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General introduction 

Cold gas dynamic spraying or cold spraying is a newly developed solid-state powders 

deposition technique that allows conversion of powders into a solid coating on substrates. 

During the deposition process, metal powders are accelerated by high-pressure gas flow 

through a convergent-divergent de-Laval nozzle at very high velocities. They remain at a 

temperature below the melting point and impact on a solid surface that results in strong plastic 

deformation and thus a coating formation. Nowadays, cold spraying is widely used to prepare 

various functional coatings, to restore damaged metal components and recently to fabricate 

freestanding 3D metal components. Industrial robots are widely used due to their high stability 

and highly accurate motion. The robot offline programming technology allows for reducing 

burden and difficulties of programming, for improving the accuracy that makes the cold spray 

additive method viable for complex parts. 

Recently, both industrial and academic communities are paying more and more attention 

to cold spray additive manufacturing, especially for the direct manufacturing of soft metal 

components. In comparison with other additive manufacturing technologies, many advantages 

make it unique in fabricating freestanding metal components. For example, cold spray 

processes can deposit temperature-sensitive materials without phase transformation or grain 

growth. It also can be used for the fabrication of multi-material and gradient deposits, and its 

high production efficiency is expected to make breakthrough in the field of large parts rapid 

manufacturing. Today, the latest developments in the cold spray industry require more new 

methods and processes to improve its manufacturing accuracy, flexibility and reliability, to be 

more competitive. Therefore, the work of this thesis aims to research new process 

implementation to enhance cold spray additive manufacturing.  For that purpose, our work will 

mainly focus on robotized cold spraying processes, simulation, and planning under the 

following organization: 

The first chapter mainly introduces the cold spray technology including its basic principle 

and applications, and foremost, the basic information of industrial robots. Due to their high 

performance, the industrial robots have widely used in the field of CS to perform all kinds of 

spraying tasks. As cold spraying is currently extended to the manufacturing of complex 3D 

parts, it is necessary to develop an auxiliary system specifically to provide an ideal 
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spraying/deposition strategy. Developed for such a purpose, the RobotStudio™ tool with its 

software extension TST is introduced in this chapter. 

The second chapter proposes a concept of modular system for designing and implementing 

a new cold spray additive manufacturing framework. In this study, a new cold spray additive 

manufacturing system is developed based on the conventional cold spray system. At the same 

time, various different technology and application will be integrated into our current system. 

This chapter also focuses on decomposing the current cold spray additive manufacturing 

system into different modules to understand the physical and functional relationships between 

the key elements of the entire system. This physical and functional modularity is a useful to 

promote hybrid additive manufacturing processes. According to the different applications and 

purposes, the current cold spray additive manufacturing system is divided into five modules: 

spray module, robot module, in-situ measurement module, inter-process module and post-

process module. One of our major objectives is to investigate if the modular system is suitable 

to revolutionize the cold spray additive manufacturing method.  

In the next chapter (chapter 3), a new approach for cold spray process and coating thickness 

simulation will be developed. Generally, in addition to the development of coating structure 

and performance, the thickness distribution accuracy is also an important requirement 

particularly for the manufacturing of complex components by cold spraying. Indeed, meeting 

the requirements of coating thickness distribution is critical for both longevity and performance 

of the cold sprayed components. This chapter will address a development of simulation method 

to assess the coating thickness distribution during a cold spray deposition. Our approach will 

be based on a three-dimensional geometric model using a Gaussian distribution law. This model 

considers also the relative deposition efficiency depending on different robot kinematic 

parameters. The next is the implementation of the 3D geometric coating thickness model into 

the off-line programming software RobotStudio™ as a module of the software TST, so that it 

could be coupled with robotic trajectories and processing parameters to simulate coating 

deposition. The prediction capability of the model will be discussed through comparison with 

several experimental results.  

Chapter 4 investigates the development of stable layer-building strategy to enhance the 

molding ability of cold spray based on the system we develop in the previous chapter. In 

practice, a major difficulty of the cold spray deposition is the formation of triangle-like 

deposition profile that acts as reflexion surface and limits thereby the application of cold spray 

additive manufacturing. Therefore, a stable layer-by-layer building strategy is a major 
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milestone for producing complex 3D shapes in an additive way by cold spraying. Using the 3D 

geometric coating thickness model, a series of simulation verification will be carried out over 

a combination of different parameters. This work aims to find the suitable combination of 

parameters and they role in determining the layer geometry, and thus on the component built-

up process.  

The last chapter (Chapter 5) gives a restitution of the various conclusions that supports this 

method as a potential general additive manufacturing principle making the cold spray assisted 

by a 3D strategy model, a real layer-by-layer additive manufacturing process for various 3D 

complex shape. Current limitations will be also addressed with future prospects. Note that an 

appendix part provides some theoretical considerations related to topology and 3D geometric 

transformations we use for the coating simulation model. 
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1.1 Cold spray technology 

In the mid-1980s, a new spraying technique called cold-gas dynamic spraying or cold 

spraying (CS) was initially developed by a group of scientists from the Institute of Theoretical 

and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (ITAM of 

RAS) in Novosibirsk, Russia [1,2]. For the modern manufacturing industry, surface technology 

is important and necessary because it has specific abilities to provide corrosion protection, wear 

control, damage repair, fouling protection and temperature/oxidation protection, etc. The 

sprayed coating has excellence performance including structural homogeneity, high density, 

high purity, notable cohesive strength, and frequently moderate compressive residual stresses. 

As an emergent technology, CS has many advantages that makes it uniquely competitive among 

various thermal spraying technologies [1–4]. For example, being a non-thermal or low-

temperature process, CS allows spraying thermally sensitive materials without the risk of 

melting, oxidation, thermal decomposition, crystallization, grain growth, or phase 

transformations. In addition, the high speed and energy of sprayed particles can provide high 

deposition efficiency. Therefore, CS has been applied to prepare various functional coatings 

[2,5,6] and to restore damaged metal components [7–10] as well as to fabricate freestanding 

metal parts [9–12]. During the deposition process, the spray gun needs to be precisely 

controlled to achieve the desired coating thickness or the final shape of the deposit. Thus, 

industrial robots have been widely used in the field of CS due to their high performance, such 

as high accuracy, high repeatability, high flexibility, etc. 

1.1.1 Principle of cold spray 

Generally speaking, CS belongs to the wide family of thermal spray technology. As shown 

in Figure 1.1, due to its low gas temperature and high particle velocity, CS can be separated 

from other thermal spray processes [2,4]. Figure 1.2 shows a typical CS system which consists 

of high-pressure compressed gas sources, power sources, a powder feeder, a spray gun and an 

industrial robot. The gas source is separated into two different gas lines: one is fed to the gas 

heater as propellant gas and the other is sent to the powder feeder (carrier gas) to drive the 

powders into the nozzle. The propellant gas can be heated. The powder feeder can provide 

continuous and controllable feeding. During a spraying process, metal powders with a size 

distribution in between 1 and 50 μm are accelerated by high-pressure gas flow through a 
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convergent-divergent de-Laval nozzle to reach a high velocity (500–1200 m/s) [2,4]. Particles 

remain at a temperature lower than the melting point and then impact against a solid surface to 

form a coating [2]. The industrial robot arm is used to perform the motion of the spray gun in 

order to achieve controllable, safe and accurate spraying path. 

 

Figure 1.1 Different thermal spraying techniques with different particle velocity and gas 

temperature. 

There are two types of operating parameters in CS: the process parameters and the 

parameters related to the robot motion. The process parameters generally include the feedstock 

data and the gas condition [13–15]. These parameters govern the in-flight behaviour of the 

particles as well as their deformation during the collision onto the substrate. The second 

category of parameters refer specifically to the kinematic parameter of the spray gun which is 

in fact controlled by the industrial robot via a robot trajectory programming [16–20]. In the 

following section, these parameters will be illustrated in details. 
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Figure 1.2 Schematic diagram of the CS system. 

1.1.2 Spraying parameters in cold spray 

Many publications have described the relationship between the spraying parameters and 

the coating characteristics as well as the coating structures [1,4,14]. Only when the pre-set 

spraying parameters permit the sprayed particles to reach the material-related critical speed, 

the particle/substrate or interparticle interfaces form a dense coating [21,22]. 

Generally, the propellant in CS can be air, argon, nitrogen, or helium. The gas nature has a 

particularly important role on the particle acceleration. Different gas sources affect the particle 

acceleration and impact velocity due to their different average molar mass [23–25]. For 

example, helium gas leads to higher increases in the particle velocity due to its lower molar 

mass [23]. Normally, the gas temperature and pressure refer to the parameters of the propelling 

gas. In CS, the maximum gas temperature is about 900°C [26]. The temperature setting is 

mainly determined according to the sprayed material. For example, the spraying temperature 

for pure copper powder is generally set in between 400-600 °C [27,28].  

Since the temperature of the working gas is significantly lower than the melting point of 

the material, there will be no oxidation and phase change. The optimal temperature setting can 

not only conducive to the increase of the particle speed and the deposition efficiency, but also 

minimizes the effect of high temperatures on the material performance and the substrate. The 
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working gas pressure of CS is generally set in between 1.5~3.5MPa [24,26]. The working gas 

expands from the high pressure at the nozzle inlet to normal pressure, resulting in a supersonic 

airflow which varies with the nozzle structure and size, working gas type, gas pressure and 

temperature, powder particle size and density and other factors.  

1.1.3 Kinematic parameters in cold spray 

As mentioned above, industrial robots are widely used in field of CS due to their high 

stability and high accuracy of manipulation and motion, leading to the fact that the coating 

quality is affected directly by the robot kinematics [17–20]. Therefore, the CS kinematic 

parameters are actually a series of parameters manipulated and controlled by the robot. Figure 

1.3 illustrates the general process of spraying gun motion, and the involving kinematic 

parameters are listed below: 

o Spray trajectory 

o Relative speed between nozzle and substrate 

o Spray distance 

o Spray angle 

o Scanning step 

o Over-length 

 

Figure 1.3 Kinematic parameters in the cold spraying process. 
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1.1.3.1 Spray trajectory 

The spray trajectory, also called spray path, is a point set of spraying targets that are 

connected to each other by robotic programming. The aim of spray trajectory planning is to 

enable the coating to cover the entire object surface uniformly. Spray trajectory not only 

influences the coating thickness and distribution, but also the property of coating, especially 

the coating anisotropy[16,29–31]. Therefore, it is very important to plan the spraying path 

before spraying. With the increase of complex workpiece geometry, path programming has 

evolved from the initial manual manner to the current computer-aided automatic programming 

based on different algorithms [16,18,32], especially the usage of robot offline programming 

technology that improves the capability and reliability of path planning. 

1.1.3.2 Nozzle traverse speed 

The nozzle traverse speed is the moving speed of the robot in relation to the substrate. The 

relative moving speed between the nozzle and the substrate is referred to as nozzle traverse 

speed. The nozzle traverse speed equals to the moving speed of the robot. It is one of the most 

important parameters that can influence the mass distribution and the coating thickness 

[19,20,33]. The faster the nozzle travels, the fewer the deposited particles. Correspondingly, 

the coating thickness will also decrease in a certain period of time. In addition, the slower the 

nozzle moves, the longer the heating source exposition on the same area of the substrate surface, 

that leads to the deterioration of the coating quality because of local over-heating and residual 

stress [34–36]. 

In order to obtain a desired coating with uniform thickness and performance, appropriate 

and stable nozzle traverse speed is required. Generally, the effective moving speed of a robot 

during a deposition cannot be maintained at the predefined value due to the factor of inertia 

and motor performance. For this reason, influences of the inertia of the nozzle setup and 

performance limitation on the robot speed should be eliminated in spraying processes. 

Nowadays, some studies have been performed to improve the stability of robot performance 

by kinematic optimisation [37,38]. 

1.1.3.3 Spray distance 

The spray distance or standoff distance is the distance in between the nozzle and the 
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substrate surface, which will affect the particle final states reaching the substrate, and thereby 

the coating thickness and deposition efficiency [18]. 

Generally speaking, there exists a critical velocity of particle for a given material. Only the 

sprayed particles reaching a velocity higher than this critical value can adhere on the substrate 

to form a coating. As shown in Figure 1.4, the spray distance will directly influence the flight 

duration of particles from the nozzle exit to the substrate, and definitely affects the acceleration 

of particles [33,39]. There is an optimum distance for an optimum deposition efficiency [3,33]. 

Therefore, an appropriate value of spray distance should be defined and keep constant during 

the operating process. 

 

Figure 1.4 Influence of spray distance. 

1.1.3.4 Spray angle 

The spray angle is the angle between the nozzle and the surface of the substrate (Figure 

1.5). Generally, in the CS process, the nozzle should be kept perpendicular to the substrate 

surface to have a maximum deposition efficiency. In Li.et al.'s report [40], the spray angle has 

little effect on the deposition efficiency in the angle range of 80-90°.  
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Figure 1.5 Schematic of spray angle. 

In any case, it is certain that the inclined spray angle increases the particle loss and 

decreases the deposition efficiency due to the particle rebound during the impact on the 

substrate. The porosity of the coating will increase if the spray angle decreases from 90°. 

Therefore, the most active manner is that the spray angle should be kept at about 90°, that is 

easier to achieve for a plane surface. However, if the robot axes will reach their rotation limit 

at a certain point on the workpiece, especially for the workpiece with a complex shape, the 

robot has to compromise the spray angle to obtain a smoother scanning speed and coating 

quality. This has been proved to be feasible [40]. The spray angle between 90° and 45° is 

considered acceptable by striking a balance between deposition efficiency and the coating 

quality. 

1.1.3.5 Scanning step 

The scanning step refers to the interval between two successive scanning tracks when a 

coating is deposited by a multi-track trajectory (Figure 1.6). It is the key factor for the flatness 

and the thickness of a coating. The optimal value of the scanning step can result in a uniform 

coating. If the scan step is too small, the coating surface roughness will become rather low. If 

the scan step is too large, the flatness of coating will be decreased and the coating thickness 

distribution will become uneven. Besides, different scanning steps will lead to the different 

distribution of the track-to-track profile, thereby affecting the distribution of residual stress and 

pores [41,42]. 
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Figure 1.6 Schematic of scanning step. 

1.1.3.6 Over-length 

Generally, in the spraying processes, a round-trip alternating path is always used to scan 

the entire surface, such as the commonly used zig-zag path, as shown in Figure 1.7. Here, a 

part of the trajectory that exceeds the boundary of the workpiece is a parameter called over-

length. When changing the scanning direction in between two successive passes, the robot will 

go through a process of deceleration and re-acceleration in order to overcome its own inertia 

and the weight of the nozzle. Therefore, it is necessary to reserve a certain over-length to allow 

the robot to re-reach the predefined speed to ensure a constant robot speed in the surface area 

of the substrate. It is required to avoid unnecessary waste of materials by choosing an 

appropriate value of over-length. 

 

Figure 1.7 Commonly used zig-zag path in CS. 
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1.1.4 Applications of cold spray 

As mentioned above, CS is a newly developed solid-state deposition technique that allows 

conversion of powders into a solid coating structure without local melting, phase 

transformation, grain growth, etc. Nowadays, CS has been widely applied as a coating 

technology in a broad range of industries, including aerospace, automotive, energy, medical, 

marine and other fields [2,9,10] .  

CSed deposits provide effective protection against high temperature, corrosion, erosion, 

oxidation and chemicals [4]. For example, the CSed Al-5% Mg coating is a viable corrosion 

coating on ZE41A-T5 magnesium [43]. The Ni-20Cr cold-spray coating is very useful in 

developing high-temperature oxidation resistance for T22 and SA 516 boiler steels [44]. With 

the development of CS technology, the fundamentals of the process are now better understood 

and more available equipment has been developed to better perform this manipulation. Except 

for preparing various functional coatings, CS can be used for reconstruction or repair of 

damaged metal components or to fabricate free-standing metal components [9,10,45]. In the 

next parts, CS based repairing and additive manufacturing will be introduced respectively. 

1.1.4.1 Cold spray repair 

With the rapid development of modern industrial sectors, many long-term important 

components suffer from varying degrees of damage due to corrosion, collision, wear, fatigue, 

or other reasons. They have to be removed from service. However, replacing or producing a 

new part will likely lead to high costs and time-consuming, that would encourage companies 

to renew the damaged components instead of replacing them. As a result, developing 

economically sustainable and highly reliable maintenance services and repair strategies are 

paid more attention.  

Nowadays, there are several types of metal manufacturing technology that have been used 

for the remanufacturing of parts, like laser metal deposition (LMD) [46,47] and selective laser 

melting (SLM) [48,49], as well as laser beam build-up welding [50,51], etc. However, among 

these techniques, high-power electron beams or high-frequency laser radiations are used for 

heating or melting materials but can lead to unsatisfactory results such as oxidations, grain 

growth, residual thermal stresses, and phase transformations. 

Except for preparing various functional coatings, CS can be used for reconstruction or 
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repair of damaged metal components, especially in the aircraft industry. Compared to other 

repair methods (laser beam build-up welding, metal inert gas welding, and laser cladding), CS 

enables the recovery of defective areas without thermally affecting the base material and is 

proven as a cost-effective repair process [9,10]. To date, it has been successfully applied to 

repair various damaged components due to its capability to avoid any thermal damage to the 

underlying substrate material, and unique ability to retain the original properties of the 

feedstock powder.  

Typical examples are restorations of a mechanically damaged gas turbines of an aircraft 

[52], reconditioning the housings of oil pumps on aircraft engines [53], refurbishment of a 

damaged aluminium hydraulic valve body [54] and worn aluminium mold [45], etc. In a recent 

work, a special spiral trajectory was developed for repairing damaged parts with cold spray 

[29]. Figure 1.8 shows this spiral trajectory and a repaired coupon. The specific trajectory is 

composed of two opposite spirals, one for entering and the other exit, which ensures the stable 

movement of the robot during repair, and thus provides a uniform coating. This method can 

match the coating with the original damaged defect shape to avoid excessive material 

deposition and to reduce post-processing work. In this work, the spiral trajectory included 

various nozzle traverses speed in inverse proportion to the crater depth to produce a 

homogenous deposit and to save feedstock. 

 

Figure 1.8 (a) Nozzle traverse speed distribution along the spiral trajectory; (b) The original 

and CS repaired damaged workpiece. 

1.1.4.2 Cold spray based additive manufacturing 

Additive manufacturing (AM), also called rapid manufacturing or 3D printing, is the 

general term for a series of technologies that build 3D objects by adding materials layer by 

layer (whether the material is plastic, metal, concrete or human tissue). In 1981, the Nagoya 
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Municipal Industrial Research Institute came up with an idea of 3D printing inspired by a 

photo-hardening polymer technology [55]. Note that the term 3D printing began to be used 

around 1993 when the Massachusetts Institute of Technology developed the first powder bed 

process using inkjet print heads [56]. 

AM uses the gradual accumulation of materials to manufacture solid parts, which is 

different from traditional material removal-cutting technology. What AM technology has in 

common is the use of computers, 3D modeling software (computer-aided design or CAD), 

special machinery and equipment, and layering materials. Once the CAD sketch is generated, 

the AM device reads the data from the CAD file and lays down or adds successive layers of 

liquid, powder, sheet material or other materials in a layer-by-layer manner to create a 3D 

object [57]. As the development of AM, technology practitioners have put forward the concepts 

of narrow and generalized AM (Figure 1.9 [58])). Narrow sense AM is a series of technologies 

characterized by the combination of different energy sources and CAD/CAM technology, 

layering and accumulating materials, such as selective laser melting (SLM) [59,60] and 

selective laser sintering (SLS) [61], as well as wire and arc additive manufacturing (WAAM) 

[62], etc. The generalized AM is a relatively broad technology group, which is based on the 

accumulation of materials and aims to directly manufacture parts of various sizes. Such a 

typical process is thermal spraying, physical vapor deposition (PVD) [63] or electro-chemical 

deposition [64], etc. In addition, according to the type and method of processing materials, AM 

can be divided into metal forming, non-metal forming, and bio-material forming. 

 

Figure 1.9  AM in the broad and narrow sense [58]. 
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Nowadays, metal-related AM technology has become the focus of the global industry. CS 

has attracted much attention because of its great potential in solid-state forming metal 

components. In fact, this technology now is regarded as a potentially competitive AM due to 

the ability to build 3D objects when the CS gun is attached to a robot. Nowadays, with the 

development of technology, it has gradually occupied its place in the field of AM. In 

comparison with other AM technologies, many advantages make it unique in fabricating 

freestanding metal components. For example, CS processes can deposit temperature-sensitive 

materials without phase transformation or grain growth. Moreover, CS can be used for the 

fabrication of multi-material and gradient deposits, and its high production efficiency is 

expected to make breakthrough in the rapid manufacturing of large parts. To date, some 

companies or research institutions have intensively invested in the CSAM process and have 

achieved various results. For example, General Electric company (GE) builds large amounts of 

components for aviation’s jet engines by using the CSAM system. They also used two robots 

to produce large metal components for the first time, where one robot held the component and 

moved it to a precise position, while the other one held the spray gun to spray materials on the 

component [65]. Titomic company has adopted the CS process to spray titanium or titanium 

alloy materials onto a scaffold to produce a load-bearing structure [66]. There is no doubt that 

CSAM will be more widely used in the field of direct metal manufacturing and will eventually 

develop and innovate in the direction of commercialisation. 

All the CS applications, especially CS based repair and AM, require precise control of the 

kinematic parameters during the spraying process. These parameters not only ensure the 

feasibility of CS based applications, but also the quality of the CSed deposits, including 

geometry and mechanical properties. Therefore, the application of industrial robots in CS is 

particularly important. The next section will introduce industrial robots in detail. 

1.2 Industrial robot 

Generally, a robot is a machine capable of carrying out a complex series of actions 

automatically. It is often used to replace humans to complete a certain task, especially in those 

repetitive and dangerous tasks that humans are not suitable for, or are unable to do because of 

the size limitations or even those extreme environments such as outer space or deep ocean. 

Nowadays, many different kinds of robot have been developed affecting the way people live 

and work, such as industrial robots, mobile robots, collaborative robots, biomorphic robots, 
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military robots and so on. Among these categories, industrial robots are currently the most 

widely used and most mature one.  

Since the United States developed the world's first industrial robot in 1962, industrial robot 

technology and its products have developed rapidly, and are now widely adopted in the field of 

industrial manufacturing and processing [67]. Typical applications of industrial robots include 

welding, painting, packing, assembly, stacking, product inspection and testing, which are 

accomplished with high efficiency and precision. As long as the process is well programmed 

and prepared, productivity can be improved largely by robots.  

In the field of CS and thermal spraying, a spray gun is usually attached to a robot's end-

effector to deposit materials on the substrate surface. Stable and precisely control on CS 

parameters is important and necessary for a desirable coating. Robot-assisted CS system allows 

the precision and stability performance that manual operating cannot meet. Last but not least, 

industrial robots can protect operators without potential harm resulting from the extreme 

working environment such as high temperature, noise, dust.  

Commonly used industrial robots include FUNUC Robots, MOTOMAN Robots, ABB 

Robots and KUKA Robots, etc. In this thesis, all spraying processes are performed by an ABB 

IRB2400-16 robot. In this section, Multi-axis robot system, as well as its basic performance, 

will be introduced. 

1.2.1 Multi-axis robot system 

The Multi-axis robot system is an automatically controlled, reprogrammable, multipurpose 

manipulator with three or more axes. Generally, the number of axes for a simple manipulator 

such as a CNC machine is in between 2 and 3, and in between 3 and 6 for the programmable 

robots [67]. Besides, the degree of freedom is equal to the number of axes. Therefore, multi-

axis robot system with greater number of axes can perform more complex actions and tasks. 

Figure 1.10 shows a typical 6-axis robot system which mainly consists of two parts including 

the manipulator and its controller system.  
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Figure 1.10 ABB IRB 2400 consisting of (a) manipulator with 6 axes and (b) controller 

system. 

The manipulator is the six-axis robot body. As shown in Figure 1.10 (a) [68], Axis 1, 

located at the robot base, allows the robot to rotate from left to right; Axis 2 is the axis powering 

the movement of the entire lower arm, which allows the lower arm of the robot to extend 

forward and backward; Axis 3 allows the upper arm to raise and lower as well as to reach 

behind the body, extending the robot's work envelope; Axis 4 allows rotating the upper arm in 

a circular motion; Axis 5 is responsible for the pitch and yaw motion, allowing the wrist of the 

robot arm, to tilt up and down; Axis 6 is responsible for a twisting motion. It allows rotating 

freely with a capacity of more than a 360-degree rotation in either clockwise or counter-

clockwise direction. There is a flange on the sixth axis, which can be used to attach tools like 

welding devices, spray guns, grinding and deburring devices, grippers and so on. 

In addition, the controller system contains a control cabinet and its electronics, which are 

mainly used to control the manipulator, external axes and other peripheral equipment, etc. As 

shown in Figure 1.10 (b), a teach pendant connected with the control cabinet is used to display 

robot status, to control and program robot motion. Operators can use the joystick or buttons on 

the teach pendant to move the robot with a defined speed. Besides, robot programs prepared 

on the PC can also be synchronized to the robot control system via the disk drive shown in 

Figure 1.10 (b), and displayed on the screen of teach pendant. In the following section, basic 

performances of multi-axis robot system will be presented in detail. 
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1.2.2 Robot technical specification 

1.2.2.1 Degree of freedom 

Degree of freedom refers to the freedom of movement of a rigid body in three-dimensional 

space. Specifically, the body is free to change its position forward or backward (surge), up or 

down (heave), left or right (sway) in three perpendicular axes, combined with changes in 

orientation through rotation about three perpendicular axes, often termed yaw (normal axis), 

pitch (transverse axis), and roll (longitudinal axis) [66]. In a mechanic context, the number of 

degrees of freedom is equal to the total number of independent displacements or aspects of 

motion, and can also be regarded as the number of axes. A typical industrial robot used in CS 

or in thermal spray has a six degree of freedom (Figure 1.10). 

1.2.2.2 Robot coordinate systems 

The coordinate system is important for any industrial robot to perform a proper motion. 

Generally, the coordinate system as defined by geometry includes Cartesian Coordinate System, 

Polar Coordinate System, Cylindrical, or Spherical Coordinate Systems. Industrial robots with 

6 degrees of freedom mostly use the Cartesian Coordinate System. Figure.1.11 shows five 

coordinate systems used in robot system, including world coordinates, base coordinates, tool 

coordinates, user coordinates and object coordinates [69]. The detailed definitions are as 

follows: 
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Figure 1.11 Coordinate systems of industrial robot. 

The world coordinate system defines a reference to the floor which is the starting point for 

the other coordinate systems. People often use the origin of the robot base as world coordinate 

system. Therefore, the world coordinate system generally equals to the base coordinate system. 

Base coordinate system is the base framework attached to the base of the robot. Itdefines 

the position of the base relative to the world coordinate system.  

The tool coordinate system is freely definable. It is attached to the end of arm of tooling. 

When no tool has been installed on the robot, the origin of the coordinate system is at the center 

of the robot's sixth axis flange. The origin of the tool coordinate system is called Tool Center 

Point (TCP) and is used for tools. In CS applications, especially in AM or repair, TCP needs to 

be redefined, and its position is usually defined at the impact point on the substrate, which is 

located on the projection line from the nozzle outlet, considering the pre-set spray distance. 

Besides, there are two different programming ways for the use of TCP. If the spray gun is 

attached to the robot, TCP will be defined as being held by the robot and moving with the robot 

during the spraying process. If the spray gun is fixed at an appropriate position while the 

substrate or the formed part attaches to the robot, TCP will not be defined as being held by the 

robot and kept stationary at the defined position. 
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The user coordinate system specifies the position of a fixture or a workpiece manipulator. 

It can be defined as a movable user coordinate system if a work object is placed on an external 

mechanical unit. The object coordinate system specifies how a workpiece is positioned in a 

fixture or a workpiece manipulator. 

1.2.2.3 Working envelop 

A robot's work envelope refers to the working volume which can be reached by the center 

of the end effector of the Robot arm. In other words, it is the maximum overall area within 

which the robot arm can move. Figure 1.12 displays the working envelop of ABB IRB 2400/16 

robot [68]. This shape is created when the robot reaches forward, backward, up and down. So, 

the robot's range of movement depends on the different robot properties such as length/diameter 

of each joint component. What is more, the working envelope is important for a particular 

application. For CS applications, the trajectory and the robot's motion should be controlled 

within the limits of the working envelop. 

 

Figure 1.12 Working envelop of ABB IRB 2400/16 robot. 

1.2.2.4 Payload 

Robot payload or carrying capacity is the weight a robot arm can lift, that is based on the 

size of the robot and the power of the actuator. Therefore, it is very important to consider the 

robot application when determining the maximum payload. For safety reasons, the total weight, 
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including the tools installed on the end effector of the robot cannot exceed the maximum 

payload of the robot. It should be noted that the maximum payload is not a constant value and 

depends on the size of the tool, or exactly, the position of the tool's gravity centre.  

As shown in Figure 1.13, it illustrates the maximum weight permitted for load mounting 

on the mounting flange at different positions of a robot IRB 2400/16 from ABB Company [68], 

where L is the distance in X-Y plane from Z-axis to the gravity centre. The maximum own 

moment of inertia on the total handling weight also should be considered. These parameters 

can be found in advance in the corresponding Robotics Technical Manual. 

 

Figure 1.13 Payload of ABB IRB 2400/16 robot. 

1.2.2.5 Speed 

The robot speed mentioned here refers to the linear speed of the TCP moving around in the 

world coordinate system frame. Similarly to the other robot specifications, the robot speed is a 

very important characteristic for evaluating the robot performance, depending on the size, 

power, and other features of the robot. Ordinarily, the robot speed and the rotation speed of 
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each axis have their limits. If the distance for acceleration or deceleration is not enough, the 

robot could not reach the predefined speed. However, the constant or smooth motion of the 

robot is very important for lots of applications including spraying, painting and welding, etc. 

The robot speed that deviates from the predefined value cannot ensure product quality. 

Therefore, it is very important to ensure a constant robot speed concerning robot kinematics. 

Actually, in CS, different nozzle traverse speeds are applied according to the desired 

coating thickness and the specific application. For example, the nozzle traverse speed is chosen 

from 40 mm/s up to 200 mm/s [33] generally to achieve a full coating deposition. Sometimes, 

a nozzle traverse speed [70] as high as 500 mm/s is used to obtain the single-particle deposition 

on the substrate, which is used for the study of bonding mechanism and particle deformation 

behavior. However, during CS, the path direction constantly changes to cover the entire surface 

of the substrate. Especially when performing some complex spraying path, the robot speed 

cannot maintain a constant predefined speed. As a result, it is essential to optimize the robotic 

kinematics parameters or to find a compromise between robot speed and spray angle. 

1.2.2.6 Joint motion 

The desired angles or positions of the end-effector motion is achieved by moving all the 

robot joints. The motion state of each axis of the robot can be described through three indicators: 

joint position, joint velocity, and joint acceleration. For the joint position, it represents the value 

of axis rotation at a given time, with a unit of degree. Normally, each axis of the robot has its 

corresponding rotation limit. Table 1.1 lists the axis motion specification of robot ABB IRB 

2400/16 [68]. It can be found that axis 6 permits the largest range of motion, while axis 3 

permits the smallest range. The joint position of each axis decides the TCP position and 

orientation within the working envelop. A smooth changing of the joint position within its 

rotation limit is conducive to a better axis motion performance. Otherwise, it will cause the 

axis servo motor to spend more energy to complete the robot motion, that will cause more 

fluctuations of the TCP speed. 

The joint speed is the angular speed of an axis with a unit of degree per second (°/s). It is 

defined by the derivative of the joint position with respect to time. As another variable to 

evaluate the axis performance, the joint speed represents how fast an axis rotates, whose limit 

is based on the servomotor performance. As shown in Table 1.1, each axis of the robot has its 

corresponding joint speed. And axis 6 has the maximum axis speed, that is, this axis has the 
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most sensitive motion performance. Similarly, a sudden changing of the joint speed will 

increase the load on the control system and will probably reach the limit of the drive system. 

Table 1.1 Axis motion specification of robot ABB IRB 2400/16. 

Axis Range of 

Movement,  

Maximum axis 

speed, /s 

Maximum axis 

acceleration, /s² 

1 +180 to -180 150 298.734 

2 +110 to -100 150 84.959 

3 +65 to -60 150 356.740 

4 +200 to -200 360 638.927 

5 +120 to -120 360 637.599 

6 +400 to -400 450 830.221 

In addition. the joint acceleration is to evaluate how joint speed varies, with a unit of °/s2. 

Generally, the greater the acceleration of the joint, the faster the response of the axis to the 

corresponding command, and the higher the accuracy. However, the servo motor must provide 

greater power to obtain the larger joint acceleration that is required to achieve the desired speed, 

and this has a certain impact on the mechanical longevity of the system. In other words, lower 

joint acceleration or sustained joint acceleration can reduce mechanical wear. Moreover, the 

three indicators of the joint are related to each other. In order to improve the robot performance 

and maintain the TCP speed, it is important to make sure that all the joint positions are within 

limits. Besides, the joint speed of all axes is constant or smoothly changes. 

1.2.3 Robot programming 

Compared to traditional machines, the main advantage of industrial robots is their 

programmability. Robots can perform arbitrary sequences of predefined motions. In CS 

applications, the main task of the industrial robot is to execute the spraying trajectory with high 

precision. The planning and generation of the spraying trajectories are based on the shape of 

the workpiece to be sprayed and different operating parameters. Thus, an efficient and proper 

programming method is necessary for trajectory generation and post-analysis.  

Currently, the methods of robotic programming involve the on-line teaching [71] and off-

line programming [16,19]. The choice of the method to use mainly depends on the type and 
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complexity of the project. Most robot programming uses an online teaching method, which is 

appropriate and efficient for certain simple tasks. However, for those complex movements that 

require higher accuracy, offline programming should be used to define the robot's movement 

in order to perform tasks that cannot be accomplished by on-line teaching method. In this 

section, these two methods of robotic programming will be presented. 

1.2.3.1 On-line programming technique 

Industrial robots generally consist of three parts: a controller, a robot arm, and a teach 

pendant [67,68]. The teach pendant is the remote controller of the robot, which is equipped 

with a user operation interface software and buttons, moving handles, touch screen, etc. The 

operator controls the robot to complete the specified actions through these human-computer 

interaction functions. This process is called online programming or teaching programming. 

Traditionally, it is the most commonly used robotic programming method in most industries.  

In general, the tool and its assembly are first installed on the end-effector of robot (wrist). 

A Tool Center Point (TCP) should be defined based on the tool and the task, that is usually 

located at the end of the tool or at the point of contact. The operator uses the manual control on 

the teach pendant to control the robot and moves the TCP to the desired position, and then 

stores the information of the position in a series of motion commands (including the position 

and orientation of the TCP). After storing all target points and robot motion commands, the 

corresponding trajectory program can be then tested. It is worth mentioning that industrial 

robots have good position repeatability, that is, after teaching, the robot can run the same 

program repeatedly, and the accuracy of returning to the same spatial position point can reach 

the level of ten microns to hundreds of microns. 

The advantages of this programming method are its low learning cost and easy use. In the 

process of online programming process, operators are required to perform on-site operations in 

the working unit of the robot. However, since this method requires many manually operated 

robot movements, the programming process will be tedious and time-consuming. Depending 

on the complexity of the task, this may take days or even weeks. In addition, the robot needs 

to leave the production line during online programming so the production will be interrupted.  

Generally, online robot programming requires experienced engineers to debug on-site and 

run the program repeatedly to achieve the desired effect. For CS, the working range of the spray 

gun, the nozzle travel speed, the spray distance and the spray angle, etc, need to be considered 
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for the programming. However, for tasks that require high complexity and accuracy as well 

asrepeated modifications, the online programming method may not be suitable. Thus, the next 

section will introduce the second programming method, called offline programming method, 

which aims to handle complex programming tasks. 

1.2.3.2 Off-line programming technique 

Robot offline programming refers to "virtual" programming of the robot on the computer 

(PC) through related software tools [72,73]. Programmers need to use CAD models to offer a 

more scientific programming strategy. This process includes creating CAD models, robot path 

planning, creating motion programs, and robot motion simulation. When using this method for 

programming, there is no need to stop the robot in production, so it will not hinder the 

production operations.  

With the development of robot technology and the continuous expansion of its application 

fields, offline programming technology has gradually become a popular programming method, 

which is mainly used to complete some complex programming tasks. Currently, this technology 

has been widely used in welding, laser cutting, thermal spraying, CNC machining and other 

fields, to deal with some complex programming tasks. In conclusion, the robotic off-line 

programming technology provides a complete solution for industrial robots, from trajectory 

generation, parameter selection to process simulation and trajectory optimization. The 

trajectory of the robot can be generated by using the geometric data of the workpiece to ensure 

the accuracy of the trajectory, and at the same time provides more optimization strategies while 

reducing also the occurrence of collision accidents. 

Robot offline programming technology is even more essential in CS application. First of 

all, an accurate and reasonable spray trajectory is a necessary condition for ideal coatings. The 

robot offline programming technology can provide optimized spraying path and reliable 

programming [16,19]. In addition, for complex shapes, online programming is difficult to 

complete with the correct definition of the trajectory point. During the spraying process, it must 

ensure that the spraying direction is perpendicular to the surface of the workpiece, and at the 

same time it must ensure also that the coating can evenly cover the entire surface of the 

workpiece. Offline programming is an accurate programming method based on the CAD model. 

This allows the robot to easily adjust the tool operation direction and the starting pose of the 

robot to avoid the singularity state and obtain the most optimized path. 



Chapter 1: Introduction 

 

24 

 

In addition, CS is not only used to prepare various functional coatings on the surface of 

various complex parts as a coating technique, but also to repair various damaged metal 

components as a repair technology, and to fabricate freestanding metal parts as an AM 

technology. Since many applications are no longer just a process of producing simple coatings, 

Computer-aided design (CAD) and Computer-aided manufacturing (CAM) are needed to 

provide the ideal spray strategy, including generating trajectories, simulating the process and 

collision detection. Robot offline programming technology can be used as a new production 

capacity and modernization application to provide desirable solutions in the process. The next 

section will introduce application software used for offline programming. 

1.3 Robot off-line programming software  

Robot offline programming technology requires the application of related software systems, 

called robot offline programming software [72]. Many robot manufacturers have developed 

their own robot offline programming systems compatible with their robots. The software 

operator can create a three-dimensional virtual scene of the entire actual workstation and uses 

the related functions provided by the software to accomplish many programming tasks that 

cannot be completed by online programming. As shown in Figure.1.14, this is a typical case of 

cooperation between multirobot using offline programming technology. 

Figure 1.14 An example of robot cooperation using robot offline programming software. 

Nowadays, there is various robot offline programming software used in the world. For 

example, RobotStudio™ is a powerful off-line programming software developed by Asea 
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Brown Bovrie Ltd (ABB) that enables very realistic simulations of robot motion[69]; 

RobotMaster [74] is an offline programming software developed by Hypertherm Robot 

Software Co that is compatible with most robot brands on the market, including KUKA, ABB, 

Fanuc, Motoman, Panasonic, etc. and integrates advanced functions including robot 

programming, simulation and code generation functions. In the following section, we will 

introduce RobotStudio™, which is the offline programming software used for the studies in 

this thesis. 

1.3.1 RobotStudio™ 

RobotStudio ™ is a commercial software provided by ABB company. It is specifically 

developed for performing robotic tasks including programming, trajectory simulation, and 

collision detection, etc. RobotStudio™ is based on ABB Virtual Controller technology, which 

is the same as a software embedded and running in real robots [69]. The technique makes it 

possible to graphically create a virtual robotic site like the real site. Therefore, users can use 

the software to specify the robot's motion, automatically form executable code and then 

synchronize it to the actual robot. RobotStudio ™ provides the ability to design the robot 

program in a computer with a learning programming method. The advantages of RobotStudio 

™ are as below: 

All types of robot models of ABB products are available in the Robot system library. 

Commonly used geometric models such as STL, IGES, STEP, ASCII, ACIS and CATIA 

can be imported directly into RobotStudio ™ as digital components for modeling. 

Robotic programming and simulation including the detection of collisions in the graphic 

environment ensure the safety of the operator and the equipment. 

The program is designed and created in a computer so that it can be prepared in advance 

even though the robot is still in production. 

RobotStudio™ provides an interface for users to personalize development according to 

specific requirements. 

Figure 1.15 shows the general process of programming using RobotStudio™, which is 

suitable for various industrial applications, including CS.  

• Generally, the first step is to establish a virtual workstation with the same configuration 

as the actual spray shop, including the same type of robot, spray gun and tools, and the 
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same placement between the various elements. The advantage of the virtual robot 

workstation is that it can truly reflect the actual spraying process. In addition, it is 

convenient to change the spraying procedure at any time and observe whether the 

various components interfere with each other, thereby preventing collisions between 

the equipment effectively.  

• Then, the CAD model of the workpiece to be processed is imported into the 

corresponding virtual robot workstation and is placed in the operation position.  

• After that, a tool coordinate system should be defined, known as the tool centre point 

(TCP), to specify the tool’s centre point position and its orientation. 

• Then, a workpiece coordinate system, also called workobject, is used to define 

workpiece origin and coordinate orientation. Each position is specified in the 

workobject coordinate. This means that even if a fixture or workpiece is moved, only 

the workobject coordinate system needs to be redefined, then all the defined points 

will be revised accordingly. Besides, if a tool is replaced, the original program can still 

be used, unchanged, by making a new definition of the tool. 

• The next step is to create a robot trajectory with the help of CAD files.It is easier and 

more accurate to obtain and define a target point position, which will result in a 

trajectory with higher precision. 

• After generating the robot trajectory, simulation can be carried out through the function 

of the simulation module in Robotstudio. According to the results of the simulation, 

the robot trajectory and the process strategy can be adjusted in the feedback loop to 

achieve the desired result.  

• Once the trajectory of the robot is confirmed, the corresponding program can be 

downloaded to the actual robot system for calibration, testing and application. 
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Figure 1.15 Procedure of an off-line programming. 
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1.3.2 Necessity of auxiliary system for cold spray application 

Generally, RobotStudio™ or other offline programming software can meet the needs of 

general applications. Operators can generate an appropriate trajectory according to the CAD 

model of the workpiece. For example, the trajectory can be easily created on a curved 

intersection or an edge of the workpiece for the application of welding or cutting. As for CS 

process, the trajectory consists of paths separated by the constant scan step to guarantee that 

the coating covers the entire surface of the substrate. Besides, for the purpose of high coating 

quality, several operating parameters including spray angle and spray distance must be constant. 

The nozzle should be perpendicular to the substrate surface to ensure high deposition efficiency.  

However, it is not easy to create parallel spray paths on curved substrate surfaces, which is 

time-consuming and lacks precision even under off-line programming software. Moreover, CS 

based additive repair or manufacturing is no longer a process of producing simple coatings but 

requires more and advanced and complicated paths to meet various spraying tasks. Exactly, CS 

repair needs to generate a trajectory that matches the original damaged defect shape in order to 

avoid excessive material deposition and reduce post-processing work, and CSAM needs to 

create a shaping path adapting CS characteristics. Obviously, the basic function including 

trajectory generation in RobotStudio™ cannot meet the above-mentioned cases. 

Therefore, in order to satisfy the specific requirements of the new application in the CS, it 

is necessary to develop software based on the off-line programming platform to provide the 

appropriate spray strategy quickly and precisely. RobotStudio™ allows the developers to 

develop different kind of custom applications or Add-Ins as a new feature in its application. 

LERMPS (Laboratoire d’Etudes et de Recherches sur les Matériaux, les Procédés et les 

Surfaces) has developed an add-in application program named Thermal Spray Toolkit (TST) 

in the framework of RobotStudio™ [16,20]. In the next part, the main functions of TST will be 

briefly presented. 

1.3.3 Thermal Spray Toolkit (TST) 

TST is a RobotStudio™ based extension software developed for the generation of 

trajectory in thermal spray applications, and all its functions are also suitable for CS. Figure 

1.16 shows the four basic modules of TST. 
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Figure 1.16 Modules in Thermal Spray Toolkit (TST) 

Here, PathKit enables the creation of robotic trajectories according to the geometry of 

workpiece. In this module, one method is presented using orthogonal planes to cut the substrate 

surface, then a series of scanning curves can be generated. Meanwhile, the normal vector is 

calculated to define the orientation of the nozzle on every point of the curves. PathKit uses this 

method to generate robot trajectories for thermal spraying in the offline programming software 

RobotStudio™ [75,76]. It can automatically and quickly generate trajectories according to the 

shape of the workpiece that meets the required operating parameters (as shown in the Figure 

1.17). 

 

Figure 1.17 Spray trajectory generation under PathKit. 

ProfileKit module is developed for the purpose of the coating deposition simulation. 

Currently, a coating thickness model based on the numerical method was developed and was 
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used to predict the coating thickness and distribution. Combining with the robot kinematic 

parameters, the coating profile is simulated with an asymmetric Gaussian distribution curve. 

Thus, the suitable coating thickness can be obtained within the required tolerances.  

A concept called ‘flatness’ is added to illustrate the homogeneity of coated thickness, and 

the relevant simulated coating thickness and flatness result can be displayed on the graphic 

interface [31]. As shown in Figure 1.18, they are the user interfaces of ProfileKit 2D and 

ProfileKit 3D respectively [19]. According to the calculation and simulation results, the 

spraying strategy including the robot trajectory and operating parameters can be adjusted with 

iteration in the feedback loop to achieve the desired coating thickness distribution. 

 

Figure 1.18 (a) the user interface of ProfileKit of coating profile simulation in 2D. (b) the 

user interface of ProfileKit of coating thickness simulation in 3D. 

MonitorKit monitors the speed and trajectory of the robot by communicating with the 

operating robot. It is able to evaluate the path accuracy, which can provide evidence for 

trajectory optimisation.  

KinemaKit is used to optimize the kinematics parameters in the spraying process by 

collecting and analysing various signal data of the robot's motion. The signal data Mainly 

includes TCP position and orientation and the position of each axis versus time, etc. Kinematic 
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analysis method is useful for the optimised mounting method of spray nozzle on the robot [37]. 

Besides, the optimal placement of the workpiece in the robot workspace is selected through 

robotic kinematic analysis method to optimize the robot's trajectory [38]. 

1.4 Conclusion and objectives 

CS is a newly developed solid-state material deposition technique. It is widely used to 

prepare various functional coatings on the component surface, or restore damaged metal 

components or to fabricate freestanding 3D metal components. With the continuous 

development of CS technology and its expansion of application fields, people need to handle 

more and more complex tasks requiring high precision. Nowadays, due to the high performance 

of industrial robots, they have been widely used in the field of CS to perform all kinds of 

spraying tasks. In CS, the nozzle is moved by the robot to scan on the surface of the workpiece, 

and thus to form a coating. All kinematic parameters, including spray angle, spray distance and 

nozzle traverse speed, etc, can be stably and accurately controlled.  

In addition, robot offline programming technology allows to reduce the burden and 

difficulty of programming, to improve the accuracy, and to make CS available for more 

complex parts. Since CS is no longer a single process of producing simple coatings, it is also 

used to repair various damaged parts or to manufacture complex 3D parts, so that it is necessary 

to develop an auxiliary system specifically for CS to provide an ideal spraying strategy, 

including generating trajectories, process simulation and collision detection. Therefore, in this 

chapter, RobotStudio™ and its extension software TST are introduced based on the robot’s 

application in CS. 

Today, the latest developments in the CS industry require more new methods and processes 

to improve its manufacturing accuracy, flexibility and reliability, for more competitiveness. 

Therefore, the subject of the thesis concerns robotized CS process simulation and planning in 

order to enhance the ability of CS in the application of AM or remanufacturing. 

The present work is mainly composed of the following three parts: 

1. Firstly, based on the conventional CS system, a new robotized CS system framework is 

designed for modern CS applications. 

2. Secondly, a new approach using a geometric 3D model is developed and integrated into 

the ProfileKit of TST for CS process simulation. 
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3. Thirdly, a novel spray strategy is proposed to elaborate freeform 3D objects with 

acceptable precision. 
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2.1 CSAM system 

2.1.1 Introduction 

Generally, a CSAM system is developed based on the conventional CS system. Most 

traditional CS systems are focused on the application of wear or corrosion-resistant coatings, 

but the CSAM system is designed to produce freeform components and to restore damaged 

parts with a retention of the inherent coating ability. However, a CS system involves some 

obvious limitations. For example, the process is relatively simple, straightforward but not 

precise enough, and it is difficult to complete high-precision and complex manufacturing. 

Besides, there is a lack of accurate and effective simulation methods to guide the entire spraying 

process. To date, the desired coatings are basically provided by trial and error method. In 

addition, it is difficult to adjust the operating parameters in real-time, because the response time 

of the spray system is relatively long. In practice, the optimal spray parameters are usually kept 

constant during the spraying process, while the growth of the coating is only affected by the 

kinematic parameters such as the nozzle scanning speed, the spray angle and the spray distance. 

However, the lack of effective monitoring and intervention measures makes it difficult to 

control deviations and disturbances in actual spray process. 

Recent advances in CS industry call for new process implementation to improve 

manufacturing accuracy and flexibility. To respond to this challenge, a concept of modular 

system is presented in this study to design and implement a new CSAM framework that can 

cope with many different types of products, processes, machines, and persons. The proposed 

CSAM system aims to integrate multiple technologies to improve the efficiency and 

responsiveness of the production system, as well as the reliability and quality in the production 

process. In addition, based on the smart manufacturing concept of Industry 4.0 [1,2], a novel 

approach is proposed to bring the perception and the decision-making abilities into the 

traditional CS system.  

In the field of industry, modularization is a way to expand the capabilities of systems by 

building them from different subsystems (or modules) that use direct physical links or indirect 

event-driven methods to interconnect functional modules to achieve coupling between each 

other [3,4]. This concept can explain not only the structure of the entire system, but also the 

relationship and role of each critical element. The advantage of modularization is that it is easy 

to manage, maintain and upgrade, and thus to build a stable production system. It also enables 
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to develop and integrate new functional modules according to new development demand. In 

addition, to meet both the requirements of controlling production and quality, it is also 

necessary to integrate advanced computing and online monitoring systems, to adapt to and use 

the current intelligent manufacturing environment. 

2.1.2 Framework structure 

The current CSAM system is designed and organized as an open framework system, as 

shown in Figure 2.1. According to the different applications and purposes, the system is divided 

into five modules: spray module, robot module, in-situ measurement module, inter-process 

module and post-process module. However, it needs to be reminded that with the continuous 

development of requirements and technology, new system modules can be added and existing 

modules can be updated. The relationship between the modules and their main tasks provide 

relevant information on current and potential applications of the entire manufacturing system. 

Therefore, the next part will discuss current system modules. It should be reminded that these 

modules do not run independently, but are coupled to each other through direct physical links 

or indirect decentralized and event-driven manners. 

 

Figure 2.1 Schematic diagram of the CSAM system. 
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2.1.2.1 Spray module 

There are two types of CS systems that are widely used in general production. One is a 

low-pressure portable CS system [5,6], and the other is a high-pressure CS system [5,7]. The 

former device is simple and easy to perform, suitable for on-site repairs. Besides, it usually 

obtains the coating by controlling the movement of the spray gun manually but has lower 

accuracy. The latter uses a robotic arm to control the spray gun movement, that enables 

achieving arbitrary nozzle trajectories on various complex surfaces with high precision. 

Compared with low-pressure portable CS systems, the high-pressure CS system has a higher 

upper limit of adjustable spray parameters, and can be used for more material applications with 

high-performance.  

In this study, the CSAM system is based on a homemade CS system. As showed in Figure 

2.1, the apparatus consists of high-pressure compressed gas sources, power sources, a powder 

feeder, a spray gun with a de Laval nozzle. The gas source can be air, argon, nitrogen, or helium. 

It is separated into two different gas lines: one is fed to the gas heater as propellant gas and the 

other is sent to the powder feeder as powder carrier gas. The main gas-flow is heated to set 

temperatures by the gas heater while the other one is used for powder transportation. The 

powder feeder can provide continuous and controllable feeding. With the help of the de-Laval 

nozzle, the gas is accelerated to supersonic velocity and carries powders to reach the critical 

velocity for bonding. 

Generally, several factors affect the performance of the spraying process, such as powder 

materials, spraying parameters, but the design of the nozzle has the most significant influence. 

As we all know, the acceleration of particles in the supersonic gas jet is critical for the 

successful deposition of the material. Many literatures have presented the theory behind nozzle 

design for supersonic flow applications [8–12]. 
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Figure 2.2 Different nozzle for CSAM. 

Firstly, the commonly used CS nozzle materials are mainly metals, including stainless steel, 

tool steel and super-hard alloy metals, but sometimes sintered tungsten carbide materials are 

also used. The disadvantage of using metal materials is that the high-temperature resistance is 

poor.  

Secondly, the working gas in the CS process is usually heated to a higher temperature, that 

makes it easy a powder sticking on the nozzle internal wall, especially in the "throat" of de 

Laval nozzle (clogging) when spraying some low melting point metal materials. This is 

disadvantageous due to the long spraying time required in AM.  

Thirdly, the common nozzle cross-sectional shapes are round, rectangular and oval. The 

exit diameter of ordinary nozzles is generally in the range of 4-10 mm, so the minimum width 

of the spraying track is often limited to the length of the nozzle. Tabbara et al. [8] studied the 

effects of different nozzle cross-sectional shapes on particle distribution and velocity at the 

outlet, including circular, elliptical and rectangular nozzles. Xinkun SUO et al. [9] studied the 

influence of different basic size parameters of a rectangular nozzle on the distribution and 

velocity of magnesium (Mg) particles. Their studies have shown that the particle flow 

characteristics during acceleration are related to the final geometry of the coating, and both 

shape and size of the nozzle affect both number and size distribution of particles in the powder 
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jet.  

Lastly, the particles tend to spread in the nozzle acceleration channel resulting in a wider 

outlet flow that makes it difficult to produce a narrow single-pass coating deposition. Therefore, 

new developments of spray module may rely on increased accuracy and spatial resolution by 

using micro-nozzles or other structural nozzles. 

2.1.2.2 Robot module 

The robot module involves an industrial robot arm (ABB IRB 2400 as used in this study), 

a robot control cabinet and a computer. It is the most automated module in the whole system. 

As mentioned above, Industrial robots are widely used in the field of CS due to their high 

performance, such as high accuracy, high repeatability, high flexibility; and low complexity 

such as low operating condition, ease of use, low maintenance requirement. 

Generally, the most common role of an industrial robot in CS is to hold the spray gun to 

spray materials while the substrate is fixed in the workshop as shown in Figure 2.3 (a). However, 

this configuration may be not appropriate for CSAM. First, the spray gun is connected with 

many pipes, for example, powder line, gas line and signal cables. Intense movement of these 

pipes with the robot would affect the stability of the powder feeding and the signal output. 

Secondly, the large and heavy spray gun as well as the connected pipes will limit the robot 

motion, its speed, acceleration, actuator torque and work range. And most importantly, this 

configuration does not permit the substrate or formed part to displace in between the different 

processes. 

 

Figure 2.3 Different configuration manner: (a) the robot holds the spray gun; (b) the spray 

gun is fixed. 
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In the proposed CSAM system, the spray gun is fixed at an appropriate position while the 

substrate or the formed part is attached to the robot’s end-effector (Figure 2.3 (b)). As the 

spraying equipment remains stationary, spraying conditions will be more stable. The robot arm 

performs not only the relative movement in between the substrate and the spray nozzle, but 

also the displacement of the formed part in between different processes. In addition, CSAM 

process can benefit from the high performance of the robot. The robot can be programmed via 

online teaching on-site or offline planning on the computer to perform high-precision spray 

trajectories for fabricating complex geometries.  

The robot can also combine other technologies to fulfil the agile AM process, for example, 

the on-line monitor module which allows the robot to adjust the spray trajectory according to 

the deposition strategy in this study. Moreover, another idea is to combine the CSAM with 

subtractive manufacturing technologies by moving the formed part between these processes. 

In this case, the robot will enhance the role of the carrier to achieve the hybrid CSAM process. 

2.1.2.3 In-situ measurement module 

The in-situ measurement module mainly includes a 3D scanning system with a 3D scanner 

and corresponding software, and a computer. Normally, the 3D scanner can be optical, laser, or 

contact. In this study, a high-speed 3D laser profiler (LJ-V7060, Keyence, Japan) is used to 

perform contour scanning, data acquisition and processing, which is connected to the robot 

control cabinet via a computer. And the system adopts a link port to ensure the reliable high-

speed communication (as shown in Figure 2.4). 

 

Figure 2.4 (a) CS deposits scanning via the 3D profilometer; (d) data collection and process. 

Firstly, the 3D scanning system can be used for CAD modeling. In the process of robot 

offline programming, it is often necessary to assist the programmer through the CAD model of 

the workpiece to create the spray target points and to define the spray trajectory. Especially for 

some complicated workpieces, the corresponding CAD data is indispensable. Here, the 3D 
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scanning system can be used for reverse engineering modeling of complex models. The 

geometric data can be used for offline programming in conventional or repair CS. 

Secondly, the 3D scanning system can also be used to monitor the process of CS coating 

deposition. As mentioned before, the spray parameters are normally kept constant during the 

spraying process while the coating deposition is only affected by the robotic kinematic 

parameters. Many studies have focused on the modeling of CS to reveal the relationship 

between operating parameters and as-sprayed coatings. The model is generally used to predict 

the coating thickness and properties so that the optimal spray strategy can be achieved. 

However, this method is only helpful for strategic planning in CSAM, but it cannot solve the 

model deviations and disturbances in the actual spray process. Here, the 3D scanner system 

can be used to measure, record and treat the data in the AM process. The 3D scanner measures 

the morphology of deposited coatings online and transfers the data to the robot controller. Then, 

the obtained results can be used to compare with the theoretical model to give the adaptive 

adjustment of the robot trajectory. These functionalities can give the robot more sensations 

which enable accurate and stable manufacturing. The key to this objective is an early detection, 

diagnosis, and correction of processing errors. 

Thirdly, the 3D scanning system can be used for measuring the coating thickness. Normally, 

coating-thickness is an essential indicator to monitor and control. The 3D scanner can be used 

as a non-destructive measurement tool to scan the final coating after spraying to obtain 

information such as thickness, roughness, and even the geometry as a quality control in AM 

process. 

2.1.2.4 Inter-process module 

With the rapid development in recent years, the CS process has become a mature and 

relatively independent metal manufacturing process. However, in CSAM applications, the CS 

process alone cannot guarantee the material properties and geometric accuracy of the final part. 

To be precise, during the CS process, due to the inertial effect of the robot movement, the speed 

of the spray gun will be reduced when changing the direction, resulting in uneven coating 

distributions.  

In addition, the physical processes involved in coating deposition are very complex. The 

stability of powder feeding and the structure of the substrate will also affect the quality and 

profile of the coating. The formed poor coating structure will affect the subsequent spraying 



Chapter 2: Design and implementation of modular framework for CSAM 

47 

 

process, leading to greater and greater deviations in the quality and geometric accuracy of the 

coating. Therefore, the concept of hybrid manufacturing is proposed to compensate for the 

inherent limitations of a single process of CS.  

The inter-process module is dedicated to the analysis and realization of combinations of 

CSAM processes and processes ‘X’, such as milling, drilling or other processes, which are 

characterized by a strong interaction with the actual CSAM process. This module will allow 

the combinations of CSAM with other subtractive manufacturing processes, thus becoming a 

hybrid AM process. Figure 2.5 illustrates the envisioned implementation in the future. When 

the surface undulation of the coating becomes larger or the monitored deposits no longer meet 

the expectations during the additive manufacturing by CS, the milling cutter will permit 

optimal conditions for coating deposition with desirable accuracy and reliable shape control. 

More investigations on the hybrid CSAM should be strongly encouraged. Future research will 

focus on integrating and coordinating more technologies into the inter-process module to 

enhance the accuracy and feasibility of the CSAM system. 

 

Figure 2.5 (a) Schematic representation of CS+milling process. 

2.1.2.5 Post-process module 

Generally speaking, CSed parts require extensive post-processing to overcome rough 

surface finishing. Besides, CS deposits normally have high tensile strength but very low 

ductility which results from the enhanced work hardening effect.  

The post-heat-treatment enables to improve mechanical performance by eliminating work 

hardening effect, reducing the defects and achieving a proper metallurgical bonding. Some 
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researches about the improvement of cold-sprayed coating via heat treatment were reported 

[13–19]. Heat treatment can effectively change the microstructure of many kinds of CSed 

coatings, like Cu [14,17], Al [15,16], stainless steel coatings [18,19] and Inconel 718 [20], etc. 

Meanwhile, some necessary performance tests are required to check if the product is qualified 

in terms of failure mechanisms, residual stress, microstructure, microhardness, mechanical 

properties, etc.  

Therefore, the post-process module is designed to improve the CSed deposits to reach the 

desired properties and/or geometry. The design and implementation of the post-treatment 

process should depend on the material and its application. For example, CSed Cu coatings 

usually anneal at quite moderate temperatures between 400 and 600 °C. In RZ Huang et al. 's 

report [17], after heat treatment of 500 °C, the interface between Cu particles disappeared and 

the grain of Cu coating became very uniformed and fine.  

In addition, Hot isostatic pressing (HIP) [21] or friction stir welding [22] also enables to 

improve mechanical performance by reducing the defects and achieving a proper metallurgical 

bonding. Figure 2.6 illustrates the principle of HIP, which compresses materials by applying 

high temperature of several hundreds to 2000 °C and isostatic pressure of several tens to 

200MPa at the same time. P. Petrovskiy et al [14] encapsulated HIP to reduce the porosity and 

to improve the mechanical properties of cold-sprayed Ti6Al4V deposits. In Tom Peat et al.'s 

work [23], WC-CoCr and Al2O3 reinforced MMC coatings were CSed on AISI316 and friction 

stir process. The results revealed that the particles were significantly refined and the particle 

distribution was improved over the as-deposited coatings. 
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Figure 2.6 Schematic representation of common HIP process [21]. 

2.1.3 Manufacturing Procedure 

Figures 2.7 shows the standard manufacturing procedure based on the current CSAM 

system. The figure also illustrates the information flow and the transmitted data between sub-

systems. 
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Figure 2.7 Flowchart of CSAM process. 

Since the CSAM is no longer a process of producing simple coatings, Computer-aided 

design (CAD) and Computer-aided manufacturing (CAM) are indispensable to develop the 

ideal spray strategy, including trajectories generation, programming and process simulation. 

Whether it is spraying a coating on a complex surface, a filling material to a damaged contour, 

or a building a freestanding shape component, the corresponding CAD model is a necessity. 

Therefore, the first step is to acquire 3D geometric model. If there is no original CAD model 
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available, it must create one by using CAD software such as Catia (Dassault Systèmes) [24], 

SolidWorks (Dassault Systèmes) [25], Pro/Engineer [26] (Parametric Technology Corporation), 

etc. If the workpiece is too complicated to be recreated by CAD software, the acquisition of a 

geometric model, called reverse engineering, should be considered. The geometric information 

of the workpiece can be obtained by the 3D scanner. The 3D model can then be rebuilt from 

these measured data. This method is particularly effective for complex workpieces without 

CAD files.  

The next step is to analyse the workpiece and formulate effective related manufacturing 

strategies. Robot offline programming technology is used as a new AM production capacity 

and modernization application to provide desirable solutions in the process. In this study, 

RobotStudio™, an off-line programming software developed by Asea Brown Bovrie Ltd 

(ABB), is used as the unique CAM software of current CSAM, which can provide graphical 

simulation of the robot and its work cell, kinematic models of the robot, motion planning and 

programming for manufacturing process. Therefore, the related spray strategy will be 

elaborately planned in the offline programming software, including tool path and kinematic 

parameter settings, etc.  

After generating the related spraying strategy, the robot motion program can be created 

according to the planned CS tool path. The dynamic simulation of the spraying process can be 

carried out under the offline programming system. Through simulation and analysis, if the 

expected result is achieved, the generated robot program can be synchronized to the robot 

controller system to proceed with the next step. If not, the related spraying strategy can be 

adjusted with iteration in the feedback loop to achieve the desired result.  

Then, the workpiece will be pre-processed (including blasting or others machining) and 

fixed at an appropriate position in the work spot. After a series of tests and calibrations, the CS 

process can be implemented. In addition to depositing materials during this process, the 3D 

scanning system will also be used to monitor the growth process of the coating in real-time. A 

complete scanning process includes the following sub-programs: creating a connection, 

running spray program, sending scan request, receiving returned data, judging the validity of 

the data, diagnosis and decision making, returning feedback information, and saving data.  

In practice, after launching the spray program, the robot takes the substrate in front of the 

nozzle to perform the spraying. When the predefined number of cycles is reached, the spray 

program is interrupted and the contour scan module is activated. At this time, the robot arm 
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moves to the measurement window of the 3D profiler, then the robot program sends a trigger 

signal to the 3D profiler for scanning. The computer will receive and analyse the scanning 

results so that the decision-making algorithm could compare the real coating profile with the 

theorical model to decide the compensation value of the robot motion. The adjustment 

parameters of the robot trajectory will be sent back via the feedback subroutine to modify the 

current spray process (as shown in Figure 2.7). This approach is also applicable to many AM 

processes and enables the closed-loop control as well as the real-time parameter optimization 

to realize stable and high-accuracy AM. 

After spraying, the post-processing will be carried out to improve the CSed deposits to 

reach the desired performance as well as precision. The desired shape and precision can be 

obtained after the post-machining on CSed deposits and some necessary performance tests. 

Here, the material characterization will be inclusive of failure mechanisms, residual stress, 

microstructure, microhardness, mechanical properties, etc. Meanwhile, according to materials 

and performance requirements, suitable heat treatment solutions will be proposed and 

formulated to improve the performance of the as-sprayed deposit. 

2.2 Manufacturing strategy  

CS is a special powder solid deposition technology. It is very important to fully consider 

its characteristics such as overspray and spray resolution, as well as multiple-layer deposition 

and edge effects, and propose appropriate manufacturing strategies. At present, many 

researchers have proposed some clever and effective strategies for CASM [27–30]. J. Pattison 

et al.[27] proposed a triangular tessellation scheme to create thick coatings or vertical walls 

(Figure 2.8). Besides, they also presented the fabrication of complex components containing 

embedded devices (Figure 2.9). 



Chapter 2: Design and implementation of modular framework for CSAM 

53 

 

 

Figure 2.8 Triangular tessellation scheme for the production of primitive shapes [27]. 

 

Figure 2.9 titanium component constructed with an internal channel, prepared by dissolving 

aluminum [27]. 

Lynch et al. made a significant prowess by combining the CS deposition with design and 

topology shape structural optimisation [30]. As shown in Figure 2.10, they proposed reliable 

design guidelines, from the design of the three-dimensional structure to the use of topology 

optimization technology and control of the nozzle trajectory for various kind of spray paths, 

and finally to the obtained blank and further processing to form the final shape of the bracket. 

In addition, they also considered the design of removable 3D support, which is very consistent 
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with the current mainstream 3D printing technology processing ideas. 

 

Figure 2.10 Schematic of the fabrication process of a part manufactured using CS and 

topology optimization technology [30]. 

As shown in Figure 2.11, Yannick Cormier et al. [31] used a specially designed mask to 

fabricate array structure that is a pyramidal fin array used for a compact heat exchanger. Their 

research suggests that CSAM can consider using different specially designed masks to prevent 

the deposition of redundant materials to allow only the deposition of the desired pattern. 
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Figure 2.11 Schematic of the fabrication process of CSAM pyramidal fin arrays heat sink 

[31]. 

Based on the above discussion, improving the accuracy, reliability and ability of CS based 

AM or remanufacturing requires more advanced strategies with higher efficiency and more 

agility. This study also suggests that more research on spray strategies should be engaged. 

Therefore, in the next part, some manufacturing strategy for the current CSAM system will be 

presented. 

2.2.1 Process simulation for prediction and optimization  

With the continuous development of CSAM, the sprayed materials, sprayed objects and 

application fields are also continuously expanding. Faced with different spraying conditions, 

how to obtain the best spraying strategy and parameters in the shortest time is the key to realize 

the actual benefits of CSAM. Therefore, from the production and design concept, it is necessary 

to transform the design and manufacturing concept based on simulation and experience. 

Through advanced simulation technology, it can provide predictions of spraying results and 

optimize the spraying parameters to quickly and effectively guide the manufacturing process 

and to avoid cost waste caused by repeated trials.  

In this study, the robot offline programming system, RobotStudio ™, is used for CSAM 

process simulation. In addition, the software Thermal Spray Toolkit (TST) [32] is used to 

enhance the functionality of the RobotStudio ™. As shown in Figure 2.12, a corresponding 

virtual workstation should be first established, which has the same configuration as the actual 

spray system, including the same type of robot, spray gun and tools, and the same placement 

in between the various elements. The advantage of the virtual robot workstation is that it can 
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truly reflect the actual spraying process. In addition, it is convenient to change the spraying 

procedure at any time and observe whether the various components interfere with each other, 

thereby preventing collisions between the equipment effectively. 

 

Figure 2.12 CSAM processing with RobotStudio ™. 

During the process simulation, trajectory issues and speed issues are two crucial issues, 

especially in CSAM. Through the trajectory simulation module, it can be observed whether 

there is divergence in between the expected and the actual robot trajectories. Then, the spray 

trajectory will be adjusted and decided. Sometimes, even if the spraying target or spraying 

trajectory conforms to the robot's motion range due to the problem of the configuration of each 

robot axis, singular points will appear during the robot's motion resulting in preventing the 

spraying trajectory program from continuing. At this moment, the analyser module of 

RobotStudio™ can be used to record and analyse the position of each axis, so as to re-adjust 

the configuration of each axis.  

Besides, the real TCP speed can be recorded by the analyser module. And the robot 

movement data including TCP position and orientation versus time can also be recorded in real-

time by the monitoring module of TST. As we all know, the actual TCP movement is important 

to guarantee the desired coating shape or coating profile. For the purpose of effective CSAM, 

it is of great importance to determine the dependence of operating parameters such as spray 

angle, nozzle traverse speed, scanning step and standoff distance on the coating thickness 
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distribution.  

In this study, a 3D model of the coating profile based on Gaussian distribution was 

developed and integrated into the off-line programming software RobotStudio™ as a module 

in the software TST. It enables the coating thickness simulation based on the operating 

parameters in the spray process, robot trajectory and robot kinematic data obtained by process 

simulation. More detail of the principle and entire development process will be presented in 

Chapter 3. 

2.2.2 Spray method for stable layer building 

One of the most crucial issues in fabricating components by AM is to enable controllable 

and stable layer building. However, in the CSAM, the triangular-like profile is a typical shape 

produced by continuous spraying. CS single-track changes gradually from a thin coating with 

high deposition efficiency to a triangle-like profile with low deposition efficiency. This CS 

unique characteristic and constraint would be reflected throughout the process, thereby limiting 

the application of CSAM to a certain extent.  

In this study, the topology technique is proposed to enhance stable layer building. As shown 

in Figure 2.13, by changing the spray direction (tilting the nozzle), material deposits on the 

aside surface of the previous thin coating (<0.5mm) to compensate for the thickness difference 

in between the middle and side of the deposit. Then, the setting of the best parameters for stable 

layer construction can be found by using the developed simulation codes. In this way, the 

volume can be formed via the layer-by-layer manner. 
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Figure 2.13 Scheme of layer-by-layer CSAM process. 

Currently, the CSAM process adopts a six-axis robot arm to hold the substrate for spraying. 

In this case, the substrate is tilted instead of the nozzle. This method is closer to the AM 

principle and it is easy to improve repeatability and subsequent process control, making CS a 

real layer-by-layer AM process. More background principles and the entire development 

process will be introduced in detail in Chapter 4. 

2.2.3 Online measurement and monitoring 

As mentioned above, the 3D scanning system can be used to online monitor the process of 

CS coating deposition. In actual practice, as the CS deposits height increases, the morphology 

of the component and its mechanical properties are significantly affected. However, stable layer 

building is a key issue in AM process. In the current CSAM system, the morphology of layers 

is measured in real-time with the help of the 3D profiler. The in-situ measurement of layer 

morphology through conventional spraying and topological technology are shown respectively 

in Figure 2.14 (a) and (b). 
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Figure 2.14 Measuring the layer morphology in real-time: (a) by normal spraying; (b) by 

topology technique. 

The advantage of this method is that it helps to understand the characteristics of single 

track under different spraying parameters, and provides a basis for proposing more effective 

spraying strategies by storing, processing and analysing the collected data. Besides, the motion 

parameters are modified according to the feedback of the measurement results, including the 

spraying angle and spraying distance.  

By adjusting the robot motion, it is possible to compensate for the shape formed by 

spraying and stabilize the fabrication in a pre-set way. As shown in Figure 2.15, a preliminary 

attempt was made to adjust the deposits to the desired shape using an online adaptive control 

method. In the future, the system can decide whether and where to machine the part according 

to the scanning results, and then continue spraying to achieve a hybrid additive. 

 

 

Figure 2.15 (a) result of normal spraying; (b) result of the current spraying strategy (with 

deviations and disturbances); (c) result of on-line adaptive control. 
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2.3 Conclusion 

In this chapter, the new CSAM system is presented based on the traditional CS system. 

Here, the modular framework is proposed for the implementation of a new process to enhance 

CS based AM. It is revealed that modular system is suitable to revolutionize the CSAM method 

and conduction. The elemental composition of the current system is introduced. The 

relationship between the modules and their main tasks provide relevant information on current 

and potential applications of the entire manufacturing system. Besides, the newly added online 

adaptive control module provides a feasible and practical method for the traditional CS industry 

to implement AM through a smarter and more flexible manufacturing method to improve 

product quality and system reliability. However, to fully exert the potential of CSAM, efforts 

are still required to integrate and coordinate more technologies. Future research will focus on 

improvements for each component of the framework and on developing more spray strategies 

for CSAM. 
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3.1 Introduction and state of the art 

As mentioned in the previous chapters, CS is a newly solid-state material deposition 

technology which can prepare a variety of functional coatings for many applications in surface 

technology. The CSed coating has received more and more attention due to its low porosity, 

high adhesion strength, and low particle oxidation that makes this technology potentially very 

competitive in the manufacturing industry for durable products [1]. In particular, high 

deposition rates and efficiencies make this surface technology efficient for AM and structural 

repairing [2,3]. In practice, various spray coatings for complex components such as turbine 

blades and vanes also require a good distribution of coating thickness. Indeed, meeting the 

requirements of coating thickness distribution is critical for the performance and the in-service 

life of components. Traditionally, the desired coating thickness has been provided by trial and 

error method. In this process, there are many methods for assessing the coating thickness, such 

as destructive tests or direct mechanical measurements. However, they are all performed after 

spraying that mostly makes those approaches time-consuming and expensive.  

Nowadays, in order to simplify and speed up the coating development, simulation 

technology for CS processes was proposed and developed, particularly for component-based 

simulations that concern coating-thickness distributions, heat and stress distributions. For 

example, Ju et al. [4] developed a continuous micro mechanic model for depicting the interplay 

relating heat, solidifying pattern and stress/strain curve, so that thermo-mechanic actions and 

residual stress can be forecasted in spraying processes. Liu et al. [5] studied the heat and 

mechanic behaviors of plasma sprayed coatings during the manufacturing process by 

developing a 3D multilayer model.  

Generally speaking, the objective of coating thickness simulation is to optimize the robot 

trajectory so that the coating can be evenly deposited on the surface of the substrate or variably 

deposited on different regions of a specified surface, e.g. coating turbine blades requiring 

diverse coating thicknesses. To date, there has been a series of studies focusing on the coating 

deposition model in cold spray [5–9]. Duncan et al. [8] optimized the robot path by creating the 
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required coat thickness over the surface. They proposed a flow rate distribution function to 

describe the behavior of the nozzle, and the coating deposition was represented by mass, which 

was measured by multiplying a mass flow rate and working time with a flow rate distribution 

formula. Based on the model proposed by Duncan, Kout et al. [7] aimed at searching a 

successive time-dependent array of nozzle configuration for creating the desired coating 

thickness. The difference of the newly proposed method was that the coating deposition was 

represented by its height which was calculated by multiplying the volume flow rate with flow 

rate distribution formulae.  

However, none consider the actual robot kinematic parameters in their model, such as the 

spray distance and the spray angle, which are key factors affecting the deposition efficiency 

(DE). Sadovoy et al. [10] developed a self-constant model based on mass conservation principle. 

This model considers the effects of the actual processing parameters and spraying conditions. 

However, it only involves the influence of the spray angles as a single processing parameter on 

the coating profile. The effect of other processing parameters, e.g., spray distances and nozzle 

travel speeds were not investigated. Cai et al. [11] used a symmetric Gaussian distribution curve 

to characterize the single-coat profile. They proposed a concept of flatness to illustrate their 

homogeneity coating thickness. However, they did not explain the flatness of the coating in the 

case of 3 dimensions. To fix this problem, C. Chen et al. [9] proposed a numeral model of the 

single coat profile to discuss the effects of gun turn angle, nozzle pass speed, and scanning step 

on the cold sprayed coating thickness distribution. However, their model excluded the impact 

of spray distance.  

Wiederkehr et al. [12] reported a method to obtain a 3D flow distribution model by testing 

coating profiles. However, the analysis was limited to the case of flat surfaces and did not 

involve other more complex shapes such as a curved surface. Djurić et al. [13] presented a self-

consistent way for counting the mass rate distribution function, efficiency, and cone angle 

during spraying. They simulated the space mass flux distribution generated out of the nozzle by 

developing a spraying deposition model. However, no typical applications were shown to 
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validate the model in their report. In Stepanenko's [14] report, a method was developed to 

compute feed rate control laws, which can provide production of uniform coating-thickness or 

coating-thickness variation predefined laws. Hansbo et al. [15] proposed a spraying cone model 

to optimize the coating-thickness for rotationally symmetric components. However, this model 

was not validated for a layer by layer process on complex components where concave surface 

features may exist. Chen et al. [16] used an FEA (finite element analysis) model to simulate 

transient coating accumulated processes and heat evolutions during cold spraying. However, 

using finite element analysis or numerical methods to simulate the coating deposition process, 

such as ANSYS and MATLAB, always requires meshing the part, and then calculating the 

coating thickness and assigning the final result to each node of the grid. As the nozzle moves, 

the coating thickness of each node will be continuously updated. Therefore, such an approach 

must be based on the same dimension and a continuous grid and cost much computation. For 

the substrates with a large radius of curvature or discontinuous surface regions, it would not be 

suitable. 

Based on this review, it is easy to conclude that most of the coating-thickness simulations 

mainly focus on the development of coating-thickness models. The experimental process is 

generally an operation of numerical model superposition for which it is difficult to show the 

behaviour of coating stack and the macroscopic appearance of final coating distributions 

intuitively. The calculation of the coating thickness should not be just a simple addition of 

specific numerical value because the physical processes involved in coating deposition are very 

complex. The deposition efficiency impacted by the different parameters should not be ignored. 

More notably, there are still no effective ways to simulate and predict the coating thickness 

distribution on complex surfaces with a ‘shadow effect’. Shadow effect means that some convex 

features on the substrate obstruct the flight path of particles to other convex or concave shapes, 

which is illustrated in Fig. 3.1. 
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Figure 3.1 Coating condition of shadow effect. 

In this study, a new approach was developed and added to the off-line programming 

software for simulating coating thickness in CS, especially for the prediction of shadow effects. 

This method uses a numerical model of coating profile based on Gaussian distribution to 

construct a real-time evolving 3D profile geometric model on the coating substrate. The coating 

profile model includes the facts of various spray parameters, such as nozzle traverse speed, 

spray angle and spray distance. Afterward, the coating thickness model was integrated into the 

off-line programming software RobotStudio™ as a module in the software Thermal Spray 

Toolkit (TST) [17]. It enables the coating thickness simulation based on the operating 

parameters in the spray process, robot trajectory and robot kinematic data obtained by process 

simulation, and then displayed on the graphic interface of RobotStudio™. According to the 

results of the simulation, the robot trajectory, operating parameters and spray strategy can be 

adjusted with iterations in the feedback loop to achieve the desired coating thickness 

distribution. Both numerical and experimental verifications were presented in this chapter. The 

results show that this proposed method has a reliable prediction accuracy. 

3.2 Coating profile model  

3.2.1 Single coating profile modelling 

The model describing the feedstock jet distribution out of the nozzle is essential for the 



Chapter 3: Cold spray process modeling and simulation 

69 

 

calculation of the coating-thickness distribution. According to the central limit theorem, the 

averages of random variables can be considered as normally distributed when the amount of 

variable is sufficiently large. Thus, in cold spray process, the coating-thickness distribution also 

known as coating profile can be expressed by a Gaussian approximation according to the 

following equation [9,11]: 
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                              Eq. 3-1, 

where A is the amplitude factor in relation to the feedstock flow rate obtained from experimental 

result, σ is the standard deviation of the coating profile, (μx, μy) is the centre coordinate of the 

coating profile on the substrate surface. ζ(θ), ζ (s) and ζ (v) are deposition efficiencies depending 

on the spray angle, the spray distance, and the nozzle traverse speed, respectively. The values 

of each variable are obtained through experiments for a certain powder/substrate material 

system and spray parameters.  

The model proposed by Chen [9] which was illustrated in 2-dimensional polar coordinates 

is a typical representative case. In this study, the model is described in a 3-dimensional Cartesian 

coordinate system. As shown in Figure 3.2, the nozzle is defined as a point in the Cartesian 

coordinate system. The angle of incidence, i.e. spray angle, is θ (on X-Y plane). In the YZ plane, 

the spray cone in the Cartesian coordinate system is divided into a series of rays with a constant 

interval angle. Exemplary rays are dash lines in Figure 3.2. For perpendicular spraying, the 

coating profile is conical and symmetric with respect to the central line of the nozzle. Thus, the 

spray length at the same deflection angle is constant. For example, at the deflection angle ψ as 

indicated in Figure 3.2, the spray length AB has the same value as ab, and the angle in between 

these two rays is γ. Due to the fact that mass distribution out of the nozzle is constant, it can be 

assumed that the spray length at each deflection angle is constant during inclination. For 

example, when the XY plane rotates around the x-axis (now the spray angle is β on the X1-Y1 

plane), as indicated in Figure 3.2, the spray length AB has the same value as CD. 
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Figure 3.2 Schematic of single coating profile model on X-Y plane (red line) and X1-Y1 

plane (blue line). θ and β are the spray angle on X-Y plane and X1-Y1 plane respectively. a is 

the angle between Z axis and Z1 axis. 𝜓 is the deflection angle (the angle between Z axis and 

ab line, as well as AB line). 𝛾 is the angle between ab line and AB line. 

In computer graphics and computational physics applications, an object can be represented 

by a three-element vector which is typically used to describe a position, normal and Euler 

rotation. In addition, a transformation (rotation and translation) can be described by a matrix 

from a three-element vector and a quaternion. Related knowledges can refer to Annexes behind. 

In order to express the coating profile model in a 3-dimensional graphics environment while 

maximally preserving the characteristics of the spraying, the following assumptions are 

proposed in this study. 

Firstly, powders are ejected from the nozzle and deposited on the surface of the workpiece 

during the motion of the nozzle. Therefore, these particles can be considered as a finite number 

of rays sharing the same starting point. As shown in Figure 3.3 (a) and Figure 3.3 (d), a specific 

point at a certain distance above the surface of a body is created to represent the outlet of the 

nozzle. Then from this point, many straight rays are created. These rays are obtained by rotation 

and symmetric operation of the centreline, which is the vertical line from the starting point to 
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the body surface. The rays will intersect the substrate to create intersections. In this way, it will 

be possible to determine the effective area for generating the coating profile on any shape of 

the substrate. 

Secondly, a single coating profile consists of a finite number of cylinders with the same 

diameter, and the height of each cylinder equals the value of the corresponding Gaussian 

function. As shown in Figure 3.3 (b) and Figure 3.3 (e), based on the intersection, circles will 

be created and stretched in the opposite direction of the ray to form a cylinder. The distance 

stretched is equal to the spray length. The smaller the radius of the cylinder is, the higher the 

accuracy of the simulation results will be. However, the calculation will be time-consuming. 

This study uses a cylinder with a radius of 0.02 mm.  

Thirdly, the cylinders are established only where the rays touch. Therefore, the coating 

profile can be in a myriad of shapes, even non-continuous. As shown in Figure 3.3 (c) and 

Figure 3.3 (f), a number of regular cylinders is composed as a single coating profile model. 

Although it is created based on the Gaussian model, its final profile is determined by the shape 

of the substrate. 

 

Figure 3.3 (a) Creation of rays and intersection on a flat; (b) Creation of cylinders on a 

flat; (c) Single coating profile model on a flat; (d) Creation of rays and intersection on a non-

planar; (e) Creation of cylinders on a non-planar; (f) Single coating profile model on a non-

planar. 



Chapter 3: Cold spray process modeling and simulation 

72 

 

3.2.2 Continuous coating profile model 

Normally, a set of continuous random variables can be discretized according to certain 

rules. In order to simulate the deposited coatings on the substrate during the nozzle motion, we 

assume that the continuous coating profile is a collection of single coating profiles. Figure 3.4 

shows the schematic of the coating thickness distribution model. By selecting the appropriate 

distance between two discrete points, it can create the coating distribution model deposited on 

the substrate under the traveling of the nozzle. An appropriate distance value is important for 

the thickness simulation result due to the fact that a large distance value can lead to a less 

accurate result and a small one can lead to excess computation. Based on the results of trial and 

error, as long as the distance is less than σ, a continuous coating profile close to the actual 

situation can be obtained. In this study, the distance between two discrete points was set to σ/2. 

 

Figure 3.4 Schematic of coating thickness distribution model. 

In three-dimensional graphic environment, a continuous coating profile model can be 

created based on the principle of creating a single coating profile model. As shown in Figure 

3.5, the first single coating profile will be created on the substrate, Then the second single 

coating profile will be created on the substrate and overlap with the first single coating profile, 

and so forth. Finally, by selecting a stacking appropriate distance, continuous coating 

topography can be created on any topographic substrate, such as on a flat surface in Figure 3.5 

(b), curved surface in Figure 3.5 (c) and complex surface in Figure 3.5 (d). 
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Figure 3.5 (a) Discrete single coating profile with overlaps; (b) Continuous single coating 

profile on a flat; (c) Continuous single coating profile on a curved surface; (d) Continuous 

single coating profile on a complex surface. 

3.3 Effects of operating parameters on coating thickness 

Generally, the CS operating parameters can be classified into several categories: the energy 

parameters, powder injection parameters and kinematic parameters. Among these parameters, 

the kinematic parameters are controlled by the robot, such as the speed of the torch, spray 

distance, scanning step, etc., which directly affect the accuracy of the as-sprayed coating shape 

or coating profile. Obviously, it is of great importance to determine the dependence of operating 

parameters such as spray angle, nozzle traverse speed, scanning step and standoff distance on 

coating thickness distribution. Normally, they change the coating profile and thickness by 

affecting the deposition efficiency. Gilmore et al. [18] defined it as the rate of the mass of the 

deposited particles to the overall mass of the spray particles. In practice, deposition efficiency 

is a systematic variable, and the factors influencing the whole process are very complicated. 

Among them, the deposition behaviors and deposition mechanisms of particle play an important 
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role. Nowadays, substantial research has been carried out to understand the deposition of 

particles. For example, Assadi et al. [19,20] proposed that the occurrence of bonding can be 

illustrated by shear instability. Li et al. [21] examined the effects of spray angle and particle 

size on the critical velocity. Prisco [22] described the relation between maximized deposition 

efficiency and the particle velocity and heat of impact in the cold spray process through a 

developed mathematical model. In order to study the effects of the spray operating parameter 

on coating thickness and to validate the proposed coating thickness modeling, the experimental 

study on cold spray was carried out. The detailed process will be introduced in the next section. 

3.3.1 Experimental details 

In this study, the relative deposition efficiency and peak correction factor based on 

experiments are used to characterize the coating profile model under different operation 

parameters, including spray angle, spray distance and nozzle traverse speed. Experiments were 

performed by using the CSAM system that was presented in Chapter 2. The pure 7075Al 

powder with a near-spherical morphology was used to spray on Al substrates. The 

microstructure of powder and the particle size were displayed in Figure.3.6 a and Figure.3.6 b 

respectively. High-pressure compressed air was used as the propellant gas with a temperature 

of 550 °C and a pressure of 2.8 MPa. Compressed argon was used as the powder carrier gas. A 

coating deposited by single nozzle path was made to study the effects of the spray angle, the 

spray distance and the nozzle traverse speed on a single coating profile. Hence, three groups of 

tests were carried out: the first one was for testing the effects of spray angle; the second one 

was for testing the effects of nozzle traverse speed; the third one was for testing the effects of 

spray distance. Table 3.1 lists the detailed description of operating parameters. A profile meter 

(LJ-V7000, Keyence, Japan) was used to measure the individual spray pass thickness after 

spraying. 
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Figure 3.6 (a) SEM photos of Al7075 powder used in experiments (b) the particle size of 

Al7075 powder used in experiments. 

Table 3.1 Operating parameters used for effect analysis of the different robot kinematic 

parameters. 

Group Nozzle 

traverse speed 

(mm/s) 

Spray angle 

(°) 

Spray 

distance (mm) 

Scanning 

pass  ⃰

1 50 50-90 30 20 

2 20~ 100 90 30 10 

3 50 90 10~45 10 

⃰ Scanning pass is the number of times that the nozzle moves along the same track. 

3.3.2 Effects of spray angle 

The effects of the spray angle of 90°, 80°, 70°,60° and 50° on a single coating profile were 

investigated in the first test group. The results were measured and shown in Figure 3.7. In 

practice, the spray angle affects not only the deposition efficiency but also the shape of the 

coating-profile. It can be noticed that decreasing of spray angle reduces the maximum thickness 

and influences the profile distribution. 
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Figure 3.7 Results of coating thickness distribution at spray angle of 90°, 80°, 70°, 60°, 50° 

respectively. 

Then, the weights of the substrate and substrate + coating before and after spraying were 

measured. The difference between the two measurements is used to calculate the relative 

deposition efficiency of different spray angles. It is assumed that the relative deposition 

efficiency is 100% when the spray angle is 90°. The results are given in Figure 3.8. The 

maximum deposition efficiency can be obtained for a spray angle between 80° and 90°. As for 

the spray angle between 60° and 80°, a rapid drop of deposition efficiency can be observed 

because of increased tangential impacting velocity (of the powders) that increases the 

possibility of particle rebound from the substrate, and decreases thereby the bonding strength 

between the substrate and the coating. As the spray angle decreases below 60°, the relative 

deposition efficiency falls down to the minimum value. It can be expected that the deposition 

efficiency will be zero due to a further decrease of the spray angle. Similar results can be found 

in Li [23] and Chen [9] reports. In addition, in order to obtain the expression of ζ (θ) in Eq 3-1, 

a polynomial (degree = 4) was used to get a fit function, which was displayed in Figure 3.8. 
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Figure 3.8 Effects of spray angle on weight gain and relative deposition efficiency of 

7075 Al coating. 

3.3.3 Effects of nozzle traverse speed 

The effects of nozzle traverse speed on the maximum coating thickness were studied in 

the second test group. Previous studies have revealed that the nozzle traverse speed has little 

effects on deposition efficiency during cold spraying [9]. However, the nozzle traverse speed 

has a prominent influence on coating thickness. Figure 3.9 shows that the maximum coating 

thickness decreases with increased nozzle traverse speed, that means less powder was deposited 

for a higher nozzle traverse speed. This is because, under different nozzle traverse speeds, the 

amount of particle deposition is different per unit time. In order to obtain the expression of ζ (v) 

as in Eq 3-1, it is assumed that the PCF equals to 100% when the nozzle traverse speed is 

50 mm/s, and the linear fitting function can be obtained for ζ (v) (as shown in Figure 3.9). 
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Figure 3.9 Effects of Nozzle traverse speeds (20–100 mm/s) on coating thickness and 

peak correction factor of Al7075 coating. 

3.3.4 Effects spray distance 

The effects of the spray distance on a single coating profile were investigated in the third 

test group. According to the literature [21,24,25], one of the most important factors that affects 

the coating formation is the critical particle velocity. During the cold spray process, the spray 

distance cannot be ignored due to the acceleration of the particles between the nozzle outlet and 

the substrate. Li et al. [26] have also investigated the effects of spray distance on coating 

deposition property in cold spray. Van Steenkiste et al. [27] reported the decrease of deposition 

efficiency for Al powder as the spray distance varies from 19 to 38 mm. In this study, the relative 

deposition efficiency for 7075Al powder changes from 10 to 45 mm. It was determined that the 

spray distance of 30 mm corresponded to a DE of 100% (Figure 3.10). The deposition efficiency 

raises as the spray distance increases and then is reduced. This phenomenon can be explained 

by the behavior of particle acceleration under different spray distances. In addition, a model of 

cubic was used to get a fit function as ζ (s) to explain the variation of particle velocity depending 
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on the spray distance (Figure 3.10). 

 

Figure 3.10 Effects of spray distance (from 10 to 45 mm) on coating thickness and 

relative deposition efficiency of 7075Al coating. 

3.4 Evaluation of coating thickness by ProfileKit 

As mentioned in Chapter 1, the add-in software package TST developed RobotStudio™ 

aims to provide a complete solution for the robotic cold spray process [17]. TST consists of 

four modules: PathKit, ProfileKit, MonitorKit and KinemaKit. Among these modules, PathKit 

enables the creation of robotic trajectories according to the geometry of workpiece; ProfileKit 

module is developed for the purpose of the coating deposition simulation; MonitorKit monitors 

the speed and trajectory of the robot; KinemaKit is used to optimize the kinematics parameters 

during the spraying process by collecting and analyzing various signal data of the robot's motion. 

Meanwhile, the functions of TST are constantly being updated and improved. 

In this study, the developed 3D geometric coating thickness model is integrated to 
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ProfileKit. Compared with previous work [9,11], the evolving geometric 3D model is used 

instead of the numerical simulation so that it can be used for coating simulations with shadow 

effects. The Gaussian model is improved by introducing the robot kinematic data such as spray 

angle, real-time nozzle traverse speed and spray distance. The visualized operation effect can 

intuitively and quickly understand the coating thickness and its whole distribution. In the 

following sections, the simulation application and its process will be introduced. Both 

numerical and experimental verifications were carried out to validate its reliability. 

3.4.1 3D Coating thickness simulation under RobotStudio™ 

As mentioned in the previous chapter, RobotStudio™ is a powerful off-line programming 

software that enables very realistic simulations on robot motion. It makes use real configuration 

files and robotic programs identical to those used on the spray shop. RobotStudio™ not only 

has a wealth of features available to users but also provides the interface to develop customized 

applications. Therefore, it is possible to develop an application program to simulate the 

deposition of coatings and the distribution of coating- thickness in the framework of 

RobotStudio™. In this study, an add-in program was developed in C# (programming language 

of Microsoft™ Company) and the data exchange with RobotStudio™ is based on API functions 

provided by RobotStudio™[28]. The user interface (UI) of the coating simulation application 

shown in Figure 3.11 consists of four panels that refer to different operation steps, including 

basic parameters setting, coating thickness simulation and measurement. It is available for users 

to focus on coating-thickness calculation and simulation in cold spraying.  
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Figure 3.11 The user interface:(a) for basic parameters setting and coating simulation; (b) for 

coating simulation base on the real robot kinematic data; (c) for measuring the coating 

thickness; (d) for measuring the coating thickness. 

A general coating thickness simulation process is displayed in Figure 3.12. First of all, a 

corresponding CAD file of the component is needed in the process of coating simulation. The 

formats of CAD models such as IGES, STL, STEP, ACIS, and ASCII are available in 

Robotstudio™. After a calibration of the component position and the TCP, the robotic trajectory 

is generated according to the operating parameters including spray angle, nozzle traverse speed, 

projection spray distance, scanning step and so on. Here, PathKit of TST can be used to generate 

trajectories on the surface of workpieces with different kinds of geometric shapes, including the 

rectangular surface, circular surface, curved surface, rotation of a workpiece. Figure 3.12 (a) is 
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a simple zigzag path created on a flat substrate. 

After that, the corresponding robot path program will be created and run. During the robot 

path simulation in RobotStudio™, the speed, the position as well as the orientation of the nozzle 

will change with the robot movement (Figure 3.12 (b)). These signals can be recorded to 

generate discrete points on the path for coating thickness simulation. However, the virtual 

Robotic controller system in RobotStudio™ collects the data every 24 ms. The distance in 

between two collected points is the product of nozzle traverse speed and time step. Table 3.2 

listed the distance in between two discrete points under different TCP speeds. Thus, an 

appropriate distance is significant for coating simulation, that is, because a large distance gives 

rise to a less accurate outcome and a small one leads to excessive calculation. In this study, the 

distance between two consecutive points for calculation should not be larger than σ (the 

standard deviation of coating coating-profile). Therefore, it is necessary to interpolate a certain 

number of points between two adjacent points if their distance is greater than σ. Figure 3.12 (b) 

shows discrete points consisting of remaining points and interpolation points after calculation. 

Finally, according to these discrete points, a 3D coating distribution model can be generated on 

the surface of the substrate (Figure 3.12 (d)). 
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Figure 3.12 Coating thickness simulation in RobotStudio™. (a) Generation of trajectory; (b) 

Signal of nozzle travel; (c) target points for coating thickness simulation; (d) Coating 

thickness distribution. 

Table 3.2 Distance between two discrete points under different TCP speeds. 

TCP speed (mm/s) Distance between two discrete points (mm) 

1000 24 

800 19.2 

500 12 

200 4.8 

100 2.4 

50 1.2 

20 0.48 

For the coating thickness measuring process, two ways are provided to characterize the 

thickness of the simulated coating. By selecting the measurement position, the coating thickness, 
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which is the shortest distance between the measurement position and the substrate, will be 

automatically calculated and displayed in the graphical virtual environment (Figure 3.13 (a)). 

The thickness of the coating is represented by colors and its range is demonstrated by a color 

bar. The second way is to use a plane with an optional direction to intersect the coating and 

obtain the cross-sectional profile (Figure 3.13 (b)). After that, the distance from each point on 

the cross-sectional profile to the substrate is calculated and exported as a text file for further 

processes, such as data processing and drawing charts, etc. 

 

Figure 3.13 Calculate and measure coating thickness. (a) coating thickness at the 

specified location; (b) coating cross-sectional profile. 

3.4.2 Experimental evaluation 

In order to evaluate the predictive capabilities of this newly developed approach, both 

simulation and experimental investigations were carried out in this study. The pure 7075Al 

powder (Figure 3.6) was used as feedstock to coat Al substrates made of different shapes. One 

is a plate (84×63×3 mm) to verify the thickness model on flat geometries and the other is a 

workpiece with three grooves to test the shadow effect on this model. High-pressure 
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compressed argon with a temperature of 550 °C and a pressure of 2.8 MPa was used as 

propellant gas. Other operating parameters are listed in Table 3.3. In the simulation, the single 

coating profile model is generated by deciding each variable in Eq.3-1. The values have been 

obtained through corresponding experiments. After that, the simulation was carried out with the 

real configuration files, robotic programs and robot kinematic parameters identical to those used 

on the spray system. The detailed results were presented in the following paragraphs. 

Table 3.3 Operating parameter details used for experiments. 

Substrate Nozzle 

traverse 

speed (mm/s) 

Spray angle 

(°) 

Spray 

distance 

(mm) 

Scanning 

step 

(mm) 

Scanning 

pass 

Flat 50 90 30 3.8 10 

Complex 50 50 30 None 20` 

3.4.2.1 Experiment on a flat surface 

For the experimental verification on a flat surface, the experiment was performed with the 

same robot program under the same kinematics parameters as predefined in the simulation 

(Figure 3.12). The simple zigzag path was created. The spray nozzle was always perpendicular 

to the surface of the substrate through the entire path. The nozzle traverse speed and the spray 

distance were set 50 mm/s and 30 mm respectively. In order to make the coating in the cross-

sectional direction easier to observe and to compare, a larger scanning step of 3.8 mm was used. 

Finally, the experimental result is in good agreement with the simulation as shown in Figure 

3.14. It is obvious that stripes between two tracks can be observed from both experimental and 

simulation results due to the large scanning step. It also illustrated that a good deposition 

uniformity can be achieved by specifying a scanning step of the corrected distribution, that was 

also reported by Cai [11] and Chen [9] for pure 5056 Al powders. 
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Figure 3.14 Experimental result; (b) simulation result. 

The coating thickness obtained by experiment and simulation were compared. The cross-

section in the middle of the experimental coating was measured by using a profiler. The second 

coating thickness measuring method illustrated above was used to determine the results of the 

cross-section shown in Figure 3.14 (b). The obtained data were used to make the chart. Finally, 

the cross-sectional comparison of coating thickness distribution is displayed on Figure 3.15. It 

is found that the experimental result is in good agreement with the simulation. In addition, the 

results of the error analysis are shown in Table 3.4 and indicates that the simulated coating 

profile well fits with the experimental data, and the average relative error is 6.85%. 
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Figure 3.15 Comparison of experimental and simulation results of coating thickness. 

Table 3.4 Average and standard deviation of coating thickness, as well as absolute and relative 

error of simulated results with experimental ones. 

 
Average 

coating 

thickness 

(mm) 

Standard 

deviation 

(mm) 

Average 

absolute error 

(mm) 

Average 

relative error 

(%) 

Experiment  1.298 0.056 

0.089 6.85 
Simulation 1.387 0.044 

3.4.2.2 Experiment on a part with a shadow effect 

As shown in Figure 3.16, the geometric model of the workpiece presents three zones with 

different groove shapes. The depth of the grooves and the slope of the side walls are different: 

the first one is 5 mm deep and 68-degree slope; the second one is 10 mm deep and 79-degree 

slope and the third one is 15 mm deep and 82-degree slope. In the experiment, the objective is 

to measure the coating thickness in each zone under the spray angle of 50° and spray distance 
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of 30 mm. The spray path used for deposition is shown in red in Figure 3.17 (a). The nozzle 

reciprocated up and down along the red path. In order to illustrate the effect of different zones 

on the distribution of coatings during spraying, more details were shown in Figure 3.17 (b). The 

trajectory of the nozzle was indicated as purple balls named targets. Red lines were the direction 

for spraying, and also the centerline of the nozzle. The shortest distance of target-substrate was 

30 mm in the direction of the red line. The change of the distance truly affects the coating 

deposition efficiency as mentioned above. White balls were the intersections 

centerline/substrate. It is sure that there will be coating deposition only in the intersection. 

Green arrows were normal to the intersections. It can easy to found that the angle between the 

normal and the red line was changed along with the movement of the nozzle, that would lead 

to different spray angles and different coating depositions. 

 

Figure 3.16 The main view and top view of the workpiece with a shadow effect. 
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Figure 3.17 (a) Generation of trajectory; (b) target points for coating thickness simulation. 

Figure 3.18 (a) and (b) show the results of the experiment and simulation respectively. 

Each zone was affected by shadow effects under experiment settings. The coating in each zone 

was different: zone 1 had the largest coating thickness and a triangular-like profile was formed; 

the lower number of particles was deposited in Zone 3 so the coating thickness was minimum. 

This was because the spray angle decreased as well as the spray distance increased, and as a 

result the relative deposition efficiency became smaller. There was no obvious coating on the 

top surface of the substrate because the deposition efficiency was close to zero. However, the 

traces washed by the powder particles could be clearly observed. The cross-sectional 

comparisons of coating thickness distribution in each zone are displayed in Figure 3.19. It is 

known that the physical influence factors of deposition are very complicated during cold 

spraying. The parallel multiple passes in a single track will lead to the triangular-like profiles. 

This is because increasing coating height leads to significant decreasing of deposition efficiency 
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(more than 35% according to Kotoban's report [29]) due to the diminishing of effective impact 

angle in between particles and substrate. Obviously, the coating height of zone 1 increased more 

quickly than other zone owing to its closer spray distance and larger spray angle, that made it 

the earliest formation of triangular-like profiles (Figure 3.19 (a)). Since the impact of this aspect 

was not considered in the model used in this article, there were large deviations in the simulated 

results, especially in zone 1. Finally, Table 3.5 listed the results of the error analysis proving 

that this method of coating thickness simulation permits convenient prediction of coating 

thickness in the case of shadow effects. Based on the simulation results, robotic trajectory, 

operating parameters, and spray strategy can be re-adjusted, like changing the spray angle, 

setting different nozzle travel speeds, until achieving the desired coating thickness distribution. 

 

Figure 3.18 (a) Experimental and (b) simulation results of CS deposition on workpiece with 

shadow effect. 
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Figure 3.19 Comparison of experimental and simulation results of coating thickness at (a) 

cross-section 1, (b) cross-section 2 and (c) cross-section 3. 

Table 3.5 The absolute and relative error of simulated results compared with experimental 

ones based on different cross-sections. 

Cross-section Absolute error (mm) Relative error (%) 

1 0.251 14.03 

2 0.025 2.25 

3 0.064 6.39 

3.5 Conclusion 

Nowadays, due to the advantage of low particle temperature, low oxidation, and residual 

stress, cold spray is considered as an effective additive manufacturing method. In the process 

of cold spray on complex components, coating thickness is an important indicator to monitor 
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and control. Although coating quality, coating microstructure and bonding theory of cold spray 

have been widely studied, the control of the coating thickness and kinematic parameters is rare. 

In this study, a new approach was developed to simulate coating thickness in cold spraying, 

especially for the prediction of shadow effects. The experiment result shows that this method 

can provide acceptable results. 

A three-dimensional geometric model of the coating profile based on Gaussian distribution 

was developed and presented in this chapter. Due to the manipulation of the industrial robot, 

the coating thickness and quality are directly influenced by the robotic kinematic parameters. 

Therefore, the coating thickness model considers the relative deposition efficiency resulting 

from the different robot kinematic parameters. The evolving geometric 3D model can be easily 

handled with existing programming and geometric modeling tools, that implies the possibility 

of a wide application without specific simulation codes. In addition, it can offer accurate profile 

prediction in the robot programming platform that enables the integration of robot programming 

with simulation to better control the coating process. However, the current research is still 

located at the profile geometric simulation. In the future, process physical phenomena, e.g. 

plastic deformation and energy conversion, will be integrated to this model to realize simulation 

and prediction of coating quality indicators, such as coating porosity. Moreover, it would be 

applied as an efficient and effective guideline for cold spray additive manufacturing and 

repairing. 
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4.1 Introduction and state of the art 

As mentioned in the previous chapters, CS form large volume objects with a possibility 

of a hybrid AM process that uses direct material-removing processes during the CS deposition. 

However, it also has been noted that CSAM has some disadvantages, such as low spatial 

resolution and dimensional accuracy. The distribution and velocity of particles in the feedstock 

jet are uneven[1–3] and results in a particles distribution close to a Gaussian distribution [4,5].  

In practice, an axisymmetric de-Laval nozzle is often used to emerge high-speed particles 

in CS. When the nozzle traverse speed is low or the number of scanning passes is important, a 

triangular coating profile will be formed and the subsequent deposition of particles will be 

difficult [3]. As shown in Figure 4.1, continuous spraying makes the single-track profile 

gradually changed from a thin coating with high deposition efficiency at the beginning (Figure 

4.1(a)) to a triangular-like coating with low deposition efficiency (Figure 4.1(b)).  

During the spray process, the velocity of particles in the centre of the feedstock jet is 

generally higher. Furthermore, the absolute number and the size of particles deposited on the 

centre area of the track are larger than the particles on the edges. As a result, the thickness in 

the middle will increase significantly and the impact angle of the particles near the centre line 

gradually decreases. It is well known that particles in cold spraying to reach a critical speed in 

order to produce plastic deformation to form a coating. Therefore, cold spraying is a process 

that is sensitive to the spray angle. An impact angle of 90° can achieve maximum deposition 

efficiency [6]. For particles with smaller spray angle, the velocity component perpendicular to 

the impact surface will not reach critical velocity, so it will rebound without forming a coating. 

Therefore, the coating morphology slowly rising in the middle is not conducive to subsequent 

particles deposition. The impact angle decreases rapidly and the deposition rate sharply 

decreases, especially for the particles around the centre line [7]. Gradually, only particles in the 

centre can continue to be deposited by the high-pressure gas. All this difficulty of subsequent 

particle deposition, the area where particles can be eventually deposited in the middle to 

continue to be shrunk to the point where it forms a triangular single-track profile [16,26]. 

Obviously, this characteristic would limit the application of CSAM for shape forming if no 

spray strategy for processing adaptation is used. 
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Figure 4.1 Schematic of particle impact conditions in cases with (a) high deposition 

efficiency phase and (b) low deposition efficiency phase 

In AM process benchmarking, local deposition of thick and vertical walls is always 

required to show the capability of forming complex components with diverse geometries. In 

order to build a thick and vertical wall without edge milling, J. Pattison et al. [8] proposed a 

strategy of triangular-tessellation. The process is to tilt the nozzle by a 4/5-axis system so that 

the current coating is sprayed perpendicularly onto the inclined surface of the previous track. 

However, they did not give any details on how the nozzle should be tilted. Although their 

method can form 3D volumes, the control of the process is difficult and it has limitations in 

forming complex 3D near-net-shapes with acceptable accuracy. This also conflicts with the 

basic principle of AM where the volume forming is by layers deposition. Moreover, by using 

this method, a typical triangular-like shape should be generated before tilting the nozzle (Figure 

4.2). The particle impact conditions are not optimal in this case. Firstly, the typical triangular-

like morphology influences overall deposition efficiency [3]. Such conditions can be attributed 

to the impact angle decrease as mentioned above. It has been proved that the optimal impact 

angle in cold spraying is 90° [9–11]. If the impact angle decreases, the deposition efficiency 

drops sharply. Secondly, high and sharp profiles can cause a tangential component of particle 

impact velocity that may generate tensile forces and reduces the total contact areas and bonding 

strength between the particles and the previously sprayed coating or substrate [9]. The porosity 

would also become greater [6,11]. Considering all the above-mentioned problems, this 

triangular-tessellation technique may not be a good solution for shape forming to obtain high-
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quality objects.  

 

Figure 4.2 Schematic of the triangular-tessellation strategy proposed by J. Pattison [16] 

To solve the problems of CS for shape forming and realize easy process control, this 

chapter proposes a novel spray strategy that enables to form freeform 3D objects with 

acceptable precision. In view of the characteristic of CS deposition, three parameters are 

proposed to adjust the coating morphology in order to avoid forming triangular-like deposits. 

The parameters are the deflection angles θ, the offsets s, and the retreat distance d. They are 

illustrated in details in the section below. Through the developed CS simulation model 

mentioned in Chapter 3, the different combinations of these parameters were studied, and it is 

found that their settings play a key role in determining the layer geometry, and thus the 

component building process.  

To compare with existing spray-coating strategies for additive forming, this chapter also 

adopts the widely used benchmarking test shape, thick and vertical walls, to demonstrate the 

performance of the proposed new spray strategy. When additively building the walls or other 

thick coatings, the effective coating area can be fully covered without edge loss. 

4.2 Stable layer-building method for CSAM 

Generally speaking, the volume forming in AM depends on the layer by layer formation 

[12]. The realisation of a stable and controllable layer is the key to obtain the object with the 

desired shape and accuracy. Starting with the deposition of simple coatings and ending with 

the fabrication of more complex components, it is always necessary to deposit thick and vertical 

walls as elementary geometry. In the process of structural design, many complex structures can 

be formed by a combination of various elementary geometries. 

As mentioned, during the cold spray process, the pre-set spray parameters are generally 
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kept constant during the spray process, while the growth of the coating is only affected by the 

kinematic parameters such as the nozzle scanning speed, the spray angle and the spray distance. 

These parameters are directly controlled by industrial robots. The high performance of 

industrial robots ensures the high precision, high repeatability and high flexibility of these 

parameters. Therefore, it is required to develop a method that can realize stable and controllable 

spraying to make CS a real layer-by-layer AM process. 

In the following section, a stable layer-building strategy for CSAM will be introduced. 

Before that, four groups of single-track spraying experiments were carried out. One of the 

purposes is to reveal the relationship between operating parameters and as-sprayed coatings. 

Different parameters affect the shape and the height of the single track deposited by CS. Based 

on the results analysis, we could propose a special spray strategy for creating thick and vertical 

walls. Another purpose is to complete the specific numerical model of the coating profile that 

would be used in CSAM simulation. A certain powder/substrate material and spray parameters 

are necessary for fitting the specific Gaussian profile. 

4.2.1 Cold spray single-track analysis 

4.2.1.1 Experimental setup 

Experiments were carried out under the proposed CSAM system framework (as presented 

in Chapter 2). The nozzle has a circular cross-section with an approximate expansion ratio of 

8.3 and a divergent section length of 130 mm. The dimension details are displayed in Figure 

4.3. During cold spraying process, the nozzle was cooled by a water circulation system to avoid 

nozzle overheating and clogging. Due to the long response time of controlling spray parameters 

such as gas temperature, powder feed rate, etc., the experiments focused only on kinematic 

parameters which can be rapidly changed and controlled by the robot. Therefore, the variable 

parameters depended on different numbers of scanning pass, different nozzle traverse speeds, 

and different spray angles.  
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Figure 4.3 Geometry diagram of axisymmetric de-Laval nozzle. 

A pure Cu powder with near-spherical morphology are deposited on Al substrates. The 

diameter range of powder is in between 10 and 45 μm (average size of 26 μm). Figure 4.4 

shows the morphology and size distribution of the pure Cu powder. High-pressure air was 

supplied as propellant gas at a temperature of 500°C and a pressure of 3 MPa, and also as 

powder carrier gas. The morphology of deposition was measured by a 3D profiler (LJ-V7060, 

Keyence, Japan). More detailed descriptions of the operating parameters are listed in Table 4.1. 

 

Figure 4.4 SEM image of pure Cu powder used in experiments 

Table 4.1 Detailed description of operating parameters. 

Group Nozzle 

traverse 

speed 

(mm/s) 

Spray 

angle (°) 

Powder 

feeding 

rate 

(g/min) 

Spray 

distance 

(mm) 

Number of 

scanning 

passes 

1 100 90 24 30 1~20 

2 20, 50, 100, 

200 

90 24 30 10 

3 100 50, 60, 70, 

80, 90 

24 30 20 
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4.2.1.2 Effects of number of scanning passes 

The effects of the number of scanning pass on CS single-track profiles were investigated 

by the first test group. The number of scanning pass increased from 1 to 20 passes while the 

other parameters were kept constant. The results were measured and shown in Figure 4.5.  

 

Figure 4.5 Profiles of the single tracks deposited at different numbers of nozzle pass 

measured by the 3D profiler. 

It was found that the coating got thicker constantly and the shape of the single track 

became a triangle gradually when the number of scanning passes increased. The height of the 

coating changed from 0.8mm under 1 scanning pass to 16.8mm after 20 scanning passes. 

Although the height of the coating could gradually increase as the number of scans increase, 

only the part of the coating in the middle grew. Moreover, this part was getting closer and closer 

to the middle, and finally, a sharp triangle was formed. 

The relative deposition efficiency of different scan passes was evaluated by calculating 

the area enclosed by each contour line using definite integral. It is supposed that the relative 

deposition efficiency of the coating is 100% when the number of scanning passes is 1. Figure 

4.6 shows the calculation results. It was found that the deposition efficiency decreased as the 

number of scanning passes increased. When the number of scans is increased to 13, the 

deposition efficiency is reduced by half.  
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Figure 4.6 Effects of the number of scanning pass on relative deposition efficiency. 

4.2.1.3 Effects of nozzle traverse speed 

The effects of the nozzle traverse speed on CS single-track profiles were investigated by 

the second test group. The nozzle traverse speed was set to 20mm/s, 50mm/s, 100mm/s and 

200mm/s while the other parameters were kept constant. The results were measured and shown 

in Figure 4.7. Different nozzle movement speeds can significantly change the height of the 

deposits, and lower movement speed will cause the coating thickness to increase and become 

triangular faster. The relative deposition ratio of different nozzle traverse speeds was calculated. 

It is supposed that the relative deposition ratio is 100% when the nozzle traverse speed is 

20mm/s. Figure 4.8 shows the calculation results. Obviously, the nozzle traverse speed has the 

same effect on the CSed single track as the number of scanning passes. When the nozzle 

traverse speed is low, a triangular coating profile will be formed and the subsequent deposition 

of particles will be difficult. 

 

Figure 4.7 (a) Single tracks deposited at different nozzle traverse speed (b) Profiles of single 
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tracks measured by the 3D profiler. 

 

Figure 4.8 Effects of the nozzle traverse speed on relative deposition ratio. 

4.2.1.4 Effects of spray angle 

The effects of the spray angle of 90°, 80°, 70°,60° and 50° on a single coating profile were 

investigated by the third test group. The results were measured and shown in Figure 4.9. It is 

assumed that the relative deposition efficiency is 100% when the spray angle is 90°. Then the 

relative deposition efficiency of different spray angles was calculated and showed in Figure 

4.10. Obviously, the spray angle affects not only the deposition efficiency but also the shape of 

the coating-profile. Decreasing of spray angle reduces the maximum thickness and influences 

the profile asymmetry, shifting the centre of gravity of the sprayed coatings in the direction of 

the incoming particles.  
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Figure 4.9 (a) Single tracks deposited at different spray angles (b) Profiles of the single tracks 

measured by the 3D profiler. 

 

Figure 4.10 Effects of the nozzle traverse speed on relative deposition efficiency. 

From the preliminary experiments, it can be seen that the kinematic parameters are the 

main factors affecting the coating morphology in CS, that are directly controlled by the 

industrial robots. The deposits are bound to become triangular-like when the axisymmetric 

nozzle is used to spray continuously. If the kinematic parameters are not changed when 

spraying on the same regions, the particle impact condition will be worse. Therefore, to make 

CS a real additive manufacturing technology in the strict sense, it is important to avoid the 

tendency of triangular-like forming.  

An effective solution should be considered to ensure that the deposits can stably grow. 

Actually, if the height of deposits is low, then the impacting surface could be considered flat. 
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Also, the impact surface can be kept flat by adjusting the kinematic parameters (such as spray 

angle) for every layer to avoid coating height increase (in the middle zone), so that the deposits 

can grow up layer by layer. The detail of the proposed spray strategy will be presented in the 

following part. 

4.2.2 Spray strategy 

Generally, cold spraying jet can be regarded as a set of continuous random variables. 

According to the central limit theorem, the averages of random variables can be considered 

Gaussian distributed when the amount of variable is sufficiently large. Many research reports  

have used Gaussian based numerical modeling to study the feature of spray deposits [4,13–15], 

as done in our previous work [5]. And it is proved to be feasible and reliable. As we all know, 

the Gaussian curve is a standard curve in the normal distribution. Figure 4.11 shows a normal 

Gaussian curve; μ is the centre position of the peak and σ is the standard deviation. The values 

less than σ away from the mean account for 68.27% of the set, while the remaining portion is 

relatively low. It is conceivable that the main weight of a single CS deposited coating is 

concentrated in the central area.  

 

Figure 4.11 Gaussian curve. 

In order to obtain a more uniform coating, it is necessary to make mass distribution 

gradually concentrated on both sides. According to the above analysis, spray angles can change 

the symmetry, shifting the centre of gravity of the sprayed coatings in the direction of the 

incoming particles. Hence, the mass distribution of the layer can be uniformed by tilting the 



Chapter 4: Stable layer-building strategy to enhance cold spray based additive 

manufacturing 

 

107 

nozzle. Unlike the triangular-tessellation strategy, this spray strategy does not make triangular-

like deposits before tilting the nozzle. The inclined spray manner is to compensate for the 

thickness and weight difference in between the middle and side of the deposit. 

Based on the above discussion, three main parameters were proposed to control the shape 

of deposits. As shown in Figure 4.12, θ is the deflection angle in order to replenish particle 

depositions at the edge; s is the offset that can adjust the track width in horizon; d is the value 

that adjusts the retreat distance of the nozzle according to the layer’s growth in height.  

 

Figure 4.12 Schematic of CSAM spray strategy for thick and vertical walls. 

It can ensure that the spray distance between the top layer and the nozzle exit is consistent 

during spraying. The coating profile in perpendicular spray cases is a Gaussian distribution 

(shown with red blocks), while the coating profile in off-normal spray cases has no longer a 

normal Gaussian distribution (the left track with green block, the right track with yellow block). 

Every layer is composed of a first track in the middle, a second track on the left, and a third 

one on the right. The first track should be controlled to avoid a triangular-like profile in the 

middle before performing the left and the right track. After spraying the left and the right track, 

the current layer could be formed as a flat surface before the next cycle.  

In this way, the single layer can steadily rise in a track-by-track manner without appearing 

to have defective triangular-like depositions. Meanwhile, this spray strategy also appropriates 

to fabricate large bricks or a thick coating (Figure 4.13). The surface of the prescribed area is 

sprayed in a perpendicular manner by specifying a scanning step of the corrected distribution. 
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Then the edges are sprayed by tilting the nozzle to compensate for the edge loss. It can be found 

that the volume is formed layer after layer using this spray strategy, which implements the basic 

principles of AM. This strategy can avoid triangular-like depositions. Moreover, with the 

application of high-performance industrial robot, this spraying strategy can be easily realized. 

There is no doubted that the parameters used in this strategy can be easily controlled and 

repeated with high accuracy and flexibility. 

 

Figure 4.13 Schematic of CSAM spray strategy for large blocks or thick coatings. 

In the following sections, both simulation and experiment based on the proposed spray 

strategy will be introduced. They verify the proposed spraying strategy as pre-spraying 

application, that is, before the final building results are known. Simulation can obtain an 

instructive spraying parameter, reducing trial and error experiments. The deposit under the 

current spray strategy can be observed more clearly. 

4.3 Simulation verification 

4.3.1 Simulation process 

In Chapter 3, a three-dimensional geometric model of the coating profile based on 

Gaussian distribution was developed for simulating coating thickness in CS. A brief description 

of the simulation methodology is as follows. Firstly, the three-dimensional geometric model is 

represented by a Gaussian approximation function. This function considers the effect of spray 

parameters and kinematic parameters on the deposition efficiency. Secondly, an algorithm 

couples the model with real robotic trajectories to simulate coating deposition in 
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RobotStudio™ (ABB). Finally, the simulation results are presented in the graphical virtual 

environment.  

In this work, the 3D coating thickness model was created based on the copper (powder)/ 

aluminum(substrate) material system and CS system that were illustrated in Section 4.2.1.1. 

The detail of the creation process can refer to the content of Chapter 3. In order to verify the 

spraying strategy proposed above and to find the optimal combination/setting of parameters to 

reduce trial and error physical experiments, different parameters-based simulations were 

carried out. Table 4.2 gives a detail of parameters used in the simulation.  

Table 4.2 Parameters used in simulation. 

Group Deflection angle θ (°) Offset distance s (mm) Nozzle retreat distance 

d (mm) 

4 30 0, σ, 2σ, 3σ, 4σ - 

5 10, 20, 30, 40 2σ - 

6 30 2σ 0, Layer thickness 

In the current simulation procedure, the first track is generated under normal parameters 

(in case of perpendicular spray), as shown in Figure 4.14a. It is a typical Gaussian profile. Then 

the left track (Figure 4.14b) is obtained by tilting the angle θ and by offsetting the distance s to 

the left side. Thirdly, the right track is also created by the tilting angle θ and the offsetting 

distance s to the other side (Figure 4.14c). The coating created by such operations can be 

considered as one layer. Then, the subsequent layers will be created on top of the previous layer 

following the same procedure. It was observed that the profile topography may change due to 

different parameters, and it was found that the flatness and verticality of the formed profile are 

closely related to the combination of these parameters, while these two attributes are exactly 

the criteria for judging the quality of the control and for reducing the post-machining to achieve 

net shape. 

 

Figure 4.14 Schematic of simulation operation. 
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4.3.2 Simulation results and discussions 

4.3.2.1 Effects of the offset distance s 

Figure 4.15 shows the results when the deflection angle is 30º (θ=30º) and only the offset 

distance s is changed (see group 4 in Table 4.2). Figure 4.15 a1–a5 show the first track, which 

is a typical Gaussian distribution coating profile. Figure 4.15 b1–b5 show the second track 

superposed on the first one with different offset distance s of 0 mm, σ mm, 2σ mm, 3σ mm and 

4σ mm, respectively. Figure 4.15 c1–c5 show the third track accumulated on the other side with 

the offset distance s of 0 mm, σ mm, 2σ mm, 3σ mm and 4σ mm, respectively. Figure 4.15 d1–

d5 illustrate the deposit results in colour, which correspond to Figure 4.15 c1–c5, respectively, 

and their ranges are indicated by a colour bar.  

 

Figure 4.15 Lateral view of spray strategy simulation in a situation where the deflection angle 

was 30º (θ=30º), and the offset distance s changed. 

It can be found that the mass distribution gradually concentrated on both sides during the 

compensation of the deposits on both left and right sides based on the first deposition. But 

when the value of s is larger than three standard deviations, the peaks of mass appear again on 

both sides of the first track. It also can be found that the flatness of the top of the deposits 

changed. The flatness in the case of s=σ mm and s= 2σ mm (Figure 4.15 d2 and Figure 4.15 d3 
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respectively) is better than the other cases. In case of s=3σ mm and s= 4σ mm (Figure 4.15 d4 

and Figure 4.15 d5 respectively), the deposits almost had not flat top. 

Moreover, the cross-section of each deposit was measured and shown in Figure 4.16. The 

height of each case of deposits was about 1.18mm, 0.97mm, 0.72mm,0.71mm, and 0.7mm, 

which corresponded to the offset distance s of 0 mm, σ mm, 2σ mm, 3σ mm and 4σ mm, 

respectively. The width of the track increased from 12mm to16mm as the offset distance 

increased from 0 mm to 4σ mm. Therefore, according to the final results, it can be concluded 

that as s increases, the width of track increases, while the flatness increases initially and then 

decreases.  

 
Figure 4.16 The cross-sectional profile based on the simulation in Figure 4.15. 

4.3.2.2 Effects of the deflection angle θ 

Figure 4.17 shows the simulation results in a case where the offset distance s is fixed at 

2σ and the deflection angle is changed (see group 5 in Table 4.2). Figure 4.17 a1–a5 show the 

first track. Figure. 4.17 b1–b4 show the second track when the deflection angle θ is 10º, 20º, 

30º, and 40º, respectively. Figure 4.17 c1–c4 show the third track by the deflection angle θ of 

10º, 20º, 30º, 40º, respectively. Figure 4.17 d1–d4 show the results represented in colour 

corresponding to Figure.4.17 c1–c4, respectively.  
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Figure 4.17 Lateral view of spray strategy simulation in a situation where the offset distance 

was 2σ (s=2σ), and the deflection angle θ changed. 

It can be found that the mass distribution changed during the compensation of the deposits 

on the left and right sides based on the first deposition. The deflection angle effected this change. 

The flatness of the top of the deposits also changed, but not so much. It seems that a better 

flattop emerged when the deflection angle was 30º. 

Figure 4.18 shows the cross-section of each deposit. The height of deposits was about 

0.98mm, 0.91mm, 0.72mm, and 0.68mm respectively, which corresponded to the deflection 

angle of 0º, 20º, 30º, and 40º. However, increasing θ means a reduction of the spray angle, 

which will reduce the deposition efficiency. Table 4. 3 lists the relative deposition efficiency of 

the deposits under different deflection angles. Here it was assumed that the relative deposition 

efficiency is 100% when the deflection angle is 90°. It was found that the deposition efficiency 

decreased as the deflection angle increased. When the deflection angle is 40º, the mass is 

concentrated in the middle zone and the flatness is decreased. According to the final results, it 

can be concluded that as θ increases, flatness initially increases and then decreases. However, 

θ cannot be too large because it will significantly reduce the deposition efficiency.  
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Figure 4.18 The cross-sectional profile based on the simulation results in Figure 4.17. 

Table 4.3 The relative deposition efficiency of the different deflection angle in simulation. 

θ (º) relative deposition efficiency (%) 

10 100 

20 98.7±0.5 

30 87.2±0.5 

40 78.5±0.5 

4.3.2.3 Effects of the value of nozzle retreat d 

Figure 4.19 shows the comparison between the cases with and without appending d (the 

value of nozzle retreat distance) - (see group 6 in Table 4.2). The value of d equals the height 

of the layer. Figure 4.19 a1 and a2 show the first layer, which is formed at a deflection angle 

of 30 º and an offset distance of 2σ mm. Figure 4.19 b1 and b2 show the first + second layers. 

However, the result in Figure 4.19 b2 was obtained by appending d, and these of Figure 4.19 

b1 without appending d. It can be found that the flatness decreases without appending d while 

the other case can obtain the desired flatness. After spraying the third layer, the deposit in 

Figure 4.19 d2 can be kept flat while the deposits in Figure 4.19 d2 become uneven. After 

spraying the third layer, it can be seen that the result with d (Figure 4.19 d2) is conducive to 

subsequent deposition due to a large flat surface. But the deposits without retreat distance d 

(Figure 4.19 d1) become convex again.  
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Figure 4.19 Comparison results between appending d (the value of nozzle retreat) and 

without it. 

The cross-section of each deposit was measured and shown in Figure 4.20. The height and 

the flatness of deposits with d was better than that in case of without d. Therefore, the value of 

nozzle retreat can ensure the required flatness and the stable growth of the deposits. 

 

Figure 4.20 The cross-sectional profile based on the simulation results in Figure 4.19. 

4.4 Experimental verification. 

4.4.1 Experimental setup 

The experimental verification was carried out with the same system used in section 4.2.1. 

In the proposed CSAM system, the spray gun is fixed at an appropriate position while the 

substrate or the formed part attaches to the robot’s end-effector. The robot arm performs not 

only the relative movement in between the substrate and the spray nozzle, but also the 

displacement of the formed part in between cold spraying process and coating thickness 
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measuring process. The nozzle relative traverse speed was defined as 100 mm/s. The spray 

distance was kept at 30 mm. The pure Cu powder (the same powder as shown in Figure 4.4) 

with a feeding rate of 24 g/min was used to deposit on Al substrates. The temperature and the 

pressure of the compressed air were 500°C and 3 MPa, respectively. The parameters of the 

spraying strategy were set as in the simulation (Table 4.2). The morphology of deposits was 

measured online by the 3D profiler. 

4.4.2 Experimental results and discussion 

Experiments of the proposed spray strategy were carried out in the manner of fixing the 

spray gun. Figure 4.21 shows the deposits profile curves measured by the 3D profiler with a 

deflection angle of 30º (θ=30º), and the offset distance of 0 mm, σ mm, 2σ mm, 3σ mm, 4σ 

mm, respectively. They were indicated by lines of different colours. It was found that when s 

was 0 mm and σ mm, the deposits profile tended to become triangular-like, even though their 

thickness were larger than the other cases; when s was 3σ mm, 4σ mm, the efficiency was 

dissatisfying; when s was 2σ mm, the deposits had a flat top surface and good efficiency.  

 

Figure 4.21 Experiment results at the deflection angle of 30º (θ = 30º), and the offset distance 

was 0 mm, σ mm, 2 σ mm, 3 σ mm, 4 σ mm, respectively (s = was 0 mm, σ mm, 2 σ mm, 3 σ 

mm, 4 σ mm). 

Figure 4.22 shows the results with an offset distance of 2σ mm and deflection angles of 

10º, 20º, 30º, and 40º. The relative deposition was measured and shown in Table 4.4. Similarly, 

the relative deposition efficiency was assumed as 100% when the deflection angle was 90°. 
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Obviously, when θ was 40º, the deposition efficiency was low, while the deposits with the 

deflection angles of 10º and 20º tended to form triangles. Conclusively, these profiles proved 

that the value of deflection angle and offset distance significantly affect the flatness and the 

efficiency of the deposits.  

 

Figure 4.22 Experiment results at the offset distance of 2 σ mm (s= 2 σ mm), and the 

deflection angle was 10º, 20º, 30º, 40º, respectively (θ =10º, 20º, 30º, 40º). 

Table 4.4 The relative deposition efficiency of the different deflection angle in the 

experiment. 

θ (º) relative deposition efficiency (%) 

10 100 

20 94.5±0.5 

30 93.5±0.5 

40 55.7±0.5 

Figure 4.23 illustrates the results of multiple layers obtained from real-time online 

measuring. The value of nozzle retreat distance was set to 0.4 mm in order to make the deposits 

grow stably in the preconceived manner. Figure 4.23a illustrates cross-section image of pure 

Copper-aluminum samples produced by the spray strategy with the axisymmetric de-Laval 

nozzle, taken by optical microscopy.  
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Figure 4.23 (a) Cross-sectional view sprayed track using optical microscope; (a′) Optical 

micrograph of coatings; (b) Each sprayed track morphology measured by a 3D profiler. 

It can be observed that the profile is not a typical CS triangular-like, and the upper surface 

has a substantially large and flat area, which created quite favourable conditions for the 

subsequent deposition of particles. The coating was dense and had not obvious cracks. The 

partial enlargement view showed the sample etched that reveals the particle/particle boundaries 

(as shown in Figure 4.23a′). The particles appear to be tightly bonded. There were some pores 

in the coating and the porosity was calculated to about 0.4% using imaging software (ImageJ). 

Figure 4.23b shows the results of each sprayed track measured by the 3D profiler. Lines of 

different colours are used to distinguish the profile of different tracks. The growth of the coating 

in the processing can be observed. The deposits could basically be formed in the preconceived 

manner, as confirmed by the simulation in the previous section. It is obvious that layer-by-layer 

deposition permits the coating to stably grow without forming triangular morphology.  

Moreover, this spray strategy can be applied to build blocks or thick coatings on prescribed 

areas without edge losses. Figure 4.24 shows thick coatings on the prescribed area. It can be 

seen that the normal spray strategy leads to edge losses. This means that during the coating 

formation, the area of the upper surface shrinks (more than 34% in this case). While the same 
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coating was sprayed by performing this strategy, the borders were compensated without edge 

losses. The coating grew layer by layer, and the effective area reached nearly 100%.  

 

Figure 4.24 Creation of thick coatings. 

Finally, based on the presented spray strategy, different shaped samples were created 

successfully. As Figure 4.25 illustrates, thick and vertical walls could be built on both a flat 

surface (Figure 4.25a, b, and c) and on a curved surface (Figure 4.25d). It proved that this 

method can be used for shape control and production of more complex components in cold 

spray additive manufacturing. 

 

Figure 4.25 (a) a thick and vertical wall was created on a flat surface; (b) a block was created 

on a flat surface; (c) a thick and vertical curved wall was created on a flat surface; (d) a thick 

and vertical wall was created on a curved surface. 
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4.5 Conclusion 

Nowadays, both industrial and academic communities are paying more and more attention 

to CSAM, especially for the direct manufacturing of soft metal components. A stable layer-by-

layer building strategy and capability of CS is a key preliminary step for forming complex 3D 

shapes in an additive way. This study focused on the spray strategy with consideration of both 

kinematic factors and coating characteristics of CS to develop a stable layer-building strategy. 

Here, three main parameters were proposed to control the shape of deposits. They were 

deflection angle θ, offset distance s and nozzle retreat distance d. In the current framework of 

CSAM system, these parameters were controlled directly by the high-performance industrial 

robot, which permitted the process to be easily controlled, repeated, and followed. Numerical 

simulation and physical benchmarking case study results validate the proposed method and 

imply that more complex 3D geometries can be built via the use of this proposed layer-building 

strategy and sophisticated coating scanning path. It was found that the combination of 

controlling different parameters played a key role in determining the layer geometry, and thus 

the component built-up process. Future work will further investigate the impact of nozzle shape 

and size on the layer building and the development of a multi-axis robotic tool-path planning 

strategy for building complex 3D curved layers or freeform 3D objects in near-net-shape with 

the proposed layer-building method. 
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5.1 Conclusion 

With the continuous development of CS technology and the expansion of application 

fields, CS has been widely used to prepare various functional coatings on components surface, 

to restore damaged metal components, or to fabricate freestanding 3D metal components. 

Nowadays, CS has drawn more and more attention in its ability in AM. Many advantages make 

it uniquely competitive among AM technologies. In particular, the application of high-

performance industrial robots improves the accuracy and ability of CS so that it can complete 

more and more complex tasks. The latest developments in the CSAM industry require more 

new methods and processes to improve its manufacturing accuracy, flexibility and reliability, 

to be more competitive. Therefore, the work of this thesis aims to research new process 

implementation to enhance CS based AM. The system framework, building strategy and 

method proposed in this thesis can become a model for the CSAM industry in the future. The 

details of the conclusion are listed as below. 

Firstly, a concept of modular system was used in this study to design and implement a 

new CSAM framework. In this study, the new CSAM system was developed based on the 

conventional CS system. At the same time, various technology and application were integrated 

into the current system as different modules to enhance the ability of entire system. According 

to the different applications and purposes, the conventional CSAM system is divided into five 

modules: Spray module, Robot module, In-situ measurement module, Inter-process module 

and Post-process module. The physical and functional relationships between the key elements 

of the entire system were discussed in detail. Spray module is used for adding materials; Robot 

module is used to achieve various movements and the connection between modules; In-situ 

measurement module is for online monitoring and measurement; Inter-process module is a 

complementary module allowing materials removing and enhancement; Post-pross module is 

used to obtain the final product including heat-treatment, post-machining, test, etc. This 

physical and functional modularity is an indispensable necessity to promote a hybrid AM 

process.  

Secondly, a new approach was developed to simulate coating process in CS. Here, a three-

dimensional geometric model based on Gaussian distribution was developed to simulate the 

CS coating profile. This model considered the relative deposition efficiency resulting from the 

different robot kinematic parameters. Afterwards, the 3D geometric coating thickness model 

was integrated into the off-line programming software RobotStudio™ as a module in the 
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software TST, which implied the possibility of a wide application without specific simulation 

codes and offering accurate profile prediction. Both numerical and experimental verifications 

proved that the proposed method has a reliable prediction accuracy in practice, especially in 

coating thickness prediction including shadow effects. 

Finally, based on the designed CSAM system framework, a stable layer-building strategy 

was proposed to enhance the forming ability of CSAM. Normally, the stable layer-by-layer 

building is the key function for forming complex 3D shapes in an additive manner. The 

proposed spray strategy considered both kinematic factors and coating characteristics. Three 

main parameters were pointed out to control the shape of deposits. They are the deflection 

angle θ, the offset distance s and the nozzle retreat distance d, which make the robot easier to 

control and help to repeat the process. Afterwards, based on the developed 3D geometric 

coating thickness model, a series of simulation verification was carried out according to the 

combination of different parameters. It was found that the combination of controlling different 

parameters played a key role in determining the layer geometry, and thus the component built-

up process. Moreover, the experiments of layer built benchmarking test objects have 

satisfactory shape accuracy, which implied that the proposed method makes CS a real and ready 

to use layer-by-layer AM process for 3D shape forming. 

5.2 Prospects 

In this work, a new CSAM system framework was proposed for the implementation of a 

new process to enhance CS based AM. However, to fully exert the potential of CSAM, efforts 

are still required to integrate more technologies. Future research will focus on the 

improvements for each component of the framework and on the development of more spray 

strategies for CSAM. One of the ideas is to combine this system with conventional machining 

techniques. When the monitored deposits no longer meet the expectations, the milling cutter 

will permit desirable accuracy and reliable shape control. 

The 3D geometric coating thickness model was developed and integrated into the 

ProfileKit of TST for the purpose of CS deposition process simulation based on kinematic data. 

However, some improvements should be made to optimize and enhance the functions of the 

software. Firstly, the code in the program as well as the algorithm should be further optimised 

to improve its computing performance and accuracy. Secondly, current research is still located 

at the profile geometric simulation. In the future, process physical phenomena, e.g. plastic 
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deformation and energy conversion, will be integrated in this model to realize simulation and 

prediction for coating quality indicators, such as coating porosity. 

As for the stable layer-building method for CSAM, more efforts should be made to study 

the properties and reliability of the 3D volumes it creates, such as the porosity, the 

microstructure, the bonding strength, etc. Future work will also further investigate the impact 

of nozzle shape and size on the layer building, and the development of a multi-axis robotic 

tool-path planning strategy for building complex 3D curved layers or freeform 3D objects in 

near-net-shape with the proposed layer-building method. 
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Annex Computer graphics: topology and 3D geometric 

transformations 

Computer graphics is the branch of computer science that deals with generating images 

with the aid of computers. Some topics in computer graphics include user interface design, 

image visualization, computational geometry, 3D modeling, image rendering, etc. In this study, 

the coating thickness model is created by a series of computer graphic processing methods. 

Thus, it is of great importance to investigate the basics of topology and quaternions in 3D 

modeling. 

1. Model topology 

Generally, model topology refers to the spatial relationship between various entities of the 

model in computer graphics. This study adopts the model topology elements under 

RobotStudio™ framework. Figure 6.1 shows the relationship of its topology elements, which 

is based on the definition of the boundary representation of a 3D ACIS Modeler (ACIS). These 

elements are implemented in ACIS using the C++ classes Part, Body, Shell, Face, Loop, Wire, 

Coedge, Edge and Vertex. Each of these classes is derived from the Entity class. In order to 

better understand this relationship, Figure 6.2 illustrates an example of the topology on a 3D 

geometry. The specific definition and inheritance relation of each class are described as follows. 
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Figure 0.1 Model topology. 

 

Figure 0.2 Schematic diagram of model topology. 

A Part is a container for bodies and can hold zero or more bodies. It also contains an 

orientation. Several bodies can be composited into one body via the Boolean algorithm (such 
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as intersect, subtract and union).  

A Body is a shape + its pose, which is typically a single 3D solid or a 2D surface, but it 

can also be several disjoint lumps treated as one body. It is the highest-level object in the 

geometric model. Bodies consist of one or several shells.  

A Shell is a set of connected Faces and Wires. It is normally the outside of a solid Body, 

but it can also be the inside of a hollow Body.  

A Face is a bounded portion of a single geometric surface, which refers the two-

dimensional analog of a Body. The boundary is represented by one or more Loops or Edges. 

Each Face is simply connected, implying that one can traverse from any point on the interior of 

the Face to any other point on the interior of the Face without crossing the boundary of the Face. 

In general, it is not meaningful to distinguish exterior and interior Loops of Edges, though for 

certain surface types this may be possible and some algorithms may do so.  

A Loop is a set of connected Coedges. Normally it has no start or end points. 

A wire is a collection of Edges that are connected to each other, without being attached to 

a Face. Wires may represent abstract items, such as profiles, construction lines and center lines, 

or idealizations of rod or beam-like objects or internal passages. They are also commonly used 

to form wire frames to form solid-bounding Shells. 

A Coedge is closely related to an edge. A Coedge stores its relationships with adjacent 

edges and with superior owning entities. (In some contexts, the Coedge may be viewed as the 

use of an edge by a Face or Wire.) The data structures formed by these relationships (stored as 

pointers) and their interpretation depend upon the nature of the owning entity. A Coedge can be 

accessed through a Wire or a Loop in a Face, which is based on the model geometry. 

An Edge is bounded by one or more vertices, referring to one Vertex at each end. Edges 

are closely related to Coedges, which allows the Edge to occur in more than one Face, thus 

makes it possible to create solids. 
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A Vertex refers to a point in object space, and is the corner of either a Face or a Wire. 

 In addition, the appearance of a surface can be specified in the 3D graphics. As shown in 

Figure 6.2, special texture image or color can be applied to surfaces in the 3D view. 

2. 3D geometric transformations 

In computer graphics, Transformations are fundamental to working with 3D scenes. 3D 

geometric transformation mainly involves translation, rotation and scaling. Generally, 4×4 

homogenous matrices H are widely used to describe the 3D geometric transformation. Its form 

is as follows: 

𝐻 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13 ⋮ 𝑏14

𝑎21 𝑎22 𝑎23 ⋮ 𝑏24

𝑎31 𝑎32 𝑎33 ⋮ 𝑏34

⋯ ⋯ ⋯ ⋯ ⋯
𝑐41 𝑐42 𝑐43 ⋮ 𝑑44]

 
 
 
 

= [
𝐴 ⋮ 𝐵
⋯ ⋯ ⋯
𝐶 ⋮ 𝐷

]                   Eq.6-1 

where [A] is for scaling, rotation transformations, [B] is for translation transformation, [C] 

is for projection transformation, and [D] is for overall scaling transformation. Here, we shall 

discuss translation, rotation, and scaling only. 

➢ Translation 

As described by the linear transformation theory, a position P= (x, y, z) in 3D space can be 

translated to a location P'= (x', y', z') by adding a translation vector T= (tx, ty, tz) (As shown in 

Figure 6.3 and described by Eq.6-2). 

𝑃′ = 𝑇 · 𝑃 = [

𝑥′

𝑦′

𝑧′

1

] = [

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

] · [

𝑥
𝑦
𝑧
1

]                            Eq.6-2 
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Figure 0.3 Shifting the position of a three-dimensional object using translation vector T. 

➢ Rotation 

As shown in Figure 6.4, an object in space can either rotate about the x-axis, the y-axis or 

the z-axis. When rotating about the z-axis, only coordinates of x and y will change and the z-

coordinate will be the same. In effect, it is exactly a rotation about the origin in the xy-plane. 

Therefore, the relationship in which P is rotated with an angle 𝛼 around the z-axis to become 

P'zz (Eq.6-3) can be described as follows: 

𝑝𝑧𝑧
′ = 𝑅𝑧 · 𝑃 = [

𝑥′

𝑦′

𝑧′

1

] = [

cos𝛼 −sin𝛼 0 0
sin𝛼 cos𝛼 0 0
0 0 1 0
0 0 0 1

] · [

𝑥
𝑦
𝑧
1

]                        Eq.6-3 

Based on the same idea, rotating with an angle 𝛼  around the x-axis and y-axis are the 

following respectively (Eq.6-4 and Eq.6-5): 

𝑝𝑥𝑥
′ = 𝑅𝑥 · 𝑃 = [

𝑥′

𝑦′

𝑧′

1

] = [

1 0 0 0
0 cos𝛼 −sin𝛼 0
0 sin𝛼 cos𝛼 0
0 0 0 1

] · [

𝑥
𝑦
𝑧
1

]                         Eq.6-4 

𝑝𝑦𝑦
′ = 𝑅𝑦 · 𝑃 = [

𝑥′

𝑦′

𝑧′

1

] = [

cos𝛼 0 sin𝛼 0
0 1 0 0

−sin𝛼 0 cos𝛼 0
0 0 0 1

] · [

𝑥
𝑦
𝑧
1

]                          Eq.6-5 
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Figure 0.4  (a) Rotation of an object around the z axis; (b) Rotation of an object around the x 

axis; (c) Rotation of an object around the y axis. 

➢ Scaling 

In computer graphics, an object can change its size by using scaling transformation. In the 

scaling process, the dimensions of the object can either expand or compress. Scaling can be 

achieved by multiplying the original coordinates of the object with the scaling factor to get the 

desired result, and the positive or negative scale factors represent enlargement or shrinking of 

the object, respectively. Figure 6.5 shows the effect of 3D scaling. The matrix expression for 

the scaling transformation of a position P = (x, y, z) relative to coordinate origin can be written 

as follows (Eq 6-6): 

𝑝′ = 𝑆 · 𝑃 = [

𝑥′

𝑦′

𝑧′

1

] = [

𝑠𝑥 · 𝑥
𝑠𝑦 · 𝑦
𝑠𝑧 · 𝑧

1

] = [

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

] [

𝑥
𝑦
𝑧
1

]                          Eq.6-6 

where the sx, sy, sz are the scale factors in each direction. 

 

Figure 0.5 Scaling objects relative to the original point. 
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Generally, an object requires to scale relative to a selected fixed point (xf, yf, zf). In this 

case, the object should be moved to the original point before being scaled and returned to the 

previous position after scaling (as shown in Figure 6.6). So, the linear transformation of 

displacement T should also be multiplied in order to scale the object according to the selected 

fixed point as presented in Eq 6-7. 

𝑝′ = 𝑇 · 𝑆 · 𝑇 · 𝑃 = [

1 0 0 𝑥𝑓

0 1 0 𝑦𝑓

0 0 1 𝑧𝑓

0 0 0 1

] [

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

] [

1 0 0 −𝑥𝑓

0 1 0 −𝑦𝑓

0 0 1 −𝑧𝑓

0 0 0 1

] [

𝑥
𝑦
𝑧
1

]               Eq.6-7 

 

Figure 0.6 Scaling objects relative to a selected fixed point (xf, yf, zf). 

 

 

 

 

 

 

 

 



 

 

 

 

Titre : Modélisation et Planification de Processus pour la Fabrication Additive Basé Robotique-

Projection à Froid 

Mots clés : La fabrication additive à froid ; robot; cadre modulaire; stratégie de projection; simulation de processus; programmation hors ligne. 

Résumé : La projection à froid (Cold spray, CS) est une 

technologie de dépôt de revêtement à l'état solide qui a récemment 

été appliquée comme processus de fabrication additive (Additive 

manufacturing, AM) pour fabriquer des composants individuels. Ce 

procédé potentiel attire de plus en plus de l'attention en raison de ses 

avantages : efficacité de formage élevée, basse température de 

travail et absence de changement de phase des matériaux. Ces 

avantages peuvent permettre à la projection à froid de former des 

objets de grand volume pour devenir un procédé de fabrication 

additive efficace. De nos jours, de nouvelles avancées dans la 

fabrication additive à froid (Cold spray additive manufacturing, 

CSAM) nécessitent de nouvelles implémentations de processus pour 

améliorer la précision et la flexibilité de fabrication. Par conséquent, 

le but de cette étude est d'améliorer la méthode additive utilisant la 

projection à froid grâce à la modélisation et à la planification du 

processus robotique CS. Le travail de cette thèse se compose en trois 

parties. 

Premièrement, des efforts ont été consacrés à la conception et à la 

mise en œuvre d'un nouveau cadre pour la technique CSAM. Dans 

cette partie, un concept de système modulaire est présenté. Ici, le 

système CSAM actuel est décomposé en différents modules afin de 

comprendre les relations physiques et fonctionnelles entre les 

éléments clés de l'ensemble du système. Cette modularité physique 

et fonctionnelle est une nécessité indispensable pour promouvoir les 

processus AM hybrides. De nouveaux modules, tels que le module 

de mesure in-situ, le module inter-processus peuvent être intégrés 

pour offrir plus de possibilités au processus CS conventionnel. Il est 

révélé que la modularité du système est adaptée pour révolutionner 

la méthode et technique CSAM. On peut voir que pour exploiter 

pleinement le potentiel de cette approche, des efforts sont encore 

nécessaires pour intégrer et coordonner davantage de technologies à 

l'aide du cadre modulaire proposé. 

Deuxièmement, une nouvelle approche est présentée pour simuler le 

dépôt. Ici, un modèle géométrique tridimensionnel du profil de 

revêtement basé sur la distribution gaussienne est développé. Le 

modèle est combiné avec la trajectoire du robot et les paramètres de 

traitement pour simuler l'évolution des dépôts. En outre, il peut offrir 

une prédiction précise du profil dans la plate-forme de 

programmation hors ligne du robot, en particulier dans le cas des 

effets d'ombre, ce qui permet l'intégration de la programmation du 

robot avec la simulation pour mieux contrôler le processus de 

revêtement. Les résultats des vérifications numériques et 

expérimentales montrent que cette méthode proposée a une bonne 

précision de prédiction. 

Enfin, par rapport à la stratégie actuelle de formation de volume 

basée sur le volume (par exemple, une méthode basée sur la 

tessellation), cette étude propose une nouvelle stratégie qui prend en 

compte les caractéristiques et les paramètres cinématiques de la 

projection à froid pour améliorer la construction de couches stables 

pour l’obtention de forme 3D. La simulation et les expériences sont 

menées pour la vérification de la méthode. Les essais comparatives 

créés par couches ont une meilleure précision de forme que celle des 

méthodes existantes. Cela implique que la méthode proposée fait de 

la projection à froid un processus additif efficace pour la création 

additive de formes 3D. 
 

Title: Process Modeling and Planning for Robotic Cold spray based Additive Manufacturing 

Keywords: Cold spray additive manufacturing; robot; modular framework; spray strategy; process simulation; offline programming. 

Abstract: Cold spray (CS) is a solid-state coating deposition 

technology that has recently been applied an additive manufacturing 

(AM) process to fabricate individual components. This potential AM 

process is attracting more and more attention because of its 

advantages: high-forming efficiency, low temperature, and no phase 

changing of materials. These advantages make CS able to form 

large-volume objects to become an efficient and effective AM 

process. Nowadays, new advances in cold spray additive 

manufacturing (CSAM) call for new process implementation to 

improve the manufacturing accuracy and flexibility. Therefore, the 

purpose of this study is to enhance CS-based AM through the 

modeling and planning of the robotic CS process. The work of this 

thesis consists of three parts. 

Firstly, efforts have been dedicated to design and implement a new 

framework for CSAM. In this part, a concept of modular system is 

presented. Here, the current CSAM system is decomposed into 

different modules in order to understand the physical and functional 

relationships in between the key elements of the entire system. This 

physical and functional modularity is an indispensable necessity to 

promote hybrid AM processes. New modules, such as in-situ 

measurement module, inter-process module can be integrated into 

the framework to bring more possibilities to the conventional CS 

process. It is revealed that system modularity is suitable to 

revolutionize the CSAM method and conduction. To fully exert the 

potential of CSAM, efforts are still required to integrate and 

coordinate more technologies with the help of the proposed modular 

framework. 

Secondly, a novel approach is presented to simulate the CS 

deposition. Here, a three-dimensional geometric model of the 

coating profile based on Gaussian distribution is developed. The 

model is combined with robot trajectory and processing parameters 

to simulate the evolving CS deposits. In addition, it can offer 

accurate profile prediction in the robot off-line programming 

platform, especially in case of shadow effects, which enables the 

integration of robot programming with simulation to better control 

the coating process. The results of both numerical and experimental 

verifications show that this proposed method has a good prediction 

accuracy for practice.  

At last, compared with the current bulk-based volume-forming 

strategy (e.g. a tessellation-based method), this study proposes a new 

spray strategy that considers the characteristics and kinematic 

parameters of cold spray to enhance stable layer building for 3D 

shape forming. Both simulation and experiments are conducted for 

method verification. Layer built benchmarking test objects have 

better shape accuracy than that of existing methods. This implies that 

the proposed method makes CS a real and layer-by-layer ready AM 

process for 3D shape forming.
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