially ordered lattices. In [13], the
authors introduce partial differentials on lattices. Their proof consists on studying
the action of these differentials on a symmetric semi-group. Without its vocab-
ulary nor its formalism, the core of their proof is an intertwining. Besides, the
introduction of differentials transpose the notion of increasing functions, to the
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notion of positive vectors more extendible to manifolds. Semi-groups preserving
increasing functions are intertwined to semi-groups preserving positive vectors. It
allows to extend the FKG inequality to different kind of spaces. In [13], this is
illustrated in the Euclidean space Rn. In this work, we tried to extend it to Rie-
mannian manifolds. The notion of partial derivative can be adapted if we have
globally defined frames of the tangent space. This naturally leads to the study of
Lie groups.

In the fist section, we present the FKG inequality in Rn and we bring a new
proof of the Euclidean result. In Section 5.3, we prove that the Brownian semi-
group in a Lie group preserves the monotonicity of functions. It allows to under-
stand which notion of increasing functions we should chose. This is illustrated with
the Poincaré half-plan. In Section 5.4, we present a remarkable diffusion on the
Heisenberg group. The proofs are not very adaptable but enlighten some expected
properties of the result for general diffusions and make a link with the Euclidean
case. In Section 5.5, we introduced a parallel translation above diffusion, with gen-
erator 1

2∆ + U , on Lie group, with U a vector field. We investigate its properties
and similarities to the classical deformed parallel translation. We find a criterion
on the potential U to have the preservation of positive vector field and we give
some examples. This work have not been entirely investigated yet. We present in
Section 5.6 some points which seems interesting to us.

5.2 FKG inequality on Rn

On the euclidean space Rn, let µ be a probability measure defined by

µ(dx) = e−V (x)dx,

where V is a smooth potential with ∇2V bounded from below. To the measure µ,
is associated the semi-groups P, with generator L = ∆ −∇V.∇ and Q the semi-
group on 1-forms, of the deformed parallel translation, with generator LW . Ac-
cording to the Bakry-Émery criterion, we have the stochastic representation of Q
on bounded 1-forms and these semi-groups are intertwined. We denote by C1

b (Rn)
the space of C1 functions, bounded with bounded derivatives. It is a good space
to deal with the intertwining : for f ∈ C1

b (Rn), Pf and Q(∇f) are well-defined
and we have :

dPtf = Qtdf. (5.2.1)

Before presenting the FKG inequality, we need some vocabulary. A vector is
said non-negative (respectively, positive) if all its coordinates, in the canonical
basis, are non-negative (respectively, positive). For x, y ∈ Rn, we denote x ≤ y
(respectively x < y) if y− x is non-negative (respectively, positive). A real-valued
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function f is said increasing if it verifies :

x < y ⇒ f(x) < f(y). (5.2.2)

The definition of non-decreasing, decreasing or monotonous are understood the
same way. For smooth functions, these properties can be characterised by their
gradient : a function f is increasing if and only if ∇f is positive.

Definition 5.2.1. A measure ν on Rn satisfies the FKG property if for all non-
decreasing f, g ∈ L2(ν), we have : Covν(f, g) ≥ 0.

The previous correlation inequality is, strictly speaking, the FKG inequality.
We want to find a criterion on the potential to satisfy FKG. Such a condition
have been proved in [13]. We propose here a new proof, based on intertwining and
deformed parallel translation.

Theorem 5.2.2. Assume that V satisfies ∇2V ≥ ρ > −∞ and ∂2
ijV ≤ 0 for i 6= j.

Let f in C1
b (M) be increasing, then for all t ≥ 0, Ptf is increasing.

Proof. According to the intertwining relation

∇Ptf = Qt(∇f), ∀t ≥ 0, (5.2.3)

it is enough to show that Q preserve the non-negativity of ∇f . For all t ≥ 0 :

Qt(∇f) = E [〈∇f,Wt·〉] . (5.2.4)

Then, it is enough to prove that for all v ≥ 0, we have Wtv ≥ 0. We denote (ek)k
the canonical basis of Rn and we fix v a positive vector. By definition of the
deformed parallel translation, for all 1 ≤ i ≤ n, we have :

d〈Wtv, ei〉 = −∇2V (Wtv, ei)dt
= −∂2

i V (Xs)
〈
WX
t v, ei

〉
dt−

∑
j 6=i

∂2
ijV (Xs)

〈
WX
t v, ej

〉
dt

The initial condition is : W0v = v > 0. Let τ be the first time when a
coordinate of Wt(v) become negative :

τ = inf {t ≥ 0/∃k, 〈Wt(v), ek〉 < 0} . (5.2.5)

If τ is finite, then there is an index i0 so that : 〈Wτ (v), ei0〉 = 0. Yet, we have,

〈Wτv, ei0〉 = eA(τ)vi0 − eA(τ)
∫ τ

0
e−A(s) ∑

j 6=i0
∂2
i0jV (Xs)︸ ︷︷ ︸
≤0

〈W x
s v, ej〉︸ ︷︷ ︸
≥0

ds > 0, (5.2.6)
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with
A(t) =

∫ t

0
−∂2

i0V (Xs)ds. (5.2.7)

This is a contradiction. So, for all t ≥ 0, Wtv is positive. By continuity,
Wtv is non-negative for all v ≥ 0 and so, for all t ≥ 0, Q(∇f) ≥ 0 and Ptf is
non-decreasing.

Corollary 5.2.3. Assume that V satisfies ∇2V ≥ ρ > −∞ and ∂2
ijV ≤ 0 for i 6= j,

then µ satisfies FKG.

Proof. First, lets assume that f and g are in C1
b (Rn). According to the covariance

representation 3.3.1, we have :

Covµ(f, g) =
∫ ∞

0

(∫
Rn
〈∇f,Qt(∇g)〉 dµ

)
dt. (5.2.8)

As f is increasing, ∇f is positive. According to the previous theorem, Qt(∇g) is
also positive for all t ≥ 0. Then f and g satisfy FKG. We conclude by an argument
of density in L2(µ).

The core of this proof is the preservation of positivity by the deformed parallel
translation. This property can be studied as long as the translation is defined,
even if intertwining is not satisfied nor C0 semi-group defined. The intertwining
relation allows to go from positivity preservation from monotonicity preservation
and FKG inequality. These results are subordinated to a notion of positive vectors.
In Rn this notion is canonical. In a manifold, this notion can fail to exist globally.
It can be defined only in parallelizable manifolds. This is the reason why we will
try to extend the results, in the following sections, to Lie groups.

5.3 Brownian motion on Lie groups.
In this section, we defined a notion of increasing functions on a Lie group and we
prove a result of preservation of monotonicity by the Brownian semi-group. We
give the example in the hyperbolic plan H2.

Let (G, 〈·, ·〉g) be a Lie group, equipped with a left-invariant metric. For
all g ∈ G, we denote by Lg and Rg the left-multiplication and right-multiplication
by g. Left-multiplications are isometric transforms of G. If the metric is bi-
invariant, Rg are also isometric but the existence of such a metric is a very strong
assumption on the group (see [63]). Lie groups are parallelizable manifold : there
exists globally defined vector fields, even if there is not any global chart. For
example, let (Hi)i be an orthonormal basis of G. It is associated to a family of
right-invariant vector fields (HR

i )i defined by : HR
i (g) = dRg.Hi. This provide a

moving frame on G and a notion of increasing functions.
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Definition 5.3.1. A function f ∈ C1(M) is increasing along X ∈ Γ(TG) if for
all g ∈ G, 〈df,X(g)〉 > 0. A function is increasing along a frame (Xi)i if it is
increasing along each vector field Xi.

Similarly, we can define the notion of non-decreasing, decreasing or monotonic
functions.

In Rn, a Brownian flow can be construct with only one Brownian motion start-
ing from 0. It is possible to do so in a Lie group. Let (Bi)i be n independent
real Brownian motions. The process Bt = ∑

HiB
i
t is a Brownian motion in the

Lie algebra G, seen as a vectorial space. We define the process (Xt)t≥0 by the Ito
equation: {

d∇Xt = dLXtdBt

X0 = e
(5.3.1)

and a flow by left-multiplication : Xt(g) = Lg.Xt.

Lemma 5.3.2. The process Xt(g) is a Brownian motion starting from g.

Proof. For all f ∈ C∞c (G), we have :

f (Xt(g))− f (X0(g)) =
∫ t

0
〈df,HL

i (Xs(g))〉dBi
s

+ 1
2

∫ t

0
∇2f(HL

i , H
L
j )(Xs(g))〈dBi, dBj〉s

(m)= 1
2

∫ t

0
∇2f(HL

i , H
L
j )(Xs(g))ds

(m)= 1
2

∫ t

0
∆f(Xs(g))ds

So X(g) is a diffusion with generator 1
2∆, starting from g.

We denote by P the associated semi-group. The flow (X(g))g∈G give a simple
proof for the preservation of monotonicity. We denote by C1

b (G) the space of <-
valued C1 bounded functions, with bounded differential.

Proposition 5.3.3. Let Ĥ be a right-invariant vector field and f ∈ C1
b (M) be

increasing along Ĥ, then for all t ≥ 0, Ptf is also increasing along Ĥ.

Unlike the general case of diffusion in Rn, this result only needs a monotonicity
in along one vector field. Of course, this implies the preservation of monotonicity
along any right-invariant frame.
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Proof. Let Ĥ be a right-invariant vector field with Ĥ(e) = H ∈ G. We have :

〈
dPtf, Ĥ(g)

〉
= d

da

∣∣∣∣∣
a=0

Ptf(exp(aH)g)

= d

da

∣∣∣∣∣
a=0

E [f(exp(aH)gXt)]

= E [〈df, dRgXtH〉]
= E

[
〈df, Ĥ(gXt)〉

]
≥ 0

The core of this proof is the left-invariance of the law. For the diffusion with
generator 1

2∆ + U , with U a left invariant vector field, we can also produce a flow
by left translation. So the associated semi-group will also preserve monotonicity
along right-invariant vector fields. To make a link with the previous section, the
deformed parallel translation above the Brownian motion is Wt = dRXt .

Let us apply this result to a very classical manifold : the hyperbolic plan H2

with its usual metric. Its Poincaré half-plan model global chart (x, y) ∈ R × R∗+
induce the moving frame (∂x, ∂y). The hyperbolic Laplacian is given by

∆ = y2(∂2
x + ∂2

y).

We have an explicit expression of the associated Brownian flow : if B and W
are independent real Brownian motions and (x0, y0) ∈ R × R∗+, then the process
defined for t ≥ 0 by Xt = x0 +

∫ t

0
YsdWs

Yt = y0e
Bt−t/2,

(5.3.2)

is an hyperbolic Brownian motion starting from (x0, y0). We are looking for vector
fields along which the monotonicity is preserved by the Brownian semi-group

Ptf(x, y) = E
[
f
(
x+ y

∫ t

0
eBs−s/2dWs, ye

Bt−t/2
)]
, ∀(x, y) ∈ R× R∗+, t ≥ 0.

(5.3.3)
The frame (∂x, ∂y) was not defined for any geometric reason. and an easy calcu-
lation show that the monotonicity is not preserved along ∂y. Yet, it is preserved
along ∂x. We want to understand why and to complete the frame of monotonic-
ity preserved directions. This is where we use our result on Lie groups. We
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consider G = SL2(R)/ SO2(R). By the Iwasawa decomposition, G is isomorphic
to NA where

A =
{(

a 0
0 a−1

)
, a ∈ R∗

}
and N =

{(
1 x
0 1

)
, x ∈ R

}
. (5.3.4)

As G acts freely and transitively on the hyperbolic plane, it is isomorphic to
it. So there is a global map of H2 given by:

R× R∗+ −→ NA −→ H2

(x, y) 7→ M =
(√

y x/
√
y

0 1/√y

)
7→ M.i = x+ iy

In this map, the right-invariant vector fields of SL2(R)/ SO2(R) are :

XR(x, y) = ∂x and Y R(x, y) = x∂x + y∂y. (5.3.5)

The flow of XR is the family of lines parallel to the x-axis. They are horocycles.
The flow of Y R is a family of rays starting from (0, 0) (see Figure 5.1). Remark
that the left-invariant vector-fields are

XL(x, y) = y∂x and Y L(x, y) = y∂y, (5.3.6)

and from an orthonormal frame for the hyperbolic metric, as expected.

Figure 5.1: Grid on H2 by the vector fields XR = ∂x and Y R = x∂x + y∂y.

The frame (XR, Y R) is the good grid to study the monotonicity in H2. The
functions (x, y) 7→ x/y and (x, y) 7→ y can be seen as elementary increasing func-
tions. The semi-group of hyperbolic Brownian motion preserve the functions in-
creasing along (XR, Y R). This could be verify easily, using the following stochastic
representation of the semi-group (5.3.3). It explains why ∂x is a vector field along
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which the monotonicity is preserved. Furthermore, acting with an homography
does not change the Brownian law because they are isometric. So we can act on
the frame (XR, Y R) and extend the class of functions whose monotonicity is pre-
served. The flow of XR is transformed to a family of horocycles intersecting on the
same point of the boundary : a family of lines parallel to the x-axis ore a family
of circles tangent to it on a fixed point. The flow of Y is transformed in a family
of ray starting from the same point on the x-axis or a family of circle crossing the
x-axis in two fixed points (see figure 5.2).

(a) (b)

Figure 5.2: Transformation of the XR flow (a) and Y R flow (b) under isometry.

5.4 Interlude - On Heisenberg group.
In this section, we continue our study of monotonicity preserving semi-groups with
the example of a particular diffusion on the Heisenberg group. As this diffusion
does not admit any flow by left-multiplication, the proof of Proposition 5.3.3 is
not adaptable. However, we manage to compute the action of the right-invariant
vector field and obtain a result of monotonicity’s preservation. We also derived a
different kind of intertwining relation and we investigate its invariant law.

The Heisenberg group, H, is the set R3 endowed with the following product ∗:

(x, y, z) ∗ (x̂, ŷ, ẑ) =
(
x+ x̂, y + ŷ, z + ẑ + 1

2(xŷ − yx̂)
)
. (5.4.1)

The first and second coordinates can be understood as distances and the third as
an area. The term 1

2(xŷ − yx̂) is interpreted as the algebraic area between the
segment [(0, 0), (x+ x̂, y + ŷ)] and the piecewise path of segments [(0, 0), (x, y)]
and [(x, y), (x+ x̂, y+ ŷ)] (see Figure 5.3). This group has a structure of Lie group
with a global chart. An alternative definition of this group is the 3 × 3 upper-
triangular matrices with the identity on the diagonal. For more details on the
Heisenberg group, see [64] or [9].
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Figure 5.3: Illustration of Heisenberg group law

Its Lie algebra H is spanned by ∂x, ∂y and ∂z. We endow H with a left-invariant
metric which makes it orthonormal. We consider the right-invariant and the left-
invariant vector fields defined for all g = (x, y, z), by :

XR(g) = ∂x + 1
2y∂z

Y R(g) = ∂y −
1
2x∂z

ZR(g) = ∂z

,


XL(g) = ∂x −

1
2y∂z

Y L(g) = ∂y + 1
2x∂z

ZL(g) = ∂z

(5.4.2)

According to Proposition 5.3.3, the monotonicity along XR, Y R or ZR are
preserved by the Brownian semi-group. We are interested in an other diffusion
on H, linked to its sub-Riemannian structure. Among the automorphisms of H,
the family of dilations δλ, for λ ∈ R, is defined by :

δλ(x, y, z) = (λx, λy, λ2z), ∀(x, y, z) ∈ R3. (5.4.3)

We define the two following differential operators :

L = 1
2
(
XR2 + Y R2)

, D = 1
2 (x∂x + y∂y + 2z∂z) . (5.4.4)

The operator L is the sub-Riemannian Laplacian on H and D is the dilation
operator : dilation automorphisms can be seen as the semi-group of D :

Dg = 1
2
d

dt

∣∣∣∣∣
t=1

δet(g), ∀g ∈ H. (5.4.5)

Let B end W be two independent real Brownian motions. For g ∈ H, we define
the two following process:
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{
◦dGt(g) = XR(Gt(g)) ◦ dBt + Y R(Gt(g)) ◦ dWt

G0(g) = g
, (5.4.6)

 ◦dĜt(g) = XR(Ĝt(g)) ◦ dBt + Y R(Ĝt(g)) ◦ dWt − αD(Ĝt(g))dt
Ĝ0(g) = g

(5.4.7)

Proposition 5.4.1. The process G is a flow of the sub-Riemannian Brownian
motion and Ĝ is a flow of the diffusion with generator L− αD.

Remark that D is not the gradient of any function so Ĝ is not a reversible
diffusion. We denote by P and P̂ the semi-groups associated to G and Ĝ re-
spectively. The flow G(g) is a left-multiplicative flow. This means that, as for
Proposition 5.3.3, P preserve the monotonicity along XR, Y R or ZR. In the case
of Ĝ, we cannot use this trick : the law of Ĝ(g) is different from the law of LgĜ(e).
Yet, it is possible work with an explicit expression of the flow.

Lemma 5.4.2. For g = (x0, y0, z0) ∈ H and t ≥ 0, the coordinates (x̂t, ŷt, ẑt)
of Ĝt(g) are given by 

x̂t = e−
αt
2

(
x0 +

∫ t

0
e
αs
2 dBs

)
ŷt = e−

αt
2

(
y0 +

∫ t

0
e
αs
2 dWs

)
ẑt = e−αt

(
z0 +

∫ t

0
eαsdM g0

t

)

where the semi-martingales M g
t are defined by : M g

t = −ŷt
2 dBt + x̂t

2 dWt.

Proof. Rewriting the equation (5.4.7) with the coordinates, we have :

◦dx̂t = ◦dBt −
αx̂t
2 dt

◦dŷt = ◦dWt −
αŷt
2 dt

◦dẑt = −ŷt2 ◦ dBt + x̂t
2 ◦ dWt − αẑtdt

(5.4.8)

This system is clearly satisfied by the announced functions.

With these explicit formulae, we can compute the action of right-invariant
vector fields on the flow Ĝ.
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Proposition 5.4.3. The right-invariant vector fields XR, Y R and ZR have the
following action on Ĝ : for all g ∈ H and t ≥ 0

XR.Ĝt(g) = e−
αt
2 XR(Ĝt(g)),

Y R.Ĝt(g) = e−
αt
2 Y R(Ĝt(g)),

ZR.Ĝt(g) = e−αtZR(Ĝt(g)).

Proof. We present the calculation for the first vector field only. The two others are
similar. For any g = (x0, y0, z0) ∈ H and t ≥ 0, the path given by a 7→ (a, 0, 0) ∗ g
is starting from g with initial speed XR(g). Then, we have :

XR.Ĝt(g) = d

da

∣∣∣∣∣
a=0

Ĝt((a, 0, 0) ∗ g). (5.4.9)

Using the formulae of Lemma 5.4.2, we have :

x̂t((a, 0, 0) ∗ g) = e−
αt
2

(
x0 + a+

∫ t

0
e
αs
2 dBs

)
ŷt((a, 0, 0) ∗ g) = e−

αt
2

(
y0 +

∫ t

0
e
αs
2 dWs

)
ẑt((a, 0, 0) ∗ g) = e−αt

(
z0 + 1

2ay0 +
∫ t

0
eαsdM

(a,0,0)∗g
t

) (5.4.10)

and

dM
(a,0,0)∗g
t = 1

2e
−αt2

[(
x0 + a+

∫ t

0
e
αs
2 dBs

)
dWt +

(
y0 +

∫ t

0
e
αs
2 dWs

)
dBt

]
.

So,

XR.Ĝt(g) = e−
αt
2 ∂x + e−αt

(
y0

2 +
∫ t

0
eαs

1
2e
−αs2 dWs

)
∂z

= e−
αt
2 ∂x + e−αt

(
y0

2 + 1
2

∫ t

0
e
αs
2 dWs

)
∂z

= e−
αt
2

[
∂x + 1

2e
−αt2

(
y0 +

∫ t

0
e
αs
2 dWs

)
∂z

]
= e−

αt
2

(
∂x + 1

2 ŷt∂z
)

= e−
αt
2 XR(Ĝ(g)t)
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Corollary 5.4.4. The semi-group P̂t preserve the monotonicity of C1
b (H) functions

along each vector fields of the frame (XR, Y R, ZR).

Proof. Let f be an increasing function along XR. Then, we have :〈
P̂tf,X

R(g)
〉

= E
[
〈df,XR.Ĝt(g)〉

]
= e−

αt
2 E

[
〈df,XR(Ĝt(g))〉

]
> 0

The same argument works for Y R and ZR.

Remark that this result is weaker than Proposition 5.3.3 because we do not have
the preservation for any right-invariant vector field. We can extend the result to
vector fields in Span(XR, Y R). In the Euclidean case, the behaviour of Wtv was
determined by the diagonal of ∇2V . Here, it appears to be the diagonal values
of α∇D. We will be clarified in the following section this remark. Which choice of
connection does make sense? Why does the Ricci term seem to disappear? This
proof involves many computational details. We will see a more general and less
technical in the next part. Yet, these calculations can be useful to give stochastic
proofs of other properties of the generator L−αD. We begin with a commutation
formula between P and P̂.

Theorem 5.4.5. For all f ∈ C0
b (H), for all t ≥ 0 and g ∈ H, we have :

P̂tf(g) = P 1−e−αt
α

f(δ
e−

αt
2
g).

Proof. It is enough to show that for all fixed t ≥ 0 and for all g ∈ H, Ĝt(g)
and G 1−e−αt

α

(δ
e−

αt
2
g) have the same law. We denote (xt(g), yt(g), zt(g)) the coordi-

nates of Gt(g). Let us fix t ≥ 0 and g = (x0, y0, z0) ∈ H. We have :
xt(g) = x0 +Bt

yt(g) = y0 +Wt

zt(g) = z0 + 1
2

∫ t

0
xs(g)dWs −

1
2

∫ t

0
ys(g)dBs

. (5.4.11)

According to the formulae, the coordinates of both processes are clearly Gaus-
sian, so they are characterized by their two first moments. We have :

E
[
x 1−eαt

α

(δ
e−

αt
2
g)
]

= e−
αt
2 x0 = E[x̂t(g)]

E
[
(x 1−eαt

α

(δ
e
αt
2
g)
)2

] = 1− eαt
α

= E[(x̂t(g))2]
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So x 1−eαt
α

(δ
e−

αt
2
g) ∼ x̂t(g). The same calculation prove the result for the second

coordinate. For the third coordinate, we have :

E
[
z 1−eαt

α

(δ
e−

αt
2
g)
]

= e−αtz0 = E[ẑt(g)]

E
[
(z 1−eαt

α

(δ
e−

αt
2
g))2

]
= e−

αt
2

1− eαt
4α (x2

0 + y2
0) + (1− e−αt)2

4α2 = E
[
(ẑt(g))2

]

So we have : z 1−eαt
α

(δ
e−

αt
2
g) ∼ ẑt(g). This ends the proof.

This commutation formula can be seen as a generalization of Mehler formula
(see [29]). It brings another proof of corollary 5.4.4, using the result for P.

As D is not a gradient, P̂ is not reversible. Nevertheless, it admit an invariant
measure. We denote by Kt the density of Gt(e). The formula of Theorem 5.4.5
suggest a link between both the invariant measure of P̂ and K.
Corollary 5.4.6. The invariant law of P̂ is k1/α(x, y, z)dxdydz i.e. :∫

H
(L− αD)fK1/αdxdydz = 0, ∀f ∈ C∞c (H).

Proof. The Brownian motion has a property of invariance in law by dilation : for
all t ≥ 0 and c > 0 we have δ 1√

c
Gct(e) ∼ Gt(e). Then

E
[
f(δ 1√

c
Gct(e))

]
= E [f(Gt(e))]∫

H
f( x√

c
,
y√
c
,
z√
c
)Kct(x, y, z)dxdydz =

∫
H
f(x, y, z)Kt(x, y, z)dxdydz∫

H
f(x, y, z)c2Kct(

√
cx,
√
cy,
√
cz)dxdydz =

∫
H
f(x, y, z)Kt(x, y, z)dxdydz

So for all t ≥ 0 and (x, y, z) ∈ H, we have :

t2Kt/α(
√
tx,
√
ty,
√
tz) = K1/α(x, y, z).

By differentiating with respect to t and evaluating in t = 1, we have :

(2id+ 1
α
L+D)K1/α = 0. (5.4.12)

On the other hand, integration by parts, for all f, g ∈ C∞c (H), we have :∫
H

(L− αD)fg d vol =
∫
H
f(L+ αD + 2α id)g d vol (5.4.13)

This ends the proof.
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5.5 Deformed parallel translation on Lie groups
In this section, we study semi-groups of a general diffusion on a Lie group G,
with generator L = 1

2∆ + U . The goal of this section is to obtain a condition on
the potential U for preserving the monotonicity of function along a right-invariant
frame. For that, we defined a deformed parallel translation and we establish a
intertwining. Finally, we illustrate the result with some family of examples in the
Heisenberg group.

We endow G with its left-connection ∇L. By ∆ we refer to the associated
Laplacian. Let U be a smooth vector field, not necessarily left-invariant, nor a
gradient field. We consider the flow defined by the following Ito equation: d

∇LXt(g) = dLXtdBt + U(Xt)dt
X0(g) = g

(5.5.1)

where Bt is a Brownian motion in G. This defines a flow of the diffusion with
generator L = 1

2∆ + U . We denote by P the associated semi-group. As in the
euclidean case, we want to study the spatial derivative of this flow :

W g
t = dXt(g) : TgG→ TXt(g)G. (5.5.2)

This W g plays the role of deformed parallel translation in Rn. Here we have
chosen the definition such that the processes X(g) and W g are intertwined by
construction. We will fulfil the comparison with the classical deformed parallel
transform. First, we establish a covariant derivative equation satisfied by W g. In
the case of (3.2.4), the choice of the connection to define the covariante derivative
is obvious. Here, as we do not use the Riemannian connection, the choice is less
natural. We want to study the derivative of Ptf with respect to right-invariant
vector fields. That is why we chose the right-connection,∇R, defined in (2.2.2). For
this connection, the parallel translation along a curve c is the right-multiplication
differential:

�R
t = dc(0)Rc(0)−1c(t). (5.5.3)

Theorem 5.5.1. With the previous notations, we have :

DRW g
t v = ∇L

W g
t v
U(Xt)dt, (5.5.4)

where DR = �R
t d(�R

t
−1
.).

Proof. Let c(·, a)a be a smooth family of smooth curves in G. By definition of
torsion and with the commutation property 2.2.1, we have :

∇R
∂tc∂ac = ∇R

∂ac∂tc+ [∂ac, ∂tc] + TR(∂tc, ∂ac)
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= ∇R
∂ac∂tc+ TR(∂tc, ∂ac)

= ∇L
∂ac∂tc.

Then, with Stratonovich transfer principle, this equality is satisfied by the family
of semi-martingales Y (t, a) = Xt(g exp(av)). By evaluating at a = 0, we obtain :

DSRW g
t v = ∇L

W g
t v
◦ dXt(g), (5.5.5)

where DSR denote the Stratonovich covariant derivative. Now, we need to change
from Stratonovich derivative to Ito one. As the connection is left-invariant, the
correction terms 1

2∇
L
HL
i
HL
i vanish. So, for all g ∈ G, the process X(g) satisfies :

◦dXt(g) =
∑

HL
i (Xt(g)) ◦ dBi

t + U(Xt(g))dt. (5.5.6)

Then, the martingale part of DSRW g
t v is∑

i

∇L
W g
t v
HL
i (Xt(g))dBi

t. (5.5.7)

So DSRW g
t (v) has no martingale part. Then it is equal to the Ito covariant deriva-

tive DRW g
t (v) :

DRW g
t (v) = ∇L

W g
t (v)U(Xt(g)).

The obvious advantage of the right-covariant derivative is the vanishing of the
martingale part. If we calculate the left-covariant derivative, the we would not
have finite variation processes.

As in the classical case, the definition of a semi-group on 1-form associated
to W requires an additional assumption of boundedness, a kind of Bakry-Émery
criterion. The problem does not come from the lack of symmetry of ∇LU , Bakry-
Émeri criterion is adaptable to such potentials, but the problem comes from �R

which is not isometric : we have

d|W g
t v|2 6= 2〈W g

t v,D
RW g

t v〉.

A way to bypass this issue would be to look at the left-covariant derivative DLW g
t

but then, we must deal with a martingale part as in Proposition 4.3.2. By com-
parison, we conjecture that the boundedness of the bilinear operator ∇LU and of
some norm of the right-translation should be suitable. We the case of bi-invariant
metric, we ha the following result.
Lemma 5.5.2. Assume that G has a bi-invariant metric and that ∇LU < +∞,
then we have the following stochastic representation of dP : for all f ∈ C1

b (G), for
all t ≥ 0, for all g ∈ G and for all v ∈ TgG :

〈dPtf(g), v〉 = E [〈df,W g
t (v)〉] . (5.5.8)

88



Proof. We have :

d|W g
t v|2 = d〈�R

t

−1
W g
t v,�R

t

−1
W g
t v〉

= 2〈W g
t v,D

RW g
t v〉

= 2〈W g
t v,∇LUW g

t v〉dt
≤ 2k|W g

t v|2dt

The proof ends as in Proposition 3.4.3.

We denote by αi the dual basis of T ∗M defined by : for all i, j, 〈αi,HR
j 〉 = δij.

As (Hi)i is not orthonormal, αi is not the adjoint of HR
i for the metric. The forms

αi are right-invariant : DRαi = 0.

Theorem 5.5.3. Assume that the potential U satisfies : for all i 6= j and all g ∈ G,〈
αi,∇L

HR
j
U
〉
≥ 0,

then W g preserve the non-negativity of vector in the basis (HR
i )i.

Proof. We have

d 〈αi(Xt),W g
t (v)〉 =

〈
αi(Xt), DRW g

t (v)
〉

=
〈
αi(Xt),∇L

W g
t (v)U(Xt(g))

〉
dt

=
n∑
j=1
〈αj,W g

t (v)〉
〈
αi(Xt),∇L

HR
i
U(Xt(g))

〉
dt

We conclude as in the euclidean case.

This result is very similar to the Euclidean one in Theorem 5.2.2. Firstly, we
prove the preservation of positivity almost surely, stronger than the claim. Sec-
ondly, it prove the preservation of non-negativity in a basis but not coordinate by
coordinate as in Proposition 5.4.4. Remark that the theorem is satisfied for all
right-invariant basis, with the associated condition. Together with the intertwin-
ing (5.5.8), the criterion of Theorem 5.5.3 prove that the semi-group P preserve
the monotonicity of function in the basis (HR

i )i. Now, we suppose that U is a
gradient field, for the right-connection :

U = −∇RV =
n∑
i=1
〈dV,HR

i 〉HR
i , (5.5.9)
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with V a smooth function. We denote by Γkij are the Christoffel symbols of the
left-connection in the map associated to the right-invariant vector fields :

∇R
HR
i
HR
j =

n∑
k=1

ΓkijHR
k . (5.5.10)

With this special form of U , Theorem 5.5.3 reformulate as follow.
Corollary 5.5.4. If the potential V satisfies : for all i 6= j, for all g ∈ G,

∀i 6= j, ∇R2V (HR
i , H

R
j ) +

n∑
k=1

Γijk〈dV,HR
k 〉 ≤ 0,

then W g preserve the non-negativity of vector in the basis (HR
i )i.

In the Euclidean space, where the metric is flat, the Christoffel symbols vanish.
Then, Theorem 5.2.2 can be seen as a corollary.

We finish with examples of semi-groups on the Heisenberg group H. Firstly,
Theorem 5.5.3 can explain Proposition 5.4.4. Indeed, the vector field U = −αD
satisfies in the right-invariant basis (XR, Y R, ZR) :

∇LU = −α2

 1 0 0
0 1 0
0 0 2

 . (5.5.11)

Then, all th terms outside the diagonal vanish. Moreover, invariant connections
are flat : their Ricci tensor vanish. The equivalent of the potential M resumes
as ∇LU . This explains the exponential behaviour of the flow’s partial derivative
in Proposition 5.4.3. Now, we look for some small deformations of D which still
satisfy the criterion.
Proposition 5.5.5. Let’s u and v be real functions such that u ≥ 0 and v ≤ 0
and γ a positive constant. The the vector field

U = γD + u(x)XR + v(y)Y R

satisfies the condition of Theorem 5.5.3.
Moreover, if u and v are increasing, then the vector field

U = γD + u(z)XR + v(z)Y R

satisfies this condition too.
In a wider way, we have the following result.

Proposition 5.5.6. Let’s α, β and γ be differentiable functions such that :

α(x)− x

2γ
′(z) ≥ 0 and β(y)− y

2γ
′(z) ≤ 0, ∀(x, y, z) ∈ H.

Then the vector field U = α(x)XR + β(y)Y R + γ(z)Z satisfy the condition of
Theorem 5.5.3.

90



5.6 Perspectives
At the end of this chapter, there are still many questions to investigate. Firstly,
concerning the deformed parallel translation introduced in (5.5.2), we did not
finish the comparison with the classical one (defined with the Levi-Civita covari-
ant derivative). We could to investigate its property as diffusion on the tan-
gent bundle TG. We can conjecture that the generator on 1-forms has the shape
1
2∆̃ + ∇R

U + ∇LU where ∆̃ would be an horizontal Laplacian on 1-form for the
right-connection. The detail that stops the analogy with the classical case is that
right-translations are not isometric. However, we can conjecture that the gener-
ator on 1-form of W g will satisfies an interesting commutation property with the
generator L of the diffusion on G. Indeed, a straightforward calculation shows
that :

〈d〈df, U〉, v〉 = 〈∇R
Udf, v〉+ 〈df,∇L

vU〉. (5.6.1)

A second point is the intertwining at the level of semi-group. This question
has already been raised in the previous section. It is not clear which covariant
derivative can give a good criterion. In Chapter 4, we did not manage to obtain a
criterion guaranteeing both existence and intertwining, because of the martingale
part.

A third point is the generalization of the FKG property to Lie groups. In
Rn, we need the reversibility and ergodicity of the diffusion to use the covariance
representation of Proposition 3.3.1. In our case, it is not so clear that we have
these properties, even if U is a right-gradient. We do not even have examples of
such a gradient field satisfying the criterion of Corollary 5.5.4.

Finally, in a more prosaic consideration, it is not clear that in our examples,
the set of C1

b (G) increasing functions is not empty. That is why we still do not
have examples of increasing preservation nor FKG property in Lie groups.
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"Il n’est pas un moi. Il n’est pas dix
moi. Il n’est pas de moi. Moi n’est
qu’une position d’équilibre. (Une entre
mille autres continuellement possibles
et toujours prêtes.) Une moyenne de
"moi", un mouvement de foule."
Henri Michaux, Plume

Part III

Brenier-Schrödinger problem
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Chapter 6

From Euler to
Brenier-Schrödinger

This chapter is an introduction to Brenier-Schrödinger problem. We recall some
notion of fluid evolution equations, the genesis of Brenier-Schrödinger problem,
known results and we present the different avenues we will explore in the
following chapters. The presentation of the problem is mostly inspired by those
from [5].

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Euler equation . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 From Euler to Brenier . . . . . . . . . . . . . . . . . . . 97
6.5 Brenier-Schrödinger problem . . . . . . . . . . . . . . . 98

6.1 Introduction
In this part, we study various questions about Brenier-Schrödinger problem in
a compact Riemannian manifold with boundary. The goal of this chapter is to
introduce the problem and its background. This problem is a Lagrangian, or prin-
ciple of least action, approach of Navier-Stokes equation. This approach has been
develop for Euler equation by Brenier in [21] in the continuity of Arnold geodesic
problem [7], with a relevant back and forth between solutions of fluid equation and
minimising problem. Euler equation describe inviscid fluid. The usual description
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of viscous fluid is given by Navier-Stokes equation (6.5.1). The viscosity is mod-
elled by a Laplacian term. Thinking about stochastic calculus, Laplacian strongly
suggests the introduction of Brownian path measures and the substitution of ki-
netic energy in Brenier problem by a stochastic kinetic energy. This generalization
is introduced in [1]. Since its initial formulation, the problem has evolved. In
particular, the stochastic kinetic energy has been be related to a relative entropy
with respect to the Brownian law. It leads to the actual formulation (BS) and
the denomination as Brenier-Schrödinger or Brödinger, or Bredinger in the liter-
ature, as a mix between Brenier energy minimisation problem and Schrödinger
entropy minimisation problem. The results of this part come from a work with
David Garcia Zelada (see [42]). Following the approach of [5], we extend its results
on kinetic of solution and criterion of existence to compact manifold with bound-
ary. We bring improvement for the impermeability question and in examples of
problems admitting solutions.

Let us summarise this chapter. In Section 6.2, we introduce our state space and
the notions of path measures. In Section 6.3, we recall some result on fluid evolu-
tion and Euler equation. The Section 6.4 explains the logic from evolution equation
to minimisation problem. It motivates the Lagrangian approach of Navier-Stokes
equation. In section 6.5, we introduce Brenier-Schrödinger problem and we expose
the topics we will develop in the following chapters.

6.2 Notations
In this section, we fix some notation specific to Part III. We define the path space,
marginal measures and the relative entropy.

Let (M, 〈·, ·〉) be a smooth compact Riemannian manifold with boundary, of
dimension n. It is our state space. We denote by ∂M its boundary and M̊ its
interior. We denote by Ω the path space C0([0, 1],M). It is the space of motions
of a particle in M . The set of Borel probability measures of Ω is denoted by P(Ω).
The canonical process X on Ω is defined as

Xt(ω) = ωt, ∀t ∈ [0, 1], ∀ω ∈ Ω.

The canonical process generates the canonical filtration (Ft)t∈[0,1] defined by :

Ft = σ(X[0,t]), ∀t ∈ [0, 1].

For a probability Q ∈ P(Ω) and a time 0 ≤ t ≤ 1, we denote by Qt the marginal
measure Xt#Q. It is the law of the random variable Xt under Q. It represents
the density of particles at time t. In the same way, the probability Q01 ∈ P (M2)
is law of the couple (X0, X1). It represents the endpoints distribution of particles.
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A probability measure Q ∈ P(Ω) can be disintegrated with respect to the
initial position :

Q =
∫
M
Qx(·)Q0(dx),

where x 7→ Qx = Q(· | X0 = x) ∈ P(Ω) is measurable. Similarly, the disintegration
with respect to the endpoints position is meaningful and it defines the bridge
measure Qxy = Q(· | X = 0 = x,X1 = y) ∈ P(Ω) for x, y ∈M .

For P and R in P(Ω), the relative entropy of P with respect to R is defined
as :

H(P |R) =
∫

Ω
log dP

dR
dP ∈]−∞,+∞], (6.2.1)

whenever this expression is meaningful. This entropy has an interpretation in
convex optimisation which can be found in [55] and recall in Chapter 7. It satisfies
an useful additive decomposition formula :

H(P |R) = H(f#P |f#R) +
∫
Z
H(P f=z|Rf=z)f#P (dz), (6.2.2)

where Z is a Polish space (often M or M2), f : Ω → Z measurable (often X0
or (X0, X1)) and P f=z a version of the conditional probability P (· | f = z). See [44]
for details on this formula. This formula will be a key argument in Chapter 9 to
obtain finite entropy condition.

6.3 Euler equation
In this section, we introduce the notions of fluid evolution as Eulerian description,
incompressibility and impermeability. The goal of this section is to present Euler
equation.

There are two different descriptions of a fluid evolution : the Lagrangian and
the Eulerian. The Lagrangian coordinates are given by a function

q : [0, 1]×M →M,

giving the position at a given time of a particle starting from a given initial position.
The Lagrangian description is a particle-wise approach. The Eulerian description
of the flow is a vector field

v : (t, x) ∈ [0, 1]×M 7→ v(t, x) ∈ TxM,

giving the velocity of the fluid at a given time and a given position. As they
describe the same phenomenon with different point of view, there is a link between
these two descriptions. From Lagrangian to Eulerian, v is the velocity of the flow q.
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Equivalently, from Eulerian to Lagrangian, q is the integral curve of the vector
field v. We have : ∂tq(t, x) = v(t, q(t, x)), for all (t, x) ∈ [0, 1]×M . Remark that
this link between the two descriptions makes sense if the trajectories of particles
do not cross, i.e if for all t, x 7→ q(t, x) is injective.

After position and velocity, the quantity which characterize the dynamic is the
acceleration. In Lagrangian coordinates, the acceleration of a particle is just the
second derivative ∂2

t q. Expressed in Eulerian coordinates, we have :

∂2
t q(t, x) = ∂tv(t, q(t, x)) +∇vv(t, q(t, x)), ∀(t, x) ∈ [0, 1]×M.

The operator Dt = ∂t +∇v is called the convective derivative.
Let us introduce two important notions in the description of fluid evolution. A

fluid in M is said incompressible if its flow preserves the volume. As a condition
on the vector field v rather than on the flow, it is equivalent to

div(v) = 0, ∀(t, x) ∈ [0, 1]×M. (6.3.1)

The incompressibility is a particular case of the mass preservation, or continuity
equation, for non-homogeneous fluid :

∂tµt + div(µtv) = 0,

where µt is the density of particle at time t ∈ [0, 1]. It states that there is not any
creation nor annihilation of particles.

We denote by ν the normal inner vector field at ∂M . The impermeability
condition of the fluid is

〈v, ν〉 = 0, ∀x ∈ ∂M. (6.3.2)
In other word, the velocity v is tangent to the boundary. This means that there
is not any particle entering or leaving M .

The Euler equation for incompressible fluid with impermeability condition is
the system 

∂tv +∇vv +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v, ν〉 = 0, (t, x) ∈ [0, 1]× ∂M
v(0, ·) = v0, x ∈M

(6.3.3)

where v0 is a given initial velocity field. The scalar pressure field p : [0, 1]×M → R
is unknown. A solution of Euler equation is a couple (v, p). The first equation of
this system,

Dtv = −∇p,
can be interpreted as Newton’s second law with a force −∇p, derived from a scalar
potential.
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6.4 From Euler to Brenier
In this section, we present the steps from Euler evolution equation to Brenier
minimising problem. It motivates our approach of Navier-Stokes equation via
Brenier-Schrödinger problem.

The first step from Euler equation to Brenier problem is due to Arnpold. In [7]
he proposed an analytical mechanics approach of Euler equation. Rather than a
the differential system satisfied by the velocity, he looked to a variational problem
satisfied by the trajectory. According to the principle of least action, trajectories
minimise a functional. We denote by Gvol the group of volume and orientation
preserving diffeomorphisms of M . The variational problem is :∫

[0,1]×M
|∂tqt(x)|2 dtdx→ min; [qt ∈ Gvol, ∀0 ≤ t ≤ 1], q0 = id, q1 = h, (6.4.1)

for a prescribe endpoint h ∈ Gvol. Then if (qt)0≤t≤1 is a minimiser, the vector
field v(t, z) = ∂tqt(q−1

t (z)) is a solution of a endpoint variation from system (6.3.3) :
rather than an initial condition v0, the integral curves must transport x to h(x)
in time 1. Arnold proves in [7] that the solution of the minimising problem are
geodesics for a right-invariant metric on Gvol between the two element of Gvol :
the identity id and h. Th geodesic problem (6.4.1) have been studied in [31] for h
a small perturbation of id and in [73] and [74] for examples where such geodesics
do not exist.

The final step is reached by Brenier in [21]. He introduced a relaxation of
problem (6.4.1) for compact domain X in Rn : rather than looking for trajectories,
he looked at measure on trajectories, minimising an average action, satisfying a
marginal incompressibility constraint and a endpoints constraint. Formally, the
Brenier problem is :

EQ
[∫ 1

0
|Ẋt|2 dt

]
→ min;Q ∈ P(Ω), [Qt = vol,∀0 ≤ t ≤ 1] , Q0,1 = π, (6.4.2)

where π ∈ P(χ2) and the process Ẋ is defined on absolutely continuous path ω ∈ Ω
by Ẋt(ω) = ω̇t. In the above functional, the integral is understood as +∞ if ω
is not absolutely continuous. Then, a solution of problem (6.4.2) has support on
absolutely continuous path only. The marginal constraint Qt = vol plays the role
of volume preservation in problem (6.4.1). The endpoints constraint Q01 = π is
a relaxation of Q01(dxdy) = vol(dx)δh(x)(dy) in problem (6.4.1). Brenier proved
in [21] that a path measure P satisfying{

Ẍt +∇p(t,Xt) = 0, ∀t, P -a.s
Pt = vol ∀t and P01 = π
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is a solution of (6.4.2). Conversely, if P is a solution of (6.4.2), the velocity
measure σ on [0, 1]×X ×Rn defined by∫

[0,1]×X×Rn
f(t, x, v)σ(dtdxdv) = EP

[∫ 1

0
f(t,Xt, Ẋt) dt

]
, (6.4.3)

is a solution of Euler equation in a certain sense (see [22] for details). Then we
somehow have an equivalence between the Euler equation, a notoriously difficult
Cauchy problem, and the Brenier problem, a minimising problem. This is the
angle of attack we develop for Navier-Stokes equation.

6.5 Brenier-Schrödinger problem
In this section, we introduce the Brenier-Schrödinger problem. We present Navier-
Stokes equation and give the heuristic which leads to Brenier-Schrödinger problem.

While Euler equation describes the evolution of non-viscous fluid, Navier-Stokes
equation takes into account a viscosity term :

∂tv +∇vv − a�v +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v, ν〉 = 0, (t, x) ∈ [0, 1]× ∂M
v(0, ·) = v0, x ∈M

(6.5.1)

where � is the extension of Hodge-de Rham Laplacian defined in (2.5.1) to vector
fields and a > 0. The term a� represent a viscosity force. Remark that it is a
different choice from [4] where the the Laplacian used is �̂ = �− 2Ric but in flat
spaces where Ric vanishes, as torus Tn, both are equal. This problem is notoriously
difficult and it is not the goal of our work to solve Navier-Stokes equation. We
want to study a relaxed problem, even where classical solutions do not exist, in
the style of Brenier problem.

The first generalisation of Brenier problem to viscous fluid comes from [1]. The
problem is formulated as the minimisation of a stochastic kinetic energy on law of
Brownian motion with drift. In this problem, the drift is used as a generalisation
of the classical velocity Ẋt. Since this founding article, other authors took on the
subject and brought the problem to its actual entropy formulation. Remarks that
Yasue proposed a variational approach of Navier-Stokes equation in [77]. We find
in this article all the main tools, from the Nelson derivative to the entropy formula.

Let σ : M × Rn → TM such that σ(x) ∈ L(Rm, TxM), σσ∗(x) = idTxM . Such
a σ exists when M is embedded in Rm, for example.
Definition 6.5.1. A stochastic process X is a reflected Brownian motion on M if
it solves the Skorokhod problem:

dXt = σ(Xt)dWt + νXtdLt, (6.5.2)
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with W is a Brownian motion in Rm and L is a non-decreasing process such that∫ 1

0
1M̊(Xs)dLs = 0.

The process L is the local time of the reflected Brownian motion at ∂M . We
denote by Rx the law of the reflected Brownian motion onM starting from x and R
the law of the reflected Brownian motion starting from the uniform distribution
on M , vol. The measure R is the reversible law of the reflected Brownian motion
on M . These laws are well and uniquely defined (see [49] and [6]).

The Brenier-Schrödinger problem, or Brödinger problem, is a entropy minimi-
sation problem. Let T a measurable subset of [0, 1], (µt)t∈T a set of measures in
P(M) indexed by T , and π ∈ P(M2). The Brenier-Schrödinger problem is :

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt, ∀t ∈ T ], Q01 = π. (BS)

This problem is a mix between Brenier problem, minimization of energy under
marginal and endpoints constraints, and Schrödinger problem, minimisation of
entropy under marginal constraints (see [41]). As explained in [5], the entropy
with respect to Brownian law is linked to a stochastic kinetic energy of [1]. In
Chapter 7, we prove that a solution is a semi-martingale measure. We will defined
this stochastic kinetic energy and give a prove this link.

This problem is a strictly convex problem with linear constraints. There is a
general result of existence and uniqueness from [16], for more general state spaceM
and reference measure R. In our case, it is the following.

Theorem 6.5.2 ([16]). The problem (BS) admits a solution if and only if there
exists Q ∈ P(Ω) such that Qt = µt for all t ∈ T , Q01 = π and H(Q|R) < +∞. In
this case, the solution is unique.

This theorem does not give easily verifiable criterion of existence. In [5], there
is a result when the state space is a torus Tn, the reference measure is the re-
versible Brownian law and for the incompressible marginal constraint µt = vol for
all t ∈ [0, 1]. It is proved that there exists solutions if and only if H(π|R01) < +∞.
This part of the problem will be studied in Chapter 9. We prove a similar cri-
terion for compact manifold on which the isometries acts transitively. We give a
method to find examples in manifold with boundary (or with corner) by quotient.
We also explore a non incompressible problem in a non-compact space : Gaussian
measures in Rn.

As we already said, Brenier-Schrödinger problem does not resolve Navier-Stokes
equation. Yet, there is some results of links between both problem similar to the
links between Euler equation and Brenier problem. From Navier-Stokes to Brenier-
Schrödinger, we can cite this theorem, rewritten with our formalism.
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Theorem 6.5.3 ([4]). Let v be a regular solution on [0, T ] of the incompressible
Navier-Stokes equation on Tn :

∂tv(t, x) +∇vv(t, x)− a�v(t, x) +∇p(T − t, x) = 0

for a regular pressure p such that ∇2p(t, x) ≤ π2

T 2 id. Consider the process g defined
by

dgt =
√

2a dBt − v(T − t, gt)dt

with B a Brownian motion and g0 = vol. Then the law Q of g minimise H(·|R)
in the class of laws of process{

g̃; dg̃t =
√

2a dBt − u(t, g̃t)dt, g̃0 = g0, g̃T = gT , u regular
}
.

The reciprocal result, from Brenier-Schrödinger to Navier-Stokes, is the topic
of Chapter 8. In [5], it is proved, in the cases ofM = Tn andM = Rn, that if P is a
regular solution of (BS), notion to be cleared, its final point conditional stochastic
backward velocity satisfies the Newton part of Navier-Stokes equation and its
current velocity satisfies the continuity equation. We will defined this notions
and extend these results to a compact manifold with boundary. Particularly, we
are interested in the impermeability condition which is leaved out in toruses and
Euclidean spaces.
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Chapter 7

Shape of a general solution

We present the characteristic of a general solution of problem BS. The main
result is the semi-martingale characterisation from a Girsanov theorem under
finite entropy.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Semi-martingale properties . . . . . . . . . . . . . . . . 112
7.4 Reciprocal solution . . . . . . . . . . . . . . . . . . . . . 114

7.1 Introduction
In this chapter, we are interested in the shape of solutions to BS problem, when
they exist. We a looking to structural characterisation of solution. For example,
in the case of Brenier problem (6.4.2), from the very nature of the problem, a
solution is a measure on absolutely continuous functions. On one hand, a solution
of our problem is a measure dominated by a semi-martingale measure. Then,
Girsanov theorem prove that a solution is a semi-martingale measure. Te drift,
or finite variation part, is a parameter wich characterise the solution. Besides
of being absolutely continuous with respect to R, a solution has finite relative
entropy. In the Euclidean space, this additional condition allows Léonard in [55]
to improve significantly Girsanov theorem : boundedness property of the drift,
expressions of density and entropy. On the other hand, the reference measure R
has also Markovian properties. The transmission of those properties to solutions
has been studied in [16]. A solution will not be Markovian but reciprocal. This
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gives a new characterisation with other parameters. Then, BS problem can be
treated as a convex optimisation problem as in [5]. From the study of primal and
dual problems arises a special form on the previous parameters which leads to the
notion of regular solution.

Let us summarize this chapter. In Section 7.2, we present the Girsanov theory
with Léonard point of view adapted to manifolds. The main results will be applied
in Section 7.3 to describe the semi-martingale property of a solution. This will
enlighten the link between Brenier problem and Brenier-Schrödinger problem. We
finish, in Section 7.4 with the reciprocal measure point of view of solutions. This
last section will not contain original work. It makes a link with the study of
kinematic.

7.2 Girsanov theorem
In this section, we establish a Girsanov theorem, for measure of finite entropy with
respect to a semi-martingale, the existence of a velocity vector field and an explicit
expression of the density. This result and its proof are generalizations of [55] to
a manifold setting (with or without boundary). This section is mostly translation
from the Euclidean language to the manifold one. It seems interesting to fully
develop it here for two reasons. Firstly, it gives a nice view of Girsanov theory and
deserves to be written in the manifold setting. It is also an occasion to recall some
classical but useful result on semi-martingale. Secondly, the three main results
presented here will enlighten properties of the solution of BS in Section 7.3.

The Léonard approach of Girsanov theory is based on the variational view of
the entropy, recalled in the following lemma.

Lemma 7.2.1 (variational representations of the relative entropy [55]). Let Q be
probability measure on some space Ω.

1. For any probability P on Ω, we have :

sup {EP [u]− log(EQ[eu]) : u ∈ L∞(P )} =
{
H(P |Q) ∈ [0,+∞], if P � Q

+∞, otherwise

2. In addition, if H(P |Q) < +∞, then for all measurable functions u such that
eu ∈ L1(Q), then u ∈ L1(P ) and we have :

H(P |Q) = sup
{
EP [u]− log(EQ[eu]) : eu ∈ L1(Q)

}
.

LetM be a smooth complete Riemannian manifold, with or without boundary.
Let Ω be the paths space of continuous functions ω : [0, 1] → M and X the
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associated canonical process on Ω i.e for all ω ∈ Ω, and t ∈ [0, 1], Xt(ω) = ωt.
We denote by (Ft)t≥0 the canonic filtration. We complete this filtered space with
a reference probability measure R solving the martingale problem MP(B,A),
where B denotes a drift with bounded variations and A a quadratic variation
operator. This means that R is defined as a probability measure such that, for
all f ∈ C∞c (M), the process

M f
t := f(Xt)− f(X0)−Bt(df)− 1

2At(∇
2f), ∀t ∈ [0, 1], (7.2.1)

is a R local martingale. Path-wise, a drift B has to be understood as an integral
operator on 1-forms valued process :

Bt(α, ω) =
∫ t

0
〈αs(ωs), Us(ω)〉 dgs(ω), (7.2.2)

where αt ∈ Γ(T ∗M) for all t, U is a TM -valued adapted process above X (such
that Us(ω) ∈ TωsM) and g : [0, 1]× Ω → R is path-wise a function with bounded
variations. The notation dB = Udg will be used as an infinitesimal vector field
along X. The main examples of functions g are : gt(ω) = t and gt(ω) = Lt(ω) the
local time when M has boundaries. Similarly, the quadratic variation A has to
be understood as an integral operator on bilinear forms valued process, which can
be resume as a bounded adapted TM⊗2-valued process a above X and a bounded
continuous increasing process φ :

At(h, ω) =
∫ t

0
〈hs(ωs), as(ωs)〉 dφs, (7.2.3)

where ht ∈ Γ(T ∗M⊗2) for all t. We will use the notation dAt for 〈., at〉 dφt. The
main example, linked to Brownian motions, is dAt(·, ω) = aTrace (σ(Xt(ω)) · ⊗σ(Xt(ω))·) dt.
Remarks that for every adapted T ∗M -valued process γ, A(γ⊗ .) is a drift. We de-
note by dX its Ito derivative and by dRmX the martingale part of dX with respect
to R. Both are infinitesimal vector fields. With this notation, we have :

dXt = dRmXt + dBt, R-a.s, (7.2.4)

and
d[X,X]t = dAt, R-a.s. (7.2.5)

The Léonard’s entropy condition, stronger than the usual absolutely condition
in Girsanov theory, brings better boundedness properties on the drift vector field.
That is why, we need to introduce the following functional spaces. Let G be the
space of measurable functions g : [0, 1] × Ω → T ∗M such that for all t ∈ [0, 1]
and ω ∈ Ω, gt(ω) ∈ T ∗ωtM . For any probability measure Q on Ω, we defined a
semi-norm on G by

‖g‖G(Q) = EQ [A1(g ⊗ g)]1/2 . (7.2.6)

103



Up to identification of function as class with respect to the semi-norm ‖.‖G(Q), we
defined the following Hilbert spaces :

G(Q) =
{
g ∈ G : ‖g‖G(Q) < +∞

}
, (7.2.7)

and
H(Q) = {g ∈ G(Q) : g adapted} (7.2.8)

Theorem 7.2.2 (Girsanov’s theorem). Let P be a probability measure on Ω such
that H(P |R) < +∞. Then P is a law of a semi-martingale and there exists an
adapted process β ∈ H(P ) such that P ∈MP(B + B̂, A) where B̂ = A(β ⊗ .).

Remark 7.2.3. In other words, β satisfies :

EP
[∫ 1

0
〈df, dRmXt − dAt(βt ⊗ .)〉

]
= 0, ∀f ∈ C∞c (M). (7.2.9)

Under the classical assumption, the Girsanov theorem prove the existence of a
drift β ∈ G such that A1(β ⊗ β) < +∞ P -a.s where our result gives finiteness in
expectation.

Before beginning the proof, let us recall a well-known result about local mar-
tingales (see [71] for instance).

Lemma 7.2.4. Let M be a positive local martingale, on some filtered probabil-
ity space. Then M is a super-martingale. In addition, if M is also uniformly
integrable, then it is a martingale.

Proof. Let (τn)n be a localizing sequence forM . For all s ≤ t, with Fatou’s lemma,
we have :

E[Mt|Fs] = E[ lim
n→∞

M τn
t |Fs]

≤ lim inf
n→∞

E[M τn
t |Fs]

≤ lim inf
n→∞

M τn
s ]

= Ms a.s.

So M is a super-martingale. Now, we assume that M is uniformly integrable. For
all T > 0, we have

lim
n→∞

M τn
T = MT a.s.

As the sequence (M τn
t )n is uniformly integrable, by Vitali’s theorem, the conver-

gence is also in L1. In particular, we have E[MT ] = E[M0]. So M is also a
martingale.
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Proof of Theorem 7.2.2. For h ∈ H(P ), we define the processes Nh by

Nh
t =

∫ t

0
〈hs, dRmXs〉, 0 ≤ t ≤ 1. (7.2.10)

In restriction to h ∈ H(P )∩H(R), Nh is a stochastic integral with respect to R. Its
stochastic exponential E(Nh) is a positive local martingale, so a super-martingale
and we have :

0 ≤ ER[E(Nh)1] ≤ 1. (7.2.11)
For h ∈ H(P ) ∩ H(R), let u be the function u : ω ∈ Ω 7→ Nh

1 − 1
2 [Nh, Nh]1.

According to Lemma 7.2.1, u ∈ L1(P ) and we have:

EP [u]− logER[eu] ≤ H(P |R) < +∞.

Using equation (7.2.11), we have :

EP [u] ≤ H(P |R).

Then, as EP
[
[Nh, Nh]1

]
= ‖h‖2

G(P ) which is finite, we have:

EP [Nh
1 ] ≤ H(P |R) + 1

2‖h‖
2
G(P ).

From the same calculation, with −h and λh with λ > 0, it yields :

λ
∣∣∣EP [Nh

1 ]
∣∣∣ ≤ H(P |R) + λ2

2 ‖h‖G(P ), ∀h ∈ H(P ) ∩H(R). (7.2.12)

For ‖h‖G 6= 0, we can take λ =
√

2H(P |R)‖h‖−1
G and we obtain :∣∣∣EP [Nh

1 ]
∣∣∣ ≤ √2H(P |R)‖h‖G (7.2.13)

Letting λ tends to 0 in (7.2.12), this inequality remains valid for ‖H‖G = 0. So the
linear form h 7→ EP [Nh

1 ] is continuous on H(P )∩H(R). This set is dense in H(P )
because it contains the dense set of simple functions

h : (t, ω) ∈ [0, 1]× Ω 7→
k∑
i=1

σ(Xt)hi1]Si,Ti],

with k ∈ N, (hi)1≤i≤k ∈ Rn and Si < Ti ≤ Si+1 stopping times.
So, there exists a unique extension as linear form on H(P ). By Riesz rep-

resentation theorem, there exists a process β ∈ H(P ), dual of this linear form,
i.e

EP
[∫ 1

0
〈df, dRmXt〉

]
= EP

[∫ 1

0
〈df, dAt(βt ⊗ .)〉

]
. (7.2.14)

Then, under P ,X is a semi-martingale with quadratic variationA and driftA(β ⊗ ·).
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The Léonard approach of Girsanov theory allow to obtain an explicit expres-
sion of the density dP

dR
, under an uniqueness condition. For any probability mea-

sure Q ∈ P(Ω), we denote by Q0 = X0#Q the law of the initial position X0
under Q. For a stopping time τ , we denote Xτ the stopping process Xτ

t = Xt∧τ
and Qτ = X[0,τ ]#Q its law.

Definition 7.2.5 (Condition (U)). A measure Q ∈MP(B,A) satisfies the unique-
ness condition (U) if for any measure Q′ ∈ MP(B,A) such that Q′0 = Q0
and Q′ � Q then Q′ = Q

The measures of solutions of a SDE with Lipschitz coefficients satisfy the con-
dition (U). This property has some stability under stopping.

Proposition 7.2.6. Assume that Q ∈MP(B,A) satisfies the condition (U). For
all stopping time τ , the law Qτ fulfils (U) too.

Proof. By assumption, Qτ ∈ MP(B,A). Let P ∈ MP(B,A) such that P0 = Qτ
0

and P � Qτ . We want to show that P = Qτ . By disintegration, we have :

Q = Q[0,τ ] ⊗Q
(
.|X[0,τ ]

)
. (7.2.15)

We define the auxiliary measure P̃ := P[0,τ ] ⊗Q
(
.|X[0,τ ]

)
. Remarks that P̃ τ = P .

The measure P̃ satisfies P̃0 = Q0 and P̃ � Q. If we prove that it also satisfies
the martingale problemMP(B,A), then the property (U) applied to Q will show
that P̃ = Q and P = P̃ τ = Qτ . For all f ∈ C∞c (M), let (σn)n be a localizing
sequence for M f . We have :

EP̃ [f(Xσn
t )− f(Xσn

0 )] = EP̃ [1t≥τ (f(Xσn
t )− f(Xσn

τ ))]
+ EP̃ [1t≥τ (f(Xσn

τ )− f(Xσn
0 ))]

+ EP̃ [1t<τ (f(Xσn
t )− f(Xσn

0 ))] .

The two last terms are Fτ -measurable and on this σ-field, P̃ coincides with Q.
So we have :

EP̃ [1t<τ (f(Xσn
t )− f(Xσn

0 ))] = EQ [1t<τ (f(Xσn
t )− f(Xσn

0 ))]
= EQ [1t<τ (f(Xσn

t∧τ )− f(Xσn
0 ))]

EP̃ [1t≥τ (f(Xσn
τ )− f(Xσn

0 ))] = EQ [1t≥τ (f(Xσn
t∧τ )− f(Xσn

0 ))]

Hence, for the sum of these two terms, we have :

EP̃ [1t≥τ (f(Xσn
τ )− f(Xσn

0 ))] + EP̃ [1t<τ (f(Xσn
t )− f(Xσn

0 ))]
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= EP [(f(Xσn
t∧τ )− f(Xσn

0 ))]

= EP
[∫ t∧τ

0
〈df, dBs〉+ 1

2

∫ t∧τ

0
〈∇2f, dA〉

]
= EP̃

[∫ t∧τ

0
〈df, dBs〉+ 1

2

∫ t∧τ

0
〈∇2f, dA〉

]

For the first term, we have :

EP̃ [1t≥τ (f(Xσn
t )− f(Xσn

τ ))]

=
∫

Ω
EQ

[
1t≥τ (f(Xσn

t )− f(Xσn
τ )) |X[0,τ ] = η

]
P (dη)

=
∫

Ω
EQ

[
f(Xσn

t )− f(Xσn
t∧τ ))|X[0,τ ] = η

]
P (dη)

=
∫

Ω
EQ

[∫ t

t∧τ
〈df, dBs〉+ 1

2

∫ t

t∧τ
〈∇2f, dA〉

∣∣∣∣X[0,τ ] = η
]
P (dη)

= EP̃
[∫ t

t∧τ
〈df, dBs〉+ 1

2

∫ t

t∧τ
〈∇2f, dA〉

]

Taking the limit of the localizing sequence as n→∞, we have :

EP̃ [f(Xt)− f(X0)] = EP̃
[∫ t

0
〈df, dBs〉+ 1

2At(∇
2f)

]
. (7.2.16)

This shows that P̃ is inMP(B,A) and ends the proof.

Theorem 7.2.7. (density dP
dR

) With the notations of Theorem 7.2.2, if R satisfies
the condition (U), then

dP

dR
= 1 dP

dR
>0
dP0

dR0
(X0) exp

(∫ 1

0
〈βt, dPmXt〉 −

1
2A1(β ⊗ β)

)
. (7.2.17)

The proof of this theorem is divided in three parts. Firstly, we recall a well-
known change of measure formula, for the stopped process. Then, we prove a
weaker version of Theorem 7.2.7, in the case of equivalent measure. The proof is
ended by a regularisation argument. We need to introduce some notations.

Let γ be an adapted process in T ∗M such that A1(γ ⊗ γ) < ∞, R-a.s. We
define a stochastic integral process associated to γ:

Nt =
∫ t

0
〈γs, dRmXs〉, 0 ≤ t ≤ 1, (7.2.18)

its stochastic exponential Zt = E(N)t and the stopping times family :

σk = inf {t ∈ [0, 1] : At(γ ⊗ γ) ≥ k} , k ≥ 1. (7.2.19)
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For a probability Q, we denote by Qk the law Xσk
# Q and Zk the stopped pro-

cess Zσk .

Lemma 7.2.8. For all k ≥ 1, Zk is a Rk martingale and the measure

Qk = Zk
1R

k

is a probability measure inMP(B̃k, Ak) where B̃ = B + A(γ ⊗ .).

Proof. The process Zk is a positive local martingale for Rk. From Lemma 7.2.4,
Zk is also a super-martingale. For all p > 0, we have :

E(N)pt ≤ epNt ≤ ekp
2/2E(pN)t, Rka.s. (7.2.20)

As E(pN) is also a Rk super-martingale, we have :

ERk [E(N)pt ] ≤ ekp
2/2ERk [E(pN)t] ≤ ekp

2/2 <∞. (7.2.21)

For p > 1, we can deduce that Zk is uniformly integrable and using Lemma 7.2.4
again, Zk is a Rk-martingale. In particular, we have : ERk [Zk

1 ] = 1. Hence, Qk

is a probability measure. The quadratic variation of X under R is A so it is Ak
under Rk. As Qk is absolutely continuous with respect to Rk, then the quadratic
variation of X with respect to Qk is Ak.

Let f ∈ C∞c (M), (τn)n a localizing sequence and t ∈ [0, 1], we have :

EQk [f(Xτn
t )− f(Xτn

0 )] = ERk
[
Zk
t f(Xτn

t )− Zk
0 f(Xτn

0 )
]

= ERk
[∫ t

0

(
f(Xτn

s )dZk
s + Zk

s df(Xτn
s ) + d[f(Xτn), Zk]

)]
= ERk

[∫ t∧τn

0
f(Xs)Zk

s 〈γs, dRmXs〉+
∫ t∧τn

0
Zk
s 〈df(Xs), dRmXs〉

+
∫ t∧τn

0
Zk
s 〈df(Xs), dBk

s 〉+ 1
2

∫ t∧τn

0
Zk
s dA

k
s(∇2f)

+
∫ t∧τn

0
Zk
s dA

k
s(γ ⊗ df(X))

]
= ERk

[∫ t∧τn

0
Zk
s 〈df(Xs), dBk

s 〉+ 1
2

∫ t∧τn

0
Zk
s dA

k
s(∇2f)

+
∫ t∧τn

0
Zk
s dA

k
s(γ ⊗ df(X))

]
= ERk

[
Zk
t∧τn

∫ t

0
〈df(Xτn

s ), dBk
s 〉+ 1

2Z
k
t∧τnA

k
t∧τn(∇2f)

+Zk
t∧τnA

k
t∧τn(γ ⊗ df(X))

]
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Taking the limit in the localising sequence, we have :

EQk [f(Xt)− f(X0)] = EQk
[∫ t

0
〈df(Xs), dBk

s + Aks(γ ⊗ .)〉+ 1
2A

k
t (∇2f)

]
.

So we proved that Qk ∈MP(B̃k, Ak).

Remark 7.2.9. As seen in the proof, this lemma remains true for any measure R
in anyMP(B′, A′) and not only our reference measure R.

Now, we have the tools to prove a weak version of Theorem 7.2.7, under abso-
lutely continuous condition.

Lemma 7.2.10. Let P and β be as in Theorem 7.2.7 and assume that P ∼ R.
Then for all k ≥ 1, we have :

dP

dR
(X) = dP0

dR0
(X0) exp

(∫ 1

0
〈βt, dRmXt〉 −

1
2A1(β ⊗ β)

)
, R-a.s.

Proof. By conditioning with respect to the initial position X0, we can assume
that P0 = R0. For all k ≥ 1, we define the stopping time

τk = inf {t ∈ [0, 1] : At(β ⊗ β) > k}

and the measures

Qk = E
(∫ .

0
〈−βs, dRmXs〉

)
τk∧1

P k,

P̃ k = E
(∫ .

0
〈βs, dRmXs〉

)
τk∧1

Rk,

Q̃k = E
(∫ .

0
〈−βs, dRmXs〉

)
τk∧1

P̃ k.

The idea of the roof is to give two different expressions of Rk, using the uniqueness
condition (U) and to compare these expressions. Remark that β ∈ H(P )∗ is
stronger than A1(β ⊗ β) < ∞, so we can use Lemma 7.2.8 and these measure
are probability measures. More precisely, Qk is a probability inMP(Bk, Ak) and
using the condition (U) for R and Lemma 7.2.6, we have : for all k ≥ 1, Rk = Qk.
Similarly, we have P̃ k ∈ MP(Bk + B̂k, Ak) and Q̃k ∈ MP(Bk, Ak). Using again
the condition (U), we have : Q̃k = Rk. So, we have Qk = Q̃k. Since the stochastic
exponential is positive, this means that : P k = P̃ k, i.e

P k = E
(∫ .

0
〈βs, dRmXs〉

)
τk∧1

Rk, ∀k ≥ 1. (7.2.22)
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So we have :

1[0,τk∧1]
dP k

dRk
(X) = 1[0,τk∧1] exp

(∫ 1

0
〈βt, dRmXt〉 −

1
2A1(β ⊗ β)

)
, R-a.s. (7.2.23)

We denote by τ the limit of τn. As β ∈ H(P ), τ = ∞P -a.s and as P and R
are equivalent, τ = ∞ R-a.s too. Then, for R almost ω, there exists a k0 such
that τk0(ω) > 1. Using the previous equation with k = k0, we have :

dP

dR
(ω) = exp

(∫ 1

0
〈βt, dRmXt〉 −

1
2A1(β ⊗ β)

)
(ω). (7.2.24)

Remark that Until equation (7.2.23), the assumption P ∼ R is not used. We
need it to defined the stopping times τk R-a.s. To conclude the proof of Theo-
rem 7.2.7, we use a regularization argument : we prove the result for a sequence
of measures absolutely continuous with respect to R, which converges to P .

Proof of Theorem 7.2.7. For n ≥ 1, we consider the probability

Pn =
(

1− 1
n

)
P + 1

n
R. (7.2.25)

For all n ≥ 1, we have Pn ∼ R and using the convexity of the entropy, we
have : H(Pn|R) ≤ H(P |R) < ∞. Let us prove that Pn converges to P . It can
be checked that 1 dP

dR
≥1 log

(
dP
dPn

)
and 1 dP

dR
<1 log

(
dP
dPn

)
are respectively decreasing

and increasing sequence of functions. By the monotone convergence theorem, we
have :

lim
n→∞

H(P |Pn) = lim
n→∞

∫
Ω

log( dP
dPn

) dP

= lim
n→∞

∫
dP
dR
≥1

log( dP
dPn

) dP + lim
n→∞

∫
dP
dR
<1

log( dP
dPn

) dP

= 0

By Theorem 7.2.2, there exists vector fields β and βn defined P -a.s and R-a.s
respectively, such that EP [A1(β⊗β)] <∞, EPn [A1(βn⊗βn)], P ∈MP(B+ B̂, A)
and Pn ∈MP(B + B̂n, A), where B̂n

t = At(βn ⊗ .). In Itô’s notation, we have :

dPnm Xt = dPmXt + dAt ((β − βn)⊗ .) . (7.2.26)

We extend arbitrarily β by 0 on the P -null set to have a process defined R-a.s. It
is then possible to consider the Pn local martingale

Yt = E
(∫ .

0
〈βs − βns , dPnm Xs〉

)
t
. (7.2.27)
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From Lemma 7.2.4, Y is a Pn super-martingale so EPn [Y1] ≤ 1. Using a last time
the variational view of the entropy 7.2.1, we have :

H(P |Pn) ≥ EP
[∫ 1

0

〈
(βt − βnt , dPnm Xs

〉
− 1

2A1 ((β − βn)⊗ (β − βn))
]
− logEPn [Y1]

≥ EP
[∫ 1

0

〈
(βt − βnt , dPmXs + dAs ((β − βn)⊗ .)

〉
−1

2A1 ((β − βn)⊗ (β − βn))
]

≥ 1
2EP [A1 ((β − βn)⊗ (β − βn))] .

Together with the entropy convergence, we obtain the estimation :

lim
n→∞

EP [A1 ((β − βn)⊗ (β − βn))] = 0. (7.2.28)

As Pn → P in total variation convergence, up to extraction, we have dPn
dR
→ dP

dR

and dPn,0
dR
→ dP0

dR
R-a.s. Besides, the estimation (7.2.28) prove the convergence P

almost surely

exp
(∫ 1

0
〈βnt , dRmXt〉 −

1
2A1(βn ⊗ βn)

)
→ exp

(∫ 1

0
〈βt, dRmXt〉 −

1
2A1(β ⊗ β)

)
.

(7.2.29)
This ends the proof.

As corollary, we have a link between the entropyH(P |R) and the norm ‖β‖G(P ).
Corollary 7.2.11. With the assumptions of Theorem 7.2.4, we have :

H(P |R) = H(P0|R0) + 1
2‖β‖G(P ).

Proof. From equation (7.2.23), we have :

H(P k|Rk) = EPk [log dP
k

dRk
]

= EP [log dP0

dR0
] + EPk [

∫ 1

0
〈βs, dRmXs〉 −

1
2A1(β ⊗ β)]

= H(P0|R0) + EPk [
∫ 1

0
〈βs, dRmXs − dAs(β ⊗ ·)〉+ 1

2A1(β ⊗ β)]

= H(P0|R0) + 1
2EP [A1∧τk(β ⊗ β)]

By monotonicity, the expectation on the right side converges to ‖β‖G(P ). Using a
variational characterisation of the entropy, the left side converges to H(P |R).
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7.3 Semi-martingale properties
In this section, we apply the Girsanov theory of Section 7.2 to Brenier-Schrödinger
problem. We obtain a characterisation of solution as semi-martingales and an
expression of the density with respect to R. The notion of stochastic velocity,
introduced by Nelson in [65] make a link between minimization of entropy and
minimization of some kinetic energy, as in the Brenier problem.

The reference measure of Brenier-Schrödinger problem is the reversible reflected
Brownian motion defined in (6.5.2). Using notations of the previous section, it is
a semi-martingale measure with drift

dBt(ω) = νωtdLt(ω)

and quadratic variation

dAt(·, ω) = aTrace (σ(ωt) · ⊗σ(ωt)·) dt

for all ω ∈ Ω and t ∈ [0, 1]. As an application to Theorem 7.2.2, we have the first
characterisation as semi-martingale of solutions.

Corollary 7.3.1. Let P be the solution of (BS). Then P is a law of a semi-
martingale and there exists an adapted process β ∈ H(P ) such that

P ∈MP(νdLt + aβtdt, A).

Actually, according to Theorem 7.2.2, β is a T ∗M -valued process whereas the
drift A(β ⊗ ·) is a TM -valued process. The formula

dAt(β ⊗ ·, ω) =
∑
i

a〈βt(ω), σωt(ei)〉σωt(ei)dt, ∀t ∈ [0, 1], ∀ω ∈ Ω, (7.3.1)

Gives an identification between T ∗M and TM and from now, β will be interpreted
as a drift operator. It is the velocity part of the drift. Nelson introduced in [65]
the notion of stochastic velocity (also known as mean derivative) for real process.
A generalisation of this notion to manifold can be found in [43]. Let t ∈ [0, 1], Xt

does not belong to ∂M P -a.s. So the exponential map is a local diffeomorphism
between a neighbourhood N(Xt) ⊂ TXtM and U(Xt) ⊂M P -a.s and the stopping
time

τt = inf {h ≥ 0 : Xt+h ∈ U(Xt)} (7.3.2)

is positive. It allows us to define mean derivatives in a manifold with boundary.
For x ∈M and y ∈ U(x), −→xy denotes the vector logx(y) ∈ TxM .
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Definition 7.3.2. The forward stochastic velocity of P is the adapted vector field
process ⇀

v
P

: [0, 1]× Ω→ TM defined by :

⇀
v
P

t = lim
h→0+

1
h
EP

[−−−−−−→
XtXt+h∧τt |X[0,t]

]
,

providing that the following limits exists in some sense.

In the case of [5], the drift of P is equal to is forward stochastic velocity. In
our case, the reflection part plays apart.

Proposition 7.3.3. The measure P admit a forward stochastic velocity and we
have :

⇀
v
P

t = aβt, P ⊗ dt-a.s. (7.3.3)

Proof. From Corollary 7.3.1, we have : dXt = dPmXt + aβtdt + νXtdLt P -a.s.
Let t ≥ 0 and η ∈ C([0, t],M) such that x = ηt /∈ ∂M . Applying Ito formula
to logx, we have :

EP
[−−−−−−→
XtXt+h∧τt |X[0,t] = η

]
=EP

[∫ h∧τ

0
〈d logx(Xs), aβs(X)〉 ds

+
∫ h∧τ

0

a

2∆ logx(Xs) ds
∣∣∣∣∣X[0,t] = η

]
.

The inversion of integral and limits are guaranteed by the compactness of M and
regularity of logx. Besides, from Proposition, 2.1.4, we have d logx(x) = idTxM
and ∆ logx(x) = 0. This ends the proof.

This result could also be applied to the measures Rx and P x. It proves that
the velocities x⇀

v , defined as the stochastic velocities of P x, are equals to aβx

where βx ∈ H(P x). Using the measurability of Doob-Meyer decomposition (see [67]
for instance) and the disintegration of P with respect to the initial position, it turns
out that

⇀
v
P

=X0⇀
v P -a.s. (7.3.4)

We now are interested to the density of the solution P with respect to R.
For that, we need to check that R satisfies the condition (U). Actually, from the
uniqueness of solution in the Skorokhod problem (6.5.2), R verifies this condition
and we have the following corollary.

Corollary 7.3.4. The density of P is given by

dP

dR
= 1{ dP

dR
>0}

dP0

dR0
(X0) exp

(∫ 1

0
〈βt, dPmXt〉 −

a

2

∫ 1

0
|βs|2 ds

)
.
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This formula establish a link between the velocity and the density. Remark
that the reflection part does not play a role in the density. It will be very useful
in the kinematic study of the following chapter. We finish this section with the
interpretation of Corollary 7.2.11 for the Brenier-Schrödinger problem.

Corollary 7.3.5. The relative entropy of the solution P is given by :

H(P |R) = H(π0|R0) + 1
2aEP

[∫ 1

0
| ⇀v

P

t |2 dt
]
.

This link between entropy and stochastic velocity is known for a long time
(see [77]). The interpretation of this formula as a parallel between the Brenier
problem and the Brenier-Schrödinger problem can be found in [5]. Indeed, the
Brenier problem is a minimisation of a classical kinetic energy : E[

∫ 1
0 Ẋ

2
t dt]. Here,

the minimisation of entropy is equivalent to minimization of a stochastic kinetic
energy. The entropy formulation of the problem allows us to use convex optimi-
sation tools but to understand the problem, we must keep in mind that it is a
Lagrangian minimisation.

7.4 Reciprocal solution
After the semi-martingale point of view, in this last section, we present the char-
acterisation of a solution as reciprocal measure. The goal of this section is to
complete the characterisation of the solution and to prepare the study of its veloc-
ity in Chapter 8. Results presented in this section come from [5] and [16]. Before
the main theorem, let us recall some vocabulary.

Definition 7.4.1. A path measure Q ∈ P(Ω) is called reciprocal if

• Qt is σ-finite for all t ∈ [0, 1],

• for any 0 ≤ s ≤ u ≤ 1 and A ∈ σ(X(0,s)), B ∈ σ(X(s,u)) and C ∈ σ(X(u,1)),

Q(A ∩B ∩ C|Xs, Xu) = Q(A ∩ C|Xs, Xu)Q(B|Xs, Xu).

Intuitively, this property says that conditionally to the time s an t, events
in [s, t] and events outside ]s, t[ are independent. It is a weaker property than
being a Markov measure. If Q is reciprocal, then Q(·|X0) and Q(·|X1) are Markov
measures. Indeed, if we denote Q̃ = Q(·|X0), for t ≥ 0, A ∈ σ(X[0,t]) and b ∈ σ[t,1]),
we have :

Q̃(A ∩B|Xt) = Q(A ∩B|X0, Xt)
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(a)= Q(A|X0, Xt)Q(B|X0, Xt)
= Q̃(A|Xt)Q̃(B|Xt)

where we use the definition of reciprocal measure in (a). Then, Q̃ is Markovian.
Reciprocal measures are particular cases of conditionable path measures : a good
class of measure for which we can defined conditional expectation (see [56]).

The second notion we need to introduce is the additive functional.

Definition 7.4.2. A measurable function A[0,1] : Ω → [−∞[ is an additive func-
tional if for any finite partition [0, 1] = ⊔

k Ik with intervals, there exists func-
tions Ak, σ(XIk)-measurable such that

A[0,1] =
∑
k

Ak(XIk)R-a.s.

in the following we will denoteA[0,1] = A(X[0,1]). An example of such functional
is given by an integral :

A(X[0,1]) =
∫

[0,1]
pt(Xt) dt, (7.4.1)

for some p : [0, 1]× Ω→ [−∞,+∞[.

Theorem 7.4.3 ([5]). The solution P is reciprocal and there exist an [−∞,+∞[-
valued σ(XT )-measurable additive functional A(XT ) and a measurable function η
such that

P = exp(A(XT ) + η(X0, X1))R,

with the convention exp(−∞) = 0.

In the particular case where T is a finite set, it is also shown in [16] that A has
the integral form :

A(XT ) =
∑
s∈T

θs(Xs), (7.4.2)

where for all s ∈ T , θs : m→ [−∞,+∞[ is measurable. This discrete case can be
interesting when it come to simulations. This problem have been broached by [17]
in toruses, with Sinkhorn algorithm. Their proof implies some Gaussian estimates
of the heat kernel, satisfied in a space as Tn.
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Chapter 8

Kinematic of regular solutions

We derived the equation satisfied by the stochastic velocities of a solution. We
partially recover Navier-Stokes equations for the backward velocity and the
incompressibility for the current velocity.

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Regular solutions . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Forward kinematic . . . . . . . . . . . . . . . . . . . . . . 117
8.4 Backward kinematic . . . . . . . . . . . . . . . . . . . . . 121
8.5 Continuity equation . . . . . . . . . . . . . . . . . . . . . 123

8.1 Introduction
In this chapter, we assume that the problem (BS) admit a regular solution and
we study the kinematic characteristic of such a measure. As seen in the previous
chapter 7, a solution of (BS) can be determined either by its drift as a semi-
martingale (it is the Girsanov point of view), or by a additive functional A(XT )
and some function η as the reciprocal measure exp(A(XT ) + η(X0, X1)) (it is the
reciprocal measure point of view). We want to make a link between these visions
under some regularity assumption. In the case of the Brenier problem, the solution
satisfies,in some sense, the Euler equation. The goal of this chapter is to show that
some characteristic quantities satisfy the Navier-Stokes equation. It extends the
work in [5] which study the kinematic in Rn and in torus Tn. The main originality
is the behaviour of velocity at the boundary.
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Let us summarise this chapter. In Section 8.2, we explain the regularity as-
sumptions we add to our problem and we introduce the notion of regular solution.
In Section 8.3, we derive the equation satisfied by the forward stochastic velocity.
This characteristic quantity turns out to be not very relevant to fulfil our goal. In
Section 8.4, we defined the notion of backward stochastic velocity. The link be-
tween forward and backward velocity allows us to prove that it partially satisfies
Navier-Stokes equation. We finish in Section 8.5 with continuity equation. We
have to introduce a new characteristic quantity : the current velocity.

8.2 Regular solutions
In this section, we introduce the notion of regular solution. Firstly, we need some
regularity on the BS problem itself. Let T ⊂ [0, 1] be a finite union of intervals and
S finite subset of ]0, 1[. This make a partition between regular times and shocking
times. We are looking to the refined Brenier-Schrödinger problem :

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt, ∀t ∈ T ∪ S], Q01 = π, (8.2.1)

with the usual assumption on (µt)t∈T ∪S . A regular solution of the (BS) problem
is a solution which can be written as

P = exp
(
η(X0, X1) +

∑
s∈S

θs(Xs) +
∫
T
pt(Xt) dt

)
R. (8.2.2)

for some functions η : M2 → R, p : T ×M → R and θs : M → R for all s ∈ S
such that the functions ψx defined in 8.3.1 below is well-defined, C2 in space
and piecewise C1 in time. The specific form of A comes from a dual-primal prob-
lem result explained in [5]. The function p as to be seen as a pressure field and
the functions θs as shock potentials. There is no general result for the existence
of pressure field but we can cite the recent work of [15] on the existence of a
pressure for the Brenier-Schrödinger problem in the n-dimensional torus with the
constraint µt = vol for all t ∈ [0, 1]. An other close result of existence has been
cited in Chapter 7 for the discrete problem. The existence of a regular solution P
is an additional assumption we make for the following sections.

8.3 Forward kinematic
In this section, we calculate the equation satisfied by the forward stochastic ⇀

v
P
.

We can foresee from [5] that this velocity will not fulfil all our expectation but this
calculation prepare the study of the backward velocity. From Corollary 7.3.1, we
recall that the forward stochastic velocity has the form ⇀

v
P

= aβP ∈ H(P ).
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Lemma 8.3.1. The vector field βP satisfies

〈βPt , dRmXt〉 −
a

2
∣∣∣βPt ∣∣∣2 dt = 1S(t)θt + ptdt+ dψX0

t (Xt), 0 ≤ t ≤ 1, P -a.s

where the function ψ is defined for any t ∈ [0, 1] and x, z ∈M by

ψxt (z) = logERx
exp

η(x,X1) +
∑

s∈S,s>t
θs(Xs) +

∫
T ∩]t,1]

pr(Xr) dr
∣∣∣∣∣∣Xt = z

 .
(8.3.1)

Proof. The idea of the proof is to compare two expressions of the density of P
with respect to R : the first given by Girsanov’s theorem and the second by the
definition of regular solutions. There is two steps for comparing these expressions.
First, we disintegrate the measures with respect to the initial position so as to
work with Markov measures. Then we calculate the restriction of the density to
the σ-field Ft = σ(Xu/0 ≤ u ≤ t) :

dP x
[0,t]

dRx
[0,t]

= ERx
[
dP x

dRx

∣∣∣∣∣Ft
]
. (8.3.2)

On one hand, from Corollary 7.3.1, the density is :

dP

dR
= dP0

dR0
(X0) exp

(∫
[0,1]
〈βP , dmXt〉 −

a

2

∫
[0,1]

∣∣∣βPt ∣∣∣2 dt
)
, P -a.s. (8.3.3)

Then, by restriction to Ft, for all 0 ≤ t ≤ 1 and P0-almost x ∈M , we have :

dP x
[0,t]

dRx
[0,t]

= exp
(∫ t

0
〈βxs , dmXs〉 −

a

2

∫ t

0
|βxs |

2 ds
)
, P x-a.s. (8.3.4)

On the other hand, from the definition of regular solutions, we know that P
has the form (8.2.2). By disintegration, for R0-almost x ∈M , we have :

dP x

dRx
= exp

(
η(x,X1) +

∑
s∈S

θs(Xs) +
∫
T
pt(Xt) dt

)
, Rx-a.s. (8.3.5)

Then, conditioning with respect to Ft and using the Markov property of Rx, we
have :

dP x
[0,t]

dRx
[0,t]

= ERx
[

exp
(
η(x,X1) +

∑
s∈S

θs(Xs) +
∫
T
pr(Xr) dr

)∣∣∣∣∣Ft
]

= exp
∑
s≤t

θs(Xs) +
∫
T ∩[0,t]

pr(Xr) dr
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× ERx
[

exp
(
η(x,X1) +

∑
s>t

θs(Xs) +
∫
T ∩]t,1]

pr(Xr) dr
)∣∣∣∣∣Ft

]

= exp
 ∑
s∈S,s≤t

θs(Xs) +
∫
T ∩[0,t]

pr(Xr) dr + ψxt (Xt)
 , Rx-a.s.

Now, we can confront both expressions of the differential of dP
x
[0,t]

dRx[0,t]
and we obtain,

for P0-almost x ∈M :

βxt d
Rx

m Xt −
a

2 |β
x
t |

2 dt = 1S(t)θt + ptdt+ dψxt (Xt), 0 ≤ t ≤ 1, P x-a.s. (8.3.6)

as required.

Theorem 8.3.2. Assume that P is regular with parameters η, θ and p, then for
P0-almost x ∈ M , the function ψx defined by 8.3.1 is a classical solution of the
second-order Hamilton-Jacobi equation :

[∂tψx −
a

2∆ψx + a|∇ψx|2 + 1T (t)p](t, z) = 0, 0 ≤ t < 1, t /∈ S, z ∈M,

ψx(t, .)− ψx(t−, .) = −θt(.), t ∈ S,
〈∇ψx(., z), ν(z)〉 = 0, z ∈ ∂M,

ψx(1, .) = η(x, .), t = 1.

(8.3.7)

Besides, the velocity vector field satisfies :
⇀
v
P

t (X) = a∇ψX0
t (Xt), P -a.s. (8.3.8)

where ∇ψX0
t (Xt) stands for ∇zψ

x
t (z)|x=X0,z=Xt.

Proof. According to Corollary 7.3.1, we have : dPmXt = dRmXt − aβtdt P -a.s. So,
disintegrating with respect to X0, Lemma 8.3.1 gives for P0-almost x ∈M and all
0 ≤ t ≤ 1 :

dψxt (Xt) = 〈βxt , dP
x

m Xt〉+
(
a

2 |β
x
t |2 − pt(Xt)

)
dt− 1S(t)θt(Xt), P x-a.s. (8.3.9)

On the other hand, with our regularity assumptions, the semi-martingale (ψx(Xt)t
satisfies the Itô formula. For all 0 ≤ t ≤ 1, xe have :

dψxt (Xt) =[ψxt − ψxt− ](Xt) +
〈
∇ψxt (Xt), dP

x

m Xt

〉
+ 〈∇ψxt (Xt), aβxt 〉 dt

+ 〈∇ψxt (Xt), νXt〉 dLt +
(
a

2∆ + ∂t

)
ψxt (Xt)dt, P x-a.s.
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The Doob-Meyer decomposition of semi-martingale allows the identifications
in previous equations :

βxt = ∇ψxt (Xt), dtP x-a.s.
− 1S(t)θt(Xt) = [ψxt − ψxt− ](Xt), P x-a.s.
a

2 |β
x
t |2 − pt(Xt) = 〈∇ψxt (Xt), aβxt 〉+

(
a

2∆ + ∂t

)
ψxt (Xt), dtP x-a.s.

〈ψxt (Xt), νXt〉1∂M(Xt) = 0, dtP x-a.s.

(8.3.10)

As the function ψx is assumed regular, we obtain :

βPt = ∇ψω0(ωt), 0 ≤ t ≤ 1, ω ∈ Ω
− θt(z) = [ψxt − ψxt− ](z), t ∈ S, x, z ∈M(
a

2∆ + ∂t

)
ψxt (z) + a

2 |∇ψ
x
t (z)|2 + 1T (t)pt(z) = 0, t ∈ [0, 1[\S, x, z ∈M

〈ψxt (z), νz〉 = 0, 0 ≤ t ≤ 1, x ∈M, z ∈ ∂M
(8.3.11)

This ends the proof.

The function ψx plays the role of a scalar potential of the stochastic velocity x⇀
v .

By definition, we know that ⇀
v
P
∈ H(P ) is adapted but we now have a much

stronger result :
⇀
v
P

t (X) =⇀
v
P

t (X0, Xt). (8.3.12)

The equation satisfied by ⇀
v
P
is obtained by taking the gradient in (8.3.7). We

denote by δ the adjoin of the exterior differential in L2. The Hodge-de Rham
Laplacian, denoted by � is defined as −(dδ+ δd). It satisfies the classical commu-
tation formula :

d∆ = �d.

This relation explains why � arises as a natural Laplacian on vector fields.

Corollary 8.3.3. For P0 almost all x ∈ M , the forward stochastic velocity x⇀
v

satisfies :

(
∂t +∇x⇀

v

)
x⇀
v = −a2�

x⇀
v −1T∇ap, 0 ≤ t < 1, t /∈ S, z ∈M,

x⇀
v t −

x⇀
v t−= −θt(.), t ∈ S,Z ∈M

〈x⇀v , ν(z)〉 = 0, z ∈ ∂M,
x⇀
v 1= ∇η(x, .), z ∈M.

(8.3.13)
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This result need some remarks. The first equation has to be interpreted as
Newton second law applied to a system. The second equation describes the evo-
lution at shock times. The third describe the behaviour at the boundary of our
domain. the fourth is the initial condition of the problem. Tho begin with the
good point, the third equation in (8.4.3) shows that the velocity is tangent to
the boundary of our domain. So the forward stochastic velocity ⇀

v satisfies the
impermeability condition. Now, looking at the first equation of the system, we
recognized a convective acceleration term and a gradient of a pressure field but
the term a� appears with the wrong sign. Then it cannot be interpreted as the
action of a viscous force. Furthermore, x⇀v does not seem to satisfy any continu-
ity equation. Then it appears that the forward velocity is not the most relevant
quantity to study. Remark that for any measure Q defined as (8.2.2), the previ-
ous results are still satisfied, with the corresponding parameters η, θ and p. This
makes the previous calculation useful for the study another characteristic velocity.

8.4 Backward kinematic
In this section, we introduce the backward velocity. It has been introduced as the
forward one by Nelson. It is an mean velocity, knowing the future. The idea is
to proceed to a time inversion. As a by-product of the previous section, we show
that this velocity satisfies the Newton part of Navier-Stokes equation.

Definition 8.4.1. Using the notations of Definition 7.3.2, the backward stochastic
velocity ↼

v
P
is the process defined by :

↼
v
P

t = lim
h→0+

1
h
EP

[−−−−−−→
Xt−h∧τtXt|X[t,1]

]
,

providing that the following limits exists in some sense.

Similarly as for the forward velocity, we have a disintegration of ↼v
P
with respect

to the final position : for all y ∈M , we denote
↼y
v =↼

v
P (·|X1=y)

(8.4.1)

There is a strong link between forward and backward stochastic velocity through
time-reversed transformation. We denote by X∗ the time-reversed coordinate pro-
cess : X∗t = X1−t for all t ∈ [0, 1]. Let P ∗ be the time-reversed measure X∗#P . For
all t ∈ [0, 1], we have :

↼
v
P

t = − ⇀
v
P ∗

1−t ◦X∗. (8.4.2)

For all t ∈ [0, 1], as ⇀
v t can be seen as functions of only X[0,t],

↼
v t can be seen as a

function of X[t,1].
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Theorem 8.4.2. For P0 almost all y ∈ M , the backward stochastic velocity ↼y
v

satisfies :

(
∂t +∇↼y

v

) ↼y
v = a

2�
↼y
v −1T (t)∇ap, 0 ≤ t < 1, t /∈ S, z ∈M,

↼y
v t −

↼y
v t−= θt(.), t ∈ S, z ∈M,

〈
↼y
v , ν(z)〉 = 0, z ∈ ∂M,
↼y
v 0= −∇η(., y), z ∈M.

(8.4.3)

Furthermore, there exist a scalar potential ϕy satisfying a second order Hamilton-
Jacobi equation, such that

↼
v
P

t (X) = −a∇ϕX1
t (Xt), P -a.s. (8.4.4)

Proof. The reference measure R is reversible : R = R∗. Then, the measure P ∗ has
the form

P ∗ = exp
(
η ∗ (X0, X1) +

∑
s∈S∗

θ∗s(Xs) +
∫ ∗
T
p∗t (Xt) dt

)
R, (8.4.5)

where η ∗ (x, y) = η(y, x), S∗ = {1 − s : s ∈ S}, θ∗s = θ1−s, T ∗ = {1 − t : t ∈ T }
and p∗t = p1−t. By analogy with (8.2.2), we define the following function ϕy by :
for all 0 ≤ t ≤ 1, for all z ∈M ,

ϕyt (z) = logERx
exp

η∗(y,X1) +
∑

s∈S∗,s>t
θ∗s(Xs) +

∫
T ∗∩]t,1]

p∗r(Xr) dr
∣∣∣∣∣∣Xt = z

 .
(8.4.6)

According to Theorem 8.3.2, aϕy is a scalar potential of the forward stochastic
velocity y⇀

v
∗
=⇀
v
P ∗(·|X0=y)

and satisfies the system :

∂tϕ
y − a

2∆ϕy + a|∇ϕy|2 + 1∗T (t)p∗ = 0, 0 ≤ t < 1, t /∈ S∗, z ∈M,

ϕy(t, .)− ϕy(t−, .) = −θ∗t (.), t ∈ S∗,
〈∇ϕy(., z), ν(z)〉 = 0, z ∈ ∂M,

ϕy(1, .) = η∗(x, .), t = 1.

(8.4.7)

Using Equation (8.4.2), we have ↼y
v t (X) = − y⇀

v
∗
1−t (Xt) for all 0 ≤ t ≤ 1. This

ends the proof.

The system (8.4.3) is more satisfying. In its first equation, the Newton part,
all the terms can be interpreted as in Navier-Stokes equation. Also, the imperme-
ability condition is still fulfilled. However, the continuity equation seems to be out
of range for ↼

v . This is where the current velocity comes on.
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8.5 Continuity equation
In this section, we try to obtain the last part of Navier-Stokes equation : the
continuity equation. As the backward velocity does not seem to satisfy it, we
need to introduced a new characteristic velocity: the current velocity. Firstly, we
define the average forward and backward velocities ↪→

v and ←↩v . They are the mean
of forward and backward velocity with respect to the initial and final position
respectively :

↪→
v t (z) = EP

[
X0⇀
v t |Xt = z

]
and ←↩

v t (z) = EP
[
↼X1
v t |Xt = z

]
. (8.5.1)

For 0 ≤ α ≤ 1, we define the α-velocity by

vαt = (1− α) ↪→
v t +α ←↩v t, ∀t ∈ [0, 1]. (8.5.2)

It is a convex mean of the average velocities. The current velocity, denoted as vcu
is the 1/2-velocity.

Theorem 8.5.1. Assuming that T = [0, 1], the current velocity vPcu satisfies the
continuity equation

∂tµt + div(µtvcu) = 0. (8.5.3)

This equation has to be understood in distribution sense : for all f ∈ C∞c (M),

∂tµt(f) + µt(〈df, vcu〉) = 0. (8.5.4)

Proof. Let f ∈ C∞(M), and 0 ≤ t ≤ 1. On one hand, we have :

µt(f) = EP [f(Xt)]

= EP
[
f(X0) +

∫ t

0
〈df,⇀v

P

s 〉 ds+ a

2

∫ t

0
∆f(Xs) ds+

∫ t

0
〈df, νXs〉 dLs

]
= µ0(f) +

∫ t

0
µs

(
〈df, ↪→v s〉+ a

2∆f
)
ds+ EP

[∫ t

0
〈df, νXs〉 dLs

]

On the other hand, under the reversed law P ∗, X is a semi-martingale with
drift ⇀

v
P ∗

dt+ νdL∗ where the relation between ↼
v
P

and ⇀
v
P ∗

is given by (8.4.2)
and Lt(X) = L∗1−t(X∗) for all 0 ≤ t ≤ 1. We have :

µt(f) = EP ∗ [f(X1−t)]

= EP ∗
[
f(X0) +

∫ 1−t

0
〈df,⇀v

P ∗

s (X)〉 ds+ a

2

∫ 1−t

0
∆f(Xs) ds+

∫ 1−t

0
〈df, νXs〉 dL∗s(X)

]
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= EP ∗
[
f(X0) +

∫ 1

t
〈df,⇀v

P ∗

1−s (X)〉 ds+ a

2

∫ 1

t
∆f(X∗s ) ds+

∫ 1

t
〈df, νXs〉 dL∗1−s(X)

]
= EP ∗

[
f(X0)−

∫ 1

t
〈df,↼v

P

s (X∗)〉 ds+ a

2

∫ 1

t
∆f(X∗s ) ds+

∫ 1

t
〈df, νXs〉 dLs(X∗)

]
= µ1(f) +

∫ 1

t
µs

(
〈df,− ←↩v s (X)〉+ a

2∆f
)
ds+ EP

[∫ 1

t
〈df, νXs〉 dLs

]

Before differentiating, we need to show that the terms with local time are regular.
For ε > 0, we denote ∂εM the ε-tubular neighbourhood of ∂M . We have :∫ t

0
〈df, νXs〉 dLs = lim

ε→0

1
2ε

∫ t

0
〈df, νXs〉1Xs∈∂εM ds. (8.5.5)

Then, we have :

EP
[∫ t

0
〈df, νXs〉 dLs

]
= 1

2

∫ t

0
lim
ε→0

1
ε
EP [〈df, νXs〉1Xs∈∂εM ] ds

= 1
2

∫ t

0
lim
ε→0

1
ε
µs(〈df, ν〉1∂εM) ds

= 1
2

∫ t

0
µs(〈df, ν〉)

where µ denote the normalised surface measure associated to µ. It follows that for
all t ∈ [0, 1],

∂tµt(f) = µt(〈
↪→
v t, df〉+ a

2∆f) + µt(〈ν, df〉) = µt(〈
←↩
v t, df〉 −

a

2∆f)− µt(〈ν, df〉).
(8.5.6)

This ends the proof.

In the incompressible case of BS where µt = vol, the continuity equation be-
comes

div(vcu) = 0. (8.5.7)

It is the incompressibility condition of the Navier-Stokes equations.
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Chapter 9

Existence of solutions

We prove a satisfying criterion of existence of solution for the incompressible
problem in several manifolds. We give a method to construct many more example
with quotient. We explore a non-incompressible problem.

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Existence of a solution on symmetric spaces . . . . . . 126
9.3 Reflected Brownian motion in quotient space . . . . . 128
9.4 The Gaussian case . . . . . . . . . . . . . . . . . . . . . . 138

9.1 Introduction
In this chapter, we want to give examples of case where the BS problem admit a
solution. In the spirit of Theorem 6.5.2, we know that if a measure can fulfil the
entropy and marginal condition then there exists a unique solution but this does
not prove the existence of solution : it is not a verifiable criterion. In [5], this
idea was used to prove a condition of existence of solution for the incompressible
problem on a torus Tn. The highlighted criterion is the finiteness of entropy of the
endpoints measure π. Their proof is not really specific to toruses except for one
critical argument : is the law at a fixed time of a Brownian bridge, whose endpoints
are uniformly and independently distributed,the volume measure? Translations
in the torus allow to prove it with a straightforward calculation. The goals of
this chapter is to find examples of manifold with boundary admitting solutions
for the incompressible Brenier-Schrödinger problem and to investigate deeper the
conditions of existence.
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In Section 9.2, we extend the result of [5] ot torus to compact symmetric
spaces. The method is similar but the more general structure force us to use
less specific arguments. In Section 9.3, we prove haw symmetric spaces are a key
to obtain many example on manifolds with boundary, or manifolds with corner,
as parallelepiped of dimension n, or equilateral triangles. In Section 9.4 we end
with a more exotic example. There, the space is not compact and the marginal
constraint is not incompressible. It make arise an integrability condition hidden
by the compactness.

9.2 Existence of a solution on symmetric spaces
In this section, we prove the existence of solution in compact symmetric spaces.
The simplest examples of such space are toruses and spheres. A symmetric space
cannot have boundary but we will see in the next section that it is the main
ingredient to find examples of manifold with boundary. The idea of the proof is
to exhibit a measure satisfying the entropy and marginals constraints.

Let (M, g) be a compact Riemannian manifold and G the group of isometries
acting on M . We assume that the action of G is transitive. The main example
of such spaces are the globally symmetric spaces. The renormalised Riemannian
volume vol is a G-invariant probability measure on M . In this particular case,
we can prove a result of existence of a solution to the incompressible Brenier-
Schrödinger problem. The reference path measure R is the reversible Brownian
motion on the manifold M and the marginal constraint is µt = vol, for all t. We
denote by (HM) the problem

H(P |R)→ min; [Pt = vol,∀0 ≤ t ≤ 1], P01 = π. (IBS)

The idea of the proof is to find a path measure Q of finite relative entropy and
satisfying the marginal conditions.The candidate for such a measure is

Q =
∫
M3

R(.|X0 = x,X1/2 = z,X1 = y)σ(dxdzdy), (9.2.1)

with σ(dxdzdy) = π(dxdy) vol(dz) in P (M3). It extends the result in [5] of exis-
tence on the torus, using the same property of invariance of the Brownian motion
and the Riemannian volume, under isometries.

Proposition 9.2.1. The path measure Q satisfies the marginal and endpoints
constraints [Pt = vol,∀0 ≤ t ≤ 1] and P01 = π. In addition, if H(π|R01) < ∞,
then H(Q|R) <∞.

Proof. First, remark that, as R is a Markov measure, we have

R(.|X0 = x,X1/2 = z,X1 = y) = R(X[0,1/2] ∈ .|X0 = x,X1/2 = z)
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×R(X[1/2,1] ∈ .|X1/2 = z,X1 = y).

Now, let us check the endpoints constraint. Let A and B measurable subsets of
M . We have :

Q01(A×B) = Q(X0 ∈ A,X1 ∈ B)

=
∫
M3

R(X0 ∈ A|X0 = x,X1/2 = z)R(X1 ∈ B|X1/2 = z,X1 = y)σ(dxdzdy)

=
∫
M3

1A(x)1B(y)σ(dxdzdy)

= σ(A×M ×B)
= π(A×B).

So Q01 = π.
Then, we prove that Qt is G-invariant for all t. Let 0 ≤ t ≤ 1/2 and f a

bounded measurable function on M . We have∫
M
f dQt =

∫
M3

ER
[
f(Xt)|X0 = x,X1/2 = z

]
σ(dxdzdy)

=
∫
M2

ER
[
f(Xt)|X0 = x,X1/2 = z

]
vol(dx) vol(dz).

For all isometry g ∈ G, using the invariance in law of the Brownian motion and
the invariance of the Riemannian volume under isometry, we have :∫

M
f ◦ g dQt =

∫
M2

ER
[
f ◦ g(Xt)|X0 = x,X1/2 = z

]
vol(dx) vol(dz)

=
∫
M2

ER
[
f(Xt)|X0 = g(x), X1/2 = g(z)

]
vol(dx) vol(dz)

=
∫
M2

ER
[
f(Xt)|X0 = x,X1/2 = z

]
vol(dx) vol(dz)

=
∫
M
f dQt.

So Qt is a G-invariant probability on M . According to [40], vol is the only G-
invariant Radon probability measure (see Proposition 476C). So, Qt = vol, ∀0 ≤
t ≤ 1/2. The result is obtained, mutatis mutandis, for 1/2 ≤ t ≤ 1. Then, Q
satisfy the marginal constraint.

We finish by the entropy to prove the finiteness criterion. We denote

Q0,1/2,1 = Q(X0 ∈ ., X1/2 ∈ ., X1 ∈ .) (9.2.2)
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and Qxzy = Q(.|X0 = x,X1/2 = z,X1 = y). We have

H(Q|R) = H(Q0,1/2,1|R0,1/2,1) +
∫
M3

H(Qxzy|Rxzy)Q0,1/2,1(dxdzdy)

= H(σ|R0,1/2,1)

= H(σ01|R01) +
∫
M3

H(σxy|Rxy
1/2 σ01(dxdy)

= H(π|R01) +
∫
M3

H(vol |Rxy
1/2 π(dxdy)

By definition of the relative entropy, we have

H(vol |Rxy
1/2) =

∫
M

log
 d vol
dRxy

1/2

 vol(dz). (9.2.3)

We denote p the heat kernel on M . We have
dRxy

1/2

d vol (z) = p1/2(x, z)p1/2(z, y)
p1(x, y) . (9.2.4)

This quantity is continuous in x, y and z. As M is compact, the density can be
bounded uniformly in the three variables. So the relative entropy H(Q|R) is finite
if and only if H(π|R01) is finite.

As we can see, the only argument using any property of M is the proof that
the law, at a fixed time, of a Brownian bridge between to independent uniformly
distributed random variables, is the uniform measure vol. It seems hat on any
space satisfying that, we can obtain the same result of existence by the same
argument. It would be interesting to understand what is occurring in a space
without this property.

As a corollary of 6.5.2 and Proposition 9.2.1, we have the following criterion of
existence.

Corollary 9.2.2. The Brenier-Schrödinger problem IBS admits a unique solution
if and only if H(π|R01) <∞.

9.3 Reflected Brownian motion in quotient space
We shall describe here a relation between the Brenier-Schrödinger problem on
compact Riemannian manifolds and on some quotients of these. For instance,
we want to see the n-hypercube as a quotient of the torus Tn (see Figure 9.1)
or a curved n-ball as a quotient of the sphere Sn. In particular, we will allow
singularities for the boundaries and talk about boundaries with corners.

128



(a) (b)

Figure 9.1: A path in the torus (a) and its projection in the rectangle (b)

Definition 9.3.1 (Manifold with corners). Let N be a Hausdorff second countable
topological space and let n > 0 be a positive integer. Suppose that we have a family
{ϕλ}λ∈Λ of homeomorphisms

ϕλ : Uλ ⊂ N → Vλ ⊂ [0,∞)n

where Uλ (respectively Vλ) is an open subset of N (respectively of [0,∞)n). We
say that {ϕλ}λ∈Λ is a smooth atlas with corners if⋃

λ∈Λ
Uλ = N

and, for every µ, ν ∈ Λ,

ϕµ ◦ ϕ−1
ν : ϕν (Uµ ∩ Uν)→ ϕµ (Uµ ∩ Uν)

has a smooth extension to an open subset of Rn. We will refer to (N, {ϕλ}λ∈Λ) as
a manifold with corners1.

It will be useful to have in mind triangles (and squares) as the prototypical
examples, the smooth atlas being given by the set of all diffeomorphisms from an
open subset of the triangle (or square) to the open subsets of [0,∞)n. The no-
tions of tangent bundle, Riemannian metric, Levi-Civita connection and stochastic
differential equations can be carried over to manifolds with corners.

We fix some notations about the boundary ∂N . The points that correspond to
the singular points of the boundary of [0,∞)n will be called the corner points. A
boundary point x that is not a corner point will be called a regular boundary point
and there is a well-defined unit inward-pointing normal vector νx ∈ TxN at x.

We will be interested on the reflected Brownian motion on these manifolds.
As for the case of manifolds with boundary, for every x ∈ M we consider σx ∈
L(Rm, TxM) such that σxσ∗x = idTxM and such that the family {σx}x∈M is smooth,
i.e. the map σ : M × Rm → TM defined by σ(x,w) = σx(w) is smooth.

1The standard definition considers a maximal smooth atlas with corners {ϕλ}λ∈Λ. For sim-
plicity of exposition we consider any smooth atlas in the definition.
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Proposition 9.3.2 (Reflected Brownian motion). There exists a continuous stochas-
tic process (Xt)t∈[0,1] on N that, almost surely, does not touch the corner points
and such that

dXt = σXtdWt + νXtdLt,

where W is a Brownian motion on Rm and L is a non-decreasing process such that∫ 1

0
1N̊(Xs)dLs = 0.

Moreover, the law of (Xt)t∈[0,1] solely depends on the law of X0 and the metric of
N . The process (Xt)t∈[0,1] will be called a reflected Brownian motion on N .

There is another characterization of the reflected Brownian motion that explic-
itly shows how it depends only on the metric.

Proposition 9.3.3 (Reflected Brownian motion). Let (Xt)t∈[0,1] be a reflected
Brownian motion on N . For every smooth function f : N → R such that
dfx · νx = 0 at every regular boundary point x, we have that

f(Xt)−
∫ t

0
∆f(Xs)ds

is a martingale with respect to the filtration composed by Ft = σ((Xs)0≤s≤t). More-
over, the law of (Xt)t∈[0,1] is characterized by this fact and the law of X0.

Now we will describe how to obtain nice quotient spaces. Our setting will
be the following. Suppose that M is a connected compact Riemannian manifold
(without boundary) and that G is a finite group of isometries of M . For the
quotient M/G to be a manifold with corners we will consider a particular class of
groups of isometries. For x ∈M , consider the group

Gx = {g ∈ G : g(x) = x} ,

and the induced subgroup of O(TxM),

Gx = {dgx ∈ O(TxM) : g ∈ Gx}.

Let Rx be the set of reflections in Gx, i.e. T ∈ Gx belongs to Rx if and only if

{u ∈ TxM : Tu = u} ⊂ TxM has codimension one.

Definition 9.3.4 (Reflection group). We shall say that G is a reflection group (of
isometries) if

Gx is the group generated by Rx

for every x ∈M .

130



We will be interested in the set N = M/G which has a topological structure
induced by the quotient map q : M → N . Suppose that G is a reflection group.
We shall make of N a manifold with corners in the following way. Let y ∈ N and
take any x ∈M with q(x) = y.

If Gx = {e} then there exists an open neighbourhood V of x such that gV ∩
hV = ∅ for every g 6= h in G. Since q is open and q|V is injective and continuous
we have that q|V : V → q(V ) is an homeomorphism and we can assume that (by
taking a smaller V if necessary) V is diffeomorphic to an open subset of (0,∞)n.
This gives an atlas to the open set of points that can be written as q(x) with
Gx = {e}. We can even define a metric on this open set with the help of these q|V .

If Gx 6= {e} we consider the exponential map

expx : W ⊂ TxM → V ⊂M

on an open neighbourhood W of 0 invariant under Gx such that expx |W is a
diffeomorphism onto its image V . Moreover, by choosing V small enough we will
assume that gV ∩ V = ∅ for every g /∈ Gx. Since

g expx(w) = expx(dgxw) (9.3.1)

for g ∈ Gx and w ∈ TxM , the open set V is invariant under Gx. Equation (9.3.1)
tells us that the action of Gx on W (as Gx) is isomorphic to the action of Gx on
V . Then, we only need to understand

W/Gx.

But, since Gx is a reflection group, we know that TxM/Gx can be identified with a
particular fundamental domain of the action of Gx on TxM , called closed chamber
(see [48, Section 1.12]), and, in particular, it has a structure of a manifold with
corners so thatW/Gx inherits this structure. Using expx we have given to the open
set V/Gx ' q(V ) the structure of a manifold with corners. In fact, if C ⊂ TxM is a
closed chamber, we have identified expx(C∩W ) with q(V ). The latter identification
gives a Riemannian metric to q(V ).

We have shown the following lemma.

Lemma 9.3.5. Suppose that G is a reflection group of isometries of M . Then,

N has a (unique) structure of a Riemannian manifold with corners

such that, for every x ∈ M , there exists a neighbourhood U ⊂ N of q(x) and an
isometric submersion s : U →M that is a local inverse of q, i.e. such that

q ◦ s(x) = x for every x ∈ U.
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Proof. The smooth structure around a point x is induced by the quotient of TxM
by Gx. It is, locally, a chamber for the reflection group Gx.

Lemma 9.3.6. Let G be a finite group of isometries of M . Then, there exists an
open subset V of M such that

• gV ∩ hV = ∅ for every g 6= h in G and

• σ

M∖ ⋃
g∈G

gV

 = 0 .

Proof. Let x ∈M such Gx = {e} and define the set

V = {y ∈M : ∀g ∈ G \ {e}, d(x, y) < d(gx, y)} ,

where d is the distance function on the Riemannian manifold M . Since G is a
group of isometries we have that

hV = {y ∈M : ∀g ∈ G \ {h}, d(hx, y) < d(gx, y)} .

We only need to see that, for ξ 6= ζ in M , the set

{y ∈M : d(ξ, y) = d(ζ, y)}

has σ-measure zero. This is true since the map y 7→ d(ξ, y)−d(ζ, y) is smooth and
regular outside the cut locus of ξ and ζ and since every cut locus has σ-measure
zero.

Notice that, in particular, for every g ∈ G and x ∈ gV the group Gx contains
only the identity so that q|gV is an isometry onto its image. There is an intuitive
relation between a Brownian motion onM an on its quotient by a reflection group.

Lemma 9.3.7. Suppose that G is a reflection group of isometries of M . Let
{Bx

t }t≥0 be a Brownian motion on M starting at x ∈ M . Then {q(Bx
t )}t≥0 does

not touch the corner points almost surely and

{q(Bx
t )}t≥0 is a reflected Brownian motion on M/G.

Proof. This can be seen by using the second characterization of a reflected Brown-
ian motion. Let f : N → R be a smooth map such that dfxνx = 0 at every regular
boundary point x and consider the function F = f ◦ q which is a smooth function
on {x ∈M : Gx = {e}} and it is differentiable at the points x ∈M such that q(x)
is a regular boundary point. If F happens to be regular enough we know that

F (Xt)−
∫ t

0
∆F (Xs)ds
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is a martingale with respect to the filtration induced by (Xs)0≤s≤t. By using that

∆F = (∆f) ◦ q

we have proved that
f(q(Xt))−

∫ t

0
∆f(q(Xs))ds

is a martingale with respect to the filtration given by Gt = σ((Xs)0≤s≤t). In
particular, since it is adapted to the filtration given by Ft = σ({q(Xs)}0≤s≤t) and
since Ft ⊂ Gt, it is also a martingale with respect to this filtration. Finally, since
the subset of functions f : N → R such that F = f ◦q is regular and whose normal
derivative is zero is dense (in the uniform topology for them and their Laplacian),
we have proved the assertion.

Now, denote the normalized volume measure on N = M/G by σ̃. Let R be the
law of the Brownian motion on M whose initial position has law σ and let R̃ be
the law of the reflected Brownian motion on N whose initial position has law σ̃.
We have the following result.

Lemma 9.3.8. Denote by q(R) the image measure of R by the map induced by q
on C([0, 1], N). Then, q(R) = R̃.

Proof. By Lemma 9.3.7, q(R) is the law of the Brownian motion on N whose initial
position is distributed according to q∗σ, the image measure of σ by q. It is enough,
then, to notice that q∗σ = σ̃.

q∗σ = q∗

∑
g∈G

σ|gU

 =
∑
g∈G

q∗ (σ|gU) .

We have that
σ̃ (q(M \ ∪g∈G gU)) = 0. (9.3.2)

since the measure of ∂N is zero and, on the complement of q−1(∂N), the map q
is smooth so that the image of a set of measure zero has also measure zero. Since
q|gU is an isometry onto its image we have that

q∗ (σ|gU) = volume measure on N,

where we have used (9.3.2) which says that σ̃ (N \ q(gU)) = 0. We obtain

q∗σ = card(G) (volume measure on N)

which, after normalizing, concludes the proof.
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Theorem 9.3.9. Let π be a probability measure on M ×M with both marginals
equal to σ and such that H(π|R01) <∞. If HM,π admits a solution, then HN,(q×q)∗π
admits a solution. In particular, if HM,π admits a solution for every such π,
then HN,π̃ admits a solution for every probability measure π̃ on N × N with both
marginals equal to σ̃ and such that H(π̃|R̃01) <∞.

Proof. Let Q be a probability measure on C([0, 1],M) such that Q01 = π, Qt = σ
for every t ∈ [0, 1] and H(Q|R) < ∞. We need to find a probability measure Q̃
on C([0, 1], M̃) such that Q̃01 = π, Q̃t = σ̃ for every t ∈ [0, 1] and H(Q̃|R̃) < ∞.
Notice that

H(q(Q)|q(R)) ≤ H(Q|R) <∞.
Since q(Q) satisfies the marginal assumptions and since q(R) = R̃, the proof is
concluded by taking Q̃ = q(Q). Now, to prove the second assertion we need
to write π̃ as q∗π for some nice π. For this, we shall use Lemma 9.3.6. Since
H(π̃|R̃01) <∞ we have that H(π̃|σ̃⊗ σ̃) <∞. In particular, π̃ gives measure zero
to M ×M \ q(U)× q(U). For every (g, h) ∈ G×G, consider the map

(q|gU × q|hU)−1 : q(U)× q(U)→ gU × hU

and consider the measure

πg,h = (q|gU × q|hU)−1
∗ π̃

which satisfies
(q × q)∗πg,h = π̃,

Nevertheless, it does not satisfy the marginal conditions. Notice that, if

αg,h = (q|gU × q|hU)−1
∗ (σ̃ × σ̃) and σg = (q|gU)−1

∗ σ̃

then
αg,h = |G|2 (σ × σ) |gU×hU and σg = |G|σ|gU .

Moreover, the first marginal of πg,h is σg and its second marginal is σh. Then, if
we define

π = 1
|G|2

∑
(g,h)∈G×G

πg,h,

we may notice that the first and second marginals of π are σ and that

(q × q)∗π = π̃.

We can also find its entropy by integrating and obtain that

H(π|σ ⊗ σ) = H(π̃|σ̃ ⊗ σ̃).

Since H(π|σ ⊗ σ) <∞ if and only if H(π|R01) <∞ and H(π̃|σ̃ ⊗ σ̃) <∞ if and
only if H(π̃|R̃01) <∞ we may conclude.
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We shall consider some simple examples of quotient spaces where Theorem
9.3.9 holds. Almost all of these will be quotients of the flat two-dimensional torus
which we define now. Let u and v be two independent vectors of R2. We will
denote by Tu,v the manifold

Tu,v = R2/{au+ bv : a, b ∈ Z}

endowed with the Riemannian metric induced by R2. We begin by describing
two examples that are actual two-dimensional manifolds with boundary (without
corners).

Example 9.3.10 (Cylinder). Suppose that u and v are orthogonal. The map

{αu+ βv : (α, β) ∈ [0, 1]2} → {αu+ βv : (α, β) ∈ [0, 1]2}
xu+ yv 7→ xu+ (1− y)v

induces an isometry of Tu,v and the quotient space is isometric to the cylinder

{z ∈ C : 2π|z| = |u|} × [0, |v|/2].

Example 9.3.11 (Flat Möbius strip). Suppose that |u| = |v|. The map

{αu+ βv : (α, β) ∈ [0, 1]2} → {αu+ βv : (α, β) ∈ [0, 1]2}
xu+ yv 7→ yu+ xv

induces an isometry of Tu,v and the quotient space is isometric to the flat Möbius
strip

[0, ‖u+ v‖/2]× [0, ‖u− v‖/2]/ ∼

where ∼ is the identification of the vertical sides in opposite directions.
Figure 9.2 shows a representation of the torus and the considered isometry is the

reflection along the dotted diagonal. Figure 9.3 shows the canonical representation
of the flat Möbius strip as part of (four times) the representation of the torus.
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Figure 9.2: The Möbius strip as a quo-
tient.

Figure 9.3: The Möbius strip.

The next four examples are two-dimensional manifolds with corners.

Example 9.3.12 (Rectangle). Suppose that u and v are orthogonal. The maps

{αu+ βv : (α, β) ∈ [0, 1]2} → {αu+ βv : (α, β) ∈ [0, 1]2}
xu+ yv 7→ xu+ (1− y)v

and

{αu+ βv : (α, β) ∈ [0, 1]2} → {αu+ βv : (α, β) ∈ [0, 1]2}
xu+ yv 7→ (1− x)u+ yv

generate a reflection group of isometries of Tu,v and the quotient space is isometric
to

[0, |u|/2]× [0, |v|/2]
.

Figure 9.4: A rectangle as a quotient of the torus.

Example 9.3.13 (Isosceles right triangle). A 45◦ right triangle can be seen as a
quotient of a square by a reflection along its diagonal. Using the previous example,
we can also see it as a quotient of a torus (see Figure 9.5).
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Figure 9.5: A 45◦ triangle rectangle as a quotient.

Example 9.3.14 (Equilateral triangle). If 2u · v = ‖u‖‖v‖, the torus Tu,v can
be seen as a quotient of an hexagon identifying opposite sides as in Figure 9.6.
Then, if we consider the group generated by the reflections along the dotted lines
in Figure 9.6 we can obtain an equilateral triangle as a quotient space.

Figure 9.6: An equilateral triangle as a quotient of the torus.

Example 9.3.15 (60◦ right triangle). A 60◦ right triangle can be seen as a quotient
of the equilateral triangle by a reflection. Using the previous example we can see it
also as a quotient of a torus.

Finally, as n-dimensional cases we consider the following examples.
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Example 9.3.16 (n-hyperrectangle). Let a1, . . . , an > 0 and let u1, . . . , un be
orthogonal vectors in Rn such that ‖ui‖ = ai for any i ∈ {1, . . . , n}. We may
consider the flat n-dimensional torus

Tn = Rn/{m1u1 + · · ·+mnun : m1, . . . ,mn ∈ Z}

and the group generated by the reflections induced by the family (indexed by i ∈
{1, . . . , n}) of maps

{α1u1 + · · ·+ αnun : αi ∈ [0, 1]} → {α1u1 + · · ·+ αnun : αi ∈ [0, 1]}
n∑
j=1

xjuj 7→
∑
j 6=i

xjuj + (1− xi)ui

The quotient of Tn by this group is a n−hyperrectangle with lengths a1/2, . . . , an/2.

Example 9.3.17 (Curved n-ball). Consider the n-dimensional sphere

Sn = {(x1, . . . , xn+1) ∈ Rn : |x1|2 + · · ·+ |xn+1|2 = 1}.

The quotient of Sn by the map

Sn → Sn

(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn,−xn+1)

is a curved n-ball.

9.4 The Gaussian case
In this section, we finish with a more exotic example. Actually, dealing with volume
measure as marginal constraint implies working in compact spaces. All the known
criteria of existence need compactness. As seen in the proofs, this assumption is
used several times, and not only to say that vol is a finite measure. Here, we
propose an other model where the compactness is, somehow, substituted by the
finiteness of second order momentum of the constraint measure. Let Ω the space
of paths from [0, 1] to M = Rn. The reference measure R is still the reversible
Brownian motion. We are looking to the following problem :

H(P |R)→ min; [Pt = N (0, 1/4 id),∀0 ≤ t ≤ 1], P01 = π, , (BSγ)

where π is a probability on M2. We consider the following path measure

Q =
∫
M3

R(.|X0 = x,X1/2 = z,X1 = y)π(dxdy)γ1/4(dz), (9.4.1)

where γσ2 denotes the density of N (0, σ2 id). This measure is build in the same
spirit as (9.2.1).
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Proposition 9.4.1. The measure Q satisfies the marginal conditions Q01 = π and
Qt = N (0, 1/4 id),∀0 ≤ t ≤ 1. If H(π|R01) <∞ then H(Q|R) <∞.
Proof. The steps and arguments of the proof are the same as in the previous
section. Firstly, as in the proof or Proposition 9.2.1, the endpoints condition
Q01 = π is obviously satisfied. Then, for 0 ≤ t ≤ 1/2, we have

Qt =
∫
M2

Rt(.|X0 = x,X1/2 = z) γ1/4(dx)γ1/4(dz) (9.4.2)

where Rt(.|X0 = x,X1/2 = z) is the law, at time t of a Brownian bridge on [0, 1/2]
between x and z. It is a normal distribution N ((1− 2t)x+ 2tz, t(1− 2t)). So Qt

is a normal distribution and we have :

(1− 2t)Y + 2tZ +
√
t(1− 2t)W ∼ Qt, (9.4.3)

where Y ,Z ∼ N (0, 1/4 id) and W ∼ N (0, id) are independent random variables.
It follows that Qt = N (0, 1/4 id) for all 0 ≤ t ≤ 1/2 and for all 0 ≤ t ≤ 1 with the
same argument.

It remain to verify the entropy condition. As in the symmetric space case, we
have :

H(Q|R) = H(π|R01) +
∫
M
H(γ1/4|Rxy

1/2) π(dxdy). (9.4.4)

Using the heat kernel in M , we have :
dRxy

1/2

dγ1/4
(z) = e2〈z,x+y〉− 1

2 |x−y|
2
. (9.4.5)

And then, the entropy is

H(γ1/4|Rxy
1/2) = 1

2 |x− y|
2 (9.4.6)

So we have

H(Q|R) ≤ H(π|R01) +
∫
M2

1
2 |x− y|

2 π(dxdy)

≤ H(π|R01) +
∫
M2

(x2 + y2) π(dxdy)

≤ H(π|R01) + 2
∫
M
x2 γ1/4(dx)

≤ H(π|R01) + n

2 .

This ends the proof.
Corollary 9.4.2. The Brenier-Schrödinger problem BSγ admits a unique solution
if and only if H(π|R01) <∞.
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