
HAL Id: tel-03163889
https://theses.hal.science/tel-03163889

Submitted on 9 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient reasoning on large-scale heterogeneous data
Maxime Buron

To cite this version:
Maxime Buron. Efficient reasoning on large-scale heterogeneous data. Artificial Intelligence [cs.AI].
Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAX061�. �tel-03163889�

https://theses.hal.science/tel-03163889
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

X
06

1

Raisonnement efficace sur des grands
graphes hétérogènes

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’Ecole polytechnique

École doctorale n◦626 Ecole Doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 7 octobre 2020, par

MAXIME BURON

Composition du Jury :

Maurizio Lenzerini
Professeur, Université de Rome Rapporteur

Marie-Christine Rousset
Professeur, Université de Grenoble Rapporteur (Présidente)

Meghyn Bienvenu
Chargé de recherche, CNRS Examinateur

Alin Deutsch
Professeur, Université de Californie, San Diego Examinateur

François Goasdoué
Professeur, Université de Rennes 1 Co-directeur

Ioana Manolescu
Directeur de recherche, INRIA Directeur

Marie-Laure Mugnier
Professeur, Université de Montpellier Co-directeur

Résumé

Le Web Sémantique a pour but de rendre les données du web compréhensible par les ma-
chines et de lier les bases de données ainsi formées, par des liens similaires aux hyperliens
présents entre les pages du web. Le modèle de graphe RDF a été adopté pour représenter
de telles données, qui décrivent les choses apparaissant sur le web et les liens, qu’elles
partagent. Les capacités de flexibilité de RDF permettent aux graphes RDF d’intégrer des
données très hétérogènes en une base de connaissances unifiées. Le vocabulaire utilisé
dans les graphes RDF pour les types de lies et les types de choses, ainsi que les contraintes
existantes entre ces types sont définies dans une ontologie. RDF Schema (RDFS) spécifie
une ontologie d’un graphe RDF comme une partie de ce graphe. Les ontologies sont
habituellement définies avec une sémantique, qui permet de déduire de nouvelles données
en utilisant celles contenues originalement dans la base de connaissance. Pour extraire
des informations d’une base de connaissance, nous l’interrogeons à l’aide de requêtes.
SPARQL a été introduit comme le language de requête standard pour RDF, le coeur de ce
langage est composé par les requêtes Basic Graph Pattern. Dans cette thèse, nous avons
étudié des méthodes pour répondre à des requêtes BGP générales sur les graphes RDF
en prenant en compte les connaissances introduites par une ontologie RDFS. Nous avons
proposé des méthodes efficaces pour deux configurations distinctes; une où le graphe que
nous souhaitons requêter est stocké dans une base de données et une deuxième, où le
graphe intègre des connaissances issues de sources de données hétérogènes.

La première partie se focalise sur comment la grande partie de l’expressivité du
raisonnement RDFS peut être pris en compte lors de la réponse à une requête. Premièrement,
nous avons étudié une partition de l’ensemble des règles de déduction RDFS en deux
sous-ensembles, qui définissent la sémantique des ontologies RDFS. Cette partition vient
avec des conditions impliquant un raisonnement séparé, i.e., n’induisant que des connais-
sances ontologiques avec un sous-ensemble des règles et seulement des connaissances en
dehors de l’ontologie pour l’autre sous-ensemble. Nous avons montré que sous ces con-
ditions certaines capacités de “metamodeling” de RDF(S) sont encore utilisables, c’est à
dire que l’on peut définir des données a propos du vocabulaires définie dans l’ontologie
d’un graphe. Deuxièmement, en exploitant la partition des règles de déduction RDFS,
nous avons défini un algorithme de reformulation de requête BGP, qui est correcte et
complet, incorporant le raisonnement permis par une ontologie dans une requête. Ainsi,
le problème de réponse à une requête en prenant en compte le raisonnement RDFS est

3

4

réduit au problème d’évaluation d’une requête dans une base de données RDF sans raison-
nement. Finalement, nous avons introduit une nouvelle structure de stockage pour les
données RDF, en combinant deux structures connues, ce qui améliore l’évaluation de
requête dans les bases de données RDF, particulièrement pour certaines requêtes BGP
générales.

Dans la deuxième partie, nous considérons le problème d’interrogation, par des requêtes
BGP, de sources de données hétérogènes intégrées en un graphe RDF. Nous introduisons
un cadre d’intégration de données sous des contraintes ontologiques RDFS, utilisant une
spécification d’intégration basée sur des mappings Global-Local-As-View, rarement con-
sidérée jusqu’ici dans la littérature. Nous présentons plusieurs stratégies de réponse à
des requêtes, qui, soit matérialisent les données en un graphe RDF, soit laissent ce graphe
virtuel. Ces stratégies diffèrent sur quand et comment le raisonnement RDFS est supporté.
Nous avons implémenté ces stratégies dans une plate-forme et mené des expérimentations
qui démontrent l’intérêt particulier d’une des stratégies basée sur la saturation des map-
pings. Finalement, nous montrons que cette dernière technique peut être étendue au delà
des règles de déduction RDFS au raisonnement défini par un sous-ensemble des règles
existentielles.

Abstract

The Semantic Web aims to make the data on the web machine-comprehensible and to link
together the databases thus formed in a similar way the hyperlinks link the web pages. The
RDF graph data model has been adopted to represent such data, which describe the things
appearing on the web and the links they share. The RDF flexibility abilities allow RDF
graphs to integrate very heterogeneous data in a unified knowledge base. The vocabulary
used in RDF graphs for the type of links and the type of things and the constraint existing
between them are defined is an ontology. RDF Schema (RDFS in short) specifies an
ontology of a graph as a part of it. Ontologies usually come with a semantic which enables
to entail new data through a reasoning process from the data originally specified in the
knowledge base. To extract information from a knowledge base, we query it. SPARQL
have been introduced as the standard query language for RDF, its core is formed by the
Basic Graph Pattern queries. In this thesis, we have investigated some methods to answer
general BGP queries on RDF graphs by taking into account the knowledge induced by
an RDFS ontology. We have proposed some efficient solutions for two distinct settings;
one where the graph we want to query is stored into a database and a second where the
queried graph integrates the knowledge from heterogeneous data sources.

The first part focuses on how to take into account a large part of the expressivity of
RDFS reasoning in efficient query answering techniques. First, we study a partition of
the RDFS entailment rule set into two subsets, which both define the semantic of RDFS
ontologies. It comes with the conditions ensuring split reasoning, i.e., inferring only on-
tological knowledge with one rule subset, and only knowledge outside the ontology with
the other subset. And we show that under these conditions some metamodeling capa-
bilities of RDF(S) are still usable, which means that it allows to define some data about
the vocabulary defined in an RDFS ontology. Second, exploiting the partition of RDFS
entailment rules, we introduce a sound and complete query reformulation algorithm for
BGP queries, incorporating the reasoning enabled by the ontology into the query. Hence,
the problem of query answering under RDFS reasoning is reduced to a query evaluation
in a RDF database with no reasoning. Finally, we introduce a novel RDF storage layout,
which combines two well-known layouts, that improves query evaluation performance in
RDF databases, especially for some general BGP queries. We also observe an improve-
ment of the performance using a saturation-based query answering methods, where the
entailed knowledge is stored with the other knowledge in a pre-processing step.

5

6

In a second part, we have studied BGP query answering methods on heterogeneous
data sources through a RDF graph with an RDFS ontology. It takes in the general context
of data integration, where several data sources are integrated under an unified vocabulary.
The RDF data model has gained wide acceptance for modeling and sharing heterogeneous
data of various domains, notably in the context of linked data. Following the Ontology-
Based Data Access paradigm, we introduce a framework of data integration under an
RDFS ontology, using the Global-Local-As-View mappings, which is a very expressive
mapping language. GLAV mappings enable a certain kind of value invention which in-
creases the amount of information accessible through the integration e.g., to state the
existence of some data whose values are not known in the sources. We present several
query answering strategies, which may materialize the integrated RDF graph into an RDF
database or leave it virtual, and differ on how and when RDFS reasoning is handled. We
implement these strategies in a platform, in order to conduct experiments, which demon-
strate the particular interest of one of the strategies based on mapping saturation. Finally,
we show that mapping saturation can be extended to reasoning defined by a subset of
existential rules.

Contents

Contents 7

List of Figures 10

List of Tables 11

1 Introduction 15

2 Preliminaries 21
2.1 RDF data model and SPARQL query language 21

2.1.1 RDF graphs . 21
2.1.2 RDF Schema . 23
2.1.3 RDF entailment rules . 25
2.1.4 BGP Queries . 27
2.1.5 Query answering . 31

2.2 Data integration . 32
2.2.1 Theory of data integration . 32
2.2.2 Global As View data integration 34
2.2.3 Local As View data integration 35
2.2.4 Global Local As View data integration 36

2.3 Summary . 38

3 RDF query answering 39
3.1 Motivation and state of the art . 39

3.1.1 RDF representations . 39
3.1.2 Query answering techniques . 42
3.1.3 RDF storage layouts . 44

3.2 Complete RDFS query reformulation . 46
3.2.1 Preliminaries: RDFS ontology and RRDFS rule set properties . . . 46
3.2.2 Overview of the query reformulation technique 49
3.2.3 Reformulation rules associated with Rc 51
3.2.4 Reformulation algorithm associated with Rc 53

7

8 CONTENTS

3.2.5 Reformulation with Ra . 55
3.2.6 Reformulation with Rc ∪ Ra . 58
3.2.7 Experiments . 59
3.2.8 Reformulation for Ra-compliant graphs 60

3.3 RDF storage layouts for efficient query answering 62
3.3.1 Preliminaries . 62
3.3.2 BGPQ answering on the T layout 63
3.3.3 BGPQ answering on the CP layout 64
3.3.4 BGPQ answering based on the TCP layout 67
3.3.5 Summary-based query pruning 68
3.3.6 Experimental evaluation . 69

3.4 Summary . 74

4 RDF integration of heterogeneous data sources 75
4.1 Motivation and state of the art . 75

4.1.1 Mediator data models and query languages 76
4.1.2 Mapping Language . 77
4.1.3 Contributions . 79

4.2 RDF Integration Systems . 80
4.2.1 RDF Integration System (RIS) Definition 80
4.2.2 Query answering problem . 83

4.3 Query answering techniques on RDF Integration Systems 85
4.3.1 Materialization-based query answering strategies: MAT and MAT-CA 85
4.3.2 Rewriting-based query answering strategies: REW-CA, REW-C and

REW . 86
4.3.3 Rewriting fully-reformulated queries using LAV mappings: REW-

CA . 88
4.3.4 Rewriting partially-reformulated queries using saturated LAV map-

pings: REW-C . 90
4.3.5 Rewriting queries using saturated mappings and ontology LAV

mappings: REW . 93
4.3.6 Remarks on related techniques 95
4.3.7 Landscape of query answering strategies 97

4.4 A Platform for RDF Integration Systems: Obi-Wan 99
4.4.1 Query answering in Obi-Wan . 100
4.4.2 Query rewriting and mediated plan optimizations 101

4.5 Experimental evaluation . 104
4.5.1 Experimental scenarios . 104
4.5.2 Query answering performance 105

4.6 Extending the framework to more general rules 109
4.6.1 Restricted RIS . 109
4.6.2 Correctness of the Method . 114

4.7 Summary . 114

5 Conclusion and perspectives 117

Bibliography 121

A Appendix 129

CONTENTS 9

A.1 Appendix of Section 3.2 . 129
A.1.1 Proofs . 129
A.1.2 Experiments Appendix . 134

A.2 Experiments details of Section 3.3.6 . 141
A.2.1 Queries and DBLP ontology . 141
A.2.2 Reasoning in Virtuoso . 148

A.3 Appendix of the query answering strategies in RIS experiments 155
A.3.1 Experiments Queries . 155
A.3.2 Experiments on REW . 160

A.4 Proofs about restricted rules . 161

List of Figures

2.1 A graph Gex, with its ontology Oex highlighted in blue. 24
2.2 Saturation of Gex w.r.t. RRDFS. 28
2.3 Example of GLAV mapping. 37

3.1 The partition of the RDFS entailment rule set RRDFS 46
3.2 Kinds of triples involved and produced by RDFS rules on Ra-compliant graphs. 48
3.3 Reformulation rules for Rc. 52
3.4 Reformulation rules for Ra. 56
3.5 Query answering times (in ms) through reformulation and saturation. 60
3.6 Sample RDF graph Gex. 63
3.7 Statistics of our queries on LUBM and DBLP. 71
3.8 Query answering times on LUBM and DBLP, through saturation. 72
3.9 Query answering times on LUBM and DBLP through reformulation. 73

4.1 Outline of an RDF Integration System. 79
4.2 Illustration of the saturation of GM

E
. 84

4.3 Outline of query answering strategies. 87
4.4 Sample reformulation in REW-CA. 90
4.5 Sample rewriting for REW. 94
4.6 Possible RIS query answering strategies based on graph materialization. . . . 98
4.7 Possible RIS query answering strategies based on query rewriting. 99
4.8 A mediated plan, before and after optimizations. 103
4.9 Query answering times on the smaller RIS. 106
4.10 Query answering times on the larger RIS. 107
4.11 BGPQ saturation. 109
4.12 Restricted rule entailments. 112
4.13 Illustration of Property 4.5. 112

A.1 Number of answers per query. 136
A.2 Reformulation size in number of BGPQs in their union. 137
A.3 DBLP ontology. 144

10

List of Tables

2.1 RDF triples. 23
2.2 The set of RDF entailment rules RRDFS. 25

3.1 Reformulation-based query answering related work. 43
3.2 Graph and summary sizes, OntoSQL database sizes, including all indexes. . . 70

4.1 Outline of the positioning of our contributions. 78
4.2 Characteristics of the queries on RIS. 116

A.1 Statistics of REW on S1 and S3. 160
A.2 Statistics of REW-C on S1 and S3. 161
A.3 Statistics of REW on S2 and S4. 161
A.4 Statistics of REW-C on S2 and S4. 161

11

Remerciements

Maintenant que la soutenance est passée, je peux calmement repenser à ces trois dernières
années et remercier les personnes, qui m’ont aidées, guidées et inspirées. En premier
lieu, je souhaite remercier Ioana, François et Marie-Laure pour l’encadrement de qualité
que vous m’avez procuré. Malgré la distance géographique et une pandémie, vous avez
toujours été là et avez manifesté de l’intérêt pour moi. C’était très précieux.

Merci à Maurizio Lenzerini et à Marie-Christine Rousset pour avoir accepté de rap-
porter ce manuscript et pour vos retours très positifs. Je souhaite aussi remercier Meghyn
Bienvenu et Alin Deutsch d’avoir chacun trouvé le temps pour être examinateur. Finale-
ment, je souhaite dire merci à Fabian Suchanek, qui a presque pu être examinateur, et
dont les courses de master m’ont beaucoup motivé à faire une thèse dans ce domaine.

Merci aussi à toute l’équipe Cedar, que ce soit les anciens ou les nouveaux membres,
d’avoir partagé vos histoires et votre joie de vivre. Je pense notamment à Khaled, Mir-
jana, Pawel et Tayeb, formant le noyau dur du groupe, qui mangeait au Magnan et avec
qui les discussions ont été riches et rafraı̂chissantes. Merci aussi à Michaël pour le super
encadrement de stage. Je souhaite remercier Luciano, Enhui et Khaled pour m’avoir ac-
compagné au cours l’aventure du doctorat ; vous allez réussir, j’en suis sûr. Je repense
aussi à Alexandre et Félix, avec qui j’aurais aimé passer plus de temps. Merci aux nou-
veaux permanents Angelos pour les conseils et Oana pour les échanges sur l’écologie. Je
souhaite remercier les assistantes Maëva et Hanadi, qui m’ont beaucoup aidé à organiser
mes déplacements, tâche pour laquelle je suis très mauvais.

Au cours de ma thèse, j’ai aussi eu le plaisir de rencontrer de nombreuses personnes
dans des réunions, des visites ou des conférences. Je tiens à les remercier toutes. Pour les
accueils chaleureux à Montpellier, merci à Guillaume, Olivier, Federico et aux Michels et
à Lannion, merci à toute l’équipe, j’étais heureux de revoir Ludivine et Cheikh Brahim.
Je souhaite aussi remercier chaleureusement les participants et organisateurs des projets
Icoda, CQFD et WebClaimExplain.

Et pour finir, je remercie tous ceux qui me soutiennent depuis longtemps. Premièrement,
ma famille, qui a toujours eu une confiance aveugle dans mes études, maman, papa,
Mathilde, mes grands-mères et mon grand-père, qui nous a quitté au cours de ma première
année de thèse et à qui je dédie ce manuscrit. Enfin, mes amis, notamment mes nouveaux
et anciens collocs, Florian, Thibault, Ted, Arthur, Fabien, Baptiste, Thich, Ted, Jérémy,

13

14 LIST OF TABLES

Bob et Capucine - grand merci à toi pour le soutien moral - et ceux qui vivent plus loin :
Mélodie, Jason, Bastien et Justine, vous me manquez.

Chapter

1
Introduction

Semantic web

In 2001, Tim Berners-Lee published a visionary article introducing the semantic web,
with the goal of making all the data on the web machine-comprehensible. The seman-
tic web relies on the RDF data model, defined in the Resource Description Framework
specification [Lassila and Swick, 1999], which allows to make statements about resource
identifiers (Universal Resource Identifiers, or URIs in short) [RFC, a]. These statements
take the form of triples. For instance, a triple may state “Berlin is located in Germany”
by gathering three URIs, which respectively identify the city of Berlin, the property of
being geographically located and Germany. Through triples, the RDF data model allows
to describe links that exist between resources, which together form RDF graphs.

The self-describing characteristic of the RDF data model eases publications of and
contributions to a variety of graphs available online. Common resources are used to link
these graphs together building a large web of heterogeneous data. The Linked Open Data
cloud1 displays such a network of graphs, where we can find, for instance, data from the
Wikipedia encyclopedia in the DBpedia graph2, data from MusicBrainz3, a collaborative
platform with music information, and data about many other topics like government, life
science, etc.

The most shared resources across graphs, are those that constitute the schema of
graphs. These resources are the classes, which allow to type resources, e.g., “Berlin
is of type capital” states that Berlin is a country’s capital, and the properties, which define
links between resources, such as “is located in” mentioned above in “Berlin is located in
Germany”.

The RDF Schema (RDFS, in short) W3C specification [Lassila and Swick, 1999] spec-
ifies a schema vocabulary for defining constraints on properties and classes. These con-
straints are specified using triples as well, such as, for instance, the constraint “the capital
class is a subclass of the city class”. In a graph, such triples form an ontology. The se-
mantics of an RDF graph, in which some triples form its ontology, is given by the set of
RDFS entailment rules, which enable to infer new triples, called the implicit triples of

1https://lod-cloud.net
2https://dbpedia.org
3http://musicbrainz.org

15

https://lod-cloud.net
https://dbpedia.org
http://musicbrainz.org

16 CHAPTER 1. INTRODUCTION

this graph, as opposed to its explicit triples.
Other languages, mainly based on first-order logic, allow representing ontological

knowledge and reasoning about it. Notably, Description Logics [Baader et al., 2003]
(DLs) are a prominent family of languages designed for this purpose. Some mem-
bers of this family, with less expressivity, have been specially tailored to access data,
such as the DL-Lite family [Calvanese et al., 2007]. Let us also mention existential
rules, a more recent language, which generalizes many DLs used to access data (see
e.g.,[Calı̀ et al., 2009, Mugnier and Thomazo, 2014] for introductions). Most DLs, even
lightweight ones, are able to represent more complex constraints than RDFS. They adopt a
representation of classes and properties based on, respectively, unary and binary relations.
This choice of representation naturally isolates properties and classes from individuals.

On the other hand, an RDF graph is able to assert properties of its schema resources.
For instance, a graph can state that “the class of capitals is related to the class of coun-
tries”. Expressing such statements is not possible in classical description logics. We say
that RDF graphs are capable of metamodeling.

The SPARQL language [Prud’hommeaux and Seaborne, 2004], introduced in 2004,
is the standard query language for RDF. It relies on Basic Graph Patterns (BGP) and its
core fragment is that of BGP queries, which play the same role as conjunctive queries
in relational databases. For instance, a BGP query may ask is “what is both located
in Germany and instance of the class of capitals ?”, where the properties and classes
mentioned by the query are URIs. However, general BGP queries also allow to interrogate
the graph schema, as in the query “which classes does Berlin belong to ?”, or RDFS
constraints, as in the query “which are the subclasses of the class of cities?”. Such BGP
queries are called non-relational and allow a user to explore the schema of a graph, which
can be useful for instance to formulate further queries using different facets defined by
the graph schema.

Efficient answering of expressive queries
We distinguish query answering, which consists of answering queries by taking into ac-
count not only the explicit triples of an RDF graph, but also the implicit triples entailed
from the graph by RDFS entailment rules; in contrast, query evaluation only considers
the explicit triples of a graph, just like a DBMS considers the data explicitely stored in the
database. In our example, the query “is Berlin a city ?” is answered positively when the
implicit triples are taken into account, since Berlin belongs to the capitals class, which
is a subclass of cities class. However, the evaluation of same query would yield false
as an answer. Considering ontological constraints and associated inferred triples greatly
increases the usefulness of the queried graph, as it allows a user to pose a query using the
vocabulary he/she is familiar with, and still get complete answers.

However, taking the ontological knowledge into account in query answering comes
at a price: query answering incurs more effort than query evaluation. Two classical ap-
proaches exist to solve the query answering problem, both of which include a reasoning
step that reduces query answering to query evaluation. The first approach, called graph
saturation consists to compute all the implicit triples and store these triples together with
the explicit ones. This can be done in a preprocessing step, as it does not depend on
the query, followed at query time by the evaluation of the query on the saturated graph,
which returns the complete answers set. The second approach performs the reasoning step
at query time, starting with a query reformulation step, which incorporates the ontologi-
cal knowledge into the query, followed by the evaluation of the reformulated query on the

17

original graph. While the saturation-based approach requires time and space to compute
and store the saturated graph, it leads to good performance at query time. However, the
saturation has to be updated when the graph changes, hence it is not adapted to dynamic
settings. On the other hand, the reformulation-based approach is not impacted by graph
changes, but the reasoning step occurs at query time and the rewritten query is typically
harder to evaluate. These two approaches have been developed for several ontological
formalisms. Depending on the expressivity of the formalism, classical saturation or/and
query reformulation may not terminate in all cases.

An aspect with an important impact on query evaluation performance is the way in
which data is stored (and read from) a stable storage. In an RDF database, the set of per-
sistent data structures which, together, hold the data comprised in an RDF graph is usually
called storage layout. The evaluation of a BGP query in RDF databases requires trans-
lating the query into a description of work (usually called query plan), which involves
reading the data from the storage layout.

In this thesis, we consider both reformulation-based and saturation-based query an-
swering approaches. We propose a new query reformulation algorithm for general BGP
queries using RDFS entailment rules. As the evaluation of general BGP queries, and all
the more reformulated queries, challenges existing RDF storage layouts, we propose a
new storage layout with a corresponding translation from BGP queries to logical query
plans, that improves query evaluation performance in both query answering approaches,
especially for non-relational BGP queries.

Ontology-based integration of heterogeneous data sources
The development of data management systems has quickly lead to the need to integrate
several databases under a single schema, or unified view. The RDF data model has gained
wide acceptance for modeling and sharing heterogeneous data of various domains, no-
tably in the context of linked data.

An integration system describes the relation between the schemas of data sources,
called local schemas and a global schema, used to model integrated data [Doan et al., 2012].

Traditional query evaluation approaches in data integration systems fall into two classes:
materialization [Jarke, 2003], where all data source content is migrated in a single cen-
tralized store, and mediation [Wiederhold, 1992], where data remains in its local store and
queries expressed on the global schema are processed by single module called mediator.

The simplest option for describing an integration system is to define each element of
the global schema as a view over the local schemas; this is known as Global-As-View
(GAV in short). In a GAV system, a query over the global schema is easily transformed
into a query over the local schemas, by unfolding each global schema relation, i.e., re-
placing it with its definition. Given the simplicity of unfolding, the complexity of query
evaluation with the mediation-based approach is due to query evaluation across the dif-
ferent sources.

In contrast, in a Local-As-View (LAV) integration system, elements of the local schemas
are defined as views over the global one. Mediation-based query evaluation in a LAV sys-
tem requires rewriting the query with the views describing the local sources [Halevy, 2001],
which can be a challenging task for mediator.

GLAV (Global-Local-As-View) data integration [Friedman et al., 1999] generalizes
both GAV and LAV. In GLAV scenarios, a query q1 over one or several local schemas is
associated to a query over the global schema q2, both having the same answer variables;
the pair (q1, q2) is commonly called a mapping. The semantics is that for each answer

18 CHAPTER 1. INTRODUCTION

of q1, the integration system exposes the data comprised in a corresponding answer of
q2. GLAV maximizes the integration expressive power, in the following sense: unlike
LAV, a GLAV mapping may expose only part of a given source’s data, and may combine
data from several sources; unlike GAV, a GLAV mapping may include joins or complex
expressions over the global schema. Moreover, GLAV mappings enable a certain kind of
value invention which increases the amount of information accessible through the inte-
gration system, e.g., to state the existence of some data whose values are not known in
the sources.

Ontology-Based Data Access (OBDA) has recently emerged as a data integration
paradigm based on ontologies, which allow to represent domain knowledge that is ex-
ploited when accessing data, relying on knowledge representation and reasoning tech-
niques [Poggi et al., 2008]. It distinguishes between a conceptual level defined by the
ontology, which plays the role of the global schema, and a data level defined by data
sources, both levels being connected by mappings. Currently available OBDA systems
usually combine a DL ontology, a relational database and GAV mappings.

Our work follows the OBDA vision, although it implements it in a different setting,
namely RDFS instead of description logics, GLAV mappings instead of GAV mappings,
and heterogeneous data sources that may not be relational. We tackle the problem of
general BGP query answering in such integration systems, by comparing several query
answering strategies, based on a data materialization or mediating approach concerning
integration, and saturation or query reformulation techniques concerning ontological rea-
soning, and proposing new strategies.

Organization of the thesis
The thesis is organized as follows:

Chapter 2 This chapter introduces basic notions about RDF graphs, RDFS ontologies,
RDF entailment rules, including the subset of standard RDFS entailment rules, and Basic
Graph Pattern (BGP) queries. We define the problem of query answering in RDF graphs
with respect to RDF entailment rules. The second part of the chapter reviews notions and
results about data integration systems, based on GAV (with query unfolding), LAV (with
view-based query rewriting) and GLAV mappings.

Chapter 3 This chapter presents our work about query answering on RDF graphs with
general BGP queries and standard RDFS entailment rules. First, we situate our work in
relation to the state of the art. Second, we study a partition of the RDFS entailment rule
set into two subsets, as well as the conditions ensuring split reasoning, i.e., inferring only
ontology triples with one rule subset, and only triples outside the ontology with the other
subset. This partition allows us to introduce a sound and complete query reformulation
algorithm. Finally, we investigate a new storage layout for RDF graphs, which combines
two well-known layouts. Our experiments show that the combined layout avoids the
performance pitfalls of the two others, especially for non-relational BGP queries.

Chapter 4 This chapter presents our work on heterogeneous data source integration in
the RDF data model, whereas we study BGP query answering. We start by classifying
existing works about mediation-based query answering, and point out that among these,
few have been devoted to integration systems using GLAV mappings. We introduce our
framework, RDF integration systems, with the associated query answering problem. We

19

present several query answering strategies, including two novel ones, following either
the materialization or the mediation approach, and differring on how and when RDFS
reasoning is incorporated. These strategies are implemented in Obi-Wan, our RDF inte-
gration system, which allowed us to experimentally compare them. Finally, we extend
the theoretical framework for query answering to a subset of existential rules.

Chapter 5 This chapter concludes this thesis and indicates some possible extensions of
this work.

So far, this work has led to the following publications:

• [Buron et al., 2018] Rewriting-Based Query Answering for Semantic Data In-
tegration Systems (Informal publication) Maxime Buron, François Goasdoué,
Ioana Manolescu, Marie-Laure Mugnier, in 34ème Conférence sur la Gestion de
Données – Principes, Technologies et Applications (BDA), the database conference
of the French community, 2018

• [Buron et al., 2019] Reformulation-Based Query Answering for RDF Graphs
with RDFS Ontologies. Maxime Buron, François Goasdoué, Ioana Manolescu,
Marie-Laure Mugnier, in Extended Semantic Web Conference (ESWC), 2019

• [Buron et al., 2020b] Ontology-Based RDF Integration of Heterogeneous Data.
Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier, in
Extended Database Technologies (EDBT) conference, 2020

• [Buron et al., 2020c] Obi-Wan: Ontology-Based RDF Integration of Hetero-
geneous Data Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure
Mugnier, to appear as a Demonstration in the Very Large Databases (VLDB) con-
ference, 2020 (also accepted for presentation at BDA 2020)

• [Buron et al., 2020a] Revisiting RDF storage layouts for efficient query an-
swering Maxime Buron, François Goasdoué, Ioana Manolescu, Tayeb Merabti,
Marie-Laure Mugnier, Technical report, 2020

Chapter

2
Preliminaries

This chapter introduces the formalisms and techniques on which this thesis relies. In
Section 2.1, we briefly present RDF, the Resource Description Framework, and basic
graph pattern queries, the core fragment of SPARQL, the query language for the semantic
web. In Section 2.2, we recall a formal framework defining data integration systems and
the use of view-based query rewriting in this context.

2.1 RDF data model and SPARQL query language
We present the basics of the RDF graph data model (Section 2.1.1), how they can be
enriched with ontological knowledge using RDF Schema (Section 2.1.2), how RDF en-
tailment can be used to make explicit the implicit information RDF graphs encode (Sec-
tion 2.1.3), and finally, how they can be queried using the widely-considered SPARQL
Basic Graph Pattern queries (Section 2.1.4), a.k.a. SPARQL conjunctive queries.

2.1.1 RDF graphs
RDF is a W3C recommendation published first in 2004 [Res, 2004], and revised in 2014
[RDF, 2014a]. It defines abstract model of an RDF graph based on three types of values:
IRIs (Internationalized Resource Identifiers), literals and blank nodes.

An IRI is a compact sequence of characters used to identify an abstract or a physical
resource. The IRI standard [RFC, b] extends the previous Uniform Resource Identifier
standard [RFC, a], which was limited to ASCII characters only. For example, any URL,
like https://starwars.com/databank/luke-skywalker is a valid IRI representing
the Star Wars character, Luke Skywalker. In the following, we will denote the set of all
IRIS by I . To simplify IRIs, RDF allows defining namespaces within an RDF graph. A
namespace is an abbreviation of the prefix of a IRI. For example, if we define the names-
pace sw as an abbreviation of the IRI prefix https://starwars.com/databank/, then
sw:luke-skywalker is equivalent to the full abovementioned IRI. The standard allows
specifying a default namespace, for which there is no need to specify a prefix. When
the default namespace is understood, a simple IRI such as :luke-skywalker can be under-
stood to mean the full-length URI above. For readability, we will shorten it in our further
examples into :Luke.

21

https://starwars.com/databank/luke-skywalker
https://starwars.com/databank/

22 CHAPTER 2. PRELIMINARIES

A literal is a string that represents a value. For example, a literal can represent a name,
e.g., the string “Luke”, or a number, e.g., “5”. RDF enables to group values into data types
like Integer, but in this thesis, for simplicity, we will only consider plain literals without
data type; similarly, we will ignore the possible language tags attached to literals, e.g.,
“@fr”, “@en”. Hence, the literal set is the set of all strings; it will be denoted by L .

A blank node represents an anonymous resource, either a literal or an IRI. We will
represent blank nodes using the prefix :. For example, :b is a blank node having
the name b. The name of a blank node is a local identifier within the graph at hand.
Hence blank nodes can be assimilated to database labeled nulls [Abiteboul et al., 1995,
Goasdoué et al., 2013]. The set of blank nodes will be denoted by B.

Using the above sets of resources I ,L ,B, we can formalize the RDF triples which
compose an RDF graph:

Definition 2.1 (RDF triple). An RDF triple (or triple in short) is a triple of RDF resources
(s, p, o) belonging to the product:

(I ∪B) ×I × (L ∪I ∪B).

The resource s is the subject of this triple, p is its property and o is its object.

For example, the triple (:Luke, :firstName, “Luke”) states that Luke’s first name is
Luke, while the triple (:Luke, :pilotOf, :bs) states that Luke is the pilot of something,
represented the blank node :bs.

Definition 2.2 (RDF graph). An RDF graph is a set of RDF triples. Considering an
RDF graph G, we denote by Val(G) the set of all values (IRIs, blank nodes and literals)
occurring in G, and by Bl(G) its set of blank nodes.

Example 2.1 (Sample RDF graph). Let us consider a first RDF graph G1 stating that
Luke uses something represented by the blank node :bd and both Luke and the thing
represented by :bd are pilot of a thing represented by :bs.

:Luke :uses :bd

:Luke :pilotOf :bs

:bd :pilotOf :bs

In this example, :bd and :bs may represent distinct entities (e.g., a droid and a star-
ship, respectively) or the same entity. The notion of homomorphism between RDF graphs
allows characterizing whether an RDF graph simply entails, i.e., is more specific than or
subsumed by, another.

Definition 2.3 (RDF graph homomorphism). Let G and G′ be two RDF graphs. A homo-
morphism from G to G′ is a substitution ϕ of Bl(G) by Val(G), and is the identity for the
other G values (IRIs and literals), such that ϕ(G) ⊆ G′, where ϕ(G) = {(ϕ(s), ϕ(p), ϕ(o)) |
(s, p, o) ∈ G}.

From now on, we write G′ |=ϕ G to state that G′ simply entails G, as witnessed by the
homomorphism ϕ from G to G′.

Example 2.2 (RDF graph homomorphism). Let us consider the graph G1 from Exam-
ple 2.1 and the novel graph G2 stating that Luke uses and is a pilot a self-driven spaceship
(pilot of itself):

2.1. RDF DATA MODEL AND SPARQL QUERY LANGUAGE 23

Schema triples Notation
Subclass (s,≺sc, o)
Subproperty (s,≺sp, o)
Domain typing (s,←↩d, o)
Range typing (s, ↪→r, o)
Data triples Notation
Class fact (s, τ, o)
Property fact (s, p, o) s.t. p < {τ,≺sc,≺sp,←↩d, ↪→r}

Table 2.1: RDF triples.

:Luke :pilotOf :spaceship1
:Luke :uses :spaceship1
:spaceship1 :pilotOf :spaceship1

There exists a homomorphism ϕ from G1 to G2 defined by the resource mapping set
{ :bd 7→ :spaceship1, :bs 7→ :spaceship1}. Thus, G2 simply entails G1, which we note
G2 |=

ϕ G1.

We remark that if a graph G is included in a graph G′, then G′ simply entails G.

2.1.2 RDF Schema
RDF Schema (RDFS), which is part of the RDF standard [RDF, 2014c], introduces the
notion of classes, which are groups of resources; classes are themselves resources. This
standard also defines two namespaces: rdf and rdfs. The property rdf:type is used to type
a resource, i.e., to express that a resource is an instance of a class. For example, the triple
(:Luke, rdf:type, :Person) states that Luke is an instance of the class Person.

RDFS also defines four properties used to state constraints or relationships between
classes and properties:

• The property rdfs:subClassOf (abbreviated ≺sc) is used to specify that a class is a
subclass (specialization) of another;

• rdfs:subPropertyOf (abbreviated ≺sp) allows to state that a property is a subproperty
(specialization) of another;

• The properties rdfs:domain and rdfs:range (abbreviated ←↩d and ↪→r respectively)
specify that resources appearing as the first (respectively, the second) argument of
a property have a certain type.

The IRIs τ,≺sc,≺sp,←↩d and ↪→r are called the built-in properties. Table 2.1 sums up
the short notations we adopt for these properties. We call RDFS properties the built-in
properties except τ. A triple in which the property is an RDFS property is called a schema
triple or, more precisely, an RDFS triple.

The RDFS ontology of a graph is the set of its RDFS triples:

Definition 2.4 (RDFS Ontology). The RDFS ontology of an RDF graph G is the set of
schema triples contained in G. A graph is called an RDFS ontology if it contains only
schema triples.

24 CHAPTER 2. PRELIMINARIES

Figure 2.1: A graph Gex, with its ontology Oex highlighted in blue.

Example 2.3 (RDFS Ontology). The following set of triples forms an RDFS ontology,
denoted by Oex:

:LightSaber rdfs:subClassOf :Object
:Vehicle rdfs:subClassOf :Object
:bc rdfs:subClassOf :Vehicle

:uses rdfs:domain :Person
:uses rdfs:range :Object
:usesWeapon rdfs:subPropertyOf :uses
:pilotOf rdfs:subPropertyOf :uses
:pilotOf rdfs:range :Vehicle

Oex states that: vehicles and light sabers are objects; there is an unknown subclass
of vehicle represented by the blank node :bc; if x uses y, then x is a person and y is an
object; using something as a weapon and being the pilot of something are specific ways
of using something; something that is piloted is a vehicle.

Figure 2.1 shows a sample RDF graph Gex whose ontology is Oex.

Within an RDF graph, we distinguish data triples from schema ones. The former are
triples (s, p, o) where p is not an RDFS property, i.e., they describe data (they either type
a resource by a class, state a relationship between two resources, or state the value of a
data property of a resource), while the latter express RDFS constraints.

2.1. RDF DATA MODEL AND SPARQL QUERY LANGUAGE 25

Rule [RDF, 2014b] Entailment rule
rdfs5 (p1,≺sp, p2), (p2,≺sp, p3)→ (p1,≺sp, p3)
rdfs11 (c1,≺sc, c2), (c2,≺sc, c3)→ (c1,≺sc, c3)
ext1 (p,←↩d, c1), (c1,≺sc, c2)→ (p,←↩d, c2)
ext2 (p, ↪→r, c1), (c1,≺sc, c2)→ (p, ↪→r, c2)
ext3 (p,≺sp, p1), (p1,←↩d, o)→ (p,←↩d, o)
ext4 (p,≺sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)
rdfs2 (p,←↩d, c), (s, p, o)→ (s, τ, c)
rdfs3 (p, ↪→r, c), (s, p, o)→ (o, τ, c)
rdfs7 (p1,≺sp, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (c1,≺sc, c2), (s, τ, c1)→ (s, τ, c2)

Table 2.2: The set of RDF entailment rules RRDFS.

2.1.3 RDF entailment rules
The semantics of an RDF graph is given by the explicit triples it contains, as well as the
implicit triples that can be derived from it using RDF entailment rules.

We assume given a set of variables V disjoint from the RDF resources I ∪L ∪B.
A triple pattern is a triple of values belonging to:

(I ∪B ∪ V) × (I ∪ V) × (L ∪I ∪B ∪ V).

A basic graph pattern (BGP) is a set of triple patterns. It generalizes the notion of
RDF graph by also allowing variables in the subject, property and object positions.

For a BGP P, we note Var(P) the set of variables occurring in P and Bl(P) its set of
blank nodes.

Definition 2.5 (BGP to RDF graph homomorphism). A homomorphism from a BGP P
to an RDF graph G is a substitution ϕ of Bl(P) ∪ Var(P) by Val(G) and is the identity
elsewhere, such that ϕ(P) ⊆ G with ϕ(P) = {(ϕ(s), ϕ(p), ϕ(o)) | (s, p, o) ∈ P}.

We write G |=ϕ P to state that ϕ is a homomorphism from P to G.

Note that blank nodes are processed as variables in the definition of homomorphism.
Below, we define a syntax for RDF entailment rules based on basic graph patterns.

Should we translate these rules into first-order logic, using a single ternary predicate to de-
note triples, we would obtain specific tuple-generating dependencies (TGDs) [Abiteboul et al., 1995]
or existential rules, e.g., [Mugnier and Thomazo, 2014]. In particular, these rules allow
one to assert the existence of unknown entities, thanks to existentially quantified variables
in the head of TGDs / existential rules. However, the set of built-in RDF entailment rules
that we consider next do not have this feature: these rules would be logically translated
into range-restricted, or datalog, rules (in which variables that occur in a rule head also
occur in the rule body and are universally quantified [Abiteboul et al., 1995]). In the
next chapters, we mainly work with built-in RDF entailment rules, and extend some re-
sults to more general RDF entailment rules in Section 4.6, which justifies the following
definitions that go beyond built-in RDF entailment rules.

Definition 2.6 (RDF entailment rule). An RDF entailment rule r is of the form body(r)→
head(r), where body(r) and head(r) are basic graph patterns, containing no blank node,
respectively called body and head of the rule r.

26 CHAPTER 2. PRELIMINARIES

The set of built-in RDF entailment rules is defined in [RDF, 2014b]. These rules
produce implicit triples by exploiting the RDFS ontology of an RDF graph. In this thesis,
we consider the rule set defined in Table 2.2, denoted by RRDFS; in the table, all values
except RDFS properties denote variables. For example, for Rule rdfs2, we have:

• body(rdfs2) = {(p,←↩d, c), (s, p, o)}

• head(rdfs2) = {(s, τ, c)}

where p, c, s and o are variables. This rule specifies that the subject of a triple belongs to
the domain of the triple property.

We define how RDF entailment rules directly entail implicit triples from explicit ones.

Definition 2.7 (Direct entailment). The direct entailment of an RDF graph G with a set of
RDF entailment rulesR, denoted by CG,R, characterizes the set of implicit triples resulting
from triggering (a.k.a. firing) the rules inR using the explicit triples of G only. It is defined
as:

CG,R = { ϕ(head(r))safe | ∃r ∈ R,G |=ϕ body(r) and there is no ϕ′

extension of ϕ s.t. G |=ϕ′ head(r)}

where ϕ(head(r))safe is obtained from ϕ(head(r)) by replacing each variable in Var(head(r))\
Var(body(r)) by a fresh blank node. Note that the condition “there is no ϕ′ extension of
ϕ s.t. G |=ϕ′ body(r) ∪ head(r)” prevents the production of an obviously redundant set of
triples.

Without loss of generality, as in the RDF standard, we only consider well-formed
entailed triples, i.e., from (I ∪B) ×I × (L ∪I ∪B).

Example 2.4 (Direct entailment). Consider G3, the graph of Example 2.1 extended with
the ontology Oex of Example 2.3:

G3 = {(:Rey, :usesWeapon, :bs)} ∪ Oex

as well as the rule rdfs7:

(p1,≺sp, p2), (s, p1, o)→ (s, p2, o)

The rule rdfs7 applies to G3, i.e.,

G3 |=
ϕ body(rdfs7)

through the homomorphism ϕ defined as {p1 7→ :usesWeapon, p2 7→ :uses, s 7→ :Rey, o 7→
:bls}. The rules rdfs11, ext2, ext3 and ext4 also apply to G3. CG3,RRDFS , the direct

entailment of G3 with RRDFS, contains exactly the following triples (the rules used to
derive them appear between parenthesis):

:Rey :uses :bls (rdfs7)
:usesWeapon ←↩d :Person (ext3)
:pilotOf ←↩d :Person (ext3)
:usesWeapon ↪→r :Object (ext4)
:pilotOf ↪→r :Object (ext2 and ext4)
:bc ≺sc :Object (rdfs11)

2.1. RDF DATA MODEL AND SPARQL QUERY LANGUAGE 27

The saturation of an RDF graph allows materializing the semantics of an RDF graph,
by iteratively augmenting this graph with the triples it directly entails using a set R of
RDF entailment rules, until a fixpoint is reached.

We formalize this as the sequence (GRi)i∈N of RDF graphs recursively defined as fol-
lows:

• GR0 = G, and

• GRi+1 = GRi ∪CGRi ,R
for 0 ≤ i.

Definition 2.8 (Saturation of RDF graph). Let G be an RDF graph, and R be a set of
entailment rules. The saturation of G w.r.t R, denoted by GR, is defined by:

GR = ∪i∈NGRi .

Example 2.5 (Saturation of Gex). Consider the graph Gex in Figure 2.1. Its saturation
w.r.t. RRDFS is displayed in Figure 2.2, and is obtained by the second direct entailment
step, hence

(Gex)RRDFS = Gex ∪CGex,RRDFS ∪CGex∪CGex ,RRDFS ,RRDFS

The first direct entailment can be easily found by extending the one presented in
Example 2.4. The second direct entailment produces three triples: (:Luke, τ, :Person),
(:Rey, τ, :Person) and (:spaceship1, τ, :Object).

The saturation of an RDF graph by any subset of RRDFS is finite [RDF, 2014b].
Finally, the notion of a homomorphism between RDF graphs is also used to charac-

terize whether an RDF graph entails another w.r.t. a set of RDF entailment rules, i.e., in
the presence of implicit triples.

Definition 2.9 (Graph entailment). An RDF graph G entails an RDF graph G′ w.r.t. a set
R of RDF entailment rules, noted G |=ϕ

R
G′, whenever there is a homomorphism ϕ from

G′ to GR. From now, we will just write G |=R G′ when a particular ϕ is not relevant to the
discussion.

2.1.4 BGP Queries
A popular fragment of the SPARQL query language for RDF graphs is that of basic graph
pattern queries, also called the SPARQL conjunctive queries. A basic graph pattern query
is defined as follows:

Definition 2.10 (BGP query). A BGP query (BGPQ) q is of the form q(x̄) ← P, where P
is a BGP also denoted by body(q) and x̄ ⊆ Var(P). The variables x̄ are called the answer
variables of q and the arity of q is |x̄|. The other variables are the called existential
variables of q.

Example 2.6 (BGP query). Consider the following BGP query:

q(x, y)← (x, y, z), (y,≺sp, :uses), (z, τ, :bc)

It asks for the subject and the property of each triple such that the triple property is a
subproperty of :uses and the triple object has a type. Actually, there are two ways of in-
terpreting the blank node :bc: it can be seen either as an existential variable (here,“the
triple object has a type”) or as a specific entity (here, “the triple object has type :bc”).

28 CHAPTER 2. PRELIMINARIES

Figure
2.2:Saturation

ofG
ex

w
.r.t.
R

R
D

FS ;ontologicaltriples
are

in
blue

and
im

plicittriples
are

dashed.

2.1. RDF DATA MODEL AND SPARQL QUERY LANGUAGE 29

These two ways of understanding a blank node correspond to two variants of query eval-
uation: the standard evaluation treats blank nodes like existential variables (as per Defi-
nition 2.5), while the non-standard evaluation treats them like IRIs and literals.

Partially instantiated BGPQs

Partially instantiated BGPQs are a slight generalization of BGPQs, considered in the con-
text of reformulation-based query answering [Goasdoué et al., 2013, Bursztyn et al., 2015].
Starting from a BGPQ q, partial instantiation replaces some variables with values from
I ∪L ∪B, as specified by a substitution σ; the partially instantiated query is denoted
qσ. Observe that when σ = ∅, qσ coincides with q. Further, due to σ, and in contrast with
standard BGPQs, some answer variables of qσ can be bound:

Example 2.7 (Partially instantiated BGPQ). Consider the BGPQ asking for who is using
which kind of object: q(x, y)← (x, :uses, z), (z, τ, y), (y,≺sc, :Object), and the substitution
σ = {x 7→ :Luke}. The partially instantiated BGPQ qσ is:

qσ(:Luke, y)← (:Luke, :uses, z), (z, τ, y), (y,≺sc, :Object)

BGPQ standard evaluation

The evaluation of a (partially instantiated) BGPQ is defined in terms of the homomor-
phisms that exist between its BGP body (Definition 2.5) and the interrogated RDF graph,
i.e., in terms of the possible matches of the BGP onto the RDF graph explicit triples.

Definition 2.11 (Standard BGPQ evaluation). The answer set to a partially instantiated
BGPQ qσ on an RDF graph G is:

qσ(G) = {ϕ(x̄σ) | G |=ϕ body(q)σ}

where x̄σ and body(q)σ denote the result of replacing the variables in x̄ and body(q),
respectively, according to σ.

If x̄ = ∅, q is a Boolean query and the answer to q is false when q(G) = ∅ and true
when q(G) = {〈〉}.

We remark that the evaluation of BGPQs allows blank nodes from the RDF graph
to appear in the answers. Also, with the standard evaluation, blank nodes occurring in
BGPQs have the same behaviour as existential variables.

Example 2.8 (Standard BGPQ evaluation). Consider the query q from Example 2.6, and
the graph Gex in Figure 2.1. The evaluation of q on the graph Gex yields the answer set:

q(Gex) = {〈:Luke, :pilotOf〉, 〈:Rey, :usesWeapon〉}

This evaluation is derived from ϕ1 and ϕ2, two homomorphisms from body(q) to Gex,
defined as follows:

• ϕ1 = {x 7→ :Luke, y 7→ :pilotOf, z 7→ :spaceship1}

• ϕ2 = {x 7→ :Rey, y 7→ :usesWeapon, z 7→ :bls, :bc 7→ :LightSaber}

30 CHAPTER 2. PRELIMINARIES

Note that in the above standard BGPQ evaluation example, ϕ2 maps the blank node
:bc to another value. We may want to avoid this behaviour of standard query evaluation,

and consider the blank node :bc in the query q as a value from the graph Gex, i.e., a
“constant” and not an existential variable; there is actually no way to write a simple query
asking for the entities of type :bc in Gex. Considering blank nodes in queries as constants
is enabled by non-standard query evaluation.

Non-standard query evaluation

Non-standard query evaluation relies on non-standard BGP to RDF graph homomor-
phisms:

Definition 2.12 (Non-standard BGP to RDF graph homomorphism). A non-standard ho-
momorphism from a BGP P to an RDF graph G is a substitution ϕ of Var(P) by Val(G) and
is the identity elsewhere, such that for any triple (s, p, o) ∈ P, the triple (ϕ(s), ϕ(p), ϕ(o))
is in G.

Based on this, we define:

Definition 2.13 (Non-standard evaluation). Let qσ be a partially instantiated BGPQ. The
non-standard evaluation to qσ on an RDF graph G is:︷︸︸︷

qσ(G) = {ϕ(x̄σ) | G |=ϕ body(q)σ}

where ϕ is a non-standard homomorphism from body(q) to G.

We remark that for a BGPQ q that contains no blank node,
︷︸︸︷
q(G) is equal to q(G). We

now consider the following example, where the query contains a blank node:

Example 2.9 (Non-standard evaluation). Consider again the BGPQ from the Example 2.6.
Its non-standard evaluation on Gex contains only one tuple: 〈:Luke, :pilotOf〉.

In this thesis, we adopt non-standard BGPQ evaluation by default, hence the
blank node in queries should always be considered as constants and not as existential
variables. It is always possible to transform a query q used with standard evaluation into
a query q′ used with non-standard evaluation in such a way that their evaluation coincide,

i.e.,
︷︸︸︷
q′(G) is equal to q(G) for any G. The transformation simply replaces each blank

node in q with fresh existential variable. For simplicity, we will not use the notation︷︸︸︷ anymore in the sequel of the text, i.e., q(G) will denote the non-standard evaluation
of q on G. We will also use the expression “query evaluation” instead of “non-standard
evaluation”, except when we want to emphasize the evaluation behaviour w.r.t. blank
nodes in the query.

Minimisation of a union of BGPQs

We also consider unions of BGPQs, denoted by UBGPQs, in which all the BGPQs have
the same arity. We extend this notion to unions of partially instantiated BGPQs, in which
the BGPQs are associated with a (possibly empty) substitution. The evaluation of a
UBGPQ on a graph G is the union of the evaluations of its BGPQs on G.

A union of BGPQs may contain some redundant BGPQs, in the sense that some
BGPQ may be contained in another:

2.1. RDF DATA MODEL AND SPARQL QUERY LANGUAGE 31

Definition 2.14 (BGPQ Containment). Given two BGPQs q1 and q2, we say that q1 is
contained in q2, when for each RDF graph G, q1(G) ⊆ q2(G).

So, in a union of BGPQs, removing a BGPQ contained in another BGPQ of the union
does not change the evaluation of the union on any RDF graph. We say that a UBGPQ is
minimal, when no such removal is possible:

Definition 2.15 (Minimal UBGPQs). A union of BGP queries is minimal, when none of
its BGPQs is contained in another.

The notion of BGP to RDF (non-standard) homomorphism is naturally extended to
that of a BGP to BGP (non-standard) homomorphism, by simply allowing variables in its
range. Then a homomorphism h from a BGPQ q1(x̄) ← P1 to a BGPQ q2(ȳ) ← P2 with
|x̄| = |ȳ| is a homomorphism h from P1 to P2 such that h(x̄) = ȳ. This notion is in turn
extended to partially instantiated BGPQs q′1 and q′2, respectively obtained from q1 and q2

by substitutions σ1 and σ2: a homomorphism h from q′1 to q′2 is a homomorphism from
σ1(P1) to σ2(P2) such that h(σ1(x̄)) = σ2(ȳ). It is well-known that q1 is contained in q2 if
and only if there is a homomorphism h from q2 and q1, and this result extends to partially
instantiated BGPQs.

Hence, an algorithm to produce minimal UBGPQs can be built on an algorithm check-
ing the existence of a BGPQ to BGPQ homomorphism as follows: while there are q1 and
q2 two distinct queries in the union such that q1 is contained in q2, remove q1 from the
union.

2.1.5 Query answering
The answers of a BGPQ on a graph w.r.t. a set of RDF entailment rule is defined as
the evaluation (Definition 2.11) of the query on the saturation of the graph by the RDF
entailment rules at hand:

Definition 2.16 (BGPQ answers). The set of answers of a BGPQ q on an RDF graph G
w.r.t. a RDF entailment rule set R, is denoted q(G,R) and is defined by:

q(G,R) = q(GR)

With general RDF entailment rules, the problem of query answering is not decidable
[Baget et al., 2011]. In contrast, if one uses the rule set RRDFS shown in Table 2.2, the
query answering problem is decidable, since the saturation of a graph is always finite.

There are two main techniques for solving the query answering problem; one based on
graph saturation and another based on query reformulation. Of course, these techniques
only work under certain conditions on the query, the rules and the graph.

The saturation-based query answering technique is based on Definition 2.16. It
assumes that the RDF graph is stored in a database system, capable of evaluating BGPQs.
The query answering process is then is divided into two steps:

1. Graph saturation. The saturation GR of the RDF graph G w.r.t. the RDF entail-
ment rules R is computed and stored in the database system.

2. Query evaluation. Every incoming query q is evaluated on the saturation of the
graph by the database system, i.e., the system computes q(GR).

The reformulation-based query answering technique is also composed of two steps:

32 CHAPTER 2. PRELIMINARIES

1. Query reformulation. Every incoming query q is reformulated into a reformulated
query Q, typically a union of BGPQs, using the ontology O of G and the rules R.
Hence, the reformulation step is performed without accessing data triples of G,

2. Reformulation evaluation The evaluation of Q on the graph G is performed by a
database system. It is guaranteed to return the answers of q on G w.r.t. R.

A reformulation Q of a query q w.r.t. an ontology O and a set of RDF entailment rules
R is such that for any RDF graph G with ontology O, the reformulation-based technique
for query answering is sound, i.e., Q(G) ⊆ q(GR), and complete, i.e., q(GR) ⊆ Q(G).

2.2 Data integration
The aim of data integration [Doan et al., 2012, Lenzerini, 2002, Abiteboul et al., 2011] is
to provide a uniform interface to a multitude of data sources. This interface is a global
schema (or mediated schema), i.e., a set of relations, on which a user poses queries. The
relations of the global schema are connected by semantic mappings with the data sources.
In particular, we will consider the case when the mappings are specified through view
definitions [Halevy, 2000, Halevy, 2001].

There are two main approaches for answering queries on the global schema. The first
one, called the warehousing approach, materializes the global schema data using data
provided by the sources. Hence it reduces the problem of query answering to standard
database query evaluation on the materialization. In contrast, in the mediation-based
approach, data remains in the sources; the query on the global schema is rewritten into
(sub-)queries on the sources, whose results may be processed and assembled within a
mediator query engine. In this thesis, we mostly investigate the mediator approach.

Below, we first recall in Section 2.2.1 the theory of data integration, while Sec-
tion 2.2.2 presents the Global As View integration framework and Section 2.2.3, the Local
As View framework. Section 2.2.4 introduces the natural generalization of these frame-
works: the Global Local As View integration.

2.2.1 Theory of data integration
This presentation of data integration systems mainly follows the definitions presented in
[Lenzerini, 2002]. We begin with the definition of a data integration system:

Definition 2.17 (Data Integration System). A data integration system I is triple 〈G,S,M〉
where:

• G is the global schema

• S is the source schema

• M is the set of mappings between S and G, such that each mapping is a formula of
the form:

∀x̄ qS(x̄){ qG(x̄)

where qS (resp. qG) is a query belonging to LM,S, the source query language for
mappings (resp. LM,G, the global query language for mappings) and is called the
body (resp. head) of the mapping. The logical symbol{ may have different inter-
pretations as we discuss shortly below.

2.2. DATA INTEGRATION 33

We recall some common notions of mappings interpretations:

Definition 2.18 (Mapping interpretations). Let m be a mapping qS(x̄) { qG(x̄) between
S a source schema and G a global schema, and D (resp. B) an instance of S (resp. G).
We say that D and B satisfy the mapping m, depending on its interpretation:

• when m is sound,{ is interpreted as→ (logical implication), i.e.,

qS(D) ⊆ qG(B);

• when m is complete,{ is interpreted as←, i.e.,

qS(D) ⊇ qG(B);

• when m is exact, m is both sound and complete i.e.,{ is interpreted as↔, or,

qS(D) = qG(B).

In the data integration literature, assuming that the mappings are sound (but possibly
not exact) is often denoted as the Open World Assumption (OWA); it is natural when a
large, possibly dynamic set of sources are integrated. In contrast, considering that all
mappings are exact is known as the Closed Word Assumption (CWA). This setting is
natural, for instance, when we query a database of relations together with a set of views
materialized from the same relations.

Definition 2.19 (Integration System Instance). Given D an instance of the source schema
of the data integration I = 〈G,S,M〉, we say that B is a global instance of I w.r.t. D, if
it holds that:

• B is an instance of the global schema G,

• D and B satisfy each mapping ofM.

Given an instance of the source schema, we are interested in the certain answers
i.e., those that are sure to be part of the query result for all global instances.

Definition 2.20 (Certain Answers). Let q be a query on a data integration system I =

〈G,S,M〉 and D an instance of S. We define the certain answers of q on I w.r.t. D as
the set of tuples which are answers of q on every global instance of I w.r.t. D. We denote
these certain answers by q(I,D).

As mentioned above, the (certain) answers to a query can be computed either by
materializing the global instance or by rewriting the query posed on the global schema
into a query posed on the source schema, in which case we rely on:

Definition 2.21 (Query Containment and Equivalence). Let I = 〈G,S,M〉 be a data
integration system and q1, q2 be two queries, each being either in terms of S or G. We say
that q1 is contained in q2 w.r.t. I, when for all D instance of S, it holds that:

q1(D,I) ⊆ q2(D,I)

where for i ∈ {1, 2}, qi(D,I) denotes the answers of qi on D, if qi is in terms of S, or the
certain answers of qi on I w.r.t. D, otherwise.

The queries q1 and q2 are equivalent when q1 is contained in q2 and q2 is contained
in q1.

34 CHAPTER 2. PRELIMINARIES

A rewriting of a query q on the global schema, is a query qr on the source schema,
which is contained in q. Ideally, the rewriting qr should be equivalent to q; however,
depending on the integration system, such a query may not exist. Thus, we are interested
in the rewritings that are maximal in a language of query rewritings:

Definition 2.22 (Maximally contained rewriting). Let I = 〈G,S,M〉 be a data integra-
tion system and Lr be a query language on S, called the rewriting language. Given a
query q posed in terms of G, a query qr in Lr is a maximally contained rewriting of q in
I w.r.t. Lr, when:

• qr is contained in q w.r.t. I,

• for all q′r in Lr such that q′r is contained in q, it holds that q′r is contained in qr.

In the next two sections, we study the two cases of data integration systems whose
mappings are seen as views, namely:

• Global As View data integration systems, where the global schema is relational and
the global query language for mappings LM,G is restricted to atomic queries on the
global schema (Section 2.2.2),

• Local As View data integration systems, where the source schema is relational and
the source query language for mappings LM,S is restricted to atomic queries on the
source schema (Section 2.2.3).

In both cases, we make the Open World Assumption, in other words we assume
that the mappings are sound.

2.2.2 Global As View data integration
In Global As View integration systems, the global schema G is relational and consists of
a set of atoms V1,V2, . . . ,Vn termed views. The mapping setM contains view definitions
having the following form:

qS(x̄i){ Vi(x̄i)

with 1 ≤ i ≤ n. We slightly change the mapping notation from Definition 2.17 to use a
view name instead of the a query name in the mapping head, without any consequence on
the semantics. Notice that several mappings can have the same view name in their head.

Definition 2.23 (Conjunctive unfolding). Let q be a conjunctive query on the views
V1,V2, . . . ,Vn, such that

q(x̄)←
∧

1≤ j≤m

V j(ū j)

where for all 1 ≤ j ≤ m, V j is a view among V1, . . . ,Vn and ū j is a tuple of constants and
variables, with the same arity as V j. An unfolding of q is a query defined by:

qr(x̄)←
∧

1≤ j≤m

σ j(body(q j
S
))

where σ j is the substitution defined by x̄ j 7→ ū j (the other variables being replaced with
fresh variables), such thatM contains the following mappings, for 1 ≤ j ≤ m :

q j
S
(x̄ j){ V j(x̄ j).

2.2. DATA INTEGRATION 35

In the above, LM,S, the source query language of mappings, is left unconstrained on
purpose; this allows, for instance, to have queries in qS that are not defined in a relational
language. For the purpose of this section, we will rather consider that S is a relational
schema, and the queries qS are FOL queries. Thus, a conjunctive unfolding is also a FOL
query.

In GAV integration systems under OWA, finding the certain answers of a conjunctive
query is easily solved using query unfolding:

Property 2.1 ([Abiteboul et al., 2011]). Under the Open World Assumption i.e., map-
pings inM are sound, let q be a conjunctive query on the views V1,V2, . . . ,Vn. Then qr,
the union of the unfoldings of q, is a maximally contained rewriting of q in the integra-
tion system w.r.t. FOL queries. Further, qr computes the certain answers i.e., for all D
instance of the views, qr(D) = q(D,I).

Equivalently, the canonical extensions of the views can be materialized to get the
certain answers on GAV integration systems under OWA.

Definition 2.24 (Canonical Extensions). Given an instance D of the source schema, we
define ED the canonical extensions of the views of I w.r.t. D by:

ED = {Vi(ā) | ā ∈ qS(D), 1 ≤ i ≤ n and qS(x̄){ Vi(x̄) ∈ M}

Property 2.2 ([Abiteboul et al., 2011]). Under OWA, given an instance D of the source
schema and a conjunctive query q over the views, the following holds:

q(D,I) = q(ED).

2.2.3 Local As View data integration
In Local As View integration systems, the source schema S is relational and consists of a
set of views V1,V2, . . . ,Vn. Further, each LAV mapping fromM is of the form:

Vi(x̄i){ qG(x̄i).

Instances of the source schema are commonly called extensions of the views. Below,
we will only consider sound LAV mappings (OWA). In the literature, such mappings
have also been called view definitions. Below, we will use the notation Vi(x̄i) → qG(x̄i),
to emphasize that{ corresponds to logical implication.

Example 2.10 (LAV integration system). We describe Iex, a sample LAV integration
system. Its source schema S contains three relations Emp(eID, name, dID), Dept(dID,
cID, country), Salary(eID,amount), where eID, dID and cID are respectively identifiers
for employees, departments and companies. Iex has two sound mappings (each qG is
replaced by its body, to simplify the notation):

V1(eID, name, country)→ Emp(eID, name, dID),Dept(dID, “IBM′′, country)

V1 provides the names of IBM employees and where they work, and

V2(eID, amount)→ Emp(eID, name, “R&D′′), S alary(eID, amount),

V2 contains the salaries of employees in R&D departments. As a consequence of the Open
World Assumption, no single view is expected to bring all the information specified by its
associated query. For instance, V1 describes some IBM employees, but there may be other
such employees absent from V1. Similarly, V2 may or may not contain information about
employees present in V1 .

36 CHAPTER 2. PRELIMINARIES

The following example shows that it is not always possible to find an equivalent
rewriting of query in a LAV integration system.

Example 2.11. Consider the query:

q(n, a)← Emp(e, n, d),Dept(d, c, “France′′), S alary(e, a)

on the integration system Iex above. The query does not have an equivalent rewriting
using V1 and V2, because V1 only provides IBM employees working in France, while V2

only has salaries of employees of R&D departments. A maximally contained rewriting
(Definition 2.22) brings all the query answers that can be obtained through the given set
of views; the rewriting may be not be equivalent to q (but just contained in q). In our
example, the query:

qr(n, a)← V1(e, n, ”France”),V2(e, a)

is a maximally contained rewriting of q in Iex w.r.t. conjunctive queries on the views; it
returns employees of French IBM R&D departments with their salary, clearly a subset of
q’s answers.

A remarkable result [Abiteboul and Duschka, 1998] holds for (unions of) conjunctive
queries ((U)CQs):

Theorem 2.1 (Conjunctive LAV Rewriting). Let I = 〈G,S,M〉 be a LAV integration
system such that G is a relational schema, LM,G is the set of conjunctive queries on G,
and Lr is the set of unions of conjunctive queries on the views in S. Let q be a union
of conjunctive queries on the views. If qr is a maximally contained rewriting of q in I
w.r.t. Lr, then for all D instances of S, qr(D) is equal to q(D,I).

Computing a maximally contained rewriting in a LAV integration system is more
complicated than in a GAV integration system. A notable algorithm is Minicon, proposed
in [Pottinger and Halevy, 2001], which can be used to compute such rewritings of con-
junctive queries. Its running time is O(|q|k|M|)|q|, where |q| is the number of atoms in the
conjunctive query, k is the maximal number of atoms in mapping heads, and |M| is the
number of mappings.

2.2.4 Global Local As View data integration
We have so far presented the assumptions which enable computing the certain answers
of a query through rewriting in GAV and LAV integration systems. We now present
the natural generalization of these integration frameworks: global-local-as-view (GLAV)
integration systems [Friedman et al., 1999]. A GLAV integration system I = 〈G,S,M〉
is such that G is a relational schema and M contains only GLAV mappings of the form
qS(x̄)→ qG(x̄), where qG is a conjunctive query.

Given a GLAV integration system I = 〈G,S,M〉, we can define a GAV integration
system IGAV = 〈V,S,MGAV〉, called the GAV integration from I and a LAV integration
system ILAV = 〈G,V,MLAV〉, called the LAV integration from I, such that for each
mapping m = qS(x̄) → qG(x̄) inM, there exists a unique view name Vm of arity |x̄| in the
schemaV, and:

• MGAV contains the mappings qS(x̄)→ Vm(x̄);

• MLAV contains the mappings Vm(x̄)→ qG(x̄).

2.2. DATA INTEGRATION 37

Intuitively, the integration system IGAV defines how to populate the extensions of
the views in ILAV . Together, they imitate the GLAV integration system I. Using the
Property 2.2, we obtain:

Property 2.3. Let D be a instance of the source schema S and q be a conjunctive query
on the global schema G. It holds that:

q(D,I) = q(ED,ILAV)

where ED is the canonical extensions of views of IGAV w.r.t. D.

Example 2.12. Assume a source schema S holds the relations Person(eID, name) and
Contract(eID, dID, country) with information about people and about work contracts at
IBM, and a global schema G holds the relations Emp(eID, name, dID) and Dept(dID,
cID, country) with employees and departments. We define m, a GLAV mappings from S
to G, by:

m = Person(e, n),Contract(e, d, c)→ Emp(e, n, d′),Dept(d′, ”IBM”, c),

where d′ is an existential variable of the head of m representing a department; in other
words, this mapping hides the department provided by the source from the global schema.
Using this mapping, we define the GLAV integration system I = 〈G,S,M〉, with M =

{m}.
Using a view name Vm(eID, name, country) and the following mappings:

mGAV = Person(eID, name),Contract(eID, dID, country)→ Vm(eID, name, country),

mLAV = Vm(eID, name, country)→ Emp(eID, name, dept′),Dept(dept′, ”IBM”, country),

we obtain the GAV system from I:

IGAV = 〈{Vm},S, {mGAV}〉

and the LAV system from I:
ILAV = 〈G, {Vm}, {m}〉

(See Figure 2.3).

Global schema S
Emp(eID, name, dID), Dept(dID, cID, country), Salary(eID,amount)

LAV: Vm(eID, name, country)→ Emp(eID, name, dID), Dept(dID, “IBM”, country)
GAV: Person(eID, name), Contract(eID, dID, country)→ Vm(eID, name, country)

Person(eID, name), Contract(eID, dID, country)
Data source D

Figure 2.3: Example of GLAV mapping.

Importantly, unlike GAV mappings, GLAV ones do not require all variables of qG to
be answer variables; this is not the case of dept′ in the head of m above. This makes inte-
gration more powerful. For example, suppose that 〈1,“John Doe”,“France”〉 is contained
in Vm according to IGAV . Then in ILAV , Vm exposes this tuple in the global schema G
as: Emp(1,“John Doe”,x),Dept(x,“IBM”,”France”), stating that John Doe works for a

38 CHAPTER 2. PRELIMINARIES

department x located in France. Here, x is an existential variable (called “labeled null”
in [Abiteboul et al., 1995]); the GLAV mapping states the existence of such a department
in the global schema, even if its identifier is unknown (because it is not provided by Vm).
Therefore, John Doe is a certain answer to a query asking for all employees in IBM de-
partments, based on the above GLAV mapping. This answer cannot be found using GAV
mappings.

Query rewriting techniques from LAV and GAV integration systems are composed
to obtain one for GLAV systems. To obtain answers in a GLAV integration system I,
a rewriting in the LAV integration performed within I needs to be unfolded in the GAV
integration from I (Definition 2.23), replacing every occurence of a view symbol Vm with
the body of the mapping query defining the view in IGAV . Evaluating the resulting query
(potentially over different data sources) computes the answers.

Property 2.4. Let q be a conjunctive query on G and qLAV
r a maximally contained rewrit-

ing of q in ILAV w.r.t. the set of unions of conjunctive queries on the view names in
{Vm | m ∈ M}. Let qr be the union of the unfoldings in IGAV of each conjunctive query in
the union of qLAV

r . Then:

• qr is a maximally contained rewriting in I w.r.t. the set of UCQs on S;

• qr computes the certain answers of q in I i.e., for all D instance of the source
schema S:

q(D,I) = qr(D)

Proof. We first prove the second point (qr computes the certain answers of q in I). For
all D instance of S, we have:

q(D,I) = q(ED,ILAV) (Property 2.3)
= qLAV

r (ED) (Theorem 2.1)
= qr(D) (Property 2.2)

The first point is a direct consequence of the second. �

2.3 Summary
In the course of this chapter, we have first introduced the definitions of RDF graph, RDFS
ontology, with RRDFS the RDFS entailment rule set, BGP query evaluation and answering.
These definitions will be intensively used in the next chapters, in which the main topic is
the problem of BGP query answering on RDF graphs w.r.t. RRDFS. Secondly, we have pre-
sented some results about query answering in data integration systems. They will be used
in Chapter 4 for data integration using an RDF global schema with RDFS constraints.

Chapter

3
RDF query answering

This chapter is devoted to query answering techniques on RDF graphs with general BGP
queries. In Section 3.1, we situate our work with respect to the state of the art. Then, we
present two main contributions. First, a sound and complete query reformulation algo-
rithm, which exploits a partition of RDFS entailment rules into assertion and constraint
rules (Section 3.2). Second, a novel RDF storage layout, namely TCP, which combines the
two well-known T and CP layouts (Section 3.3). For both contributions, we detail the ex-
periments carried out to assess our theoretical and algorithmic results. The material pre-
sented here comes from [Buron et al., 2019, Buron et al., 2020a], whereas Section 3.2.1
and Section 3.2.8 are new.

3.1 Motivation and state of the art
In this section, we first compare RDFS to description logics, a prominent family of on-
tological languages, and emphasize the metamodeling capabilites of RDFS, which are
generally not provided by description logics. Then we present a short state of the art on
BGPQ answering based on query reformulation and on storage layouts for RDF graphs.

3.1.1 RDF representations
Most representation and reasoning formalisms used to describe knowledge bases are
based on first-order logic (FOL). However, FOL entailment is undecidable in general,
hence many formalisms correspond to restricted fragments of FOL, for which entail-
ment is decidable. Introduced in the 80’s, Description Logics (DLs) [Baader et al., 2007]
are a family of languages specially designed to represent and reason with ontological
knowledge. They mostly correspond to decidable fragments of FOL and each specific
DL achieves a specific tradeoff between expressivity and tractability of reasoning. Given
a vocabulary composed of concept (or class) names and role (or property) names, a set
of constructors associated with a specific DL allows one to define complex concepts and
roles. Then, a DL knowledge base (KB) is composed of a TBox (the schema-level, or ter-
minological / ontological knowledge), which is a set of axioms, in the form of inclusions
between possibly complex concepts (respectively roles), and an ABox (the assertion-level,
or factual knowledge), which is a set of facts asserting that an individual is an instance

39

40 CHAPTER 3. RDF QUERY ANSWERING

of a concept or connecting two individuals by some role. Even if DLs have their own
syntax, a DL knowledge base (KB) can be seen as a FOL theory (i.e., a set of FOL
sentences). Concept and roles names are translated into unary and binary predicates, re-
spectively, and individuals are translated into constants. Then a TBox is composed of
formulas that can be seen as “entailment rules”, more precisely formulas of the form
∀x (body[x] → head[x]), where x is a free variable (respectively a pair of free variables)
in body and head for a concept inclusion (respectively for a role inclusion), and body and
head are the FOL translation of concepts (respectively roles) involved in the inclusion.

Whereas there is a strict separation between concept names, role names and individ-
uals in DLs, RDF does not enforce such constraint: an IRI may act as a class, a property
and an individual in the same graph (such a property is called punning in OWL 2, the sec-
ond version of the Web Ontology Language). Hence, in RDF, there is no strict boundary
between the schema and the assertion levels of a knowledge base: schema triples and data
triples are first of all triples. Moreover, differently from DLs, the RDF/RDFS specifica-
tion allows to represent unknown values (blank nodes) in both data and schema triples.
From a FOL perspective, an RDF graph is a set of atoms built on a single ternary pred-
icate expressing the notion of triple, whose arguments are constants (IRIs or literals) or
existentially quantified variables (blank nodes). Note that we will use a similar translation
to transform BGPs into CQs in Section 4.3.

The factual assertions contained in an ABox are naturally translated into RDF data
triples, as shown in the following table:

Assertion DL RDF

Concept/Class C(a) (:a, τ, :C)
Role/Property R(s, o) (:s, :R, :o)

In this table, we first remark that individuals in DLs are translated into IRIs (for sim-
plicity, we ignore here the distinction between literals and IRIs). Concept names and role
names are also translated into pairwise distinct IRIs, which are also distinct from the IRIs
used for the individuals. Because of the strict separation between concepts, roles and
individuals in DLs (and, less importantly, the possible presence of blank nodes in RDF
triples), the inverse translation (from RDF data triples to ABoxes) is not always possible.

Intuitively, in a knowledge base, metamodeling consists of expressing assertions on
elements of its “schema”, which are then seen as individuals that can be described. Hence,
metamodeling in DLs would require that the concepts and roles, which are elements of
the schema of a DL knowledge base, are treated as individuals. As already mentioned,
concept and role names are strictly separated from individuals, therefore DL knowledge
bases do not allow for metamodeling. Even if a TBox expresses constraints on roles and
concepts, these constraints are not assertions, in the sense that they cannot be queried.
On the contrary, RDF graphs have inherent metamodeling capabilities. First, we have
seen that RDFS constraints already use a form of metamodeling. For example, the triples
(:Luke, τ, :Jedi) and (:Jedi,≺sc, :Person) require metamodeling capabilities, since :Jedi ap-
pears as a class in the first triple (so :Jedi is part of the schema) and as subject in the
second.

We distinguish between two levels of metamodeling in an RDF graph (inspired by
[Giacomo et al., 2011]):

3.1. MOTIVATION AND STATE OF THE ART 41

• Domain metamodeling is the ability for user-defined IRIs (as opposed to RDF(S)
built-in IRIs) to act, in the same graph, (i) as a property or a class in some triples,
and (ii) as the subject or the object in other triples. This ability of domain metamod-
eling is crucial to express RDFS triples as exemplified above, to create metaclasses,
i.e., classes of classes, e.g., (:Jedi, τ, :SWCharacterCategory) and to assert proper-
ties of classes or properties, e.g., (:Jedi, :createdBy, ”George Lucas”).

• Full metamodeling is the above ability for all IRIs, i.e., extended to RDF(S) built-in
IRIs.

We would like to emphasize that the metamodeling capabilities of RDF graphs have a
genuine interest if the knowledge they allow to express can be queried. This justifies the
study of general BGP queries, which allow to take full advantage of them.

The full metamodeling capabilites are exploited by the RDFS standard itself, as the
next example shows:

Example 3.1 (Metamodeling in RDFS). The standard RDF semantics [RDF, 2014b] in-
cludes the following triples:

rdf:type rdf:type rdf:Property
rdf:type rdfs:range rdfs:Class
rdfs:subClassOf rdfs:range rdfs:Class
rdfs:subClassOf rdfs:domain rdfs:Class

where the built-in IRIs rdfs:Class and rdf:Property represent respectively the class of all
the classes and the class of all the properties. The first triple defines the property rdf:type
as an instance of the class rdfs:Property. The three other triples define some schema
constraints for the built-in properties rdf:type and rdfs:subClassOf.

DLs and RDF have two different ways of expressing ontological knowledge and rea-
sonning on it. In DLs, ontological knowledge is expressed in the TBox as a set of axioms,
and each axiom can be translated into a specific “entailment rule” in FOL. In RDFS, the
ontology is made of assertions in the form of schema triples, while the set of entailment
rules (RRDFS, Figure 2.2) remains fixed.

We recall that RDFS ontologies allow to express four kinds of constraints (subclass,
subproperty, domain and range). Such knowledge is at the core of most of DLs, for in-
stance the lightweight DL-LiteR [Calvanese et al., 2007], also called DL-LiteHcore in
[Artale et al., 2009]. The four RDFS constraints can be translated into the following DL
entailment rules, provided that the sets of names used for classes (C) and properties (R)
are disjoint:

Constraints RDFS constraint DL entailment rules
Subclass (:C1,≺sc, :C2) C1(x)→ C2(x)
Subproperty (:R1,≺sp, :R2) R1(x, y)→ R2(x, y)
Domain (:R,←↩d, :C) R(x, y)→ C(x)
Range (:R, ↪→r, :C) R(x, y)→ C(y)

Of course, most DLs allow to express richer constraints, by defining complex concepts
and/or roles.

In this chapter, we study RDFS reasoning on RDF graphs with full metamodeling
capabilities. Although the expressivity of RDFS is limited to simple constraints, we will
see that efficiently supporting RDFS reasoning with full metamodeling presents some
difficulties.

42 CHAPTER 3. RDF QUERY ANSWERING

Finally, let us mention that the extension of DLs to support domain metamodeling was
studied, notably in [Giacomo et al., 2011], where it is shown that domain metamodeling
can be added to expressive DLs, while keeping decidability of conjunctive query answer-
ing, and even without complexity increase, like for SHIQ, the core OWL 2. More gener-
ally, the OWL language provides an RDF syntax for expressing DLs [OWL, a, OWL, b]
and reuses the vocabulary of RDFS. The richest fragment, namely OWL-Full, supports
full metamodeling, but entailment is undecidable [Motik, 2005].

3.1.2 Query answering techniques
As outlined in the preceding chapter (Section 2.1.5), two main techniques for answering
BGPQs on RDF graphs have been investigated in the literature, based on the saturation
of graphs by the rules, or on the reformulation of the query by the rules. Both of them
reduce query answering to query evaluation.

Saturation-based query answering

The saturation-based query answering technique directly follows from the definition of
query answers (Section 2.1.4 for BGPQs). Indeed, it trivially follows from Definition 2.16
that q(G,R) = q(GR),i.e., query answering reduces to query evaluation on the saturated
RDF graph. Saturation-based query answering is typically fast, because it only requires
query evaluation, which can be efficiently performed by a data management engine. How-
ever, saturation takes time to be computed, requires extra space to be stored, and must
be recomputed or maintained (e.g., [Broekstra and Kampman, 2003, Bishop et al., 2011,
Goasdoué et al., 2013]) upon updates.

Most RDF data management systems rely on saturation-based query answering. They
either allow computing graph saturation, e.g., Jena1 and RDFox [Nenov et al., 2015], or
simply assume that RDF graphs have been saturated before being stored, e.g., DB2RDF2.

Reformulation-based query answering

The reformulation-based query answering technique also reduces query answering to
query evaluation, however, the reasoning needed to ensure complete answer sets is per-
formed on the query instead of the RDF graph. A given query q, asked on an RDF graph G
w.r.t. a set R of entailment rules, is reformulated into a query q′ such that q(G,R) = q′(G)
holds.

In the literature, reformulation-based query answering techniques have been proposed
for diverse fragments of the SPARQL, a W3C’s recommendation [SPA, 2013]. The BGP
queries (Definition 2.10) form the core of SPARQL. In this thesis, we will mainly work
with BGPQs, partially instantiated BGPQs and unions of them, without any restric-
tion. The ability of BGPQs to query jointly schema and data triples is a key feature
of SPARQL. Some works consider query reformulation for sub-languages of BGPQs,
which weaken or even suppress this ability: by forbidding triple patterns with an RDFS
property, we obtain the BGPQ-data fragment; more restrictive, the BGPQ-CQ fragment
also forbids triple patterns in which a variable appears in a property or class position
i.e., respectively, triples of the form (, y,) and (, τ, z), where y and z are variables.

1https://jena.apache.org/documentation/inference/
2https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.swg.im.

dbclient.rdf.doc/doc/c0059661.html

https://jena.apache.org/documentation/inference/
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.swg.im.dbclient.rdf.doc/doc/c0059661.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.swg.im.dbclient.rdf.doc/doc/c0059661.html

3.1. MOTIVATION AND STATE OF THE ART 43

Note that BGPQ-data still allows to query some domain metamodeling, e.g., one can
query for “all classes containing, at least, an instance together with their creators” using
q(y, z)← (x, τ, y), (y, :createdBy, z).

Meta
modeling

Queries

BGPQ-CQ BGPQ-data BGPQ SPARQL

DL

[Adjiman et al., 2007,
Calvanese et al., 2007]
[Rodriguez-Muro et al., 2013]
[Urbani et al., 2014]
[Lanti et al., 2017]

[Bischof et al., 2014] [Kontchakov et al., 2014]

DMeta/data
[Goasdoué et al., 2011]
[Goasdoué et al., 2013]
[Bursztyn et al., 2015]

[Arenas et al., 2009]

DMeta
[Kaoudi et al., 2008]
[Urbani et al., 2011]
[Pinto et al., 2011]

FMeta Section 3.2

Table 3.1: Reformulation-based query answering related work.

In Table 3.1, we classify work about reformulation-based query answering according
to the supported metamodeling abilities of graphs (rows) and the considered SPARQL
fragment (columns), and illustrate this classification with notable papers. In rows, we
consider increasing metamodeling capabilities: DL means graphs without metamodeling
capabilities, DMeta and FMeta stand for domain and full metamodeling, respectively, and
DMeta/data corresponds to domain modeling with the constraint that queries must match
data triples of the graph. In columns, we consider increasingly richer query languages,
namely BGPQ-CQ, BGPQ-data, BGPQ, SPARQL.

Let us start with the DL row. The papers [Adjiman et al., 2007, Calvanese et al., 2007,
Rodriguez-Muro et al., 2013, Lanti et al., 2017] consider the BGPQ-CQ query fragment,
where query reformulation can be computed using algorithms akin to classical backward
chaining, and results in a union of BGPQs (UBGPQs in short). Queries in the BGPQ-
data fragment for OWL 2 QL knowledge bases can be reformulated as schema-agnostic
reformulations in a large fragment of SPARQL, which notably allows for property paths
[Bischof et al., 2014]. In [Kontchakov et al., 2014], SPARQL queries on both the ABox
and the TBox of DL knowledge bases represented in OWL can be reformulated into
SPARQL queries (which use data triple patterns only). Note however that the SPARQL
queries considered in this article are built using three pairwise disjoint sets of variables,
which must only match, respectively, the concepts, the roles and the instances of a DL
knowledge base. Hence, such queries do not allow to fully query a knowledge base sup-
porting metamodeling. Finally, [Urbani et al., 2014] studies a hybrid approach for query
answering with BGPQ-CQs, where some one-triple queries are chosen for materialization
and reused during reformulation-based query answering.

Concerning the second row (DMeta/data), graphs containing domain metamodeling
from which data triples are queried using BGPQ-data have been studied in
[Goasdoué et al., 2011, Goasdoué et al., 2013]. In these works, the reformulation is a
union of partially instantiated BGPQs, since the variables in class and property position
may be instantiated during the reformulation process. In this chapter, we use the same
target language for reformulation, however with general BGPQs. Reformulation-based
query answering is well-suited to frequently updated RDF graphs, because it uses the
queried RDF graph at query time (and not its saturation). However, reformulated queries

44 CHAPTER 3. RDF QUERY ANSWERING

tend to be more complex than the original ones, thus costly to evaluate. To mitigate
this, [Bursztyn et al., 2015] provides an optimized reformulation framework in which an
incoming BGPQ is reformulated into a join of unions of BGPQs (JUBGPQ in short).
This approach being based on a database-style cost model, JUBGPQ reformulations can
be very efficiently evaluated. In [Arenas et al., 2009], SPARQL queries are reformulated
into nested SPARQL queries, which allow for nested regular expressions in the property
position of query triples. These reformulations provide sound and complete query an-
swering on restricted RDF graphs with RDFS ontologies: these graphs must not contain
blank nodes. While such nested reformulations are more compact, the queries we produce
are more usable in practice, since their evaluation can be delegated to any off-the-shelf
RDBMS, or to an RDF engine even if this engine is unaware of reasoning; moreover, we
do not impose restrictions on RDF graphs.

Concerning the third row (DMeta), graphs with domain metamodeling queried by
one-triple BGPQs have been considered for RDFS reasoning [Kaoudi et al., 2008], and
more powerful reasoning [Urbani et al., 2011]. A reformulation algorithm is proposed
in [Pinto et al., 2011] on DL-LiteR knowledge base extensions for domain metamodeling
based on [Giacomo et al., 2011].

In Section 3.2, we introduce a reformulation algorithm for general BGPQs on RDF
graphs with full metamodeling, up to natural conditions corresponding to the notion of
an RDFS ontology.

In practice, some commercial RDF data management systems use reformulation-
based query answering but the systems we have tested return incomplete answer sets
in the RDF setting we consider3, e.g., AllegroGraph4 and Stardog 5 miss answers because
they cannot evaluate triples with a variable property on the schema, while Virtuoso6 only
exploits subclass and subproperty constraints, but not domain and range ones. Our exper-
iments concerning these systems are reported in the Appendix (Section A.1.2).

3.1.3 RDF storage layouts
In Section 3.3, we consider the problem of efficiently querying an RDF database, which
stores RDF graphs in a persistent way (e.g., on a disk) and allows multiple users to query
these graphs, including updating them. As previously, we focus on answering general
BGPQs on a graph, which allow for variables in any subject, property, or object position
of triple patterns.

Answering a query on an RDF database requires translating it into a description of
work that the execution engine must perform; without loss of generality, we call this
work description a query plan, as is common in the database literature. Specifically, we
distinguish a logical plan specifying the operations to use to answer the query, from a
physical (executable) plan, derived from the logical one with the help of statistics and
cost parameters characterizing the data (size, value frequencies etc.) and the execution
environment (hardware etc.)

Both plans start by accessing some data from the store and continue with various
other processing steps (e.g., filtering, combining multiple inputs etc.). The set of persis-
tent data structures that hold the data of an RDF graph in the database are called stor-

3See discussion at
https://team.inria.fr/cedar/rdfs-reasoning-experiments/.

4https://franz.com/agraph/support/documentation/current/reasoner-tutorial.html
5https://www.stardog.com/docs/#_owl_rule_reasoning
6http://docs.openlinksw.com/virtuoso/rdfsparqlruleimpl

https://team.inria.fr/cedar/rdfs-reasoning-experiments/
https://franz.com/agraph/support/documentation/current/reasoner-tutorial.html
https://www.stardog.com/docs/#_owl_rule_reasoning
http://docs.openlinksw.com/virtuoso/rdfsparqlruleimpl

3.1. MOTIVATION AND STATE OF THE ART 45

age layout. When a set of frequent BGPQs are known in advance, they can be used
to design a workload-aware layout, which optimizes data access for these queries, e.g.,
[Bornea et al., 2013, Goasdoué et al., 2011, Pham et al., 2015]. Lacking a known query
set, a workload-unaware layout is used, with the two most popular being the following:

• T (triple) that stores all triples together as a single (s, p, o) collection of sub-
ject, predicate, object tuples, e.g., [Broekstra et al., 2002, Wilkinson et al., 2003,
Neumann and Weikum, 2010];

• CP (class and property) that separates the data for each property and class, i.e.,
as (i) a collection of (s, o) pairs for every property p, and (ii) a collection of all the
resources s that have a given type c in the graph, e.g., [Abadi et al., 2007].

Indexes can be added to both the T and the CP layouts.
In our work, we focus on translating BGPQs into logical plans on workload-unaware

layouts. We target logical plans for generality, since physical plans strongly depend on
the RDF database implementation, the presence of indexes etc.; these decisions are best
left to the optimization and execution layer, and we do not study them here. However,
the choice of the logical plan can massively impact the space of alternatives (physical
plans) considered for the query, and thus the query answering performance. In partic-
ular, we translate our plans in SQL (if the RDF database has a relational back-end) or
SPARQL (if a native RDF engine evaluates them), which enables to retain all benefits of
system-specific optimization.

In Section 3.3, we introduce a novel workload-unaware layout, namely the TCP lay-
out, which combines the data structures of both T and CP layouts. We argue that this
new layout is particularly interesting for answering general BGPQs, as well as unions of
BGPQs resulting from query reformulation. To assess the behaviour of the new TCP lay-
out, we carry out experiments and compare the reformulation-based and saturation-based
query answering performances on the three layouts (i.e., T, CP and TCP).

Prior works such as [Abadi et al., 2007, Bornea et al., 2013],
[Neumann and Weikum, 2010, Pham et al., 2015, Sidirourgos et al., 2008] only consid-
ered saturation-based query answering. While [Abadi et al., 2007] advocated the CP lay-
out, [Sidirourgos et al., 2008] nuanced the analysis: in a row store, they show that proper
indexing (such as we used here) can significantly improve performance using T, while
graphs containing many distinct properties may hurt CP performance. The optimized T
layout of [Weiss et al., 2008], indexed on all (s, p, o) permutations, has been used for
reformulation-based query answering in [Goasdoué et al., 2011, Goasdoué et al., 2013,
Bursztyn et al., 2015]. Storage was optimized based on a known workload by creating
materialized views in [Goasdoué et al., 2011].

Query reformulation has also been used with the CP layout in [Buron et al., 2019,
Bursztyn et al., 2016]. Both [Bursztyn et al., 2015] for T and [Bursztyn et al., 2016] for
CP explored how to express a reformulated query as a join of several subqueries, so as to
minimize the evaluation cost through the RDBMS. A simplified version of TCP is briefly
mentioned in [Chebotko et al., 2009], which studies generic SPARQL-to-SQL translation
functions, as an example of possible relational layout. However, [Chebotko et al., 2009]
does not consider the performance impact of this layout; nor do they consider RDFS
entailment.

Optimized storage layouts [Bornea et al., 2013, Pham et al., 2015],
[Wilkinson et al., 2003] or indexes [Udrea et al., 2007, Atre et al., 2010] have been in-
vestigated to limit joins by storing e.g., the values of several properties for a given sub-

46 CHAPTER 3. RDF QUERY ANSWERING

Rule Entailment rule
rdfs2 (p,←↩d, c), (s, p, o)→ (s, τ, c)
rdfs3 (p, ↪→r, c), (s, p, o)→ (o, τ, c)
rdfs7 (p1,≺sp, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (c1,≺sc, c2), (s, τ, c1)→ (s, τ, c2)

(a) Assertion rules Ra.
Rule Entailment rule
rdfs5 (p1,≺sp, p2), (p2,≺sp, p3)→ (p1,≺sp, p3)
rdfs11 (c1,≺sc, c2), (c2,≺sc, c3)→ (c1,≺sc, c3)
ext1 (p,←↩d, c1), (c1,≺sc, c2)→ (p,←↩d, c2)
ext2 (p, ↪→r, c1), (c1,≺sc, c2)→ (p, ↪→r, c2)
ext3 (p,≺sp, p1), (p1,←↩d, o)→ (p,←↩d, o)
ext4 (p,≺sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)

(b) Constraint rules Rc.

Figure 3.1: The partition of the RDFS entailment rule set RRDFS

.

ject together. They allow translating several BGPQ triples into a single table (or index)
access.

3.2 Complete RDFS query reformulation
In this section, we first study in more detail the properties of RDFS entailment rules,
according to a partition of RRDFS into two subsets: the set Ra of assertion rules and the
set Rc of constraint rules. These subsets are defined in Figure 3.1. Then, we introduce a
new query reformulation algorithm, which is sound and complete for the set of rules Rc.
This algorithm can be used in conjunction with an existing query reformulation algorithm
for Ra [Goasdoué et al., 2013]. Together, they form a sound and complete reformulation
algorithm for the whole RRDFS rule set.

3.2.1 Preliminaries: RDFS ontology and RRDFS rule set properties
To study the behaviour of RRDFS applied to an RDF graph, let us consider its partition into
Ra, the subset of assertion rules, and Rc, the subset of constraint rules (see Figure 3.1).
At first glance, one may have the intuition that assertion rules entail only data triples,
while constraint rules entail only schema triples. However, we will see that this intuition
is false about assertion rules (and holds true about constraint rules). Hence, we will
introduce some restrictions on RDF graphs under which this intuition is verified. This will
yield some interesting properties of reasoning, which we will exloit in our reformulation
technique.

First, we observe that constraint rules from Rc can only be applied on schema triples
and entail only schema triples.

Property 3.1 (Constraint rule properties). Let G be an RDF graph, with O its RDFS
ontology, and r be a rule in Rc, such that G |=ϕ body(r). Then it holds that:

1. ϕ(body(r)) ⊆ O

3.2. COMPLETE RDFS QUERY REFORMULATION 47

2. ϕ(head(r)) is a set of schema triples.

Second, we observe that the body of each assertion rule from Ra is composed of two
triple patterns and at least one of them has an RDFS property. The rule head contains
one triple pattern with the property τ, except for the rule rdfs7, which has a variable in
property position. Without restrictions on the RDF graphs, a rule from Ra can be applied
using either schema and data triples together, or schema triples only, and it may entail
either a data triple or a schema triple, as illustrated by the next example:

Example 3.2 (Possible reasoning with Ra on unrestricted RDF graphs). We illustrate the
different cases of assertion rule applications, according the kind of triples used in input
and entailed.

1. Schema and data triples used together to entail data triples have been exposed in
the Example 2.4.

2. Schema and data triples used together to entail schema triples. Let the graph G =

{(:PeopleSubGroupOf,≺sp,≺sc), (:Jedi, :PeopleSubGroupOf, :Person)}; we can ap-
ply the rule rdfs7 on G to entail the schema triple: (:Jedi,≺sc, :Person).

3. Schema triples only to entail data triples. Consider the graph G = {(←↩d, ↪→r

, rdfs:Class), (:pilotOf,←↩d, :Person)}, we can apply the rule rdfs3 on G to entail
the data triple: (:Person, τ, rdfs:Class).

4. Schema triples only to entail schema triples. Consider the graph G = {(≺sp,≺sp

,≺sc), (:uses,≺sp, :pilotOf)}, we can apply the rule rdfs7 on G to entail the data
triple: (:uses,≺sc, :pilotOf).

In the following, we introduce some restrictions on RDF graphs in order to avoid
schema triples to be entailed by rules in Ra (cases 2 and 4 of Example 3.2). We first
define such graphs:

Definition 3.1 (Ra-compliant graph). An RDF graph G is Ra-compliant, if, for all r ∈ Ra

and homomorphism ϕ from body(r) to GRRDFS , ϕ(head(r)) is a data triple.

Hence, when a graph G is Ra-compliant, G and GRa have the same ontology.
Among the rules in Ra, only rdfs7 can entail a schema triple, which motivates the

following syntactic restriction on property ≺sp:

Definition 3.2 (Restriction on ≺sp). An RDF graph G fulfills the restriction on ≺sp, if no
triple in G with property ≺sp has an object which is an RDFS property (≺sc, ≺sp,←↩d or
↪→r).

It is easy to check that when a graph fulfills the restriction on ≺sp, it also is Ra-
compliant. However, applications of rules in Ra may still use only schema triples, even if
the graph satisfies the property of being Ra-compliant or the stronger restriction on ≺sp,
see e.g., case 3 of Example 3.2. We define the more demanding notion of graph with split
reasoning to exclude this possibility:

Definition 3.3 (Graph with split reasoning). An RDF graph G with an ontology O is a
graph with split reasoning if

• G is Ra-compliant, and

48 CHAPTER 3. RDF QUERY ANSWERING

Data triples Schema triples

Ra

Ra

Rc

Figure 3.2: Kinds of triples involved and produced by RDFS rules on Ra-compliant
graphs. The red arrow is avoided on graphs with split reasoning.

• for all r ∈ Ra and homomorphism ϕ such that GRRDFS |=ϕ body(r), ϕ(body(r)) con-
tains at least a data triple.

We call these graphs “with split reasoning”, because intuitively schema reasoning is
separated from data reasoning, i.e., constraint rules (resp. assertion rules) are applied
on and entails only schema (resp. data) triples. Moreover, assertion rules use data and
schema triples, but there are able to entail all data triples with the schema triples from G’s
ontology, without requiring schema triples entailed by constraint rules (see next Theorem
3.1). Graphs with split reasoning do not have the complete capabilities of full meta-
modeling enabled by the RDF standards (see Example 3.1). The case 3 of Example 3.2
shows a graph that is not with split reasoning and which contains the RDF standards
triple (←↩d, ↪→r, rdfs:Class). Forbidding the capabilities of full metamodeling of RDFS
ontologies is a syntactical way to obtain graphs with split reasoning, it is the purpose of
first-order restriction:

Definition 3.4 (First-order restriction). We say that an RDF graph G satisfies the first-
order (FO) restriction, if in its RDFS ontology, built-in properties (i.e., ≺sc,≺sp,←↩d, ↪→r,
τ) do not occur in subjects or objects of triples. Such ontology is called an FO ontology.

The FO restriction on graphs are quite natural, since it ensures that ontologies do not
define new constraints on the built-in properties.

Property 3.2. When an RDF graph satisfies the first-order restriction, it is a graph with
split reasoning.

We also remark that graphs satisfying the first-order restriction are still capable of
expressing domain metamodeling. Note that the restriction on ≺sp is incomparable with
the first-order restriction and is not sufficient to ensure split reasoning. This is illustrated
by case 3 of Example 3.2, where G fulfills the restriction on ≺sp but does not ensure split
reasoning.

Finally, we sum up the previous results in the Figure 3.2, where the arrows are labeled
by rule sets. Each arrow starts from the kind of triples (data and/or schema) on which the
rules from the corresponding rule set can be applied and points to the kind of the triples
entailed by these rules. All arrows are possible on Ra-compliant graphs (and for graphs
under restriction on ≺sp), but the red arrow is impossible for graphs with split reasoning
(and under first-order restriction).

The following theorem makes explicit a property implicitely used in the technical
report [Goasdoué et al., 2012] (associated with the paper [Goasdoué et al., 2013]), where

3.2. COMPLETE RDFS QUERY REFORMULATION 49

RDF graphs have FO-ontologies, and states it for the larger class of RDF graphs with split
reasoning.

Theorem 3.1. Let G be an RDF graph with split reasoning, then GRRDFS and GRa have the
same set of data triples.

Note that the previous theorem requires the split reasoning property. It does not hold
in general for Ra-compliant graphs, as illustrated by the next example:

Example 3.3. Let G be the following graph, which is Ra-compliant (because it fulfills the
restriction on ≺sp) :
G = {(≺sc,≺sp, :includedIn), (:StarShip,≺sc, :Vehicle), (:Vehicle,≺sc, :Object)},
then GRRDFS , the saturation of G w.r.t. RRDFS, contains these additional triples:

:StarShip :includedIn :Vehicle
:Vehicle :includedIn :Object
:StarShip ≺sc :Object
:StarShip :includedIn :Object

So the data triple (:StarShip, :includedIn, :Object) belongs to GRRDFS , but it does not belong
to GRa , since Ra does not define the transitivity of the property ≺sc. It is a counter-example
to the applicability of Theorem 3.1 to Ra-compliant graphs.

Using the previous results, we show that the saturation process w.r.t. RRDFS on Ra-
compliant graphs can be divided into a first step of saturation w.r.t. Rc, and a second step
of saturation w.r.t. Ra. If the graph is more specifically with split reasoning, then the
saturation steps can also be reversed.

Theorem 3.2 (Partitioning reasoning). Let G be an Ra-compliant graph, then the follow-
ing holds:

GRc∪Ra = (GRc)Ra (3.1)

Moreover, if G is with split reasoning, then the following holds:

GRc∪Ra = (GRa)Rc (3.2)

In the next sections of this chapter, we will assume that all RDF graphs are with
split reasoning. This will allow us to exploit the equality 3.2: since the saturation of
such graph can be performed using first Ra then Rc, query reformulation can follow the
opposite order, using first Rc then Ra. In Section 3.2.8 we will relax this assumption by
considering query answering on Ra-compliant graphs.

3.2.2 Overview of the query reformulation technique
Let us first notice that the body of any BGPQ q can be divided into three disjoint subsets
of triples (s, p, o), according to the nature of property p:

• the set bc of RDFS triples where p is a built-in RDFS property (≺sc, ≺sp,←↩d, ↪→r);

• the set bd of data triples where p is τ or a user-defined property;

• and the set bv where p is a variable.

50 CHAPTER 3. RDF QUERY ANSWERING

We denote by qc, qd and qv the subqueries respectively associated with these subsets. If bv

is not empty, q can be reformulated as a union of BGPQs, say Q, composed of all BGPQs
that can be obtained from q by substituting some (possibly none) variables occurring in
a property position in qv with one of the four built-in RDFS properties. Intuitively, each
BGPQ in Q corresponds to a choice on how triple patterns with a variable in property
position will be mapped to a graph: those substituted here will be mapped to schema
triples, while the others will later be mapped to data triples. We assume this preprocessing
step to simplify the explanations, even if in practice it may not be performed. Then, the
answers to any BGPQ q′ ∈ Q can be computed in two steps:

1. compute the answers to the subquery q′c, i.e., with body restricted to the RDFS
triples; if q′c has no answer, neither has q′. Otherwise, each answer to q′c defines a
(partial) instantiation σ of the variables in q′.

2. compute the data-level answers to each partially instantiated query (q′d,v)σ, where
q′d,v is the subquery with body b′d ∪ b′v, and return the union of all the obtained
answers.

To summarize, Step 1 computes answers to RDFS triples, which allows one to produce
a set of partially instantiated queries that no longer contain RDFS triples. Hence, these
queries can then be answered using RDF data only, which is the purpose of Step 2. Our
two-step query reformulation follows this decomposition.

It furthermore considers the partition of the set RRDFS into Rc and Ra studied in the
preceding section (Section 3.2.1). Indeed, following Theorem 3.1, the reason of this
decomposition is that query answering remains complete if, on the one hand, only Rc is
considered to answer queries made of RDFS triples (Step 1: for any graph G, q′c(G,R) =

q′c(G,Rc)), and, on the other hand, only Ra is considered to answer queries on data triples
only (as already observed in [Goasdoué et al., 2013]).

Our query reformulation technique does not directly work with the entailment rules as
backward-chaining (and related techniques in ontology-mediated query answering) would
do. With ontologies expressed in the DL-Lite family, a CQ q is usually reformulated into
a union of queries Q, using the axioms of the ontology (the TBox), but independently
from any data [Poggi et al., 2008, Calvanese et al., 2007]. In the more general framework
of existential rules, query reformulation can be sketchily described as follows, using a
refomulation operator [König et al., 2013]: at each step of the reformulation process, the
reformulation operator unifies part of a query q with (part of) a rule head, and produces
a new query from q by replacing the unified part of q with the body of the rule (after
application of the unifier). Expressed in our framework, the property to be satisfied by
reformulation is the following, for any query q and RDF graph G (including the ontology):

q(G,R) = Q(G)

However, the above techniques cannot be applied with RDF entailment rules because
for instance, rules rdfs5 and rdfs11 (Figure 3.1), which express the transitivity of the
subclass and subproperty relations, would lead to an infinite process, since no assumption
can be made on the ontology, as it is part of the RDF graph. Note that the two previously
mentioned rules are not the only ones that would lead to an infinite reformulation process,
as illustrated by the next example:

Example 3.4. Consider the constraint rule ext1:

(p,←↩d, c1), (c1,≺sc, c2)→ (p,←↩d, c2)

3.2. COMPLETE RDFS QUERY REFORMULATION 51

and the query
q(x, y)← (x,←↩d, y)

Applying a classical reformulation operator to q using ext1 leads to the new query:

q1(x, y)← (x,←↩d, y1), (y1,≺sc, y)

The same process can be applied on the query, since its body contains a triple with the
property←↩d. So, we can endlessly apply this process on the new queries, leading to the
following sequence of queries:

n ≥ 1, qn(x, y)← (x,←↩d, yn), (yn,≺sc, yn−1), . . . , (y2,≺sc, y1), (y1,≺sc, y)

We notice that no query of this sequence is contained into another (in the classic database
sense), so there is no reason to stop the reformulation process. Similarly, an infinite
reformulation process could be obtained from the assertion rule rdfs9 and the query
q(x, y)← (x, τ, y).

Finally, note that classical reformulation techniques can be used when queries are re-
stricted to the BGPQ-data or BGPQ-CQ fragments, which implies that only Ra reasoning
is needed: in this case, RDFS entailment rules can be replaced by logical rules built from
ontology triples (see the discussion in Section 3.1.1), which ensure the termination of
reformulation.

Instead of using directly RRDFS, a set of so-called reformulation rules is specifically
associated with Rc, and similarly for Ra (these sets are introduced in Section 3.2.3 and
Section 3.2.5 respectively), using the ontology O of the queried graphs. We can now
outline the two-step query reformulation algorithm.

Step 1. Reformulation w.r.t. Rc: Given a fixed ontology O, the input BGPQ q is first
reformulated into a union Qc of partially instantiated BGPQs, using the set of reformu-
lation rules associated with Rc (see Figure 3.3). This reformulation step is sound and
complete for query answering w.r.t. Rc, i.e., for any graph G of ontology O:

q(G,Rc) = Qc(G)

Step 2. Reformulation w.r.t. Ra: As explained above, Qc consists of queries that do
not contain RDFS triples. It is given as input to the query reformulation algorithm of
[Goasdoué et al., 2013], which relies on a set of reformulation rules associated with Ra to
output a union Qc,a of partially instantiated BGPQs. This reformulation step being sound
and complete for query answering on the data triples of an RDF graph, we obtain the
soundness and completeness of the two-step reformulation (next Theorem 3.5):

q(G,Rc ∪ Ra) = Qc(G,Ra) = Qc,a(G)

3.2.3 Reformulation rules associated with Rc

We now detail reformulation rules associated with Rc, see Figure 3.3. Each reformu-
lation rule is of the form input

output , where the input is composed of a triple from a partially
instantiated query qσ and a triple from O and the output is a new query obtained from qσ
by instantiating a variable, removing the input triple, or replacing it by one or two triples.

52 CHAPTER 3. RDF QUERY ANSWERING

(s, v, o) ∈ qσ
qσ∪{v→≺sc}

,
(s, v, o) ∈ qσ

qσ∪{v→≺sp}

,
(s, v, o) ∈ qσ

qσ∪{v→←↩d}
,

(s, v, o) ∈ qσ
qσ∪{v→↪→r}

(3.3)

(s, p, o) ∈ qσ, (s, p, o) ∈ O
qσ[(s, p, o)/−]

(3.4)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ[(v1,←↩, v2)/(v1,≺sp, p), (c,≺sc, v2)]

(3.5)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v1→p}

(3.6)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v2→c}

(3.7)

(v,←↩, c) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v→p}

(3.8)

(p,←↩, v) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v→c}

(3.9)

(v,←↩, c) ∈ qσ, (p,←↩, c) ∈ O
qσ[(v,←↩, c)/(v,≺sp, p)]

(3.10)

(p,←↩, v) ∈ qσ, (p,←↩, c) ∈ O
qσ[(p,←↩, v)/(c,≺sc, v)]

(3.11)

(s,←↩, c1) ∈ qσ, (c,≺sc, c1) ∈ O, c , c1

qσ[(s,←↩, c1)/(s,←↩, c)]
(3.12)

(p,←↩, o) ∈ qσ, (p,≺sp, p1) ∈ O, p , p1

qσ[(p,←↩, o)/(p1,←↩, o)]
(3.13)

(v1,≺, v2) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v1→c1}

(3.14)

(v,≺, c2) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v→c1}

(3.15)

(c1,≺, v) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v→c2}

(3.16)

(c1,≺, o) ∈ qσ, (c1,≺, c2) ∈ O, c1 , c2

qσ[(c1,≺, o)/(c2,≺, o)]
(3.17)

(s,≺, c2) ∈ qσ, (c1,≺, c2) ∈ O, c1 , c2

qσ[(s,≺, c2)/(s,≺, c1)]
(3.18)

Figure 3.3: Reformulation rules for Rc using a partially instantiated query qσ w.r.t. an
RDFS ontology O. For compactness, we factorize similar rules, using the symbol←↩ to
denote either←↩d or ↪→r, and ≺ to denote either ≺sc or ≺sp.

3.2. COMPLETE RDFS QUERY REFORMULATION 53

The notation old triple/new triple(s) means that old triple is replaced by new triple(s). The
specific case where old triple is simply removed is denoted by old triple/−. The notations
for the triples themselves are the following:

• a bold character like c, p, s or o represents an IRI or a blank node

• a v character represents a variable of the query

• s and o characters represent either variables, IRIs or blank nodes, in subject and
object positions respectively.

The four rules (3.3) substitute a variable in a property position by one of the four built-
in RDFS properties. All the other rules take as input query triples of the form (s, p, o),
where p is a built-in RDFS property. Rule (3.4) simply removes from qσ an (instantiated)
input triple found in O.

Query triples with a domain (←↩d) or range property (↪→r) are processed by Rules
(3.5)-(3.13). Given a triple (p,←↩, c) in O (where ←↩ stands for ←↩d or ↪→r), Rule (3.5)
replaces a query triple of the form (v1,←↩, v2) by two triples (v1,≺sp, p) and (c,≺sc, v2).
This rule relies on the fact that a triple (p′,←↩, c′) belongs to the saturation of the RDF
graph by Rc if and only if p′ is a subproperty of p (including p = p′) and c is a subclass
of c′ (including c = c′), as stated by Lemma 3.1 in the following section 3.2.4. Rules
(3.10) and (3.11) are based on the same lemma: given a triple (p,←↩, c) in O, Rule (3.10)
(respectively Rule (3.11)) replaces a query triple of the form (v,←↩, c) (respectively (p,←↩
, v)) by the triple (v,≺sp, p) (respectively (c,≺sc, v)). However, we do not assume that the
ontology ensures the reflexivity of the subclass and subproperty relations, hence Rules
(3.6)-(3.9), whose sole purpose is to deal with the cases c = c′ and p = p′ in the lemma.
Should the ontology contain axiomatic triples ensuring the reflexivity of subclass and
subproperty, these four rules would be useless. Note that a natural candidate rule to deal
with the case where c , c′ and p , p′ in the lemma would have been the following:

(p′,←↩, c′) ∈ qσ, (p,←↩, c) ∈ O
qσ[(p′,←↩,c′)/(p′,≺sp,p),(c,≺sc,c′)]

(3.19)

However, such a rule is flawed: it would blindly consider all triples (p,←↩, c) from
O, which causes a combinatorial explosion. Instead, we propose Rules (3.12) and (3.13),
which use p′ and c′ as guides to replace (p′,←↩, c′) by other domain / range triples based
on the subproperty-chains from p′ and the subclass-chains to c′.

Query triples with a subclass (≺sc) or subproperty (≺sp) property are processed by
Rules (3.14)-(3.18). Rules (3.14), (3.15), (3.16) instantiate a variable using an ontology
triple of the form (c1,≺, c2). In Rule (3.14), which considers a query triple with two
variables and instantiates one of these variables, we arbitrarily chose to instantiate the
first variable. The two last rules (3.17) and (3.18) allow to go up or down in the class and
property hierarchies.

3.2.4 Reformulation algorithm associated with Rc

The reformulation algorithm itself, denoted by Reformulatec, is presented in Algo-
rithm 1. The set of queries to be explored (named toExplore) initially contains q. Ex-
ploring a query consists of generating all new queries that can be obtained from it by
applying a reformulation rule (lines 7–9). Newly generated queries are put in the set

54 CHAPTER 3. RDF QUERY ANSWERING

named produced. The algorithm proceeds in a breadth-first manner, exploring at each
step the queries that have been generated at the previous step. When no new query can
be generated at a step, the algorithm stops, otherwise the next step will explore the newly
generated queries (line 11). Note the use of a set named explored, which contains all
explored queries; the purpose of this set is to avoid infinite generation of the same queries
when the subclass or subproperty hierarchy contains cycles (other than loops), otherwise
it is useless. Importantly, not all explored queries are returned in the resulting set, but
only those that no longer contain RDFS triples (lines 5–6). Indeed, on the one hand
RDFS triples that contain variables are instantiated by the rules in all possible ways using
the ontology, and, on the other hand, instantiated triples that belong to the ontology are
removed (by Rule (3.4)). Finally, note that a variable v in a triple of the form (s, v, o) is
replaced by a built-in RDFS property in some queries (by Rule (3.3)) and left unchanged
in others as it may also be later mapped to a user-defined property in the RDF graph G.

Algorithm 1: Reformulatec.
Input : BGPQ q and ontology O
Output: the reformulation of q with the rules from Fig. 1

1 result← ∅; toExplore← {q}; explored← ∅
2 while toExplore , ∅ do
3 produced← ∅
4 for each qσ ∈ toExplore do
5 if qσ does not contain any RDFS triple then
6 result← result ∪ {qσ}

7 for each RDFS triple t in qσ do
8 for each q′σ obtained by applying a reformulation rule to t do
9 produced← produced ∪ {q′σ}

10 explored← explored ∪ {qσ}

11 toExplore← produced \ explored

12 return result

A simple analysis of the reformulation rule behaviour shows that the worst-case time
complexity of the algorithm Reformulatec is polynomial in the size of O and simply ex-
ponential in the size of q. More precisely:

Property 3.3. The algorithm Reformulatec runs in time O(|Val(O)|6|q|), where |q| is the
number of triples in the body of q.

The correctness of the algorithm relies on the following lemma (already mentioned
in the presentation of reformulation rules), which characterizes the saturated graph GRc .
We call ≺sc-chain (resp. ≺sp-chain) from s to o a possibly empty sequence of triples
(si,≺sc, oi) (resp. (si,≺sp, oi)) with 1 ≤ i ≤ n, such that s1 = s, on = o and, for i > 1,
si = oi−1. Since we do not enforce the reflexivity of the subclass relation, a triple (c,≺sc, c)
belongs to GRc if and only if there is a non-empty ≺sc-chain from c to c (which includes
the case (c,≺sc, c) ∈ G). The same holds for the subproperty relation.

Lemma 3.1. Let G be an RDF graph. It holds that:

• (c,≺sc, c
′) ∈ GRc iff G contains a non-empty ≺sc-chain from c to c′;

3.2. COMPLETE RDFS QUERY REFORMULATION 55

• (p,≺sp, p
′) ∈ GRc iff G contains a non-empty empty ≺sp-chain from p to p′;

• (p′,←↩d, c′) ∈ GRc iff G contains a triple (p,←↩d, c), a (possibly empty) ≺sp-chain
from p′ to p and a (possibly empty) ≺sc-chain from c to c′. The case for (p′, ↪→r

, c′) ∈ GRc is similar (←↩d is replaced by ↪→r in the above statement).

All blank nodes introduced by the reformulation rules, specifically refer to unknown
classes and properties they identify within the ontology at hand. This justifies the need of
using non-standard query evaluation (Definition 2.13), in this thesis.

Theorem 3.3. Let G be an RDF graph with ontology O and q be a BGP query. Let Qc be
the output of Reformulatec(q,O). Then:

q(G,Rc) = Qc(G) (3.20)

Qc(G) = Qc(G \ O) (3.21)

Example 3.5. Consider the following BGPQ asking which people use a vehicle of a
specific type and how they use it:

q(x, y)← (x, y, z), (z, τ, t), (y,≺sp, :uses), (t,≺sc, :Vehicle)

Its answer set on Gex (on Figure 2.1) w.r.t.RRDFS, which can be computed on (Gex)RRDFS

from Figure 2.2, is the following:

q(Gex,RRDFS) = {〈:Luke, :pilotOf〉}.

The output of Reformulatec(q,RDFS(Gex)) is:

Qc = {q′(x, :pilotOf)← (x, :pilotOf, z), (z, τ, :bc),
q′′(x, :usesWeapon)← (x, :usesWeapon, z), (z, τ, :bc)}

where q′ and q′′ can be obtained by first using Rule (3.15) on q’s triple (y,≺sp, :uses),
which binds y to :pilotOf or to :usesWeapon, yielding two queries; then, Rule (3.15)
is used again on the triple (t,≺sc, :Vehicle) of each query to bind t to :bc. Further,
these bindings produce the fully instantiated RDFS constraints (:pilotOf,≺sp, :uses) and
(:bC,≺sc, :Vehicle) in the first query, as well as (:usesWeapon,≺sp, :uses) and (:bC,≺sc

, :Vehicle) in the second query, which are removed by Rule (3.4).
The non-standard evaluation (Definition 2.13) of Qc on Gex, i.e., q′(Gex)∪q′′(Gex) pro-

vides the correct answer set {〈:Luke, :pilotOf〉}, whose only tuple results from q′. Using
standard evaluation (Definition 2.11), the incorrect answer 〈:Rey, :usesWeapon〉 would
also have been obtained from q′′, since under standard semantics q′′ asks for who is us-
ing a weapon of some type (this is the case of :Rey who is using a light saber) and not
who is using a weapon of the particular unknown type of vehicle designated by :bc in
Gex.

3.2.5 Reformulation with Ra

We present in this section reformulation with Ra, the set of assertion rules. We will
reuse the algorithm introduced in [Goasdoué et al., 2013], which is based on a set of
reformulation rules associated with Ra, and inspired our own algorithm of reformulation

56 CHAPTER 3. RDF QUERY ANSWERING

(s, v, o) ∈ qσ
qσ∪{v→τ}

(3.23)

(s, v, o) ∈ qσ, (p1,≺sp, p) ∈ O
qσ∪{v→p}

(3.24)

(s, τ, v) ∈ qσ, (c1,≺sc, c) ∈ O
qσ∪{v→c}

(3.25)

(s, τ, v) ∈ qσ, (p,←↩d, c) ∈ O
qσ∪{v→c}

(3.26)

(s, τ, v) ∈ qσ, (p, ↪→r, c) ∈ O
qσ∪{v→c}

(3.27)

(s, τ, c2) ∈ qσ, (c1,≺sc, c2) ∈ O
qσ[(s,τ,c2)/(s,τ,c1)]

(3.28)

(s, τ, c) ∈ qσ, (p,←↩d, c) ∈ O,
qσ[(s,τ,c)/(s,p,v)]

(3.29)

(s, τ, c) ∈ qσ, (p, ↪→r, c) ∈ O
qσ[(s,τ,c)/(v,p,s)]

(3.30)

(s, p2, o) ∈ qσ, (p1,≺sp, p2) ∈ O
qσ[(s,p1,o)/(s,p2,o)]

(3.31)

Figure 3.4: Reformulation rules for Ra using a partially instantiated query qσ and an
ontology O.

with Rc. However, the set of reformulation rules associated with Ra that we will adopt is
slightly different from the original one.

In [Goasdoué et al., 2013], query answering is restricted to instance-level queries,
i.e., queries are evaluated on the graph data triples only. As stated in Theorem 3.1, query
answering on the graph data triples can be performed by considering reasoning w.r.t. Ra

only. Hence, this previous work describes a reformulation algorithm taking as input a
BGPQ q and an RDF graph G with ontology O and returning a reformulated query Qa

such that:

q(GRa \ O) = Qa(G \ O) (3.22)

Note that GRa \ O is exactly the set of data triples of GRa .

We adapt the results of [Goasdoué et al., 2013] by:

• changing the set of reformulation rules such that (i) the reformulation algorithm
only requires the ontology as input, instead of the whole graph, and (ii) some re-
dundant rules are removed,

• considering reformulation for query answering on data and schema triples together.

We consider the reformulation rules shown in Figure 3.4. The notations and semantics
of the rules is the same as in Figure 3.3 (reformulation rules for Rc). Compared to the

3.2. COMPLETE RDFS QUERY REFORMULATION 57

reformulation rules in [Goasdoué et al., 2013]), we removed four rules that instantiate
query variables with values from the graph (rules (6), (8), (9) and (11) in the original set of
rules). The remaining rules take ontology triples as input. In Figure 3.4, the reformulation
rules from 3.23 to 3.27 bind a query variable in property or class position to a value from
the ontology or to τ, while the other rules replace a query triple having a constant in class
or property position with a another triple that “entails” it w.r.t. Ra and O. The first set of
rules is necessary to fully apply the other rules during the reformulation process on query
triples of the form (x, τ, y) and (x, y, z).

Finally, Reformulatea, the reformulation algorithm w.r.t. Ra, takes a BGP query and
an ontology as input. It is similar to Reformulatec, with the following differences: (i) the
reformulation rules w.r.t. Ra are considered instead of the ones w.r.t. Rc, (ii) the conditions
about RDFS triples are removed, i.e., in Algorithm 1:

• the block at lines 5-6 is replaced with the line 6,

• the for loop at line 7 iterates on all triples in qσ.

Hence, Reformulatea returns all the queries that have been explored during its exe-
cution, similarly to a classical reformulation algorithm, and contrarily to Reformulatec,
which only returns explored queries without RDFS triples.

Reformulatea is correct and complete w.r.t. Ra for Ra-compliant graphs:

Theorem 3.4. Let q be a BGP query and O an RDFS ontology, let Qa denote the output
of Reformulatea on q and O; then, for any Ra-compliant graph G, with O its ontology, the
following holds:

q(G,Ra) = Qa(G)

If G is moreover with split reasoning, Equation 3.22 also holds.

The following example illustrates the behaviour of Reformulatea:

Example 3.6. Consider the query q(x)← (x, τ, :Vehicle) with the graph Gex in Figure 2.1
and Oex its ontology. The answer set of q on Gex w.r.t. Ra is q(GRa

ex) = {〈:spaceship1〉}. The
output of Reformulatea(q,Oex) is:

Qa = {q(x)← (x, τ, :Vehicle),
q′(x)← (x, τ, :bc),
q′′(x)← (y, :pilotOf, x)}

where q′ is obtained by applying the Rule (3.28) on the only triple of q and the triple
(:bc,≺sc, :Vehicle) ∈ Oex and q′ is obtained by applying the Rule (3.30) on the only triple
of q′ and the triple (:pilotOf, ↪→r, :Vehicle) ∈ Oex. The non-standard evaluation of Qa on
G returns the correct answer, which is provided by q′ and q′′.

Equation 3.22 does not hold in general on Ra-compliant graphs, since, in that case, the
reformulation Qa needs to be evaluated (in a non-standard manner) on the whole graph,
i.e., including its ontology, in order to produce the complete answer set. A counter-
example to this equation is:

Example 3.7. Given G a Ra-compliant graph containing only the RDFS triple (↪→r, ↪→r

, rdfs:Class), the rule rdfs3 in Ra entails the triple (rdfs:Class, τ, rdfs:Class), when it
applies on G. Considering the query:

q(x)← (x, τ, rdfs:Class),

58 CHAPTER 3. RDF QUERY ANSWERING

the left part of Equation 3.22 is q(GRa \G) = 〈rdfs:Class〉, while its right part is
︷︸︸︷
Qa(∅) = ∅,

where Qa, the reformulation of q w.r.t. Ra from Reformulatea, is:

Qa(x) = {q(x)(x, τ, rdfs:Class),
q′(x)(y, ↪→r, x)}.

3.2.6 Reformulation with Rc ∪ Ra

We now present a way to combine algorithms Reformulatec and Reformulatea in order to
obtain a sound and complete reformulation algorithm w.r.t. Rc ∪ Ra.

The adapation of Reformulatea to an input UBGPQ instead of a BGPQ is straightfor-
ward. Hence, denoting by Qc,a the output of Reformulatea(Qc,O), we obtain:

Theorem 3.5. Let G be an RDF graph with split reasoning and q be a BGPQ without
blank nodes. Let Qc,a be the reformulation of q by the 2-step algorithm described in
Section 3.2.2. Then:

q(G,Rc ∪ Ra) = Qc,a(G) = Qc,a(G \ O)

Proof.

q(G,Rc ∪ Ra) = q(GRc∪Ra) by definition
= q((GRa)Rc) using Theorem 3.2
= Qc(GRa) from Equation 3.20(
= Qc,a(G)

)
= Qc(GRa \ O) from Equation 3.21
= Qc,a(G \ O) from Equation 3.22

�

Example 3.8. Let q be the following query on the graph Gex in Figure 2.1, asking for
“those who pilot an object and the type of this object”:

q(x, t)← (x, :pilotOf, z), (z, τ, t)(t,≺sc, :Object)

Its reformulation w.r.t. Rc is:

Qc = {q1(x, :LightSaber)← (x, :pilotOf, z), (z, τ, :LightSaber),
q2(x, :Vehicle)← (x, :pilotOf, z), (z, τ, :Vehicle),
q3(x, :bc)← (x, :pilotOf, z), (z, τ, :bc)}

and the reformulation of Qc w.r.t. Ra is:

Qc,a = {q1(x, :LightSaber)← (x, :pilotOf, z), (z, τ, :LightSaber),
q2(x, :Vehicle)← (x, :pilotOf, z), (z, τ, :Vehicle),
q′2(x, :Vehicle)← (x, :pilotOf, z), (z, τ, :bc),
q′′2 (x, :Vehicle)← (x, :pilotOf, z), (y, :pilotOf, z),
q3(x, :bc)← (x, :pilotOf, z), (y, τ, :bc)}

The expected answers of q on Gex w.r.t. RRDFS are

q(GRRDFS
ex) = {〈:Luke, :Vehicle〉, 〈:Luke, :bc〉}

3.2. COMPLETE RDFS QUERY REFORMULATION 59

The first answer is returned by the non-standard evaluation of q′2 and q′′2 on Gex, while the
second one is returned by the non-standard evaluation of q3 on Gex.

One can observe that the union of BGPQs Qc,a contains some redundancy. Notably,
the queries q2 and q′2 are contained in q′′2 (Definition 2.14). Hence, the queries q2 and q′2
can be removed from Qc,a to form a minimal union of BGPQs (Definition 2.15).

Note that we have made the choice of reformulating w.r.t. Rc ∪ Ra by first reformu-
lating w.r.t. Rc, then w.r.t. Ra. Reversing the reformulation steps would have led to a
reformulation Qa,c, which has the property of being a sound and complete reformulation
w.r.t. Rc ∪ Ra, i.e., q(G,Rc ∪ Ra) = Qa,c(G), furthermore under a weaker condition on G:
G does not need to be with split reasoning, but only Ra-compliant. The properties of this
reformulation will be exposed in Section 3.2.8. In the current section, we presented the
reformulation Qc,a instead of Qa,c, because it has better computational properties. Indeed,
starting by reformulating a query q w.r.t. Rc allows one to reduce the number of values by
which variables of q will be instantiated during the reformulation process. This implies
that less reformulations are explored by the algorithm, leading to a more efficient execu-
tion. The decrease in the number of instantiated values concerns the variables that occur
in the RDFS triples of q. For instance, consider the query from Example 3.5:

q(x, y)← (x, y, z), (z, τ, t), (y,≺sp, :uses), (t,≺sc, :Vehicle)

Reformulating q w.r.t. Ra leads to blindly instantiate the variable t by all the superclasses
(of a class) in the graph according to the rule 3.25. Notably, t will be instantiated by
:Object, violating the constraint (t,≺sc, :Vehicle) in the query, hence Reformulatea outputs
BGPQs that will be later removed by Reformulatec. Starting by reformulation w.r.t. Rc

allows one to instantiate variables according to the RDFS constraints in the query, hence
to decrease the number of instantiations.

3.2.7 Experiments
We implemented our reformulation algorithm on top of OntoSQL (https://ontosql.
inria.fr), a Java platform providing efficient RDF storage, saturation, and query evalu-
ation on top of an RDBMS [Bursztyn et al., 2015, Goasdoué et al., 2013]; we used Post-
gres v9.6. To save space, OntoSQL encodes IRIs and literals into integers, and a dictio-
nary table which allows going from one to the other. It stores all resources of a certain
type in a one-attribute table, all subject, object pairs for each data property in a table, and
all schema triples in another table; the tables are indexed. Our server has a 2,7 GHz Intel
Core i7 and 160 GB of RAM; it runs CentOs Linux 7.5.

We generated LUBM∃ data graphs [Lutz et al., 2013] of 10M triples and restricted the
ontology to RDFS, leading to 175 triples (123 ≺sc, 5 ≺sp, 25←↩d and 22 ↪→r). We devised
14 queries having from 3 to 7 triples; one has no result, while the others have a few dozen
to three hundred thousand results. Each has 1 or 2 triples which match the ontology
(and must be evaluated on it for correctness), including (but not limited to) the generic
triple (x, y, z), which appears 7 times overall in our workload. Some of our queries are
not handled through reformulation by AllegroGraph and Stardog, nor by Virtuoso (recall
Section 3.1.2).

Figure 3.5 shows for each query: the size of the UBGPQ reformulation (in parenthesis
after the query name on the x axis), i.e., the number of BGPQs it contains; the reformula-
tion time (with both Rc and Ra; all times are in ms); the time to translate the reformulation
into SQL; the time to evaluate this SQL query; the total query answering time through

https://ontosql.inria.fr
https://ontosql.inria.fr

60 CHAPTER 3. RDF QUERY ANSWERING

Figure 3.5: Query answering times (in ms) through reformulation and saturation.

reformulation, and (for comparison) through saturation. Note the logarithmic y axis. De-
tails of our experiments are available in the appendix, Section A.1.2. The reformulation
time is very short (0.2 ms to 55 ms). Unsurprisingly, the time to convert the reformulation
into SQL is closely correlated with the reformulation size. The overhead of our approach
is quite negligible, given that the answering time through reformulation is close to the
SQL evaluation time.

As expected, saturation-based query answering is faster; however, saturating this
graph took more than 1289 seconds, while the slowest query (Q9) took 46 seconds. As
in [Goasdoué et al., 2013], we compute for each query Q a threshold nQ which is the
smallest number of times we need to run Q, so that saturating G and running Q nQ times
on GR is faster than nQ runs of Q through reformulation; intuitively, after nQ runs of Q,
the saturation cost amortizes. For our queries, nQ ranged from 29 (Q9) to 9648 (Q5),
which shows that saturation costs take a while to amortize. If the graph or the ontology
changes, requiring maintenance of the saturated graph, reformulation may be even more
competitive.

3.2.8 Reformulation for Ra-compliant graphs
In the previous sections, we studied reformulation of BGPQ w.r.t. the RRDFS rule set, for
RDF graphs with split reasoning (Definition 3.3). In Section 3.2.1, we pointed out some
interesting properties of reasoning with RRDFS on Ra-compliant graphs (Definition 3.1),
a set of graphs that strictly contain those with split reasoning. In this section, we will
show how to adapt our reformulation technique to cope with Ra-compliant graphs. In
these graphs, data triples may also be entailed from schema triples only, using rules in
Ra, in addition to all entailments exhibited for graphs with split reasoning, as pictured in
Figure 3.2.

OnRa-compliant graphs, only the following equation of the two in Theorem 3.2 holds:

GRc∪Ra = (GRc)Ra (3.1 revisited)

This equation states that the saturation of a graph can be computed by a two-step
process: a saturation w.r.t. Rc followed by a saturation w.r.t. Ra. Reversing the saturation
steps is possible for graphs with split reasoning and is used to prove Theorem 3.5, which
states the soundness and completeness of the 2-step reformulation algorithm for graphs
with split reasoning. However, this algorithm is not complete for Ra-compliant graphs, as
shown by the next example:

3.2. COMPLETE RDFS QUERY REFORMULATION 61

Example 3.9 (Incompleteness of Qc,a). Consider the graph G containing the following
ontology triples (note that O = G, i.e., G has no data triples):

↪→r ↪→r rdfs:Class
:pilotOf ↪→r :Vehicle
:Vehicle ≺sc :Object

Its saturation GRa∪Rc contains the following triples, we remark that the G only entails
data by Ra:

↪→r ↪→r rdfs:Class
:pilotOf ↪→r :Vehicle
:Vehicle ≺sc :Object
:pilotOf ↪→r :Object (ext2 on (:pilotOf, ↪→r, :Vehicle) and (:Vehicle,≺sc, :Object)
:Object τ rdfs:Class (rdfs3 on (↪→r, ↪→r, rdfs:Class) twice)

Now, let the query q(x)← (x, τ, rdfs:Class). Assume its reformulationQc,a is computed
by considering Rc first, which yields Qc = q, then Ra. The output of Reformulatea(Qc,O)
is the following:

Qc,a = q(x)← (x, τ, rdfs:Class)
∪ q(x)← (z, ↪→r, x)

Then, the (non-standard) evaluation of Qc,a on G returns the single answer :Vehicle
and misses the answer :Object.

To recover completeness, still combining algorithms Reformulatea (w.r.t. Ra) and
Reformulatec (w.r.t. Rc), we reverse their application order on a given query q, whose
reformulation becomes Qa,c. In other words, given an ontology O and a BGPQ q, the
reformulation Qa,c of q is the output of Reformulatec(Reformulatea(q,O), O). The next
theorem states the soundness and completeness of this procedure.

Theorem 3.6. Let G be an Ra-compliant graph, with O its ontology, and q be a BGPQ.
Then:

q(G,Ra ∪ Rc) = Qa,c(G) = Qa,c(G \ O)

Proof.

q(G,Rc ∪ Ra) = q(GRc∪Ra) by definition
= q((GRc)Ra) from Equation 3.1
= Qa(GRc)
= Qa,c(G) from Equation 3.20
= Qa,c(G \ O) from Equation 3.21

�

We continue Example 3.9 to show the reformulation Qa,c in action:

Example 3.10. First, we compute Qa the reformulation of q w.r.t. Ra (equal to Qc,a in
Example 3.9), then we reformulate it w.r.t. Rc, which yields the following query (where >
denotes the empty set):

Qa,c = q(x)← (x, τ, rdfs:Class)
∪ q(:Vehicle)← >
∪ q(:Object)← >

62 CHAPTER 3. RDF QUERY ANSWERING

We easily check that the evaluation of Qa,c on G returns the complete answer set.

Finally, we point out that the two reformulations Qc,a and Qa,c of a query q on a graph
with split reasoning are equivalent.

3.3 RDF storage layouts for efficient query answering
We now study the impact of storage layouts on the efficiency of query answering. We
present BGPQ translations into logic query plans for the well-known T and CP layouts,
and for the novel TCP layout (recall Section 3.1.3). These translations are considered
for both classical query answering techniques, i.e., based on graph saturation and query
reformulation.

Our original contributions are the following:

1. We introduce the novel workload-unaware TCP layout, which combines the data
structures of both T and CP, and an associated algebraic translation of BGPQs into
logical plans over TCP.

2. We introduce summary-based pruning, an optimization technique of independent
interest, that reduces query answering costs on the T, CP and TCP layouts, both
when using graph saturation and query reformulation.

3. We experimentally validate the performance benefits of the TCP layout and trans-
lation, and of summary-based pruning, on a relational and a native RDF database.

Below, after some preliminaries, Sections 3.3.2 and 3.3.3 respectively recall alge-
braic query translations for the T and CP layouts. We explain why naı̈ve algebraic
translation on CP leads to poor performance, not only for general BGPQs (as noted
since [Sidirourgos et al., 2008]), but also for reformulated ones (whether general or not).
This is due to interleaved joins and unions, which limit the optimization opportunities in
the RDF database. At the same time, the T layout entails repeated self-joins of the whole
triple set, degrading performance on large graphs and complex queries (this motivated
introducing the CP layout [Abadi et al., 2007]). Sections 3.3.4 (translations for the TCP
layout) and 3.3.5 (summary-based pruning) present our technical contributions and Sec-
tion 3.3.6 details our experiments. Further details on the experiments can be found in the
appendix (Section A.2).

3.3.1 Preliminaries
In the following, we will consider RDF graphs with split reasoning (Definition 3.3) i.e., al-
lowing domain metamodeling, and we will use the following graph example:

Example 3.11 (Running example). Figure 3.6 shows a sample graph Gex, describing
articles and their authors; some articles are Open Access (:OpenArt), a subclass of which
are Green Open Access ones (:GOpenArt).

We will again consider reasoning w.r.t. the RDFS entailment rules RRDFS (see Fig-
ure 3.1) and, to reformulate a query w.r.t. RRDFS, we will consider the algorithm intro-
duced in Section 3.2.6. Further, from now on, we assume that (U)BGPQs, in particular
those produced through reformulation, are minimal as introduced in Section 2.1.4 and
illustrated at the end of Example 3.8.

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 63

:OpenArt ≺sc :Article
:GOpenArt ≺sc :OpenArt
:Prof ≺sc :Person
:teaches ←↩d :Prof
:author ↪→r :Person
:firstAuth ≺sp :author

:art1 :title “RDF storage”
:Alice :name “Alice”
:art1 :firstAuth :Alice
:Alice :teaches :algo101
:art1 :author :Bob
:Bob :name “Bob”
:art1 τ :GOpenArt

Figure 3.6: Sample RDF graph Gex (schema triples on left and data triples right).

Example 3.12 (Example query). Consider q the BGPQ asking who is writing which kind
of articles defined by:

q(x, y)← (z, :author, x), (z, τ, y), (y,≺sc, :Article).

Its evaluation on Gex is empty. However, the answer set of q on Gex w.r.t. RRDFS is:

q(Gex,RRDFS) = {〈:Alice, :GOpenArt〉,
〈:Alice, :OpenArt〉,
〈:Bob, :GOpenArt〉,
〈:Bob, :OpenArt〉}

Its reformulation w.r.t. RRDFS is:

Qc,a =

q(x, :OpenArt)← (z, :author, x), (z, τ, :OpenArt)
∪ q(x, :OpenArt)← (z, :firstAuth, x), (z, τ, :OpenArt)
∪ q(x, :OpenArt)← (z, :author, x), (z, τ, :GOpenArt)
∪ q(x, :OpenArt)← (z, :firstAuth, x), (z, τ, :GOpenArt)
∪ q(x, :GOpenArt)← (z, :author, x), (z, τ, :GOpenArt)
∪ q(x, :GOpenArt)← (z, :firstAuth, x), (z, τ, :GOpenArt)

It can be checked that Qc,a(Gex) = q(Gex,RRDFS).

3.3.2 BGPQ answering on the T layout
Let t(S , P,O) be the table storing the triples of a graph G for the T layout.

Saturation-based query answering

The saturation GRRDFS of G is stored in the table t. The algebraic translation of a BGPQ
q(x̄)← t1, . . . , tn on the T layout is:

T (q) = πq(./ jcond (αT (t1), . . . , αT (tn))

where αT , the query triple translation for the T layout, translates the i-th query triple
ti(si, pi, oi) into an algebraic expression of the form σscond(t), where t is the triple table,
and scond is a (possibly empty) set of selections over the attributes of t; specifically, if si

(respectively, pi, oi) is an IRI or a literal, scond contains a predicate of the form S = si

(and similarly for pi, oi); jcond is a conjunction of join predicates containing, for every
variable appearing in several positions (in one or several triples) in q, an equality between
the respective attributes in the αT (ti) triple translations; finally πq is a projection on the
attributes from the α(ti)’s corresponding to the answer variables of q, or the values to
which such variables are bound in case of a partially instantiated query.

64 CHAPTER 3. RDF QUERY ANSWERING

Example 3.13. The example query translates on the T layout as:

πt1.O,t2.O(./t1.S =t2.S ,t2.O=t3.S (σP=:author(t), σP=τ(t), σP=≺sc∧O=:Article(t)))

In the above, the selection σP=:author(t) restricts the triples from the t table to those having
the attribute P equal to :author. Similarly, σP=τ(t) corresponds to the selection P = τ. On
the atom t3, αT applies a double selection σP=≺sc∧O=:Article(t), since t3 has only one variable
in position S . Further, ./ jcond=./t1.S =t2.S ,t2.O=t3.S joins the three previous selections, where
t1.S = t2.S and t2.O = t3.S respectively reflect the co-occurrences of variables z and y.
The final projection πt1.O,t2.O returns the pairs of values obtained for (x, y).

Reformulation-based query answering

Here, the graph G is stored in t (but not its saturation), and every incoming BGPQ q is
reformulated into a (partially instantiated) UBGPQ Qc,a =

⋃n
i=1 qi, whose algebraic trans-

lation on the T layout is the union of the algebraic translations of its (partially instantiated)
BGPQs:

T (Qc,a) =

n⋃
i=1

T (qi)

Example 3.14. Consider again the example query q and its reformulation Qc,a shown in
Example 3.12. The algebraic translation T (Qc,a) is:

πt1.O,:OpenArt(./t1.S =t2.S (σP=:author(t), σP=τ∧O=:OpenArt(t))
∪ πt1.O,:OpenArt(./t1.S =t2.S (σP=:firstAuth(t), σP=τ∧O=:OpenArt(t))
∪ πt1.O,:OpenArt(./t1.S =t2.S (σP=:author(t), σP=τ∧O=:GOpenArt(t))
∪ πt1.O,:OpenArt(./t1.S =t2.S (σP=:firstAuth(t), σP=τ∧O=:GOpenArt(t))
∪ πt1.O,:GOpenArt(./t1.S =t2.S (σP=:author(t)), σP=τ∧O=:GOpenArt(t))
∪ πt1.O,:GOpenArt(./t1.S =t2.S (σP=:firstAuth(t), σP=τ∧O=:GOpenArt(t))

3.3.3 BGPQ answering on the CP layout

With the CP layout, an RDF graph is stored as a set of tables corresponding to classes
and properties: for each class c, there is a table tc(S) that stores all subjects s of triples
(s, τ, c), and for each data or schema property p , τ, there is a table tp(S ,O) that stores
all subject-object pairs (s, o) for triples (s, p, o). We call any such tc a class table, and tp

a property table. The CP layout speeds up data access for queries which specify the class
in every triple whose property is τ and specify the property in every triple. However, as
noted e.g., in [Sidirourgos et al., 2008], it may render the evaluation of general queries,
with variables in class or property position, inefficient, as the triples they refer to may be
in any tc or tp tables, respectively.

Saturation-based query answering

Assume that GRRDFS is stored using the CP layout. To obtain the answers to a BGPQ
q(x̄) ← t1, . . . , tn, a first simple naı̈ve translation, which can be traced back to
[Abadi et al., 2007, Sidirourgos et al., 2008], is:

CP(q) = πq(./ jcond (αCP(t1), · · · , αCP(tn)))

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 65

where πq and jcond are defined as for the T layout, and αCP, the query triple translation
for the CP layout, is:

αCP(t) =


πS ,τ,c(σscond(tc)) if t = (s, τ, c) with c < V (1)
πS ,p,O(σscond(tp)) if t = (s, p, o) with p < V ∪ {τ} (2)⋃

c∈C αCP((s, τ, c)) if t = (s, τ, x) with x ∈ V (3)
αCP((s, τ, o)) ∪

⋃
p∈P αCP((s, p, o)) if t = (s, x, o) with x ∈ V (4)

where C and P are, respectively, the set of classes and of properties other than τ in the
queried graph, and scond is a (possibly empty) conjunction of selections, just as we de-
fined it for αT , but over the class and property tables instead of the triple table t.

Example 3.15. The naive translation of the example query q on the CP layout is:

πt1.O,t2.O(./t1.S =t2.S ,t2.O=t3.S (πS ,:author,O(t:author),
πs,τ,:GOpenArt(t:GOpenArt) ∪ πs,τ,:OpenArt(t:OpenArt) ∪ πs,τ,:Article(t:Article)
∪ πs,τ,:Prof(t:Prof) ∪ πs,τ,:Person(t:Person) ∪ πS ,≺sc,O(σO=:Article(t≺sc)))

Note that in cases (3) and (4) above, αCP introduces unions under joins, as illustrated
by the previous example. This leads to suboptimal evaluation performance in many
data management engines, which may optimize and execute efficiently a join over several
data collections, but do not attempt to reorder (commute) joins with unions. For instance,
the query (x, :a, :a1), (x, y, z), (z, τ, u), (z, :b, :b1) translates into a plan that joins (among
others) the union of all the tables (for (x, y, z)) with the union of all class tables (for
(z, τ, u)). Most systems execute this “literally”, i.e., they build and materialize these two
very large unions, which is very costly, before joining them with the first and last triple7.

To avoid such unions under joins, we rely on the notion of instantiation, which has
been used in various query answering techniques e.g., [Goasdoué et al., 2011] and
[Kontchakov et al., 2014].

Query instantiation

The instantiation of a BGPQ q consists in instantiating the variables in q that must be
bound to classes and properties of the queried graph, in all possible ways, which yields
a (partially instantiated) UBGPQ. Given a BGPQ q and a graph G, we denote by qp,G

(resp. qc,G) its property instantiation (resp. class instantiation), which is the UBGPQ
obtained by instantiating all its variables in property position (resp. in class position), by
all combinations of properties (resp. classes) of G.

Example 3.16. The class instantiation qc,Gex of the example query q, where the only in-
stantiated variable is y, is:

q(x, :GOpenArt)← (z, :author, x), (z, τ, :GOpenArt), (:GOpenArt,≺sc, :Article)
∪ q(x, :OpenArt)← (z, :author, x), (z, τ, :OpenArt), (:OpenArt,≺sc, :Article)
∪ q(x, :Article)← (z, :author, x), (z, τ, :Article), (:Article,≺sc, :Article)
∪ q(x, :Prof)← (z, :author, x), (z, τ, :Prof), (:Prof,≺sc, :Article)
∪ q(x, :Person)← (z, :author, x), (z, τ, :Person), (:Person,≺sc, :Article)
7We checked this on systems that disclose their query execution strategy; experiments with others who

do not, confirm the same hypothesis (see Section 3.3.6).

66 CHAPTER 3. RDF QUERY ANSWERING

Class and property instantiations extend from BGPQs to UBGPQs in the natural way.
Given a UBGPQ of the form Q = q1 ∪ q2 · · · ∪ qn, we set:

Qp,G = qp,G
1 ∪ qp,G

2 · · · ∪ qp,G
n and Qc,G = qc,G

1 ∪ qc,G
2 · · · ∪ qc,G

n

Then, the instantiation of Q w.r.t. a graph G is the following:

QG = (Qc,G)p,G ∪ (Qp,G)c,G

We need both terms of the above union, exactly in the case when some variable of Q
appears both in a property and in a class position. These cases are rare and easy to detect,
thus in practice we only use one of the unions as soon as we detect both are not needed.
Crucially, (U)BGPQ instantiation is correct for saturation- and reformulation-based query
answering. Intuitively, this is because instantiation enumerates all possible combinations
of classes and properties that query reformulation or evaluation may find in G.

We can now define the instantiation-based query translation. A BGPQ q is first in-
stantiated into qG =

⋃n
i=1 qi, then translated on the CP layout as:

CP(qG) =

n⋃
i=1

CP(qi)

Importantly, because qG does not contain any variable in class or property position,
every naı̈ve translation CP(qi) within CP(qG) avoids both (3) or (4) in the αCP triple
transformation function. Hence, the translation avoids the introduction of unions under
joins, with their potential bad impact on performance.

Example 3.17. Consider the query q and its instantiation qGex = qc,Gex in Example 3.16.
The instantiation-based translation of q corresponds to the naı̈ve translation of qGex:⋃

u∈{:GOpenArt,:OpenArt,:Article,:Prof,:Person}

πt1.O,u(./t1.S =t2.S ,t2.O=t3.S (πS ,:author,O(t:author),
πS ,τ,u(tu),
πS ,≺sc,O(σS =u,O=:Article(t≺sc))

Reformulation-based query answering

The graph G is again stored using the CP layout (but not saturated). In this case, answer-
ing a BGPQ q starts by computing its reformulation Qc,a w.r.t. the ontology of G. Then,
we obtain the answers q(G,RRDFS) either through CP(Qc,a), the naı̈ve translation of Qc,a,
or through CP(QG

c,a), the instantiation-based translation of Qc,a, i.e., the naı̈ve translation
of its instantiation QG

c,a; as in the previous section, the algebraic translation of a UBGPQ
is defined as the union of the algebraic translations of its BGPQs. Instantiating Qc,a gen-
erally increases its size, but, by removing variables in class and property positions, it
avoids the unions under joins introduced in cases (3) and (4) by the αCP triple translation
function.

Example 3.18. Consider the query q and its reformulation Qc,a from Example 3.12. Here,
since no variable of Qc,a occurs in class or property position, CP(Qc,a) and CP(QG

c,a) lead
to the same algebraic expression:

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 67

πt1.O,:OpenArt(./t1.S =t2.S (πS ,:author,O(t:author), πS ,τ,:OpenArt(t:OpenArt))
∪ πt1.O,:OpenArt(./t1.S =t2.S (πS ,:firstAuth,O(t:firstAuth), πS ,τ,:OpenArt(t:OpenArt))
∪ πt1.O,:OpenArt(./t1.S =t2.S (πS ,:author,O(t:author), πS ,τ,:GOpenArt(t:GOpenArt))
∪ πt1.O,:OpenArt(./t1.S =t2.S (πS ,:firstAuth,O(t:firstAuth), πS ,τ,:GOpenArt(t:GOpenArt))
∪ πt1.O,:GOpenArt(./t1.S =t2.S (πS ,:author,O(t:author), πS ,τ,:GOpenArt(t:GOpenArt))
∪ πt1.O,:GOpenArt(./t1.S =t2.S (πS ,:firstAuth,O(t:firstAuth), πS ,τ,:GOpenArt(t:GOpenArt))

3.3.4 BGPQ answering based on the TCP layout

The TCP layout combines T and CP with the aim of getting the best of both, while avoid-
ing the performance problems they respectively entail (Sections 3.3.2 and 3.3.3). Here,
an RDF graph is stored both in the triple table t of the T layout and in the tc class and
tp property tables of the CP layout. The rationale behind this is that CP is efficient to
access triples when the data structures holding the triples we need to access are imme-
diately clear from the query, and small; this is the case with query triples of the form
(s, τ, c) or (s, p, o) for a known class c or property p. However, with query triples of the
form (s, τ, x) and (s, x, o), the CP translation introduces unions, typically executed before
joins, degrading performance. Interestingly, direct access to a potentially large share of
a graph’s triples is exactly what the T layout supports well - thus our idea to combine
them. As we show in the next section, this allows to significantly improve performance,
at expense of some extra storage space, typically inexpensive since it is on disk.

Saturation-based query answering

Let us assume that the saturation GRRDFS of a graph G is stored in the TCP layout. The
answers to a BGPQ q ← t1, . . . , tn are obtained through its algebraic transformation for
the TCP layout:

TCP(q) = πq(./ jcond (αTCP(t1), · · · , αTCP(tn)))

where πq and jcond are defined as for the T and CP layouts, and αTCP, the query triple
translation for the TCP layout, is:

αTCP(t) =

{
αCP(t) if t = (s, τ, c) or t = (s, p, o) with c < V , p < V ∪ {τ}
αT (t) otherwise, i.e., if t = (s, τ, x) or t = (s, x, o) with x ∈ V

Importantly, αTCP translates the triples that penalize the CP layout into t atoms, and
never into a union: hence, αTCP avoids the cases (3) and (4) of αCP.

Example 3.19. The translation of the example query for the TCP layout combines the T
layout for the second triple and the CP layout for the others:
πt1.O,t2.O(./t1.S =t2.S ,t2.O=t3.S (πS ,:author,O(t:author), σP=τ(t), πS ,≺sc,O(σO=:Article(t≺sc))))

Reformulation-based query answering

Again, the answers to a query q are computed by evaluating the algebraic translation of
its reformulation Qc,a =

⋃n
i=1 qi, but now for the TCP layout:

TCP(Qc,a) =

n⋃
i=1

TCP(qi)

68 CHAPTER 3. RDF QUERY ANSWERING

Example 3.20. Consider the query q(x, y, z) → (x, τ, z), (x, :firstAuth, y) asking for all
resources with their type and first author. Its reformulation w.r.t. Gex’s ontology is shown
below :

Qc,a =

q(x, y, z)← (x, τ, z), (x, :firstAuth, y)
∪ q(x, y, :Article)← (x, τ, :OpenArt), (x, :firstAuth, y)
∪ q(x, y, :Article)← (x, τ, :GOpenArt), (x, :firstAuth, y)
∪ q(x, y, :OpenArt)← (x, τ, :GOpenArt), (x, :firstAuth, y)
∪ q(x, y, :Person)← (x, τ, :Prof), (x, :firstAuth, y)
∪ q(x, y, :Person)← (x, :author, u), (x, :firstAuth, y)
∪ q(x, y, :Person)← (x, :firstAuth, u), (x, :firstAuth, y)
∪ q(x, y, :Prof)← (x, :teaches, u), (x, :firstAuth, y)
∪ q(x, y, :Person)← (x, :teaches, u), (x, :firstAuth, y)

Its algebraic translation on the TCP layout is:

πt1.S ,t2.O,t1.O(./t1.S =t2.S (σP=τ(t), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Article(./t1.S =t2.S (πS ,τ,:OpenArt(t:OpenArt), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Article(./t1.S =t2.S (πS ,τ,:GOpenArt(t:GOpenArt), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:OpenArt(./t1.S =t2.S (πS ,τ,:GOpenArt(t:GOpenArt), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Person(./t1.S =t2.S (πS ,τ,:Prof(t:Prof), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Person(./t1.S =t2.S (πS ,:author,O(t:author), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Person(./t1.S =t2.S (πS ,:firstAuth,O(t:firstAuth), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Prof(./t1.S =t2.S (πS ,:teaches,O(t:teaches), πS ,:firstAuth,O(t:firstAuth)))
∪ πt1.S ,t2.O,:Person(./t1.S =t2.S (πS ,:teaches,O(t:teaches), πS ,:firstAuth,O(t:firstAuth)))

Above, the first union term refers to the triple table t, while the others do not.

3.3.5 Summary-based query pruning
We now introduce an optimization technique, which can be applied on any storage layout
to reduce (U)BGPQ answering time. It allows detecting some BGPQs with an empty
answer set on a graph, without evaluating them, by using a (typically much smaller)
structural summary of this graph.

Given an RDF graph G and an equivalence relation ≡ among the nodes in G, i.e., the
subjects and objects of triples, an RDF quotient summary [Cebiric et al., 2018] is an RDF
graph G/≡ built as follows. A node is created in G/≡ for each equivalence class among
G’s nodes; further, for any triple (n1, p, n2) ∈ G, the triple (m1, p,m2) appears in G/≡,
where m1 and m2 represent the equivalence class of n1 and n2 respectively. If there are
large equivalence classes in G, summarization is a form of compression. Several types of
RDF quotient summaries have been proposed [Cebiric et al., 2018]; in our experiments,
we used the RDFQuotient summary construction tool [Goasdoué et al., 2020], due to its
online availability and low summary construction cost (linear in the number of triples of
G). An RDFQuotient summary represents each class and property node by itself, and
consider they are not equivalent to any other G node; thus, G and any quotient summary
G/≡ have the same schema triples.

Crucially, the following property holds for q a structural (U)BGPQ, i.e., in which the
subjects and objects of query triples are either class and property IRIs, or variables:

if q(G/≡) = ∅ then q(G) = ∅

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 69

Intuitively, this result holds because structural queries only allow selecting subject,
property and object values that are preserved through summarization (class and prop-
erty IRIs). Note however that the opposite does not hold in general, i.e., q(G/≡) may
have results while q(G) does not. We exploit this result by defining the structural ver-
sion of a BGPQ q, denoted qstr, which is obtained by replacing in q the literals and
the IRIs that are not class or property IRIs, by fresh variables. For example, the struc-
tural version of the query q(x) ← (x, τ, :OpenArt), (x, :firstAuth, :Alice) is: qstr(x) ←
(x, τ, :OpenArt), (x, :firstAuth, y), with :Alice replaced by y. Hence, when a summary G/≡

is available, we can use it to prune a UBGPQ Q =
⋃

i qi by removing from the union all
the qi terms for which qstr

i (G/≡) = ∅. As explained above, this may fail to prune some qi

with no results on G, but it preserves query results:

Q(G) = Qpruned(G)

where Qpruned is the result of pruning Q. As our experiments will show, this generally
leads to a significant reduction of query answering time.

3.3.6 Experimental evaluation
We now describe experiments comparing the query answering methods presented in the
previous sections, on the T, CP and TCP layouts.

Experimental settings

We implemented the T, CP and TCP layouts in OntoSQL (https://ontosql.inria.
fr), a Java platform providing efficient RDF storage and saturation- and reformulation-
based query answering on top of an RDBMS [Buron et al., 2019, Bursztyn et al., 2015,
Goasdoué et al., 2013] (Postgres 9.6 in these experiments). OntoSQL encodes IRIs and
literals as integers, and a dictionary table allows going from one to the other; each table
(t, tp or tc) is indexed on all the subsets of its attributes. To use OntoSQL, we express
our algebraic translations in SQL. We checked that in Postgres query plans, the relative
positions of unions and joins in the query plans chosen by the RDBMS are those from
our translations; [Bursztyn et al., 2015, Bursztyn et al., 2016] showed that this holds for
two other major RDBMSs. However, the RDBMS takes all optimization decisions, based
on its cost model and statistics. To put this into perspective also with respect to native
RDF engines, we ran the same experiments also on Virtuoso Open Source Edition 7.2, to
whom we provided SPARQL queries, which correspond exactly to our algebraic transla-
tion on the T layout. Virtuoso also controls its optimization decisions, and has full control
over its store.

For summary-based pruning, we used the RDFQuotient (https://rdfquotient.
inria.fr) tool to build the “typed strong” summary [Goasdoué et al., 2020] of a graph
G; this summary is denoted G/TS. The summary groups typed nodes according to their
types, and untyped nodes by exploiting the similarity of their incoming/outgoing prop-
erties (see [Goasdoué et al., 2020] for details). In general, any quotient summary could
be used; a large (more detailed) summary makes pruning more accurate, but also slower
since it needs to query the summary.

Hardware We used a server with 2,7 GHz Intel Core i7 processors and 160 GB of
RAM, running CentOs Linux 7.5.

https://ontosql.inria.fr
https://ontosql.inria.fr
https://rdfquotient.inria.fr
https://rdfquotient.inria.fr

70 CHAPTER 3. RDF QUERY ANSWERING

Graph |G| |G/TS| |GRRDFS |

LUBM 100M 340 131M
DBLP 88M 290 147M

Graph |(GRRDFS)/TS| |G|T |G|CP |G|TCP |GRRDFS |T |GRRDFS |CP |GRRDFS |TCP

LUBM 439 28.95 11.95 37.89 32.52 13.52 39.31
DBLP 708 26.07 16.35 35.89 38.39 22.91 52.72

Table 3.2: Graph and summary sizes (number of triples), OntoSQL database sizes (in
GB), including all indexes, for the T, CP and TCP layouts.

RDF graphs We used two benchmark graphs: a LUBM [Guo et al., 2005] graph of
100M triples, as well as a graph of DBLP bibliographic data endowed with an ontology
of 14 classes and 44 schema triples. Table 3.2 shows, for these graphs and their saturation,
the graph and summary sizes, and the sizes of the OntoSQL databases storing them in the
T, CP and TCP layout. As expected, TCP takes most space, approx. 90% of the sum
of the T and CP database sizes. However, this is stable storage (e.g., disk) space; the
selective data access enabled by the class and property tables, and by indexes, as well
as cost-based optimization, ensure that the data loaded in memory to process a query is
much smaller.

Queries We used two diverse sets of queries, having from 1 to 11 triples (4 on average)
on LUBM, and from 2 to 9 triples (5.9 on average) on DBLP. Each query has 1 or 2
triple(s) of the form (s, τ, x) and/or (s, x, o), except Q11 and Q15 on DBLP which do
not contain any. Table 3.7 shows their number of answers, and the number of BGPQs
in: their instantiation (qG), reformulation (Qc,a), and instantiation of their reformulation
(QG

c,a), before and after summary-based pruning. The impact of pruning ranges from none
(in particular for qG, on LUBM Q01 to Q03 and on 8 DBLP queries) to very significant
(97.8% of the qG BGPs are pruned on LUBM Q09). Details on our experiments, and code
which can be used to reproduce them, are in the appendix, Section A.2.

Experiment results: query answering times

For each query, we report the average of the last five (“hot”) runs out of six.

Through saturation Figure 3.8 shows the query answering times through saturation,
for LUBM (top) and DBLP (bottom), with a timeout of 10 minutes; in all our graphs, exe-
cutions that reached the timeout have been interrupted. Below the graphs, we show the la-
bel used in the plot for each query answering strategy, e.g., T SAT stands for T (q)(GRRDFS).
For readability, some very fast queries are repeated in a “zoom” plot (the LUBM one has
a logarithmic y axis).

On LUBM (top), we notice some very high running times for VIRTUOSO SAT, e.g.,
on Q03, Q06, and a time-out on Q14. Among the SQL-based strategies, the naı̈ve trans-
lation on CP (green bars) is slowest in 10 out of 14 queries, with large performance
penalties for Q04, Q07, Q08, Q11-13. Instantiation (CP SAT INS, red bars) is generally
faster than naı̈ve CP. It strongly speeds up Q04, Q07, Q08, Q10-Q14; it brings a modest
improvement to Q01 and Q05, but also a modest overhead for Q02, Q03, Q06. However,
on the complex Q09, which has the largest qG size, namely 3690, instantiating each of
these more than doubles the answering time w.r.t. naı̈ve CP translation (and ran until

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 71

Q
ue

ry
Q

01
Q

02
Q

03
Q

04
Q

05
Q

06
Q

07
Q

08
Q

09
Q

10
Q

11
Q

12
Q

13
Q

14
|q

(G
,R

R
D

FS
)|

2.
78

M
0.

59
M

2.
15

M
1.

72
M

0.
47

M
2.

77
M

25
K

36
96

20
03

17
.3

5M
18

7
51

8K
85

7
9.

85
M

|q
G
|

45
45

45
82

20
25

45
45

82
36

90
82

82
37

13
69

82
|(q

G
)pr

un
ed
|

45
45

45
67

18
06

44
44

3
88

68
59

23
43

51
|Q

c,
a|

31
8

10
6

14
6

68
21

6
80

31
8

9
36

88
9

27
39

11
52

|(Q
c,

a)
pr

un
ed
|

12
0

56
59

48
10

8
34

17
3

7
2

78
7

21
21

88
9

|Q
G c,

a|
44

7
14

9
22

6
68

21
6

12
1

44
7

9
36

16
9

9
63

17
97

11
88

|(Q
G c,

a)
pr

un
ed
|

20
6

99
13

5
48

10
8

73
29

9
7

2
14

4
7

42
50

89
2

Q
ue

ry
Q

01
Q

02
Q

03
Q

04
Q

05
Q

06
Q

07
Q

08
Q

09
Q

10
Q

11
Q

12
Q

13
Q

14
Q

15
|q

(G
,R

R
D

FS
)|

72
K

24
K

96
.3

M
36

1K
4K

10
13

8
42

K
1.

52
M

3.
09

M
95

7K
41

4K
40

9K
16

.3
K

46
0K

|q
G
|

18
18

18
18

50
90

0
90

0
18

90
0

90
0

1
18

32
4

50
1

|(q
G

)pr
un

ed
|

18
18

18
18

3
13

6
13

6
17

85
85

1
18

32
4

3
1

|Q
c,

a|
11

7
29

7
26

5
11

7
87

3
42

57
31

63
36

15
00

36
52

24
3

39
38

1
12

9
24

3
|(Q

c,
a)

pr
un

ed
|

56
20

5
15

1
56

61
6

30
89

21
66

32
11

84
26

20
36

24
17

4
11

4
3

|Q
G c,

a|
25

2
44

0
40

8
25

2
15

29
59

27
33

45
72

1
32

4
3

84
20

88
27

0
24

3
|(Q

G c,
a)

pr
un

ed
|

16
1

33
1

27
7

16
1

12
24

32
75

21
89

37
1

64
3

69
14

97
11

7
3

Fi
gu

re
3.

7:
St

at
is

tic
s

of
ou

rq
ue

ri
es

on
L

U
B

M
(t

op
)a

nd
D

B
L

P
(b

ot
to

m
);

M
st

an
ds

fo
rm

ill
io

ns
an

d
K

fo
rt

ho
us

an
ds

.

72 CHAPTER 3. RDF QUERY ANSWERING

T SAT CP SAT NAIVE CP SAT INS CP SAT INS PRUN TCP SAT VIRTUOSO SAT
T (q)(GRRDFS) CP(q)(GRRDFS) CP(qG)(GRRDFS) CP((qG)pruned)(GRRDFS) TCP(q)(GRRDFS) T (q)(GRRDFS)

Figure 3.8: Query answering times (milliseconds) on LUBM (top) and DBLP (bottom),
through saturation.

the timeout); pruning (yellow bars) brings it back below the timeout. T SAT is gener-
ally faster than all executions on the CP layout, because all queries contain triples of the
form (s, τ, x) and/or (s, x, o), which, as explained in Section 3.3.3, challenge CP execu-
tion. TCP SAT avoids the (sometimes drastic) performance problems of all CP variants,
and is the fastest (by up to several orders of magnitude) on all queries but Q14, where the
CP variant with pruning is a bit faster. Virtuoso is also always slower than TCP (by up to
95×, almost two orders of magnitude).

On DBLP (bottom), poor performance is exhibited by Virtuoso (Q03, Q07, Q09,
Q10), and on even more queries by the naı̈ve CP strategy (green bars, Q05-Q07, Q09-
Q10, Q14). T SAT performs very badly on Q09, Q10, Q14 and Q15. These are rather
large (6 to 9-triples) queries; an analysis of their plans shows significant errors in the
RDBMS’ estimation of join cardinality. As is well-known, join cardinality estimation
errors multiply along subsequent joins; when all joins carry over a single, very large
table, the negative impact of such cumulated errors can be quite strong. Historically, this
observation actually motivated the introduction of the CP layout, on which join estimation
errors still multiply, but usually much smaller tables are involved. Indeed, as expected,
for the queries Q11 and Q15, exactly those where no triple has a variable in class and
property position, naı̈ve CP largely outperforms T SAT (by very far for Q15). Again, we
observe the robust behaviour of TCP SAT. We conclude that through saturation, T and
CP execution each underperform on some queries, but TCP avoids all these pitfalls and
is consistently very efficient.

3.3. RDF STORAGE LAYOUTS FOR EFFICIENT QUERY ANSWERING 73

T REF T REF PRUN CP REF INS CP REF INS PRUN
T (Qc,a)(G) T ((Qc,a)pruned)(G) CP(QG

c,a)(G) CP((QG
c,a)pruned)(G)

TCP REF TCP REF PRUN VIRTUOSO REF VIRTUOSO REF INS
TCP(Qc,a)(G) TCP((Qc,a)pruned)(G) T (Qc,a)(G) T (QG

c,a)(G)

Figure 3.9: LUBM (top) and DBLP (bottom) query answering times (ms) through refor-
mulation.

Through reformulation Figure 3.9 shows reformulation-based query answering times
(note the logarithmic y axis in the zoom), again with the correspondences between the bar
labels and the strategy names previously used in the paper.

On LUBM, among the evaluation strategies without pruning, TCP REF is generally
the fastest (or very close to it), with the exception of Q14, where CP REF INS is 1.4×
faster. This query with the most results (9.85M) and a large reformulation (Table 3.7) has
two atoms of the form (x, p, z), (y, p, z). On CP, this leads to a large number of self-joins
of the form tp ./o tp, executed very fast because loading tp in memory once ensures the
join runs completely in-memory. While the rather unusual Q14 shows a case when CP
may still outperform TCP, the difference is not dramatic. On the three layouts, pruning
generally helps: it saves, e.g., more than half of the CP answering time for Q01, Q02. In
the zoomed view (shortest-running queries), pruning brings an overhead (takes more time
that the query evaluation time it saves) of a few milliseconds. Among the strategies with
pruning, TCP REF PRUN is the fastest, except for Q14 discussed above. As Virtuoso did
not support reasoning with our rule set RRDFS (details in the appendix, Section A.2), we
gave it reformulations expressed in SPARQL; for Q07 and Q14, they failed to run, with
the error “union nesting is too deep”. The impact of instantiation for Virtuoso is unclear;
it helped for Q04, Q08 but not for Q02, Q06 etc. All missing Virtuoso bars in Figure 3.9
are execution failures, mostly due to large unions.

On DBLP, VIRTUOSO REF failed for Q06, Q07, Q09, Q10, Q13; VIRTUOSO REF INS

74 CHAPTER 3. RDF QUERY ANSWERING

was consistently worse, and we omitted it from the plot. The rest of the analysis is simi-
lar to the one above, except that T REF performs very badly in a few cases (Q07, Q11).
Overall, in Figure 3.9, TCP query answering with pruning is the fastest, or very close
to it, on all queries, while all other strategies’s weaknesses are exposed by one or more
queries.

Experiment conclusion

We studied the performance of query answering in RDF databases through saturation and
reformulation, on challenging queries that remain poorly supported: those with variables
in class or property position. We have exhibited queries that lead to poor to catastrophic
performance of query answering on the T layout (mainly due to many self-joins on a large
table) and/or on the CP layout (mainly due to large unions, brought by variables in class
and property positions, and/or by reformulation). Query answering on the TCP layout
is extremely robust; it avoids all these pitfalls by taking the best of both T and CP in
reformulation and saturation-based approaches, at the expense of more storage space. As
disks are getting ever cheaper8, TCP appears to be a robust, practical layout, compatible
with well-established large-scale RDF storage and query engines. For the challenging
queries we study, summary-based pruning helps improve performance, in particular for
the TCP layout.

We believe the TCP layout, and pruning, can be adopted with little effort, and can
strongly consolidate and improve query answering performance in many RDF databases.

3.4 Summary
In this chapter, we studied query answering techniques on RDF graphs with general BG-
PQs. We argued that such queries allow a user to take advantage of RDF metamodeling
capabilities. We first studied properties of built-in RDFS entailment rules, which led to
define two desirable properties of RDF graphs, namely Ra-compliance and the more de-
manding split reasoning. We also defined a syntactic restriction on RDF graphs, namely
FO-restriction, which ensures the split-reasoning property. This restriction still enables
forms of metamodeling and we believe that it is quite natural with respect to the notion
of an ontology. We then designed a query reformulation algorithm for RDF graphs with
split reasoning. The experiments we carried out show the effectiveness of our algorithm,
in particular when we take into account the number of query runs required to amortize
the graph saturation cost. Query reformulation is even more competitive when the graph
changes frequently. We finally investigated the impact of storage layout on the efficiency
of query answering with general BGPQs. We introduced the novel workload-unaware
TCP layout, which combines the data structures of two classical layouts, namely T and
CP, and experimentally assessed its interest, on a relational and a native RDF database.
Besides, we introduced summary-based pruning, an optimization technique of indepen-
dent interest, and we found that it generally reduces query answering costs on the T, CP
and TCP layouts, both with graph saturation and query reformulation.

8E.g., https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

Chapter

4
RDF integration of heterogeneous
data sources

This chapter is devoted to the issue of querying heterogeneous data sources based on
RDF as the global data model and using general BGP queries. In Section 4.1, we classify
existing mediator-based approaches and situate our contributions in this landscape. In
Section 4.2, we introduce our framework, namely RDF integration systems, and define the
associated query answering problem. In Section 4.3, we present several query answering
strategies, which may materialize global RDF graph or leave it virtual, and differ on how
and when RDFS reasoning is incorporated. These strategies are implemented in Obi-
Wan, our RDF integration system, which is described in Section 4.4. Section 4.5 details
our experimental evaluation. Finally, Section 4.6 extends the theoretical framework to
a class of RDF entailment rules that go beyond RDFS. The material presented here has
been published in [Buron et al., 2020b, Buron et al., 2020c, Buron et al., 2018], whereas
Section 4.3.7 and Section 4.4 are new.

4.1 Motivation and state of the art
The proliferation of digital data sources across all application domains brings a new ur-
gency to the need for tools which allow to query heterogeneous data (relational, JSON,
key-values, graphs etc.) in a flexible fashion. Traditional data integration systems fall
into two classes: data warehousing [Jarke, 2003], where all data source content is mate-
rialized in a single centralized source, respectively, mediation [Wiederhold, 1992], where
data remains in their original stores and all data can be queried through a single module
called mediator. Data warehousing simplifies query evaluation, but requires potentially
costly maintenance operations when the content of data sources changes; mediation does
not suffer from these drawbacks, but requires more intricate query evaluation algorithms
to distribute the work between the sources and the mediator.

Below, we classify prior mediator-based approaches according to two main dimen-
sions, and illustrate this classification in Table 4.1. The first dimension concerns the data
model and query languages at the global level of the integration system; we discuss exist-
ing systems from this perspective in Section 4.1.1. The second dimension is determined
by different mapping languages used; we analyze prior work from this perspective in Sec-
tion 4.1.2. Recall that mapping languages have been introduced earlier in this manuscript
in Section 2.2.

75

76 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

4.1.1 Mediator data models and query languages
A first dimension concerns the global data model and query language provided by the
mediator to its applications. From this perspective, we identify several classes of systems,
outlined below.

Database-style mediators

The earliest goal of a mediator system was to mimic a single, integrated database. Thus
the mediator supports one data model and its query language, e.g., relational and SQL, or
XML and XPath/XQuery. More recent polystore systems support side-by-side different
(data model, query language) pairs. These database-style mediators appear in the row we
label DB in Table 4.1.

Semantic mediators

Mediators studied in knowledge representation and management research provide a view
of the data sources as a set of classes and relationships, also endowed with a set of se-
mantic constraints, or ontology. In such systems, users formulate conjunctive (relational)
queries or a query in BGPQ-CQ (recall Table 3.1), a fragment of BGPQs, where querying
the schema triple and using variables in property and class position is forbidden. Answer-
ing such queries involves not only evaluation over the data (as done in DB mediators),
but also reasoning on the data with the help of ontologies. This mediation approach is
also commonly termed Ontology-Based Data Access (OBDA) [Poggi et al., 2008], with
ontologies expressed in Description Logics (DL, in short). Work following this approach
are listed in the row we label CQ in Table 4.1.

Ontologies have been used to integrate relational or heterogeneous data sources in me-
diators with LAV views based on description logics [Levy et al., 1995] and
[Abdallah et al., 2009], or their combination with Datalog in [Goasdoué et al., 2000] and
[Goasdoué and Rousset, 2004]. OBDA works [Poggi et al., 2008], [Pinto et al., 2013],
[Rodriguez-Muro et al., 2013] and [Lanti et al., 2017] present integration systems, also
relying on Description Logics (DL), especially DL-LiteR or DL-LiteA. Semantics have
been used at the integration level since e.g., [Christophides et al., 1997] for SGML and
soon after for RDF [Amann and Fundulaki, 1999, Amann et al., 2000]; data is considered
represented and stored in a flexible object-oriented model, thus no mappings are used.

RDF-based mediators

Lately, RDF [RDF, 2014a] has emerged a portable, self-describing formalism for model-
ing data. RDF is naturally suited as an integration model, thanks to its flexibility, its wide
adoption in the Open Data community, its close relationship with ontology languages
such as RDFS [RDF, 2014b] and OWL [OWL, a], and the presence of its associated stan-
dard SPARQL query language [SPA, 2013]. Accordingly, several mediators from the CQ
group have been extended to support RDF as an integration model and SPARQL query
answering. However, while SPARQL allows querying the data together with the ontol-
ogy, e.g., “find the properties of node n, as well the classes to which the values of these
properties belong”, a DL-based mediation approach shares with all logic-based query lan-
guages, such as Datalog, SQL etc., the inability to do so. RDF mediators which support
SPARQL but limited to querying the data only (not the ontology) appear in the row we

4.1. MOTIVATION AND STATE OF THE ART 77

label SPARQL-data in Table 4.1. SPARQL-data is an extension of the BGPQ-data, used
in Table 3.1; it additionally supports operators like FILTER, OPTIONAL etc..

In [Sequeda et al., 2014], an RDF global schema of the integration system is popu-
lated with data triples only, on which the RDFS reasoning w.r.t. an RDFS ontology is
performed extended with the definition of property inverses and with support for sym-
metric and transitive properties. Defining transitive properties is allowed by the support
of recursive queries in the query rewriting language.

Mediators supporting ontology queries

Recent RDF mediators lift this limitation to support joint querying of the data and ontol-
ogy; we list them in the SPARQL row in Table 4.1. In these works, reasoning is also
taken into account, which allows inferring new ontological triples.

Works such as [Kontchakov et al., 2014, Botoeva et al., 2018, Calvanese et al., 2017]
rely on query rewriting outlined in the former article to support the OWL 2 QL entailment
regime. As explained in Section 3.1.2, this query rewriting assumes a typing of query
variables in order to know if they will match classes, properties or instances of the OWL
knowledge base. This assumption makes impossible the use of this technique with domain
metamodeling-capable graphs.

In [Pinto et al., 2011], domain metamodeling at the global level of integration sys-
tems is enabled for an extension of DL-LiteR which allows reasoning and querying of the
terminological part of knowledge bases.

4.1.2 Mapping Language

A second dimension is how the source (or local) schemas are connected to the global (in-
tegration) schema, using mappings [Doan et al., 2012]. We identify three types of map-
pings, each corresponding to a column in Table 4.1, introduced in Section 2.2.

Global-As-View

The simplest mappings define each element of the global schema, e.g., each relation (if
the global schema is relational), as a view over the local schemas; this is known as Global-
As-View, or GAV in short. In a GAV system, a query over the global (virtual) schema is
easily transformed into a query over the local schemas, by unfolding each global schema
relation, i.e., replacing it with its definition (recall Section 2.2.2).

Most of the abovementioned OBDA works, following [Poggi et al., 2008], use GAV
mappings. This is the case, specifically, for all the implementated OBDA mediators
[Calvanese et al., 2011, Sequeda et al., 2014, Calvanese et al., 2017], which rely on GAV
mappings.

Local-As-View

In contrast, Local-As-View (LAV) mappings define elements of the local schemas as
views over the global one. Query answering in this context requires rewriting the query
with the views describing the local sources (recall Section 2.2.3).

78 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

M
od

el
s

M
ap

pi
ng

s
G

AV
L

AV
G

L
AV

D
B

[G
ar

ci
a-

M
ol

in
a

et
al

.,
19

97
],

[D
eu

ts
ch

an
d

Ta
nn

en
,2

00
3,

D
ug

ga
n

et
al

.,
20

15
]

[A
m

an
n

et
al

.,
20

02
],

[D
eu

ts
ch

an
d

Ta
nn

en
,2

00
3,

M
an

ol
es

cu
et

al
.,

20
01

],
[A

lo
ta

ib
ie

ta
l.,

20
19

]

[C
al

va
ne

se
et

al
.,

20
12

]

C
Q

[P
og

gi
et

al
.,

20
08

],
[C

al
va

ne
se

et
al

.,
20

11
],

[P
in

to
et

al
.,

20
13

],
[R

od
ri

gu
ez

-M
ur

o
et

al
.,

20
13

],
[L

an
ti

et
al

.,
20

17
]

[L
ev

y
et

al
.,

19
96

],
[A

m
an

n
an

d
Fu

nd
ul

ak
i,

19
99

],
[A

m
an

n
et

al
.,

20
00

],
[G

oa
sd

ou
é

et
al

.,
20

00
],

[G
oa

sd
ou

é
an

d
R

ou
ss

et
,2

00
4]

,
[A

bd
al

la
h

et
al

.,
20

09
]

[C
al

va
ne

se
et

al
.,

20
09

]

SP
A

R
Q

L
-d

at
a

[S
eq

ue
da

et
al

.,
20

14
],

[H
ov

la
nd

et
al

.,
20

17
]

[S
m

its
et

al
.,

20
14

]
[D

e
G

ia
co

m
o

et
al

.,
20

18
]

SP
A

R
Q

L

[P
in

to
et

al
.,

20
11

],
[K

on
tc

ha
ko

v
et

al
.,

20
14

],
[B

ot
oe

va
et

al
.,

20
18

],
[C

al
va

ne
se

et
al

.,
20

17
]

ou
rw

or
k

Ta
bl

e
4.

1:
O

ut
lin

e
of

th
e

po
si

tio
ni

ng
of

ou
rc

on
tr

ib
ut

io
ns

.

4.1. MOTIVATION AND STATE OF THE ART 79

Global-Local-As-View

Global-Local-As-View (GLAV) data integration generalizes both GAV and LAV. A GLAV
mapping pairs a query q1 over one or several local schemas to a query q2 over the global
schema, having the same answer variables. The semantics is that for each answer of q1,
the integration system exposes the data comprised in a corresponding answer of q2 (recall
Section 2.2.2).

GLAV maximizes flexibility, or, equivalently, integration expressive power: unlike
LAV, a GLAV mapping may expose only part of a given source’s data, and may combine
data from several sources; unlike GAV, a GLAV mapping may include joins or complex
expressions over the global schema. A benefit of our using GLAV is the ability to support
a form of incomplete information, naturally present in RDF through the so-called blank
nodes, in the virtual RDF graph exposed by the mediator.

Formal OBDA frameworks based on GLAV mappings have been defined, for instance,
in [Calvanese et al., 2009], without concretely deployed systems. A technique for simu-
lating GLAV mappings through GAV ones under certain conditions, provided with so-
called Skolem functions on answer variables, is suggested in [De Giacomo et al., 2018],
however this solution has several drawbacks (see details in Section 4.3.6).

4.1.3 Contributions
As Table 4.1 shows, our work is, to the best of our knowledge, the first to support the
integration of multiple data sources through GLAV mappings, for general BGPQ querying
over the data and the ontology.

D1, e.g.,
MongoDB

Query q RDFS
ontology O

Entailment
rules R

q answers

D2, e.g.,
Jena

· · ·
Dk, e.g.,

PostgreSQL

m1 m2
. . . mnMappingsM

Extent E ofM based on D1, D2, . . ., Dk

RIS Induced graph GM
E

Saturated induced graph (GM
E
∪ O)R

Figure 4.1: Outline of an RDF Integration System.

The main contributions of this chapter are the following:

• We formally define RDF Integration Systems (RIS, in short), outlined in Fig-
ure 4.1. These are OBDA mediators capable of exposing data from heterogeneous
sources through GLAV mappings, under the form of an RDF graph with full meta-
modeling (see Section 3.1.1). We formalize the problem of general BGP query

80 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

answering over the RDF induced graph and an RDFS ontology exposed in such
systems w.r.t. to a set of RDF entailment rules. We introduce the RIS formalism
and its related query answering problem in Section 4.2.

• We describe several query answering strategies in RIS using the RDFS entail-
ment rules following materialization and rewriting-based approaches. The latter
are based on transforming RIS mappings into relational LAV mappings, and on re-
ducing query answering to rewriting it using LAV mappings. Two rewriting-based
strategies are novel, and rely on a form of mapping saturation. We show that a
smart decomposition of reasoning between offline (precomputation) and query time
makes one of these strategies much faster than the others. These query answering
strategies are exposed in Section 4.3, and experimented with in Section 4.5.

• We developed Obi-Wan, a system implementing the query answering strategies in
RIS in Section 4.4.

• We generalize our mapping saturation framework for a subset of existential rules in
Section 4.6.

4.2 RDF Integration Systems
Below, we first formalize the notion of RDF integration system in Section 4.2.1. Then,
we state the associated query answering problem in Section 4.2.2, for which Section 4.3
provides solutions.

4.2.1 RDF Integration System (RIS) Definition
An RDF integration system (RIS in short) relies on a set S of heterogeneous source
schemas, each of which may use its own data model and query language. We assume
all queries in these languages return tuples of bindings, which is the case for SQL, XPath
(and any tree pattern language), and BGPQs. A set of instance sets, one for each schema
in S, are integrated into an RDF graph, consisting of an (RDFS) ontology and of data
triples derived from the sources by means of GLAV-style mappings. Mappings allow
(i) specifying and (ii) transforming the data made available from the sources, as well as
(iii) organizing it according to the RIS ontology.

In order to specify which data are available from a source, a mapping specifies a query
on it. The results of this query are tuples of values extracted from the sources; these
values may or may not be proper RDF values, i.e., IRI, literal or blank nodes. In order
to form RDF values from source query results, we consider a set of value transformation
functions; applying a function on a tuple of source values returns a proper RDF value.

Definition 4.1 (RIS mappings). A RIS mapping m on a source schema S ∈ S is of the
form:

m = q1(x̄){ q2(f1(x̄), f2(x̄), . . . , fn(x̄))

where:

• q1 is a query on S of arity k, called the body of m,

• q2 is a BGPQ of arity n, called the head of m,

4.2. RDF INTEGRATION SYSTEMS 81

• for 1 ≤ i ≤ n, fi is a function of k inputs whose result is an IRI, a literal or a blank
node. We call the fis the functions of m.

In the following, we will replace the term fi(x̄) by xi the ith variable in x̄, when fi is
the projection on its ith input, i.e., fi(x̄) = xi.

Consider that a RIS mapping has a body q1 and a head q2 having the same arity,
whose functions fi are projections on the ith input. Such a RIS mapping is also a (sound)
GLAV mapping as defined in Section 2.2.4, and has the form q1(x̄){ q2(x̄). Hence, RIS
mappings extends the GLAV mappings on a RDF global schema by introducing a set of
functions allowing to translate the source values into proper RDF values.

Intuitively, a mapping m translates the answer tuples of q1 into tuples of RDF values
using its functions. These new tuples are exposed to the RIS as the result of its head BGP
query q2. This intuition will be formalized shortly below by defining mapping extensions
and induced graph.

Among mappings, we identify data mappings which expose only data triples. These
mappings are often the only ones considered in OBDA settings [Calvanese et al., 2011,
Kontchakov et al., 2014, Sequeda et al., 2014, Lanti et al., 2017]. An exception is
[Pinto et al., 2011] where mappings exposing schema constraints are also considered.

Definition 4.2 (Data mapping). A RIS mapping m is a data mapping, if q2, the head of m,
has a body containing only triple patterns of the following forms:

• (, τ, c), where c is an IRI,

• (, p,), where p is an IRI different from RDFS properties and τ.

A triple position denoted using means no constraint on that position.

We define mapping extensions, inspired by the canonical extensions of views given
by the GAV integration part of a GLAV integration, as exposed in Section 2.2.4. These
extensions associate to each mapping m a view name denoted Vm. This set of views
creates an intermediate layer in the integration system formed by a RIS, populated by the
RDF values exposed as tuples.

Definition 4.3 (Mapping Extension). The extension of a RIS mapping m on a source
schema S w.r.t. D, an instance of S , denoted ext(m,D), is the set of tuples defined by:

ext(m,D) = {Vm(f1(v̄), f2(v̄), . . . , fn(v̄)) | v̄ ∈ q1(D)},

where q1(D) is the answer set of m’s body on D that m integrates, and (f1, f2, . . . , fn) are
the functions of m.

Example 4.1 (Mappings). Consider the two mappings below, on the source schemas S 1,
respectively S 2:

m1 = qm1
1 (x){ (f1(x), :pilotOf, y), (y, τ, :StarShip)

m2 = qm2
1 (x, y){ (g1(x), :usesWeapon, g2(y)), (g2(y), τ, :LightSaber).

This mapping notation has been simplified, in particular, the mapping heads are replaced
by their bodies, i.e., sets of triple patterns, where the answer variables have been substi-
tuted by their respective function terms. Some function terms have also been reduced. In

82 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

m2, the mapping functions g1(x, y) and g2(x, y) have been respectively replaced by g1(x)
and g2(y), meaning that g1 only takes into account its first input, while g2 only its second.

Suppose that the body of m1 returns 〈pD1
1 〉 as its result, and that the f1 function maps

the value pD1
1 from D1, an instance of S 1, to the IRI :Luke. Then, the extension of m1 is:

ext(m1) = {Vm1(:Luke)}. Further, suppose that the body of m2 returns 〈pD2
2 , aD2〉, and that

g1 and g2 map the values pD2
2 , aD2 from D2, an instance of S 2, to the IRIs :Rey, respectively

:a. Then, the extension of m2 is: ext(m2) = {Vm2(:Rey, :a)}.

We now define the notion of extent of RIS mapping set:

Definition 4.4 (Extent of RIS mapping set). Given a set of RIS mappingsM on schemas
in S and D, a set of instances of these schemas, the extent ofM w.r.t. D, denoted ED, is
the union of the mappings’ extensions:

ED =
⋃
m∈M

ext(m,Dm),

where Dm is the instance inD of the schema on which the mapping m is defined.
We say that E is an extent ofM, if there existsD, a set of instances of the schemas in

S, such that E is the extent ofM w.r.t.D.

We remark that ifM is a set of RIS mappings that contains only GLAV mappings as
defined in Section 2.2.4 (i.e., without mapping functions), then the extent of M w.r.t. a
set of instances is equal to the canonical extensions w.r.t. the same instances of the views
in the GAV integration part of 〈G,S,M〉, where G is schema for RDF.

Given an extent E of a mapping set, we denote by Val(E) the set of RDF values it
contains. In the following, we will often consider that an extent of the mappings is given.
This amounts to considering the problem of heterogeneity among data sources solved,
since an extent contains RDF values in relational views. Further, following the separation
of GLAV mappings into GAV and LAV mappings presented in Section 2.2.4, we will
consider the GAV mappings defined by the extent of the RIS mappings, and only have to
work with the remaining LAV mappings. In other words: knowing the extent of mappings,
we can consider a RIS mapping m as a LAV mapping of the form Vm(ȳ) { q2(ȳ). This
will allow us to focus on the upper part of the RDF integration system represented in
the Figure 4.1, that is: the integration of the mapping extensions into RDF following an
RDFS schema, which enables to infer new triples through a set of RDF entailment rules.

We can now define the RIS data triples induced by some mappings and an extent
thereof. These form all the data which is exposed (can be queried) through a RIS.

Definition 4.5 (RIS induced graph). Given a setM of RIS mappings and an extent E of
M, the RIS induced graph byM and E is the RDF graph GM

E
defined as follows:

GM
E

=
⋃

m=q1(x̄){q2(x̄)∈M

{bgp2rdf(body(q2)[x̄←t̄])) | Vm(t̄) ∈ E}

where

• body(q2)[x̄←t̄] is the BGP body of a mapping’s q2, in which the answer variables x̄
are bound to the values in the tuple Vm(t̄), part of E;

• bgp2rdf(·) is a function that transforms a BGP into an RDF graph, by replacing
each variable with a fresh blank node.

4.2. RDF INTEGRATION SYSTEMS 83

Observe that, because we use GLAV mappings, the RIS induced graph may include
incomplete information modeled by fresh blank nodes, as exemplified below; these cor-
respond to the existential variables allowed in GLAV mappings, as discussed at the end
of Section 2.2.4.

Example 4.2. Reusing the mappings from Example 4.1, letM = {m1,m2} and its extent
E = {Vm1(:Luke),Vm2(:Rey, :a)}. The RIS induced graph they lead to is:

GM
E

= :Luke :pilotOf :bs

:bs τ :StarShip
:Rey :usesWeapon :a
:a τ :LightSaber

In particular, the first and second triples contain the blank node :bs, introduced by
bgp2rdf instead of the variable y in the head (query q2) of m1. Importantly, only non-
answer variables in a mapping head lead to blank nodes introduced this way: by Defini-
tion 4.5, answer variables (here x for m1 and x, y for m2) are replaced with values from
Vm(t̄), thus from Val(E).

Remark that the above example contains data triples, which are very similar to the
ones in Figure 2.1. The main structure of the graph example has been kept, the blank
node :bc (subclass of :Vehicle) has been replaced by :StarShip. The other changes are
made to better highlight RIS query answering details below. This new graph is depicted
in Figure 4.2.

We are now able to define an RDF Integration System by including an RDFS ontology
(Definition 2.4) and a set of RDF entailment rules (Definition 2.6):

Definition 4.6 (RDF Integration System). An RDF Integration System (RIS) is a tuple
S = 〈O,R,M,E〉 stating that S allows to access (query), with the reasoning power given
by the set R of RDF entailment rules, the RDF graph comprising the ontology O, and the
graph induced by the set of mappingsM and their extent E.

Equivalently, we could define a RIS by S = 〈O,R,M,D〉 using D a set of instances
of the sources instead of E an extent of M. The RIS S obtained in this way would be
equal to the RIS 〈O,R,M,ED〉.

4.2.2 Query answering problem
First, we introduce a new notion of query answering in graphs, which returns only the
answers that take their values in a given set:

Definition 4.7 (Restricted query evaluation). Given a subset V of I ∪L ∪B and a BGP
query q on an RDF graph G, the evaluation of q in G restricted to V is:

q|V(G) = {ϕ(x̄) | ϕ homomorphism from body(q) to G}

where ϕ(x̄) comprises only values from V.

The problem we consider is answering BGPQs in a RIS. We define certain answers in
a RIS setting as follows:

Definition 4.8 (Certain answer set). The certain answer set of a BGPQ q on a RIS S =

〈O,R,M,E〉 is:
cert(q, S) = q|Val(E)

(
(O ∪GM

E
)R

)

84 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

The certain answer set cert(q, S) is thus the subset of q(O ∪GM
E
,R) restricted to tuples

fully built from source values, i.e., we exclude tuples with blank nodes introduced by the
mappings (see Definition 4.5). Note, however, that these blank nodes can be exploited to
answer queries, as shown below.

Figure 4.2: Illustration of the saturation of GM
E

example graph and its ontology Oex (shown
in blue) w.r.t. RRDFS.

Example 4.3 (Certain answers). Consider the RIS S consisting of the ontology Oex in
Figure 4.2, the set RRDFS of RDFS entailment rules shown in Table 2.2, and the set of
mappings M, together with the extent E from Example 4.2. Let q be the query asking
“who uses which vehicle” defined by:

q(x, y)← (x, :uses, y), (y, τ, :Vehicle),

while the query q′ asking “who uses some vehicle” is defined by:

q′(x)← (x, :uses, y), (y, τ, :Vehicle).

The only difference between them is that y is an answer variable in q and not in q′. The
certain answer set of q is ∅, while the certain answer set of q′ is {〈:Luke〉}. This answer
results from the RIS triples (:Luke, :uses, :bs), (:bs, τ, :Vehicle), which are entailed from:

• the GM
E

triples (:Luke, :pilotOf, :bs), (:bs, τ, :StarShip), with the blank node :bs

discussed in Example 4.2, and:

• either the O triples (:pilotOf,≺sp, :uses), (:pilotOf, ↪→r, :Vehicle) together with the
RRDFS rules rdfs3 and rdfs7 (recall Table 2.2), or the O triples (:pilotOf,≺sp

, :uses), (:StarShip,≺sc, :Vehicle) together with the RRDFS rules rdfs3 and rdfs9.

The query q has no answer because it requires a value not available from the source,
namely the vehicle (starship) that :Luke uses; the RIS only knows the existence of such
value through the blank node :bs begotten by bgp2rdf in its induced graph. In contrast,
q′ allows finding out that :Luke uses (as pilot of) some vehicle, even though the mapping
m1 (the only one involving starships, so vehicles) does not expose the vehicle IRI through
the RIS.

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 85

The problem we study in the next section is:

Problem 4.1. Given a RIS S , compute the certain answer set of a BGPQ q on S ,
i.e., cert(q, S).

4.3 Query answering techniques on RDF Integration
Systems

Throughout this section, we will consider a RIS S = 〈O,R,M,E〉 and a BGP query q
having the following characteristics:

• q does not contain blank nodes;

• the ontology O is a First Order (FO) ontology (Definition 3.4) and does not con-
tain blank nodes;

• the RDF entailment rule set is RRDFS, the RDFS entailment rule set (Table 2.2),
i.e., R = RRDFS;

• the mappings inM are data mappings (Definition 4.2), exposing only data triples.

Since GM
E

contains only data triples and O is a FO ontology, it follows from Property 3.2
that the graph induced with the ontology, GM

E
∪ O, is an RDF graph with split reasoning

(Definition 3.3). Hence, the results on query reformulation presented in Section 3.2 can
be used for this graph. Moreover, non-standard query evaluation can be avoided, because
O and q do not contain blank nodes.

This section is devoted to RIS query answering strategies. The three tasks involved
follow from Definition 4.8: (i) computing the RIS induced graph GM

E
; (ii) reasoning on

this graph, with the ontology O, under the RDFS entailment rules R; (iii) computing
answers to the user query q on the graph resulting from the reasoning.

Five RIS query answering strategies are described below; they differ in when and how
the above steps are performed. Specifically, we first describe two methods which start
by actually computing the RIS induced graph; this is reminiscent of an extract-transform-
load (or warehouse) scenario in classical data integration literature,
e.g., [Özsu and Valduriez, 2011], followed by an RDF query answering stage (as out-
lined in Section 2.1.3). These strategies use a materialization-based query answering
approach. The three next strategies are our most innovative ones: the RIS induced graph
GM
E

is not materialized, hence the saturation of O ∪ GM
E

cannot be computed to answer
queries. Instead, they use the RIS mappings as LAV mappings, in order to reduce query
answering in a RIS to relational view-based query rewriting (Section 2.2.3). These three
strategies differ in how the ontological reasoning is incorporated: all, some or none of the
reasoning effort is performed at query time, as outlined in Figure 4.3. These strategies
use a rewriting-based query answering approach.

4.3.1 Materialization-based query answering strategies: MAT and
MAT-CA

We first present two strategies which materialize the RIS induced graph, then reduce RIS
query answering to RDF query answering: either based on graph saturation (MAT), or on
query reformulation (MAT-CA, whose acronym reflects reformulation with both the Rc and

86 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Ra rules, i.e., RRDFS rules from Figure 3.1). Figure 4.1 contains most of the elements used
in our discussion.

During materialization, the bodies of the mappings inM are executed on their respec-
tive data sources, then their results are transformed by applying the respective mapping
functions to form the content of E, the mappings extent. They are then converted as per
Definition 4.5 into the RIS induced graph GM

E
, which is stored into an RDF data manage-

ment system.
Subsequently, when a BGPQ q is asked against the RDF graph made of the RIS in-

duced graph and the ontology O, it can be answered:

• by the saturation-based technique on the graph GM
E
∪O saturated with the set RRDFS

of RDFS entailment rules, or

• by the reformulation-based technique, reformulating q using O andR into a UBGPQ
Qc,a (recall Section 3.2.6), then evaluating Qc,a on the RIS data triples only.

The next theorem states the correctness of the two above-mentioned RIS query an-
swering methods:

Theorem 4.1 (MAT and MAT-CA correctness). Let q be a BGPQ asked on the RIS S =

〈O,RRDFS,M,E〉, then

• using MAT: cert(q, S) = q|Val(E)

(
(O ∪GM

E
)RRDFS

)
;

• using MAT-CA: cert(q, S) = (Qc,a)|Val(E)

(
GM
E

)
The proofs of the above two statements follow from the definition of certain an-

swers in a RIS (Definition 4.8), and either from that of RDF query answers (Defini-
tion 2.16) for the saturation-based approach (MAT correctness) or from Theorem 3.5 for
the reformulation-based approach (MAT-CA correctness).

Example 4.4. Consider the RIS of Example 4.3, whose ontology Oex and GM
E

data triples
form exactly the RDF graph (without saturation) in Figure 4.2. In the MAT approach, the
saturation of this latter graph is stored in an RDF database (triple store). One can check
that the evaluation of the query q′(x) ← (x, :uses, y), (y, τ, :Vehicle) on the saturation
returns the certain answer 〈:Luke〉, as explained in Example 4.3. Once the RIS induced
graph is materialized, the approach MAT-CA is similar to reformulation-based query
answering. This technique has been illustrated in Example 3.8.

These two methods push the extent materialization work before queries are received,
thus speeding up query answering. However, the materialized RIS data triples must be
maintained when the data sources are updated. In turn, changes to the RIS induced graph
require maintaining (GM

E
)RRDFS for the saturation-based strategy. Hence, approaches based

on materializing RIS data triples are generally not adapted to contexts where data sources
are frequently updated.

4.3.2 Rewriting-based query answering strategies: REW-CA, REW-C

and REW

In this section, we briefly introduce the three rewriting-based query answering approaches,
schematized in Figure 4.3.

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 87

M

mapping
saturation

MRa,O

ont.
mapping
creation

MRa,O ∪MORc

(A)

(B)

reformulation

Qc,a

Qc

q

(1’)

(1)

O

Ra

Rc

rewriting

(2)

(2’)

(2”)

qr

qREW

(3)
(3’)

D

mediator
query
engine

(4)

(4’)
answers (5)

Figure 4.3: Outline of query answering strategies.

All reasoning at query time (REW-CA) The first strategy will be detailed in Sec-
tion 4.3.3. First, it reduces the RIS query answering problem to standard query evalu-
ation in an RDF data management system, by reformulating (step (1) in Figure 4.3) the
query q based on the RIS ontology O and entailment rules RRDFS = Rc∪Ra. The obtained
reformulated query Qc,a thus yields the expected certain answers when evaluated on the
RIS data triples (recall Section 3.2.6), provided that answers with blank nodes introduced
by the bgp2rdf function are discarded (recall Section 4.2.2). Since these data triples are
not materialized, the RDF query evaluation problem is in turn reduced to relational view-
based query answering, by rewriting Qc,a using the RIS GLAV mappingsM seen as LAV
mappings (step (2)). This produces a relational rewriting qr over the mappings extension
(step (3)), whose evaluation with a mediator query engine provides the desired certain
answers (steps (4) and (5)).

Some reasoning at query time (REW-C) The second strategy (detailed in Section 4.3.4)
is a main contribution of this chapter. First, it reduces the RIS query answering problem
to saturation-based query answering by reformulating (step (1’)) the query q based on O
and Rc only (not RRDFS = Rc ∪ Ra as above). The obtained reformulation Qc thus yields
the expected certain answer set when evaluated on the RIS data triples saturated with Ra

(recall Section 3.2.2), again provided that the answers with blank nodes introduced by the
bgp2rdf function are discarded (as above). Since these triples are not materialized in a
RIS, hence cannot be saturated with Ra, the saturation-based query answering problem is
in turn reduced to relational view-based query answering, by rewriting Qc using the RIS
GLAV mappings saturated by O and Ra, seen as LAV mappings. These saturated map-

88 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

pings, denoted MRa,O, are obtained (step (A)) from the original ones by adding to their
head queries (q2) all the implicit data triples they model w.r.t. O and Ra. Then, the par-
tially reformulated query Qc is rewritten usingMRa,O (step (2’)) and the resulting query
(step (3)) is evaluated as in the first strategy (steps (4) and (5)). Importantly, mappings
are saturated offline, and need to be updated only when some mapping or the ontology
changes. This limits both the reasoning effort at query time and the complexity of the
reformulated query to rewrite, hence the rewriting time needed to obtain a rewriting qr

over the data sources, as our experiments show (Section 4.5).

No reasoning at query time (REW) Finally, the third strategy (detailed in Section 4.3.5)
reduces the RIS query answering problem directly to view-based query answering. Here,
the mappings are saturated offline as above (step (A)), in order to model all explicit and
implicit RIS data triples. Also, these mappings are complemented with a set of RIS map-
pings, notedMORc (step (B)), comprising all the explicit and implicit RIS schema triples
w.r.t. O and RRDFS; since only Rc rules entail new schema triples (Property 3.1), ORRDFS

is actually equal to ORc . This second set of mappings is also computed offline, and only
needs to be updated when the ontology changes. A query q just needs to be rewritten
based on the above mappings MRa,O ∪ MORc seen as LAV mappings (step (2”)), in or-
der to obtain, as above, a rewriting qREW over the data sources (step(3’), followed by the
evaluation steps (4’) and (5)).

4.3.3 Rewriting fully-reformulated queries using LAV mappings:
REW-CA

Before going into the technical details of the above strategies, we introduce a set of simple
functions.

The bgp2ca function transforms a BGP into a conjunction of atoms with ternary pred-
icate T (standing for “triple”) as follows:

bgp2ca({(s1, p1, o1), . . . , (sn, pn, on)}) = T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on).

The bgpq2cq function transforms a BGPQ q(x̄)← body(q) into the CQ

q(x̄)← bgp2ca(body(q)).

Finally, the function ubgpq2ucq function transforms a UBGPQ
⋃n

i=1 qi(x̄i) into a UCQ
by applying the above bgpq2cq function to each of its qi BGPQs.

Based on Section 3.2.6, the first step of this strategy, (1) in Figure 4.3, reformulates
a query q w.r.t. the RIS ontology O and entailment rules RRDFS = Rc ∪ Ra into a query
Qc,a. This allows obtaining the certain answers directly from the RIS induced graph, and
not from their saturation after they have been augmented with O (recall Definition 4.8).
Indeed, the correctness of the reformulation ensures that the certain answers of q on the
RIS S correspond precisely to those of Qc,a asked on S when disregarding O and RRDFS,
as formally expressed in the next lemma. Of course, this still does not provide a concrete
method to compute the certain answers through standard query evaluation, since the RIS
data triples GM

E
are not materialized.

Lemma 4.1. Let S = 〈O,RRDFS,M,E〉 be a RIS, q be a BGPQ and Qc,a its UBGPQ
reformulation w.r.t. O,RRDFS = Rc ∪ Ra using Section 3.2.6. Then:

cert(q, S) = cert(Qc,a, 〈∅, ∅,M,E〉)

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 89

Proof.

cert(q, S) = q|Val(E)

(
(O ∪GM

E
)RRDFS

)
= (Qc,a)|Val(E)

(
(O ∪GM

E
) \ O

)
(Theorem 3.5)

= (Qc,a)|Val(E)

(
GM
E

)
= cert(Qc,a, 〈∅, ∅,M,E〉)

�

Recall that the RIS data triples are defined from the mappingsM as follows: for every
RIS mapping m = q1(x̄){ q2(f1(x̄), . . . , fn(x̄)) ∈ M

• evaluate the mapping body q1(x̄) on the data source D and applying the functions
fi on the results to produce its extension ext(m,D) ∈ E defining the content of Vm,
and then

• instantiate the mapping head q2(y1, . . . , yn) with its extension.

This is also how the instance of a data integration system based on LAV mappings and
their extensions is defined in a relational setting (Section 2.2.3). Based on this analogy
and on the splitting of GLAV integration system into GAV and LAV integration sys-
tems presented in Section 2.2.4, we recast the RIS query answering problem of the above
Lemma, into a relational view-based query answering one. To this aim, we treat our RIS
mappings as LAV mappings:

Definition 4.9 (RIS mappings as relational LAV mappings). Let m be a RIS mapping and
q2 its head having the answer variables ȳ. The corresponding relational LAV mapping of
m is the (sound) LAV mapping defines by:

Vm(ȳ)→ bgp2ca(body(q2)).

We denote the set of LAV mappings derived from all the RIS mappingsM by Views(M).
Crucially, the extent E of the mapping setM is also an extent for the corresponding set
of views Views(M).

Example 4.5. The relational LAV mappings corresponding to the mappings m1,m2 from
Example 4.1 are:

• Vm1(x)→ T (x, :pilotOf, y),T (y, τ, :StarShip)

• Vm2(x, y)→ T (x, :usesWeapon, y),T (y, τ, :LightSaber)

Based on the above Lemma 4.1, treating mappings and their extent as relational LAV
mappings and their extent, and seeing (U)BGPQs as (U)CQs with the help of the functions
introduced in the beginning of this section, we reduce the RIS query answering problem
to view-based query answering:

Theorem 4.2 (REW-CA correctness). Let S = 〈O,RRDFS,M,E〉 be a RIS and q be a
BGPQ. Let Qc,a be the reformulation of q w.r.t. O and RRDFS as defined in Section 3.2.6.
Then:

cert(q, S) = cert(ubgpq2ucq(Qc,a),Views(M),E)

where cert(ubgpq2ucq(Qc,a),Views(M),E) denotes the certain answer set of ubgpq2ucq(Qc,a)
over Views(M) and E.

90 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Qc,a = q(x, :pilotOf)← T (x, :pilotOf, z),T (z, τ, :StarShip),
T (x, :uses, a),T (a, τ, :LightSaber)

∪ q(x, :pilotOf)← T (x, :pilotOf, z),T (z, τ, :StarShip),
T (x, :usesWeapon, a),T (a, τ, :LightSaber)

∪ q(x, :pilotOf)← T (x, :pilotOf, z),T (z, τ, :StarShip),
T (x, :pilotOf, a),T (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←T (x, :usesWeapon, z),T (z, τ, :StarShip),
T (x, :uses, a),T (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←T (x, :usesWeapon, z),T (z, τ, :StarShip),
T (x, :usesWeapon, a),T (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←T (x, :usesWeapon, z),T (z, τ, :StarShip),
T (x, :pilotOf, a),T (a, τ, :LightSaber)

Figure 4.4: Sample reformulation for Example 4.6.

Importantly, this provides an effective solution to RIS query answering problem by
using state-of-the-art view-based query rewriting techniques [Halevy, 2001], in particular
for step (2) in Figure 4.3.

Example 4.6 (REW-CA query answering). Consider again the RIS in Example 4.3 and
the query:

q(x, y)← (x, y, z), (z, τ, t), (y,≺sp, :uses), (t,≺sc, :Vehicle), (x, :uses, a), (a, τ, :LightSaber)

asking “who uses light sabers, and how do they use vehicles”. Its UBGPQ reformulation,
seen as an UCQ, is shown in Figure 4.4. Its maximally-contained rewriting based on the
LAV mappings obtained from the RIS mappings (see Example 4.5) is:

qr(x, :pilotOf)← Vm1(x),Vm2(x, y),

obtained from the second CQ in the above union. This becomes clear when the view
symbols are replaced according to the LAV mappings :

q(x, :pilotOf)← T (x, :pilotOf, y1),T (y1, τ, :StarShip),
T (x, :usesWeapon, y2),T (y2, τ, :LightSaber).

Note that the other CQs cannot be rewritten given the available LAV mappings.
With the current RIS, this rewriting yields an empty certain answer set to q,

i.e., cert(q, S) = ∅, because the extent of the mappings, hence of the LAV mappings, is:
E = {Vm1(:Luke),Vm2(:Rey, :a)}. However, if we add Vm2(:Luke, :a) to E, then cert(q, S) =

{〈:Luke, :pilotOf〉}.

4.3.4 Rewriting partially-reformulated queries using saturated LAV
mappings: REW-C

In contrast with the REW-CA strategy that performs all the reasoning w.r.t. O and RRDFS =

Rc ∪ Ra at query time, our second strategy, called REW-C, splits the reasoning work
between offline preprocessing and query time.

The first step of this strategy, labeled (1’) in Figure 4.3, reformulates a query q as
explained in Section 3.2.4, but solely w.r.t. O,Rc, producing a UBGPQ denoted Qc. From
the correctness of this reformulation step, and the fact that only Ra needs to be considered

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 91

to answer Qc with respect to the entire set of rules RRDFS (recall Section 3.2.2), the certain
answer set of q asked on the RIS S is exactly the certain answer set of Qc asked on S
when disregarding Rc. Formally:

Lemma 4.2. Let S = 〈O,RRDFS,M,E〉 be a RIS, q be a BGPQ and Qc its reformulation
w.r.t. O,Rc . Then:

cert(q, S) = cert(Qc, 〈O,Ra,M,E〉)

Proof.

cert(q, S) = q|Val(E)

(
(O ∪GM

E
)RRDFS

)
= q|Val(E)

((
(O ∪GM

E
)Ra

)Rc
)

(Theorem 3.2)

= (Qc)|Val(E)

(
(O ∪GM

E
)Ra

)
(Equation 3.20)

= cert(Qc, 〈O,Ra,M,E〉)

�

In other words, the desired answer set can be obtained by evaluating Qc on the RIS
data triples GM

E
saturated by Ra. Again, since the RIS data triples are not materialized,

this does not provide a concrete solution. To account for the impact of the ontology
O and the entailment rules Ra on these “virtual” data triples, we rely on BGPQ satura-
tion [El Hassad et al., 2017]: given a BGPQ q, O and Ra, the saturation qRa,O of q w.r.t. Ra

and O is q augmented with all the triples q implicitly asks for, given the ontology O and
the rules Ra. To compute qRa,O we (i) saturate body(q) ∪ O using Ra, then (ii) add to the
body of q all triples thus inferred. BGPQ saturation is exemplified below:

Example 4.7 (BGPQ saturation). Consider the ontology Oex in Figure 4.2 and the query
q(x) ← (x, :pilotOf, y), (y, τ, :StarShip) asking for the star ship pilots. Its saturation
w.r.t. Ra,O is (inferred triples are in blue):

qRa,O(x)← body(q), (x, :uses, y), (x, τ, :Person), (y, τ, :Vehicle), (y, τ, :Object).

We use BGPQ saturation to saturate the RIS mapping heads w.r.t. Ra,O, so that the
saturated mappings together with E model the saturated RIS data triples w.r.t. Ra,O.

Definition 4.10 (Mappings saturation). The saturation of a setM of RIS mappings w.r.t. the
entailment rules Ra and ontology O is:

MRa,O =
⋃
m∈M

{q1(x̄){ qRa,O
2 (x̄) | m = q1(x̄){ q2(x̄)}

We saturate mappings offline, and just need to update them when O or the mapping
heads change.

Example 4.8 (Saturated mappings). Recall the RIS of Example 4.3. The mapping heads
inMRa,O are shown below (inferred triples are in blue):

m1 : qRa,O
2 (x)← (x, :pilotOf, y), (y, τ, :StarShip)

(x, :uses, y), (y, τ, :Vehicle)
(x, τ:Person), (y, τ, :Object)

m2 : qRa,O
2 (x, y)←(x, :usesWeapon, y), (y, τ, :LightSaber)

(x, :uses, y), (y, τ, :Object)
(x, τ, :Person)

92 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

From the above Lemma and the use of saturated RIS mappings instead of the original
ones, we show:

Lemma 4.3. Let S = 〈O,RRDFS,M,E〉 be a RIS, q be a BGPQ and Qc its reformulation
w.r.t. O,Rc as defined in Section 3.2.2. Then:

cert(q, S) = cert(Qc, 〈∅, ∅,M
Ra,O,E〉)

Proof.

cert(q, S) = cert(Qc, 〈O,Ra,M,E〉) (Lemma 4.2)

= (Qc)|Val(E)

(
(O ∪GM

E
)Ra

)
= (Qc)|Val(E)

(
ORa ∪GM

Ra ,O

E

)
(Theorem 4.5)

= (Qc)|Val(E)

(
O ∪GM

Ra ,O

E

)
(O is an FO ontology and Property 3.2)

= (Qc)|Val(E)

(
GM

Ra ,O

E

)
(Equation 3.21)

= cert(Qc, 〈∅, ∅,M
Ra,O,E〉)

�

This result allows solving the RIS query answering problem by relational view-based
query rewriting (step (2’) in Figure 4.3):

Theorem 4.3 (REW-C correctness). Let S = 〈O,RRDFS,M,E〉 be a RIS, q be a BGPQ
and Qc its reformulation w.r.t. O,Rc.Then:

cert(q, S) = cert(ubgpq2ucq(Qc),Views(MRa,O),E)

A proof of this result is given in Section 4.6. We illustrate REW-C query answering
on an example:

Example 4.9 (REW-CA). Consider again the RIS in Example 4.3 and the query q of
Example 4.6. Its reformulation Qc w.r.t. O,Rc, seen as a UCQ, is:

q(x, :pilotOf)← T (x, :pilotOf, z),T (z, τ, :StarShip),
T (x, :uses, a),T (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←T (x, :usesWeapon, z),T (z, τ, :StarShip),
T (x, :uses, a),T (a, τ, :LightSaber)

This reformulation is therefore rewritten using the LAV mappings as:

qr(x, :pilotOf)← Vm1(x),Vm2(x, y).

This rewriting is due to the first CQ in the above; the second one has no rewriting based
on the available LAV mappings. Note that this rewriting is equivalent to the one obtained
in Example 4.6, hence it yields the same answers.

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 93

4.3.5 Rewriting queries using saturated mappings and ontology
LAV mappings: REW

This strategy does not reason at query time at all. Instead, it rewrites a query q based on
the saturated RIS mappingsMRa,O as above, and on a specific set of ontology mappings
we build to model the saturated RIS ontology as a data source:

Definition 4.11 (Ontology mappings and their extent). The ontology mappings for a
RDFS ontology O w.r.t. a set of RDF entailment rules R, denotedMOR , is defined as:

MOR =
⋃

p∈{≺sc,≺sp,←↩d ,↪→r}

{mp | mp = q1(s, o){ (s, p, o)}

The extent ofMOR , denoted EOR , is defined by:

EOR =
⋃

p∈{≺sc,≺sp,←↩d ,↪→r}

{Vmp(s, o) | (s, p, o) ∈ OR}

where Vmp comes from the relational LAV mapping corresponding to mp (Definition 4.9).

We computeMORc , the ontology mappings, together with their extent EORc offline, and
only need to update them when the ontology changes. The extent EORc , which is treated
like an extra data source introduced for the needs of this query answering strategy, stores
all the explicit and implicit RIS ontology triples (recall from Section 2.1.3 that only Rc

lead to such triples). Importantly, this leads to the observation that a query triple that
refers to the ontology (schema) can be evaluated on the ontology mapping extensions
alone. Formally:

Lemma 4.4. Let S = 〈O,RRDFS,M,E〉 be a RIS and q be a BGPQ. Then:

cert(q, S) = cert(q, 〈∅,Ra,MORc ∪M,EORc ∪ E〉).

Proof.

cert(q, S) = q|Val(E)

(
(O ∪GM

E
)RRDFS

)
= q|Val(E)

((
(O ∪GM

E
)Rc

)Ra
)

(Theorem 3.2)

= q|Val(E)

(
(ORc ∪GM

E
)Ra

)
(Property 3.1)

= q|Val(E)

(
(G
MORc

EORc
∪GM

E
)Ra

)
(Property 4.8)

= cert(q, 〈∅,Ra,MORc ∪M,EORc ∪ E〉)

�

This lemma effectively “pushes” Rc reasoning in the set of mappings (to which we
add MORc) and the extent (to which we add EORc). Clearly, from the definition of RIS
certain answers, MORc and EORc provides the explicit and implicit RIS schema triples,
while O, Ra,M and E provides the explicit and implicit RIS data triples. Next, we rely
(as we did for REW-C) on mappings saturation with O,Ra to also push Ra reasoning in
the mappings, leading to:

Lemma 4.5. Let S = 〈O,RRDFS,M,E〉 be a RIS and q be a BGPQ. Then:

cert(q, S) = cert(q, 〈∅, ∅,MORc ∪M
Ra,O,EORc ∪ E〉)

94 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

q(x, :pilotOf)← Vm1(x),Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:StarShip, :Vehicle),Vm2(x, a)

∪ q(x, :pilotOf)← Vm1(x),Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:Vehicle, :Vehicle),Vm2(x, a)

∪ q(x, :pilotOf)← Vm1(x),Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:Object, :Vehicle),Vm2(x, a)

∪ q(x, :uses)← Vm1(x),Vm≺sp
(:uses, :uses),

Vm≺sc
(:StarShip, :Vehicle),Vm2(x, a)

∪ q(x, :uses)← Vm1(x),Vm≺sp
(:uses, :uses),

Vm≺sc
(:Vehicle, :Vehicle),Vm2(x, a)

∪ q(x, :uses)← Vm1(x),Vm≺sp
(:uses, :uses),

Vm≺sc
(:Object, :Vehicle),Vm2(x, a)

∪ q(x, :usesWeapon)←Vm2(x, z),Vm≺sp
(:usesWeapon, :uses),

Vm≺sc
(:LightSaber, :Vehicle),Vm2(x, a)

∪ q(x, :usesWeapon)←Vm2(x, z),Vm≺sp
(:usesWeapon, :uses),

Vm≺sc
(:Object, :Vehicle),Vm2(x, a)

∪ q(x, :uses)← Vm2(x, z),Vm≺sp
(:uses, :uses),

Vm≺sc
(:LightSaber, :Vehicle),Vm2(x, a)

∪ q(x, :uses)← Vm2(x, z),Vm≺sp
(:uses, :uses),

Vm≺sc
(:Object, :Vehicle),Vm2(x, a)

∪
⋃
r∈{≺sc,≺sp,←↩d ,↪→r}

q(x, r)← Vmr(x, z),Vm2(v, z),
Vm≺sp

(r, :uses),
Vm≺sc

(:LightSaber, :Vehicle),
Vm2(x, a)

∪ q(x, r)←Vmr(x, z),Vm2(v,z),
Vm≺sp

(r, :uses),
Vm≺sc

(:Object, :Vehicle),
Vm2(x, a)

∪q(x, τ)←Vm2(x1, x),Vm2(x2, :LightSaber),Vm≺sp
(τ, :uses),

Vm≺sc
(:LightSaber, :Vehicle),Vm2(x, a)

∪q(x, τ)←Vm2(x1, x),Vm2(x2, :Object),Vm≺sp
(τ, :uses),

Vm≺sc
(:Object, :Vehicle),Vm2(x, a)

Figure 4.5: Sample rewriting for Example 4.10.

This lemma is a direct consequence of Theorem 4.5. This allows to reduce RIS query
answering to relational view-based query rewriting (step (2”) in Figure 4.3):

Theorem 4.4 (REW correctness). Let S = 〈O,RRDFS,M,E〉 be a RIS and q be a BGPQ.
Then:

cert(q, S) = cert(bgpq2cq(q),Views(MORc ∪M
Ra,O),EORc ∪ E)

Example 4.10 (REW). Consider again the RIS in Example 4.3 and the query q of Exam-
ple 4.6 seen as a CQ:

q(x, y)←T (x, y, z),T (z, τ, t),T (y,≺sp, :uses),T (t,≺sc, :Vehicle),
T (x, :uses, a),T (a, τ, :LightSaber)

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 95

Its maximally-contained rewriting qREW based on the LAV mappings obtained from
the RIS saturated mappings and ontology mappings appears in Figure 4.5. It shows a
rewriting containing 22 CQs, which is not minimized, in order to ease the understanding
of the rewriting process. Nevertheless, we remark that the 6th CQ is contained in the
10th one and the CQs from 7th to 10th contain a redundant atom using the view symbol
Vm2 . This rewriting is much larger than the ones of the two preceding techniques: this
is due to the ontology mappings. If we assume that E also contains Vm2(:Luke, :a), as
we did in Example 4.6, we obtain again cert(q, S) = {〈:Luke, :pilotOf〉}, which results
from the evaluation of the first CQ in the UCQ rewriting; the other CQs yield empty
results because some required ≺sc or ≺sp constraints are not found in the extensions of
RIS ontology mappings.

How do our strategies compare? Since they are all correct, they lead to the same RIS
certain answer set, however they do not necessarily compute the same view-based rewrit-
ings. Indeed, REW considers the additional set MORc of ontology mappings. Hence,
for queries over the ontology, i.e., featuring in a property position ≺sc, ≺sp, ←↩d, ↪→r,
or a variable, a REW rewriting is larger than a REW-CA or REW-C rewriting and, to be
answered, requires the additional ontology source modeled by EORc . In contrast, REW-
CA and REW-C yield logically equivalent rewritings; we minimize them both to avoid
possible redundancies, thus they become identical (up to variable renaming). Hence,
REW-CA and REW-C do not differ in how these rewritings are evaluated. Instead, they
differ in how the rewritings are computed, or, equivalently, on the distribution of the
reasoning effort on the data and mappings, across various query answering stages. As
our experiments show, given the computational complexity of view-based query rewrit-
ing [Pottinger and Halevy, 2001], this difference has a significant impact on their perfor-
mance.

4.3.6 Remarks on related techniques
We discuss here how GLAV mappings could be simulated by GAV mappings and the
drawbacks of this solution. We also relate our mapping saturation technique to a similar
technique developed in the context of OBDA with description logics.

Simulation of GLAV mappings by GAV mappings

To some extent, GLAV mappings may be simulated by GAV mappings provided with so-
called Skolem functions on answer variables, as suggested for instance in [De Giacomo et al., 2018].
The name “Skolem function” comes from the Skolemization operation in first-order logic,
which replaces all existentially quantified variables in a formula (in a specific form) with
functional terms, using a fresh set of (Skolem) function symbols. By analogy, existential
variables in the head of a mapping may be replaced by functions on the answer variables
of the head.

To illustrate, consider the GLAV mapping from Example 4.1 (we omit here the func-
tion f1 on x to focus on the functions that will be introduced):

m1 = q1(x){ (x, :pilotOf, y), (y, τ, :StarShip)

The existential variable y could be replaced by a Skolem function f (x), which would
yield two GAV mappings, namely m1

1 and m2
1, defined by:

m1
1 = q1(x){ (x, :pilotOf, f (x))

96 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

m2
1 = q1(x){ (f (x), τ, :StarShip).

In a materialization scenario, note that Skolem functions would have to produce syn-
tactically correct RDF values. Still in a materialization scenario, query answering would
require some post-processing to prevent the values built by the Skolem functions to be
accepted as answers.

In a query rewriting scenario, Skolem values would also have to be dealt with in a
special way, which in particular prevents to use off-the-shelf view-based query rewriting
algorithms. Hence, value invention would be simulated here at the price of technically
more complex mappings and processing. Second, the break-up of GLAV mappings into
several GAV mappings would lead to higher conceptual complexity since intrinsically
connected triples, as those associated with (x, :pilotOf, y) and (y, τ, :StarShip) in the ex-
ample, could not be exposed together by a single mapping. Last but not least, it leads
to less efficient query rewriting algorithms. In particular, using such GAV mappings to
rewrite a query according to LAV mappings has been proposed by the Inverse-rules algo-
rithm [Abiteboul et al., 2011], however this technique produces highly redundant rewrit-
ings and is considerably slower than the Minicon algorithm, which directly works on LAV
mappings [Pottinger and Halevy, 2001].

Mapping saturation

As already mentioned, our mapping saturation (Definition 4.15) is inspired by a query
saturation technique introduced in [El Hassad et al., 2017] to compute least general gen-
eralizations of BGPQs under RDFS background knowledge.

However, it appears that it can be seen as a generalization to GLAV mappings of
the T -mapping technique introduced in [Rodriguez-Muro et al., 2013] (and further devel-
oped in [Sequeda et al., 2014]) to optimize query rewriting in a classical OBDA context
with description logics. The T -mapping technique consists of completing the original
set of GAV mappings with new ones, encapsulating information inferred from the DL
ontology. For instance, given a GAV mapping:

m = q1(x){ C(x)

with C a class, and a DL constraint specifying that C is a subclass of D, a new mapping:

m′ = q1(x){ D(x)

is created by composing m and the DL constraint. On this example, we would saturate
the head of m into qR,O2 (x)← C(x)∧D(x), which is semantically equivalent to adding the
mapping m′. However, when mappings are GLAV and not GAV, one cannot simply add
new mappings. For instance, consider the GLAV mapping:

m1 = q1(x){ (x, :pilotOf, y), (y, τ, :StarShip)

Given the entailment rule rdfs9 and the ontological triple (:StarShip,≺sc, :Vehicle),
the saturation of m1 adds the triple (y, τ, :Vehicle) to its head. Creating instead a new
mapping of the form m′1 = q1(x̄){ (y, τ, :Vehicle) would of course be unsatisfactory as y
in m′1 should correspond to the same object as y in m1.

4.3. QUERY ANSWERING TECHNIQUES ON RDF INTEGRATION SYSTEMS 97

4.3.7 Landscape of query answering strategies
We now propose a structured overview of the query answering strategies enabled by the
previously exposed RIS transformations and query reformulations to handle the reasoning
w.r.t. RRDFS In this section, we present respectively nine and four strategies, following
the materialization and, respectively, the rewriting-based query answering approaches;
among these are the strategies detailed in the previous subsections. We explore these
strategies by introducing a general, extensible framework, using small transformations of
a query answering problem on RIS.

Definition 4.12 (QA problem). A Query Answering (QA) problem is pair (q, S) of a
BGPQ q and a RIS S = 〈O,R,M,E〉.

Solving (q, S) means finding the certain answers of q in S . A QA strategy is a fixed
method to solve a class of QA problems. A QA strategy can start by QA transformations
which turn the original QA problem into a equivalent, slightly different one.

Definition 4.13 (QA transformation). A Query Answering (QA) transformation is defined
by two applications f and g. It takes as input a QA problem (q, S) and returns the new
QA problem (f (q, S), g(S)).

We say that a QA transformation defined by f and g is safe for a class of QA problems,
if for any QA problem (q, S) of that class, the certain answers of q in S are equal to the
certain answers of f (q, S) in g(S).

Above, we have investigated QA strategies for the class of QA problems defined by
the hypothesis presented at the beginning of Section 4.3. These QA strategies are implic-
itly based on safe QA transformations, allowing to distribute the reasoning w.r.t. RRDFS in
the query or inside the RIS components. We can group these QA transformations in three
ordered categories:

1. query reformulation allows to handle the reasoning w.r.t. Ra (respectively, Rc and
RRDFS) as introduced in Section 3.2. The QA transformation is defined as follows:

• f (q, S) returns Qa (respectively, Qc and Qc,a), the reformulation of q w.r.t. the
ontology of S ;

• g(S) returns 〈O,R\Ra,M,E〉 (respectively, 〈O,R\Rc,M,E〉 and 〈∅, ∅,M,E〉)

2. mappings transformation allows to handle the reasoning w.r.t. Ra by mappings
saturation (Definition 4.10) (respectively, w.r.t. Rc by adding of ontology mappings
and their extent (Definition 4.11)). The QA transformation is defined as follows:

• f (q, S) = q;

• g(S) returns 〈O,R \ Ra,M
Ra,O,E〉 (respectively, 〈∅,R \ Rc,M ∪ MORc ,E ∪

EORc 〉).

3. materialization saturation allows, only for materialization-based approaches, to
handle the reasoning w.r.t. R among Ra, Rc and RRDFS. The QA transformation is
defined as follows:

• f (q, S) = q;

98 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

• g(S) returns 〈∅, ∅, {mt},
(
GM
E
∪ O

)R
〉, where the fourth input of the RIS, instead

of the mappings extent, is an RDF graph considered as a datasource (as out-
lined below Definition 4.6) and mt is the mapping defined by qt(s, p, o) {
qt(s, p, o), with qt the BGPQ defined by qt(s, p, o)← (s, p, o).

To fully handle the RDFS reasoning, a QA strategy needs to apply on a QA problems:
either two QA transformations (one for Ra and another for Rc) or only one for RRDFS, in
the order of the categories to which they belong. The order is required, to avoid that a
first QA transformation removes an input required by a subsequent one. For example,
the QA strategy REW-C starts by chaining the QA transformation w.r.t. Rc, in the query
reformulation category, with the one w.r.t. Ra, in the mapping transformation category.
After application of those QA transformations, the resulting QA problem (q′, S ′) is such
that the rule set of S is empty, as well as its ontology. A QA strategy takes this QA
problem and reduces it to:

• following the materialization-based approach, the (restricted) evaluation problem
of q′ in the RIS induced graph of S ′,

• following the rewriting-based approach, the view-based query answering prob-
lem of q′ using the mappings of S ′ as LAV mappings and their extent.

Qc,a

Qc

Qa

q

GM
Ra,O∪MORc

E∪EORc(
GM∪MORc

E∪EORc

)Ra

ORc ∪GM
Ra,O

E(
O ∪GM

E

)Rc∪Ra

GM
Ra,O

E(
GM
E
∪ O

)Ra

ORc ∪GM
E

GM∪MORc

E∪EORc

GM
E

MATMAT-CA

Figure 4.6: Possible RIS query answering strategies based on graph materialization.

Figure 4.6 and Figure 4.7 show the thirteen reduced QA problems obtained using the
QA strategies based on the QA transformations outlined above, through a materialization-
or a rewriting-based approach. In each figure, the pair formed by the query at the begin-
ning of an red arrow and by one of the elements in the pointed box represents the QA
problem resulting from the QA transformations applied by a QA strategy (induced graphs
are displayed instead of RIS for materialization-based approaches).

In Figure 4.6 and Figure 4.7, two queries are connected, if there is a query reformula-
tion w.r.t. Ra or Rc allowing to reformulate one into the other. For example, in Figure 4.6,

4.4. A PLATFORM FOR RDF INTEGRATION SYSTEMS: OBI-WAN 99

Qc,a

Qc

Qa

q 〈∅, ∅,MRa,O ∪MORc ,E ∪ EORc〉

〈∅, ∅,MRa,O,E〉

〈∅, ∅,M∪MORc ,E ∪ EORc〉

〈∅, ∅,M,E〉
REW

REW-C

REW-CA

Figure 4.7: Possible RIS query answering strategies based on query rewriting.

one can find the materialization-based query answering strategy MAT (Section 4.3.1) rep-
resented by q→(O ∪ GM

E
)Ra∪Rc . We can see that the strategy MAT is based on the QA

transformation w.r.t. RRDFS in the materialization category.
The query answering strategies detailed in Section 4.3.1-4.3.5 are presented by their

labels, above each corresponding arrow.
In Figure 4.7, the unlabelled strategy proposed to rewrite the reformulated query Qa

w.r.t. the mappingsMRa,O∪MORc . It is easy to see that this strategy has the same drawback
as REW (Section 4.3.5), sinceQa can contain triples matching the ontology and we rewrite
it using a mapping set containing the ontology mappings.

The decomposition (classification) of query answering strategies presented in this
section (by means of QA transformations) has guided our design for the strategies pre-
sented in Sections 4.3.1-4.3.5, which we have actually implemented and experimented
with within Obi-Wan. The next section provides more information about the implemen-
tation.

4.4 A Platform for RDF Integration Systems: Obi-Wan
We developed a system, called Obi-Wan, implementing the five RIS query answering
strategies detailed above. Obi-Wan is developed in Java 1.8 (18K lines of code), and
leverages existing software to perform the different query answering steps.

For materialization-based query answering strategies, including MAT and MAT-CA,
we use OntoSQL1, a Java platform providing efficient RDF storage, saturation w.r.t.RRDFS,
and query evaluation on top of an RDBMS [Bursztyn et al., 2015, Goasdoué et al., 2013],
relying on Postgres v9.6. To save space, OntoSQL encodes IRIs and literals into integers,
and a dictionary table which allows going from one to the other. It can store the resources
following the three storage layout T, CP and TCP introduced in Section 3.3; for each
layout, all tables are completely indexed. OntoSQL also contains a implementation of
the query reformulation algorithms w.r.t. Rc, Ra and RRDFS introduced in Section 3.2; this
implementation is used both for materialization and rewriting-based approaches.

1https://ontosql.inria.fr

https://ontosql.inria.fr

100 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

We rely on the Graal engine [Baget et al., 2015] for view-based query rewriting.
Graal is a Java toolkit dedicated to query answering algorithms in knowledge bases with
existential rules (a.k.a. tuple-generating dependencies). Since the LAV mapping Vm(x̄)→
bgp2ca(body(q2)) corresponding to a GLAV mapping m (recall Def. 4.9) can be seen as a
specific existential rule, the query reformulation algorithm of Graal can be used to rewrite
the UCQ translation of a BGPQ with respect to a set of RIS mappings. We specialized
Graal code to exploit obvious specificities of RIS mappings, such as the fact that they
correspond to source-to-target TGDs.

Finally, to execute queries against heterogeneous data sources, we use Tatooine
[Bonaque et al., 2016, Alotaibi et al., 2019], a Java-based mediator (or polystore) system
handling JSON, relational, key-value and RDF data (based on MongoDB, Postgres, Redis
and Jena TDB, respectively), capable (unlike other polystores, e.g., [Duggan et al., 2015])
of evaluating joins within the mediator engine. We implemented new optimizations inside
Tatooine, allowing it to push queries in underlying data sources.

4.4.1 Query answering in Obi-Wan
The inputs given to Obi-Wan are:

• a list of BGP queries,

• a Query Answering (QA) strategy characterized by a list of QA transformations
and a QA approach (Section 4.3.7);

• a RIS specification, which is a JSON document; it can also be a R2RML file
in the particular case when the mappings are GAV and the sources are relational.
The RIS specification contains the data sources description, the RDFS ontology
specified as a file containing ontology triples, and the mappings description. Each
such description specifies: its data sources, its body query, and its functions which
transform each answer of the mapping body into tuples of IRIs, literals or blank
nodes.

Concretely, we implemented these functions with the help of string patterns, that
assign a common prefix to all the values built from the bindings of a given variable.
For instance, the string pattern <https://starwars.com/{id}> is used to create
IRIs out of bindings of the variable id. Thus, from the binding luke, we obtain the
IRI <https://starwars.com/luke>.

Optionally, a mapping can specify a primary key constraint known to hold on its
extent.

At preprocessing time, Obi-Wan loads the RIS and applies on it the functions g de-
fined by the QA transformations (Definition 4.13) from the input QA strategy. The output
RIS is called effective RIS. In case of a materialization-based approach, a RIS material-
ization is performed as follows. First, each mapping is triggered on its data source, and
the resulting triples are stored in a file (fresh blank nodes introduced by existential vari-
ables in mapping head use a common prefix, e.g., :exVar). Second, triples from this file
are loaded into OntoSQL, which saturates the resulting graph, if it is specified by a QA
transformation.

At query time, Obi-Wan processes the input BGP queries in order. It applies the
function f of the QA transformations on the current BGP query and on the appropriate

4.4. A PLATFORM FOR RDF INTEGRATION SYSTEMS: OBI-WAN 101

RIS, and returns a (reformulated) query in the form of (U)BGPQ. Depending on the QA
approach, Obi-Wan computes the certain answers:

• in a materialization-based approach, by passing the (reformulated) query to On-
toSQL, which evaluates it on the materialization of induced graph of the effective
RIS, and returns the certain answers, from which the answers containing the blank
nodes prefixed by :exVar have been removed,

• in a rewriting-based approach, by rewriting the (reformulated) query using Graal
(as described above). This returns the query rewriting, a UCQ on the views Vm

of the mappings of the effective RIS, which is unfolded using the q1 parts of the
mappings (see Section 2.2.2), to form a mediated plan executed by Tatooine, which
returns the certain answers.

In a rewriting-based approach, the query rewriting and the mediated plan are opti-
mized before being, respectively, unfolded and executed. These optimizations are de-
scribed in the next section.

4.4.2 Query rewriting and mediated plan optimizations
We have devised and implemented some optimizations for pruning the CQs in the query
rewriting and simplifying (thus, improving the performance of) the mediated plan.

Query rewriting optimizations

The query rewriting is a UCQ on the views Vm. Before its unfolding, some optimizations
are applied on it, in the following order:

1. Chasing with primary key constraints As mentioned above, the RIS specification
can optionally define a primary key constraint on each view Vm. When present, such
constraints allow to infer equalities between the variables of each CQ in the query
rewriting. They make the following optimizations more important.

2. Elimination of unsatisfiable joins In a RIS, the columns content of each view Vm

(described by the extension of the mapping m, see Definition 4.4) is the output of
f1, . . . fn, the functions of m. The CQs of the query rewriting lead to empty results
on the data sources, if they contain a join of two views on columns, whose associ-
ated functions have disjoint ranges. This disjointness can be easily inferred thanks
to the fact that our functions are implemented using string patterns (Section 4.4.1).
Such CQs are removed from the query rewriting union.

3. Union minimisation Any CQs in the query rewriting, which are contained within
another such CQ, is removed, since its results can be obtained without it.

4. CQs minimisation Each CQ in the query rewriting is minimized, by eliminating
the redundant view atoms it contains.

Mediated plan optimizations

Before sending to Tatooine a mediated plan on the heterogeneous data sources, Obi-Wan
unfolds the optimized query rewriting, especially the views Vm, using the functions and
the body of each mapping m. We illustrate this on the mediated plan displayed at the top

102 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

of the Figure 4.8. This plans results from a query rewriting in a heterogeneous RIS (more
specifically, S 3 in Section 4.5), defined using MongoDB and Postgres data sources.

Before any optimization, mediated plans have a general shape that directly mirrors,
at the physical algebra level, a union of conjunctive queries. From top to bottom, such
a plan comprises: a distinct operator removing duplicate answers, followed by a union
operator beneath which lies one plan for each CQ in the rewriting query. The root of each
such plan is a projection operator keeping only the answers from the tuples returned by
the join operators connected in a tree (usually, a left-deep one), to join sub-plans returning
mapping extensions. These sub-plans are at the leaf level in the mediated plan. Each sub-
plan consists operator evaluating a mapping body (q1) on its data source, whose outputs
are input to another operator that applies the mapping functions to return the mapping
extensions. A selection operator may be inserted between one of these sub-plans and its
parent (a join operator), when a query rewriting contains a constant.

In the example, at the top of the Figure 4.8, the leaves of the plan, from left to right,
are two SQL queries whose evaluation is delegated to Postgres, followed by two queries
evaluated in MongoDB. Over these operators, functions translate the answers into tuples
of serialized IRIs, literals and blank nodes using string patterns. In the example, a selec-
tion operator is the left child of the left-most join operator, selecting the tuples in which
the sixth column is equal to the literal “4”.

These mediated plans are not efficiently evaluated by Tatooine, for the following
reasons.

• The plans may extract large volumes of data from the sources, only to eliminate
them later through selections, projections, duplicate eliminations etc. This sug-
gests to push (sub)queries in the data sources, in order to eliminate such use-
less values early on. Query pushing within data sources is a well-known heuris-
tic [Özsu and Valduriez, 2011].

• Since the function call operators are parents of a query evaluation operator, each
answer of a mapping body leads to a function invocation. Or, in some cases, many
of these function outputs are discarded by others operators higher up in the plan
(notably selections, projections and distinct operators).

• The operators of the mediated plan are often performed more efficiently by data
source query engines than by Tatooine, especially because the former can often use
indexes on the data.

Therefore, we implemented a logical plan optimizer for Tatooine, which allows to:

• move and merge the mapping function invocation operators, in one operator at the
root of the mediated plan, when possible, by reversing the order between these
operators and their parents,

• push, to the extent possible, the others operators into the data source query oper-
ators, by pushing operators whose children are query evaluation operators on the
same data sources. In some cases, this also requires re-ordering joins in the medi-
ated plan.

In our example, at the bottom in Figure 4.8 we show the previous mediated plan ex-
ample after applying the optimizations. Note that the optimized plan contains only one
join between two query evaluation operators on MongoDB and on Postgres. The others

4.4. A PLATFORM FOR RDF INTEGRATION SYSTEMS: OBI-WAN 103

Figure 4.8: A mediated plan (top), the same plan after optimizations (bottom).

104 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

joins have been pushed in these remaining query evaluation operators. Also, the map-
ping function operator is now at the root of the mediated plan, and the selection has been
pushed in the SQL query (visible on the first line of the WHERE statement). These op-
timizations considerably reduce the evaluation time of mediated plans in Tatooine2,
allowing to perform experiments, where query answering times of materialization and
rewriting-based approaches can be compared.

4.5 Experimental evaluation
We now describe our experiments with RIS query answering using the strategies outlined
in Section 4.3 and implemented by Obi-Wan.
Hardware We used servers with 2,7 GHz Intel Core i7 processors and 160 GB of RAM,
running CentOs Linux 7.5.

4.5.1 Experimental scenarios
RDF Integration Systems

Our first goal was to study scalability of RIS query answering, in particular in the rela-
tional setting studied in many prior works. To achieve this, we used the BSBM benchmark
relational data generator3 to build databases consisting of 10 relations named producer,
product, offer, review etc. Using two different benchmark scale factors, we obtained a
data source DS 1 of 154.054 tuples across the relations, respectively, DS 2 of 7.843.660
tuples; both are stored in Postgres.

We used two RDFS ontologies O1 respectively O2, containing, first, subclass hierar-
chies of 151 (resp. 2011) product types, which come with DS 1, respectively, DS 2. To
O1 and O2, we add a natural RDFS ontology for BSBM4 composed of 26 classes and 36
properties, used in 40 subclass, 32 subproperty, 42 domain and 16 range statements.

Relational-sources RIS

We devised two sets M1,M2 of 307, respectively, 3863 mappings, which expose the
relational data from DS 1, respectively, DS 2 as RDF graphs. The relatively high number
of mappings is because: (i) each product type (of which there are many, and their number
scales up with the BSBM data size) appears in the head of a mapping, enabling fine-
grained and high-coverage exposure of the data in the integration graph; (ii) we also
generated more complex GLAV mappings, partially exposing the results of join queries
over the BSBM data; interestingly, these mappings expose incomplete knowledge, in the
style of Example 4.2.

The mapping sets lead to the RIS graphs of 2.0 · 106, respectively, 108 · 106 triples.
Their saturated versions comprise respectively 3.4 · 106 and 185 · 106 triples. Our first
two RIS are thus: S 1 = 〈O1,RRDFS,M1,E1〉 and S 2 = 〈O2,RRDFS,M2,E2〉, where Ei for i
in {1, 2} are the extents resulting from DS i andMi.

2See more details at: https://pages.saclay.inria.fr/maxime.buron/posts/

tatooine-cq-plan-optimization/index.html
3https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/bsbmtools-0.2
4https://pages.saclay.inria.fr/maxime.buron/projects/het2onto-benchmark/bsbm/

onto-core/bsbm-onto.png

https://pages.saclay.inria.fr/maxime.buron/posts/tatooine-cq-plan-optimization/index.html
https://pages.saclay.inria.fr/maxime.buron/posts/tatooine-cq-plan-optimization/index.html
https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/bsbmtools-0.2
https://pages.saclay.inria.fr/maxime.buron/projects/het2onto-benchmark/bsbm/onto-core/bsbm-onto.png
https://pages.saclay.inria.fr/maxime.buron/projects/het2onto-benchmark/bsbm/onto-core/bsbm-onto.png

4.5. EXPERIMENTAL EVALUATION 105

Heterogeneous-sources RIS

To build a heterogeneous RIS, we converted a third (33%) of DS 1,DS 2 into JSON doc-
uments, and stored them into MongoDB, leading to the JSON data sources denoted
DS j,1,DS j,2; the relational sources DS r,1,DS r2 store the remaining (relational) data. Con-
ceptually, for i in {1, 2}, the extension based on DS r,i and extension based on DS j,i form a
partition of Ei.

We devised a set of JSON-to-RDF mappings to expose DS j,1 and DS j,2 into RDF,
and denoteM3 the set of mappings exposing DS r,1 and DS j,1, together, as an RDF graph;
similarly, the mappingsM4 expose DS r,2 and DS j,2 as RDF. Our last two RIS are thus:
S 3 = 〈O1,RRDFS,M3,E3〉 and S 4 = 〈O2,RRDFS,M4,E4〉, where E3 is the extent of M3

based on DS r,1 and DS j,1, while E4 is the extent of M4 based on DS r,2 and DS j,2. The
RIS induced graph and ontology triples of S 1 and S 3 are identical; thus, the difference
between these two RIS is only due to the heterogeneity of their underlying data sources.
More precisely,M1 andM3 contains the same number of mappings and mappings inM3

on the relation source DS r,1 are also inM1 and the others mappings inM3 are build from
mappings inM1, in which the mapping body, a relational query on DS 1, is replaced by
a query on DS j,1 having the same answers. Thus the mappings extent E1 and E3 contains
the set of tuples stored in different views. The same holds for S 2 and S 4.

Queries

We devised a set of 28 BGP queries having from 1 to 11 triple patterns (5.5 on average),
of varied selectivity (they return between 2 and 330 ·103 results in S 1 and S 3 and between
2 and 4.4 · 106 results in S 2 and S 4); 6 among them query the data and the ontology, a
capability which most others systems lack. Table 4.2 reports three query properties im-
pacting query answering performance: the number of induced triples (NTRI), the number
of BGPQ reformulations on the ontology (|Qc,a|, ranging from 1 to 1225; this strongly
determines the performance of answering such large union queries, recall Example 4.6),
and its number of answers (NANS) on the two RIS groups (S 1, S 3 and S 2, S 4). To further
study the impact of the ontology on query evaluation complexity, we created query fam-
ilies denoted QX,QXa etc. by replacing the classes and properties appearing in QX with
their super classes or super properties in the ontology. In such a family, QX is the most
selective, and queries are sorted in the increasing order of their number of reformulations.

Our ontologies, mappings, queries, and experimental details are available online5.
The queries also appear in Appendix A.3.1.

4.5.2 Query answering performance
REW inefficiency

We have conducted experiments using our six queries on ontological triples showing, as
in Example 4.10 and Figure 4.5, an explosion of the size of the rewriting (number of
CQs), compared to the rewriting produced by the two other approaches.

On queries (also) over the ontology, as explained in Section 4.3.5, we noted that the
size of the rewriting produced by REW is larger (by a multiplicative factor of 29 to 74 in
S 1 and S 3, and of 33 to 969 in S 2 and S 4) than the rewritings of the two other strategies,

5Experiment web site: https://gitlab.inria.fr/mburon/org/blob/master/projects/

het2onto-benchmark/bsbm/

https://gitlab.inria.fr/mburon/org/blob/master/projects/het2onto-benchmark/bsbm/
https://gitlab.inria.fr/mburon/org/blob/master/projects/het2onto-benchmark/bsbm/

106 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Figure 4.9: Query answering times on the smaller RIS S 1 (top, relational sources) and S 3

(bottom, heterogeneous sources).

which led to an explosion of the time spent minimizing the rewriting, and made REW
overall unfeasible; the details of these tests can be found in Appendix A.3.2.

On queries that do not carry over the ontology, REW produces the same rewritings as
the other methods. Thus, we do not report further REW performance below.

Query answering time comparison

Figure 4.9 depicts the query answering times, on the smaller RIS, of REW-CA, REW-C
and MAT. The size of (number of BGPQs in) the reformulation of each query w.r.t. R,
|Qc,a| appears in parentheses after the query name, in the labels along the x axis. Given
that S 1, S 3 have the same RIS data triples, the MAT strategy coincides among these two
RIS. Figure 4.10 shows the corresponding times for the largest RIS S 2 and S 4; the same
observations apply. Note the logarithmic time axes.

A first observation is that our query set is quite diverse; their answering times range
from a few to more than 105 ms.

4.5. EXPERIMENTAL EVALUATION 107

Figure 4.10: Query answering times on the larger RIS S 2 (top, relational sources) and S 4

(bottom, heterogeneous sources).

Strategy performance analysis

As expected, query answering in MAT is the fastest in most cases, since it has no reasoning
work to do at query answering time. However, it required, for S 1, S 3, 1.2 · 105 ms to
build the materialization and 1.49 · 105 ms more to saturate it, whereas for S 2, S 4, these
times are 14h46 (5.31 · 107 ms), respectively, 1h28 (5.28 · 106 ms). Not only these are
orders of magnitude more than all query answering times; recall also that materializing
GM
E

requires maintaining it when the underlying data changes, and its saturation (GM
E
∪

O)RRDFS needs a second level of maintenance. Thus, MAT is not practical when data sources
change.

We were surprised to see REW-C and REW-CA somehow faster than MAT for queries
Q09 and Q14. Answering these queries through MAT within OntoSQL leads to producing
many results that involve mapping-generated blank nodes, tuples which should not appear
in our certain answers, as per Definition 4.8. We remove such tuples in post-processing
mode, which leads to a performance overhead for MAT. REW-C and REW-CA, in contrast,

108 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

are answered by evaluating rewritings, and do not have to apply such a result pruning.
It remains to be seen if this pruning could be pushed in an RDFDB; note that not all
answers including blank nodes should be pruned, only those whose blank nodes are due
to mappings.

In each scenario, we observe that REW-C is faster or takes as long as REW-CA. Since
the two approaches produce the same rewritings, the difference is due to steps before the
step (3) in Figure 4.3. It turns out it is due to the rewriting time, which in turn strongly
depends on the size of the reformulation it receives as input. In REW-C, the reformulations
w.r.t. Rc are of size 1 (no union, just one BGP) for queries on data triples only, and never
exceed 64 in S 1 and S 3 and 200 in S 2 and S 4, whereas, in REW-CA the reformulation
sizes are much larger. REW-C is most often faster than REW-CA, by up to two orders
of magnitude e.g., for Q02a, Q19 and Q20a on S 2, the latter two on S 4 etc. One order of
magnitude speed-up is noticeable even on the smaller RIS S 1, S 3 (Figure 4.9) for Q02a. As
a consequence, REW-C completes successfully in all scenarios we study, whereas REW-
CA fails to complete for many queries with timeout set to 10min (missing yellow bars in
Figure 4.10), in close correlation with the increased number of reformulations.

Scaling in the data size

As stated in Section 4.5.1, there is a scale factor of about 50 between S 1, S 3 on one
hand, and S 2, S 4 on the other. Figures 4.9 and 4.10 show that the query answering times
generally grow by less than 50, when moving from S 1 to S 2, and from S 3 to S 4. This
is mostly due to the good scalability of PostgreSQL (in the all-relational RIS), Tatooine
(itself building on PostgreSQL and MongoDB, in the heterogeneous RIS), and OntoSQL
(for MAT). As discussed above, computation steps we implemented outside these systems
are strongly impacted by the mappings, ontology and query; intelligently distributing the
reasoning effort, as REW-C does, avoids the heavy performance penalties that from which
REW-CA and REW sometimes suffer.

Impact of heterogeneity

REW-CA and REW-C incur a (modest) overhead when combining data from PostgreSQL
and MongoDB (heterogeneous RIS) w.r.t. the relational-sources RIS. Part of this is due
to the cost of marshalling data across system boundaries; the rest is due to imperfect
optimization within Tatooine. Overall, the comparison demonstrates that RIS query an-
swering is feasible and quite efficient even on heterogeneous data sources.

Experiment conclusion

In a setting where the data, ontology and mappings do not change, MAT is an efficient and
robust query answering technique, at a rather high cost to materialize and saturate the RIS
instance. In contrast, in a dynamic setting, REW-C smartly combines partial reformulation
and view-based query rewriting to efficiently compute query answers. The changes it
requires when the ontology and mappings change (basically re-saturating mapping heads)
are light and likely to be very fast. Thus, we conclude that REW-C is the best query
answering strategy for dynamic RIS.

4.6. EXTENDING THE FRAMEWORK TO MORE GENERAL RULES 109

4.6 Extending the framework to more general rules
In this section, we present theoretical results on mapping saturation, in a more general
framework than the one of Section 4.3. Notably, we extend the previous framework by
supporting RDF entailment rules that go beyond RDFS entailment rules (Table 2.2) and
allow for existential variables in their head.

We first recall the notion of saturation of a BGPQ w.r.t. an RDFS ontology by a set
of RDF entailment rules, defined in [El Hassad et al., 2017]. We will rely on it to define
a more general notion of mapping saturation. The saturation of a BGPQ contains in its
body all the triples entailed from the BGPQ body and a given ontology, but not those
entailed by the ontology alone as illustrated by Figure 4.11:

Definition 4.14 (BGPQ saturation [El Hassad et al., 2017]). Let R be a set RDF entail-
ment rules, O an RDFS ontology, and q a BGPQ. The saturation of q w.r.t. O, denoted
by qR,O, is the BGPQ with the same answer variables as q and whose body, denoted by
body(qR,O), is the maximal subset of (body(q) ∪ O)R such that for any of its subsets S : if
O |=R S holds, then body(q) |=R S holds.

Figure 4.11: The circle represents (body(q)∪O)R, the hatched area is removed from qR,O,
because it is consequence of O only, hence not relevant to q.

Similarly to RDF graphs, the saturation of a query w.r.t. an ontology and (a subset of)
RRDFS is finite. An example of BGPQ saturation has been given in Example 4.7. We now
introduce the notion of a single RIS mapping saturation:

Definition 4.15 (Mapping saturation). Let O be an RDFS ontology, R be a set of RDF
entailment rules and m = q1(x̄) { q2(f1(x̄), . . . , fn(x̄)) be a RIS mapping, the saturation
of m w.r.t. R and O is the RIS mapping, denoted by mR,O, defined by:

mR,O = q1(x̄){ qR,O2 (f1(x̄), . . . , fn(x̄))

Given a setM of RIS mappings, a set R of RDF entailment rules and an RDFS ontol-
ogy O, the saturation ofM w.r.t. R and O, denoted byMR,O, is the set of the saturations
of the mappings inMw.r.t. R and O. It corresponds to a generalization of Definition 4.10.

4.6.1 Restricted RIS
In this section, we introduce restricted rules, which are specific RDF entailment rules
(hence their name) that generalize RDFS entailment rules. Together with an FO ontology
(Definition 3.4), data mappings (Definition 4.2) and ontology mappings (Definition 4.11),
they lead to restricted RDF Integration Systems.

110 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Restricted rules

We consider RDF entailment rules that comply with some restrictions. This yields two
kinds of entailment rules, namely ontological rules and instance rules, which respectively
allow to infer knowledge about the ontology and about individuals.

The goal of the restriction that leads to instance rules is to allow using RDFS triples
when inferring facts about individuals, which is one of the interests of RDF, while ensur-
ing the completeness of saturation based on mapping heads. Essentially, the restrictions
ensure that, given any set of extensions for the mappings, the graph obtained by the satu-
rated mappings is equal to the saturation of the graph obtained by the initial mappings, as
stated in Theorem 4.5.

Definition 4.16 (Restricted rules). We call restricted rule an RDF entailment rule r which
is either an ontological rule or an instance rule as defined below:

1. (Ontological rule) body(r) and head(r) contain solely RDFS triples such that
Var(head(r)) ⊆ Var(body(r))

2. (Instance rule) body(r) = {tr} ∪ bodyO(r), where

a) bodyO(r) is a (possibly empty) set of RDFS triples

b) tr is of one of the following forms:

i. (x, p, y) where x, y ∈ V \ Var(bodyO(r)), x , y
and p ∈ (I \ {≺sc,≺sp,←↩d, ↪→r, τ}) ∪ Var(bodyO(r)),

ii. (x, τ, z) where x ∈ V \ Var(bodyO(r)),
z ∈ I ∪ Bl(bodyO(r))

and head(r) contains solely (s, p, o) triples such that:

c) p ∈ I \ {≺sc,≺sp,←↩d, ↪→r} or p ∈ Var(bodyO(r)),

d) if p = τ, then o ∈ I or o ∈ Var(bodyO(r)).

We first point out below that the standard RDFS entailment rules from Table 2.2 are
specific restricted rules.

Example 4.11. Consider Table 2.2. Rules rdfs5, rdfs11, ext1, ext2, ext2, ext3
and ext4, i.e., the rules in Rc, are ontological rules. Indeed, their body and head are
composed of RDFS statements, e.g., rdfs5: (p1,≺sp, p2), (p2,≺sp, p3) → (p1,≺sp, p3).
The other RDFS rules, i.e., in Ra, are instance rules, whose body is composed of an
RDFS triple and a triple of the form tr, and the head has a single triple. In Rule rdfs2
defined as (p,←↩d, c), (s, p, o)→ (s, τ, o), tr fulfills Restriction 2(b)i, while the head fulfills
Restriction 2d. The same holds for Rule rdfs3. In Rule rdfs7: (p1,≺sp, p2), (s, p1, o)→
(s, p2, o), tr complies with 2(b)i and the head with 2c. Finally, in Rule rdfs9 = (c1,≺sc

, c2), (s, τ, c1)→ (s, τ, c2), tr complies with 2(b)ii and the head with 2d.

The syntax of restricted rules also allows for user-specific rules beyond standard
RDFS entailment rules, as for instance the rule rex = (s, τ, :Jedi)→ (s, :usesWeapon,w)
from the running example, stating that if someone is a Jedi, then he/she uses some
weapon.

Since entailment rules will be applied to saturate the mapping heads, the termination
of saturation is a crucial requirement. Obviously, this requirement is fulfilled by onto-
logical rules. Indeed, rule heads do not introduce new blank nodes (i.e., for any rule r,

4.6. EXTENDING THE FRAMEWORK TO MORE GENERAL RULES 111

Var(head(r)) ⊆ Var(body(r))). However, termination is not ensured for instance rules:
e.g., a rule of the form (x, p, y) → (y, p, z) (intuitively, for all x and y, if x is related to
y by p, there exists z such that y is related to z by p) leads to infinite saturation, as each
rule application produces a new individual, which leads to a new rule application. How-
ever, we prefer not to further restrict instance rules to enforce termination, because of the
variety of candidate syntactic restrictions. Indeed, RDF entailment rules can be logically
translated into specific tuple-generating dependencies or existential rules, as mentioned
in Section 2.1.3 ; many acyclicity conditions for sets of such rules have been defined in
the literature (see, e.g., [Thomazo, 2013, Grau et al., 2014, Rocher, 2016] for syntheses)
and can be imported in our setting. Hence, in the following, we will silently assume that
the considered set of restricted rules ensures the termination of saturation, as is the case,
for instance, of the set of rules RRDFS ∪ {rex}.

We first point out that ontological rules can only be applied on triples of an FO ontol-
ogy, and that any restricted rule that can be applied on an FO ontology is an ontological
rule (next Property 4.1); second, the saturation of an FO ontology by restricted rules
(hence, necessarily ontological rules) remains an FO ontology (next Property 4.2); third,
given a graph whose set of RDFS triples is an FO ontology, all RDFS triples that can
be brought by application of restricted rules come from ontological rules (next Property
4.3). Finally, restricted rules behave as expected when they are applied to any RDF graph
G composed of an FO ontology and data triples: the ontological rules compute exactly
the saturation of the ontological part of the graph (next Property 4.4), while the instance
rules add triples about the individuals (possibly using ontological triples as well, be they
initially present in the graph or inferred by the ontological rules). In the following, given
an RDF graph G, we will denote its RDFS ontology by RDFS(G).

Property 4.1. Let r be a restricted rule and O be an FO ontology, if O |=ϕ body(r), then
r is an ontological rule, i.e., it fulfills Restriction 1 of Definition 4.16.

Property 4.2. Let O be an FO ontology and R be a set of restricted rules, then OR is also
an FO ontology.

Property 4.3. Let r be a restricted rule and G be an RDF graph whose set of RDFS triples
is an FO ontology. If the direct entailment of G by {r} (denoted CG,{r} in Section 2.1.3)
contains an RDFS triple, then r is an ontological rule.

Property 4.4. Let O be an FO ontology, R be a set of restricted rules and G be an RDF
graph such that RDFS(G) = O, it holds that:

RDFS(GR) = OR

Figure 4.12 schematizes the properties of restricted rules applied on graphs with an
FO ontology, which are similar to the ones of RDFS entailment rules on graphs with split
reasoning (recall Figure 3.2). The above properties of ontological rules are summarized
by the loop on the FO ontology. The body of an instance rule r is composed of tr a
triple and bodyO(r) a set of RDFS triples. When r is applied on a graph G, the triple tr

(resp. bodyO(r)) is necessarily mapped to a data triple (resp. to schema triples) of G,
furthermore the triples produced by this application are necessarily data triples.

112 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Data triples FO ontology

bodyO(r)tr

Instance rules

Ontological rules

Figure 4.12: Restricted rule entailments.

Saturation of data mapping heads

We now investigate the properties of data mapping (Definition 4.2) saturation with re-
stricted rules. The triples in the head of a data mapping yield data triples, when they are
instantiated. The next example shows why we cannot consider RIS mappings that would
extend data mappings by allowing for head triples with a variable at class position.

Example 4.12. Consider the RIS mapping m defined by q1(x, y) { (x, τ, y) and its ex-
tension ext(m,D) = {Vm(s,C1)} on a data source D, as well as the RDF standard en-
tailment rule rdfs9 defined by (s,≺sc, o), (s1, τ, s) → (s1, τ, o) and the FO ontology
O = {(C1,≺sc,C2)}. Given M = {m}, E = ext(m,D) and R = {rdfs9}, the saturation
of the RIS induced graph is:(

GM
E
∪ O

)R
= {(s, τ,C1), (s, τ,C2), (C1,≺sc,C2)}.

However, there is no homomorphism from body(rdfs9) to (x, τ, y), (C1,≺sc,C2), hence
the BGPQ saturation (head(m))R,O is equal to head(m). It follows that the triple (s, τ,C2)
is missing in (GM

R,O

E
∪O). For this reason, we do not consider such mapping m, and stick

to data mappings.

The next property partially explains why no information is lost when we locally sat-
urate the heads of mappings instead of saturating the graph induced by them. See Fig-
ure 4.13: for an instance rule r, if body(r) is mapped by a homomorphism ϕ to {v(t)} ∪O,
where O is an FO ontology and v(t) is a triple from the head of a data mapping instantiated
by a homomorphism v, then (1) there is a homomorphism ϕ′ that applies r to {t} ∪O, and
(2) the composition ϕ′ ◦ v is exactly ϕ.

Property 4.5. Let O be an FO ontology, t a triple in the head of a data mapping, and v a
homomorphism from t (i.e., a substitution Var(t)→ B∪I ∪L). For any restricted rule r
(necessarily an instance rule), if {v(t)} ∪O |=ϕ body(r) then there exists a homomorphism
ϕ′ such that {t} ∪ O |=ϕ′ body(r) and ϕ(body(r)) = ϕ′(v(body(r))).

body(r)

ϕ(body(r))
= v(ϕ′(body(r))
⊆ {v(t)} ∪ O

ϕ′(body(r))
⊆ {t} ∪ O

ϕ ϕ′

v

Figure 4.13: Illustration of Property 4.5.

4.6. EXTENDING THE FRAMEWORK TO MORE GENERAL RULES 113

The next property expresses that, when a restricted rule is applied to the head of a data
mapping, the added triples keep the property of being a data mapping.

Property 4.6. Let O be an FO ontology, t a triple of the head of a data mapping
m = q1(x̄) { q2(f1(x̄), . . . , fn(x̄)) and r an instance rule such that {t} ∪ O |=ϕ′ body(r).
Then the mapping m′ = q1(x̄) { q′2(f1(x̄), . . . , fn(x̄)) with q′2(y1, . . . , yn) = body(q2) ∪
ϕ′(head(r))safe is a data mapping.

The two previous properties hold in particular for RDFS entailment rules and can be
checked on the previous illustration of saturated mappings in Example 4.8. Below, we
illustrate these properties using a restricted rule outside RRDFS.

Example 4.13. Consider a data mapping m with head q2(y)← (y, τ, :Jedi) generating the
triple (:Rey, τ, :Jedi) by the homomorphism v = {y 7→ :Rey} applied on the only triple t in
q2’s body. The restricted rule rex = (x, τ, :Jedi) → (x, :usesWeapon, z), introduced above,
can be applied on the generated triple v(t) using the homomorphism ϕ from body(rex)
to v(t), defined by ϕ = {x 7→ :Rey}. Since rex is an instance rule without RDFS triple
pattern, we do not need to specify an ontology. As stated by Property 4.5, there exists a
homomorphism from body(r) to {t}, which is ϕ′ = {x 7→ y}. We check that v(ϕ′(body(r))) =

ϕ(body(r)), which ensures that applying rex on the head of m with ϕ′ and then instantiating
its saturated head with v returns the same triples as applying rex with ϕ on the head of m
with v. Moreover, Property 4.6 ensures that the saturated mapping m{rex},∅, whose head is
q{rex},∅

2 (x)← (x, τ, :Jedi), (x, :usesWeapon, z), is, indeed, a data mapping like m.

The following example is relative to the definition of restricted rules and illustrates
the importance of the condition x , y in the triple tr.

Example 4.14. Assume the rule r = (x, p, x) → (x, q, x) would be allowed, and let the
mapping m = q1(x, y) { (x, p, y) and its extension ext(m,D) = {Vm(a, a)} w.r.t. a data
source D. LetM = {m}, E = ext(m) and R = {rdfs9}. Then the saturation of the induced
RDF graph is: (

GM
E

)R
= {(a, p, a), (a, q, a)}.

However, there is no homomorphism from body(r) to (x, p, y), hence the saturation of the
mapping m with R is exactly m. Therefore, the triple (a, q, a) is missing in the saturated
mapping graph GM

R,∅

E
. It is the reason why the condition x , y is enforced in 2(b)i, hence

r is not a restricted rule.

Restricted RDF Integration System

We have now investigated suitable restrictions for each component of a RIS, which yield
a restricted RIS.

Definition 4.17 (Restricted RIS). We say that an RDF Integration System S = 〈O,R,M,E〉
is a restricted RDF Integration System, if O is an FO ontology, R a set of restricted rules
andM a set of data mappings.

As defined in Section 4.3.5, the ontology mappings associated with an FO ontology
O allow one to integrate the ontological statements of O into an RDF graph, as follows:

Property 4.7. Given an FO ontology O and a set R of restricted rules, it holds that:

G
MOR

EOR
= OR

114 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

Futhermore, no other RDFS triples are created by data mappings and applications of
instance rules, hence:

Property 4.8. For any restricted RIS S = 〈O,R,M,E〉, the RDFS ontology of (G
M∪MOR

E∪EOR
)R

is exactly OR.

4.6.2 Correctness of the Method
We now present the main arguments that prove the correctness of the query answering
strategies presented in this chapter, and refer the reader to Appendix A.4 for detailed
proofs. Note that these proofs consider the restricted entailment rules introduced in the
preceding section, hence a generalization of RDFS entailment rules.

Assume first that we adopt a classical materialization approach: starting from the
extent E ∪ EOR , we trigger the mappingsM∪MOR , then saturate the obtained graph with

the entailment rules R, and finally get the graph
(
G
M∪MOR

E∪EOR

)R
, on which we can ask BGP

queries and obtain a complete certain answer set.
Now, instead of saturating the graph produced by the mappings, we proceed as fol-

lows: (1) we saturate the mappings (actually their head) with the entailment rules, then
(2) we trigger the mappings. We thus obtain the graph GM

R,O

E
∪ G

MOR

EOR
. The next theo-

rem states that the graphs obtained by the two ways of doing are equal (up to bijective
renaming of blank nodes introduced the existential variables in mapping heads).

Theorem 4.5. Given an FO ontology O, a set R of restricted rules and a setM of data
mappings, it holds that: (

GM
E
∪ O

)R
= G

MR,O∪MOR

E∪EOR

Of course, this equality does not hold for general RIS. In Section 4.6.1, we have
illustrated by examples the role of the main restrictions we enforce and highlighted some
key properties ensured by these restrictions. An important characteristic of restricted RIS
is the distinction between ontology and data mappings, and similarly between ontological
and instance entailment rules. This allows one to consider two induced graphs, whose
union yields G

MR,O∪MOR

E∪EOR
:

• G
MOR

EOR
, which is equal to the saturated ontology OR (Property 4.7).

• GM
R,O

E
, which materializes exactly the data triples of the saturated graph

(
GM
E
∪ O

)R
.

This equality also relies on the form of the restricted instance rules, which ensures
that every application of an instance rule involved in the saturation of the graph
produced the mappings can be similarly performed on a mapping head (Property
4.5); in particular, no application of an instance rule requires data triples coming
from two different mappings.

4.7 Summary
In this chapter, we tackled the issue of querying heterogeneous data sources using RDF
as the integration formalism and RDFS to represent and reason with ontological knowl-

4.7. SUMMARY 115

edge. Our contributions are of different nature: theoretical, algorithmic, software and
experimental.

We formalized our framework in the form of RDF Integration Systems (RIS). In the
spirit of Ontology-Based Data Access architectures, the data sources in a RIS are con-
nected to the conceptual (or ontological) level by means of mappings. Compared to the
state of the art, our originality is to process GLAV mappings, which provide the frame-
work with a greater data integration power than GAV mappings, as well as general BGP
queries, which allow one to query schema and data triples together.

As in the OBDA approach, we specially investigated mediator-style query answer-
ing strategies, in which the global RDF graph remains virtual, which leads to consider
query rewriting techniques. In particular, we proposed two novel rewriting-based query
answering techniques, based on a form of mapping saturation. Besides, we were also
interested in delineating the space of possible strategies, which can be viewed as different
ways of distributing reasoning on the query or inside the RIS components. Hence, we
proposed a classification of strategies grouped in two approaches, respectively based on
graph materialization and on query rewriting, and further refined according to the distri-
bution of reasoning using query reformulation, mappings transformation and saturation
of the graph materialization. This led to the identification of thirteen strategies.

This way of analyzing RIS query answering strategies guided the implementation
of our RIS query answering system Obi-Wan. Indeed, although Obi-Wan implements a
subset of selected strategies, it is designed to be easily extensible to test new strategies.
We also implemented optimization techniques, on the one hand to simplify the query
produced by query rewriting, and on the other hand to provide Tatooine, the underlying
polystore system, with an optimized translation of mediated query plans into logical query
plans, which in particular takes advantage of the data source query engine capabilities.

We carried out several experiments, using extensions of the well-known BSBM bench-
mark, first to assess and compare the scalability of RIS query answering strategies, and
second to estimate the overhead due to heterogeneity. These experiments demonstrated
the feasibility of RIS query answering. We also concluded that REW-C, a strategy that
combines partial query reformulation and view-based query rewriting, was the best choice
for dynamic RIS.

Finally, we extended the RIS framework with RDF entailment rules that go beyond
the standard RDFS rules (so-called restricted entailment rules, in contrast with general
RDF entailment rules). These rules may have existential variables in their head, hence
are able to infer the existence of unknown individuals. In particular, we proved the cor-
rectness of the studied query answering strategies in this extended framework. Better
understanding the expressive power of restricted entailment rules, in particular with re-
spect to lightweight description logics used in OBDA systems, is ongoing work. More
generally, the interaction between (GLAV) mappings and RDF entailment rules remains
to be studied in more depth, from both theoretical and algorithmic viewpoints.

116 CHAPTER 4. RDF INTEGRATION OF HETEROGENEOUS DATA SOURCES

R
IS

Q
01

Q
01

a
Q

01
b

Q
02

Q
02

a
Q

02
b

Q
02

c
Q

03
Q

04
Q

07
Q

07
a

Q
09

Q
10

Q
13

al
l

N
T

R
I

5
5

5
6

6
6

6
5

2
3

3
1

3
4

S
1,

S
3
|Q

c,
a|

7
21

17
5

21
49

14
7

12
25

52
5

1
5

19
7

67
0

28
S

1,
S

3
N

A
N

S
12

72
43

76
22

73
8

16
56

17
4

13
42

19
91

2
3

56
17

9
13

19
0

S
2,

S
4
|Q

c,
a|

21
17

5
14

07
63

14
7

52
5

12
25

43
75

1
5

19
7

93
50

84
S

2,
S

4
N

A
N

S
15

51
4

11
17

93
86

37
29

12
4

59
8

10
58

15
70

5
44

87
2

3
29

99
02

10
16

77
60

R
IS

Q
13

a
Q

13
b

Q
14

Q
16

Q
19

Q
19

a
Q

20
Q

20
a

Q
20

b
Q

20
c

Q
21

Q
22

Q
22

a
Q

23
al

l
N

T
R

I
4

4
3

4
9

9
11

11
11

11
3

4
4

7
S

1,
S

3
|Q

c,
a|

84
70

0
1

25
63

14
7

21
63

52
5

12
25

67
0

2
40

19
2

S
1,

S
3

N
A

N
S

43
15

7
33

01
42

56
20

0
81

14
20

15
35

15
0

23
6

23
12

75
64

10
85

28
43

4
25

80
3

S
2,

S
4
|Q

c,
a|

56
28

56
28

1
20

1
52

5
12

25
63

52
5

12
25

42
21

93
50

40
52

0
19

2
S

2,
S

4
N

A
N

S
44

16
94

6
10

04
98

29
29

98
94

8
24

90
04

39
82

6
60

83
4

90
4

78
18

10
48

6
51

98
8

37
17

6
15

28
18

58
8

13
29

88
7

Table 4.2: Characteristics of the queries used in our experiments.

Chapter

5
Conclusion and perspectives

Conclusion

In this thesis, we considered the issue of efficiently querying heterogeneous data sources
using RDF as the integration formalism and RDF entailment rules to reason on RDF
graphs. To take advantage of RDF inherent metamodeling capabilities, we relied on gen-
eral basic graph pattern queries. We made several kinds of contributions: theoretical,
algorithmic, software and experimental.

In Chapter 3, we first focused on querying RDF graphs provided with built-in RDFS
entailment rules, which allow one to reason with basic ontological knowledge, namely
subclass, subproperty, domain and range. We carefully considered the structure of RDFS
entailment rules, which led to partition them into the constraint and assertion rule sets
and study how both parts interact. This allowed us to define a desirable property of
RDF graphs, notably, split reasoning, which is ensured by FO-restriction, a syntactic
restriction, and still enables interesting forms of metamodeling. We then designed a query
reformulation algorithm for RDF graphs with split reasoning. The experiments we carried
out show the effectiveness of our algorithm. We finally investigated the impact of storage
layout on the efficiency of query answering with general BGPQs. We introduced the
novel workload-unaware TCP layout, which combines the data structures of two classical
layouts, namely T and CP, and experimentally assessed its interest, on a relational and a
native RDF database. Besides, we introduced summary-based pruning, an optimization
technique of independent interest, and we found that it generally reduces query answering
cost.

Then, in Chapter 4, we studied the more general problem of querying RDF integra-
tion of heterogeneous data sources with respect to built-in RDFS entailment rules. We
formalized the notion of RDF Integration Systems (RIS) in the spirit of Ontology-Based
Data Access architectures. The novelties of RIS, compared to the state of the art, are,
first, the GLAV mappings linking the sources content with the concepts defined by an
RDFS ontology, which are more expressive than GAV mappings and, second, the support
of general BGP queries, which allow one to query schema and data triples together. As
in the OBDA approach, we specially investigated query answering strategies based on
mediation, in which the query on the global RDF graph is rewritten into a query on the
sources. We presented a form of mapping saturation, which allows one to handle a part

117

118 CHAPTER 5. CONCLUSION AND PERSPECTIVES

of the reasoning as a preprocessing step. We also presented a classification of the differ-
ent query answering approaches, which has inspired the implementation of our RIS query
answering system Obi-Wan, designed to be easily extendable with new query answering
strategies. Using Obi-Wan, we carried out several experiments, first to assess and compare
the scalability of RIS query answering strategies, and second to estimate the overhead due
to heterogeneity. These experiments demonstrated the feasibility of RIS query answering
and that mappings saturation improves the performances of the query rewriting step. Fi-
nally, we proved the correctness of mappings saturation for query answering in RIS, for
a subset of RDF entailment rules, containing the built-in RDFS entailment rules, and in
which rules may have existential variables in their head.

Perspectives
This work can be pursued in a number of ways. We list below some ideas to extend the
expressivity of our framework and further improve the efficiency of query answering in
RDF integration systems and databases.

Ontological expressivity beyond RDFS
Throughout the thesis, we focused on RDFS for simplicity and because it is the basis of
most of the ontology languages used in semantic web applications. We would like to ex-
tend the properties we introduced about the reasoning behaviour of RDFS ontologies and
together with RDFS entailment rules (see Section 3.2.1) to more general decidable sub-
sets of OWL-Full, by still enabling the metamodeling capabilities of RDF, as investigated
in [Motik, 2005, Giacomo et al., 2011].

Cost-driven translation on TCP layout
We showed that TCP is a robust storage layout for general BGP query answering, on
which we proposed a single query translation. In reformulation-based query answering,
further optimizations could be obtained, by investigating a space of reformulated query
translations using a cost-based algorithm for selecting the translation with the lowest cost
from this space, as proposed in [Bursztyn et al., 2015] for the CP layout.

Interactions between mappings and rules
Better understanding the expressive power of restricted entailment rules, in particular with
respect to lightweight description logics used in OBDA systems, is ongoing work. More
generally, the interaction between (GLAV) mappings and RDF entailment rules remains
to be studied in more depth, from both the theoretical and algorithmic viewpoints.

Heterogeneous data sources mediation
Supporting the integration of web services as sources, which can be seen as views with
binding patterns [Rajaraman et al., 1995] could greatly expand the scope of integration
systems, like Obi-Wan. This requires further work on query rewriting algorithms
[Romero et al., 2020] as well as on mediated plan optimizations [Florescu et al., 1999,
Benedikt et al., 2015]. In particular, the efficient evaluation of mediated plans requires

119

an optimizer capable of searching for an optimal plan among a space of equivalent plans
(generated, in particular, by ordering the join operators) based on evaluation cost estima-
tions [Lanti et al., 2017].

Bibliography

[OWL, a] OWL 2 Web Ontology Language Document Overview (Second Edition).
https://www.w3.org/TR/owl2-overview/.

[OWL, b] OWL 2 Web Ontology Language Mapping to RDF Graphs (Sec-
ond Edition). https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-
20121211/#Translation of Annotations.

[RFC, a] RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax.
https://tools.ietf.org/html/rfc3986.

[RFC, b] RFC 3987 - Internationalized Resource Identifiers (IRIs).
https://tools.ietf.org/html/rfc3987.

[Res, 2004] (2004). Resource Description Framework (RDF): Concepts and Abstract
Syntax. https://www.w3.org/TR/rdf-concepts/.

[SPA, 2013] (2013). SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-
query/.

[RDF, 2014a] (2014a). RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/rdf11-concepts/.

[RDF, 2014b] (2014b). RDF 1.1 Semantics. https://www.w3.org/TR/rdf11-mt/#rdfs-
entailment.

[RDF, 2014c] (2014c). RDF Schema 1.1. https://www.w3.org/TR/2014/REC-rdf-
schema-20140225/.

[Abadi et al., 2007] Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2007).
Scalable Semantic Web Data Management Using Vertical Partitioning. PVLDB.

[Abdallah et al., 2009] Abdallah, N., Goasdoué, F., and Rousset, M. (2009). DL-LITER
in the light of propositional logic for decentralized data management. In IJCAI.

[Abiteboul and Duschka, 1998] Abiteboul, S. and Duschka, O. M. (1998). Complexity
of answering queries using materialized views. ACM Press.

121

122 BIBLIOGRAPHY

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of
Databases. Addison-Wesley.

[Abiteboul et al., 2011] Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.-C., and
Senellart, P. (2011). Web Data Management. Cambridge University Press, USA.

[Adjiman et al., 2007] Adjiman, P., Goasdoué, F., and Rousset, M.-C. (2007).
SomeRDFS in the semantic web. JODS, 8.

[Alotaibi et al., 2019] Alotaibi, R., Bursztyn, D., Deutsch, A., Manolescu, I., and Zam-
petakis, S. (2019). Towards Scalable Hybrid Stores: Constraint-Based Rewriting to
the Rescue. In SIGMOD.

[Amann et al., 2002] Amann, B., Beeri, C., Fundulaki, I., and Scholl, M. (2002). Query-
ing XML Sources Using an Ontology-Based Mediator. In CoopIS. Springer Berlin
Heidelberg.

[Amann and Fundulaki, 1999] Amann, B. and Fundulaki, I. (1999). Integrating ontolo-
gies and thesauri to build RDF schemas. In ECDL.

[Amann et al., 2000] Amann, B., Fundulaki, I., and Scholl, M. (2000). Integrating on-
tologies and thesauri for RDF schema creation and metadata querying. Int. J. on Digital
Libraries, 3(3).

[Arenas et al., 2009] Arenas, M., Gutierrez, C., and Pérez, J. (2009). Foundations of
RDF Databases. In Reasoning Web. Semantic Technologies for Information Systems,
Lecture Notes in Computer Science, pages 158–204. Springer, Berlin, Heidelberg.

[Artale et al., 2009] Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M.
(2009). The DL-Lite family and relations. Journal of artificial intelligence research,
36(1):1–69.

[Atre et al., 2010] Atre, M., Chaoji, V., Zaki, M. J., and Hendler, J. A. (2010). Matrix
”bit” loaded: a scalable lightweight join query processor for RDF data. In WWW.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F., editors (2003). The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press.

[Baader et al., 2007] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Peter F. Patel-Schneider (2007). The Description Logic Handbook:
Theory, Implementation and Applications. /core/books/description-logic-
handbook/F050683766E57EE9BB07BC01BB7A7069.

[Baget et al., 2015] Baget, J.-F., Leclère, M., Mugnier, M., Rocher, S., and Sipieter, C.
(2015). Graal: A toolkit for query answering with existential rules. In RuleML.

[Baget et al., 2011] Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. (2011). On
rules with existential variables: Walking the decidability line. Artificial Intelligence,
175(9):1620–1654.

[Benedikt et al., 2015] Benedikt, M., Leblay, J., and Tsamoura, E. (2015). Querying with
access patterns and integrity constraints. Proc. VLDB Endow., 8(6):690–701.

BIBLIOGRAPHY 123

[Bischof et al., 2014] Bischof, S., Krötzsch, M., Polleres, A., and Rudolph, S. (2014).
Schema-Agnostic Query Rewriting in SPARQL 1.1. In Mika, P., Tudorache, T., Bern-
stein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K.,
and Goble, C., editors, The Semantic Web – ISWC 2014, volume 8796, pages 584–
600. Springer International Publishing, Cham.

[Bishop et al., 2011] Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., and
Velkov, R. (2011). OWLIM: A family of scalable semantic repositories. Semantic
Web, 2(1).

[Bonaque et al., 2016] Bonaque, R., Cao, T. D., Cautis, B., Goasdoué, F., Letelier, J.,
Manolescu, I., Mendoza, O., Ribeiro, S., Tannier, X., and Thomazo, M. (2016). Mixed-
instance querying: a lightweight integration architecture for data journalism. In VLDB.

[Bornea et al., 2013] Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K.,
Dantressangle, P., Udrea, O., and Bhattacharjee, B. (2013). Building an efficient RDF
store over a relational database. In SIGMOD.

[Botoeva et al., 2018] Botoeva, E., Calvanese, D., Cogrel, B., Corman, J., and Xiao, G.
(2018). A generalized framework for ontology-based data access. In AI*IA.

[Broekstra and Kampman, 2003] Broekstra, J. and Kampman, A. (2003). Inferencing
and truth maintenance in RDF schema. In PSSS1 Workshop.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and querying RDF and RDF schema. In
ISWC.

[Buron et al., 2020a] Buron, M., Goasdoué, F., Manolescu, I., Merabti, T., and Mugnier,
M. (2020a). Revisiting RDF storage layouts for efficient query answering. Report,
INRIA.

[Buron et al., 2019] Buron, M., Goasdoué, F., Manolescu, I., and Mugnier, M. (2019).
Reformulation-based query answering for RDF graphs with RDFS ontologies. In Hit-
zler, P., Fernández, M., Janowicz, K., Zaveri, A., Gray, A. J. G., López, V., Haller, A.,
and Hammar, K., editors, The Semantic Web - 16th International Conference, ESWC
2019, Portorož, Slovenia, June 2-6, 2019, Proceedings, volume 11503 of Lecture Notes
in Computer Science, pages 19–35. Springer.

[Buron et al., 2020b] Buron, M., Goasdoué, F., Manolescu, I., and Mugnier, M. (2020b).
Ontology-based RDF integration of heterogeneous data. In Bonifati, A., Zhou, Y.,
Salles, M. A. V., Böhm, A., Olteanu, D., Fletcher, G. H. L., Khan, A., and Yang,
B., editors, Proceedings of the 23nd International Conference on Extending Database
Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, pages
299–310. OpenProceedings.org.

[Buron et al., 2018] Buron, M., Goasdoué, F., Mugnier, M.-L., and Manolescu, I. (2018).
Rewriting-Based Query Answering for Semantic Data Integration Systems (Informal
publication). In BDA: Gestion de Données - Principes, Technologies et Applications.

[Buron et al., 2020c] Buron, M., Goasdoué, F., Manolescu, I., and Mugnier, M.-L.
(2020c). Obi-Wan: Ontology-based RDF integration of heterogeneous data (demon-
stration). In Proceedings of VLDB. Accepted also for informal presentation at BDA
2020.

124 BIBLIOGRAPHY

[Bursztyn et al., 2015] Bursztyn, D., Goasdoué, F., and Manolescu, I. (2015). Optimiz-
ing reformulation-based query answering in RDF. In EDBT.

[Bursztyn et al., 2016] Bursztyn, D., Goasdoué, F., and Manolescu, I. (2016). Teaching
an RDBMS about ontological constraints. PVLDB, 9(12).

[Calı̀ et al., 2009] Calı̀, A., Gottlob, G., and Lukasiewicz, T. (2009). Datalog extensions
for tractable query answering over ontologies. In Semantic Web Information Manage-
ment - A Model-Based Perspective, pages 249–279.

[Calvanese et al., 2017] Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R.,
Lanti, D., Rezk, M., Rodriguez-Muro, M., and Xiao, G. (2017). Ontop: Answering
SPARQL queries over relational databases. Semantic Web, 8(3).

[Calvanese et al., 2011] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,
Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2011). The
MASTRO system for ontology-based data access. Semantic Web, 2(1).

[Calvanese et al., 2009] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,
Rosati, R., and Ruzzi, M. (2009). Using owl in data integration. In De Virgilio,
R., Giunchiglia, F., and Tanca, L., editors, Semantic Web Information Management –
A Model-Based Perspective. Springer.

[Calvanese et al., 2012] Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y.
(2012). Query processing under GLAV mappings for relational and graph databases.
PVLDB, 6(2).

[Calvanese et al., 2007] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and
Rosati, R. (2007). Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. Journal of Automated Reasoning (JAR), 39(3).

[Cebiric et al., 2018] Cebiric, S., Goasdoué, F., Kondylakis, H., Kotzinos, D.,
Manolescu, I., Troullinou, G., and Zneika, M. (2018). Summarizing Semantic Graphs:
A Survey. VLDB Journal.

[Chebotko et al., 2009] Chebotko, A., Lu, S., and Fotouhi, F. (2009). Semantics preserv-
ing SPARQL-to-SQL translation. Data Knowl. Eng., 68(10).

[Christophides et al., 1997] Christophides, V., Doerr, M., and Fundulaki, I. (1997). A
semantic network approach to semi-structured documents repositories. In ECDL.

[De Giacomo et al., 2018] De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., and
Rosati, R. (2018). Using Ontologies for Semantic Data Integration. In A Comprehen-
sive Guide Through the Italian Database Research Over the Last 25 Years, volume 31.
Springer, Cham.

[Deutsch and Tannen, 2003] Deutsch, A. and Tannen, V. (2003). MARS: A System for
Publishing XML from Mixed and Redundant Storage. In VLDB.

[Doan et al., 2012] Doan, A., Halevy, A., and Ives, Z. G. (2012). Principles of Data
Integration. Morgan Kaufmann, Waltham, MA.

BIBLIOGRAPHY 125

[Duggan et al., 2015] Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M., Howe,
B., Kepner, J., Madden, S., Maier, D., Mattson, T., and Zdonik, S. B. (2015). The
BigDAWG polystore system. SIGMOD, 44(2).

[El Hassad et al., 2017] El Hassad, S., Goasdoué, F., and Jaudoin, H. (2017). Learning
commonalities in SPARQL. In ISWC.

[Florescu et al., 1999] Florescu, D., Levy, A. Y., Manolescu, I., and Suciu, D. (1999).
Query optimization in the presence of limited access patterns. In Delis, A., Faloutsos,
C., and Ghandeharizadeh, S., editors, SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 1-3, 1999, Philadelphia, Penn-
sylvania, USA, pages 311–322. ACM Press.

[Friedman et al., 1999] Friedman, M., Levy, A. Y., and Millstein, T. D. (1999). Naviga-
tional plans for data integration. AAAI/IAAI, 1999:67–73.

[Garcia-Molina et al., 1997] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Ra-
jaraman, A., Sagiv, Y., Ullman, J. D., Vassalos, V., and Widom, J. (1997). The TSIM-
MIS approach to mediation: Data models and languages. J. Intell. Inf. Syst., 8(2).

[Giacomo et al., 2011] Giacomo, G. D., Lenzerini, M., and Rosati, R. (2011). Higher-
order description logics for domain metamodeling. In Burgard, W. and Roth, D., edi-
tors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press.

[Goasdoué et al., 2020] Goasdoué, F., Guzewicz, P., and Manolescu, I. (2020). RDF
Graph Summarization for First-sight Structure Discovery. The VLDB Journal.

[Goasdoué et al., 2011] Goasdoué, F., Karanasos, K., Leblay, J., and Manolescu, I.
(2011). View selection in semantic web databases. PVLDB, 5(2).

[Goasdoué et al., 2000] Goasdoué, F., Lattès, V., and Rousset, M. (2000). The use of
CARIN language and algorithms for information integration: The PICSEL system.
Int. J. Cooperative Inf. Syst., 9(4).

[Goasdoué et al., 2012] Goasdoué, F., Manolescu, I., and Roatis, A. (2012). BGP Query
Answering against Dynamic RDF Databases. Report, INRIA.

[Goasdoué et al., 2013] Goasdoué, F., Manolescu, I., and Roatis, A. (2013). Efficient
query answering against dynamic RDF databases. In EDBT.

[Goasdoué and Rousset, 2004] Goasdoué, F. and Rousset, M. (2004). Answering queries
using views: A KRDB perspective for the semantic web. ACM Trans. Internet Techn.,
4(3).

[Grau et al., 2014] Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik,
B., and Wang, Z. (2014). Acyclicity notions for existential rules and their application
to query answering in ontologies. CoRR, abs/1406.4110.

[Guo et al., 2005] Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for OWL
knowledge base systems. J. Web Sem., 3(2-3).

[Halevy, 2000] Halevy, A. Y. (2000). Theory of answering queries using views. ACM
SIGMOD Record, 29(4):40–47.

126 BIBLIOGRAPHY

[Halevy, 2001] Halevy, A. Y. (2001). Answering queries using views: A survey. The
VLDB Journal, 10(4).

[Hovland et al., 2017] Hovland, D., Kontchakov, R., Skjæveland, M. G., Waaler, A., and
Zakharyaschev, M. (2017). Ontology-based data access to Slegge. In ISWC.

[Jarke, 2003] Jarke, M. (2003). Fundamentals of data warehouses, 2nd Edition.
Springer.

[Kaoudi et al., 2008] Kaoudi, Z., Miliaraki, I., and Koubarakis, M. (2008). RDFS rea-
soning and query answering on DHTs. In ISWC.

[König et al., 2013] König, M., Leclère, M., Mugnier, M.-L., and Thomazo, M.
(2013). Sound, Complete and Minimal UCQ-Rewriting for Existential Rules.
arXiv:1311.3198 [cs].

[Kontchakov et al., 2014] Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., and
Zakharyaschev, M. (2014). Answering SPARQL queries over databases under OWL 2
QL entailment regime. In ISWC.

[Lanti et al., 2017] Lanti, D., Xiao, G., and Calvanese, D. (2017). Cost-driven ontology-
based data access. In ISWC.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Re-
source Description Framework (RDF) Model and Syntax Specification.
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integration: A theoretical perspective.
In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 233–246. ACM.

[Levy et al., 1996] Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996). Querying het-
erogeneous information sources using source descriptions. In VLDB.

[Levy et al., 1995] Levy, A. Y., Srivastava, D., and Kirk, T. (1995). Data model and
query evaluation in global information systems. J. Intell. Inf. Syst., 5(2).

[Lutz et al., 2013] Lutz, C., Seylan, I., Toman, D., and Wolter, F. (2013). The combined
approach to OBDA: taming role hierarchies using filters. In ISWC.

[Manolescu et al., 2001] Manolescu, I., Florescu, D., and Kossmann, D. (2001). An-
swering XML queries on heterogeneous data sources. In VLDB.

[Motik, 2005] Motik, B. (2005). On the Properties of Metamodeling in OWL. In Gil,
Y., Motta, E., Benjamins, V. R., and Musen, M. A., editors, The Semantic Web –
ISWC 2005, Lecture Notes in Computer Science, pages 548–562, Berlin, Heidelberg.
Springer.

[Mugnier and Thomazo, 2014] Mugnier, M.-L. and Thomazo, M. (2014). An Introduc-
tion to Ontology-Based Query Answering with Existential Rules. In Koubarakis, M.,
Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P., Lausen, G., and Weikum, G., edi-
tors, Reasoning Web. Reasoning on the Web in the Big Data Era, volume 8714, pages
245–278. Springer International Publishing, Cham.

BIBLIOGRAPHY 127

[Nenov et al., 2015] Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee,
J. (2015). RDFox: A Highly-Scalable RDF Store. In Arenas, M., Corcho, O., Simperl,
E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J.,
Thirunarayan, K., and Staab, S., editors, The Semantic Web - ISWC 2015, Lecture
Notes in Computer Science, pages 3–20, Cham. Springer International Publishing.

[Neumann and Weikum, 2010] Neumann, T. and Weikum, G. (2010). The RDF-3X en-
gine for scalable management of RDF data. VLDB J.

[Özsu and Valduriez, 2011] Özsu, M. T. and Valduriez, P. (2011). Distributed and Par-
allel Database Systems (3rd. ed.). Springer.

[Pham et al., 2015] Pham, M., Passing, L., Erling, O., and Boncz, P. A. (2015). Deriving
an emergent relational schema from RDF data. In WWW.

[Pinto et al., 2011] Pinto, F. D., Giacomo, G. D., Lenzerini, M., and Rosati, R. (2011).
Mapping data to higher-order description logic knowledge bases. In Rosati, R.,
Rudolph, S., and Zakharyaschev, M., editors, Proceedings of the 24th International
Workshop on Description Logics (DL 2011), Barcelona, Spain, July 13-16, 2011, vol-
ume 745 of CEUR Workshop Proceedings. CEUR-WS.org.

[Pinto et al., 2013] Pinto, F. D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A.,
Rosati, R., Ruzzi, M., and Savo, D. F. (2013). Optimizing query rewriting in ontology-
based data access. In EDBT.

[Poggi et al., 2008] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini,
M., and Rosati, R. (2008). Linking data to ontologies. J. Data Semantics, 10.

[Pottinger and Halevy, 2001] Pottinger, R. and Halevy, A. Y. (2001). Minicon: A scal-
able algorithm for answering queries using views. VLDB J., 10.

[Prud’hommeaux and Seaborne, 2004] Prud’hommeaux, E. and Seaborne, A. (2004).
SPARQL Query Language for RDF. https://www.w3.org/TR/2004/WD-rdf-sparql-
query-20041012/.

[Rajaraman et al., 1995] Rajaraman, A., Sagiv, Y., and Ullman, J. D. (1995). Answering
queries using templates with binding patterns. In Yannakakis, M., editor, Proceed-
ings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 22-25, 1995, San Jose, California, USA, pages 105–112. ACM
Press.

[Rocher, 2016] Rocher, S. (2016). Querying Existential Rule Knowledge Bases: Decid-
ability and Complexity. Theses, Université de Montpellier.

[Rodriguez-Muro et al., 2013] Rodriguez-Muro, M., Kontchakov, R., and Za-
kharyaschev, M. (2013). Ontology-based data access: Ontop of databases. In
ISWC.

[Romero et al., 2020] Romero, J., Preda, N., Amarilli, A., and Suchanek, F. M. (2020).
Equivalent rewritings on path views with binding patterns. In Harth, A., Kirrane, S.,
Ngomo, A.-C. N., Paulheim, H., Rula, A., Gentile, A. L., Haase, P., and Cochez, M.,
editors, The Semantic Web - 17th International Conference, ESWC 2020, Heraklion,
Crete, Greece, May 31-June 4, 2020, Proceedings, volume 12123 of Lecture Notes in
Computer Science, pages 446–462. Springer.

128 BIBLIOGRAPHY

[Sequeda et al., 2014] Sequeda, J. F., Arenas, M., and Miranker, D. P. (2014). OBDA:
query rewriting or materialization? in practice, both! In ISWC.

[Sidirourgos et al., 2008] Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., and
Manegold, S. (2008). Column-store support for RDF data management: not all swans
are white. PVLDB, 1(2).

[Smits et al., 2014] Smits, G., Pivert, O., Jaudoin, H., and Paulus, F. (2014). AGGREGO
SEARCH: interactive keyword query construction. In EDBT.

[Thomazo, 2013] Thomazo, M. (2013). Conjunctive Query Answering Under Existential
Rules - Decidability, Complexity, and Algorithms. PhD thesis, Montpellier 2 Univer-
sity, France.

[Udrea et al., 2007] Udrea, O., Pugliese, A., and Subrahmanian, V. S. (2007). GRIN: A
graph based RDF index. In AAAI.

[Urbani et al., 2014] Urbani, J., Piro, R., van Harmelen, F., and Bal, H. E. (2014). Hybrid
reasoning on OWL RL. Semantic Web, 5(6).

[Urbani et al., 2011] Urbani, J., van Harmelen, F., Schlobach, S., and Bal, H. (2011).
QueryPIE: Backward reasoning for OWL Horst over very large knowledge bases. In
ISWC.

[Weiss et al., 2008] Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: Sextuple
indexing for Semantic Web data management. PVLDB.

[Wiederhold, 1992] Wiederhold, G. (1992). Mediators in the architecture of future infor-
mation systems. IEEE Computer, 25(3).

[Wilkinson et al., 2003] Wilkinson, K., Sayers, C., Kuno, H., and Reynolds, D. (2003).
Efficient RDF storage and retrieval in Jena2. In SWDB.

Appendix

A
Appendix

A.1 Appendix of Section 3.2

A.1.1 Proofs
Proof of Proposition 3.3

Proof. We provide an upper bound the number of reformulations explored during the re-
formulation of a BGPQ by analyzing the producer-consumer dependencies among rules
w.r.t. the form of the query. Given a query form Q and an ontology O, we denote by
#explored(Q,O) the number of explored reformulations during the execution of Reformulatec(q,O)
for a BGPQ q of form Q.

First, we notice that for the most general query form Q(x̄) ← t1, t2, . . . , tn (where the
ti are triples), it holds that:

#explored(Q,O) ≤
∏

1≤i≤n

#explored(Qi,O)

where Qi has the form Qi(xi) ← ti, with xi the list of variables in ti. We now analyze the
reformulations obtained for the different forms of queries composed of a single triple.

Let us consider the query form Q0(x̄)← (s, v, o), where s and o are values or variables
and v is a variable. The rules in (3.3) are the only rules that can consume Q0. They
produce queries of the form Q1(x̄1) ← (s,←↩d, o) or Q2(x̄2) ← (s,≺sc, o) (and there are
two similar cases with properties ↪→r and ≺sp). Since no rule feeds rule (3.3), it holds
that:

#explored(Q0,O) ≤ 2(#explored(Q1,O) + #explored(Q2,O))

Queries of the form Q2 only feed rules from (3.14) to (3.18). These rules always
produce queries of the form Q2(x̄2) ← (s,≺sc, o), where s and o are either values from
Val(O) or variables. Moreover, there are at most 2 variables in Var(Q2), which can only
be instantiated by values from Val(O) or variables.

In the end,

#explored(Q2,O) ≤ (#Val(O) + 1)2(#Val(O) + 1)2 = (#Val(O) + 1)4.

129

130 APPENDIX A. APPENDIX

Concerning a query of the form Q1, either rule (3.5) can be applied, then produced
queries have the form Q3(x̄3) ← (v1,≺sp, p), (c,≺sc, v2), or a rule from (3.6) to (3.13) can
be applied. In the latter case, we observe that all further produced queries will have the
form Q4(x̄4) ← (s, p, o) with p ∈ {←↩d,≺sc,≺sp}, s and o belonging to Val(O) ∪ Var(Q4),
and there is at most one variable among s and o.

So, we obtain by counting the number of possible values by position that

#explored(Q3,O) ≤ ((#Val(O) + 1)2#Val(O))2

and
#explored(Q4,O) ≤ 3(#Val(O) + 1)4.

In the end,

#explored(Q1,O) ≤ (#Val(O) + 1)4#Val(O)2 + 3(#Val(O) + 1)4

≤ (#Val(O) + 1)6 + 3(#Val(O) + 1)4

It follows that the maximal number of explored reformulations for an input query
with a single triple is O(#Val(O)6), hence in O(#Val(O)6|q|) for a BGPQ q. Note that |q| is
a rough upper bound, since one should only consider the number of triples in q with an
RDFS property or a variable in property position.

�

Proof of Lemma 3.1

The only entailment rule in Rc that allows one to infer a new triple with property ≺sc

(respectively ≺sp) is the rule rdfs11 (resp. rdfs5). Since this rule states the transitivity
of the property ≺sc (resp. ≺sp), it holds that (c,≺sc, c

′) ∈ GRc iff G contains a non-empty
≺sc-chain from c to c′ (resp. (p,≺sp, p

′) ∈ GRc iff G contains a non-empty empty ≺sp-chain
from p to p′).

Assume now that (p′,←↩d, c′) ∈ GRc . The only entailment rules in Rc that entail a
triple with property ←↩d are ext1 and ext3. The body of these rules contain a triple
with property ←↩d, so there exists an entailment chain (of triples with ←↩d property) of
length l ≥ 0 starting from G and using only rules ext1 and ext3. We prove by induction
on l that G contains a triple (p,←↩d, c), a (possibly empty) ≺sp-chain from p′ to p and a
(possibly empty) ≺sc-chain from c to c′.

• If l = 0, then (p′,←↩d, c′) ∈ G and there are an empty ≺sp-chain from p′ to p′ and
an empty ≺sc-chain from from c′ to c′.

• Otherwise (l > 0), the last rule applied in the chain is:

– either ext1, so GRc contains a triple (p′,←↩d, c1), which results from an entail-
ment chain of length l−1 starting from G and using only rules ext1 and ext3,
and a triple (c1,≺sc, c

′). By induction hypothesis, we know that G contains
a triple (p,←↩d, c), a (possibly empty) ≺sp-chain from p′ to p and a (possi-
bly empty) ≺sc-chain from c to c1. Moreover, by using the first point of the
lemma (proved above), (c1,≺sc, c

′) ∈ GRc implies that G contains a non-empty
≺sc-chain from c1 to c′. So, concatenating the two ≺sc-chains, we obtain a ≺sc-
chain from c to c′. Hence, G contains a triple (p,←↩d, c), a (possibly empty)
≺sp-chain from p′ to p and a ≺sc-chain from c to c′.

A.1. APPENDIX OF SECTION 3.2 131

– or ext3, and the proof is similar to that for ext1, replacing ≺sc-chains by
≺sp-chains.

We have proven that (p′,←↩d, c′) ∈ GRc implies that G contains a triple (p,←↩d, c), a
(possibly empty) ≺sp-chain from p′ to p and a (possibly empty) ≺sc-chain from c to c′.
The converse implication is straightforward: from the two first points of the lemma, we
obtain (c,≺sc, c

′) ∈ GRc and (p′,≺sp, p) ∈ GRc , then by one application of each entailment
rule ext1 and ext3, we obtain (p′,←↩d, c′) ∈ GRc .

Proof of Theorem 3.3

For the sake of readability, we assume in the following that G does not contain blank
nodes. So, we do not need non-standard query evaluation. This assumption can be done
without loss of generality. Indeed, we may define a one-to-one mapping f from the blank
nodes of G to fresh IRIs, apply f to G before any processing, and apply the inverse
mapping f −1 to the answer tuples obtained considering f (G) to get answers considering
G.

With the above assumption, to prove statement 3.20, it remains to prove that q(G,Rc) =

Qc(G) holds. We first prove Qc(G) ⊆ q(G,Rc) (soundness) then q(G,Rc) ⊆ Qc(G) (com-
pleteness).

(soundness) We want to prove that for all q′σ′ reformulation of q in Qc, for all tu-
ple t answer to q′σ′ in G, there is G′ obtained from G by application of some entail-
ment rules to G such that t is an answer to q in G′. In other words, we want to prove
that q′σ′(G, ∅) ⊆ q(G,Rc) . Since q′σ′(G, ∅) ⊆ q′σ′(G,Rc), it is sufficient to prove that
q′σ′(G,Rc) ⊆ q(G,Rc).

The proof is done by induction on the length l of a sequence of reformulation rules
leading to q′σ′ , starting from O and q.

Base step For l = 0, we have q′σ′ = q, so q′σ′(G,Rc) ⊆ q(G,Rc).
Inductive step For l < α, suppose that q′σ′(G,Rc) ⊆ q(G,Rc) holds. Now at l = α,

q′σ′ has been produced from q′′σ′′ by the application of a reformulation rule (i) and q′′σ′′ is
a reformulation of q. So that sequence being of length < α, we get q′′σ′′(G) ⊆ q(G,Rc) by
induction hypothesis. We will show that q′σ′(G,Rc) ⊆ q′′σ′′(G,Rc).

There are basically two cases:

• the reformulation rule (i) instantiates a variable of q′′σ′′ to generate q′σ′ i.e., rule (i) is
one of the following (3.3), (3.6)-(3.9), (3.14)-(3.16). In this case, q′σ′ is contained
in q′′σ′′ , so q′σ′(G,Rc) ⊆ q′′σ′′(G,Rc).

• the reformulation rule (i) has the form t1∈qσ,t2∈O
qσ[t1/t3] that replaces a triple in q′′σ′′ by

another one (or two for the rule (3.5)). Observe here that σ′ = σ′′ holds. If
ϕ(x̄σ′) ∈ q′σ′(G,Rc), then ϕ(t3σ′) ∈ GRc . Furthermore, the reformulation rules ensure
that ϕ(t3σ′), t2 |=Rc ϕ(t1σ′′). As a result, ϕ(t1σ′′) ∈ GRc , and ϕ is a total assignment of
the variables of q′′σ′′ such that ϕ(x̄σ′) = ϕ(x̄σ′′) ∈ q′′σ′′(G,Rc).

In each case, we get q′σ′(G,Rc) ⊆ q′′σ′′(G,Rc) which concludes the proof of q′σ′(G, ∅) ⊆
q(G,Rc), so Qc(G) ⊆ q(G,Rc).

(completeness) We now show that q(G,Rc) ⊆ Qc(G) with
Qc(G) =

⋃
q′
σ′
∈Reformulatec(q,O) q′σ′(G, ∅), i.e., for each answer tuple a ∈ q(G,Rc), there exists

q′σ′ ∈ Qc a reformulation of q using O such that a ∈ q′σ′(G, ∅).

132 APPENDIX A. APPENDIX

In the following, we will consider thatQc contains queries in which all the instantiated
RDFS triples that belong to the ontology are kept; in other words, the triples removed by
applications of rule (3.4) are restored in the resulting queries. This has no impact on the
completeness of the algorithm, since the reformulations output in both versions have the
same answers in G.

Let the query q be defined by q(x̄) ← t1, t2, . . . , tn with ti being the body triples of q.
An answer from q(G,Rc) has the form ϕ(x̄), where ϕ is a homomorphism from body(q) to
GRc . If for all triples ti from the body of q, ϕ(ti) is not an RDFS triple, then ϕ(body(q)) ∈ G
(because data triples are not entailed by Rc), so a valid reformulation of q is q itself,
since q(G,Rc) = q(G, ∅). Otherwise, there exists a triple ti from the body of q such that
ϕ(ti) ∈ ORc and we will show that there exists q′σ′ a reformulation of q where only ti has
been replaced by a BGP P such that P ⊆ O and ϕ(x̄) = ϕ(x̄σ′).

First case, ϕ(ti) = (c,≺sc, c
′) ∈ GRc; according to Lemma 3.1, there is C = ((ci,≺sc

, ci+1))1≤i<c a ≺sc-chain in G such that c = c1 and c′ = cc. The triple ti can have one of the
following forms:

• (c,≺sc, c
′), then we consider q′σ′ obtained from q by applying rule (3.17) for each

triple of C; finally (c,≺sc, c
′) is replaced by (cc−1,≺sc, c

′) ∈ O. Since σ′ = ∅,
ϕ(x̄) = ϕ(x̄σ′).

• (c,≺sc, v′), then we consider q′σ′ obtained from q by applying rule (3.17) for each
triple of C then (3.16); finally (c,≺sc, v′) is replaced by (cc−1,≺sc, c

′) ∈ O. Since
σ′ = {v′ 7→ c′}, ϕ(x̄) = ϕ(x̄σ′).

• (c, vp, v), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.17)
for each triple of C then (3.16); finally (c, vp, v) is replaced by (cc−1,≺sc, c

′) ∈ O.
Since σ′ = {vp 7→≺sc, v 7→ c′}, ϕ(x̄) = ϕ(x̄σ′).

• (v,≺sc, c
′), then we consider q′σ′ obtained from q by applying rule (3.18) for each

triple of C in inverse order then (3.15); finally (v,≺sc, c
′) is replaced by (c,≺sc, c2) ∈

O. Since σ′ = {v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

• (v, vp, c
′), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.18)

for each triple of C in inverse order then (3.15); finally (v, vp, c
′) is replaced by

(c,≺sc, c2) ∈ O. Since σ′ = {vp 7→≺sc, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

• (v,≺sc, v′), then we consider q′σ′ obtained from q by applying rule (3.14) then (3.17)
for each triple of C then (3.16); finally (v,≺sc, v′) is replaced by (cc−1,≺sc, c

′) ∈ O.
Since σ′ = {v′ 7→ c′, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

• (v, vp, v′), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.14)
then (3.17) for each triple of C then (3.16) ; finally (v, vp, v′) is replaced by (cc−1,≺sc

, c′) ∈ O. Since σ′ = {vp 7→≺sc, v′ 7→ c′, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

Second case, ϕ(ti) = (p,←↩d, c) ∈ GRc; according to Lemma 3.1, there are three cases,
depending on whether a chain is empty or not. We describe the case where none of the
chains is empty, hence assuming that there exists P = ((pi,≺sp, pi+1))1≤i≤p a ≺sp-chain in
G from p to p′ and (p′,←↩d, c′) ∈ G and there exists C = ((ci,≺sc, ci+1))1≤i≤c a ≺sc-chain
in G from c′ to c. The other cases are handled similarly using also rules (3.6) and (3.7).
The triple ti can have the following forms:

A.1. APPENDIX OF SECTION 3.2 133

• (p,←↩d, c), then we consider q′σ′ obtained from q by applying rule (3.12) for each
triple in C in inverse order then (3.13) for each triple in P ; finally (p,←↩d, c) is
replaced by (p′,←↩d, c′) ∈ O. Since σ′ = ∅, ϕ(x̄) = ϕ(x̄σ′).

• (p,←↩d, v′), then we consider q′σ′ obtained from q by applying rule (3.13) for each
triple in P then (3.11) then (3.17) for each triple in C then (3.16) ; finally (p,←↩d, c)
is replaced by (cc−1,≺sc, c) ∈ O. Since σ′ = {v′ 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

• (p, vp, v′), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.13)
for each triple in P then (3.11) then (3.17) for each triple in C then (3.16) ; finally
(p, vp, v′) is replaced by (cc−1,≺sc, c) ∈ O. Since σ′ = {vp 7→←↩d, v′ 7→ c}, ϕ(x̄) =

ϕ(x̄σ′).

• (v,←↩d, c), then we consider q′σ′ obtained from q by applying rule (3.12) for each
triple in C in inverse order then (3.10) then (3.18) for each triple in P in inverse order
then (3.15) ; finally (v,←↩d, c) is replaced by (p,≺sp, p2) ∈ O. Since σ′ = {v 7→ p},
ϕ(x̄) = ϕ(x̄σ′).

• (v, vp, c), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.12)
for each triple in C in inverse order then (3.10) then (3.18) for each triple in P in
inverse order then (3.15) ; finally (v, vp, c) is replaced by (p,≺sp, p2) ∈ O. Since
σ′ = {vp 7→←↩d, v 7→ p}, ϕ(x̄) = ϕ(x̄σ′).

• (v,←↩d, v′), then we consider q′σ′ is obtained from q by applying rule (3.5) then
(3.18) for each triple in P inverse order then (3.15) then on the other triple, (3.17) for
each triple in C then (3.16) ; finally (v,←↩d, v′) is replaced by (p,≺sp, p2), (cc−1,≺sp

, c) ∈ O. Since σ′ = {v 7→ p, v′ 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

• (v, vp, v′), then we consider q′σ′ obtained from q by applying rule (3.3) then (3.5)
then (3.18) for each triple in P in inverse order then (3.15) then on the other
triple, (3.17) for each triple in C then (3.16) ; finally (v, vp, v′) is replaced by
(p,≺sp, p2), (cc−1,≺sp, c) ∈ O. Since σ′ = {v 7→ p, v′ 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

Hence, for each triple ti in q such that ϕ(ti) ∈ ORc , there is q′σ′ , a reformulation of
q, where only ti has been replaced by a BGP P such that P ⊆ O and ϕ(x̄) = ϕ(x̄σ′). It
follows that there is q′′σ′′ , a reformulation of q, in which all body triples of q mapped by
ϕ to ORc have been replaced by triples that belong to O, such that ϕ(x̄) = ϕ(x̄σ′′). Since
the other triples of q are necessarily mapped by ϕ to G (actually, G \O), we conclude that
ϕ(x̄) = ϕ(x̄σ′′) is an answer to q′′σ′′ in G. This concludes the proof of statement (3.20),
which is the only part of Theorem 3.3 needed in the proof of Theorem 3.5. Statement
(3.21) actually follows from the next lemma (Lemma A.1).

Proof of Theorem 3.5

Lemma A.1. For all RDF graph G, it holds that:

GRa∪Rc =
(
GRa

)Rc

Proof. For one direction:
(
GRa

)Rc
⊆ GRa∪Rc . The proof is trivial.

For the converse direction GRa∪Rc ⊆
(
GRa

)Rc
. We take a triple t ∈ GRa∪Rc , and differ-

entiate two cases:

134 APPENDIX A. APPENDIX

• either t is not an RDFS triple, then by applying Theorem 1 of [Goasdoué et al., 2013],
t ∈ GRa . In other words, assertion rules suffice to entail all RDF data triples.

• or t is an RDFS triple. Since the RDFS ontology O of G does not contain an
RDFS property as subject or object, the entailment rule rdfs7 does not entail RDFS
triples. So, t ∈ O or t has been produced by a rule in Rc. Moreover, all rules in Rc

have a body that contains only RDFS triples, so t ∈ O or t has been entailed from
O using rules in Rc, i.e., t ∈ ORc . We also know that ORc ⊆

(
GRa

)Rc
, so t ∈

(
GRa

)Rc
.

In both cases, we have proven that t ∈
(
GRa

)Rc
.

�

of the theorem.

q(G,Ra ∪ Rc) = q(GRa∪Rc)

= q(
(
GRa

)Rc
) by Lemma A.1

= q(GRa ,Rc) by definition of query answering

=
︷ ︸︸ ︷
Qc(GRa) by Theorem 3.3

=
︷ ︸︸ ︷
Qc(G,Ra) by definition of query answering

=
︷ ︸︸ ︷
Qc,a(G) by Theorem 6 of [Goasdoué et al., 2013] since Qc is without RDFS triples

�

A.1.2 Experiments Appendix
This section describes a set of experiments related to RDF query reformulation under
RDFS ontologies.

Experiments with our software: OntoSQL

The experiments are presented in Section 3.2.7.
The benchmark lubm-exists is available online as well as a dataset generator: http:

//www.informatik.uni-bremen.de/˜clu/combined/

We have used a restricted version to RDFS triples of the LUBM exists ontology ini-
tially in OWL leading to 209 triples.

The list of executed queries is the following:

Q01<$X, $Y> :-

triple($X, <rdf:type>, <univ:Employee>),

triple($X, <univ:worksFor>, <http://www.Department0.University0.edu>),

triple($P, <rdfs:subPropertyOf>, <univ:degreeFrom>),

triple($X, $P, $Y);

Q02<$X, $Y> :-

triple($X, <rdf:type>, <univ:Employee>),

triple($X, <univ:worksFor>, <http://www.Department0.University0.edu>),

http://www.informatik.uni-bremen.de/~clu/combined/
http://www.informatik.uni-bremen.de/~clu/combined/

A.1. APPENDIX OF SECTION 3.2 135

triple($P, <rdfs:domain>, <univ:Employee>),

triple($X, $P, $Y);

Q03<$X, $Y> :-

triple($X, <rdf:type>, <univ:Employee>),

triple($X, <univ:worksFor>, <http://www.Department0.University0.edu>),

triple($P, <rdfs:range>, <univ:Course>),

triple($X, $P, $Y);

Q04<$X, $Y, $U, $V, $W> :-

triple($C, <rdfs:subClassOf>, <univ:Employee>),

triple($X, <rdf:type>, $C),

triple($X, <univ:worksFor>, <http://www.Department0.University0.edu>),

triple($X, <univ:degreeFrom>, $Y),

triple($X, <univ:name>, $U),

triple($X, <univ:emailAddress>, $V),

triple($X, <univ:telephone>, $W);

Q05<$X, $Y> :-

triple($C, <rdfs:subClassOf>, <univ:Employee>),

triple($X, <rdf:type>, $C),

triple($X, <univ:worksFor>, <http://www.Department0.University0.edu>),

triple($X, <univ:doctoralDegreeFrom>, $Y);

Q06<$X, $Y, $Z> :-

triple($Y, <rdfs:subClassOf>, <univ:Professor>),

triple($X, <rdf:type>, $Y),

triple($X, <univ:doctoralDegreeFrom>, $U),

triple($X, <univ:memberOf>, $Z);

Q07<$X, $Y, $Z> :-

triple($C, <rdfs:subClassOf>, <univ:Student>),

triple($X, <rdf:type>, $C),

triple($X, <rdf:type>, $C),

triple($X, <univ:advisor>, $Y),

triple($Y, <univ:teacherOf>, $Z),

triple($X, <univ:takesCourse>, $Z);

Q08<$X, $W, $Y, $Z> :-

triple($W, <rdfs:subClassOf>, <univ:Person>),

triple($X, <rdf:type>, $W),

triple($X, <univ:advisor>, $Y),

triple($Y, <univ:teacherOf>, $Z),

triple($X, <univ:takesCourse>, $Z);

Q09<$X, $Y, $Z> :-

triple($C, <rdfs:subClassOf>, <univ:Faculty>),

triple($X, <rdf:type>, $C),

triple($X, <univ:degreeFrom>, $Y),

136 APPENDIX A. APPENDIX

Figure A.1: Number of answers per query.

triple($X, <univ:memberOf>, $Z);

Q10<$X> :-

triple($P, <rdfs:subPropertyOf>, <univ:degreeFrom>),

triple($X, $P, $Y),

triple($X, <univ:memberOf>, <http://www.Department0.University0.edu>);

Q11<$X> :-

triple($X, $P, $Y),

triple($P, <rdfs:subPropertyOf>, <univ:degreeFrom>),

triple($X, <univ:memberOf>, $Y);

Q12<$X, $Y, $P> :-

triple($P, <rdfs:subPropertyOf>, <univ:worksFor>),

triple($X, $P, <http://www.Department0.University0.edu>),

triple($Y, $P, <http://www.Department0.University0.edu>);

Q13<$X, $Y, $P> :-

triple($P, <rdfs:range>, <univ:Publication>),

triple($X, $P, $Z),

triple($Y, $P, $Z); Q14<$CX, $CY> :-

triple($CX, <rdfs:subClassOf>, <univ:Professor>),

triple($CY, <rdfs:subClassOf>, <univ:Course>),

triple($X, <rdf:type>, $CX),

triple($Y, <rdf:type>, $CY),

triple($X, <univ:teacherOf>, $Y);

We plot the number of answers per query in Figure A.1.
Reformulation

We plot the number of conjunctive queries in the union output by the global reformu-
lation algorithm, which output is denoted Qc,a in Figure A.2.
Saturation

The initialization time comprises 2 steps:

• creating a file containing the data triples and the saturation of the ontology. (T DUMP),

A.1. APPENDIX OF SECTION 3.2 137

Figure A.2: Reformulation size in number of BGPQs in their union.

• loading the whole graph into OntoSQL and saturating the data triples (T LOAD).

The times in milliseconds are:
T DUMP T LOAD TOTAL

18137 1271592 1289729

Experiments with other platforms

We tested Stardog and AllegroGraph (last publicly available versions as of Nov 30, 2018)
with respect to the completeness of their answers.

Stardog
We used a simple dataset retrieved by the following query:

// Query a

// no reasoning

stardog query Gex "select distinct * where { ?s ?p ?o }"

s p o

urn:posterCP rdfs:subClassOf urn:ConfP
:b0 rdfs:subClassOf urn:ConfP

urn:inproc rdfs:domain urn:ConfP
urn:inproc rdfs:range urn:Conference
urn:a urn:inproc urn:edbt
urn:a rdf:type urn:posterCP
urn:b urn:inproc :bc
urn:b rdf:type :b0

Then we ask more queries:

// Query b

// -r means reasoning

stardog query -r Gex "select distinct * where { ?s ?p ?o }"

138 APPENDIX A. APPENDIX

s p o Commentary

urn:a urn:inproc urn:edbt OK (explicit triple)
urn:b urn:inproc :bc OK (explicit triple)
urn:a rdf:type urn:ConfP OK (implicit triple: a inproc edbt, inproc domain ConfP)
urn:b rdf:type urn:ConfP OK (implicit triple: b inproc :bc, inproc domain ConfP)
urn:b rdf:type :b0 OK (explicit triple)
urn:edbt rdf:type urn:Conference OK (implicit triple: a inproc edbt, inproc range Conference)
:bc rdf:type urn:Conference OK (implicit triple: b inproc :bc, inproc range Conference)

urn:a rdf:type urn:posterCP OK (explicit triple)
urn:a rdf:type owl:Thing
urn:b rdf:type owl:Thing

Note that all the ontology triples have disappeared . At the same time, we have four
new triples typing all non-schema resources as owl:Thing (which is a bit surprising given
that RDFS, not OWL, reasoning was intended).

Then we ask:

// Query c

stardog query -r Gex "select distinct * where {

?c rdfs:subClassOf <urn:ConfP> .

?a rdf:type ?c .

?a <urn:inproc> ?conf .

}"

c a conf

urn:posterCP urn:a urn:edbt
urn:ConfP urn:a urn:edbt
:b0 urn:b :bc
urn:ConfP urn:b :bc

This result is correct. We introduce a second dataset, a slightly different RDF graph:
s p o

<urn:posterCP> rdfs:subClassOf <urn:ConfP>
:b0 rdfs:subClassOf <urn:ConfP>
<urn:inproc> rdfs:domain <urn:ConfP>
<urn:inproc> rdfs:range <urn:Conference>
<urn:a> rdf:type <urn:posterCP>
<urn:b> rdf:type :b0
<urn:a> <urn:inproc> <urn:edbt>
<urn:b> <urn:inproc> < :bc>
<urn:ConfP> rdfs:subClassOf <urn:Paper>

Then we ask:

// Query d

stardog query -r Gex "select distinct * where {

?s rdfs:subClassOf <urn:Paper>

}"

A.1. APPENDIX OF SECTION 3.2 139

s

urn:Paper
urn:ConfP
urn:posterCP
owl:Nothing
:b0

This result is correct. We extend the same query to also go over the

data:

// Query e

stardog query -r Gex "select distinct * where {

?c rdfs:subClassOf <urn:Paper> .

?a rdf:type ?c .

}"

c a
urn:Paper urn:a
urn:Paper urn:b
urn:ConfP urn:a
urn:ConfP urn:b
urn:posterCP urn:a
:b0 urn:b

The result is correct. Then we extend the query with one extra triple:

// Query f

stardog query -r Gex "select distinct * where {

?c ?p <urn:Paper> .

?a rdf:type ?c .

}"

The result is empty, whereas it should have been the same as above. It appears that
Stardog is unable to bind property variables on schema triples. If the property is specified,
reasoning is performed; otherwise, it only matches property variables on the data, which
is incomplete. A similar result is obtained with domain querying:

// Query g

stardog query -r Gex "select distinct * where {

?c rdfs:domain <urn:Paper>

}"

c

owl:bottomDataProperty
owl:bottomObjectProperty
urn:inproc

The result is OK (again, despite the surprising apparition of OWL when we wanted
RDFS). However, a slight change:

140 APPENDIX A. APPENDIX

// Query h

stardog query -r Gex "select distinct * where {

?c ?p <urn:Paper>

}"

c p

urn:a rdf:type
urn:b rdf:type

loses the urn:inproc expected result! Thus, Stardog is incomplete for the RDFS (sub-
class, subproperty, domain, range) inference setting.

Allegrograph
We loaded it the second dataset above and asked some of preceding queries:

// Query d

select distinct * where {

?s rdfs:subClassOf <urn:Paper>

}

s

urn: ConfP
urn:posterCP
bDF3893B2x1

Compared to Stardog, it misses urn:Paper.

// Query e

select distinct * where {

?c rdfs:subClassOf <urn:Paper> .

?a rdf:type ?c .

}

a c

urn:b :bDF3893B2x1
urn:a urn:posterCP
urn:b urn:ConfP
urn:a urn:ConfP

Compared to Stardog, we are missing that a and b are papers (subclass is not consid-
ered reflexive). However, we see that AllegroGraph does reason on the schema and the
data.

// Query f

select distinct * where {

?c ?p <urn:Paper> .

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 141

?a rdf:type ?c .

}

a c p

urn:a urn:ConfP rdfs:subClassOf
urn:b urn:ConfP rdfs:subClassOf
urn:a urn:posterCP rdfs:subClassOf
urn:b :bDF3893B2x1 rdfs:subClassOf

AllegroGraph behaves better on this query than Stardog. However:

// Query g

select distinct * where {

?c rdfs:domain <urn:Paper>

}

yields no results, whereas we should have obtained urn:inProc. This shows that Allegro-
Graph is incomplete when it comes to reasoning with domain and range constraints.

A.2 Experiments details of Section 3.3.6
After detailing the queries and DBLP ontology used in experiments from Section 3.3.6,
we conducted tests on Virtuoso to check its reformulation capabilities in Section A.2.2.
You can find the code and the instructions to reproduce the experiments online1.

A.2.1 Queries and DBLP ontology
LUBM

BGP queries on the LUBM dataset:

star query

one class answer variable

Q01<$X, $Y, $Z> :-

triple($X, <rdf:type>, $Y),

triple($X, <lubm:doctoralDegreeFrom>, $U),

triple($X, <lubm:memberOf>, $Z);

square query

one class answer variable

Q02<$X, $W, $Y, $Z> :-

triple($X, <rdf:type>, $W),

triple($X, <lubm:advisor>, $Y),

triple($Y, <lubm:teacherOf>, $Z),

triple($X, <lubm:takesCourse>, $Z);

1https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/

8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org

https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org
https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org

142 APPENDIX A. APPENDIX

triangle query

one class answer variable

Q03<$Z, $W> :-

triple($X, <rdf:type>, <lubm:Student>),

triple($Y, <rdf:type>, <lubm:GraduateStudent>),

triple($Z, <rdf:type>, $W),

triple($X, <lubm:advisor>, $Z),

triple($Y, <lubm:advisor>, $Z);

star query

one property variable

one schema triple

Q04<$X, $Y> :-

triple($X, <rdf:type>, <lubm:Employee>),

triple($X, $P, $Y),

triple($P, <rdfs:range>, <lubm:University>);

5-path query

two class answer variables

two schema triples

Q05<$P, $PC, $O, $OC> :-

triple($O, <rdf:type>, $OC),

triple($OC, <rdfs:subClassOf>, <lubm:Organization>),

triple($P, <lubm:memberOf>, $O),

triple($P, <rdf:type>, $PC),

triple($PC, <rdfs:subClassOf>, <lubm:Professor>);

4-path query

one class answer variable

Q06<$Z,$S1> :-

triple($Z, <rdf:type>, $S1),

triple($Y, <rdf:type>, <lubm:GraduateStudent>),

triple($V, <rdf:type>, <lubm:GraduateCourse>),

triple($Z, <lubm:teacherOf>, $V),

triple($Y, <lubm:takesCourse>, $V);

3-path query

one class answer variable

Q07<$X, $Y, $Z, $PC> :-

triple($X, <rdf:type>, $PC),

triple($Y, <rdf:type>, <lubm:Department>),

triple($X, <lubm:memberOf>, $Y),

triple($Y, <lubm:subOrganizationOf>, <http://www.University0.edu>),

triple($X, <lubm:emailAddress>, $Z);

triangle query

one property answer variable

one triple schema

Q08<$X, $P, $O> :-

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 143

triple($X, <lubm:memberOf>, $O),

triple($O, <lubm:subOrganizationOf>, $SO),

triple($X, $P, $SO),

triple($P, <rdfs:subPropertyOf>, <lubm:degreeFrom>);

complex query

one property variable

one class variable

two schema triples

Q09<$X, $OX, $EX, $Y, $OY, $TY> :-

triple($X, <lubm:memberOf>, $OX),

triple($X, <lubm:emailAddress>, $EX),

triple($OX, <lubm:subOrganizationOf>, $SO),

triple($X, $P, $SO),

triple($SO, <rdf:type>, $SOC),

triple($P, <rdfs:range>, $SOC),

triple($SOC, <rdfs:subClassOf>, <lubm:Organization>),

triple($X, <lubm:advisor>, $Y),

triple($Y, <lubm:memberOf>, $OY),

triple($OY, <lubm:subOrganizationOf>, $SO),

triple($Y, <lubm:telephone>, $TY);

atomic query

one property variable

Q10<$X> :-

triple($X, $P, $Y);

Q11<$X> :-

triple($P, <rdfs:subPropertyOf>, <lubm:degreeFrom>),

triple($X, $P, $Y),

triple($X, <lubm:memberOf>, <http://www.Department0.University0.edu>);

Q12<$X, $Y, $P> :-

triple($X, $P, <http://www.Department0.University0.edu>),

triple($Y, $P, <http://www.Department0.University0.edu>);

Q13<$X, $P, $P1> :-

triple($X, $P, <http://www.Department0.University0.edu>),

triple($X, $P1, <http://www.Department0.University0.edu>);

Q14<$X, $Y, $P> :-

triple($X, $P, $Z),

triple($X, <lubm:advisor>, $Y),

triple($Y, $P, $Z);

DBLP

We use the DBLP ontology in Figure A.3 for our experiments. BGP queries on the DBLP
dataset:

144 APPENDIX A. APPENDIX

Figure A.3: DBLP ontology.

square query

no constant

Q01<$X, $Z, $V> :-

triple($X, <rdf:type>, $Z),

triple($X, <dblp:datatypeField>, $V),

triple($X, <purl:references>, $Y),

triple($X, <dblp:series>, $S),

triple($Y, <dblp:series>, $S);

star query

one constant

one class answer variable

Q02<$X, $Z> :-

triple($X, <rdf:type>, $Z),

triple($X, <dblp:objectField>, <http://dblp.l3s.de/.../www>);

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 145

star query

no constant

one class answer variable

Q03<$X, $Y, $Z> :-

triple($X, <rdf:type>, $Z),

triple($X, <dblp:datatypeField>, $Y);

star query

one constant

one class answer variable

Q04<$X, $Y, $Z> :-

triple($X, <rdf:type>, $Z),

triple($X, <dblp:datatypeField>, $Y),

triple($X, <purl-elt:publisher>, "Springer");

bistar query

one constant

one prop answer variable

Q05<$X, $D, $H1, $U, $V, $H2, $T> :-

triple($X, <purl:issued>, $D),

triple($X, <http://xmlns.com/foaf/0.1/homepage>, $H1),

triple($X, <dblp:objectField>, <http://dblp.l3s.de/.../www>),

triple($X, $U, $V),

triple($V, <http://xmlns.com/foaf/0.1/homepage>, $H2),

triple($V, <purl-elt:title>, $T);

bistar query

one constant

one prop answer variable

one class answer variable

one schema triple

Q06<$X, $U, $V> :-

triple($X, <dblp:objectField>, <http://.../article156.html>),

triple($X, $U, $V),

triple($V, <rdf:type>, $Z),

triple($Z, <rdfs:subClassOf>, <purl-elt:Agent>);

strange shaped query

two constants

one prop answer variable

one class answer variable

Q07<$X, $Y, $U, $V> :-

triple($X, $U, $V),

triple($Y, $U, $V),

triple($V, <rdf:type>, $Z),

triple($Z, <rdfs:subClassOf>, <purl-elt:Agent>),

triple($X, <dblp:month>, "July"),

triple($Y, <dblp:month>, "November");

146 APPENDIX A. APPENDIX

star query

no constant

one class answer variable

one schema triple

Q08<$X, $C, $Z, $R, $P, $D, $H> :-

triple($X, <rdf:type>, $C),

triple($C, <rdfs:subClassOf>, <dblp:Publication>),

triple($X, <dblp:objectField>, $Z),

triple($X, <purl-elt:title>, $R),

triple($X, <purl-elt:publisher>, $P),

triple($X, <purl:issued>, $D),

triple($X, <http://xmlns.com/foaf/0.1/homepage>, $H);

bistar query

no constant

one class answer variable

one schema triple

Q09<$X, $C, $F, $R, $P, $D, $H> :-

triple($X, <rdf:type>, $C),

triple($C, <rdfs:subClassOf>, <dblp:Publication>),

triple($X, <dblp:objectField>, $F),

triple($X, <purl-elt:title>, $R),

triple($X, <purl-elt:publisher>, $P),

triple($X, <purl:issued>, $D),

triple($X, $Y, $Z),

triple($Z, <rdf:type>, <purl-elt:Agent>),

triple($Z, <http://xmlns.com/foaf/0.1/homepage>, $H);

bistar query

no constant

one class answer variable

one schema triple

one property answer variable

Q10<$X, $C, $F, $R, $P, $D, $Y, $H> :-

triple($X, <rdf:type>, $C),

triple($C, <rdfs:subClassOf>, <dblp:Publication>),

triple($X, <dblp:objectField>, $F),

triple($X, <purl-elt:title>, $R),

triple($X, <purl-elt:publisher>, $P),

triple($X, <purl:issued>, $D),

triple($X, $Y, $Z),

triple($Z, <rdf:type>, <purl-elt:Agent>),

triple($Z, <http://xmlns.com/foaf/0.1/homepage>, $H);

it is a path query of homepage-1.maker-1.references.series

none of these properties is selective

it is a path query of homepage-1.maker-1.references.objectField

none of these properties is selective

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 147

Q11<$W, $T1, $O, $V> :-

triple($A, <http://xmlns.com/foaf/0.1/homepage>, $W),

triple($Y, <http://xmlns.com/foaf/0.1/maker>, $A),

triple($Y, <purl-elt:title>, $T1),

triple($Y, <purl:references>, $Z),

triple($Y, <dblp:objectField>, $O),

triple($O, <dblp:datatypeField>, $V);

it is a path query of homepage-1.maker-1.references.series

none of these properties is selective

with one unspecified class triple

Q12<$W, $T1, $T2, $C2, $S> :-

triple($A, <http://xmlns.com/foaf/0.1/homepage>, $W),

triple($Y, <http://xmlns.com/foaf/0.1/maker>, $A),

triple($Y, <purl-elt:title>, $T1),

triple($Y, <purl:references>, $Z),

triple($Z, <purl-elt:title>, $T2),

triple($Z, <rdf:type>, $C2),

triple($Z, <dblp:series>, $S);

it is a path query of homepage-1.maker-1.references.subject

none of these properties is selective, except subject (˜10%)

with two unspecified class triples

Q13<$W, $T1, $C1, $T2, $C2, $D> :-

triple($A, <http://xmlns.com/foaf/0.1/homepage>, $W),

triple($Y, <http://xmlns.com/foaf/0.1/maker>, $A),

triple($Z, <rdf:type>, $C1),

triple($Y, <purl-elt:title>, $T1),

triple($Y, <purl:references>, $Z),

triple($Z, <purl-elt:title>, $T2),

triple($Z, <rdf:type>, $C2),

triple($Z, <purl-elt:subject>, $D);

it is a path query of homepage-1.maker-1.$P.subject

none of these properties is selective, except subject (˜10%)

with one generic triple

Q14<$W, $T1, $T2, $D> :-

triple($A, <http://xmlns.com/foaf/0.1/homepage>, $W),

triple($Y, <http://xmlns.com/foaf/0.1/maker>, $A),

triple($Y, <purl-elt:title>, $T1),

triple($Y, $P, $Z),

triple($Z, <purl-elt:title>, $T2),

triple($Z, <purl-elt:subject>, $D);

it is a long path query of maker-1.references.references.series

none of these properties is selective, except subject (˜10%)

with one generic triple

Q15<$V, $T, $U> :-

triple($A, <dblp:datatypeField>, $V),

148 APPENDIX A. APPENDIX

triple($X, <http://xmlns.com/foaf/0.1/maker>, $A),

triple($X, <purl:references>, $Y),

triple($Y, <purl-elt:title>, $T),

triple($Y, <purl:references>, $Z),

triple($Z, <purl:issued>, "1982"),

triple($Z, <dblp:series>, $S),

triple($S, <dblp:datatypeField>, $U);

A.2.2 Reasoning in Virtuoso
In Virtuoso, reasoning is done at query time by default. Virtuoso does not fully support
reasoning with RDFS entailment rules (see Table 2 of the paper, recalled below). There-
fore in our experiments, we provided Virtuoso with the reformulated queries in SPARQL.
A main limitation of reasoning in Virtuoso is its partial support for subclass and subprop-
erty constraints, i.e., only w.r.t. the rules rdfs7 and rdfs9, as checked in Section called
“SubClass and SubProperty Reasoning on Data triples”. Moreover, it does not support the
reasoning w.r.t. domain and range constraints (rules rdfs2 and rdfs3), as explained in the
official documentation. In Section “Transitivity of SubClassOf and SubPropertyOf”, we
check that there is no way to support the transitivity of the subClassOf and subPropertyOf
properties (defined by rdfs5 and rdfs11) by using the transitivity embedded in Virtuoso.
Finally in Section A.2.2, we describe our attempt to encode RDFS reasoning using Vir-
tuoso 8’s new SPIN rules, however as we point out, that leads to some inconsistencies in
query answers.

Rule
rdfs2 (p,←↩d, o), (s1, p, o1)→ (s1, τ, o)
rdfs3 (p, ↪→r, o), (s1, p, o1)→ (o1, τ, o)
rdfs5 (p1,≺sp, p2), (p2,≺sp, p3)→ (p1,≺sp, p3)
rdfs7 (p1,≺sp, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (s,≺sc, o), (s1, τ, s)→ (s1, τ, o)
rdfs11 (s,≺sc, o), (o,≺sc, o1)→ (s,≺sc, o1)
ext1 (p,←↩d, o), (o,≺sc, o1)→ (p,←↩d, o1)
ext2 (p, ↪→r, o), (o,≺sc, o1)→ (p, ↪→r, o1)
ext3 (p,≺sp, p1), (p1,←↩d, o)→ (p,←↩d, o)
ext4 (p,≺sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)

RDFS Reasoning without Custom Inference Rules

In the official documentation, we can see that Virtuoso reasoning w.r.t. RDFS rules is
limited to rdfs7 and rdfs9. Reasoning w.r.t. domain and range is not supported.

See also:

• http://docs.openlinksw.com/virtuoso/rdfsparqlruleenableinfr/

• http://vos.openlinksw.com/owiki/wiki/VOS/VirtSPARQLReasoningTutorial

SubClass and SubProperty Reasoning on Data triples

Here, we test reasoning according to subClassOf and subPropertyOf using the follow-
ing graph. It works as expected, except for an error at Point 4.

http://docs.openlinksw.com/virtuoso/rdfsparqlrule/
http://docs.openlinksw.com/virtuoso/rdfsparqlrule/
http://docs.openlinksw.com/virtuoso/rdfsparqlruleenableinfr/
http://vos.openlinksw.com/owiki/wiki/VOS/VirtSPARQLReasoningTutorial

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 149

<file:///qa//Erik> <file:///qa//phoneNumber> "245470000" .

<file:///qa//Erik> <file:///qa//livesIn> <file:///qa//London> .

<file:///qa//Alice> <file:///qa//livesIn> <file:///qa//Paris> .

<file:///qa//Alice> <rdf:type> <file:///qa//Person> .

<file:///qa//Bob> <file:///qa//livesIn> <file:///qa//Berlin> .

<file:///qa//Bob> <rdf:type> <file:///qa//Person> .

<file:///qa//Dany> <file:///qa//livesIn> <file:///qa//Madrid> .

<file:///qa//Dany> <rdf:type> <file:///qa//Person> .

<file:///qa//Thing> <rdfs:subClassOf> <file:///qa//Thing> .

<file:///qa//Person> <rdfs:subClassOf> <file:///qa//Thing> .

<file:///qa//Place> <rdfs:subClassOf> <file:///qa//Thing> .

<file:///qa//City> <rdfs:subClassOf> <file:///qa//Place> .

<file:///qa//livesIn> <rdfs:range> <file:///qa//City> .

<file:///qa//contact> <rdfs:domain> <file:///qa//Person> .

<file:///qa//phoneNumber> <rdfs:subPropertyOf> <file:///qa//contact> .

<file:///qa//contact> <rdf:type> <rdf:Property> .

<file:///qa//Place> <rdf:type> <rdfs:Class> .

1. Clear and load the graph:

isql-vt 1111 dba dba exec="SPARQL

CLEAR GRAPH <urn:qa-test-graph>;"

move the graph file to vsp directory of virtuoso

cp test-graph.nt loading/virtuoso-opensource/vsp/

isql-vt 1111 dba dba exec="SPARQL

LOAD <file:/test-graph.nt>

INTO <urn:qa-test-graph>;"

2. Load the ontology

isql-vt 1111 dba dba exec="sparql

clear graph <urn:qa-test-onto>;"

cp test-schema.nt loading/virtuoso-opensource/vsp/

isql-vt 1111 dba dba exec="SPARQL

LOAD <file:/test-schema.nt> INTO

<urn:qa-test-onto>;"

3. Build the rule set from the schema

isql-vt 1111 dba dba exec="

150 APPENDIX A. APPENDIX

DELETE FROM sys_rdf_schema WHERE RS_NAME=’urn:owl:inference:rules:qa-test’;"

isql-vt 1111 dba dba exec="

rdfs_rule_set(’urn:owl:inference:rules:qa-test’, ’urn:qa-test-onto’);"

4. Find the type of each subject using reasoning:

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT *

FROM <urn:qa-test-graph>

WHERE { ?s a ?o}

ORDER BY ?s ?o;"

s o
file:///qa//Bob file:///qa//Thing
file:///qa//Alice file:///qa//Person
file:///qa//Alice file:///qa//Thing
file:///qa//Dany file:///qa//Thing
2file:///qa//Place rdfs:Class
file:///qa//contact rdfs:Property

The answers set is not correct because Bob, Alice and Dany are of type Person and
Person is a subclass of Thing, but only Alice is of type Person in the answers. We
notice that Erik doesn’t have a type, even if the domain of phoneNumber is Person,
so domain is not used (the same for range, with London for example).

5. Find all the subjects of type Thing (correct result):

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT *

FROM <urn:qa-test-graph>

WHERE { ?s a <file:///qa//Thing>}

ORDER BY ?s ;"

s
file:///qa//Bob
file:///qa//Alice
file:///qa//Dany

6. Query all the subjects and objects of the property contact, populated by its sub-
property phoneNumber (correct result) :

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT *

FROM <urn:qa-test-graph>

WHERE { ?s <file:///qa//contact> ?o}

ORDER BY ?s, ?o ;"

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 151

s o
file:///qa//Erik 245470000

Transitivity of SubClassOf and SubPropertyOf

We show that there is no way to use the transitivity capabilities of Virtuoso to support
the transitivity of the properties subClassOf and subPropertyOf.

1. Query all the subclass relations, no reasoning appears to have taken place:

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT *

FROM <urn:qa-test-graph>

WHERE { ?s <rdfs:subClassOf> ?o }

ORDER BY ?s ?o ;"

s o
file:///qa//City file:///qa//Place
file:///qa//Person file:///qa//Thing
file:///qa//Place file:///qa//Thing
file:///qa//Thing file:///qa//Thing

2. We try again by adding first, a triple that declares rdfs:subClassOf as a transitive
property. It returns a error, because the transitivity of a property is not supported
in a query with a variable as subject.

isql-vt 1111 dba dba exec="SPARQL

INSERT

{

GRAPH <urn:qa-test-onto> {

<rdfs:subClassOf> a <owl:TransitiveProperty> .

}

};"

isql-vt 1111 dba dba exec="

rdfs_rule_set(’urn:owl:inference:rules:qa-test’, ’urn:qa-test-onto’);"

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT *

FROM <urn:qa-test-graph>

WHERE { ?s <rdfs:subClassOf> ?o }

ORDER BY ?s ?o ;"

Connected to OpenLink Virtuoso

Driver: 06.01.3127 OpenLink Virtuoso ODBC Driver

OpenLink Interactive SQL (Virtuoso), version 0.9849b.

Type HELP; for help and EXIT; to exit.

152 APPENDIX A. APPENDIX

*** Error 37000: [Virtuoso Driver][Virtuoso Server]TR...:

transitive start not given

at line 0 of Top-Level:

SPARQL DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT * FROM <urn:qa-test-graph> WHERE

{ ?s <rdfs:subClassOf> ?o } ORDER BY ?s ?o

3. We now ask for the superclasses of City (should be Place and Thing). This raises
an out-of-memory error.

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT DISTINCT *

FROM <urn:qa-test-graph>

WHERE { <file:///qa//City> <rdfs:subClassOf> ?o OPTION (TRANSITIVE)}

ORDER BY ?o ;"

Connected to OpenLink Virtuoso

Driver: 06.01.3127 OpenLink Virtuoso ODBC Driver

OpenLink Interactive SQL (Virtuoso), version 0.9849b.

Type HELP; for help and EXIT; to exit.

*** Error 42000: [Virtuoso Driver][Virtuoso Server]TN...:

Exceeded 100000000 bytes in transitive temp memory.

at line 0 of Top-Level:

SPARQL DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT * FROM <urn:qa-test-graph>

WHERE { <file:///qa//City> <rdfs:subClassOf> ?o } ORDER BY ?o

4. In fact, there are specific settings for transitivity, so we have to specify “distinct”
near the transitive triples in the query (as illustrated below). However, the suject of
a triple has to be defined, which is not always the case in our queries.

isql-vt 1111 dba dba exec="SPARQL

DEFINE input:inference ’urn:owl:inference:rules:qa-test’

SELECT DISTINCT *

FROM <urn:qa-test-graph>

WHERE { <file:///qa//City> <rdfs:subClassOf> ?o

OPTION (TRANSITIVE, t_distinct)}

ORDER BY ?o ;"

trans-subj-s30 o
file:///qa//City file:///qa//Place
file:///qa//City file:///qa//Thing

http://docs.openlinksw.com/virtuoso/rdfsparqlimplementatiotrans/#rdfsparqlimplementatiotransexamples7

A.2. EXPERIMENTS DETAILS OF SECTION 3.3.6 153

Custom Inference Rules (SPIN)

Custom inference rules are available only in Virtuoso 8.0, which is the commercial ver-
sion.

These rules are built using the SPIN (for SPARQL Inference Notation) language234.
We define a SQL script5 in order to test reasoning in Virtuoso. This script has three input
variables.

• $GRAPH the RDF graph,

• $RULES the SPIN rules,

• $QUERY is the query to be answered on the graph.

Simple Case We will consider the following RDF graph:

<file:///qa//Erik> <file:///qa//livesIn> <file:///qa//London> .

<file:///qa//Erik> a <file:///qa//#Thing> .

The following SPIN rule says that the domain of livesIn is Person.

CONSTRUCT { ?this a <file:///qa//Person> }

WHERE {

{ ?this <file:///qa//livesIn> ?y . }

}

We query for entities of type Person and type Thing.

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s

WHERE { ?s a <file:///qa//#Thing> .

?s a <file:///qa//Person> . };

s
file:///qa//Erik

The SPIN rule has been defined on the class Thing, and it seems mandatory to specify
the type of Thing in the query to activate the reasoning process . . . So, the answer Erik
is missing of the following query.

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT *

WHERE { ?s a <file:///qa//Person> .};

2https://medium.com/virtuoso-blog/magic-sets-and-custom-inference-rules-in-virtuoso-8-x-
db783f8d98d2

3https://medium.com/virtuoso-blog/virtuoso-8-0-creating-a-custom-inference-rules-using-spin-
vocabulary-d7a060f859ef

4https://stackoverflow.com/questions/51513968/how-virtuoso-do-if-then-rules-inference
5https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/

8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org

http://spinrdf.org/spin.html#spin-rules
https://medium.com/virtuoso-blog/magic-sets-and-custom-inference-rules-in-virtuoso-8-x-db783f8d98d2
https://medium.com/virtuoso-blog/magic-sets-and-custom-inference-rules-in-virtuoso-8-x-db783f8d98d2
https://medium.com/virtuoso-blog/virtuoso-8-0-creating-a-custom-inference-rules-using-spin-vocabulary-d7a060f859ef
https://medium.com/virtuoso-blog/virtuoso-8-0-creating-a-custom-inference-rules-using-spin-vocabulary-d7a060f859ef
https://stackoverflow.com/questions/51513968/how-virtuoso-do-if-then-rules-inference
https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org
https://gitlab.inria.fr/mburon/graph-layout-experiments/-/blob/8eacd5267af39b327e3bcb0b7da1a82360ebb452/README.org

154 APPENDIX A. APPENDIX

s

Neither does the following query provide all expected answers:

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s ?c

WHERE { ?s a <file:///qa//#Thing> .

?s a ?c . };

s c
file:///qa//Erik file:///qa//#Thing

Trying to Reason using Domain Specification

We define Person as the domain of livesIn.

<file:///qa//Erik> <file:///qa//livesIn> <file:///qa//London> .

<file:///qa//Erik> a <file:///qa//#Thing> .

<file:///qa//livesIn> <rdfs:domain> <file:///qa//Person> .

We define the domain reasoning as defined by the rule rdfs2:

CONSTRUCT { ?this a ?c }

WHERE {

{ ?this ?p ?y .

?p <rdfs:domain> ?c . }

}

We query for entities of type Person and of type Thing.

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s

WHERE { ?s a <file:///qa//#Thing> .

?s a <file:///qa//Person> . };

s
file:///qa//Erik

The SPIN rule has been defined on the class Thing, and it seems mandatory to specify
the type of Thing in the query to activate the reasoning process . . . This is illustrated by
the following query, for which the answer Erik is missing.

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT *

WHERE { ?s a <file:///qa//Person> .};

A.3. APPENDIX OF THE QUERY ANSWERING STRATEGIES IN RIS
EXPERIMENTS 155

In this case, it is possible to generalize the query as:

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s ?c

WHERE { ?s a <file:///qa//#Thing> .

?s a ?c . };

s c
file:///qa//Erik file:///qa//Person
file:///qa//Erik file:///qa//#Thing

Neither can we get the desired result by asking the following query (Erik should be of
type Person):

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s ?p ?o

WHERE { ?s ?p ?o .};

s p o
file:///qa//Erik rdf:type file:///qa//#Thing
file:///qa//livesIn rdfs:domain file:///qa//Person
file:///qa//Erik file:///qa//livesIn file:///qa//London

Neither does the following query provide all expected answers (Erik should be known
of type Person):

DEFINE input:macro-lib <urn:rules>

WITH <urn:graph>

SELECT ?s ?p ?o

WHERE { ?s a <file:///qa//#Thing> .

?s ?p ?o . };

s p o
file:///qa//Erik rdf:type file:///qa//#Thing
file:///qa//Erik file:///qa//livesIn file:///qa//London

A.3 Appendix of the query answering strategies in RIS
experiments

This appendix is related to Section 4.5.

A.3.1 Experiments Queries
Q01<$label, $featureLabel, $value> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType110>),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, $featureLabel),

156 APPENDIX A. APPENDIX

triple($product, <bsbm:productPropertyNumeric>, $value);

Q01a<$label, $featureLabel, $value> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, $featureLabel),

triple($product, <bsbm:productPropertyNumeric>, $value);

Q01b<$label, $featureLabel, $value> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType4>),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, $featureLabel),

triple($product, <bsbm:productPropertyNumeric>, $value);

Q02<$label, $value, $country> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType110>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

Q02a<$label, $value, $country> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType110>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType1>);

Q02b<$label, $value, $country> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType1>);

Q02c<$label, $value, $country> :-

triple($product, <rdfs:label>, $label),

triple($product, <rdf:type>, <bsbm-int:ProductType2>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType1>);

Q03<$product1, $product2> :-

A.3. APPENDIX OF THE QUERY ANSWERING STRATEGIES IN RIS
EXPERIMENTS 157

triple($product1, <rdf:type>, <bsbm-int:ProductType12>),

triple($product1, <bsbm:productPropertyNumeric>, "774"),

triple($product1, <bsbm:producer>, $producer),

triple($product2, <rdf:type>, <bsbm-int:ProductType2>),

triple($product2, <bsbm:producer>, $producer);

Q04<$vendor, $vendorLabel, $vendorHomepage> :-

triple($vendor, <rdfs:label>, $vendorLabel),

triple($vendor, <foaf:homepage>, $vendorHomepage);

Q07<$country> :-

triple($org, <rdf:type>, <foaf:Organization>),

triple($org, <bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType222>);

Q07a<$country> :-

triple($org, <rdf:type>, <foaf:Organization>),

triple($org, <bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType22>);

Q09<$product, $value> :-

triple($product, <bsbm:productPropertyNumeric>, $value);

Q10<$country, $agentType> :-

triple($agent, <rdf:type>, $agentType),

triple($agent, <bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType222>);

Q13<$offer, $prop, $value> :-

triple($offer, <bsbm:product>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType110>),

triple($product, $prop, $value),

triple($prop, <rdfs:domain>, <bsbm:Product>);

Q13a<$offer, $prop, $value> :-

triple($offer, <bsbm:product>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, $prop, $value),

triple($prop, <rdfs:domain>, <bsbm:Product>);

Q13b<$offer, $prop, $value> :-

triple($offer, <bsbm:product>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType2>),

triple($product, $prop, $value),

triple($prop, <rdfs:domain>, <bsbm:Product>);

Q14<$product, $p, $offer, $vendor> :-

triple($product, <bsbm:producer>, $p),

triple($offer, <bsbm:product>, $product),

158 APPENDIX A. APPENDIX

triple($offer, <bsbm:vendor>, $vendor);

Q16<$review, $product, $title, $text> :-

triple($review, <bsbm:reviewFor>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType2>),

triple($review, <http://purl.org/dc/elements/1.1/title>, $title),

triple($review, <http://purl.org/stuff/rev#text>, $text);

Q19<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

Q19a<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType2>);

Q20<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, <bsbm-int:ProductType110>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

Q20a<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

A.3. APPENDIX OF THE QUERY ANSWERING STRATEGIES IN RIS
EXPERIMENTS 159

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, <bsbm-int:ProductType8>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

Q20b<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, <bsbm-int:ProductType2>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

Q20c<$offer, $offerURL, $price, $deliveryDays, $value> :-

triple($offer, <bsbm:offerWebpage>, $offerURL),

triple($offer, <bsbm:price>, $price),

triple($offer, <bsbm:deliveryDays>, $deliveryDays),

triple($offer, <bsbm:product>, $product),

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, <bsbm-int:ProductType2>),

triple($product, <bsbm:productPropertyNumeric>, $value),

triple($product, <bsbm:producer>, $producer),

triple($producer,<bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType1>);

Q21<$product, $type> :-

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, $type);

Q22<$product, $type> :-

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, $type),

triple($type, <rdfs:subClassOf>, <bsbm-int:ProductType12>);

Q22a<$product, $type> :-

triple($product, <bsbm:productFeature>, $productFeature),

triple($productFeature, <rdfs:label>, "biographies"),

triple($product, <rdf:type>, $type),

160 APPENDIX A. APPENDIX

triple($type, <rdfs:subClassOf>, <bsbm-int:ProductType2>);

Q23<$x, $class, $superProp, $value> :-

triple($x, $prop, $value),

triple($prop, <rdfs:subPropertyOf>, $superProp),

triple($x, $p, $agent),

triple($p, <rdfs:range>, <foaf:Agent>),

triple($p, <rdfs:domain>, $class),

triple($agent, <bsbm:country>, $country),

triple($country, <rdf:type>, <bsbm:CountryType12>);

A.3.2 Experiments on REW

Our experiments on the strategy REW shows that it is slower that REW-C, because (i) REW
has the same behaviour as REW-C at query time if the query does not query the ontology
part of the graph and (ii) we have experimentally shown below that on 6 queries (querying
the ontology), in the REW strategy, the size of the rewriting explodes in comparison to the
REW-C strategy. We can see the size (number of elements in the union) of the rewriting
in the column N REW of the following tables and the corresponding rewriting time in ms
in the T REW column.

This explosion of the size of the rewriting leads to an explosion of the time spent for
optimizing the rewriting. These optimization steps are called CLASH, COVER and CORE:
they respectively remove CQs with empty answer sets according the functions in the
mappings, minimize the output union by removing redundant CQs and compute the core
of each rewriting CQ (removing redundancy inside CQs). The column prefixed by N
contains the size of the rewriting after the optimization and the column prefixed by T
contains the corresponding time. The last column T OP contains the time spent for the
optimization of the execution plan in Tatooine; some ongoing work may modify this
time, but not the previous ones.

You can see the number of reformulations and respectively the reformulation process-
ing time in the column N REF, resp. T REF. The number of triples in the query is written
in the column N TRI.

Experiments on a small scenario

In Table A.1 and Table A.2, we observe that the size of the rewriting is larger with a
multiplicative factor going from 29 to 74 in the small scenario. The first table concerns
REW and the second REW-C.

INPUT NTRI NREF NREW NCLASH NCOVER TREF TREW TCLASH TCOVER TCORE TOP

Q13 4 nan 1005 576 304 nan 106 1 119 247 175
Q13a 4 nan 2010 1152 606 nan 123 2 371 487 441
Q13b 4 nan 16080 9216 4400 nan 435 24 17531 4982 11909
Q22 4 nan 929 539 385 nan 70 0 76 54 126
Q22a 4 nan 929 539 385 nan 69 1 77 55 123
Q23 7 nan 5922 4474 856 nan 555 9 978 268 707

Table A.1: Statistics of REW on S1 and S3.

A.4. PROOFS ABOUT RESTRICTED RULES 161

INPUT NTRI NREF NREW NCLASH NCOVER TREF TREW TCLASH TCOVER TCORE TOP

Q13 4 16 25 nan 21 1 184 1 14 44 19
Q13a 4 16 50 nan 42 1 185 0 31 84 41
Q13b 4 16 400 nan 336 1 223 0 268 1166 354
Q22 4 2 2 nan 2 1 10 0 0 0 1
Q22a 4 24 32 nan 32 0 73 0 1 4 7
Q23 7 64 80 56.0 24 738 1650 0 10 39 16

Table A.2: Statistics of REW-C on S1 and S3.

Experiment on large scenario

In Table A.3 and Table A.4, we observe that the size of the rewriting is larger with a
multiplicative factor going from 33 to 969 in the large scenario. The first table concerns
REW and the second REW-C.

INPUT NTRI NREF NREW NCLASH NCOVER TREF TREW TCLASH TCOVER TCORE TOP

Q13 4 nan 25886 12992 10018 nan 1660 44 98580 6960 72717
Q13a 4 nan nan ≥10min
Q13b 4 nan nan ≥10min
Q22 4 nan 12865 6459 6401 nan 1000 18 19320 859 19142
Q22a 4 nan 12865 6459 6401 nan 995 18 19646 855 19138
Q23 7 nan 77538 56954 12888 nan 7426 130 353692 2477 163584

Table A.3: Statistics of REW on S2 and S4.

INPUT NTRI NREF NREW NCLASH NCOVER TREF TREW TCLASH TCOVER TCORE TOP

Q13 4 16 50 nan 42 4 3198 1 29 89 30
Q13a 4 16 3200 nan 2688 3 3504 9 5396 4922 6366
Q13b 4 16 3200 nan 2688 3 3177 3 5385 5366 5343
Q22 4 24 32 nan 32 1 1878 0 0 4 5
Q22a 4 200 384 nan 384 3 12417 3 100 47 110
Q23 7 64 80 56.0 24 642 21428 1 7 32 24

Table A.4: Statistics of REW-C on S2 and S4.

A.4 Proofs about restricted rules
This section contains the proofs of the results in Section 4.6.

In the following, without loss of generality, we will assume that the mapping functions
are always projections on one of their inputs, such that the mappings have the following
form: q1(x̄){ q2(x̄).

Proof of Property 4.1

Proof. If we assume that r is an instance rule, then body(r) = {tr} ∪ bodyO(r), and the
triple tr has to be of the form (x, p, y) with p ∈ Var(bodyO(r)), otherwise ϕ(tr) could not
be an RDFS triple (which would contradict the fact that O |=ϕ body(r)). Then ϕ(p) occurs
as a subject or an object of a triple in O, because bodyO(r) does not have any variable as
a property. However, ϕ(p) cannot be an RDFS IRI, because O is an FO ontology. This

162 APPENDIX A. APPENDIX

contradicts the fact that ϕ(p) is an RDFS IRI since ϕ(tr) ∈ O. We conclude that r is
necessarily an ontological rule. �

Proof of Property 4.2

Proof. From Property 4.1, only ontological rules can be applied on an FO-ontology. We
check that the produced RDFS triples comply with the conditions of an FO-ontology. �

Proof of Property 4.3

Proof. From the definition of the restricted rules, we know that if the direct entailment of
G by {r} contains an RDFS triple, then r is either an ontological rule, or an instance rule
with head containing a triple t = (s, p, o), case 2c. The latter case is not possible, because
necessarily p ∈ Var(bodyO(r)), i.e., p also occurs as the subject or the object of an RDFS
triple tb in the body of r. The application of the rule r maps tb to an RDFS triple of G.
Since the set of RDFS triples of G is an FO ontology, p cannot be mapped to an RDFS
IRI, which is absurd. Therefore, r is an ontological rule. �

Proof of Property 4.4

Proof. First, we prove that OR ⊆ RDFS(GR). Using Property 4.2, we know that OR

is an FO ontology, so at least OR is a set of RDFS triples. Since O ⊆ G, we have
OR ⊆ RDFS(GR).

Second, we prove that RDFS(GR) ⊆ OR. Let t be a triple in RDFS(GR), so either t is
an RDFS triple of G (and then t ∈ OR) or t is a RDFS triple in entailment of R on G. In
the latter case, we prove that t ∈ OR by induction on (GRi)i∈N the saturation sequence of
GR.

By Property 4.3, if a restricted rules r ∈ R applied on G directly derives at least
an RDFS triples, r is an ontological rule. And since, the body of an ontological rule is
composed of RDFS triples, a such rule r can be apply only on RDFS triples. Moreover,
RDFS(G) = O, so each RDFS triple t in CG,r the direct entailment of r on G is actually in
CO,r. Finally, we can remark that RDFS(GR1) ⊆ OR.

For the initialization step of the induction, if t a RDFS triple directly entails by G,
the preceding remark proves that t ∈ OR. And the induction is assured by Property 4.2
which shows that OR is an FO ontology, so RDFS(GR1) is an FO ontology. We can start
the preceding reasoning again replacing G by GR1 and O by RDFS(GR1). �

Proof of Property 4.5

Proof. We define body(r) as tr ∧ bodyO(r). Since bodyO(r) is a set of RDFS triples and
t (thus also v(t)) is not an RDFS triple, then ϕ(bodyO(r)) ⊆ O. We now consider the two
possible forms of tr.
Case (i): tr has the form of (x, p, y), Restriction 2(b)i. As in the proof of Property 4.1, we
know that ϕ(p) is not an RDFS IRI and with the same reasoning, we can show that ϕ(p) ,
τ. So, the triple ϕ((x, p, y)) is equal to v(t) and the data mapping triple t = (x′, p′, y′)
with p′ ∈ I \ {τ}. Since we know that x and y are not in Var(bodyO(r)), we know
that ϕ|Var(bodyO(r))(tr) = (x, p′, y). So if we choose ϕ′ = ϕ|Var(bodyO(r)) ∪ {x 7→ x′, y 7→ y′},
which is indeed a homomorphism because x , y, then we have {t} ∪ O |=ϕ′ body(r) and

A.4. PROOFS ABOUT RESTRICTED RULES 163

ϕ(body(r)) = v(ϕ′(body(r))).
Case (ii): tr has the form (x, τ, z), with x < Var(bodyO(r)) and z ∈ I ∪ Var(bodyO(r)),
Restriction 2(b)ii. Since τ is not an RDFS property, we know that ϕ(tr) = v(t). So v(t) is
equal to (a, τ,C) with a ∈ B ∪I and C ∈ I , and there exists y ∈ B ∪I such that t =

(y, τ,C). We have ϕ|Var(bodyO(r))(tr) = (x, τ,C), so if y ∈ B, then ϕ′ = ϕ|Var(bodyO(r)) ∪ {x 7→ y}
satisfies the wanted property. Otherwise, y ∈ I and ϕ′ = ϕ|Var(bodyO(r)) satisfies the wanted
property as well, because v is then the identity.

�

Proof of Property 4.6

Proof. Let body(r) = {tr} ∪ bodyO(r). Since bodyO(r) is a set of RDFS triples and t is not
an RDFS triple, we have ϕ′(bodyO(r)) ⊆ O.

The result is just a consequence of the form of head(r). Let u = (s, p, o) be a triple in
head(r), we check that in each case ϕ′(u)safe can be a triple of the head of an data mapping:

• if p = τ then o ∈ I ∪Var(bodyO(r)). So ϕ′(o) is always an IRI, since ϕ′(bodyO(r)) ⊆
O and O is an FO ontology;

• if p ∈ I \ {≺sc,≺sp,←↩d, ↪→r}, nothing more is required;

• if p ∈ Var(bodyO(r)), then ϕ′(p) ∈ I \ {≺sc,≺sp,←↩d, ↪→r} and it is OK. Again since
ϕ′(bodyO(r)) ⊆ O and O is an FO ontology.

�

Proof of Property 4.7

Proof. By Property 4.2, OR is an FO ontology, hence contains only RDFS triples. The
proof then directly follows from the equalities:

OR = {(s,≺sc, o) | (s,≺sc, o) ∈ OR}
∪{(s,≺sp, o) | (s,≺sp, o) ∈ OR}
∪ {(s,←↩d, o) | (s,←↩d, o) ∈ OR}
∪{(s, ↪→r, o) | (s, ↪→r, o) ∈ OR}

= {(s,≺sc, o)sa f e | msubClassOf = qsubClassOf(s, o){
(s,≺sc, o), (s, o) ∈ ext(msubClassOf) = qsubClassOf(O,R)}
∪ {(s,≺sp, o)sa f e | msubPropertyOf = qsubPropertyOf(s, o){
(s,≺sp, o), (s, o) ∈ ext(msubPropertyOf) = qsubPropertyOf(O,R)}
∪ {(s,←↩d, o)sa f e | mdomain = qdomain(s, o){
(s,←↩d, o), (s, o) ∈ ext(mdomain) = qdomain(O,R)}
∪ {(s, ↪→r, o)sa f e | mrange = qrange(s, o){
(s, ↪→r, o), (s, o) ∈ ext(mrange) = qrange(O,R)}

= G
MOR

EOR

�

164 APPENDIX A. APPENDIX

Corollary A.1

Corollary A.1. The set of RDFS triples of G
M∪MOR

E∪EOR
is exactly OR.

Proof. Since no data mapping ofM has RDFS triples in its head, the ontology of G
M∪MOR

E∪EOR

is included in G
MOR

EOR
. Moreover, G

MOR

EOR
contains only RDFS triples, hence the wanted

equality holds. �

Proof of Property 4.8

Proof. By Corollary A.1, the set of RDFS triples of G
M∪MOR

E∪EOR
is OR. By Property 4.2, OR

is an FO ontology, so by Property 4.4, the set of RDFS triples of (G
M∪MOR

E∪EOR
)R is OR.

�

Proof of Theorem 4.5
To prove the theorem, we will rely on the next definition and some auxilliary lemmas.

Definition A.1. We define the following sequence of mappings:

(M)R,Oi =
{
q1 { (q2)R,Oi | q1 { q2 ∈ M

}
where body((q)R,Oi) = max{S ⊆ (body(q) ∪ O)Ri | ∀T ⊆ S ,O |=R T ⇒ body(q) |=R T }.

Intuitively, (q)R,Oi is the saturation of (body(q)∪O) at rank i from which triples entailed
solely by O are removed, as in Def. 4.14.

Lemma A.2. Let be q the head of a data mapping, O an FO ontology and R a set of
restricted rules, we have:

∀i ∈ N, body((q)R,Oi) = (body(q) ∪ O)Ri \ RDFS((body(q) ∪ O)Ri).

Proof. First, let i be a positive integer, we prove that body((q)R,Oi) ⊆ (body(q) ∪ O)Ri \
RDFS((body(q)∪O)Ri). Let t be a triple in body((q)R,Oi), so t ∈ (body(q)∪O)Ri . Hence by
definition of (q)R,Oi , we have either O 6|=R t or body(q) |=R t. We will tackle the both cases
separately. We recall that since q is the head of a data mapping, body(q) only contains
none RDFS triples. Moreover using Property 4.6, we know that qR body only contains
none RDFS triples. So if body(q) |=R t, then t ∈ (body(q)∪O)Ri \RDFS((body(q)∪O)Ri).
Inspiring by the proof of Property 4.4, we can prove the following property: for all u ∈
(body(q) ∪ O)Ri , if u ∈ RDFS((body(q) ∪ O)Ri) then O |=R u. Using the contraposition of
this property, we know that if O 6|=R t then t ∈ (body(q) ∪ O)Ri \ RDFS((body(q) ∪ O)Ri).
So in the both case, t ∈ (body(q) ∪ O)Ri \ RDFS((body(q) ∪ O)Ri).

Secondly, let i be a positive integer, we prove that (body(q)∪O)Ri \RDFS((body(q)∪
O)Ri) ⊆ body((q)R,Oi). Let t ∈ (body(q)∪O)Ri \RDFS((body(q)∪O)Ri) and S ⊂ (body(q)∪
O)Ri , which satisfies the property P(S) = ∀T ⊆ S , O |=R T ⇒ body(q) |=R T . We will
prove that if t < S , S is not maximal for the property P, i.e., we will prove P(S ∪ {t}). Let
T ⊆ S ∪ {t}, if t ∈ T then O 6|=R T , because t is not an RDFS triples and Property 4.2,
otherwise T ⊆ S . In both cases, O |=R T ⇒ body(q) |=R T holds, so P(S ∪ {t}) also.
Finally, t ∈ body((q)R,Oi). �

A.4. PROOFS ABOUT RESTRICTED RULES 165

We notice that even if this sequence of mappings is not increasing, it induces a in-
creasing sequence of RDF graphs

(
G

(M)R,Oi
E

)
i∈N

.

Lemma A.3. For any i ∈ N:

• (G
M∪MOR

E∪EOR
)Ri ⊆ G

(M)R,Oi ∪MOR

E∪EO

• (M)R,Oi only contains data mappings

Proof. We start by proving that the set of RDFS triples of
(
G
M∪MOR

E∪EOR

)R
i

is a subset of

G
(M)R,Oi ∪MOR

E∪EO
, for each i ∈ N. Using preceding results, we have the following equations for

i ∈ N:

OR = RDFS(G
M∪MOR

E∪EOR
) (Corollary A.1)

⊆ RDFS(
(
G
M∪MOR

E∪EOR

)R
i
)

⊆ RDFS(
(
G
M∪MOR

E∪EOR

)R
)

= OR (Property 4.8)

We deduce that:

∀i ∈ N, RDFS(
(
G
M∪MOR

E∪EOR

)R
i
) = OR

Moreover, using Property 4.7, we know that:

∀i ∈ N, OR ⊆ G
M∪MOR

E∪EOR
⊆ G

(M)R,Oi ∪MOR

E∪EO
.

So finally, we prove that:

∀i ∈ N, RDFS(
(
G
M∪MOR

E∪EOR

)R
i
) ⊆ G

(M)R,Oi ∪MOR

E∪EO
.

After that, we just have to prove for i ∈ N the following statement P(i):

• each non-RDFS triple of
(
G
M∪MOR

E∪EOR

)R
i

is in G
(M)R,Oi ∪MOR

E∪EO
,

• Let q be an head of a data mappings ofM, NRq,i = (body(q)∪O)Ri \RDFS((body(q)∪
O)Ri) contains only correct triple for data mapping head. So (M)R,Oi only contains
data mappings.

Here, we have to explain why in the second point of this list, the first sentences implies
the second. It comes from the fact that if q is an head of a mapping in (M)R,Oi , then
body(q) ⊂ (body(q) ∪ O)Ri \ RDFS((body(q) ∪ O)Ri), according to Lemma A.2.

We will prove P(i) by induction. In the base case, we show that the statement holds
for i = 0:

•
(
G
M∪MOR

E∪EOR

)R
0

= G
M∪MOR

E∪EOR
= G

(M)R,O0 ∪MOR

E∪EO
,

166 APPENDIX A. APPENDIX

• For q a head of mapping inM, (body(q)∪O)R0 \RDFS((body(q)∪O)R0) = (body(q)∪
O)\RDFS(body(q)∪O) = (body(q)∪O)\O = body(q). So like previously explained
we have: (M)R,O0 =M only contains data mappings.

In the inductive step, we assume that P(i) holds for i ∈ N, we will prove that P(i + 1) also

holds. If t′ is a non-RDFS triple of
(
G
M∪MOR

E∪EOR

)R
i+1

, then there are two cases:

• t′ ∈
(
G
M∪MOR

E∪EOR

)R
i

so by hypothesis t′ ∈ G
(M)R,Oi ∪MOR

E∪EO
,

• or there exists a restricted rule r ∈ R such that(
G
M∪MOR

E∪EOR

)R
i
|=ϕ body(r) and t′ ∈ ϕ(head(r))safe.

Since t′ ∈ ϕ(head(r))safe is a non-RDFS triple, r is an instance rule. So there exists

an t ∈
(
G
M∪MOR

E∪EOR

)R
i

such that {t} ∪ OR |=ϕ body(r). By the inductive hypothesis, t is

a triple of G
(M)R,Oi ∪MOR

E∪EO
. Hence there exists a mapping m ∈ M with m = q1 { q2,

and a triple tm ∈ body((q2)R,Oi) (defined in Definition A.1) and a tuple e ∈ ext(m) such
that ve(tm) = t, where ve is the homomorphism induced by the replacement of answer
variables of (q2)R,Oi by the tuple e. Since (q2)R,Oi is the head of a mapping of (M)R,Oi ,
we know by induction hypothesis this mapping is actually a data mapping. So according
to Property 4.5, there exists a homomorphism ϕ′ such that tm ∪ OR |=ϕ′ body(r) and
ϕ(body(r)) = ve(ϕ′(body(r))). Hence, ϕ(head(r))safe = ve(ϕ′(head(r))safe). We show that
the mapping q1 { (q2)R,Oi+1 ∈ (M)R,Oi+1 is such that ϕ′(head(r)))safe ⊆ body((q2)R,Oi+1). Indeed,
it is a consequence of Lemma A.2, because we know that ϕ′(head(r)))safe ⊆ (body(q2) ∪
O)Ri+1 and ϕ′(head(r)))safe contains only no RDFS triple. Finally, we have proved:

t′ ∈ ϕ(head(r))safe

= ve(ϕ′(head(r))safe)
⊆ ve(body((q2)R,Oi+1))

⊆ G
(M)R,Oi+1 ∪MOR

E∪EO
.

We also have to prove that for q an head of a mapping in M, NRq,i+1 = (body(q) ∪
O)Ri+1 \ RDFS((body(q) ∪ O)Ri+1) contains only valid triples for data mapping head. By
induction hypothesis, we know thatM, NRq,i verify the willing property. Let t′ a triple of
NRq,i+1, so there exists r ∈ R such that t′ is one directly entailed triple by r on (body(q) ∪
O)Ri . If the restricted rule r is an ontological rule, then t′ is an RDFS triple. This case is
absurd, because t′ will be in RDFS((body(q) ∪ O)Ri+1) so t′ < NRq,i+1. So r is an instance
rule and there exists an t ∈ NRq,i such that {t} ∪ OR |= body(r). Using Property 4.6, we
know that t is a valid triples for data mapping head. Finally we can deduce from it that
(M)R,Oi+1 is a set of data mappings. �

We are now able to prove the Theorem 4.5.

Proof of Theorem 4.5. Instead of proving
(
GM
E
∪ O

)R
= G

MR,O∪MOR

E∪EOR
, we will prove that(

G
M∪MOR

E∪EOR

)R
= G

MR,O∪MOR

E∪EOR
, which is equivalent, since:(

G
M∪MOR

E∪EOR

)R
=

(
GM
E
∪ OR

)R
=

(
GM
E
∪ O

)R
.

A.4. PROOFS ABOUT RESTRICTED RULES 167

First, we prove the inclusion G
MR,O∪MOR

E∪EOR
⊆

(
G
M∪MOR

E∪EOR

)R
. Let (s, p, o) be a triple from

G
MR,O∪MOR

E∪EOR
. Then, there exists a mapping m ∈ M ∪MOR such as m = q1(x̄){ q2(x̄) and

there exists t̄ ∈ ext(m) with (s, p, o) ∈ (body(qR,O2)(t̄))safe. We also know that:

• (body(q2)(t̄))safe ⊆ G
M∪MOR

E∪EOR

• O ⊆ G
M∪MOR

E∪EOR
, because of Property 4.7

We know that the saturation operation is monotonous, i.e., if G,G′ are RDF graphs
such as G ⊆ G′, then GR ⊆ G′R. So if we put everything together, we have (considering
inclusion by bijective renaming of blank nodes):

(s, p, o) ∈ (body(qR,O2)(t̄))safe

⊆ ((body(q2)(t̄))safe ∪ O)R

⊆

(
G
M∪MOR

E∪EOR

)R
Finally, we have (s, p, o) ∈

(
G
M∪MOR

E∪EOR

)R
.

Secondly, we prove that
(
G
M∪MOR

E∪EOR

)R
⊆ G

MR,O∪MOR

E∪EOR
.

Let t be a triple in
(
G
M∪MOR

E∪EOR

)R
, by definition of the saturation of an RDF graph (Defi-

nition 2.8), there exists i ∈ N such that :

t ∈
(
G
M∪MOR

E∪EOR

)R
i

⊆ G
(M)R,Oi ∪MOR

E∪EO
(thanks to Theorem 4.5)

⊆ G
MR,O∪MOR

E∪EOR
.

�

Titre : Raisonnement efficace sur des grands graphes hétérogènes

Mots clés : Bases de connaissances, Bases de données, Web sémantique, Intégration de données

Résumé : Le Web sémantique propose des
représentations de connaissances, qui permettent
d’intégrer facilement des données hétérogènes is-
sues de plusieurs sources en une base de connais-
sances unifiée. Dans cette thèse, nous étudions des
techniques d’interrogation de telles bases de connais-
sances.
La première partie est dédiée à des techniques de
réponse à des requêtes sur une base de connais-
sances représentée par un graphe RDF sous des
contraintes ontologiques. Les connaissances impli-
cites produites par le raisonnement, à partir des
règles de déduction RDFS, doivent être prises en
compte pour répondre correctement à de telles
requêtes. Pour commencer, nous présentons un algo-
rithme de reformulation de requêtes dites Basic Graph
Pattern (BGP), qui exploite une partition des règles de
déduction en des règles sur les assertions et sur les
contraintes. Puis nous introduisons une nouvelle dis-
position du stockage des graphes RDF, qui combine
deux dispositions connues. Pour ces deux contribu-
tions, des expérimentations permettent de valider nos

résultats théoriques et algorithmiques.
Dans la deuxième partie, nous considérons le
problème d’interrogation, par des requêtes BGP,
de sources de données hétérogènes intégrées
en un graphe RDF. Nous introduisons un cadre
d’intégration de données sous des contraintes ontolo-
giques RDFS, utilisant une spécification d’intégration
basée sur des mappings Global-Local-As-View, ra-
rement considérée jusqu’ici dans la littérature. Nous
présentons plusieurs stratégies de réponse à des
requêtes, qui, soit matérialisent les données en un
graphe RDF, soit laissent ce graphe virtuel. Ces
stratégies diffèrent sur quand et comment le raison-
nement RDFS est supporté. Nous avons implémenté
ces stratégies dans une plate-forme et mené des
expérimentations qui démontrent l’intérêt particulier
d’une des stratégies basée sur la saturation des map-
pings. Finalement, nous montrons que cette dernière
technique peut être étendue au delà des règles de
déduction RDFS au raisonnement défini par un sous-
ensemble des règles existentielles.

Title : Efficient reasoning on large-scale heterogeneous data

Keywords : Knowledge bases, Databases, Semantic Web, Data integration

Abstract : The Semantic Web offers knowledge re-
presentations, which allow to integrate heterogeneous
data from several sources into a unified knowledge
base. In this thesis, we investigate techniques for que-
rying such knowledge bases.
The first part is devoted to query answering tech-
niques on a knowledge base, represented by an RDF
graph subject to ontological constraints. Implicit in-
formation entailed by the reasoning, enabled by the
set of RDFS entailment rules, has to be taken into
account to correctly answer such queries. First, we
present a sound and complete query reformulation al-
gorithm for Basic Graph Pattern queries, which ex-
ploits a partition of RDFS entailment rules into as-
sertion and constraint rules. Second, we introduce
a novel RDF storage layout, which combines two
well-known layouts. For both contributions, our experi-

ments assess our theoretical and algorithmic results.
The second part considers the issue of querying he-
terogeneous data sources integrated into an RDF
graph, using BGP queries. Following the Ontology-
Based Data Access paradigm, we introduce a fra-
mework of data integration under an RDFS onto-
logy, using the Global-Local-As-View mappings, rarely
considered in the literature. We present several query
answering strategies, which may materialize the inte-
grated RDF graph or leave it virtual, and differ on how
and when RDFS reasoning is handled. We implement
these strategies in a platform, in order to conduct ex-
periments, which demonstrate the particular interest
of one of the strategies based on mapping saturation.
Finally, we show that mapping saturation can be ex-
tended to reasoning defined by a subset of existential
rules.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	RDF data model and SPARQL query language
	RDF graphs
	RDF Schema
	RDF entailment rules
	BGP Queries
	Query answering

	Data integration
	Theory of data integration
	Global As View data integration
	Local As View data integration
	Global Local As View data integration

	Summary

	RDF query answering
	Motivation and state of the art
	RDF representations
	Query answering techniques
	RDF storage layouts

	Complete RDFS query reformulation
	Preliminaries: RDFS ontology and RRDFS rule set properties
	Overview of the query reformulation technique
	Reformulation rules associated with Rc
	Reformulation algorithm associated with Rc
	Reformulation with Ra
	Reformulation with Rc Ra
	Experiments
	Reformulation for Ra-compliant graphs

	RDF storage layouts for efficient query answering
	Preliminaries
	BGPQ answering on the T layout
	BGPQ answering on the CP layout
	BGPQ answering based on the TCP layout
	Summary-based query pruning
	Experimental evaluation

	Summary

	RDF integration of heterogeneous data sources
	Motivation and state of the art
	Mediator data models and query languages
	Mapping Language
	Contributions

	RDF Integration Systems
	RDF Integration System (RIS) Definition
	Query answering problem

	Query answering techniques on RDF Integration Systems
	Materialization-based query answering strategies: MAT and MAT-CA
	Rewriting-based query answering strategies: REW-CA, REW-C and REW
	Rewriting fully-reformulated queries using LAV mappings: REW-CA
	Rewriting partially-reformulated queries using saturated LAV mappings: REW-C
	Rewriting queries using saturated mappings and ontology LAV mappings: REW
	Remarks on related techniques
	Landscape of query answering strategies

	A Platform for RDF Integration Systems: Obi-Wan
	Query answering in Obi-Wan
	Query rewriting and mediated plan optimizations

	Experimental evaluation
	Experimental scenarios
	Query answering performance

	Extending the framework to more general rules
	Restricted RIS
	Correctness of the Method

	Summary

	Conclusion and perspectives
	Bibliography
	Appendix
	Appendix of Section 3.2
	Proofs
	Experiments Appendix

	Experiments details of Section 3.3.6
	Queries and DBLP ontology
	Reasoning in Virtuoso

	Appendix of the query answering strategies in RIS experiments
	Experiments Queries
	Experiments on REW

	Proofs about restricted rules

