, which is an in-memory key-value store, is built to provide high performances to retrieve data using keys but to a small amount of data that fits into the main memory.

Acknowledgement

Firstly, I would like to thank my family: my parents and my sister for supporting me spiritually throughout all the years of my studies, for accepting the fact that I am abroad past three years and for all their love and encouragement. For my parents who raised me with a love of science and supported me in all my orientations. I would like to express my sincere gratitude to my advisor Prof. Olivier TESTE for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor for my PhD study.

Besides my advisor, I would like to thank my thesis co-advisors: Dr Faiza GHOZZI, and Dr André Péninou, for their insightful comments and encouragement, but also for the hard question which motivated me to widen my research from various perspectives.

My sincere thanks also go the reviewers, Pr. Omar BOUSSAID, and Pr. Anne LAURENT, to whom I associate the members Pr. Bernd AMANN, Pr. Franck RA-VAT, and Pr. Isabelle Comyn-Wattiau for taking time to evaluate my work.

I gratefully acknowledge the funding received towards my PhD from the neOCampus project PhD fellowship. Thanks to Pr. Marie-Pierre Gleizes for her encouragement.

I thank my colleagues at IRIT for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last three years.

Last but not least, I would like to thank the one that she believed in me. I would like to thank you for being part of my achievements, thank you for assisting me, standing with me and encouraging me to go further. I would like to say thank you to all who is dear to me.

Resumé

La problématique de cette thèse porte sur l'interrogation de données hétérogènes dans les systèmes de stockage « not-only SQL » (noSQL) orientés documents. Ces derniers ont connu un important développement ces dernières années en raison de leur capacité à gérer de manière flexible et efficace d'importantes masses de documents. Ils reposent sur le principe « schema-less » consistant à ne plus considérer un schéma unique pour un ensemble de données, appelé collection de documents. Cette flexibilité dans la structuration des données complexifie l'interrogation pour les utilisateurs qui doivent connaître l'ensemble des différents schémas des données manipulées lors de l'écriture de requêtes.

Les travaux développés dans cette thèse sont menés dans le cadre du projet neoCampus. Ils se focalisent sur l'interrogation de documents structurellement hétérogènes, en particulier sur le problème de schémas variables. Nous proposons la construction d'un dictionnaire de données qui permet de retrouver tous les schémas des documents. Chaque clef, entrée du dictionnaire, correspond à un chemin absolu ou partiel existant dans au moins un document de la collection. Cette clef est associée aux différents chemins absolus correspondants dans l'ensemble de la collection de documents. Le dictionnaire est alors exploité pour réécrire de manière automatique et transparente les requêtes des utilisateurs. Les requêtes utilisateurs sont établies sur la base des clés du dictionnaire (chemins partiels ou absolus) et sont automatiquement réécrites en exploitant le dictionnaire afin de prendre en compte l'ensemble des chemins absolus existants dans les documents de la collection.

Dans cette thèse, nous menons une étude de l'état de l'art des travaux s'attachant à résoudre l'interrogation de documents structurellement hétérogènes, et nous en proposons une classification. Ensuite, nous comparons ces travaux en fonction de critères qui permettent de positionner et différencier notre contribution. Nous définissions formellement les concepts classiques liés aux systèmes orientés documents (document, collection, etc), puis nous étendons cette formalisation par des concepts supplémentaires : chemins absolus et partiels, schémas de document, dictionnaire. Pour la manipulation et l'interrogation des documents, nous définissons un noyau algébrique minimal fermé composé de cinq opérateurs : sélection, projection, des-imbrication (unnest), agrégation et jointure (left-join). Nous définissons chaque opérateur et expliquons son évaluation par un moteur de requête classique. Ensuite, nous établissons la réécriture de chacun des opérateurs à partir du dictionnaire. Nous définissons le processus de réécriture des requêtes utilisateurs qui produit une requête évaluable par un moteur de requête classique en conservant la logique des opérateurs classiques (chemins inexistants, valeurs nulles). Nous montrons comment la réécriture d'une requête initialement construite avec des chemins partiels et/ou absolus permet de résoudre le problème d'hétérogénéité structurelle des documents.

Enfin, nous menons des expérimentations afin de valider les concepts formels que nous introduisons tout au long de cette thèse. Nous évaluons la construction et la maintenance du dictionnaire en changeant la configuration en termes de nombre de structures par collection étudiée et de taille de collection. Puis, nous évaluons le moteur de réécriture de requêtes en le comparant à une évaluation de requête dans un contexte sans hétérogénéité structurelle puis dans un contexte de multi-requêtes. Toutes nos expérimentations ont été menées sur des collection synthétiques avec plusieurs niveaux d'imbrications, différents nombres de structure par collection, et différentes tailles de collections. Récemment, nous avons intégré notre contribution dans le projet neO-Campus afin de gérer l'hétérogénéité lors de l'interrogation des données de capteurs implantés dans le campus de l'université Toulouse III-Paul Sabatier.

Summary

This thesis discusses the problems related to querying heterogeneous data in documentoriented systems. Document-oriented "not-only SQL" (noSQL) storage systems have undergone significant development in recent years due to their ability to manage large amounts of documents in a flexible and efficient manner. These systems rely on the "schema-less" concept where no there is no requirement to consider a single schema for a set of data, called a collection of documents. This flexibility in data structures makes the query formulation more complex and users need to know all the different schemas of the data manipulated during the query formulation.

The work developed in this thesis subscribes into the frame of neOCampus project.

It focuses on issues in the manipulation and the querying of structurally heterogeneous document collections, mainly the problem of variable schemas. We propose the construction of a dictionary of data that makes it possible to find all the schemas of the documents. Each key, a dictionary entry, corresponds to an absolute or partial path existing in at least one document of the collection. This key is associated to all the corresponding absolute paths throughout the collection of heterogeneous documents. The dictionary is then exploited to automatically and transparently reformulate queries from users. The user queries are formulated using the dictionary keys (partial or absolute paths) and are automatically reformulated using the dictionary to consider all the existing paths in all documents in the collection.

In this thesis, we conduct a state-of-the-art survey of the work related to solving the problem of querying data of heterogeneous structures, and we propose a classification.

Then, we compare these works according to criteria that make it possible to position our contribution. We formally define the classical concepts related to documentoriented systems (document, collection, etc). Then, we extend this formalisation with additional concepts: absolute and partial paths, document schemas, dictionary. For manipulating and querying heterogeneous documents, we define a closed minimal algebraic kernel composed of five operators: selection, projection, unnest, aggregation and join (left-join). We define each operator and explain its classical evaluation by the native document querying engine. Then we establish the reformulation rules of each of these operators based on the use of the dictionary. We define the process of reformulating user queries that produces a query that can be evaluated by most document querying engines while keeping the logic of the classical operators (misleading paths, null values). We show how the reformulation of a query initially constructed with partial and / or absolute paths makes it possible to solve the problem of structural heterogeneity of documents.

Finally, we conduct experiments to validate the formal concepts that we introduce throughout this thesis. We evaluate the construction and maintenance of the dictionary by changing the configuration in terms of number of structures per collection studied and collection size. Then, we evaluate the query reformulation engine by comparing it to a query evaluation in a context without structural heterogeneity and then in a context of executing multiple queries. All our experiments were conducted on synthetic collections with several levels of nesting, different numbers of structures per collection, and on varying collection sizes. Recently, we deployed our contributions in the neOCampus project to query heterogeneous sensors data installed at different classrooms and the library at the campus of the university of Toulouse III-Paul Sabatier.

List of Figures

Research Context

Big Data has emerged as evolving term in both the academic and the business communities over the past two decades. Under the explosive increase of generated data, the term of big data is mainly used to describe large and complex data caracterised by three aspects: i) variety: data comes in all types of formats, e.g., structured, semi-structured and unstructured, ii) velocity: the speed with which data are being generated to be ingested and iii) volume: the enormous amount of generated data. These aspects were introduced by Gartner 1 to describe the big data challenges.

Such voluminous data can come from myriad different sources, such as business transaction systems, customer databases, medical records, internet clickstream logs, mobile applications, social networks, the collected results of scientific experiments, machine-generated data and real-time data sensors used in the internet of things (IoT) environments [START_REF] Chen | Data-intensive applications, challenges, techniques and technologies: A survey on big data[END_REF]. Data may be left in its raw form or pre-processed using data mining tools or data preparation software before being analysed. Thus, data arriving from different sources and representing the same kind of information do not necessarily share the same structure. Furthermore, data structures are not stable and are subjects to future changes. Such structure evolution appears as applications evolve and change for many reasons: systems evolution, systems maintenance, diversity of data sources, data enrichment over time, etc. NoSQL, which stand for "not only SQL", databases and schema-less data modelling have emerged as mainstream database alternatives for addressing the substantive requirements of current data-intensive applications [START_REF] Hecht | Nosql evaluation: A use case oriented survey[END_REF]. NoSQL is an approach to database design that can essentially accommodate four data models, including key-value, document, column and graph model. NoSQL, is an alternative to conventional relational databases in which data is placed in tables and data schema should be carefully designed before building the database. NoSQL databases are especially useful for working with large volume of data in distributed and fault-tolerant environments [START_REF] Chevalier | Implementation of multidimensional databases in column-oriented nosql systems[END_REF].

Schema heterogeneity is common feature in most NoSQL systems as they abandon the traditional "schema first, data later" approach of RDBMS, which requires all record in a table to comply to a certain predefined fixed schema, in favour of a "schema-less" approach. NoSQL schema-less database can store data with different structure for the same entity type. Furthermore, they do not require to define a rigid schema, e.g., database, schema, data types, or tables. The lack of data structure restrictions enables easy evolution of data and facilitates the integration of data from different sources. Document stores are one of the main NoSQL data models designed to store, retrieve and manage collections of documents of JSON objects. JSON (JavaScript Object Notation) is a format for formatting semi-structured data in human-readable text. The 1 https://www.gartner.com/ usage of JSON objects in the document data model offers several advantages [START_REF] Chasseur | Enabling json document stores in relational systems[END_REF]: i) Ease-of-use since it is not required to define a schema upfront, ii) Sparseness where attributes could appear in some documents, but not in others, iii) Hierarchical data where information could be present at different nesting level within the document, and iv) Dynamic typing where types of the values of attributes can be different for each record. Furthermore, schema-less document stores are able to store documents in transparent and efficient ways [START_REF] Floratou | Can the elephants handle the nosql onslaught[END_REF][START_REF] Stonebraker | New opportunities for new sql[END_REF].

Despite the flexibility guaranteed by most of the schema-less NoSQL stores while loading data, querying multi-structured collection in document stores is a burdensome task. In document stores, formulating relevant queries require full knowledge of the underlying document schemas. Generally, queries are formulated only over absolute paths, i.e., paths starting from the root of the document to the attribute of interest. Most document stores adopt this assumption (e.g., MongoDB, CouchDB, Terrastore [START_REF] Anderson | CouchDB: The Definitive Guide: Time to Relax[END_REF][START_REF] Chodorow | MongoDB: The Definitive Guide: Powerful and Scalable Data Storage[END_REF][START_REF] Murty | Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB[END_REF]). Whereas, the presence of several schemas within the same collection requires to explicitly use in the query as many paths as the variation for the same attribute. This condition makes it difficult to define adequate workloads.

In this thesis we address this problematic and we propose solutions to facilitate the querying of heterogeneous collection of documents while omitting the limitation in state-of-the-art solutions. format. Each document contains a set of attribute-value pairs whose values can be simple (atomic), e.g., the value of the attribute title, or complex, e.g., the value of the attribute ranking in document (a). A special attribute _id in each document identifies the document inside the collection. In addition, documents can be seen as a hierarchical data structure composed of several nesting levels (also called nodes or attributes), e.g., the attribute score in document (a) is nested under the complex attribute ranking. The top node for all attributes in the document is called the root but has no specific name. Figure 1.1 illustrates the hierarchical representation of document (a).

Running Example

Heterogeneity Classes

Several kinds of heterogeneity are discussed in the literature [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF]: structural heterogeneity refers to diverse possible locations of attributes within a collection due to documents diverse structures, e.g., nested or flat structures and different nesting levels as shown in Figure 1.2; syntactic heterogeneity refers to dif- [START_REF] Shvaiko | A survey of schema-based matching approaches[END_REF].

The Problem of Structural Heterogeneity

For the aim of this work, we build our assumptions to resolve the problem of structural heterogeneity to enable querying multi-structured collections. Several works were conducted to resolve the semantic and syntactic heterogeneities [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF]. The structural heterogeneity refers to the presence of several paths allowing to retrieve information of a given attribute. Because of their flexibility, an attribute within a collection could be root based, nested within another attribute or array of attributes. Furthermore, it is possible that an attribute is nested at different depth, several nesting levels. Thus, the lack of knowledge of full locations corresponding to each attribute within a collection increase the difficulty to fetch relevant results. The To retrieve information from a document attribute from a document stores, it is necessary to build queries using the absolute path composed of all attribute to cross starting from the document root down to the attribute of interest. If a user formulates { "_id":1, "title":"Million Dollar Baby", "year":2004, "link":null, "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"], "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{ "score":8.1} } (a)

{ "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "link":"https://goo.gl/2A253A", "genres":["Drama", "Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{ "score":7.2 } } }

(b)

{ "_id":3, "film":{ "title":"Gran Torino", "awards": "AFI Award", "link":null, "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{ "ranking":{ "score":8.1 } } } }

(c)

{ "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "link":"goo.gl/qEFfUB", "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone" }, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } }, "classification":{ "ranking":{"score":7.2 }, "genres": a projection query using only the absolute path title, any document query engine ignores the information related to this attribute in documents (c) and (d), despite the fact it is present in those documents. As a result, document stores return only {"_id":1, "title":"Million Dollar Baby"}, {"_id":2, "title":"In the Line of Fire"}. This result is closely related to the paths expressed in the query. Because the majority of NoSQL document stores require the use of absolute paths, when a user makes a query, native query engines expect this user to explicitly include all existing paths from the database to target the relevant data.

["Western"] } } (d)
It is not a straightforward task to handle structural heterogeneity manually, especially in continuously evolving big data contexts where data variety is quite common. For instance, to project all information related to the attribute year, the user should know about the distinct absolute paths as found in collection (C), i.e., year, info.year, film.details.year, description.year, otherwise the resulting information could be reduced.

Let us suppose that a user wishes to project the following information related to movies: title with their related ranking.score. If she formulates a query with the paths (title, ranking.score) the result is {"_id":1, "title":"Million Dollar Baby", {"ranking":{"score":8.1}}}, {"_id":2, "title":"In the Line of Fire"}. Despite the presence of the information ranking.score in the four documents, the result does not include this information since it is located in other paths in documents (b, c, d). We can also see the same behaviour for the attribute title with documents (c, d). Let us assume that the user knows the absolute path for ranking.score in document (b) and formulates a second query with the paths (title, info.ranking.score) in this case, the result is {"_id":1, "title":"Million Dollar Baby"}, {"_id":2, "title":"In the Line of Fire", {"info":{"ranking":{"score":8.1}}}}. When we compare the results of the two previous queries, we can notice that information related to ranking.score for document (a) is only present on the first result. However the second query just retrieves ranking.score information from document (b). Formulating and executing several queries is a complex and an error-prone task. Data redundancy may occur (case of title information present in both results). Therefore, to query multi-structured data, and using several queries to target different paths, the user has to consider making an effort to merge results, to learn the underlying data structures, and to remove possibly redundant information in queries results. Another way is to combine all possible paths in a single query. In this example, a possible query to consider all data could take the following form (title, film.title, description.title, ranking.score, info.ranking.score, film.others.ranking.score, classification.ranking.score) which is a long and complex query for projecting only two pieces of information, i.e., title and ranking.score. This problem is not only limited for project operator as mention in this section.

However, other operators could be affected by structural heterogeneity, e.g., select, also called restrict, operator. Hence, if the user formulates a query to retrieve movies having release year greater than the year 2000 using the path year from document (a), the result contains only document (a) whereas the document (c) satisfies the selection condition. The problem is that the information related to the year is reachable using another path details.year. Therefore, the query should include both paths. A possible single query could be (year = 2000 or info.year = 2000 or film.details.year = 2000 or description.year = 2000) which is yet a complex query to satisfy a simple user need.

RESEARCH PROBLEMS

Research Problems

During the last decade, NoSQL databases and schema-less data modelling have emerged as mainstream alternatives to relational modelling for addressing the substantive requirements of current data-intensive applications [START_REF] Hecht | Nosql evaluation: A use case oriented survey[END_REF], e.g., IoT, web, social media and logs. Document stores hold data in collections of documents (most often JSON objects); they do not require the definition of any formal structure before loading data, and any data structure can be used when updating data. The main advantage of this is being able to store documents in transparent and efficient ways [START_REF] Floratou | Can the elephants handle the nosql onslaught[END_REF][START_REF] Stonebraker | New opportunities for new sql[END_REF]). Nevertheless, it is possible to store a set of heterogeneous documents inside the same collection, and for the purposes of this thesis, documents have heterogeneous structures. This is a major drawback, and issues arise when querying such data because the underlying heterogeneity has to somehow be resolved in the query formulation in order to provide relevant results.

This thesis aims at answering the following research question: "How to enable schema-independent querying for heterogeneous documents in NoSQL document stores?

With respect to state-of-the-art, there are two issues involved: i) Schema transformations, e.g., physical, to resolve schemas variety within a collection of documents, and ii) query expressiveness on varying schemas of documents. Due to the complexity involving both subjects, we start our research by exploring limitations regarding two research problems: 1) Schema transformation; 2) Query expressiveness.

Problem 1: Schema Transformation

The basic idea of transforming schemas in multi-structured collections is to overcome the heterogeneity in documents structures within a collection. With each manipulation operation, i.e., insert, update and delete, the schema of documents may be changed.

The challenge arises when there is a need to have access to information in such heterogeneous documents. Thus, documents querying engine requires that queries are explicitly formulated over all existing absolute paths leading to the information of interest. However, current techniques recommend flattening documents, e.g., in XML or JSON format, into a relational form [START_REF] Chasseur | Enabling json document stores in relational systems[END_REF][START_REF] Discala | Automatic generation of normalized relational schemas from nested key-value data[END_REF][START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF] to overcome the heterogeneity in structures. This process of physical schema transformation requires additional resources, such as an external relational database and more effort to generate new schema every time they change the workload or when new data are inserted, deleted or updated. Furthermore, to deal with the heterogeneity in structures they propose transforming all document schemas to a single common schema and introducing some logical views which leads to a homogeneous collection [START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF] using schema matching techniques to merge CONTENTS heterogeneous structures [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF]. These work are detailed in Chapter 2.

Problem 2: Query Expressiveness

The problem of query expressiveness is the power of querying language to overcome the underlying heterogeneity in documents. Work has been conducted to ensure that document data model could be queried without any prior schema validation or restriction and requires the user to take heterogeneity into account [START_REF] Wang | Schema management for document stores[END_REF].

However, several directions exist in the literature to provide uniform data access thus to enable querying such heterogeneous documents. First line of work relies on the native query expressiveness of the underlying document stores. Therefore, to formulate queries based on relational views built on top of the inferred data structures whereas these queries should change when new data are inserted (or updated) in the collection.

Other work defines a new querying mechanism using complex syntax to make transparent the structural heterogeneity in the data [START_REF] Florescu | Jsoniq: The history of a query language[END_REF]. Details regarding these work are introduced in Chapter 2.

Given these considerations, we propose a novel approach based on query reformulation to enable schema-independent querying for heterogeneous collection of documents without the need to change the original document structures neither the application workloads. Therefore, to enable our novel approach, we target to resolve two main problems; i) extracting paths from multi-structured collections, and ii) enabling schema-independent querying for multi-structured collections.

Thesis Contributions

In order to enable schema-independent querying for heterogeneous documents in NoSQL document stores, we start first by drawing some assumptions:

• no physical document transformation: We advocate the idea of keeping the documents on their original schemas and under the original physical storage model. Thus, documents are queried regardless of their structures.

• not only absolute paths in queries: Using only absolute paths while formulating queries presents some limitations while dealing with collection of documents having structural heterogeneity. User queries are expressed according to the locations of the attributes inside the documents. We advocate that user queries should be expressed according to user needs considering data content and not locations. Thus, queries should be expressed using leaf attributes leading to 1.3. THESIS CONTRIBUTIONS content, e.g., year in Figure 1.2 or partial paths in order to avoid leaf attributes ambiguity. For instance, in Figure 1.2 the path last_name refers to director or lead_actor. A partial path such as director.last_name allow to solve this ambiguity and target the content corresponding to the user needs.

• using native document store query engine: Document stores offer efficient query engines. Processing document using third party programs outside the document stores would be a time and space consuming tasks requiring dealing with all documents within a collection. Thus, performances of such execution context would be not optimised when compared to processing the data directly into their underlying stores. Therefore, we advocate the idea to build queries that could be executed in most document stores using their underlying query engines.

Considering these three assumptions, we propose the following process for schemaindependent querying:

1. users express their needs using queries formulated over partial paths to retrieve requested information.

2. the user query must be extended to include all possible absolute paths existing within the collection of heterogeneous documents. Therefore, the user query is automatically reformulated to replace each partial path with its corresponding absolute paths in the different structures. We refer to the latter query as extended query.

Thus, we introduce a dictionary that enables to map any partial path that may be found in diverse document structures to their corresponding absolute paths as found in the different structures.

3. finally, the extended query is executed using the native query engine of the underlying document store. This PhD research resulted in two main contributions summarised as follows:

• meanwhile current trends suggest performing complex physical transformation, we advocate the idea of keeping on the documents in their original underlying structures. In this thesis we provide a formal foundation to resolve the problem of extracting schemas for evolving collections. The results of this problem help us to adopt path extraction to build efficient queries. In practical terms, our first contribution is to introduce a dictionary to track all changes in terms of documents structures within a collection. For each path from the collection, the dictionary maps paths to all their corresponding paths in all structures present in the collection. Due to structural heterogeneity that we consider in this thesis,

CONTENTS

attributes could refer to the same kind of information but at different locations inside the documents. Thus, we build our dictionary to track also partial paths.

Hence, entries of the dictionary could be any part of a paths inside the documents with all their corresponding representation in other documents. This contribution is motivated by research problem 1. In our second contribution, we introduce the concept of dictionary, the process to build and maintain it.

We employ several synthetic datasets composed of collections describing films to evaluate the time required to extract paths on varying structures of documents, e.g., in collections with up to 5,000 distinct structures. Furthermore, we ran experiments to study the time required to track all changes in terms of documents structures as result of the execution of different manipulation operations. We dedicate Chapter 3 to introduce all formal foundations related to our contribution.

• besides the solutions offered in the literature to provide uniform access to heterogeneous collections of documents using whether relational views built on top of unified schemas or defining new querying languages, we built our solution on top of the original underlying structures of documents and based on the queries expressiveness power of most document stores. In practical terms, in our contribution we rely on using a minimum closed kernel composed of unary, i.e., select, project, unnest and aggregate operators, and binary, i.e., lookup, operators to enable schema-independent querying for heterogeneous documents in NoSQL document stores. All those operators are defined in the nested relational algebra (NRA) which are compatible with the expressiveness of document stores.

Therefore, to overcome the heterogeneity in documents, we introduce an automatic query reformulation via a set of rules that reformulate most document store operators. Furthermore, we support queries formulated over partial paths whereas most document stores can run only queries formulated over absolute paths. The query reformulation is performed each time a query executed and thus we guarantee that each reformulated query contains all required absolute paths which are present at the collection in its latest structural status. We conducted a set of experiments over several synthetic datasets and using several workloads. We studied also the time required to reformulate queries and their corresponding execution time. This contribution represents the main contribution of this present thesis. Hence, it is motivated by research problem 2.

Therefore, it is introduced and formalized in Chapter 4.

The dictionary construction process it is not only exclusive to the one presented in this thesis. We built our query reformulation process in a way that is not tightly coupled to the dictionary construction. The coupling of queries to the 1.4. RESEARCH OVERVIEW dictionary resides only on the use of keys, i.e., paths, existing in the dictionary. Thus, if an administrator manually built the dictionary or the dictionary contains keys which are not even existing paths, our query reformulation rules are still valid since the formal definition of the dictionary consists of set of keys, in our work keys refer to paths which could be partial or absolute, associated to absolute paths. The choice of the dictionary keys is subject to the requirements of the end users. Figure 1.3 provides a high-level illustration of the architecture of our system called EasyQ with its two main components: the dictionary as response to the research problem 1 and the query reformulation engine as a solution to the research problem 2. Moreover, Figure 1.3 shows the flow of data during the data loading stage and the query processing stage.

Research Overview

We introduce the data structure extractor during the data loading phase. It enriches the dictionary with new partial path entries and updates existing ones with corresponding absolute paths in documents. From a general point of view, the dictionary is modified or changed each time a document is updated, removed or inserted in the collection.

At the querying stage, EasyQ takes as input the user query, denoted by Q, which is formulated using any combination of paths from the dictionary keys (leaf nodes, partial paths and absolute paths) and the desired collection. The EasyQ query reformulation engine reads from the dictionary and produces an enriched query known as 𝑄 𝑒𝑥𝑡 , that includes all existing absolute paths from all the documents. Finally, the document store executes 𝑄 𝑒𝑥𝑡 and returns the result to the user.

CONTENTS

Manuscript Outline

The remainder of this thesis is organised as follows.

Chapter 2 is dedicated to review the most relevant work from the literature. First, we present a description of the fundamental concepts required for the understanding of our work. Furthermore, we introduce the different solutions to extract structures from collections of heterogeneous documents. Therein, we present the different contributions to enable schema-independent querying for multi-structured collection of documents.

Finally, we compare our contribution with respect to state-of-the-art work based on a set of criteria that ined through this chapter.

Chapter 3 discusses the requirements of the research problem 1 targeted to extract paths from multi-structured collections and track all structural changes. This chapter presents formal foundations to define the document data model, the concept of paths and the dictionary. Furthermore, it introduces the process of automating the reformulating classical manipulation operators (insert, delete and update queries) in order to update the dictionary according to the different structural changes made in the collection.

Chapter 4 presents our novel approach, based on formal foundations, for building schema-independent queries which are designed to query multi-structured documents.

We present a query enrichment mechanism that consults a pre-constructed dictionary. We automate the process of query reformulation via a set of rules that reformulate most document store operators, such as select, project, unnest, aggregate and lookup.

We then produce queries across multi-structured documents which are compatible with the native query engine of the underlying document store.

Chapter 5 corresponds to the evaluation of our main contributions. In this chapter we present the process of generating our synthetic datasets (available online 2). Furthermore, we introduce the different workloads that we use to evaluate the performances of our two main contributions. Later on, we draw all experiments results related to dictionary construction and manipulation on varying structures. Therein, we present the results related to executing our schema-independent querying. Furthermore, we introduce three execution contexts to compare results of our contribution with respect to two other execution contexts.

Chapter 6 contains conclusions and some directions for future work.

2 https://www.irit.fr/recherches/SIG/SDD/EASY-QUERY/ This thesis is financed and conducted in the frame of the neOCampus3 project. In this project we introduced a novel mechanism to collect data generated from the different IoT sensors, e.g., temperature, humidity, or energy, installed on the classrooms in the building U4 or on the Library at the campus of the University of Toulouse-III Paul Sabatier for later exploration and visualisation. Our mechanism models the sensors data and store it into a NoSQL document Stores, i.e., MongoDB. Furthermore, our mechanism allows to integrate ad-hoc data generated from heterogeneous sensors using different structures. Therein, heterogeneous sensors data could be easily accessed via the use of our API. We address the heterogeneity using a set of automatic reformulation rules that we define in this thesis. Figure 1.4 illustrates our main contributions to this project.

University Library

Building There follows a list of publications published in the course of this thesis, including the ones that compose the thesis. Big Data is defined as extremely large datasets that could not be manipulated using conventional systems and solutions [START_REF] Mcafee | Big data: the management revolution[END_REF][START_REF] Zikopoulos | Understanding big data: Analytics for enterprise class hadoop and streaming data[END_REF].

0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0
Usually, this concept is defined as 3-Vs model, i.e., volume, velocity and variety. These properties are depicted in Figure 2.11 and defined as follows:

• Volume refers to the enormous amount of generated data to be processed. • Variety refers to the fact that data comes in diverse types of formats, e.g., structured such as relational databases, semi-structured such as XML, or unstructured such as multimedia contents. Furthermore, structures could not be specified beforehand and evolves during time [START_REF] Kaur | Modeling and querying data in nosql databases[END_REF].

In recent years, Big Data was defined by the 3Vs but now there are more complementary characteristics which are discussed in the community, e.g., Veracity, Value.

NoSQL Stores

To efficiently manage data in Big Data world, NoSQL stores, that stands for Not only SQL, stores become a mainstream solution to store and analyse enormous amount of generated data. Moreover, NoSQL systems run in distributed environments and thus offering high availability. Furthermore, NoSQL systems are well-tailored to scale when there is a need for more storage space for instance. All these capabilities make NoSQL systems becoming an alternative to conventional relational stores while implementing data-intensive applications. The variety characteristic of the Big Data is a naturally support in most NoSQL stores. Hence, the schema-less nature of most NoSQL stores allows the storage of data regardless of their schemas since it is not mandatory to define schemas beforehand [START_REF] Gómez | Data schema does matter, even in nosql systems![END_REF]. Despite conventional relational databases, NoSQL stores offer promising scaling-out capabilities to load the enormous size of generated data [START_REF] Pokorny | Nosql databases: a step to database scalability in web environment[END_REF]. From the literature we distinguish four mainstream data models for NoSQL stores [START_REF] Nayak | Type of nosql databases and its comparison with relational databases[END_REF] described as follows: JSON (JavaScript Object Notation) is a format for formatting semi-structured data in human-readable text [START_REF] Chavalier | Document-oriented data warehouses: Models and extended cuboids, extended cuboids in oriented document[END_REF]. Figure 2.3 illustrates the document data model. We notice that the document data model allows the storage of both primitive values, e.g., the value of the attribute name in the first document, and object values using nested structures, e.g., the value of the attribute details in the second document.

{"_id": "id1", "name": "Alex"} {"_id": "id2", "details": { "name": "Jane", "country": "Australia", "occupation": "Student" } } Another particularity of this class of stores is the rich query expressiveness that covers most operators [START_REF] Botoeva | Expressivity and complexity of mongodb queries[END_REF], e.g., select-project-aggregateunnest-join, defined in the Nested Relational Algebra [START_REF] Korth | Query languages for nested relational databases[END_REF] and usually employed in conventional relational data models. Furthermore, there is no need to define a structure before loading data. Whereas key-value stores are offering limited storing capabilities, document stores scale well and respond to most Big Data requirements. Systems such as MongoDB [START_REF] Banker | MongoDB in action[END_REF] succeed to manage large collections of documents in distributed environment. However, it does not offer native support to overcome heterogeneity with structures of documents and users should know the different underlying structures while formulating their queries. For instance, in Figure 2.3, if user formulates her query to project all information related to the attribute name, only information from the first document are returned. Despite the presence of the attribute name in the second document, the native document query engine could not retrieve it.

• Column. A column store is a database that stores data by column whereas conventional relational databases store data by rows [START_REF] Stonebraker | C-store: a column-oriented dbms[END_REF].

Thus, such stores access only the data it needs to answer a query rather than scanning and discarding unwanted data in all rows which results in efficient query response time. However, an extensive work is required to define the different structures of tables and their corresponding keys based on the workloads. Furthermore, the query expressiveness of such stores is limited. For instance, Cassandra [START_REF] Lakshman | Cassandra: a decentralized structured storage system[END_REF] do not offer native support for queries formulated over columns which are not part of the primary key. Also, a query to retrieve tuples where a given column value is different could not be executed using the native query engine. For instance, it is not possible the user to retrieve all records where the column country is equal to USA form the column store illustrated in Figure 2.4. This is because only the column id compose the table primary key. Column store become best option as the backbone in a system to serve data for common extract, transform, load (ETL) and data visualization tools [START_REF] Abadi | Column-oriented database systems[END_REF][START_REF] Malki | Modélisation NoSQL des entrepôts de données multidimensionnelles massives[END_REF]. • Graph. A graph store is a type of NoSQL database that uses graph theory [START_REF] West | Introduction to graph theory[END_REF] to store, manage and query nodes and their corresponding relationships. A graph store is essentially a collection of nodes and edges. Such structures support semantic queries [START_REF] Lim | Semantic queries in databases: problems and challenges[END_REF]. Graph store have been used in multiple domains, such as data and knowledge management, recommendation engines, Like document stores, there is no need to define structures of nodes or edges beforehand and data could be easily stored regardless of their CONTENTS structures [START_REF] Vukotic | Neo4j in action[END_REF]. However, to query such stores there is a need to employ complex querying language such as Cypher [START_REF] Francis | Cypher: An evolving query language for property graphs[END_REF]. In this thesis, we focus mainly on document stores. We opt for this choice due to the flexibility offered to store data regardless of their structures and the need to overcome the heterogeneity within structures. Furthermore, when compared to the column and key-value stores, the heterogeneity in terms of structures is limited and the schemaless is mainly related to the presence or absence of values for given attributes. In column database, it is required to define a schema for the data beforehand. Both, document and graphs offer the freedom to store data regardless of their schemas.

Id Name Country Occupation id1 Alex id2 Jane Australia Student
However, more challenges are present in graph stores since the heterogeneity could not only affects the data structures, i.e., structure of information within nodes, but also it could affect edges also since the edges contain information regarding the semantic of the relationships between nodes. However, in addition to our main contributions to overcome the heterogeneity while querying heterogeneous collection of documents, we succeeded to propose some preliminary contributions to address this problem in graph data model. Our results are published in the International Conference on Big Data Analytic and Knowledge Discovery DAWAK 2018 [START_REF] Malki | Querying heterogeneous data in graph-oriented NoSQL systems (short paper)[END_REF]. Furthermore, the native query engine in document stores do not offer native support to overcome the heterogeneity. However, it is mandatory for the users to explicitly include all possible paths leading to the same information.

Contexts such as data-lake [START_REF] Hai | Constance: An intelligent data lake system[END_REF], federated database [START_REF] Sheth | Federated database systems for managing distributed, heterogeneous, and autonomous databases[END_REF], data integration, schema matching [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF], and recently, schema-less data support in NoSQL systems [START_REF] Corbellini | Persisting big-data: The nosql landscape[END_REF] have highlighted the importance of building transparent mechanisms that use the underlying data in a transparent way. In addition to large volumes of data, there is a need to overcome the heterogeneity of the collected data. Different sources generate data under different structures, versions and languages. The problem of querying multi-structured data has pushed the database community to rethink how information is accessed with regards to the underlying data structure heterogeneity (Ben Hamadou et al., 2018a).

In the reminder of this chapter, we classify state-of-the-art research work based on the solutions proposed for querying multi-structured documents. We start by presenting the first family of work employs different methods of schema matching to resolve the problem of heterogeneity in structures. Afterwards, we present some work performing materialized structural changes to unify heterogeneous forms of documents.

Therein, the third line of work recommends operating queries on a virtual schema derived from the heterogeneous structures and the last recommends querying techniques to overcome the heterogeneity in documents.

Schema Integration

Current data-intensive applications, e.g., web or IoT, could model the same real-world domain differently since the schemas are independently developed. This difference could be related to the evolution of the application, the integration of data from different sources, etc. Thus, in order to get insights from data generated in diverse structures there is a need to identify relationships between schemas. In this section, we study the most relevant work suggesting schema integration process as an intermediary step to facilitate a query execution process over data having various structures.

Thus, this process suggests determining mappings between attributes from heterogeneous schemas to provide integrated access to heterogeneous data using global schema.

Furthermore, schema integration employs a set of techniques and approaches to provide the user with a unified structure [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]. Usually, this unified structure is called global schema. Therefore, data generated from different sources could be accessed easily regardless of their sources or underlying structures. In practical terms, schema integration involves combining data residing in different sources and providing users with a unified access [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]. This process becomes significant in several applications, e.g., commercial when two companies need to merge their databases, or scientific combining results from different bio informatics repositories. It has become the focus of extensive theoretical research work, and numerous open problems remain unsolved.

Several techniques could be applied in order to automate this process. In their survey paper [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF], the authors presented the state-of-the-art techniques used to automate the schema integration process. Matching techniques could be applied to structure-level [START_REF] Do | Coma system for flexible combination of schema matching approaches[END_REF]. Thus, structure-level techniques compute the mapping between structures by analysing the similarity of how attributes appear together in a structure [START_REF] Shvaiko | A survey of schema-based matching approaches[END_REF]. Thus, structure-level matching determines that certain attributes of a given schema semantically correspond to certain attributes of another schema. In [START_REF] Madhavan | Generic schema matching with cupid[END_REF] the authors propose an algorithm, i.e., Cupid, that discovers mapping between schema elements using linguistic and structural matching. Hence, such an approach is built to map XML schemas or other structured data where an explicit schema definition is already present whereas data in most NoSQL stores are stored without prior schema definition.

CONTENTS

However, current solutions are often very brittle because they only exploit evidence that is present in the two schemas being matched. Thus, in document stores, and due to the lack of additional meta-data annotations of documents, determining the relationship between schemas using only the names of the attributes could result in wrong matches and thus could affect the correctness of the queries evaluation. For instance, it is possible to find a match between two attributes, e.g., an attribute called location may refer to two different concepts, i.e., room number, or IP address and [START_REF] Ventrone | Semantic heterogeneity as a result of domain evolution[END_REF].

Furthermore, matching could be defined between instances [START_REF] Wang | Instance-based schema matching for web databases by domain-specific query probing[END_REF]. In practical terms, determining a set of correspondences that identify similar elements in different schemas [START_REF] Madhavan | Corpus-based schema matching[END_REF]. The problem of such type of matching is that it is mandatory to perform a comparison between the values of different attributes.

In a context such as relation, column stores, it is possible to opt for comparing only a subset of values and thus it is possible to determine matches. However, in contexts such as document or graph stores, and due to the concept schema-less stores, values for a given attribute have no fixed data type, and may vary from document to another same attribute may have different data types [START_REF] Chasseur | Enabling json document stores in relational systems[END_REF][START_REF] Gallinucci | Schema profiling of document-oriented databases[END_REF], e.g., the type of an attribute called age could be a string or integer in different documents within the same collection, thus performing element matching require to compare all attributes values to others from different documents and structures.

Traditionally, several kinds of heterogeneity are discussed in the literature [START_REF] Index | On schema matching with opaque column names and data values[END_REF]: structural heterogeneity refers to diverse possible locations of attributes within a collection due to documents diverse structures, e.g., nested or flat structures and different nesting levels [START_REF] Ben Hamadou | Querying heterogeneous document stores[END_REF]; syntactic heterogeneity refers to differences in the representation of the attributes, e.g., usage of acronyms, prefix, suffix and special characters due to several naming convention affecting specifically attribute names [START_REF] Wolski | Linda: A system for loosely integrated databases[END_REF]; finally, semantic heterogeneity may exist when the same field relies on distinct concepts in separate documents [START_REF] Shvaiko | A survey of schema-based matching approaches[END_REF].

To automatically find matches, diverse tools are employed to address each class of heterogeneity. For instance, the usage of lexical matches helps to handle syntactic heterogeneity [START_REF] Hall | Approximate string matching[END_REF]. Lexical matches are usually ensured via the usage of different edit-distance algorithms. Hence, such algorithms represent a way of quantifying how dissimilar two strings are by counting the minimum number of operations required to transform one string into the other [START_REF] Bille | A survey on tree edit distance and related problems[END_REF]. Furthermore, thesauruses and dictionaries, e.g., Wordnet [START_REF] Li | A wordnet-based algorithm for word sense disambiguation[END_REF], are used to perform semantic matching [START_REF] Voorhees | Using wordnet to disambiguate word senses for text retrieval[END_REF]. Also, structural matching helps to compare the document structures and to identify commonalities and differences [START_REF] Bertino | A matching algorithm for measuring the structural similarity between an xml document and a dtd and its applications[END_REF].

The main problem of the different matching techniques is in how to determine adequate parameters. Most of the matching functions require to determine a certain threshold that allows to efficiently find matches. However, the parameters work only for the context on which it was initially determined. Therefore, there are no generic matching techniques and parameters that could be applied for any kind of structures or applications.

Schema integration techniques may present certain issues to efficiently deal with the structure of data. Hence, schema integration techniques make it difficult to support legacy applications built on top of original structures of the data before generating a unified one. Therefore, changing the data structure necessitates changing the queries in the application side. Furthermore, this task is required whenever a new common structure is integrated into the collection data.

Physical Re-factorisation

In this section, we study another alternative to retrieve information from a set of heterogeneous data. This class of work suggests performing physical re-factorisation to facilitate the access to documents having heterogeneous structures. The common strategy of these work consists in changing the underlying document data model into a relational data model. Thus, they rely on the use of conventional relational querying and storing techniques. In practical terms, documents map to relational tables.

To achieve this, there is a need to perform customised transformations and to define some rules on how documents should be mapped into relations since there are no standardised solutions to achieve this. Hence, mapping determines possible tables corresponding to a given collection of documents. Furthermore, types could be automatically extracted to define the different columns while defining the relational tables. Such kind of solutions leads to the loss of the flexibility initially guaranteed in the document data model. Therefore, documents are shredded into columns in one or more relational tables. To this end, it is mandatory to perform some physical transformations to map the document data model into the relational one. However, these solutions ensure that semi-structured data can be queried without any prior schema validation or restriction. A mainstream approach widely used while dealing with XML databases, is to partition documents and transform them into relation data model [START_REF] Amer-Yahia | A comprehensive solution to the xml-to-relational mapping problem[END_REF][START_REF] Böhme | Supporting efficient streaming and insertion of xml data in rdbms[END_REF][START_REF] Florescu | Storing and querying xml data using an rdmbs[END_REF]. For instance, MonetDB [START_REF] Idreos | Monetdb: Two decades of research in column-oriented database[END_REF] uses specialised data encoding, join methods, and storage for managing documents encoded in XML. In [START_REF] Amer-Yahia | A comprehensive solution to the xml-to-relational mapping problem[END_REF], the authors use the document type definition, i.e., DTD, to flatten documents and map documents into relational tables. However, despite of the advantages of using relational schema and the expressiveness power of relational operators, par-

CONTENTS

titioning data into tables by attributes [START_REF] Florescu | Storing and querying xml data using an rdmbs[END_REF] affects the performance of the relational system. This is due to the need of performing multiple joins to reconstruct any documents.

The particularity of documents encoded in XML is that the documents are usually annotated with information describing the schemas whereas JSON documents are lacking such schema annotations. Thus, such knowledge helps to easily infer the structures and to facilitate the process of mapping documents into relational data model.

With the wide spread use of JSON format [START_REF] Bourhis | Json: data model, query languages and schema specification[END_REF] as flexible and extensible document format, and due to the lack of structure annotations, recent work have been introduced to transform JSON into relational data model. In [START_REF] Chasseur | Enabling json document stores in relational systems[END_REF], the authors introduced a system called Argo to manage JSON data using relational stores. They suggest distributing document values across different tables, according to their types. Furthermore, Argo presents a mapping layer for storing and querying JSON data in a relational system with a custom SQL-like query language.

The problem with this work is the necessity to learn a custom query language, i.e., Argo/SQL, and to employ a relational store in addition to the document store. In this work also, they suggest flattening the different nested attributes to fit them with the relational data model.

However, in [START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF], the authors introduced a system, called sinew, enabling to store documents into relational columns and they propose a layer above the database to provides relational views using PostgreSQL [START_REF] Momjian | PostgreSQL: introduction and concepts[END_REF] as the underlying RDBMS. Therefore, document encoded in JSON can be queried and managed in relational stores. To achieve this, sinew, adopt a custom serialization format to materialize document attributes into physical columns. Also, PostgreSQL [START_REF] Momjian | PostgreSQL: introduction and concepts[END_REF] adopts the same strategy and uses a custom binary serialization for lading documents encoded in JSON into relational stores.

Furthermore, in (DiScala and [START_REF] Discala | Automatic generation of normalized relational schemas from nested key-value data[END_REF], the authors proposed a normalizing relational data extractor for JSON data. The extractor creates a functional dependency graph representing the different relationships existing within the attributes. However, this work operates over collections of documents sharing a common schema. Thus, it is possible to find different relational tables for each set of schemas present within the collection. Therefore, several tables are generated based on the functional dependencies. To retrieve data, users are required to formulate their queries while considering the necessary join operations to reconstruct information as stored into their original documents.

In Figure 2.6, we illustrate an example of how an information modelled as document could be re-factorized to match with relational one. In this example we note that the attributes are transformed into relational columns. This example is inspired from the {"_id": "id1", "name": "Alex"} {"_id": "id2", "details": { "name": "Jane", "country": "Australia", "occupation": "Student" } } To retrieve data from the shredded documents, a common strategy consists in formulating relational queries based on relational views built on top of the new data structures. This strategy implies that several physical re-factorisation should be performed which will affect scalability. Hence, this process is time-consuming, and it requires additional resources, such as an external relational database and more effort from the user to learn the new generated relational views. Users of these systems have to learn new schemas every time they change the application queries or when new data are inserted (or updated) in the collection, as this is necessary to regenerate the relational views and stored columns after every change.

In addition, the schema-less nature supported by most document stores allow for the same attribute to have diverse data types. Therefore, the physical re-factorisation could lead to several tables for the same information and thus several queries and multiple join operations should be performed to find the expected results.

Finally, adopting custom serialisation to fit document complex attributes, e.g., arrays and objects, into relational could not be very efficient. For instance, Hence, they do not offer fast access to serialised data and thus affects the query performances.

For instance, arrays and object require frequent de-serialization before executing the query.

Schema Inference

In this section, we study the most relevant work conducted to resolve the heterogeneity in documents structures by inferring and unifying their various structures. This problem pushed the community to propose solutions to infer the schemas of document which are implicit in documents. In practical terms, collections are stored regardless of their various structures. To assist the users while formulating their queries.

CONTENTS

Several work are proposing schema inference techniques. The idea is to provide users with an overview of the different elements present in the collection of heterogeneous collection of documents [START_REF] Baazizi | Schema inference for massive json datasets[END_REF][START_REF] Ruiz | Inferring versioned schemas from nosql databases and its applications[END_REF]. This family of work was first introduced for inferring structures from semistructured documents encoded in XML format. These work aim to infer structures using regular expressions rules from the different strings representing element from XML documents to propose a generalized structure [START_REF] Freydenberger | Fast learning of restricted regular expressions and dtds[END_REF].

Both, JSON and XML are commonly used to encode nested data as documents. However, most of the solutions introduced to infer structures from documents encoded in XML could not be applied to documents encoded in JSON. Furthermore, other efforts were conducted to infer RDF data (Čebirić et al., 2015). The problem with this class of work is none of these approaches is designed to deal with massive datasets whereas current applications are data-intensive, and they are using JSON encoding.

In [START_REF] Wang | Schema management for document stores[END_REF] the authors propose a framework to efficiently discover the existence of fields or sub-schemas inside the collection. To this end, the framework is built for managing a schema repository for JSON document stores. The proposed approach relies on a notion of JSON schema called skeleton. Hence, a skeleton is a tree representation describing the structures that frequently appear in a collection of heterogeneous documents. Thus, the skeleton may totally lack some paths that does exist in some of the documents because they do not appear often, and the generation of skeleton will exclude them.

In [START_REF] Gallinucci | Schema profiling of document-oriented databases[END_REF] a novel technique is defined to explain the schema variants within a collection in document stores. Therefore, the heterogeneity problem in this research work is detected when the same attribute is represented differently, e.g., different type, different location inside documents. Therefore, the authors suggest using mapping to find out the different variation for a given attribute. In order to retrieve information, users should formulate as much query as the number of attributes defined in the mappings for each attribute. However, the problem with such solution is the difficulty to first build the adequate queries since there is no automatic query generation. Second there is a need to perform further treatments to combine the partial results.

In this section, we present the class of work that infer the implicit structures from a heterogeneous collection of documents and provide the user with a high-level illustration regarding all or a subset of structures present inside the collection. This solution could help users to better understand the different underlying structures and to take the necessary measures and decisions during the application design phase.

The limitation with such a logical view is that it requires a manual process in order to build the desired queries by including the desired attributes and all their possible navigational paths. In such approaches, the user is aware of data structures but is required to manage the heterogeneity. Furthermore, some work does not consider all structures and build an inferred schema on top of most used attributes, for instance, using some probability measures. Thus, queries could result in misleading results. Also, most of the work does not offer automatic support for structures evaluations and it is mandatory to regenerate the inference process which could affect the associated workloads and applications.

We build our schema-independent querying based while getting inspired by this category of work and we provide automatic support for schema evolution. Also, in our contribution, we guarantee that the workload dedicated to fetching data from a heterogeneous collection of documents will not be affected by the evolution in term of structures. We define the concept of the schema of a document because of the lack of a formal specification [START_REF] Pezoa | Foundations of json schema[END_REF]. The document data model relies on collections whose are usually schema-less. Despite the fact that such flexibility allows providing important capabilities to load huge amounts of semi-structured data regardless of their schema definitions, this flexibility makes it impossible to efficiently formulate complex queries and workloads, users do not have reliable schema information to figure out structural properties to speed up the formulation of correct queries [START_REF] Baazizi | Schema inference for massive json datasets[END_REF].

Querying Techniques

From the literature we distinguish some work consisting of proposing query rewriting [START_REF] Papakonstantinou | Query rewriting for semistructured data[END_REF] which is a strategy for reformulating an input query into several derivations to overcome heterogeneity. Most research work are designed in the context of the relational databases, where heterogeneity is usually restricted to the lexical level. When it comes to the hierarchical nature of semi-structured data (XML, JSON documents), the problem of identifying similar nodes is insufficient to resolve the problem of querying documents with structural heterogeneity. To this end, keyword querying has been adopted in the context of XML [START_REF] Lin | Towards heterogeneous keyword search[END_REF].

The process of answering a keyword query on XML data starts with the identification of the existence of the keywords within the documents without the need to know the underlying schemas. The problem is that the results do not consider heterogeneity in terms of nodes, but assume that if the keyword is found, no matter what its containing node is, the document is adequate and must be returned to the user. Furthermore, several systems are offering querying interface where the user could use SQL or SQL-like querying interface to retrieve data from schema-less stores. However, it is required that the user must define the structure of the underlying data before formulating her queries.

To address this problem in the context of document encoded in XML, the system CONTENTS Pathfinder [START_REF] Schvaneveldt | Pathfinder associative networks: Studies in knowledge organization[END_REF]) define a processing stack designed to convert from XML and XQuery [START_REF] Boag | Xquery 1.0: An xml query language[END_REF] to relational tables and to use SQL queries. This query language inherits the query expressiveness of relational data model from the conventional SQL queries and adds further operators for document data model. Other alternatives for finding different navigational paths which lead to the same nodes are supported by [START_REF] Boag | Xquery 1.0: An xml query language[END_REF][START_REF] Clark | Xml path language (xpath) version 1[END_REF]. However, structural heterogeneity is only partially addressed. There is always a need to know the underlying document structures and to learn a complex query language. Moreover, these solutions are not built to run with large-scale data. In addition, we can see the same limitations with JSONiq [START_REF] Florescu | Jsoniq: The history of a query language[END_REF], the extension to XQuery designed to deal with large-scale semi-structured data.

Other line of work considers large volume of data and enable querying for documents encoded in JSON. For instance, the work SQL++ [START_REF] Ong | The sql++ query language: Configurable, unifying and semi-structured[END_REF] offers a query language designed to retrieve information from semi-structured data, e.g., documents. Furthermore, we find other work form the literature such as Google Tenzing [START_REF] Lin | Tenzing a sql implementation on the mapreduce framework[END_REF], Google Dremel [START_REF] Melnik | Dremel: interactive analysis of web-scale datasets[END_REF], Apache Drill [START_REF] Hausenblas | Apache drill: interactive ad-hoc analysis at scale[END_REF], and Apache Spark SQL [START_REF] Armbrust | Spark sql: Relational data processing in spark[END_REF] propose that user could query data without first defining a schema for the data. In the work Tenzing [START_REF] Lin | Tenzing a sql implementation on the mapreduce framework[END_REF], the authors introduce a query mechanism inspired from the SQL querying language and performing in MapReduce systems. To this end they propose to infer relational models from the underlying documents. The limitation of this work is that it is only limited to flat structures. In other words, only documents composed of attributes of primitive types are supported. This is not always valid in the context of documents stores where nested structures is commonly used in current data-intensive applications. In contrast, other solutions such as Dremel [START_REF] Melnik | Dremel: interactive analysis of web-scale datasets[END_REF] and Drill support nested data. We notice also that systems such as Apache Spark SQL [START_REF] Armbrust | Spark sql: Relational data processing in spark[END_REF] fits the data into main memory using a custom data model called data frames. Hence, a data frame reuses the table structure in which each column contains values of one attribute. In case of heterogeneous structures, data frames are built based on the most used structures and thus leading to miss some elements present in limited number of documents. Furthermore, data frames could be materialised and loaded to optimise querying performances. However, if new structures are inserted into the collection of heterogeneous documents, there is a need to regenerate the data frames and thus changing the columns signature which could affect the existing workloads.

In this thesis, we build our schema-independent querying upon the idea proposed in the context of query reformulation. We believe that the advantage of reformulating queries in ad-hoc fashion is transparent to the already available workloads. Furthermore, in our contribution we focus on generating one query able to overcome the heterogeneity problem and thus we omit the additional efforts required to recompose results from the execution of several queries.

In the next section we summarise the state-of-the-art work which are related to our work and we discuss them based on set of comparison criteria that we define.

Summary

In this section, we compare the most relevant work from the literature that propose a solution to facilitate the process of querying heterogeneous data. We present first a table and then we discuss the different criteria. Finally, we position our work with respect to the related literature. Table 2.1: Comparative study of the main contributions to querying heterogeneous semi-structured data.

In Table 2.1 we present the state-of-the-art research work intended to resolve the problem of querying multi-structured data. We compare this work according to the following criteria:

• the type of heterogeneity examined in each type of work: structural, syntactic or semantic;

• the level of heterogeneity. For each type of work, we consider whether the contribution is designed to resolve heterogeneity at schema level or instance level;

• the querying mechanism. We examine if the type of work recommends a new query language, reuses existing systems or does not offer any querying support;

• the underlying store. We indicate if each type of work is limited to one store or several stores;

CONTENTS

• the solution proposed for the heterogeneity problem. We describe the nature of the solution for each type of work, for instance, does it perform physical refactorization and change the original schemas, does it focus only on inferring underlying schemas or does it offer a new query language?

• the data models. We classify each work according to the data models it supports documents, key-value, relational, etc.;

• Schema evolution support. We indicate how each type of work handles the arrival of new data structures in the database (insert/update/delete documents). Do they offer transparent and native support to handle these new structures? Are manual changes needed to support this change?

The majority of the state-of-the-art research concentrates on managing heterogeneity at a structural level. If we consider schema evolution support, to the best of our knowledge, our work is the first contribution that manages automatic support to overcome structural heterogeneity without regenerating relational views or re-executing schema inference techniques. Moreover, our contribution can automatically extract existing schemas, build and update a dictionary with all the details of the attributes and their corresponding paths in the collection, and offer querying capabilities without introducing a new querying language or new store. We propose to help the user to overcome heterogeneity: she queries the system with a minimum knowledge of the data structures and the system reformulates the query to overcome the underlying heterogeneity. We ensure that our query reformulation can reformulate queries with the latest schemas in the collection.

This thesis introduces a schema-independent querying approach that is based on the native engine and operators supported by conventional document stores. Furthermore, we offer greater support for most querying operators, e.g., project-selectaggregate-unnest-lookup. Our approach is an automatic process running on the initial document structures; there is no need to perform any transformation to the underlying structures or to use further auxiliary systems. Users are not asked to manually resolve the heterogeneity. For collections of heterogeneous documents describing a given entity, we believe that we can handle the structural heterogeneity of documents by using a query reformulation mechanism introduced in this thesis.

In this chapter, we introduced the main concepts required for the understating of the context and the problematic that we address in this thesis. Therein, we classified related literature to four categories. We introduced some work for each of the category and we compared to our work. Later, we summarised all the work and we draw a comparison table where we compare the different work from the literature with respect to our work. In the reminder of this thesis, we introduce the different formal foundations required to build our main contributions with respect to the assumption that we introduced in the introduction and the inspiration that we got from the literature.

CONTENTS

During the last decade, NoSQL document stores and schema-less data modelling have emerged as mainstream alternatives to relational modelling for addressing the substantive requirements of current data-intensive applications [START_REF] Hecht | Nosql evaluation: A use case oriented survey[END_REF], e.g., IoT, web, social media and logs. Hence, to build efficient application and to take the most profit from document stores, it is important to start first by understanding the key concepts of the document data modelling. Furthermore, the schema-less nature guaranteed by most document stores requires to build an efficient process to extract the underlying structures within a collection of documents to build efficient queries able to retrieve the required information. This process plays an important role to build adequate queries. Document stores querying engine are not well-tailored to overcome heterogeneity in structures. It is up to the user to handle the heterogeneity and to explicitly includes various absolute paths in their queries to extract information of interest.

In the literature several solutions were introduced to overcome this issue. Current techniques recommend flattening documents, e.g., in XML or JSON format, into a relational form [START_REF] Chasseur | Enabling json document stores in relational systems[END_REF][START_REF] Discala | Automatic generation of normalized relational schemas from nested key-value data[END_REF][START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF] to overcome the heterogeneity in structures. This process of physical schema transformation requires additional resources, such as an external relational database and more effort to generate new schema every time they change the workload or when new data are inserted, deleted or updated. Furthermore, to deal with the heterogeneity in structures they propose transforming all document schemas to a single common schema and introducing some logical views which leads to a homogeneous collection [START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF] using schema matching techniques to merge heterogeneous structures [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF].

Meanwhile current trends suggest performing complex physical transformation, or to employ complex schema matching techniques leading to initial structures loss and affecting the support of legacy applications. We advocate the idea of keeping the documents in their original underlying structures. In this thesis, we provide a formal foundation to resolve the problem of extracting schemas for evolving collections. To track all structures in documents, we introduce a dictionary in which each path within a given structure is mapped to all its corresponding possible absolute paths in other structures.

In this chapter, we introduce the formal model of our proposition built on top of the dictionary to trace the heterogeneity in document structures. We first start by introducing the formal definition of the document data model. Therefore, we introduce our definition of the concept of documents and collection. Then, we introduce our definition of the concept of structure which covers also the concept of paths in documents, and collection structures. Later, based on our formal foundations we define the dictionary that we introduce as a solution to track heterogeneity in the collection of documents without performing any changes to the underlying document structures.

Finally, we define the set of operations, i.e., insert, delete, update, required to maintain the collection schema and the dictionary with the recent structures of an evolving collection of documents.

Document and Collection Data Model

In this section, we introduce the key concept used in the defintion of the document data model. Therefore, we present formal definition for the concept of collection and document in document data model illustrated with examples.

Collection

In document stores, data is stored and organized as a collection of documents which are simply a grouping of documents [START_REF] Cattell | Scalable sql and nosql data stores[END_REF]. The concept of the collection is like its counterpart table in Relational Database Management systems (RDBMS).

A collection can store documents which are not sharing similar structures. This is possible because of the schema-less support of most NoSQL stores. However, the value of documents is encoded in JSON1 or XML [START_REF] Consortium | Extensible markup language[END_REF] format.

Many applications can thus model data regardless of prefixed schemas, as data can be nested with different nesting levels and it is always query-able.

In the following, we introduce the formal definition for the concept of collection in document stores.

Definition 3.1. Collection A collection C is defined as a set of documents.

𝐶 = {𝑑 1 , . . . , 𝑑 𝑛𝑐 }
where 𝑛 𝑐 = |𝐶| is the collection size.

Document

The key concept in document data modelling is the document. Most document stores use documents as basic units for data storage as well as for queries. Documents are well-tailored to store large volume of information [START_REF] Imam | Automatic schema suggestion model for nosql document-stores databases[END_REF]. Furthermore, documents are composed of set of fields where any number of fields could belong to the documents without adding same fields with null values to the other documents in a collection. Therefore, the number of attributes in two documents from the one collection could be not the same. Compared to relational databases, empty columns CONTENTS contain null value by default. The document concept in document stores correspond to records [START_REF] Kaur | Modeling and querying data in nosql databases[END_REF] in relational ones.

In the following we introduce the formal definition for the document as a key-value pair where the key identifies the document within the collection and the value refers to the document value which could be atomic or complex.

Definition 3.2. Document A document 𝑑 𝑖 ∈ 𝐶, ∀𝑖 ∈ [1, 𝑛 𝑐],
is defined as a (key, value) pair

𝑑 𝑖 = (𝑘 𝑑 𝑖 , 𝑣 𝑑 𝑖)
• 𝑘 𝑑 𝑖 is a key that identifies the document 𝑑 𝑖 in the collection C,

• 𝑣 𝑑 𝑖 is the document value.

We first start by defining a generic value 𝑣 which can be atomic or complex (object or array).

An atomic value 𝑣 can take one of the four following forms:

• 𝑣 = 𝑛 where 𝑛 is a numerical value form (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 or 𝑓 𝑙𝑜𝑎𝑡);

• 𝑣 = "𝑠" where "𝑠" is a string formulated in 𝑈 𝑛𝑖𝑐𝑜𝑑𝑒 A * ;

• 𝑣 = 𝛽 where 𝛽 ∈ 𝐵, the set of boolean 𝐵 = {𝑇 𝑟𝑢𝑒, 𝐹 𝑎𝑙𝑠𝑒};

• 𝑣 = ⊥ where ⊥ is the 𝑛𝑢𝑙𝑙 value.

A complex value 𝑣 can take one of the two following forms: where the values 𝑣 𝑑 𝑖,𝑗 are defined as the generic values which could be atomic, complex or array. To cope with nested documents and navigate through schemas, we adopt classical navigational path notations [START_REF] Bourhis | Json: data model, query languages and schema specification[END_REF][START_REF] Hidders | J-logic: Logical foundations for json querying[END_REF]. For instance, to access the value 𝑣 𝑖,𝑗 from a document value defined as 𝑣 𝑑 𝑖 = {𝑎 𝑖 : {𝑎 𝑖,𝑗 :

• 𝑣 = {𝑎 1 : 𝑣 1 , . . . ,
𝑣 𝑖,𝑗 }}, the corresponding classical navigational path is expressed as 𝑎 𝑖 .𝑎 𝑖,𝑗 .

Example. Figure 3.1 presents a document identified with the attribute _id and its document value is composed of 2 attributes. We distinguish one simple attributes, i.e., title, and a complex attribute, i.e., info. The latter is composed of three simple attributes, i.e., year, country and link, and three complex attributes: i) the attribute genres is an array of Strings, ii) the attribute people which is an object attribute composed of the two object attributes director, lead_actor in which are nested two simple attributes first_name and last_name and the array attribute actors, and iii) the object attribute ranking in which is nested the simple attribute score.

{ "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "link":"https://goo.gl/2A253A", "genres":["Drama", "Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{ "score":7.2} } }

Document and Collection Schemas

Paths

In documents, data is present at different nesting levels. The name of an attribute with information of interest is not enough to fetch data when compared to its analogous column name in relational data model. To retrieve required information from documents, it is mandatory use paths expressed in dot notation as in URLs for navigating through the hierarchical structure of a document [START_REF] Clark | Xml path language (xpath) version 1[END_REF].

In the following we introduce the definition for the concept of path, and we distinguish between the different forms of paths, i.e., absolute path, partial path and leaf node.

Definition 3.3. Path A path represents a sequence of dot concatenated attributes starting from the root of the document and leading to a particular attribute in the document value 𝑣 𝑑 𝑖 that CONTENTS could be an atomic value of a leaf node or a complex value of a document. In the event of an array value, the path is expressed same ways as value and ends with the index of each value inside the array. In all cases, the path from the root to any atomic or complex document value in 𝑣 𝑑 𝑖 is called an absolute path. Furthermore, a path could be a sub-path when the sequence of attributes does not start from the root. In this case, the path is called a partial path. Finally, leaf node attributes are considered as paths too since they respond to the partial path definition.

Example. Figure 3.2 presents snippets from four documents with focus on the attributes score. In this example the path ranking.score in document (a) represents an absolute path to reach the information referenced by the attribute score. This path is composed of the complex attribute ranking expressed in dot concatenation format with the simple attribute score. However, the same path, ranking.score in documents (b, c, d) represents partial paths. Also, we could notice that others.ranking in document (c) is another example of a partial path. Furthermore, the path score which is a leaf node is considered as partial paths in all documents of the collection (C). In the event of array value, e.g., ranking, the path ranking.1 in document (a) represents an absolute path to retrieve the value Drama from this array value.

{ "_id":1, "genres":["Drama", "Sport"], "ranking":{ "score":8.1} }

Document Schema

In this part, we define the concept of document schema because the lack of a formal specification [START_REF] Pezoa | Foundations of json schema[END_REF]. Thus, in our definition, we rely on the concept of document paths and we define the document schema as the set of all absolute paths existing in this document.

Definition 3.4. Document Schema

The document schema 𝑆 𝑑 𝑖 inferred from the document value 𝑣 𝑑 𝑖 of a document 𝑑 𝑖 , is defined as:

𝑆 𝑑 𝑖 = {𝑝 1 , . . . , 𝑝 𝑁 𝑖 }
where, ∀𝑗 ∈ [1..𝑁 𝑖], 𝑝 𝑗 is an absolute path leading to an attribute of 𝑣 𝑑 𝑖 . For multiple nesting levels, the navigational paths are extracted recursively in order to find the path from the root to any attribute that can be found in the document hierarchy. The document schema 𝑆 𝑑 𝑖 of a document 𝑑 𝑖 is defined from its value

𝑣 𝑑 𝑖 = {𝑎 𝑑 𝑖 ,1 : 𝑣 𝑑 𝑖 ,1 , . . . ,
= 𝑆 𝑑 𝑖 ∪ {𝑎 𝑑 𝑖 ,𝑗 } ∪ { ∪ 𝑚 𝑗 𝑘=1 (︂ { 𝑎 𝑑 𝑖 ,𝑗 .𝑘} ∪ {∪ 𝑝∈𝑠 𝑑 𝑖 ,𝑗,𝑘 𝑎 𝑑 𝑖 ,𝑗 .𝑘.𝑝})︂
} where 𝑠 𝑑 𝑖 ,𝑗,𝑘 is the document schema of the 𝑘 𝑡ℎ value in the array 𝑣 𝑑 𝑖 ,𝑗 , 𝑎 𝑑 𝑖 ,𝑗 .𝑘 is the path leading to the 𝑘 𝑡ℎ entry from the array value 𝑣 𝑑 𝑖 ,𝑗 composed of the array attribute 𝑎 𝑑 𝑖 ,𝑗 composed of the array attribute 𝑎 𝑑 𝑖 ,𝑗 dot concatenated with the index 𝑘, 𝑎 𝑑 𝑖 ,𝑗 .𝑘.𝑝 is the path leading to the 𝑘 𝑡ℎ entry from the array value 𝑣 𝑑 𝑖 ,𝑗 composed of the path leading to the 𝑘 𝑡ℎ entry from the array dot concatenated with the path 𝑝 of 𝑠 𝑑 𝑖 ,𝑗,𝑘 ; we adopt this notation from [START_REF] Hidders | J-logic: Logical foundations for json querying[END_REF].

Example. The document schema for the document from Figure 3.1 is as follows:

S 𝑏 = {title,

Collection Schema

After defining the concept of document schema, we introduce now a generic definition to cover the collection schema.

CONTENTS Definition 3.5. Collection Schema

The schema 𝑆 𝐶 inferred from a collection C is the set of all absolute paths defined in document schemas extracted from each document in the collection C:

𝑆 𝐶 = {(𝑝 1 , 𝑛 1), . . . , (𝑝 𝑛𝑐 , 𝑛 𝑛𝑐)}
where 𝑝 𝑙 is an absolute path in the collection and 𝑛 𝑙 is its number of occurrence within the collection. We refer to the number of occurrence 𝑛 𝑙 of a path 𝑝 𝑙 ∈ 𝑆 𝐶 as 𝑛 𝑙 = 𝑆 𝐶 (𝑝 𝑙). We introduce the number of occurrence 𝑛 𝑙 to ensure that all paths inside 𝑆 𝐶 are present in at least one document, ∀𝑙 ∈ |𝑆 𝐶 |, 𝑛 𝑙 > 0.

Algorithm 1: Algorithm to construct collection schemas from document Paths.

Input : In Algorithm 1, the collection schemas 𝑆 𝐶 is constructed from each path 𝑝 𝑗 from each document schema 𝑑 𝑖 , Line 2 -3. In case of an existing absolute path in the document schema, the algorithm increments its number of occurrence by one, Line 4 -6. Otherwise, the algorithm adds new entry to the collection schemas, Line 7 -9. We define the function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶) to refer to the Algorithm 1. This function takes as input the collection 𝐶 and returns the collection schema 𝑆 𝐶 .

𝐶 1 𝑆 𝐶 ← ∅ 2 foreach 𝑑 𝑖 ∈ 𝐶 do 3 foreach 𝑝 𝑗 ∈ 𝑆 𝑑 𝑖 do 4 if 𝑝 𝑗 / ∈ 𝑆
Example.

Figure 3.3 presents a snippet from a collection of documents describing movies.

The corresponding collection schemas for this collection is as follows: { "_id":1, "title":"Million Dollar Baby", ... "genres":["Drama", "Sport"], "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, ... "ranking":{ "score":8.1 } }

𝑆 𝐶 = {title: 2,

(a)

{ "_id":2, "title":"In the Line of Fire", "info":{ ... "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, ... }, "ranking":{ "score":7.2 } } }

(b)

{ "_id":3, "film":{ "title":"Gran Torino", ... "details":{ ... "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, ... } }, "others":{ "ranking":{ "score":8.1 } } } }

(c)

{ "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", ... "director":{ "first_name":"Sergio", "last_name":"Leone" }, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, ... } }, "classification":{ "ranking":{"score":7.2 }, ... } } (d) The document schema concept provides only information for a document structure.

Furthermore, the concept of collection schema provides a global view regarding all paths present in all documents within a collection. Also, the paths in those concepts are restricted to only absolute paths. In the next section, we extend those definitions and we introduce the concept of a dictionary in which we map each path regardless of its nature, e.g., partial or absolute path, with all absolute paths leading to the same piece of information in other document schemas.

Dictionary

The architecture of our approach relies on the construction of a dictionary that enables the query reformulation process. A dictionary is a repository that binds each existing path in the collection (partial or absolute paths, including leaf nodes) to all the absolute paths from the collection schema leading to it (Ben Hamadou et al., 2019b,c).

In the following paragraphs, we first define partial paths in documents (called document paths), then partial paths in the collection (called collection paths) and we finally give the formal definition of the dictionary. The goal of introducing the concept of partial paths is to extend the query expressiveness of most document stores.

Thus, a user will be able to formulate queries over partial paths whereas current practices require that queries are only formulated over absolute paths. Let us notice that dictionary keys will become the basic element on which queries could be formulated.

Document Paths

In the following, we introduce the formal definition of the document paths.

Definition 3.6. Document Paths We define 𝑃 𝑑 𝑖 = {𝑝 𝑑 𝑖 } as the set of all existing paths in a document 𝑑 𝑖 : absolute paths as well as partial paths. We give a formal and recursive definition of 𝑃 𝑑 𝑖 starting from the value 𝑣 𝑑 𝑖 of document 𝑑 𝑖 .

For each document 𝑑 𝑖 = (𝑘 𝑑 𝑖 , 𝑣 𝑑 𝑖), where

𝑣 𝑑 𝑖 = {𝑎 𝑑 𝑖 ,1 : 𝑣 𝑑 𝑖 ,1 , . . . , 𝑎 𝑑 𝑖 ,𝑛 𝑖 : 𝑣 𝑑 𝑖 ,𝑛 𝑖 } • if 𝑣 𝑑 𝑖 ,𝑗 is atomic: 𝑃 𝑑 𝑖 = 𝑃 𝑑 𝑖 ∪ 𝑆 𝑣 𝑑 𝑖 ,𝑗 ; • if 𝑣 𝑑 𝑖 ,𝑗 is an object: 𝑃 𝑑 𝑖 = 𝑃 𝑑 𝑖 ∪ 𝑆 𝑣 𝑑 𝑖 ,𝑗 ∪ 𝑃 𝑣 𝑑 𝑖 ,

Collection Paths

After defining the concept of document paths, we introduce now a generic definition to cover the collection paths.

Definition 3.7. Collection Paths

The set of all existing paths (absolute paths and partial paths) in a collection C:

𝑃 𝐶 = ∪ 𝑛𝑐 𝑖=1 𝑃 𝑑 𝑖
We notice that 𝑆 𝐶 ⊆ 𝑃 𝐶 (all absolute paths are included in 𝑃 𝐶).

Dictionary

The main purpose behind introducing document and collection paths is to construct the dictionary. Definition 3.8. Dictionary

The dictionary 𝑑𝑖𝑐𝑡 𝐶 of a collection 𝐶 is defined as:

𝑑𝑖𝑐𝑡 𝐶 = {(𝑝 𝑘 , △ 𝐶 𝑝 𝑘)}
where:

• 𝑝 𝑘 ∈ 𝑃 𝐶 is an existing path in the collection C, 𝑘 ∈ [1..|𝑃 𝐶 |];

• △ 𝐶 𝑝 𝑘 = {𝑝 𝑘,1 , . . . , 𝑝 𝑘,𝑛 𝑘 } ⊆ 𝑆 𝐶 is the set of all absolute paths of the collection leading to 𝑝 𝑘 , 𝑛 𝑘 = |△ 𝐶 𝑝 𝑘 |.

CONTENTS

We refer to the set of absolute paths △ 𝐶 𝑝 𝑘 leading to the path 𝑝 𝑘 in the collection 𝐶 as △ 𝐶 𝑝 𝑘 = 𝐷𝑖𝑐𝑡 𝐶 (𝑝 𝑘). Formally, the dictionary value △ 𝐶 𝑝 𝑘 is a set of all absolute paths 𝑝 𝑘,𝑗 ∈ 𝑆 𝐶 , 𝑗 ∈ [1..𝑛 𝑘], of the form 𝑝 𝑘,𝑗 = 𝑝 𝑙 .𝑝 𝑘 where 𝑝 𝑙 is a path or 𝑝 𝑙 is empty. Thus, the dictionary value △ 𝐶 𝑝 𝑘 contains all the absolute paths to 𝑝 𝑘 that exist in at least one document in the collection. The Algorithm 2 presents the required steps to construct the dictionary. This Algorithm takes as input the collection schema 𝑆 𝐶 , and collection paths 𝑃 𝐶 .

Later on, it starts to find out for each path in collection paths 𝑃 𝐶 , Line 2, the set of its corresponding absolute paths from the collection schema 𝑆 𝐶 , Lines 5 -11. Finally, the algorithm appends the dictionary with a new entry mapping a path with all its absolute paths extracted from other structures of documents, Line 12. In the reminder of this thesis we use the function generateDict(C') to use the Algorithm 2 to construct a new dictionary for a collection 𝐶 ′ given as input. This function returns the dictionary 𝐷𝑖𝑐𝑡 𝐶 ′ and the collection schema 𝑆 ′ 𝐶 .

Algorithm

𝑑𝑖𝑐𝑡 𝐶 ← 𝑑𝑖𝑐𝑡 𝐶 ∪ {(𝑝 𝑘 , △ 𝐶 𝑝 𝑘)}
// append the dictionary with a key-value pair where 𝑝 𝑘 is a dictionary entry, and △ 𝐶 𝑝 𝑘 is the value of the entry 𝑝 𝑘 13 end 14 return 𝑑𝑖𝑐𝑡 𝐶 Example. For example, if we build the dictionary from q collection composed of document in Figure 3.1, the dictionary keys will contain title and info.people, but also info.people.director, people.director, people, director and so on as explained in the example introduced in section 3.3.1. In the following example, we present the following dictionary entries from the collection (C) in Figure 3.3

• the absolute path film.title from document (c);

• the leaf node score from documents (a,b,c,d);

• the partial path people.director from document (b);

• the partial path ending with leaf node director.first_name from documents (b,c,d).

The corresponding values for these dictionary entries are as follows: We introduced the concept of the dictionary after defining all concepts related to schema and paths for documents and collection. The dictionary provides a full coverage regarding the presences of the paths and their distribution across diverse structures of documents in the collection. The information related to the structures is static, i.e., this information only refers to the exact structures composing the document of a collection now when the dictionary is created. Thus, it is required to update the dictionary when structures of documents evolve during the time.

Dictionary Maintenance

In this section, we introduce an automatic mechanism that keeps the dictionary updated with the latest structures within a collection of documents. The main idea behind this process is to track every manipulations, e.g., insert, update or delete, that occurs to a collection and to simultaneously update the affected paths by those operations (Ben Hamadou et al., 2019c). Therefore, in case of document with new structures, the mechanism; i) adds new keys to the dictionary with all new paths from new structures, ii) updates the value of existing keys with new absolute paths from new structures. Moreover, in case of update operation, the mechanism updates the dictionary entries corresponding to the paths affected by the update operation.

Finally, in case of delete operation the mechanism removes i) keys from the dictionary and their corresponding absolute paths in case of obsolete dictionary keys. ii) obsolete absolute paths leading to existing dictionary keys.

Collection manipulation operators are used to insert, delete, and modify (update) documents in a collection. Storing data in their original schema in classical document CONTENTS stores, we use classical manipulation operators of document stores. Since these operations may lead to changes in schemas of documents, we add to these operators a simultaneous operation to update the collection schema and the dictionary accordingly. We denote Φ as the insert operator, Ψ as the delete operator and Θ as the update operator. We define any collection manipulation operator as the computation of two pseudo-collections 𝐶 𝑜𝑙𝑑 and 𝐶 𝑛𝑒𝑤 . The collection 𝐶 𝑜𝑙𝑑 refers to the set of documents affected by the execution of the manipulation operation making those documents obsolete and it is mandatory to remove them from the collection 𝐶. Conversely, the collection 𝐶 𝑛𝑒𝑤 refers to the set of new documents with their possible new structure to be inserted in the collection 𝐶 or possibly replacing documents of the collection 𝐶 𝑜𝑙𝑑 from the collection 𝐶 after executing the manipulation operation. Thus, we formally represent the result of any collection operator as follows:

Insert

𝐶 ← 𝐶 \ 𝐶 𝑜𝑙𝑑 ∪ 𝐶 𝑛𝑒𝑤
where 𝐶 is the collection to manipulate, 𝐶 𝑜𝑙𝑑 the set of documents to remove from 𝐶 and 𝐶 𝑛𝑒𝑤 the set of documents to add to 𝐶. We provide examples of 𝐶 𝑛𝑒𝑤 and 𝐶 𝑜𝑙𝑑 for each manipulation operation in the next sections.

Algorithm 3 presents the different states of both collections 𝐶 𝑜𝑙𝑑 and 𝐶 𝑛𝑒𝑤 for each manipulation operation. Line 2 -7 presents the case of insert operation, i.e., Φ. In this case, the collection 𝐶 𝑛𝑒𝑤 refers to the set of new documents to insert in the collection 𝐶. Line 8 -13 presents the case of delete operation, i.e., Ψ. In this case, the collection 𝐶 𝑜𝑙𝑑 refers to the set of obsolete documents to remove from the collection 𝐶. Finally, Line 14 -19 presents the case of update operation, i.e., Θ.

In this case, the collection 𝐶 𝑛𝑒𝑤 refers to the set of documents after updating their status, 𝐶 𝑜𝑙𝑑 contains the document in their initial status before executing the update Algorithm 3: Generic manipulation operation.

Input In the remaining of this section, we introduce the different steps to update the dictionary for each of the manipulation operators.

Insert Operation

In this part, we define the process of updating the dictionary while new documents are inserted in the collection. This process consists on updating the dictionary entries in case of inserting documents with new structures. Furthermore, this process update the collection schemas by adding new possible absolute paths with their corresponding number of occurrence or updating the number of occurrence of existing absolute paths.

Therefore, the dictionary entries are simultaneously updated with the newly inserted absolute paths. Furthermore, new entries are added to the dictionary that could be used later during query reformulation (Ben Hamadou et al., 2019c).

Definition 3.9. Dictionary update on insert operation

The execution of this operator is automatically executed whenever new documents are inserted into the collection. We denote the insert operation as: The goal is to update the dictionary 𝐷𝑖𝑐𝑡 𝐶 with possible new paths extracted from the collection of new documents 𝐶 𝑛𝑒𝑤 . We describe this process as follows:

Φ(𝐶),
• adding new entries in the dictionary 𝐷𝑖𝑐𝑡 𝐶 (e.g., new paths in documents);

• adding new absolute paths to initial paths existing in 𝐷𝑖𝑐𝑡 𝐶 ;

• updating the number of documents for each absolute path in 𝑆 𝐶 .

The insertion of the new collection 𝐶 𝑛𝑒𝑤 into the collection 𝐶 requires to update the dictionary 𝐷𝑖𝑐𝑡 𝐶 as follows: Algorithm 4 starts by generating the dictionary for the collection 𝐶 𝑛𝑒𝑤 , Line 1, and the collection schema 𝑆 𝐶𝑛𝑒𝑤 , Line 2 . Later, it iterates over each path 𝑝 ′ 𝑘 in the dictionary 𝐷𝑖𝑐𝑡 𝑛𝑒𝑤 , Line 3. If the path 𝑝 ′ 𝑘 it is already an entry into the dictionary 𝐷𝑖𝑐𝑡 𝐶 , the algorithms adds the new absolute paths to the value of the dictionary entry △ 𝐶 𝑝 ′ 𝑘 , Lines 4 -6. Otherwise, it creates a new dictionary entry identified by the path

𝑝 ′

𝑘 and its associated value 𝐷𝑖𝑐𝑡 𝐶𝑛𝑒𝑤 (𝑝 ′ 𝑘), Lines 7 -9. Finally, the dictionary updates the number of occurrence for each absolute path 𝑝 ′ , noted 𝑆 𝐶 (𝑝 ′), added or affected by the insertion operation, Lines 11 -19.

Example.

In this example, we execute an insert operation which adds two documents as described in in Figure 3.5 into the collection 𝐶 from Figure 3.3. Hence, the collection { "_id":5, "title":"Fast and furious", "director":{ "first_name":"Rob", "last_name":"Cohen" }, "lead_actor":{ "first_name":"Vin", "last_name":"Diesel", "country" : "USA" }, "score":7.1 } (a)

{ "_id":6, "title":"Johnny English Strikes Again", "info":{ "people":{ "director":{ "first_name":"David", "last_name":"Kerr" }, "lead_actor":{ "first_name":"Rowan", "last_name":"Atkinson" }, } "ranking":{ "score":8. 𝐶 𝑛𝑒𝑤 to insert in 𝐶 is composed these two documents. After executing the Algorithm 4, the schema collection 𝑆 𝐶 from section 3. In this example we note the introduction of a new absolute path lead_actor.country, extracted from the document of _id:5, in the collection schema 𝑆 𝐶 . Furthermore, the insert operation refreshes the collection schema 𝑆 𝐶 entries. For instance, the absolute paths title was title:2 before the insert operation, becomes title:4 since both documents contain the absolute path title. In addition to the collection schemas updates, the algorithm 4 updates the dictionary by adding the following entries to the dictionary. However, the dictionary entry referenced with the key director.first_name presented in Section 3.3.3 stay invariant. This is because these paths are already defined in the dictionary and only the number of their occurrence is affected with this insert operation. Thus, only the schema of the collection is affected where for instance the CONTENTS entry info.people.director.first_name becomes equal to 2 because this path is present in document (b) from Figure 3.5.

Delete Operation

In this part, we describe the different steps required to refresh the dictionary and the collection schemas whenever a delete operation is executed over an existing collection. Therefore, this process removes obsolete absolute paths from the dictionary entries or removes obsolete dictionary entries. Furthermore, it refreshes the collection schemas (Ben Hamadou et al., 2019c).

Definition 3.10. Dictionary update on delete operation The execution of this operator is automatic whenever a delete operation is executed on the collection 𝐶. We denote the dictionary delete operation as: Ψ(𝐶), where 𝐶 𝑛𝑒𝑤 = ∅, and 𝐶 𝑜𝑙𝑑 ̸ = ∅

The goal is to update 𝐷𝑖𝑐𝑡 𝐶 according to 𝐶 𝑜𝑙𝑑 by:

• updating the number of documents for each absolute path deleted in 𝑆 𝐶 ;

• deleting unnecessary entries for absolute paths having count equals to 0 from the collection schema 𝑆 𝐶 ;

• updating the dictionary 𝐷𝑖𝑐𝑡 𝐶 ;

• deleting unnecessary entries in the dictionary 𝐷𝑖𝑐𝑡 𝐶 , those having no more absolute paths in the collection to reach them. Algorithm 5 starts first by generating a dictionary for the set of documents to delete 𝐶 𝑜𝑙𝑑 and their corresponding collection schema 𝑆 𝐶 𝑜𝑙𝑑 , Line 1 -2. Later on, it iterates over the different entries 𝑝 ′ 𝑘 of the dictionary 𝐷𝑖𝑐𝑡 𝐶 𝑜𝑙𝑑 and over each absolute path 𝑝 ′ in △ 𝐶 𝑜𝑙𝑑 𝑝 ′ 𝑘 , Lines 3 -4. Then, if all absolute paths 𝑝 ′ are deleted, the algorithm removes the path 𝑝 ′ from the dictionary entry △ 𝐶 𝑝 ′ 𝑘 , Lines 5 -6. Therein, if there are no more absolute paths leading to the path 𝑝 ′ 𝑘 , the algorithm removes this entry, Line 7 -8. Finally, the dictionary updates the number of occurrences of each absolute path 𝑝 ′ , noted 𝑆 𝐶 (𝑝 ′), by subtracting the number of occurrence from the collection schema 𝑆 𝐶 𝑜𝑙𝑑 if not all paths 𝑝 ′ from collection 𝐶 are removed, Lines 13 -16. Otherwise, the algorithm removes the path 𝑝 ′ from the collection schema 𝑆 𝐶 , Lines 17 -19. We define the function 𝐷𝑒𝑙𝑒𝑡𝑒(𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑜𝑙𝑑) to the use the Algorithm 5. This function takes as input the initial dictionary to update 𝐷𝑖𝑐𝑡 𝐶 and the set of documents to remove 𝐶 𝑜𝑙𝑑 and it returns the 𝐷𝑖𝑐𝑡 𝐶 after refreshing it.

Example.

In this example we delete from the collection 𝐶 the document in Figure 3.6. Therefore, the Algorithm 5 starts by refreshing the collection schema 𝑆 𝐶 . Thus, the following entries from the collection schema 𝑆 𝐶 from section 3.

′ ∈ △ 𝐶 𝑜𝑙𝑑 𝑝 ′ 𝑘 do if 𝑆 𝐶 (𝑝 ′) -𝑆 𝐶 𝑜𝑙𝑑 (𝑝 ′) = 0 then 6 △ 𝐶 𝑝 ′ 𝑘 ← △ 𝐶 𝑝 ′ 𝑘 ∖ {𝑝 ′ } 7 if △ 𝐶 𝑝 ′ 𝑘 = ∅ then 8 𝐷𝑖𝑐𝑡 𝐶 ← 𝐷𝑖𝑐𝑡 𝐶 ∖ {(𝑝 ′ 𝑘 , ∅)} 9 end end end end foreach 𝑝 ′ ∈ 𝑆 𝐶 𝑜𝑙𝑑 do if 𝑆 𝐶 (𝑝 ′) -𝑆 𝐶 𝑜𝑙𝑑 (𝑝 ′) > 0 then 𝑆 𝐶 (𝑝 ′) ← 𝑆 𝐶 (𝑝 ′) -𝑆 𝐶 𝑜𝑙𝑑 (𝑝 ′) end else 𝑆 𝐶 ← 𝑆 𝐶 ∖ {𝑝 ′ } end end return 𝐷𝑖𝑐𝑡 𝐶 , 𝑆 𝐶
The algorithm 5 removes these entries from the collection schemas since in 𝑆 𝐶 from section 3.

Update Operation

In this part, we introduce the different steps required to update the dictionary and the collection schemas while executing a document update operation. The update

CONTENTS

{ "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", ... "director":{ "first_name":"Sergio", "last_name":"Leone" }, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, ... } }, "classification":{ "ranking":{"score":7. The execution of this operator is automatic whenever an update operation is executed on the collection 𝐶. We denote the dictionary remove operation as:

Θ(𝐶), where 𝐶 𝑛𝑒𝑤 ̸ = ∅, 𝐶 𝑜𝑙𝑑 ̸ = ∅
The goal is to update 𝐷𝑖𝑐𝑡 𝐶 according to 𝐶 𝑜𝑙𝑑 and 𝐶 𝑛𝑒𝑤 . This update is processed by updating 𝐷𝑖𝑐𝑡 𝐶 from 𝐶 𝑜𝑙𝑑 as explained for delete and then updating the 𝐷𝑖𝑐𝑡 𝐶 from 𝐶 𝑛𝑒𝑤 as explained for insert. Let us notice that the processing of update could be somehow reversed, first from 𝐶 𝑛𝑒𝑤 and then from 𝐶 𝑜𝑙𝑑 , leading to the same result. The Algorithm 6 executes the Algorithm 5 to update the dictionary after deleting the documents from the collection 𝐶 𝑜𝑙𝑑 , Line 1. Then, it inserts the documents after updating their underlying structures as result of executing the update operation.

Hence, the algorithm calls the Algorithm 4, Line 2.

Conclusion

In this chapter, we introduced the different formal foundations required for the understanding of the two main contributions of this thesis. We started first by defining the document data model. In order to overcome the heterogeneity, we introduced a set of definition to infer structures from the documents. Thus, we introduced the concept of paths. Paths are used to navigate inside documents starting from the root of the document in case of absolute paths and could be partial paths if they do not start from the root of the document, or they are leaf attribute.

We infer the different possible absolute paths from each document to build the collection schemas. The main idea behind the collection schema is to provide a transparent overview of the different structures of documents within a collection of heterogeneous schemas. The collection schemas trace also the number of documents for each absolute path. This definition helped us later in this chapter to automatically update our schema inference solution with the latest information related to the existing absolute paths within the collection. In order to assist the user while formulating her queries, we introduced the concept of a dictionary. The dictionary represents the set of paths that can be used to formulate relevant queries. Therefore, the user could formulate queries using partial or absolute paths regardless of conventional documents stores. To enable such flexibility, we introduced the definition of document and collection paths. This definition helps to extract from each document within the collection the set of all possible paths. Hence, the user is no more limited to only absolute paths to retrieve information of interest.

In this chapter, we introduced also different mechanisms that automate dictionary maintenance; i.e., whenever a manipulation operation is executed over the collection, we define how to automatically update the dictionary with the existing paths. In case of inserting a document with new structures, we automatically add new entries to the dictionary with all new paths and their associated absolute paths or we update the existing dictionary entries with new possible absolute paths. We perform the same for all of the delete and update operations.

The purpose of this chapter is to offer transparent mechanisms to overcome heterogeneity in documents. Therefore, the introduction of the dictionary helps to tracks all structures within a collection of documents. Furthermore, it provides to the user more flexibility while formulation her queries. It is possible for the user to use partial information of the paths to fetch information of interest. The different algorithms that we introduced to maintain the dictionary help to guarantee that query reformulation that we introduce in the next chapter returns the required information. Hence, they help to remove obsolete paths from the dictionary leading to generate queries that may take more time to execute due to the unnecessary absolute paths included in the query. Moreover, the query reformulation may lack new absolute paths introduced after insert or update operation.

In the next chapter, we introduce a minimal closed kernel of operators inherited from the Nested Relational Algebra [START_REF] Korth | Query languages for nested relational databases[END_REF] and formalised in the

CONTENTS

In this chapter, we introduce the different operators that we support to query collections of a heterogeneous collection of documents. In our contribution, we build all our solutions for enabling schema-independent querying using reformulation rules. Thus, we do not introduce a new querying language. In addition to overcoming the structural heterogeneity in document via query reformulation, we extend the query expressiveness power by offering for the user the ability to formulate queries using absolute paths and partial paths whereas most document stores require to formulate queries over absolute paths only. The main advantages of our contribution are that all reformulated queries are compatible with most native document stores querying engines. Therefore, we start first by introducing a minimum closed kernel of operators providing support for a set of unary, i.e., select-project-aggregate-unset, and binary, i.e., join, operators (Ben Hamadou et al., 2019b). Hence, we present for each operator the results when applied over a heterogeneous collection of documents to highlight the limitations of the underlying native querying engine. In practical terms, for each operator, we introduce a set of reformulation rules which employ the different formal definition introduced in the previous chapter, e.g., dictionary, paths, collection schemas and collection paths. Then, we define the set of reformulation rules to overcome heterogeneity in documents structures. In practical terms, for each operator, we introduce a set of reformulation rules which employ the different formal definition introduced in the previous chapter, e.g., dictionary, paths, collection schemas and collection paths. Therein, we present the results of executing the reformulated queries over the same heterogeneous collection of documents.

The reminder of this chapter is as follows. First, we introduce the kernel of operators. Then, we introduce the different reformulation rules for each operator. Finally, we introduce an automatic Algorithm for operator reformulation.

Minimum Closed Kernel of Operators

In this section we define a minimum closed kernel for operators based on the document operators defined in [START_REF] Botoeva | Expressivity and complexity of mongodb queries[END_REF]. Later, we introduce the definition of the query.

Definition 4.1. Kernel

The kernel 𝐾 is a minimal closed set composed of the following operators: 𝐾 = {𝜎, 𝜋, 𝛾, 𝜇, 𝜆} { "_id":1, "title":"Million Dollar Baby", "year":2004, "link":null, "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"], "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{ "score":8.1 } }

(a)

{"_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "link":"https://goo.gl/2A253A", "genres":["Drama", "Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{ "score":7.2 } } }

(b)

{ "_id":3, "film":{ "title":"Gran Torino", "awards": "AFI Award", "link":null, "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{ "ranking":{ "score":8.1 } } } }

(c)

{ "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "link":"goo.gl/qEFfUB", "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone" }, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } }, "classification":{ "ranking":{"score":7.2 }, "genres":["Western"] } } (d) The selection, also called restriction (𝜎), the project (𝜋), the aggregate (𝛾) and the unnest (𝜇) are unary operators whereas the lookup (𝜆) is a binary operator.

If we take into consideration the kernel 𝐾 for operators, a query Q is formulated by combining the previously presented unary and binary operators as follows:

Definition 4.2. Query 𝑄 = 𝑞 1 ∘ . . . ∘ 𝑞 𝑟 (𝐶)
where ∀𝑖 ∈ [1, 𝑟], 𝑞 𝑖 ∈ 𝐾.

We define the kernel as closed because each operator in the kernel operates across a collection and as a result, returns a new collection. Furthermore, we can observe that these operators are neither distributive, commutative nor associative. Such operator combinations are valid in very particular cases only and allow some algebraic manipulations which are helpful in reducing the query complexity. However, such optimisations are out of the scope of this thesis and are subject of future work.

In the next sections, each operator is studied in five steps. We first give the operator definition, based on partial paths. Next we give a query example for the operator and its evaluation in classical engines. We then explain how existing engines classically evaluate the operator. Finally, we define the operator reformulation rules which are illustrated with some reformulation examples. Since we target that reformulated queries should be evaluated using the classical querying engines, it is necessary that we define the classical evaluation of operators to define the reformulation of operators so that these reformulations are correctly evaluated, particularly when considering missing paths and null values.

Selection Operation

In this section we introduce the selection operator for document stores. We give the definition of the operator and its normal execution over a heterogeneous collection of documents. Later, we define the reformulation rules required to overcome the heterogeneity.

Definition 4.3. Selection

The selection operator is defined as:

𝜎 𝑃 𝐶 𝑖𝑛 = 𝐶 𝑜𝑢𝑡
The selection operator (𝜎) is a unary operator that filters the documents from collection 𝐶 𝑖𝑛 in order to retrieve only those that match the specified condition P.

This can be a boolean combination expressed by the logical connectors {∨, ∧, ¬} of atomic conditions, also called predicates, or a path check operation. The documents in 𝐶 𝑜𝑢𝑡 have the same structures as the documents in collection 𝐶 𝑖𝑛 . However, the condition P may reduce the number of documents in 𝐶 𝑜𝑢𝑡 when applied to collection 𝐶 𝑖𝑛 (Ben Hamadou et al., 2018a).

The condition 𝑃 is defined by a boolean combination of a set of triplets (𝑝 𝑘 𝜔 𝑘 𝑣 𝑘)

where 𝑝 𝑘 ⊆ 𝑃 𝐶 𝑖𝑛 is a 𝑝𝑎𝑡ℎ, 𝜔 𝑘 ∈ {=; >; <; ̸ =; ≥; ≤} is a comparison operator, and 𝑣 𝑘 is a value that can be atomic or complex. In the case of an atomic value, the triplet represents an atomic condition. In the case of a complex value, 𝑣 𝑘 is defined in the same way as a document value as defined in Section 3.1.2, 𝑣 𝑘 = {𝑎 𝑘,1 : 𝑣 𝑘,1 , . . . , 𝑎 𝑘,𝑛 : 𝑣 𝑘,𝑛 } and 𝜔 𝑘 is always " = ". In this case the triplet represents a path check operation. We assume that each condition 𝑃 is normalised to a conjunctive normal form:

𝑃 = ⋀︀ (︂ ⋁︀ 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘)︂
Example. Let us suppose that we want to execute the following selection operator on collection (C) from Figure 4.1:

𝜎 year ≥ 2004 ∧ director = {"first_name": "Clint", "last_name":"Eastwood"} (C)

This selection operation only selects movies produced starting from the year 2004, and the movie is directed by Clint Eastwood when the path director is an object with the following value {"first_name": "Clint", "last_name":"Eastwood"}. The selection operator will select only documents 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 where the evaluation of the normal form of condition 𝑃 returns 𝑇 𝑟𝑢𝑒.

Classical Selection Evaluation

Example. In a classical evaluation, the execution of the above-mentioned selection operation returns the following documents:

This query selects only documents

• { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama", "Sport"], "country":"USA", "director":{"first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{"first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1}} }

Due to the presence of some partial paths in our query and because a classical evaluation only takes absolute paths into account, the result only contains the document (a) despite the presence of other documents (document (c)) which seem to satisfy the selection condition.

Selection Reformulation Rules

The reformulation of the selection operator aims to filter documents based on a set of conditions from a collection of documents regardless of their underlying structures.

The predicate triplets of the select condition are built across one path (atomic condition or path check). In practical terms, the query reformulation engine replaces each path used in a condition by all their corresponding absolute paths extracted from the dictionary. Therefore, a triplet condition 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘 , 𝑝 𝑘 ∈ 𝑃 𝐶 𝑖𝑛 becomes a boolean "OR" combination of triplet conditions based on paths found in the dictionary for the path 𝑝 𝑘 . If we take into consideration the classical evaluation as defined above, the evaluation of this generated boolean "OR" combination in the reformulated select operator ensures that i) a document containing at least one path can match the triplet condition, and ii) a document containing no path evaluates the triplet condition as

False.

𝜎 Example. Let us suppose that we want to reformulate the select operator described above:

𝜎 (year ≥ 2004) ∧ (director = {"first_name": "Clint", "last_name":"Eastwood"}) (C)

The query reformulation engine start first by extracting the following entries from the dictionary:

• the absolute paths leading to the path year, i.e., △ 𝐶 𝑦𝑒𝑎𝑟 , are equal to [year, info.year, film.details.year, description.year] • the absolute paths leading to the path director, i.e., △ 𝐶 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , are equal to [director, info.people.director, film.details.director, description.director] Then, it reformulates each condition as follows:

• the condition year ≥ 2004 becomes: year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details.year ≥ 2004 ∨ description.year ≥ 2004

• the condition director = {"first_name":"Clint", "last_name":"Eastwood"} becomes: director={"first_name":"Clint", "last_name":"Eastwood"} ∨ info.people.director = {"first_name":"Clint", "last_name":"Eastwood"} ∨ film.details.director = {"first_name":"Clint", "last_name":"Eastwood"} ∨ description.director = {"first_name":"Clint","last_name":"Eastwood"} After applying the reformulation rules, the selection operator becomes: 𝜎 (year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details. year ≥ 2004 ∨ description.year ≥ 2004) ⋀︀ (director = {"first_name":"Clint", "last_name":"Eastwood"} ∨ info.people. director = {"first_name":"Clint", "last_name":"Eastwood"} ∨ film.details.director = {"first_name":"Clint", "last_name": "Eastwood"} ∨ description.director = {"first_name":"Clint", "last_name":"Eastwood"}) (C)

The execution of this latest select operator returns:

• { "_id":1, "title":"Million Dollar Baby", "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan

Freeman"], "ranking":{"score":8.1}} }

• { "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Bee Vang","Christopher Carley"]}}, "others":{"ranking":{ "score":8.1}} } }

Executing the selection operator after reformulation gives all the desired results, since it contains all the absolute paths that lead to the different selection conditions.

Projection Definition 4.4. Projection

The project operator is defined as:

𝜋 𝐸 (𝐶 𝑖𝑛) = 𝐶 𝑜𝑢𝑡
The project operator (𝜋) is a unary operator that projects only a specific portion from each document of a collection, i.e., only information referring to paths given in the Example. The previous projection operation returns documents composed of the following paths:

• cond: the evaluation of a boolean expression which checks if the value of the path director.first_name is equal to the value of the path lead_actor.first_name

or not, i.e., it checks whether both director and lead actor have the same first name or not;

• desc: an array composed of information from the title and genre paths;

We introduce the notation "|" to exclude path 𝑝 𝑗 from the result when the project element 𝑒 𝑗 is atomic or the path 𝑝 ′ 𝑗 if 𝑒 𝑗 is complex. In practical terms, an expression such as 𝑝 𝑘,1 | . . . |𝑝 𝑘,𝑛 𝑗 is evaluated as follows for a document 𝑑 𝑖 :

• if ∃𝑝 𝑘 ∈ [𝑝 𝑘,1 ..𝑝 𝑗,𝑛 𝑘],
where 𝑝 𝑘 ∈ 𝑆 𝑑 𝑖 , then the corresponding document in the output collection 𝑑 ′ 𝑖 ∈ 𝐶 𝑜𝑢𝑡 contains the path 𝑝 𝑘 with the value 𝑣 𝑝 𝑘 (from 𝑑 𝑖);

• if 𝑝 𝑘 ∈ [𝑝 𝑘,1 ..𝑝 𝑘,𝑛 𝑘],
where 𝑝 𝑘 ∈ 𝑆 𝑑 𝑖 , i.e., no path from the list is found in the document 𝑑 𝑖 , the corresponding document in the output collection 𝑑 ′ 𝑖 ∈ 𝐶 𝑜𝑢𝑡 does not contain the path 𝑝 𝑘 .

In the notation "|", if a first path from the list is found in the document, the corresponding value is kept for the output. Otherwise, the desired path is excluded from the output. Therefore, in the event where multiple paths are found in the document, the notation selects only the first one.

The notation "||" is very similar to "|" notation when evaluating an expression such as 𝑝 𝑘,1 || . . . ||𝑝 𝑘,𝑛 𝑘 but it returns null instead of erasing the path in the output. It returns a null value in the following case:

• if 𝑝 𝑘 ∈ [𝑝 𝑘,1 ..𝑝 𝑘,𝑛 𝑘],
where 𝑝 𝑘 ∈ 𝑆 𝑑 𝑖 , i.e., no path from the list is found in the document 𝑑 𝑖 , the operator returns a 𝑛𝑢𝑙𝑙 value.

We can now define the following set of rules to extend each element 𝑒 𝑗 ∈ 𝐸 based on its four possible forms:

• i) 𝑒 𝑗 is a path 𝑝 𝑗 in the input collection 𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛 , 𝑒 𝑗𝑒𝑥𝑡 = 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛 𝑗 ∀𝑝 𝑗,𝑘 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑗 ; • ii) 𝑝 ′ 𝑗 : 𝑝 𝑗 , where 𝑝 𝑗 is a path, 𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛 , then 𝑒 𝑗𝑒𝑥𝑡 is of the form 𝑝 ′ 𝑗 : 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛 𝑗 , ∀𝑝 𝑗,𝑘 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑗 ; • iii) 𝑝 ′ 𝑗 : [𝑝 1 , . . . , 𝑝 𝑚]
, where [𝑝 1 , . . . , 𝑝 𝑚] is an array of paths, then each path 𝑝 𝑗 ∈ [𝑝 1 , . . . , 𝑝 𝑚] is replaced by a "||" combination and 𝑒 𝑗𝑒𝑥𝑡 is of the form 𝑝 ′ 𝑗 :

[︁ 𝑝 1,1 || . . . || 𝑝 1,𝑛 1 , . . . , 𝑝 𝑚,1 || . . . || 𝑝 𝑚,𝑛𝑚]︁ ∀𝑝 𝑗,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑙 ; • iv) 𝑝 ′ 𝑗 : 𝛽, where 𝛽 is the boolean expression 𝛽, 𝑒 𝑗𝑒𝑥𝑡 = (𝑝 ′ 𝑎 𝜔 𝑝 ′ 𝑏) where 𝑝 ′ 𝑎 = 𝑝 𝑎,1 | . . . | 𝑝 𝑎,𝑛𝑎 , ∀𝑝 𝑎,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝𝑎 and 𝑝 ′ 𝑏 = 𝑝 𝑏,1 | . . . | 𝑝 𝑏,𝑛 𝑏 , ∀𝑝 𝑏,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑏 .
In the following we introduce the Algorithm 7 to present the automatic process of reformulating the project operator for its different cases.

Algorithm 7 runs over each element in the project operator, Line 2. Then based on the type of the element 𝑒 𝑗 the dictionary extends it with the corresponding entries from the dictionary, Lines 4 -7 for path element, Lines 8 -11 in case of rename operation, Lines 12 -14 in case of array of elements and Lines 15 -19 in case of boolean comparison of paths.

CONTENTS

Algorithm 7: Algorithm for automatic project operator reformulation. then Example. Let us suppose that we want to reformulate the project operator described above.

Input : 𝜋 𝐸 1 𝐸 𝑒𝑥𝑡 ← ∅ //
𝑒 𝑗𝑒𝑥𝑡 = 𝑝 ′ 𝑗 : 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛 𝑗 , ∀𝑝 𝑗,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑗 // generating 𝑒 𝑗𝑒𝑥𝑡 while renaming paths from △ 𝐶 𝑖𝑛 𝑝 𝑗 to 𝑝 ′ 𝑗 if 𝑒 𝑗 = 𝑝 ′ 𝑗 : [𝑝 1 , . . . , 𝑝 𝑚 𝑗], ∀𝑙 ∈ [1..𝑚 𝑗], 𝑝 𝑙 ∈ 𝑆 𝐶 𝑖𝑛 // new array [𝑝 1 , . . . , 𝑝 𝑚 𝑗] composed of paths 𝑝 𝑙 then 𝑒 𝑗𝑒𝑥𝑡 = 𝑝 ′ 𝑗 : [𝑝 1,1 || . . . || 𝑝 1,𝑛 1 , . . . , 𝑝 𝑚,1 || . . . || 𝑝 𝑚,𝑛𝑚] ∀𝑝 𝑗,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑙 if 𝑒 𝑗 = 𝑝 ′ 𝑗 : 𝛽, 𝛽 = (𝑝 𝑎 𝜔 𝑝 𝑏) // comparing values of paths 𝑝 𝑎 and 𝑝 𝑏 then 𝑒 𝑗𝑒𝑥𝑡 = 𝑝 𝑎,1 | . . . | 𝑝 𝑎,𝑛𝑎 𝜔 𝑝 𝑏,1 | . . . | 𝑝 𝑏,𝑛 𝑏 , ∀𝑝 𝑎,𝑘 ∈ △ 𝐶 𝑖𝑛 𝑝𝑎 , ∀𝑝 𝑏,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 𝑏 𝐸 𝑒𝑥𝑡 = 𝐸 𝑒𝑥𝑡 ∪ {𝑒 𝑗𝑒𝑥𝑡 } //
𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres], production_year: year, ranking.score (C)

The query reformulation engine start first by extracting the following entries from the dictionary:

• the absolute paths leading to the path year, i.e., △ 𝐶 𝑦𝑒𝑎𝑟 , are [year, info.year, film.details.year, description.year] • the absolute paths leading to the path director.first_name, i.e., • the absolute paths leading to the path genres, i.e., △ 𝐶 𝑔𝑒𝑛𝑟𝑒𝑠 , are [genres, info.genres, film.details.genres, classification.genres] • the absolute paths leading to the path title, i.e., △ 𝐶 𝑡𝑖𝑡𝑙𝑒 , are [title, film.title, description.title]

△
• the absolute paths leading to the path ranking.score, i.e., △ 𝐶 𝑟𝑎𝑛𝑘𝑖𝑛𝑔.𝑠𝑐𝑜𝑟𝑒 , are [ranking.score, info.ranking.score, film.others.ranking.score, classification.ranking.score] Below we present the results of applying the reformulation rules to each element of the project operator:

• the element cond:director.first_name = lead_actor.first_name becomes: The execution of this latest project operator returns:

cond:p ′ 𝑎 = p

Classical Aggregation Evaluation

During an aggregation evaluation, classical query engines perform as follows based on the paths in 𝐺 = 𝑝 1 , . . . , 𝑝 𝑔 , 𝑝 𝑖 ∈ 𝑆 𝐶 𝑖𝑛 and 𝑝 𝑓 (𝐹 = 𝑝 : 𝑓 (𝑝 𝑓), 𝑝 𝑓 ∈ 𝑆 𝐶 𝑖𝑛):

• In the grouping step, documents are grouped according to the presence or nonpresence of the paths from 𝐺 = 𝑝 1 , . . . , 𝑝 𝑔 in documents. Documents are grouped when they have the same subset of paths from 𝐺 and the same values for these paths. Finally, a group is created for those documents that contain no paths from 𝐺. Formally, a group is a subset of documents {𝑑} such that:

i) ∃𝐻 = ℎ 1 , . . . , ℎ ℎ , ∀𝑖 ℎ 𝑖 ∈ 𝐺 or 𝐻 is empty, ii) ∀𝑑 document of the group,
∀ℎ 𝑖 ∈ 𝐻, ℎ 𝑖 ∈ 𝑆 𝑑 , and iii) 𝑑 have all the same values ∀𝑖 ℎ 𝑖 ∈ 𝐻;

• In the computation step, for each group established in the grouping step, the function 𝑓 is applied as follows:

-If ∃ 𝑑 in the group such that 𝑝 𝑓 ∈ 𝑆 𝑑 , then 𝑓 is computed across all documents 𝑑 𝑖 of the group where 𝑝 𝑓 ∈ 𝑆 𝑑 𝑖 ; documents 𝑑 𝑘 of the group where

𝑝 𝑓 / ∈ 𝑆 𝑑 𝑘 are simply ignored,
-If 𝑑, a document from the group, such that 𝑝 𝑓 ∈ 𝑆 𝑑 , then 𝑓 is evaluated as a 𝑛𝑢𝑙𝑙 value regardless of its original value.

Example. The previous aggregation operation groups movies by their scores as defined in the path ranking.score and counts the number of titles (movies) for each group.

The native query engine returns the following results:

• { "_id":null, "titles_count":3 }

• { "_id":8.1, "titles_count":1 }

These results place document (𝑎) with a ranking.score of 8.1 in one group and the other documents (𝑏, 𝑐, 𝑑) in a second group with a ranking.score of 𝑛𝑢𝑙𝑙 since this path is unreachable in these documents.

Aggregation Reformulation Rules

The aim of reformulating the aggregate operator is to replace each path from the grouping and aggregation function by their corresponding absolute paths extracted from the dictionary. Nevertheless, a preliminary project operation is needed to unify the heterogeneous paths in documents with a set of common paths for all documents.

Then a classical aggregation is applied to the previously projected documents. In

• the absolute paths leading to the path ranking.score, i.e., △ 𝐶 𝑟𝑎𝑛𝑘𝑖𝑛𝑔.𝑠𝑐𝑜𝑟𝑒 , are [ranking.score, info.ranking.score, film.others.ranking.score, classification.ranking.score] Therefore, it generates the following projection operation: Now after executing this query we obtain the following results:

• { "_id":7.2, "titles_count":2 } • { "_id":8.1, "titles_count":2 } 4.5 Unnest Definition 4.6. Unnest
The unnest operator is defined as:

𝜇 p (C in) = C out
The unnest operator (𝜇) is a unary operator which flattens an array reached via a path 𝑝 in 𝐶 𝑖𝑛 . For each document 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 that contains 𝑝, the unnest operator outputs a new document for each element of the array. The structure of the output documents is identical to the original document 𝑑 𝑖 , except that 𝑝 (initially an array) is replaced by a path leading to one value of the array in 𝑑 𝑖 . Let us notice that the output collection 𝐶 𝑜𝑢𝑡 contains at least equal number of documents as the collection 𝐶 𝑖𝑛 , and usually more documents (Ben Hamadou et al., 2019b).

Example. Let us suppose that we want to run the following unnest operation on collection (C) from • If 𝑝 ∈ 𝑆 𝑑 𝑖 and its value is atomic or object and not an array, the collection 𝐶 𝑜𝑢𝑡 contains the same document 𝑑 𝑖 and the same number of documents as 𝐶 𝑖𝑛 .

• If 𝑝 /

∈ 𝑆 𝑑 𝑖 , the collection 𝐶 𝑜𝑢𝑡 contains a copy of the original document 𝑑 𝑖 .

Example. The previous unnest operator considers the array referenced by the path genres and returns a new document for each element in the array. By executing this query, the unnest operator only applies to document (𝑎) due to the presence of the absolute path genres in this document. As a result, the array genres from document (𝑎) is split into two documents as follows:

• { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Drama", "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan

Freeman"], "ranking":{"score":8.1} }

• { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Sport", "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1} } Let us notice that documents (b,c,d) are present in the result since they do not include path genres. The result contains five documents.

Unnest Reformulation Rules

The aim of reformulating the unnest operator is to generate documents where on each occasion the path 𝑝 contains an element from the initial array referenced by 𝑝 in the collection 𝐶 𝑖𝑛 regardless of the underlying structure of the documents. In practical terms, the query reformulation engine combines a series of different unnest operators applied to each path 𝑝 𝑗 extracted from the dictionary entry △ 𝐶 𝑖𝑛 𝑝 that leads to the path 𝑝. We represent the combination of the operators by using the " ∘ " composition symbol. The reformulation of the unnest operator is formally defined as:

∘ ∀𝑝 𝑗 ∈ △ 𝐶 𝑖𝑛 𝑝 𝜇 p j (C in)
In the following we introduce the Algorithm 9 to present the automatic process of reformulating the unnset operator.

Algorithm 9: Algorithm for automatic unnset operator reformulation.

Input : • { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Drama",

𝜇 𝑝 1 𝜇 𝑒𝑥𝑡 ← ∅ 2 foreach 𝑝 𝑗 ∈ △

CONTENTS

Algorithm 10: Automatic query reformulation algorithm. interest. Thus, we extend the capabilities of most document stores to support queries that are not formulated using only absolute paths.

In our contribution, the query reformulation Algorithm is designed to support any kind of heterogeneity. Since the dictionary and the Algorithm are independent, it is possible to define a custom dictionary to overcome given classes of heterogeneity, e.g., semantic heterogeneity, thus our Algorithm delivers results that respond to the matching already defined in the dictionary. Furthermore, it is possible to formulate queries using custom attributes names. The core of contribution is flexible and could be adaptable for any class of heterogeneity and queries could be formulated over several types of attribute representations since the latter should be already defined as dictionary entries.

In this thesis, we introduced the different reformulation rules to enable querying for schema-independent querying for heterogeneous collection of documents. Thus, to highlight the importance of introducing such a solution, we focused on overcoming a given type of heterogeneity, i.e., structural heterogeneity. However, all formal definitions that we introduced in this thesis could be easily adapted to support other classes of heterogeneity.

In the next chapter, we introduce the different experiments to validate all the different formal definitions that we introduced in these two previous chapters. Thus, we developed a tool that we called EasyQ, that stands for Easy Query, that i) extracts document structures, ii) maintains the dictionary, and iii) automatically reformulates user queries. Later, we introduce our experimental protocol. Finally, we present the results of all the experiments conducted for the aim of this thesis.

CONTENTS

Along this thesis manuscript, we introduced formal definitions related to the concept of the document model, structures, etc. Then, we introduced the concept of a dictionary to track the different structures of documents within a collection of a heterogeneous collection of documents. Later on, we introduced a set of reformulation rules to enable schema-independent querying for heterogeneous collection of documents using queries formulated over partial or absolute paths. Thus, our contribution involves three main components to i) extract document structures, ii) maintain the dictionary, and iii) automatically reformulate user queries, that we try to validate and evaluate in this chapter. In the following, we present i) the implementation of this three components as a prototype that we called EasyQ, and ii) the experiments that we conducted to evaluate the efficiency of our contribution.

In practical terms, the purpose of the experiments is to answer the following questions:

• is the time to build the dictionary acceptable, and is the size of the dictionary affected by the number of structures in the collection?

• what is the cost of maintaining the dictionary?

• What are the effects on the execution time of the rewritten queries when the size of the collection is varied and is this cost acceptable or not?

For this purpose, we start first by describing the synthetic dataset that we employ for both structure extraction and query reformulation evaluation. Later, we start by evaluating the schema inference techniques and the dictionary construction phase using the Algorithm 2, that we introduced in Chapter 3 describing the process of construction a dictionary for a collection of heterogeneous collection of documents. Therein, we evaluate the reformulation of the queries using the Automatic Query Reformulation Algorithm 10, Chapter 3, and we compare the overhead of executing the extended queries to two other execution contexts. Then, we evaluate the dictionary maintenance costs. Our goal is (i) to demonstrate that all formal definitions in this thesis are feasible and reliable, (ii) to analyse the performances of the document structures inference and the query reformulation.

Implementing EasyQ

Architecture Overview

In this part, we present the architecture of EasyQ and its main components. To evaluate and validate the different formal models introduced in this thesis, we developed EasyQ as a proof of concept for all Algorithms introduced in Chapter 3 and Chapter 4. Thus, EasyQ helps us to query and manipulate a collection of heterogeneous documents in automatic ways. Hence, EasyQ ensure the interaction between the document store and the user. Regarding our technical choices, we implemented EasyQ using Python programming language. As for the document store, we employed MongoDB which is one of the most commonly used document stores. All interactions with the document store were ensured using the library PyMongo. The usage of our implementation of EasyQ is ensured using the command line. EasyQ is mainly composed of two main components described as follows:

• i) the data structure extractor: This module ensures that the dictionary is always updated with all existing structures present inside each collection. The data structure extractor module runs a recursive algorithm that goes through all the trees of documents starting from the root down to each leaf node before going up to collect all the absolute paths, partial paths and leaf nodes. All documents in the collection are involved in this process. This module offers the following functions:

-the first execution scenario is automatically executed whenever a document manipulation operation is executed. Therefore, it enriches the dictionary with new partial path entries and updates existing ones with all corresponding absolute paths in documents. Thus, all manipulation operations are intercepted by EasyQ and this module automatically detects the changes and generates a new dictionary in case of creating a new collection, or updates existing dictionary in case of executing any manipulation operation. The execution of this scenario is transparent to the user and it is executed as a background process, and no interaction with the user is required.

-the second execution scenario is manually launched by the user. It allows to generate a dictionary for a given heterogeneous collection of documents.

Hence, the user executes a command line on which she specifies the name of the collection. Afterwords, EasyQ display to the user in the command line the dictionary and information regarding the time required to generate the dictionary.

• ii) the query reformulation engine: At the querying stage, EasyQ takes as input the user query, denoted by Q, which is formulated using any combination of paths (leaf nodes, partial paths and absolute paths) and the desired collection.

Then, the query reformulation engine reads from the dictionary and produces an enriched query known as 𝑄 𝑒𝑥𝑡 , that includes all existing absolute paths from all the documents. Later, this module sends this new query to the underlying document store querying engine. Once the query is executed, results are automatically displayed to the user in the command line and information regarding the execution time are displayed.

Experimental Protocol

In this section, we introduce the different configurations that we employed to evaluate the performances of our contribution. We start first by presenting the experiments environment and the tools used to conduct all experiments. Therein, we describe the synthetic datasets helping to study the heterogeneity effects on the different contribution presented in this thesis. Later, we introduce the different workloads that we employ in these experiments. Finally, we describe the different execution contexts that we run to evaluate the queries.

Experimental Environment

In this part we present the experimental environment that we built to evaluate EasyQ and validate its ability for enabling schema-independent querying for NoSQL document-oriented databases and automatically maintaining the dictionary with the latest document structures.

We conducted all our experiments on an Intel I5 i5-4670 processor with a clock speed of 3.4 GHz and 4 cores per socket. The machine had 16GB of RAM and a 1TB SSD drive. We ran all the experiments in single-threaded mode. We chose MongoDB as the underlying document store for our experiments. We focused on the measurement of the execution time for each executed query.

Datasets

In this part we describe the different customised synthetic datasets that we generated to run our experiments. We choose to work with synthetic datasets in order to adjust the different parameters that helps to study the effects of heterogeneity on the execution of the reformulated queries. Hence, we could set the number of nesting levels, the number of attributes within a given complex attribute, the number of documents per collection, etc.

{ "_id":1, "title":"Million Dollar Baby", "year":2004, "link":null, "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"], "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{ "score":8.1 } } In order to analyse the behaviour of EasyQ on varying collections sizes and structures, we generated customised synthetic datasets. First, we collected a CSV document with information related to 5,000 movies. We initially extracted all movies details from an online database of information related to films, IMDB1 . Then we started generating an initial homogeneous dataset that we called Baseline where documents within the different collections are composed of 10 attributes (4 primitive type attributes, e.g., country, 3 array type attributes, e.g., genres, and 3 complex attributes of an object type, e.g., ranking in which we nested additional primitive attributes). All documents within the different collections in the Baseline dataset share the same structure as illustrated in Figure 5.2. We used the Baseline dataset as baseline for our experiments.

It helped us to compare our schema-independent querying mechanism with the normal execution of queries on collections that have a unique homogeneous structure. The The complex attributes are unique in each structure, which enables unique absolute paths for each attribute in each structure. Figure 5.3 describes a sample of a generated document along with the parameters used to generate it. Therefore, for each attribute there are as many absolute paths as the chosen number of distinct structures. For instance, the number of the new complex attributes in which are nested the attributes from the baseline dataset is equal to three, i.e., group_1A, group_2A, group_3A. The depth of the absolute paths in this example is equal to five. The number of nested attributes per complex attribute is equal to five for the first group, one for the second group, and four for the third group.

For the purpose of the experiments we used the above mentioned strategy to generate five datasets described as follows:

• a Heterogeneous dataset to evaluate the execution time of the reformulated query on varying collections sizes. This dataset was composed of five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from 500MB to more than 250GB and each collection contained 10 schemas;

• a Schemas dataset to evaluate the time required to reformulate a query for a varying number of schemas and to study the consequences on the dictionary size. This dataset was composed of five collections of 100M documents with 10, 100, 1,000, 3,000 and 5,000 schemas respectively for more than 50GB of disk space for each collection;

• a Structures dataset to evaluate the time required to execute a query for a varying number of schemas. This dataset was composed of five collections of 10M documents with 10, 20, 50, 100 and 200 schemas respectively for more than 5GB of disk space for each collection;

• a Loaded dataset to evaluate the dictionary construction time on an existing collections. This dataset was composed of five collections of 200M documents containing 2, 4, 6, 8 and 10 schemas respectively for more than 100GB of disk space for each collection;

• an Adhoc dataset to evaluate the dictionary construction time for the loading collections phase. This dataset was composed of five collections of 1M of documents containing 2, 4, 6, 8 and 10 schemas respectively for more than 1GB of disk space for each collection.

• a Manipulation dataset to evaluate the dictionary update time on executing a manipulation operation. This dataset was composed of five collections of 1k, 10k, 100k, 300k and 500k documents containing 10 schemas for a total disk space ranging from 50MB to more than 2.5GB.

CONTENTS

In Table 5.1, we represent the characteristics of documents in the Heterogenous dataset. The characteristics in terms of nesting levels and the number of grouping objects is automatically selected for the remaining datasets, i.e., Schemas dataset, Structures, Loaded and Adhoc datasets. Therefore, the number of grouping object per schema is between 1 and 7, the number of nesting levels is between 1 and 8.

Setting

Value # of schemas 10 # of grouping objects per schema (width heterogeneity) {5,6,1,3,4,2,7,2,1,3} Nesting levels per schema (depth heterogeneity) {4,2,6,1,5,7,2,8,3,4} Avg. percentage of schema presence 10% # of leaf nodes per schema 9 or 10 # of attributes per grouping objects [1..10] Table 5.1: Settings of the Heterogeneous dataset for query reformulation evaluation.

In order to have the same results when executing queries across baseline and heterogeneous collections, we carried on using the same values for leaf nodes. The same results imply: i) the same number of documents, and ii) the same values for their attributes (leaf nodes). Therefore, the evaluation did not target result relevance, as the same results will be retrieved by all queries: either homogeneous documents or heterogeneous documents built from homogeneous documents.

Workloads

In this part, we define the different workloads that helps to evaluate the query reformulation engine on varying collections of documents. We built two workloads composed of a synthetic series of queries; i) an operator evaluation to evaluate separately the execution time of each reformulated operator selection-projection-aggregation-unnestlookup, and ii) an operator combination evaluation to evaluate the execution time of the reformulated query composed of operator combination.

The details of the five queries, 𝑄 1 , 𝑄 2 , 𝑄 3 , 𝑄 4 , 𝑄 5 , from the operator evaluation workload are as follows:

• for the projection query, we chose to build a query that covers the different options offered for projection operations, e.g., a Boolean expression to compare two paths, project and rename paths, and project paths into an array and the normal projection operation. In addition, we built our query with absolute paths from the baseline collection, e.g., year, title, director.first_name, lead_actor.first_name paths for a particular entry in the array, e.g., genres.1 and leaf nodes, e.g., score. The following is the projection query that we used in our experiments: CONTENTS 𝑄 6 : 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score (𝜇 awards (C))

• we combined the select operator form query "𝑄 2 " and the project operator from the query "𝑄 1 ": 𝑄 7 : 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score) (𝜎 (year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {score: 6 } ∨ (link ̸ = null) (𝐶))

• we combined the select operator from query "𝑄 2 ," the unnest operator from query "𝑄 4 " and the project operator from query "𝑄 1 ": In our queries we employed 11 attributes of different types (primitive, e.g., link, and complex genres) and different depths ranging from 2 to 9 intermediary attributes that should be traversed to reach the attributes containing data of interest. Also, we represented the paths in several ways, e.g., absolute paths, array entries, relative paths and leaf node. Table 5.3 gives the number of documents to be retrieved for each query.

The query reformulation process replaces each element with its 10 corresponding paths. For instance, the query 𝑄 1,𝑒𝑥𝑡 contains 60 absolute paths for its 6 initial paths, 10 in query 𝑄 4,𝑒𝑥𝑡 .

In Table 5.4, we present a summary of all queries that we employ in our experiments for both workloads. (𝜇 awards (C)))

Table 5.4: Summary of the different queries used in the experiments

Execution Contexts

We describe three contexts for which we ran the queries as defined above. For the purpose of this experiment we used the Baseline dataset to study the classical query engine execution time for both workloads. Furthermore, we used the Heterogeneous dataset to evaluate the execution time of reformulated queries from both workloads.

For each context we measured the average execution duration after executing each query at least five times. The query execution order was random.

We present the details of the three evaluation contexts for each query 𝑄 from the two workloads as follows:

• 𝑄 𝐵𝑎𝑠𝑒 is the name of the query that refers to the initial user query (one of the queries from from the two above workloads): it was executed across the Baseline dataset. The purpose of this first context was to study the native behaviour of the CONTENTS document store. We used this first context as a baseline for our experimentation;

• 𝑄 𝐸𝑥𝑡 refers to the query 𝑄 reformulated by our approach. It was executed across the Heterogeneous dataset;

• 𝑄 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 refers to distinct queries where each query 𝑄 is formulated for a single schema found in the collection. In our case, we needed 10 separated queries as we were dealing with collections with ten schemas. These queries were built manually without any additional tools and the required time is not considered.

We did not consider the time required to merge the results of each query as we were more interested in measuring the time required to retrieve relevant documents. We executed each of the 𝑄 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 across the Heterogeneous dataset.

The result was therefore the accumulated time required to process the 10 queries sequentially.

Schema Inference Evaluation

In this section, we focus on the dictionary construction process. EasyQ offers the possibility of building the dictionary from the scratch for an existing collection. Furthermore, we try to push the dictionary to its limit and to see if the dictionary can handle collections with large number of structures. In these experiments, we study the characteristics of the dictionary, e.g., size and time to construct the dictionary.

Dictionary Construction

In this part, we evaluate the performances of inferring structures of heterogeneous collection of documents. For this purpose, we evaluated the time required to build the dictionary for collections from the Loaded dataset on varying number of structures. We can see from the results in Table 5.5 that the time taken to build the dictionary increases when we start to deal with collections which have more heterogeneity. When a collection has 10 structures, the time does not exceed 40% when we compare it to a collection with 2 structures. In Table 5.5 we can see the negligible size of the generated dictionaries when compared to the 100GB of the collection, i.e., around 22KB.

of schema

Dictionary at the Scale

In this part, we try to push the dictionary construction phase to its limit. Therefore, we ran experiments to construct dictionary of collection of varying structures, i.e., ranging from 10 schemas to 5,000 schemas using Schemas dataset. We notice that our dictionary can support up to 5,000 distinct schemas, which is the limit for the number of schemas we decided on for the purpose of this experiment. We believe that current data-intensive application could not reach such high number of heterogeneous schemas to manage simultaneously. The resulting size of the materialized dictionary is very promising because it does not require significant storage space. In table 5.6 the size of a dictionary for a collection having 5,000 schemas do not exceeds 12MB when compared to the size of the collections around 100GB for a collection having 5,000 schemas.

of schemas Dictionary size 10 40KB 100 74KB 1k 2MB 3k 7.2MB 5k 12MB

Table 5.6: Number of schemas effects on dictionary size using Schemas dataset.

In this section, we validated the formal definition introduced in Chapter 4 related to the document data model and the dictionary. We demonstrate that the implementation of the Algorithm 2, introduced in Chapter 3 which generates the dictionary, can infer schemas and construct a dictionary for a collection of varying structures at up to 100GB of data. Furthermore, we showed that our Algorithm can infer structures from collections with up to 5,000 distinct schemas. The time to construct the dictionary increases when the number of heterogeneous structures increases within the studied collection. This behavior is because the Algorithm 2 considers each document individually to infer its structure whereas state-of-the-art solution elects a subset of documents from which they infer their structures. For instance, Apache Spark [START_REF] Zaharia | Apache spark: a unified engine for big data processing[END_REF] do not infer structures from all documents thus leading to incoherent query results due to lack of full information regarding all structures.

CONTENTS

Queries Evaluation Results

In this section, we discuss the performances of executing the reformulated queries on varying collections of heterogeneous schemas. Furthermore, we evaluate the performances of reformulating queries using the Algorithm 10 introduced in Chapter 4 for ensuring the automatic query reformulation. In this part, all queries are executed using the heterogeneous dataset composed of five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from 500MB to more than 250GB and each collection contained 10 schemas.

As shown in Figure 5.4, we can see that our reformulated query, 𝑄 𝐸𝑥𝑡 , outperforms the accumulated query, 𝑄 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 , for all queries. The difference between the two execution scenarios comes from the ability of our query reformulation engine to automatically include all corresponding absolute paths for the different query elements.

Hence, the query is executed only once when the accumulated query requires several passes through the collection (10 passes). This solution requires more CPU loads and more intensive disk I/O operations. We examine now the efficiency of the reformulated query when compared to the baseline query 𝑄 𝐵𝑎𝑠𝑒 . We can see that the overhead of our solution is up to three times more, e.g., projection, selection and unnest when compared to the native execution of the baseline query on the Baseline dataset. Moreover, we score an overhead that does not exceed a multiple of two in the evaluation of the aggregation operator. We believe that this overhead is acceptable as we can bypass the costs needed for refactoring the underlying data structures, similarly to other state-of-the-art research work. Unlike the baseline, our Heterogeneous dataset contains different grouping objects with varying nesting levels. Therefore, the rewritten query includes several navigational paths which were processed by the native query engine, MongoDB, to find matches for each visited document among the collection. Finally, we must emphasize that the execution time for the lookup operators is very similar between 𝑄 𝐵𝑎𝑠𝑒 and our reformulated query 𝑄 𝐸𝑥𝑡 .

We do not present the 𝑄 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 evaluation for the query 𝑄 5 from the operator evaluation workload and the operator combination evaluation workload due to the complexity and the considerable number of accessed collections required to evaluate the 𝑄 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 context. For example, to evaluate the query 𝑄 8 from the second workload, we would need to build 30 separate queries. Therefore, we would need to go through the collection 30 times. Furthermore, it is complicated to combine the results.

Thus, this process is difficult and time-consuming, and combining partial results may lead to corrupted results.

In Figure 5.5, we compare the time required to execute 𝑄 𝐸𝑥𝑡 with the time required to execute 𝑄 𝐵𝑎𝑠𝑒 when the query is a combination of operators. It is notable that the overhead arising from the evaluation of our reformulated query is the share the same behaviour as the overhead arising from the execution of the single execution of each operator, it is not exponential, (around three times the size when compared to querying a heterogeneous collection).

This series of workload evaluations shows that the overhead for the time required to evaluate our reformulated query is linear with the increasing number of documents.

The same behaviour for the execution of the queries over the baseline dataset occurs when studying the effects of querying varying number of documents. Furthermore, the overhead induced by the evaluation of our reformulated query is not affected by the number of documents or the combination of operators.

Furthermore, we executed the query 𝑄 6 from the operator combination evaluation workload over the Structures dataset: we present the time needed to execute the reformulated query in In these experiments, we push each parameter to its limit like the number of schemas, size of the collection, . . . to study the robustness of our system. The results

show that EasyQ scales well and offer acceptable rates.

Query Reformulation Time

For this experiment we only executed the query 𝑄 6 from the operator combination evaluation workload over the Schemas dataset: we present the time needed to build the reformulated query in Table 5.8. It is notable that the time to generate the reformulated query is less than two seconds, which is very low when to compared to the time and efforts to build similar query manually. In this series of experiments, we have tried to find distinct navigational paths for seven predicates. Each rewritten query is composed of numerous absolute paths for each predicate. Table 5.8 shows that reformulation of the query 𝑄 6 initially formulated using seven paths generates queries having 70 absolute paths for a collection of 10 schemas, 700 absolute paths for a collection of 100 schemas, 7,000 absolute paths for a collection of 1,000 schemas, 21,000 absolute paths for a collection of 3,000 schemas and 35,000 absolute paths for a collection of 5,000 schemas. We believe that the query rewriting engine scales effectively when handling heterogeneous collections which contain a high number of schemas. We succeeded in executing all the reformulated queries on MongoDB. We noticed a limitation in terms of performance: the execution time can be 50 times more than the execution of similar queries on the Baseline dataset. This limitation is due to the considerable number of comparisons per document. In the worst-case scenario, we would need to perform 35,000 comparisons per document when dealing with a collection containing 5,000 distinct schemas.

In this section, we demonstrate the efficiency of our reformulation rules to retrieve relevant queries and that those queries could be executed using the native mechanisms of most underlying document stores. All queries generated using the implementation of the Algorithm 10, introduced in Chapter overcome the structural heterogeneity within documents and deliver expected results.

We notice that the time required to execute the reformulated queries is relatively higher than the normal execution of a query having unique schema. We explain this overhead by the additional evaluations required to be performed by the query engine to find out the adequate query parameters for each structure of documents. The main advantage of our query reformulation is that we offer users the possibility to run queries using partial information regarding the paths whereas most document stores require full path to retrieve information. Furthermore, we demonstrated that we are able with one query to retrieve data from a collection having 5k schemas. The query reformulation takes only 1.2s which is very promising.

Dictionary Maintenance Evaluation

In this section, we study the dictionary maintenance process. The data structure extractor module in EasyQ offers the possibility to build the dictionary for existing dataset. Furthermore, it offers the possibility to maintain existing dictionaries to keep them with the latest version of the data each time the collection of documents is manipulated. Hence, the query reformulation engine uses the latest structures found in the different collections. However, if the process of data manipulation is in progress, it may not take into consideration the recent changes. In the following, we study for each manipulation operation, i.e., inset, delete and update, the performances of maintaining the dictionary with information about the latest absolute paths and possible paths to use while formulating queries. First, we start by the evaluation of the time required to build the dictionary using Heterogeneous dataset while inserting data. Later, we evaluate the cost of updating the dictionary while deleting documents from a collection of documents. Finally, we evaluate the cost of updating documents. Both delete and update operation are evaluated using Manipulation dataset. For all experiments, we measure the time required to execute a manipulation operation without updating the dictionary, we refer to this evaluation as the baseline since we employ native mechanisms of MongoDB. Later, we measure the time required to execute the manipulation operation while updating the dictionary. Finally, we show the overhead induced by CONTENTS our system.

Dictionary Update on Insert Operation

In this experiment, we evaluate the performances of the Algorithm 4, introduced in Chapter 4, to update the dictionary during an insert manipulation operation using the Adhoc dataset. We notice from the results in the Table 5.9 that the time elapsed to refresh the dictionary increases when we start to deal with collections having more heterogeneity. In case of the collection with 10 structures, the time does not exceed 40% when we compare it to a collection with 2 structures.

Table 5.9: Manipulation evaluation: insert operation using Manipulation dataset.

Table 5.9 shows that for 1 M of documents and for collections of up to 10 distinct schema the overhead does not exceed 47%. We find that the overhead measure does not exceed 0.5 the time required to load data on MongoDB. The evolution of the time when compared to the number of number of schemas in the collection is linear and is not exponential which is encouraging.

Dictionary Update on Delete Operation

In this experiment, we evaluate the performances of the Algorithm 5, introduced in Chapter 4, for updating the dictionary during a delete manipulation operation using the manipulation dataset. We notice from the results in the Table 5.10 that the time elapsed to refresh the dictionary increases when we start to deal with collections having more documents. Furthermore, we notice that the overhead added to delete and refresh the dictionary while deleting a set of 500k documents does not exceed 1.4 seconds which is just 18% of overhead.

We notice from Table 5.10 for the delete operation that the overhead added to the execution of the delete operation is similar to the execution of an insert operation, e.g., does not exceed 48%.

Dictionary Update on Documents Update Operation

In this experiment, we evaluate the performances of the Algorithm 6 updating the dictionary during an update manipulation operation using the manipulation dataset. We notice from the results in the Table 5.11 that the time elapsed to build the dictionary increases when we start to deal with collections having more heterogeneity.

#of documents

In case of the collection with 500k documents, the overhead of executing the update manipulation and updating the dictionary exceeds 120%. However, this overhead that may reach 1.2 times because we do not employ optimisation for this operator in this thesis. Furthermore, executing an update operation requires to run a delete and an insert manipulation operation over both the database and the dictionary. Thus, each operation requires to build temporary dictionaries etc. We estimate that operation of updating structures of documents are frequent as update operation to update attributes values. Thus, in this thesis we do not propose any sophisticated optimisation to accelerate this process. We address this issue in our future work. In this section, we validated the dictionary maintenance process by implementing the Algorithms [4,5,6]. Results show that refreshing the dictionary requires additional time when compared to the normal execution of each manipulation operation over collection of documents. We studied this time and we discovered that it does not exceed 48% for all of the insert and delete operators. However, we found that the time required to maintain the dictionary requires up to 1.2 times the time required to execute the update operation only. The main advantage of our approach is that the dictionary is updated on the fly. Thus, it is not necessary to infer structures from documents which are already stored within a collection. Therefore, all maintenance Algorithms work to infer structures for only affected documents by these operations.

#of Documents MongoDB EasyQ

Maintaining the dictionary and refreshing it is beneficial to overcome the structural heterogeneity within collection of heterogeneous documents. This process ensures that CONTENTS all queries are reformulated on executing time with a guarantee that the query contains only valid absolute paths from the refreshed dictionary.

Conclusion

In this chapter, we validated the different formal definitions that we introduced for the document data model from Chapter 3 and we validate the Algorithm 10 for automatic query reformulation from Chapter 4. We proved that our solution to capture heterogeneity within a collection of heterogeneous documents could handle collections of large volume of data, i.e., up to 500M documents in a collection of 250GB size. Furthermore, we pushed the dictionary to its limitations in terms of maximum number of heterogeneous schemas and results show that we could construct a dictionary for a collection having 5,000 distinct schemas.

The validation of the dictionary construction phase and its capacity to handle large volume of data and high number of structures within the same collection encourage us to run a second series of experimentations to evaluate the main contribution of this thesis introduced in Chapter 5 consisting of reformulating initial users queries with the usage of the dictionary. In our experiments, we compared the execution time cost of basic MongoDB queries and rewritten queries proposed by our approach.

We conducted a set of tests by changing the size of the dataset and the structural heterogeneity inside a collection (number of grouping levels and nesting levels). Results

show that the cost of executing the rewritten queries proposed in this thesis is higher when compared to the execution of basic user queries, but always less than a multiple of three. Nevertheless, this time overhead seems to be acceptable when compared to the execution and the merge of results of separated queries built manually for each schema while heterogeneity issues are automatically managed. Furthermore, we succeeded to reformulate and execute queries over a collection having 5k schemas. Results are very promising since the time required to reformulate queries on such heterogeneous collection of 5k schemas does not exceeds 1.5 second.

In order to maintain the correctness of the query and to optimise the query reformulation by excluding obsolete absolute paths, we introduced a set of automatic mechanisms to refresh the dictionary each time a manipulation execution is launched.

Results shows that the overhead added in this process is acceptable in both insert and delete manipulation operation. However, update operator requires additional tuning and optimisation which is the subject of our future work.

All the implementation and the experiments introduced in this Chapter helped us to validate the different contribution of this thesis. The main purpose was to prove the feasibility and the validity of all formal definition introduced in this thesis.

Optimisation and real uses cases are under study and are a good subject for our future work. Currently, we are deploying EasyQ as a mainstream solution to query sensors data in the aim of the neOCampus2 project at the campus of the University of Toulouse III-Paul Sabatier. In this project we are gathering sensors data, the structure of the data is not unique and thus we are experimenting EasyQ to enable different collaborators to access heterogeneous sensors data through a dedicated web API.

Chapter 6

Conclusion

NoSQL document stores are often called schemaless because they may contain variable schemas among stored data. Nowadays, this variability is becoming a common feature of many applications, such as web applications, social media applications and the internet of things. Nevertheless, the existence of structural heterogeneity makes it very hard for users to formulate queries that achieve relevant and coherent results.

In this thesis we have presented EasyQ, an automatic mechanism which enables schema-independent querying for multi-structured document stores. To the best of our knowledge, EasyQ is the first mechanism of its kind to offer schema-independent querying without the need to learn new querying languages and new structures, or to perform heavy transformation on the underlying document structures.

Our contribution consists in generating and maintaining a dictionary which matches each possible partial path, leaf node and absolute path with its corresponding absolute paths among the different document structures inside the collection. Using this dictionary, we can apply reformulation rules to rewrite the user query and find relevant results in transparent ways for users. The query reformulation can be applied to most document store operators based on formal foundations that are stated in the thesis.

In our experiments we compared the execution time cost of basic MongoDB queries and rewritten queries proposed by our approach. We conducted a set of tests by changing the size of the dataset and the structural heterogeneity inside a collection (number of grouping levels and nesting levels). Results show that the cost of executing the rewritten queries proposed in this thesis is higher when compared to the execution of basic user queries, but always less than a multiple of three. Nevertheless, this time overhead is acceptable when compared to the execution of separated (manually built) queries for each schema while heterogeneity issues are automatically managed.

Our approach is a syntactic manipulation of queries, so it is based on an important assumption: the collection describes homogeneous entities, i.e., a field may have the same meaning in all document schemas. In case of ambiguity, the user should specify a CHAPTER 6. CONCLUSION sub-path (partial path) in order to overcome this ambiguity. If this assumption is not guaranteed, users may obtain irrelevant results. Nevertheless, this assumption may be acceptable in many applications, such as legacy collections, web applications and IoT data.

One novel aspect of our proposal is that we have provided a generic reformulation mechanism based on a dictionary. For the scope of this thesis, the dictionary is built and updated automatically. Nevertheless, the dictionary content may be defined specifically for a given application in order to target specific heterogeneity. The reformulation mechanism remains generic for all applications whereas dictionaries can be tailored to specific needs.

This thesis contrasts with classical documents stores in that we offer users the ability to query documents using partial paths and thus EasyQ manages to find all information regardless of the document structures. Furthermore, by using specific dictionaries we extend the native querying capabilities of document stores, even when querying homogeneous documents.

Another original aspect is that any query will always return relevant and complete data whatever the state of the collection. Indeed, the query is reformulated each time it is evaluated. If new heterogeneous documents have been added to the collection, their schemas are integrated into the dictionary and the reformulated query will cover these new structures too.

Current extensions of this work consists of adopting the kernel of operators to other data models. In our recent work published in (El [START_REF] Malki | Querying heterogeneous data in graph-oriented NoSQL systems (short paper)[END_REF], we succeeded to overcome the heterogeneity in graphs and we provided support for further class of heterogeneity, i.e., semantic and syntactic. However, we supported only a subset of operators and we working on extending the support to cover all operators introduced in this thesis. Another interesting extension of the present work is the usage of the query reformulation rules in a polystore systems. In a another recent joint work, we published the paper (Ben Hamadou et al., 2019a), where we employed the query reformulation rules introduced in this thesis and we showed that they were useful to be adopted for overcoming further class of heterogeneity. In that work, heterogeneities cover both the data model and the structures.

Future research work will cover the different aspects presented in this thesis. Initial research will focus on testing EasyQ on more complex queries and ever larger datasets.

We also plan to employ our mechanism on real data-intensive applications. Thus, we are experimenting EasyQ in the context of neOCampus project at the University of Toulouse-III Paul Sabatier. For the query reformulation process we will enable support for more document operations, e.g., join. Moreover, we will work on the interaction between the user and our systems so that the user has the possibility of selecting certain absolute paths or removing unnecessary absolute paths, e.g., because a multi-entity has collapsed in the reformulated query, which will assist our mechanism while reformulating the initial user query. A long-term aim will be to cover most classes of heterogeneity, e.g., syntactic and semantic classes, and thus provide different dictionary building processes.

1. 1

 1 Hierarchical representation of the document (a) 1.2 Illustrative example of a collection (C) with four documents describing films. 1.3 EasyQ architecture: data structure extractor (left part) and query reformulation engine (right part). 1.4 Contributions to the neOCampus project. 2.1 Big Data 3-Vs properties, volume, velocity, variety. 2.2 Key-value data model. 2.3 Document data model. 2.4 Column data model. 2.5 Graph data model. 2.6 Physical re-factorisation of a document data model to relational data model. 3.1 Illustrative example of a document describing a film. 3.2 Snippets from the collection (C). 3.3 Snippets of illustrative example of a collection (C) with four documents describing films. 3.4 Collection manipulation process. 3.5 Collection (𝐶 𝑛𝑒𝑤) with two documents describing films. 3.6 Document to delete. 4.1 Illustrative example of a collection (C) with four documents describing films. 5.1 EasyQ architecture: data structure extractor and query reformulation engine. 5.2 Document from the Baseline dataset. 5.3 Document from the Heterogeneous dataset (3 groups, 5 nesting levels). 5.4 operator evaluation workload using heterogeneous dataset. 5.5 operator combination evaluation workload using heterogeneous dataset. Context . 1.1.1 Running Example . 1.1.2 Heterogeneity Classes . 1.1.3 The Problem of Structural Heterogeneity 1.2 Research Problems . 1.3 Thesis Contributions . 1.4 Research Overview . 1.5 Manuscript Outline .

Figure 1 .

 1 Figure 1.2 illustrates a collection composed of four documents (a, b, c, d) in JSON

Figure 1 . 2

 12 Figure 1.2 highlights this problem. In collection (C), the documents (b, c, d) share the same leaf nodes (attributes with atomic/array of atomic values, e.g., title, genres) as document (a). The structural heterogeneity lies in the fact that these leaf nodes exist in different locations in documents (b, c, d), for instance, the absolute path to reach the attribute title in document (c) is film.title. However, in documents (a, b), the path title is enough to reach this information because it is directly nested under the root node. Furthermore, description.title represents a fourth absolute path in document (d) for the title information.

Figure 1 . 2 :

 12 Figure 1.2: Illustrative example of a collection (C) with four documents describing films.

 Figure 1.3: EasyQ architecture: data structure extractor (left part) and query reformulation engine (right part).

Figure 1 . 4 :

 14 Figure 1.4: Contributions to the neOCampus project.

Figure 2 .

 2 Figure 2.1: Big Data 3-Vs properties, volume, velocity, variety.

Figure 2 . 2 :

 22 Figure 2.2: Key-value data model.

Figure 2 . 3 :

 23 Figure 2.3: Document data model.

Figure 2 . 4 :

 24 Figure 2.4: Column data model.

Figure 2 . 5 :

 25 Figure 2.5: Graph data model.

Figure 2 .

 2 Figure 2.6: Physical re-factorisation of a document data model to relational data model.

Figure 3 . 1 :

 31 Figure 3.1: Illustrative example of a document describing a film.

Figure 3 . 2 :

 32 Figure 3.2: Snippets from the collection (C).

Figure 3 . 3 :

 33 Figure 3.3: Snippets of illustrative example of a collection (C) with four documents describing films.

Figure 3 . 4 :

 34 Figure 3.4: Collection manipulation process.

Figure 3 .

 3 Figure 3.4 shows the process of executing a manipulation operation on a collection.

Figure 3 . 5 :

 35 Figure 3.5: Collection (𝐶 𝑛𝑒𝑤) with two documents describing films.

 dictionary updates the entry associated to the key score presented in the example in Section 3.3.3 with the new absolute path score extracted from the document (a) in Figure3.5 as follows:• score:[score, ranking.score, film.others.ranking.score, info.ranking.score, classification.ranking.score]

Figure 3

 3 Figure 3.6: Document to delete.

Figure 4 .

 4 Figure 4.1 presents the collection reference that we employ for the different examples presented in this chapter. We reuse the same collection presented earlier in the first chapter.

Figure 4 . 1 :

 41 Figure 4.1: Illustrative example of a collection (C) with four documents describing films.

 𝜋 ranking.score:ranking.score | info.ranking.score | others.ranking.score | classification.ranking.score, title:title | film.title | description.title (C) The aggregate operator after reformulation becomes: ranking.score 𝛾 titles_count:Count(title) (𝜋 ranking.score:ranking.score | info.ranking.score | others.ranking.score | classification.ranking.score, title:title | film.title | description.title (C))

 Figure 4.1: 𝜇 genres (C) 4.5.1 Classical Unnest Evaluation During an unnest evaluation, classical query engines generate new documents for the operation 𝜇 p (C in) = C out as follows: For a document 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 • If 𝑝 ∈ 𝑆 𝑑 𝑖 , and its value is an array [𝑣 𝑝 1 , . . . , 𝑣 𝑝𝑛] the collection 𝐶 𝑜𝑢𝑡 contains new 𝑘 documents where 𝑘 = |𝑣 𝑝 | is the number of entries of the array referenced by the path 𝑝. Each new document is a copy of 𝑑 𝑖 and contains the path 𝑝. The value of 𝑝 in each new document 𝑑 𝑖,𝑗 is equal to the 𝑗 𝑡ℎ entry from the array value 𝑣 𝑝 in 𝑑 𝑖 ;

 found in the dictionary leading to attributes from the initial queries. The results are automatically added to the extended query 𝜇 𝑒𝑥𝑡 , Lines 1 -4.Example. Let us suppose that we want to reformulate the following unnest operation as described above: 𝜇 genres (C) After applying the above-mentioned transformation rules, the unnest operation becomes: 𝜇 genres ∘ 𝜇 info.genres ∘ 𝜇 film.details.genres ∘ 𝜇 classification.genres (C) Now, executing this query returns seven documents where the array from document (a) generates two documents which have the same information as document (a) and the array becomes a simple attribute whose value is an entry from the array. We obtain three documents from document (b) (the array genres contains three entries). Document (c) stays invariant. Finally, document (d) returns one document (the array genres contains only a single entry):

Figure 5 .Figure 5 . 1 :

 551 Figure 5.1 provides a high-level illustration of the architecture of EasyQ with its two main components: the query reformulation engine and the dictionary. Moreover,

Figure 5 .

 5 Figure 5.1 shows the flow of data during the data loading stage and the query processing stage.

Figure 5 . 2 :

 52 Figure 5.2: Document from the Baseline dataset.

𝑄 8 :

 8 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score (𝜎 (year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {"score": 6 } ∨ link ̸ = null) (𝜇 awards (C)))

Figure 5 . 4 :Figure 5 . 5 :

 5455 Figure 5.4: operator evaluation workload using heterogeneous dataset.

 𝑣 𝑗 are values. This definition is also recursive because a value 𝑣 𝑗 is defined as a generic value 𝑣.In the definition of a document, the document value 𝑣 𝑑 𝑖 is a value 𝑣 𝑑 𝑖 = {𝑎 𝑑 𝑖,𝑗 : 𝑣 𝑑 𝑖,𝑗 }

𝑎 𝑚 : 𝑣 𝑚 } is an object value, ∀𝑗 ∈ [1..𝑚], 𝑣 𝑗 are values, and 𝑎 𝑗 are strings (in 𝑈 𝑛𝑖𝑐𝑜𝑑𝑒 𝐴 *) called 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠. This definition is recursive since a value 𝑣 𝑗 is defined as a generic value 𝑣; • 𝑣 = [𝑣 1 , . . . , 𝑣 𝑚] represents an array ∀𝑗 ∈ [1..𝑚]

 𝑎 𝑑 𝑖 ,𝑛 𝑖 : 𝑣 𝑑 𝑖 ,𝑛 𝑖 } as follows: for all attribute 𝑎 𝑑 𝑖 ,𝑗 : 𝑣 𝑑 𝑖 ,𝑗 : • if 𝑣 𝑑 𝑖 ,𝑗 is atomic, 𝑆 𝑑 𝑖 = 𝑆 𝑑 𝑖 ∪ {𝑎 𝑑 𝑖 ,𝑗 } where 𝑎 𝑑 𝑖 ,𝑗 is the path leading to the value 𝑣 𝑑 𝑖 ,𝑗 ; • if 𝑣 𝑑 𝑖 ,𝑗 is an object value, 𝑆 𝑑 𝑖 = 𝑆 𝑑 𝑖 ∪ {𝑎 𝑑 𝑖 ,𝑗 } ∪ {∪ 𝑝∈𝑠 𝑑 𝑖 ,𝑗 𝑎 𝑑 𝑖 ,𝑗 .𝑝} where 𝑠 𝑑 𝑖 ,𝑗 is the document schema of 𝑣 𝑑 𝑖 ,𝑗 and 𝑎 𝑑 𝑖 ,𝑗 .𝑝 is the path composed of the complex attribute 𝑎 𝑑 𝑖 ,𝑗 dot concatenated with the path 𝑝 of 𝑠 𝑑 𝑖 ,𝑗 ; • if 𝑣 𝑑 𝑖 ,𝑗 is an array value, 𝑆 𝑑 𝑖

 𝑗 where 𝑃 𝑣 𝑑 𝑖 ,𝑗 is the set of existing paths for the value 𝑣 𝑑 𝑖 ,𝑗 (document paths for 𝑣 𝑑 𝑖 ,𝑗);• if 𝑣 𝑑 𝑖 ,𝑗 is an array: 𝑃 𝑑 𝑖 = 𝑃 𝑑 𝑖 ∪ 𝑆 𝑣 𝑑 𝑖 ,𝑗 ∪ (∪ 𝑛 𝑙 𝑘=1 𝑃 𝑣 𝑑 𝑖 ,𝑗,𝑘)where 𝑃 𝑣 𝑑 𝑖 ,𝑗,𝑘 is the set of existing paths of the 𝑘 𝑡ℎ value of 𝑣 𝑑 𝑖 ,𝑗 (document paths for 𝑣 𝑑 𝑖 ,𝑗).Since sets contain paths considered as values, the union of sets must be interpreted as a union of different paths. For example {𝑎.𝑏, 𝑎.𝑏.𝑐, 𝑎.𝑏.𝑑} ∪ {𝑎.𝑏, 𝑏.𝑎} = {𝑎.𝑏, 𝑎.𝑏.𝑐, 𝑎.𝑏.𝑑, 𝑏.𝑎}.Example. The document paths 𝑃 𝑏 for document (b) in Figure3.1 is as follows:

	P 𝑏 =		
	{_id,	info.people.director,	lead_actor,
	title,	info.people.director.first_name,	lead_actor.first_name,
	info,	info.people.director.last_name,	lead_actor.last_name,
	info.year,	people,	info.people.actors,
	year,	people.director,	info.people.actors.1,
	info.country,	people.director.first_name,	info.people.actors.2,
	country,	people.director.last_name,	info.people.actors.3,
	info.link,	director,	people.actors,
	link,	director.first_name,	people.actors.1,
	info.genres,	director.last_name,	people.actors.2,
	info.genres.1,	first_name,	people.actors.3,
	info.genres.2,	last_name,	actors.1,
	info.genres.3,	info.people.lead_actor,	actors.2,
	genres,	info.people.lead_actor.first_name,	actors.3,
	genres.1,	info.people.lead_actor.last_name,	info.ranking,
	genres.2,	people.lead_actor,	info.ranking.score,
	genres.3	people.lead_actor.first_name,	ranking.score,
	info.people,	people.lead_actor.last_name,	score}

 𝑝 𝑙 .𝑝 𝑘 // if the path 𝑝 𝑗 is an absolute path expressed as a concatenation of a path 𝑝 𝑙 and the path 𝑝 𝑘

	3 do		
	4	△ 𝐶 𝑝 𝑘 ← ∅	
	8	then	
	9	△ 𝐶 𝑝 𝑘 ← △ 𝐶 𝑝 𝑘 ∪ {𝑝 𝑗 }	// add the path 𝑝 𝑗 to the value △ 𝐶 𝑝 𝑘
	10	end	
	11	end	
	12		

2: Dictionary construction algorithm. Input : 𝑆 𝐶 , 𝑃 𝐶 // Collection Schema 𝑆 𝐶 and Collection Paths 𝑃 𝐶 1 𝑑𝑖𝑐𝑡 𝐶 ← ∅ // Initialisation 2 foreach 𝑝 𝑘 ∈ 𝑃 𝐶 // for each path absolute or partial 𝑝 𝑘 in 𝑃 𝐶 5 foreach 𝑝 𝑗 ∈ 𝑆 𝐶 // for each absolute path 𝑝 𝑗 in 𝑆 𝐶 6 do 7 if 𝑝 𝑗 =

 Dictionary update on insert operation. Input : 𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑛𝑒𝑤 1 𝑆 𝐶𝑛𝑒𝑤 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶 𝑛𝑒𝑤) // Same way as Algorithm 1 2 𝐷𝑖𝑐𝑡 𝐶𝑛𝑒𝑤 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑐𝑡(𝐶 𝑛𝑒𝑤) // Same way as Algorithm 2 3 foreach 𝑝 ′ 𝑘 ∈ 𝐷𝑖𝑐𝑡 𝐶𝑛𝑒𝑤 do 𝑆 𝐶 (𝑝 ′) ← 𝑆 𝐶 (𝑝 ′) + 𝑆 𝐶𝑛𝑒𝑤 (𝑝 ′) 𝑆 𝐶 ∪ {(𝑝 ′ , 𝑆 𝐶𝑛𝑒𝑤 (𝑝 ′))}

	4 5	if 𝑝 ′ 𝑘 ∈ 𝐷𝑖𝑐𝑡 𝐶 then △ 𝐶 𝑝 ′ 𝑘 ← △ 𝐶 𝑝 ′ 𝑘 ∪ △ 𝐶𝑛𝑒𝑤 𝑝 ′ 𝑘
	6	end	
	7	else	
	8	𝐷𝑖𝑐𝑡 𝐶 ← 𝐷𝑖𝑐𝑡 𝐶 ∪ {(𝑝 ′ 𝑘 , △ 𝐶𝑛𝑒𝑤 𝑘 𝑝 ′)}
	9	end	
	10 end	
	11 foreach 𝑝 ′ ∈ 𝑆 𝐶𝑛𝑒𝑤	// updating the number of occurrence for each
	absolute path in the collection
	12 do		
	13	if 𝑝 ′ ∈ 𝑆 𝐶 then	
	14		
	15	end	
	16	else	
	17 𝑆 𝐶 ← 18 end	
	19 end	
	20 return 𝐷𝑖𝑐𝑡 𝐶 , 𝑆 𝐶	

where 𝐶 𝑛𝑒𝑤 ̸ = ∅, 𝐶 𝑜𝑙𝑑 = ∅ CONTENTS Algorithm 4:

 2.3 becomes

	𝑆 𝐶 =	lead_actor.first_name:2,	info.people.director:2,
	{_id: 6,	lead_actor.last_name:2,	info.people.director.first_name:2,
	title: 4,	lead_actor.country:1,	info.people.director.last_name:2,
	director:2,	ranking:2,	info.ranking:2,
	director.first_name:2,	ranking.score:2,	info.ranking.score:2
	director.last_name:2,	info:2,	...
	lead_actor:2,	info.people:2,	}

 2.3 are deleted: Algorithm 5: Dictionary update on delete operation. Input : 𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑜𝑙𝑑 𝑆 𝐶 𝑜𝑙𝑑 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶 𝑜𝑙𝑑); // Same way as Algorithm 1 𝐷𝑖𝑐𝑡 𝐶 𝑜𝑙𝑑 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑐𝑡(𝐶 𝑜𝑙𝑑); // Same way as Algorithm 2 foreach 𝑝 ′ 𝑘 ∈ 𝐷𝑖𝑐𝑡 𝐶 𝑜𝑙𝑑 do foreach 𝑝

 Algorithm 6: Dictionary update on update operation. Data: 𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑜𝑙𝑑 , 𝐶 𝑛𝑒𝑤 1 𝐷𝑒𝑙𝑒𝑡𝑒(𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑜𝑙𝑑); // Same way as Algorithm 5 2 𝐼𝑛𝑠𝑒𝑟𝑡(𝐷𝑖𝑐𝑡 𝐶 , 𝐶 𝑛𝑒𝑤); // Same way as Algorithm 4 3 return 𝑑𝑖𝑐𝑡 𝐶

 During a selection evaluation, classical query engines return documents 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 based on the evaluation of the predicates 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘 of 𝑃 = ∧(∨ 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘) as follows:

• if 𝑝 𝑘 ∈ 𝑆 𝑑 𝑖 the result of the predicate is 𝑇 𝑟𝑢𝑒/𝐹 𝑎𝑙𝑠𝑒 depending on the evaluation of 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘 in 𝑑 𝑖 ; • if 𝑝 𝑘 / ∈ 𝑆 𝑑 𝑖 , the evaluation of 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘 is 𝐹 𝑎𝑙𝑠𝑒.

 𝐶 𝑖𝑛 𝑝 𝑘 while keeping the same operator 𝜔 𝑘 and the same value 𝑣 𝑘 as follows : (𝑝 𝑗 𝜔 𝑘 𝑣 𝑘). The reformulated normal form of the predicate is defined as:

	⋁︀	∀𝑝 𝑗 ∈△	𝐶 𝑖𝑛 𝑝 𝑘		
		(︂				
	𝑃 𝑒𝑥𝑡 =	⋀︀	⋁︀ (⋁︀	∀𝑝 𝑗 ∈△	𝐶 𝑖𝑛 𝑝 𝑘	𝑝

𝑃𝑒𝑥𝑡 (𝐶 𝑖𝑛) = 𝐶 𝑜𝑢𝑡 The query reformulation engine reformulates the normal form of predicates 𝑃 = ⋀︀ (︂ ⋁︀ 𝑝 𝑘 𝜔 𝑘 𝑣 𝑘)︂ by transforming each triplet (𝑝 𝑘 𝜔 𝑘 𝑣 𝑘) into a disjunction of triplets, replacing the path 𝑝 𝑘 with the entries △ 𝑗 𝜔 𝑘 𝑣 𝑘))︂

-

 If the path 𝑝 𝑗 / ∈ 𝑆 𝑑 𝑖 , where 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 , the corresponding document in the output collection 𝑑 𝐶 𝑜𝑢𝑡 does not contain the path 𝑝 𝑗 , (𝑝 𝑗 / ∈ 𝑆 𝑑 𝑖 ′); • ii) 𝑝 ′ 𝑗 : 𝑝 𝑗 where 𝑝 𝑗 is a path from the input collection, 𝑝 𝑗 ∈ 𝑆 𝐶 𝑖𝑛 -If the path 𝑝 𝑗 leads to a value 𝑣 𝑝 𝑗 = 𝑛𝑢𝑙𝑙/𝑎𝑡𝑜𝑚𝑖𝑐/𝑜𝑏𝑗𝑒𝑐𝑡/𝑎𝑟𝑟𝑎𝑦 in a document 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 , the corresponding document in the output collection 𝑑 𝐶 𝑜𝑢𝑡 contains the path 𝑝 ′ 𝑗 with the value 𝑣 𝑝 𝑗 from 𝑑 𝑖 , -If the path 𝑝 𝑗 / ∈ 𝑆 𝑑 𝑖 , where 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 , the corresponding document in the output collection 𝑑 𝐶 𝑜𝑢𝑡 does not contain the path 𝑝 ′ 𝑗 (𝑝 ′ 𝑗 / ∈ 𝑆 𝑑 𝑖 ′); • iii) 𝑝 ′ 𝑗 : [𝑝 1 , . . . , 𝑝 𝑚] where [𝑝 1 , . . . , 𝑝 𝑚] is an array of paths from the input collection and each 𝑝 𝑙 ∈ 𝑆 𝐶 𝑖𝑛 . For a document 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 , if the corresponding document in the output collection 𝑑 𝐶 𝑜𝑢𝑡 contains the path 𝑝 ′ 𝑗 leading to an array that contains 𝑚 values and one value for each 𝑝 𝑙 in [𝑝 1 , . . . , 𝑝 𝑚], then the 𝑙 𝑡ℎ value is as follows: -If the path 𝑝 𝑙 leads to a value 𝑣 𝑝 𝑙 = 𝑛𝑢𝑙𝑙/𝑎𝑡𝑜𝑚𝑖𝑐/𝑜𝑏𝑗𝑒𝑐𝑡/𝑎𝑟𝑟𝑎𝑦 in the document 𝑑 𝑖 , the corresponding value is 𝑣 𝑝 𝑙 , -If the path 𝑝 𝑙 / ∈ 𝑆 𝑑 𝑖 , the corresponding value is 𝑛𝑢𝑙𝑙; • iv) 𝑝 ′ 𝑗 : 𝛽, 𝛽 is the boolean expression 𝛽 = (𝑝 𝑎 𝜔 𝑝 𝑏) where 𝑝 𝑎 ∈ 𝑆 𝐶 𝑖𝑛 and 𝑝 𝑏 ∈ 𝑆 𝐶 𝑖𝑛 . For a document 𝑑 𝑖 ∈ 𝐶 𝑖𝑛 , then the corresponding document in the output collection 𝑑 ′ 𝑖 ∈ 𝐶 𝑜𝑢𝑡 contains the path 𝑝 ′ 𝑗 leading to a boolean value: -If 𝑝 𝑎 ∈ 𝑆 𝑑 𝑖 and 𝑝 𝑏 ∈ 𝑆 𝑑 𝑖 , the value is the boolean evaluation of 𝛽, 𝑇 𝑟𝑢𝑒/𝐹 𝑎𝑙𝑠𝑒, -If 𝑝 𝑎 / ∈ 𝑆 𝑑 𝑖 and 𝑝 𝑏 ∈ 𝑆 𝑑 𝑖 , the value is 𝐹 𝑎𝑙𝑠𝑒, -If 𝑝 𝑎 ∈ 𝑆 𝑑 𝑖 and 𝑝 𝑏 / ∈ 𝑆 𝑑 𝑖 , the value is 𝐹 𝑎𝑙𝑠𝑒, -If 𝑝 𝑎 / ∈ 𝑆 𝑑 𝑖 and 𝑝 𝑏 / ∈ 𝑆 𝑑 𝑖 , the value is 𝑇 𝑟𝑢𝑒.

′ 𝑖 ∈ ′ 𝑖 ∈ ′ 𝑖 ∈ ′ 𝑖 ∈

 initialising the set of extended elements from 𝐸 2 foreach 𝑒 𝑗 ∈ 𝐸 // for each element 𝑒 𝑗 ∈ 𝐸 3 do 4 if 𝑒 𝑗 = 𝑝 𝑗 is a path (𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛) // 𝑒 𝑗 takes the form of a path 𝑒 𝑗𝑒𝑥𝑡 = 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛𝑛 𝑗 ∀𝑝 𝑗,𝑙 ∈ △ 𝐶 𝑖𝑛 𝑝 ′ 𝑗 : 𝑝 𝑗 , (𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛) // renaming the path 𝑝 𝑗 to 𝑝 ′

	5	then	
	6	𝑝 𝑗	// generating 𝑝 𝑗𝑒𝑥𝑡 using
		paths from △ 𝐶 𝑖𝑛 𝑝 𝑗	
	7		
	8	if 𝑒 𝑗 = 𝑗
	9		

 extending 𝐸 𝑒𝑥𝑡 by the new extended element 𝑒 𝑗𝑒𝑥𝑡

	end
	return 𝜋 𝐸𝑒𝑥𝑡

 𝐶 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟.𝑓 𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒 , are [director.first_name, info.people.director.first_name, film.details.director.first_name, description.director.first_name] • the absolute paths leading to the path lead_actor.first_name,

	i.e.,	△ 𝐶 𝑙𝑒𝑎𝑑_𝑎𝑐𝑡𝑜𝑟.𝑓 𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒 ,	are	[lead_actor.first_name,

info.people.lead_actor.first_name, film.details.personas.lead_actor.first_name, description.stars.lead_actor.first_name]

 𝑎 = director.first_name | info.people.director.first_name | film.details.director.first_name | description.director.first_name p ′ 𝑏 = lead_actor.first_name | info.people.lead_actor.first_name | film.details.personas.lead_actor.first_name | description.stars.lead_actor.first_name • the element desc:[title, genres] becomes: .score | info.ranking.score | film.others.ranking.score | classification.ranking.score After applying the reformulation rules, and with reference to previous paragraphs for reformulations, the project operator becomes: 𝜋 cond:director.first_name | info.people.director.first_name | film.details.director.first_name | description.director.first_name = lead_actor.first_name | info.people.lead_actor.first_name | film.details.personas.lead_actor.first_name | description.stars.lead_actor.first_name,

	′
	𝑏
	where
	𝑝 ′
	desc:[p ′ 1 , p ′ 2]

where 𝑝 ′ 1 =title || film.title || description.title 𝑝 ′ 2 = genres || info.genres || film.details.genres || classification.genres • the element production_year:year becomes: production_year: year | info.year | film.details.year | description.year • the element ranking.score becomes: rankingdesc:[title || film.title || description.title, genres || info.genres || film.details.genres || classification.genres], production_year:year | info.year | film.details.year | description.year, ranking. score | info.ranking.score | film.others.ranking.score | classification.ranking.score (C)

 𝐶 𝑖𝑛 𝑝 ; // for each attribute 𝑝 𝑗 in △ 𝐶 𝑖𝑛 𝜇 𝑒𝑥𝑡 ← 𝜇 𝑒𝑥𝑡 ∘ 𝜇 𝑝 𝑗 ; // extending 𝜇 𝑒𝑥𝑡 with 𝜇 𝑝 𝑗 5 end 6 return 𝜇 𝑒𝑥𝑡 Algorithm 9 generates a composition of unnest operators for each absolute paths

	𝑝
	3 do
	4

 𝑝 𝑗 is a path (𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛) // 𝑒 𝑗 takes the form of a path𝑒 𝑗 𝑒𝑥𝑡 = 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛𝑛 𝑗 ∀𝑝 𝑗,𝑙 ∈ △ 𝑝 ′ 𝑗 : 𝑝 𝑗 , (𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛) // renaming the path 𝑝 𝑗 to 𝑝 ′ 𝑒 𝑗 𝑒𝑥𝑡 = 𝑝 ′ 𝑗 : 𝑝 𝑗,1 | . . . | 𝑝 𝑗,𝑛 𝑗 , ∀𝑝 𝑗,𝑙 ∈ △ 𝑒 𝑗 = 𝑝 ′ 𝑗 : [𝑝 1 , . . . , 𝑝𝑚 𝑗], ∀𝑙 ∈ [1..𝑚 𝑗], 𝑝 𝑙 ∈ 𝑆 𝐶 𝑖𝑛 // new array [𝑝 1 , . . . , 𝑝𝑚 𝑗] composed of paths 𝑝 𝑙 || . . . || 𝑝 1,𝑛 1 , . . . , 𝑝 𝑚,1 || . . . || 𝑝𝑚,𝑛 𝑚 𝑒 𝑗 𝑒𝑥𝑡 = 𝑝 𝑎,1 | . . . | 𝑝𝑎,𝑛 𝑎 𝜔 𝑝 𝑏,1 | . . . | 𝑝 𝑏,𝑛 𝑏 , ∀𝑝 𝑎,𝑘 ∈ △ 𝐸𝑒𝑥𝑡 ∪ {𝑒 𝑗 𝑒𝑥𝑡 } //extending 𝐸𝑒𝑥𝑡 by the new extended element 𝑒 𝑗 𝑒𝑥𝑡 𝑄𝑒𝑥𝑡 ∘ 𝜋 𝐸 𝑒𝑥𝑡 // adding the extended projection 𝜋 𝐸 𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡 𝜎 𝑃 𝑒𝑥𝑡 // adding the extended selection 𝜎 𝑃 𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡 𝑝 1 , . . . , 𝑝𝑔, and 𝐹 = 𝑝 : 𝑓 (𝑝 𝑓) // 𝑞 𝑖 is an aggregate operator 𝐸𝑒𝑥𝑡 ∪ {𝑝 𝑗 : 𝑝 𝑗,1 | . . . |𝑝 𝑗,𝑛 𝑗 }, ∀𝑝 𝑗,𝑙 ∈ △ 𝑄𝑒𝑥𝑡 ∘ (𝐺 𝛾 𝐹 ∘ 𝜋 𝐸 𝑒𝑥𝑡) // adding the combined aggregation 𝐺 𝛾 𝐹 and the custom projection 𝜋 𝐸 𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡 𝜆 𝑟𝑒𝑠:𝑝 𝑗,1 | ... | 𝑝 𝑗,𝑛 𝑗 = 𝑝 𝑙,1 | ... | 𝑝 𝑙,𝑛 𝑙 ∀𝑝 𝑗,𝑥 ∈ △

	1 input: 𝑄				// original query
	2 output: 𝑄𝑒𝑥𝑡			// reformulated query
	3 𝑄𝑒𝑥𝑡 ← 𝑖𝑑				// identity
	4	foreach 𝑞 𝑖 ∈ 𝑄		// for each operator in 𝑄
	5 do 6	switch 𝑞 𝑖				// case of the operator 𝑞 𝑖
	7 8		do	case 𝜋 𝐸 :	// 𝑞 𝑖 is a project operator
	9 10			do	𝐸𝑒𝑥𝑡 ← ∅	// initialising the set of extended elements from 𝐸
	11				foreach 𝑒 𝑗 ∈ 𝐸	// for each element 𝑒 𝑗 ∈ 𝐸
	12 13 if 𝑒 𝑗 = 14 do then 15	𝐶 𝑖𝑛 𝑝 𝑗	// generating 𝑝 𝑗 𝑒𝑥𝑡 using paths from
								△	𝐶 𝑖𝑛 𝑝 𝑗
	16						
	17						if 𝑒 𝑗 = 𝑗
	18 19						then	𝐶 𝑖𝑛 𝑝 𝑗	// generating 𝑒 𝑗 𝑒𝑥𝑡 while renaming
								paths from △ 𝐶 𝑖𝑛 𝑝 𝑗	to 𝑝 ′ 𝑗
	20						
	21 if 22 then 23 𝑒 𝑗 𝑒𝑥𝑡 = 𝑝 ′ 𝑗 :	[︀ 𝑝 1,1]︀	∀𝑝 𝑗,𝑙 ∈ △	𝐶 𝑖𝑛 𝑝 𝑙
	24						if 𝑒 𝑗 = 𝑝 ′ 𝑗 : 𝛽, 𝛽 = (𝑝𝑎 𝜔 𝑝 𝑏)	// comparing values of paths 𝑝𝑎 and 𝑝 𝑏
	25 26						then	𝐶 𝑖𝑛 𝑝𝑎 , ∀𝑝 𝑏,𝑙 ∈ △	𝐶 𝑖𝑛 𝑝 𝑏
	27 𝐸𝑒𝑥𝑡 = 28 end
	29 𝑄𝑒𝑥𝑡 ← 30 end 31 case 𝜎 𝑃 :	// 𝑞 𝑖 is a select operator and the condition is normalised to
							(︂)︂
				𝑃 =	⋀︀	⋁︀	𝑝 𝑘 𝜔 𝑘 𝑣 𝑘
	32			do				(︂)︂
	33				𝑃𝑒𝑥𝑡 ←	⋀︀	⋁︀	(⋁︀ ∀𝑝 𝑗 ∈△ 𝑝 𝑘 𝐶 𝑖𝑛	𝑝 𝑗 𝜔 𝑘 𝑣 𝑘)	// extending the condition with a disjunction
	34					⋁︀ ∀𝑝 𝑗 ∈△ 𝐶 𝑖𝑛 𝑝 𝑘	𝑝 𝑗 𝜔 𝑘 𝑣 𝑘
	35 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 36 end 37 case 𝐺 𝛾 𝐹 :
	39 40			do	𝐸𝑒𝑥𝑡 ←
	41				foreach 𝑝 𝑗 ∈ {𝐺} ∪ {𝑝 𝑓 }	// for each attribute in 𝐺 and 𝐹
	42 43				do	𝐸𝑒𝑥𝑡 = 𝐶 𝑖𝑛 𝑝 𝑗	// △ 𝐶 𝑖𝑛 𝑝 𝑗	are renamed to 𝑝 𝑗
	44				end	
	45 𝑄𝑒𝑥𝑡 ← 46 end 47 case 𝜇𝑝 :	// 𝑞 𝑖 is an unnest operation
	48 49			do	foreach 𝑝 𝑗 ∈ △	𝐶 𝑖𝑛 𝑝	// for each attribute 𝑝 𝑗 in △	𝐶 𝑖𝑛 𝑝
	50 51				do	𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝜇𝑝 𝑗	// extending 𝑄𝑒𝑥𝑡 with 𝜇𝑝 𝑗
	52				end	
	53 54			end case 𝜆𝑟𝑒𝑠:𝑝 𝑖𝑛 =𝑝𝑒𝑥 :	// 𝑞 𝑖 is a lookup operation
	55 56			do	𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝐶 𝑖𝑛 𝑝 𝑖𝑛 , ∀𝑝 𝑙,𝑦 ∈ △ 𝐶𝑒𝑥 𝑝𝑒𝑥
	57			end			
	58		end				
	59 end 60 return 𝑄𝑒𝑥𝑡			

38

where 𝐺 =

Table 5 .

 5 2 highlights the different characteristics of the selected attributes in queries from both workloads and gives details about their depth inside documents of the

	Heterogeneous dataset.			
	Path Attribute	Type	Paths Depths
	p1	director.first_name	String 10	{3,6,5,4,8,9,5,7,2,3}
	p2	lead_actor.first_name String 10	{3,6,5,4,8,9,5,7,2,3}
	p3	title	String 10	{3,6,5,4,8,9,5,7,2,3}
	p4	genres.1	String 10	{3,6,5,4,8,9,5,7,2,3}
	p5	year	Int	10	{3,6,5,4,8,9,5,7,2,3}
	p6	awards	Array 10	{3,6,5,4,8,9,5,7,2,3}
	p7	ranking	Object 10	{3,6,5,4,8,9,5,7,2,3}
	p8	link	String 10	{3,6,5,4,8,9,5,7,2,3}
	p9	country	String 10	{3,6,5,4,8,9,5,7,2,3}
	p10	score	Float	10	{3,6,5,4,8,9,5,7,2,3}
	p11	actors.1	String 10	{3,6,5,4,8,9,5,7,2,3}

Table 5 . 2

 52

: Workloads query elements.

Table 5 .

 5 3: The number of extracted documents per the two workloads using Heterogeneous dataset.

		𝑄 1 : 𝜋 cond:director.first_name = lead_actor.first_name,
		desc:[title, genres.1], production_year:year, score (C)
		𝑄 2 : 𝜎 (year ≥ 2004 ∨,genres.1 = "Drama")
	operator evaluation	∧(ranking = {"score": 6 } ∨ link ̸ = null) (𝐶)
		𝑄

3 : country 𝛾 maximum_score:Max(score) (C) 𝑄 4 : 𝜇 awards (C) 𝑄 5 : (C)𝜆 res:actors.1=actor (actors) 𝑄 6 : 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score (𝜇 awards (C)) operator combination evaluation 𝑄 7 : 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score) (𝜎 (year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {score: 6 } ∨ (link ̸ = null) (𝐶)) 𝑄 8 : 𝜋 cond:director.first_name = lead_actor.first_name, desc:[title, genres.1], production_year:year, score (𝜎 (year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {"score": 6 } ∨ link ̸ = null)

QAccumulated is >> 10 times than QExt Unnest

	5.4.1 Reformulated Queries Performances				
	Execution time in Seconds	0 10000 25000	0	100	200 Q1 Projection Evaluation 300	400	500	Execution time in Seconds	0 5000 15000	0	100	200 Q2 Selection Evaluation 300	400	500
					Number of documents in Millions							Number of documents in Millions		
	Execution time in Seconds	0 4000 8000	0	100	200 Q3 Aggregation Evaluation 300	400	500	Execution time in Seconds	0 20000 50000	0	100	200 Q4 Unwind Evaluation 300	400	500
					Number of documents in Millions							Number of documents in Millions		
	Execution time in Seconds	0e+00 4e+05 8e+05	0	100	200 Q5 Lookup Evaluation 300	400	500			QAccumulated	Q5 :	Query type QExt	QBase	
					Number of documents in Millions									

Table 5

 5 .7. This experiment helps us to study the effect of executing our reformulated query on the varying number of schemas. It is notable that CONTENTS the time evolves linearly rather than exponentially as more heterogeneity is added. This is due also to the important number of comparisons required to execute each query. For instance, the execution of the query 𝑄 6 over the collection having 200 schemas requires 200 possible paths for each attribute of the six attributes involved in the query. In sum, the extension of the query 𝑄 6 contains 1,2000 absolute paths.

	# of Schemas 10 20 50 100	200
	Time in (s)	200 380 690 1,140 2,560

Table 5 .

 5 7: Evaluating 𝑄 6 on varying number of schemas, Structures dataset.

Table 5 .

 5 5 to automatically reformulating the queries, 8: Number of schema effects on query rewriting (# of paths in reformulated query and reformulation time) (query 𝑄 6) over Schemas dataset.

	# of schemas # of absolute paths Reformulation time
	10	70	0.0005s
	100	700	0.0025s
	1k	7k	0.139s
	3k	21k	0.6s
	5k	35k	1.52s

Table 5 .

 5 10: Manipulation evaluation: delete operation using Manipulation dataset.

		MongoDB EasyQ Overhead
	1k	0.03s	0.04s	33%
	10k	0.15s	0.204s 36%
	100k	0.8s	1.112s 39%
	300k	2.2s	3.146s 43%
	500k	3s	4.44s	48%

Table 5 .

 5 11: Manipulation evaluation: update operation using Manipulation dataset.

	Overhead

https://www.irit.fr/neocampus

source: https://www.tutorialscampus.com/tutorials/hadoop/big-data-overview.htm

https://www.json.org/

https://www.imdb.com/

https://www.irit.fr/neocampus

CONTENTS

context of document stores in [START_REF] Botoeva | Expressivity and complexity of mongodb queries[END_REF]. In our kernel, we support selectproject-unnest-aggregate-join operators. Based on the dictionary, we introduce a set of reformulation rules for most document stores operation that we support. All formal definitions presented in this chapter are necessary to build the automatic process of query formulation to enable schema-independent querying for heterogeneous document stores.

CONTENTS

query (Ben Hamadou et al., 2018a). In document stores, this operator is applied to a collection C 𝑖𝑛 by possibly projecting existing paths from the input documents, renaming existing paths or adding new paths as defined by the sequence of elements 𝐸. This returns an output collection C 𝑜𝑢𝑡 . The result contains the same number of documents as the input collection while the schema of all documents is changed (Ben Hamadou et al., 2019b).

The sequence of project elements is defined as 𝐸 = 𝑒 1 , . . . , 𝑒 𝑛 𝐸 , where each element 𝑒 𝑗 is in one of the following forms:

• i) 𝑝 𝑗 , a path existing in the input collections; 𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛 which enables the projection of existing paths. As a result, the schema of the collection C 𝑜𝑢𝑡 may contain 𝑝 𝑗 ;

• ii) 𝑝 ′ 𝑗 : 𝑝 𝑗 , where 𝑝 ′ 𝑗 represents an absolute path (string in 𝑈 𝑛𝑖𝑐𝑜𝑑𝑒 A *) to be injected into the structure of the collection C 𝑜𝑢𝑡 and 𝑝 𝑗 is an existing path in the input collection; 𝑝 𝑗 ∈ 𝑃 𝐶 𝑖𝑛 and its value is assigned to the new absolute path 𝑝 ′ 𝑗 in C 𝑜𝑢𝑡 . This form renames the path 𝑝 𝑗 to 𝑝 ′ 𝑗 in C 𝑜𝑢𝑡 ;

• iii) 𝑝 ′ 𝑗 : [𝑝 1 , . . . , 𝑝 𝑚], where [𝑝 1 , . . . , 𝑝 𝑚] is an array composed of 𝑚 paths where ∀𝑙 ∈ [1..𝑚] 𝑝 𝑙 ∈ 𝑃 𝐶 𝑖𝑛 produces a new absolute path 𝑝 ′ 𝑗 in C 𝑜𝑢𝑡 whose value is an array composed of the values obtained through the paths 𝑝 𝑙 ;

• iv) 𝑝 ′ 𝑗 : 𝛽, where 𝛽 is a boolean expression that compares the values of two paths in C 𝑖𝑛 , i.e., 𝛽 = (𝑝 𝑎 𝜔 𝑝 𝑏), 𝑝 𝑎 ∈ 𝑃 𝐶 𝑖𝑛 , 𝑝 𝑏 ∈ 𝑃 𝐶 𝑖𝑛 and 𝜔 ∈ {=; >; <; ̸ =; ≥; ≤}.

The evaluation of the boolean expression is assigned to the new absolute path

Example. Let us suppose that we want to run the following project operator on collection (C) from Figure),

CONTENTS

• production_year: information from the path year using a new path called pro-duction_year, i.e., the path year from the input collection is renamed produc-tion_year;

• ranking.score: information from the path ranking.score, i.e., the same path as defined in the input collection is retained.

In a classical evaluation, the execution of this operation returns the following documents:

• { "_id":1, "cond":true, "desc": ["Million Dollar Baby", "Drama", "Sport"], "production_year":2004, "ranking":{"score":8.1} }

• { "_id":2, "cond":true, "desc":["In the line of Fire", null] }

• { "_id":3, "cond":true, "desc":[null,null] }

• { "_id":4, "cond":true, "desc":[null,null] } Due to the presences of partial paths in our query, the execution of the project operator gives rise to misleading results. We can see that only the first results include all the desired information. In the second result, only the title information is present for the new array desc. We can see that in some cases the result which is 𝑡𝑟𝑢𝑒 is not always real (case of document (𝑑)) due to unreachable paths in the documents.

Projection Reformulation Rules

The aim of reformulating the project operator is to extract information from a collection of documents regardless of their underlying structures. In practical terms, the query reformulation engine replaces each path in the projection operation by their corresponding absolute paths extracted from the dictionary. In order to ensure that the reformulated operator has the same behaviour as the standard execution of the classical projection operation we introduce two specific notations, i.e., "|" and "||" to deal with missing paths and null values.

In the operation 𝜋 𝐸 (𝐶 𝑖𝑛) = 𝐶 𝑜𝑢𝑡 , the original set of project elements 𝐸 is extended as follows:

𝐸 𝑒𝑥𝑡 = 𝑒 1𝑒𝑥𝑡 , . . . , 𝑒 𝑛𝑒𝑥𝑡 where each 𝑒 𝑗𝑒𝑥𝑡 is the extension of the 𝑒 𝑗 ∈ 𝐸. The extended project operator is defined as follows:

"_id":1.0, "ranking":{"score":8.1}, "cond":true, "desc":["Million Dollar Baby", "Clint"], "production_year":2004} }

• { "_id":2, "info":{"ranking":

{"score":7.2}}, "cond":true, "desc":["In the Line of Fire", "Clint"], "production_year":1993 }

• { "_id":3, "film":{"others":

{"ranking": {"score":8.1}}}, "cond":true, "desc":["Gran Torino", "Clint"], "production_year":2008} }

• { "_id":4, "classification":

{"ranking": {"score":7.2}}, "cond":false, "desc":["The Good, the Bad and the Ugly", "Clint"], "production_year":1966 }

The reformulated project operator is now able to reach all the paths from the initial query regardless of their numerous locations inside the collection. In addition, the comparison of path information now gives reliable results. The aggregate operator is defined as:

Aggregation

The aggregate operator (𝛾) is a unary operator grouping documents according to the values from the grouping conditions 𝐺. The output is a collection of documents where each document refers to one group and contains a computed aggregated value over the group as defined by the aggregation function 𝐹 [START_REF] Ben Hamadou | Querying heterogeneous document stores[END_REF]. This project operation renames the distinct absolute paths extracted from the dictionary for paths in 𝐺 (𝐺 = 𝑝 1 , . . . , 𝑝 𝑔) and 𝐹 (path 𝑝 𝑓) to the paths initially expressed in the original query. Then we can apply the classical aggregate operator to the output of the added project operator.

Let 𝐴𝑡𝑡 be the set of all paths expressed in 𝐺 and 𝐹 , that is 𝐴𝑡𝑡 = 𝐺 ∪ {𝑝 𝑓 }. The additional project operator is defined as:

where

The reformulated aggregate operator is formally defined as:

In the following we introduce the Algorithm 8 to present the automatic process of reformulating the aggregation operator. Algorithm 8 starts first by generating projection elements from the attributes expressed in the group by and aggregation functions, Lines 2 -5.

Algorithm 8: Algorithm for automatic aggregate operator reformulation. To reformulate the aggregate operator, the query reformulation engine must first generate a project operator using the following dictionary entries:

• the absolute paths leading to the path title, i.e., △ 𝐶 𝑡𝑖𝑡𝑙𝑒 , are [title, film.title, description.title] CONTENTS "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1} } • { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Sport", "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan

Freeman"], "ranking":{"score":8.1} }

• { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Drama", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }

• { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Action", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }

• { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Crime", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }

• { "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{ "ranking":{"score":8.1} } } }

• { "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone"}, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } }, "classification":{ "ranking":{"score":7.2}, "genres":"Western" } } Example. The execution of the previous query returns one entry in the new path dir_actor for document (a). This entry contains the information from document (a)

Lookup

since the lookup operation can only match the information from document (a). The content of the new path dir_actor for document (a) is as follows:

• "dir_actor":[{ "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama","Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1} }]

Here we explain the classical evaluation process and the possible incorrect results.

The lookup succeeds in matching document (a) with itself, but despite the presence of other documents that may satisfy the lookup condition we can see that they are absent from the new path dir_actor. We can see this same result inside the remaining documents (b, c, d) that give three documents as a result, and each resulting document contains the same value for the new path dir_actor:

"dir_actor":[{ "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":["Drama","Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }, { "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{"ranking":

{"score":8.1} } } }, { "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone"}, "stars":{"lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } }, "classification":{ "ranking":{"score":7.2}, "genres":

We can see that this result does not contain the expected information, for instance, document (d) should not match any of the other documents since the director.first_name is totally different from the lead_actor.first_name. It is supposed to return an empty array for the new path dir_actor. Also, document (a) is excluded from the results.

Lookup Reformulation Rules

The aim of reformulating the lookup operator is to replace each path from the join condition by their corresponding absolute paths extracted from the dictionaries. We reuse the previously defined notation "|" to ensure an identical evaluation for the reformulated lookup compared to the classical evaluation mentioned in the previous paragraph. We observe that the lookup reformulation requires a dictionary for the input collection 𝐶 𝑖𝑛 and for the external collections 𝐶 𝑒𝑥 . In practical terms, the query reformulation engine includes a combination of all absolute paths of △ 𝐶 𝑖𝑛 𝑝 𝑖𝑛 and a combination of all absolute paths of △ 𝐶𝑒𝑥 𝑝𝑒𝑥 . The reformulated lookup operation is defined as:

Let us suppose that we want to reformulate the following lookup operation:

(C)𝜆 dir_actor:director.first_name=lead_actor.first_name (C)

The query reformulation engine start first by extracting the following entries from the dictionary:

CONTENTS

• the absolute paths leading to the path director.first_name, i.e., The execution of this lookup operation gives four documents. First, it gives these three documents (a, b, c). Each resulting document contains the same value for the new path dir_actor:

• "dir_actor":[{ "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1} }, { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":["Drama", "Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }, { "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{ "ranking":{"score":

Second, the document (d) does not have the same information for the paths director.first_name and lead_actor.first_name. Therefore, the lookup operation returns the following result for document (d):

• "dir_actor":[]

Algorithm for Automatic Query Reformulation

In this section we introduce the query extension algorithm that automatically reformulates the user query.

If we take into account the definition of a user query (section 4.1), the goal of the extension algorithm 10 is to modify the composition of the query in order to replace each operator by its extension (defined in the previous sections). The final extended query is then the composition of the reformulated operators corresponding to 𝑞 1 ∘. . .∘𝑞 𝑟 .

Algorithm 10 starts by initialising the query 𝑄 𝑒𝑥𝑡 with the identity 𝑖𝑑, line 3.

Then, for each operator 𝑞 𝑖 in the query 𝑄, Lines 4. The algorithm proceeds as follows for each of the five supported operators; i) project operator, i.e., 𝜋, the algorithm executes the instructions from algorithm 7, Lines 8 -30. ii) select operator, i.e., 𝜎, the algorithm executes the reformulation rules defined for this operator, Lines 31 -36. iii) aggregate operator, i.e., 𝛾, the Algorithm executes the instructions from algorithm 8, Lines 37 -46. iv) unnest operator, i.e., 𝜇, the algorithm executes the instructions from Algorithm 9, Lines 47 -53. v) lookup operator, i.e., 𝜆, the algorithm executes the reformulation rules defined for this operator, Lines 55 -57. Finally, the algorithm return the extended query 𝑄 𝑒𝑥𝑡 , Line 60.

Ultimately, the native query engine for document-oriented stores, such as Mon-goDB, can execute the reformulated queries. It is therefore easier for users to find all the desired information regardless of the structural heterogeneity inside the collection.

Conclusion

In this chapter, we introduced most document querying operators. First, we started by defining each operator and we presented their classical evaluation. To enable the user to formulate schema-independent querying for heterogeneous document stores where queries could be formulated over partial as well as absolute paths, we introduced for each operator a set of reformulation rules. Our contribution is built upon the idea of using the underlying query engine of the document stores. Therefore, we extend each element from the query with their corresponding absolute paths extracted from a materialised dictionary defined in the previous chapter. We support user queries formulated over partial information regarding the paths leading to the information of CONTENTS {"_id":1 "group_1A": {"level0": {"level1": {"level2": {"level3": {"ranking" : {"score": 8.1}, "country" : "USA", "lead_actor" : {"first_name": "Clint", "last_name": "Eastwood"}, "director" : {"first_name": "Clint", "last_name": "Eastwood"}, "link" : null } } } } }, "group_2A":

{"level0": {"level1": {"level2": {"level3": {"genres" : ["Clint Eastwood", "Hilary Swank", "Morgan Freeman"]} } } } }, "group_3A":

{"level0": {"level1": {"level2": {"level3": {"title" : "Million Dollar Baby", "year" : 2004, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"] } } } } } } Baseline dataset was composed of five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from 500MB to more than 250GB.

In the baseline dataset, there are 1M of distinct documents where attributes values are selected automatically from the initial 5,000 distinct documents used to generate our synthetic datasets. In case of a collection of 25M document, each document is repeated 25 times and so on.

We then injected heterogeneity into the structure of documents from the Baseline dataset. We opted to introduce structural heterogeneity by changing the location of the attributes of the documents from the Baseline dataset. We introduced new absolute paths with variable lengths. The process of generating the heterogeneous collection took several parameters into account: the number of distinct structures, the depth of the absolute paths and the number of new complex attributes in which are nested attributes used in baseline dataset. We randomly nested a subset of attributes, for instance, up to 10 attributes, under these complex attributes at pre-defined depths. • for the selection operation we chose to build a query that covers the classical comparison operators, i.e., {<,>,≤,≥,=, ̸ =} for numerical values, e.g., (year ≥ 2004) as well as classical logical operators, i.e., {and:∧, or:∨} between query predicates (e.g., ((year ≥ 2004) ∨ (genres.1 = "Drama"))) Also, we combined these traditional comparisons with a path check condition, e.g., (ranking = {"score": 6 }).

The following is the selection query that we used in our experiments: 𝑄 2 : 𝜎 (year ≥ 2004 ∨ genres.1 = "Drama") ∧ (ranking = {"score": 6 } ∨ link ̸ = null) (𝐶)

• for the aggregation operation we decided to group movies by country and to find the maximum score for all movies for each country. The following is the aggregation query that we used in our experiments: 𝑄 3 : country 𝛾 maximum_score:Max(score) (C)

• we chose to apply the unnest operator to the array awards which contains all the awards for a given film. The following is the unnest query that we used in our experiments: 𝑄 4 : 𝜇 awards (C)

• for the lookup operation we decided to generate a new collection, "actors", which is composed of four attributes (actor, birth_year, country and genre) with 3,033 entries, and we built a lookup query that enriches movie documents with details of the lead actor in each movie. We do not inject any structural heterogeneity to the "actors" collection. The following is the lookup query that we used in our experiments: 𝑄 5 : (C)𝜆 res:actors.1=actor (actors)

In the second workload operator combination evaluation we introduced three additional queries, 𝑄 6 , 𝑄 7 , 𝑄 8 , in which we combined two or more operators. These combinations enabled us to study the effects of operator combinations on the query reformulation and its evaluation by the document query engine. We present these additional queries below:

• we combined the unnest operator from the query "𝑄 4 " with the project operator from query "𝑄 1 ":