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FR: Cette thèse de Doctorat a été financée par le programme de recherche du Con-

seil Régional de la Région Bourgogne Franche-Comté (France), dans le cadre du projet
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1

INTRODUCTION

1.1/ CONTEXT

1.1.1/ EXPLAINABLE ARTIFICIAL INTELLIGENCE

Explaining the reasoning and the outcomes of complex computer programs has received

considerable attention since the 1990s when research works on explainable expert sys-

tems were disseminated [272]. Nowadays, with the pervasive applications of machine

learning, the need of explaining the reasoning of Artificial Intelligence (AI) is considered

a top priority. Explainability helps in creating a suite of machine learning techniques

that: (i) Produce more explainable models, while maintaining a high level of learning

performance (e.g. prediction accuracy); (ii) Enable human users to understand, trust,

and effectively manage the emerging generation of artificially intelligent entities [116].

In 2017, the European Parliament recommended AI systems to follow the principle of

transparency; systems should be able to justify their decisions in a way that is under-

standable to humans [38]. In April 2019, the European Union High-Level Expert Group

on AI presented the Ethics Guidelines for Trustworthy AI [130]. This report highlighted

transparency as a key property of trustworthy AI.

In the same vein, recent works in the literature highlighted explainability as one of the cor-

nerstones for building trustworthy responsible and acceptable AI systems [77, 176, 233,

244]. Consequently, the sub-domain research of eXplainable Artificial Intelligence (XAI)

gained momentum both in academia and industry [113, 16, 51]. Primarily, this surge is

explained by the often useful, yet sometimes intriguing [275], results of black-box ma-

chine learning algorithms and the consequent need to understand how these data, fed

into the algorithm, produced the given results [116, 34, 247]. An example of such intrigu-

ing results is when a Deep Neural Network (DNN) [322] mistakenly labels a tomato as a

dog [275]. The aim is to interpret or provide meaning for an obscure machine learning

model whose inner-workings are otherwise unknown or non-understandable by the hu-

man observer [16]. Another line of XAI research aims at explaining the outcomes of goal-
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4 CHAPTER 1. INTRODUCTION

driven systems (e.g. robots) [16] since in the absence of a proper explanation, the human

user will come up with an explanation that might be flawed or erroneous. This problem

will be aggravated in near future, because these systems are expected to be omnipresent

in our daily lives (e.g. autonomous cars on the roads, Unmanned Aerial Vehicles (UAVs)

in a smart city, socially assistant robots, etc.). Ensuring mutual understandability among

humans and robots becomes key to improve the acceptability of robots by humans and

the human-robot interaction capabilities, and in particular to guarantee human safety in

human-robot collaboration. The problem of understanding the behavior of robots is more

accentuated in the case of remote robots since —as confirmed by recent studies in the

literature [124, 23]— remote robots tend to instill less trust than robots that are co-located.

Despite considerable advances, the domain of XAI is still in its early stages of devel-

opment, and to achieve smooth human-robot interaction and deliver the best possible

explanation to the human, two key features have been outlined in the literature when

providing an explanation [62, 222, 70]:

• Simplicity: providing a relatively simple explanation that considers the human cog-

nitive load. The latter is a limit beyond which humans are unable to process the pro-

vided information [273]. This becomes a challenge in complex situations involving

multiple remote robots since this places more pressure on the human’s cognitive

load and requires adaptive XAI mechanisms able to cope with the limited human

cognitive capabilities.

• Adequacy: refers to the need to include all the pertinent information in an expla-

nation to help the human understand the situation. Adequacy turns out to be a

challenge in abnormal situations, where the remote robot tends to diverge from

the behavior expected by their human users, and therefore, this requires a specific

explanation.

Recently, works in the literature have started to respond to these two features. In par-

ticular, the filtering of explanations has been suggested to achieve simplicity [120, 160].

Yet, the solutions offered in these works were not flexible enough to consider complex

situations, i.e. the proposed models and experiments were not adaptive to changes in

the environment and rather defined particularly for a specific situation. Additionally, there

was a lack of determining the best granularity level (either detailed or abstract) of the

explanation to avoid overwhelming the humans in various situations. A very recent work

investigated different levels (none, detailed, and abstract) of explanations [185]. Their re-

sults showed that their model of abstract causal explanations provides better performance

in terms of some explanation quality metrics but not in all, namely the “understand” metric

for example. Moreover, the authors note that when comparing their model of explanation

in a scenario with the same scenario but with no explanation, the results show no signifi-
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cance for most of the explanation quality metrics.

To achieve adequacy, several works [145, 60, 202, 241, 302] investigated contrastive

explanations, firstly pinpointed by Lipton [175], to provide explanations containing the

necessary information needed by the human. This choice is supported by evidence from

social sciences suggesting that, instead of providing a full explanation of the system,

contrastive explanations can be more adequate, especially in abnormal situations [198].

Nevertheless, most of the works in the literature are carried out at the conceptual level

with rare empirical human studies [198]. Moreover, some works [172, 96] considered

contrastive questions like “Why didn’t you do ...?”, but not contrastive explanations.

One work by Kulesza et al. [162] tried to combine the two features and investigated the

“sweet spot” between simplicity and adequacy. After a human study with only 17 partici-

pants, the result surprisingly showed that there is no sweet spot and that the solution is

simply to give all the explanations possible to the human. One possible reason for such

a result is the chosen settings of the experiment, as there was no challenging situation

that provides too many explanations to overwhelm the human user; i.e. the work did not

consider the human cognitive load.

In the context of human-robot collaboration, intelligent agents have been established

as a suitable technique for implementing autonomous high-level control and decision-

making in complex AI systems [318]. Agents are frequently applied to equip robots

with greater autonomy. By designing proactive agents that control the robots, the lat-

ter become capable of autonomously managing their actions and behavior to reach their

goals [17, 225, 207]. Some researchers have considered agents and robots to have

indistinguishable roles in the AI system. For instance, Matson and Min [189] have in-

troduced Human-Agent-Robot-Machine-Sensor (HARMS) model for interactions among

heterogeneous actors. HARMS connects actors such that all of them are indistinguish-

able in terms of which type of actor (e.g. robot, software agent, or even human) sends a

message [190].

An agent is defined as an autonomous software entity that is situated in some environ-

ment and where it is capable of actions and coordination with other agents to achieve

specific goals [317]. For these reasons, the resulting Multi-agent System (MAS) technol-

ogy has been established as a suitable platform for implementing autonomous behavior

and decision-making in computer systems [309, 274, 318, 89]. Recent works on XAI for

intelligent agents and MAS employ automatically generated folk psychology-based expla-

nations [119, 45, 122]. These explanations communicate the beliefs and goals that led to

the agent’s behavior.

Our choice of an agent-based architecture is based on the characteristics of agents such

as autonomy, responsiveness, distribution, and openness [318, 137, 89, 317, 309]. More

specifically, we consider that agents are autonomous goal-driven entities that are bound
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to an individual perspective. Thus, agents are capable of both representing the remote

robot’s perspective and piloting its interaction with its environment. Agents are also able

to represent the human user and to apply his/her preferences regarding the interaction

with the system and assess the explanations that he/she needs. Thus, the proposed

Human-Agent Explainability Architecture (HAExA) is an agent-based architecture involv-

ing agents that represent robots handling the interaction with the human user. Through

interaction and coordination of these agents, HAExA formulates explanations by relying

on a mechanism of adaptive explanation filtering in conjunction with the use of contrastive

explanations.

This thesis is in part of the research project UrbanFly 20174-06234/06242, supported by

the Council of the “Bourgogne Franche-Comté” Region (France). One of the goals of this

project is to propose novel models for simulating UAVs in urban environments and smart

cities. In this context, the UAVs represent the remote robots explaining their behavior

and actions to the human. Working with remote robots is a challenging task, especially

in high-stakes and dynamic scenarios such as flying UAVs in urban environments. The

next section investigates this challenge and outlines our response plan. It introduces the

application of this thesis related to the explainability of UAVs.

1.1.2/ ARTIFICIAL INTELLIGENCE IN THE DOMAIN OF UNMANNED AERIAL VEHI-

CLES

Since the early days of the industrial revolution, people started migrating to cities in

droves. In 2007, the percentage of the urban population exceeded that of the rural popu-

lation for the first time in history [282]. According to the United Nations, this urbanization

is expected to accelerate raising the percentage of people living in cities and metropolitan

areas to 68% of the world population by 2050 [281]. The result is a denser city infras-

tructure – where the city is the backdrop for all of the social, economic, and commercial

activities. To accommodate this evolution, cities need to rely on technologies to help them

improve the quality of life of their citizens.

UAVs, most commonly known as drones, are becoming increasingly popular for civil-

ian applications in several domains such as agriculture, transportation, product delivery,

energy, emergency response, telecommunication, environment preservation, and infras-

tructure. According to Teal Group’s 2018 World civilian UAV Market Profile and Forecast

report [280], civilian UAV production will total US$88.3 billion in the next decade, with a

12.9% compound annual growth rate. The same report states that the civilian UAV sector

promises to be the most dynamic and growing sector of the world aerospace industry

in the following years. Furthermore, fueled by growing demand from governments and

private consumers, the civilian UAV market is expected to quadruplicate over the next



1.1. CONTEXT 7

decade.

Currently, a new era of civilian UAVs that can autonomously fly outdoor and indoor is

emerging. The key features making the UAVs interesting to use are their small dimen-

sions, ability to take-off and land vertically, good maneuverability, simple mechanics, and

payload capability. These features make UAVs accessible for civilian applications de-

ployed in an urban environment where they started to be used as a practical solution for

cost-efficient and rapid delivery. One of the most known examples is Amazon Prime Air

where UAVs are used to deliver packages to customers [24, 72]. The future tendency is

that UAVs will become more and more used, as new civilian applications are developing

in people’s daily life in urban environments.

Another important example that comes from the health-care sector is the transportation of

medical samples and products, as immediately after being collected, the medical samples

need to be conveyed to the sites of testing which can be located at a very long distance

from the collection site [174]. To achieve that, a UAV health-care delivery network is

used [253]. The main goal of this network is to facilitate more timely-efficient and eco-

nomical drone healthcare delivery to potentially save lives. Even though there were some

concerns about the safety of this procedure in such transportation environments, it has

been shown that the UAV transportation systems are a viable option for the transportation

of medical samples and products [13].

Despite these initial successes, UAV technology is still in its early stages of development.

For this reason, considerable limitations should be addressed before a large scale deploy-

ment of UAVs in civilian applications is possible. One of the main limitations to mention is

related to the high amount of energy consumed by these devices when staying airborne

coupled with their limited battery life [242]. Moreover, since civilian applications are mostly

deployed in urban environments involving multiple actors, considerable research efforts

should be dedicated to enhancing the UAV perceptual intelligence required to coordinate

complex environments [94], and more importantly to address the possible consequences,

especially on people safety, of a mechanical failure that may cause a crash and the costs

of such incidents [312].

To guarantee it is safe for UAVs to fly over people’s heads and to reduce costs, different

scenarios must be modeled and tested. However, currently, most of the regulations in

force restrict the use of UAVs in cities. Even though some regulations were passed to

regulate the use of UAVs [291] including air traffic, landing/taking off, etc., they are still

immature and not yet fully developed. Moreover, legislation varies from region to region

and between countries [57], and no proposals were made from a technological point of

view. For this reason, to perform tests with real UAVs, one needs access to expensive

hardware and field tests that are costly, time-consuming, and require trained and skilled

people to pilot and maintain the UAVs. Moreover, in the field, it may also be difficult to
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reproduce the same scenario several times [179]. To overcome these limitations, sim-

ulation frameworks have been developed to allow transferring real-world scenarios into

executable models (i.e. simulating UAV activities in a digital environment) [205].

In multi-actor environments such as smart cities, there is a huge number of actors with a

high density within the environment. Considering that a part of these actors will interact

with intelligent, autonomous, and connected objects, or will be one of them, e.g. UAVs, it

will be impossible to have a human associated with each of these objects, e.g. as a pilot.

This implies a need for autonomy of these objects, cooperation among them for reaching

their goals, and negotiation between them to avoid conflicts. The agent paradigm is well

suitable for modeling, implementing, and deploying autonomous entities into multi-actor

environments [106, 225]. Therefore, agents play a significant role in the coordination,

cooperation, competition, and negotiation between all actors.

An Agent-based Simulation (ABS) simulates a model of a system that is comprised of

individual, autonomous, and interacting agents that offers ways to more easily model

individual behaviors and how they affect others in ways that have not been available be-

fore [182]. The results make ABS a natural step forward into understanding and managing

the complexity of today’s business and social systems. The use of ABS frameworks for

UAVs is gaining more interest in complex civilian application scenarios where coordina-

tion and cooperation are necessary, e.g. the study of the swarms’ formation of multiple

UAVs [47, 248]. Despite these promising research efforts, very few works were dedicated

to understand and analyze existing works using ABS in civilian UAV applications. Very

few surveys outlined a comprehensive set of research questions pertaining to multi-agent

simulations for civilian UAV applications.

1.2/ CONTRIBUTIONS OF THE THESIS

Explaining the behavior of robots is gaining more interest in the domain of Human-

Computer Interaction (HCI) and particularly in the sub-domain of human-robot interaction,

and this is a more challenging task in the case of remote robots, e.g. UAVs, explaining

their behavior to the human. In this context, considerable merits are provided by agents

when representing remote robots. More recently, XAI approaches have been extended

to explain the complex behavior of goal-driven systems such as robots and agents. This

thesis argues that enforcing measures of parsimony of explanation helps to meet the

two desired features of an explanation, namely simplicity and adequacy. We qualify an

explanation as parsimonious if (i) it adaptively, according to the complexity of the situa-

tion, filters the information provided to the human in a way that prevents overwhelming

him/her with too many details; (ii) it relies on contrastive explanations to explain abnor-

mal situations. To produce parsimonious explanations, the thesis introduces the process
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of explanation formulation and proposes an architecture allowing to make this process

operational.

Therefore, the general problem of this thesis is:

GENERAL PROBLEM

How to build an adaptive context-aware architecture, model, explanation process, and

simulation tool to support the human-agent explainability for goal-driven AI systems in

the context of remote robots (e.g. UAVs)?

Accordingly, two main objectives of the thesis could be emphasized:

Main Objective 1

Increase the understandability, hence the humans’ confidence, of the behavior of remote

robots through explainability.

Main Objective 2

Provide an architecture, a model, a process, and simulation tools for reproducing the

complexity of the behavior of remote robots and the collective behavior.

More specifically, the theoretical contributions of the thesis are threefold:

1. Propose HAExA, an agent-based architecture that facilitates the human-agent ex-

plainability representing remote robots as agents. The architecture helps in for-

mulating the necessary explanations communicated from remote agents to the hu-

mans, while at the same time considering the human cognitive load to avoid over-

whelming him/her with too many details in the explanation.

2. Propose an adaptive and context-aware process of explanation formulation using

various combinations of generating and communicating the explanations. We rely

on generating and communicating the explanations on folk psychology, namely the

Belief-Desire-Intention (BDI) model [238], as it helps in generating context-aware

explanations, and in adaptively communicating the explanations. This leads us to

explore the concept of parsimony of explanations that could help in simplifying the

explanations with different explanation communication techniques like the filtering

of explanations while keeping all the necessary information, especially in abnormal

situations where contrastive explanations are used.
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3. Develop ABS tools1 to implement a proof of concept of the proposed model and ar-

chitecture. These tools are built based on HCI capabilities to facilitate the subjective

evaluation of the explanation approaches in the proposal by humans participating

in the evaluation process.

Miller [198] has addressed the lack of empirical human studies in the domain of XAI as

a shortage in the literature. Therefore, and in addition to the three mentioned theoretical

contributions, there is one contribution related to experimental validation. It is to conduct

two empirical human case studies based on a scenario of package delivery using civilian

UAVs: First, a pilot test, investigating the role of filtering of explanations in three cases

(No explanation, detailed explanation, and filtered explanation). Second, the main test,

investigating different techniques of explanation formulation (static filter, adaptive filter,

and adaptive filter with contrastive explanations). The significance of the participants’

responses is statistically analyzed and presented using non-parametric and parametric

testing.

1.3/ OUTLINE OF THE THESIS

The thesis is structured in five parts that are described below. Figure 1.1 depicts the

different contributions of this thesis in relation to the structure of the thesis.

Part I (Context and Problem): Apart from this chapter that provides the introduction,

Chapter 2 lays down the background concepts and definitions.

Part II (State of the Art): Within this part, Chapter 3 analyses the most related works in

the XAI literature, while Chapter 4 provides a Systematic Literature Review (SLR) of ABS

in the domain of UAVs.

Part III (Contribution): It provides the theoretical contributions of the thesis. Chapter 5

aims at positioning the thesis through a research methodology. The methodology recalls

the objectives of the thesis and highlights the related research questions and hypotheses.

Chapter 6 proposes HAExA, the human-agent explainability architecture and thoroughly

discusses the explanation formulation process.

Part IV (Evaluation): It aims to thoroughly evaluate the contribution of the thesis. Chap-

ter 7 presents the empirical case study and the questionnaire built to collect the responses

1As part of the UrbanFly project.
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of the human participants. Chapter 8 and Chapter 9 perform, respectively, the pilot test

and the main test conducted employing different ABS tools. In each of these two chapters,

the responses of the participants are statistically analyzed and the results are validated,

presented, and investigated.

Part V (Conclusion and Perspectives): It concludes this thesis with two chapters.

Chapter 10 concludes the thesis with a summary and a general discussion and provides

future perspectives.

Part I:

Context and 

Problem

• Introduction

• Background concepts and definitions

Part II:

State of the 

Art

• Related works in the XAI literature

• SLR of ABS in the domain of UAVs

Part III:

• Research methodology and questions

• Proposed architecture, agent-based model,
Part III:

Contribution

• Proposed architecture, agent-based model,

Part IV:

Evaluation

• Empirical case study

• Pilot test validated by non-parametric statis

• Main test validated by parametric and non

Part V:

Conclusion and 

Perspectives

• General discussion

• Future perspectives

del, and explanation formulation processdel, and explanation formulation process

tatistical testing

on-parametric statistical testing

Figure 1.1: Outline of the thesis
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DEFINITIONS

2.1/ INTRODUCTION

This chapter sketches the background definitions and fundamental concepts of this the-

sis. First, Section 2.2 defines the concept of remote robots, and Section 2.3 details the

features allowing agents to be a good representative of remote robots. Section 2.4 offers

a brief introduction to the goal-driven explainable agents and robots. Then, Section 2.5

introduces the concept of parsimony and discusses its relation to Explainable Artificial In-

telligence (XAI), while Section 2.6 introduces the contrastive explanation as a component

of a parsimonious explanation. Section 2.7 outlines the process of providing an explana-

tion, while Section 2.8 discusses the cognitive architectures allowing to implement such

a process. Section 2.9 explains the concept of agent-based modeling and simulation that

will be used to implement the proposal and evaluate it in the empirical human studies. Fi-

nally, Section 2.10 discusses various ways to build XAI-based questionnaires to be used

in the empirical human studies.

2.2/ REMOTE ROBOTS

In the last decades, the concept of robotics has largely involved remotely-operated mo-

bile robots equipped with cameras being used to get eyes on something out of reach.

However, autonomy in robotics means the ability of the robot to make its own decisions.

There is no agreed definition of what is an autonomous robot, a.k.a. an autorobot, but

this thesis adopts the definition provided in Definition 1. The main point we emphasize

is that the crucial components of an autonomous robot are perception, decision making,

and actuation.

13
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Definition 1: Autonomous robot according to Bekey [29]

An intelligent machine capable of performing tasks in the world by itself, without

explicit human control.

Remote autonomous robots, or remote robots for short, are a special type of autonomous

robots, and several definitions are associated with remote robots. In this thesis, we adopt

that a remote robot is a specific type of autonomous robots with the following two char-

acteristics: (i) Autonomy: a remote robot must retain its state as it travels and conduct

tasks autonomously in the environment to serve a purpose or goal. The robot acts to the

change of the environment or its status and influences what it sensed. (ii) Mobility: a re-

mote robot must be able to travel to remote destinations, primarily by self-determination,

i.e. it is not co-located with the human. It is important to distinguish remote robots from

remote-controlled robots that are controlled by the human user, i.e. not autonomous.

Some researchers have considered agents and robots to have indistinguishable roles

in the Artificial Intelligence (AI) system. For instance, Matson and Min [189] have in-

troduced Human-Agent-Robot-Machine-Sensor (HARMS) multi-agent system model for

interactions among heterogeneous actors. HARMS focuses more on accomplishing a

task rather than specifically which agent really carries out the task. HARMS communi-

cation model is used to indistinguishably facilitate communications between actors of the

systems including agents and robots [190, 170].

Autonomous agents are frequently applied to equip autonomous robots, including remote

ones, with greater autonomy. By designing proactive agents that control the robots, the

latter become capable of autonomously managing their actions and behavior to reach

their goals [17, 225, 207]. The next section provides the definitions related to autonomous

agents.

2.3/ INTELLIGENT AGENTS

Wooldridge and Jennings [318] have provided one of the most common definitions of

intelligent agents (Definition 2).

Definition 2: Agent according to Wooldridge and Jennings [318]

A computer system situated in some environment, that is capable of autonomous

action in this environment to meet its design objectives.

We argue that agents hold specific features that make them suitable to represent remote

robots [318, 137, 89, 317, 309]:

Autonomous: Automation will minimize human intervention. As a result, it will save time



2.3. INTELLIGENT AGENTS 15

as robots are designed to work with no delay. Additionally, in a real-time application like

the one addressed by this thesis, autonomy can reduce the delay introduced by human

intervention. Moreover, in large scale situations, it is impractical to allocate each robot

with a human to control it. Additionally, some aerial tasks are more efficient in resources

to be executed by robots, e.g. Unmanned Aerial Vehicles (UAVs), than by humans.

Decentralized: Decentralization of the problem is justified by two reasons: (i) the

physical distance between the remote robots and the human in one hand, and between

the remote robots themselves. (ii) each robot has different specifications to complete

the tasks. Therefore, computing an optimal centralized solution when there are such

specifications is a computationally difficult task and takes time which is crucial in such

real-time applications.

Reactive: Reactivity is an important requirement in real-time applications, and agents are

reactive to what they sense. The specification of each robot is different and accordingly,

it responds differently.

Cognitive: In this thesis, we rely on agents with cognitive architectures to represent the

reasoning of remote robots. This helps in the interaction with the humans that have a

cognitive manner of thinking. The remote robots collect the data from the environment,

i.e. beliefs, and have an internal reasoning loop to allow them to make decisions to serve

a specific goal.

Flexible (or open): Robots could be, arbitrary, added in the system, removed, and put

back from a mission to the next mission. With this in mind, the use of agents is an

efficient approach to achieve this requirement due to their intrinsic modularity. In other

words, agents can be easily added or removed, without the need for detailed rewriting of

the system. This feature also helps in preventing the propagation of faults, and in self-

recovery. Additionally, as the system is flexible in terms of robots chosen for a mission,

backup robots can be used instead of the failed ones already in a mission, which provides

the system with a fault-tolerant feature.

Social: Robots represented as agents can communicate with each other and with the

physical components. They can cooperate, collaborate, or even compete or negotiate. In

terms of the overall benefit of the system, this helps in deciding which robot to conduct

the mission or if there is a need for several robots to conduct the mission together, e.g.

a swarm of UAVs lifting a heavy object. Even though robots are self-interested in terms

of achieving their goals, the overall welfare of the system should be considered as all

robots share the same main goal which is to serve the human. Moreover, each robot has

different criteria, e.g. capacity load in case of UAVs lifting objects, to complete the tasks

of the mission. Therefore, there is a need for a mechanism to reach a collective decision

for the benefit of the whole system.
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While agents have been established as a suitable technique for implementing au-

tonomous high-level control and decision-making in complex AI systems [318], there is

still a need for these systems to be understood and trusted by human users. The next

section defines how explainability is used in the domain of goal-driven systems such as

robots and agents.

2.4/ GOAL-DRIVEN EXPLAINABLE ARTIFICIAL INTELLIGENCE

According to our knowledge, a formal and universally agreed definition of XAI is lacking.

However, the definition that is adopted in this thesis is provided in Definition 3.

Definition 3: Explainable Artificial Intelligence according to Adadi and

Berrada [4]

A suite of techniques that produce more explainable models to make a shift to-

wards more transparent AI.

The majority of works in the literature of XAI are data-driven, i.e. they aim to interpret

how the available data led a machine learning algorithm such as Deep Neural Networks

to take a given decision (e.g. a classification decision) [113]. Goal-driven XAI is defined

as in Definition 4.

Definition 4: Goal-driven XAI according to Anjomshoae et al. [16]

A research domain aiming at building explainable agents and robots capable of

explaining their behavior to a human.

More recently, XAI approaches have been extended to explain the complex behavior of

goal-driven systems such as robots and agents [16, 127]. The main motivations for this

move are:

(i) In general, human-robot interaction is a key challenge, since, by default, it is not

straight-forward for humans to understand the robot’s State-of-Mind (SoM) defined

in Definition 5.

Definition 5: Robot State-of-Mind according to [127]

The non-physical entities of a robot such as intentions and goals.

As has been shown in the literature, humans tend to assume that these

robots/agents have their own SoM [127], and that with the absence of a proper

explanation, the human will come up with an explanation that might be flawed or

erroneous;
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(ii) In the near future, these goal-driven systems are expected to be omnipresent in our

daily lives (e.g. social assisting agents and virtual assistants) [16].

Therefore, ensuring mutual understandability among humans and robots/agents is key to

improve the acceptability of robots/agents by humans, and in particular to facilitate human

safety in human-robot collaborations. However, humans have learned and developed a

natural ability to understand others, and in human-robot interaction scenarios, this ability

is still adopted even if very limited for now [127]. In this context, goal-driven XAI is of

particular interest since providing explanations in multi-agent environments is even more

challenging than providing explanations in other settings [19]. Led by that, the next section

introduces the concept of parsimony of explanations.

2.5/ PARSIMONY AND EXPLAINABLE ARTIFICIAL INTELLIGENCE

The concept of parsimony of explanations has received considerable attention for cen-

turies. A famous formulation of this concept is the “Occam’s Razor” [284, 36] stipulating

that: “Entities should not be multiplied beyond necessity.” Thereafter, Occam’s Razor1

became the basis of the principle of parsimony of explanations. This principle has been

influential in scientific thinking in general and in problems of statistical inference in partic-

ular [240, 110, 183].

The goal of this principle is to choose the simplest (i.e. least complex) explanation that

describes the situation adequately (i.e. descriptive adequacy). Yet, as has been shown

in the literature [164, 315, 158], parsimony is a largely subjective quality. Therefore, and

even if the human preference for simplicity is not necessarily true, we could assume that

if two explanations are equal in theory, the one with the empirical evident support is the

best. For this reason, empirical human studies have been outlined as key to assess how

parsimonious an explanation is to a given user in a given situation. In these studies, the

opinions of the participants on the usefulness of explanations are collected and analyzed.

With the advent of XAI, research on parsimony of explanations has gained new momen-

tum since the explanations provided by the AI systems to their human users should be

simple while containing all the pertinent information of the system’s decision. Thus, par-

simony has been identified as a key desideratum for XAI [239]. Yet, very few works in

the literature are proposed to define what parsimony means in the context of XAI? how

parsimonious explanations can be generated and communicated to the humans? and

how their impact on the humans receiving them is assessed? (refer to Chapter 3 for an

overview of these works). In this thesis, we forge and adopt a definition of a parsimonious

explanation based on the “Occam’s Razor” and the literature of XAI (Definition 6).

1William of Occam, 1290–1349.
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Definition 6: Parsimonious explanation

The simplest explanation that includes all the necessary information for the hu-

man to understand the situation.

The discussion of the parsimony of explanations opens the door to the questions: what

information is necessary to be kept in an explanation? and how to formulate a parsi-

monious explanation? To tackle these questions, some works investigated contrastive

explanations as a potential way to generate explanations that include the necessary in-

formation that the human needs, instead of providing a full explanation of the system

(e.g. [185]). The next section offers an overview of contrastive explanations.

2.6/ CONTRASTIVE EXPLANATIONS

One way to develop parsimonious XAI is to rely on theories and experiments describing

how humans explain their decisions and behavior. This emerging body of research mainly

looks for insights from the social sciences [198]. The aim is to explore how humans gen-

erate and communicate explanations in their everyday life. Everyday explanations are

explanations of why particular events, behaviors, decisions, etc. happened [187]. Evi-

dence in the literature suggests that in abnormal situations, these everyday explanations

should take the form of contrastive explanations [198].

The use of contrastive explanations is justified by the fact that people generally do not

expect an explanation that consists of the complete cause of an event. Instead, they

prefer selecting one or two causes from a sometimes-infinite number of causes to be

the explanation. However, this selection is influenced by certain cognitive biases [198].

Lipton [175] has proposed one of the first works investigating the use of contrastive ex-

planations in AI. His research concluded that if the explanations are to be designed for

humans, they should be contrastive [175]. Later research showed that people do not

explain the causes for an event by itself, but they explain the cause of an event relative

to another counterfactual event (that did not occur). Therefore, according to Kim et al.

[145], a contrastive explanation describes “Why event A occurred as opposed to some

alternative event B.” A likely reason for the prevalence and effectiveness of contrastive

explanations is that humans typically explain events that they, or others, consider abnor-

mal or unexpected [129, 128]. This contrastive explanation may take the form of ‘why’

questions and be expressed in various ways [278, 169].

In recent years, research on contrastive explanations in AI received a growing atten-

tion [60, 202, 241, 302]. Lim and Dey [172] found that “Why not ...?” questions were

common questions that people asked after some human studies on context-aware appli-

cations. The definition of context-aware explanations is provided in Definition 7.



2.7. PHASES OF AN EXPLANATION 19

Definition 7: Context-aware explanations according to Anjomshoae et al.

[16]

Explanations where the agents/robots consider the context when explaining the

situation.

Winikoff [314] investigated how to answer contrastive questions, e.g. “Why didn’t you do

...?” for Belief–Desire–Intention (BDI) programs. Another similar work has checked a

similar type of questions like “Why didn’t you do something else” [96]. However, most

of the existing work consider contrastive questions, but not contrastive explanations, as

mainly people use the difference between the occurred event and the expected event

when they look for an explanation [198].

Evidence from social sciences confirms the importance of contrastive explanations both

in human-to-human explanations and computer-to-human explanations. In an influential

recent survey, Miller [198] has identified useful insights related to XAI from social sci-

ences. Among the other key findings outlined in his work, he postulated that explanations

are contrastive in the sense that they are responses to particular counterfactual cases.

The next section expresses the steps of providing an explanation by agents to the human.

2.7/ PHASES OF AN EXPLANATION

Neerincx et al. [214] have emphasized the fact that for the explanations to serve their pur-

poses they should be aware of the context of the environment and the human information

processing capabilities, i.e. human cognitive load. The latter is defined in Definition 8.

Definition 8: Human cognitive load according to Sweller [273]

A limit beyond which humans are unable to process the provided information.

According to Neerincx et al. [214], the process of providing explanations by agents to the

human includes three distinct phases:

• Generation: This phase considers what to explain to the human. For example,

explaining the perceptual foundation of the agent behavior, or explaining why a cer-

tain action is applied. The aim is to generate an explanation justifying why an action

was taken. The actual implementation of this phase is determined by the agent

model (e.g. BDI agent [238]). Citing goals [45], desires [141], and emotions [142]

are examples of the explanation generation process in the literature.

• Communication: This phase is about the form of the explanation (textual, visual, in

a simulation, etc.) and the means to communicate the explanation (e.g. Knowledge
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Query and Manipulation Language [91]). this phase deals with how to provide and

present the explanation to the end-user [214].

• Reception: This phase investigates how well the human understands the expla-

nation. To assess this, research relies on human studies and subjective evaluation.

Furthermore, to better understand the explanation reception, meaningful metrics

should be devised to assess the explanation and poll the users about it [16]. Con-

cerning XAI reception, some user studies (e.g. [212]) have been conducted, but

there is a significant lack of empirical studies involving human users in realistic

human-agent settings and scenarios where explanations are needed to understand

the system’s behavior [198, 199].

To facilitate these three phases into one complete process and in particular to empower

the agent with the ability to build the explanations properly, the next section explains one

approach used for supporting the explanation process modeling and implementation.

2.8/ COGNITIVE AGENT ARCHITECTURES FOR SUPPORTING THE

EXPLANATION PROCESS

Cognitive agent architectures in the applications related to explainability are gaining more

interest lately [16]. Any proposed architecture should have the following characteristics:

(i) A representation of the environment where the agents act and interact;

(ii) A self-representation of the agent’s internal reasoning cycle;

(iii) Social skills for interacting with other agents.

These characteristics can be found —to different extents— in several well-known cog-

nitive architectures such as BDI [41], FORR [84], ACT-R [14], LIDA [97], or Soar [165].

All these architectures reflect the first and second previously mentioned characteristics.

Soar, BDI, ACT-R, and CLARION allow, additionally, to create social agents. ACT-R and

CLARION [270] architectures are time-consuming to compute; hence they are not scal-

able in the context of near-real-time applications. The BDI architecture allows agents to

exhibit more complex behavior than purely reactive architectures but without the com-

putational overhead of other cognitive architectures [5]. Moreover, some evidence exists

that BDI agent architectures facilitate knowledge elicitation from domain experts [85]. Fur-

thermore, because BDI is based on the concepts of folk-psychology, it has been outlined

as a good candidate to represent everyday explanations [217, 45] since it is considered

as the attribution of human behavior using ‘everyday’ terms such as beliefs, desires, in-

tentions, emotions, and personality traits [63, 186]. Folk psychology [63] refers to the
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explanation of human behavior in terms of his/her underlying mental states such as be-

liefs, desires, and intentions. Folk psychology is how humans in everyday communication

explain and predict intentional actions [187, 63]. It means that “the core concepts of the

agent framework map easily to the language people use to describe their reasoning and

actions in everyday conversations” [217]. The idea of programming computer systems

in terms of mentalistic notions like beliefs, desires, and intentions is a key component of

the BDI model. The concept was first articulated by Yoav Shoham, in his Agent-oriented

Programming (AOP) proposal [260].

Existing works in the literature present considerable advances in cognitive agent architec-

tures. However, most of them do not support explainability functions. To further push the

research of goal-driven XAI, linking the agent inner model with the explanation generation

module is a crucial step [16].

For all the previously mentioned reasons, this thesis considers BDI architecture as a good

option for providing contrastive explanations since it relies on folk-psychology to represent

everyday explanations. Therefore, we opt to adopt it in the proposed architecture in this

work (Chapter 6).

To evaluate the proposed agent-based architecture, an expected implementation tool is

the simulation, and more specifically Agent-based Simulation (ABS). The next section

provides the reasons to support this decision.

2.9/ AGENT-BASED MODELING AND SIMULATION

Due to the complexity exhibited by a complex system, a suitable approach is required to

study, investigate, and implement it. Modeling and simulation are important candidates

to achieve that [321]. For years, several modeling and simulation practices have been

developed in several fields of science. Modeling and simulation allow to understand,

predict, and even control real or virtual phenomena [320]. They enable the study of real

or virtual phenomena in laboratories to produce related knowledge. Therefore, modeling

and simulation are appropriate for studying systems that can not be directly observed or

measured [105]. Modeling and simulation theory is not based directly on the system to be

studied but on a simplification of it. The source system is the real or virtual environment

to model that represents a part of the reality circumstances [287].

There is currently no interdisciplinary consensus on the definition of the term model.

This thesis considers the definition stated in Definition 9. This definition highlights two

of the main characteristics of a model: (i) Understand the functionalities of the source

system that enables the prediction of its evolution. (ii) Answer the questions about the

source system where the model captures only aspects of the source system needed to be
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answered. Therefore, a model cannot be used in general to answer any question about

the source system that it represents, but only to those for which it was designed.

Definition 9: Model according to Treuil et al. [287]

An abstract construction that makes it possible to understand the functioning of

a source system by answering a question concerning it.

A simulation can be used to test a hypothesis of the source system, verify it, or accredit

the theory that was used to build it. A simulation can be also used to understand the

functionalities of the source system and therefore serve as a support for decision mak-

ing [321].

Like the concept of a model, a simulation does not have a consensual definition in the lit-

erature. Ören [221] has collected more than 100 different definitions of a simulation [221]

and about 400 different types of simulation [220]. We adopt in this thesis the definition

of a simulation stipulated in Definition 10 and 11. Definition 10 allows to explain the link

between a model and its simulation. A simulation consists of executing a model and

changing its states step by step according to its dynamics while producing the outputs

associated with each state. Therefore, a simulation generates information on the evolu-

tion of the model over time. Definition 11 states that the objective of the simulation is to

imitate some real-world phenomena. Therefore, a simulation can be applied to a wide

range of real-world phenomena.

Definition 10: Simulation according to Treuil et al. [287], Cellier and

Greifeneder [54]

An experimentation performed on a model.

Definition 11: Simulation according to Law et al. [167]

A set of techniques that employ computers to imitate – or simulate – the opera-

tions of various kinds of real-world facilities or processes.

On the same vein, the definitions of agent-based modeling and ABS are provided in

Definition 12 and Definition 13 respectively.

Definition 12: Agent-based modeling according to Macal and North [182]

Modeling systems comprised of individual, autonomous, and interacting agents

that offers ways to more easily model individual behaviors and how they affect

others in ways that have not been available before.

Definition 13: Agent-based simulation according to Macal and North [182]

An approach to simulate agent-based models.
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Consequently, ABS can be considered as a natural step forward towards better under-

standing and managing the complexity of today’s business and social systems. Addition-

ally, cognitive architectures are frequently applied in ABS [5]. Some researchers refer

sometimes to ABS as Multi-agent-based Simulation (MABS) that combines the advan-

tages of the Multi-agent Systems (MAS) paradigm, with the advantages of the simulation

[229, 22, 21]. The emphasis in MABS is more on the cooperation and collaboration of the

agents.

For the reasons mentioned in this section and the previous one (Section 2.8), ABS of

BDI agents is considered as a good candidate to simulate the behavior of complex agent-

based systems thereby offering a platform to build explainable agents and assess their

understandability from the human user perspectives. Thus, this thesis proposes an ex-

plainable BDI agent model built within an ABS to gain insights into how to explain the

system behavior that emerges from local interacting BDI agents and processes. Addi-

tionally, we argue that ABS facilitates a good reception of the explanations by the human

users.

To complete the evaluation of the proposal, human case studies are conducted. There-

fore, there is a need for an appropriate manner to collect and aggregate the responses of

the participants. The next section discusses how questionnaires are built in the domain

of XAI.

2.10/ EXPLAINABLE ARTIFICIAL INTELLIGENCE QUESTIONNAIRES

There are several methods and related questionnaires for evaluating the explanations,

whether humans are satisfied by them, how well humans understand the AI systems, how

curiosity motivates the search for explanations, whether the human’s trust and reliance

on the AI are appropriate, and finally, how the human-XAI system performs [132]. The

questionnaire should include questions so that if we present to a human the simulation

that explains how it works, we could measure whether it works, whether it works well, and

whether the human has acquired a useful understanding with the help of the simulation.

In the following, we state two ways to build the range of the questions and answers of the

questionnaire [132].

2.10.1/ EXPLANATION QUALITY CHECKLIST

One way to build the questions is the Explanation Quality Checklist2, which can be used

by XAI researchers to either design high-quality explanations into their system or evalu-

2named “Explanation Goodness Checklist” in [132].
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ate the quality of the explanations of a given system. In this checklist, only two choices

(Yes/No) are provided. The goal of this checklist is to confirm aspects like understandabil-

ity, satisfaction, level of details, completeness, reliability, trustworthiness, etc. However,

this binary scale does not allow for being neutral. Besides, for some aspects, there is a

need for more granularity, i.e. the use of more options of the results.

2.10.2/ EXPLANATION SATISFACTION AND TRUST SCALE

This scale measures both trust and satisfaction (or understandability). This scale is rec-

ommended in the XAI domain, as it is based on the literature in cognitive psychology,

philosophy of science, and other pertinent disciplines regarding the features that make

explanations good [132]. Studies showed that with the scale of three answers, the partici-

pants tend, usually, to choose the middle option because they prefer not to be extremist in

their choices. Therefore, in social science, the scale of answers is usually distributed to 5

answers allowing the participants to step away from the middle without the feeling of being

in the extreme edges. In this context, the Likert scale [10] is commonly used in research

and surveys to measure attitude, providing a range of responses to a given question or

statement. The typical Likert scale is a 5- or 7-point ordinal scale used by participants to

rate the degree to which they agree or disagree with a question or a statement. There-

fore, we opt to use a 5-Likert scale based on the Explanation Satisfaction and Trust Scale

in building the questionnaire in the validation part of this thesis (see Section 7.3)3.

2.11/ CONCLUSION

Agents have been established as a suitable technique for implementing autonomous high-

level control and decision-making for goal-driven systems like remote robots. This is

thanks to their features: autonomous, decentralized, reactive, cognitive, flexible, and so-

cial. However, there is still a need for these goal-driven systems to be understood and

trusted by human users.

With the advent of XAI, research on parsimony of explanations has gained new momen-

tum since the explanations provided by the goal-driven systems to their human users

should be simple while containing all the pertinent information related to the system’s de-

cision. Thus, the parsimony of explanations has been identified as a key desideratum for

XAI. The aim is to explore how humans generate, communicate, and receive explanations

in their everyday life. As the BDI model is based on the concepts of folk-psychology, it has

been outlined as a good candidate to represent everyday explanations, hence represent

the parsimony of explanations.

3A choice validated by other relevant works in the literature [132].
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After proposing an agent-based model and architecture to facilitate and formulate the

explanations, there is a need to evaluate the proposal. ABS has been established as

a good candidate to simulate the proposal as a complex system thereby offering a plat-

form to build explainable agents and assess their understandability from the human user

perspectives.

In the end and as parsimony is a largely subjective quality, human studies have been

outlined as key to assess how parsimonious an explanation is to a given user in a given

situation. In these studies, the opinions of humans on the usefulness of explanations are

collected and analyzed, and for that, there is a need to build appropriate questionnaires

that are based on the recommendations and metrics from the XAI domain. In particular,

the explanation satisfaction and trust scale is preferably used in such a context.

After providing the required definitions and background concepts in this chapter, the next

two chapters discuss in detail the state of the art (i.e. positioning this thesis facing the

existing works).
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3

EXPLAINABILITY AND EXPLAINABLE

ARTIFICIAL INTELLIGENCE

3.1/ INTRODUCTION

As humans increasingly depend on complex AI systems, it becomes increasingly impor-

tant to provide explanations for the decisions of these systems to foster effective human-

system interaction. This orientation is confirmed by the ratification of the recent law on

the General Data Protection Regulation (GDPR), which underlines the right to explana-

tions [52]. Therefore, the design of transparent and intelligible technologies becomes a

pressing necessity [16]. Recently, the Explainable Artificial Intelligence (XAI) domain has

emerged to promote transparency and trustworthiness. Several reviews about the works

addressing XAI were provided, but most of them deal with data-driven XAI to overcome

the opacity of black-box algorithms, while few reviews were conducted to investigate the

goal-driven XAI (e.g. an explainable agency for robots and agents).

The main three goals of this chapter are to: (i) understand the context of the thesis

by investigating the contributions in the goal-driven XAI domain (ii) understand how the

literature approached the realization of the explanations in terms of the three phases of

generation, communication, and reception. (iii) outline the open research issues in this

domain that will be the basis for the research questions and hypotheses of this thesis.

These three goals will generally help us in adopting what is useful in each phase of pro-

viding an explanation when proposing our architecture, model, and process of explanation

formulation.

The rest of this chapter is organized as follows. Section 3.2 sheds the light on the con-

tributions of the goal-driven XAI and Section 3.3 explores the related works about the

parsimony of explanations by investigating the key features outlined in the literature when

providing an explanation. Finally, Section 3.4 concludes this chapter linking it with the

rest of the chapters and sections in this thesis.

29
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3.2/ RELATED WORK ON GOAL-DRIVEN EXPLAINABLE ARTIFICIAL

INTELLIGENCE

3.2.1/ BACKGROUND AND ORIGIN

Research on XAI [116] has grown tremendously in recent years. However, recent studies

on explanatory methods have mainly focused on data-driven algorithms aimed at inter-

preting the results of black-box machine learning mechanisms such as Deep Neural Net-

works (DNNs) [322]. This kind of research, driven by the intriguing results of DNNs (e.g. a

DNN erroneously labeling a tomato as a dog [275]), intends to interpret or make sense of

an obscure machine learning model whose inner mechanisms are otherwise unknown or

incomprehensible to the humans. Thus, the majority of these studies focus on providing

an overview of the explainability of data-driven algorithms [34, 79, 199, 113, 247] despite

that agents are becoming ubiquitous in the daily life of humans in several applications.

Studies in the XAI literature have underlined the importance of taking into account the

intended objective when incorporating means of explanation in intelligent systems [126].

Increasing human confidence in the system, transparency (i.e. explaining the internal

workings of systems to the human), and informing about the agent’s intentions (commu-

nication of intentions) are among the main motivations behind the explanations in the

literature [16]. Studies suggest that transparency and trust go hand in hand to increase

the human confidence in the system by understanding how its reasoning mechanism

works (e.g. [303, 55]). In applications requiring human-agent interaction, intention com-

munication is one of the main explanatory drivers to make the agent’s internal state (e.g.

goals and intentions) understandable for humans [25].

Goal-driven XAI (see Section 2.4) aims at building explainable agents and robots capable

of explaining their behavior to humans [16]. These explanations help humans better

understand the agent and lead to better human-agent interaction. They would encourage

the human to understand the capabilities and limitations of agents, thus improving trust

and safety levels, and avoiding failures, as the lack of appropriate mental models and

knowledge about the agent can lead to failed interactions [58, 33]. The next section

discusses first a review addressing goal-driven XAI and second the main drawbacks of

the works in the literature of the domain of goal-driven XAI.

3.2.2/ REVIEW ON GOAL-DRIVEN EXPLAINABLE ARTIFICIAL INTELLIGENCE

A very recent Systematic Literature Review (SLR)1 has been conducted targeting contri-

butions addressing goal-driven XAI [16]. The objective of this SLR was to clarify, map,

1see Definition 14 on page 42.
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and analyze the relevant literature on explainable agents and robots over the last ten

years (2009-2019). The SLR included 62 papers after a coarse-grained and fine-grained

examination. The chronological distribution of work on the goal-driven XAI shows an in-

creasing growth over the last five years [16]. This could be due to the effect of the general

emphasis on explainable AI and the right to explanation by the GDPR [298] and similar

initiatives [52].

From the same SLR [16], a research question explored the literature to find out whether

the studied works were based on a background in social science or psychology. 39 of the

62 works did not have any theoretical foundation linked to the generation of explanations.

For the rest, the most cited social science theory has been shown to be folk psychology

(see Section 2.8). Additionally, another research question focused on the platforms and

architectures used to design the goal-driven XAI. Besides ad hoc solutions, the most used

architecture is the Belief–Desire–Intention (BDI) architecture (refer to Section 2.8 for more

details on this architecture) to generate explanations for goal-driven agents (e.g. [45,

214]) [16]. The same recommendation is supported in another very recent review on

goal-driven XAI [246].

The same SLR also found that context-aware explanations (see Definition 7 on page 19)

have been proposed to implement effective control in ubiquitous systems (e.g. [173]),

to facilitate context-aware applications in human-robot collaboration (e.g. [109]), and to

improve robot navigation (e.g. [95, 123]).

Considering the types and categories of explanations. The SLR concluded that the most

common type is that of textual explanations [16]. Textual explanations are sometimes

presented in the form of natural language processing (e.g. [303, 121]). Regarding cate-

gories, the SLR has shown that the most important category is introspective informative

explanations. This type of explanation is based on the reasoning process that leads to

a decision to improve the quality of the interaction between humans and agents [16]. It

is worth mentioning here that for several studies, the category of explanation was the

contrastive explanation (see Section 2.6), e.g. [214, 56, 268].

The main drawback of the works in the literature of the domain of goal-driven XAI is

the lack of empirical evaluations or conducting a user study for relatively simple scenar-

ios [16, 198]. Other drawbacks or challenges include the communication of the explana-

tions, issues related to the core AI running the system, and context-awareness [16]. In

this thesis, we tackle these challenges and drawbacks both in the contribution and the

evaluation parts. The next section gives an overview of the related work to our approach

of parsimony of explanations.
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3.3/ PARSIMONY IN EXPLAINABLE ARTIFICIAL INTELLIGENCE

3.3.1/ EXPLANATION FEATURES

The domain of XAI is still in its early stages of development, and to achieve smooth

human-agent interaction and deliver the best possible explanation to the human, two key

features have been outlined in the literature when providing an explanation [62, 222, 70]:

• Simplicity: providing a relatively simple explanation that considers the human cog-

nitive load (see Section 2.7). This becomes a challenge in complex situations in-

volving multiple remote agents since this places more pressure on the human’s

cognitive load and requires adaptive XAI mechanisms able to cope with the limited

human cognitive capabilities.

• Adequacy: refers to the need to include all the pertinent information in an explana-

tion to help the human understand the situation. Adequacy turns out to be a chal-

lenge in abnormal situations, where the agent tends to diverge from the behavior

expected by their human users, and therefore, this requires a specific explanation.

Recently, works in the literature have started to respond to these two key features. The

next sections investigate these works in detail along with their approaches to adhere to

the explanation features.

3.3.1.1/ ADDRESSING SIMPLICITY

Previous works on XAI showed how to use the beliefs and goals of an agent for generating

action explanations [122, 44]. However, this means that designing and formulating the

beliefs and goals of the agent are necessary [122, 279].

Two common explanations styles in folk psychology are goal-based and belief-based ex-

planations [75, 187, 63, 186]. A goal-based explanation communicates the agent goals

(i.e. intentions) as the outcome of the action. It answers the question: ‘For what purpose?’

A belief-based explanation provides information on why the agent chose a specific action

to execute. It offers information about the context and the circumstances. In this type of

model [119, 141, 142, 45], the generation of explanation is based on the concept of hi-

erarchical task analysis [250]. The latter is a well-established technique in cognitive task

analysis that connects internal reasoning processes to external actions using Goal Hier-

archy Trees (GHT) [250]. The latter has one main task divided into sub-tasks which are

divided into sub-tasks, etc. Sub-tasks that are not divided represent the actions that can

be directly executed in the environment. This tree includes tasks and adoption conditions
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in a task hierarchy that can be seen as goals and beliefs. The explanation in the tree

could either be based on the goals (i.e. intentions) or the beliefs of the cognitive agent.

Harbers et al. [121] have introduced a theoretical framework for explaining agent behav-

ior, and some guidelines for developing explainable cognitive BDI models [122, 119]. The

generation of explanations in their work is based on the concept of hierarchical task anal-

ysis. In our work, we use the same concept for generating some types of normal expla-

nations (see Section 6.5.1.1 on page 93). However, we extend this concept to generate

contrastive explanations (see Section 6.5.1.2 on page 95).

An interesting example of the work of Harbers et al. [121] has discussed the generation

and the granularity (either detailed or abstract) of the explanation with a firefighting appli-

cation [120]. However, the work is not conclusive in preferring a granularity level. More-

over, and while the work concludes that in the special case of belief-based explanations,

the efficacy of a detailed explanation is higher than the one of an abstract explanation.

The level of detail, in this special case, is not considered; i.e. the work does not identify a

threshold level, beyond which explanations are overwhelming for humans.

One work by Kulesza et al. [160] has evaluated the amount of information provided to the

human and how it affects the understandability [160]. This work has investigated what a

human user needs to know to productively work with an agent. The domain of the work

is related to expert systems, and the goal is to investigate if human users can understand

how these systems operate to fix their agent’s personalized behavior. The model of these

authors seeks to allow humans to build a mental model of the agent’s reasoning. Mental

models of agents were first discussed by Tullio et al. [289]. Previous work has found that

humans may change their mental models of an agent when the agent makes its reason-

ing transparent [161]. However, some explanations by agents may lead to only shallow

mental models [267]. Therefore, according to Kulesza et al. [160], making the agents’

reasoning more transparent to the human is one way to influence the mental models.

Kulesza et al. [160] have explored the effects of mental model soundness on the person-

alization of the agent by providing structural knowledge of a music recommender system

in an empirical human study. The results of the study show that providing humans with

detailed explanations about an agent’s reasoning can increase their understanding of how

the system works. However, information comes at the price of attention, as the human’s

time and interest are finite, so the solution may not simply be “the more information, the

better” [160]. In our thesis, we investigate thoroughly the amount of information provided

in the explanation and the effect the different filters have on the understandability and

trust of the human.
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3.3.1.2/ ADDRESSING ADEQUACY

To achieve adequacy, several works [145, 60, 202, 241, 302, 214, 56, 268] investigated

contrastive explanations, firstly pinpointed by Lipton [175], to offer explanations contain-

ing the necessary information needed by the human (refer to Section 2.6 for more details

on contrastive explanations). This choice is supported by evidence from social sciences

suggesting that, instead of providing a full explanation of the system, contrastive expla-

nations can be more adequate, especially in abnormal situations [198]. Nevertheless,

the models used in these works have a limited adaptation to changes in the environment,

i.e. they simply included a reactive behavior to events in the environment when build-

ing the contrastive explanation. Moreover, most of the works in the literature are carried

out at the conceptual level with rare empirical human studies [198]. Furthermore, some

works [172, 96] considered contrastive questions like “Why didn’t you do ...?”, but not con-

trastive explanations. In our thesis in the theoretical contribution, we generate contrastive

explanations as a response to abnormal situations in the environment, i.e. the generation

of contrastive explanations is context-aware. Additionally, contrastive explanations in their

general sense are considered of both the beliefs (external events in the environment and

internal agent states) and the intentions (goals the agent is committed to achieving) of the

agent. Finally and on the practical side, the thesis conducts an empirical human study

based on Agent-based Simulation (ABS).

3.3.1.3/ COMBINING SIMPLICITY AND ADEQUACY

Kulesza et al. [162] have extended their approach (see Section 3.3.1.1) that allowed hu-

man users to build mental models of the agents. In this extension, they have especially

focused on how the soundness (i.e. nothing but the truth) and completeness (i.e. the

whole truth) of the explanations impact the fidelity of humans’ mental models of how

a recommender agent works [162]. Their findings suggest that completeness is more

important than soundness, i.e. increasing completeness via certain information types

helped participants to generate better mental models. They also found that the oversim-

plification, as per many commercial agents, can be a problem, i.e. when soundness was

very low, participants experienced more mental demand and lost trust in the explanations,

thereby reducing the likelihood that participants will pay attention to such explanations in

the first place.

Their model investigated the “sweet spot” between simplicity, i.e. simple explanations with

little information, and informativeness, i.e. complete explanations with too much informa-

tion. They have evaluated by training their recommender system and then performing a

human study with only 17 participants. The result surprisingly showed that there is no

sweet spot and that the solution is simply to give all the explanations possible to the hu-
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man. In addition to the questionable validity of the results from a statistical point of view,

one possible reason for such result is the chosen settings of the study, as there was no

challenging situation that provides too many explanations to overwhelm the human user;

i.e. the work did not consider the limited human cognitive load, which we do in our work.

Indeed, as confirmed in the literature, there is a need for harmonizing the explanations

to the context and human information processing capabilities [214]. In summary, Kulesza

et al. [162] have tackled a trade-off between soundness and completeness that could be

viewed as an implicit combination of simplicity and adequacy. However, in our thesis, we

explicitly make the combination of simplicity and adequacy (see Chapter 6).

In all cases, the related works showed the importance and need for performing empir-

ical human studies to evaluate the proposed models and architectures with the help of

humans that can subjectively determine if the explanations increase their understandabil-

ity and trust. The next section discusses an interesting work as an example of such an

empirical human study.

3.3.2/ EMPIRICAL HUMAN STUDIES IN EXPLAINABLE ARTIFICIAL INTELLIGENCE

Empirical human studies are vital to assess the process of explanation reception (see

Section 2.7). Yet, very few works in the literature undertake such studies [198]. Exam-

ples of these works are [160] and [185]. The latter is a very recent and interesting work

by Madumal et al. [185] that have investigated different levels of explanations (none, de-

tailed, and abstract) for reinforcement learning agents. The work is based on the idea that

prominent theories in cognitive science propose that humans understand and represent

the knowledge of the world through causal relationships. In making sense of the world,

humans build causal models in their minds to encode cause-effect relations of events in

the environment and use these to explain why new events happen by referring to things

that did not happen. In their work, the authors use causal models to derive causal ex-

planations of the behavior of model-free reinforcement learning agents. Their approach

learns a structural causal model during reinforcement learning and encodes causal rela-

tionships between variables of interest. This model is then used to generate explanations

of behavior based on a counterfactual analysis of the causal model. They performed

an empirical evaluation using a Human-Computer Interaction (HCI) study where 90 par-

ticipants watch agents playing a real-time strategy game (Starcraft II) and then receive

explanations of the agents’ behavior. Later, the participants fill a questionnaire to collect

their responses in terms of explanation quality and trust.

The results of the work of Madumal et al. [185] show that their model of abstract causal

explanations offers better performance in terms of explanation quality (complete, suffi-

cient details, and satisfying) than the benchmark relevant explanation in the reinforcement
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learning domain. The model does not outperform the benchmark in the “understand” met-

ric. However, the authors note that when comparing their model of explanation with the

same scenario but with no explanation, the results show no significance for the expla-

nation quality metrics (complete, understand, and satisfying) and only manage to get

significant results in the “sufficient details” metric. Additionally, in terms of the explana-

tion trust metrics (confident, predictable, reliable, and safe), the obtained p − values are

not statistically significant using pair-wise Analysis of Variance (ANOVA) parametric test.

Moreover, and surprisingly, the objective understandability after analyzing the score of

the task that the participants had to predicate, i.e. when implicitly checking if the partici-

pants understood the simulation, is significant for the model in this related work, while the

subjective understandability after analyzing the responses of the participants, i.e. when

explicitly asking the participants in the questionnaire if they understood the simulation,

is not. Furthermore, it is worth mentioning that the benchmark they have used in their

work was mainly defined by them due to the lack of benchmarks in the domain. Finally,

the filtering used in this related work was static filtering that does not change adaptively

according to the context, unlike the proposal of the thesis. In our thesis, we extend the

way of filtering into adaptive filtering (none, detailed, filtered) that is context-aware of the

situation (see Section 6.5.2 on page 98).

3.3.3/ DISCUSSION

Despite considerable advances, the domain of XAI is still in its early stages of devel-

opment, and particularly in the goal-driven XAI. Consequently, there are some open re-

search issues and limitations to be tackled that we could categories as follows:

• Agent Typology: The organizing of the works in terms of typology can be based on

different aspects. In terms of localization, the agents are categorized into remote

agents and co-located ones. Another categorizing aspect could be between vir-

tual agents and embodied ones: agents that interact with the environment through

a physical body within that environment. These are some of the cases when

discussing human-agent explainability. However, another type of explainability is

agent-agent explainability that has its own challenges. Additionally, many works

focused on few domains in their evaluations, e.g. simple games. The point of this

category is that the challenges differ based on the different aspects and types, and

the results attained in one aspect could not be easily generalized into the others.

• Parsimony: Several works tried to tackle concepts related to parsimony like the

simplicity [122, 44, 279, 75, 187, 63, 186, 119, 141, 142, 45, 121, 120, 160] and

the adequacy [145, 60, 202, 241, 302, 214, 56, 268, 172, 96]. However, there

are still some open questions like how to achieve simplicity of explanations without
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the risk of oversimplification? and how to achieve the adequacy of explanations

without overwhelming the human with extra unnecessary details? In this direction,

the idea of investigating a trade-off between simplicity and adequacy is promising,

considering of course the risks associated with such a trade-off [162].

Most of the works tried to investigate the phases of providing an explanation (gener-

ation, communication, and reception) separately, e.g. investigating types of gener-

ation of explanations or ways of communicating the explanations. Therefore, there

is a lack of works trying to build a combined solution that considers the concepts of

parsimony in an explanation process, i.e. how to handle the phases of explanations

in conjunction in one process that could benefit from the merits of each phase and

compensates for its drawbacks.

Regarding the communication of explanations, most of the works tackled the tex-

tual visualization of explanation, while only some works considered multi-model ap-

proaches where several means of communication could be used, e.g. graphical,

vocal, visual, simulated, etc. Even with the textual approaches, the issue of ver-

bose explanations is not fully investigated. To tackle the latter issue, the filtering of

explanations has been identified as a good way to increase simplicity when com-

municating the explanations to the human [120, 160, 141]. However, most of the

related works in the literature considered static filtering of explanation that is based

on simple predefined rules in the design time. In such case, it could be more ben-

eficial to adopt a more adaptive way of filtering the explanations that could handle

changes in the run-time, e.g. changes in the environment. Adaptive filtering could

be also based on a user model: a model the agent builds about the human user.

The latter adaptation considers the preferences of the human, e.g. providing expla-

nations depending on the user age [141], or personalized recommendations based

on the user preferences [235]. Abdulrahman et al. [3] have also started to tackle

the issue of user-aware models in their very recent works [3, 2]. Even though some

works started to work in this direction, the proposals and the evaluations are still in

their first steps, and relatively little research has been conducted for personalized

explanations [16].

• Architectures and Models: According to the SLR conducted by Anjomshoae et al.

[16], the majority of the related works have not explicitly expressed their method for

generating explanations. Additionally, several works relied on ad hoc methods to

address their explanations problem. Following that, BDI architectures were imple-

mented to generate explanations for goal-driven agents (e.g. [45, 214]). The less-

used rest of the architectures and models include Markov Decision Process (MDP),

Neural Networks (NN), Partially Observable Markov Decision Process (POMDP),

and others [16]. Even though BDI has been the most used model, there is still a

need to confirm its usefulness along with cognitive architectures for modeling ex-
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plainability in several domains, e.g. remote robots. More importantly, architectures

and models lacked the context-awareness when generating explanations. The def-

inition of context-aware explanations is stated in Definition 7 on page 19.

• Evaluation: Some works have started to provide metrics to evaluate contributions

of human-agent explainability [132]. However, the main limitation of the works in the

domain of goal-driven XAI is the lack of empirical human studies to evaluate mod-

els and architectures addressing human-agent explainability [198, 16]. Moreover,

very few works have conducted statistical analyses when analyzing the subjective

outputs resulted from the performed human study. Furthermore, there is still a need

for a standardized framework for evaluation and assessment that include test-beds

well established in the domain.

This thesis handles some of the mentioned open issues as Research Questions (RQs).

We choose an issue from each category keeping in mind that the chosen issues should

be related and consistent with each other. To tackle the chosen research issues, we

define a research methodology that outlines our approach of the theoretical contribution

and the statistical evaluation of the contribution. The research methodology along with a

more detailed discussion of the RQs (see Section 5.2) and the research hypothesis (see

Section 5.3) handled in this thesis can be found in Chapter 5.

Investigating the literature leads us to discuss the parsimony of explanations (refer to

Section 2.5 for more details) that could help in simplifying the explanations with different

explanation communication techniques while keeping all the necessary information. This

thesis argues that enforcing measures of parsimony of explanations helps to meet the

two key features of simplicity and adequacy. This proposition will be further discussed in

Chapter 6.

3.4/ CONCLUSION

A very recent SLR has been conducted in the domain of goal-driven XAI [16] showing an

increased interest of researchers on this domain in the last five years (2015-2019). Two

main findings were: (i) Several papers propose conceptual studies, or lack evaluations

or consider relatively simple scenarios; (ii) while providing explanations to non-expert

users has been outlined as a necessity, only a few works tackled the issue of context-

awareness. The SLR found out that the most cited social science theory as a background

is folk psychology. Moreover, the SLR stated that besides ad hoc solutions, the most used

architecture to generate explanations for goal-driven XAI is the BDI architecture.

Recently, works in the XAI literature have started to respond to the two key features

of an explanation (simplicity and adequacy). In particular, the filtering of explanations
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has been suggested to achieve simplicity [120, 160, 141]. Yet, the solutions offered in

these works were not flexible enough to consider complex situations, i.e. the models

and the experiments were not adaptive to changes in the environment and rather defined

particularly for a specific situation. Moreover, there was a lack of determining the best

granularity level (either detailed or abstract) of the explanation to avoid overwhelming

the humans in various situations. Furthermore, for some works (e.g. [185]), the results

revealed no significance for most of the explanation quality metrics when comparing the

proposed models of explanation in these works in a scenario with the same scenario but

with no explanation.

To achieve adequacy, several works [145, 60, 202, 241, 302, 214, 56, 268] have investi-

gated contrastive explanations, firstly pinpointed by Lipton [175], to provide explanations

containing the necessary information needed by the human especially in abnormal situa-

tions [198]. Nevertheless, most of the works in the literature have been carried out at the

conceptual level with rare empirical human studies [198].

One work by Kulesza et al. [162] has tried to combine the two features and discussed the

“sweet spot” between simplicity and adequacy. After a human study with only 17 partici-

pants, the result surprisingly showed that there is no sweet spot. One possible reason for

such a result is the chosen settings of the experiment, as there was no challenging situa-

tion that provides too many explanations to overwhelm the human user; i.e. the work did

not tackle the human cognitive load. Additionally, the empirical human study conducted in

this work included only 17 participants so the significance of the results is questionable.

Generally, the main drawback of the works in the domain of goal-driven XAI is the lack of

empirical human studies to evaluate models and architectures addressing human-agent

explainability [198, 185, 16]. Other drawbacks or challenges include the communica-

tion of the explanations, issues related to the core AI running the system, and context-

awareness [16].

Despite considerable advances, the domain of XAI is still in its early stages of develop-

ment, and there are some open research issues to be tackled. This section outlined and

categorized these open issues. To handle these issues, we define a research methodol-

ogy that outlines our approach of the theoretical contribution and the statistical evaluation

of the contribution. The research methodology along with a more detailed discussion of

the research questions (see Section 5.2) and the research hypotheses (see Section 5.3)

handled in this thesis can be found in Chapter 5. The contribution that gives answers to

these questions is discussed in Chapter 6.

As stated in the general introduction chapter, this thesis is a part of the academic project

UrbanFly and one of the goals of this project is to propose novel models for simulating

UAVs in urban environments and smart cities. In this context, UAVs represent the remote

robots explaining their behavior and actions to the human. Working with remote robots is
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a challenging task, especially in high-stakes and dynamic scenarios such as flying UAVs

in urban environments. Therefore, ABS has been introduced as a promising tool to allow

for the simulation of UAVs in such environments. We employ ABS in an application of

UAVs in the evaluation part of the thesis (Part IV). Accordingly, the next chapter presents

an SLR of ABS for UAVs.



4

AGENT-BASED SIMULATION OF

UNMANNED AERIAL VEHICLES

4.1/ INTRODUCTION

Recently, the civilian applications of Unmanned Aerial Vehicles (UAVs) are gaining more

interest in several domains. Due to operational costs, safety concerns, and legal regu-

lations, Agent-based Simulation (ABS) is commonly used to implement models and con-

duct tests. This has resulted in abundant research works addressing ABS in UAVs. This

chapter1 aims at providing a comprehensive overview of this domain by conducting a Sys-

tematic Literature Review (SLR) on relevant research works addressing ABS in civilian

UAV applications in the previous ten years. This SLR aims to identify the most impor-

tant questions and analyze the literature. To the best of our knowledge, no systematic

literature study has been conducted to review the research addressing ABS in civil UAV

applications.

The rest of this chapter is organized as follows: Section 4.2 states and defines the SLR

methodology adapted from [46, 152]. Section 4.3 details the analysis and results of the

SLR. Section 4.4 surveys the related works, and finally, Section 4.5 concludes this chapter

identifying the key research perspectives related to the contribution of the thesis.

4.2/ SYSTEMATIC LITERATURE REVIEW METHODOLOGY

Recently, research on computer science in general and on artificial intelligence, in par-

ticular, has witnessed a significant increase both qualitatively and quantitatively. For this

reason, SLRs are becoming popular to help analyze the evolutions of these domains.

Kitchenham and Charters [150] define SLR as follows:

1This chapter is based on our work [207].

41
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Phase 1: 

Plan the Review

• Identify SLR Questions (SLRQs)

• Define review protocol

Phase 2: 

Conduct the 

Review

• Identify relevant research

• Select primary studies

• Extract, analyze & interpret results

Phase 3: 

Document the 

Review

• Write & discuss review report

• Assess study quality

• Relate SLR results to the thesis 

contribution

Figure 4.1: The systematic literature review process (adapted from [43, 102])

Definition 14: Systematic Literature Review (SLR) according to Kitchen-

ham and Charters [150]

A form of secondary study that uses a well-defined methodology to identify, an-

alyze and interpret all available evidence related to a specific research question

in a way that is unbiased and (to a degree) repeatable.

Where secondary study refers to “a study that reviews all the primary studies relating to a

specific research question.” In this chapter, we define a primary study as a research work

addressing a specific research question in the domain of UAVs. The aim of SLRs can be

threefold [150]: (i) to summarize the existing evidence concerning a specific technology

that is being used broadly, (ii) to identify gaps in the existing research to suggest areas for

future investigation, and (iii) to provide a background allowing to position new research

activities.

With these goals in mind, we base our SLR on [46, 152], which are among the most

common methodologies for computer science SLRs. Such an approach ensures rigor-

ousness, fairness, and reproducibility. Figure 4.1 illustrates the review process.

This section is organized as follows. First, Section 4.2.1 highlights the SLR questions.

Second, Section 4.2.2 explains the review protocol, how conflicts are resolved and biases

overcome. Third, in Section 4.2.3, the defined protocol is executed and the review process

is undertaken (document collection, conflict resolution, etc.).
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4.2.1/ SYSTEMATIC LITERATURE REVIEW QUESTIONS

Following the Goal Question Metric (GQM) [152], we define our generic free-form ques-

tion as “Discover and evaluate the possible scientific Multi-agent Systems (MAS) con-

tributions to the civilian UAV applications.” On the field, it may be hard to deploy UAVs

because of safety and security issues. Moreover, it may be difficult to reproduce the same

scenario several times to test hypotheses and validate the behaviors of UAVs. ABS is a

suitable tool for overcoming these limitations. to reflect this aspect, the generic free-form

question becomes ‘Discover and evaluate the possible scientific ABS contributions to the

civilian UAV applications.” This question is broken down into further Questions, that we

abbreviate as SLR questions (SLRQs), exploring key issues in ABS for civilian UAV appli-

cations. The SLRQs are mainly concerned with this type of application. More specifically,

these questions cover the purposes, issues, used simulation frameworks, publications

date, authors, countries, etc. These questions were formulated based on the authors’

knowledge in the UAV and ABS domains as well as the common practices from other

SLRs. In what follows, 8 SLRQs are considered within this review, and we list all of them

below:

SLRQ1 Identify the artificial intelligence models scaffolding the solutions in the reviewed

papers. This SLRQ is set up to have a view on the types of agent architectures used

for implementing civilian UAV applications. It also helps researchers understand the

potential of these agent & system architectures and their limitations. The following

sub-questions focus on specific types of models and architectures.

SLRQ1-1 Investigate the agent architecture used in the solution (e.g. cognitive agent,

Belief-Desire-Intention (BDI) agent, reactive agent, etc.).

SLRQ1-2 Investigate the architecture of the system in the studied papers (decentralized

vs centralized).

SLRQ1-3 Investigate whether the proposed model (agent or simulation architectures)

includes the environment, and how the UAVs interact with their environment.

SLRQ2 Identify the main model category used by the proposed work (e.g. mathematical,

algorithm-based, etc.). This SLRQ is set up to determine if the contributions to

civilian UAV applications are formal or semi-formal. It will lead us to a statement

and arguments regarding the validation of UAV models.

SLRQ3 Identify the simulation frameworks used to implement the proposed solutions, and

the main advantages & disadvantages of each framework especially if it excels in a

specific civilian UAV application domain. This SLRQ is related to the technological

means used by the researchers for implementing the MAS for civilian UAV applica-
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tions. It should help researchers to determine and choose the best framework for

their model implementation.

SLRQ4 Understand the evolution of UAV simulations in MAS in the last decade in terms

of key contributors (research labs), geographic distributions, growth over the years.

Having answers to this SLRQ will help researchers determine the liveliness of the

MAS modeling domain for civilian UAV applications. Moreover, this SLRQ will en-

able highlighting the active contributors. In this way, it may help researchers to find

quickly new contributions in the domain.

SLRQ5 Identify the main UAV research topics and civilian application domains addressed

in the studied papers. On one hand, we consider it is important to determine active

research topics to highlight less active research topics where more contributions are

needed. On the other hand, and as the market of civilian UAVs is expanding rapidly

in several application domains [280], a synthetic view of these application domains

will enable researchers to determine the typical applications for their research, and

possibly identify new application domains.

SLRQ6 Investigate whether models and technologies enabling to implement concepts re-

lated to Internet-of-Things (IoT), pervasive systems, or ubiquitous systems are con-

sidered in the studied papers. IoT is a technological domain that is more and more

used within smart cities. This SLRQ contemplates if technologies like wireless sen-

sor networks, connected vehicles, connected buildings, etc. are considered as a

component of the agent-based system in the studied papers. In such systems, IoT

contributes to the model at the agent level (objects may be modeled as agents)

and at the agent environment level (objects are not agents). This SLRQ will also

highlight how IoT devices and UAVs are interacting together.

SLRQ7 Identify the communication technology used by the UAVs to connect to other enti-

ties: For UAVs to be deployed and used in their environment, especially in smart

cities, they could either be connected to infrastructure entities, i.e. Vehicle-to-

Infrastructure (V2I), or to other UAVs, i.e. Vehicle-to-Vehicle (V2V). Understanding

the communication technology of the UAV in the proposed simulated works is key

to assess whether frameworks are capable of producing realistic simulations.

SLRQ8 Assess the evaluation of the proposed model: Simulation for civilian UAV applica-

tions needs scenarios to be set up, and the use of datasets may help to create such

simulation realistically. This SLRQ assesses if the evaluation relies on a dataset,

on a generated synthetic dataset, or no dataset. This will highlight the different

datasets and the scenarios (if no dataset is used) from the literature.

In this chapter, we answer only 3 of the SLRQs that are the most related to the contribution
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of the thesis, namely SLRQ1, SLRQ2, and SLRQ3 that are directly related to the thesis.

The rest of the SLRQs answers are detailed in Appendix A.

4.2.2/ DEFINING THE REVIEW PROTOCOL

As shown in Figure 4.1, defining the review protocol is done right after having set the

SLRQs. The protocol we used for this SLR involves the following steps. First, Sec-

tion 4.2.2.1 chooses the databases used as sources of information and defines the stop

criterion. Section 4.2.2.2 defines the exclusion/inclusion criteria used by the reviewers

to exclude/include articles chosen from the databases before the stop criterion was trig-

gered. Section 4.2.2.3 presents the quality criteria used by the reviewers to assess the

quality of the primary studies. Finally, Section 4.2.2.4 explains the policies used to miti-

gate subjective biases and resolve conflicts.

4.2.2.1/ DATABASE SELECTION

This process is composed of the following couple of steps:

1. IEEE Xplore, ACM Digital Library, and Google Scholar are selected as the three

databases constituting the source of information. The selection of the first two

databases is obvious in computer science. Google Scholar is selected because

it provides a large list of documents that are not indexed into the two previous

databases, e.g. papers from conference proceedings, Ph.D. and Master theses.

Despite not being peer-reviewed, these articles obtained from Google scholar might

be important given that the interest in the studied topic is rapidly increasing in recent

years.

2. The databases are queried with a set of keywords. These keywords are devised

based on the authors’ knowledge of the UAV and ABS domains.

When queried with these keywords, each database responded with a set of articles that

are considered by the reviewing process. The number of articles to be produced by

the queries is relatively large for IEEE Xplore, ACM DL, and Google Scholar databases.

However, only a few of these articles were relevant to the SLRQs raised in the previous

section. For this reason, as in [50], the following stop criterion was applied: “Stop the

collecting of articles after a sequence of 10 titles, completely incoherent with the query,

appeared in the list.” Determining whether an article is coherent is left to the review-

ers’ subjective view when they deemed that there was no adherence between the query

performed on the database and the title/abstract of the article appearing in the result.
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4.2.2.2/ INCLUSION AND EXCLUSION CRITERIA

The papers appearing in the resulting pool of papers are not necessarily useful to answer

the SLRQs defined above. For this reason, most of the literature review methodolo-

gies [102, 50] apply a set of exclusion criteria to retain only pertinent papers. The set of

exclusion criteria, defined by the authors, is listed below:

ExC1 Not a recent research work — Papers that were published before 2008, i.e. with a

publication year < 2008, are excluded. It is assumed that the non-recent research is

not up-to-date due to the high evolution rate of UAV technologies and usages.

ExC2 Invalid type of paper, the document is a poster or a demo — It is assumed that a

poster or a demo cannot give enough details on the contributions, as there is no

enough contributed content for evaluation. Ph.D. theses, Master theses, technical

reports are included.

ExC3 Invalid type of paper, the paper is a survey — It is assumed that the survey papers

(i.e. secondary studies) do not provide contributions directly on the UAV models nor

UAV technologies.

ExC4 Impossible to access the paper text — It is impossible to evaluate a paper when its

text cannot be accessed (PDF download, online text, etc.).

ExC5 Extended paper — The paper is extended by another paper by the same authors.

The contributions in the extended paper are enclosing the ones from the original

paper so that the latter is excluded.

ExC6 Unrelated to UAV — The paper has neither a contribution in the fields of UAV models

nor UAV technologies.

ExC7 Unrelated to agent-based systems – The paper has neither a contribution in the

fields of agent-based technologies nor distributed artificial intelligence. Generally,

only multi-agent applications are included, but if the system includes agents that

communicate with other entities like Infrastructure (refer to ExC14), then they will

also be included.

ExC8 UAV manufacturing only — The paper’s contribution is related to the manufacturing

of UAVs, i.e. it is related to the design and implementation of hardware, mechanic,

or electronic components.

ExC9 Positioning system only — The paper’s contribution is related to the definition of

novel positioning systems within UAVs. The contribution focuses on a perception

model that enables each UAV to compute its position in the air.
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ExC10 UAV detection system only — The paper’s main concern is UAV detection within

the system. In other words, the contribution is not related to UAV behavior, but to a

system that is detecting the UAV in the air.

ExC11 No civilian application — The paper contains only military applications that cannot

be applied to civilian fields.

ExC12 No simulation contribution — The paper’s contribution cannot be applied to UAV

simulation. In several papers, the model is deployed on real UAVs without simula-

tion. Even if the paper has not a direct contribution to UAV simulation, if the pro-

posed model could be deployed within a simulation environment, the corresponding

paper is not excluded.

ExC13 Simulation in 2D — The paper’s contributions include a simulation model in 2D that

cannot be extended to the third dimension. It is assumed that 2D simulation of UAVs

that cannot be extended into 3D cannot achieve the highly detailed reproduction of

the UAV behavior when they are in the air. However, to estimate the portion of 2D

and 3D simulations, we keep track of this exclusion criterion (cf. Section 4.2.3).

ExC14 No UAV cooperation nor interaction — The paper contains a contribution related

to neither the cooperation of UAVs nor the interaction between UAVs. V2I and V2V

communications are assumed to be the base framework for supporting UAV interac-

tion. If a paper contains a model for a single UAV that has V2I communication, it is

not excluded since this type of model could be duplicated to set up a more complex

simulation environment based on stigmergy2 communication.

ExC15 No autonomous UAV — The paper contains only a contribution related to the pilot-

ing or controlling the UAVs. In other words, the contribution does not focus on the

autonomous behavior of the UAVs.

These exclusion criteria are applied to the documents in two steps. In the first coarse-

grained step, the articles were only eliminated if their titles and abstracts satisfied at least

one of the exclusion criteria. In the second fine-grained step, the remaining papers are

screened but this time reading the whole body of the paper.

4.2.2.3/ QUALITY CRITERIA

As has been recommended by Kitchenham and Charters [150] and Kitchenham et al.

[151], most of the SLRs rely on quality criteria allowing to assess the quality of primary

2This term has been introduced by the French biologist Pierre-Paul Grassé in 1959 for describing the
termite behavior. It is defined as: “Stimulation of the workers by the work that they performed.” This term
expresses the notion that the actions of an agent leave signs in the environment. These signs are perceived
by itself and other agents, which determine their next actions [224].
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studies (e.g. [102, 50]). Defining quality criteria as a list of questions is a common

practice. Typical quality criteria include: (i) whether the authors of primary studies

provided a sound rationale for their work, (ii) details about the context and the design of

the technical evaluation, (iii) the statement of the results.

Note that, as it is the case in [102], the quality criteria are not used to exclude/include

primary studies. Rather, they are used to report the overall quality of primary studies

included by the SLR. To assess the quality of the reviewed works, Table 4.1 defines four

quality questions, adapted from [102]. Note that Q3 is of particular interest since having

an overview of the quality of evaluations of the set of articles dealing with a specific

research question can give a good idea on the maturity of this research question.

# Quality Question

Q1 Do the authors provide a sound rationale (i.e. motivation) for their work?

Q2 Is there an adequate description of the context in which the study has been con-

ducted?

Q3 Is there a clear statement of the findings and the results including data that sup-

port the findings?

Q4 Are the limitation of the study discussed and highlighted?

Table 4.1: The Quality Questions

4.2.2.4/ BIASES AND DISAGREEMENTS

to mitigate the subjectivity of the reviewing process, certain measures were taken to over-

come biases and resolve conflicts. In particular, each task of Phase 2 in Figure 4.1 was

conducted by at least 2 reviewers. Thus, as shall be discussed later, the steps of article

exclusion/inclusion (see Section 4.2.2.2), answering the SLRQs, and quality assessment

(see Section 4.2.2.3), were undertaken by at least two reviewers for each article. A third

reviewer intervened as a referee to resolve a conflict in the exclusion/inclusion and the

SLRQ answering steps. As for the quality assessment task, quality assessments given

by reviewers for each article were averaged.

4.2.3/ PERFORMING THE REVIEW

This section gives an account of how the SLR has conducted and analyzed the re-

sults of the exclusion/inclusion step. Two keyword sets were applied to the three

databases (IEEE Xplore, ACM DL, and Google Scholar). The first keyword set is

{UAV, agent, simulation}, and the second set is {UAV, agent-based simulation, drones,

civil, multi-agent systems}. A stop criterion of 10 articles was applied to the results of

each keyword set and database. After the stop criterion was applied, the total number of
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articles retained was 316. The next step is to apply the coarse-grained exclusion/inclusion

step. Note that since this step screens papers based on their titles and abstracts, some

exclusion criteria might be more helpful than others (e.g. ExC1 and ExC2).

Database Number of Papers Percentage

Selected from Keyword Set 1 131 ≈ 41%

Selected from Keyword Set 2 185 ≈ 59%

Sum from Set 1 & 2 316 =100%

Total Included 123 ≈ 39%

Total Excluded 193 ≈ 61%

Table 4.2: The results of the coarse-grained exclusion/inclusion step

Number of Papers Percentage

Included 30 ≈ 24%

Excluded 70 ≈ 57%

Conflict 23 ≈ 19%

Referee Included 12 ≈ 10%

Total Included 42 ≈ 34%

Total Excluded 81 ≈ 66%

Table 4.3: The results of the fine-grained exclusion/inclusion step

Table 4.2 shows the results of the coarse-grained exclusion/inclusion step. As can be

seen from the third row in the table, the total number of papers acquired from the two

sets combined is 316 papers. The results listed in Table 4.2 reveal that about 39%

(123 papers) of the total number of papers were included by the coarse-grained exclu-

sion/inclusion step.

The next step within the review process is the fine-grained exclusion/inclusion step. It

is applied to the 123 papers selected during the previous step. More specifically, the

content of the paper is screened and the paper is excluded if it satisfies at least one of

the exclusion criteria defined in Section 4.2.1. Table 4.3 shows the results of the fine-

grained exclusion/inclusion step. Each paper was reviewed by at least two reviewers. If

all the reviewers of a paper decided that it should be included in the review, the paper is

included (cf. the first row of the table). The paper is excluded if all of its reviewers agreed

upon its exclusion (the second row of the table). Otherwise, in case of a conflict among

reviewers, we relied on a referee to resolve this conflict. If the referee accepts the paper,

then it is included in the review. As shown in the table, 23 papers (about 19% of the total

number of the papers) generated conflicts among the reviewers. Out of these papers,

12 papers were added by the referee raising the total number of included papers to 42

(about 34% of the papers remaining after the coarse-grained exclusion/inclusion step).

For a list of the 42 papers, please refer to Table 4.4.
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43%

57%

2D

3D

Figure 4.2: The percentage of papers with a 2D simulation scenario vs. papers with a 3D

simulation scenario

Most of the papers screened in the fine-grained step were highly related to the SLRQs.

As indicated by Table 4.3, 66% of them were excluded. Note that some papers were

excluded because of satisfying multiple exclusion criteria.

Figure 4.2 compares the percentage of papers presenting 2D and 3D simulations in the

pool of papers before the fine-grained exclusion/inclusion (whose total number is 123),

excluding 26 papers that were not determined either they use simulation or not, or either

they are 2D or 3D. to understand the general tendencies of 2D and 3D simulations, Figure

4.3 plots the number of papers proposing 2D/3D simulations per year. As shown in the

figure, the number of papers proposing 3D simulations is witnessing a confirmed and a

significant increase (2018 should not be considered since this review was conducted in

August 2018).

This section offered a detailed account of how the review was performed and provided

useful statistics about the included/excluded papers. Furthermore, it discussed the most

common exclusion criteria. the next section presents and analyzes the results of the SLR

regarding the SLRQs presented in Section 4.2.1.

4.3/ RESULTS AND ANALYSIS OF THE REVIEW

This section thoroughly analyzes the SLR results. It analyzes the papers retained after

the fine-grained exclusion/inclusion step and discusses 3 out of the 8 SLRQs defined in

Section 4.2.1, namely SLRQ1, SLRQ2, and SLRQ3 (page 43). These 3 SLRQs have

been chosen because they are directly related to the contribution of the thesis3. Note

that the results are related to ABS in civilian UAV applications and are derived from the

SLRQs and the exclusion criteria defined in the SLR methodology.

3see Appendix A for SLRQ4, SLRQ5, SLRQ6, SLRQ7, and SLRQ8.
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Figure 4.3: The number of papers with 2D and 3D simulation scenarios per year

4.3.1/ ARTIFICIAL INTELLIGENCE OR AGENT ARCHITECTURE TYPE (SLRQ1)

This section deals with the SLRQ1. First, in Section 4.3.1.1 the used agent architectures

are identified and discussed. Second, in Section 4.3.1.2, the used system architectures

are analyzed. Finally, Section 4.3.1.3 explores how the primary studies dealt with the

dynamicity of the environment.

4.3.1.1/ AGENT ARCHITECTURE (SLRQ1-1)

The results of the SLR concerning the agents’ architectures showed that agents used

in the studied research works, mainly fall into five categories: (i) Reactive agents,

(ii) Flocking agents, (iii) Belief–Desire–Intention (BDI) agents, (iv) Agents using cog-

nitive architectures, and (v) Evolutionary agents. The following list presents these

architectures respectively.

• Reactive agents: The behavior of reactive agents is driven by their reactions to ex-

ternal stimuli (e.g. a message from another agent) or a change in their environment

(a perceived obstacle).

Within the reactive agent behaviors, Flocking agents behavior is the behavior ex-

hibited when a group of agents, e.g. birds, fishes are moving together. Basic ar-

chitectures of flocking behavior are controlled by two simple rules: (i) alignment

for steering towards the average heading of neighbors, (ii) cohesion for steering

towards the average position of neighbors. With these two simple rules, the flock
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Figure 4.4: The agent architectures used in the reviewed papers

moves in an extremely realistic way, creating complex motion and interaction that

would be extremely hard to create otherwise.

• Cognitive agents: Agents of this type rely on cognitive architecture. The latter

aims at describing human cognitive processes as precisely as possible. In contrast

to BDI, whose main inspiration is philosophical and relies on Michael Bratman’s

theory of human practical reasoning and on modal logic [41], other cognitive archi-

tectures are inspired by an in-depth understanding of the human brain from biolog-

ical and neurological perspectives. There are many implementations of cognitive

architectures (see 2.8). Soar [165] is one of the widely used ones.

A special type of cognitive agents is BDI agents. They are rational agents that hav-

ing a “mental attitudes” of Beliefs, Desires, and Intentions representing respectively

the information, the motivational, and the deliberative states of the agent [238]. BDI

agents are capable of integrating planning, scheduling, execution, information gath-

ering, and coordination with other agents [274].

• Evolutionary agents: They are agents that are based on evolutionary algorithms.

An evolutionary algorithm is a subset of evolutionary computation [296], a generic

population-based metaheuristic optimization algorithm. It uses mechanisms in-

spired by biological evolution, such as reproduction, mutation, recombination, and

selection. Candidate solutions to the optimization problem play the role of individu-

als in a population, and the fitness function determines the quality of the solutions.

The evolution of the population then takes place after the repeated application of

the above operators.

Figure 4.4 depicts the agent architectures used in the papers. As can be seen from the

figure, cognitive architectures were the most common among the primary studies (≈ 41%)
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followed by Reactive agents (≈ 22%) and BDI (≈ 14%). This result reveals that proactive

agents, those agents capable of goal-driven behavior (BDI agents, and cognitive agents)

constitute about 55% of all the analyzed studies whereas reactive agents (including those

with flocking behavior) are less common (≈ 24% of the analyzed works). This shows that

most of the research works seek to equip the UAVs with greater autonomy and goal-driven

behavior.

to understand the correlation between the agent architectures and the autonomy, Fig-

ure 4.5 depicts the average ACL per agent architecture (cf. [66] and Section A.2). The

BDI agents offered the highest level of autonomy, followed by cognitive agents, evolution-

ary agents, and lastly reactive agents. This result confirms our expectations and suggests

that cognitive architecture and BDI agents are promising paradigms allowing to build more

autonomous UAVs.

4.3.1.2/ DECENTRALIZATION/CENTRALIZATION (SLRQ1-2)

Figure 4.6 shows the number of papers with reactive/direct collaboration system model,

and with the system architecture used by the model (decentralized/centralized). As ex-

pected, the majority of the papers are related to decentralized architectures, which corre-

spond to one of the major characteristics of MAS and UAV systems. However, 12 papers

contain proposals that correspond to a centralized architecture, i.e. the model contains a

central agent or the model is formalized in such a way that it could be implemented only

with centralized frameworks, e.g. Simulink [223] (cf. Section SLRQ3).
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Figure 4.6: The number of papers with the system model (direct collaboration/reactive)

and the system architecture (centralized/decentralized)

4.3.1.3/ ENVIRONMENT DYNAMICITY (SLRQ1-3)

Immersing agents in dynamic physical, virtual, or mixed environments is still a challenge

for MAS researchers. As has been established in [311], an essential part of such systems

is the MAS environment, to offer the services allowing agents to interact with it. However,

defining what is the interface between the agents and their environment is not obvious. A

key aspect is to respect their autonomy and ensure that the rules of the environment are

enforced. Weyns et al. [311] define the agent environment as the software layer between

the external world and the agents.

Dynamic agent environments include endogenous processes that enable the environ-

ment’s state to evolve dynamically outside the control of the agent. In a static agent

environment, such a process is not included. Additionally, the agent environment state

could evolve only as a consequence of the agents’ actions. If an action is never applied

to the agent environment by the agents, it is passive.

Figure 4.7 depicts the proportion of dynamic and static agent environments. Half of the

papers propose models based on a static environment, 48% in a dynamic environment.

Due to the complexity of the UAV systems, static agent environments are used to control

the complexity of the modeling and enabling an easier validation.

Agent environments in most of the reviewed papers are passive. In these cases, UAV

missions are mainly surveillance, collision detection, coordination, etc. However, as UAVs

become involved in more application domains where acting on the environment is neces-

sary, there are likely to become more active in the agent environment.
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4.3.2/ FAMILY OF MODELS (SLRQ2)

The purpose of this SLRQ is to identify the family of the models that are used within the

proposed works. Three major families are highlighted:

• Mathematical model: includes formal models that enable to verify and validate

the behavior of the UAVs. Formal verification is the act of proving or disproving the

correctness of UAV algorithms based on a certain formal specification, using formal

methods of mathematics. The verification of these systems is done by providing a

formal proof on an abstract mathematical model of the system, the correspondence

between the mathematical model and the nature of the system being otherwise

known by construction.

• Algorithm-based model: are the models based on the general computer pro-

gramming theory. These models are instances of a logic written in a software to

produce the behaviors of UAVs. These algorithms are not based on mathematical

models, such that it is hard to give a proof of completeness and stability.

• Not-categorized model: If a paper’s contribution can be classified neither mathe-

matically nor as algorithm-based, it is put into the “None” category. In most of the

reviewed papers, the contributions within this category are presented with abstract

or general explanations without equations, algorithms, state machines, etc. For

example, the UAV behavior is described by a schematic drawing.

Figure 4.8 illustrates a re-partition of the models according to their family. It is interesting

to note that 38% of the proposed models are mathematical, and 43% are algorithm-based.

Indeed, even if mathematical models are harder to define than algorithm-based models,

safety concerns related to UAVs lead researchers to give a proof of safety and stability

of the UAV behaviors over the time by providing mathematical models. Safety validation
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is not outside the algorithm-based models. In all the related papers, simulation testbeds

are used for validating the behaviors of the proposed models.

As mentioned within the SLRQ1 analysis, the architecture in the reviewed models could

be classified as centralized or decentralized architectures. Figure 4.9 shows the correla-

tion between the system architecture classification and the mathematical/algorithm-based

model classification. As expected for MAS, the architectures are mostly decentralized,

whatever the type of model.

4.3.3/ SIMULATION FRAMEWORKS (SLRQ3)

Enabling early validation of a UAV system design requires the simulation of its compo-

nents. This requires the development of an adapted simulation environment. Identifying

the frameworks used to implement the proposed solutions, and the main advantages &

disadvantages of each of them is a challenge by itself.

Figure 4.10 depicts the used simulation frameworks in the reviewed papers. Several

frameworks are used: AgentFly [264], Simulink [223], Gazebo [153], NetLogo [313], MA-

SON [180], A-globe [262], Repast Simphony [68], JADE [30], PROMELA [134], Gwen-

dolen [76], Neptus [78], jME3 [294], and SPADE [111]. Table 4.4 provides a list of these

frameworks. All used frameworks are open source except for AgentFly, A-globe, and

Simulink. In our previous work [205], a comparison between open-source ABS frame-

works was provided. However, the comparison lacked some frameworks that were re-

vealed by the SLR presented in this work4.

The two most used frameworks by the papers in the SLR are AgentFly (7%), Simulink

(7%). However, the result indicates that no framework was favored by researchers for

4see Appendix B for the latest version of the ABS frameworks comparison.
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civilian UAV applications. The larger part of the implementations in the reviewed papers

is using an ad hoc framework (43%). These simulation frameworks are typically devel-

oped by the authors of the reviewed papers from scratch. This fact leads us to consider

that the existing frameworks do not cover all the needs mandatory for implementing a UAV

simulation software. Moreover, and due to the abundance of frameworks with no clear

distinguishing features related to UAVs, the authors generally prefer to set up their config-

uration and build the simulation framework from scratch even though it is time-consuming.

Regarding the public availability of the implemented solution, only one paper has offered

full access to the code [326], and some papers provided partial access to pieces of code

or to open source tools that they used [248, 143, 292, 181, 294, 64, 249, 219], while the

rest of papers did not offer any access.

4.3.4/ DISCUSSION

The results and the discussion above help to understand the recent tendencies in the

studied domain. Nevertheless, the conclusions drawn in this chapter are only valid within

the predefined domain of ABS and MAS for civilian UAV applications. Thus, the tenden-

cies discussed in Section 4.3 cannot be generated to all UAV applications. Their scope

and validity are limited by the keywords and the exclusion criteria defined in Section 4.2.

Based on the quality criteria defined in Section 4.2.2.3, the quality of the papers was eval-

uated according to the four quality criteria defined in Table 4.1 related to the explanations

on the motivations (Q1), the study context (Q2), the theoretical and experimental results
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Framework Papers using the framework

Ad hoc Agogino et al. [7], Ashraf et al. [18], Wei et al. [307, 306],

Bürkle et al. [49], Rollo et al. [243], Gunetti et al. [115], Evertsz

et al. [86], Kandil et al. [140], Sampedro et al. [248], Peng

et al. [230], Benedetti et al. [31], De Benedetti et al. [73, 74],

Bürkle and Leuchter [48], da Silva et al. [261], Schatten [249]

MASON [180] Albani et al. [9], Zou et al. [326]

AgentFly [264] Semsch et al. [254], Pechoucek et al. [228], Šišlák et al. [263]

PROMELA [134] Webster et al. [305]

A-globe [262] Volf et al. [299], Stenger et al. [266]

NetLogo [313] Cimino et al. [65], Zhu et al. [325]

Simulink [223] Gunetti et al. [114], Ciarletta et al. [64], Kucherov and

Kucherov [159]

Gwendolen [76] Webster et al. [304]

Gazebo [153] Arokiasami et al. [17], Ma et al. [181]

Repast Simphony [68] Khaleghi et al. [143]

Neptus [78] Vasilijevic et al. [292]

jME3 [294] Veloso et al. [294]

SPADE [111] Obdržálek [219]

JADE [30] Fulford et al. [98]

n/a Van der Walle et al. [301], Sutton et al. [271], Bentz and

Panagou [32], Ferrag et al. [90]

Table 4.4: The reviewed papers per used framework

(Q3), and the limitations and research directions (Q4). Figure 4.11 shows the average

evaluation for each of these criteria. Reviewers have provided a score, according to their

background and knowledge, based on three levels of quality: “bad”, “average”, “good”.

Each paper was evaluated by at least two reviewers and the results were averaged into
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a scale from 1 to 5. Over the entire set of papers, motivations and contexts are clearly

explained. The presentation of the results is described with the minimum set of details

to allow a researcher to reproduce the presented results. Finally, as can be seen from

the figure, reviewers have considered that the limitations of the proposed models and

approaches are not enough detailed within the papers. However, as UAV technology

evolves and new UAV manufacturers claim new customers and social flight clubs enlist

fresh enthusiast amateur pilots, these open issues and limitations are becoming signifi-

cant challenges.

There is a confirmed tendency towards the development of increasingly autonomous UAV

systems. This evolution would minimize the human intervention by relieving him/her from

the burden of continuously monitoring the UAVs. Nevertheless, in unpredictable situa-

tions, the UAV behavior might not conform to the expectations of the human operator.

For instance, in a product delivery scenario, an autonomous UAV may choose to devi-

ate from its expected path because of an unforeseen event. Enhancing the UAVs with

explaining capabilities would allow the human operator to understand the reasons be-

hind UAV behavior and raises its trust in the autonomous UAV system. Moreover, the

recent developments of the domain of Explainable Artificial Intelligence (XAI) help UAVs

to move in this direction. UAV has been cited as one of the applications where XAI would

be needed [116]. Furthermore, developing explainable UAVs would have a very positive

impact on human-machine teaming. Recently, this research direction is being explored

by military UAV applications. Similar efforts should be considered for civilian applica-

tions [293]. As shown by recent studies, using BDI agents is a promising approach to

develop explainable agents [45]. A key explanation for this success lies in the fact that

the BDI paradigm is inspired by folk psychology (see Section 2.8). Therefore, BDI ar-

chitecture offers a more straightforward description making models easier to explain for

end-users. For this reason, UAV agents relying on BDI architectures, which represent

only 14% of papers reviewed in this SLR (cf. Figure 4.4), are likely to increase in num-

bers if the issue of explainable UAV behavior is to become a hot research topic. This

discussion confirms the research needs related to XAI that are detailed in Chapter 3.

4.4/ RELATED SURVEYS

Recently, several works surveyed the emerging topics of UAVs. However, these works

mainly focused on vertical applications without considering the aspects and challenges

across multiple application domains and research topics. For instance, Hayat et al. [125]

focused on the characteristics and requirements of UAV networks for envisioned civil-

ian applications between 2000 and 2015 from a communications and networking point

of view. Motlagh et al. [204] reviewed Low-altitude UAVs highlighting their potential use
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in the delivery of IoT services from the sky. Other surveys focused on traffic manage-

ment [234], environmental monitoring [26], ad hoc networks in UAV applications [323],

routing and energy efficiency in UAV communication networks [117], and UAV cover-

age [59].

One interesting survey is provided by Chmaj and Selvaraj [61] in which the authors sur-

veyed the applications implemented using cooperative swarms of UAVs that operate as a

distributed processing system. However, this survey did not tackle the challenges facing

UAVs in these applications and the potential role of new technologies in UAV uses.

Shakhatreh et al. [258] reviewed civilian UAV applications and challenges. They identify

current research trends and future challenges for civilian UAV applications, including:

charging, collision avoidance, swarming, networking, and security-related challenges.

Yet, this survey was mainly inspired by low-level aspects of UAVs like networking and

wireless communication. Moreover, the listing of the comparison was in sequence with-

out a cross-application domain discussion.

Other surveys focused on system identification and UAV-human interactions. In partic-

ular, current methods and applications of system identification for small low-cost UAVs

were provided by Hoffer et al. [131], while the interaction between UAVs and humans

applications was considered in another survey [155]. In this later work, a taxonomy of

control methods that enable operators to control swarms effectively was developed. With

highlighting challenges, unanswered questions, and open problems for Human-Swarm

interaction.
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4.5/ CONCLUSION

UAVs are becoming increasingly popular for civilian applications. The aim of this chap-

ter is to conduct an SLR on research addressing MAS, and specifically ABS, in civilian

UAV applications. This concluding section states the principal findings. Note that while

the SLR concentrated on research using ABS for civilian UAV applications, some of the

findings below pertain to key research issues in agent and MAS (e.g. agent architectures,

decentralization, etc.).

Following a well-established SLR methodology, we have identified 8 SLRQs helping to

assess the contributions of MAS and ABS in civilian UAV applications. The main findings

of the most related 3 SLRQs (SLRQ1, SLRQ2, and SLRQ3) to the research questions

(Chapter 5) of this thesis are5:

1. The majority of papers covered by the SLR opted for proactive agents, those agents

capable of goal-driven behavior (BDI agents and cognitive agents) in their proposed

model. Furthermore, most of these studies adopted a decentralized system archi-

tecture.

2. Algorithm-based models were used slightly more than the mathematical models by

the reviewed papers.

3. In a related finding, the results showed that to conduct their experiments, about

44% of the studied papers implement their ad hoc simulations. This might be an

indication that existing frameworks are not meeting all the needs required for imple-

menting UAV simulations.

In this thesis, we adopt both the concepts of goal-driven cognitive agent architecture, the

BDI model and decentralized system architecture when proposing our architecture (see

Chapter 6). This is formulated in the research question 5.2.3 (page 68). Additionally, the

proposed model is algorithm-based (see Section 6.4.2). For the ABS implementation, we

have two implementations. The first one is in the pilot test (Chapter 8) where we use

Repast Simphony [68] based on a comparison we have conducted (see Appendix B). In

the second implementation in the main test (Chapter 9), we use an ad hoc simulation like

most of the studied papers in the SLR.

Chapter 5 provides a detailed discussion of the research methodology conducted in the

thesis and it details the research questions of the thesis. Additionally, it explores the role

of ABS in the experimental methodology of the proposal of the thesis.

5see Appendix A for SLRQ4, SLRQ5, SLRQ6, SLRQ7, and SLRQ8.
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RESEARCH METHODOLOGY

5.1/ INTRODUCTION

The goal of this chapter is threefold: (i) to give more details on the general problem

of this thesis by summarizing the context, the technological and scientific problems and

the related works done in the previous chapters; (ii) to set out the features, Research

Questions (RQs) and Research Hypotheses (RHs) on which the contribution is based;

(iii) to outline the experimental methodology conventionally conducted for the validation

and evaluation of the contribution in the domain of Explainable Artificial Intelligence (XAI).

With the widespread use of Artificial Intelligence (AI) systems, understanding the be-

havior of intelligent agents and robots is crucial to guarantee successful human-agent

collaboration since it is not straightforward for humans to understand the agent’s state

of mind. Recent works in the literature highlighted explainability as one of the corner-

stones for building trustworthy and responsible AI systems [77, 176, 233, 244]. Con-

sequently, the sub-domain research of XAI gained momentum both in academia and

industry [113, 16, 51].

From Chapter 4, recent studies in goal-driven systems, e.g. robots and agents, have

confirmed that explaining the system’s behavior to the humans fosters the latter’s trust

in the system and increases its acceptability (refer to Section 2.4 for more details on

goal-driven systems). The problem of understanding the behavior of robots is more ac-

centuated in the case of remote robots since —as confirmed by recent studies in the lit-

erature [124, 23]— remote robots tend to instill less trust than robots that are co-located.

Additionally, providing overwhelming or unnecessary information may also confuse the

humans and cause failure.

Despite considerable advances, the domain of XAI is still in its early stages of develop-

ment, and we can consolidate the general problem of this thesis as How to build an

adaptive context-aware architecture, model, explanation process, and simulation

tool to support the human-agent explainability for goal-driven AI systems in the

65
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context of remote robots (e.g. UAVs)?

Remote robots are represented as agents in the thesis (see Section 2.3). To achieve

smooth human-agent interaction and deliver the best possible explanation to the human,

the contribution of the thesis must satisfy the main features of an explanation (refer to

Section 3.3.1 for more details):

FEATURE 1: SIMPLICITY

The explanation should be relatively simple to consider the human cognitive load.

FEATURE 2: ADEQUACY

The explanation should include all the pertinent information to help the human

understand the situation, even in abnormal situations where the remote robot tends to

diverge from the behavior expected by the human.

In Chapter 3, we have outlined how works in the literature have started to respond to

these two features. Some works tackled the simplicity of explanation [121, 122, 120, 160],

and others investigated the adequacy [145, 60, 202, 241, 302, 214, 56, 268], while few

works tried to handle the trade-off between simplicity and adequacy [162]. Additionally,

very few works have conducted empirical human studies [185] to properly evaluate the

contributions. We have discussed these related works identifying their models and ap-

proaches along with analyzing their results and in particular their shortcomings (refer to

Section 3.3.1 for more details). Despite considerable advances, the domain of XAI is

still in its early stages of development, and there are some open research issues to be

tackled. Therefore, we have discussed and summarized the open research issues in the

domain of XAI in general and the goal-driven XAI in particular. We have organized these

issues into four categories to facilitate identifying the RQs that this thesis handles (re-

fer to Section 3.3.3 for more details about the open research issues). The next section

discusses more details about the RQs.

5.2/ RESEARCH QUESTIONS

We have chosen the RQs from each of the first three categories (agent typology, par-

simony, and architectures and models) we have identified for the open research issues

in the literature (see Section 3.3.3) keeping in mind that the RQs should be related and

consistent with each other. For the fourth category (evaluation), we opt to consider it in

the empirical human studies. Namely the following RQs are investigated.
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5.2.1/ EXPLAINABILITY FOR REMOTE AGENTS

The first RQ to tackle concerns the benefits of using explainability in the domain of remote

robots. In Chapter 3, explainability has been confirmed to be useful to increase the

humans’ understandability of robots and agents in various domains, but not trust. This

thesis focuses on the domain of goal-driven systems (see Section 2.4) and in particular on

remote robots, e.g. Unmanned Aerial Vehicles (UAVs). Therefore, we need to reproduce

and validate the results from the literature in this specific domain. RQ1 can be formulated

as follows:

Research Question 1

Does explainability increase the humans’ understandability of the remote robots

represented as agents?

5.2.2/ PARSIMONIOUS EXPLANATIONS

The second RQ investigates the trade-off between simplicity and adequacy. Even though

some few works tried to tackle this question (e.g. [162, 214]), the results were not decisive

because the model did not consider the human cognitive load. Additionally, the signifi-

cance of the results obtained in the empirical human study conducted in these works

were questionable, e.g. one work included only 17 participants [162]. We argue that the

parsimony of explanation (see Section 2.5) is one of the key characteristics allowing suc-

cessful human-agent interaction with a parsimonious explanation to be the simplest (i.e.

least complex) explanation that describes the situation adequately (i.e. descriptive ade-

quacy). While parsimony is receiving growing attention in the literature, most of the works

are carried out at the conceptual aspect, and without a conjunctive solution that com-

bines the phases of providing an explanation (see Section 2.7). RQ2 can be formulated

as follows:

Research Question 2

How to strike a balance between simplicity and adequacy?

RQ2 could be divided into two sub-questions RQ2-1 and RQ2-2 defined as follows:

Research Question 2-1

How to provide a simple explanation without the risk of oversimplification?
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The goal of this sub is to investigate the level of simplicity beyond which the explanation

is oversimplified, and what is the mechanism to guarantee to respect this level.

Research Question 2-2

How to ensure all the necessary information are included in the explanation without

overwhelming the human?

The goal of this sub-RQ is to study the process of building the explanation in both normal

and abnormal situations. Additionally, it investigates whether this is performed in a single

step by the remote agents in the generation phase of an explanation or several steps in

the generation and communication phases of the explanation.

5.2.3/ MODELING EXPLAINABILITY FOR REMOTE AGENTS USING COGNITIVE

ARCHITECTURES

Even though we have seen different models and architectures to model explainability,

there was no way to compare which one suits best the explainability and XAI. In the liter-

ature of goal-driven XAI (Chapter 3), it has been shown that the most used social science

theory is folk psychology on which cognitive architectures rely. Moreover, besides ad hoc

models, the most used model is the Belief-Desire-Intention (BDI) model to generate ex-

planations for goal-driven agents. Additionally in the literature of Agent-based Simulation

(ABS) in UAVs (see Chapter 4), most of the works have used cognitive architectures (see

SLRQ1 on page 43). The question here is: Can we rely on cognitive architectures and

models as good candidates for human-agent explainability for remote agents?

In this question, we do not try to compare architectures and models to find out the best

candidate to model explainability for remote agents. We simply reproduce the choices of

the literature to confirm if a cognitive architecture and a BDI model provide good candi-

dates for human-agent explainability in the application of remote robots represented as

agents. RQ3 can be formulated as follows:

Research Question 3

Are the cognitive architecture and the BDI model good candidates for human-agent

explainability?
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5.2.4/ RESPONDING TO THE RESEARCH QUESTIONS

To well answer the RQs, the thesis proposes a mechanism for parsimonious XAI. In par-

ticular, it introduces the process of explanation formulation and proposes a human-agent

explainability architecture, named HAExA (see Section 2.8), allowing to make it opera-

tional for agents. HAExA considers the three phases of providing an explanation from

agents to the human: generation, communication, and reception (see Section 2.7). We

argue that a well-formed adaptive and context-aware combination of these phases leads

to formulating a parsimonious explanation. In particular, the proposed architecture re-

lies on a formulation process that includes generating contrastive explanations (see Sec-

tion 2.6) and communicating filtered explanations.

Chapter 6 mainly provides the contributions to answer the RQs. RQ1 is mainly handled

by the proposed architecture HAExA namely in Sections 6.2 and 6.3, and the part of the

proposal related to RQ1 is evaluated in the pilot test (Chapter 8) to prove that it answers

this RQ. We argue that a parsimonious explanation helps to answer RQ2, which is thor-

oughly discussed in Section 6.5. In particular, Section 6.5.1 investigates the building of

explanations and Section 6.5.2 investigates the communication and filtering of explana-

tions. Finally, Sections 6.2 and 6.4 investigate RQ3. The parts of the proposal related to

RQ2 and RQ3 are evaluated in the main test (Chapter 9) to prove it answers these RQs.

5.3/ RESEARCH HYPOTHESES

In the process of evaluating the proposal, the RQs should be consolidated into RHs that

could be statistically analyzed for significance. Therefore, we pose the following RHs

based on the RQs defined before. Before stating the RHs, we need to define some

concepts that will be used in the RHs.

In human-agent interactions, there are two types of roles for the human. The first role

is “in-the-loop” where the human is involved in the processes of the environment. The

other role is “on-the-loop” where the human is less involved, perhaps best described as

a supervisor [92]. The human-on-the-loop role is defined in Definition 15 by Nahavandi

[211], while Definition 16 provides our version of this role merging parts and components

from the literature. We opt to adopt this role for the human in our proposal because

we are interested in the effect of explainability on the understandability and trust of the

human, i.e. no active involvement of the human is reacquired. Additionally, an based

on various sources from the literature, we define the adaptive filtering of explanations in

Definition 17.
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Definition 15: Human-on-the-loop according to Nahavandi [211]

The role of the human where the machines can execute a task completely and

independently but have a human in a monitoring or supervisory role, with the

ability to interfere if the machine fails.

Definition 16: Human-on-the-loop in explainability

A human whose role in the environment is passive, i.e. the human receives

explanations for after-action decisions, but he/she does not alter the processes

in the environment.

Definition 17: Adaptive filtering of explanations

The filtering of explanations in the run-time based on some aspect, e.g. the

context or the user model.

Accordingly, the thesis considers the following RHs:

RH1 Explainability increases the understandability of the human-on-the-loop in the con-

text of remote agents1.

RH2 Too many details in the explanations overwhelm the human-on-the-loop, and hence

in such situations, the filtering of explanations provides less, concise and syn-

thetic explanations leading to higher understandability by the human.

RH3 This research hypothesis could be divided into three sub-hypotheses:

RH3-1 Adaptive filtering with only normal explanations increases the understand-

ability of the human-on-the-loop compared to static filtering with only normal

explanations.

RH3-2 Adaptive filtering with normal and contrastive explanations, i.e. parsimony

of explanations, increases the understandability of the human-on-the-loop

compared to static filtering with only normal explanations.

RH3-3 Adaptive filtering with normal and contrastive explanations, i.e. parsimony

of explanations, increases the understandability of the human-on-the-loop

compared to adaptive filtering with only normal explanations.

RH4 Adaptive filtering with normal and contrastive explanations, i.e. parsimony of

explanations, increases the trust of the human-on-the-loop compared to static fil-

tering with only normal explanations.

1Remote agents represent the remote robots.
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According to Mefteh et al. [194], for a MAS with an adaptive behavior [103], the empirical

approach is probably the only possible approach in the validation activities. Therefore,

to accept or reject these RHs, a specific experimental methodology should be conducted

that includes empirical human studies. This methodology considers the recommenda-

tions and requirements needed to test any contribution in the XAI domain. The following

section discusses thoroughly this experimental methodology.

5.4/ EXPERIMENTAL METHODOLOGY

5.4.1/ AGENT-BASED SIMULATION FOR REALIZING EMPIRICAL HUMAN STUD-

IES

One important objective of research on explainable agents is the evaluation of explanation

approaches in Human-Computer Interaction (HCI) studies2. Considering that the growth

of research on explainable agents is accelerating, contributions that empirically evaluate

the proposed explainability approaches are still scarce [15, 198]. In this regard, ABS (see

Section 2.9 for more details) fits the requirements to implement such empirical evalua-

tions (refer to Section 2.9 for more details). ABS can be considered as a natural step

forward towards better managing and evaluating the proposed explainability approaches

in empirical human studies. To facilitate more research and bridge the gap between the

theoretically proposed explainability approaches on the one hand, and the practical eval-

uation of such approaches on the other hand, this thesis presents an ABS approach to

engineer explainable agents and Multi-agent System (MAS) prototypes for the specific

purpose of empirical evaluation in human studies.

We employ ABS to provide a proof of concept of the contributions as an application of

UAVs that is designed to assess the effect of different explainability approaches on the

human intelligibility of explanations. Chapter 7 provides the experimental case study,

where we conduct an empirical human study to evaluate HAExA with its models and

processes by investigating several RHs related to the human-agent explainability. The

study is about the delivery of packages using civilian UAVs as remote robots represented

by agents. The choice of ABS is based on these reasons:

(i) It allows reproducing the complexity of the behavior of remote agents and the col-

lective behavior.

(ii) Unlike tests with real robots, simulated robots do not need access to expensive

hardware and field tests that are costly, time-consuming, and require trained and

2named “human studies” in the rest of this thesis
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skilled people. Moreover, in the field, it may also be difficult to reproduce the same

scenario several times [179].

The human study is performed in two tests. In the pilot test (Chapter 8), the implementa-

tion includes only reactive agents. We rely on the agent framework Repast Simphony [68]

that controls and manages the environment and the scheduler of the agents. However,

when performing the main test (Chapter 9), we opt to develop an ad hoc solution based

on the JS-son agent-oriented programming library [139, 206]. In the main test, we make

use of light-weight web technologies that facilitate rapid prototyping and allow for the de-

ployment of agents and MAS as static web pages. We present a way to facilitate human

studies by implementing explainable agents and MAS that (i) can be deployed as static

files, not requiring the execution of server-side code, which minimizes administration and

operation overhead, and (ii) can be embedded into web front ends and other JavaScrip-

t-enabled user interfaces, hence increasing the ability to reach a broad range of human

users.

The participants in the study watch the simulation execution and then fill out a question-

naire built according to the XAI metrics in the literature [132]. The results of the question-

naire are used to investigate the human understandability and trust of the explanations

provided by the UAVs. The next section discusses in detail the proper way to statistically

analyze the participants’ responses.

5.4.2/ STATISTICAL TESTING

To perform the tests, the thesis focuses on qualitative data. The two most common types

of qualitative data (nominal and ordinal) are used in the test. The nominal data refer to

the groups of the participants involved in the experiments while the ordinal data refers to

their opinions about the explanations. To evaluate these opinions, the ordinal data are

based on the 5-points Likert scale [171]. The writing of the choices of responses may

differ in some questions but the scale is the same. However, although the Likert scale is

widely used in scientific research, there has been a long-standing controversy regarding

the analysis of ordinal data [269]. Analyzing the outcomes of the Likert scale, and the

use of parametric tests to analyze ordinal data in general, has been subject to an active

and ongoing debate. There are two main opposite points of view of researchers:

• Likert scale is compatible with parametric testing: According to these re-

searchers [218, 35, 269], the analysis of the Likert scale can be performed with

parametric tests such as ANOVA, t-test, etc. As asserted by Norman [218]: “para-

metric statistics can be used with Likert data, with small sample sizes, with unequal

variances, and with non-normal distributions, with no fear of coming to the wrong

conclusion”. The main arguments of these researchers are:
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– The analysis of the Likert scale by parametric tests such as ANOVA is common

in literature. Therefore, if parametric tests cannot be used for the analysis of

the Likert scale data, then almost 75% of the research on various domains

should be discarded [218].

– Likert scale data is ordered and can be converted to interval data, i.e. to

quantitative data [35], which means that parametric tests can be used.

– Parametric tests can be used with samples of small sizes Norman [218], and

this claim is supported by the literature of statistics.

– ANOVA can be used on non-normally distributed data [218] since the condition

of its applicability is not the normal distribution of data but the normal distribu-

tion of means.

• Likert scales are not compatible with parametric testing: According to these

researchers [163, 136, 67], the analysis of Likert scales must be done with non-

parametric tests such as Kruskal-Wallis or Mann-Whitney [163]. This is justified as

follows:

– The assumption that Likert scales constitute interval level measurement, which

is qualified as ”confusing” by this group of researchers who consider that con-

verting Likert scale to interval data is incorrect [163, 136]. Notably because the

response categories in Likert scales have a rank order, but the intervals be-

tween values cannot be presumed equal. For example, Cohen et al. [67] con-

tend that it is illegitimate to infer that the intensity of feelings between strongly

disagree and disagree is equivalent to the intensity of feelings between other

consecutive categories on the Likert scale.

– The mean, standard deviation, variances are inappropriate for ordinal

data [136]. To this end and according to these researchers, median or mode

suit more ordinal data to measure the central tendency of the data.

For the pilot test (Chapter 8), a non-parametric test which is Mann-Whitney U is used

considering that the pilot test is just a preparation for the main test. However for the main

test (Chapter 9) and to avoid biases in the data analysis and due to the dispute between

researchers and statisticians, the methodology adopted is to conduct both the parametric

test that is ANOVA and the non-parametric test that is Kruskal-Wallis for the data analysis.

5.5/ CONCLUSION

The research methodology conducted in the thesis is five-fold:



74 CHAPTER 5. RESEARCH METHODOLOGY

(i) Identify the general problem and the main features that should be respected when

providing an explanation to the human. Then analyze the related work accordingly

to identify the open research issues.

(ii) Define the RQs based on the open research issues.

(iii) Structure the RQs in RHs that can be statistically analyzed.

(iv) Propose the architecture, the model, and the process to answer the RQs.

(v) Conduct a specific experimental methodology to evaluate the proposals by statisti-

cally investigating the RHs according to the recommendations in the XAI domain.

Figure 5.1 depicts this research methodology. The boxes of contributions, human study

using ABS, and statistical testing are going to be investigated in the next chapters (Chap-

ters 6, 7, 8, and 9). Accordingly, the final version of the research methodology is provided

in Chapter 10 (Figure 10.1 on page 144).

To well answer the RQs, the thesis proposes a mechanism for parsimonious XAI. In partic-

ular, it introduces the process of explanation formulation and proposes HAExA a human-

agent architecture allowing to make this process operational for remote robots which are
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Figure 5.1: Research methodology of the thesis (version-1)
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represented as BDI agents (see Section 2.8).

The proposed architecture investigates the three phases of providing an explanation from

agents to the human: generation, communication, and reception (see Section 2.7). We

argue that a well-formed adaptive and context-aware combination of these phases leads

to formulating a parsimonious explanation. To achieve this, the proposed architecture re-

lies on a formulation process that includes generating contrastive explanations and com-

municating filtered explanations. Chapter 6 mainly provides the contributions to answer

the RQs as follows:

• RQ1: It is mainly handled by the proposed architecture HAExA namely in Sections

6.2 (page 78) and 6.3 (page 79).

• RQ2: We argue that a parsimonious explanation help answering RQ2 which is thor-

oughly discussed in Section 6.5 (page 90). In particular, Section 6.5.1 investigates

the generation of explanations and Section 6.5.2 investigates the communication

and filtering of explanations.

• RQ3: It is investigated in Sections 6.2 (page 78) and 6.4 (page 82).

The part of the proposal related to RQ1 is evaluated in the pilot test (Chapter 8), while

the parts related to RQ2 and RQ3 are evaluated in the main test (Chapter 9).

To evaluate the proposal, the RHs are investigated in empirical human studies. To con-

duct these studies, ABS tools (see Section 2.9) are developed to implement a proof of

concept of the proposed architecture, model, and process. These tools should facilitate

the subjective evaluation of the explanation approaches in the proposal by humans par-

ticipating in the evaluation process. Additionally, the studies rely on well-established XAI

metrics and questionnaires (see Section 2.10) in the literature to estimate how trustworthy

and satisfactory the explanations provided by HAExA are for humans. Like for any em-

pirical human study, the significance of the results should be statistically analyzed using

parametric and non-parametric statistical testing.

The next chapter proposes the theoretical contribution of the thesis including the human-

agent explainability architecture HAExA, the BDI-based model of the agents, and the

explanation formulation process.





6

HUMAN-AGENT EXPLAINABILITY

ARCHITECTURE (HAEXA)

6.1/ INTRODUCTION

This chapter describes the contributions of this thesis. These contributions tackle the

Research Questions (RQs) and the Research Hypotheses (RHs) defined in Chapter 5.

They are threefold:

i) Propose HAExA, an agent-based architecture that facilitates the human-agent ex-

plainability, where remote robots are represented as agents. HAExA helps in facili-

tating the formulation of the necessary explanations communicated from the remote

agents to humans, while at the same time considering the human cognitive load to

avoid overwhelming him/her with too many details in the explanation.

ii) Define a Belief-Desire-Intention (BDI) based model of the remote agents that gener-

ate the explanations and the assistant agent that communicate these explanations.

Both the generation and communication of explanations are based on the beliefs

and intentions of the agents.

iii) Propose an adaptive context-aware process of explanation formulation based on

the parsimony of explanations (see Section 2.5). The latter uses various combina-

tions of generating and communicating the explanations.

This chapter is organized as follows. First, Section 6.2 outlines the definitions and general

principles of HAExA. Second, Section 6.3 offers a detailed overview of the agents and

their roles in HAExA. Third, Section 6.4 extends the BDI model for the agents in HAExA.

In particular, the agent practical reasoning cycle is discussed and analyzed in detail.

Fourth, Section 6.5 proposes the explanation formulation process. The latter includes the

generation and the communication of explanations. Finally, Section 6.6 concludes this

chapter.

77
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6.2/ DEFINITIONS AND GENERAL PRINCIPLES OF HAEXA

As discussed in the previous sections, explanations are formulated to take into account

the properties of the underlying Artificial Intelligence (AI) systems, the context, the fea-

tures of the explanation (simplicity and adequacy), and the cognitive load of the human

who receives the explanations. Therefore, we define the explanation formulation process

in Definition 18.

Definition 18: Explanation Formulation Process

A process that seeks to maximize the explanation’s adequacy concerning an AI

system while minimizing its impact on the human’s cognitive load, i.e. maximiz-

ing its simplicity.

To operationalize the explanation formulation process to a wide range of human-agent

interactions, we introduce the Human-Agent Explainability Architecture (HAExA). This ar-

chitecture allows remote robots, represented as agents and organized in a Multi-agent

System (MAS), to expressively explain their behaviors in various situations to humans.

The human in HAExA is considered as a human-on-the-loop1 (see Definition 15 on

page 70). This is justified by the fact that the human has a passive role in the environ-

ment, i.e. the human receives explanations for after-action decisions without altering the

processes in the environment, i.e. no active involvement in the environment is required

from the human.

From Definition 18, the explanation formulation process aims to strike a balance between

the adequacy, i.e. the informativeness of the explanations, and simplicity, i.e. to consider

the limited human cognitive load (refer to Section 3.3 for more details). To implement and

operationalize this process, HAExA proposes a dynamic approach to integrate the three

phases of an explanation, i.e. generation, communication, and reception [214] (refer to

Section 2.7 for more details). In particular, HAExA implements them in the case of remote

robots as follows:

1 - Explanation Generation in HAExA : Remote robots organized as agents in a

MAS in the environment provide raw explanations of their behaviors and actions

with respect to the various situations they face. The way these raw explanations

are generated in HAExA varies according to the explained behavior or the situation,

either normal or abnormal. Normal explanations are generated in normal situa-

tions and contrastive explanations (see Section 2.6) in abnormal situations. One

approach, using reactive architectures, could be to react to the situations according

to a set of rules predefined by the human. Another approach, using cognitive archi-

tectures, could be achieved by empowering the agents with the ability to reason like

1For the sake of conciseness, the term ’human’ is henceforth used to refer to the human-on-the-loop.
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humans. Regardless of the approach, the main important goal is to provide expla-

nations that include all the useful information and that are intelligible to humans.

2 - Explanation Communication in HAExA : This step is handled by an assistant

agent positioned in between the remote agents on the one hand and the human

on the other hand. It is responsible for assuring two tasks: (i) Update the raw expla-

nations to guarantee that the useful information is not missed from them. (ii) Com-

municate the explanations from the remote agents to the human in a way that con-

siders the human cognitive load, e.g. by filtering them; This will facilitate a better

understanding by the human, notably because the communicating agent receives

the raw explanations from all the remote agents in the MAS. Therefore, it holds a

global overview of the system and may be able to pinpoint abnormal situations that

were not clear to the remote agents.

3 - Explanation Reception in HAExA : The agent communicating the explanations

to the humans could be in direct contact with the human to guarantee a better re-

ception of the explanations by the human. Better reception of explanations could be

also achieved by building a user model to understand the preferences of the human.

However, the latter is out of the context of this thesis even though HAExA permits

the modeling of the explanation reception phase. Instead, we focus, in HAExA, on

how the internal states of remote agents are aggregated and processed to finally

be presented as explanations. Therefore, this phase is considered by the empir-

ical human studies conducted later in the thesis, where Agent-based Simulation

(ABS) is used to facilitate the reception of explanations by humans based on the

recommendations and metrics in the XAI domain.

Explanation formulation involves the three mentioned phases in a way that allows for

conducting them separately or in conjunction to provide the human with parsimonious

explanations that attain the two features of simplicity and adequacy. Considering the

mentioned phases and principals of providing explanations, the following section offers a

detailed overview of the agents and their roles in HAExA.

6.3/ AGENTS IN HAEXA

Figure 6.1 visualizes HAExA that is composed of three different entities:

• The right part of the figure represents the MAS. Several remote agents are inter-

acting with each other in the environment. Remote agents could be assigned to

a group based on their geographical location, capabilities, roles, etc. to facilitate
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Figure 6.1: Human-Agent Explainability Architecture (HAExA)

the scalability of the architecture. Both in and across groups, collaboration and co-

ordination among agents may occur, while competition and malicious behavior of

agents are out of the scope of the thesis. Generally, all remote agents expose their

internal state or a subset of it via a central interface to the human. Consequently,

they provide raw explanations of their behaviors to the human.

• An assistant agent (illustrated in the center of figure) that collects the remote

agents’ raw explanations. Then, and considering that the assistant agent has a

global overview of the environment, it may update the raw explanations received

from the remote agents to guarantee their adequacy. Additionally, it filters the raw

explanations before communicating them to the human, as humans could easily get

overwhelmed by the information the remote agents provide [273]; subsequently, it

communicates the updated and filtered explanations to the human.

• The human-on-the-loop who is the target user of the explanations (in the left part

of the figure).

The reason for choosing an architecture of 3 layers is to well integrate it within the 3

phases of an explanation, namely generation, communication, and reception (see Sec-

tion 2.7). If the number of remote agents scales largely, the layer where the explanations

are generated, i.e. the remote agents can be sub-divided into sub-layers to achieve scal-

ability in large-scale situations. Some very recent works have started to tackle the issue
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of scalability of BDI agents [277, 276]. The use of Holonic MAS [99] could be employed

to extend HAExA in this direction by representing every group, e.g. a swarm of UAVs, as

a holon that has one representative (the head). Koestler [154] coined the term holon as

an attempt to conciliate holistic and reductionist visions of the world. A holon represents

a part-whole construct that can be seen as a component of a higher-level system or as

a whole composed of other self-similar holons as substructures depending on the situa-

tion or the perspective. This also applies to the assistant agents that could be formed in

a group for fault tolerance and backup reasons and to avoid having a bottleneck in the

architecture. Additionally, holons inside an assistant agent holon may execute different

filtering behaviors and interact/cooperate to provide the explanation to the human. The

most important point is to have one interface with the human user to avoid overwhelming

her/him with many interfaces. We can look at the assistant agent as the personal as-

sistant of the human that could be embedded in its smartphone for example. Therefore,

and even with a group of assistant agents, the interface with the human is preferably uni-

fied through one agent, and the concept of holons is a good modeling candidate for that

thanks to the ”Janus effect” [154].

HAExA can be defined in terms of composition by a triplet 〈A, AA,H〉. A is the set of all

remote agents in terms of composition. AA is the assistant agent. H is the human-on-

the-loop. The set of all remote agents A can be defined by the groups of remote agents

formed as in Equation 6.1:

A = {A1, A2, ..., An} (6.1)

where Ai ⊆ A, i ∈ [1..n] is a group of individual remote agents. n ∈ N∗ is the number of the

groups of the remote agents. Let’s assume a
j

i
the jth remote agent of the group i. This

group of remote agents can be defined as in Equation 6.2.

Ai = {a
1
i , a

2
i , ..., a

mi

i
} (6.2)

where mi ∈ N
∗ is the number of remote agents in the group i, with a group of remote

agents having at least one member.

HAExA is flexible and compatible with different agent architectures used by remote agents

and the assistant agent. In this thesis, we implement HAExA twice: First, using reactive

agents in the pilot test (Chapter 8); Second, using BDI agents in the main test (Chap-

ter 9). However, we opt here to continue explaining the various aspects and processes of

HAExA with the BDI cognitive architecture for the reasons mentioned in Section 2.8. As

a quick reminder of these reasons, the BDI cognitive architecture resembles the manner

humans think because it is based on the concepts of folk-psychology [63, 37]. Therefore,
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it has been outlined as a good candidate to represent everyday explanations [217] since

it is viewed as the attribution of human behavior using ‘everyday’ terms such as beliefs,

desires, intentions, emotions, and personality traits [63, 186, 45]. Moreover, the BDI cog-

nitive architecture allows agents to exhibit more complex behavior than purely reactive

architectures but without the computational overhead of other cognitive architectures [5].

Furthermore, some evidence exists that BDI agent architectures facilitate knowledge elic-

itation from domain experts [85]. Finally, BDI has been identified as the most used archi-

tecture to generate explanations for goal-driven agents (e.g. [45, 214]) [16].

6.4/ THE PROPOSED BELIEF-DESIRE-INTENTION MODEL

6.4.1/ GENERAL PRINCIPLES

The BDI model is a model of human behavior that was developed by philosophers. The

BDI model appeared first in the Rational Agency project at the Stanford Research Institute

in the mid-1980s. The origins of this model lie in the theory of human practical reasoning

developed by the philosopher Michael Bratman [41]. The conceptual framework of the

BDI model is described in [42].

For pedagogical reasons, we shortly describe the different concepts of beliefs, desires,

and intentions of the BDI model as follows [37]:

• Beliefs: Information that the agent has about the environment and may be out of

date or inaccurate, e.g. the locations of a package to be delivered.

• Desires: All the possible states of affairs (or options) that the agent may want to

achieve. However, having a desire does not imply that the agent acts upon it. It is a

potential influencer of the actions of the agent.

• Intentions: The states of affairs that the agent has decided to achieve. Intentions

may be goals that are delegated to the agent or may result from considering op-

tions. The agent usually looks at its options and select between them its intentions.

This process of selection may occur repeatably in a lower level of abstraction until

reaching intentions that can be executed as atomic actions via the actuators of the

agent. It is normal for an agent to have desires that are mutually incompatible with

one another, but not mutually incompatible intentions.

Detailed implementations of the coordination and cooperation among agents are out of

the scope of the thesis, as these aspects are already covered in-depth by a range of

research works. The reader is referred to [309] for more details about the definitions and

main characteristics of cooperation and coordination.
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6.4.2/ AGENT PRACTICAL REASONING CYCLE

The particular model of decision-making in the BDI model is known as practical reasoning.

The latter is a process directed towards actions from the notations of beliefs, desires, and

intentions [316]. Considering that HAExA provides explanations to humans, there is a

need to understand how humans do the reasoning process. Human practical reasoning

consists of two distinct activities:

• Deliberation which is fixating upon options that the human wants to achieve, i.e.

going from desires to intentions;

• Means-ends reasoning which is deciding how to act to achieve these intentions us-

ing the available means or actions [37]. Means-ends reasoning is generally known

in the AI community as planning [104].

The practical reasoning cycle of a remote agent includes the internal processing per-

formed within the agent to act in the environment and coordinate with the other agents

based on three aspects: (i) the perceptions from the environment; (ii) the messages

received from the other agents; (iii) its internal beliefs, desires, and intentions. Addition-

ally, and apart from the actions of the agent in the environment, the explanations will be

another output of the reasoning cycle.

In HAExA, Algorithm 1 outlines, in pseudo-code, how these concepts are outlined theo-

retically (i.e. the agent control loop) for a remote agent. This algorithm is mainly based on

the work of Wooldridge [316, 317] and Bordini et al. [37]. It is adapting the BDI algorithm

proposed by these works by adding modules to facilitate the human-agent explainability.

For pedagogical reasons, we restate the main algorithm and summarize its components

after adding our contributions related to explainability. These contributions are minimized

to simple functions in the algorithm for clarity reasons. However, they are thoroughly

discussed in Section 6.5.

In Algorithm 1 of a remote agent, the variables are defined as follows:

• B0 and I0: The initial beliefs and intentions, respectively, of the agent at the begin-

ning of the execution;

• π: The current plan adopted by the agent;

• BOld and IOld: The previous beliefs and intentions, respectively, of the agent from

the previous control cycle. These variables store the current beliefs and intentions

before updating them into new ones;

• πOld: The previous old plan adopted by the agent;



84 CHAPTER 6. HUMAN-AGENT EXPLAINABILITY ARCHITECTURE (HAEXA)

Algorithm 1: The control loop of a remote BDI agent (adapted from [316, 317, 37])

Input: B0: Initial beliefs

Input: I0: Initial intentions

1 B← B0 I ← I0;

2 π← null;

3 while true do

4 BOld ← B;

5 IOld ← I;

6 πOld ← π;

7 P← getPerceptions();

8 M ← receiveMessages();

9 B← updateBeliefs(B, P,M);

10 D← updateDesires(B, I);

11 I ← updateIntentions(B,D, I);

12 π← plan(B, I, Ac);

13 while not (empty(π) or succeeded(I, B) or impossible(I, B)) do

14 a← head(π);

15 executeAction(a);

16 sendMessages(B, I, π);

17 if abnormalSituation(B, BOld, I, IOld) then contrastiveExp(B, I, π, πOld) ;

18 else normalExp(B, I, a) ;

19 π← tail(π);

20 P← getPerceptions();

21 M ← receiveMessages();

22 B← updateBeliefs(B, P,M);

23 if reconsider(I, B) then

24 D← updateDesires(B, I);

25 I ← updateIntentions(B,D, I);

26 if not sound(π, I, B) then

27 π← plan(B, I, Ac);

• P: The current perceptions of the agent about the environment received via its

sensors;

• M: The messages received from other agents in the MAS;

• B: The current beliefs of the agent that represent information it has about its envi-

ronment;

• D: The current desires of the agent that are the options it is considering, i.e. are

candidates to be intentions;

• I: The current intentions of the agent that contain the states of affairs it has chosen

and committed to achieving;

• Ac: The full list of all possible actions the agent can perform based on its actuators;
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• a: One action of the adopted plan;

The functions in Algorithm 1 are defined as follows:

• getPerceptions(): The remote agent observes its environment to get the next per-

ception. One of the things that can be done using a simulated environment like the

one used in the tests in this thesis is to determine the properties of the environment

which are only perceivable by one particular agent or more, i.e. an individualized

perception can be defined. This is useful because all the remote agents have in-

dividualized perceptions while the assistant agent has a global view thanks to the

explanations and messages received from all remote agents.

• receiveMessages(): The agent receives messages from other agents in the MAS.

Mainly, these messages are for cooperation to perform missions and assign tasks.

• updateBelie f s(B, p): The agent updates its beliefs about the environment that re-

flects the changes in the environment. Updating the beliefs is achieved in the fol-

lowing way. Considering P is the set of current perceptions and B is the set of literals

in the beliefs that were obtained from sensing the environment:

1. each literal l in P not currently in B is added to B;

2. each literal l in B no longer in P is deleted from B.

• updateDesires(B, I): The agent determines its desires, or options, based on its cur-

rent beliefs and intentions.

• updateIntentions(B,D, I): The agent chooses between its desires and selects some

to become intentions. The main discarded desires are the unrealistic ones or the

ones that are impossible to fulfill based on the current beliefs.

• plan(B, I, Ac): The agent generates a plan to achieve its current intentions based on

the actions it can perform. The inner loop from line 13 to line 19 shows the execution

of this plan. The agent considers one action in turn from the plan π and executes

it until the plan is empty, i.e. all the actions in the plan have been executed. After

executing an action, the agent explains it based on its beliefs and desires.

• empty(π): This function simply checks if a list or set (here, the plan) is empty.

• succeeded(I, B): This function checks if the current intentions are achieved according

to the current beliefs.

• impossible(I, B): This function checks if the current intentions are impossible to

achieve based on the current beliefs.
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• head(π): This function simply takes the first element of a list or set (here, the plan).

• executeAction(a): The agent executes an atomic action directly possible via its actu-

ators.

• sendMessages(B, I, π): The agent sends messages to other agents in the MAS.

Mainly, these messages are based on the beliefs, the intentions, and the plan of

the agent.

• abnormalS ituation(B, BOld, I, IOld): This function verifies if the situation the agent is

facing is either normal or abnormal. For that, it compares the current new beliefs

and intentions with the old beliefs and intentions, respectively, from the previous

cycle. then it checks if the difference is higher than a specific threshold for beliefs

and a specific threshold for intentions. If both differences are above the correspond-

ing thresholds, the situation is abnormal from the perspective of the agent (refer to

Section 6.5.1 for more details).

• contrastiveExp(B, I, π, πOld): This function generates a contrastive explanation based

on the current beliefs, current intentions, the current plan to be performed, and the

old plan from the previous cycle (refer to Section 6.5.1.2 for more details).

• normalExp(B, I, a): This function generates a normal explanation based on the cur-

rent beliefs, current intentions, and the atomic action to be executed (refer to Section

6.5.1.1 for more details).

• tail(π): This function simply returns all the elements of a list or a set (here, the plan)

without the first one.

• reconsider(I, B): After executing an action from the plan (line 15), the agent pauses

to perceive the environment again to update its beliefs. Then, it checks, using this

function, if it is worth reconsidering its intentions (i.e. spending time deliberating

over them again). This decision is based on the idea that this reconsideration may

lead to changing the intentions. Otherwise, it is better not to waste time and com-

putational efforts in deliberation, and it is better to continue trying to achieve the

intentions [148, 251, 252].

• sound(π, I, B): The agent verifies whether or not the plan it currently has is sound

with respect to its intentions and beliefs. If it believes the plan is no longer a sound

one, then it chooses a new plan.

Figure 6.2 depicts the practical reasoning cycle of a remote agent based on the generic

BDI architecture [238]. The figure outlines the internal processing performed within the

agent to act in the environment and coordinate with the other agents. In this figure,
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Figure 6.2: The practical reasoning cycle of a remote BDI agent

cylindrical shapes represent the main architectural components that determine the state

of the agent, i.e. Beliefs, Desires, Intentions. The trapezoid shapes (or data storage

shapes) store useful data in the design-time like the Plans library and Explanations li-

brary. The former includes all the actions (Ac in Algorithm 1 on page 84) that can be used

in a plan. The latter includes components of explanations as phrases to be used when

building the explanations. Rectangles (getPerceptions, receiveMessages, updateBeliefs,

updateDesires, updateIntentions, executePlan, executeAction, sendMessages, genera-

teExplanations) represent the main functions executed in the reasoning cycle (Also can
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be found in Algorithm 1). Diamonds represent the selection functions used to select an

item from different choices.

The MAS communication module, consisting of the receiveMessages function, the

sendMessages function and the S M (selectMessages) selection function in Figure 6.2 is

responsible for organizing the communication with other agents by managing the mes-

sages received from the other agents in the MAS and the messages to send. It also

allows for the exchange of information and know-how, and the delegation of intentions. In

some situations, the agent would like to filter messages coming from untrusted agents.

Additionally, in many situations, agents would like to give priorities to certain messages

and that is why we use the S M selection function. Several mechanisms could be used to

facilitate the communication between the agents. HAExA is open to any possibility but

we could recommend some particular mechanisms, e.g. Human-Agent-Robot-Machine-

Sensor (HARMS) [189, 300], Knowledge Query and Manipulation Language (KQML) [91],

Web Ontology Language (OWL) [192], or Semantics of Business Vocabulary and Busi-

ness Rules (SBVR) [107, 108] to cite a few. In particular, HARMS connects actors over

a network by a peer-to-peer manner and uses particular message types such that all ac-

tors are indistinguishable in terms of which type of actor (e.g. robot, software agent, or

even human) sends a message [190]. However, as all agents in HAExA only cooperate

to serve the human there is no mistrust between the agents, and hence only the priority

of messaging is considered. Therefore, the way how this module is implemented will not

be further discussed.

Apart from the S M selection function, all the other selection functions used in Figure 6.2.

These selection functions have the following functionalities:

• S DP (selectDesirablePlans): This selection function is part of the updateIntentions

function (Figure 6.2). It is responsible for retrieving all the desirable plans that allow

the agent to act to fulfill its desires. This selection is governed by the desires of the

agent and the components (actions or sub-plans) available in the Plans library, i.e.

this function selects the intentions that can be represented as plans and can fulfill

the desires at the same time (refer to [316, 317] for more details about the formality

of plans).

• S AP (selectApplicablePlans): This selection function is part of the updateIntentions

function (Figure 6.2). It is used because not all the desirable plans can be excused,

as some of them may be not realizable considering the current beliefs. Therefore,

this selection function is used to select the applicable plans that can be executed.

For that, we need to verify whether the context of each of the desirable plans is

believed to be true, i.e. whether the context is a logical consequence of the beliefs

of the agent.
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• S IP (selectIntentionalPlans): At this step of the reasoning cycle, there are several

applicable plans that are candidates for execution to achieve an intention and hence

fulfill a desire. However, the agent needs to choose only one to execute. The first

idea to come to mind is to go with a random choice. The second is to use a schedul-

ing mechanism, e.g. Round-Robin [168, 226]. Other more sophisticated run-time

mechanisms could be defined. HAExA is context-aware to the abnormality of the

situation which is used to generate context-aware explanations. This mechanism

could also be used to prioritize the intentional plans to be executed, e.g. giving high

priority to those who are applicable in abnormal situations where the abnormality

is determined based on the difference between the current beliefs and/or intentions

on the one hand and the previous ones on the other hand.

The generateExplanations module is responsible for either generating raw normal expla-

nations in normal situations or raw contrastive explanations in abnormal situations. The

generation is based on the beliefs and intentions of the agent on the one hand and ex-

planation components from the Explanations library on the other hand. Full details about

this module are offered in Section 6.5.1.

To reduce redundancy, the practical reasoning cycle of the assistant agent is not provided.

The two main differences with the practical reasoning cycle of the remote agent are:

i) The assistant agent is not interacting with the environment. Therefore, it does not

get perceptions nor execute actions. Instead, it aggregates the beliefs received by

all remote agents to form his own beliefs. Then, it follows the same practical rea-

soning like the remote agent (Figure 6.2) to update its own desires and intentions.

In the case of conflicting beliefs received from different remote agents, ad hoc solu-

tions are employed to resolve the conflicts. However, HAExA is open for advanced

mechanisms and algorithms of aggregation.

ii) The explainability module in the assistant agent is different as instead of generat-

ing explanations, the assistant agent receives raw explanations generated by the

remote agents (normal and contrastive), and post-processes these explanations

before communicating them to the human. The post-processing of the raw expla-

nations includes: First, updating the type of the explanation (normal or contrastive)

as the assistant agent has a global view of the system, and hence its beliefs are

the complete ones about the situation. Second, filtering the updated explanations.

Full details about the explainability module of the assistant agent are provided in

Section 6.5.2.

In the next section, we investigate with full details the generation and updating of the two

types of explanations (normal and contrastive) and the different mechanisms of filtering.
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6.5/ EXPLANATION FORMULATION PROCESS

The goal of the explanation formulation process is to provide parsimonious explanations

to the human that strike a balance between simplicity and adequacy. The exact nature

of the formulation of the explanations depends on the implementation configuration, i.e.

HAExA supports different explanation formulations with different levels of technical so-

phistication. This means that the explanations could be generated in different methods,

and could be communicated in several manners to the human as well. In particular,

we focus in this section, as an instance of the process of providing explanations using

HAExA, on generating normal and contrastive explanations as well as using filtering of

explanations for communicating the explanations. Figure 6.3 shows the process of the

explanation formulation pipelines. For the generation, two distinct methods are consid-

ered: normal explanations (normalExp(B, I) in Algorithm 1 on page 84) in normal situa-

tions (Section 6.5.1.1), and contrastive explanations (contrastiveExp(B, I) in Algorithm 1)

in abnormal situations (Section 6.5.1.2). For the communication, three means of filtering

are considered: static filter, adaptive filter, and no filter (investigated in Section 6.5.2.2).

Additionally, and before filtering the explanations, there is a sub-step of updating the raw

explanations received from the remote agents (investigated in Section 6.5.2.1). This in-

stance of the explanation formulation process is used in the implementation of the main

test (Chapter 9) later in the thesis.

Mainly, the rest of this section is organized as follows. Section 6.5.1 discusses the gen-

eration of explanations by the remote agents. Section 6.5.2 tackles the communication of

explanations by the assistant agent.

6.5.1/ EXPLANATION GENERATION

All remote agents provide to the assistant agent the set of all raw explanations RExp that

can be, based on Equations 6.1 and 6.2 (page 81), represented in Equation 6.3.

RExp =

n
⋃

i=1

mi
⋃

j=1

rExp
j

i
(6.3)

where n ∈ N∗ is the number of the groups of the remote agents. mi ∈ N
∗ is the number of

remote agents in the group i.

RExp are generated by remote agents only if there is a need for such explanations. The

need is based on two cases:

1. When there is a significant change in the environment, i.e. change in the beliefs

of the remote BDI agent about the environment. This is measured by comparing



6.5. EXPLANATION FORMULATION PROCESS 91

Start

NoYes
Normal situation

Generate contrastive
explanation (BCExp,
ICExp, or BICExp)

Generate normal
explanation (BNExp,
INExp, or BINExp)

Send raw explanations to
the assistant agent

Remote
agent

Abnormal situation 
(contrary to the beliefs 
and/or intentions of the 
remote agent)

AdaptiveStatic
Filter type

Reduce and/or downgrade
updated explanations 

Filter updated explanations
according to priorities set

by the remote agents

Show explanations to the
human user

YesNo
Filtering?

Assistant
agent

NoYes Verbose 
exp. & Normal

 situation?

Update raw explanations

Oversimplified raw 
explanations or
contrary to the beliefs 
and/or intentions of the 
assistant agent

Overwhelming updated
explanations

End

Figure 6.3: HAExA explanation formulation process

the new current beliefs of the agent with its old (or previous) beliefs. For that,

we need to define the change in beliefs ∆B, i.e. check if there are new beliefs

that were not present previously i.e. B − BOld, and if there were beliefs previously

present but disappeared in the updated current beliefs, i.e. BOld − B. ∆B is defined
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in Equation 6.4. Accordingly, the condition to generate RExp based on the beliefs is

defined in Equation 6.5.

∆B = reduceRedundancy(B∪BOld−B∩BOld) = reduceRedundancy((B−BOld)+ (BOld−B))

(6.4)

where the function reduceRedundancy eliminates all redundant attributes.

∆B > θBelie f (6.5)

where θBelie f is the threshold of change in beliefs for generating RExp. It could be

the number of beliefs, beyond which the change in the environment has happened

when updating the beliefs.

2. When there is a significant change in the plan, i.e. change in the intentions of

the remote BDI agent. This could happen if the agent chooses to abandon a plan

because it is impossible to achieve or to abandon its intentions because it finds

better ones. This is measured by comparing the new current intentions of the agent

with its old (or previous) intentions. For that, and like with the beliefs, we need

to define the change in intentions ∆I (Equation 6.6). Accordingly, the condition to

generate RExp based on the intentions is defined in Equation 6.7.

∆I = reduceRedundancy(I∪IOld−I∩IOld) = reduceRedundancy((I−IOld)+(IOld−I)) (6.6)

∆I > θIntention (6.7)

where θIntention is the threshold of change in intentions beyond which the change is

considered significant.

In case of the need for explaining, the explanations are first generated as raw explanations

RExp (Normal or Contrastive) by the remote agents, and then maybe updated by the

assistant agent. These remote agents are BDI agents, whose beliefs and intentions are

used to generate RExp. As stated before, a raw explanation rExp
mi

i
could be of two

types: normal explanation in normal situations and contrastive explanation in abnormal

situations. Both types are further divided into sub-types as described in the next sections.
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6.5.1.1/ NORMAL EXPLANATIONS

Generally, in normal situations, the remote agent generates the explanation of the action

to perform according to the intentions it is committed to achieving or his beliefs of the

environment, or both. We call this type of explanation: normal explanation. It is stating

the next step in the plan to execute, i.e. what to do next, and sometimes the reason

for such action (Belief, Intention, or both). Examples of normal situations related to the

application of delivering packages using Unmanned Aerial Vehicles (UAVs): “UAV 1 is

moving to Package 1”, “UAV 1 is delivering Package 1 to Storehouse S”, “UAV 1 is moving

to Charging Station C because of law battery”, “UAV 1 is charging battery”, etc.

Figure 6.4 shows the structure of an Intention Hierarchy Tree (IHT) which is based on

Goal Hierarchy Trees (see Section 3.3.1.1). A remote BDI agent acts and explains its

actions based on the IHT as follows. Based on the current intentions and beliefs of the

agent, it chooses an action to perform. If multiple actions are applicable, then it randomly

chooses one unless an explicit priority between actions is defined. When no actions are

applicable then it remains on standby until its beliefs change according to the changes in

the environment, which can cause it to commit to new intentions, and then new actions

could become applicable. The IHT (Figure 6.4) can be used to determine ∆B and ∆I, e.g.

we consider that there is a significant difference between I and IOld if there are n levels of

differences in the IHT where n ∈ [1..r] and r is the number of levels of the IHT.

Accordingly, normal explanations could be divided into three sub-types:

• Belief-based Normal Explanation (BNExp): In this type, the explanation is based

on the current beliefs of the agent. This type has been used before in the literature

(cf. Section 3.3.1.1). It mainly states the beliefs above (one level or more) the action

to perform in the IHT (Figure 6.4), e.g. Action 1 is explained by Belief B1. BNExp is

generated by a function in Equation 6.8.

Belie f RawNormalExp : B × Ac→ RExp (6.8)

where B is the set of current beliefs, Ac is the set of all available actions, and RExp

is the set of raw explanations.

• Intention-based Normal Explanation (INExp): In this type, the explanations are

based on the current indentations (or goals) of the agent. This type has been used

before in the literature (cf. Section 3.3.1.1). It mainly states the intentions above

(one level or more) the action to perform in the IHT (Figure 6.4), e.g. Action 1 is

explained by Intention B. INExp is generated by a function in Equation 6.9.

IntentionRawNormalExp : I × Ac→ RExp (6.9)



94 CHAPTER 6. HUMAN-AGENT EXPLAINABILITY ARCHITECTURE (HAEXA)
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Figure 6.4: Intention Hierarchy Tree (adopted from [250])

where I is the set of current intentions, Ac is the set of all available actions, and

RExp is the set of raw explanations.

• Belief & Intention based Normal Explanation (BINExp): In this type, the explanations

are based on both the current beliefs and the current indentations (or goals) of the

agent. It mainly states the beliefs and intentions above (one level or more) the

action to perform in the IHT (Figure 6.4), e.g. Action 1 is explained by Belief B1 and

Intention B. BINExp is generated by a function in Equation 6.10.

Belie f IntentionRawNormalExp : B × I × Ac→ RExp (6.10)

where B is the set of current beliefs, I is the set of current intentions, Ac is the set

of all available actions, and RExp is the set of raw explanations.

The function normalExp(B, I, a) defined in Algorithm 1 (page 84) could execute one of

the three functions defined in Equations 6.8, 6.9, and 6.10. This depends mainly on

the values of the change in beliefs ∆B (Equation 6.4) and the change in intentions ∆I

(Equation 6.6). Accordingly, the choice of which function to execute depends on threshold

values as follows:

1. ǫBelie f RawNormal as an instance of θBelie f defined in Equation 6.5 for choosing the func-

tion Belie f RawNormalExp;

2. ǫIntentionRawNormal as an instance of θIntention defined in Equation 6.7 for choosing the
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function IntentionRawNormalExp;

3. ǫBelie fCombinedRawNormal and ǫIntentionCombinedRawNormal as instances of, respectively, θBelie f

defined in Equation 6.5 and θIntention defined in Equation 6.7 for choosing the function

Belie f IntentionRawNormalExp.

It is important to note here the relation between these defined thresholds, as triggering

one will prevent triggering the others. These relations are defined in Equations 6.11 and

6.12.

ǫBelie fCombinedRawNormal > ǫBelie f RawNormal (6.11)

ǫIntentionCombinedRawNormal > ǫIntentionRawNormal (6.12)

The point is that we want to assure that the function Belie f IntentionRawNormalExp is

executed if there are changes both in beliefs and intentions because this happens when

the situation starts to become abnormal and hence more information is needed to be

provided to the human.

If both the thresholds ǫBelie f RawNormal and ǫIntentionRawNormal are attained, the agent

could randomly choose what function to execute (either Belie f RawNormalExp or

IntentionRawNormalExp). Alternatively, we could rely on the differences between the

changes in levels in the IHT.

6.5.1.2/ CONTRASTIVE EXPLANATIONS

When the change in beliefs ∆B is major, i.e. above a certain threshold, this change may

lead to major changes in intentions ∆I, i.e. above a certain threshold, and accordingly,

the situation is considered abnormal. In such situations, the contrastive explanations are

preferable [198]. Let the following example that is leading to an abnormal situation when

a UAV is moving to a package with the intention to deliver it. However the package is

delivered by another UAV, the following two explanations of the atomic actions move could

be provided: (i) “UAV 1 is moving to Package 1”; (ii) “UAV 1 is moving to Package 2”. In

this situation, the human may ask “why did this happen?” and “why UAV 1 did not carry

out the delivery of Package 1?” The human will be curious about knowing why the UAV 1

did not do what it was supposed to do, and instead, it is moving to another package. To

solve this, an alternative contrastive explanation is provided as follows: “UAV 1 is moving

to Package 2 instead of Package 1 because Package 1 is delivered by another UAV”.

This contrastive explanation is explaining the action a1: “UAV 1 is moving to Package 2”,

which is part of the new plan π instead of the action a2: “UAV 1 is moving to Package 1”,

which is part of the old plan πOld from the previous reasoning cycle based on the current

belief b1: “Package 1 is delivered by another UAV”.
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For the human, and when receiving explanations about the behavior of the remote agents,

it is generally not the normal behavior that may be appealing to receive an explanation

for, but rather the abnormal behavior. Therefore, we adopt in HAExA the contrastive ex-

planations to represent the abnormal situations. For the human, normal behaviors can be

explained with the help of his/her own experiences and expectations. However, the abnor-

mal behavior of the agent challenges these experiences and expectations, and therefore,

an explanation is deemed necessary in this case. In abnormal situations, the deviation

from the chosen plan will lead to a significant update of the beliefs of the remote agent

and accordingly updating the intentions significantly. In such situations, a contrastive

explanation is generated.

There could be several options for generating contrastive explanations where a1 is an

action from the new updated plan π and a2 is an action from the old plan πOld. The

generation is governed by the execution condition C that could be either the actual beliefs

B or/and the actual intentions I. That is why we need to keep a track of the previous plan

that includes the previous actions that the agent was supposed to perform but it did not

(line 6 in Algorithm 1 on page 84). These options are:

1. a1 and not a2 because of C;

2. Not a2 because of C (where a1 is implicit);

3. a1 because of C (where not a2 is implicit).

The second option is trivial because later, the remote agent must state its current action,

and hence this will be done later anyway. Both options 1. and 3. are good candidates.

Note that the third option is transforming a contrastive explanation into a normal one by

dropping the part “not A2”. This transformation is appealing to reduce the length of the

explanation when it can be implicitly inferred by the human. This is another aspect of the

adaptivity of the model to achieve parsimonious explanations where the trade-off between

simplicity in normal explanations and adequacy in contrastive explanations is achieved.

This is all based on the context and the human cognitive load. To do that, the assistant

agent has a role in the updating of the generated raw explanations, as it holds a general

comprehensive overview of the context situation; hence it may aggregate more useful

and consistent explanations for the human by updating RExp generated by the remote

agents. Accordingly, normal explanations by some remote agents could be filtered and

contrastive explanations by others could be kept if there is a need to update the quality

of the explanations for adequacy reasons or reduce their quantity for simplicity reasons.

The updating and filtering of explanations are discussed in detail in Section 6.5.2.

As C could be either an intention or a belief or both, there are three sub-types of con-

trastive explanations: Belief-based Contrastive Explanation (BCExp), Intention-based
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Contrastive Explanation (ICExp) and Belief & Intention based Contrastive Explanation

(BICExp) that are generated as functions in Equations 6.13, 6.14, and 6.15 respectively.

Belie f RawContrastiveExp : B × Ac × Ac→ RExp (6.13)

IntentionRawContrastiveExp : I × Ac × Ac→ RExp (6.14)

Belie f IntentionRawContrastiveExp : B × I × Ac × Ac→ RExp (6.15)

where B is the set of current beliefs, I is the set of current intentions, Ac is the set of all

available actions, and RExp is the set of raw explanations. Ac is used twice because the

input includes two elements from Ac: the new action to perform and the old action that

was not performed.

It is intuitive to notice that the BICExp is more adequate and less simple than BCExp and

ICExp. This will be useful in the adaptive communication of the filtered explanations as it

will help in balancing the trade-off between simplicity and adequacy. Further details are

provided in the next section.

The function contrastiveExp(B, I, π, πOld) defined in Algorithm 1 (page 84) could execute

one of the three functions defined in Equations 6.13, 6.14, and 6.15. This depends mainly

on the values of the change in beliefs ∆B (Equation 6.4) and the change in intentions ∆I

(Equation 6.6). Accordingly, the choice of which function to execute depends on threshold

values as follows:

1. ǫBelie f RawContrastive as an instance of θBelie f defined in Equation 6.5 for choosing the

function Belie f RawContrastiveExp;

2. ǫIntentionRawContrastive as an instance of θIntention defined in Equation 6.7 for choosing

the function IntentionRawContrastiveExp;

3. ǫBelie fCombinedRawContrastive and ǫIntentionCombinedRawContrastive as instances of, respectively,

θBelie f defined in Equation 6.5 and θIntention defined in Equation 6.7 for choosing the

function Belie f IntentionRawContrastiveExp.

It is important to note here the relation between these defined thresholds for con-

trastive explanations, and the threshold of generating normal explanations ǫBelie f RawNormal,

ǫIntentionRawNormal, ǫBelie fCombinedRawNormal, and ǫIntentionCombinedRawNormal as triggering one will

prevent triggering the others. These relations are defined in Equations 6.16 and 6.17,

which are updated versions of Equations 6.11 and 6.12 on page 95.

ǫBelie fCombinedRawContrastive > ǫBelie f RawContrastive > ǫBelie fCombinedRawNormal > ǫBelie f RawNormal

(6.16)
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ǫIntentionCombinedRawContrastive > ǫIntentionRawContrastive > ǫIntentionCombinedRawNormal > ǫIntentionRawNormal

(6.17)

The point is that we want to assure that the functions to generate contrastive explana-

tions are checked for execution before the functions of the normal explanations when

there are significant changes both in beliefs and intentions. This happens when the sit-

uation is abnormal, and hence more information is needed to be provided to the hu-

man. If both the thresholds ǫBelie f RawContrastive and ǫIntentionRawContrastive are attained, the

agent could randomly choose what function to execute (either Belie f RawContrastiveExp

or IntentionRawContrastiveExp). Alternatively, we could rely on the differences between

the changes in levels in the IHT.

6.5.2/ COMMUNICATING UPDATED AND FILTERED EXPLANATIONS

This section discusses how the assistant agent communicates the explanations to the

human. This step is divided into two sub-steps:

1. Updating RExp (Section 6.5.2.1) that takes RExp generated by the remote agents

as input and output updated explanations as defined by a function in Equation 6.18.

updateExp : RExp→ UExp (6.18)

where UExp is the set of updated explanations.

2. Adaptive filtering of UExp (Section 6.5.2.2) that takes UExp as input and outputs

the filtered explanations to the human as defined in Equation 6.19.

f ilterExp : UExp→ FExp (6.19)

where FExp is the set of filtered explanations to be communicated to the human.

These two sub-steps will be discussed in detail in the next two sections.

6.5.2.1/ UPDATING THE RAW EXPLANATIONS

The raw explanations RExp, generated by the remote agents, are updated by the assis-

tant agent to assure they are adequate, i.e. they hold all the necessary information. This

sub-step of the explanation formulation process is important to assure that the genera-

tion of explanations did not result in the oversimplification of the explanations. The results
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Figure 6.5: The hierarchy of the explanations levels

of this step are the updated explanations UExp. This sub-step is context-aware to the

situation, i.e. it adaptively updates RExp based on the context of the situation. Addition-

ally, in this sub-step, the assistant agent scans RExp for anomalies and inconsistencies

(e.g. two remote agents providing conflicting information) and removes any unnecessary

information from RExp or adds missing necessary information that are not seen by the

remote agents when generating RExp due to their limited view of the situations. In other

words, even though, the remote agents consider the abnormal situations when generat-

ing the contrastive explanations, the assistant agent, and after receiving all RExp, could

discover some abnormality hidden to the remote agents. Therefore, if the situations are

considered abnormal according to the assistant agent, it updates RExp generated by the

remote agents.

For updating, we have defined a hierarchy of levels of explanations to adaptively handle

the trade-off between simplicity and adequacy. Figure 6.5 depicts this hierarchy where the

higher levels having higher adequacy and lower simplicity while the lower levels having

higher simplicity and lower adequacy. Accordingly, the hierarchy of explanations could be

divided into 4 levels:

1. Belief & Intention based Contrastive Explanation (BICExp): This explanation is the

longest but includes the most information;

2. Belief-based Contrastive Explanation (BCExp) and Intention-based Contrastive Ex-

planation (ICExp);
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3. Belief & Intention based Normal Explanation (BINExp);

4. Belief-based Normal Explanation (BNExp) and Intention-based Normal Explanation

(INExp): These explanations are the shortest but may not include all necessary

information.

The assistant agent could upgrade an explanation to a higher level (Level 1 is the highest)

if there is a need for adequacy, i.e. there is a risk of oversimplifying the explanation or

downgrade the explanation into lower levels (Level 4 is the lowest) if there is a need for

simplicity, i.e. there is a risk of overwhelming the human. In level 4, BNExp and INExp

are considered at the same level of simplicity and adequacy. However, studies that are

listed by Kaptein et al. [141] show that based on the age of the human (child or adult),

these types of explanations could be distinguished. This discussion is also applicable

for Level 2 between BCExp and ICExp. Finally, BCExp and ICExp are considered at a

higher level than BINExp. This is explained by the fact that contrastive explanations are

associated more than normal explanations with abnormal situations that need more ad-

equate information [198], i.e. higher adequacy. However, this ordering means also that

BINExp is simpler than BCExp and ICExp. This could be explained by the fact that con-

trastive explanations are generated when facing abnormal situations that are not simple

to understand by the human.

Considering that the assistant agent has a global view of the situation, the abnormality

of some situations is different from its perspective compared to the perspective of the

remote agents. Accordingly, the assistant agent upgrades or downgrades RExp based

on the abnormality of the situation. This is confirmed according to the change in beliefs

∆B defined in Equation 6.4 (page 92) and the change in intentions ∆I defined in Equation

6.6 (page 92), while considering eight different thresholds. Four of them are instances

of θBelie f defined in Equation 6.5 (page 92): ǫBelie f U pdateNormal, ǫBelie fCombinedU pdateNormal,

ǫBelie f U pdateContrastive, and ǫBelie fCombinedU pdateContrastive. The other four are instances of

θIntention defined in Equation 6.7 (page 92): ǫIntentionU pdateNormal, ǫIntentionCombinedU pdateNormal,

ǫIntentionU pdateContrastive, and ǫIntentionCombinedU pdateContrastive. Like with the generation of RExp,

the rules defined in Equations 6.20 and 6.21 govern the relation between these thresh-

olds.

ǫBelie fCombinedU pdateContrastive > ǫBelie f U pdateContrastive >

ǫBelie fCombinedU pdateNormal > ǫBelie f U pdateNormal

(6.20)

ǫIntentionCombinedU pdateContrastive > ǫIntentionU pdateContrastive >

ǫIntentionCombinedU pdateNormal > ǫIntentionU pdateNormal

(6.21)

An example of upgrading, if the assistant agent receives an explanation of the type IC-

Exp while the thresholds ǫBelie fCombinedU pdateContrastive, and ǫIntentionCombinedU pdateContrastive are
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attained, it will upgrade the raw explanation to BICExp.

6.5.2.2/ FILTERING OF THE UPDATED EXPLANATIONS

From Figure 6.5 (page 99), the types of explanations with higher levels (highest is Level 1)

provide more information (i.e. more adequate) than the other types with lower levels (low-

est is Level 4). However, the textual length of the types in the higher levels is longer than

those in the lower levels. With longer explanations (i.e. less simple), we risk overwhelm-

ing the human, and to face this challenge we introduce two solutions:

1. The remote agent is context-aware and adaptive to the situation in that it chooses

which explanation to provide based on the priority of the situation. The latter could

be determined based on several ways:

i) Fixed list of priorities of situations set in the design-time. The problem with this

way is the difficulty to anticipate all possible situations;

ii) Some preset expert reactive rules. The problem with this way is the difficulty

to anticipate all possible events for which rules should be defined;

iii) The change in beliefs ∆B, i.e. based on the change in the environment. For

that we need a new threshold ǫFilterPriority as an instance of θBelie f defined in

Equation 6.5 (page 92).

2. The assistant agent is context-aware and adaptive to the situation in that it filters

UExp received from the remote agents to insure the human is not overwhelmed.

The priority when providing parsimonious explanations is to provide adequate ex-

planations (i.e. based on both beliefs and intentions) unless there is a risk to over-

whelm the human according to some overwhelming threshold, i.e. human cognitive

load threshold. In the latter case, simple explanations are kept (lower levels) while

longer ones are filtered out. It is very important here to state that the overwhelm-

ing threshold is not calculated theoretically in HAExA. Even though calculating this

value is very useful, it is out of the context of this thesis. Instead, this value is cali-

brated empirically using several beta tests where human participants are involved.

The filtering of explanations is conducted to assure that UExp are simple and do not

overwhelm the human, i.e. increase the simplicity. This sub-step is adaptive to the number

of explanations provided by the remote agent and accordingly, the filtering by the assistant

could be strict or not based on the human cognitive load, i.e. it adaptively filters UExp to

not exceed his/her cognitive load threshold. Three cases of filtering are presented below:
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1. Without a filter, if few remote agents are present, it might be relevant for the hu-

man to be able to distinguish between the beliefs of individual remote agents and

understand their explanations without filtering.

2. Using a static filter where the explanations are filtered based on priorities in accor-

dance with the human cognitive load threshold. The remote agents set priorities

to RExp before sending them to the assistant agent and every explanation with a

priority below the threshold will be filtered out by the assistant agent. The filtering

rules, here, are not context-dependent. The priorities set by the remote agents are

compared to the human cognitive load set in the design time. This filter is called a

static filter and is used in the pilot test (Chapter 8) to investigate RH1 (page 70) and

RH2 (page 70).

3. Using an adaptive filter based on the current context, where irrelevant explanations

are removed; for example, if many remote agents are present in the environment,

the assistant agent may decide to aggregate their explanations because it is not

possible for a human to process differences in the explanations of individual remote

agents in real-time. The adaptive filter could also adapt to the human preferences if

a user model is built.

For adaptive filtering, three levels of adaptation are defined:

• FilterThresholdH: If the number of UExp is higher than this threshold, downgrade

UExp into lower levels of hierarchy (see Figure 6.5 on page 99) using the function

downgrade and reduce the number of UExp of the normal types using the function

reduce. Reducing the number of explanations may lead to fully discarding them.

This type is defined in Equation 6.22.

|UExp| > FilterThresholdH → reduce(BINExp, BNExp, INExp), downgrade(UExp)

(6.22)

• FilterThresholdM: If the number of UExp is higher than this threshold, reduce the

number of UExp of the normal types using the function reduce. This type is defined

in Equation 6.23.

|UExp| > FilterThresholdM → reduce(BINExp, BNExp, INExp) (6.23)

• FilterThresholdL: If the number of UExp is higher than this threshold, downgrade

UExp into lower levels of hierarchy (see Figure 6.5 on page 99) using the function

downgrade. This type is defined in Equation 6.24.

|UExp| > FilterThresholdL → downgrade(UExp) (6.24)
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If two explanations have the same sub-type or same hierarchy level and there is a need

to discard one of them, the decision is made based on priorities set by the remote agents

when generating the explanations. Finally, it is worth mentioning that before attempting

to update RExp into UExp, the assistant agent verifies if there is a need for filtering or

not. This is to avoid upgrading RExp into UExp and then later these UExp are going to

be downgraded because they are overwhelming. This condition can be found in Figure

6.3 (page 91).

6.6/ CONCLUSION

This chapter proposed the contributions of this thesis. These contributions tackle the

RQs and the RHs defined in Chapter 5. The main goal of the contributions is to provide

parsimonious explanations to the human that strike a balance between adequacy and

simplicity. Achieving adequacy ensures that all the necessary information is included in

the explanations while achieving simplicity avoids overwhelming the human with extra

cognitive load. The main contributions proposed in this chapter are:

i) A Human-Agent Explainability Architecture (HAExA) representing remote robots as

agents that provide explanations to the humans about the environment, their deci-

sions, and their behaviors.

ii) A BDI-based model of the remote agents generating the explanations and the as-

sistant agent communicating them.

iii) An adaptive and context-aware explanation formulation process based on the parsi-

mony of explanations. This process seeks to maximize the explanation’s adequacy

while minimizing its impact on the human’s cognitive load. To achieve that, it uses

various combinations of generating and communicating the explanations.

Section 6.2 highlighted the definitions and general principles of HAExA. Then, it identified

how HAExA adopts and adapts the phases of providing an explanation. Section 6.3

proposed HAExA and presented the MAS within it and how the agents are organized with

their roles. In principle, HAExA includes two types of agents: (i) The remote agents as

part of the environment. (ii) The assistant agent whose role is to be an interface between

the remote agents and the human.

Section 6.4 discussed in detail the BDI-based model used to represent all agents in

HAExA. First, Section 6.4.1 indicated the general principles of designing the BDI model

and how HAExA approached them. Second, Section 6.4.2 analyzed in detail the prac-

tical reasoning cycle of the agents. In particular, an algorithm of the control loop of a
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remote BDI agent has been proposed that extends the well-known BDI algorithm with

some modules related to explainability.

Section 6.5 proposed and thoroughly explored the explanation formulation process. This

section was divided into two main subsections. First, Section 6.5.1 covered the gener-

ating of raw explanations by the remote agents. These raw explanations concern the

situations they perceive, the decisions they made, and the actions they perform. They

have two main types: Normal in relatively normal situations, and contrastive in abnor-

mal ones. These remote agents are BDI agents whose beliefs and intentions are used

to generate the raw explanations. The types of explanations are further divided into 6

sub-types depending on the source of information in the explanations: (i) based on the

beliefs of the agent (BNExp, BCExp); (ii) based on the intentions of the agent (INExp,

ICExp); (iii) based on the beliefs and intentions of the agent (BINExp, BICExp). The

choice between these sub-types is concluded by the remote agent based on the change

in beliefs and intentions, i.e. the remote agent is context-aware.

Section 6.5.2 tackled the communication phase of providing an explanation. The assis-

tant agent has a global view of the context thanks to the raw explanations and messages it

receives from the remote agents. Accordingly, it adaptively updates the raw explanations

based on the changes in its beliefs and intentions. It mainly upgrades or downgrades

the raw explanations according to a defined hierarchy of explanations that tackles the

trade-off between simplicity and adequacy. Additionally, it filters the updated explanations

respecting the thresholds of the human cognitive load. Finally, it communicates the fil-

tered explanations to the human. The thresholds mentioned in this chapter are defined

empirically, in general, with their values being calibrated with the help of ABS.

To properly evaluate the proposed contributions of human-agent explainability, we con-

duct two empirical human case studies based on a scenario of package delivery using

civilian UAVs. The next chapter presents further details about this scenario.



IV

EVALUATION

105





7

APPLICATION TO CIVILIAN UNMANNED

AERIAL VEHICLES

7.1/ INTRODUCTION

With the rapid increase of the world’s urban population, the infrastructure of the

constantly-expanding metropolitan areas is subject to immense pressure. To meet the

growing demand for sustainable urban environments and improve the quality of life for

citizens, municipalities will increasingly rely on novel transport solutions. In particular,

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are expected to have a

crucial role in future smart cities thanks to relevant features such as autonomy, flexibility,

mobility, and adaptivity [208]. Therefore, over the past few years, an increasing num-

ber of public and private research laboratories have been working on civilian, small, and

human-friendly UAVs.

Still, several concerns exist regarding the possible consequences of introducing UAVs in

crowded urban areas, especially regarding people’s safety. To guarantee it is safe that

UAVs fly close to human crowds and to reduce costs, different scenarios must be mod-

eled and tested. Yet, to perform tests with real UAVs, one needs access to expensive

hardware. Moreover, field tests usually consume a considerable amount of time and re-

quire trained people to pilot and maintain the UAVs. Furthermore, in the field, it is hard

to reproduce the same scenario several times [179]. In this context, the development

of computer simulation frameworks that allow transferring real-world scenarios into exe-

cutable models is highly relevant [20, 88]. However, the simulation frameworks have their

drawbacks; in particular, it is impossible to fully reproduce the real environment.

The use of Agent-based Simulation (ABS) frameworks (refer to Section 2.9 for more de-

tails about ABS and to Section 5.4.1 for more details on how to employ ABS for human

studies) or tools for UAV simulations is gaining more interest in complex civilian applica-

tions where coordination and cooperation are necessary [1]. Due to operational costs,

107
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safety concerns, and legal regulations, ABS is commonly used to implement models and

conduct tests for UAVs. This has resulted in a range of research and applied works ad-

dressing ABS in UAVs [207].

The problem of understanding the robot’s state-of-mind is more accentuated in the case

of UAVs since —as confirmed by recent studies in the literature [124, 23]— remote robots

tend to instill less trust than robots that are co-located. For this reason, working with re-

mote robots is a more challenging task, especially in high-stakes and dynamic scenarios

such as flying UAVs in urban environments. To overcome this challenge, the evaluation

of the contributions of the thesis relies on Explainable Artificial Intelligence (XAI), refer

to Section 2.5 for more background details, to trace the decisions of agents and facili-

tate human intelligibility of their behaviors in the context of civilian UAV swarms that are

interacting with other objects in the air or the smart city. Indeed, providing explanations

about the remote UAV decisions may increase the satisfaction of humans [40] and main-

tain acceptability of the XAI system [19]. For instance, an XAI system could enable a

delivery UAV modeled as an agent to explain, to its remote operator, the reasons behind

its deviation from a predefined plan (e.g. to avoid placing fragile packages on unsafe lo-

cations) thereby allowing the human operator to better manage a set of such UAVs. The

example can be extended, in a multi-agent environment, where UAVs can be organized in

swarms [138] and modeled as cooperative agents to achieve more than what they could

do solely, and the XAI system could explain this to the human operator for the sake of

transparency, control, or for the sake of training novice operators on the system.

Contrastive explanations (refer to Section 2.6 for more background details and Section

6.5.1.2 for more details on the contribution related to contrastive explanations) is vital

in ABS, because the human is watching a simulation in which all normal situations are

expected by him/her and while watching and having several normal situations, the human

will learn more about the normal behavior of the simulation. Consequently, he/she will be

interested in any abnormal behavior and will demand an explanation for such behaviors.

This chapter presents the experiment application and scenario used to evaluate the con-

tributions of the thesis. The scenario employs UAVs as an example of remote robots

represented as agents. ABS is mainly used to implement the simulation of the scenario.

In the simulation, the agents provide explanations of the environment, their decisions,

and their behaviors. The explanations are meant for human participants that will watch

the simulation execution and assess its functionalities and explainability. Then, they fill

out a questionnaire (refer to Section 2.10 for more background details) built according to

the XAI metrics in the literature [132]. The participants’ responses in the questionnaire

should be statistically analyzed as described in Chapter 5 (see Section 5.4.2). The ex-

periment scenario is implemented in two human studies: Pilot test (Chapter 8) and Main

test (Chapter 9). These tests aim to investigate the research hypotheses (Section 5.3)
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and answer the research questions (Section 5.2) posed in Chapter 5.

The chapter is organized as follows. First, Section 7.2 investigates the experiment sce-

nario with the various roles and the interactions among them. Second, Section 7.3 out-

lines the principles and the categories for building the questionnaire used to collect the

responses of the participants in the evaluation. Third, Section 7.4 highlights the process

of conducting the experiment. Finally, Section 7.5 concludes this chapter.

7.2/ EXPERIMENT SCENARIO

The experiment scenario is about investigating the role of XAI in the communication be-

tween UAVs and humans in the context of package delivery in a smart city [209]. In the

scenario, one human-on-the-loop operator (see Definition 15 on page 70) oversees sev-

eral UAVs, i.e. the remote agents in HAExA, that will provide package delivery services to

clients. These UAVs will autonomously conduct tasks and take decisions when needed.

Additionally, they need to communicate and discuss with each other and may cooperate

to complete a specific task. The UAVs will explain to the Operator Assistant Agent (OAA),

i.e. the assistant agent in HAExA, the progress of the mission including the abnormal

situations along with the decisions made by them. Figure 7.1 shows the interaction be-

tween the actors in the proposed scenario. In the following, the steps of the experiment

scenario are detailed:

1. When a client puts a request for delivering a package, a notification is sent to the

UAVs, so all UAVs are connected with each other and with the OAA using an as-

sumed reliable network.

2. UAVs that are near, with a specific radius, to the package will coordinate to com-

plete the delivery mission. In other words, if a UAV is very far from the pack-

age/passenger, it should not participate in the discussion related to this transporta-

tion mission. The decentralized coordination (without the intervention of the opera-

tor) can be initiated for several reasons:

• Best candidate: Deciding which UAV will deliver the package according to

constraints: actual distance to the package, battery capacity, having other

packages in hand, having a mission with a near destination, etc.

• Long trip: There is a need to cooperate to deliver the package between sev-

eral UAVs, where each UAV delivers the package part of the way and then

hands it to another UAV.

3. If the package is picked up by a UAV from a competitor (external events), we have

two situations:
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Figure 7.1: The interaction of actors in the experiment scenario

• The client sends a notification that the package/passenger is picked up, and

the assigned UAV will stop the mission;

• The client does not send a notification that the package/passenger is picked

up (e.g. because of selfishness or laziness). In this situation, the UAV will go

to the place and observe the absence of the package/passenger, and it needs

to explain this to the OAA.

4. The explanation needed from the UAV is generally about the environment, the mis-

sion progress, its decisions, its behaviors, its actions, and its status, e.g. which UAV

is assigned to the mission after the communication between UAVs, or when the UAV

picks up the assigned package and is moving to destination. However, other impor-

tant kinds of explanation are required regarding the abnormal situations, e.g. the

UAV arrives at the package location and did not find it, or see that it is damaged, or

not according to the description (maybe heavier). Another example is when a UAV

needs charging and that is why it ignores a nearby package.

5. Every UAV will generate raw explanations for the OAA that will communicate them

to the operator. The OAA updates and filters these raw explanations received from

the UAVs to give an adequate summary of the most important explanations without

overwhelming the operator with a lot of details. There are two main types of expla-

nations: Normal and Contrastive (refer to Section 6.5 for more details on the sub-

types of explanations and how to generate and communicate them). There are two

types of filtering of explanation by the assistant agent (discussed in detail in Section



7.3. BUILDING THE QUESTIONNAIRE 111

6.5.2.2): (i) Static filtering based on a filtering threshold set by the human that will

filter the explanations based on their priorities. These priorities are set by the UAVs

when generating each raw explanation. (ii) Adaptive context-aware filtering where

the OAA adapts the intensity and levels of filtering based on the complexity of the

situation.

The experiment requires that the participants (the operator in the experiment), and after

watching the simulation of the experiment, should fill out a questionnaire to collect their

opinions on the explanations provided by the agents in the experiment. The next section

discusses in detail the parts of the mentioned questionnaire.

7.3/ BUILDING THE QUESTIONNAIRE

We opt to use the Explanation Satisfaction and Trust Scale in building our questionnaire

(see Section 2.10). The answers are distributed to a 5-points Likert scale [132]:

1 2 3 4 5

I disagree I disagree I’m neutral I agree I agree

strongly somewhat about it somewhat strongly

Our choice is based on two reasons:

1. Unlike the Explanation Quality Checklist [132], it uses a wider 5 − 7 scale answers;

2. The Explanation Quality Checklist is intended to be used by researchers who built

the XAI system, or as an independent experiment of explanations by other re-

searchers, while the Explanation Satisfaction and Trust scale is mainly suitable for

experiments of explanations by humans.

The next section outlines the structure of the built questionnaire with the various cate-

gories of the questions.

7.3.1/ CATEGORIES OF THE QUESTIONS

The built questionnaire has 21 questions for the main test and 12 questions for the pilot

test divided into 3 categories:

1. Participant Details (5 questions): Gender (optional), age (optional), level of English

language, prior knowledge about UAVs, and year of study.
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2. Functionalities (3 questions): This category is used to check that the participant

understood the simulation using some objective questions. Additionally, we confirm

if the functionalities of the simulation are acceptable by the participant, and their

suggestions in this context.

3. Statistical Analysis (3 questions for the pilot test, see Section 8.4; and 12 questions

for the main test, see Table 9.1) These questions are mainly about the understand-

ability and trust. We investigate the following aspects: satisfaction, confidence,

predictability, reliability, efficiency, trustworthiness, and importance of explanation.

Additionally, this category specifies questions about explainability to confirm the

usefulness of the explanation, satisfaction of the explanation, either or not the de-

tails of the explanation have sufficient details, etc.

Finally, the questionnaire includes a question (numbered Q18 in the main test) about

Curiosity considering that situations like the one understudy lead people to engage in

effortful processing and motivates them to seek out additional knowledge to gain insight

and fulfill their curiosity [178]. This question is: “Why do you think the explanation of the

simulation tool is important? Check all that apply”. However, unlike all the questions in

the questionnaire, this question has multiple answers, and because the tests in this thesis

do not investigate curiosity, this question is not analyzed in the results of this thesis.

The trust in the automation can rapidly break down under conditions of time pressure, or

when there are conspicuous system faults or errors, or when there is a high false alarm

rate [82, 184]. The trust of a system can be hard to reestablish once lost. The trust in

the automation scale developed by Adams et al. [6] refers specifically to the experiment

of simulations [6]. It asks only two questions, one about trust (Do you trust it?) and

one about reliance (Are you prepared to rely on it?). The Statistical Analysis category

includes the two mentioned questions about Trust along with others in the main test.

The next section outlines the steps for conducting the tests that consider the experiment

scenario mentioned in this chapter.

7.4/ CONDUCTING THE EXPERIMENT

We have conducted two tests based on the experiment scenario: Pilot test (Chapter 8)

and Main test (Chapter 9). In the pilot test, we investigate the research hypotheses RH1

and RH2, while in the main test we investigate the research hypotheses RH3-1, RH3-2,

RH3-3, and RH4 (page 70).

The pilot test was conducted in the university with the help of 27 students as participants

that were physically present at the university during the test, while the main test was

conducted online with 90 participants. The simulation used, for each test, was different as
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for the pilot test, we relied on reactive agents, while for the main test the implementation

included BDI agents as explained in Chapter 6.

It is important here to mention that before conducting the two tests, all participants have

been informed that the gathered data is anonymous, secured, and will be used solely for

research purposes. Moreover, they have the right to know how the data is used according

to the General Data Protection Regulation1.

Before conducting the test, we give some information about the simulation: (i) Explain

the main goal of the simulation, which is the delivery of packages using UAVs. The

delivery of a package is from any point of the map, where a package could appear to

some warehouse determined on the map. (ii) Icons of the elements (UAVs, charging

stations, packages, destinations, etc.). (iii) While the UAVs are delivering the packages,

some abnormal situations may happen. All the situations, either normal or abnormal will

be explained by the UAVs.

As the coordination and cooperation between the groups of remote agents in the multi-

agent system is out of the scope of this thesis, we opt to simplify the implementation of

HAExA (see Figure 6.1) by choosing only one group.

The simulation is divided into 4 sequences. The point of each sequence is to show a

scenario of package delivery with some abnormal situations. The first sequence is a

very simple example that does not include any abnormal situation, so it is like a happy

path situation, which helps the participants understand the context and the appearance

of the simulation and be familiar with the different elements with their icons. Each of

the other sequences will handle an abnormal situation or more, e.g. a low battery, a

damaged package, an already delivered package, etc. The number of abnormal situa-

tions increases further with the sequences from the second sequence till the fourth (last)

sequence that is an overwhelming sequence with several UAVs (here 10).

7.5/ CONCLUSION

This chapter presented the experiment application and scenario used to evaluate the

contributions of the thesis. The scenario considers UAVs as an example of remote robots

represented as agents. Different roles for different actors and the interactions among

them are identified. ABS will be mainly employed to implement the simulation of the

scenario. In the simulation, the agents provide explanations of the environment, their de-

cisions, and their behaviors. The explanations are meant for human participants that will

watch the simulation execution and assess its functionalities and explainability. Then, they

will fill out an XAI questionnaire based on the Explanation Satisfaction and Trust Scale.

1https://gdpr-info.eu/

https://gdpr-info.eu/
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The questions in the questionnaire are organized into 4 categories, and the responses of

the participants are to be statistically analyzed. This section highlighted also the process

of experimenting.

We have conducted two tests based on the experiment scenario presented in this chapter:

Pilot test (Chapter 8) and Main test (Chapter 9). In the pilot test, we investigate the

research hypotheses RH1 and RH2, while in the main test we investigate the research

hypotheses RH3-1, RH3-2, RH3-3, and RH4 (page 70). In the following sections, we

cover in detail each of these two tests.
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PILOT TEST

8.1/ INTRODUCTION

In this chapter, we conduct a pilot empirical human study (or pilot test) based on the ex-

periment application (see Chapter 7) of package delivery using civilian Unmanned Aerial

Vehicles (UAVs) to answer one of the Research Questions (RQs) and evaluate two of the

Research Hypotheses (RHs). In particular, the pilot test evaluates the part of the contri-

bution related to RQ1: Explainability for remote agents (see Section 5.2.1). It tackles and

evaluates RH1: Explainability increases the understandability of the human-on-the-loop

in the context of remote agents and RH2: Too many details in the explanations overwhelm

the human-on-the-loop, and hence in such situations, the filtering of explanations pro-

vides less, concise and synthetic explanations leading to higher understandability by the

human. (see Section 5.3).

In this test, the implementation includes only reactive agents in the Agent-based Simula-

tion (ABS) for realizing the human study (see Section 5.4.1). After watching the simulation

and filling out the associated questionnaire, the responses undergo statistical testing to

interpret, evaluate, and analyze the results (see Section 5.4.2).

The chapter is organized as follows. First, Section 8.2 discusses the methodology of

conducting the pilot test. Second, Section 8.4 statistically interprets and analyzes the

responses of the participants. Third, Section 8.5 outlines the limitations of the test. Finally,

Section 8.6 concludes this chapter.

8.2/ PILOT TEST METHODOLOGY

This section conveys the methodology applied to conduct the pilot test as follows. Section

8.3 clarifies some specific details of the implementation and realization of the simulation.

Section 8.3.1 details the process of organizing the participants in groups and how to

aggregate their responses.

115
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8.3/ EXPERIMENTAL DETAILS

The pilot test discusses the role of filtering of explanations in three cases: No explanation,

Detailed explanation, and Filtered explanation. Only normal explanations for normal and

abnormal situations are used, i.e. no contrastive explanations. Moreover, the normal

explanations have only one type based on some preset reactive rules in the design-time,

i.e. the generation is not based on beliefs nor intentions. Furthermore, only static filtering

(see Section 6.5.2.2), i.e. no adaptive filtering. These simplifications are made because

the main goal of this pilot test is to reproduce the results of the literature in the domain of

remote robots represented as agents.

The experiment scenario (see Section 7.2) in the pilot test is implemented using Repast

Simphony [68] as an ABS framework. We rely on this framework to control and man-

age the environment and the scheduler of the agents. The choice of this framework is

based on a comparison of ABS frameworks for unmanned aerial transportation applica-

tions showing that Repast Simphony has significant operational and execution features1.

The agents are all reactive agents and not Belief–Desire–Intention (BDI) agents. This

choice was made because, in the pilot test, there is no implementation of adaptive fil-

tering nor contrastive explanations; hence reactive agents are enough to verify the goal

of the pilot test which is mainly to reproduce the results of the literature in the domain

of UAVs as an example of remote robots, i.e. to investigate the impact of filtering the

explanations on the understandability of the human in this domain.

The simulation is run on a machine with the following features: Win 10 Education, Core

i7 2.9 GHz 4 cores, 32 GB RAM, 4 GB dedicated video memory. Figure 8.1 depicts a

snapshot of the simulation presented to the participants for the pilot test [210]. The last

sequence of the simulation (overwhelming sequence) lasts for 1:42 minutes and includes:

10 UAVs, 4 warehouses, 5 charging stations, 16 packages to be delivered, 4 abnormal

situations. The explanations are textual, and they have a natural language appearance,

with the dynamic numbering of the simulation elements (UAVs, packages, charging sta-

tions, etc.). Some examples of the explanations generated by a UAV agent are: “UAV

1 should carry Package 3” or “Package 4 is damaged. I cannot deliver it”. The UAVs

assign priorities to their explanations and the Operator Assistant Agent (OAA) filters the

explanations allowing to pass only those with a priority higher than the filtering threshold

set by the human in the initial parameters of the simulation.

1see Appendix B for the latest version of the ABS frameworks comparison.
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Figure 8.1: Pilot test simulation snapshot

8.3.1/ PARTICIPANTS AND GROUPS

The experiment requires the help of human participants who watch the simulation and

then fill out a questionnaire built to aggregate their responses. These responses are

distributed to a 5-points Likert scale [132] (refer to Section 7.3 for more details on build-

ing the questionnaire). The questionnaire of the pilot test is minimized to 12 questions.

Apart from the first 8 questions of Participant Details, Functionalities categories (refer

to Section 7.3.1 for more details on the categories of the questions) and the question

about curiosity, there are 3 questions left for the statistical analysis on the importance

of explanations and the filtering of them (refer to Appendix C for all the questions of the

questionnaire in the pilot test). For this test, all participants have the same conditions

when watching the execution of the simulation (quality of the video, same place and time,

same instructions given, etc.). The organizing steps of this test are described as follows:

1. 27 students of the university in the technology domain but in different specialties and

different years (Bachelor, Master, and Ph.D.) have participated in this test. They

were randomly divided into three groups. Additionally, only the participants with B1

English level have participated. Among the 27 participants, 7 of them were females,

19 were males, and 1 preferred not to disclose this information. They were aged

between 21 and 34 (mean of age of the participants is 23.3) with a mean equal to

2.9 (5-points Likert) for self-rated experience with UAVs.

2. All the three groups watch exactly the same simulation sequences but with different

explanation capabilities:
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1. Group N: 11 participants watch the simulation with no explanation;

2. Group D: 8 participants watch the simulation with detailed textual explanations;

3. Group F: 8 participants watch the simulation with filtered textual explanations.

3. Only one group is allowed to stay in the room at a specific time. The test took

60 minutes: the first 15 minutes were about giving instructions for all participants

including the rights of the participants, then 15 minutes for each group to watch

their version of the sequences and fill out the questionnaire of the pilot test.

The next section explores in detail the statistical testing performed on the responses of

the participants and analyzes the revealed results.

8.4/ PILOT TEST RESULTS

All the statistical tests performed in this section are based on Mann-Whitney U non-

parametric tests, as we are evaluating, at a time, one ordinal dependent variable (5 re-

sponses of the participants to a question) based on one independent qualitative variable

(2 groups of participants), and the sample size of all the groups S ampleS ize < 30. For all

tests, the Confidence Interval CI is 95% so the alpha value α = 1 − CI = 0.05, and the

p − value will be provided per test below.

Based on the responses of the participants of the pilot test organized in the groups N, D,

and F, the comparisons of the responses, to investigate the role of explanations and the

filtering of them, are presented in the following sections.

8.4.1/ NO EXPLANATION VS. EXPLANATION

We compare the 11 participants of Group N (No explanation), on one hand, with the 16

participants that have received explanations of both Group D (Detailed explanation) and

Group F (Filtered explanation) on the other hand.

Using a Mann-Whitney U test (CI = 95%,U = 45, p − value = 0.029), Figure 8.2 shows the

box plot that corresponds to the question: “Do you believe the only one time you watched

the simulation tool working was enough to understand it?”, with 5 possible answers (cf.

Section 7.3). The box plot shows that the median response of Groups D and F (med = 4)

is significantly higher than the median response of Group N (med = 2), i.e. the partic-

ipants that received explanations agree more than the participants with no explanation

that watching the simulation once is enough.

Using a Mann-Whitney U test (CI = 95%,U = 43.5, p−value = 0.018), Figure 8.3 shows the

box plot that corresponds to the question: “How do you rate your understanding of how
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Figure 8.2: Pilot test: Do you believe the only one time you watched the simulation tool working
was enough to understand it? (Explanation vs. No explanation)

the simulation tool works?”, with the following possible answers: 5 (Very high), 4 (High), 3

(Neutral), 2 (Low), 1 (Very low). The box plot shows that the median response of Groups

D and F (med = 4) is higher than the median response of Group N (med = 3), i.e. the

participants that received explanations rate their understanding of the simulation with a

higher value than the participants that did not receive any explanation.

According to these two results, RH1 (page 70) is proven, i.e. explainability increases

the understandability of the human-on-the-loop in the context of remote agents. The

respectful reader can notice that the questions of Figure 8.2 and Figure 8.3 have almost

a similar goal. This is explained by the fact that when we have built the questionnaire,

we have added some similar questions to assure the adherence and consistency of the

responses of the participants.

8.4.2/ DETAILED EXPLANATION VS. FILTERED EXPLANATION

We compare the 8 participants of the Group D (Detailed explanations) on one hand with

the 8 participants of the Group F (Filtered explanations) on the other hand.

Using a Mann-Whitney U test (CI = 95%,U = 15, p − value = 0.058), Figure 8.4 shows the

box plot that corresponds to the question: “Do you believe the only one time you watched

the simulation tool working was enough to understand it?”, with 5 possible answers (cf.

Section 7.3). The box plot shows that the median response of Group D (med = 4) is
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Figure 8.3: Pilot test: How do you rate your understanding of how the simulation tool works?
(Explanation vs. No explanation)

higher than the median response of Group F (med = 3), i.e. the participants that received

detailed explanations tend to agree more than those receiving filtered explanations that

watching the simulation once is enough to understand it. This result could be explained

by the fact that when a participant receives a lot of explanations, he/she tends to feel more

confident that watching the simulation once is enough. However, it is worth mentioning

here that the p− value was slightly higher than the α value for this test, so this result is not

decisively significant.

The last overwhelming sequence shown to the participants included 10 UAVs and 16

packages. For this sequence, we asked a specific question related to RH2. Using a

Mann-Whitney U test (CI = 95%,U = 13, p − value = 0.044), Figure 8.5 shows the box plot

that corresponds to the question: “The explanation of how the simulation tool works in the

last sequence has too many details”, with 5 possible answers (cf. Section 7.3). The box

plot shows that the median response of Group D (med = 3.5) is higher than the median

response of Group F (med = 2.5), i.e. the participants that received detailed explanations

were overwhelmed by the details of the explanations and think that the explanation was

too much detailed compared to the participants that received filtered explanations.

Two findings can be deduced from the results of comparing Group D with Group F:

1. More details are preferable by the participant and it increases its confidence that

watching the simulation once was enough to understand it, but with a questionable

significance (Figure 8.4). This agrees with the findings of Harbers et al. [120] where



8.5. PILOT TEST LIMITATIONS 121

Group of the participant

DF

D
o

 y
o

u
 b

e
li

e
v

e
 t

h
e

 o
n

ly
 o

n
e

 t
im

e
 y

o
u

 
w

a
tc

h
e

d
 t

h
e

 s
im

u
la

ti
o

n
 t

o
o

l 
w

o
rk

in
g

 w
a

s
 

e
n

o
u

g
h

 t
o

 u
n

d
e

rs
ta

n
d

 i
t?

5

4

3

2

1

Figure 8.4: Pilot test: Do you believe the only one time you watched the simulation tool working
was enough to understand it? (Detailed explanation vs. Filtered explanation)

it is mentioned that the participant prefers more details in the explanation.

2. However, with the increase of scalability, the participant is eventually overwhelmed

with too many details (Figure 8.5) and in this case, the filtering of explanations is es-

sential, and this proves RH2 (page 70). Moreover, the filtering of explanations gives

more time for the participant to do other tasks and this aspect of shared autonomy

could be investigated in future work.

8.5/ PILOT TEST LIMITATIONS

We tried to normalize the conditions of the test by providing the exact experimentation

conditions for all participants. However, there may be still some personal factors that

make the experience of each participant different. Additionally, when choosing a sample

from the population, this sample may have traits that are not representative of the entire

population (e.g. knowledge and interest in technology, culture, etc.) and that influence

the responses of the questionnaire. Therefore, the generalization of the results is limited

as the pilot test was conducted on a sample consisting of students (Bachelor, Master, and

Ph.D.) in the technology and engineering domains which does not necessarily represent

the whole population. However, there are many similarities between the participants in

this test (e.g. age slice and major study).
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Figure 8.5: Pilot test: The explanation of how the simulation tool works in the last sequence has
too many details (Detailed explanation vs. Filtered explanation)

8.6/ CONCLUSION

This chapter discussed the pilot test conducted to evaluate part of the contributions re-

lated to RQ1 (see Section 5.2.1) and in particular RH1 and RH2 (page 70). The exper-

iment scenario in the pilot test is implemented using Repast Simphony [68] as an ABS

framework that controls and manages the environment and the scheduler of the agents.

The agents are all reactive agents and not BDI agents. The pilot test investigates the role

of filtering of explanations provided by remote agents to the human. Three different cases

are investigated: “No explanation”, “Detailed explanation” and “Filtered explanation”. Ac-

cordingly, the participants in the test have been organized into three groups: (i) Group N:

the participants watch the simulation with no explanation; (ii) Group D: the participants

watch the simulation with detailed explanations; (iii) Group F: the participants watch the

simulation with filtered explanations.

The responses of the participants have been statistically analyzed, validated in terms of

significance, and presented based on Mann-Whitney U non-parametric tests. According

to the results of comparing the responses of Group N with Group D, explainability in-

creases the understandability of the human-on-the-loop in the context of remote agents,

i.e. RH1 is proven. Comparing the responses of Group D with Group F revealed that

more details are preferable by the participant and it increases its confidence that watch-

ing the simulation once was enough to understand it but with a questionable significance.

However, with too many details the participants are eventually overwhelmed and in this
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case, the filtering of explanations is essential, i.e. RH2 is proven.

Mainly, and as a response to RQ1, we have aimed with the pilot test to reproduce the

results of the literature regarding the benefits of explainability on one hand and the filtering

of explanations on the other hand in the domain of remote robots (e.g. UAVs) represented

as agents. The next chapter goes more steps forward to investigate various ways and

manners to provide parsimonious explanations that strike a balance between simplicity

and adequacy. It evaluates the full range of the contributions in the thesis.
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MAIN TEST

9.1/ INTRODUCTION

In this chapter, we conduct the main empirical human study (or main test) based on

the experiment application (see Chapter 7) of package delivery using civilian Unmanned

Aerial Vehicles (UAVs) to answer two of the Research Questions (RQs) and evaluate

two of the Research Hypotheses (RHs). In particular, the main test evaluates the part

of the contribution related to RQ2: Parsimonious Explanations (Section 5.2.2) and RQ3:

Modeling Explainability for Remote Agents using Cognitive Architectures (Section 5.2.3).

In particular, the main test tackles and evaluates the following hypotheses (Section 5.3):

• RH3-1: Adaptive filtering with only normal explanations increases the understand-

ability of the human-on-the-loop compared to static filtering with only normal ex-

planations.

• RH3-2: Adaptive filtering with normal and contrastive explanations, i.e. parsi-

mony of explanations, increases the understandability of the human-on-the-loop

compared to static filtering with only normal explanations.

• RH3-3: Adaptive filtering with normal and contrastive explanations, i.e. parsi-

mony of explanations, increases the understandability of the human-on-the-loop

compared to adaptive filtering with only normal explanations.

• RH4: Adaptive filtering with normal and contrastive explanations, i.e. parsimony

of explanations, increases the trust of the human-on-the-loop compared to static

filtering with only normal explanations.

In this test, we investigate how parsimonious explanations could be formulated in Explain-

able Artificial Intelligence (XAI) by adapting the explanation phases (see Section 2.7):

• Explanation Generation: The process of explanation generation in the proposed

architecture HAExA can be either normal or contrastive. Whereas the former is

125
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sufficient for normal situations (i.e. situations where no unexpected events occur),

the latter excels in explaining abnormal situations. For instance, the remote agent,

here the UAV, could either generate raw normal explanations, i.e. non-contrastive

explanations, like the one used in the pilot test (Chapter 8), or raw contrastive ex-

planations based on the beliefs and intentions of the UAV.

• Explanation Communication: The way the raw explanation is communicated from

the UAVs to the human is governed by the assistant agent. Two filters are investi-

gated in this test: a static filter like the one used in the pilot test (Chapter 8), and

an adaptive filter. The adaptive filtering is performed by the Belief–Desire–Intention

(BDI) assistant agent whose beliefs and intentions change according to the com-

plexity of the situation. Accordingly, it adapts the strictness of the filtering.

• Combined Approach: The explanations are formulated by combining aspects from

both the generation and communication phases, e.g. combining adaptive filtering

with contrastive explanations. In this approach, the formulation means that there is

an intersection between the two phases, i.e. it is possible that the raw explanations

are updated in the communication phase by the assistant agent, as in this later

phase, the assistant agent has a general overview of the situation, and hence it

could provide better context-aware explanations to the human.

In this test, the implementation includes BDI agents in the Agent-based Simulation (ABS)

for realizing the human study to facilitate the reception of explanations (see Section 5.4.1).

After watching the simulation and filling out the associated questionnaire, the responses

undergo statistical testing to interpret, evaluate, and analyze the results (see Section

5.4.2). To validate the results, the significance of the responses of the participants is

verified using both parametric and non-parametric tests.

The chapter is organized as follows. First, Section 9.2 outlines the methodology of con-

ducting the main test. Second, Section 9.3 provides the statistical analysis and interpre-

tation of the responses of the participants. Third, Section 9.4 outlines the limitations of

the test. Finally, Section 9.5 concludes this chapter.

9.2/ MAIN TEST METHODOLOGY

This section conveys the methodology applied to conduct the main test as follows. Section

9.2.1 outlines the experimental details of the test. Section 9.2.2 details the process of

organizing the participants in groups and how to aggregate their responses.
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Figure 9.1: Main test simulation snapshot

9.2.1/ EXPERIMENTAL DETAILS

The experiment scenario (see Section 7.2) in the main test is implemented using the JS-

son agent-oriented programming library [139, 206]. All agents in the simulation of the

main test are BDI agents. The beliefs, desires, and intentions of these agents change ac-

cording to the situation to formulate the parsimonious explanations that strike a balance

between simplicity and adequacy. All the functionalities proposed in Chapter 6 are em-

ployed in this simulation. The simulation is run on a machine with the following features:

Win 10 Education, Core i7 2.9 GHz 4 cores, 32 GB RAM, 4 GB dedicated video memory.

Figure 9.1 depicts a snapshot of the simulation presented to the participants for the main

test (see our work [206] for more technical details). The last sequence of the simulation

(overwhelming sequence) lasts for 1:35 minutes and includes: 10 UAVs, 8 warehouses,

10 charging stations, 27 packages to be delivered, 9 abnormal situations.

In the case of the remote agents that represent the UAVs as an example of remote robots,

the explanation formulation process helps in the explanation generation phase, to gen-

erate raw normal explanations in normal situations and raw contrastive explanations in

abnormal ones based on the change of its beliefs and intentions, i.e. the remote agents

are adaptive and context-aware when generating raw explanations. For the assistant

agent, this helps in updating the raw explanations to ensure they have all the necessary

information, i.e. adequacy, according to the combined approach between generation and

communication phases. It also helps in filtering the updated explanations, i.e. simplicity,

in overwhelming scenarios in the explanation communication phase based on the human

cognitive load. Mainly, the assistant agent downgrades and upgrades the types of the

explanations according to the levels of hierarchy illustrated in Figure 6.5 (page 99), i.e.
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the assistant agent is adaptive and context-aware when communicating the explanations

to the human (refer to Section 6.5.2 for more details).

9.2.2/ PARTICIPANTS AND GROUPS

The main test is conducted online, where the simulation is prepared as high-quality

videos. The test instructions along with the links to the questionnaire and the videos

are provided in a presentation provided in a signal link. To reach the participants of the

test, we have broadcast the link of the main test in mailing lists in which we are affiliated.

Moreover, we have also posted the link of this test to social networks. To obtain the sam-

ple used in the analysis of the main test, we focus on voluntary sampling. The people who

receive the link choose to participate or not in our experiment. Voluntary sampling has

some advantages such as the simple way to conduct the test, inexpensiveness, easy data

collection, easy access, etc. However, it has also some drawbacks such as response bi-

ases, i.e. sample members are self-selected volunteers. Therefore, and unlike in the pilot

test, the participants in the main test are not restricted to university students only, but the

sample includes a broader audience. However, only the participants with B1 English level

or more can participate as all the explanations are communicated in English. Voluntarily

participants watch the simulation and then fill out a questionnaire (see Appendix D).

The representative sample is composed of 90 participants. They were randomly divided

into three groups (SF, AF, and AC). All the three groups watch exactly the same simula-

tion sequences but with different explanation techniques:

1. Group SF (30 participants) watches the simulation with normal explanations only

and static filtering;

2. Group AF (30 participants) watches the simulation with normal explanations only

and adaptive filtering;

3. Group AC (30 participants) watches the simulation with normal and contrastive ex-

planations and adaptive filtering.

After watching the simulation sequences assigned to the participants, they fill out the

questionnaire of the test. Apart from the first 8 questions of Participant Details, Function-

alities categories (refer to Section 7.3.1 for more details on the categories of the ques-

tions) and excluding the question Q18 about curiosity, the questions understudy in the

statistical analysis of this test are 12 questions. (refer to Appendix D for all the questions

of the questionnaire in the main test). The responses are distributed to a 5-points Likert

scale [132] (refer to Section 7.3 for more details on building the questionnaire). These

12 questions are analyzed and discussed in Section 9.3 (refer to Table 9.1 for the list of

these questions).
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The distribution of the participants is as follows: 20 of the participants were females, and

63 were males and 7 preferred not to disclose this type of information. They were aged

between 18 and 45 (mean of age xage = 26.44, and standard deviation of age sage = 7.348).

Regarding previous knowledge of the participants about UAVs, they have self-rated their

knowledge using 5-points Likert as (mean of UAV knowledge xUAV knowledge = 3.27, and

standard deviation of UAV knowledge sUAV knowledge = 1.1). Therefore, it can be noticed

that the randomly selected participants of the test are heterogeneous regarding their age,

sex, and knowledge of UAVs.

To validate the results, the significance of the responses of the participants has been

verified using statistical testing. To avoid biases in the data analysis and due to the dispute

between researchers and statisticians (see Section 5.4.2), the methodology adopted in

the main test is to conduct both the parametric test that is ANOVA and the non-parametric

test that is Kruskal-Wallis for the data analysis (see Section 5.4.2). The next section

explores in detail the statistical testing performed on the responses of the participants

and analyzes the revealed results.

Question

p − value

of

ANOVA

p − value

of KW

Q9: The number of drones (10 drones) in the last scenario

was not overwhelming (too much to follow)

.006 .012

Q10: Do you believe the only one time you watched the

simulation tool working was enough to understand it?

.001 .001

Q11: How well the simulation tool helped you to under-

stand how it works?

.000 .000

Q12: How do you rate your understanding of how the sim-

ulation tool works?

.001 .002

Q13: I am confident in the simulation tool. I feel that it works

well

.088 .096

Q14: The outputs of the simulation tool are very pre-

dictable

.039 .045

Q15: The simulation tool is very reliable. I can count on it to be

correct all the time

.108 .091

Q16: The simulation tool is efficient in that it works very quickly .760 .939

Q17: I am wary of the simulation tool .149 .134

Q19: From the explanation, I understand better how the

simulation tool works

.000 .000

Q20: The explanation of how the simulation tool works is satis-

fying

.053 .061

Q21: The explanation of how the simulation tool works in

the last sequence has sufficient details

.001 .002

Table 9.1: The p − value of each investigated question in the main test for both ANOVA

and Kruskal-Wallis test
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9.3/ MAIN TEST RESULTS

In terms of parametric tests, the homogeneity of variance of our data, which is also

needed for the use of parametric testing, is verified. On contrary, if we focus on non-

parametric tests such as Kruskal-Wallis test for the data analysis, we are also faced with

the well-known problem for the data analysis of the ordinal data. To use Kruskall-Wallis,

the data should not have too many ex-aequo, However, in our data, we have only five

different categories of data, and all the responses of the 90 participants are spread, dis-

tributed, and divided among these five categories, i.e. there are many ex-aequo.

This section is organized as follows. First, Section 9.3.1 verifies the initial significance

of the results. Second, Section 9.3.2 thoroughly analyzes and interprets the results to

evaluate the RHs. Finally, Section 9.4 outlines the main test limitations.

9.3.1/ INITIAL VERIFYING OF THE SIGNIFICANCE

For each of the 12 questions understudy, the null hypothesis is H0 : µS F = µAF = µAC

for ANOVA (respectively H0: medS F = medAF = medAC for Kruskal-Wallis). In other

words, the null hypothesis H0, for each question, assumes that the differences between

the means for ANOVA (respectively the medians for Kruskal-Wallis) are not significant.

The alternative hypothesis is H1: at least one mean is different for ANOVA (respectively

at least one median is different for Kruskal-Wallis).

Table 9.1 outlines the statistically significant results obtained by both ANOVA and Kruskal-

Wallis (KW) in our main test. As presented by this table, although the p−values of ANOVA

and Kruskal-Wallis are different, the results of significance are similar between these two

tests, i.e. when the null hypothesis is rejected by ANOVA, it is also rejected by Kruskal-

Wallis, and the same is true for acceptance. Since we got the same significance results

for both ANOVA and Kruskal-Wallis and due to the power of parametric tests, i.e. they give

better results to reject the null hypothesis, as according to Dr. Geoff Normann, parametric

tests are generally more robust than non-parametric tests [269], the rest of the data anal-

ysis is done with ANOVA. In particular, for the pair-wise comparison with ANOVA, this test

focuses on Tukey Honest Significant Difference (Tukey HSD) test because all the groups

have the same size (30 participants per group), and the homogeneity of variance is veri-

fied by the data. To this end, Table 9.2 outlines the comparison results obtained by Tukey

pair-wise ANOVA for all the questions that provided significant p − values in Table 9.1. In

Table 9.2, we recall that AF means adaptive filtering with normal explanations only, AC

means adaptive filtering with normal and contrastive explanations, and SF means static

filtering with normal explanations only.
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(I)
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(J)
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(I-J)
Mean

Difference

Std.
Error

(Sig.)
p − value Lower

Bounds

Upper

Bounds
AF SF .667 .074 -.05 1.38

AC SF .967* .005 .25 1.68

Q9: The number of drones (10 drones)

in the last sequence was not overwhelming

(too much to follow) AC AF .300

.301

.581 -.42 1.02

AF SF .600 .113 -.11 1.31

AC SF 1.133* .001 .43 1.84

Q10: Do you believe the only one time you

watched the simulation tool working

was enough to understand it? AC AF .533

.297

.177 -.17 1.24

AF SF .733* .014 .12 1.34

AC SF 1.200* .000 .59 1.81
Q11: How well the simulation tool helped

you to understand how it works?
AC AF .467

.256

.168 -.14 1.08

AF SF .533 .090 -.06 1.13

AC SF 1.000* .000 .40 1.60
Q12: How do you rate your understanding

of how the simulation tool works?
AC AF .467

.251

.156 -.13 1.06

AF SF .033 .985 -.44 .51

AC SF -.433 .084 -.91 .04
Q14: The outputs of the simulation tool

are very predictable
AC AF -.467

.200

.057 -.94 .01

AF SF .867* .002 .27 1.46

AC SF 1.367* .000 .77 1.96
Q19: From the explanation, I understand

better how the simulation tool works
AC AF .500

.250

.117 -.10 1.10

AF SF .967* .004 .26 1.67

AC SF 1.000* .003 .30 1.70

Q21: The explanation of how the simulation

tool works in the last sequence has

sufficient details AC AF .033

.295

.993 -.67 .74

Table 9.2: Tukey HSD pair-wise ANOVA comparisons of the groups in the main test
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9.3.2/ DATA ANALYSIS WITH PARAMETRIC TESTING

9.3.2.1/ INVESTIGATING THE UNDERSTANDABILITY

The questions Q9, Q10, Q11, Q12, Q19, Q20, and Q21 are considered. All the obtained

p − values of these questions, except for Q201, are significant, i.e. the p − values obtained

by both ANOVA and Kruskal-Wallis tests outlined in Table 9.1 indicate that we can reject

the null hypothesis and conclude that the three means of the three groups (in the case

of ANOVA) and the three medians of the three groups (in the case of Kruskal-Wallis)

are not all equal. For Q20, we cannot reject the null hypothesis, and therefore we can

conclude that the difference between the three means (in the case of ANOVA) and the

difference between the three medians (in the case of Kruskal-Wallis) are not statistically

significant. Therefore, Q20 is discarded from further analysis. All the significant p− values

(p − value ≤ .05) for the six remaining questions Q9, Q10, Q11, Q12, Q19, and Q21 are

in bold font in Table 9.2. They have significant comparable results discussed between

groups in pairs as follows:

• AF vs. SF pairwise comparison: The results (Table 9.2) reveal that the questions

Q11, Q19, Q21 (see box plots in figures 9.4, 9.6, and 9.7 to visualize the responses

of participants) have significant differences between the means of AF and SF (p −

value ≤ .05), i.e. we can reject the null hypothesis and conclude that the means of

AF and SF are not equal. For these three questions, the mean difference value is

positive for the favor of AF compared to SF.

However, for the other three questions Q9, Q10, Q12 (see box plots in figures 9.2,

9.3, and 9.5 to visualize the responses of participants), the differences between

the means of AF and SF are not statistically significant in Table 9.2 (p − value >

.05). Therefore, we cannot conclude that for questions Q9, Q10, Q12, AF is more

understandable than SF.

For AF vs. SF pairwise comparison, even though the participants agree that AF

is more understandable than SF for Q11, Q19, and Q21, we cannot firmly accept

the research hypothesis RH3-1 (adaptive filtering increases the understandability

compared to static filtering) for all the six questions.

In the pilot test, it was proven that filtered explanations are more understandable

than detailed ones. However, adapting the level of parsimony of explanations in

terms of only the explanation communication, i.e. using adaptive filtering instead

of static filtering, did not provide deceive added value in increasing the understand-

ability. This result may be explained by the fact that for abnormal situations, the

participants did not understand well the situation. Therefore, the hypothesized solu-

1see Appendix E for the box plots of the insignificant results of this question.
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Figure 9.2: Main test: Q9 (xS F = 1.67, xAF = 2.33, xAC = 2.63, medians are represented in the
figure)
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Figure 9.3: Main test: Q10 (xS F = 2.87, xAF = 3.47, xAC = 4.00, medians are represented in the
figure)

tion in the explanation formulation in HAExA was to handle the abnormal situations

using contrastive explanations in terms of explanation generation (the case of AC),

i.e. an explanation formulation as a combination of explanation generation and

communication.

• AC vs. SF pairwise comparison: The results (Table 9.2) show that all the results
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Figure 9.4: Main test: Q11 (xS F = 3.13, xAF = 3.87, xAC = 4.33, medians are represented in the
figure)

Group of the participants

ACAFSF

H
o

w
 d

o
 y

o
u

 r
a
te

 y
o

u
r 

u
n

d
e
rs

ta
n

d
in

g
 o

f 
h

o
w

 
th

e
 s

im
u

la
ti

o
n

 t
o

o
l 
w

o
rk

s
?

5

4

3

2

1

81

Figure 9.5: Main test: Q12 (xS F = 3.23, xAF = 3.77, xAC = 4.23, medians are represented in the
figure)

for the questions understudy Q9, Q10, Q11, Q12, Q19, and Q21 (refer to box plots

in figures 9.2, 9.3, 9.4, 9.5, 9.6, and 9.7 to visualize the responses of participants)

have significant differences between the means of AC and SF (p − value ≤ .05), i.e.

we can reject the null hypothesis H0 and conclude that the means of AC and SF

are not equal. For all these six questions, the mean differences are positive in the
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Figure 9.6: Main test: Q19 (xS F = 2.83, xAF = 3.70, xAC = 4.20, medians are represented in the
figure)
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Figure 9.7: Main test: Q21 (xS F = 2.57, xAF = 3.53, xAC = 3.57, medians are represented in the
figure)

favor of AC compared to SF and the confidence interval of the means difference

of these questions at 95% does not contain zero, i.e. the means differences are

always positive in favor of AC.

We can conclude that the participants who received both normal and contrastive ex-

planations with adaptive filtering (AC) agree more that this explanation formulation
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is more understandable than the one that includes only normal explanations with

static filtering (SF ). In other words, the results show that empowering HAExA with

contrastive explanations in the generation phase followed by updating them in the

communication phase and adaptive filtering in the communication phase provides

the necessary concise information, i.e. parsimonious explanations, for the human to

better understand the situation. This means the research hypothesis RH3-2 (page

70) is accepted.

• AC vs. AF pairwise comparison: For all the questions understudy Q9, Q10, Q11,

Q12, Q19, and Q21, with no exception, the results are not significant (p − value >

0.05) when comparing AC with AF, i.e. we cannot reject the null hypothesis H0

saying that there is a difference between these two groups. This means the par-

ticipants did not agree that the contrastive explanation provided any added value

in terms of understandability compared to the normal explanation when both are

used with adaptive filtering. Therefore, the research hypothesis RH3-3 (page 70) is

rejected.

It is worth mentioning here, that even though the results of AC are not significantly

better than those of AF, this does not mean that the results of AF are significantly

better than those of AC. It just means that we cannot confirm if there is a difference

between the two groups, and further research investigations with larger sample

sizes could produce better results. This result opens the door for the trade-off that

emerges when using contrastive explanations where the benefit could be situational

in abnormal situations. A new research hypothesis could be tested in the future:

The more the abnormal situations, the more the contrastivity in generating the ex-

planation is needed. To provide a parsimonious explanation, it is vital to pinpoint

the unnecessary information, and for that, considering the parts of a contrastive

explanation to be necessary or not is a future challenge.

The results in general show that AC is firmly better than SF, while AF being better than

SF is questionable. However, the direct comparison between AC and AF shows no sig-

nificant difference between them to say which is better. Even though AC is not decisively

better than AF in a pairwise comparison, its results when compared to SF are better

and more decisive than those of AF when compared with SF. This means that AC can

be used safely as a good combination of explanation generation (normal and contrastive

explanations) and explanation communication (adaptive filtering), as it will either perform

better than AF, namely in abnormal situations or at least similar in general. Therefore,

our recommendations are as follows:

• Adaptive filtering with only normal explanations, i.e. without contrastive explana-

tions, is not necessarily better than static filtering with only normal explanations in
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all situations. This means that adapting only the communication phase of the ex-

planation is not enough to increase the understandability of humans of the explana-

tions, as there is a need for adapting also the generation phase of the explanation.

In other words, going one step forward by relying on adaptive filtering, i.e. achieving

only simplicity, is not enough to provide parsimonious explanations.

• Adaptive filtering empowered by normal and contrastive explanations, i.e. parsi-

mony of explanations, is better than static filtering with only normal explanations in

increasing the understandability of humans of the explanations.

• Even though it is situational to consider that contrastive explanations are better than

normal explanations, they can be used in all cases with no fear of overwhelming the

human.

• Having only a context-aware generation of explanations based on the beliefs and

the intentions of the remote agents is not enough. There is a need for updating the

raw explanations by the assistant agent that has a global view of the context. In

other words, the adaptation in terms of the generation of explanations should not

be only in the generation phase, instead, it should be a combined effort in both the

generation and communication phases.

• The benefits of adopting an agent-based approach are twofold. First, it helps in re-

alizing the explanation formulation process, as it organizes the various interactions

between the entities in the system. Second, ABS provides a test-bed environment

to conduct human studies and enriches the XAI domain by allowing for more em-

pirical and results-oriented research that facilitates the explanation reception by the

human. Additionally, ABS represents a good means to visualize the behavior of

the remote robots, represented as agents, that are not co-located with the human,

hence better explanation reception.

Therefore, the results above confirm our proposal that the best explanation formulation

integrates the phases of explanation generation and communication in a context-aware

and adaptive combination thereby striking a balance between simplicity and adequacy.

Additionally ABS has been used in this test as a good tool to facilitate the last phase of

explanation reception. However, future work should be done to integrate this phase in the

proposal.

9.3.2.2/ INVESTIGATING THE TRUST

The questions Q13, Q14, Q15, Q16, and Q17 are considered regarding RH4 (page 70)

that investigates the trust of the participants regarding the explanation. The obtained
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p − values of all the questions Q13, Q15, Q16, and Q17 are not statistically significant

(see Table 9.1). The only question with a significant p − value is question Q14. However,

Q14 has no significant value in the pairwise comparison between the groups (see Table

9.2), so it is discarded2. Therefore, we cannot reject the null hypothesis H0 and we reject

RH4.

This result confirms previous results found in a similar context in the literature [185], and

a related work when building human users’ mental models of how an agent works [162].

The literature of virtual agents and social agents and robots may help in the direction

of increasing the trust. Moreover, more work should be done to promote trust as the

participants do not yet trust the remote agents even with explanations.

9.4/ MAIN TEST LIMITATIONS

As stated before, participants involved in this test watched the simulation online and filled

out the questionnaire online. Therefore, some limitations can be considered:

• Sampling bias: Although we have tried to broadcast the requests of participation

of this test as much as possible on the Internet, some voluntary participants are

close to our networks. Certain categories or age groups remain difficult to reach via

the Internet, and therefore, the participants could not represent the entire heteroge-

neous population.

• Lack of contact: Because the participants filled out their questionnaires online,

they may have not understood some questions and we cannot guarantee that all

the participants have well understood all the questions although precision and con-

ciseness were considered when building the questionnaire.

• Different technology infrastructure: Participants could use different hardware

such as smartphones, laptops, desktops, etc. to participate in the test. This means

having different properties to fill out the questionnaire, with different web browsers

on different operating systems, various Internet speed, etc. Additionally, the par-

ticipants could not have the same conditions when conducting the test, i.e. same

place, time, quality of presenting medium, etc. This could affect the reception of the

explanations by the participants.

2see Appendix E for the box plots of the insignificant results of the questions Q13, Q14, Q15, Q16, and
Q17.
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9.5/ CONCLUSION

This chapter discussed the main test conducted to evaluate part of the contributions

related to RQ2 and RQ3 and in particular RH3 and RH4 (page 70). The experiment

scenario in the main test is implemented using the JS-son agent-oriented programming

library where all the agents were represented as BDI agents. The main test investigates

the role of the explanation formulation process that allows providing parsimonious expla-

nations by remote agents to the human. Three different cases were investigated where

the participants in the test have been organized into three groups: (i) Group SF watches

the simulation with normal explanations only and static filtering; (ii) Group AF watches the

simulation with normal explanations only and adaptive filtering; (iii) Group AC watches

the simulation with normal and contrastive explanations and adaptive filtering.

The responses of the participants have been statistically analyzed, validated in terms of

significance, and presented based on Kruskal-Wallis non-parametric tests and ANOVA

parametric tests.

The test investigates two points: (i) Understandability: It is proved that there is a need

to have a combination of the phases of the explanation generation and communication

to formulate the most useful explanation for the human. Additionally, this formulation is

context-aware, i.e. specific levels of these two phases are used according to the context.

Comparing several combinations of explanation formulation, it is proven that the best one

includes using adaptive filtering with both normal and contrastive explanations, i.e. RH3-1

and RH3-3 are rejected while RH3-2 is accepted. (ii) Trust: no combination managed to

increase significantly the trust of the human, i.e. RH4 is rejected.

In summary, and as a response to RQ2, to achieve the parsimony of explanations, the

explanation formulation process must be context-aware and adaptive to integrate both

the generation and communication phases of explanations. As a response to RQ3, the

results obtained by HAExA suggest that the benefits of adopting an agent-based architec-

ture, and in particular a cognitive BDI architecture, are twofold. First, it helps in realizing

the explanation formulation process, as it organizes the various interactions between the

entities in the system and allows for an adaptive and context-aware response based on

the changes in the beliefs and desires of the agents, i.e. a similar way to how humans

cognitively handle the explanations. Second, ABS provides a test-bed environment to

conduct human studies that facilitate the reception of the explanations by the human and

enriches the XAI domain by allowing for more empirical and results-oriented research.

The next chapter concludes the thesis and highlights future perspectives.
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GENERAL CONCLUSION

10.1/ SUMMARY OF THE PH.D. THESIS

In the future Artificial Intelligence (AI) systems, it is vital to guarantee a smooth human-

agent interaction, as it is not straightforward for humans to understand the agent’s state

of mind, and explainability is an indispensable ingredient for such interaction. Accord-

ingly, the research domain of Explainable Artificial Intelligence (XAI) is gaining increased

attention from researchers of various disciplines.

When providing explanations to humans, the aim is to imitate how humans generate

and communicate explanations in their everyday life. Everyday explanations are the

explanations of why particular events, behaviors, decisions, etc. happened. Investi-

gating everyday explanations leads us to discuss the parsimony of explanations that

could help in providing the necessary information while reducing the human cognitive

load to avoid overwhelming the human with useless information, i.e. to achieve the

parsimony of explanations, there is a trade-off between the two features of an expla-

nation, namely simplicity and adequacy. In Chapter 3, we have outlined how works

in the literature have started to respond to these two features. Some works tackled

the simplicity of explanations [121, 122, 120, 160], and others investigated the ade-

quacy [145, 60, 202, 241, 302, 214, 56, 268], while few works tried to handle the trade-off

between simplicity and adequacy [162]. Thus, we have identified the related open re-

search issues to be tackled.

The problem of understanding the behavior of robots is more accentuated in the case

of remote robots since —as confirmed by recent studies in the literature [124, 23]— re-

mote robots, e.g. Unmanned Aerial Vehicles (UAVs), tend to instill less trust than robots

that are co-located. In this context, an obvious research frontier for the autonomous

agents and Multi-agent Systems (MAS) community is the design of explainable intelligent

agents [207]. This thesis is a part of the academic project UrbanFly and one of the goals

of this project is to propose novel models for simulating UAVs in urban environments and

143
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smart cities. In this context, UAVs represent the remote robots explaining their environ-

ment, behavior, and actions to the human. Accordingly, in Chapter 4, we have conducted

a Systematic Literature Review (SLR) of Agent-based Simulation (ABS) for UAVs.

RQ3
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Figure 10.1: Research methodology of the thesis (version-2)

The research methodology conducted in the thesis is five-fold (Figure 10.1):

(i) Identify open research issues after analyzing the related work.

(ii) Define the Research Questions (RQs) based on the identified research issues.

(iii) Structure the RQs in Research Hypotheses (RHs) that can be statistically analyzed.

(iv) Propose the architecture, the model, and the process to answer the RQs.

(v) Conduct a specific experimental methodology to evaluate the proposals by statisti-

cally investigating the RHs according to the recommendations in the XAI domain.

Chapter 6 has explored in detail the contributions of the thesis. We have proposed an

agent-based explainability architecture, named HAExA, to facilitate the human-agent ex-
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plainability considering that agents represent remote robots. The main goal of the con-

tributions is to provide parsimonious explanations to the human that strike a balance

between adequacy and simplicity. A model based on Belief–Desire–Intention (BDI) has

been proposed in HAExA to represent all agents. In principle, HAExA includes two types

of agents: (i) The remote agents as part of the environment. (ii) The assistant agent

whose role is to be an interface between the remote agents and the human.

HAExA investigates the three phases of providing an explanation from agents to the hu-

man: generation, communication, and reception (see Section 2.7). We argue that a

well-formed adaptive and context-aware combination of these phases leads to formu-

lating a parsimonious explanation. This process seeks to maximize the explanation’s

adequacy concerning an AI system while minimizing its impact on the human’s cognitive

load. To achieve this, the proposed architecture relies on an explanation formulation pro-

cess. Section 6.5 proposed and thoroughly explored the explanation formulation process.

This section was divided into two main subsections. First, Section 6.5.1 covered the gen-

erating of raw explanations by the remote agents. They have two main types: Normal in

relatively normal situations, and contrastive in abnormal ones. These remote agents are

BDI agents, whose beliefs and intentions are used to generate raw explanations. Section

6.5.2 tackled the communication phase of providing an explanation. The assistant agent

has a global view of the context thanks to the raw explanations and messages it receives

from the remote agents. Accordingly, it adaptively updates the raw explanations based

on the changes in its beliefs and intentions, i.e. the assistant agent is context-aware. It

mainly downgrades or upgrades the raw explanations according to a defined hierarchy of

explanations that considers the trade-off between adequacy and simplicity. Additionally,

it filters the updated explanations respecting thresholds of the human cognitive load.

The human understandability of AI is subjective, and this emphasizes the importance of

empirical human studies where the opinions of humans on the usefulness of explanations

are collected and analyzed. In this thesis, we design and conduct empirical human-agent

interaction studies with the help of human participants to evaluate the proposed architec-

ture and to investigate the RHs. These studies rely on well-established XAI metrics and

questionnaires (see Section 2.10) in the literature.The studies are based on an application

of package delivery using civilian UAVs, as an example of remote robots represented as

agents, and implemented using ABS tools. Chapter 7 presented this application with the

experiment scenario. We have conducted two tests based on the experiment scenario:

The pilot test (Chapter 8) and the main test (Chapter 9).

Chapter 8 has discussed the pilot test conducted to evaluate part of the contributions

related to RQ1 (see Section 5.2.1) and in particular RH1 and RH2 (page 70). The ex-

periment scenario in the pilot test was implemented using Repast Simphony [68] where

the agents are all reactive agents. The pilot test investigates the role of filtering of expla-
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nations provided by remote agents to the human. The responses of the participants are

statistically analyzed, validated in terms of significance, and presented based on Mann-

Whitney U non-parametric tests. The results have shown that the explanation increases

the ability of human users to understand the simulation. but too many details overwhelm

them; then, the filtering of explanations is preferable. Mainly, we aimed with the pilot test

to reproduce the results of the literature regarding the benefits of explainability on one

hand and the filtering of explanations on the other hand in the domain of remote robots

(e.g. UAVs) represented as agents.

In chapter 9, the main test evaluated the part of the contributions related to RQ2 (see Sec-

tion 5.2.2) and RQ3 (see Section 5.2.3) and in particular RH3 and RH4 (page 70). The

main test investigates the role of the explanation formulation process that allows provid-

ing parsimonious explanations by remote agents to the human. In the main test, we have

conducted both a Kruskal-Wallis non-parametric test and the ANOVA parametric one to

evaluate, analyze, and validate the results. The test investigates two points: (i) Under-

standability: It is proved that there is a need to have a combination of the phases of the

explanation generation and communication to formulate the most useful explanation for

the human. Additionally, this formulation is context-aware, i.e. specific levels of these two

phases are used according to the context. Comparing several combinations of explana-

tion formulation, it is proven that the best one includes using adaptive filtering with both

normal and contrastive explanations, i.e. RH3-1 and RH3-3 are rejected while RH3-2 is

accepted. (ii) Trust: no combination managed to increase significantly the trust of the

human, i.e. RH4 is rejected.

In summary, the thesis responses to the posed RQs as follows:

• RQ1. Does explainability increase the humans’ understandability of the remote

robots represented as agents? On the one hand, and regarding understandability,

explainability increases the understandability of the humans in the domain of remote

robots (e.g. UAVs) represented as agents. However, with overwhelming situations,

the filtering of explanations that provides less, concise, and synthetic explanations is

needed to adhere to the human cognitive load. On the other hand, it is not decisive

to confirm the same findings regarding the trust.

• RQ2. How to strike a balance between simplicity and adequacy? The parsimony

of explanations is effective to handle the trade-off between simplicity and adequacy.

To achieve the parsimony of explanations, the explanation formulation process must

be context-aware and adaptive to integrate both the generation and communication

phases of explanations. The results have revealed that adapting only the commu-

nication phase of the explanation, via the filtering of explanations, is not enough

to increase the understandability, as there is a need for adapting also the genera-

tion phase of the explanation. Moreover, having only a context-aware generation
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of explanations based on the beliefs and the intentions of the remote agents is not

enough. There is a need for updating the raw explanations by the assistant agent

that has a global view of the context. In other words, the adaptation in terms of

the generation of explanations should not be only in the generation phase, instead,

it should be a combined effort in both the generation and communication phases.

In summary and for the contributions to give the full potential, both the combined

generation and updating of normal and contrastive explanations on the one hand

and the adaptive filtering of explanations on the other hand are needed.

• RQ3. Are the cognitive architecture and the BDI model good candidates for human-

agent explainability? The results obtained by HAExA suggest that the benefits of

adopting an agent-based architecture, and in particular a cognitive BDI architec-

ture, are twofold. First, it helps in realizing the explanation formulation process, as it

organizes the various interactions between the entities in the system and allows for

an adaptive and context-aware response based on the changes in the beliefs and

intentions of the agents, i.e. a similar way to how humans cognitively handle the ex-

planations. Second, ABS offers a test-bed environment to conduct human studies

that facilitate the explanations reception by the human and enriches the XAI domain

by allowing for more empirical and results-oriented research. Additionally, ABS rep-

resents a good means to visualize the behavior of the remote robots, represented

as agents, that are not co-located with the human.

The rest of this chapter explores our vision of future aerial transport systems in smart

cities. Then, it discusses the derived research directions in terms of explainability and the

domain of UAVs.

10.2/ PERSPECTIVES

This section outlines our future perspectives related to the thesis and is organized as

follows. Section 10.2.1 conveys our vision of the future aerial transport systems in smart

cities where explainability influences significantly the services offered to citizens. Section

10.2.2 highlights the research directions in the domain of explainability based on our

vision of the future smart cities, while Section 10.2.3 highlights the directions related to

UAVs.

10.2.1/ FUTURE AERIAL TRANSPORT SYSTEMS IN SMART CITIES

With the rapid increase of the world’s urban population, the infrastructure of the constantly

expanding metropolitan areas is undergoing immense pressure. To meet the growing
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demands of sustainable urban environments and improve the quality of life for citizens,

municipalities will increasingly rely on novel transport solutions. In particular, UAVs are

expected to have a crucial role in the future smart cities thanks to their interesting features

such as autonomy, flexibility, mobility, adaptive altitude, and small dimensions. However,

densely populated megalopolises of the future are administrated by several municipals,

governmental and civil society actors, where vivid economic activities involving a multi-

tude of individual stakeholders take place. In such megalopolises, the use of agents for

UAVs is gaining more interest especially in complex application scenarios where coor-

dination and cooperation are necessary. This section sketches a visionary view of the

UAVs’ role in the transport domain of future smart cities.

While other work [203, 195] considered the challenges of deploying UAVs in smart cities,

they mainly mentioned the existing research with no focus on the role of agents. Conse-

quently, the vision exposed in this section focuses on the application of multiagent con-

cepts to smart cities, and specifically to UAVs in these cities. Several research directions

related to multiagent systems in this context are proposed.

Today, the need for transport of people and goods is increasing but so is traffic conges-

tion, air pollution, road accidents, and climate change. Some of the solutions for these

problems come in a form of ride-sharing [12, 257]. However, in the future, cities will need

to rely on “high-tech” mobility solutions including the Internet of Things (IoT) and UAV

technologies. Thanks to their autonomy, flexibility, mobility, low-cost maintenance, and

coverage, UAVs are a useful solution for many of the transport challenges. Moreover,

the need for explainability is evident in such solutions considering that the main clients

of such solutions are humans. The explanations are provided through specific private

means (7) or public ones (8). Below are listed our key visions of the future of transport

with UAVs in smart cities where explainability plays a vital role (refer to our work [208] for

more details):

• In-the-Air Services: Recent applications of UAVs concern the fast delivery of

goods, such as commercial products ((1) in Figure 10.2), medical products or first

aid kit (2), or food (3). In the future, other entities may be carried by UAVs, such as

passengers (4) and big/heavy containers (5). These entities could be carried by a

single UAV, or by a swarm of UAVs (6).

• Smart transport and Traffic Management: Another vital contribution of UAVs

is smart transport, which will likely be another key area of development for any

future smart city. Every city can rely on UAVs for improving urban transport and

creating a sustainable ecosystem. For example, a flying UAV can explain and guide

pedestrians on the ground via smart devices (7) or explanation panels (8), or guide

other UAVs in the air through Vehicular Ad-hoc Networks (10). The latter are known

as smart traffic management UAVs that control the flow of people and goods in the
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Figure 10.2: UAVs in a future smart city

sky. Air traffic management will divide the sky into free-flying areas and corridors in

which all the UAVs will fly in the same direction. For example, heavy lifting (5) and

passenger transport (4) can occupy the lowest corridor.

• Air and Climate Management: As cities inevitably become busier, the quality of

the air, climate and, noise levels created by city systems can be monitored (11)

and citizens can be informed through explanations (8 or 9). Municipalities can act

with real-time actions to better manage the comfort and health of the citizens. To

make the transport infrastructure of the future more sustainable, zero-emission and

low-noise electric power is the solution. Using electric vehicles like UAVs tends to

offer a silent, clean, emission-free, and resource-efficient city minimizing the risks

affecting the health and safety of citizens. Furthermore, UAVs can be equipped with

sensors. Data gathered from these sensors can be used by stakeholders to build a

map of the environment state, such as air pollution and noise. Yet, a huge number

of flying UAVs in the sky raise some environmental issues such as the recycling of

out-of-service UAVs and the supply of clean and renewable energy to charge them.

• In-the-Air Infrastructures: Connecting objects within the smart cities via wireless

technologies is already a reality (e.g. WiFi, 4G/5G, satellite, etc.). UAVs can of-

fer a novel communication infrastructure by providing communication nodes where

static/conventional nodes cannot be present (12). Because of the UAV mobility, this

infrastructure may be deployed dynamically, even when the ground communication

infrastructure cannot be used, e.g. in case of a natural disaster (see below). An-
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other example is when the population density increases at a specific location for

a limited time, e.g. at a football stadium. In this case, UAVs can offer an efficient

networking service to the spectators. Energy consumption of UAVs is an issue:

the average flying time for civil multirotor UAVs is around 20 minutes [191]. Con-

sequently, it is mandatory to supply energy charging services to the UAVs on the

buildings (13). This service may be also provided on-the-fly by other UAVs with

eco-friendly solar power systems (14). Other types of infrastructures may appear in

future smart cities, such as aerial parking areas (15) in which the UAVs may park

and/or charge their batteries.

• Crowd Management: Safety and security are major concerns for every smart city

and they will be even more critical in future megalopolises. Already today, UAVs

are playing a huge role in crowd management [8, 259, 319], and could definitely

improve this field in the future. For example, police and municipal agencies can use

UAVs to keep an eye on the crowd during any event (11). This will result in safer

cities to live in as well but will raise privacy issues.

• Natural Disaster Control and Emergency Response: In the case of disasters

in the megalopolis, UAVs can be used to minimize the response time and losses.

Floods, fires, and earthquakes are some of the best examples in which authorities

can take precautionary measures by monitoring (11) and deploying medical teams

(2) or by providing communication infrastructure (12). UAVs can here analyze the

entire situation and help with a quicker response than emergency calls.

As shown in this section, there is a confirmed tendency towards the development of in-

creasingly autonomous UAV systems. This evolution would minimize the human inter-

vention by relieving the human operator from the burden of continuously monitoring the

UAVs. Nevertheless, in unpredictable situations, the UAV behavior might not conform

to the expectations of the human operator. For instance, in a product delivery scenario,

an autonomous UAV may choose to deviate from its expected path because of an un-

foreseen event. Enhancing the UAVs with explaining capabilities would allow the human

operator to understand the reasons behind UAV behavior and raises its trust in the au-

tonomous UAV system. Furthermore, developing explainable UAVs would have a very

positive impact on human-machine teaming. This thesis has tackled the explainability in

the domain of goal-driven systems such as UAVs. However, as this is in its early stages,

some challenges or research directions may arise and the next section discusses the

most related ones to the thesis.
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10.2.2/ RESEARCH DIRECTIONS: EXPLAINABILITY

The following list provides a synthesis of the paramount research directions related to the

domain of XAI.

10.2.2.1/ USER-AWARE EXPLAINABLE ARTIFICIAL INTELLIGENCE

Humans have different cognitive capabilities, and hence different cognitive loads to han-

dle the explanations. Accordingly, HAExA can be extended to be not only context-aware

but also user-aware. This allows for generating even more adaptive explanations and in

particular, this makes adaptive filtering more personalized to the human user by calcu-

lating personalized human cognitive loads. Measuring the human cognitive load and its

effects on the understandability of humans is a hot topic now with very recent research

(e.g. [80]).

A user-aware XAI system may facilitate several benefits. Firstly, the involvement of the

human could increase, and hence the direction of interactive explanations could be also

considered, i.e. the feedback provided by the human could be integrated into the pro-

posed architecture where the human becomes a human-in-the-loop. Verstaevel et al.

[295] have presented a MAS able to dynamically learn and reuse contexts from demon-

strations performed by a human tutor. This knowledge could later be used to formulate

explanations. Creating a model of the user as a part of the explanation reception phase

should be investigated. For this point, both the explanations generation and commu-

nication sub-processes will be affected, i.e. the proposed architecture will be not only

context-aware but also user-aware. The direction of interactive explanations could be

also explored, especially that there are almost no agent architectures among the most

popular ABS frameworks enabling to easily model human actors [39]. Secondly, the trust

in XAI systems may increase, as we have seen other works (e.g. [185]) that achieving the

trust of humans in XAI systems remains a challenge and some very recent works have

started to focus on enhancing human trust by explaining robot behavior in their work [83].

For that, more experiments should be conducted, e.g. using virtual and social agents.

Thirdly, a metric or measure of explanation human cognitive load that is related to the

explanation reception could be derived from such user-aware XAI systems. This can be

investigated by empirical evidence or by designing a mathematical approximation akin to

the law of diminishing marginal utility.

Some works have started to tackle the challenge of building a model that considers the

preferences of the human, e.g. providing explanations depending on the user age [141],

or personalized recommendations based on the user preferences [235]. Previous works

considered user knowledge (e.g. [200]). They classified a user as a beginner or ex-

pert and used this to provide explanations that better suit the preferences of the human.
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However, more elaborate user modeling is required for good personalized explanations.

Abdulrahman et al. [3] also started to tackle the challenge of user-aware models in their

very recent works [3, 2]. However, the proposals and the evaluations are still in their first

steps, and relatively little research has been conducted regarding personalized explana-

tions [16].

In such a context, extending HAExA with a system that facilitates the communication

between humans, agents, and robots is interesting. The Human-Agent-Robot-Machine-

Sensor (HARMS) model for interactions among heterogeneous actors [189] is a good

candidate for such a task. HARMS connects actors such that all of them are indistin-

guishable in terms of which type of actor (e.g. robot, software agent, or even human)

sends a message [190]. HARMS also includes other actors like machines and sensors

that could be necessary and vital to consider when moving from the simulated environ-

ment to the real world [147, 146, 201].

10.2.2.2/ VERIFYING AND VALIDATING THE EXPLAINABLE ARTIFICIAL INTELLIGENCE

SYSTEMS

According to Torens et al. [286], the more complex a software algorithm gets, the more

difficult it becomes to test. Furthermore, functional requirements are only one aspect of

a system. Beyond the pure verification of a requirement lies the benchmark of the imple-

mented solution. The resulting outcome may be determined by a test of the requirement,

but the specific path to the solution can have different levels of quality. Therefore, addi-

tional tests have to verify that the specified explainability boundaries, as well as additional

constraints, are met by this algorithm. Due to the lack of benchmarks in the evaluation

of the domain of XAI, researchers are forced to rely on self-built mechanisms to validate

their works (e.g. [288, 185, 166]). To be able to assess highly automated functions and to

be able to assure high-quality software systems, it is necessary to implement a scoring

system or a benchmark to evaluate the autonomy using non-functional requirements.

It is important to notice that benchmarks are problem-specific, and not implementation-

specific. This enables developers not only to test an explainability algorithm automatically,

without a manual review from an expert but also to evaluate algorithms and compare them

with different implementations and solution approaches. The development of such auto-

matic tests and benchmarks are gaining more interest for additional challenges, such

as using natural language processing [177, 188], or ontologies to generate the explana-

tions [213, 133, 69, 27, 310]. However, most of these efforts are focusing on data-driven

XAI and not goal-driven XAI [246].

The growing pressure to innovate and the demand for shorter development cycles require

changes in the development methodology. As a result, there is a shift in the demands of
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testbed systems. This desire for shorter development times stands as opposed to the

growing complexity required for developing increasingly automated and autonomous sys-

tems [227]. Enabling early validation of such system designs requires the simulation of

components. This requires the development of an adapted simulation environment, pos-

sibly real-time or mixed reality simulator, composed of a collection of reusable modules

combining real and virtual components (also called XiL: X-in-the-Loop, where X meaning

alternatively Model/Software/Hardware and Human). In general, researchers think that

the best experimentation includes 4 consecutive steps: Simulation, mixed reality, con-

trolled environment, and open world.

Some works are appearing in the direction of providing benchmarking assistant tools

for XAI. Hoffman et al. [132] have outlined in detail a bunch of metrics to evaluate XAI

systems. Additionally, the National Institute of Standards and Technology in the USA has

started a very recent endeavor 1 to establish the efforts of researchers in the domain of

XAI to forge a new standard about explainability [232].

10.2.3/ RESEARCH DIRECTIONS: ARTIFICIAL INTELLIGENCE IN THE DOMAIN

OF UNMANNED AERIAL VEHICLES

The following list outlines a synthesis of the major challenges and research directions

related to UAVs for AI in general and agents in particular.

10.2.3.1/ INTEGRATING UNMANNED AERIAL VEHICLES INTO SMART CITIES

A smart city integrates heterogeneous connected objects to automate or simplify the au-

tonomous and transparent accomplishment of various daily tasks, both personal and pro-

fessional [106]. A smart city is an urban area that uses different types of electronic data

collection sensors to supply information that is used to manage assets and resources

efficiently. This includes data collected from citizens, devices, and assets that are pro-

cessed and analyzed to monitor and manage traffic and transportation systems, power

plants, water supply networks, waste management, law enforcement, information sys-

tems, schools, libraries, hospitals, and other community services [193]. The smart city

concept integrates Information and Communication Technology (ICT) and various phys-

ical devices connected to the network to optimize the efficiency of city operations and

services and connect to citizens [231]. Guastella et al. [112] have introduced a MAS to

estimate missing information in smart environments. The goal of their work is to give,

anytime and everywhere, accurate information where ad hoc sensors are missing. Ac-

cording to Farhan et al. [87], several opportunities for UAVs uses to support a smart city

1Public comment period: August 17, 2020 to October 15, 2020.
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exist. These opportunities will be very beneficial to any smart city that would utilize UAVs

for their economic growth and development.

One of the new trends in civilian UAV applications in smart cities is using UAVs in geospa-

tial surveying. The main design of a smart city requires the optimization of data flows

provided by wireless sensor networks as sensors are the main component of any au-

tonomous system such as those involving UAVs. This combination of technologies cre-

ates a wide range of applications and opportunities such as fire management in open

areas where the use of UAVs and micro-UAVs is very beneficial. The potentials vary from

a wide range of available solutions and innovations that are evolving quickly. Due to the

reliability of most UAV designs, integration of such technologies make it possible to in-

stall wireless sensors on-board to make the UAVs usable in geospatial, land surveying,

and Geographic Information System (GIS) applications in smart cities in addition to being

helpful for environmental analysis. These opportunities may lead to cost reduction and

cutting down on the number of manpower hours involved in such activities.

The integration of UAV solutions with machine-to-machine, Radio-frequency identifica-

tion (RFID) and live video streaming expanded the role of UAVs in public safety zones.

This new trend will move the urban management personnel from being reactive to proac-

tive. Moreover, the inclusion of UAVs in surveillance activities will reduce expenses and

increase the efficiency of the tasks. The efficiency of safety and security systems in a

city has become a genuine concern not only for smart cities but also for any type of

urban community. The involvement of UAVs in smart policing activities has lately been

supported by the USA Congress and top-level federal agencies such as the Bureau of

Justice Assistance, and the USA Department of Justice.

UAVs can act as a third-party technology to coordinate information from various systems

within a smart city. Since they are controlled at the ground station once they receive

information the ground system can send commands to UAVs to direct the information to

another system or UAVs.

In addition to integrating UAVs into smart cities, integrating them into large, open, and

isolated space is another research direction. Applications in agriculture, environment

preservation, and sustainable energy (e.g. solar farms monitoring, electric transport,

etc.) are countless.

10.2.3.2/ PROPOSING AND EVALUATING THE REGULATIONS OF UNMANNED AERIAL

VEHICLES

Regulations about introducing UAVs, including air traffic regulations, landing/taking off

regulations, etc. are not yet fully developed, and there exist serious safety and privacy

problems mostly due to the lack of verification/validation frameworks for regulations.
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Globally, regulations regarding UAVs are still immature. So far, at the multilateral level,

the International Civil Aviation Organization (ICAO) is the lead platform for framing regu-

lations for UAV operations. Several regulations were passed to regulate the use of UAVs;

however, no proposals were made from a technological point of view. Moreover, legisla-

tion varies from region to region and between countries [57].

Recognizing the enormous potential growth of UAVs, the European Aviation Safety

Agency (EASA) has been tasked by the European Commission to frame regulations for

UAV operations. In 2014, the Commission published “A new era for aviation—Opening

the aviation market to the civilian use of remotely piloted aircraft systems safely and sus-

tainably” [291] but this does not include the UAVs. The EASA published a comprehensive

proposal in May 2017 covering the technical and operational aspects of operating UAV.

According to the proposal, all UAVs above 250 g need to be registered. The proposal

put the alignment of different national UAV legislations as one of Horizon 2020 goals.

However, these goals have been postponed until 2050. Moreover, different European

countries have different regulations – for instance, one can fly UAVs commercially in

Switzerland if line-of-sight can be ensured, within certain altitude limitations, and not fly-

ing near protected areas such as airports. On the other hand, France has more restrictive

regulations in place where it is mandatory that any UAV operation over a city needs to be

authorized by aviation authorities. In Belgium, Brussels is planning to create “Uspace” in

2019, a European controlled space for UAVs flying above 150 m in height and weighing

less than 150 kg.

In India, some work examines civilian UAV operations and analyses the major policy gaps

in the country’s evolving policy framework. It argues that ad hoc measures taken by agen-

cies have been ineffective, whether in addressing issues of quality control, or response

mechanisms, questions of privacy and trespass, air traffic, and legal liability [237].

USA has by far the most mature civilian UAV regulations in place. The New Small UAS

Rule (107) of the Federal Aviation Administration (FAA) that was issued in August 2016

regulates most of the UAV operations, especially those related to commercial or civilian

purposes. The FAA has relaxed the regulations for UAV operations in the commercial sec-

tor considering that the UAV applications are estimated to generate an additional US$82

billion for the economy of the USA.

Making progress on the issue of reaching common legislation will be a complicated task.

This is because international conventions on international civilian aviation, such as the

Chicago Convention, apply only to civilian manned aircraft but not to unmanned ones [57].

It is necessary to have legislation that will be open and generic in the technical aspects.

This is because legislations that are limited to specific aircraft types or only permit the

use of remote controls with certain characteristics would become obsolete soon, as new

advances in the field of UAVs appear. Furthermore, regulations should not only consider
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the civilian liability of these devices but also aspects that will assure the security of the

citizens, for example, the protection of data in deployed vehicles [57]. We anticipate that

the simulation, in general, and the ABS, in particular, of AI systems will help in directing

the efforts to propose, evaluate, and forge new UAVs regulations.
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Systems, Literature Review. Humansystems Incorporated, 2003

[7] AGOGINO, Adrian K. ; HOLMESPARKER, Chris ; TUMER, Kagan: “Evolving

large scale UAV communication system”. In Genetic and Evolutionary Com-

putation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012, 2012,

pages 1023–1030. DOI: 10.1145/2330163.2330306

[8] ALABDULKARIM, Lamia ; ALRAJHI, Wafa ; ALOBOUD, Ebtesam: “Urban Analytics

in Crowd Management in the Context of Hajj”. In Int. Conf. on Social Computing

and Social Media Springer (event), 2016, pages 249–257

[9] ALBANI, Dario ; MANONI, Tiziano ; NARDI, Daniele ; TRIANNI, Vito: “Dynamic UAV

Swarm Deployment for Non-Uniform Coverage”. In Proc. of 17th Int. Conf. on

Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,

July 10-15, 2018, 2018, pages 523–531

157

http://www.doi.org/10.1145/2330163.2330306


158 BIBLIOGRAPHY

[10] ALBAUM, Gerald: “The Likert scale revisited”. In Market Research Society.

Journal. 39 (1997), number 2, pages 1–21

[11] ALLAN, Robert J.: Survey of agent based modelling and simulation tools. Science

& Technology Facilities Council, 2010

[12] ALONSO-MORA, Javier ; SAMARANAYAKE, Samitha ; WALLAR, Alex ; FRAZZOLI,

Emilio ; RUS, Daniela: “On-demand high-capacity ride-sharing via dynamic

trip-vehicle assignment”. In National Academy of Sciences 114 (2017), num-

ber 3, pages 462–467

[13] AMUKELE, Timothy ; NESS, Paul M. ; TOBIAN, Aaron A. ; BOYD, Joan ; STREET,

Jeff: “Drone transportation of blood products”. In Transfusion 57 (2017),

number 3, pages 582–588

[14] ANDERSON, John R. ; MATESSA, Michael ; LEBIERE, Christian: “ACT-R: A the-

ory of higher level cognition and its relation to visual attention”. In Human–

Computer Interaction 12 (1997), number 4, pages 439–462
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[27] BÉHÉ, Florian ; GALLAND, Stéphane ; GAUD, Nicolas ; NICOLLE, Christophe ;

KOUKAM, Abderrafiaa: “An ontology-based metamodel for multiagent-based

simulations”. In Simulation Modelling Practice and Theory 40 (2014), pages 64–

85

[28] BEHKAMAL, Behshid ; KAHANI, Mohsen ; AKBARI, Mohammad K.: “Customizing

ISO 9126 quality model for evaluation of B2B applications”. In Information and

software technology 51 (2009), number 3, pages 599–609

[29] BEKEY, George A.: Autonomous robots: from biological inspiration to implementa-

tion and control. MIT press, 2005

[30] BELLIFEMINE, Fabio L. ; CAIRE, Giovanni ; GREENWOOD, Dominic: Developing

multi-agent systems with JADE. Volume 7. John Wiley & Sons, 2007

https://doi.org/10.5220/0007369401540163
http://www.doi.org/10.5220/0007369401540163


160 BIBLIOGRAPHY

[31] BENEDETTI, Massimiliano D. ; D’URSO, Fabio ; MESSINA, Fabrizio ; PAPPALARDO,

Giuseppe ; SANTORO, Corrado: “UAV-based Aerial Monitoring: A Performance

Evaluation of a Self-Organising Flocking Algorithm”. In 10th Int. Conf. on

P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015, Krakow, Poland,

November 4-6, 2015, pages 248–255. DOI: 10.1109/3PGCIC.2015.78

[32] BENTZ, William ; PANAGOU, Dimitra: “3D dynamic coverage and avoidance con-

trol in power-constrained UAV surveillance networks”. In Unmanned Aircraft

Systems (ICUAS), 2017 Int. Conf. on IEEE (event), 2017, pages 1–10

[33] BETHEL, Cindy L.: Robots Without Faces: Non-verbal Social Human-robot Interac-

tion. Tampa, FL, USA, PhD Thesis, 2009. – AAI3420462

[34] BIRAN, Or ; COTTON, Courtenay: “Explanation and justification in machine

learning: A survey”. In IJCAI-17 workshop on explainable AI (XAI) Volume 8,

2017

[35] BLAIKIE, Norman: Analyzing quantitative data: From description to explanation.

Sage, 2003

[36] BLUMER, Anselm ; EHRENFEUCHT, Andrzej ; HAUSSLER, David ; WARMUTH, Man-

fred K.: “Occam’s razor”. In Information processing letters 24 (1987), number 6,

pages 377–380
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pages 217–224. DOI: 10.1007/978-3-642-10284-4 28
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“Measuring and Comparing Scalability of Agent-Based Simulation Frame-

works”. In German Conf. on Multiagent System Technologies Springer (event),

2015, pages 42–60

[180] LUKE, Sean ; CIOFFI-REVILLA, Claudio ; PANAIT, Liviu ; SULLIVAN, Keith ; BALAN,

Gabriel C.: “MASON: A Multiagent Simulation Environment”. In Simulation 81

(2005), number 7, pages 517–527

[181] MA, Xiaobai ; JIAO, Ziyuan ; WANG, Zhenkai ; PANAGOU, Dimitra: “Decentralized

prioritized motion planning for multiple autonomous UAVs in 3D polygonal

obstacle environments”. In Int. Conf. on Unmanned Aircraft Systems, 2016

[182] MACAL, Charles M. ; NORTH, Michael J.: “Tutorial on agent-based modeling

and simulation”. In Proceedings of the Winter Simulation Conference, 2005. IEEE

(event), 2005, pages 14–pp

[183] MACH, Ernst: The science of mechanics. Prabhat Prakashan, 1919

[184] MADHAVAN, Poornima ; WIEGMANN, Douglas A.: “Effects of information source,

pedigree, and reliability on operator interaction with decision support sys-

tems”. In Human Factors 49 (2007), number 5, pages 773–785

https://doi.org/10.1145/3233231
http://www.doi.org/10.1145/3233231


174 BIBLIOGRAPHY

[185] MADUMAL, Prashan ; MILLER, Tim ; SONENBERG, Liz ; VETERE, Frank: “Ex-

plainable reinforcement learning through a causal lens”. In arXiv preprint

arXiv:1905.10958 (2019)

[186] MALLE, Bertram F.: “How people explain behavior: A new theoretical frame-

work”. In Personality and social psychology review 3 (1999), number 1, pages 23–

48

[187] MALLE, Bertram F.: How the mind explains behavior: Folk explanations, meaning,

and social interaction. Mit Press, 2006

[188] MATHEWS, Sherin M.: “Explainable Artificial Intelligence Applications in NLP,

Biomedical, and Malware Classification: A Literature Review”. In Intelligent

Computing-Proceedings of the Computing Conference Springer (event), 2019,

pages 1269–1292

[189] MATSON, Eric T. ; MIN, Byung-Cheol: “M2M infrastructure to integrate humans,

agents and robots into collectives”. In IEEE International Instrumentation and

Measurement Technology Conference IEEE (event), 2011, pages 1–6

[190] MATSON, Eric T. ; TAYLOR, Julia ; RASKIN, Victor ; MIN, Byung-Cheol ; WILSON,

E C.: “A natural language exchange model for enabling human, agent, robot

and machine interaction”. In The 5th International Conference on Automation,

Robotics and Applications IEEE (event), 2011, pages 340–345

[191] MCEVOY, John F. ; HALL, Graham P. ; MCDONALD, Paul G.: “Evaluation of

unmanned aerial vehicle shape, flight path and camera type for waterfowl

surveys: disturbance effects and species recognition”. In PeerJ 4 (2016),

pages e1831

[192] MCGUINNESS, Deborah L. ; VAN HARMELEN, Frank ; OTHERS: “OWL web on-

tology language overview”. In W3C recommendation 10 (2004), number 10,

pages 2004

[193] MCLAREN, Duncan ; AGYEMAN, Julian: Sharing Cities: A Case for Truly Smart and

Sustainable Cities. MIT press, 2015. – ISBN 9780262029728

[194] MEFTEH, Wafa ; MIGEON, Frédéric ; GLEIZES, Marie-Pierre ; GARGOURI, Faiez:

“Simulation Based Design for Adaptive Multi-agent Systems: Extension to

the ADELFE Methdology”. In 2013 Workshops on Enabling Technologies: Infras-

tructure for Collaborative Enterprises IEEE (event), 2013, pages 36–38

[195] MENOUAR, Hamid ; GUVENC, Ismail ; AKKAYA, Kemal ; ULUAGAC, A S. ; KADRI,

Abdullah ; TUNCER, Adem: “UAV-enabled intelligent transportation systems



BIBLIOGRAPHY 175

for the smart city: Applications and challenges”. In IEEE Communications

Magazine 55 (2017), number 3, pages 22–28

[196] MICHON, J.A.: “A critical view of driver behaviour models: What do we know,

what should we do?”. In Human Behavior and Traffic Safety (1985), pages 487–

525

[197] MIHALY, Heder: “From NASA to EU: the evolution of the TRL scale in Public

Sector Innovation”. In The Innovation Journal 22 (2017), October, pages 1–23

[198] MILLER, Tim: “Explanation in artificial intelligence: Insights from the social

sciences”. In Artificial Intelligence 267 (2019), pages 1–38

[199] MILLER, Tim ; HOWE, Piers ; SONENBERG, Liz: “Explainable AI: Beware of

inmates running the asylum or: How I learnt to stop worrying and love the

social and behavioural sciences”. In arXiv preprint arXiv:1712.00547 (2017)
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A

THE REST OF SYSTEMATIC

LITERATURE REVIEW RESULTS

This appendix includes some extra content from the Systematic Literature Review (SLR)

presented in Chapter 4 and is based on the journal article:

Yazan Mualla, Amro Najjar, Alaa Daoud, Stéphane Galland, Christophe Nicolle, Ansar-

Ul-Haque Yasar, and Elhadi Shakshuki, Agent-Based Simulation of Unmanned Aerial

Vehicles in Civilian Applications: A Systematic Literature Review and Research Direc-

tions, International Journal of Future Generation Computer Systems, Elsevier, vol. 100,

pp. 344-364 (2019). DOI: 10.1016/j.future.2019.04.051.

It includes information about the geographical distributions of papers before and after the

fine-grained inclusion/exclusion step. Figure A.1 plots the geographical distributions of

papers before the fine-grained inclusion/exclusion step. The number of papers published

by USA researchers is the highest worldwide. The geographical distribution of the papers

could be partly explained by the investment rate in Research & Development (R&D) in

each country [290], illustrated in Figure A.2. The notable exception is China, which invests

2% of its Gross Domestic Product (GDP), i.e. US $370, 589.7M, but has a number of

papers equal to France (2.3% of GDP, US$60, 781.6M). Another notable point is the Czech

Rep., which has 11 papers with an average R&D investment (2% of GDP, US$6, 719M). All

the authors from Czech Rep. are collaborating with partners within USA-funded projects.

This fact may explain the high number of publications for this country.

From Figure A.1, it is interesting to note that, even if civilian Unmanned Aerial Vehicles

(UAVs) regulations in the USA are less restrictive than in Europe (see Section 10.2.3.2),

the number of papers over Europe is two times higher than the number of papers in

North America. This can be attributed to the European Union’s (EU) research policy that

enforces funding on breaking technologies, such as UAVs. Figure A.3 plots the number

of papers per year since 2008 after the coarse-grained exclusion/inclusion step. The

number of papers grows with a slop of 0.6364.
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Figure A.1: The geographical distribution of papers after the coarse-grained exclu-

sion/inclusion step

Second, this appendix also includes the 5 SLR Questions (SLRQs) that are not included

in Chapter 4. These SLRQs are SLRQ4, SLRQ5, SLRQ6, SLRQ7, and SLRQ8 (refer to

Section 4.2.1 for more details).

A.1/ DEMOGRAPHIC DATA (SLRQ4)

To understand the evolution of UAV simulations in Multi-agent System (MAS) in the last

decade (stated as a question by SLRQ4), Figure A.4 plots the number of papers per

year after the fine-grained exclusion/inclusion step. Despite a decrease in the number of

papers in 2009 and 2012 (2018 should not be considered since this review was conducted

in August 2018), it appears from the figure that there is a stable growth in the numbers

of papers, with a slop of 0.2727. Furthermore, comparing the results of this figure with

those of Figure A.3 confirms this observation since in Figure A.3, the number of papers

witnesses a roughly stable growth between 2008 and 2016.

To understand the geographic distributions of the main contributors in the studied do-

main, Figure A.5 plots the number of papers per country after the fine-grained exclu-

sion/inclusion step. Compared with Figure A.1, The number of papers published by USA
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Figure A.3: The number of papers per year after the coarse-grained exclusion/inclusion

step

researchers is still the highest worldwide. As previously noticed, researchers from the

Czech Rep. are collaborating with partners within USA-funding projects. This fact may

explain the high number of publications for this country compared to its R&D investment,

illustrated in Figure A.6. In this figure, it is interesting to note that, even if civilian UAV-

related regulations in the USA are less restrictive than in Europe, the number of papers

over Europe (32 papers) is three times higher than the number of papers in North Amer-

ica (9 papers). We explain this by the fact that the EU research policy enforces funding on

breaking technologies, such as UAVs. Additionally, with a relatively lower R&D investment
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Figure A.5: The geographical distribution of papers after the fine-grained exclu-

sion/inclusion step

rate of EU countries (Figure A.6), researchers from these countries have fewer opportu-

nities for funding UAV deployment in real fields. This pushes them to resort to simulation

environments for validating the UAV behaviors before any deployment.



A.2. RESEARCH TOPICS AND APPLICATION DOMAINS (SLRQ5) 203

0

100000

200000

300000

400000

500000

600000

0

0.5

1

1.5

2

2.5

3

3.5

R&D spending as % of GDP
R&D spending in Purchasing‐power‐parity$

Figure A.6: The investments in R&D [290] of the publishing countries after the fine-grained

exclusion/inclusion step

A.2/ RESEARCH TOPICS AND APPLICATION DOMAINS (SLRQ5)

This section discusses the results and answers the SLR questions raised in SLRQ5 (Sec-

tion 4.2.1). In particular, it deals with the research topics (Section A.2.1) and the applica-

tion domains (Section A.2.2).

A.2.1/ RESEARCH TOPICS (SLRQ5.1)

Subjects or issues that a researcher is interested in when conducting research on UAVs.

These “research topics” provide the general directions to researchers for exploring, defin-

ing, and refining their ideas. Figure A.7 plots the main research topics addressed in the

reviewed articles and Table A.1 lists the papers per each research topic. It is worth men-

tioning that some papers were flagged as having more than one research topic. There-

fore, and to normalize the weights given by each paper to the research topics distribution,

we have decided to assign the most dominant research topic per paper. The addressed

research topics are:

1. Coordination (17%), UAVs interact to coordinate their actions for reaching their com-

mon objectives;

2. Mission Management (14%) addresses the optimal dynamic assignment of high-

level missions, i.e. objectives, to UAVs. High-level missions are those where the

UAVs rely on a high-level description of their objectives without many details and

without human guidance;
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Figure A.7: The main research topics related to civilian UAVs applications

3. Collision Avoidance (14%) allows increasing UAV safety by avoiding collisions

among UAVs, persons, animals, and other objects;

4. UAV Formation (Platooning) (9%) addresses the definition of flight formations for

UAVs;

5. Surveillance (9%) enables UAVs to help the detection of dangerous and illegal situ-

ations;

6. Path Planning (7%) focuses on the static and dynamic computing of the best paths

to fly along according to the environmental constraints;

7. Task Allocation (7%) is the optimal dynamic (potentially distributed) assignment of

tasks to the UAVs;

8. Certification & Regulation (7%) is related to the definition of regulations dedicated

to UAVs, and of the associated certifications for UAVs or pilots;

9. Simulation (7%) focuses on the design and implementation of developed simulation

frameworks to understand and validate UAV behaviors;

10. Communication (3%) is related to the definitions of the means of communication

between the UAVs, and between the UAVs and the ground infrastructure;

11. Coverage (3%) addresses the problems of map coverage;

12. Tracking (3%) focuses on the detection and tracking of objects in the environment

of the UAVs.

Therefore, as Figure A.7 shows, the research topics have diverse aims and tackle several

aspects related to UAVs, ranging from low-level (i.e. close to hardware) issues, such
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Research Topic Papers per Topic

Coordination Bürkle et al. [49], Zhu et al. [325], Rollo et al. [243],

De Benedetti et al. [73], Cimino et al. [65], Ciarletta et al.

[64], Obdržálek [219]

Mission Management Wei et al. [306], Gunetti et al. [114, 115], Stenger et al.

[266], Sampedro et al. [248], Fulford et al. [98]

Collision Avoidance Ashraf et al. [18], Kandil et al. [140], Šišlák et al. [263],

Arokiasami et al. [17], Zou et al. [326], Kucherov and

Kucherov [159]

UAV Formation (Platooning) Van der Walle et al. [301], Sutton et al. [271], Benedetti

et al. [31], Bürkle and Leuchter [48]

Surveillance Semsch et al. [254], Khaleghi et al. [143], Bentz and

Panagou [32], da Silva et al. [261]

Task Allocation Wei et al. [307], Evertsz et al. [86], Vasilijevic et al. [292]

Path Planning Volf et al. [299], Peng et al. [230], Ma et al. [181]

Certification & Regulation Webster et al. [305, 304], Schatten [249]

Simulation Pechoucek et al. [228], Veloso et al. [294], De Benedetti

et al. [74]

Communication Agogino et al. [7]

Coverage Albani et al. [9]

Tracking Ferrag et al. [90]

Table A.1: The reviewed papers per research topic

as UAV communication, to high-level concerns that require considerable UAV autonomy

(e.g. mission management).

To assess the UAV autonomy involved in each research topic, we rely on an autonomy

metric proposed by Clough [66] to measure Autonomous Control Levels (ACL) of UAVs.

This metric is a scale ranging from 0 (for a remotely piloted non-autonomous UAVs) to

10 (for a fully autonomous UAVs). Figure A.8 plots the average ACL for each research

topics. Note that ACL values were either mentioned explicitly by the authors of the primary

studies or were determined by the reviewers by evaluating the UAV autonomy according

to the ACL scale.

As seen in Figure A.8, some research topics tended to endow UAVs with more autonomy

than others. For instance, coverage, coordination, surveillance, and mission manage-

ment need more autonomy than path planning, collision avoidance, and communications.

Note that research topics such as certification & regulation and simulation attained rela-

tively high ACL. However, the main concerns of these works were building a simulation

environment for the UAVs (in case of the simulation research topic) and certifying that

UAVs adhere to the enforced regulations & norms (in case of the certification & regula-

tion research topic). For this reason, the UAVs implementation provided by these works

were mainly case-studies lacking details about the evaluations and the implementations.
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Figure A.9: The multi-layer architecture of the agents, adapted from [196]

Furthermore, no reviewer reported a paper with an ACL scale higher than 6. This is

explained by the fact that higher levels of autonomy in the ACL scale were associated

with specific military application requirements (e.g. battle-space knowledge, battle-space

cognizance, etc.) and this SLR focuses on work related to civilian applications only.

Note that this issue could be solved by relying on other metrics allowing to evaluate the

maturity of the contributions. Technology Readiness Level (TRL) [197] is one metric that

would help in this direction. Yet, unlike the ACL, it is not focused on UAV autonomy. For

this reason, we opted for ACL in this paper.
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Figure A.10: The number of papers with agent architecture as per the research topic
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Figure A.10 shows the number of papers with agent architecture as per the research

topic. The most used agent architectures are cognitive (without BDI): 17, and reactive

(without flocking): 9, considering all the research topics. This fact is explained by the

characteristics of the research topics: the ideal agent-based modeling of UAVs is usually

based on a multi-layer architecture [196], illustrated in Figure A.9. The operational layer

corresponds to the (very-)short term, i.e. the control of the UAVs. The tactic layer is

associated with the planning of the UAV actions, e.g. path planning. The strategic layer

is associated with the missions of the UAVs. In this layer, mission and task management

need more complex models typically found in the cognitive scope. It is interesting to note

that a low number of papers contains a multi-layer model. The other papers focus on a

single layer, mostly tactic or strategic.

A.2.2/ APPLICATION DOMAINS (SLRQ5.2)

In addition to research topics, SLRQ5 addresses application domains of UAVs. They

refer to the applied research, in which scientific studies and research works aim to solve

practical problems. Figure A.11 shows the distribution of the civilian UAV application

domains of studied papers, and Table A.2 lists the papers per each application domain. It

is worth mentioning that some papers tackle several application domains. Therefore, and

to normalize the weights given by each paper to the application domains distribution, we

have decided to assign the most dominant application domain per paper. For the paper

that has no dominant application domain, or if its contribution is application-independent,

it is considered to be in the General domain. The resulting application domains are:

1. General (53%);

2. Urban Planning (26%);

3. Emergency Response (12%);

4. Telecommunication (5%);

5. Agriculture (2%);

6. Border surveillance (2%).

As seen in Figure A.11, Urban planning and General are the most common application

domains. This figure shows the growing attention given to UAV applications in civilian

and urban environments since the share of urban planning is about 26%, while other

application domains such as agriculture, emergency response, border surveillance, which

often take place outside the urban environment, received less attention.
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Application domain Papers per application domain

General Ashraf et al. [18], Wei et al. [307], Bürkle et al. [49], Wei et al.

[306], Rollo et al. [243], Gunetti et al. [114, 115], Evertsz et al.

[86], Webster et al. [304], Sampedro et al. [248], Sutton et al.

[271], Peng et al. [230], Zou et al. [326], Ma et al. [181], Bentz

and Panagou [32], da Silva et al. [261], De Benedetti et al.

[73, 74], Obdržálek [219], Fulford et al. [98], Kucherov and

Kucherov [159], Ferrag et al. [90]

Urban Planning Semsch et al. [254], Volf et al. [299], Webster et al. [305],

Kandil et al. [140], Arokiasami et al. [17], Pechoucek et al.

[228], Veloso et al. [294], Šišlák et al. [263], Khaleghi et al.

[143], Bürkle and Leuchter [48], Schatten [249]

Emergency Response Zhu et al. [325], Van der Walle et al. [301], Benedetti et al.

[31], Cimino et al. [65], Vasilijevic et al. [292]

Telecommunication Agogino et al. [7], Ciarletta et al. [64]

Border Surveillance Stenger et al. [266]

Agriculture Albani et al. [9]

Table A.2: The reviewed papers per application domain

53%

2%

12%

5%

2%

26%
General

Agriculture

Emergency Response

Telecommunication

Border Surveillance

Urban Planing

Figure A.11: The main civilian UAV application domains

To assess the maturity of the reviewed primary studies, we resorted to the quality criterion

Q3 defined in Table 4.1. Q3 evaluates the quality of the experiments conducted by the

authors of primary studies and the statements of the obtained results. The intuition here

is that the more mature the application domain is the higher would be its score for Q3.

Figure A.12 shows the average Q3 score obtained per application domain. As can be

seen from the figure, based on their maturity, the application domains can be classified

into two clusters. The first cluster represents relatively mature application domains (agri-

culture, telecommunications, and emergency response). The second cluster represents

less mature application domains (general, urban planning, and border surveillance). Note
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Figure A.12: The average of quality metric Q3 given by reviewers per the application

domain

21%

79%

Yes
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Figure A.13: The proportion of the models that are including or not the IoT concept

that these assessments only concern works using ABS for civilian UAV applications.

A.3/ UNMANNED AERIAL VEHICLES WITH INTERNET OF THINGS

(SLRQ6)

The smart city concept integrates Information and Communication Technology (ICT) (cf.

Section SLRQ7), and various physical devices connected to the network, e.g. Internet Of

Things (IoT) or Wireless Sensor Network (WSN) [106].
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Figure A.13 shows the proportion of papers that include the IoT concept against the

papers that do not. 9 papers include IoT, and 33 do not. According to [106], several op-

portunities for UAVs use to support a smart city exist. These opportunities will be very

beneficial to any smart city that would utilize UAVs for their economic growth and develop-

ment. Therefore, it is important to investigate whether IoT is considered in the reviewed

models. The low proportion of reviewed papers that are considered IoT indicates that it is

still an open issue. According to our knowledge, this proportion may be explained by the

fact that researchers focus on the UAV behavior itself, not on the UAV environment.

A.4/ UNMANNED AERIAL VEHICLES COMMUNICATION (SLRQ7)

Vehicle-to-everything (V2X) communication is the passing of information from a vehicle

to any entity that may affect the vehicle and vice versa [308]. It is a vehicular communica-

tion system that incorporates other more specific types of communication as Vehicle-

to-Infrastructure (V2I), Vehicle-to-Network (V2N), Vehicle-to-Vehicle (V2V), Vehicle-to-

Pedestrian (V2P), Vehicle-to-Device (V2D), and Vehicle-to-Grid (V2G). The purpose of

this research question is to identify the V2X used by the UAVs to connect to other enti-

ties. Among all these types of communication, reviewers have found references to V2I

and V2V only.

The main motivations for V2X are road safety, traffic efficiency, and energy savings within

smart cities. UAVs are one of the means for setting up the smart city concept [106].

Therefore, it is important to highlight the V2X technologies that are considered within

UAV models.

Figure A.14 plots the type of communications used: 33% of the papers includes com-

33%

33%

17%

17%

None/Undetermined

V2I

V2V

Both (V2I, V2V)

Figure A.14: The types of communications
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munication between the UAVs and the infrastructure (V2I), 17% between UAVs (V2V)

by using: (i) implicit communication, i.e. the communication means are not explic-

itly described; (ii) direct communication means, e.g. Wireless; or (iii) by using stigmergy

communication. 17% of the papers propose a model with both V2I and V2V components.

Finally, 33% of the papers do not consider any specific communication approach. There-

fore, when communication is considered within these primary studies, it is not detailed;

and the authors seem to assume that the information is exchanged whatever the com-

munication mean is. These papers are not excluded because they contain models that

support interaction among the UAV agents, even if it is at an abstract level.

It is interesting to note that 66% of the papers consider that UAVs are connected entities

that need to interact with their environment or with other UAVs. This is in-line with the fact

that UAVs may contribute to set up the smart city concept (cf. Section SLRQ6).

A.5/ EVALUATION AND SIMULATION SCENARIOS (SLRQ8)

This research question is related to the evaluation of the proposed models (Figure A.15):

whether it relies on a dataset, a generated synthetic dataset, or no dataset. Only a few of

the reviewed papers (5%) have a reference to a dataset for setting up the UAV simulations;

17% of the papers have generated a specific dataset for evaluation; While, the majority

have no dataset. In papers with no datasets, simulation scenarios are defined as ad hoc

by authors. This relatively low number of papers with datasets may be explained by the

difficulties of building such sets, e.g. it is hard to gather realistic data and initialize a UAV

model from it. Having well-established testbeds with datasets helps to unify the testing

process, and allows for systematic comparisons between the proposed solutions.

78%

17%

5%

No Dataset
Generated Dataset
Dataset

Figure A.15: The use of datasets by the reviewed papers
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A.6/ CONCLUSION

In Chapter 4, and following a well-established SLR methodology, we identified 8 SLRQs

helping to assess the contributions of MAS and ABS in civilian UAV applications. The

main findings of the 5 SLRQs not included in Chapter 4 (SLRQ4, SLRQ5, SLRQ6,

SLRQ7, SLRQ8) are1:

1. Research on MAS and ABS for civilian UAV applications has witnessed a consider-

able increase in the past decade and most of the reviewed papers were written in

Europe followed by North America and Asia.

2. Coordination, mission management, UAV formation (platooning), collision avoid-

ance, task allocation, and path planning were the most studied research topics while

“Urban planning” and “General” accounted for the majority of application domains.

3. Despite the key role that the UAV is expected to assume in smart cities and con-

nected smart environments, only a fifth of the reviewed paper integrate IoT tech-

nologies in their research works.

4. The majority of the reviewed papers address UAV connectivity. This shows that

most of the reviewed papers view UAVs as connected entities both among them-

selves and with their environment.

5. To evaluate their contributions, only 5% of papers rely on public datasets and less

than 20% use generated datasets. The remaining majority do not use any dataset

for evaluation purposes. This underlines the absence of common testbeds and

datasets allowing to evaluate and compare these works.

Regulation and collision avoidance are among the prominent challenges to be settled.

Yet, the air is still largely unregulated and unmarked, especially to the naked eye, un-

equipped with height measuring methods, without prior knowledge of any restrictions

regarding the filming of surrounding people, and the seriousness of the threat a UAV

poses as it zooms past or above people. Moreover, enhanced availability of better Global

Positioning System (GPS) trackers, quieter copters, and smaller “footprint” also raises

new legal issues and requires current and up-to-date regulation. Nevertheless, the vast

majority of the world still remains behind on effective UAV control. Yet, these issues have

not received enough attention in the reviewed papers. Namely, regulation is addressed

directly in no more than 7% of the papers. while collision avoidance and UAV safety are

addressed only by 11% of the papers.

1see Section 4.3 for SLRQ1, SLRQ2, and SLRQ3.
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COMPARISON OF AGENT-BASED

SIMULATION FRAMEWORKS

B.1/ INTRODUCTION

In this appendix, and as a further detailed investigation of the Systematic Literature Re-

view (SLR) question 3 (page 43), a comparison of frameworks for civilian UAV applica-

tions is provided. This appendix is based on the paper:

Yazan Mualla, Wenshuai Bai, Stéphane Galland, and Christophe Nicolle, Compari-

son of Agent-Based Simulation Frameworks for Unmanned Aerial Transportation Ap-

plications, Procedia Computer Science 130, Elsevier, pp. 791-796 (2018). DOI:

10.1016/j.procs.2018.04.137.

Recently, the civilian applications of Unmanned Aerial Vehicles (UAVs) in aerial trans-

portation are gaining more interest. Due to operational costs, safety concerns, and legal

regulations, Agent-based Simulation (ABS) frameworks are preferably used to implement

models and conduct tests. This appendix introduces a methodology to compare the most

widely used frameworks. The methodology is inspired by the International Organization

for Standardization (ISO) software quality model and uses a weighted sum scoring system

to give points to the frameworks under study. The proposed criteria in the methodology

consider ABS features and adapt specific features of unmanned aerial transportation.

Preliminary comparison results and recommendations are provided and discussed. This

comparison helped us in choosing the framework to adopt for the pilot test in Chapter 8.

Despite the promising research efforts of ABS in the domain of UAVs, very few works

were dedicated to understand and analyze existing works using ABS in civilian UAV ap-

plications. Very few surveys outlined a comprehensive set of research questions pertain-

ing to multi-agent simulations for civilian UAV applications. There are works comparing

frameworks in the literature. Nonetheless, these works either:

215
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1. address other applications such as energy consumption, geo-spatial applications,

or parallel & distributed applications, or

2. focus on measuring and assessing the performance of frameworks.

Against this background, the objective of this appendix is to rely on the results of the SLR

to in Chapter 4 analyze existing frameworks by selecting specific criteria to evaluate them

based on civilian UAV application considerations.

The rest of this appendix is organized as follows: Section B.2 discusses the other compar-

isons in the literature. The main work is provided in Section B.3. First, the software quality

model from the literature of software comparison is discussed in Section B.3.1. Second,

the general features of the frameworks under study are provided in Section B.3.2. Third,

Section B.3.3 details the ranking criteria we defined to compare the frameworks, and ex-

plains the weighted sum scoring system. Fourth, Section B.3.4 lists and discusses the

results of the comparison. Section B.4 concludes this appendix.

B.2/ OTHER COMPARISONS IN THE LITERATURE

Several surveys about the comparison of ABS frameworks were proposed. Railsback

et al. [236] implemented a simple scenario with 100 agents randomly moving on a small

grid (100x100 cells) for measuring the performance of frameworks. Five platforms (Net-

Logo [313], MASON [180], Repast Simphony [68], Java Swarm and Objective-C Swarm)

were compared. The authors identified future priorities encouraging researchers and

developers to adopt an agent-based framework and improve their performance. Their

results were mostly limited to their perception and experience.

Abar et al. [1] presented a comprehensive comparative survey of 85 frameworks. How-

ever, the comparison criteria included only general features and some frameworks were

not included like Gazebo [153] and AirSim [256] which we find related to UAV applications

(cf. Figure 4.10). Lorig et al. [179] provided a technical comparison of 4 frameworks, but

they focused only on one metric which is scalability. In [285], the aim was to determine

the framework best suited for theory and data-based modeling of social interventions out

of 4 candidates only. the authors have categorized various characteristics of the ABS

toolkits into user-friendly taxonomies. The evaluation was based on official program doc-

umentation, statements by developers and users, and the experiences and impressions

of the evaluators. The evaluation results showed the Repast Simphony [68] environment

to be the clear winner.

Another survey by Serenko et al. [255] tackled the concepts of agent designing, modeling,

and simulation toolkits available in the market. Their data collection efforts comprised the
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download and trial use of 20 agent toolkits. The paper concluded that no single uniform

toolkit satisfies the needs of all agent-related courses. Other surveys were reported by

Kravari and Bassiliades [156], Nikolai and Madey [216], and Gupta and Kansal [118]. Al-

though these surveys presented insightful information about ABS, they were mainly far

from complete, and none of them focused on UAVs. In our paper, a wider comparison in

terms of criteria is defined, with special attention paid to features related to UAV applica-

tions like the physics and the environment.

Some works compared the frameworks based on their results in a specific application do-

main not related to UAVs such as energy consumption applications [324, 157], geospatial

applications [53], computational science applications [11], marketing applications [215],

or parallel and distributed applications [283, 245]. These works were restricted by the con-

straints of the specific application domain they consider, which are not necessarily related

to the UAV applications constraints. In terms of comparing frameworks based on UAV ap-

plications, there are two surveys: First, Vogeltanz [297] provided a survey of more than

50 free software for the design, analysis, modeling, and simulation of UAVs. However, the

survey did not include all the free frameworks, and the selection of the frameworks has

been focused on small subsonic UAVs. Second, Craighead et al. [71] presented a survey

of computer-based simulators for unmanned vehicles including UAVs, but their work is

outdated. Nonetheless, the survey concluded that it is no longer necessary to build a

new simulator from scratch. Both these surveys did not consider the concepts of agents

in their comparison criteria.

B.3/ COMPARISON OF FRAMEWORKS

B.3.1/ SOFTWARE QUALITY MODEL

To compare two frameworks, there is a need to measure the quality model of each frame-

work. In the literature of software comparison, there is no consensus on one methodology

for assessing software quality. Several efforts have been conducted by researchers to de-

fine a model for software comparison. Behkamal et al. [28] gathered most of the widely

used models as follows:

1. McCall Model [93]: The main idea is to establish a relationship between quality

features and metrics. Nonetheless, metrics are not necessarily objective in this

model.

2. FURPS Model [144]: It organizes features in two different categories of require-

ments: Functional requirements defined by the input and the predicted output, and

Non-functional requirements which are usability, reliability, performance, and sup-
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portability. However, this model does not take into consideration some key features

like the portability of software products.

3. Dromey Model [81]: It seeks to enhance the relationship between the features and

the sub-features of software quality. One key disadvantage of this model that it lacks

the criteria for measurement of software quality.

4. Bayesian Belief Network (BBN) Model [265]: it is organized as a hierarchical tree-

like structure. The root of the tree is the ’Quality’ node connected to quality features

nodes, and each node is connected to corresponding quality sub-features. It allows

designing complex models that are difficult to design with other models.

5. ISO Model [135]: The software product quality criteria are classified in a hierarchi-

cal tree structure of 6 features. These features are further classified into 21 sub-

features. This model provides the widest range of comparison criteria in various

aspects.

The ISO model is adopted in this work as it includes several interesting criteria in the con-

text of the proposed comparison like for example: “Interoperability”, “Compliance”, “Un-

derstandability”, “Learnability”, “Operability”, “Adaptability”, “Installability”, etc. However,

some criteria are excluded as “Efficiency” as run-time comparison tests have not been

performed in this work. Moreover, and derived from the SLR review, we introduce some

extra criteria that are specifically important for UAVs like the representation of gravity and

magnetic fields, environment dynamics, and the support of the force-based motion. The

focus is on the criteria that are mostly related to and associated with flying objects in the

space and their environment.

B.3.2/ FRAMEWORKS GENERAL FEATURES

The frameworks to be compared are as follows: Gazebo [153], AirSim [256], Janus

[101, 100], Repast Simphony [68], NetLogo [313], Flame [149], JADE [30], and MASON

[180]. Table B.1 provides their general features. Some other frameworks that resulted

from the SLR (Chapter 4) like AgentFly [264] and A-globe [262] are not considered in

this comparison either because the framework is not open source or because the main

applications that the framework supports are not civilian. Additionally, Simulink [223] is

not considered, even though it is used by a considerable portion of reviewed papers (cf.

Figure 4.10) because it is not purely an ABS framework. On the other hand, the results

shown in Figure 4.10 shows that AirSim [256] has not been used in any of the papers

reviewed in the SLR (Chapter 4) mainly because it is a new framework (2017). However,

it is added to the comparison because it holds some potentials for UAV simulation, as it

is a specialized framework for unmanned vehicles including UAVs.
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Gazebo

[153]

AirSim

[256]

Janus

[101, 100]

Repast

Simphony

[68]

NetLogo

[313]

Flame

[149]
JADE [30] MASON

[180]

Main domain Robots Autono-

mous

vehicles

General General General General General General

License Apache

2.0

MIT Apache

2.0

(Janus),

proprietary

license

(Jasim)

New BSD GPL GNU,

Academic

license

LGPL v2 Academic

License

Open source Yes Yes Yes Yes Yes Yes Yes Yes

First release 2002 2017 2008 2003 1999 2006 2003 2005

Development status Active Active Active Active Active Active Active Active

Programming languages C++ C++,

Python,

C#, Java

SARL,

Java,

JavaScript

Java,

C#, C++,

Visual

Basic.Net,

Lisp, Pro-

log, and

Python

LOGO C Java Java

Operating systems Linux Windows,

Linux

Any with

JVM

Any with

JVM

Any with

JVM

Most with

C support

Any with

JVM

Any with

JVM

Table B.1: Frameworks General Features
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B.3.3/ RANKING CRITERIA

The evaluation of the frameworks is divided into 4 categories, with each category having

different criteria. Simple ranking by giving ranks to the frameworks is impractical, as

there is a need to quantify the level each framework is achieving a criterion. Therefore, a

comparison system based on scoring points is used. S j represents the set of all points

given to the options that a criterion j can take, where S j ⊂ N and
∣

∣

∣S j

∣

∣

∣ ≥ 2. For example,

if a criterion j has three options: Option1 (0p), Option2 (1p) and Option3 (2p), then S j =

{0, 1, 2}. The criteria per category with the distribution of points are listed in the following:

A. System Features: The main system features of the framework.

1. Agent architecture: Support of either reactive or proactive agent architectures

(1p); Hybrid support of both reactive and proactive architectures (2p).

2. Support the communication between agents: No communication (0p); Com-

munication through the environment (indirect) or direct communication (1p);

Indirect and direct communication between agents (2p).

3. User support (documentation, mailing list, defect list, tutorials, forum, exam-

ples, FAQs, wiki, API, etc.): Average (0p); Good (1p); High (2p).

4. Support of sensors that are embedded in the UAV: No (0p); Yes (1p).

5. Support of GIS: No (0p); Yes (1p).

B. Operation and Execution: The main operational and execution features of the

framework.

1. Installation ease: The installation method and the required Information Tech-

nology skills to install. The simpler the method for the user is considered the

better as follows: Command-line install (0p); Graphical User Interface (GUI)

installer (1p).

2. Operational ease: The support of features like Integrated Development En-

vironment, command prompt, click & point, syntax coloring, auto-completion,

creation wizards, drag-and-drop, automatic code generation, etc. The evalua-

tion is as follows: Inadequate (0p); Average (1p); Good (2p); High (3p).

3. Interaction with objects in the air, i.e. Vehicle-to-Vehicle (V2V) and the ground,

i.e. Vehicle-to-Infrastructure (V2I): No interaction (0p); V2V or V2I (1p); V2V

and V2I (2p).

C. Environment: The features of the reproduced environment and how the UAV inter-

acts with it.

1. Environmental model: No model (0p); One type of models, either 2d or 3d (1p);

Two types of models (2p).
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2. Support of endogenous dynamic related to the environment objects: The ability

to reproduce the objects that can be found in a city environment like traffic lights

or objects connected to the Internet. The evaluation is as per the support

of those objects as follows: No support (0p); Simple dynamic environment

objects with the algorithm being part of the simulator (1p); Complex dynamic

environment objects with the support of co-simulation (2p).

3. Simulation of ecological/environmental dynamics: The ability to simulate envi-

ronmental dynamics like wind and rain of different intensities, different visibility

conditions, etc. The evaluation is as follows: No support (0p); Simple simu-

lation of environmental dynamics (1p); Complex simulation of environmental

dynamics, possibly with a co-simulator (2p).

D. Physics: The simulation of the laws of physics in a realistic manner, and how well

the exact position of an object in the space is determined.

1. Representation of gravity field: No (0p); Yes (1p).

2. Representation of magnetic field: No (0p); Yes (1p).

3. Collision avoidance algorithm: No (0p); Yes (1p).

4. Support of force-based motion: No (0p); Yes (1p).

Since the importance of a criterion depends on the application domain, we associate a

weight to each criterion to reflect its importance for a given domain. The benefit of using

weights is two-fold:

1. The weights assigned by the experts in the application domain as they are mainly

application-dependent; or

2. Weights can be used to normalize the importance of the proposed criteria (i.e. en-

sure that all the criteria have the same impact on the total score), as the maximum

score of one criterion may be different from the maximum score of another criterion.

This is needed when there is no specific application domain (i.e. the comparison is

done in general).

Equation B.1 defines the normalized weight for each criterion.

w j =
e j

max(S j)
such that

∑

a∈[1;C]

ea = C (B.1)

Where: w j is the weight of criterion j; e j is a coefficient provided by a domain expert

for criterion j, and it represents the importance of the criterion for the specific domain;

max(S j) is the maximum score of criterion j; C is the total number of criteria. The domain
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expert has a total of C points to be divided according to the importance of the criteria. In

case the comparison is performed in general (i.e. without a specific application domain),

there is no need for the domain expert to provide e j values, i.e. e j = 1 for all criteria; so

the weights are only used in this case to normalize the scores of criteria.

For each framework, the total weighted score is calculated from the following equation.

Ti =

C
∑

j=1

w j.si j (B.2)

Where: Ti is the total weighted score of the framework i; si j is the score of the framework

i for criterion j.

B.3.4/ RESULTS AND DISCUSSION

Table B.2 lists the results of the comparison of all the frameworks. This table is filled based

on our knowledge and the documents and tutorials provided by their developers. The last

column represents the maximum score a framework can achieve for a specific criterion.

For each category, the weighted scores of all frameworks are calculated, and the total

weighted scores are provided at the end (the last row). As can be seen from the table

that Repast Simphony [68] achieves the highest total weighted score with 13.00/15.00 to

be the best framework for the ABS of civilian UAV applications in general, with the best

runner-up to be Gazebo [153]. However, it is not the best framework in all categories if

considered individually. For instance, and considering only the Environment category, the

best framework is Gazebo [153].

It is worth mentioning that the frameworks’ scores are with tight differences, hence a

small change in the values of the table, for example when a framework is updated in a

future version, the order of the frameworks may change. This means that generally, the

frameworks have somehow similar characteristics in terms of UAV simulation and that

when one excels in a specific domain the other excels in another. The weights are used

to normalize the importance of the criteria.

B.4/ CONCLUSION

In this appendix, a methodology to compare ABS frameworks has been defined focusing

on features of civilian UAV applications. The preliminary results show that Repast Sim-

phony [68] is the most suitable framework for simulating UAVs civilian applications. The

runner-up, with a slightly lower score, is Gazebo [153]. From this result, the choice was

made to adopt Repast Simphony [68] for the pilot test in the thesis (Chapter 8).
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Repast Simphony Gazebo NetLogo AirSim MASON Janus Flame JADE w j Max Score

A Agent architecture 2 2 2 2 2 2 2 2 1/2 2

A
Communication
between agents

1 1 1 1 1 2 2 2 1/2 2

A User support 2 1 2 0 1 1 1 2 1/2 2

A Sensors 1 1 1 1 1 1 1 1 1/1 1

A GIS 1 1 1 1 1 1 1 0 1/1 1

System Features
Weighted Score

4.50 4.00 4.50 3.50 4.00 4.50 4.50 4.00 5.00

B Installation ease 1 0 1 0 1 0 0 1 1/1 1

B Operational ease 3 2 3 2 2 2 3 2 1/3 3

B V2V/V2I 2 2 2 2 2 2 2 2 1/2 2

Operation &
Execution
Weighted Score

3.00 1.67 3.00 1.67 2.67 1.67 2.00 2.67 3.00

C Environmental model 2 2 2 1 2 2 2 1 1/2 2

C
Dynamic environment
objects

2 2 1 2 1 2 1 2 1/2 2

C
Ecological/
Environmental
dynamics

1 2 1 2 1 1 1 0 1/2 2

Environment
Weighted Score

2.50 3.00 2.00 2.50 2.00 2.50 2.00 1.50 3.00

D Gravity 1 1 1 1 1 1 1 1 1/1 1

D Magnetic 0 1 1 1 0 0 0 1 1/1 1

D Collision avoidance 1 1 1 1 1 1 1 1 1/1 1

D Force-based motion 1 1 0 1 1 1 1 0 1/1 1

Physics
Weighted Score

3.00 4.00 3.00 4.00 3.00 3.00 3.00 3.00 4.00

TOTAL
WEIGHTED
SCORE

13.00 12.67 12.50 11.67 11.67 11.67 11.50 11.17 15.00

Table B.2: Frameworks General Comparison





C

QUESTIONNAIRE OF THE PILOT TEST

Explainable Artificial Intelligence (XAI): Package delivery us-

ing drones (12 questions)

This questionnaire follows the sequences of scenarios shown in the simulation. In this

simulation, some drones work on behalf of you (the owner) to deliver packages of clients.

This questionnaire is built to collect opinions on the simulation tool. All data will be col-

lected and used adhering to the EU General Regulation on Data Protection.

* Required

Q0: Please choose your group*

Mark only one oval.

# Group A

# Group B

# Group C

C.1/ PARTICIPANT DETAILS

C.1.1/ GENERAL

Q1: Gender

Mark only one oval.

# Female

# Male

Q2: Age
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—————-

Q3: Level of English language*

Mark only one oval.

# A1

# A2

# B1

# B2

# C1

# C2

Q4: What is your prior knowledge about drones?*

Mark only one oval.

# 5 (Very good)

# 4 (Good)

# 3 (Neutral)

# 2 (Low)

# 1 (Very low)

Q5: Professional status*

Mark only one oval.

# Undergraduate Student (Skip to question Q5-1-1)

# Graduate (Skip to question Q5-2-1)

C.1.2/ UNDERGRADUATE

Q5-1-1: Year :

Mark only one oval.

# Year 1: Common Core (TC01/TC02)

# Year 2: Common Core (TC03/TC04)

# Year 3: Branch (BR01/BR02)

# Year 4: Branch (ST40/BR04)

# Year 5: Branch (BR05/ST50)

Skip to question Q6
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C.1.3/ GRADUATE

Q5-2-1: Years after graduating :

Mark only one oval.

# 1

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# 10+

Q5-2-2: Work Title :

Mark only one oval.

# PhD student

# Doctor

# Other: —————-

C.2/ FUNCTIONALITIES

Q6: Approximately how many packages were delivered in all the scenarios?*

—————-

Q7: Approximately how many problems (unexpected events) happened in all the

scenarios?*

—————-

Q8: What is the maximum number of drones that you think you can follow as an

operator?*

—————-
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C.3/ STATISTICAL ANALYSIS

Q9: Do you believe the only one time you watched the simulation tool working was

enough to understand it?*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q10: How do you rate your understanding of how the simulation tool works?*

Mark only one oval.

# 5 (Very high)

# 4 (High)

# 3 (Normal)

# 2 (Low)

# 1 (Very low)

Q11: Why do you think and explanation of the simulation tool is important?

Check all that apply.

2 I want to know what the AI just did.

2 I want to know that I understand this AI system correctly.

2 I want to understand what the AI will do next.

2 I want to know why the AI did not make some other decision.

2 I want to know what the AI would have done if something had been different.

2 I was surprised by the AI’s actions and want to know what I missed.

Q12: The explanation of how the simulation tool works in the last sequence has

too many details.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)
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Thanks for submitting a response. We appreciate your help.





D

QUESTIONNAIRE OF THE MAIN TEST

Explainable Artificial Intelligence (XAI): Package delivery using

drones (21 questions)

This questionnaire follows the sequences of scenarios shown in the simulation. In this

simulation, some drones work on behalf of you (the owner) to deliver packages of clients.

This questionnaire is built to collect opinions on the simulation tool. All data will be col-

lected and used adhering to the EU General Regulation on Data Protection.

* Required

Q0: Please choose your group*

Mark only one oval.

# Group A

# Group B

# Group C

D.1/ PARTICIPANT DETAILS

D.1.1/ GENERAL

Q1: Gender

Mark only one oval.

# Female

# Male

Q2: Age

231
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—————-

Q3: Level of English language*

Mark only one oval.

# A1

# A2

# B1

# B2

# C1

# C2

Q4: What is your prior knowledge about drones?*

Mark only one oval.

# 5 (Very good)

# 4 (Good)

# 3 (Neutral)

# 2 (Low)

# 1 (Very low)

Q5: Professional status*

Mark only one oval.

# Undergraduate Student (Skip to question Q5-1-1)

# Graduate (Skip to question Q5-2-1)

D.1.2/ UNDERGRADUATE

Q5-1-1: Year :

Mark only one oval.

# Year 1: Common Core (TC01/TC02)

# Year 2: Common Core (TC03/TC04)

# Year 3: Branch (BR01/BR02)

# Year 4: Branch (ST40/BR04)

# Year 5: Branch (BR05/ST50)

Skip to question Q6
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D.1.3/ GRADUATE

Q5-2-1: Years after graduating :

Mark only one oval.

# 1

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# 10+

Q5-2-2: Work Title :

Mark only one oval.

# PhD student

# Doctor

# Other: —————-

D.2/ FUNCTIONALITIES

Q6: Approximately how many packages were delivered in all the sequences?*

—————-

Q7: Approximately how many problems (unexpected events) happened in all the

sequences?*

—————-

Q8: What is the maximum number of drones that you think you can follow as an

operator?*

—————-
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D.3/ STATISTICAL ANALYSIS

Q9: The number of drones (10 drones) in the last scenario was not overwhelming

(too much to follow).*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q10: Do you believe the only one time you watched the simulation tool working

was enough to understand it?*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q11: How well the simulation tool helped you to understand how it works?*

Mark only one oval.

# 5 (Very much)

# 4 (Good enough)

# 3 (I’m neutral about it)

# 2 (Not good enough)

# 1 (Not at all)

Q12: How do you rate your understanding of how the simulation tool works?*

Mark only one oval.

# 5 (Very high)

# 4 (High)

# 3 (Normal)

# 2 (Low)

# 1 (Very low)

Q13: I am confident in the simulation tool. I feel that it works well.*
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Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q14: The outputs of the simulation tool are very predictable.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q15: The simulation tool is very reliable. I can count on it to be correct all the time.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q16: The simulation tool is efficient in that it works very quickly.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q17: I am wary of the simulation tool.*

Mark only one oval.

# 5 (I must stay and keep an eye on it)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)
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# 1 (I can leave it to work by itself)

Q18: Why do you think and explanation of the simulation tool is important?

Check all that apply.

2 I want to know what the AI just did.

2 I want to know that I understand this AI system correctly.

2 I want to understand what the AI will do next.

2 I want to know why the AI did not make some other decision.

2 I want to know what the AI would have done if something had been different.

2 I was surprised by the AI’s actions and want to know what I missed.

Q19: From the explanation, I understand better how the simulation tool works.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q20: The explanation of how the simulation tool works is satisfying.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)

Q21: The explanation of how the simulation tool works in the last sequence has

sufficient details.*

Mark only one oval.

# 5 (I agree strongly)

# 4 (I agree somewhat)

# 3 (I’m neutral about it)

# 2 (I disagree somewhat)

# 1 (I disagree strongly)
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Thanks for submitting a response. We appreciate your help.
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Figure E.1: Main test: Q13 (xS F = 2.83, xAF = 3.20, xAC = 3.40, medians are represented in the
figure)

Group of the participants

ACAFSF

T
h

e
 o

u
tp

u
ts

 o
f 

th
e

 s
im

u
la

ti
o

n
 t

o
o

l 
a

re
 v

e
ry

 
p

re
d

ic
ta

b
le

.

5

4

3

2

1
65

Figure E.2: Main test: Q14 (xS F = 3.63, xAF = 3.67, xAC = 3.20, medians are represented in the
figure)
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Group of the participants
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Figure E.3: Main test: Q15 (xS F = 2.83, xAF = 3.13, xAC = 3.30, medians are represented in the
figure)
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Figure E.4: Main test: Q16 (xS F = 3.20, xAF = 3.33, xAC = 3.17, medians are represented in the
figure)
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Figure E.5: Main test: Q17 (xS F = 3.40, xAF = 2.97, xAC = 2.90, medians are represented in the
figure)
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Figure E.6: Main test: Q20 (xS F = 3.10, xAF = 3.53, xAC = 3.73, medians are represented in the
figure)
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Schumacher,

Explainable Multi-Agent Systems through Blockchain Technology,

1st International workshop on eXplainable TRansparent Autonomous Agents and

Multi-Agent Systems, AAMAS, Montreal, Canada, pp. 41-58, Springer, Cham

(2019). URL: https://link.springer.com/chapter/10.1007/978-3-030-30391-4 3

INTERNATIONAL CONFERENCE/WORKSHOP WITHOUT PROCEEDINGS

• Yazan Mualla, Amro Najjar, Timotheus Kampik, Igor Tchappi Haman, Stéphane
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Traffic Simulation with Sarl,

European Forum for the SARL Users and Developers, (2019) [presented by me in

Leuven, Belgium]
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Haman, and Robin Vanet,

A Cyber-Physical System for Semi-Autonomous Oil&Gas Drilling Operations,

5th Workshop on Collaboration of Humans, Agents, Robots, Machines and Sen-

sors, IEEE Computer Society, pp. 514-519 (2019) [presented by me in Naples,

Italy]. DOI: 10.1109/IRC.2019.00107



248 APPENDIX F. PUBLICATIONS OF THE AUTHOR

• Yazan Mualla, Amro Najjar, Robin Vanet, Olivier Boissier, and Stéphane Galland,
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Title: Explaining the Behavior of Remote Robots to Humans: An Agent-based Approach
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Abstract:

With the widespread use of Artificial Intelligence (AI) systems,
understanding the behavior of intelligent agents and robots is
crucial to guarantee smooth human-agent collaboration since
it is not straightforward for humans to understand the agent’s
state of mind. Recent studies in the goal-driven eXplainable
AI (XAI) domain have confirmed that explaining the agent’s
behavior to humans fosters the latter’s understandability of
the agent and increases its acceptability. However, providing
overwhelming or unnecessary information may also confuse
human users and cause misunderstandings. For these reasons,
the parsimony of explanations has been outlined as one of the
key features facilitating successful human-agent interaction with
a parsimonious explanation defined as the simplest explanation
that describes the situation adequately. While the parsimony of
explanations is receiving growing attention in the literature, most
of the works are carried out only conceptually.

This thesis proposes, using a rigorous research methodology, a
mechanism for parsimonious XAI that strikes a balance between
simplicity and adequacy. In particular, it introduces a context-
aware and adaptive process of explanation formulation and
proposes a Human-Agent Explainability Architecture (HAExA)
allowing to make this process operational for remote robots
represented as Belief-Desire-Intention agents. To provide
parsimonious explanations, HAExA relies first on generating
normal and contrastive explanations and second on updating and
filtering them before communicating them to the human.
To evaluate the proposed architecture, we design and conduct
empirical human-computer interaction studies employing agent-
based simulation. The studies rely on well-established XAI
metrics to estimate how understood and satisfactory the
explanations provided by HAExA are. The results are properly
analyzed and validated using parametric and non-parametric
statistical testing.

Titre : Expliquer le comportement de robots distants à des utilisateurs humains : une approche orientiée-
agent

Mots-clés : Intelligence artificielle explicable, Systèmes multi-agents, Interaction homme-machine.

Résumé :

Avec l’émergence et la généralisation des systèmes d’intelligence
artificielle, comprendre le comportement des agents artificiels,
ou robots intelligents, devient essentiel pour garantir une
collaboration fluide entre l’homme et ces agents. En effet, il
n’est pas simple pour les humains de comprendre les processus
qui ont amenés aux décisions des agents. De récentes
études dans le domaine l’intelligence artificielle explicable,
particulièrement sur les modèles utilisant des objectifs, ont
confirmé qu’expliquer le comportement d’un agent à un humain
favorise la compréhensibilité de l’agent par ce dernier et
augmente son acceptabilité. Cependant, fournir des informations
trop nombreuses ou inutiles peut également semer la confusion
chez les utilisateurs humains et provoquer des malentendus.
Pour ces raisons, la parcimonie des explications a été présentée
comme l’une des principales caractéristiques facilitant une
interaction réussie entre l’homme et l’agent. Une explication
parcimonieuse est définie comme l’explication la plus simple et
décrivant la situation de manière adéquate. Si la parcimonie
des explications fait l’objet d’une attention croissante dans la
littérature, la plupart des travaux ne sont réalisés que de manière
conceptuelle.

Dans le cadre d’une méthodologie de recherche rigoureuse,
cette thèse propose un mécanisme permettant d’expliquer
le comportement d’une intelligence artificielle de manière
parcimonieuse afin de trouver un équilibre entre simplicité et
adéquation. En particulier, il introduit un processus de formulation
des explications, sensible au contexte et adaptatif, et propose
une architecture permettant d’expliquer les comportements des
agents à des humains (HAExA). Cette architecture permet
de rendre ce processus opérationnel pour des robots distants
représentés comme des agents utilisant une architecture de
type Croyance-Désir-Intention. Pour fournir des explications
parcimonieuses, HAExA s’appuie d’abord sur la génération
d’explications normales et contrastées, et ensuite sur leur mise
à jour et leur filtrage avant de les communiquer à l’humain.
Nous validons nos propositions en concevant et menant des
études empiriques d’interaction homme-machine utilisant la
simulation orientée-agent. Nos études reposent sur des mesures
bien établies pour estimer la compréhension et la satisfaction
des explications fournies par HAExA. Les résultats sont analysés
et validés à l’aide de tests statistiques paramétriques et non
paramétriques.
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