
HAL Id: tel-03164128
https://theses.hal.science/tel-03164128v1

Submitted on 9 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite strain data-driven computational mechanics. :
From tailored data to adaptive solvers for multiscale

simulations
Auriane Platzer

To cite this version:
Auriane Platzer. Finite strain data-driven computational mechanics. : From tailored data to adap-
tive solvers for multiscale simulations. Mechanics [physics.med-ph]. École centrale de Nantes, 2020.
English. �NNT : 2020ECDN0041�. �tel-03164128�

https://theses.hal.science/tel-03164128v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

 
 

 

L'ÉCOLE CENTRALE DE NANTES 

 

ECOLE DOCTORALE N° 602  

Sciences pour l'Ingénieur  

Spécialité : Mécanique des Solides, des Matériaux, des Structures et 

des Surfaces. 

Mécanique numérique en grandes transformations pilotée par les 
données 

De la génération de données sur mesure à une stratégie adaptative de calcul  
multiéchelle 
 
 
Thèse présentée et soutenue à l’Ecole Centrale de Nantes, le 15 décembre 2020 
Unité de recherche : UMR 6183, Institut de Recherche en Génie Civil et Mécanique (GeM) 

 

Par 

Auriane Platzer  

 

 

 

 
 

Rapporteurs avant soutenance : 
 
Julien Yvonnet   Professeur des universités, Université Gustave Eiffel, Marne-la-Vallée 
Marc-André Keip  Professeur, Université de Stuttgart (Allemagne) 

 
Composition du Jury :  
 

Président : David Ryckelynck Professeur, Mines Paris Tech 
Examinateurs :  Stefanie Reese  Professeure, RWTH Aachen Université (Allemagne) 

Piotr Breitkopf  Ingénieur de recherche CNRS, Université Technologique de Compiègne 
Michael Ortiz  Professeur, California Institute of Technology (États-Unis) 

Dir. de thèse : Laurent Stainier  Professeur des universités, Ecole Centrale de Nantes 
Co-encadrant :  Adrien Leygue  Chargé de recherche CNRS, Ecole Centrale de Nantes 
 
 





P H D T H E S I S
to obtain the title of

PhD in Engineering Sciences

of the École Centrale de Nantes

defended by

Auriane Platzer

Finite strain data-driven
computational mechanics

From tailored data to adaptive solvers
for multiscale simulations





À ma mère.





Remerciements

Mes premiers remerciements vont aux rapporteurs de cette thèse, Julien Yvon-
net et Marc-André Keip. On dit souvent que les thèses ne sont jamais vraiment
lues, si ce n’est par leurs rapporteurs·rices. Je mesure le privilège d’avoir eu mes
travaux rapportés avec rigueur par ces deux scientifiques et les remercie chaleureu-
sement pour leur travail. Je remercie également tous les autres membres du jury
pour leurs questions, remarques et leur intérêt enthousiaste pour le sujet : merci
à David Ryckelynck d’avoir accepté de présider ce jury, à Stefanie Reese pour sa
rigueur bienveillante, à Piotr Breitkopf pour son accompagnement et ses encourage-
ments, et à Michael Ortiz pour son suivi parfois taquin mais toujours chaleureux et
sa vivacité scientifique.

Cette thèse n’aurait évidemment pas pu aboutir sans la confiance et la matu-
rité scientifique de mes encadrants Laurent Stainier et Adrien Leygue. Merci de
m’avoir transmis sans réserve votre savoir et votre passion pour la Science. Laurent,
merci également pour m’avoir donné l’opportunité d’enseigner pendant ma thèse,
ce qui a rendu cette aventure d’autant plus enrichissante. Merci Adrien de m’avoir
accompagnée « depuis que je suis toute petite » et de ton amitié, précieuse.

Il est également des professeurs, des mentors, qui ne sont pas innocents dans
mon parcours : merci à Erwan Verron et Bertrand Huneau, duo de choc dont le
prosélytisme doctoral n’a d’égal que leur passion pour les boissons houblonnées ;
merci à Michel Coret d’avoir tenté de m’initier à l’activité expérimentale avec au-
tant d’affection que d’échecs de ma part ; merci à Christophe Binetruy et Sébastien
Comas-Cardona dont j’apprécie et connais l’intégrité scientifique et l’humanité au
travers des autres doctorant·es qu’ils ont encadré·es. Vous maintenez contre vents et
marrées une atmosphère chaleureuse et engagée dans laquelle l’ensemble des docto-
rant·es peut s’épanouir. Merci à elles et eux pour m’avoir accueillie et encouragée,
pour les parties de coinche endiablées et pour tout ce que vous avez partagé avec
moi. Je ne vous cite pas nommément mais si vous « habitez » (ou avez habité) dans
le bâtiment T ou F, recevez ces remerciements. Enfin, merci à tous les membres
d’Unité Centrale, magnifique exemple d’intelligence collective, et aux copaines qui
en font partie.

Pour terminer, je veux exprimer toute ma gratitude à mes ami·es pour leur
soutien et leur amour indéfectibles, avec une mention particulière à Lola, qui est
toujours là depuis si longtemps et à Anceline, Ella, Priscillia et Télie, dont l’amitié
m’honore. Nous sommes aussi et avant tout le produit d’une famille et je remercie la
mienne dont le soutien affectif et matériel m’a offert le luxe de faire une thèse. Merci



ii Remerciements

à Florestan d’être le grand frère sans qui je ne me serais certainement pas lancée là-
dedans, ni dans grand chose d’autre d’ailleurs. Merci au relecteur de l’ombre pour sa
rigueur, son estime et bien plus encore. Ma dernière pensée s’adresse à deux femmes
d’exception qui manquent au monde, ma grand-mère Nicole Platzer et ma mère
Valérie Mamoux, dont j’espère honorer la détermination et l’immense humanité par
ce travail, et dans le futur.



Contents

General introduction 3

A Computational mechanics and data-driven approaches 7

I State of the art 9
1 Basics of nonlinear computational mechanics . . . . . . . . . . . . . . . 10

1.1 Governing equations of nonlinear continuum mechanics . . . . . 10
1.2 Finite element discretization of nonlinear continuum mechanics . 22
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4 The key concept and central difficulty of constitutive modeling . 29

2 Data science in computational mechanics . . . . . . . . . . . . . . . . . 32
2.1 Data in computational mechanics . . . . . . . . . . . . . . . . . . 32
2.2 What is data science and how it fits in the field of computational

mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Instances of data science in material modeling and structural com-

putation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II Data-driven computational mechanics 35
1 Presentation of the method . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2 Continuous and discrete formulation . . . . . . . . . . . . . . . . 38
1.3 Original algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Improvements, inspirations and extensions . . . . . . . . . . . . . . . . 57
2.1 Dealing with local minima and/or noisy data sets . . . . . . . . . 57
2.2 Data-driven identification . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Extension to other classes of problems . . . . . . . . . . . . . . . 60

3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B Adaptation to large strain elasticity 65

IIIData-driven solvers for large strain elasticity 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2 Finite strain data-driven computational mechanics . . . . . . . . . . . 69

2.1 Lagrangian approach . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2 Nominal approach . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3 Theoretical comparison of the two approaches . . . . . . . . . . . 103

3 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Validation: uniaxial tension . . . . . . . . . . . . . . . . . . . . . 105
3.2 Non homogeneous case: clamped tension . . . . . . . . . . . . . . 109



iv Contents

3.3 More complex case: membrane with a hole . . . . . . . . . . . . 115
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IVGeneration of material databases 125
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.2 Experimental point of view . . . . . . . . . . . . . . . . . . . . . 127
1.3 Numerical point of view . . . . . . . . . . . . . . . . . . . . . . . 129

2 Synthetic databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.1 Dense sampling method . . . . . . . . . . . . . . . . . . . . . . . 130
2.2 Standard sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . 145

3 Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.1 Test case and material databases . . . . . . . . . . . . . . . . . . 151
3.2 Comparison with the finite element reference solution . . . . . . 152
3.3 Analysis of the data-driven results . . . . . . . . . . . . . . . . . 157

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

V Application to a three-dimensional problem 175
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2.1 Mechanical problem . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.2 Material databases . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.3 Computation parameters . . . . . . . . . . . . . . . . . . . . . . 182

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.1 Nominal results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.2 Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . 185

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.1 Recovering isotropy . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.2 Modes of deformation . . . . . . . . . . . . . . . . . . . . . . . . 191

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C Towards data-driven multiscale numerical schemes 195

VIA first attempt to apply the data-driven approach to multiscale
simulation 197
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

1.1 Computational homogenization: principles and challenges . . . . 199
1.2 Towards data-driven multiscale homogenization . . . . . . . . . . 203

2 Data-driven FE2 solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2.1 Macroscopic data-driven solver . . . . . . . . . . . . . . . . . . . 204
2.2 Two-scale data-driven solver . . . . . . . . . . . . . . . . . . . . . 206

3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.1 Microscopically homogeneous test case . . . . . . . . . . . . . . . 217



Contents v

3.2 Two-phases composite test case . . . . . . . . . . . . . . . . . . . 224
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Conclusion and perspectives 235

Appendices 241

A Analytical solution for a one-dimensional bar 241
1 Small strain solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

1.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . 241
1.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
1.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 244

2 Finite strain solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
2.1 Lagrangian formulation and resolution . . . . . . . . . . . . . . . 245
2.2 Nominal formulation and resolution . . . . . . . . . . . . . . . . 246
2.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 247

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

B Euclidean mapping 251
1 Mandel notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
2 Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 252
3 Nominal formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

C neo-Hookean model for incompressible plane stress problems 253

D Analysis of constitutive models for nominal data-driven finite strain
elasticity 255
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

1.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

2 Analytical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
2.1 Derive stress tensor of CMO model . . . . . . . . . . . . . . . . . 256
2.2 Linear elasticity limits . . . . . . . . . . . . . . . . . . . . . . . . 257
2.3 Define neoHokean and Yeoh compressible models . . . . . . . . . 258

3 Comparison of the models . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.1 Testing values for the parameters . . . . . . . . . . . . . . . . . . 259
3.2 Simple shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.3 Uniaxial tensile test . . . . . . . . . . . . . . . . . . . . . . . . . 260
3.4 Pure dilatation / compression test in 3D . . . . . . . . . . . . . . 262

4 Relationship between the volumetric function and pressure . . . . . . . 265
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



vi Contents

E Résumé étendu en français 269
1 Chapitre 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

1.1 Rappels de mécanique numérique non linéaire . . . . . . . . . . . 272
1.2 La science des données dans la mécanique numérique . . . . . . . 275

2 Chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
2.1 Présentation de la méthode . . . . . . . . . . . . . . . . . . . . . 277
2.2 Perfectionnements, inspirations et extensions . . . . . . . . . . . 280
2.3 Bilan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

3 Chapitre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.2 Mécanique numérique en grandes transformations pilotée par les

données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.3 Résultats numériques . . . . . . . . . . . . . . . . . . . . . . . . 294
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

4 Chapitre 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Base de données synthétiques . . . . . . . . . . . . . . . . . . . . 299
4.3 Application numérique . . . . . . . . . . . . . . . . . . . . . . . . 303
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

5 Chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.2 Méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.3 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6 Chapitre 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.2 Un solveur data-driven FE2 . . . . . . . . . . . . . . . . . . . . . 318
6.3 Résultats numériques . . . . . . . . . . . . . . . . . . . . . . . . 321
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

References 325



List of Acronyms
BVP Boundary Value Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

FE Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LATIN LArge Time INcrement method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

RVE Representative Volume Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

NN Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

LLE Locally linear embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DDCM Data-Driven Computational Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

RMS root-mean-square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

MIQP Mixed-Integer Quadratic Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

DIC Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

DDI Data-Driven Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

KKT Karush-Kuhn-Tucker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

DB-DENSE dense material database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

DDMS Dilatational-Deviatoric Multiplicative Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

DB-STD standard material database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

DB-DDI DDI material database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

PDF probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

FFT Fast Fourrier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

RUC Representative Unit Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

FE2 multilevel finite element approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

VER Volume Élémentaire Représentatif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315





General introduction





General introduction
Computational mechanics is a field in which a large amount of data is both con-
sumed and produced. On the one hand, the recent developments in experimental
measurement techniques have provided rich databases for the identification process
of constitutive models used in finite element simulations. In that case, data are
usually discarded once the parameters are identified. On the other hand, heavy
computations, such as multiscale analyses, produce a huge amount of discrete val-
ues of displacements, strains, stresses, or strain energy densities. Again, if databases
resulting from computational micromechanics can be stored, they are often used to
train a meta-model, and only this model is subsequently evaluated in macroscopic
simulations, without any further reference to the original microscopic data. The
constitutive model, understood in the broad sense as the relationship (not neces-
sarily explicit) between the constitutive variables (typically strain and stress), then
acts as a bottleneck between upstream and downstream material data.

In contrast, Kirchdoerfer and Ortiz (2016) recently introduced a model-free com-
puting paradigm, so called Data-Driven Computational Mechanics (DDCM), which
incorporates data directly into the computation, thus bypassing the need for a consti-
tutive model. This seminal work was consolidated by the mathematical framework
proposed in Conti et al. (2018), demonstrating that DDCM encompasses the classical
definition of the solid mechanics Boundary Value Problem (BVP).

The first part of this thesis (Part A) is dedicated to recalling the
motivation and principles of the approach. In short, the approach relies on
the fundamental separation between the characterization of the material response
and the satisfaction of essential constraints and conservation laws: while the former
is most likely to be approximately captured (e.g. due to noise in experimental data),
the latter ones must be exactly satisfied. In solid mechanics, the typical constitutive
variables involved are the strain and the stress. The BVP is therefore reformulated as
a minimization of a distance function between two types of strain-stress pair fields:
one, representing the material response, takes value in a database resulting from
experimental or numerical acquisition, and the other, verifying both compatibility
and equilibrium equations, represents the admissible mechanical state of the body.
The former strain-stress field is referred to as the material state and belongs to a
so-called material data set, while the latter mechanical state belongs to a so-called
constraint set. Both sets are subspaces of the so-called phase space, which collects
all possible strain-stress pair fields.

In this model-free approach, the material response is only represented by a dis-
crete set of material data points: no interpolation, approximation nor modeling
of the data set is ever performed. Likewise, the material response can not be ex-
trapolated from missing data points, contrary to the constitutive model which is
often used well beyond its domain of identification. Ideally, the material database
should then comprise an almost infinite number of points, covering every possible
mechanical state, in order to replace a constitutive model. However, the number
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of material data points that can be acquired either experimentally or through nu-
merical simulations is obviously limited. Hence, the arrangement and coverage of
material data points in phase space are critical for the prediction of the mechanical
response. In particular, the use of raw material data raises crucial questions such
as “richness” or “density” of the database. The former can be understood as the
adequacy of the database to a large variety of mechanical sollicitations. The latter
refers not only to the size of the database (number of points) but also to notions
of clustering or sparsity of material data points in certain regions: e.g., should data
points be evenly spaced or clustered in relevant areas of phase space? In addition,
the curse of dimensionality can prevent the database from spanning the whole phase
space: using symmetric strain-stress tensor pairs, the dimension of the phase space
equals the number of independent components in each tensor, i.e. 6 + 6 = 12 for
three-dimensional problems. Yet, it may not be necessary for the material database
to span the whole phase space; instead it may preferably span an appropriate region
of it. Our work then addresses the following questions:

• In what manner should material data points be distributed in phase space to
accurately predict the mechanical response of a structure?

• How can we control this distribution to generate tailored databases?

The present thesis investigates these questions from two points of view, which
are each presented in a part of the manuscript:

• the extension of DDCM to large strain (Part B),

• the application of DDCM to multiscale simulation of heterogeneous materials
(Part C).

In Part B, data coverage is investigated in the context of finite strain
elasticity. In particular, the choice of work conjugate strain-stress pairs has a
direct impact on the dimensionality of the phase space and on the formulation of
the problem. Here, we explore two possibilities: (i) the Lagrangian formulation of
Nguyen and Keip (2018), and (ii) the nominal formulation of Conti et al. (2018). In
the former, the work conjugate strain-stress pairs are the Green-Lagrange strain–
second Piola-Kirchhoff stress symmetric tensors, while in the latter, the deformation
gradient–first Piola-Kirchhoff stress non-symmetric tensors are favored. For both
formulations, we develop a finite element solver, which is an original contribution
in the case of the nominal formulation. In this context, the material database is
synthetic: we generate it from sampling a known constitutive model. This method
has several advantages:

• it allows for assessing the developed data-driven solvers by comparing the re-
sults with classical finite element analysis, taken as a reference solution (Chap-
ter III);
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• it allows for (almost) unlimited exploration of material databases, in partic-
ular to evaluate the necessary mechanical content and spread in phase space
(Chapter IV);

• it allows for a controlled generation of a database suitable for a genuinely
three-dimensional computation, which is beyond the current capacity of ex-
perimental acquisition techniques (Chapter V).

The last part of our work (Part C) focuses on applying DDCM to
multiscale simulation of heterogeneous materials. For this application, the
databases are no longer synthetic but generated from computational micromechan-
ics. The material database is constituted with macroscopic strain-stress pairs, ob-
tained from the volume average of the microscopic fields in a Representative Volume
Element of the microstructure. It is established that the number of microscopic
evaluations is usually a critical aspect in multiscale schemes such as multilevel fi-
nite element approach (FE2), popularized by Feyel (1999). Here, we propose to
use data-driven solvers as a tool to accelerate FE2 simulations. As mentioned by
Kirchdoerfer and Ortiz (2016), as distance-minimizing schemes, data-driven solvers
indeed provide “error measures which highlight data regions that require additional
resolution”. We use this specific feature of DDCM to select the relevant microscopic
evaluations to perform, based on the adequacy of the material database to the cur-
rent macroscopic mechanical response. We then develop, in the last chapter of this
thesis (Chapter VI) a first adaptive strategy for multiscale simulations, restricted
to small strain (nonlinear) elasticity.
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1 Basics of nonlinear computational mechanics

Nonlinear computational mechanics refers to the “study of the numerical analy-
sis of nonlinear continua using a computer, [which] comprises nonlinear continuum
mechanics together with the numerical schemes for solving the resulting governing
equations” and is recognized as “the only route by which the behavior of a complex
component subject to complex loading can be successfully simulated” (Bonet and
Wood, 2008). Basics ingredients of (nonlinear) continuum mechanics are kinemat-
ics, stress and equilibrium, and constitutive behavior. In this section, we revisit the
governing equations of a Boundary Value Problem (BVP) in (nonlinear) continuum
mechanics and their discretization by the Finite Element (FE) method, to serve as
a basis to the definitions and notations used throughout this thesis. The follow-
ing is widely inspired by the textbook of Bonet and Wood (2008) and we refer the
interested reader to it for more details on the derivations.

Notations and conventions Throughout the text, Einstein’s summation con-
vention is used with indices ranging from 1 to 3, unless otherwise indicated:

AikBkj =

3∑

k=1

AikBkj . (I.1)

Considering vectors u, v, w ∈ R3, second-order tensors A, B ∈ R3×3, a third-
order tensor D ∈ R3×3×3, and a fourth-order tensor H ∈ R3×3×3×3, the standard
inner and outer products are expressed as:

u · v = uivj ; (u⊗ v)w = (w · v)u; (I.2)

Au = Aijuj ei; u ·A = uiAij ej ; (I.3)

AB = AikBkj (ei ⊗ ej) ; A : B = tr
(
ABT

)
= AijBij ; (I.4)

D : (u⊗ v) = (Dv)u; D : B = DijkBjk ei; (I.5)

H : A = HijklAkl (ei ⊗ ej) ; (I.6)

with (e1, e2, e3) the canonical basis of R3.
The second- and symmetric fourth-order tensors are respectively written as

I = δij (ei ⊗ ej) ; ISYM =
1

2
(δikδjl + δilδjk) (ei ⊗ ej ⊗ ek ⊗ el) , (I.7)

with δij the Kronecker’s symbol: δij = 1 if i = j, δij = 0 otherwise.

1.1 Governing equations of nonlinear continuum mechanics

1.1.1 Motion and kinematics

The general motion of a deformable body is described by the transformation map-
ping φ that relates the initial coordinateX (at time t = 0) to the current coordinate
x (at time t) as

x = φ(X, t), (I.8)
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and the displacement field is defined by

u = x−X. (I.9)

In infinitesimal deformation theory, the displacement u is assumed to be small
in comparison with the dimensions of the body. The deformation of the body is
then entirely measured by the linearized “small strain” tensor

ε =
1

2

(
∇u+ ∇Tu

)
. (I.10)

where ∇• = ∂ • /∂x denotes the gradient with respect to the current coordinates.
In finite strain, the magnitude of the displacement field can be of the order or even
exceed the initial dimensions of the body. The small strain ε does not account for
all geometrical changes. More general strain (and stress) measures must therefore
be defined. Kinematic and stress descriptions can either be referenced to the initial
state of the body (classically undeformed and referred to as the reference state)
or to its deformed state; the former is referred to as the material or Lagrangian
description whereas the latter is referred to as the spatial or Eulerian description.
Regardless of the chosen setting, all strain measures rely on the deformation gradient
tensor F :

F = ∇0φ = I + ∇0u, (I.11)

where ∇0• = ∂ • /∂X denotes the gradient with respect to the initial coordinates.
The deformation gradient tensor transforms infinitesimal lengths, surface areas and
volumes. In particular, it is worth mentioning that the Jacobian J measures the
volume change during deformation and hence, is positive:

J = detF > 0. (I.12)

Strain tensors measure the change in the scalar product of two elemental vectors,
from the initial configuration to the current configuration, and are expressed either
with reference to material or spatial coordinates, leading to the following quantities:

• Lagrangian strain tensor: the Green-Lagrange strain tensor E is defined
thanks to the right Cauchy-Green deformation tensor C as

C = F TF , (I.13)

E =
1

2
(C − I) . (I.14)

• Eulerian strain tensor: the Euler-Almansi strain tensor e is defined thanks to
the left Cauchy-Green deformation tensor b as

b = FF T , (I.15)

e =
1

2

(
I − b−1

)
. (I.16)
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Throughout the text, we refer to the above displacement-strain relationships as
compatibility equations. Note that, classically, compatibility equations refer to the
mathematical conditions that ε (resp. F ) must satisfy to match a small strain (resp.
deformation gradient) tensor. Practically, ε and F must be integrable, and there
must exist a displacement field from which they come from1.

Concurrently, the relative change of velocity v(x, t) = ∂x/∂t between two neigh-
boring particles in the spatial configuration is measured by the velocity gradient
tensor l as

l = ∇v. (I.17)

From the spatial point of view, the rate of deformation tensor d is defined as the
symmetric part of l:

d =
1

2

(
l+ lT

)
, (I.18)

the antisymmetric part being the spin tensor w = 1/2
(
l− lT

)
. In addition, the

time derivative of the deformation gradient writes

Ḟ =def
∂F

∂t
=

∂v

∂X
(I.19)

and allows for the definition of the material strain rate tensor Ė to write as:

Ė =
1

2

(
Ḟ TF + F T Ḟ

)
. (I.20)

Both the material and spatial strain rates are related through:

d = F−T ĖF−1 ⇔ Ė = F TdF . (I.21)

1.1.2 Stress and equilibrium

In finite strain setting, the different stress measures can be introduced in several
ways. Here, we follow the same organization as in Bonet and Wood (2008): first, we
define the Cauchy stress tensor σ as the force per unit area in the current configura-
tion. Second, other measures are introduced using work conjugacy by manipulating
the principle of virtual work, such as the first and second Piola-Kirchhoff stress
tensors P and S.

1In small strain, the compatibility conditions write

∇× (∇× ε) = 0,

and in finite strain

∇0 × F = 0.

Note that compatibility conditions are necessary when ε (resp. F ) derives from a continuous,
single-valued, displacement field as in Eq. (I.10) (resp. Eq. (I.11)).
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For this purpose, let us consider the general BVP illustrated in Fig. I.1. The
body occupies a domain Ω0 ∈ R3 in the reference configuration (in its undeformed
state) and Ω ∈ R3 under quasi-static loading, i.e. under the action of body forces f
per unit deformed volume, traction forces t per unit deformed area of the boundary
ΓN and a displacement field uD prescribed on the boundary ΓD. The boundary
∂Ω of the domain in the current configuration is such that ΓN ∪ ΓD = ∂Ω and
ΓD ∩ ΓN = ∅. The latter boundary conditions is referred to as Dirichlet boundary
conditions and writes

u(x) = uD, ∀x ∈ ΓD. (I.22)

Figure I.1 – A general nonlinear continuum mechanics BVP involving reference Ω0

and current Ω configurations.

First, the Cauchy stress tensor relates the traction vector t to the outer normal
vector n of a deformed unit area as

t(x) = σ(x)n(x), ∀x ∈ ΓN . (I.23)

Eq. (I.23) is referred to as Neumann boundary conditions and can also be under-
stood as an equilibrium equation on the boundary of the body. By contrast, the
translational equilibrium, derived from the conservation of momentum inside the
body, writes

divσ(x) + f(x) = 0, ∀x ∈ Ω (I.24)

in the absence of inertial forces. The conservation of angular momentum in the body
yields the well-known symmetry of the Cauchy stress tensor, conveniently expressed
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using the Levi-Civita third-order tensor E (E ijk = 1 if i, j, k is an even permutation
of {1, 2, 3}, −1 if it is odd, and 0 if any indices are repeated) as the vector equation

σ = σT ⇔ E : σT = 0. (I.25)

The principle of virtual work is classically derived by multiplying the local spatial
equilibrium equation Eq. (I.24) by an arbitrary virtual velocity from the current
position of the body δv, integrating over the domain Ω and using the Gauss theorem.
Expressing the virtual velocity gradient in terms of the symmetric virtual rate of
deformation δd = 1

2

(
∇δv + ∇T δv

)
and using the symmetry of the Cauchy stress

tensor, the spatial virtual work equation writes

δW =

∫

Ω
σ : δd dv −

∫

Ω
f · δv dv −

∫

∂Ω
t · δv da = 0. (I.26)

Alternative work conjugate pairs other than (d,σ) can be defined by expressing
the principle of virtual work Eq. (I.26) in the material configuration. We write
f0 = Jf the body forces per unit reference volume and t0 = t( da/dA) the traction
vector per unit reference area2. The change of variables dV = J dV and some
manipulations gives a new expression of the virtual work equation Eq. (I.26),

δW =

∫

Ω0

P : δḞ dV −
∫

Ω0

f0 · δv dV −
∫

∂Ω0

t0 · δv dA = 0, (I.27)

which defines the first Piola-Kirchhoff stress tensor as work conjugate to the rate of
the deformation gradient Ḟ :

P = JσF−T . (I.28)

The term “nominal” or “engineering” stress is also employed to refer to the first Piola-
Kirchhoff stress tensor and is rooted in its physical meaning: while σ measures the
traction force per unit deformed area, it can easily be shown that P measures the
traction force per unit reference area, i.e. a sort of nominal traction force (Bonet
and Wood, 2008). The nominal equivalent local equilibrium equations to Eqs. (I.23)
to (I.25), then write:

P (X)N(X) = t0, ∀X ∈ Γ0N (I.29)

DIVP (X) + f0(X) = 0, ∀X ∈ Ω0, (I.30)

E :
(
FP T

)
(X) = 0, ∀X ∈ Ω0, (I.31)

where N is the outer normal of a unit area on the boundary Γ0N of the reference
domain corresponding to the boundary ΓN of the current domain and DIV denotes
the divergence operator with respect to the initial coordinates.

2The area ratio is given by the Nanson’s formula as

da

dA
=

J√
n · bn

= J
√
N ·C−1N ,

where N is the outer normal in the reference configuration.
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As the deformation gradient tensor F , the first Piola-Kirchhoff stress tensor P
is an nonsymmetric two point tensor which relates reference and deformed config-
urations. It can be more convenient to use the totally material symmetric stress
tensor S, known as the second Piola-Kirchhoff stress tensor. Performing a pull-back
operation on the spatial element of force dp = tda = σnda = PN dA yields the
material force vector dp0 = t0 dA = F−1 dp, which defines S as dp0 = SN dA,
i.e.

S = F−1P , (I.32)

or

S = JF−1σF−T . (I.33)

Now, injecting the second Piola-Kirchhoff – Cauchy stress relationship Eq. (I.33)
and the strain rates relationship Eq. (I.21) into the spatial virtual work Eq. (I.26),
we obtain the material virtual work equation

δW =

∫

Ω0

S : δĖ dV −
∫

Ω0

f0 · δv dV −
∫

∂Ω0

t0 · δv dA = 0, (I.34)

which shows that (Ė,S) is another valid work conjugate pair.
The virtual work δW , regardless of the chosen form (material, nominal or spa-

tial), is split into two terms: (i) the internal virtual work δW int defined by the first
integral involving the contraction between strain and stress, (ii) the external virtual
work δW ext containing the last two integrals involving the body and traction forces
(see Eqs. (I.26), (I.27) and (I.34)).

We summarize the definitions and governing equations for kinematics and equi-
librium of nonlinear quasi-static continuum mechanics in Table I.1; both material
and spatial descriptions are linked through nominal quantities. The unknowns of a
three-dimensional mechanical problem, namely the displacement, strain and stress
fields, then comprise 3 + 9 + 9 = 21 independent variables. The governing equations
derived so far provide 15 independent equations (see details in brackets in Table I.1).
To close the problem, one then need 6 additional independent equations, which are
provided by a constitutive model describing the mechanical response of the material.

1.1.3 Constitutive equations: special case of hyperelasticity

Constitutive equations relate the primary variables (transformation mapping φ)
and their gradients (gradient of deformation tensor F ) to the constitutive variables
(stress tensor). They generally result from models, either motivated by physical
phenomena or phenomenological observations. These relations involve parameters
which are often considered in the end as material properties. Even if a great freedom
is allowed in modeling, some physical principles must be verified by the constitutive
models:
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physical admissibility: respect of physical principles, such as non-decreasing net
entropy;

determinism: constitutive variables at time t depend on primary variables at pre-
vious times (τ ≤ t);

locality: constitutive variables at material point X depend on primary variables
within a close neighborhood of X;

objectivity: constitutive equations must be frame-invariant.

A fairly simple class of constitutive equations which apply to finite strain are
derived within the hyperelasticity theory. Such constitutive models conveniently de-
scribe the response of materials that exhibit large reversible deformations, such as
elastomers, gels or some biological tissues. Hyperelasticty often serves as a basis
for more complex constitutive models in finite strain, such as elastoplasticity, vis-
coelasticity, etc. In the present work, we focused on large elastic deformations only.
Hence, we briefly recall the basic postulates of hyperelasticity, which provide the
reference solution to compare with the data-driven computations conducted in this
thesis.

First, the first Piola-Kirchhoff stress tensor P derives from an potential Ψ rep-
resenting the stored elastic energy density:

P (F (X),X) =
∂Ψ (F (X),X)

∂F
. (I.35)

Second, taking into account the objectivity principle implies that Ψ only depends on
the stretch component U of the right polar decomposition of the deformation gradi-
ent tensor F = RU , as the rotation component R represents rigid body rotations.
Then, the constitutive relation Eq. (I.35) is more favorably expressed in terms of
the second Piola-Kirchhoff stress tensor and the right Cauchy-Green stretch tensor
C = F TF = U2 as

S (C(X),X) = 2
∂Ψ (C(X),X)

∂C
=
∂Ψ

∂E
. (I.36)

Third, in the case of isotropic materials, the constitutive equation Eq. (I.36) furthers
simplifies to a function of the invariants of C:

S (IC , IIC , IIIC ,X) = 2
∂Ψ (IC , IIC , IIIC ,X)

∂C
, (I.37)
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where the invariants of C are defined as3

IC = trC = C : I, (I.38)

IIC = trC2 = C : C, (I.39)

IIIC = detC = J2. (I.40)

The derivative chain rule yields a compact form of the isotropic hyperelastic consti-
tutive equation in the material description as

S = 2
∂Ψ

∂IC
I + 4

∂Ψ

∂IIC
C + 2J2 ∂Ψ

∂IIIC
C−1. (I.41)

Its spatial counterpart is readily derived using Eq. (I.33) and recalling that the
invariants of C are the same as that of b:

σ = 2J−1 ∂Ψ

∂Ib
b+ 4J−1 ∂Ψ

∂IIb
b2 + 2

∂Ψ

∂IIIb
I. (I.42)

To derive a hyperelastic model, it then suffices to propose a strain energy density
function Ψ as a function of the stretch invariants (IC , IIC , IIIC).

The relationship Eq. (I.36) is generally nonlinear. As detailed in the next para-
graph, its incorporation in the principle of virtual work Eq. (I.34) and its discretiza-
tion with a finite element approximation yields a nonlinear system of algebraic
equations. In computational mechanics, the system is usually addressed with an
iterative technique which requires knowledge of the linearized constitutive equation.
The linearization is a systematic process which is based on the concept of directional
derivative, extensively presented in Bonet and Wood (2008); Holzapfel (2000) inter
alia. Here, we merely provide the general definition below.

Definition I.1. Directional derivative. Let consider a general multi-dimensional
functional F(x) with x being a list of unknown variables or functions. The direc-
tional derivative of F(x) at x0 in the direction of u is defined as

DF(x0)[u] =
d

dε

∣∣∣∣
ε=0

F (x0 + εu) . (I.43)

The linearization of the relationship between S and E, given by Eq. (I.36), with
respect to an increment u in the current configuration writes

DS(x)[u] = C : DE(x)[u], (I.44)

where the symmetric fourth-order tensor C, known as the Lagrangian or material
elasticity tensor is defined as

C =
∂S

∂E
= 2

∂S

∂C
=

∂2Ψ

∂C∂C
. (I.45)

3The following alternate definition of the second invariant IIC is also commonly used for its
more physical meaning:

IIC =
1

2

(
I2C −C : C

)
.

In the rest of the manuscript, we precise which one is adopted whenever necessary.
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The partial derivative ∂S/∂E in Eq. (I.45) is defined in indicial notation by 4

∂S

∂E
=

∂SIJ
∂EKL

(eI ⊗ eJ ⊗ eK ⊗ eL) . (I.46)

The equivalent Eulerian or spatial elasticity tensor D is obtained by the interpre-
tation of the constitutive relation Eq. (I.44) into a rate form. It relates the Truesdell
rate of the Cauchy stress tensor

σ◦ = J−1F ṠF T (I.47)

to the rate of deformation tensor d as

σ◦ = D : d. (I.48)

The spatial elasticity tensor D is related to its material counterpart C by

D = J−1FiIFjJFkKFlLCIJKL (ei ⊗ ej ⊗ ek ⊗ el) . (I.49)

Note that in Eq. (I.49) and in the rest of the manuscript, lower case indices i, j, k, l
refer to the spatial coordinate system while upper case indices I, J,K,L refer to the
material coordinate system.

In like manner, a nominal elasticity tensor M can be defined from the lineariza-
tion of the relationship Eq. (I.35) as

DP (x)[u] = M : DF (x)[u] (I.50)

with

M =
∂P

∂F
= MiJkL (ei ⊗ eJ ⊗ ek ⊗ eL)

MiJkL =
∂PiJ
∂FkL

= δikSJL + FiICIJKLFkK , (I.51)

where the directional derivative of the deformation gradient in the direction u is
simply given by

DF [u] = ∇0u. (I.52)

4We remark to the interested reader that there exists an alternate definition for the partial
derivative of a second-order tensor with respect to another second-order tensor, and hence for the
fourth-order elasticity tensor, introduced by Itskov (2000). This requires an entirely new framework
of tensor algebra and tensor analysis extensively presented in the textbook Itskov (2015). As these
conventions do not change the physical results, we followed the commonly adopted definition of
Bonet and Wood (2008) in the present work.
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1.1.4 Linearized equilibrium equations

The weak form of the equilibrium given in Table I.1 is nonlinear with respect to both
the geometry, due to finite strain measures, and the material, through the constitu-
tive model. As aforementioned, the numerical procedure employed in computational
mechanics relies on the linearized version of the virtual work, defined at given trans-
formation mapping φ and virtual velocity δv, in the direction of an increment u.
Here, we do not give the detailed manipulations that yield this linearization; they
can be found in Chapter 8 of (Bonet and Wood, 2008). The linearization of the
equilibrium is considered in terms of an internal and external components as

DδW (φ, δv) [u] = Dδ
(
W int −W ext

)
(φ, δv) [u]

= DδW int (φ, δv) [u]−DδW ext (φ, δv) [u].
(I.53)

The material, nominal and spatial forms of the linearized internal virtual work
DδW int (φ, δv) [u] are given in Table I.2 where a hyperelastic constitutive relation
of the form Eqs. (I.44) and (I.48) is considered. The expression of the linearized
external virtual work is not given here, as it depends on the kind of traction forces
applied. In particular, the case of uniform normal pressure is detailed in the Chapter
8 of (Bonet and Wood, 2008). Here, we only mention that the linearized external
virtual work is null when the body forces are independent of the motion. Specifically,
in the case of gravity loading, the external virtual work writes

W ext
f (φ, δv) =

∫

Ω
ρg · δv dV, (I.54a)

and hence

DδW ext
f (φ, δv) [u] = 0, (I.54b)

with ρ the density of the material and g the acceleration due to gravity.

1.1.5 Special case of linear elasticity

To close this section, we briefly give the linearized or small strain counterpart of the
previous equations. First, all strain measures are reduced to the small strain tensor
ε and the rate of deformation tensor d is simply the time derivative of ε

d =
1

2

(
∇v + ∇Tv

)
= ε̇ (I.58)

Second, all stress measures are reduced to the Cauchy stress tensor σ. The reference
and current configuration being indistinguishable, only one set of local equilibrium
equations remains:

σn = t, ∀x ∈ ΓN , (I.59)

divσ + f = 0, ∀x ∈ Ω, (I.60)

E : σ = 0, ∀x ∈ Ω, (I.61)
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which are summarized in the linearized principle of virtual work as

δŴ =

∫

Ω
σ : εdv −

∫

Ω
f · δv dv −

∫

∂Ω
t · δv da. (I.62)

The constitutive relation is also linearized and reduces to the standard linear elastic
solid (Hooke’s law) defined by the constant fourth-order elasticity tensor H, such
that

σ = H : ε. (I.63)

In the case of isotropy, only two independent parameters suffice to describe H, and
Hooke’s law takes one of the following forms:

σ = λ tr εI + 2µε, (I.64)

or

σ = 3κ vol ε+ 2µ dev ε, (I.65)

or

ε =
1 + ν

E
σ − ν

E
trσI, (I.66)

where λ and µ are the Lamé constants, κ the bulk modulus accounting for the
compressibility of the material, ν the Poisson’s ratio and E the Young’s modulus.
The 2nd Lamé constant µ is also the shear modulus. The operators vol • and dev •
acting on second-order tensors are defined as

vol • =
1

3
tr • I, (I.67)

dev • = • − vol •. (I.68)

1.2 Finite element discretization of nonlinear continuum mechan-
ics

In the governing equations of nonlinear continuum mechanics reminded above, two
sources of nonlinearity co-exist:

geometric nonlinearity arises when “changes in geometry have a significant effect
on the load deformation behavior”, which includes large strain, deformation-
dependent boundary conditions and loading, or geometric instabilities (Bonet
and Wood, 2008);

material nonlinearity occurs when the constitutive equation relating strain and
stress is nonlinear, which includes stiffening effects for instance.
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Both nonlinearities render the partial differential equations impossible to solve by-
hand, apart in simple problems. That is why numerical analysis, which relies on a
discretization of the domain, is an essential tool to calculate the mechanical response
of complex structures subject to complex loading conditions. The most commonly
used discretization technique in solid mechanics is the FE method which Bonet and
Wood (2008) summarize as follows:

It is a procedure whereby the continuum behavior described at an infinity
of points is approximated in terms of a finite number of points, called
nodes, located at specific points in the continuum. These nodes are used
to define regions, called finite elements, over which both the geometry
and the primary variables in the governing equations are approximated.

To complete this definition, we add that the finite elements constitute the compact
support of a set of approximation or basis or shape functions used to approximate
the solution (a shape function is nonzero only over the domain occupied by the
attached finite element). The FE method is based upon integral formulations of
partial differential equations. In mechanics, it thus uses the weak form Eqs. (I.26),
(I.27) and (I.34) of the governing equations. After discretization, these are rendered
into a nonlinear system of algebraic equations. In the following, we briefly revisit
the discretized form of these equations to provide the Newton-Raphson procedure
that is commonly used to solve such a nonlinear system.

1.2.1 Discretized equilibrium equations

The discretization is herein restricted to isoparametric elements, meaning that the
approximation functions for the geometry and for the primary variable (displacement
field) are the same. Let us consider a finite element mesh approximating the body in
Ω0 with N nodes andM elements. Each element e comprises Ne nodes and occupies
a domain Ω

(e)
0 (Ω(e)) in the reference (current) configuration. The positionX (x) of

a material point in the reference (current) configuration of element e is interpolated
from the positions Xa of the nodes with the nodal shape functions Na(ξ) as

X =

Ne∑

a=1

Na(ξ)Xa, (I.69)

x =

Ne∑

a=1

Na(ξ)xa, (I.70)

where ξ is the isoparametric coordinate of the integration point in the unit reference
element. Consistently, the displacement field u and the virtual velocity field δv are
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interpolated as

u(X) =

Ne∑

a=1

Na(ξ)ua, (I.71)

δv =

Ne∑

a=1

Na(ξ)δva. (I.72)

The gradients of the primary variables are then easily derived as

F = ∇0x =

Ne∑

a=1

xa ⊗∇0Na, (I.73)

δd =
1

2

Ne∑

a=1

(δva ⊗∇0Na + ∇0Na ⊗ δva) , (I.74)

where the gradient of the shape functions with respect to the spatial and mate-
rial configuration are obtained from their (known) derivatives with respect to the
isoparametric coordinates as

∇0Na =
∂Na
∂ξ

(
∂X

∂ξ

)−1

, with
∂X

∂ξ
=

Ne∑

a=1

Xa ⊗∇ξNa, (I.75)

∇Na =
∂Na
∂ξ

(
∂x

∂ξ

)−1

, with
∂x

∂ξ
=

Ne∑

a=1

xa ⊗∇ξNa. (I.76)

Injecting this discretization into each form of the principle of virtual work yields the
discretized virtual work equation

δva ·Ra = 0, ∀a = 1 . . N, (I.77)

which involves the nodal residual force vector

Ra = T int
a − T ext

a (I.78)

representing the balance between the internal force vector T int
a and the external force

vector T ext
a . The former is equivalently evaluated on all configurations, depending

on the choice of implementation; the different forms are then listed in Table I.3,
in which the summation symbol

∑Ma
e=1
e3a
• denotes the assembly of the quantity •

at node a over the Ma elements of the mesh containing node a, labeled e 3 a.
The reader is referred to Bonet and Wood (2008) for the detailed derivations of
these expressions and the assembly procedure. The latter is preferably expressed in
the spatial configuration as it allows for taking into account deformation-dependent
loading such as applied normal pressure more easily. Specifically,

T ext
a =

Ma∑

e=1
e3a

(∫

Ω(e)

Naf dv +

∫

∂Ω(e)

Natda

)
. (I.79)
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Table I.3 – Finite element discretizations of the internal force vector T int
a assembled

at node a, using isoparametric elements, in the material, nominal and spatial form.

Description Discretized nodal force vectors

Material
T int
a =

Ma∑

e=1
e3a

∫

Ω
(e)
0

FS∇0Na dV (I.80)

Nominal
T int
a =

Ma∑

e=1
e3a

∫

Ω
(e)
0

P∇0Na dV (I.81)

Spatial
(or linearized
kinematics)

T int
a =

Ma∑

e=1
e3a

∫

Ω(e)

σ∇Na dv (I.82)

The virtual nodal velocities δv being arbitrary, Eq. (I.77) reduces to a nonlinear
system of equations expressed by the nodal residual force vectors as

Ra = 0, ∀a = 1 . . N. (I.83)

1.2.2 Solution to the nonlinear discrete problem

The discretized version of the principle of virtual work then yields a nonlinear system
of equations Eq. (I.78) which represents the balance between internal and external
forces at every node on the structure, with the nodal current positions (or displace-
ments) as the unknowns. The most commonly used numerical scheme to solve these
nonlinear equations is the Newton-Raphson iterative procedure which requires the
linearization of the residual in the direction of an incremental displacement u. A
typical iteration k of the algorithm writes:

δW (φk, δv) +DδW (φk, δv)[u] = 0; φk+1 = φk + u, (I.84)

where

DδW (φk, δv)[u] = DδW int(φk, δv)[u]−DδW ext(φk, δv)[u]

with DδW int(φk, δv)[u] as in Eqs. (I.55) to (I.57). Using the finite element dis-
cretization of the geometry and the primary variables together with the linearized
virtual work equations given in Eq. (I.53) and Table I.2, Eq. (I.84) is rendered in
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the following discrete form:

Ra +

Na∑

b=1

Kabub = 0,∀a = 1 . . N, (I.85)

with

Kab =
(
K int
ab −Kext

ab

)
(I.86)

where K int
ab (respectively Kext

ab ) is the internal (respectively external) tangent stiff-
ness matrix of the system and Na denotes the number of nodes connected to node
a. The tangent stiffness matrix Kab measures the change in forces at node a due to
change in the current position of node b. The explicit formulation of the external
stiffness matrixKext

ab is left aside here since it depends on the type of loading. How-
ever, a general expression of the internal stiffness matrix comprises two component:
(i) a constitutive component Kc

ab corresponding to the term of the linearized inter-
nal work which involves the constitutive relationship, (ii) an initial stress component
Kσ
ab resulting from the additional stress term of the linearized internal work which

derives from the nonlinearity of the material and spatial strain measures:

K int
ab = Kc

ab +Kσ
ab. (I.87)

We gather the expressions of the internal tangent stiffness matrix K int
ab in the ma-

terial, nominal and spatial descriptions in Table I.4.
A typical Newton-Raphson iteration k in a finite element code then writes:

R(xk) +K(xk)u = 0, and xk+1 = xk + u, (I.93)

where R =
[
RT

1 ,R
T
2 , · · · ,RT

N

]T is the complete residual force vector gathering all
nodal equivalent forces, u =

[
uT1 ,u

T
2 , · · · ,uTN

]T the complete nodal displacements
vector andK the complete tangent stiffness matrix defined by assembling the nodal
components as

K =




K11 K12 · · · K1N

K21 K22 · · · K2N
...

. . .
...

KN1 KN2 · · · KNN


 (I.94)

1.2.3 Discrete evaluation of integrals

As a final remark, all finite element quantities presented above require the evalua-
tion of integrals over elementary domains. However, the underlying mathematical
expressions of the integrands are generally too complex to perform an exact inte-
gration. The FE method thus also comprises an appropriate integration or Gauss
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quadrature rule, so as to replace integrals by weighted sums of the discrete evalua-
tions of the fields at integration points. Every integral of a functional F over the
elementary domain Ω(e) of the current configuration is then computed as

∫

Ω(e)

F(x) dv =

∫

Ω̂(e)

F(ξ) det

(
∂x

∂ξ

)
dv =

Pe∑

g=1

wgFg, (I.95)

where Ω̂(e) is the elementary domain in the isoparametric coordinate system, wg =

ωg det
(
∂xg

∂ξ

)
is the current volume associated to integration point g of weight ωg

and coordinate xg in the current configuration, Fg = F(xg) and Pe the number
of integration points in the element. The same applies to the integrals over the
elementary domain Ω

(e)
0 in the reference configuration:

∫

Ω
(e)
0

F(X) dV =

∫

Ω̂(e)

F(ξ) det

(
∂X

∂ξ

)
dV =

Pe∑

g=1

wgFg, (I.96)

with wg = ωg det
(
∂xg

∂ξ

)
now being defined as the reference volume associated to in-

tegration point g of coordinateXg in the reference configuration, and Fg = F(Xg).
Hence, in the finite element setting, the primary variables (displacement field)

are evaluated at the node while their gradient (constitutive variables, strain and
stress fields) are evaluated at the integration points. In the rest of the manuscript,
the finite element formulation of the BVP will then be directly defined by these
discrete unknowns. We shall only refer to the nodes and the integration points, by-
passing intermediate computations (integrals) on the elements. Every variational
formulation resulting in the integral of a functional F over the whole domain Ω0

(and likewise over Ω) is then directly expressed as the weighted sum

∫

Ω0

F(X) dV =

P∑

g=1

wgFg (I.97)

with P =
∑M

e=1 Pe the total number of integration points in the mesh.

1.3 Summary

To summarize, the finite element method applied to nonlinear mechanics of solids
consists in solving a nonlinear system of algebraic equations derived from the weak
form of equilibrium equations, using the Newton-Raphson scheme based on the
tangent stiffness matrix. It is worth noting that the primary variables (positions
and displacements) are computed at the nodes and that the constitutive variables
(strains and stress) are computed within the elements, discretely at the integration
points. The three formulations (material, nominal or spatial) are all equivalent
and yield the same results. Nevertheless, each presents specific features which can
advocate for their implementation, depending on the user’s preferences and the
problem:
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nominal: In this setting, the displacement-deformation relation Eq. (I.11) is linear,
which suppresses the initial stress component of the internal tangent stiffness
matrix. In addition, since the integration is performed on the reference con-
figuration, the gradient of the shapes functions can be computed once and for
all at the beginning of the calculation (see Eq. (I.75)).

spatial: This formulation is particularly adapted to deformation-dependent loading
conditions which require to update the current configuration at each iteration.
A convenient matrix formulation is also available which allows for the use of
sparse solvers.

material: This description is equally interesting than the nominal formulation in
terms of the gradient of the shape functions. In addition, it allows to work
with fully symmetric tensors.

1.4 The key concept and central difficulty of constitutive modeling

As discussed above, the FE method applied to nonlinear continuum mechanics is
more complex than the standard linear analysis of solids and requires a careful im-
plementation of the chosen formulation. Of course, we only presented the elastic
framework; additional derivations and concepts must be introduced in order to pre-
dict anelastic behaviors such as plasticity or viscoelasticity. Moreover, multi-physics
phenomena such as thermo-mechanics involve supplementary governing equations.
Leaving these complex couplings aside, the most difficult aspect of computational
mechanics is undoubtedly the derivation, implementation and identification of the
constitutive model.

1.4.1 Derivation

In solid mechanics, and particularly for hyperelasticity, most of the constitutive
models are derived following the so-called phenomenological approach. This ap-
proach consists in “fitting mathematical equations to experimental data”, but is
“not capable of relating the mechanism of deformation to the underlying physical
(microscopic) structure of the material” (Holzapfel, 2000). In this context a consti-
tutive theory is developed in order to give a consistent framework for the elaboration
of a model able to reproduce the response of the material. For instance, much effort
has been devoted to the development of the finite (hyper)elasticity theory, which
involves the principles we recalled in Section 1.1.3 together with the polyconvexity
of strain-energy functions (see Holzapfel (2000, Chapter 6) for more explanation
and references on this subject). A thermodynamical approach, based on the work of
Coleman and Noll (1974) provides the generalized standard materials framework in
for anelastic materials using internal variables (Germain et al., 1983; Halphen and
Son Nguyen, 1975).
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1.4.2 Implementation

The thermo-mechanical framework for the development of constitutive models in
then well established. However, as it offers great freedom, one must choose the
most suitable model for the material considered among a large variety of proposi-
tions: entire scientific journals are exclusively dedicated to the research on constitu-
tive modeling and for rubber-like materials only, several reviews have compared the
performances of each model to date (see Boyce and Arruda (2000); Marckmann and
Verron (2006); Steinmann et al. (2012); Mihai and Goriely (2017) inter alia). In par-
ticular, for an engineer faced with a commercial FE software it is not straightforward
which constitutive equations to choose that will best predict the excepted behavior
of the material in the structure considered. For complex models, dedicated imple-
mentations and algorithms can be needed: see from example the book of Simo and
Hughes (1998) devoted to the implementation of inelasticity, or the LArge Time IN-
crement method (LATIN) method introduced by Ladevèze in 1984 and extensively
detailed in (Ladevèze, 1996) to deal with nonlinearity. We can also mention the
Z-mat material library, part of the Z-set suite, which provides a collection of con-
stitutive models for non-linear material behaviors Chaboche and Cailletaud (1996).
The availability of complex constitutive models and the development of associated
integrations tools in FE codes or softwares constitutes a large part of research effort
in computational mechanics.

1.4.3 Identification

Once the appropriate constitutive model has been selected and made available in
standard FE software, it still remains for the engineer to identify the parameters for
the considered material, with experimental data. Often, only one strain-stress curve
extracted from a uniaxial tensile test is available, but it offers insufficient data to
identify numerous parameters. The identification process is then generally an ill-
posed problem comprising multiple solutions. The reliability of the model in other
scenarios than the training one can then be uncertain: fitting a hyperelastic model
on uniaxial tensile test only or using supplementary data from other deformation
modes such as pure shear or biaxial tension can yield different values of the param-
eters. Hence, it results in different predictions for the three-dimensional material
behavior (Verron, 2018). As discussed next, the recent developments of experimen-
tal techniques and monitoring tools, e.g. full-field measurements, addresses these
identification issues by providing richer experimental data.

1.4.4 Special case of heterogeneous materials

The difficult process of developing, identifying and implementing a constitutive
model is even more so in the case of so-called heterogeneous materials, i.e. multi-
phase materials. Indeed, their effective behavior is strongly dependent on the ma-
terial response of the constituents themselves and on their arrangement in the mi-
crostructure. They are also generally anisotropic and complex microstructural phe-
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nomena occur during deformation, impacting the macroscopic response. An entire
branch of research on mechanics of materials is focused on the homogenization of
microscopic properties into an effective material response of heterogeneous mate-
rials. Starting from the Eshelby solution of an ellipsoidal inclusion embedded in
an infinite elastic medium and subject to a far-field strain (Eshelby and Peierls,
1957), mean field theory was developed to model more complex microstructures and
anelastic behaviors, such as elastoplasicity, based on the work of Hill (1965). Again,
the more microstructural phenomena one aims at capturing, the more complex the
mean field model. Breaking with this modeling approach the so-called computational
homogenization was introduced in the late 1990s and has seen various contributions
and developments ever since (see for instance the review of Geers et al. (2010)). An
application of this approach to elastoviscoplastic materials resulted in the so-called
FE2 scheme introduced by Feyel (1999); Feyel and Chaboche (2000). It consists in
a multiscale numerical scheme, which bypasses the need for modeling the effective
behavior of the microstructure. Instead, two nested BVPs are concurrently solved
using FE analysis: a computation on a Representative Volume Element (RVE) of
the microstructure is conducted at each integration point of the macroscopic mesh,
with boundary conditions provided by the strain state of the macroscopic point.
The macroscopic stress state is subsequently obtained from a volume average of the
microscopic stress field in the RVE. This procedure makes use of the constitutive
equations at the microscopic level only, as illustrated in Fig. I.2. However, it is

Figure I.2 – Schematic diagram of the FE2 model. From Feyel (1999).

computationally very demanding, both in CPU time and in memory requirements,
and researchers are currently focusing on reducing the cost, either via parallel im-
plementation and/or through reduced order modeling concepts.

1.4.5 Summary

To sum up, constitutive models are one of the key ingredients in computational
mechanics. As demonstrated, a current major focus in mechanics of materials is the
development of constitutive models. However, the more complex the constitutive
models, the greater the need for experimental data to calibrate the parameters
and also the more carefully their domain of validity must be defined. Material
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modeling then appears as one possible entry-point for data science in computational
mechanics, as we show next.

2 Data science in computational mechanics

In this section, we take inspiration from the argument Michael Ortiz gave in his con-
ference at the XIII International Conference on Computational Plasticity (COM-
PLAS), in 2015, to motivate the data-driven computational mechanics approach
(Ortiz, 2015).

2.1 Data in computational mechanics

Computational mechanics is a field in which a large amount of data is both consumed
and produced. On the one side, the recent developments of experimental measure-
ments techniques have provided rich databases to the identification process of the
constitutive models used in FE simulations. In particular, identification techniques
coupling computational mechanics with full-field measurements such as Finite Ele-
ment Model Updating, Virtual Field Method, or Constitutive Equation Gap Method
have been developed in recent years (see the review of Avril et al. (2008)). On the
other side, heavy computations, such as multiscale analyses, produce a huge amount
of discrete values of displacements, strains, stresses, or strain energy densities, which
can be used in the end to extract knowledge on the overall material behavior. For
example, recent achievements in high performance computing has enabled Mosby
and Matouš (2016) to perform a simulation consisting of 53.8 Billion finite elements
with 28.1 Billion nonlinear equations that was solved on 393 216 computing cores,
using a hierarchically parallel implementation of the computational homogenization
formulation (Matouš et al., 2017). These kind of massive multiscale computations
are intended to constitute “the basis of Virtual Materials Testing standards, and
to aid in the development of new material formulations with extreme properties”
(Mosby and Matouš, 2016).

Any numerical analysis is then nowadays both further down and in the upstream
part of a production chain of data, making the field of computational mechanics a
perfect candidate for application of data science.

2.2 What is data science and how it fits in the field of computa-
tional mechanics

Here, data science is understood as “the study of the generalizable extraction of
knowledge from data”. “Knowledge” refers to underlying patterns or “insights” in
unstructured data; then, “unlike database querying, which asks ‘What data satisfies
this pattern (query)?’, discovery asks ‘What patterns satisfy this data?’”. Further-
more, “what makes an insight actionable [...] is its predictive power”. Data science
uses techniques such as data management, machine learning and statistics to derive
mathematical models which can be “acted upon with high degree of confidence”
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(Dhar, 2013). It is widespread in fields such as marketing, advertising, medical
diagnosis, finance or social sciences. To understand its role and where it can be in-
corporated in solid mechanics and computational mechanics in particular, we must
take a look back at the anatomy of a mechanical problem. As aforementioned in
Section 1.1, a mechanical BVP is essentially driven by three groups of governing
equations: (i) kinematics together with Dirichlet boundary conditions, which derive
from geometry, (ii) equilibrium and Neumann conditions, which results from conser-
vation laws, (iii) constitutive models, which represent the behavior of the material.
On the first hand, the first two are universally valid, or uncertainty-free, as they
rely on general physical principles. On the other hand, the constitutive equations,
or material laws, are more questionable. More importantly, this is where computa-
tional mechanics needs data to calibrate the models. A typical application of data
science in the field of computational mechanics is then the modeling of the material
response: there, one does need a predictive mathematical relation that is based on
knowledge extracted from unstructured data, to fall back on the definition given by
Dhar (2013).

2.3 Instances of data science in material modeling and structural
computation

As aforementioned, micro-mechanics of materials is a typical field of applications
where computational mechanics actually generates data. It is then a particularly
adequate candidate for the use of data science techniques. A first example may be
the use of model reduction such as the proper orthogonal decomposition method.
It has notably been used by Yvonnet and He (2007) for both localization and ho-
mogenization of hyperelastic composites. Other examples can be found in the pre-
viously mentioned review of predictive nonlinear theories from multiscale modeling
of heterogeneous materials by Matouš et al. (2017). Reduced order models may be
understood as meta-models of both the material and the structural response in a
given problem. Other approaches consists in calibrating a response surface model
of the microstructure with digital databases or discrete material maps (see inter
alia Le et al. (2015) for hyperelastic materials). In these approaches, a constitutive
equation is still to be derived beforehand and further calibrated with microstruc-
tural data. To directly extract knowledge from the microscopic response, Neural
Network (NN)-based material models where first introduced by Ghaboussi J. et al.
(1991). Hashash et al. (2004) discussed their implementations in FE analysis and
Ling et al. (2016) “incorporated domain knowledge in the machine learning pro-
cess” by taking into account invariance and symmetries of the problem. One of
the most popular and fairly simple machine learning technique is probably dimen-
sional reduction, that seek meaningful low-dimensional structures hidden in high
dimensional data, represented for instance by full-field experimental measurements
or microscopic simulations. In their review, Matouš et al. (2017) classify Laplacian
eigenmaps or Locally linear embedding (LLE) (Roweis and Saul, 2000) as local tech-
niques and kernel-PCA, diffusion maps, or Isomap as global techniques to learn the
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manifold where the microscopic response lies. Other applications of manifold learn-
ing techniques have recently been introduced for homogeneous materials by Ibañez
et al. (2017, 2018), where the constitutive manifold is learned by LLE. For hy-
perelastic materials, Latorre and Montáns (2014) introduced What-You-Prescribe-
is-What-You-Get hyperelastic models where the strain energy density function is
constructed with splines based on the resolution of the equilibrium equations of
different experiments (see also Crespo et al. (2017)). As a final example of data
science integration into computational mechanics, we care to mention the work of
Buffiere et al. (2006); Herbig et al. (2011); Rovinelli et al. (2018). It relies on a
careful generation of experimental big-data of the evolution of fatigue cracks rela-
tive to the local microstructure during in situ loading of polycrystalline materials.
A Bayesian network is then used to identify an analytical relationship for the crack
driving force. In their work, machine learning does not only automatically infer a
constitutive relation but is also used as a tool to understand the correlations between
the direction of propagation and usual fatigue metrics.

In all the aforementioned instances of data science in computational mechan-
ics or material modeling (which can hardly be taken for an exhaustive list), some
sort of constitutive model is still either learned, or postulated and calibrated with
relevant techniques and data. We see it as a loss of data: the constitutive model
acts as a bottle neck between the upstream data (obtained either experimentally
or computationally) and the downstream data generated by FE analysis. As a new
paradigm, so-called Data-Driven Computational Mechanics (DDCM), Kirchdoerfer
and Ortiz (2016) recently proposed to incorporate the data directly into the compu-
tation, i.e. to replace the constitutive equation with a database of material relevant
constitutive variables. In the case of elasticity, the material database is a discrete
set of strain-stress data points. This model-free approach roughly consists in min-
imizing some deviation function to the discrete material response, represented by
the material database, under the constraints that the mechanical state in the body
satisfies universal physical principles. Their proposition constitutes the basis of this
thesis and is detailed in the next chapter.
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1 Presentation of the method

In this section, we present the DDCM approach, first introduced by Kirchdoerfer and
Ortiz (2016) and complemented in Conti et al. (2018). We first recall the general idea
in Section 1.1. Then, both continuous and FE discrete formulations are presented
in Section 1.2. The subsequent data-driven solver is listed in Section 1.3. Finally,
we reproduce the original results of Kirchdoerfer and Ortiz (2016) in Section 1.4.

1.1 General idea

As motivated in State of the art, the DDCM approach was proposed by Kirchdoerfer
and Ortiz (2016) as a “new computing paradigm”, which allows for “bypassing the
empirical material modeling step of conventional computing altogether”. In lieu of
the constitutive model, the material behavior is represented by a database of mate-
rial data points, resulting from experimental acquisition or numerical simulations at
finer scales. In solid mechanics, the typical constitutive variables involved are the
strain and the stress. For elastic materials, in the linearized kinematics approxima-
tion, the material database is then constituted with (ε,σ) strain-stress state pairs.
The approach relies on the fundamental separation between the characterization of
the material response and the satisfaction of essential constraints and conservation
laws: while the former is most likely to be approximately captured (e.g. due to noise
in the acquisition of experimental data), the latter ones must be exactly satisfied.
The authors then developed a new class of solvers, called data-driven solvers, in a
small strain elastic framework, which allows for some discrepancy with respect to the
material response while satisfying physical principles at every material point in the
body. This is achieved by re-formulating the BVP as a minimization of a distance
function between two types of strain-stress fields: one, representing the material
response, takes value in the material database, and the other, verifying both com-
patibility and equilibrium equations, represents the mechanical states of the body.
The former strain-stress field is referred to as the material state and belongs to a
so-called material data set, while the latter mechanical state belongs to a so-called
constraint set. Both sets are subspaces of the so-called phase space, which collects
all possible strain-stress fields. The phase space can be opposed to the physical
space, where the body deforms and the coordinates of the material points are de-
fined. The data-driven solver then seeks to assign to each material point in the body
a strain-stress state that (i) verifies the compatibility and equilibrium constraints
of the BVP in physical space, and (ii) is the closest possible from a pre-specified
material database in phase space.

The approach was first introduced as a way to directly incorporate raw data
into the computations, hence developed from a purely numerical, computational
mechanics point of view. Specifically, Kirchdoerfer and Ortiz (2016) formulated
the data-driven problem in the case of the static equilibrium of nonlinear three-
dimensional trusses and of FE discretized linear elastic solids. However data-driven
small strain elasticity can also be formulated for continuum mechanics (see the
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authors attempt in the last section of Kirchdoerfer and Ortiz (2016)). It is only
two years later that Conti et al. (2018) complemented the data-driven paradigm
with a continuous formulation. They also provided the attendant mathematical
proofs of the existence of solutions together with specific notions of convergence
with respect to the material data set. We also care to mention the variational
formulation presented in Nguyen et al. (2020).

With the benefit of hindsight, we therefore choose in the next section not to
present the method in a chronological manner: we rather first introduce the data-
driven paradigm with the continuum mechanics formulation. Then, we summarize
the mathematical ground to the approach before recalling the original discrete for-
mulation.

1.2 Continuous and discrete formulation

1.2.1 Continuous formulation

In this section and throughout the manuscript when it is possible, we adopt the
formalism of Conti et al. (2018) together with the notations introduced in State
of the art. Let us consider an elastic body occupying a domain Ω ∈ R3 under
quasi-static loading. The small-strain assumption is adopted; the compatibility and
equilibrium governing equations respectively write

ε(x) =
1

2

(
∇u(x) + ∇Tu(x)

)
in Ω, (II.1a)

u(x) = uD(x) on ΓD, (II.1b)

and

divσ(x) + f(x) = 0 in Ω, (II.2a)

σ(x)n(x) = t(x) on ΓN . (II.2b)

In elasticity, the above system of equations is classically closed by a constitutive
relation of the type

σ(x) = σ̌(ε(x)). (II.3)

As we previously mentioned, these three groups of governing equations are of two
types: universally valid physical principles on the one hand (Eqs. (II.1) and (II.2)),
and material-dependent relations on the other hand (Eq. (II.3)). In the data-driven
approach, this separation is rooted in the re-formulation of the BVP as distance-
minimization problem, presented in the following. Note that the symmetry of the
stress tensor is admitted as classically, the conservation of angular momentum is
then directly enforced in the definition of the stress field.

Preliminary definitions The strain-stress tensor pair (ε(x),σ(x)) is referred
to as the local state at the material point x of the body Ω. All possible strain-
stress pairs sit in a high dimensional space, which is referred to as the local phase
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space and denoted Zloc = R3×3
sym × R3×3

sym. For instance, in a 3-dimensional problem,
the strain and stress tensors each comprise 6 independent variables, which yields a
12-dimensional local phase space. To relate the physical space Ω, where the body de-
forms, to the local phase space, Conti et al. (2018) introduce the local state function
z as the mapping from every material point x to its local state in Zloc:

z : Ω 7→ Zloc

x→ z(x) = (ε(x),σ(x)) . (II.4)

We also refer to the local state function as the local state field. The global phase space
Z is then merely the collection of all possible local state functions z : Ω→ Zloc:

Z = L2(Ω,Rn×nsym )× L2(Ω,Rn×nsym ). (II.5)

Two different subsets of Z are defined in the following, dividing material-
independent quantities and constitutive quantities.

1. The collection of local state fields verifying universally valid Eqs. (II.1)
and (II.2) defines a material-independent constraint set, denoted E :

E = {z ∈ Z | Eqs. (II.1) and (II.2)} ⊂ Z, (II.6)

where the symbol | means “subject to” or “such that” throughout the
manuscript. We remark that kinematics and equilibrium constraints typically
define a continuous manifold in phase space.

2. The material behavior is described by a collection of admissible strain-stress
pairs, referred to as the local material data set Dloc. We also refer to Dloc as
the material database. If a constitutive model is known, then the local material
data set writes

Ďloc = {z(x) | Eq. (II.3)} . (II.7)

However, the data-driven paradigm aims to address cases where the constitu-
tive model Eq. (II.3) is not explicit nor identified; only a raw discrete sampling
of the material response is available, obtained e.g. through experimental tests
or numerical simulations at finer scales. The material data set Dloc then col-
lects a finite number m of material strain-stress pairs and writes:

Dloc = {(εi,σi) | i ∈ [1 . . m]} ⊂ Zloc. (II.8)

The global material data set D ⊂ Z is, in any case, defined by the collection
of local state fields taking value in a local material data set:

D = {z ∈ Z | z(x) ∈ Dloc} . (II.9)

The local and global definitions of the material data set allow for the possi-
ble inhomogeneity of the material: a distinct local material data set can be
associated to different phases of an heterogeneous material.
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The above definitions are illustrated in Fig. II.1, where the phase space is schemat-
ically represented in two dimensions (it is of much higher dimension as previously
emphasized). In the small strain setting and for loading conditions independent of
the motion, the constraint set is a linear manifold (i.e. a line in 2D, in red) result-
ing from the linearity of the compatibility and equilibrium equations Eqs. (II.1a)
and (II.2a). The local material data set is represented here as a discrete sampling
of a nonlinear constitutive relation.

Figure II.1 – Functional spaces defined in the continuous data-driven formulation of
Conti et al. (2018).

Reformulation of the boundary value problem The solution of the classical
BVP Eqs. (II.1) to (II.3) is defined as the tuple (u, ε,σ) of the fields verifying all
three equations, at the same time. With the definitions above, this statement can
be reformulated as follows: the solution of the classical BVP lies at the intersection Š
between the constraint set of mechanically admissible states and the material data
set, defined with a constitutive model:

Š = E ∩ Ď, (II.10)

with D̂ =
{
z ∈ Z | z(x) ∈ D̂loc

}
.

Let us now consider the more general case where the material database is dis-
crete, as in Eq. (II.8). Then, the solution set can no longer be determined as
previously, since the intersection E ∩ D is most likely to be empty, as illustrated in
Fig. II.2, even if a solution does exist. The data-driven approach then boils down
to relaxing this characterization by allowing a certain amount of discrepancy be-
tween the solution set and the material data set. The solution is now defined as
the mechanical state field z = (ε,σ) ∈ E , verifying both kinematics and equilibrium
constraints, that is closest to the material data set:

S = arg min
z∈E

d(z,D), (II.11)
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Figure II.2 – Exact and near intersections S between a possible constraint set E
and (left) a continuous material data set Ď, obtained from a constitutive model
and (right) a discrete material data set D, obtained from e.g. experimental testing.
Inspired from Kirchdoerfer and Ortiz (2016).

where d is an appropriate distance defined on the phase space Z. The phase space
Z = L2

(
Ω,Rn×nsym

)
× L2

(
Ω,Rn×nsym

)
is indeed equipped with the metric:

‖z‖C =

(∫

Ω

(
1

2
(C : ε) : ε+

1

2
(C−1 : σ) : σ

)
dv

) 1
2

, (II.12)

where C is a constant fourth-order positive definite tensor. The distance between a
local state z and any subset A of the phase space is follows as

d(z,A) = min
a∈A
‖z − a‖C. (II.13)

The data-driven BVP is then reformulated as the double minimization problem

min
z∈E

min
z′∈D
‖z − z′‖C, (II.14)

or, equivalently, using the squared distance, as

min
z∈E

min
z′∈D
‖z − z′‖2C. (II.15)

For a given material data set D, the solution set S of the data-driven D-problem is
then defined as

S = arg min
z=(ε,σ)∈E

min
z′=(ε′,σ′)∈D

∫

Ω

(
1

2

(
C : (ε− ε′)

)
: (ε− ε′)

+
1

2

(
C−1 : (σ − σ′)

)
: (σ − σ′)

)
dv. (II.16)

The material part z′ ∈ D of the solution to Eq. (II.16) is referred to as the material
state field.
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An elementary example, presented in Kirchdoerfer and Ortiz (2017), illustrates
the data-driven distance-minimizing paradigm: an elastic bar deforms uniformly
under the action of a loading device. We refer to Analytical solution for a one-
dimensional bar for the analytical data-driven solution and the attendant geomet-
rical interpretation we derived.

1.2.2 Mathematical proof

In their first contribution, Kirchdoerfer and Ortiz (2016) showed that “the data-
driven solutions converge to classical solutions when the data set approximates a
limiting constitutive law with increasing fidelity”. They particularly developed es-
timates of convergence rates for the data-driven solution to the reference solution,
with respect to the number of states in the material database. In addition, they
ensured that the convergence is preserved with spatial discretization (e.g. through
FE approximation) provided that the “fidelity of the data set increases appropriately
with increasing mesh resolution”.

A stronger mathematical proof that the problem Eq. (II.11) is well-posed and
recovers the classical solution in the case of linear elasticity is provided by Conti
et al. (2018). Indeed, they demonstrate that the data-driven DC-problem defined as

min
z∈E

d (z,DC) (II.17a)

where

E = {z ∈ Z | Eqs. (II.1) and (II.2)} (II.17b)

DC = {(ε,σ) ∈ Z | σ = C : ε} (II.17c)

has a unique solution (ε,σ) which coincides with the classical linear elastic solution

σ = C : ε. (II.18)

See Conti et al. (2018, Theorem 2.2) for more details.
Furthermore, considering a sequence (Dh) of material data sets which converges

to a limiting material data set D, the authors show that the solutions of the Dh-
problems converge to the solution of the D-problem. The data-driven D-problem
consists of finding

arg min
z∈E

d2 (z,D) (II.19)

or, equivalently,

arg min
z∈Z

(
d2 (z,D) + IE(z)

)
(II.20)
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where the indicator function IE of E ⊂ Z is defined as

IE(z) =

{
0, if z ∈ E ,
∞, otherwise.

(II.21)

The convergence of (Dh) is understood in terms of spread away from the limiting
material data set, and in terms of density of material data points, as illustrated in
Fig. II.3(a). It is detailed in (Conti et al., 2018, Lemma 2.11):

Let Z and E be as in Eqs. (II.5) and (II.6). Suppose that

Dh = {z ∈ Z | z(x) ∈ Dloc,h almost everywhere in Ω} ,

for some sequence of local material data sets Dloc,h ⊂ Rn×nsym ×Rn×nsym . Let

D = {z ∈ Z | z(x) ∈ Dloc almost everywhere in Ω} ,

where

Dloc =
{

(ε,σ) ∈ Rn×nsym × Rn×nsym | σ = C : ε
}
.

Assume that

i) (Fine approximation) There is a sequence ρh ↓ 0 such that

d(ξ,Dloc,h) ≤ ρh, ∀ξ ∈ Dloc;

ii) (Uniform approximation) There is a sequence th ↓ 0 such that

d(ξ,Dloc) ≤ th, ∀ξ ∈ Dloc,h;

sequentially

Then, D = M − limh→∞ Dh in Z.

The limit operator M − lim denotes the Mosco convergence of sets, defined in Conti
et al. (2018, Definition 2.5, 2.6). Once the convergence of the sequence (Dh) to the
limiting material data set D is assumed, the convergence of the sequence (zh) of
associated data-driven solutions follows (see Conti et al. (2018, Theorem 2.8)):

Let Z be a reflexive, separable Banach space, D and (Dh) subsets of Z,
E a weakly sequentially closed subset of Z. Suppose:

i) (Mosco convergence) D = M − limh→∞ Dh in Z and

ii) (Equi-transversality) There are constants c > 0 and b ≥ 0 such
that, for all y ∈ Dh and z ∈ E ,

‖y − z‖C ≥ c (‖y‖C + ‖z‖C)− b.
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(a) (b)

Figure II.3 – Schematic of convergent sequence of local material data sets Dloc,h. The
parameter th controls the spread of the material data sets away from the limiting
data set and the parameter ρh controls the density of material data point. (a) Linear
elastic graph. (b) Nonlinear elastic graph. From Conti et al. (2018).

Then,

IE(·) + d2(·,D) = Γ− lim
h→∞

(
IE(·) + d2 (·,Dh)

)

If (zh) is a sequence of elements of Z with suph IE(zh) + d2(zh,D) <∞
then there is a subsequence converging weakly to some z ∈ E .

In the above Theorem, the limit operator Γ − lim denotes the Γ−convergence of
sequence of functionals in a topological space, defined in Conti et al. (2018, Definition
2.3). This Theorem states that the convergence of the material data set Dh to D
and the equi-transversality condition are sufficient to ensure the convergence of
the solution zh to z of the corresponding data-driven Dh-problem and D-problem,
respectively. A corollary is that any data-driven D-problem in these conditions has
solutions (see Conti et al. (2018, Corollary 2.9)), provided that the material data set
D and the constraint set E are weakly sequentially closed1. This holds in particular
for closed convex data sets, including linear subspaces of Z, i.e. collection of linear
elastic graphs. An analogous convergence theorem is derived in Conti et al. (2018,
Section 3.1) for cases where the material set D fails to be weakly closed, which is
the case for instance in nonlinear elasticity. It calls for the convergence of sequences
(Dh) of material data sets and sequences (yh) ∈ E of compatible and balanced
local states simultaneously to ensure the convergence of the solution zh ∈ Dh ∩ E
to z ∈ D ∩ E . Again, the convergence of the material data sets is understood in

1closed in weak topology: given any convergent sequence of points in the subset, every limit of
the sequence lies inside the subset.
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terms of fine (density) and uniform (spread away) approximations, as illustrated in
Fig. II.3(b).

From an engineering point of view, the most important results to retain from
the work of Conti et al. (2018), are, in our sense:

• the data-driven framework encompasses the classical linear elastic formula-
tion, since the unique solution to the DC-problem is the linear elastic solution
Eq. (II.18);

• there is a solid mathematical ground proving that the better the discrete ma-
terial data set Dh approximates the limiting (linear) elastic graph D, the closer
the data-driven solution to the classical (linear) elastic solution. In that sense,
numerical data-driven schemes are expected to converge to the reference solu-
tion obtained with a constitutive model, as the material data set increasingly
approximates the constitutive model.

1.2.3 Discrete formulation

As aforementioned, the data-driven approach was first introduced in a more com-
putational manner by Kirchdoerfer and Ortiz (2016), through a finite dimensional2

numerical formulation we briefly recall in this section.

Truss structures First, the data-driven problem is formulated for truss struc-
tures. Let us consider a truss structure ofM bars and N degrees of freedom, subject
to forces {fi}Ni=1. In this one-dimensional setting, only the longitudinal strain εe and
stress σe are considered in each bar member e. The local phase space Z(e)

loc = (εe, σe)

is then conveniently reduced to a part of the R2 plane. The global phase space is
now the finite product set

Z = Z(1)
loc × · · · × Z

(M)
loc . (II.22)

The global state of the truss is then represented by a point (ε, σ) = {(εe, σe)}Me=1 in
Z.

The governing equations for the structure write

εe =

M∑

e=1

Beiui, ∀e ∈ [1 . . M ], (II.23a)

M∑

e=1

weBeiσe − fi = 0, ∀i ∈ [1 . . N ], (II.23b)

where {ui} i = 1N is the array of displacement degrees of freedom, the matrix B
encodes the connectivity and geometry of the truss (i.e. the derivatives of the shape

2as opposed to the functional spaces of the continuum formulation which are of infinite dimen-
sion.
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functions in each bar) and we = AeLe is the volume of the bar with cross-sectional
area Ae and length Le. This governing equations re-define the constraint set as

E = {(ε, σ) ∈ Z | Eq. (II.23)} . (II.24)

Let now assume that a local material data set D(e)
loc = {(ε′i, σ′i) | i ∈ [1 . . me]} of

me strain-stress pairs collects a sampling of the material response of each bar, as
provided by uniaxial tensile tests performed a priori on the material for instance.
The global material data set is now the collection of the M local data sets:

D = D(1)
loc × · · · × D

(M)
loc . (II.25)

The objective of the data-driven solver is to find the global state (ε, σ) ∈ E of
the truss which verifies Eq. (II.23), while being as close as possible to the material
data set. This is achieved by formulating a penalty function as

F =

M∑

e=1

weFe(εe, σe), (II.26)

where the local deviation to the database is defined in local phase space as

Fe = min
(ε′e,σ

′
e)∈D(e)

loc

(
1

2
Ce
(
εe − ε′e

)2
+

1

2
C−1
e

(
σe − σ′e

)2
)
, (II.27)

with Ce a positive constant. In the end, the data-driven formulation for truss
structures consists in a constrained minimization problem of the form

Find S = {(εe, σe)}Me=1 such that

S = arg min
(ε,σ)∈Z

M∑

e=1

we Fe(εe, σe), (II.28a)

subject to

εe =
N∑

i=1

Beiui;
M∑

e=1

weBeiσe − fi = 0. (II.28b)

As one can see, this data-driven formulation for truss structures is directly related
to the continuous one recalled in Section 1.2.1: the compatibility and (the weak
form of) equilibrium equations have merely been evaluated in a finite dimensional
physical space (finite collection of bar elements). Likewise, the deviation function
Eq. (II.26) results from a discrete integration of the square of the continuous norm
Eq. (II.12), with constant strain and stress states in each bar element. Note that
the positive scalar constant Ce plays the same role as the reference stiffness tensor
C in Eq. (II.12).
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Elastic solids Second, Kirchdoerfer and Ortiz (2016) formulated the approach
for general geometrically linear elastic problems, where the strain-stress state is
now evaluated at the integration points of a FE mesh. They considered a FE model
of a nonlinear elastic solid in the linearized kinematics approximation. The mesh
is composed of M integration points and N nodes. The local state ze = (εe,σe)

of integration point e now belong to the 12-dimensional local phase space Zloc =

R3×3
sym×R3×3

sym. The material response of each integration point is then characterized by
a material database D(e)

loc, consisting of a finite number of tensor pairs z′e = (ε′e,σ
′
e).

The local penalty function writes

Fe = min
(ε′e,σ

′
e)∈D(e)

loc

(
We

(
εe − ε′e

)
+W ∗e

(
σe − σ′e

))
, (II.29a)

with

We(εe) =
1

2
(C : εe) : εe, (II.29b)

W ∗e (σe) =
1

2
(C−1 : σe) : σe. (II.29c)

two functionals that may regarded as reference strain and complementary energy
densities. We define the local distance |ze − z′e|C in Zloc ×D(e)

loc as

|ze − z∗e |2C = We

(
εe − ε′e

)
+W ∗e

(
σe − σ′e

)
. (II.30)

. Here, the reference stiffness tensor C is expressed as3

C = λ (I ⊗ I) + 2µIS , (II.31)

where λ, µ are some numerical parameters and ISYM (resp. I ⊗ I) the symmetric
(resp. spherical) fourth-order identity tensor. As for truss structures, the data-
driven problem develops into a constrained minimization problem, which penalizes
the deviation from the material data set while ensuring the respect of mechanical
constraints. It is formulated as follows:

Find S = {(εe,σe)}Me=1 such that

S = arg min
(ε,σ)∈Z

M∑

e=1

we min
(ε′e,σ

′
e)∈D(e)

loc

(
We

(
εe − ε′e

)
+W ∗e

(
σe − σ′e

))
(II.32a)

subject to

εe =

N∑

a=1

Beaua, ∀e ∈ [1 . . M ], (II.32b)

M∑

e=1

weB
T
eaσe − fa = 0, ∀a ∈ [1 . . N ], (II.32c)

3Note that in Kirchdoerfer and Ortiz (2016), the stiffness parameter is in fact 1
2
C; the local

reference energy densities hence do not comprise the 1
2
factor. The formulation adopted here is

obviously equivalent.
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where u = {ua}Na=1 denote the nodal displacement vectors, {fa}Na=1 are the nodal
force vectors, the matrix Bea encodes the connectivity and geometry of the FE mesh
and we now denotes the integration weight. The solution of the minimization prob-
lem Eq. (II.32) is the collection {ze}Me=1 ∈ E of mechanical states which verify the
compatibility and equilibrium equations Eqs. (II.32b) and (II.32c). Concurrently,
the collection {z∗e}Me=1 ∈ D of the closest material data points are referred to as the
material states. The material state of integration point e is thus defined as

z∗e = (ε∗e,σ
∗
e) = arg min

(ε′e,σ
′
e)∈D(e)

loc

∣∣ze − z′e
∣∣
C , ∀e ∈ [1 . . M ]. (II.33)

To conclude this section, we summarize the above definitions and minimization
problem as well as we illustrate the relationship between the original FE data-driven
formulation of Kirchdoerfer and Ortiz (2016) and the mathematical framework of
functional spaces derived in Conti et al. (2018) with the schematic in Fig. II.4.

Figure II.4 – Functional spaces of the data-driven FE formulation. The mechanical
state ze (red circle) of the integration point can only move along the constraint set
(red solid line). The material state z∗e (light blue star) of the integration point is
the closest material data point selected from the material database D(e)

loc (dark blue
stars), according to the local distance |ze − z∗e |C defined Eq. (II.30).

1.3 Original algorithm

The data-driven problem Eq. (II.32) involves two nested minimization over a
continuous-valued functional space Z and a discrete-valued functional space D. It
then mixes a conventional multi-variate constrained optimization problem with a
combinatorial optimization. In that sense, it is a difficult problem to solve numeri-
cally. Kirchdoerfer and Ortiz (2016) originally proposed a simple heuristic consisting
in an alternated minimization illustrated in Fig. II.5: first the material states are
fixed and the mechanical states are determined solving the continuous constrained
minimization problem; then the material states are updated from a search for nearest



Figure II.5 – Original alternated minimization proposed by Kirchdoerfer and Ortiz
(2016). We illustrate a typical local data assignment iteration in the local phase
space. The mechanical states (red circles) always lie on the constraint set while the
material states (light blue stars) are successively selected from the material data
set, according to the local distance |ze − z∗e |C defined Eq. (II.30).
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neighbor in the material data set. The algorithm stops when the updated material
states are unchanged: the objective function can then no longer improve.

With this approach, the double minimization problem Eq. (II.32) is split into
two distinct problems, presented below.

• Let us first consider the stage where the mechanical state

z = {ze = (εe,σe)}Me=1 ∈ E
is fixed. The intermediate material solution set Smat ⊂ D is then determined
from Eqs. (II.32a) and (II.33). It results from M independent searches for
nearest neighbors in local phase space:

Smat(z) =

{
arg min

z′e∈D
(e)
loc

∣∣ze − z′e
∣∣
C | e ∈ [1 . . M ]

}
. (II.34)

• Let us now consider the stage where the material state

z∗ = {z∗e = (ε∗e,σ
∗
e)}Me=1 ∈ D

is determined. The double minimization problem Eq. (II.32) is reduced to
a constrained simple minimization problem. The intermediate mechanical
solution set Smec ⊂ E then results from

Smec(z∗) = arg min
z∈Z

M∑

e=1

we |ze − z∗e |C (II.35a)

subject to

εe =
N∑

a=1

Beaua, ∀e ∈ [1 . . M ], (II.35b)

M∑

e=1

weB
T
eaσe − fa = 0, ∀a ∈ [1 . . N ]. (II.35c)

The resolution method employed to solve this problem is detailed in the fol-
lowing.

To solve the continuous constrained minimization sub-problem Eq. (II.35),
Kirchdoerfer and Ortiz (2016) adopted a Lagrange multipliers method to enforce
the equilibrium constraint. The Dirichlet boundary conditions and the compati-
bility constraint are classically enforced in the FE model by fixing the prescribed
nodal displacements and by directly expressing strains in terms of displacements,
respectively. Consequently, the stationary problem writes

δ

[
M∑

e=1

we

(
We

(
N∑

a=1

Beaua − ε∗e

)
+W ∗e (σe − σ∗e)

)

−
N∑

a=1

ηa ·
(

M∑

e=1

weB
T
eaσe − fa

)]
= 0, (II.36)
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with η = {ηa}Na=1 the nodal Lagrange multiplier vectors. All possible variations
yield the following stationary equations

δua ⇒
M∑

e=1

weB
T
ea

(
C :

(
N∑

b=1

Bebub − ε∗e

))
= 0, ∀a ∈ [1 . . N ], (II.37a)

δσe ⇒ C−1 : (σe − σ∗e)−
N∑

a=1

Beaηa = 0, ∀e ∈ [1 . . M ], (II.37b)

δηa ⇒
M∑

e=1

weB
T
eaσe − fa = 0, ∀a ∈ [1 . . N ], (II.37c)

which are rendered into two standard linear elastic systems of pseudo-stiffness C of
the form

N∑

b=1

(
M∑

e=1

weB
T
ea : Ce : Beb

)
ub =

M∑

e=1

weB
T
ea (Ce : ε∗e) , ∀a ∈ [1 . . N ],

(II.38a)
N∑

b=1

(
M∑

e=1

weB
T
ea : Ce : Beb

)
ηb = fa −

M∑

e=1

weB
T
eaσ
∗
e , ∀a ∈ [1 . . N ].

(II.38b)

As Kirchdoerfer and Ortiz (2016) point out, “the displacement problem Eq. (II.38a)
is driven by the optimal local strains, whereas the Lagrange multipliers problem
Eq. (II.38b) is driven by the out-of-balance forces attendant to the optimal local
stresses”. Moreover, the two systems share the same stiffness matrix of standard
FE form, which can be computed, factorized and stored once and for all at the
beginning of the simulation. In addition, from Eq. (II.37b), the mechanical stresses
are obtained by a correction of the material stresses as

σe = σ∗e +

N∑

a=1

C : (Beaηa) , ∀e = 1 . . M. (II.39)

Consequently, the Lagrange multipliers η can be regarded as virtual displacements
which, associated to a stiffness C, generate stresses that correct the out-of-balance
gap between the material and mechanical stresses and the external forces. The
computation of the mechanical states is then divided into two parts:

1. displacements u and Lagrange multipliers η result from Eq. (II.38),

2. mechanical strains ε consequently derive from the compatibility Eq. (II.32b)
and mechanical stresses σ are obtained from the correction Eq. (II.39).

1.4 Numerical results

In their first contribution, Kirchdoerfer and Ortiz (2016) focused on numerically
assessing the convergence of the data-driven solvers to the classical solution, as the
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material data set approximates the strain-stress curve increasingly closely, for both
a truss structure and a 3D tensile test. In this section, we choose to reproduce
almost exhaustively their results, as they provide the specific method of analyzing
data-driven results we will adopt in our work.

1.4.1 Truss structures

The analysis of truss structures is a convenient way of discussing the performances
of data-driven solvers as it allows for a 2D representation of the material data set.
Kirchdoerfer and Ortiz (2016) then first evaluated the data-driven solver for the
truss formulation Eq. (II.28). They focused on: (i) the convergence to the classical
solution with respect to the number of points for both noise-free and noisy material
data sets, and (ii) the sample quality of the material data set, i.e. the adequacy
between phase space coverage of the data sets and of the expected solution. For this
purpose, they sampled a nonlinear elastic constitutive model and studied the truss
structure both recalled in Fig. II.6.

Physical space Phase space

Figure II.6 – Physical space (left): geometry and loading of the truss containing
1048 degrees of freedom. Phase space (right): constitutive model (solid black line)
all bars obey used to sample the material data set and reference solution (brown
dots), to show the range of local states covered by the problem. From Kirchdoerfer
and Ortiz (2016).

Convergence with respect to the number of data points First Kirchdoer-
fer and Ortiz (2016) monitored the decrease of the objective function throughout
the data-driven iterations, for material database of different sizes, resulting from
the sampling of the constitutive model, as shown in Fig. II.7(a). They emphasized
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(a) (b)

Figure II.7 – (a) Convergence of the global penalty function Eq. (II.26) for noiseless
material data sets of increasing size. (b) Distribution of values of the local penalty
functions Fe Eq. (II.29) at convergence. From Kirchdoerfer and Ortiz (2016).

that the number of fixed point iterations required to converge is relatively small
and increases with the number of material data points. The former is remarkable
while the latter was expected, considering the combinatorial complexity of the prob-
lem. Second, they monitored the convergence to the reference solution by means of
normalized percent root-mean-square (RMS) strain and stress errors defined as

ε(%RMS) =
1

εref
max

(∑M
e=1we

(
εe − εref

e

)2

M

) 1
2

(II.40a)

σ(%RMS) =
1

σref
max

(∑M
e=1we

(
σe − σref

e

)2

M

) 1
2

, (II.40b)

respectively, with
{(
εref
e , σref

e ,
)}M

e=1
the strain and stress states of the reference so-

lution and
(
εref

max, σ
ref
max,

)
the corresponding maximum values. We summarize their

results for both noise-free and noisy material databases of increasing size in Fig. II.8.
From these figures, the authors highlighted the following key findings:

• For noise-free data sets:

– the truss data-driven solver exhibits close to linear convergence to the
reference solution, accordingly to the estimates derived in the last part
of their paper (Kirchdoerfer and Ortiz, 2016);

– the alternated minimization is insensitive to the random initial assign-
ment of the material states (see the tightness of the histograms in bottom-
left Fig. II.8);
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• For noisy data sets:

– the data-driven solver still converges to the reference solution, although
the convergence rate of roughly 1/2 is lower than the one obtained with
noise-free data;

Noisy data setsNoise-free data sets

Figure II.8 – Top: material data sets, without noise (left) and with Gaussian random
noise (right). Bottom: corresponding convergence of strain and stress RMS errors
Eq. (II.40) with number of sampling points; histograms correspond to 30 initial
random assignments (left) and to 100 different random data sets (right). From
Kirchdoerfer and Ortiz (2016).

Sample quality of the material data set Another feature of the data-driven
solver assesses the sample quality of the material data set. Indeed, the final value
of the local penalty function Eq. (II.29) provides a measure of the distance between
the mechanical and material states of each member of the truss. Histograms of these
error measures for the data sets of different sizes are reported in Fig. II.7(b). The
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average value decrease with the number of sampling points while a spread remains,
“indicating that the states of certain truss members are better sampled by the data
set than other”. A high value of Fe indeed shows that no material data point exists
near enough the solution state of the bar, and conversely. The authors argue that the
analysis of this specific feature of the data-driven solver then provides a strategy to
adaptively expand the data set, in order to improve phase space coverage in regions
lacking data points.

1.4.2 Three-dimensional linear elasticity

The second contribution of Kirchdoerfer and Ortiz (2016) is the analysis of a three-
dimensional linear elastic problem. In that case, the high-dimensionality (12) of
the phase space, resulting from pairs of symmetric strain and stress tensors, is
enough to raise questions on sampling and coverage. To lower phase-space sampling
requirements, they restrict to a tensile test specimen, assuming plane stress state
and isotropy of the material. The former conditions allows for the phase space to be
reduced to a six-dimensional (or three-dimensional according to the authors) phase
space: only a neighborhood of the subspace σ13 = σ23 = σ33 = 0 is needed, which is
accomplished by a sampling of the σ11, σ22, σ12 plane stress plane only, on a uniform
cubid grid. The corresponding strain ε11, ε22, ε12 are generated with an isotropic
linear elastic law. The sampling strategy is illustrated in Fig. II.9. The latter
condition on isotropy also allows for reducing the amount of data points needed to
represent the material behavior: isotropy means that if (εe,σe) is a material data
point, then so are

(
RT
e εeRe,R

T
e σeRe

)
for all rotations matrices Re. The search for

nearest neighbors Eq. (II.33) is then modified to optimize on the rotation matrices
as well:

min
(ε′e,σ

′
e)∈D(e)

loc

min
R∈SO(3)

(
We

(
εe −RT

e ε
′
eRe

)
+W ∗e

(
σe −RT

e σ
′
eRe

))
, (II.41)

where SO(3) is the group of proper orthogonal matrices in three dimensions. The
corresponding optimality condition is handled with a Lagrange multipliers method
resulting in a nonlinear system of equations that is solved using a Newton-Raphson
scheme and a parametrization of SO(3) (we refer to the original paper for more
details).

The thin tensile test specimen is meshed with eight-node hexahedral elements
containing eight quadrature or integration points each, with two different average
element edge lengths of h = 1 mm and h = 0.5 mm. The corresponding coarse and
fine meshes contain one and two elements in the thickness respectively. The meshes
together with the material data sampling strategy are illustrated in Fig. II.9.

The convergence of the data-driven solver is again monitored with the penalty
function F , which decreases with the number of iterations and increasing size of the
material databases, regardless of the mesh resolution, as shown in Fig. II.10(a). The
convergence to the reference solution is linear, of rate 3, as shown in Fig. II.10(b),
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Figure II.9 – (left) Two-dimensional view of the three-dimensional meshes for the
tensile test specimen, from Kirchdoerfer and Ortiz (2016). (right) Material data
sampling strategy: first, the plane stress subspace is uniformly sampled on a cubic
grid; second, the corresponding strain tensors are derived from a linear elastic law,
with reference stiffness Cref .

where the RMS percent errors are redefined as

ε(%RMS) =

(∑M
e=1weW

(
εe − εref

e

)
∑M

e=1weW (εref
e )

) 1
2

(II.42a)

σ(%RMS) =

(∑M
e=1weW

∗ (σe − σref
e

)
∑M

e=1weW
∗ (σref

e )

) 1
2

, (II.42b)

with W and W ∗ the strain and complementary energy densities computed with the
reference modulus Cref .
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(a) (b)

Figure II.10 – (a) Convergence of the local material data assignment iteration. (b)
Convergence to the reference solution with respect to sample size, measured by the
RMS errors defined Eq. (II.42). From (Kirchdoerfer and Ortiz, 2016).

2 Improvements, inspirations and extensions

The data-driven computing method, as developed in Kirchdoerfer and Ortiz (2016)
and Conti et al. (2018) is then well established in small strain elasticity. This seminal
work has triggered renewed interest for research in the field of “data-driven compu-
tational mechanics”, understood in the broad sense. Several authors have recently
either contributed to improve the original DDCM, taken inspiration to develop new
data acquisition techniques, or extended it to other classes of problems. In this
section, we review, as exhaustively as possible, those contributions.

2.1 Dealing with local minima and/or noisy data sets

Kirchdoerfer and Ortiz (2016) quite rapidly evacuated the sensitivity of the proposed
data-driven solvers to the initialization of the local data assignment, i.e. the choice of
material states to begin the alternated minimization with. Yet, as can be seen from
Fig. II.8(bottom-left), however narrow are the histograms bining the RMS percent
errors obtained for 30 different initial random assignments, the choice of the initial
material states inevitably influences the converged solution, for a material database
of finite size. This means that the proposed scheme does not converge to the global
minimum of the double constrained minimization problem but rather falls in local
minima. This behavior is of no significant impact with rather noise-free data sets
as the different converged solutions are very similar. However, with increasing noise
in the data, possibly creating outliers data points, the alternated heuristic is very
limited, as shown by Kanno (2018).

To overcome this issue, Kirchdoerfer and Ortiz (2017) proposed an entropy-
maximizing (max-ent) solver that consists “assigning data points a variable relevance
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depending on distance to the solution and through maximum-entropy estimation”.
Associated with a simulated annealing solver, this new approach efficiently penalizes
the outliers in the database and is hence more robust to noisy material databases.
In fact, pure data-driven approaches, and in particular the DDCM developed by
Kirchdoerfer and Ortiz (2016), suffer from the well-known curse of dimensionality:
the higher the dimensionality of the phase space, the harder for the material data
set to cover the relevant regions needed for the solution to converge. As a reminder,
the phase space of general 3D elastic problems is already of dimension 12. The
recent contribution of Eggersmann et al. (2020) specifically addresses this issue. It
consists in computing a tangent space to each point in the local material data set in
a off-line stage, and additionally minimizing the distance to it. This enhancement
allows for the interpolation in regions of sparse data sampling and showed higher
performances and convergence rates than the original distance minimizing approach
and the max-ent solver altogether. A different approach was chosen by Kanno
(2019): the author showed that the data-driven distance-minimizing problem is in
fact a well-posed Mixed-Integer Quadratic Programming (MIQP) problem, for which
efficient branch-and-bounds solvers provide the global minimum of the problem, as
opposed to the alternated minimization. Note that the solution is obtained however
at high expense, since the number of unknowns is then the product of the number
of material data points with the number of integration points in the mesh.

Another way of improving the robustness of data-driven solvers is to assume
an existing, yet not parameterized, constitutive manifold in the material database.
The optimal material state, for a given mechanical state, is obtained by a projection
on the reconstructed manifold, rather than by the original simple nearest neighbor
projection. This approach has been adopted in Kanno (2020), where the manifold is
approximated using kernel regression, in He and Chen (2020) where a locally convex
reconstruction is proposed, and in Gebhardt et al. (2020), where the authors modi-
fied the discrete-continuous minimization problem by adding the constraint that the
material data points must lie on a smooth implicit manifold. These contributions
all advocate for a coupling between a pure model-free data-driven solver and mani-
fold learning techniques, in order to “smooth” the optimization problem and be less
sensitive to noise in the data set and hence local minimizers.

When dealing with insufficient data, noise or uncertainty, another common ap-
proach is to use a statistical representation of the problem. In particular, Ko-
rzeniowski and Weinberg (2019) compared the DDCM approach to standard FE

stochastic solvers. Moreover, Ayensa-Jiménez et al. (2018) proposed a stochastic
formulation of the data-driven problem, where the material data points are consid-
ered to have random nature.

2.2 Data-driven identification

As we now understand, the key input in DDCM is the material database, i.e. the
collection of stain-stress pairs representative of the material response. The first
numerical experiments that were conducted by the aforementioned authors show
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that data sampling and phase space coverage are of high importance for the con-
vergence of the data-driven solution. But the simplest, yet not tackled, question is
certainly the acquisition of such strain-stress tensor pairs. Indeed, the development
of full field measurements techniques, such as Digital Image Correlation (DIC) or
tomography, has given access to rich data sets of almost directly measured strains.
But the measurement of stresses is usually subject to much more assumptions, in
particular homogeneous loading conditions and, in the end, the experimental mea-
sure is reduced to a scalar. To provide a way of acquiring multi-dimensional stress
field directly from experiments and without a constitutive relation, Leygue et al.
(2018) developed an inverse formulation of the DDCM, so-called Data-Driven Iden-
tification (DDI). The material data set is no longer the input of the solver but the
output, derived from the boundary and loading conditions and the mechanical, com-
patible, strain field obtained by DIC from the measured displacement field. At first,
the DDI method was developed using synthetic FE-based data. Let us consider nu-
merical tests for which the data is collected for different loading conditions, labeled
X. Then, the available inputs, are:

• the nodal displacements uXa ,

• the mechanical strains εXe =
∑

aB
X
eau

X
a at each integration point, computed

from the finite element geometry and connectivity, encoded in matrix BX
ea

• the applied nodal forces fXa

• prescribed nodal displacements

The aim of the DDI method is then to compute from the available data:

• the mechanical stress state σXe of each integration points e of the loading stage
X,

• the database of material states (ε∗i ,σ
∗
i ). The total number of material states

is denoted N∗ and fixed beforehand. They are determined according to the
unchanged norm | · |C (see Eq. (II.29)) of the local phase space.

The discrete-continuous problem then writes:

solution = arg min
σ,(ε′,σ′)∈D

∑

e,X

wXe
∣∣(εXe ,σXe

)
−
(
ε′eX ,σ

′
eX

)∣∣
C (II.43a)

M∑

e=1

wXe B
XT

ea σ
X
e − fXa = 0, ∀a, X, (II.43b)

where the material state
(
ε′
eX
,σ′

eX

)
of integration point e in loading stage X takes

value in the (unknown) material database Dloc = {(ε∗i ,σ∗i )}N
∗

i=1. In comparison
with the original DDCM formulation, the minimization variables have changed, as
well as the compatibility equation is no longer needed, since the mechanical strains
are known. The approach was successfully implemented in small strain nonlinear
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elasticity for synthetic problems in Leygue et al. (2018). It is of particular interest
for supplying DDCM simulations with “importance sampled” material data sets, as
shown in Stainier et al. (2019). In addition, it was successfully extended to large
strains and tested with raw experimental data in the PhD thesis of Dalémat (2019),
which provided a new approach for “measuring stress field without constitutive equa-
tion” (Dalémat et al., 2019). This type of inverse methods was also developed for
elasto-plasticity by Réthoré et al. (2018) and further explored in nonlinear elastic-
ity, plasticity and dynamics in Leygue et al. (2019). This appealing direction of
research is out of the scope of the present thesis: we will develop data-driven solvers
and numerically tests them with synthetic data, assuming that, in a near future,
some experimentally acquired data turn available thanks to these techniques.

2.3 Extension to other classes of problems

In the recent years, the DDCM has been extended to other classes of problems. First,
by the authors themselves, who extended the method to dynamics in Kirchdoerfer
and Ortiz (2018). We can also mention the work of Nguyen et al. (2020) who
proposed a variational formulation suitable for solving Poisson equation, diffusion
problems and which applies to elasticity. The authors also elucidated a proper tran-
sition from the continuous formulation to the discrete FE formulation, with special
attention to the boundary conditions needed for the Lagrange multipliers. Recently,
Carrara et al. (2020) have also proposed an extension to fracture mechanics.

In fact, changing the class of problem tackled by the data-driven approach means
adapting the phase-space to the quantities which are relevant to describe the prob-
lem. For instance, Eggersmann et al. (2019) provided an application of the DDCM to
history-dependent behavior such as visco-elasticity. Notably, the authors discussed
the possible manner of taking into account the past history of deformation. Finally,
Nguyen and Keip (2018) proposed an extension to large strain elasticity, adopt-
ing a Lagrangian formulation: the phase-space is now constituted with all possible
Green-Lagrange strain–second Piola-Kirchhoff stress pairs (E,S). The structure of
the minimization problem is unchanged, but the mechanical constraints (compati-
bility and equilibrium) are now nonlinear. Another formulation is then chosen by
Conti et al. (2020), which we refer to as the nominal formulation: the minimization
is conducted over all possible deformation gradient–first Piola Kirchhoff stress pairs
(F ,P ). We shall explore these alternatives in the present thesis.

3 Summary

The DDCM approach first introduced by Kirchdoerfer and Ortiz (2016) not only
provides a new FE linear elastic solvers, which can not yet compete with the mature
FE method obviously, but mostly a new computing paradigm, which has triggered
many applications and extensions in the past few years and months. It invites to
a radical change of perspective: the material behavior is no longer hard-coded in
the simulation with a constitutive model but rather represented with raw strain-
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stress data, which can, if needed, be locally interpreted in terms of tangent spaces
or manifolds, without any prior assumptions. It also changes the structure of the
problems to be solved: the objective is now to minimize some distance to a material
data set, while ensuring mechanical admissibility constraints. Hence, data-driven
computing is more consistent than the classical approach with the reliability of each
type of equations. The difference between the standard and the data-driven FE

formulations are highlighted in Fig. II.11.
The DDCM approach was developed and can now be considered mature for (non-

linear) elastic problems, under the linearized kinematics assumption, for homoge-
neous materials. Several directions of research then offered for this PhD thesis from
the starting point of Kirchdoerfer and Ortiz (2016). We chose to investigate two
of them: (i) the extension to other mechanical behavior for homogeneous mate-
rials, (ii) the application of the method to the computational homogenization of
heterogeneous materials. The rest of manuscript is then divided into two parts:

• Adaptation to large strain elasticity.

• Towards data-driven multiscale numerical schemes.

In Part B, we first address the extension of DDCM to large elastic deformation. As
aforementioned, this requires to formulate the distance-minimizing problem in a
different phase space. The specific case of large strain elasticity was favored over
the extension to anelastic behaviors because of its particular interest for rubber-
like materials, which bring about a large part of research on constitutive modeling,
as pointed out in Chapter I. Besides, once finite strain is elucidated for elastic
materials, it should allow for the extension of the approach to anelastic materials
exhibiting large deformation, based on the propositions by Eggersmann et al. (2019).
To the best of our knowledge, only the two above-mentioned contributions provided
a large strain extension to the DDCM: the Lagrangian formulation of Nguyen and
Keip (2018) and the nominal formulation of Conti et al. (2020). However, as first
propositions, they both present some limitations and are hence worth exploring
further.

• The contribution of Nguyen and Keip (2018) lacks a proper generic FE formu-
lation which would compare with the well-established standard finite strain FE

method we recalled from Bonet and Wood (2008) in Chapter I. In addition,
little analysis on the richness and the sampling of the material database has
been conducted. The mathematical convergence of the Lagrangian formula-
tion has also yet to be assessed, due to the nonlinearity of the kinematic and
equilibrium constraints.

• With their proposition, Conti et al. (2020) overcome the latter issue. However,
the proposed continuum mechanics formulation does not provide a straight-
forward FE implementation and the performance of the attendant solver has
yet to be assessed.
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In the present thesis, we then chose to investigate and compare both formulations,
so as to address the remaining gaps towards a standardization analogous to the
original DDCM approach. In short, the extension of DDCM to finite strain elasticity
requires to modify several blocks of the representation in Fig. II.11:

1. the core of the data-driven solver (blue central block) must be modified, as
the distance function and the constraints differ from one formulation to the
other,

2. the material description (bottom left red block) should now involve a database
of Lagrangian or nominal states,

3. the mechanical response (top right yellow block) is subsequently modified and
must be evaluated with renewed relevant metrics.

The manuscript is accordingly organized as follows.

Part B. Both the Lagrangian and nominal formulations of a finite strain FE data-
driven solver are derived in Chapter III. Chapter IV is dedicated to the gen-
eration and analysis of different material databases suitable for large strain
simulation. As pointed out by Kirchdoerfer and Ortiz (2016), the distance-
minimizing formulation provides error measures which “highlight data regions
that require additional resolution” and penalize “attempts to simulate beyond
the data regime”, while the constitutive models are often used outside of their
validity domain. A thorough examination of the material data sets is equally
required in finite strain and has not been addressed yet, to the best of our
knowledge. Finally, we investigate the performance of the thus-elaborated
data-driven solvers in Chapter V, with the aid of a particular example: the
static FE analysis of a three-dimensional nonlinear elastic solid, subject to
large deformation.

Part C. The second part of our work is devoted to the development of data-driven
multiscale simulations. We introduce in Chapter VI the preliminary develop-
ments and attendant results for a novel data-driven scheme applied to hetero-
geneous materials. The material database then consists of macroscopic strain-
stress pairs and is successively enriched, in a multiscale iterative process, from
FE computational homogenization of the microstructure.
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1 Introduction

From Chapter II, we can say that DDCM roughly consists in minimizing the distance
between two types of strain-stress pair fields: one, representing the material response,
is selected in a material database and the other, verifying both equilibrium and
compatibility equations, represents the mechanical state of the body. To extend the
approach to large elastic deformations, we now need to determine the appropriate
constitutive variables to work with.

In the case of materials exhibiting large deformations independent of the history
of deformation, the strain and stress fields still suffice to fully describe the mechan-
ical state of a material point in the body. From Chapter I, we know that several
work/power conjugate strain-stress pairs are available in finite strain (cf. Table I.1):

Lagrangian: the Green-Lagrange strain tensor and the second Piola-Kirchhoff
stress tensor (E,S);

Nominal: the deformation gradient tensor and the first Piola-Kirchhoff stress ten-
sor (F ,P );

Eulerian: the rate of deformation tensor and the Cauchy stress tensor (d,σ);

Note that defining an Eulerian strain measure that is work conjugate to the Cauchy
stress is not as immediate as for the Lagrangian or nominal formulations. That is
why we did not consider the Eulerian framework in the present thesis. The extension
of the DDCM to large strain elasticity has been tackled in two recent publications, by
Nguyen and Keip (2018) and Conti et al. (2020). The former proposed a Lagrangian
formulation of the problem while the latter provided a nominal formulation, enabling
mathematical proofs of convergence, inspired from their previous work in small
strain (Conti et al., 2018). These first contributions have yet to be explored and
compared, and both lack a proper FE formulation. In this chapter, we then provide
FE formulations and solvers for both approaches and discuss their implementation
and robustness, thanks to simple examples.

2 Finite strain data-driven computational mechanics

Both Lagrangian and nominal formulations presented here adopt the same heuristic
as in small strain, i.e. an alternated minimization between the material states and
the mechanical states, which is represented in Fig. III.1. Both approaches require
several key ingredients of the DDCM to be adapted to finite strain elasticity:

• the strain-stress phase space is now constituted either with Lagrangian conju-
gate tensors (E,S) or with nominal conjugate pairs (F ,P );

• the phase space is equipped with a new metric measuring distances between
local states, thus modifying the objective function;



Figure III.1 – Alternated minimization used for large strain data-driven solvers,
adapted from the original heuristic proposed by Kirchdoerfer and Ortiz (2016).
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• the kinematics and equilibrium equations are reformulated using the classical
Lagrangian or nominal formulation recalled in Chapter I;

• the nonlinearity of the above-mentioned minimization constraints complicates
the computation of the mechanical states (step 2 of the algorithm), for which
specific numerical schemes must be employed.

This section is then organized as follows: for each formulation, we present the
continuum mechanics of the large strain data-driven BVP before its FE discretization.
Then, we provide the specific numerical strategies employed to adapt the data-driven
solvers to the nonlinearity of the resulting equations. We follow, when possible, the
same rationale as the one adopted in Chapter II to present small strain DDCM.

2.1 Lagrangian approach

As mentioned in Nguyen and Keip (2018), a reasonable choice for the strain-stress
pair field in finite strain elasticity is (E,S) as it ensures both objectivity and a
straightforward linearization to the small strain elastic case. Moreover, it involves
symmetric tensors which limits the dimensionality of the phase space to at most 12.

In this section, we provide the Lagrangian formulation for continuum and dis-
cretized data-driven mechanics, inspired by the work of Nguyen and Keip (2018)
but in a more general manner. Then, we present the corresponding FE data-driven
solver.

2.1.1 Continuum mechanics formulation

The large strain continuum mechanics formulation is derived as in the small strain
case (see Section 1.2.1 of Chapter I), i.e. defining local state functions mapping
from the physical space to the phase space.

Let us consider an elastic body occupying a domain Ω0 ∈ Rn in the reference
configuration and Ω ∈ Rn is the deformed one. It is subject to quasi-static loading.
For now, the general three-dimensional case n = 3 is considered only; specific as-
sumptions allowing for the reduction to two-dimensional mechanics will be discussed
next. A material point in the body moves from its initial coordinateX to its current
coordinate x. Since we adopt a Lagrangian formulation of the BVP, the local state
function z now maps every material point X of Ω0 to its Lagrangian local state:

z : Ω0 7→ Zloc

X → z(X) = (E(X),S(X)) (III.1)

where the local phase space Zloc is Rn×nsym × Rn×nsym . The global phase space Z is
again the collection of local state functions z : Ω0 → Zloc. Similarly to the small
strain case, two different subsets of Z divide mechanically admissible and material
quantities.

First, we gather in the constraint set E all local state functions mapping to
mechanically admissible strain-stress fields, i.e., verifying both compatibility and
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equilibrium equations. Using the Lagrangian continuum mechanics setting and no-
tations recalled in Chapter I, these write:

F (X) = ∇0u+ I and E(X) =
1

2

(
F T (X)F (X) + I

)
in Ω0, (III.2a)

u(X) = uD(X) on Γ0D , (III.2b)

and

δW =

∫

Ω0

S : δĖ dV −
∫

Ω0

f0 · δv dV −
∫

Ω0

t0 · δv dA = 0, ∀δv (III.3)

where δĖ = 1/2
(
δḞ TF + F T δḞ

)
, with δḞ = ∂δv/∂X = ∇0δv. The material-

independent constraint set E ⊂ Z is again defined as

E = {z ∈ Z | Eqs. (III.2) and (III.3)} . (III.4)

Second, the material data setD is defined by the collection of local state functions
mapping to Lagrangian strain-stress pairs, stored in the local material data set or
material database Dloc:

D = {z ∈ Z | z(X) ∈ Dloc} , (III.5)

with

Dloc = {(Ei,Si) | i ∈ [1 . . m]} ⊂ Zloc, (III.6)

where m is the number of material data points.
The solution set S of the data-driven BVP can again no longer lie at the inter-

section D ∩ E since D is a discrete-valued set. It is defined as the mechanical state
function z ∈ E closest to the material data set D:

S = arg min
z∈E

d(z,D). (III.7)

where the distance d is defined very similarly to the small strain case as

d(z,Y) = min
y∈Y
‖z − y‖C, ∀Y ⊂ Z, (III.8a)

with

‖z‖C =

(∫

Ω0

(W (E) +W ∗(S)) dV

) 1
2

, ∀z ∈ Z, (III.8b)

where the deviation functions W and W ∗ are defined as

W (E) =
1

2
(C : E) : E, (III.9a)

W (S) =
1

2
(C−1 : S) : S, (III.9b)
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with C a constant symmetric fourth-order positive definite tensor.

For later purposes, let us remark that the minimization Eq. (III.7) can equiv-
alently be conducted with the square of the norm Eq. (III.8b), since the distance
set {‖z − z∗‖C | z∗ ∈ D} only contains real positive numbers (Zakon, 2017):

S = arg min
z∈E

d(z,D) = arg min
z∈E

d2(z,D)

= arg min
z∈E

(
min
y∈D
‖z − y‖C

)2

= arg min
z∈E

min
y∈D
‖z − y‖2C. (III.10)

2.1.2 Reduction to two-dimensional problems

Before moving to the finite element discretization of the finite strain data-driven
setting presented above, we discuss the reduction to two-dimensional problems.

Two-dimensional problems typically arise under plane strain or plane stress con-
ditions. We show in this section that the local phase space Zloc is safely reduced to
R2×2 × R2×2 in both cases.

On the one hand, let us consider a BVP where a plane stress condition is verified
along e3 and the material is incompressible. The former constraint enables the stress
tensor S ∈ R3×3

sym to be reduced to its in-plane components S(2) ∈ R2×2
sym only, as

S =

(
S(2) 0

0 S33

)

(e1,e2,e3)

, (III.11)

with S33 = 0. Together with the plane stress condition Se3 = 0, the latter constraint
enables to also only retain the in-plane components E(2) of the strain tensor E ∈
R3×3

sym, as J = detF = 1 and

E =

(
E(2) 0

0 E33

)

(e1,e2,e3)

, (III.12)

where the out-of-plane strain E33 = (j−2−1)/2 can be determined a posteriori from
j = detF(2), with F(2) ∈ R2×2 the in-plane components of the deformation gradient
tensor F .

On the other hand, when plane strain conditions are assumed, F33 = 1. Hence
F(2) andE(2) suffice to characterize the deformation state. However, the out-of-plane
stress S33 can not be determined in the data-driven approach, as no constitutive
equation relates the two three-dimensional tensors. The data-driven results of a
plane strain problem will then be purely two-dimensional.

In summary, provided that the material data set is constituted with two dimen-
sional

(
E(2),S(2)

)
tensors, the data-driven approach derived above is unchanged

whether n = 2 or n = 3. Note that a similar rationale allows for the definition of
data-driven one-dimensional settings, with applications to other types of mechanical
assumption (e.g. beam theory).
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2.1.3 Finite element formulation

The discretization of the previous data-driven BVP is presented into two steps: (i) the
global phase space Z and metrics are derived from the finite element discretization of
the physical space Ω0 ; (ii) the material data set is then defined as the corresponding
subset while the kinematics and equilibrium constraints Eqs. (III.2) and (III.3) are
discretized in order to formulate the constraint set.

Global phase space and metrics. The data-driven problem Eq. (III.10) requires
to evaluate the following integrals:

‖z‖2C =

∫

Ω0

(
1

2
(C : E) : E +

1

2
(C−1 : S) : S

)
dV

=

∫

Ω0

(
1

2
(C : E) : E

)
dV +

∫

Ω0

(
1

2
(C−1 : S) : S

)
dV, (III.13)

where E and S verify equations Eqs. (III.2a) and (III.3). Let us consider a finite
element discretization of the domain Ω0 into N nodes, labeled a ∈ [1 . . N ]. Let
α ∈ [1 . . N × n] label the degrees of freedom; note that here1

α = α(a, i) = (a− 1)n+ i (III.14)

with i ∈ [1 . . n] the direction. Moreover, the elements are equipped with a Gauss
quadrature rule such that the mesh comprises M integration points, labeled e ∈
[1 . . M ]. As mentioned in Section 1.2.3 of Chapter I, the integrals are evaluated as
weighted sums of their integrands evaluated at the integration points. The integral
of a functional F over the domain Ω0 then results from

∫

Ω0

F(X) dV =
M∑

e=1

F(Xe), (III.15)

with we is the weight associated to the integration point e of coordinate Xe in the
reference configuration Ω0. In the following, we explicitly derive the evaluation of
the strain E and stress S fields at the integration points, in the data-driven setting.

The first term in Eq. (III.13) is evaluated by simply replacing the strain field
E with its relationship to the displacement field Eq. (III.2a). As a reminder, the
displacement field is interpolated in terms of nodal values {ua}Na=1 and nodal shape
functions {Na}Na=1 as

u(X) =
N∑

a=1

Na(X)ua, ∀X ∈ Ω0. (III.16)

From Eq. (III.2a) the strain field is then approximated by

E(X) =
1

2

(
(∇0u)T + ∇0u+ (∇0u)T ∇0u

)
, (III.17a)

1as one possibility among others.
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with

∇0u (X) =
N∑

a=1

(ua ⊗∇0Na(Xe)) . (III.17b)

In the classical approach, the approximation of the stress field readily results
from the approximation of the displacement field, via the compatibility and the
constitutive equations. In the data-driven approach however, the mechanical stress
field S verifying equilibrium Eq. (III.3) is no longer directly related to the displace-
ment field. The definition of the functional space for the FE stress field in the
data-driven setting is out of the scope of the present work. Instead, the stresses are
merely evaluated at the integration points, using Eq. (III.15), as

∫

Ω0

S(X) dX =
M∑

e=1

weSe (III.18)

where Se = S(Xe).
In the finite element formulation, the local state functions are then defined as

the mapping from the integration points to the corresponding strain-stress pairs as

ze : Ω0 → Z(e)
loc = Rn×nsym × Rn×nsym

Xe 7→ (Ee,Se) = (E(Xe),S(Xe)) .
(III.19)

The global phase space being the product set Z = Z1
loc × · · · × ZMloc, a global point

z in Z is the collection of M local state functions: z = {ze}Me=1. The discretization
of the metric Eq. (III.8b) then results from the evaluations of the strain and stress
fields Eqs. (III.17) and (III.18) as

d(z,Y) = min
y∈Y
‖z − y‖C, ∀Y ⊂ Z, (III.20a)

with

‖z‖2C =
M∑

e=1

we (W (Ee) +W ∗(Se)) , ∀z = {ze = (Ee,Se)}Me=1 ∈ Z, (III.20b)

with Ee = E(Xe) from Eq. (III.17).

Constraint set and material data set. On the one hand, the set of mechanically
admissible local state functions E ⊂ Z in the finite element formulation is obtained
by injecting the approximations of the displacement and stress fields Eqs. (III.16)
and (III.18) into equations Eqs. (III.2) and (III.3).

• The Dirichlet boundary conditions Eq. (III.2b) are encoded in an array of nD

scalar prescribed displacements, denoted
{
uD
α

}
α∈D with D = {α1, · · · , αnD},
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such that αk ∈ [1 . . Nn], ∀k ∈ [1 . . nD]. From Eq. (III.17), the kinematics
constraints Eq. (III.2) then write

Ee =
1

2

(
(∇e

0 u)T + ∇e
0 u+ (∇e

0 u)T ∇e
0 u
)
, ∀e ∈ [1 . . M ], (III.21a)

ua · ei = uD
α , ∀(a, i) : α(a, i) ∈ D, (III.21b)

with ∇e
0 u = ∇0u(Xe) from Eq. (III.17b).

• The discretization of the material principle of virtual work Eq. (III.3) is
obtained by using the same discretization for the virtual velocity δe as in
Eq. (III.16) and the symmetry of S. We then have successively

S : δĖ = S :
(
F T δḞ

)
= (FS) : δḞ

= (FS) :

(
N∑

a=1

δva ⊗∇0Na
)

=

N∑

a=1

(FS∇0Na) δva, (III.22)

with {δva}Na=1 the nodal virtual velocities. Injecting Eq. (III.22) into
Eq. (III.3) and recalling that Eq. (III.3) holds for any combination of nodal
virtual velocities, the discrete form of the principle of virtual work is then
defined as the nullity of the discretized residual force vector R = {Ra}Na=1 on
the degrees of freedom α 6∈ D:

Ra · ei = 0, ∀(a, i) : α(a, i) ∈ D (III.23a)

with

Ra =
M∑

e=1

weFeSe∇0Na(Xe)

︸ ︷︷ ︸
T int
a

−
(

M∑

e=1

we Na(Xe)f0(Xe) +

∫

Γ0N

Na(X)t0(X)dA

)

︸ ︷︷ ︸
T ext
a

= 0, (III.23b)

where T int
a (resp. T ext

a ) denotes the internal (resp. external) force vector2. The
nullity of the residual force vector Eq. (III.23) together with the discrete form
of the kinematic constraints Eq. (III.21) redefine the mechanical admissibility
of the local strain and stress states as

E = {z ∈ Z : Eqs. (III.21) and (III.23)} . (III.24)
2Note that Na(Xe) and ∇0Na(Xe) vanish whenever node a and integration point e are not

connected (i.e. do not belong to the same element).
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On the other hand, the material data set D ⊂ Z for the finite element problem
is easily derived as follows. For each integration point e, a local material data set
comprises me strain-stress pairs:

D(e)
loc = {(Ei,Si) , i ∈ [1 . . me]} ⊂ Z(e)

loc . (III.25)

The global material data set is the collection of local state functions mapping every
integration point to a sampling of the material behavior:

D =
{
z ∈ Z | ∀e = 1 . . M, ze(Xe) ∈ D(e)

loc

}
. (III.26)

This formulation allows for taking into account various materials in the structure.
In the rest of the text, the terms material database are used to refer to local material
data sets D(e)

loc, whereas the material data set refers to the functional set D.
All of the above definitions and notations are gathered in the schematic repre-

sentation of the physical and phase spaces given in Fig. III.2.

Figure III.2 – Functional spaces of the Lagrangian finite strain formulation. The me-
chanical state function ze (in red) is a strain-stress field of the nonlinear constraint
set E (verifying kinematics and equilibrium constraints) and the material state func-
tion z′e (in light blue) maps to a strain-stress pair (light blue star), selected from the
material database D(e)

loc (dark blue stars).

Double minimization problem. The solution set in the finite element for-
mulation can now be obtained from injecting the discrete evaluation of the met-
rics Eq. (III.20b) and the discrete definitions of the constraint and material data
sets Eqs. (III.24) and (III.26) into the double minimization problem Eq. (III.10):

S = arg min
z∈E

min
z′∈D

M∑

e=1

we d
2
e

(
ze, z

′
e

)
(III.27)
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where de denotes the local deviation function in Z(e)
loc ×D

(e)
loc, defined as

de (ze, zi) = W (Ee −Ei) +W ∗ (Se − Si) ,
∀e ∈ [1 . . M ], ∀ze = (Ee,Se) ∈ Z(e)

loc , ∀zi = (Ei,Si) ∈ D(e)
loc, (III.28)

with W and W ∗ as in Eq. (III.9).
It is worth mentioning here that the minimization Eq. (III.27) involves both

continuous-valued functions z ∈ Z and discrete-valued functions z′ ∈ D, exactly
like in the small strain case. However, the mechanical admissibility equations are
now nonlinear:

• the compatibility Eq. (III.21a) is a quadratic function Ee(u) of the discrete
displacement field u = {ua}Na=1;

• the equilibrium Eq. (III.23) is a bilinear constraint on the discrete displacement
and stress fields u and S = {Se}Me=1.

To address the discrete/continuous coupling and the nonlinear constraints, specific
numerical schemes must be employed, as detailed next.

2.1.4 Lagrangian data-driven solver

Alternated minimization. As in small strain, the data-driven finite strain for-
mulation yields a minimization problem coupled with a combinatorial optimization.
As aforementioned, Kanno (2019) showed that such classes of problems can fit in
a MIQP formulation in the case of small strain. Here, however, the nonlinearity of
the constraints prevents the use of such solvers in finite strain, to the best of our
knowledge. In like manner, the max-ent solver developed in Kirchdoerfer and Ortiz
(2017) relies on linear optimization constraints; adapting it to finite strain is out of
the scope of the present work. This explains why we have chosen to use the original
alternated minimization scheme only (see Fig. III.1).

The double minimization Eq. (III.34) is split into two distinct simple minimiza-
tion problems, successively addressed in an iterative scheme:

• Let us first consider the stage where the mechanical state

z = {ze = (Fe,Pe)}Me=1 ∈ E (III.29)

is fixed (see stage 3 of the algorithm in Fig. III.1). The material solution set
Smat is then determined from Eq. (III.34) as

Smat = arg min
z′∈D

M∑

e=1

we d
2
e

(
ze, z

′
e

)
. (III.30)

Note that D = D(1)
loc × · · · × D

(M)
loc is a product set of very high dimension

(
∑M

e=1me) which makes the minimization problem Eq. (III.30) a priori in-
tractable. However, as all terms in the summation are independent from one
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another, the minimization can be conducted in each material database D(e)
loc

separately. The material solution set Smat then results from M searches for
nearest neighbors in local phase space:

Smat(z) =

{
arg min

zi∈D(e)
loc

d2
e (ze, zi) | ∀e ∈ [1 . . M ]

}
. (III.31)

We refer to z∗ie = (E∗ie,S
∗
ie) as the material state associated to e, defined as the

material data point closest to the current local mechanical state ze = (Fe,Pe):

de (ze, z
∗
ie) ≤ de (ze, zi) , ∀e ∈ [1 . . M ], ∀zi = (Ei,Si) ∈ D(e)

loc, (III.32)

with de as in Eq. (III.28). The integer index ie is then the actual optimization
variable. It maps the eth integration point to the optimal ith state pair in D(e)

loc.
This first minimization can also be considered as a projection of the mechanical
states on the discrete material data set, with direction C: z∗ = PC(E).

• Let us now consider the stage where the material state

z∗ = {z∗ie = (F ∗ie,P
∗
ie)}Me=1 ∈ D (III.33)

is determined (stage 2 of the algorithm in Fig. III.1). Eq. (III.34) is then
reduced to a constrained simple minimization problem. The solution set Smec

of mechanical states is then given as

Smec(z∗) = arg min
z∈Z

M∑

e=1

we d
2
e (ze, z

∗
ie) (III.34a)

subject to z ∈ E , i.e.

Ee =
1

2

(
(∇e

0 u)T + ∇e
0 u+ (∇e

0 u)T ∇e
0 u
)
,

∀e ∈ [1 . . M ], (III.34b)

ua · ei = uD
α ,

∀(a, i) : α(a, i) ∈ D, (III.34c)

Ra · ei =
M∑

e=1

weF
e
iJS

e
JK

∂Na
∂XK

(Xe)− T ext
a · ei = 0,

∀(a, i) : α(a, i) 6∈ D. (III.34d)

Before addressing the computation of Eq. (III.34) in details, let us draw attention
on a few implementation remarks.
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1. The presented data-driven solver alternates between (i) solving the constrained
minimization problem Eq. (III.34) and (ii) finding the optimal mapping ie

according to the nearest-neighbor search problem Eq. (III.31). Before entering
the iterative loop, all material states must be initialized (stage 1 in Fig. III.1).
In the literature, authors have used a random initialization (Kirchdoerfer and
Ortiz, 2016; Nguyen and Keip, 2018) but, in our case, the data-driven solver is
embedded in an incremental loading loop. Other choices can thus be made and
will be discussed in the numerical applications presented later on, in Section 3.

2. The alternated minimization scheme ends when the material states remain
unchanged from one iteration (k) to the next (k + 1). In practice, we control
this numerically by checking whether the integer mapping ie changes, which
prevents from having to use a tolerance for the test z∗,(k+1) = z∗,(k).

3. As aforementioned, stage 3 merely consists in a search for nearest neighbors in
the local material data set. To perform this task, we use a tree-based nearest
neighbor search algorithm, which drastically diminishes the computational
cost of this part of the solver. Indeed, the local phase space Rn×nsym × Rn×nsym

consisting of pairs of symmetric tensors in dimension n, it can be recast into
the standard Euclidean space R2n(n−1), using the Mandel vector representation
of the strain and stress tensors (Brannon, 2018). In that case, the search for
nearest neighbor is to be performed M times (for every integration point) in
a database of m samples of dimension 2n(n − 1). Using a brute-force search
algorithm, this task grows as O[Mm]. With a tree-based data structure, the
computational cost can be reduced to O[M logm] (Bentley, 1975). In practical
DDCM applications, m � M and the same material database is used for all
integration points in the mesh (when a single material is considered); the tree-
based data structure can be initialized once and for all at the beginning of the
simulation. This approach thus provides a substantial gain in computation
time. The interface that we use herein3, requires the data to be transformed so
that the data-driven distance de in local phase space Rn×nsym ×Rn×nsym is equivalent
to the Euclidean distance in R2n(n−1). We refer to this transformation as the
Euclidean mapping, which is detailed in Appendix B.

4. The core of the Lagrangian DDCM solver is then stage 2: computing the me-
chanical states. In finite strain, the resolution of system Eq. (III.34) is more
complex than in small strain and is therefore detailed in the next paragraphs.

Formulation of a stationary problem. To solve the constrained minimization
problem Eq. (III.34), we adopt a numerical method which enforces the constraints
as strongly as possible, so as to always remain in the constraint set. On the one
hand, the compatibility constraint Eq. (III.34b) is enforced by expressing strains
in terms of displacements in the objective function Eq. (III.34a). In addition, the

3We use the KDtree class of the Python scikit-learn library, developed by Pedregosa et al. (2011).
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Dirichlet boundary conditions Eq. (III.34c) are directly encoded in the definition
of the displacement array. Kinematics constraints are then treated as classically.
On the other hand, the equilibrium constraint Eq. (III.34d) is enforced by means
of nodal Lagrange multipliers η = {ηa}Na=1, leading to the following stationary
problem:

δ

(
M∑

e=1

wed
2
e (ze, z

∗
ie)−

N∑

a=1

ηa ·Ra

)
= 0, (III.35)

where, as recommended by Nguyen et al. (2020), the nodal Lagrangian multipliers
must vanish on the Dirichlet boundary:

ηa · ei = 0, ∀(a, i) : α(a, i) ∈ D. (III.36)

Consistently, the equilibrium constraint is not enforced on the Dirichlet boundary,
or more precisely, it is verified a posteriori by adjusting the nodal reactions. The
stationary equations with respect to each unknown (ua,ηa,Se) yield:

δSe ⇒C−1 (Se − S∗ie)− F T
e ∇e

0 η = 0, ∀e, (III.37a)

δηa ⇒
∑

e

we FeSeBea − T ext
a = 0, ∀a, (III.37b)

δua ⇒
∑

e

we Fe (C : (Ee −E∗ie))Bea

−
∑

e

we∇e
0 η SeBea −

∑

b

ηb ·
∂T ext

b

∂ua
= 0, ∀a, (III.37c)

where the vector Bea ∈ Rn stands for ∇0Na(Xe), and ∇e
0 η =

∑N
a=1 (ηa ⊗Bea)

denotes the equivalent gradient of the Lagrangian multiplier vector, although η is
defined by nodal quantities only. In the following, we restrict ourselves to problems
where the external loads do not depend on the motion (typically in presence of
body forces only or in absence of surface tractions). Consequently, the summation
term

∑N
b=1 ηb ·∂T ext

b /∂ua in Eq. (III.37c) vanishes. Further manipulations of equa-
tions Eq. (III.37) yield two nonlinear and coupled pseudo-elastic systems in (u,η),
written as

Rη
a (u,η) · ei = 0, ∀(a, i) : α(a, i) 6∈ D (III.38a)

Ru
a (u,η) · ei = 0, ∀(a, i) : α(a, i) 6∈ D (III.38b)

where

Rη
a (u,η) =

∑

e

we Fe
(
C :

(
F T
e ∇e

0 η
))
Bea

+
∑

e

we FeS
∗
ieBea − T ext

a , (III.39a)
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Ru
a (u,η) =

∑

e

we Fe (C : (Ee −E∗ie))Bea

−
∑

e

we∇e
0 η
(
C :

(
F T
e ∇e

0 η
))
Bea −

∑

e

we∇e
0 η S

∗
ieBea (III.39b)

in which the stress Se has been replaced by

Se (u,η) = C :
(
F T
e ∇e

0 η
)

+ S∗ie, ∀e = 1 . . M. (III.40)

Several comments on system Eq. (III.38) are to be made:

• First, the two pseudo-elastic linear systems together with the stress correction
derived in Kirchdoerfer and Ortiz (2016) are easily recovered with linearized
kinematics:

∑

e

we (C : ∇η)Bea = T ext
a −

∑

e

we σ
∗
ieBea, ∀a, (III.41a)

∑

e

we (C : ∇u)Bea =
∑

e

we (C : ε∗ie)Bea, ∀a, (III.41b)

σe (η) = C : ∇η + σ∗ie, ∀e. (III.41c)

• Second, the mechanical stress Se now results from a correction of the material
stress S∗ie involving both the displacements u and the Lagrange multipliers η
(see Eq. (III.40)). This double dependency emerges from the geometrical
nonlinearity and yields a strong coupling of both residuals Rη and Ru.

• Third, despite the data-driven problem Eq. (III.34) being formulated in terms
of strain and stress, the discretization yields a resolution in terms of displace-
ment and Lagrange multipliers.

Monolithic resolution of the stationary problem. In Nguyen and Keip
(2018), the system Eq. (III.38) is addressed with a Newton-Raphson scheme. It
requires to build and solve a new (2ndof × 2ndof) linear system at every iteration
of the Newton-Raphson scheme, at every iteration of the data-driven solver, with
ndof the total number of degrees of freedom. A staggered approach was proposed in
Platzer et al. (2019) but it appeared that this approach could ensure the decrease
of the objective function at every iteration. We then adopt the monolithic reso-
lution scheme, which ensures that the constraints are always satisfied. A typical
Newton-Raphson iteration writes

q(j+1) = q(j) + ∆q (III.42a)

with

Ra(q
(j)) +

N∑

b=1

Kab(q
(j))∆qb = 0, ∀a, (III.42b)
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with q =
[
uT1 , · · ·uTN ,ηT1 , · · ·ηTN

]T , and the residual force vector Ra and tangent
matrix Kab relating node a and node b of shape 2n× 2n, respectively defined as

Ra =



Ru
a

Rη
a


 and Kab =




∂Ru
a

∂ub

∂Ru
a

∂ηb
∂Rη

a

∂ub

∂Rη
a

∂ηb


 . (III.43)

Evidently, ∆q(j) is determined by a reduction of the system Eq. (III.42b) to the
degrees of freedom α(a, i) × β(b, j) 6∈ D × D only. The expression of every block
is detailed in the following, assuming that C is a fully symmetric tensor (CIJKL =

CIJLK in particular). First,

∂Ru
a

∂ub
= KC

ab +K∆E
ab −Kη

ab, (III.44a)

where
[
KC
ab

]
ij

=
∑

e

we F
e
iI B

ea
J CIJKLBeb

K F ejL, (III.44b)

K∆E
ab =

∑

e

we (Beb · (C : ∆Ee)Bea) I, (III.44c)

[
Kη
ab

]
ij

=
∑

e

we
∑

IJKL

[∇e
0 η]iI B

ea
J CIJKLBeb

K [∇e
0 η]jL . (III.44d)

The term KC
ab defined in Eq. (III.44b) retrieves the constitutive component of the

standard tangent matrix emerging from the Lagrangian FE formulation of classical
hyperelasticity, where C plays the role of the material elasticity tensor (see Eq. (I.88)
in Table I.4). The term K∆E

ab defined in Eq. (III.44c) resembles the initial stress
component of the standard tangent matrix where C : ∆Ee = C : (Ee −E∗ie) can be
seen as a reference stress from which derives the reference stiffness C (see Eq. (I.89)
in Table I.4). Furthermore, the anti-diagonal blocks are defined as

[
∂Ru

a

∂ηb

]

ij

= −
[
KS
ab

]
ij
−
∑

e

we [∇e
0 η]iI

(
Bea
J CIJKLBeb

K

)
F ejL (III.45a)

where

KS
ab =

∑

e

we (Beb · SeBea) I, (III.45b)

with

Se = C :
(
F T
e ∇e

0 η
)

+ S∗ie,

and
[
∂Rη

a

∂ub

]

ij

=
[
KS
ab

]
ij

+
∑

e

we F
e
iI

(
Bea
J CIJKLBeb

K

)
[∇e

0 η]jL . (III.46)
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Here, the tangent matrix KS
ab defined in Eq. (III.45b) exactly corresponds to the

initial stress component derived in the classical FE approach, where the stress is
no longer obtained from a constitutive model but from the correction of the corre-
sponding material stress S∗ie Eq. (III.40). Finally,

∂Rη
a

∂ηb
= KC

ab. (III.47)

As a remark, the complete tangent matrixKab needs to be updated at every iteration
of the Newton-Raphson scheme. However, all block matrices defined in Eqs. (III.44)
to (III.47) contain one constant term which can be computed once and for all at the
integration point level:

[
c

(e)
ab

]
IL

= Bea
J CIJKLBea

K . (III.48)

Summary. The finite strain data-driven solver resulting from the Lagrangian for-
mulation derived above is detailed in Algorithm III.1. The key ingredients are:

• the computation of the mechanical states in two steps, namely

– the resolution of the nonlinear coupled systems Eqs. (III.39a)
and (III.39b) with a Newton-Raphson scheme, as proposed by Nguyen
and Keip (2018),

– the computation of local strain and stress states with (i) the compatibility
Eq. (III.21a), (ii) the correction of the stress Eq. (III.40);

• the nearest-neighbor search for the optimal states in the material database
from Eq. (III.31), using a tree-based search algorithm.

2.2 Nominal approach

The nominal formulation has first been introduced by Conti et al. (2020) to extend
the data-driven framework defined in (Conti et al., 2018) to finite strain elasticity.
The phase space now consists of deformation gradient–first Piola-Kirchhoff stress
tensor fields (F ,P ). Hence, the local phase space can no longer be reduced to Rn×nsym ×
Rn×nsym , which enabled to implicitly enforces conservation of angular momentum and
material-frame indifference in geometrically linear elasticity and Lagrangian finite
strain elasticity. In Conti et al. (2020), the former is encoded in the material data
set by using an orbit representation: if a material point (F ,P ) is in the database,
then so is its orbit (QF ,QP ), Q ∈ SO(n) under the left action of the Special
Orthogonal group SO(n) =

{
Q ∈ Rn×n‖ QTQ = QQT = I

}
. The latter can be

treated as an additional constraint to the minimization problem, as discussed in the
following.

This section is dedicated to recalling the continuum mechanics formulation as
introduced by Conti et al. (2020) and developing a FE data-driven solver on that
basis, analogous to the one derived above for the Lagrangian formulation.
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Algorithm III.1 Data-driven solver in finite strain - Lagrangian formulation.
INPUT: A mesh of M integration points and N nodes, boundary and loading

conditions, material data set D.
OUTPUT: mechanical response (displacements {ua}Na=1, mechanical states
{(Ee,Se)}Me=1, residual forces, etc.), material states {(E∗ie,S∗ie)}Me=1.

Require: tolerance parameter rtol > 0, maximum number of iterations kmax and
jmax.

1) Initialize all material states and mapping
1: k ← 0

2: for e = 1 . . M do
3: ie(0) ← i, i ∈ [1 . . me]

4: end for

5: q(k=0) ← 0

6: for k = 1 . . kmax do
2) Compute mechanical states
2)a. Solve Eqs. (III.39a) and (III.39b) with a Newton-Raphson scheme

7: j ← 0

8: q(j=0) ← q(k−1) I store previous unknowns
9: R(j=0) ← R

(
q(j=0)

)
I compute initial residual

10: R(j=0) ← ‖R(j=0)‖2
11: repeat I Newton-Raphson iterations
12: j ← j + 1

13: q(j) ← solve Eq. (III.42)
14: R(j) ← R(q(j)) I update residual
15: R(j) ← ‖R(j)‖2 I update residual norm using degrees of freedom only
16: until R(j) ≤ rtolR(0) or j ≥ jmax I convergence within rtol or jmax

17: q(k) ← q(j)

2)b. Update mechanical states
18: for e = 1 . . M do
19: E

(k)
e ← 1

2

(
F T
e (u(k))Fe(u

(k))− I
)

20: S
(k)
e ← C :

(
F T
e (u(k))∇e

0 η
(k)
)

+ S∗
ie(k−1)

21: end for
3) Update material states and mapping

22: for e = 1 . . M do
23: ie(k) ←

(
E∗

ie(k)
,S∗

ie(k)

)
from Eq. (III.32)

24: end for
4) Test convergence

25: if ie(k) = ie(k−1) for all e = 1 . . M then
26: u← u(k)

27: (Ee,Se)← (E
(k)
e ,S

(k)
e ) for all e = 1 . . M

28: exit.
29: else
30: ie(k+1) ← ie(k) for all e = 1 . . M

31: end if
32: end for
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2.2.1 Continuum mechanics formulation

Let us again consider an elastic body occupying a domain Ω0 ∈ Rn in the reference
configuration and Ω ∈ Rn under quasi-static loading, in dimension n = 3. A ma-
terial point has X and x as initial and current coordinates, respectively. Like the
Lagrangian formulation, the deformation gradient and first Piola-Kirchhoff stress
tensor fields are defined in Ω0. The local state function z then maps every material
point X of Ω0 to its nominal local state:

z : Ω0 7→ Zloc

X → z(X) = (F (X),P (X)) (III.49)

where the local phase space Zloc is now Rn×n ×Rn×n. The global phase space Z is
again the collection of local state functions z : Ω0 → Zloc. As shown in Conti et al.
(2020), to ensure convergence properties, the deformation gradient and the stress
fields must each belong to a given Lp space, i.e. they must be measurable functions
for which the p−th power of the absolute value is Lesbegue integrable. The global
phase space is then defined as

Zp,q (Ω0) = Lp
(
Ω0,Rn×n

)
× Lq

(
Ω0,Rn×n

)
(III.50)

with (p, q) ∈ (1,∞) such that 1/p + 1/q = 1. As aforementioned, the local phase
space no longer consists of symmetric tensors, as compared with the small strain
or Lagrangian finite strain settings. Material frame-indifference and conservation of
angular momentum constraints must then be enforced specifically.

The material data set D is defined by the collection of local state functions
mapping to nominal strain-stress pairs of a local material database Dloc:

D = {z ∈ Z | z(X) ∈ Dloc} , (III.51a)

with

Dloc = {(Fi,Pi) , i ∈ [1 . . m]} ⊂ Zloc, (III.51b)

with m the number of material data points. As aforementioned, Conti et al. (2020)
proposed an orbit representation of local material data sets Dloc which are material-
frame indifferent, i.e. every point in the set satisfies material-frame indifference:

Dloc = {(QF ,QP ) | Q ∈ SO(n), (F ,P ) ∈ Uloc} (III.52)

with Uloc ⊆ Rn×nsym ×Rn×n. In addition, the authors remark that local data sets that
are generated by a hyperelastic constitutive relation of the type

P (F ) = DΨ(F ) =
∂Ψ (F )

∂F
(III.53)
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such that

Ψ(F ) = Ψ(U), with F = RU , (III.54)

are both material-frame indifferent and satisfy moment equilibrium. Such a graph
local material data set writes

Dloc =
{

(F , DΨ(F )) | F ∈ Rn×n
}
. (III.55)

The constraint set E consists of local state functions verifying mechanical ad-
missibility. It now comprises three constraints, namely

1. the kinematics constraints, defined as

F (X) = ∇0u(X) + I in Ω0, (III.56a)

u(X) = uD(X) on Γ0D , (III.56b)

2. the translational equilibrium, written as

DIVP (X) + f0(X) = 0 in Ω0, (III.57a)

P (X)N(X) = t0(X) on Γ0N , (III.57b)

3. the rotational equilibrium, written as

FP T = P TF , in Ω0, (III.58)

using the same notations as above and in Chapter I. The set E then writes

E = {z ∈ Z | Eqs. (III.56) and (III.58)} . (III.59)

Note that the first two constraints Eqs. (III.56) and (III.57) are linear while the
rotational equilibrium Eq. (III.58) is a bi-linear constraint and more difficult to
enforce in a discrete setting. It can then be more convenient to work with the
affine subspace E0 ⊂ E , defined as the collection of local state functions verifying
compatibility and translational equilibrium Eqs. (III.56) and (III.57) only:

E0 = {z ∈ Z | Eqs. (III.56) and (III.57)} ⊂ E (III.60)

For later purposes, the translational equilibrium and attached Neumann condi-
tions Eq. (III.57) are reformulated in their weak form. The nominal formulation of
the principle of virtual work writes (see Eq. (I.27) in Chapter I):

δW =

∫

Ω0

P : δḞ dV −
∫

Ω0

f0 · δv dV −
∫

∂Ω0

t0 · δv dA = 0, (III.61)

for any arbitrary kinematically admissible virtual velocity δv from the current po-
sition of the body. In addition, the conservation of angular momentum Eq. (III.58)
is more conveniently expressed by the vector equation

E :
(
F (X)P T (X)

)
= 0, ∀X ∈ Ω0, (III.62)



88 Chapter III. Data-driven solvers for large strain elasticity

where the bold-face symbol E denotes the Levi-Civita third-order tensor, c.f. Chap-
ter I. The solution set S of the data-driven BVP corresponds to the set of local state
functions verifying mechanical admissibility meanwhile being closest to the material
data set. It then results from the double minimization problem

min
z∈E

min
z′∈D

d(z, z′) (III.63)

as

S = arg min
z∈E

min
z′∈D

d(z, z′), (III.64)

with d an appropriate deviation or distance function from the material data set.
The deviation function proposed by Conti et al. (2020) is

d(z, z′) =

∫

Ω0

(
V
(
F (X)− F ′(X)

)
+ V ∗

(
P (X)− P ′(X)

))
dX, (III.65)

∀(z : X 7→ (F ,P ), z′ : X 7→ (F ′,P ′)) ∈ Z × Z.

where V is a convex function, with convex conjugate V ∗. An appropriate choice for
V and V ∗ is (see Conti et al. (2020, Assumption 2.15)):

V (F ) =
1

p
|F |p =

1

p

(
trF TF

)p/2
, (III.66a)

V ∗(P ) =
1

q
|P |q =

1

q

(
trP TP

)q/2
. (III.66b)

The framework derived by Conti et al. (2020), and recalled above, ensures the
existence of so-called classical solutions to the minimization problem, provided spe-
cific conditions are verified by the local material data set Dloc. A classical solution
is met when the mechanical state field z ∈ E and the material state field z′ ∈ D
coincide such that the minimum of d (z, z′) is 0. This typically arises in cases where
the material data set is achieved from a hyperelastic potential as in Eq. (III.55).
For more details on the conditions of existence of classical solutions and examples
of such material data sets, the reader is referred to Conti et al. (2020).

Note that, following the same rationale as in Section 2.1.2, the data-driven nom-
inal setting derived above is equally valid for three-dimensional problems (n = 3)
and two-dimensional problems (n = 2) arising from plane strain or plane stress
conditions.

2.2.2 Finite element formulation

In Conti et al. (2020), the existence of generalized data-driven solutions, with z 6= z′,
is not addressed. These solutions are expected when the local material data set is
discrete, i.e. contains a finite number of material data points, as is the case in
typical DDCM applications. To evaluate the corresponding data-driven solutions, we
derive in the following a finite element formulation of the data-driven nominal BVP
formulated by Conti et al. (2020). We must emphasize that to date, and to the best
of our knowledge, this is the first attempt to such a derivation.
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Preliminary considerations. We slightly modify the deviation functions defined
in Eq. (III.66) to better suit them to numerical implementation. We use a scalar C
to scale deformation gradient and stress values; without loss of generality, V and
V ∗ are now defined as

V (F ) =
1

p
Cp/2 |F |p, and V ∗(P ) =

1

q
C−q/2 |P |q. (III.67)

In principle, the values of (p, q) and C could be optimized as well, as their optimal
values depend on the BVP and the material data set (see examples provided in Conti
et al. (2020)). In practice, taking C as the linearized stiffness of the material (when
F = I) was found to be a reasonable choice. The values of (p, q) are discussed later
on.

Global phase space and metrics. As in the Lagrangian formulation, we tran-
sition from the continuum mechanics to the finite element setting by interpolating
the displacement field on the mesh as in Eq. (III.16) and by evaluating the stress
field P at the integration points.

We consider again a FE mesh of N nodes, labeled a ∈ [1 . . N ], and a total of
M integration points, labeled e ∈ [1 . . M ]. Then, the approximate deformation
gradient tensor writes:

F (X) = ∇0u (X) + I, (III.68)

with ∇0u(X) as in Eq. (III.17b). The stresses (which are no longer related to the
displacement field) are merely evaluated at the integration points:

∫

Ω0

P (X) dV =
M∑

e=1

wePe (III.69)

with Pe = P (Xe).
The FE local state function ze then maps integration point e in the reference

configuration to the corresponding local state pair:

ze : Ω0 → Z(e)
loc = Rn×n × Rn×n

Xe 7→ (Fe,Pe) ,
(III.70)

with Fe = F (Xe) from Eq. (III.68). The global phase space being the product set
Z = Z(1)

loc × · · · × Z
(M)
loc , a global point z in Z is the collection of M local state

functions: z = {ze}Me=1. The global deviation function Eq. (III.65) is then evaluated
on the discrete mesh as

d(z, z′) =
M∑

e=1

we
(
V
(
Fe − F ′e

)
+ V ∗

(
Pe − P ′e

))
,

∀
(
z = {ze = (Fe,Pe)}Me=1 , z

′ =
{
z′e =

(
F ′e,P

′
e

)}M
e=1

)
∈ Z × Z, (III.71)

with V and V ∗ as in Eq. (III.67).
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Constraint set and material data set. In like manner as the Lagrangian FE

formulation, the discretized subspaces E and D of Z are obtained by replacing
the deformation gradient and the stress tensor fields with their respective discrete
evaluations Eqs. (III.68) and (III.69).

On the one hand, the mechanical admissibility constraints are discretized as
follows

1. The kinematic constraints Eq. (III.56) write

Fe = ∇e
0 u+ I, ∀e ∈ [1 . . M ], (III.72a)

ua · ei = uD
α , ∀(a, i) : α(a, i) ∈ D. (III.72b)

where, as a reminder, uD
α is the prescribed displacement on node a along

direction i, such that α = α(a, i).

2. The translational equilibrium Eq. (III.57) is again enforced in its weak form
Eq. (III.61), written as

Ra · ei = 0, ∀(a, i) : α(a, i) 6∈ D, (III.73a)

with

Ra =
M∑

e=1

wePeBea − T ext
a , ∀a ∈ [1 . . N ]. (III.73b)

where we recall that Bea = ∇0Na(Xe).

3. As for the conservation of angular momentum, Eq. (III.58) and its vector
form Eq. (III.62) hold at every integration point. Thus, the third mechanical
constraint simply writes

re = E :
(
FeP

T
e

)
= 0, ∀e ∈ [1 . . M ], (III.74)

with re the local rotational residual at integration point e.

The set of mechanically admissible FE local state functions is then

E = {z ∈ Z | Eqs. (III.72) to (III.74)} . (III.75)

On the other hand, the material data set D ⊂ Z for the finite element problem is
easily derived as previously. For each integration point e, a material database D(e)

loc

comprises me deformation gradient-stress pairs and the material data set is the
collection of local state functions mapping every integration point to a material
data point in D(e)

loc:

D =
{
z ∈ Z | ∀e ∈ [1 . . M ], ze(Xe) ∈ D(e)

loc

}
, (III.76a)

with

D(e)
loc = {(Fi,Pi) | i ∈ [1 . . me]} ⊂ Z(e)

loc . (III.76b)
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Double minimization problem. As for the Lagrangian formulation, the nomi-
nal data-driven BVP in the finite element setting writes as the double minimization
problem

S = arg min
z∈E

min
z′∈D

M∑

e=1

we de
(
ze, z

′
e

)
(III.77)

where de denotes the local deviation function in Z(e)
loc ×D

(e)
loc, now defined as

de (ze, zi) = V (Fe − Fi) + V ∗ (Pe − Pi) ,
∀e ∈ [1 . . M ], ∀ze = (Fe,Pe) ∈ Z(e)

loc , ∀zi = (Fi,Pi) ∈ D(e)
loc, (III.78)

with V and V ∗ as in Eq. (III.67).

2.2.3 Nominal data-driven solver

Alternated minimization. As for any data-driven system we have seen so far,
the nominal formulation yields a minimization problem coupled with a combinatorial
optimization. For the sake of simplicity, this first attempt for a nominal finite strain
data-driven solver also employs the alternated minimization represented in Fig. III.1.

As previously, the data-driven problem Eq. (III.77) is split into two distinct
problems:

• Let us first consider the stage where the mechanical state

z = {ze = (Fe,Pe)}Me=1 ∈ E (III.79)

is fixed. The material solution set Smat is then determined from Eq. (III.77)
as

Smat = arg min
z′∈D

M∑

e=1

we de(ze, z
′
e). (III.80)

or equivalently as (all terms in the summation being independent from one
another)

Smat(z) =

{
arg min

zi∈D(e)
loc

de (ze, zi) | ∀e ∈ [1 . . M ]

}
. (III.81)

As in Eq. (III.32), we refer to z∗ie = (F ∗ie,P
∗
ie) as the material state associated

to e, defined as the material data point closest to the current local mechanical
state ze = (Fe,Pe):

de (ze, z
∗
ie) ≤ de (ze, zi) , ∀e ∈ [1 . . M ], ∀zi ∈ D(e)

loc. (III.82)

Again, the integer index ie is then the actual optimization variable.
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• Let us now consider the stage where the material state

z∗ = {z∗ie = (F ∗ie,P
∗
ie)}Me=1 ∈ D (III.83)

is determined. Eq. (III.77) is then reduced to the following constrained mini-
mization problem

Smec(z∗) = arg min
z∈Z

M∑

e=1

we de(ze, z
∗
ie) (III.84a)

subject to

Fe = ∇e
0 u+ I, ∀e ∈ [1 . . M ], (III.84b)

ua · ei − uD
α = 0, ∀(a, i) : α(a, i) ∈ D, (III.84c)

M∑

e=1

we P
e
iJ B

ea
J − T ext

a · ei = 0, ∀(a, i) : α(a, i) 6∈ D, (III.84d)

re = E :
(
FeP

T
e

)
= 0, ∀e ∈ [1 . . M ]. (III.84e)

The important points regarding the different stages of this algorithm we raised
in Section 2.1.4 are still valid:

• the core of the algorithm is stage 2, the computation of the mechanical states
from the resolution of Eq. (III.84);

• the question of the initialization of the material states must be specifically
addressed and will therefore be investigated in Section 3;

• the third stage of the algorithm in Fig. III.1 boils down to the search for
nearest neighbor in the local phase space defined by Eq. (III.81).

However, the nominal formulation differs from the Lagrangian for two main reasons:

1. the conservation of angular momentum constitutes an additional constraint to
the minimization problem, at integration points.

2. the distance function Eq. (III.71) measuring the deviation to the material
database is no longer quadratic, for general values of p and q;

In that respect, the construction and implementation of a nominal data-driven solver
is more complex than its Lagrangian counterpart. Indeed, both features prevented
us from using the same method of Lagrange multipliers: (i) one would need a new La-
grange multiplier attached to the integration points to enforce rotational equilibrium
Eq. (III.74), and (ii) the stationary equation obtained from the partial derivatives
with respect to the stress would yield a nonlinear equation in P , which we could not
render into a stress correction of the form Eqs. (III.40) and (III.41c). Together with
the issue of adding many unknowns to the numerical system, this difficulty stopped



2. Finite strain data-driven computational mechanics 93

us from going further with the method of Lagrange multipliers. As the addition
of unknowns is not favorable, we turned to penalty methods. We elaborated an
augmented Lagrangian approach, which offers more robustness than the quadratic
penalty function method (Bertsekas, 1996). The details of the implementation are
given next.

The augmented Lagrangian method. The augmented Lagrangian method,
originally known as the method of multipliers, was introduced as an alternative
method to the quadratic penalty function method, which avoids the problem of ill-
conditioning, and provides a faster rate of convergence. To describe the approach, we
adopt the formalism and numerical advice given in the reference book of Bertsekas
(1996). Consider the following equality constrained problem, involving the objective
function f : Rn → R, and the constraints h : Rn → Rm:

minimize f(x) subject to h(x) = 0. (III.85)

The component of h are h1, . . . , hm. For any scalar c consider also the augmented
Lagrangian function

Lc(x, λ) = f(x) +
1

2
c |h(x)|2 + λTh(x). (III.86)

The method of multipliers is an iterative procedure, which aims at solving a series of
unconstrained minimization problems Lcj (x, λj). After each iteration, the penalty
parameter cj together with the Lagrange multiplier λj are updated according to the
rules:

λj+1 = λj + cjh(xj) and cj+1 ≥ cj . (III.87)

Bertsekas (1996, Section 2.2) recommend the following scheme for updating the
penalty parameter c: choose a moderate c0 and monotonically increase cj via the
equation cj+1 = βcj , where β is a scalar with β > 1. “Typical choices are β ∈ [4, 10]”.
In addition, “it is possible to use a different penalty parameter for each constraint
hi(x) = 0”, which can be “beneficial in a situation where the constraints are ‘poorly
scaled’”. In the next paragraph, we reformulate the constrained minimization prob-
lem Eq. (III.84) to fit in the above augmented Lagrangian method.

Application of the augmented Lagrangian method. As before, the compat-
ibility constraint Eq. (III.84b) is directly enforced by replacing the deformation gra-
dient with its relationship to the displacement field. The unknowns in Eq. (III.84)
then become the displacement field u and the stress field P . Thanks to the FE

element discretization, the actual unknowns are the nodal displacements {ua}Na=1

and the values of the stress tensor at the integration points {Pe}Me=1. These can
be gathered in the unknown vector x, defined as the concatenation of all flattened
displacements arrays and all flattened stress tensors: These are recast into arrays4

4From here on out, “numerical” arrays are denoted with light-face symbols.
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u and P , of shape Nn× 1 and Mn2 × 1 respectively, as

u = [u1,1, u1,2, u1,3, . . . , ua,1, ua,2, ua,3, . . . , uN,1, uN,2, uN,n]T (III.88a)

P =
[
P 1

11, P
1
12, P

1
13, P

1
21, P

1
22, . . . P

1
33, . . . , (III.88b)

P e11, P
e
12, P

e
13, P

e
21, P

e
22, . . . P

e
33, . . . , (III.88c)

PM11 , P
M
12 , P

M
13 , P

M
21 , P

M
22 , . . . P

M
33

]T
, (III.88d)

where ua,i is the displacement of node a in direction i and P eij is the (i, j)-th com-
ponent of the stress tensor Pe. The unknown array x is the concatenation of u and
P

x =

(
u

P

)
. (III.89)

x = [u1,1, u1,2, u1,3, . . . , ua,1, ua,2, ua,3, . . . , uN,3, uN,2, uN,n,

P 1
11, P

1
12, P

1
13, P

1
21, P

1
22, . . . P

1
33, . . . ,

P e11, P
e
12, P

e
13, P

e
21, P

e
22, . . . P

e
33, . . . ,

PM11 , P
M
12 , P

M
13 , P

M
21 , P

M
22 , . . . P

M
33

]T
,

(III.90)

For a two-dimensional problem (n = 2), the array x is obviously reduced accord-
ingly. In general, the total number of independent variables to determine in the
minimization is then (Nn) × (Mn2). The objective function of the minimization
problem is denoted f(u, P ) and writes

f(u, P ) =
M∑

e=1

we de (V (Fe(u)− F ∗ie) + V (Pe − P ∗ie)) . (III.91)

The remaining minimization constraints to enforce are (i) the Dirichlet conditions
Eq. (III.84c), (ii) the translational equilibrium Eq. (III.84d) and (iii) the conserva-
tion of angular momentum Eq. (III.84e). In like manner, we store these constraints
in dedicated arrays, defined respectively as

hD = Su− uD (III.92a)

hteq = B̄TWP − T̄ ext (III.92b)

hreq = [r1,1, . . . , re,i, . . . , rM,nr ]T , (III.92c)

where

• uD =
{
uD
α

}
α∈D is the array of prescribed displacements encoding the Dirichlet

boundary conditions of size nD,

• S is a nD × (Nn) selection matrix of 0 and 1 (Skα = 1 if α = αk ∈ D and 0
otherwise),
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• the matrix B collects the vectors Bea and encodes the geometry and connec-
tivity of the mesh,

• W is the diagonal matrix of weights we such that WP =
∑M

e=1weP
e
ij ,

• T ext is the array of nodal external applied forces, flattened in like manner as
u.

The bar symbol •̄ over B and T ext means that they have been reduced to the
degrees of freedom only. Finally, nr is the dimension of the vector re measuring
the conservation of angular momentum (see (III.84e)). In short, nr = 1 for a two-
dimensional problem and nr = 3 for a three-dimensional problem. Then, hD is an
array of shape (nD × 1), hteq is an array of shape (ndof × 1) and hreq is an array
of shape ((Mnr)× 1), with ndof the total number of degrees of freedom (note that
ndof + nD = Nn). With each type of constraints, we associate a dedicated penalty
parameter and a Lagrange multiplier vector of appropriate shape, as summarized
in Table III.1.

Table III.1 – Penalty parameters and Lagrange multipliers associated with the op-
timization constraints of the nominal formulation.

Constraint Penalty parameter Lagrange multiplier

Dirichlet conditions
hD = Su− uD

cD λ, shape (nD × 1)

Translational equilibrium
hteq = B̄TWP − T̄ ext

cteq η, shape (ndof × 1)

Angular momentum
hreq = [r1,1, . . . , rM,nr ]T

creq µ, shape (Mnc × 1)

The constrained minimization problem Eq. (III.84) is then conveniently re-
written as

minimize f(u, P ) subject to h =



hD

hteq

hreq


 = 0. (III.93)

The corresponding augmented Lagrangian function is

L(cD,cteq,creq)(x, (λ, η, µ)) = f(u, P ) +
1

2
cD |hD(x)|2 +

1

2
cteq |hteq(x)|2

+
1

2
creq |hreq(x)|2 − λThD(x)− ηThteq(x)− µThreq(x). (III.94)
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A typical iteration of the approach then writes5

λj+1 = λj − cD
j h

D(xj), cD
j+1 = βcD

j (III.95a)

ηj+1 = ηj − cteq
j hteq(xj), cteq

j+1 = βcteq
j (III.95b)

µj+1 = µj − creq
j hreq(xj), creq

j+1 = βcreq
j (III.95c)

with xj the solution of the unconstrained minimization of augmented Lagrangian
function L(cDj ,c

teq
j ,creqj )(x, (λj , ηj , µj)). The iterations Eq. (III.95) stop when the

Karush-Kuhn-Tucker (KKT) conditions are satisfied within a given tolerance tol:

(∇uf
∇P f

)
(x)− (∇h(x))T



λ

η

µ


 < tol. (III.96)

Now that the data-driven is suitably written for the augmented Lagrangian
method, we can proceed to give the resolution method for the unconstrained mini-
mization of the augmented Lagrangian function Eq. (III.94).

Minimization of the augmented Lagrangian function. With the experience
we had in implementing the Newton-Raphson procedure used in the Lagrangian for-
mulation, we chose to minimize the augmented Lagrangian function with a Newton-
Raphson scheme as well. Indeed, the gradients and hessians of the objective function
and the constraints are available without too much pain and can be implemented
rather easily as well. In this paragraph, we drop the j indices to reduce to amount of
notation. We also simply denote L the augmented Lagrangian function. A typical
Newton-Raphson iteration then writes:

x(j+1) = x(j) + δx(j) (III.97a)

with
(∇uL
∇uP

)
+

( ∇2
u L ∇P∇uL

∇u∇PL ∇2
PL

) (
x(j)
)
δx(j) = 0 (III.97b)

where the expressions of the gradient vectors ∇uL and ∇PL and Hessian matrices
∇2
u L, ∇P∇uL, ∇u∇PL, and ∇2

PL are given in the following.
Note that this approach requires to build and solve a (n × N + nstates) × (n ×

N + nstates) linear system of algebraic equations at every iteration of the Newton-
Raphson scheme, every step of the augmented Lagrangian process, every iteration of
the data-driven alternated minimization(, every load step of the incremental loading
loop), where nstates = n2 ×M is the number of stress unknowns (n2 independent
components in each stress tensor of all M integration points).

5To be consistent with the physical interpretation of the Lagrange multiplier η derived in the
small strain or Lagrangian formulations, we chose to use “negative” Lagrange multipliers. The
updating rule is modified in consequence, without loss of consistency with the original method
of Bertsekas (1996). The nodal vectors ηa are then again interpreted as virtual displacements
which, associated to a stiffness C, generate stresses that correct the out-of-balance gap between
the material stresses and the external nodal forces.
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First, we evaluate the gradients ∇uL and ∇PL of the augmented Lagrangian
function:

∇uL = ∇uf + cD(∇uhD)T hD + creq(∇uhreq)T hreq

− (∇uhD)T λ − (∇uhreq)T µ, (III.98a)

and

∇PL = ∇P f + cteq(∇Phteq)T hteq + creq(∇Phreq)T hreq

− (∇Phteq)T η − (∇Phreq)T µ, (III.98b)

where the different terms are defined in what follows.

• The gradients of the objective function f respectively write

[∇uf ]α =
∂f

∂ua,i
=

M∑

e=1

weC
p/2 (II∆Fe)

p/2−1 ∆F eiJ B
ea
J , ∀α(a, i)

(III.99a)

[∇P f ]ι =
∂f

∂P eiJ
= weC

−q/2 (II∆Pe)
q/2−1 ∆P eiJ , ∀ι(e, i, J)

(III.99b)

where IIA = tr
(
ATA

)
denotes the second invariant of a tensor, ∆Fe = Fe −

F ∗ie and ∆Pe = Pe − P ∗ie. The integer α is the global numeration of the
displacement array u and ι is the global numeration of the stress array P ,
related to the local numerations as

α(a, i) = (a− 1)n+ i, (III.100a)

ι(e, i, J) = (e− 1)n2 + (i− 1)n+ J, (III.100b)

with a the node, i, J the directions, e the integration point and n the dimension
of the problem.

• In addition, the gradients of the constraints respectively write

∇uhD = S (III.101a)

∇Phteq = B̄TW (III.101b)

[∇uhreq]c,α =
∂re,i
∂ua,j

= [E]ijk P
e
kLB

ea
L = [E · (PeBea)]ij , ∀(c, α)

(III.101c)

[∇Phreq]c,ι =
∂re,i
∂P ekL

= [E]ijk F
e
jL = [−E · Fe]ikL , ∀(c, ι)

(III.101d)

where c is the global numeration of the conservation of angular momentum
constraint hreq, related to the number of integration point and the direction
as

c = (e− 1)n2 + i, ∀i ∈ [1 . . nr]. (III.102)
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We proceed to give the expressions of the terms in the tangent matrix of the
Newton-Raphson iteration.

• The diagonal blocks respectively write

∇2
u L = ∇2

u f + cD(∇uhD)T ∇uhD + creq(∇uhreq)T ∇uhreq (III.103a)

∇2
PL = ∇2

P f + cteq(∇Phteq)T ∇Phteq + creq(∇Phreq)T ∇Phreq (III.103b)

where the hessian blocks of the objective function are defined as

[∇2
u f ]α1,α2 =

∂2f

∂ub,j ∂ua,i

=

M∑

e=1

weC
p/2(p− 2) (II∆Fe)

p/2−2 [∆FeBea]i [∆FeBeb]j

+

M∑

e=1

weC
p/2 (II∆Fe)

p/2−1 (Bea ·Beb) δij , (III.104a)

for all a, i, b, j such that α1 = α(a, i) and α2 = α(b, j), and

[∇2
P f ]ι1,ι2 =

∂2f

∂P eiJ ∂P
e
kL

= weC
−q/2(q − 2) (II∆Pe)

q/2−2 (∆P eiJP
e
kL)

+ weC
−q/2 (II∆Pe)

q/2−1 δikδJL, (III.104b)

for all e, i, J, k, L such that ι1 = ι(e, i, J) and ι2 = ι(e, k, L), with δij the Kro-
necker symbol (δij = 1 if i = j and δij = 0 if i 6= j).

• The anti-diagonal blocks of the tangent matrix only involve the gradient and
Hessian of the bi-linear constraint hreq, as it is the only one coupling u and P .
The two blocks are symmetrical to one another such that

∇P∇uL = creq
(

(∇uhreq)T ∇Phreq +∇P∇u (hreq · hreq)
)

− ∇P∇u (µ · hreq) , (III.105a)

and

∇u∇PL = (∇P∇uL)T , (III.105b)

where the Hessian term of the constraint hreq is defined, for any array y of the
same size, as

[∇P∇u (y · hreq)]α,ι =

nc∑

i=1

yi [E]ijkB
ea
L , ∀α(a, j), ι(e, k, L) (III.106)
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Values of the parameters (p, q). As we can see, the gradient vector (respectively
the Hessian matrix) of the objective function involves scalar terms raised to the
(p/2−1)-th or (q/2−1)-th power (respectively (p/2−2)-th and (q/2−2)-th power).
These cause numerical problems as soon as the operand is close to zero for certain
value of (p, q): the terms can become infinite. This situation is especially expected
at convergence: when the mechanical states are increasingly close to the material
states, ∆Fe → 0 and ∆Pe → 0 and hence, II∆Fe → 0 and II∆Pe → 0. To avoid this
kind of problem6, we restrict from here on out to the only possible (p, q) couple for
which the gradient and hessian are defined everywhere, i.e. such that p/2 − 1 ≥ 0

and q/2− 1 ≥ 0 with 1/p+ 1/q = 1, i.e. p = q = 2. Consequently, the gradient and
Hessian of the objective function are respectively simplified into

[∇uf ]α =
∂f

∂ua,i
=

M∑

e=1

weC ∆F eiJ B
ea
J , (III.107a)

∀a, i, α(a, i)

[∇P f ]ι =
∂f

∂P eiJ
= weC

−1 ∆P eiJ , (III.107b)

∀e, i, J, ι(e, i, J)

and

[∇2
u f ]α1,α2 =

∂2f

∂ub,j ∂ua,i
=

M∑

e=1

weC (Bea ·Beb) δij , (III.108a)

∀a, i, b, j such that α1 = α(a, i) and α2 = α(b, j)

[∇2
P f ]ι1,ι2 =

∂2f

∂P eiJ ∂P
e
kL

= weC
−1 δikδJL, (III.108b)

∀e, i, J, k, L such that ι1 = ι(e, i, J) and ι2 = ι(e, k, L)

Let us also mention another implementation constraint that advocates for the choice
of p = q = 2. The tree-based nearest neighbor search algorithms available in both
Matlab and Python do not offer to specify a custom distance function. Instead, the
samples and query points must be scaled so that their distance can be measured
with the standard Euclidean distance. We could not find a way to easily formulate
such a transformation of the phase space for the general (p, q) distance. The so-
called Euclidean mapping for the nominal state pairs is given in Appendix B, along
with its aforementioned Lagrangian counterpart.

Summary. We are now ready to present the augmented Lagrangian algorithm we
implemented. The algorithm in listed in Algorithm III.2. It fits in stage 2 of the al-
ternated minimization scheme represented in Fig. III.1 and listed in Algorithm III.3.

Along with its Lagrangian counterpart, the finite strain data-driven solver in the
nominal formulation presents two main features:

6The general case of (p, q) ∈ (1,∞)2 could be addressed close to zero with a specific numerical
scheme. However, this possibility has not been explored in this thesis.
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• the computation of the mechanical states in two steps, namely

– the resolution constrained minimization problem Eq. (III.93) with an
augmented Lagrangian method inspired from Bertsekas (1996), which
uses a Newton-Raphson scheme for the minimization of the augmented
Lagrangian function,

– the computation of the local deformation gradients only via the compati-
bility Eq. (III.72a), the stress being up-to-date as unknowns of the above
minimization;

• the nearest-neighbor search for the optimal states in the material database
from Eq. (III.82), using an unsupervised tree-based search algorithm.

2.2.4 Linear nominal data-driven solver

A simpler version of the solver consists in enforcing the compatibility and transla-
tional equilibrium only, i.e. minimizing the mechanical states in E0 instead of E (see
Eq. (III.60)). In that case, the augmented Lagrangian function is reduced to

L(cD,cteq)(x, (λ, η)) = f(u, P ) +
1

2
cD |hD(x)|2 +

1

2
cteq |hteq(x)|2

− λThD(x) − ηThteq(x). (III.109)

The stationary equations yield two independent linear systems

∇uL = ∇uf + cD(∇uhD)T hD − (∇uhD)T λ = 0, (III.110a)

∇PL = ∇P f + cteq(∇Phteq)T hteq − (∇Phteq)T η = 0. (III.110b)

The pseudo-stiffness matrix of the two systems are respectively of size Nn × Nn
and nstates × nstates. This is computationally more advantageous than the complete
nominal solver derived above. However, we need to assess whether the conservation
of angular momentum is sufficiently enforced in the material data set D rather than
in the constraint set E . Indeed, the constraint of rotational equilibrium re = 0

is purely local. It could then be verified at each integration point in the mesh
thanks to the associated material state instead of enforced in the minimization of
the mechanical state.
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Algorithm III.2 Augmented Lagrangian solver for the nominal formulation of the
data-driven constrained minimization problem.
INPUT: Results from the (k − 1)-th iteration of the data-driven solver.
OUTPUT: Displacement and stress fields satisfying mechanically admissibility.
Require: Initial penalty parameters cD

0 , c
teq
0 , creq

0 , initial Lagrange multipliers
λ0, η0, µ0, tolerance parameter rtol > 0, maximum number of iterations jmax.

1: j ← 0

2: xj=0 ← u(k−1), P (k−1) I start from the results of the previous data-driven
iteration

3: cD
j=0, c

teq
j=0, c

req
j=0 ← cD

0 , c
teq
0 , creq

0

4: λj=0, ηj=0, µj=0 ← λ0, η0, µ0

5: KKTj=0 ← ‖∇f(x0)− [λT0 , η
T
0 , µ

T
0 ]∇h(x0)‖2 I initialize KKT conditions

6: for j = 1 . . jmax do I Augmented Lagrangian iterations
7: xj ← minimize LcDj ,cteqj ,cj (xj , λj , ηj , µj) I Newton-Raphson Eq. (III.97) with

initial guess xj−1

8: KKTj ← ‖∇f(xj)− [λTj , η
T
j , µ

T
j ]∇h(xj)‖2 I update KKT conditions

9: if KKTj ≤ rtolKKT0 or KKTj > KKTj−1 then
10: return xj
11: else

update Lagrange multipliers
12: λj+1 ← λj − cD

j h
D(xj)

13: ηj+1 ← ηj − cteq
j hteq(xj)

14: µj+1 ← µj − creq
j hreq(xj)

update penalty parameters (Bertsekas, 1996)
15: if ‖h(xj)‖2 > γ‖h(xj−1)‖2 then
16: cj+1 ← βcj
17: else
18: cj+1 ← cj
19: end if
20: end if
21: end for
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Algorithm III.3 Data-driven solver - nominal formulation.
INPUT: A mesh of M integration points and N nodes, boundary and loading

conditions, material data set D.
OUTPUT: mechanical response (displacements {ua}Na=1, mechanical states
{(Fe,Pe)}Me=1, residual forces, etc.), material states {(F ∗ie,P ∗ie)}Me=1.

Require: maximum number of iterations kmax.

1) Initialize all material states and mapping
1: k ← 0

2: for e = 1 . . M do
3: ie(0) ← i, i ∈ [1 . . me]

4: end for

5: u(k=0) ← 0

6: P (k=0) ← 0

7: for k = 1 . . kmax do
2) Compute mechanical states
2)a. Minimize Eq. (III.93)

8: (u(k), P (k))← x from Algorithm III.2
2)b. Update mechanical states

9: for e = 1 . . M do
10: F

(k)
e ←∇0u

(k) + I

11: P
(k)
e ← P (k)

12: end for
3) Update material states and mapping

13: for e = 1 . . M do
14: ie(k) ←

(
F ∗
ie(k)

,P ∗
ie(k)

)
from Eq. (III.82)

15: end for
4) Test convergence

16: if ie(k) = ie(k−1) for all e = 1 . . M then
17: u← u(k)

18: (Fe,Pe)← (F
(k)
e ,P

(k)
e ) for all e = 1 . . M

19: exit.
20: else
21: ie(k+1) ← ie(k) for all e = 1 . . M

22: end if
23: end for
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2.3 Theoretical comparison of the two approaches

Before moving to the numerical validation of both finite strain data-driven solvers,
we discuss some of their main differences.

First, from a theoretical point of view, we must emphasize that no mathemati-
cal analysis proving the existence and convergence of data-driven solutions has been
conducted for the Lagrangian formulation, to the best of our knowledge. In par-
ticular, the quadratic nature of the compatibility constraint highly complicates the
problem. Conversely, following the work done for geometrically linear elasticity in
Conti et al. (2018), Conti et al. (2020) theoretically assessed the existence and the
convergence of data-driven solutions for the nominal formulation. However, the
theorems required several topological conditions to be met both on the material
data set and the constraint set, which are difficult to implement numerically. We
refer the interested reader to the publication for more details. In particular, Conti
et al. (2020) proposed two hyperelastic models which generate material data sets
satisfying these conditions, one in 2D and one in 3D. The respective strain density
functions W2 and W3 write

W2(C) =
1

2
IC +

1

4
aI2
C + g2(j), ∀C ∈ R2×2

sym (III.111a)

W3(C) =
1

2
IC +

1

4
aI2
C +

1

6
eI3
C + g3(J), ∀C ∈ R3×3

sym, (III.111b)

with a, b, e positive constants. The volumetric strain energy functions g2(j = detF )

for F ∈ R2×2 and g3(J = detF ) for F ∈ R3×3 are defined as

g2(j) =
1

2
β

(
j − 1− 1 + 2a

β

)2

, (III.112a)

g3(J) =
1

2
β

(
J − 1− 1 + 3a+ 9e

β

)2

. (III.112b)

Conti et al. (2020) stated that when the material data set is generated with the strain
energy density function W2 (respectively W3), the data-driven problem Eq. (III.64)
with the deviation functions Eq. (III.66) has a unique solution, the classical solution,
when (p, q) = (4, 4/3) (respectively when (p, q) = (6, 6/5)). Unfortunately, we could
not numerically assess these models for the following reasons:

• both material data sets require to solve the problem with (p, q) 6= (2, 2), which
is currently out of our reach;

• we bring out that the volumetric functions triggered non-physical response of
the material in compression and uniaxial tension. Namely, a tensile specimen
would grow thicker in the directions perpendicular to the loading, correspond-
ing to a sort of negative Poisson effect. See Appendix D for details.

Second, the implementation of the nominal formulation is more complex than
that of the Lagrangian formulation. In particular, its requires to use an uncon-
strained minimization scheme (here we used a Newton-Raphson method) inside an
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augmented Lagrangian loop, which adds another layer to the algorithm. However,
the nominal solver (provided that (p, q) = (2, 2)) could be rendered much simpler if
the conservation of angular momentum need not be enforced, but merely satisfied
by the material data set, as suggested in Section 2.2.4. This statement has yet to
be verified numerically where the material data set is discrete and comprises a finite
(and possibly limited) number of points.

Third, the curse of dimensionality is even more acute in the nominal formulation
as the phase space consists of non-symmetric tensor pairs. The nominal phase space
is 8 and 18-dimensional while the Lagrangian phase space is 6 and 12-dimensional for
2 and 3-dimensional problems respectively. This could have an important impact on
the coverage and sampling of the phase space by the material data set and possibly
on the ability for the solver to find a satisfactory solution. These aspects are further
discussed in the two next chapters.

In summary, on the one hand, the Lagrangian approach provides an “engineering”
solution for the finite strain data-driven problem. On the other hand, the nominal
approach presents some mathematical grounds but amounts to a more complex
numerical problem. With this in mind, we can now proceed to the next section,
which aims at validating both solvers on “sanity check” test cases.

3 Numerical validation

This section discusses some of the practical aspects in using finite strain data-driven
solvers. To this end, we build artificial material databases from a constitutive rela-
tion and compare the data-driven results to classical finite element analysis achieved
from the same model. It is then expected that the data-driven solution recovers or
at least converges to the classical solution, which we take as a reference solution.
To reduce the dimensionality of the phase space, we only consider two-dimensional
problems, assuming plane stress conditions and incompressibility of the material. In
the following, all tensors are then two-dimensional.

To generate the standard FE response, we use the standard neo-Hookean model,
reduced to its two-dimensional expression. As shown in Appendix C, under plane
stress and incompressibility constraints, the in-plane second Piola-Kirchhoff stress
tensor S ∈ R2×2

sym is indeed expressed as a function of the in-plane right Cauchy-Green
stretch tensor C = F TF ∈ R2×2

sym by

S = µ
(
I − (detC)−1C−1

)
, (III.113)

where µ is the shear modulus. In this study, we take µ = 1.2 MPa (arbitrary value).
We investigate three 2D test cases: (i) uniaxial tension of a thin membrane,

(ii) uniaxial tension of a thin membrane with the bottom clamped, and (iii) more
complex loading (simultaneous tension and shear) of a thin membrane with a hole.
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3.1 Validation: uniaxial tension

The first test case is used to validate the data-driven solvers in the simplest load-
ing conditions: a uniaxial tensile test of a thin hyperelastic membrane. It also
enables the visualization of the phase space in two dimensions and an easy syn-
thetic generation of the database. Indeed, the stress tensors only have one non-zero
component and the deformation-gradient tensors are entirely characterized by two
inter-dependent quantities (longitudinal and transversal stretch ratios).

3.1.1 Computational problem

We consider a rectangular thin membrane of dimensions l× h = 5× 10 mm2, under
plane stress conditions. The problem is then reduced to two dimensions. The
geometry and mesh of the sample are shown in Fig. III.3. The mesh comprises

Figure III.3 – Geometry, boundary conditions and mesh of the sample in uniaxial
tension.

N = 36 nodes and 23 bi-linear quadrangular elements with 4 integration points
each, which amounts to M = 92 integration points. The boundary conditions are
also represented in Fig. III.3 and write

ua · eY = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0) (III.114a)

ua · eX = 0, ∀a ∈ [1 . . N ] : Xa = (0, Ya) (III.114b)

ua · eY = uD, ∀a ∈ [1 . . N ] : Xa = (Xa, h) (III.114c)

with uD = 5 mm, which corresponds to a stretch λref
Y = 1.5.
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The material database is generated by a sampling of the standard uniaxial
stretch-stress curve of the neo-Hookean model Eq. (III.113). In uniaxial tension
of direction Y , the different deformation and stress tensors are functions of the lon-
gitudinal and transversal stretch ratios λY and λX , as summarized in Table III.2.
Note that, due to the incompressibility of the material, we have λX = 1√

λY
.

Table III.2 – Expressions of the deformation gradient, strain and stress tensors in
plane stress uniaxial tension with an incompressible neoHookean model.

Description Deformation tensors Stress tensors

Lagrangian
E = 1/2(λ2

X − 1) eX ⊗ eX
+1/2(λ2

Y − 1) eY ⊗ eY
S = µ(1− λ−3

Y ) eY ⊗ eY

Nominal F = λXeX⊗eX +λY eY ⊗eY P = µ(λY − λ−2
Y ) eY ⊗ eY

The material database Dmloc used in the Lagrangien (nominal) formulation results
from a sampling of m points along the strain-stress (stretch-stress) curve given in
Table III.2. In pratice, it results from a sampling of m longitudinal stretch ratios
λY , evenly spaced in the interval [0.9, 2]. For both formulations, we generate two
types of databases:

1. A first database D100
loc , which contains the reference solution at λref

Y = 1.5

together with 99 other material data points.

2. A second family of databases Dmloc, which do not contain the reference solution
and consist of several samplings of increasing density:
m ∈ {11, 51, 101, 1001, 10 001, 100 001}.

Finally, the data-driven solutions were obtained with the following parameters:

C-parameter: the amplitude of the scaling parameter is set to the linearized Young
modulus of the model EY = 3µ, for both formulations: C = EY in the nominal
solver and, C = C IS in the Lagrangian solver, with ISYM the symmetric fourth-
order tensor.

Initialization: the material states are initialized to the zero strain-stress state, for
both formulations (see Line 3 in Algorithm III.1 and Line 3 in Algorithm III.3):
(F ∗ie,P

∗
ie) = (I,0), ∀e and (E∗ie,S

∗
ie) = (0,0), ∀e.

Augmented Lagrangian parameters: the initial penalty parameters
cD

0 , c
teq
0 , creq

0 are respectively set to 103C, 103C, C. The initial Lagrange
multipliers λ0, η0, µ0 are all set to zero (see Lines 3 and 4 in Algorithm III.2).
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3.1.2 Results and discussion

First, we demonstrate in Fig. III.4 that the reference solution is recovered by both
data-driven solvers with the material database D100

loc , which contains the solution.
Both solvers converged within very few iterations. In addition, the mechanical
states (red circles) always remain on the constraint set throughout the iterations,
while the material states are successively selected as the closest data points7. This
is illustrated by the projection PD and PE on the material data set and on the
constraint set (dotted and solid gray lines) respectively. On the one hand, the slope
of the projection PD is controlled by the C-parameter. On the other hand, the slope
of the projection PE reveals that the computation of the mechanical states for this
displacement-controlled problem boils down to a correction of the stretch ratio λY .
Fig. III.4 also shows the deformation of the mesh throughout the iterations (purple
lines). We can see that, in that case, the first iteration consists in enforcing the
boundary conditions (semi-transparent purple lines at the furthest right delimits
the deformed mesh at the end of the first iteration k = 1).

After this sanity check example, we can now proceed to show the results obtained
from material data sets which do not contain the reference solution. In Fig. III.5
we plot the RMS percent errors in strain and stress against the size of the material
database, re-defined as

E(%RMS) =

(∑M
e=1weW

(
Ee −Eref

e

)
∑M

e=1weW (F ref
e )

) 1
2

(III.115a)

S(%RMS) =

(∑M
e=1weW

∗ (Se − Sref
e

)
∑M

e=1weW
∗ (Sref

e )

) 1
2

, (III.115b)

and

F(%RMS) =

(∑M
e=1weV

(
Fe − F ref

e

)
∑M

e=1weV (F ref
e )

) 1
2

(III.115c)

P(%RMS) =

(∑M
e=1weV

∗ (Pe − P ref
e

)
∑M

e=1weV
∗ (P ref

e )

) 1
2

, (III.115d)

with W and W ∗ as in Eq. (III.9) and V and V ∗ are as in Eq. (III.67) using (p, q) =

(2, 2). As expected, all errors with respect to the solution converge to zero with
increasing number of material data points. It is also notable that the two finite
strain formulations lead to two different solutions. Yet, both material databases
represent the exact same sampling of the constitutive model. The arrangement of
the material data points in the different phase spaces could explain this result: the
distance between two points in the Lagrangian phase space is different than the
distance between the same points in the nominal phase space.

7Note that, here, the constraint set represented in Fig. III.4 is a projection of it in the 2D
strain-stress plane. It is actually much more complex.
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Figure III.4 – Physical space vs. phase space representation of the data-driven
results obtained with the material database D100

loc . In phase space, we only plot the
mechanical and material states of the corresponding red colored element in physical
space. The results from previous iterations are semi-transparent. (a) Lagrangian
formulation. (b) Nominal formulation.
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Figure III.5 – Convergence of the RMS percent errors in strain and stress with respect
to the size of the database, for the uniaxial tensile test.

This very simple example has already shown interesting features of the finite
strain data-driven solver:

• when the reference solution is in the data set, the data-driven solvers are able
to recover it;

• when the intersection between the constraint set and the material data set is
empty, the data-driven solution improves with the number of material data
points, as the best material data point gets increasingly closer to the reference
solution.

3.2 Non homogeneous case: clamped tension

Let us now consider a slightly more complex problem. We perform data-driven
simulations of a thin membrane in tension, which is clamped at the bottom. The
mechanical fields should then be homogeneous in most of the structure, except near
the clamped edge.

3.2.1 Computational problem

The problem is again two dimensional, as we make the assumption of plane stress
conditions. The geometry, mesh and loading of the sample are given in Fig. III.6.
The mesh comprises N = 340 nodes and 378 bi-linear quadrangular elements with
4 integration points each, which amounts to M = 1512 integration points. The
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Figure III.6 – Geometry, boundary conditions and mesh of the sample in tension,
clamped at the bottom.

boundary conditions are also represented in Fig. III.6 and write

ua = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0); (III.116)

ua · eY = uD, ∀a ∈ [1 . . N ] : Xa = (Xa, h). (III.117)

with uD = 5 mm. In that case, the simulation is performed incrementally: the
displacements are gradually prescribed in 10 regular steps.

The material database is only constituted with the classical FE solution of the
problem, obtained with the incompressible neoHookean model Eq. (III.113). For all
10 load steps, we concatenate the reference deformation-stress state of all integration
points into the Lagrangian and nominal databases respectively.

DLag
loc =

{{(
Eref,t
e ,Sref,t

e

)}M
e=1

}10

t=1

(III.118a)

Dnom
loc =

{{(
F ref,t
e ,P ref,t

e

)}M
e=1

}10

t=1

(III.118b)

The data-driven solutions were obtained with the following parameters:

C-parameter: the amplitude of the scaling parameter remains unchanged from the
previous example.

Initialization: the material states are initialized with several techniques, identi-
cal in both formulations (see Line 3 in Algorithm III.1 and Line 3 in Algo-
rithm III.3):
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“zero” all material states are initialized to the zero-deformation state:
(F ∗ie,P

∗
ie) = (I,0), ∀e and (E∗ie,S

∗
ie) = (0,0), ∀e.

“random” all material states are initialized to the same random data point:
(F ∗ie,P

∗
ie) = (F ′ir ,P

′
ir

), ∀e and (E∗ie,S
∗
ie) = (E′ir ,S

′
ir

), ∀e, with ir a ran-
dom integer in [1 . . m].

“random point-wise” each material state is initialized to a different random
data point: (F ∗ie,P

∗
ie) = (F ′er ,P

′
er), ∀e and (E∗ie,S

∗
ie) = (E′er ,S

′
er), ∀e,

with er a different random integer in [1 . . m] for each e.

“reference” the material states are initialized to the classical FE solution:
(F ∗ie,P

∗
ie) = (F ref

e ,P ref
e ), ∀e and (E∗ie,S

∗
ie) = (Eref

e ,Sref
e ), ∀e.

Note that this initialization is performed at the beginning of the simulation,
i.e. for the first load step only. Between two load steps t and t−1, the material
states remain unchanged:

(F ∗ie,P
∗
ie)

(t, k=0) = (F ∗ie,P
∗
ie)

(t−1, kmax) (III.119a)

(E∗ie,S
∗
ie)

(t, k=0) = (E∗ie,S
∗
ie)

(t−1, kmax) (III.119b)

with kmax the number of data-driven iterations performed in the previous load
step.

Augmented Lagrangian parameters: the penalty parameters and Lagrange
multipliers are initialized as previously.

Computer: all simulations are performed on a laptop with the following specifica-
tions: processor Intel Core i5-6200U CPU @ 2.30 GHz × 4, with 15.5 Gio of
RAM.

With these settings, three kinds of data-driven simulations are performed: (i)
using the Lagrangian solver, (ii) using the nominal solver, (iii) using the linear
nominal solver, where the conservation of angular momentum is not enforced (see
Section 2.2.4). The latter test is aimed at assessing whether this condition must be
enforced in the constraint set when it is already satisfied by the material data set
(see Conti et al. (2020, Theorem 3.5)).

3.2.2 Results and discussion

General results. We first compare the results obtained with the “zero” initial-
ization method, for the three above-mentioned computations. Table III.3 compares
the values of the objective function

∑
ewe de(ze, z

∗
ie) at convergence, for the final

load step. First, the important result is that none of the three solvers reaches the
global minimum: the alternated minimization is not able to find the reference so-
lution, although it is entirely contained in the material data set. Second, from the
computation times also listed in Table III.3, we confirm that the Lagrangian formu-
lation finds a solution at a lower computational cost. Indeed, as aforementioned, at
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Table III.3 – Value of the objective function at convergence, for the last load step
of the clamped tensile test. The iterations correspond to the total number of local
data assignment iterations throughout all 10 load steps.

Formulation Objective function Iterations Computation time

Lagrangian 4.46× 10−4 MPa mm2 188 11 min

Nominal 1.74× 10−3 MPa mm2 256 94 min

Linear 3.75× 10−3 MPa mm2 175 19 min

a fixed data-driven iteration, the Lagrangian solver calls a Newton-Raphson scheme
which successively builds and solves linear systems of size (2ndof)

2. Conversely, the
nominal formulation calls an augmented Lagrangian scheme, within which a Newton-
Raphson iteration requires to build and solve a linear system of size (Nn+nstates)

2.
Finally, the linear nominal solver only requires, within each augmented Lagrangian
iteration, to solve two independent linear systems of size (Nn)2 and (nstates)

2 re-
spectively. In the latter case, the stiffness matrix of the system is constant and can
be computed once and for all at the beginning of the simulation. In this particular
example, Nn = 680� nstates = Mn2 = 6048.

In Fig. III.7, we compare the Von Mises norm σVM of the Cauchy stress tensor
σ with the reference solution, for all three data-driven computations:

σVM =

√
3

2
dev(σ3D) : dev(σ3D) with σ3D =

(
σ 0

0 0

)
, (III.120)

This stress tensor is of particular interest for comparing the data-driven results
with the reference one as it combines the deformation and stress tensors that are
actually optimized by the solvers. Indeed, the deformation and stress tensors are no
longer related by the constitutive relation in the data-driven computation. A good
prediction of the Cauchy stress tensor is then an indicator that both kinematics and
stresses have been well optimized:

σ = P F T and σ = FSF T (III.121)

as J = detF3D = 1. As can be seen in Fig. III.7, the results are all very similar,
indicating that albeit non-optimal, the data-driven solutions are very acceptable.
Moreover, the homogeneity of the stress field in the top part of the structure (where
uniaxial tension occurs) is well recovered by the Lagrangian and nominal solvers. A
slight artifact is shown in this region by the linear nominal solver.

Initialization of material states. We now compare the different initialization
methods on the first load step of the simulations in Fig. III.8. We demonstrate
that the alternated minimization can diverge if the initial guess is too far from the
solution, especially when using the nominal solver.
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Figure III.7 – Filled isovalue view of the Von Mises norm σVM of the Cauchy stress
tensor, plotted on the deformed configuration (21 isovalue regions).

On the left-hand bottom corner of both Figs. III.8(a) and III.8(b), we can see
that, as expected, the “reference” initialization converged within one iteration and
provides the global minimum of the objective function, which is a numerical zero
for both formulations.

On the upper part of Fig. III.8(b), we show the convergence of the nominal solver
for 8 and 10 different “random” and “random point-wise” initializations respectively.
The initial value of the objective function (at k = 1) in these cases is already very
high (about 1× 105 MPa mm2) and most of the simulations diverged (as indicated
by a cross at the end of a line)8. It is worth noting that the Lagrangian solver
only diverged once (see upper part of Fig. III.8(a)). A random initialization of the
material states is then not recommended, whichever the finite strain solver.

The most robust and accurate choice is then “zero”, as can be seen from the
zoomed box of both Figs. III.8(a) and III.8(b): for example, the objective function
smoothly decays from 7.37× 10−2 MPa mm2 to 1.74× 10−3 MPa mm2 within k = 21

iterations for the nominal solver. Furthermore, the “zero” initialization method
actually behaves as a linear elastic initial guess. Indeed, let us get a closer look at
the systems of equations that are to be solved at the first iteration of the first load
step. For the Lagrangian solver, from Eqs. (III.39a) and (III.39b), the initial guess

8In fact, the initial material state is so far from the solution that the Newton-Raphson diverges
right away. However, we let the simulation go on a bit to see if the alternated minimization can
recover the path towards the solution, before stopping the simulation. This explains why the value
of the objective function is increasing in some cases. Note that this issue is not possible in small
strain as the minimization problem is quadratic with linear constraints.
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(a) Lagrangian solver.

(b) Nominal solver.

Figure III.8 – Convergence of the data-driven finite strain solvers for the clamped
tensile test. Comparison of different initialization methods: “zero” in solid line,
“random” in dashed lines and “random point-wise” in dotted lines. A dot (respec-
tively a cross) at the end of a line indicates that the solver did (respectively did not)
converge. Results are given for the first load step only.
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being (u,η) = (0, 0) (see also Line 5 in Algorithm III.1) and the initial material
states being (E∗ie,S

∗
ie) = (0,0), the computation of the mechanical states then write,

Rη
a (u = 0,η = 0) = −T ext

a , ∀a ∈ [1 . . N ] (III.122a)

Ru
a (u = 0,η = 0) =

M∑

e=1

we Fe (C : Ee) , ∀a ∈ [1 . . N ], (III.122b)

where the summation term in Ru
a vanishes everywhere except at the integration

points that are affected by the prescribed displacements. This system is merely
the application of the boundary and loading conditions on the sample. The first
estimated displacements then result from the linear elastic resolution of the system
Eq. (III.122), with stiffness C, as Ee ' εe and Fe ' I if the load step is small
enough. This first estimator seems more reasonable than imposing a random value
of material states and mechanical states, which act as pre-strain and pre-stress
conditions on the structure. The same result can be shown for the nominal solver,
where the stiffness of the system is C = C I, with I the fourth-order identity tensor
(Iijkl = δikδjl) and C the parameter in the deviation functions Eq. (III.67).

Conservation of angular momentum. As shown earlier, the linear nominal
solver greatly reduces the computational cost of the nominal formulation. To assess
the quality of the corresponding solution, we now evaluate the conservation of angu-
lar momentum in the results. We refer to the vector r = E :

(
FP T

)
in Eq. (III.62)

as the rotational residual. In addition, we define the rotational residual percent er-
ror ε(%rot) as the ratio between the rotational residual and the stored strain energy
density:

ε(%rot) =
‖E :

(
FP T

)
‖2

F : P
. (III.123)

Note that, in two-dimensional problems, the rotational residual is a one-dimensional
vector, i.e. a scalar; specifically,

‖E :
(
FP T

)
‖2 = |F e11P

e
21 + F e12P

e
22 − (F e21P

e
11 + F e22P

e
12) |. (III.124)

The rotational residual percent error is computed for the nominal and linear nominal
solvers respectively. The results are given in Fig. III.9, together with the rotational
residual of the linear nominal solver solution. As can be seen from Fig. III.9(b),
the linear nominal solver does not recover the conservation of angular momentum.
However, the error does not exceed 10 % of the stored strain energy density F : P .
Let recall that in the present case, the material database exactly satisfies moment
equilibrium since it was obtained from standard FE computations.

3.3 More complex case: membrane with a hole

We now turn to a more complex two-dimensional problem. We study a thin mem-
brane with a hole subject to simultaneous shear and tension. With this example,
we evaluate the nominal and Lagrangian formulations separately:
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Figure III.9 – Conservation of angular momentum in the data-driven results for the
clamped tensile test. (a) and (b) Rotational residual percent error. (a) Nominal
solver solution. (b) Linear nominal solver solution. The color map is in log scale.
As a comparison, the corresponding maximum value for the reference solution is
1.07× 10−14 %. (c) Rotation residual r (one-dimensional vector plotted as a scalar)
for the linear nominal solver.

1. In the previous example, the strain and stress fields were homogeneous in most
of the structure, which could explain the relatively low impact of ignoring the
rotational equilibrium constraint. With the addition of the hole and the more
complex boundary conditions, we expect to see more heterogeneous strain
and stress fields. We thus evaluate the linear nominal solver with a more
challenging test case.

2. We then evaluate the convergence of the Lagrangian data-driven solution with
the number of material data points: we develop a method to artificially enrich
the material database for the FE reference solution.

3.3.1 Computational problem

The geometry, mesh and loading of the sample are given in Fig. III.10. The mesh
comprises N = 1092 nodes and 1015 bi-linear quadrangular elements with 4 inte-
gration points each, which amounts to M = 4060 integration points. The boundary
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Figure III.10 – Geometry, boundary conditions and mesh for the membrane with a
hole.

conditions are also represented in Fig. III.10 and write

ua = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0); (III.125)

ua = uDXeX + uYDeY , ∀a ∈ [1 . . N ] : Xa = (Xa, h); (III.126)

with uDX = 30 mm and uDY = 5 mm. The simulation is again performed incremen-
tally: the displacements are gradually prescribed in 40 regular steps.

As previously, the material database is only constituted with the classical FE

solution of the problem, obtained with the incompressible neo-Hookean model, for-
mulated in plane stress Eq. (III.113). For all 40 load steps, we concatenate the
reference strain-stress state of all integration points, which yields

DLag
loc =

{{(
Eref,t
e ,Sref,t

e

)}M
e=1

}40

t=1

(III.127a)

Dnom
loc =

{{(
F ref,t
e ,P ref,t

e

)}M
e=1

}40

t=1

(III.127b)

For both formulations and following the objectives states above, we generate
additional databases:

• We recall that the conservation of angular momentum is, in theory, equivalent
to the principle of material-frame indifference. Hence, in the nominal formula-
tion, it could be enforced in the material data set, rather than in the constraint
set, by enriching the database with the orbits of every material data points.



118 Chapter III. Data-driven solvers for large strain elasticity

That is, the local material data set is now:

Dnom,Q
loc =

{{
(QF ref

e ,QP ref
e )
}M
e=1

}40

t=1

, (III.128)

with Q ∈ SO(2). A discretization of SO(2) is easily parameterized by one
angle θ ∈ [0, 180). We compare the results obtained with three databases of
increasing fidelity to material frame-indifference, generated via regular sam-
plings of θ, with decreasing step ∆θ ∈ {15◦; 10◦; 5◦}.

• For the Lagrangian formulation, we generate additional material databases
which aim at densifying the region of phase space covered by the solution.
To this end, we add to the material database DLag

loc the reference solution of
the same problem with the same loading path, generated with coarser and
finer meshes of the sample. The resolution of the corresponding meshes are
given in Table III.4. The size of the resulting material databases are given in
Table III.5.

Table III.4 – Resolutions of the meshes used to generate the Lagrangian material
databases for the complex test case.

Mesh number Nodes Integration points

1 250 864

2 589 2136

3 1092 4060

4 1655 6228

5 2245 9500

Table III.5 – Size of the Lagrangian material databases generated with decreasing
or increasing mesh resolutions of the reference solution.

Database number Meshes Size

(0) 3 162 400

(1) 1 8640

(2) 1 + 2 30 000

(3) 1 + 2 + 3 70 600

(4) 3 + 4 + 5 197 880

(5) 4 + 5 157 280

(6) 5 95 000

Finally, based on the preceding analysis, the solution is achieved from the “zero”
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initialization method only, for all solvers. All other parameters of the simulations
are unchanged from the previous example.

3.3.2 Results and discussion

General results. Again the global minimum of the problem is not found by the
alternated minimization, which ever the solver, as shown by the values of the objec-
tive function listed in Table III.6. Note that the computation time was divided by
a factor 2 with the linear solver as compared to the nominal solver. Nevertheless,
the Lagrangian solver is definitely faster.

Table III.6 – Value of the objective function at convergence, for the last load step
of the complex loading case. The iterations correspond to the total number of local
data assignment iterations throughout all of the 40 load steps.

Formulation Objective function Iterations Computation time
Lagrangian 2.98× 10−2 MPa mm2 491 1.57 h

Nominal 2.46× 10−1 MPa mm2 962 20.22 h

Linear nominal 3.98× 10−1 MPa mm2 1191 12.1 h

Conservation of angular momentum in the nominal formulation. We
again measure the rotational residual percent error in Fig. III.11. In this more
complex case, the error made by the “linear” solver is higher: it is mostly comprised
between 1 % and 10 % but it can reach over 100 % around the holes.

The local error at integration points also has an impact on the global response
of the structure, as measured by the loading curve of the simulation. We compare in
Fig. III.12 the displacement-force response of the clampled tensile test with the one
of the complex case for both solvers. In the clamped tensile test where most of the
structure is subject to uniaxial tension only, the impact of the error in rotational
equilibrium on the reaction forces is invisible. Conversely, the local error made in
the membrane with a hole weakens the accuracy of the reaction forces at the grip.

Finally, we evaluate whether the above results could be improved with the ma-
terial databases Dnom,Q

loc , enriched with the orbits of the reference solution as in
Eq. (III.128). We analyze in Fig. III.13 the statistics of the rotational residual for
each database Dnom,Q

loc (∆θ) with ∆θ ∈ {5◦, 10◦ and 15◦}. As can be seen from the
figure, the rotational residual is not lowered with this method (in particular, median
and mean values are almost unchanged).

Density of the material database for the Lagrangian formulation. First,
we examine the data-driven solution obtained with the database (0), i.e. the one
containing the reference solution of the current mesh resolution only. In Fig. III.14,
we compare the component of the Cauchy stress tensor with the reference solution.
As can be seen from the figure, the results are indistinguishable to the eye.
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Figure III.11 – Conservation of angular momentum in the data-driven results for
the membrane with a hole. (a) and (b) Rotational residual percent error. (a) Nom-
inal solver solution. (b) Linear solver solution. The color map is in log scale.
As a comparison, the corresponding maximum value for the reference solution is
1.93× 10−11 %. (c) Rotation residual (one-dimensional vector plotted as a scalar)
for the “linear” solver.

Second, the convergence of the strain and stress RMS percent errors Eq. (III.115)
with respect to the size of the data set is shown in Fig. III.15. The solution is slightly
improved with the database (3), i.e. when the solution is added to the database
(2). However, the impact is not so clear when the solution is added to the databases
containing the finer meshes (database (4)). This mitigates our intuition that refining
the mesh of the FE solution used to generate the database actually densifies the
appropriate regions of phase space. Alternatively, the more the material data points,
the more complex the combinatorial problem. There could be a competition between
the complexity of the optimization problem, degrading the solution due to a non-
optimal solver, and the density of the database, expected to improve the results.
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Figure III.12 – Loading curves for the clamped tensile test (a) and the complex case
(b). In the legend, “nom” designates the nominal solver, “lin” designates the “linear”
nominal solver and “ref” corresponds to the FE reference solution.
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Figure III.13 – Rotational residual at every integration point. The databases are
obtained with different angular discretizations ∆θ of the orbit Q ∈ SO(2). (a)
Histogram of the data, in percent of number of integration points. At the furthest
left, a bar corresponding to 10 % of occurrence is given for scale. (b) The box extends
from the 25th and 75th percentile of the data, with a line at the median. The red
circle stands for the mean value. The whiskers show the 1th and 99th percentiles.
Small purple dots represent data points out of that range (fliers).
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Figure III.14 – Components of the Cauchy stress tensor, plotted on the deformed
configuration, obtained with the Lagrangian solver.
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Figure III.15 – Convergence of the RMS percent errors in strain and stress with
respect to the size of the database, for the complex test case and the Lagrangian
solver. A number in circle indicates to the number of the corresponding database
from Table III.5.
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4 Conclusion

We conclude this chapter with a summary of the main features of the data-driven
finite strain solvers that we developed and of the first numerical results we obtained.

The extension of the data-driven computing paradigm to finite strain elasticity
required to reformulate the problem in another strain-stress or phase space. We ex-
plored two possibilities: (i) the so-called Lagrangian phase space, constituted with
Green-Lagrange strain–second Piola Kirchhoff stress tensors and (ii) the so-called
nominal phase space of deformation gradient–first Piola-Kirchhoff stress pairs. The
former choice was first introduced by Nguyen and Keip (2018) while the latter
was recommended by Conti et al. (2020), based on mathematical considerations.
Based on their pioneer work, we proposed a generic FE solver for each formulation.
While the Lagrangian solver is greatly inspired by the work of Nguyen and Keip
(2018), the nominal solver is an original production of this thesis, to the best of
our knowledge. Both approaches rely on the alternated minimization scheme that
was introduced in the original DDCM (Kirchdoerfer and Ortiz, 2016). The optimiza-
tion of the material states is then conducted with an efficient tree-based nearest
neighbor search algorithm. The constrained minimization of the mechanical states
is addressed differently in each formulation: (i) the Lagrangian formulation uses a
method of Lagrange multipliers, and (ii) the nominal formulation uses an augmented
Lagrangian method. The deviation functions Eq. (III.66) proposed by Conti et al.
(2020) as functions of the p-th power and q-th power of the tensors norms are not
differentiable at zero, except when (p, q) = (2, 2), which was not recommended by
the authors. Yet, we have not developed a solver capable of handling other values of
(p, q), and hence could not numerically assess the statements made in their paper.

Nevertheless, we successfully evaluated our solvers with the aid of three sanity
check examples, in two dimensions. In particular, we demonstrated that the al-
ternated minimization is, as expected, not able to find the global minimum of the
combinatorial and optimization problem: the reference solution is not recovered even
if the material database does contain it. This statement is however mitigated by
the facts that (i) the solution improves as the density of the database increases, and
(ii) the solution is satisfactory enough when comparing the Cauchy stress field with
the reference solution.

Along with the complete nominal formulation, we investigated the possibility
to relax the enforcement of conservation of angular momentum, as it constitutes
the only nonlinear constraint to the minimization problem. The solver is then
simplified into a so-called linear nominal solver, which provides a substantial gain in
computational cost. Notwithstanding, its systematic use is subject to the upcoming
proof that the consequent error in moment balance is bounded. We also explored a
workaround which consists in encoding material-frame indifference in the material
data set instead: we enriched material data points with their orbits in SO(2), in
an off-line stage. This method did not lower the error in conservation of angular
momentum as expected. Another possibility could be to minimize the orbit of the
material data points in-line, in the search for the optimal material states, in like
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manner as the approach presented for geometrically linear elasticity in Kirchdoerfer
and Ortiz (2016). Until future investigation completely elucidates this question, we
recommend enforcing conservation of angular momentum as a constraint, to avoid
misleading results. Note that in the Lagrangian solver, this constraint is directly
encoded in the symmetry of the stress tensor S.

All-in-all the Lagrangian solver outperforms, for now, its nominal counterpart.
Thus, we used the former to start investigating the notion of density of the material
database in our last example. We tried enriching the material database by refining
the mesh used to generate the strain-stress states from classical FE method. The
convergence to the reference solution was little improved with this approach, demon-
strating that data coverage and data sampling of the phase space are not easy to
control. Indeed, the multi-dimensionality of the phase space makes these concepts
difficult to grasp. The next chapter is then entirely dedicated to the generation
and analysis of optimal material databases and their implication on the data-driven
solution.
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1 Introduction

1.1 Motivation

The material database is a key ingredient of the data-driven computing paradigm.
As shown in the previous chapter, in large strain, it can consist either of Lagrangian
strain-stress pairs (E,S) or of deformation gradient-nominal stress pairs (F ,P ). In
practice, these tensors are expressed in the canonical basis B = (eX , eY , eZ). The
material database is then a collection of the tensors components in this basis. For
a two-dimensional problem, the material database for the Lagrangian and nominal
formulations respectively writes

DLag
loc =

{(
EiXX , E

i
XY , E

i
Y Y , S

i
XX , S

i
XY , S

i
Y Y

)
|i ∈ [1 . . m]

}
(IV.1a)

Dnom
loc =

{(
F iXX , F

i
XY , F

iY X,F iY Y , P
i
XX , P

i
XY , P

i
Y X , P

i
Y Y

)
|i ∈ [1 . . m]

}
,

(IV.1b)

with m the number of material data points, and where the symmetry of the La-
grangian strain and stress tensors E and S has been taken into account. Note that
the Lagrangian material database DLag

loc is then 6-dimensional whereas the nominal
data set Dnom

loc is 8-dimensional. The questions addressed in the present chapter are:

1. how can a material database, such as Eq. (IV.1), be obtained for an homoge-
neous material?

2. how many material data points are needed and how must they span the phase
space for a data-driven simulation to be reliable?

We restrict our investigation to only one formulation of the data-driven two-
dimensional finite strain elasticity. We choose the Lagrangian approach, as it re-
quires a material database of the smallest dimension. The first question is answered
in the present introduction: we next propose general considerations on the acqui-
sition (or generation) of material data. The second question is addressed in the
remaining of the chapter: first analytically in Section 2 and then through a numer-
ical application in Section 3.

1.2 Experimental point of view

The data-driven computing has been introduced by Kirchdoerfer and Ortiz (2016)
has a way of by-passing the constitutive modeling which introduces a bias in the rep-
resentation of the material response. In the simulations performed afterwards, this
bias is inevitably transfered to the structural response. Instead, with the develop-
ment of advanced data acquisition techniques for the characterization of materials, it
seems now possible to use directly the material response data as input of structural
simulations.

As mentioned in Section 2.2 of Chapter II, the acquisition of material strain-
stress pairs from complex experimental tests and full-field measurements is now
possible with the approach developed by Dalémat (2019). It is based on the inverse
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data-driven problem introduced by Leygue et al. (2018), which we referred to as
the DDI technique. The output of the DDI approach is double: (i) the mechanically
admissible stress fields, in balance with the (known) applied forces, (ii) the strain-
stress pairs which sample the material response and act as a regularization of the
problem. The latter constitutes in fact the material database we need as input of
the data-driven simulation. For a first application of the DDI-DDCM loop, the reader
can refer to the proof of concept of Stainier et al. (2019) with synthetic data.

In Dalémat et al. (2019), the method has been assessed for two-dimensional
problems, under plane stress conditions for incompressible materials. In particular,
they conducted tests on a thin membrane of elastomer with several holes, designed
to generate heterogeneous strain and stress fields. The material databases thus ob-
tained are expressed as Hencky strain-Cauchy stress pairs (H∗,σ∗). The Hencky
strain is defined asH∗ = lnV ∗, where V ∗ is obtained from the spatial polar decom-
position of F ∗ = V ∗R∗ and ln denotes the natural logarithm. To fit such data sets
into the Lagrangian formulation (or even the nominal), one would need to pull-back
the stress tensor σ∗ in the reference configuration, as

S = JF−1σF−T . (IV.2)

However, the material deformation gradient F ∗ = V ∗R∗ is not available with this
approach as the corresponding rotation R∗ is not computed in the process. We only
have access to the mechanically admissible deformation gradient tensor F = ∇0u+I

at each point in the membrane, which directly derives from the displacement field
u, measured by DIC. In DDI, the material states are the centroids of clusters of
mechanical states in phase space. Then, several mechanical states are associated to
the same material data point. It is then not clear how to choose the right mechan-
ical deformation gradient tensor to transform the spatial pairs (H∗,σ∗) into the
Lagrangian pair (E∗,S∗) through the pull-back operation Eq. (IV.2). In addition,
the heterogeneity of the fields in the structure was associated to the “richness” of
the subsequent material database. However, as shown by Dalémat (2019) at the end
of Chapter 6, it is very difficult to generate strain states that differ from uniaxial
tension and pure shear with a single actuator. In Chapter 8, a second actuator is
added to perform multiaxial experiments on the membrane (complex loading with
tension, shear and rotations). Again, the resulting “richness” of the strain state is
not clear: a lot of points in the membrane are in uniaxial tension or pure shear state.
Given the two above-mentioned limitations, and since the results are very new, it
was difficult to directly use them in the present thesis.

All-in-all, the generation of experimental material databases suitable for DDCM

simulations is an open and challenging subject. We then chose the assess the ro-
bustness of the data-driven finite strain solvers we developed in this thesis only
with synthetic, i.e. numerical, material data. More precisely, the above-mentioned
experimental results suggest that a sample, however complex, may only exhibit a
limited variety of modes of deformation. Hence, it may not be necessary for the
material database to be the richest possible (to contain the material response to any
mode of deformation, in any direction), to perform DDCM simulations of a given
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structure. In the following, we explore this question by artificially generating mate-
rial databases of controlled richness, i.e. which contain a tailored number of modes
of deformation.

1.3 Numerical point of view

Material databases for the data-driven problem can also be created synthetically:
either with a constitutive model to compare with the FE reference solution or from
the computational homogenization of the overall behavior of a given microstructure.
In both cases, we must sample an appropriate region of the strain (stress) space
and compute the associated stress tensors via the analytical or numerical (inverse)
constitutive relation. As aforementioned, the strain space is understood as the space
spanned by the independent components of the strain tensor. For three-dimensional
problems in small strain, it consists of {ε11, ε22, ε33, ε12, ε13, ε23} ⊂ R6. In all data-
driven applications so far, the strain space is sampled regularly on hyper-cubes of
pre-specified range in R3 or R6 (Eggersmann et al., 2020; Kirchdoerfer and Ortiz,
2016; Nguyen et al., 2020). However, as shown by Stainier et al. (2019), databases
generated from regular grids in strain space behave poorly, as compared to more
carefully designed data sets. In addition, if the regular grid can seem easy and
appealing in small strain, it is not suitable for large strain problems.

Indeed, let us consider a two-dimensional problem. One would need to sam-
ple the strain space generated by the three independent components of the Green-
Lagrange strain tensor, namely {E11, E12, E22} ⊂ R3. Depending on the range of
the grid used for sampling, the resulting strain tensor could be ill-defined, i.e. cor-
respond to deformation gradient tensor of negative Jacobian. For instance, let us
consider a regular grid of 103 points in strain space, of dimensions given by the
FE reference response of the membrane presented in the last numerical example of
Chapter III. Then, several points yield a negative Jacobian J < 0, included

E =

(−0.213 0.303

0.303 −0.189

)
⇒ J =

√
detC =

√
det (2E + I) = −0.197 < 0.

Hence, sampling the strain space with a regular grid can lead to non-physical data
points in large strain material databases.

For both reasons (poor performance in data-driven simulation and lack of phys-
ical consistency), we did not adopt this method in our thesis. Instead, in the next
section, we explore three different ways of generating synthetic material databases
for finite strain simulations:

1. Based on the work of Kunc and Fritzen (2019a), we generate as dense and as
rich as possible material databases (Section 2.1).

2. In Section 2.2, we synthetically reproduce the three standard tests (uniaxial
tension, pure shear, and equi-biaxial tension) usually used to calibrate hyper-
elastic constitutive models.
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3. We simulate the output of the DDI in Section 2.3, as it would result from a
Lagrangian re-formulation of Leygue et al. (2018); Dalémat et al. (2019).

Finally, in Section 3, we analyze the prediction of data-driven simulations obtained
with these databases. In particular, we compare them with a FE reference solution
to assess their respective performance. We also analyze the data-driven results for
themselves, without a reference solution.

2 Synthetic databases

As above-mentioned, synthetic databases are generated by means of sampling a
constitutive model. Here, we restrict ourselves to two-dimensional problems arising
in plane stress conditions and incompressibility of the material. We then use the
purely two-dimensional neo-Hookean model employed in Chapter III and presented
in Appendix C.

Š(C) = µ
(
I − (detC)−1C−1

)
∈ R2×2

sym (IV.3)

for all C ∈ R2×2
sym.

2.1 Dense sampling method

The first sampling strategy adopted herein consists of a dense sampling of the space
of admissible stretch tensors U , the symmetric positive definite part of the polar
decomposition of F = RU , with R a rotation tensor. The method was first intro-
duced by Kunc and Fritzen (2019a) as a way of sampling the space of admissible
macroscopic deformation gradient tensors. It was developed for the purpose of ef-
ficient computational homogenization of hyperelastic solids based on a surrogate
model approach, but it applies whenever one needs to generate a database of fi-
nite strain deformation tensors. It is then of particular interest in our case, where
we aim at building a discrete material database for the Lagrangian formulation of
the data-driven BVP. Indeed, we need to build a (high) number of pairs of Green-
Lagrange strain–second Piola-Kirchhoff stress tensors (Ei,Si), which should cover
as homogeneously as possible an appropriate region of the phase space (E,S). We
can use the dense sampling approach of Kunc and Fritzen (2019a) in our case by
recalling that

E = 1
2

(
U2 − I

)
. (IV.4)

We then generate Lagrangian material databases for finite strain DDCM as follows:

1. We sample the space of admissibleU following the method of Kunc and Fritzen
(2019a);

2. We compute the corresponding Green-Lagrange strain tensors from Eq. (IV.4);
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3. We compute the corresponding second Piola-Kirchhoff stress tensors from the
neo-Hookean model Š given in Eq. (IV.3) as

S = Š (C) = Š
(
C = U2

)
. (IV.5)

From here on out, we refer such databases as dense material database (DB-DENSE).
The present section is organized as follows: first we present the original method of

Kunc and Fritzen (2019a). Second, we adapt it to two-dimensional problems arising
in plane stress conditions and incompressibility of the material. Third, we provide a
physical interpretation of the method, based on the invariants of the Hencky strain
tensor H = lnV , which were introduced by Criscione et al. (2000).

2.1.1 An amplitude-direction split strategy

Let us present the main features of Kunc and Fritzen (2019a) method to sample the
“space of practically relevant stretch tensors”, i.e. tensorsU such that J = detF > 0

with F = RU . First, the authors apply the Dilatational-Deviatoric Multiplicative
Split (DDMS) to the stretch tensor U such that

U = J1/3Û (IV.6)

The deviatoric stretch tensor Û is purely deviatoric, i.e. det Û = 1. The set of
stretch tensors U can be sampled via sampling both the determinants

{
J (m)

}Ndet

m=1
⊂

R+ and the deviatoric stretch tensors
{
Û (j)

}Ndev

j=1
, where Ndet and Ndev are the

number of samples. The sampling set is then determined by the product set (Kunc
and Fritzen, 2019a)

{(
J (m)

)1/3
Û (j)

}m=Ndet,j=Ndev

m,j=1

⊂ U . (IV.7)

Providing a set of deviatoric stretch tensors Û for a numerical simulations boils
down to providing a set of matrices Û representing the tensors, i.e. a set of the
components of the tensors in a given basis. Kunc and Fritzen (2019a) built upon
Lie group theory to sample the space of matrices Û . The matrices Û are unimodular,
i.e. symmetric, positive definite and of determinant 1. The “manifold” SymSL+ of
unimodular matrices then writes

SymSL+ =
{
U ∈ R3×3 | U = UT , detU = 1, xT U x > 0, ∀x ∈ R3

}
. (IV.8)

The “tangent space” of symmetric matrices of trace 0 is written

symsl =
{
Y ∈ R3×3 | Y = Y T , trY = 0

}
. (IV.9)

Then, the matrix exponential maps the tangent space symsl bijectively onto the
manifold SymSl+:

exp : symsl→ SymSl+

Y 7→ U = expY. (IV.10)
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As the authors point out, the set SymSL+ is the set of matrix representations of
deviatoric stretch tensors Û while symsl is the counter part of Lagrangian deviatoric
Hencky strain tensors Ŷ = ln Û = dev (lnU). The former is a nonlinear manifold
while the latter is a linear subspace of R3×3. Thanks to the matrix exponential
map, it is sufficient to sample the linear space of Hencky strains to obtain a relevant
sampling of the stretch tensors. In addition, both sets are 5-dimensional, by virtue of
symmetry and zero trace: any matrix Y in symsl typically writes with 5 independent
components (a, b, c, d, e) ∈ R5 as

Y =



a b c

b d e

c e −(a+ d)


 ;

the matrix U = expY in SymSL+ follows by virtue of the exponential.
To sample the tangent space symsl, Kunc and Fritzen (2019a) proposed not to

sample the components of the matrix in a regular grid of R5 but instead to sample
the unique decomposition of the matrix on a basis of the space. An element Y
of symsl is then expressed by its unique decomposition on the orthonormal basis
Y =

(
Y (1), Y (2), Y (3), Y (4), Y (5)

)
as

Y =
5∑

k=1

αkY
(k). (IV.11)

with α = [α1, α2, α3, α4, α5]T ∈ R5 linearly independent coordinates. Kunc and
Fritzen (2019a) provide the following orthonormal basis Y (Y (k) : Y (l) = δkl):

Y (1) =

√
6

6




2 0 0

0 −1 0

0 0 −1


 , Y (2) =

√
2

2




0 0 0

0 1 0

0 0 −1


 ,

Y (3) =

√
2

2




0 1 0

1 0 0

0 0 0


 Y (4) =

√
2

2




0 0 1

0 0 0

1 0 0


 , Y (5) =

√
2

2




0 0 0

0 0 1

0 1 0




(IV.12)

In addition, Kunc and Fritzen (2019a) proposed to split the coordinates {αk}5k=1

into an amplitude and directional part:

Y = β

5∑

k=1

akY
(k) (IV.13)

such that β = 1/‖α‖ ∈ R+ is the “deviatoric amplitude” and the unit vector a =

[a1, a2, a3, a4, a5]T ∈ R5 (‖a‖ = 1) is the “direction” of the matrix Y and hence the
stretch tensor U (Kunc and Fritzen, 2019a)1.

The set of stretch tensors U is then sampled with this method as follows (Kunc
and Fritzen, 2019a):

1Here, we changed the notations: in Kunc and Fritzen (2019a), β is denoted t and a is denoted
N .
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1. Place Ndet determinants J regularly between the extremal values Jmin and
Jmax.

2. Generate an approximately uniform distribution of Ndir directions a in the
unit sphere of R5.

3. Place Namp deviatoric amplitude β regularly between 0 and the expected max-
imum value βmax.

4. Return the set of matrix representations of U :

{(
J (i)
)1/3

exp

(
β(j)

5∑

k=1

[
a(l)
]
k
Y (k)

)}i=Ndet,j=Namp,l=Ndir

i,j,l=1

⊂ U . (IV.14)

All steps are very easy to perform, except for the isotropic distribution of directions
in R5 where many possibilities exist, as emphasized by the authors. This topic is
discussed later on.

To sum up, the method of Kunc and Fritzen (2019a) provides a very simple
strategy to sample the space of admissible stretch tensors. It follows two main
steps: (i) the DDMS allows for sampling the dilatational and the deviatoric parts
of the tensors separately, (ii) the deviatoric stretch tensors are expressed with the
matrix exponential of the decomposition of the corresponding Hencky strains on an
orthonormal basis of a linear space.

To illustrate the method, we reproduce the two-dimensional example given in
Kunc and Fritzen (2019a), which arises under plane strain assumption. Let us
consider a BVP problem expressed in the canonical basis B = (eX , eY , eZ) of R3.
Let assume that eZ is a plane strain direction. Then the matrix representation U
of the stretch tensor U in the basis B takes the form

U =



c b 0

b d 0

0 0 1


 (IV.15)

with c, b, d ∈ R. The matrix can safely be reduced to its two-dimensional upper
part U(2) such that the DDMS writes:

U(2) = J1/2Û(2) (IV.16)

where J = detU(2) = cd − b2 and Û(2) = J−1/2U(2) ∈ R2×2. The manifold of
deviatoric stretch tensors and corresponding tangent space of deviatoric Hencky
strains now respectively write

SymSL+ =
{
U ∈ R2×2 | U = UT , det (U) = 1, xT U x > 0, ∀x ∈ R2

}
,

(IV.17)

symsl =
{
Y ∈ R2×2 | Y = Y T , tr (Y ) = 0

}
. (IV.18)
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An orthonormal basis of symsl is simply given as (Kunc and Fritzen, 2019a)

Y
(1)

(2) =

√
2

2

(
1 0

0 −1

)
, Y

(2)
(2) =

√
2

2

(
0 1

1 0

)
. (IV.19)

In Fig. IV.1, we show the c, b, d components of the matrices U (see Eq. (IV.15))
resulting from the sampling

U(2) = J1/2 exp
(
β
(
a1Y

(1)
(2) + a2Y

(2)
(2)

))
, (IV.20)

where (a1, a2) = (cosφ, sinφ) are obtained from an uniform sampling of φ ∈ [0, 2π),
β ∈ (0, 1] results from a regular sampling and J takes four equidistant values in
[0.1, 4]. The manifolds spanned by each family stretch tensors of same determinant

Figure IV.1 – Surfaces spanned by the c, b, d components of the two-dimensional
stretch tensor U in the canonical basis (see Eq. (IV.15)), for four different sampling
of the determinant J ∈ {0.1; 1.4; 2.7; 4}. We show two different perspectives of the
same surfaces.

is a cone-like shape. It is then much smaller than the surrounding cube that would
result from a regular grid sampling of the corresponding components. This illus-
trative example shows the great advantages of the sampling method proposed by
Kunc and Fritzen (2019a). To further understand the sampling procedure, we plot
in Fig. IV.2 the values of β and φ on a cone generated by the family of tensors of
determinant J = 1.4. As can be seen from Fig. IV.2, the β parameter is indeed an
amplitude factor: the further from the origin of the cone, the higher the value of
β, the isovalues drawing ellipses on the cone. The parameter φ mapping the unit
sphere in R2 to generate the a1, a2 coordinates is the angle of rotation of the cone.

2.1.2 Adaptation to two-dimensional, incompressible problems, under
plane stress conditions

For the purpose of data-driven simulations conducted later in Section 3, we now
adapt the dense sampling method to two-dimensional plane stress problems, for
incompressible materials.
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Figure IV.2 – Surface spanned by the c, b, d components of the two-dimensional
stretch tensor U in the canonical basis (see Eq. (IV.15)), generated with J = 1.4

and a sampling of the amplitude β and the coordinates a1 and a2. Left: values of
the angular parameter φ used to sample a1 = cosφ and a2 = sinφ. Right: values of
the amplitude parameter β.

First, the assumption of incompressibility reduces the sampling procedure to
the deviatoric stretch tensors only: J = detU = 1, then Û = U and Ŷ = Y . We
then only need to sample the tangent space symsl of trace-less Hencky strains. To
reduce the amount of notation, we do not write the ·̂ decorators on the tensors and
the matrices in this section. Second, the plane stress assumption together with the
trace-less condition constrain the components of the Hencky strain tensors.

Let us again consider that the BVP problem is expressed in the canonical basis
B = (eX , eY , eZ) of R3 and assume that eZ is the plane stress direction. Then, a
Hencky strain tensor Y can be expressed with at-most three independent compo-
nents. The matrix representation Y of Y in basis B then writes:

Y = [Y ]B =



c b 0

b d 0

0 0 −(c+ d)


 (IV.21)

with c, b, d ∈ R. An orthonormal basis Y of the corresponding tangent space is
given by the first three basis matrices of the general three-dimensional case, defined
in Eq. (IV.12): Y =

(
Y (1), Y (2), Y (3)

)
. We remark that the basis matrices are also

the representations of given tensors in basis B. The set Ū of practically admissible
stretch tensors, in the case of incompressibility and plane stress conditions can then
be sampled via a sampling of Namp amplitudes

{
β(i)
}
and Ndir directions

{
a(j)
}
in

R3 as
{
β(i) exp

(
3∑

k=1

[
a(j)
]
k
Y (k)

)}i=Namp, j=Ndir

i, j=1

⊂ Ū . (IV.22)

In Fig. IV.3 we illustrate the set Eq. (IV.22) in the (UXX , UXY , UY Y ) three-
dimensional space, as previously, for four values of β = 0.5, 1, 1.5, 2 and a regular
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(a) (b)

Figure IV.3 – Sampling of Ū with constant β ∈ {0.5, 1, 1.5, 2} for the two-
dimensional case in plane stress conditions and incompressibility. Each scatter point
represent a matrix generated by a pair (β, a) (see Eq. (IV.22)). Both plots give two
different perspectives of the same set. In (a), the thick black line represents the set
{λI | λ > 0}.In (b), only half of the surfaces are shown, such that UXY > 0.

sampling of directions a on the unit sphere of R3. Unlike the plane strain case
represented in Fig. IV.1, the three-dimensional surface spanned by the components
of stretch tensors U is closed. It is still of rounded cone-like shape, with the top
closing surface plane when β = 1, concave when β < 1 and convex when β > 1 (see
Fig. IV.3(b)).

The procedure to generate DB-DENSE databases for two-dimensional, incom-
pressible, plane stress data-driven problems is then given in Algorithm IV.1. Steps
2 and 3 of Algorithm IV.1 are straightforward. Let us give some details about Step
1.

The deviatoric amplitude β can either be regularly sampled in the interval
(0, βmax] or adaptively sampled as suggested by Kunc and Fritzen (2019a), e.g. with
a geometric progression to have more data at small strains than at high strains. In
our databases, we adopt the latter method. For Step 1.2, “the generation of uni-
form point distributions on spheres is a research topic on its own” as pointed out by
Kunc and Fritzen (2019a). In our case, to avoid the multiplication of sets necessary
to compute several realizations of a random sampling, we want to use a regular
sampling of directions in R3. The regular placement of points on a sphere is also
a research topic on its own. For example, the numerical integration on the sphere
has applications in geomechanics, see e.g. Hesse et al. (2010) dedicated chapter in
the Handbook of geomathematics. In mechanics of materials, numerical integration
schemes on the sphere are also needed by constitutive modeling. Three different
methods have been evaluated in Verron (2015) with respect to their ability to com-
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Algorithm IV.1 Generation of a DB-DENSE database.

Step 1. Generate a set of admissible three-dimensional deviatoric stretch tensors
U (det (U) = 1), constrained by plane stress conditions along eZ , with the
dense sampling method Eq. (IV.22).

1. Sample Namp deviatoric amplitudes β in (0, βmax).

2. Sample Ndir directions a in R3, such that ‖a‖ = 1.

3. Compute the linear combination of Hencky strains

Ȳ (j) =

3∑

k=1

a
(j)
k Y (k), ∀j ∈ [1 . . Ndir]. (IV.23)

4. Return the set of samples

ŪNamp, Ndir
=
{
β(i) exp Ȳ (j)

}i=Namp, j=Ndir

i, j=1
⊂ Ū . (IV.24)

Step 2. Generate the set of corresponding two-dimensional Green-Lagrange strain
tensors from

E = 1
2

(
U2 − I

)
,

with U ∈ R2×2 obtained from the eX ⊗ eX , eX ⊗ eY , eY ⊗ eY components of
U(3) ∈ ŪNamp, Ndir

(U(3) = UT
(3)).

Step 3. Generate the set of corresponding two-dimensional second Piola-Kirchhoff
stress tensors S = S(U2) from the incompressible neo-Hookean relation
Eq. (IV.3).

Return the material database

Dloc =
{(
E(i,j),S(i,j)

)
| i ∈ [1 . . Namp], j ∈ [1, . . Ndir]

}
⊂ R2×2

sym ×R2×2
sym.

pute the principal strain invariants in large strain: the classical Gaussian scheme
of Bažant and Oh (1986) developed for the computation of so-called microplane
models for the constitutive modeling of concrete and rock; the geometrical meshing
approach proposed by Badel and Leblond (2004) to overcome the limitations of the
previous method; the mathematical method of Sloan and Womersley (2004) consist-
ing in extremal systems of points on the unit sphere, widely used in different fields
such as geoscience or wave propagation, for the interpolation of polynomials on the
sphere. Based on the findings of Verron (2015), we use in our databases the method
of Sloan and Womersley (2004), which proved its efficiency with the fewest number
of points. Another reason for this choice arises from one of the geometric properties
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of the sets generated by this method, as briefly explained in the following.
The minimal geodesic distance between two points in the generated set decreases

as π/n, with n the highest degree of the (spherical) polynomial interpolation (π/(2n)

being the theoretical value for extremal systems (Sloan and Womersley, 2004)). The
number of points on the sphere is then d = (n+ 1)2 (Sloan and Womersley, 2004).
The geodesic distance between two points x and y on the unit sphere in R3 is
dist(x, y) = cos−1(xT y). The method used by Kunc and Fritzen (2019a) to generate
uniform distributions on the sphere was introduced in a previous work (Fritzen and
Kunc, 2018b) which also focused on minimizing the geodesic distance between two
points. We shall not give further details on the approach here, but the interested
reader is referred to the paper Sloan and Womersley (2004) or the chapter Hesse
et al. (2010).

A large number of sets of points obtained by the approach are freely available
online at Womersley (2007) and were simply downloaded to generate our DB-DENSE

databases. In particular, the samples of stretch tensors represented in Fig. IV.3 have
been generated with those sets. In Fig. IV.4 we plot the resulting sets of points on
the unit sphere for Ndir = 25, 256 and 2500, as an illustration of the method.

2.1.3 Mechanical analysis of the dense sampling method

The dense sampling method, as introduced by Kunc and Fritzen (2019a), adapted
to the two-dimensional case arising under plane stress and incompressible conditions
with the approach of Sloan and Womersley (2004) provides a very efficient and clean
way to sample the space of admissible stretch tensors. However, while the sampling
is dense, i.e. any neighborhood of any stretch tensor U contains at least one point
in the sampling set, the mechanical relevance of the sampling set is not clear. In
particular, it can be of interest to know which modes and amplitudes of deformation
are spanned by the sampling set, in order to tailor the database to specific needs.

To answer these questions, we build upon the “invariant basis for natural strain”
developed by Criscione et al. (2000). In their work, Criscione et al. (2000) introduced
three physically meaningful invariants of the Eulerian Hencky strain tensor H =

lnV . The definitions of these invariants also apply to the Lagrangian Hencky strain
tensor Y = lnU as U is merely a rigid body rotation of V . We then reformulate
the invariant basis theory of Criscione et al. (2000) for the Lagrangian Hencky strain
tensor Y :

• the first invariant K1 describes the “amount-of-dilatation” and is defined as

K1 = trY = lnJ. (IV.25)

• the second invariant K2 is a measure of the “magnitude-of-distortion” and is
defined as

K2 =
√

devY : devY ; (IV.26)
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Figure IV.4 – Set of Ndir points (α1, α2, α3) on the unit sphere of R3, generated with
the method of Sloan and Womersley (2004), downloaded from Womersley (2007).

• the third invariant K3 describes the “mode-of-distortion” and is defined as

K3 =
3
√

6

(K2)3
det(devY ), (IV.27)

where the constant 3
√

6 was chosen so that K3 ∈ [−1, 1] (Criscione et al.,
2000).

Invariant K1 ∈ (−∞,∞) gives both magnitude and sign of dilatation, while K2 ∈
[0,∞) only gives an absolute magnitude of the distortion. Remarkable values of the
three invariants are given Table IV.1. For any Hencky strain tensor Y , the triplet
(K1, K2, K3) gives unambiguous and physical information on the deformation. In
the following, we then analyze the dense sampling method with these tools to give
insight on the mechanical signification of the database.
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Table IV.1 – Remarkable values of the three invariants of Y and their physical
meaning.

Invariant Value Description
K1 0 Isochoric deformation (or incompressible material)

< 0 contraction
> 0 dilatation

K2 0 no distortion, the deformation is a pure dilatation: U =

λI, or equivalently Y = ln(λ) I with λ > 0.

K3 −1 equi-biaxial tension (or uniaxial compression)
0 pure shear
1 uniaxial tension (or equi-biaxial compression)

Original three-dimensional method Let us consider a stretch tensor U
obtained from the sampling method of Kunc and Fritzen (2019a) recalled in
Eq. (IV.14). Let denote Y (k) the basis deviatoric Hencky strain tensors with matrix
representations given by Eq. (IV.12). Then, there is a pair (β, a) ∈ R+ × R5, with
‖a‖ = 1 such that

U = J1/3 exp

(
β

5∑

k=1

akY
(k)

)
, (IV.28)

with J = detU . The corresponding Hencky strain tensor Y = lnU then writes

Y =
1

3
ln(J)I + β

5∑

k=1

akY
(k). (IV.29)

Let us now compute the invariants K1,K2,K3 of Y .

• First, we retrieve, as expected, that the first invariant K1 is the natural loga-
rithm of J = detU :

K1 = trY =
1

3
ln J tr I + β

5∑

k=1

ak trY (k) = lnJ. (IV.30)

• Second, to compute K2, let us first write the deviatoric part of Y . Recalling
that (i) the deviatoric operator is linear, (ii) dev I = 0 and, (iii) devY (k) =

Y (k), ∀k, we have:

devY =
1

3
ln(J) dev I + β

5∑

k=1

ak devY (k) = β

5∑

k=1

akY
(k). (IV.31)
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Then, recalling that the basis of Y (k) is orthonormal, i.e. Y (k) : Y (l) = δkl,
and that the vectors a(k) are unit vectors, i.e. ‖a(k)‖2 = 1, the invariant K2

is equal to the “deviatoric amplitude” β:

devY : devY =

(
β

5∑

k=1

akY
(k)

)
:

(
β

5∑

l=1

alY
(l)

)

= β2
5∑

k=1

5∑

l=1

akalY
(k) : Y (l) = β2

5∑

k=1

5∑

l=1

akalδkl

= β2
5∑

k=1

‖a(k)‖2 = β2,

(IV.32)

and hence,

K2 = β. (IV.33)

• Third, the invariant K3 writes:

K3 =
3
√

6

(K2)3
det(devY ) = 3

√
6 det

5∑

k=1

akY
(k). (IV.34)

Finally, the dense sampling method can be re-written in terms of the natural strain
invariant as

U = exp

(
1

3
K1I +K2

5∑

k=1

akY
(k)

)
. (IV.35)

In particular, note that the “deviatoric amplitude” β introduced by Kunc and Fritzen
(2019a) is indeed a measure of magnitude. In addition, the invariant K3 only de-
pends on the direction vector a. A sampling of the sphere in R5 is then equivalent to
a sampling of modes-of-distortion, measured by K3. This correspondence between
the two theories is, in fact, not surprising. Indeed, both were build upon the DDMS,
either applied to the stretch tensor U (Kunc and Fritzen, 2019a), or directly to
the Hencky strain tensor Y (Criscione et al., 2000). Our analysis thus bridges the
gap between them and proves that the dense sampling method is split into three
sampling of physically meaningful distinct quantities K1, K2 and K3.

Adapted method for two-dimensional incompressible plane stress prob-
lems In the case of two-dimensional incompressible plane stress problems, we can
deepen the analysis to extract a one-to-one relationship between a, K3 and other
parameters to be determined.

Let us again consider a BVP expressed in the canonical basis B = (eX , eY , eZ).
Let us apply Eq. (IV.35) to a three-dimensional stretch tensor U , with determinant
J = 1 (incompressibility assumption). In addition, let eZ be the plane stress direc-
tion. As mentioned in Section 2.1.2, the tangent space of deviatoric stretch tensors
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is only three-dimensional. Then, only the first three basis tensors Y (k) are needed.
Then, for plane stress incompressible problems Eq. (IV.35) becomes

Y = lnU = K2

3∑

k=1

akY
(k), (IV.36)

and

U = exp

(
K2

3∑

k=1

akY
(k)

)
. (IV.37)

In the following, we relate coefficients a1, a2, a3 to invariant K3 using the matrix
representations of tensor Y in the canonical and principal basis.

Let us first recall the matrix representation Y (k) of the basis tensors Y (k) in the
basis B for k = 1, 2 and 3:

Y (1) =

√
6

6




2 0 0

0 −1 0

0 0 −1


 , Y (2) =

√
2

2




0 0 0

0 1 0

0 0 −1


 ,

Y (3) =

√
2

2




0 1 0

1 0 0

0 0 0




(IV.38)

Note that, based on a quick calculation and the remarkable value of the invariants
given in Table IV.1, the basis matrix Y (1) corresponds to a uniaxial tension along
eX , Y (2) to a pure shear test along eY and Y (3) to a pure shear test along the
direction at 45◦ of eX . The matrix representation YB of the tensor Y in the basis
B then writes:

YB = K2

√
2

2




2
√

2
3 a1 a3 0

a3 −
√

3
3 a1 + a2 0

0 0 −
√

3
3 a1 − a2


 (IV.39)

To relate the coefficient a1, a2, a3 to invariant K3, we build upon the relation-
ships between the eigenvalues yI , yII , yIII of Y and K3 given by Criscione et al.
(2000) as

yI = lnλI = K2

√
2

3
sin

(
ϕ+

2π

3

)
(IV.40a)

yII = lnλII = K2

√
2

3
sin (ϕ) (IV.40b)

yIII = lnλIII = K2

√
2

3
sin

(
ϕ− 2π

3

)
, (IV.40c)

with λI ≥ λII ≥ λIII the principal stretches, and ϕ = − arcsin(K3)/3 ∈
[−π/6, π/6]. We refer to pI ,pII ,pIII as the principal directions (eigenvectors) asso-
ciated with the corresponding principal stretches. These eigenvalues are ordered in
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decreasing order, but this order is not necessary in accordance with the plane stress
condition: there is no reason for yIII to be the eigenvalue associated to the eigen-
vector eZ . As an example, an equi-biaxial compression in the plane (X,Y ) would
result in the highest eigenvalue yI being in the eZ direction. In addition, note that
all eigenvalues are the product of K2 with a function of K3. Let us then define a
generic form for the relationship between the eigenvalues of Y and the invariants
K2 and K3 as

y(K2,K3, z) = K2

√
2

3
sin

(
ϕ+ z

2π

3

)
, (IV.41)

where z ∈ Z is an integer taking only three distinct values −1, 0 and 1 which defines
the order of the eigenvalue yi = y(K2,K3, zi) (z = 1 is the highest, z = 0 is the
middle one, z = −1 is the lowest).

We denote P = (p1,p2,p3) the principal basis, where p3 = eZ is the principal
direction of plane stress, and p1, p2 are the remaining principal directions such that
p1 is associated with the highest eigenvalue y1 in the (X,Y ) plane: y1 = lnλ1 ≥
y2 = lnλ2 and y3 = lnλ3 is the principal Hencky strain along ez. The matrix
representation YP of Y in the principal basis P then writes

YP = y1 (p1 ⊗ p1) + y2 (p2 ⊗ p2) + y3 (p3 ⊗ p3) . (IV.42)

Note that (p1,p2,p3) is a permutation of (pI ,pII ,pIII). The eigenvalue yi with i =

1, 2, 3 can be obtained from Eq. (IV.41) with a specific value of z = zi ∈ {−1, 0, 1}.
In addition, we denote θ = (p1, eX) the angle between p1 and eX , i.e. the angle
of principal stretch in the (X,Y ) plane. From here on out, we refer to θ as the
orientation angle of the in-plane principal stretch. Then, the matrix representation
YB of Y in the canonical basis B is related to its counter part YP as

YB = QYP Q−1 with Q =




cos θ − sin θ 0

sin θ cos θ 0

0 01


 . (IV.43)

From Eqs. (IV.39), (IV.41) and (IV.43) it is now possible to relate the coefficients ak
with the invariant K3 and the indicator z1, z2 of the order of the eigenvalues y1, y2

as

a1 = cos2(θ) sin(ϕ+ z1
2π
3 ) + sin2(θ) sin(ϕ+ z2

2π
3 ) (IV.44a)

a2 =

√
3

3

(
(1 + sin2(θ)) sin(ϕ+ z1

2π
3 ) + (1 + cos2(θ)) sin(ϕ+ z2

2π
3 )
)

(IV.44b)

a3 =

√
3

3

(
sin(ϕ+ z1

2π
3 )− sin(ϕ+ z2

2π
3 )
)

sin(2θ), (IV.44c)

with

ϕ = − arcsin(K3)/3. (IV.44d)
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The different parameters of the sampling method for plane stress incompressible
problems are then all mechanically meaningful: (i) the deviatoric amplitude β is the
magnitude-of-distortion K2, and (ii) the direction a ∈ R3 is related to the mode-of-
distortionK3, the orientation angle θ and the orders (z1, z2) of the in-plane principal
stretches.

It is then also possible to sample the space of admissible stretch tensors di-
rectly from K2, K3, θ, z rather than from K2, a1, a2, a3. That way, the modes-of-
distortion and the orientation angle of the largest in-plane principal stretch can
be tailored to specific needs. In Fig. IV.5, we plot an example of such a set
of stretch tensors, with K2 = 1 fixed, K3 linearly spaced between [−1, 1] and
(z1, z2) ∈ {(1, 0), (0,−1), (1,−1)}. We can see in Fig. IV.5(right) that the cone-like
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Figure IV.5 – Stretch tensors U in basis B = (eX , eY , eZ) obtained from a reg-
ular sampling of modes-of-distortion K3 and of orientation angle θ with steps of
∆K3 = 0.04 and ∆θ = 10◦.

surface is engendered by a rotation of angle 2θ of a parametric three-dimensional
curve along the axis UY Y = UXX (which corresponds to tensors U = λI, with
λ > 0).

Finally, following a similar rationale for the stretch tensor, one can relate the
components UXX , UXY , UZZ to the parameters K2,K3, θ and (z1, z2). We make use
of the properties of the matrix exponential for diagionalizable matrices. Hence, the
matrix representation UB of tensor U = lnY in the canonical basis writes

UB = Q expYP Q−1 (IV.45)

with YP defined in Eq. (IV.42). The canonical components readily follow as

UXX = 1
2 (λ1 + λ2 + (λ1 − λ2) cos(2θ)) (IV.46a)

UY Y = 1
2 (λ1 + λ2 + (λ2 − λ1) cos(2θ)) (IV.46b)

UXY = 1
2 (λ1 − λ2) sin(2θ), (IV.46c)
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with

λ1 = ey1 = y (K2,K3, θ, z1) (IV.47a)

λ2 = ey2 = y (K2,K3, θ, z2) (IV.47b)

and the functional y as in Eq. (IV.41). Thanks to Eq. (IV.46), the parametric three-
dimensional rotation surface spanned by the components of the stretch tensors U
is fully determined with mechanically meaningful parameters K3, θ, and (z1, z2).
In Fig. IV.6 we illustrate the role of (z1, z2): the different parts of the cone-like
shape are obtained from three combinations of (z1, z2) ∈ {(1, 0), (0,−1), (1,−1)}.
In Fig. IV.7, we plot the arrangement of the K3 and θ isovalues on the cone-like
shape. The K3 isovalues draw sections of the cones, perpendicular to the axis
UXX = UY Y while θ isovalues illustrate again the surface of revolution.

With this analysis, we now know that a direction vector a on the unit sphere of
R3 corresponds to a unique mode-of-distortion K3, occurring along an orientation
angle θ, in tension or compression depending on the value of (z1, z2). Having a dense,
regular placement of direction vectors is then equivalent to sampling various modes-
of-distortion in different directions and of different “signs” (tension or compression).
This variety of deformation is what we refer to as the richness of the database. It
then appears to us that the dense sampling method is a convenient way of generating
and designing rich material databases for DDCM.

2.2 Standard sampling

From the insight of the mechanical analysis conducted in the previous section, it is
also possible to generate a material database which contains only selected modes-
of-distortion. The hyperelastic constitutive models are generally calibrated with
at-most three homogeneous experimental tests: a uniaxial tensile, a pure shear,
and when possible an equi-biaxial test (e.g. Ogden (1972); Treloar (1944)). They
correspond respectively to K3 = 1, K3 = 0 and K3 = −1. With the method
described above, it becomes very easy to generate a database containing these modes
of deformation only, in every directions of the plane, for various amplitudes. We refer
in the following to this kind of material databases as standard material database
(DB-STD). With these databases, we aim at evaluating whether the data-driven
computing paradigm could be used with the currently available experimental data.
The procedure used to generate a given DB-STD database is listed in Algorithm IV.2.

2.3 Importance sampling

As aforementioned, the finite strain DDI method is not able to generate Lagrangian
material data points yet. However, we wanted to conduct a similar analysis as
the one presented in Stainier et al. (2019), where the authors compared a regular
sampling of the strain space to an “importance sampling”. The latter term was
used to refer to the sampling generated by DDI. In this approach, the material
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Algorithm IV.2 Generation of a DB-STD database.

Step 1. Generate a set of admissible three-dimensional deviatoric stretch tensors
U (det (U) = 1), constrained by plane stress condition along eZ , with the
standard sampling method.

1. Sample Namp deviatoric amplitudes β = K2 in (0, βmax].

2. Sample Nθ orientation angles θ in [0, π).

3. Select NK3 = 3 modes-of-distortion K3 in {−1, 0, 1}.
4. Set the couples of order indicators (z1, z2) to {(1, 0), (0,−1), (1,−1)}.
5. Compute the set of Ndir = 3 × NK3 × Ntheta × Namp direction vectors
a = [a1, a2, a3]T ∈ R3 with the relations ak (K2,K3, θ, z1, z2) given by
Eq. (IV.44).

6. Compute the corresponding set of linear combinations of Hencky strains
according to Eq. (IV.23).

7. Return the set of samples

ŪNamp, Ndir
=
{
β(i) exp Ȳ (j)

}i=Namp, j=Ndir

i, j=1
⊂ Ū .

Step 2. Generate the set of corresponding two-dimensional Green-Lagrange strain
tensors from

E = 1
2

(
U2 − I

)
,

with U ∈ R2×2 obtained from the eX ⊗ eX , eX ⊗ eY , eY ⊗ eY components of
U(3) ∈ ŪNamp, Ndir

(U(3) = UT
(3)).

Step 3. Generate the set of corresponding two-dimensional second Piola-Kirchhoff
stress tensors S = Š(U2) from the incompressible neo-Hookean relation
Eq. (IV.3).

Return the material database

D =
{(
E(i,j),S(i,j)

)
| i ∈ [1 . . Namp], j ∈ [1, . . Ndir]

}
⊂ R2×2

sym × R2×2
sym

states are the centroids of clusters of mechanical states, obtained in that case from
FE simulations of various loading conditions and loading amplitudes on a complex
structure.

To emulate a database that would have been generated by the DDI, we performed
a clustering analysis on the mechanical states obtained from various computations
on a thin membrane with two holes. In the following, this kind of material databases
is referred to as DDI material database (DB-DDI). The constitutive model used in
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the FE simulations is the neo-Hookean incompressible model given in Eq. (IV.3).
The mesh of the structures and some snapshots of the loading conditions are given
in Fig. IV.8.

To perform the clustering, the (E,S) pairs are transformed by the Euclidean
mapping mentioned in Chapter III and presented in Appendix B, into a single vector
so that the standard Euclidean product is equivalent to the data-driven square
distance. We recall that the data-driven square distance d2 writes

d2
(
(E,S) ,

(
E′,S′

))
=

1

2

(
∆E : C : ∆E + ∆S : C−1 : ∆S

)
, (IV.48)

with ∆E = E − E′ and ∆S = S − S′. Recasting the tensors into their Mandel
form (Brannon, 2018), it also writes as the standard inner product:

d2
(
(E,S) ,

(
E′,S′

))
=
(
z− z′

)
·
(
z− z′

)
, (IV.49)

with

z =




1√
2
C1/2E

1√
2
C−1/2S


 , (IV.50)

with E (respectively S) the Mandel vector representation of the strain (respectively
stress) tensor E (respectively S) and C the Mandel matrix representation of the
fourth-order tensor C. The clustering analysis is then performed on the collection
of the transformed strain-stress state pairs zXe of all the integration points e from
all the snapshots X of the FE simulations represented in Fig. IV.8, using standard
a k-means algorithm.
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Figure IV.8 – Example of snapshots used to generate the DB-DDI database.
(a) Mesh of 10 738 linear triangular elements.
(b) Shear test u(X,Y = h) = −0.03eX .
(c) Compression test u(X,Y = h) = −0.001eY .
(d) Tensile test u(X,Y = h) = 0.01eY .
(e) Shear test u(X,Y = h) = 0.03eX .
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3 Numerical application

3.1 Test case and material databases

Structure and mesh. We study the simultaneous tension and shearing of the
two-dimensional thin membrane with a hole, presented in Chapter III. We assume
both incompressibility of the material and plane stress conditions. To evaluate
the convergence of the data-driven method with respect to mesh size, we consider
two meshes for the samples. The two discretizations are represented in Fig. IV.9,
together with the geometry and the boundary conditions. The first (respectively
second) mesh, referred to as “coarse” (respectively “fine”) contains N = 1092 (re-
spectively 2495) nodes and 1015 (respectively 2375) bi-linear quadrangular elements
such that the number of integration points amounts to M = 4060 (respectively
M = 9500). The meshes were generated with Gmsh (Geuzaine and Remacle, 2009).

Figure IV.9 – Geometry, mesh and boundary conditions of the problem.

Material databases. We generate three families of material databases:
DB-DENSE, DB-STD, DB-DDI according to the methods presented in Section 2. The
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constitutive model used to generate the data is the neo-Hookean incompressible
model, reduced to its two-dimensional expression in plane stress conditions recalled
in Eq. (IV.3) from Appendix C. The material parameter is set to µ = 1.2 MPa.

To evaluate the convergence of the data-driven results with respect to the number
of material data points, we vary the sampling parameters to generate DB-DENSE and
DB-STD databases of different sizes:

• we generate 12 DB-DENSE databases, each comprising m = Ndir×Namp points
with Ndir ∈ {25, 256, 2500, 25 600} and Namp ∈ {10, 1000, 1000}.

• we generate 3 DB-STD databases, each comprising m = 3NK3 × Nθ × Namp

points with NK3 = 3 and Nθ = 60 (corresponding to ∆θ = 3◦) fixed, and
Namp =∈ {10, 1000, 1000}.

The DB-DDI database was generated with a total of 429 520 strain-stress states
and comprises m = 2200 points. The C parameter used in the Euclidean mapping
Eq. (IV.50) was set to the plane stress linear elastic tensor, with a Young’s modulus
of E = 3µ = 3.6 MPa and a Poisson’s ratio of ν = 0.5. Note that this material
database then contains less points than there are integration points in the mesh.
Note also that the DB-DDI does not contain the reference solution exactly, since it
was generated with the strain-stress states of a different structure and went through
a clustering algorithm with no constraint on equilibrium or compatibility.

3.2 Comparison with the finite element reference solution

3.2.1 Results of the minimization

The data-driven computing is a distance-minimizing scheme. A first indicator of
the success of the minimization is then the final value d2(z,D) = d2(z, z∗) of the
square distance between the mechanical states z = {ze = (Ee,Se)}Me=1 and the as-
sociated material states z∗ = {z∗ie = (E∗ie,S

∗
ie)}Me=1. This value can be compared

to the minimal distance d2(zref ,D) = minz′∈D d2(zref , z′) between the reference
states zref =

{
zref
e =

(
Eref
e ,Sref

e

)}M
e=1

(obtained from the classical FE simulation)
and the material data set D = {z ∈ Z | ze ∈ Dloc} with the material database
Dloc = {(Ei,Si)}mi=1. We recall that the two square distances are respectively
defined as

d2(z, z∗) =
M∑

e=1

we
2

(
∆Ee : C : ∆Ee + ∆Se : C−1 : ∆Se

)
, (IV.51)

d2(z,D) =

M∑

e=1

min
(Ei,Si)∈Dloc

we
2

(
∆Eref

e,i : C : ∆Eref
e,i + ∆Sref

e,i : C−1 : ∆Sref
e,i

)
,

(IV.52)

with we the integration weight, ∆Ee = Ee − E∗ie and ∆Eref
e,i = Eref

e − Ei (and
likewise for stresses). The values of both distances for each material database and
each mesh size are given in Table IV.2.
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Table IV.2 – Comparison of the value of the data-driven objective function d2(z,D)

with the minimal square distance d2(zref ,D) between the reference solution and the
material data set D for each type of database and each mesh. The values are given
in Pa m2 (cf. Eqs. (IV.51) and (IV.52)).

coarse fine
Database parameters d2(z,D) d2(zref ,D) d2(z,D) d2(zref ,D)

D
B
-D

E
N
SE

Ndir = 25, Namp = 10 9.278 17.65 8.698 17.79

Ndir = 25, Namp = 100 12.02 15.32 11.79 15.32

Ndir = 25, Namp = 1000 12.21 15.24 12.42 15.24

Ndir = 256, Namp = 10 3.676 4.659 3.57 4.68

Ndir = 256, Namp = 100 2.831 2.219 2.676 2.209

Ndir = 256, Namp = 1000 2.768 2.128 2.209 2.128

Ndir = 2500, Namp = 10 2.612 2.754 2.114 2.772

Ndir = 2500, Namp = 100 0.415 0.298 0.447 0.293

Ndir = 2500, Namp = 1000 0.407 0.21 0.418 0.21

Ndir = 25600, Namp = 10 2.48 2.57 1.9 2.58

Ndir = 25600, Namp = 100 0.114 0.111 0.116 0.105

Ndir = 25600, Namp = 1000 0.045 0.024 0.045 0.023

D
B
-S
T
D Nθ = 61, Namp = 10 4.029 4.755

Nθ = 61, Namp = 100 4.722 2.329

Nθ = 61, Namp = 1000 5.126 2.243

m = 2200 0.941 1.43 0.94 1.39

D
at
ab

as
e
ty
p
e

D
B
-D

D
I
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Let us draw attention on several results given by Table IV.2:

• First, note that the values do not change much from the coarse mesh to the
fine mesh. We can then consider that the data-driven solution is converged in
terms of spatial discretization, with respect to this indicator.

• Second, the closest databases to the reference solution are, as expected, the
largest DB-DENSE (and notably the one where Ndir = 25 600 and Namp = 1000)
and the DB-DDI. For the former, this demonstrates that the sampling strategy
efficiently densifies the data set so as to increase its capacity to represent the
mechanical problem. For the latter, this indicates that a well-designed material
database (i.e. containing states that are representative of what is expected in
the structure) performs already very well with a few material data points.

• Third, the value of the objective function d2(z,D) is smaller than the square
distance d2(zref ,D) between the reference solution and the material database
for the smallest DB-DENSE databases, and conversely for the largest DB-DENSE.
This demonstrates the convergence of the method with the density of the ma-
terial database: the mechanical states are, by definition, designed to minimize
the distance between the constraint set E to the material data set D. By
contrast, the reference solution zref lies at the exact intersection Ď ∩ E , with
Ď the continuous material data set which is sampled by the discrete material
data set D. The more material data points in D, the finer the approximation
of Ď, and then, the closer the reference solution gets to D. We add that this
could reveal the limitations of the alternated minimization as well: the more
points in the largest DB-DENSE database, the more complex the combinato-
rial optimization, and conversely, the sparsity of the smallest DB-DENSE may
increase the amount of local minimizers.

3.2.2 Relative error to the reference solution

To explore further the convergence of the data-driven results to the reference so-
lution, let us examine the RMS percent errors in strain and stress. Recalling the
definitions given in Eq. (III.115), the RMS percent errors write

E(%RMS) =

(∑M
e=1weW

(
Ee −Eref

e

)
∑M

e=1weW (Eref
e )

) 1
2

S(%RMS) =

(∑M
e=1weW

∗ (Se − Sref
e

)
∑M

e=1weW
∗ (Sref

e )

) 1
2

where W (A) = (C : A) : A and W ∗(A) =
(
C−1 : A

)
: A.

Let us first evaluate the convergence with the DB-DENSE databases alone. As can
be seen from Fig. IV.10, both RMS percent errors decrease with increasing number
of sampled directions Ndir, for each data set of fixed amplitudes Namp =constant. In
addition, we see almost no difference between the two mesh discretizations. Finally,
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Figure IV.10 – Convergence of the RMS percent errors in strain and stress with re-
spect to the size of the DB-DENSE database. The color indicates the mesh discretiza-
tion: light pink for coarse and purple for fine. The size of the circles increases with
the number of samples amplitudes Namp ∈ {10, 100, 1000}. Each dotted line (resp.
solid line) then represents the RMS error in strain (resp. in stress) for databases of
fixed Namp.

the convergence rate significantly increases from Namp = 10 to Namp = 100 but
seems to stabilize around −0.324 for Namp = 100 and Namp = 1000.

Otherwise, the number of sampled amplitudes has little influence on the con-
vergence, as illustrated in Fig. IV.11. Then, the RMS percent errors are not much
improved from the addition of amplitudes to the database. Together with the re-
sults of the DB-DENSE databases (circles), we added in this plot the results for the
DB-STD (triangles) and DB-DDI (diamond) databases. Note that all of them present
an error above 5 % and that, again, mesh size has no influence. Also, the DB-STD

databases behave like the DB-DENSE databases. This is expected as the number of
directions were set to Ndir = 3×NK3×Nθ when we generated the DB-STD databases.
Finally, we can see that the only discretization of the DB-DDI performs quite well
with few material data points. The lowest RMS errors are obtained for the largest
DB-DENSE database (see the large circles in the bottom right corner of Fig. IV.11):(
E(%RMS), S(%RMS)

)
= (3.52 %, 2.55 %).This is achieved at high computational cost:

the DB-DENSE database with Ndir = 25 600 and Namp = 1000 comprises 25 600 000

points. As a comparison, a regular grid of this size would correspond to a sample of
only 295 points for each component of the strain tensor.

The RMS percent errors analyzed above are global results in the structure and
could be influenced by a small amount of very badly predicted mechanical states.
To evaluate this claim, we analyze the local strain and stress relative errors defined
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Figure IV.11 – Convergence of the RMS percent errors in strain and stress with the
size of all kinds of databases. The color indicates the mesh discretization: light pink
for coarse and purple for fine. The DB-DENSE results are depicted by circles, the
DB-STD results by triangles and the DB-DDI results by diamonds. For the DB-DENSE

databases, the size of the circles increases with the number of sampled directions
Ndir = {25, 256, 2500, 25 600}. Each dotted line (resp. solid line) then represents
the RMS error in strain (resp. in stress) for databases of fixed Ndir.

as

Ee(%err) =
W
(
Ee −Eref

e

)

W (F ref
e )

and Se(%err) =
W ∗

(
Se − Sref

e

)

W ∗ (Sref
e )

(IV.53)

for all integration point e ∈ [1 . . M ]. The histograms of the local errors for each kind
of databases are shown in Figs. IV.12 to IV.14. The candidates for the DB-DENSE

and DB-STD were chosen as the one giving the best results for the global RMS errors.
Fig. IV.12 shows that more than 90 % of the integration points present a relative

local error below 0.1 %, both in strain and stress, for the results obtained with the
DB-DENSE database. These are the lowest error that have been obtained: for the
DB-DDI, only about 20 % of the integration points are below 0.1 % errors; this value
falls down below 10 % of the integration points in the DB-STD case (see Figs. IV.13
and IV.14). The DB-DENSE was expected to out-perform the other databases from
this point of view: it is clear that the denser the database, the better the discrete
material database approximates the constitutive response used for the FE reference
solution.

3.2.3 Global response of the structure

We close this section with a discussion of a more global indicator. In Figs. IV.15
to IV.17, we show the global response of the structure for each family of material
databases. The DB-DDI and DB-DENSE database provide very satisfactory results.
It is notable for the DB-DENSE that the local strain and stress errors revealed in the
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Figure IV.12 – Local strain and stress errors for the DB-DENSE database generated
with Ndir = 256 000 and Namp = 1000.

previous sections have no impact on the total force at the grip. This implies that the
data-driven results can be reliable for global analysis such as the force-displacement
curve.

3.3 Analysis of the data-driven results

So far, we have evaluated the performance of the data-driven results only with
respect to their ability to reproduce the reference solution. This exercise is only rel-
evant to show that the data-driven computing paradigm encompasses the constitu-
tive modeling-based framework: as the material database approximates increasingly
closely the constitutive manifold, the data-driven solution converges to the classical
solution. However, the approach was introduced to address problems which can
not fit in the classical formulation, when a constitutive relation is not tractable for
instance. In that case, the data-driven results must be analyzed for what they are:
a mechanically admissible response, which is as close as possible to what has been
measured of the material response, through discrete points only. In this section, we
thus compare the different data-driven results with each other, without the reference
solution.

3.3.1 Objective function vs. database size

First, we examine the evolution of the objective function, i.e. the converged value of
the distance between the mechanical and material states, with respect to the size of
the database. Similarly to Figs. IV.10 and IV.11, Figs. IV.18 and IV.19 present the
results for the DB-DENSE databases of fixed Namp, and the results for the DB-DENSE
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Figure IV.13 – Local strain and stress errors for the DB-STD database generated
with Nθ = 61 and Namp = 10.

databases of fixedNdir together with the DB-STD and DB-DDI results respectively. In
both figures, the mesh discretization again proves to have little to no influence. This
indicates that the data-driven solution is already converged with respect to mesh
size for the coarse mesh. In addition, the best performing database with respect
to this indicator is the largest DB-DENSE database with (Namp = 1000, Ndir =

25 600): as expected, the more points in the database, the closer it can get to the
mechanical solution. For here on out then, we only show the results for the coarse
mesh and restrict our discussion on the DB-DENSE databases to the largest one,
unless otherwise necessary.

Fig. IV.18 shows that the databases comprising the lowest number Namp = 10 of
sampled amplitudes have the worst convergence rate. For the two other sampling,
the addition of directions to the database is shown to greatly improve the conver-
gence of the method. On the contrary, as can be seen from Fig. IV.19, the addition of
amplitudes to a set of fixed Ndir directions does not clearly improve the final distance
between mechanical and material states. This indicates as aforementioned that the
richness of the database corresponds better to the mode-of-distortion and the ori-
entation angle than to the amplitude. Indeed, thanks to the analysis performed
on the dense sampling method in Section 2.1.3, we know that the sampling of the
direction vector a is equivalent to a sampling of both the modes-of-distortion rep-
resented by invariant K3 and the orientation angles θ. This statement is confirmed
with the results obtained from the DB-STD database: the addition of amplitudes
even slightly increased the final value of the objective function. Moreover, in this
family of databases, the number Nθ = 61 of orientation angles is much higher than
the number of sampled modes-of-distortion (NK3 = 3). Then, the DDCM clearly
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Figure IV.14 – Local strain and stress errors for the DB-DDI database generated with
m = 2200.

needs the databases to comprise a variety of modes-of-distortion.

3.3.2 Stress results

A finite element simulation is often performed in order to predict the stress distribu-
tion in the structure. The performance of the finite strain DDCM is now evaluated
according to the local stress states. We consider the Cauchy stress field σ as it
mixes the strain and stress outputs of the simulation. In Fig. IV.20, the maps of
the three components σxx, σxy, σyy of the stress tensor, for the largest DB-DENSE

database are depicted. Figs. IV.21 and IV.22 show the same maps for the DB-STD

and DB-DDI database respectively. As can be seen from Figs. IV.20 and IV.22, the
results for the largest DB-DENSE and the DB-DDI databases are very similar while
their numbers of material data points are very different. This could be explained
by the fact that, actually, a large part of the data points in DB-DENSE is not used
during the data-driven simulation: only 131 149 (respectively 259 257) distinct ma-
terial data points are selected at least once, throughout all load steps and iterations,
by the coarse mesh (respectively the fine mesh), out of the 256 000 available. We
can assume that these actually selected points correspond more or less to the one
contained in the DB-DDI database. From Fig. IV.21, the limitations of the DB-STD

database are obvious: the stress fields are not smooth and we know from the above
results that is it not due to the mesh discretization. This is an indicator of the spar-
sity of the material database: large regions of the phase space Z are not covered by
the data set D ⊂ Z with this sampling method; this results in a poor projection on
the constraint set of mechanical admissibility E ⊂ Z.
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Figure IV.15 – Global response of the structure with the DB-DENSE database gen-
erated with Nθ = 256 000 and Namp = 1000.
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Figure IV.16 – Global response of the structure with the DB-STD database generated
with Nθ = 61 and Namp = 100.
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Figure IV.17 – Global response of the structure obtained with the DB-DDI database
generated with m = 2200.

Figure IV.18 – Convergence of the objective function respect to the size of the
DB-DENSE database. The color indicates the mesh discretization: light pink for
coarse and purple for fine. The size of the circles increases with the number of
samples amplitudes Namp = {10, 100, 1000}. Each dotted line then represents the
value of the objective function for databases of fixed number of sampled amplitudes
Namp.
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Figure IV.19 – Convergence of the objective function respect to the size of all
kinds of databases. The color indicates the mesh discretization: light pink for
coarse and purple for fine. The DB-DENSE results are depicted by circles, the
DB-STD results by triangles and the DB-DDI results by diamonds. For the DB-DENSE

databases, the size of the circles increases with the number of sampled directions
Ndir = {25, 256, 2500, 25600}. Each dotted line then represents the value of the
objective function for databases of fixed number of sampled amplitudes Ndir.
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Figure IV.20 – Cauchy stress field obtained with the coarse mesh and the largest
DB-DENSE database.
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Figure IV.21 – Cauchy stress field obtained with the coarse mesh and the smallest
DB-STD database (Namp = 10).
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Figure IV.22 – Cauchy stress field obtained with the coarse mesh and the DB-DDI

database.
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3.3.3 Strain results

From the analysis conducted in Section 2.1.3, we can now represent the strain fields
with the aid of three indicators: invariants K2 and K3 of the Lagrangian Hencky
strain tensor which correspond respectively to the magnitude and the mode of dis-
tortion, and the orientation angle θ which indicates the direction of the largest
in-plane principal stretch. To this end, we represent the mechanical states of all
integration points of the coarse mesh on a polar plot, such as the example provided
in Fig. IV.23. The angular position of a scatter point on the polar plot corresponds
to its orientation angle θ ∈ [0◦, 180◦), while its radial position gives the value of
K2 ∈ (0, 1]. Finally, the color of the point corresponds to its K3 value. On this type
of plots, one can then readily read the mode, direction and amplitude of deformation
of the mechanical states.

Figure IV.23 – Description of the scatter polar plot of the mechanical strain states
in the structure.

In Fig. IV.24, the strain analysis of the mechanical states obtained with the
largest DB-DENSE database is depicted. In addition to the information presented
in Fig. IV.23, we added a histogram of the values of K3 underneath the colorbar:
the length of the grays bars indicates the occurrence of the corresponding color in
the scatter plot. The black rectangle at the furthest right shows the length of a bar
corresponding to 10 % of occurrence of the integration points. This indicator proves
that most elements of the membrane are subject to uniaxial tension (K3 = 1). This
is also visible through the amount of points of violet color. The spreading of the
scatter points in the polar plane demonstrates that a large part of the integration
points are stretched along a direction close to eY . The remaining elements yield
an orientation angle comprised between 45◦ and 90◦. This is consistent with the
loading conditions: the top of the membrane is pulled in both positive eX and eY
directions. Finally, a certain part of the integration points in the membrane reads
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Figure IV.24 – Scatter polar plot representing the strain analysis of the mechanical
states obtained with the largest DB-DENSE database (Namp = 1000, Ndir = 256 000).
The gray bars underneath the colorbar of K3 correspond to a histogram. All points
are semi-transparent to make superimposed points visible.

K3 = −1, which correspond to equi-biaxial tension. However, we recall that K2 and
K3 are not able to make the difference between equi-biaxial tension and uniaxial
compression. Only the values of the in-plane principal stretches λ1, λ2 can indicate
if the point is subject to equi-biaxial tension (λ1 = λ2) or uniaxial compression
(λ1 > λ2 with λ1 > 1). Here, all points are in fact in uniaxial compression (data
not shown).

In Fig. IV.25, we represent the strain analysis of the mechanical states obtained
with the smallest DB-STD database. First, note that, as previously, the most repre-
sented mode-of-distortion is K3 = 1. Second, note that the spreading of the points
in the polar plane are a bit different than in Fig. IV.24. Third, it is remarkable
that the mechanical states yield other values of K3 than −1, 0 and 1. Indeed, only
this three modes-of-distortion were used to generate the database. This indicates
that the projection of the material database on the constraint set of mechanical
admissibility is able to change the mode-of-distortion and therefore compensate the
sparsity of the database on that level. However, as demonstrated earlier on the
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Figure IV.25 – Scatter polar plot representing the strain analysis of the mechanical
states obtained with the smallest DB-STD database (Namp = 10). The gray bars
underneath the colorbar of K3 correspond to a histogram. All points are semi-
transparent to make superimposed points visible.

Cauchy stress field represented in Fig. IV.21, the sparsity of the database is too
high to be fully compensated by the compatibility and equilibrium constraints.

Finally, we show the results obtained from the DB-DDI database in Fig. IV.26.
The spreading of the points is similar to the one of the DB-DENSE database, although
the number of points in the database is much smaller. Again, the uniaxial tension
is highly represented.

3.3.4 Recovering isotropy

As proposed by Leygue et al. (2018); Dalémat et al. (2019), we now measure the
ability of the data-driven solver to recover the isotropy of the material. Indeed, the
material database has been generated with an isotropic constitutive model. How-
ever, no specific assumption on material symmetry is made in the data-driven solver.
To verify if the mechanical states recover the isotropy of the material, we compute
the mismatch angle α between the eigenvectors corresponding to the respective high-
est eigenvalues of the two-dimensional strain E and stress S tensors. It is defined
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Figure IV.26 – Scatter polar plot representing the strain analysis of the mechanical
states obtained with the DB-DDI database (m = 2200). The gray bars underneath
the colorbar of K3 correspond to a histogram. All points are semi-transparent to
make superimposed points visible.

as

α = arctan

(
p2(E) · p1(S)

p1(E) · p1(S)

)
∈ [−90◦, 90◦], (IV.54)

with p1(A) (respectively p2(A)) the eigenvector corresponding to the highest (re-
spectively lowest) eigenvalue of the two-dimensional tensor A ∈ R2×2

sym. With the
definition Eq. (IV.54), the angle α is either positive or negative: we took the
(p1(E), p2(E)) as the reference frame. We illustrate the positive and negative
cases in Fig. IV.27.

In Fig. IV.28, we show histograms of the results for the DB-DENSE and DB-STD

databases. In concordance with what we observed previously, the addition of sam-
pled directions in DB-DENSE databases improves the results: in Fig. IV.28(a), we
see that the histogram gets narrower as the number of sampled directions increases.
The richer the database in directions, the closer the mechanical states to isotropic
results. Conversely, increasing number of amplitudes in the DB-STD database tends
to worsen the isotropy prediction (Fig. IV.28(b)). A possible explanation for this is
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Figure IV.27 – Definition of the isotropy mismatch angle α, as the angle between
the eigenvectors of the strain and stress tensors E and S. Illustration of the positive
and negative cases.

that increasing the number of amplitudes may densify distinct regions of the phase
space, which would increase the amount of local minimizers. In addition, we recall
that the direction vector a used to generate the DB-DENSE sets depends on both the
invariant K3 and the orientation angle θ. The number of sampled K3 is fixed to
only 3 while the number of sampled orientation angles θ is relatively large (61) in
the DB-STD database. Hence, it is most likely that when adding directions to the
DB-DENSE, the results are improved because this actually densified the sampling of
K3.

Finally, we compare the largest DB-DENSE results with the DB-DDI results in
Fig. IV.29. The DB-DDI is clearly out-performed but given the respective number of
points of each database, its performance can be considered as very satisfactory.
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Figure IV.28 – Misalignment angle between the principal strain and stress of the
mechanical states, for different kinds of database.
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and stress of the mechanical states, obtained with DB-DENSE, and DB-DDI databases.
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4 Conclusion

As a conclusion, we summarize the main contributions of this chapter and highlight
some of the key findings of Section 3. This chapter was devoted to the analysis of the
content of material databases and its impact on the data-driven solution. We focused
on the Lagrangian solver and a two-dimensional example for practical reasons, but
a similar analysis could be conducted with the nominal solver and applied to three-
dimensional problems. To this end, we generated synthetic material databases from
a constitutive model that was later forgotten in the data-driven computations. This
allowed for comparing the data-driven solution with the reference one, obtained from
a classical FE simulation using the same constitutive model. The material databases
were generated by sampling the strain space, with the corresponding stress obtained
from a constitutive model. We analyzed and performed three different methods for
the sampling of the strain space, which we briefly recall in the following.

1. First, we adapted the dense sampling method of the space of Lagrangian
stretch tensors U , first introduced by Kunc and Fritzen (2019a), to the spe-
cific case of two-dimensional plane stress and incompressible materials. This
method relies on the DDMS of the stretch tensors and the exponential mapping:
(i) the space of the Lagrangian Hencky strains are sampled on a orthonormal
basis with an amplitude and a direction parameters, (ii) the matrix exponen-
tial yields a set of deviatoric stretch tensors which is multiplied by a sampling
of the determinants to obtain the product set of the complete stretch tensors.
Such databases we referred to as DB-DENSE. Together with adapting the ap-
proach, we built upon the invariant basis for natural strain theory of Criscione
et al. (2000) to provide a mechanical analysis of the thus-generated databases.
We are then able to characterize a set of strain tensors with three physi-
cally meaningful parameters, namely K2 the magnitude-of-distortion, K3 the
mode-of-distortion and θ the orientation angle of the largest in-plane principal
stretch with the canonical basis.

2. Second, we generated so-called DB-STD databases, which only contains the
three standards tests that are used to calibrate the hyperelastic models, namely
uniaxial tension, pure shear and equi-biaxial tension.

3. Third, we emulated a Lagrangian formulation of the DDI method with a clus-
tering algorithm to generate importance sampling database, referred to as
DB-DDI.

The performance of the three families of material databases were first evaluated
with respect to their accordance with the FE reference solution. In particular, we
studied the convergence of the data-driven solution to the reference one, with respect
to the size of the data sets as well as the mesh discretization. From this investigation,
we showed that the largest DB-DENSE database out-performed, as expected, the
other types of sampling. In particular, the DB-STD proved to be insufficiently rich:
the DDCM can not extrapolate from missing data. We confirmed with the two other
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database that “richness” is mainly needed in terms of modes-of-distortion. Finally,
the DB-DDI provided satisfactory results with fewer material data points than there
are integration points in the structure. In particular, the reference loading curve
were well-captured by the data-driven solution.

In the last part of this chapter, we analyzed the data-driven results for them-
selves, without anymore reference to the classical solution. When we are able to use
raw material data, there will not be any reference solution to compare with. We
proposed tools to analyze and compare the data-driven results alone. In particular,
four indicators were investigated: the convergence of the objective function with the
size of the material database, the local Cauchy stress states in the structure, the
mechanical analysis of the local strain states and the discrepancy to isotropy. With
respect to these four indicators, the DB-DENSE material database again out-performs
the other ones, especially thanks to its very large number of points. However, we
found that only a portion of these data points were used in the simulation: this
indicates that the mechanical states of a given BVP only cover a limited region of
the phase space. Therefore, the number of material data points is not the most
relevant quantity: their arrangement in phase space and their diversity in terms of
modes-of-distortion and orientation angles was proved to have more impact on the
quality of the results than the mere number of samples in the data set. That is why
the DB-DDI offered satisfying outcome: it consisted in our case of an importance
sampling of the relevant strain-stress states that was expected to take place in the
structure.

With the work presented in this chapter, we are now able to generate as dense
and as rich as possible material databases and to analyze the data-driven results with
mechanically meaningful tools. The next chapter is then focused on the application
of these contributions to a given three-dimensional problem.
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1 Introduction

This short chapter is dedicated to the application of the DDCM solvers developed
in Chapter III to a large strain three-dimensional problem. Moreover, the methods
presented in Chapter IV are used to generate synthetic material databases.

The chapter is organized as follows: the mechanical problem is described in Sec-
tion 2.1 whereas the generation of the material databases are detailed in Section 2.2.
The results for the Lagrangian and nominal formulations are presented in Section 3
and discussed in Section 4.

2 Methods

2.1 Mechanical problem

We study the torsion of a T-shaped column, inspired from the example of Bonet
et al. (2016, Chapter 10, page 310). Contrary to their exercise, the simulation is
here displacement-driven: the handling of pressure follower load by DDCM solvers
requires extra derivation that we did not perform. The geometry and the mesh of
the problem are given in Fig. V.1. The mesh consists of N =925 nodes and 576

hexahedral elements of average size 0.253 (without units). Each of them containing
8 integration points, the total number of integration points in the mesh isM = 4608.
The boundary conditions are applied to the surfaces highlighted in gray in Fig. V.1.
The bottom surface is fixed (uD = 0) while the lateral surfaces on the top part are
subject to displacements which engender a rotation of angle θ = 360◦ around the
Z-axis (X = Y = 0):

uD (X, X0, Y0, θ) =




(X −X0) cos θ − (Y − Y0) sin θ − (X −X0)

(X −X0) sin θ + (Y − Y0) cos θ − (Y − Y0)

0


 , (V.1)

with (X0, Y0) = (0, 0) the center of rotation in the (X,Y ) plane.
In the simulations, the nodal displacements are prescribed incrementally: at

each pseudo-time step t ∈ (0, 1], uD(t) = uD(X, X0, Y0, t × θ). We used 45 steps,
which corresponds to an increment of ∆θ = 3◦.

2.2 Material databases

2.2.1 Challenges in three dimensions

Until now, we only performed two-dimensional DDCM simulations. The local phase
space was then of dimension 3 + 3 = 6 for the Lagrangian formulation and 4 + 4 = 8

for the nominal formulation. When considering three-dimensional problems, the
dimensionality of the local phase space is doubled: it is now 6+6 = 12 and 8+8 = 19

for each formulation respectively. The difficulty in increasing the dimensionality of
the local phase space is double: (i) definining distances and searching in high-
dimensional spaces are complex problems, and (ii) to generate a synthetic material
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Figure V.1 – Geometry and meshes of the problem. Lengths have no dimension.

database, it becomes necessary to sample a high dimensional strain space. DDCM

in 3D is thus exposed to the curse of dimensionality: all data points appear to be
sparse, which particularly complicates the nearest neighbor search for the optimal
material states (Marimont and Shapiro, 1979).

In addition, we would like to compare the data-driven solutions achieved from
both finite strain formulations. The solutions must then be computed with compara-
ble material databases: both strain-stress couples (E,S) and (F ,P ) must represent
the same material response, i.e. sample comparable regions of their respective local
phase space.

We capitalize on previous work to first generate a Lagrangian material database

DLag
loc =

{
(Ei,Si) ∈ R3×3

sym × R3×3
sym | i ∈ [1 . . m]

}
. (V.2)

We use the dense sampling method in three dimensions, as proposed by Kunc and
Fritzen (2019a) and presented in Chapter IV.

The nominal material database

Dnom
loc =

{
(Fi,Pi) ∈ R3×3 × R3×3 | i ∈ [1 . . m]

}
(V.3)

is then obtained from its Lagrangian counterpart DLag
loc and the relationship between

the strain-stress pairs:

E =
1

2

(
F TF − I

)
(V.4)

S = F−1P . (V.5)
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2.2.2 Lagrangian formulation

We apply the original dense sampling method of Kunc and Fritzen (2019a) presented
in Chapter IV. As a reminder, it consists in sampling the space of Lagrangian stretch
tensors U with a strategy based on the DDMS of the stretch tensor and an amplitude-
direction split of the coordinates of the deviatoric Hencky strain with respect to the
basis of traceless 3× 3 matrices:

U ∈
{(

J (i)
)1/3

exp

(
β(j)

5∑

k=1

[
a(l)
]
k
Y (k)

)}i=Ndet,j=Namp,l=Ndir

i,j,l=1

⊂ U ,

with Ndet the number of sampled Jacobians J , Namp the number of sampled devi-
atoric amplitudes β (or magnitudes-of-distortion K2 = β), and Ndir the number of
directions a ∈ R5 sampled on the unit sphere of R5. Each quantity is sampled regu-
larly with a specific metric, that was motivated by the analysis of the FE reference
solution:

• the Jacobians J are obtained from a regular discretization of a Laplace
probability density function (PDF) defined as

pdfL(x, x0, s) =
1

2
exp

(
−
∣∣∣∣
x− x0

s

∣∣∣∣
)
. (V.6)

That way, the samples are concentrated around the central value of x0 = 1

rather than evenly spaced between Jmin and Jmax (see Fig. V.2(a)).

• following a similar procedure, the deviatoric amplitudes β are obtained from
a regular sampling of the upper half of a generalized normal PDF, defined for
x ≥ 0 as

pdfN (x, s) =
α

Γ(1/α)
exp

(
−
(x
s

)α)
, (V.7)

with Γ the gamma function, α = 1.12 and s = 0.113 the shape and scale
parameters. The resulting points are shown in Fig. V.2(b) for Namp = 10 and
βmax = 0.5.

• the directions a are sampled on the unit sphere of R5 with the method used
by Kunc and Fritzen (2019a). It has been developed by the authors in Kunc
and Fritzen (2019b) and provided as an open source Matlab code, available at
Fritzen and Kunc (2018a). It consists of “distributed points on the hypersphere
such that user-defined energy is minimized”. A computed example is provided
in the GitHub repository for Ndir = 512. To generate larger samples, we used
the default parameters of the GUI, i.e. the unconstrained minimization of the
energy associated to the LOG-kernel, defined as

kLOG(x, y) = ‖x− y‖
(

ln
‖x− y‖

2
− 1

)
+ 2, (V.8)

where ln denotes the natural logarithm. For more details on this approach,
the reader is referred to Kunc and Fritzen (2019b).



180 Chapter V. Application to a three-dimensional problem

Jacobian

(a) (b)

Figure V.2 – Sampling procedure for the Jacobians J (a) and the deviatoric ampli-
tudes β (b). The points are obtained from the projection of equi-distant probability
values on the horizontal axis.

Once we generated m = Ndet ×Namp ×Ndir stretch tensors U , the Lagrangian
material databases DLag is obtained from (i) the relation between U and the Green-
Lagrange strain tensor E = 1

2

(
U2 − I

)
, and (ii) a constitutive model S = Š(C =

U2), as

DLag
loc =

{(
E(i,j,l),S(i,j,l)

)
| i ∈ [1 . . Ndet], j ∈ [1 . . Namp], l ∈ [1 . . Ndir]

}
. (V.9)

As in Bonet et al. (2016), we consider a three-dimensional compressible neo-Hookean
model, defined as

Š(C) = µ(I −C−1) + λ ln (J)C−1, (V.10)

where λ, µ are material parameters. The parameters are set to λ = µ = 100 (without
units), corresponding to a Young’s modulus of 250 and a Poisson’s ratio of 0.25.

The material database used in the Lagrangian computations presented in this
chapter was generated with the following parameters:

• Ndet = 49

• Namp = 100

• Ndir = 2048

which yielded m = 10 035 200 material data points.

2.2.3 Nominal formulation

The database for the nominal formulation is obtained from its Lagrangian counter-
part as follows. We first re-write the relations Eq. (V.4) as

F = RU with U2 = 2E + I (V.11)

P = FS = RUS, (V.12)
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with R ∈ SO(3) a rotation tensor in the Special Orthogonal group in three dimen-
sions SO(3) =

{
R ∈ R3×3 | RTR = RRT = I, detR = 1

}
. We must then addition-

ally sample SO(3) to obtain a nominal material database:

Dnom
loc = R×DLag

loc , (V.13)

with R ∈ SO(3) a sampling set of rotation tensors, and DLag
loc as in Eq. (V.9). We

denote NR the number of elements in R. In order to fully represent any rotation
R, NR must be large. The number of points in the nominal material database
NR × m can then rapidly become huge. However, it is unlikely that all of the
Lagrangian data points in DLag

loc are relevant to the computational problem presented
in Section 2.1, since the dense sampling method spans (as uniformly as possible)
all possible magnitudes and modes-of-distortion. Indeed, we showed in the previous
chapter that few data points were actually selected as material states during the
simulation for the two-dimensional problem, and a similar behavior is expected
here. Hence, we chose for this first attempt at performing three-dimensional nominal
DDCM to reduce the size of the database with a priori knowledge of the solution. We
use a first Lagrangian computation as a way to select the relevant data points: all
strain-stress pairs that are selected at least once as a material state, within any local
data-assignment iteration k of any load step t are collected into a reduced database1

DLagred
loc =

{{
(E∗ie,S

∗
ie)

(t,k)
}M
e=1
| t ∈ [1 . . Nsteps], k ∈ [1 . . ktmax]

}
, (V.14)

where M is the number of integration points in the mesh, Nsteps is the number of
pseudo-time steps, ktmax is the number of iterations conducted in step t. Then, we
generate the nominal database as the product set

Dnom
loc = R×DLagred

loc . (V.15)

It thus remains to generate a set R of 3 × 3 rotation matrices R ∈ SO(3),
which are the matrix representations of the rotation tensors R in the canonical basis
B = (eX , eY , eZ). Several parametrization of the special orthogonal group SO(3)

are available (Euler angles, quaternions, etc.). The most suitable representation
is the axis-angle parametrization as it provides an (almost) one-to-one relationship
between an axis-angle pair (ê, φ) ∈ R3×R and a rotation matrix R ∈ SO(3). Hence,
the sampling strategy is pretty straightforward. This relationship is given by the
Rodrigue’s formula as

R(ê, φ) = cos(φ)I + sin(φ)Wê + (1− cos(φ))(ê⊗ ê), (V.16)

where the rotation vector ê ∈ R3 is a unit vector (‖ê‖ = 1) giving the axis of
rotation, φ is the amount of rotation (in radians) around this axis, and Wê is the

1This step may be regarded as another emulation of what would result from a three-dimensional
DDI computation, i.e. as an importance sampling of the material database.
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cross product matrix of ê such that Wê x = ê×x for any vector x ∈ R3. Therefore,
a product sampling of three-dimensional unit vectors and angles readily gives a set
R of rotation matrices as

R =
{
R(i,j) = R(ê(i), φ(j)) | i ∈ [1 . . Nrot, j ∈ [1 . . Nang]]

}
. (V.17)

The set
{
ê(i)
}Nrot

i
of unit vectors is obtained from a sampling of the unit sphere of

R3 using the method of Sloan and Womersley (2004), where Nrot is the number of
points distributed on the sphere. The set

{
φ(j)

}Nang

j
of angles consists of Nang evenly

spaced values in the interval (0, π] such that the distance between two samples is
∆φ = π/Nang. The case φ = 0 is excluded since the corresponding axis is then
not defined: R(x, φ = 0) = I, ∀x ∈ R3. To avoid redundant samples, the identity
rotation I is added to the set of rotations defined in Eq. (V.17) after the sampling.

Finally, the nominal material database is obtained from the product set

Dnom
loc =

{
(F = RU , P = FS) | U2 = 2E + I, (E,S) ∈ DLagred

loc , R ∈ R
}
.

(V.18)

2.2.4 Summary

The adopted strategy for generating comparable Lagrangian and nominal material
databases is given in Fig. V.3.

2.3 Computation parameters

The data-driven solutions were obtained with the following parameters:

C-parameter the amplitude of the scaling parameter is set to the Young’s modulus
of the model E = 250, for both formulations: C = E in the nominal solver
and C = C IS in the Lagrangian solver, with IS the symmetric fourth-order
tensor (IS

ijkl = 1
2(δikδjl + δilδjk)). Note that in that case, C does not take into

account the compressibility of the material (the Poisson’s ratio is not involved
in the definition).

Initialization The material states are initialized with the “zero” method, in both
formulations (see Line 3 in Algorithm III.1 and Line 3 in Algorithm III.3,
page 102):all material states are initialized to the zero-deformation state at
the first pseudo-time step: (F ∗ie,P

∗
ie) = (I,0), ∀e and (E∗ie,S

∗
ie) = (0,0), ∀e.

Augmented Lagrangian parameters the initial penalty parameters cD0 , ct0, cm0
are respectively set to 103C, 103C, C. The initial Lagrange multipliers λ0, η0,
µ0 are all set to zero (see Lines 3 and 4 in Algorithm III.2, page 101).

Computer all simulations are performed on a laptop with the following specifica-
tions: processor Intel Core i5-6200U CPU @ 2.30 GHz × 4, with 15.5 Gio of
RAM.
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Figure V.3 – Procedure to generate the Lagrangian (left) and nominal (right) ma-
terial databases.

3 Results

3.1 Nominal results

We did not success in obtaining converged results with the nominal formulation
and the material database generated with the procedure listed in Fig. V.3. More
investigation should be conducted to understand why. In particular, more care
should be taken in defining the initial penalty parameters in order to avoid ill-
conditioning as well as to ensure good convergence properties. However, we believe
that the dimensionality of the phase space is a probable cause for this failure. To
illustrate this claim, we compare the deformed mesh together with the Von Mises
norm of the Cauchy stress obtained with both formulations in Fig. V.4. The average
element size is twice as large as for the mesh presented in Fig. V.1. The material
database is constituted with the FE reference solution only, corresponding to both
formulations. The material states are initialized with the “arange” method: the
assignments for the first pseudo-time step (only) are initialized to point towards
the corresponding FE solution (c.f. Chapter III for more details on initialization
methods). As can be seen from Fig. V.4, the deformed mesh is not well predicted
by the nominal formulation. The ranges of stresses are however quite similar. This
example is degenerate: the mesh is too coarse for the problem and the material
database is very sparse, however perfectly located in phase space. Nevertheless,
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Figure V.4 – Deformed mesh of the Lagrangian (left) and nominal (right) formula-
tions. The material database is the concatenation of the FE reference solution at all
integration points on all pseudo-time steps.

the Lagrangian formulation is able to find a good qualitative solution, working in
a 2 × 6-dimensional space. The nominal formulation is not able to find the same
solution, with a priori the same input. This could be due to larger dimensionality
(2 × 9) of the phase space, as the distance-minimization problem is more complex
to solver. Others possible causes for failure include:

• the scaling parameter C in the nominal distance is a scalar, and hence does not
take into account the Poisson effect. However, C = C ISYM in the Lagrangian
distance, which should be equivalent.

• the material data points in the reference nominal database (constituted with
the reference solution only) may lack an orbit representation, which would
ease the search for optimal material states.

Finally, we can not exclude the possibility of a bug: the solver was developed in
the last months of the thesis and has not been fully tested yet. In lack of hindsight
on this method, we are not able to comment further the behavior of the nominal
formulation. In the following, we then restrict ourselves to presenting and discussing
the Lagrangian results only.
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3.2 Lagrangian formulation

We now examine the results of the DDCM in the Lagrangian formulation. Unless
specified, we analyze the results achieved from the second Lagrangian computation
using the reduced database DLagred

loc , which consists of only the relevant material data
points selected from the first Lagrangian computation (see Fig. V.3). The number
of material data points has then reduced from m = 10 035 200 to m = 75 077. After
the second Lagrangian computation, the number of data points that have been used
as material states is again reduced, to m = 22 170.

3.2.1 Deformed mesh and resultant

Let us first illustrate the DDCM results with global (structural) indicators. In
Fig. V.5, the deformed mesh and the value of the shear strain FXY for different
pseudo-time steps are shown. Note that the first snapshot at θ = 152◦ in Fig. V.5

Figure V.5 – Lagrangian results. Deformed mesh and shear FXY for different loading
steps.

illustrates that the center of rotation is not the center of the column, as prescribed
by the Dirichlet boundary conditions. In addition, the torsion of the bottom part
of the column at θ = 360◦ is, as expected, independent of the loading path. The
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deformed mesh is then qualitatively satisfactory.
Since the bottom surface Z = 0 is fixed, we compute the reaction forces and

moments on this surface as a post-processing. We refer back to the equilibrium
residual Rη defined by Eq. (III.39a) in Chapter III. The nodal reaction force ta at
node a of the bottom surface Z = 0 is given by

ta = Rη
a =

∑

e

we Fe
(
C :

(
F T
e ∇0η

))
Bea +

∑

e

we FeS
∗
ieBea, (V.19)

(note that T ext
a from Eq. (III.39a) is 0 since no external force is applied). Then, the

resultant force T is the summation of nodal forces on the NZ=0 nodes of surface
Z = 0:

T =

NZ=0∑

a=1

ta. (V.20)

In addition, the resultant moment M with respect to the center of the column
Xc = [0.5, 0.5, 0]T is computed as the summation of nodal reaction moments:

M =

NZ=0∑

a=1

(Xa −Xc)× ta, (V.21)

where × denotes the standard cross product. Evolution of the resultant force and
moment with the applied rotation angle θ is shown in Fig. V.6. The results for
the first (resp. second) Lagrangian simulation, labeled “DDCM” (resp. “DDCM
red.”), are represented in solid (resp. dotted-dashed) line. The standard finite
element reference solution is also shown in dotted line, for comparison. We can
see that the Z-component of the resultant moment consistently increases with the
applied rotation. In addition, the resultant forces are maximized when the center
of the column is above the center of rotation (θ ' 180◦), i.e. when the structure
is also sheared. Note however that the Z-component TZ of the resultant force is
underestimated by DDCM. Finally, the results obtained from the first and second
Lagrangian computations are very similar. This indicates that the m =75 077 data
points were indeed sufficient to predict the global response of the structure.

These first results demonstrate that it is possible to perform qualitatively con-
sistent three-dimensional data-driven simulations with the Lagrangian formulation.

3.2.2 Results of the optimization

Let us now examine how well the distance-minimization scheme performed. Ta-
ble V.1 reports the computation times together with the final value of the objective
function for the two Lagrangian simulations and the FE reference solution, as a com-
parison. We can see that the final value of the objective function is twice as large
for the second simulation than for the first one. However, the computational times
are very similar.
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M

Figure V.6 – Resultant force and moment on the bottom surface Z = 0.

Table V.1 – Computation times for the two Lagrangian simulation and the FE ref-
erence solution.

Simulation Computation time Objective function Iterations
DDCM (1) 2 h 54 min 3.31 MPa mm2 340

DDCM (2) 3 h 5 min 6.42 MPa mm2 390

FE 30 min

In Fig. V.7, the convergence of the objective function throughout all pseudo-
time steps is depicted, together with the number of local data assignments changed
between two data-driven iterations. This indicates the number of integration points
which get their optimal material states updated from one iteration k to the next
(it is the number of elements in the set

{
e ∈ [1 . . M ] | z∗,(k)

ie 6= z
∗,(k+1)
ie

}
). The

optimization is considered converged either when no changes occur, or when the
number of changes falls below 0.1 % of the total number of integration points M .
This additional criterion greatly improves computation time as it prevents iterations
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from running without much improvement of the objective function. It can be seen
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Figure V.7 – Convergence of the objective function during the simulation. The bars
indicates the number of material state updates as a percentage of M , the number
of integration points. The solid line represents the convergence path throughout all
pseudo-time steps (indicated at the top) and all iterations (indicated at the bottom).

from Fig. V.7 that the minimum value of the objective function increases with the
number of pseudo-time steps. In addition, the objective function is significantly
lowered within a few data-driven iterations for the first pseudo-time steps. Con-
versely, it is very little improved in the last pseudo-time steps. As the step number
increases, the prescribed rotation of the column induces larger strain in the structure
(cf. Fig. V.5). We can conclude that the optimization problem is harder to solve for
large deformations. We recall that the initialization for the displacements and the
material states of one given pseudo-time step corresponds to the results obtained at
the last (converged) data-driven iteration of the previous step.

4 Discussion

4.1 Recovering isotropy

As in Chapter IV, the data-driven results are discussed based on their ability to
recover the isotropy of the material. Note that the discrete material database is
indeed generated by an isotropic constitutive model. However, this assumption is
not enforced in the data-driven computations. In other words, there can exist a
mechanical solution to the data-driven problem which is not perfectly isotropic,
while satisfying equilibrium and kinematics, and being close enough to the material
database. To measure how far the DDCM (mechanical) solution lies from a perfectly
isotropic solution, we consider again the angle α between the principal directions of
the Lagrangian strain and stress tensors E and S. In the three-dimensional case, it
is unsigned and defined as

α = arccos (pI(E) · pI(S)) , (V.22)
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where pI(A) is the eigenvector associated with the largest eigenvalue of tensor A ∈
R3×3. We refer to α as the isotropy mismatch angle. Note that we restrict α to the
interval [0, π] by rotating the eigenvectors of S such that pI(E) and pI(S) are in
the same quarter of the unit 3D sphere2. Two examples are provided in Fig. V.8,
where we represent the three eigenvectors of both tensors. The angle α can also be
seen as the amount of rotation around the axis defined by pI(E)×pI(S), using the
counter-clockwise convention.

Figure V.8 – Isotropy mismatch angle, defined as the angle of rotation between the
first principal directions of the strain and stress tensors pI(E) and pI(S). Left:
situation where the angle is about 10◦. Right: situation where the angle is about
90◦.

In Fig. V.9, histograms of the results achieved from the first and second La-
grangian DDCM computations are presented. Most of the integration points in the
mesh have a relatively low isotropy mismatch angle: 60 % of the mechanical states
are below 12◦. We can see that the second Lagrangian computation behaves slightly
worse than the first one. The selection of the material states in the reduced La-
grangian database (see Eq. (V.14)) merely discarded a priori useless points, thus
delimiting the region of phase space spanned by the problem. However, the density
of material data points in this region of interest has not been improved. We can
surmise that the isotropy mismatch angle would be lower with a richer database.
Nevertheless, the method to enrich the reduced database with appropriate points is
an open subject.

2(pI(S),pII(S),pIII(S)) is transformed into (−pI(S),−pII(S),pIII(S)) whenever α > 90◦,
so as to remain a right-handed system.
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Figure V.9 – Isotropy mismatch angle: misalignment angle between the princi-
pal strain and the principal stress of all mechanical states, obtained from the first
(“DDCM”) and second (“DDCM red.”) Lagrangian computations.

As can be seen in Fig. V.9, there is certain amount of integration points where α
is close to 90◦. We recall that the eigenvectors of any tensor form an orthonormal ba-
sis. Hence, the angle between pI(E) and pII(E) is 90◦. An isotropy mismatch angle
of 90◦ could then indicate that the order of the eigenvectors is not well determined,
i.e. the first and second eigenvalues are very close to one another. To investigate
this assumption, we examine each isotropy mismatch angle in regard with the corre-
sponding principal strain (stress) gap, defined as ∆E = EI −EII (∆S = SI − SII),
where EI and EII (SI and SII) are the largest and second largest strain (stress)
eigenvalues, as determined by the numpy.linalg.eigh() function of the Numpy
package in Python. Fig. V.10 confirms that the largest isotropy mismatch angles
are found for the lowest principal strain or stress gaps.

To conclude, the isotropy is quite well recovered by the data-driven solution,
provided that the material database only consists of 75 007 strain-stress pairs. The
few local errors correspond either to small strain or almost equi-biaxial states for
which the isotropy mismatch angle may not be well numerically computed.
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Figure V.10 – Isotropy mismatch angle vs. principal strain (left) and stress (right)
gap.

4.2 Modes of deformation

As mentioned in Chapter IV, the natural strain invariant basis introduced by
Criscione et al. (2000) is an interesting tool to analyze the modes of deformation
occurring in a structure. Let us briefly recall the meaning of these invariants. The
first invariant K1 of the Hencky strain tensor Y = lnU is a measure of the amount-
of-dilatation as K1 = ln J with J = detF ; a negative values stands for contraction
while a positive value accounts for dilatation. An isochoric deformation is measured
by K1 = 0. The second and third invariants K2 ≥ 0 and K3 ∈ [−1, 1] respec-
tively accounts for the magnitude- and mode-of-distortion, e.g. tension or shear. In
Fig. V.11, we represent bi-variate histograms of the (K1,K2,K3) values for the me-
chanical and material states of the second Lagrangian computation, together with
the marginal distributions. The counts in the bins are intentionally not shown to
simplify the plots; darker bins indicates concentration of points.

First, note that the distributions of the mechanical and material states, in both
the (K3,K2) and (K3,K1) planes are very different. More precisely, comparing
Fig. V.11(a) and Fig. V.11(b), the mechanical states exhibit a larger diversity of
magnitudes-of-distortion K2 than the material states. As for the K3 invariants, it
also seems that more modes-of-distortion are covered by the mechanical states. In
addition, it can be seen from Fig. V.11(a) that integration points with rather small
strain (lowest values of K2) undergo almost all possible modes-of-distortion, from
equi-biaxial tension (K3 = −1) to uniaxial tension (K3 = 1) through pure shear
(K3 = 0).
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From the (K1,K3) distributions represented in Fig. V.11(c), a majority of the
mechanical states are in contraction (K1 < 0), which is expected by the load-
ing conditions and the compressibility of the material. Likewise, it can be seen
from the marginal distribution of K3 of the mechanical states in Fig. V.11(c) that
there is a concentration of points around the pure shear state K3 = 0. Comparing
Figs. V.11(c) and V.11(d), it is remarkable that some material states lie in an area
where no mechanical states sit ({K3 > 0.5} ∪ {K1 < −0.1}).
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(c) Mechanical states (K1,K3)
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Figure V.11 – Bi-variate distributions of (a)-(b) (K1,K3) invariants and (c)-(d)
(K1,K3) invariants of the mechanical states (in red) and the material states (in blue)
respectively. Darker colors indicate concentration of points in this area. Marginal
histograms are shown for each variable.
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5 Conclusion

This chapter was intended to assess the data-driven finite strain solvers in a com-
plex three-dimensional problem. To this end, we presented two methods to generate
synthetic material databases which can be used in both the Lagrangian and nominal
formulations, while providing comparable results. The former merely consisted in
using the dense sampling method extensively presented in Chapter IV. The latter
relied on the product set of rotation-free material data points (U ,S) with rotation
matrices R. In both cases, mechanical problems in three-dimensions are revealed
more challenging that the two-dimensional examples presented so far: the corre-
sponding local phase space of the data-driven BVP is of higher dimension, which
considerably increases the number of points needed to generate dense databases.
This difficulty is even more acute in the nominal formulation as the local phase
space consists of non-symmetrical tensors.

The database for the Lagrangian formulation then comprised m = 10 035 200

points. It was successfully used in a first Lagrangian computation, which yielded
satisfactory results after a quick qualitative analysis. More interestingly, it turned
out that only m = 75 077 of the material data points were actually selected in the
computation. This was expected: the dense sampling method spans all possible
deformation modes in all possibles directions while the studied mechanical problem
is necessarily restricted to certain deformation paths. Hence, we used these data
points directly as the material database in a second Lagrangian simulation, and as a
basis to generate the nominal material database. The second Lagrangian simulation
also yielded satisfactory results. Unfortunately, we could not reach convergence
with the nominal solver. A sanity check with a coarser mesh and the FE reference
solution as the database showed that the three-dimensional case is probably more
difficult to handle with the nominal formulation. The reasons why the simulation
did not succeed are still unclear.

On the opposite, the Lagrangian solution compared well enough with the FE

reference solution. In particular, we showed that the deformed mesh and the re-
sultant force and moment were qualitatively very well captured. Investigating the
behavior of the solver, we showed that the optimization problem is harder to solve
at large strain, as the objective function decreases more slowly with the iterations.
Finally, we discussed the ability of the data-driven solver to recover the isotropy
of the material, while not being enforced in the simulation. If the results are not
as satisfying as the one presented in the previous chapter, we argue that they are
encouraging: one should bear in mind that the density of the material database was
much lower herein and the distance-minimizing problem is more complex in three
dimensions. In addition, the study of the amplitudes and modes of deformation
with the natural strain invariant basis offered an understanding of the material and
mechanical strain states. Note that further work is needed to develop a dual rep-
resentation of the stress tensors to analyze in like manner the stress results. This
part probably brought about more questions than answers. For example, how are
mechanical and material states related in terms of mode and amplitude of deforma-
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tion (dilatation and distortion-wise)? Nevertheless, it showed that the data-driven
results were consistent with the material properties (compressibility in the broad
sense) and the loading conditions (a rotation which induces shear).

This study is an encouraging first step towards realistic large strain three-
dimensional data-driven computations, at least for the Lagrangian formulation. To
the best of our knowledge, this work is the first truly three-dimensional data-driven
simulation performed with DDCM (finite strain) solvers: the linear elastic example
presented in Kirchdoerfer and Ortiz (2016) actually used a limited material database,
encoding plane-stress conditions. Future work should include a systematic study of
the influence of the different parameters, e.g. the number of samples Ndir or Ndet,
or the C parameter. In addition, the adaptation of the nominal formulation to
three-dimensional problems should be elucidated.

To conclude, let us emphasize that one crucial question remains unsolved in
the two and three-dimensional examples we presented in this second part of the
thesis. The DDCM paradigm provides a mechanically admissible response which is
as close as possible to what is known of the material behavior. This knowledge
can be, as we have seen in Chapter IV and herein, insufficient for the BVP under
consideration. Hence, one would want to complete this knowledge with additional
data. That is what we tried to do when adding more directions or more amplitudes
to the material database. But it would be preferable to find a systematic way of
enriching the material database. We try and address this question in the last part
of the thesis, in Chapter VI, for the particular case of heterogeneous materials.
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1 Introduction

So far, the material databases we used were artificial: they were generated by sam-
pling a constitutive model, later discarded in the data-driven computations. In this
manner, we assessed the data-driven solvers by comparing their results with the
classical FE reference solution. However, the DDCM paradigm aims at using raw
material data, thus by-passing constitutive models. As aforementioned, material
data points can be produced in two manners. On the one hand, collecting raw ex-
perimental data is a true challenge. We refer back to Chapters II and IV for the
achievements and difficulties in producing experimental material databases suitable
for DDCM. On the other hand, numerical simulations at finer scales can provide
the overall behavior of heterogeneous materials. There, the constitutive models of
the microscopic phases (fine scale) are assumed simple enough and reliable. In this
chapter, we explore the latter approach and investigate how the DDCM can be suc-
cessfully applied to the simulation of structures made of heterogeneous materials.
In this first attempt, we restrict our attention to small strain elasticity and use the
original solver of Kirchdoerfer and Ortiz (2016).

1.1 Computational homogenization: principles and challenges

We first briefly recall the basic principles of the homogenization of heterogeneous
materials and the challenges of computational homogenization. Multiscale material
modeling has been a vivid area of research for several decades, which we do not
pretend to exhaustively report herein. Instead, we refer to some recent reviews as
the one of Zaoui (2002); Kanouté et al. (2009); Geers et al. (2010); Matouš et al.
(2017) or standard books such as Bornert et al. (2001); Zohdi and Wriggers (2008).

Heterogeneous or composite materials refer to materials mixing distinct micro-
scopic phases, with different mechanical properties. We consider composites in which
the size of the heterogeneities is much smaller than the size of the engineering
structure, such as reinforced polymers. Then, two scales are distinguished: at the
macroscale, the material is virtually considered as homogeneous; at the microscale,
the microscopic phases are modeled by the constitutive model of their constituent.
The effective or overall mechanical response then depends on the mechanical prop-
erties of the constituents, their geometry, volume fraction and spatial distribution
in the microstructure. The effective response is derived by solving a specific BVP

on a RVE of the microstructure, associated to a material point of the macrostruc-
ture, as illustrated in Fig. VI.1. As defined by Hill (1963), the RVE is, at the same
time, “sufficiently large” to be statistically representative of the microstructure and
“sufficiently small” with respect to the characteristic length of the macrostructure
(separation of scales). The macroscopic strain and stress responses are given by
volume averages on the RVE Ω, of volume V :

ε̄ = 〈ε〉 ; σ̄ = 〈σ〉 , (VI.1)

with 〈·〉 = 1/V

∫

Ω
(·) dx. In Eq. (VI.1), the strain and stress fields ε and σ at the
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Figure VI.1 – Effective constitutive relation of a composite, obtained from the res-
olution of a BVP on the RVE of the microstructure. Inspired from Brassart (2011).

microscale are solution of a local BVP on the RVE:

ε =
1

2

(
∇u+ ∇Tu

)
, ∀x ∈ Ω (VI.2a)

divσ(x) = 0, ∀x ∈ Ω, (VI.2b)

σ(x) =

Nr∑

r=1

χ(r)σ̌(r)(ε(x)), ∀x ∈ Ω, (VI.2c)

where σ̌(r) (ε̄) is the local constitutive relation of microscopic phase r, Nr is the num-
ber of distinct microscopic phases in the composite, and the characteristic function
χ(r) is defined as

χ(r) =

{
1 if x ∈ Ω(r)

0 otherwise,
(VI.3)

with Ω(r) the domain occupied by phase r. The associated boundary conditions are
usually chosen among three kinds, namely:

• linear displacement boundary conditions

u(x) = ε̄ · x, ∀x ∈ ∂Ω (VI.4)

which ensure that ε̄ = 〈ε〉;

• uniform traction boundary conditions

t(x) = σ̄ · n(x), ∀x ∈ ∂Ω (VI.5)

which ensure that σ̄ = 〈σ〉, with n(x) the outward normal to the RVE bound-
ary;



1. Introduction 201

• periodic boundary conditions

u(x+)− u(x−) = ε̄ · (x+ − x−), ∀x ∈ ∂Ω, (VI.6a)

σ · n(x+) = −σ · n(x−), ∀x ∈ ∂Ω, (VI.6b)

which ensure that ε̄ = 〈ε〉, where x+ and x− denotes opposite points on the
RVE boundary ∂Ω.

In the following, we use the linear displacement boundary conditions, as they are
the easiest ones to implement in a FE code. The effective constitutive relation
between the macroscopic stress σ̄ and the macroscopic strain ε̄ is no longer explicit
but results from a localization step (application of the boundary conditions) and
a homogenization step (volume average), as illustrated in Fig. VI.1. Finally, a key
result of homogenization theory is the Hill-Mandel lemma, which states that the
macroscopic work is equal to the average microscopic work (Hill, 1967). Considering
an equilibrated stress field σ and a compatible strain field ε, if σ satisfies the uniform
boundary conditions Eq. (VI.5) or if ε satisfies the linear displacement boundary
conditions Eq. (VI.4), then

〈σ : ε〉 = 〈σ〉 : 〈ε〉 = σ̄ : ε̄. (VI.7)

Roughly speaking, the research concerned with homogenization of composite
materials in solid mechanics can be divided into two main fields:

1. On the one hand, continuum micromechanics aims at extracting macroscopic
constitutive equations based on continuum mechanics at the level of mi-
crostructural heterogeneities. In particular, mean fields approaches determine
the effective behavior of the composite from the statistical moments of mi-
cromechanical fields. In linear elasticity, most models build upon the problem
of an isolated inclusion embedded in an infinite medium and subject to a
far-field strain, for which Eshelby and Peierls (1957) provided an analytical
solution. The extension to nonlinear elasticity is made either through the
linearization of the strain-stress relation (e.g. Hill (1965)) or by means of
variational approaches which provide rigorous bounds and estimates for hy-
perelastic materials (see Zaoui (2002) for an extensive overview). In this field,
the microstructure is simplified and specific assumptions describe the interac-
tions between constituents.

2. On the other hand, in numerical approaches, the effective properties are com-
puted thanks to equilibrium simulations on a RVE of the microstructure. Then,
fewer assumptions are made on the spatial arrangement of the heterogeneities
or the relationship between them. The “real” microstructure can even be di-
rectly used as input to the computation, such as in image-based FE methods
(Terada et al., 1997) or using Fast Fourrier Transform (FFT)-based solvers
(Moulinec and Suquet, 1998). In particular, the effective properties of a linear
elastic composite are obtained from a limited number of computations, with
suitably chosen boundary conditions (Bornert et al., 2001, Chapitre 2).
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The above-mentioned approaches provide a constitutive model for the effective
or macroscopic response of the heterogeneous material. The associated material
parameters are either analytically derived or obtained from numerical experiments
on representative microstructures. Such model can be later used in standard FE

simulations of a structure made of this heterogeneous material, referred to as the
macrostructure. This methodology is particularly suited for elastic materials, for
which the macroscopic stiffness tensor can be easily determined beforehand. How-
ever, constitutive relations of nonlinear composite materials are not easily derived
from the behavior of their constituents. The mechanical response of a nonlinear
microstructure subject to arbitrary macroscopic loading conditions can then not be
determined beforehand. Full-field numerical simulations consisting in meshing with
a high resolution all heterogeneities in the structure are still way too expensive. In-
stead, multiscale approaches search to solve two nested BVP defined on each of the
micro- and macroscale. Such methods are commonly referred to as computational
homogenization (Matouš et al., 2017). In particular, hierarchical methods popular-
ized by Feyel (1999) under the name of FE2 consist in solving a BVP at the microscale
for each integration point of the macrostructure, with loading conditions based on
the macroscopic strain-stress state. With this approach, the microstructure can be
complex and evolving, and no assumption is made on the effective behavior of the
composite material. Yet, depending on the complexity of the loading conditions
applied to the macrostructure and the mesh resolution needed to fully represent the
heterogeneities in the RVE, the approach can be computationally demanding. In ad-
dition, the material nonlinearity is usually handled using an iterative scheme at the
macroscale which requires to compute the effective elastic tangent tensor of the RVE.
This is typically done by numerical perturbation, thus requiring additional compu-
tations of the microstructure response: for a two-dimensional problem (n = 2),
n(n − 1) = 3 additional evaluations are needed, corresponding to the number of
independent macroscopic strain components to vary; n(n − 1) = 6 are required for
a three-dimensional problem. The number of microscopic evaluations performed in
a typical multilevel finite element approach (FE2) simulation is then

Nmicro. eval. = Nit. ×M × (1 + n(n− 1)), (VI.8)

with Nit. the number of iterations needed to reach macroscopic equilibrium, and M
the number of integration points in the macrostructure. However, some of these
evaluations may be redundant: it is most likely that, throughout the macroscopic
iterations, two macroscopic integration points share a similar strain state. Hence,
the same microscopic evaluation is performed twice, at different moment or different
location of the simulation. To avoid this unnecessary computational cost, one can
store the results of microscopic evaluations during the macroscopic simulation and
re-use them when necessary, instead of re-computing them. This approach has
been adopted by Klusemann and Ortiz (2015), where the average response (ε̄, σ̄) is
stored in phase space Rn×nsym × Rn×nsym . Then, an interpolation scheme is used, based
on simplicial subdivision of the phase space, to approximate the effective response
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from (already computed) nearby points in phase space. As demonstrated by the
authors, the computational cost of FE2 is significantly reduced.

1.2 Towards data-driven multiscale homogenization

An another approach in computational homogenization consists in building a
database from numerous microscopic computations, and using it to feed a surro-
gate model of the macroscopic response. A vast number of techniques are used to
derive the macroscopic response, from proper orthogonal decomposition to artificial
neural networks (see Matouš et al. (2017) for an extensive list of recent “reduced
order models, data mining and acceleration of nonlinear multiscale methods”). With
these approaches, some kind of material modeling is still conducted: the effective
response of the material is either interpolated, reduced to a manifold of lower di-
mension or approximated by an artificial neural network. In contrast, Xu et al.
(2020) recently proposed to incorporate multiscale material modeling in the DDCM

paradigm, following a similar but model-free methodology: the material database of
effective strain and stress states is constituted beforehand and used to feed a data-
driven solver. Mora-Macías et al. (2020) also proposed to apply their data com-
pletion technique presented in Ayensa-Jiménez et al. (2019) to a database obtained
from experiments on bone tissue. In both contributions, the material database is
generated (and completed) a priori in an off-line stage, via microscopic simulations
or up-sampling technique. It requires to define beforehand the suitable loading con-
ditions to apply to the microstructure, notably the range of solicitations and the
density at which they must be sampled.

Instead, we propose in this work a first step to link DDCM and computational
homogenization techniques such as FE2: the resolution of the BVP at the macroscale
is performed by DDCM while the resolution of the BVP at the microscale uses stan-
dard FE method, and is performed on-line. Between the two scales, the material
database of macroscopic strain-stress states is completed on-the-fly. Then, no a
priori knowledge of the effective material response nor the macroscopic loading con-
ditions is required. In addition, note that the DDCM does not need the effective
tangent operator. Our methodology thus aims at reducing the number of micro-
scopic RVE resolutions: thanks to the structure of the data-driven problem, only
relevant points are computed and (re-)used.

This last chapter is organized as follows. The data-driven FE2 solver is presented
in Section 2. In Section 3, we illustrate the method with the simulation of a two-
dimensional structure made of a two-phases nonlinear composite. We conclude and
give perspective for this particular application of DDCM in Section 4.

2 Data-driven FE2 solver

We consider a two-stage FE simulation. The macrostructure is made of a non-
linear heterogeneous material. The microstructure is the same everywhere in the
macrostructure, such that the same, unique, RVE is associated to all macroscopic
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integration points. At the macro-level, we use the standard data-driven solver in
small strain, as introduced by Kirchdoerfer and Ortiz (2016) and recalled in Chap-
ter II. The material database is constituted with macroscopic strain-stress tensor
pairs ε̄, σ̄, obtained from the FE resolution of the local BVP at the microscale, with
boundary conditions defined by the mechanical state of the associated macroscopic
integration point. The flowchart of the method is compared with that of the stan-
dard FE2 scheme in Fig. VI.2.

Figure VI.2 – Flowcharts of standard and data-driven FE2 methods.

Our approach consists in conducting successive data-driven macroscopic simula-
tions, with a material database that is enriched on-the-fly between two simulations.
The data-driven solver is here used as a black-box, and we develop a strategy to
adaptively enrich the material database with suitably chosen and non-redundant
microscopic evaluations. First, we briefly recall from Chapter II the layout of the
data-driven solver in Section 2.1 and insist on input and output data. Second,
we expose in Section 2.2 the update strategy of the database and the subsequent
two-scale data-driven solver.

2.1 Macroscopic data-driven solver

Let us consider a macroscopic FE mesh of N nodes, labeled a ∈ [1 . . N ], and M

integration or quadrature or material points, labeled e ∈ [1 . . M ], in dimension
n = 2, 3. Let α ∈ [1 . . N × n] label the degrees of freedom; note that α =

α(a, i) = (a − 1)n + i, with i ∈ [1 . . n] the direction. The system is subject to
Dirichlet boundary conditions and applied external forces that are independent of
the motion. The former are encoded in an array of nD prescribed displacements{
ūD
α

}
α∈D with D = {α1, · · · , αnD}, such that αk ∈ [1 . . Nn], ∀k ∈ [1 . . nD].

The latter are encoded in nodal force vectors
{
f̄a ∈ Rn

}N
a=1

. The macroscopic local
state of integration point e is denoted ze = (ε̄e, σ̄e), and sits in the local phase
space Z(e)

loc = Rn×nsym × Rn×nsym . Note that using Voigt or Mandel vector notation, Z(e)
loc

is equivalently identified with Rn(n−1)×Rn(n−1). The global phase space is then the
product set Z = Z(1)

loc × · · · × Z
(M)
loc .

The material data set D is the product set of local material data sets D(e)
loc:

D = D(1)
loc×· · ·×D

(M)
loc . In the following, as the microstructure is supposed to be the
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same at each integration point, we consider only one local material data set, shared
by all macroscopic points, denoted Dloc and referred to as the material database.
For the same reason, the same local phase Zloc is shared by all integration points.
The material database is constituted with averaged strain and stress states, obtained
from m microscopic computations:

Dloc = {(ε̄i, σ̄i) | i ∈ [1 . . m]} . (VI.9)

On the one hand, the material strain-stress field (ε̄′, σ̄′) consists of a selection in
the local material database. On the other hand, the mechanical strain-stress field
(ε̄, σ̄) must verify both macroscopic kinematics constraints and stress equilibrium,
written as

ε̄e =
∑

a=1

Beaūa, ∀e ∈ [1 . . M ], (VI.10a)

ūa · ei = ūD
α , ∀(a, i), α(a, i) ∈ D, (VI.10b)

(
M∑

e=1

weB
T
eaσ̄e − f̄a

)
· ei = 0, ∀(a, i), α(a, i) 6∈ D, (VI.10c)

where {ūa}Na=1 are the macroscopic nodal displacement vectors, the standard matrix
Bea encodes the connectivity and geometry of the FE mesh, and we is the integration
weight of quadrature point e. The set of mechanical state fields is referred to as the
constraint set and writes

E = {(ε̄, σ̄) ∈ Z | Eq. (VI.10)} . (VI.11)

The data-driven solution S is defined as the mechanical state field (ε̄, σ̄) ∈ E ,
closest to the material data set D:

S = arg min
(ε̄,σ̄)∈E

min
(ε̄′,σ̄′)∈D

M∑

e=1

we de
(
(ε̄e, σ̄e) ,

(
ε̄′e, σ̄

′
e

))
, (VI.12)

where the local distance function de is defined in Zloc ×Dloc by

de ((ε̄e, σ̄e) , (ε̄i, σ̄i)) = W (ε̄e − ε̄i) +W ∗(σ̄e − σ̄i), (VI.13)

with W and W ∗ strain and complementary energy density-like deviation functions,
written as

W (ε) =
1

2
(Cε) ε, (VI.14a)

W ∗(σ) =
1

2

(
C−1σ

)
σ, (VI.14b)

with C a constant positive definite operator.
The coupled continuous and combinatorial optimization Eq. (VI.12) is addressed

with an alternated minimization scheme (Kirchdoerfer and Ortiz, 2016):
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1. The material states are obtained from independent nearest neighbor searches
in local phase space. The material state (ε̄∗ie, σ̄

∗
ie) is defined as the closest mate-

rial data point in Dloc from the current mechanical state (ε̄e, σ̄e) of integration
point e:

de ((ε̄e, σ̄e) , (ε̄
∗
ie, σ̄

∗
ie)) ≤ de ((ε̄e, σ̄e) , (ε̄i, σ̄i)) ,

∀e ∈ [1 . . M ], ∀ (ε̄e, σ̄e) ∈ Zloc, ∀ (ε̄i, σ̄i) ∈ Dloc, (VI.15)

2. The mechanical states are subsequently derived from the constrained mini-
mization problem

S = arg min
(ε̄,σ̄)∈Z

M∑

e=1

we de ((ε̄e, σ̄e) , (ε̄
∗
ie, σ̄

∗
ie)) , subject to (ε̄, σ̄) ∈ E . (VI.16)

For more details on how the constrained minimization problem Eq. (VI.16) is
addressed, the reader is referred back to Chapter II. Here, we simply briefly recall the
layout of the data-driven solver, applied to the macroscopic BVP, in Algorithm VI.1.

2.2 Two-scale data-driven solver

2.2.1 Motivation

The major input of the macroscopic data-driven solver Algorithm VI.1 is the mate-
rial database Dloc. As aforementioned, it is generated by solving standard FE simu-
lations on the RVE of the microstructure. To generate m material data points in D,
one must then perform m microscopic evaluations. If linear displacement boundary
conditions Eq. (VI.4) are adopted, the space of macroscopic strain tensors ε̄ must be
sampled by m points. For example, in a two-dimensional problem, one can sample
a regular grid in a domain E =

[
ε̄min

11 , ε̄max
11

]
×
[
ε̄min

12 , ε̄max
12

]
×
[
ε̄min

22 , ε̄max
22

]
⊂ R3, as

in Xu et al. (2020). However, for nonlinear materials, the bounds of the domain
can hardly be intuited beforehand. In addition, there is no simple way to estimate
the necessary resolution of the grid to obtain a satisfactory data-driven macroscopic
solution. Finally, as shown in our analysis of material databases in Chapter IV, a
large number of the pre-computed material data points using a regular grid like E
turns useless in the macroscopic computation, as the corresponding region in phase
space is not necessarily explored by the macroscopic mechanical response. Hence,
the computational effort of such off-line building of the material database is time
consuming and not controlled enough.

2.2.2 General idea and algorithm

In contrast, we propose a novel hierarchical data-driven FE2 method, which ensures
to compute only the material data points that are needed for the equilibrium of
the macrostructure. Indeed, until now, we have not used one of the key output of
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Algorithm VI.1 Macroscopic data-driven solver.
INPUT: Material database Dloc, mesh of N nodes and M integration points,
boundary and loading conditions

{
ūD
α

}
α∈D and

{
f̄a
}N
a=1

.
OUTPUT: Mechanical states {(ε̄e, σ̄e)}Me=1, material states {(ε̄∗ie, σ̄∗ie)}Me=1, and
distances {de}Me=1 between them.

Step 1. Set k = 0. Initialize all material states to zero strain-stress state:
(
ε̄
∗,(k)
ie , σ̄

∗,(k)
ie

)
= (0,0) , ∀e ∈ [1 . . M ]. (VI.17)

Step 2. Compute mechanical states (ε̄e, σ̄e)

• Compute nodal displacements ūa and Lagrange multipliers η̄a by solving
two pseudo-elastic linear systems

N∑

b=1

(
M∑

e=1

weB
T
eaCBeb

)
ūb =

M∑

e=1

weB
T
eaC ε̄

∗,(k)
ie ,

∀a ∈ [1 . . N ], (VI.18a)

N∑

b=1

(
M∑

e=1

weB
T
eaCBeb

)
η̄b = f̄a −

M∑

e=1

weB
T
ea σ̄

∗,(k)
ie

∀a ∈ [1 . . N ]. (VI.18b)

with boundary conditions ūa · ei = ūD
α , and η̄a · ei = 0, for all (a, i) ∈

[1 . . N ] × [1 . . n] such that α(a, i) ∈ D. Note that we also set f̄a · ei =

0,∀α(a, i) ∈ D.

• Compute local states

ε̄e =

N∑

a=1

Bea ūa, ∀e ∈ [1 . . M ], (VI.19a)

σ̄e = σ̄
∗,(k)
ie +

N∑

a=1

CBea η̄a, ∀e ∈ [1 . . M ]. (VI.19b)

Step 3. Update material states
(
ε̄
∗,(k+1)
ie , σ̄

∗,(k+1)
ie

)
= arg min

(ε̄i,σ̄i)∈Dloc

de ((ε̄e, σ̄e) , (ε̄i, σ̄i)) (VI.20)

Step 4. Test convergence

• if
(
ε̄
∗,(k)
ie , σ̄

∗,(k)
ie

)
=
(
ε̄
∗,(k+1)
ie , σ̄

∗,(k+1)
ie

)
, then exit.

• else, set k = k + 1 and return to Step 2.
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the data-driven solvers: the final local distances {de}Me=1 between the mechanical
states and their associated material states, as defined in Eq. (VI.13). It provides a
direct information of the density of material data points around the current equi-
librated and compatible solution. A large distance de indicates that the material
state (ε̄∗ie, σ̄

∗
ie) lies too far from the associated mechanical state (ε̄e, σ̄e). The region

in local phase space surrounding (ε̄e, σ̄e) should then be enriched. Such a mechani-
cal state, for which the distance to the closest material data point is larger than a
critical distance dc, is referred to as isolated. The set of isolated integration points
is denoted I and writes

I = {e | de ((ε̄e, σ̄e) , (ε̄
∗
ie, σ̄

∗
ie)) > dc} ⊂ [1 . . M ]. (VI.21)

In that perspective, we propose to conduct successive macroscopic data-driven simu-
lations, with an enrichment of the material database between each simulation that is
based on the final values of de. Considering a material database D(j)

loc at iteration j,

from which results a data-driven solution
{(
ε̄

(j)
e , σ̄

(j)
e

)}M
e=1

, we enrich the database
for the next iteration j + 1 via the homogenization of isolated mechanical states:

D(j+1)
loc = D(j)

loc

⋃

e∈I
{(ε̄new

e , σ̄new
e )} , (VI.22)

where ε̄new
e and σ̄new

e results from a computational homogenization scheme: (i) lo-
calization with one of Eqs. (VI.4) to (VI.6) boundary conditions, (ii) FE resolution
of the local BVP Eq. (VI.2), (iii) volume average Eq. (VI.1). Two evident choices
are then available:

• the updated strain is computed from the mechanical stress, using uniform
traction boundary conditions Eq. (VI.5), as

ε̄new = H(Ω, t = σ̄en) and σ̄new
e = σ̄e, (VI.23)

• the updated stress is obtained from the mechanical strain, using linear dis-
placement boundary conditions Eq. (VI.4) (or periodic boundary conditions
Eq. (VI.6)), as

σ̄new = H(Ω,u = ε̄ex) and ε̄new
e = ε̄e, (VI.24)

where H(Ω, •) denotes the computational homogenization scheme applied to the
RVE Ω, using the boundary conditions •. The stress-from-strain and strain-from-
stress strategies1 Eq. (VI.24) are illustrated in Fig. VI.3. The implications of each
strategy are discussed next.

In the database update Eq. (VI.22), no unnecessary nor redundant microscopic
evaluation is conducted: if a material data point lies close enough from a mechani-
cal state (de ≤ dc), the corresponding microscopic simulation will not be performed

1An intermediate strategy which would compute both macroscopic strain and stress states could
also be envisaged in future work.
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(a) Stress-from-strain strategy.

(b) Strain-from-stress strategy.

Figure VI.3 – Database update strategies. New material data points are obtained
from the resolution of local BVPs on the RVE of the microstructure, with (a) pre-
scribed macroscopic strains ε̄e or (b) prescribed macroscopic stresses σ̄e, selected
from the mechanical states lying too far from their associated material state.

another time. In addition, the effective mechanical response of the microstructure
between two close macroscopic strain states is not interpolated nor approximated,
since the macroscopic data-driven solver is a model-free, projection-based iterative
solver. Our concurrent data-driven multiscale approach is then an iterative pro-
cess, where the material database is successively enriched on-line, in an adaptive
manner, based on the current macroscopic solution. The algorithm is listed in Al-
gorithm VI.2.
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Algorithm VI.2 Two-scale data-driven solver.
INPUT:

• Macroscale: FE model with N nodes and M integration points, boundary and
loading conditions

{
ūD
α

}
α∈D and

{
f̄a
}N
a=1

.

• Microscale: FE model of a RVE of the microstructure, constitutive models of
the constituents.

OUTPUT:

• Macroscale: mechanical states {(ε̄e, σ̄e)}Me=1, material database Dloc.

• Microscale: local and average mechanical response for every macroscopic load-
ing point in Dloc.

Step 1. Set j = 0. Initialize the material database D(0)
loc .

Step 2. Compute the macroscopic mechanical response from DDSOLVER in Algo-
rithm VI.1:

(
ε̄(j), σ̄(j)

)
= DDSOLVER

(
D(j)

loc

)
.

Step 3. Enrich the material database from the homogenization of isolated mechan-
ical states:

D(j+1)
loc = D(j)

loc

⋃

e∈I
{(ε̄new

e , σ̄new
e )} ,

with I as in Eq. (VI.21) and (ε̄new
e , σ̄new

e ) as in Eq. (VI.23) or Eq. (VI.24).

Step 4. Test convergence:

• if de ≤ dc, ∀e ∈ [1 . . M ], then exit.

• else, return to Step 2.

2.2.3 Initial material database

It now remains to build an initial database D(0)
loc . This can be done by a sampling of a

coarse grid E in the macroscopic strain space. In that case, the issue of determining
a priori suitable bounds and resolution for that grid persists. To completely avoid
hazardous assumptions on the range or the density of the grid E, we propose to
start from a singleton database, with zero as the only point:

D(0)
loc = {(0,0)} . (VI.25)

Note that this point does exist for any elastic heterogeneous material. Step 1 of
Algorithm VI.2 is now covered. We examine the consequences on Steps 2 and 3 in
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following.
Together with the zero-initialization method of the material states in the macro-

scopic data-driven solver, a zero initial database implies that the first macroscopic
data-driven solution is a linear elastic estimate of stiffness C of the macroscopic
BVP. From Eqs. (VI.17) and (VI.18) in Algorithm VI.1, the first mechanical states
are obtained from the boundary and loading conditions, and the parameter C only,
as

ε̄(0)
e =

N∑

a=1

Bea ūa, ∀e ∈ [1 . . M ] (VI.26a)

with {ūa}Na=1 such that

N∑

b=1

Kab ūb = 0, ∀a ∈ [1 . . N ], and ūa · ei = ūD
α , ∀α(a, i) ∈ D, (VI.26b)

and

σ̄(0)
e =

N∑

a=1

CBea η̄a, ∀e ∈ [1 . . M ] (VI.27a)

with {η̄a}Na=1 such that

N∑

b=1

Kab η̄b = f̄a, ∀a ∈ [1 . . N ], and η̄a · ei = 0, ∀α(a, i) ∈ D, (VI.27b)

where Kab is the common tangent operator between node a and b:

Kab =
M∑

e=1

weB
T
eaCBeb. (VI.28)

As the material database contains only one material data point, the macroscopic
data-driven solvers stops after this first iteration. The output mechanical states
are then as in Eqs. (VI.26) and (VI.27). To go a bit further, we consider two
standard loading cases: (i) purely displacement-controlle, and (ii) force-driven with
homogeneous Dirichlet conditions.

• Let us first consider the case of a purely displacement-controlled macroscopic
simulation: f̄a = 0, ∀a ∈ [1 . . N ] and ūa · ei = ūD

α , ∀α(a, i) ∈ D where
there is at least one non-zero prescribed displacement ūD

α 6= 0. Then, from
Eqs. (VI.26) and (VI.27), the first linear elastic estimates are

σ̄(0)
e = 0 and ε̄(0)

e = ε̄C
e , ∀e ∈ [1 . . M ] (VI.29)

with
{
ε̄C
e

}M
e=1

the strain solution of the same macroscopic BVP with an homo-
geneous and linear elastic material of stiffness C.
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• Let us now consider the case of a force-driven macroscopic simulation: ∃a ∈
[1 . . N ], f̄a 6= 0 and ūa · ei = 0, ∀α(a, i) ∈ D. Then, from Eqs. (VI.26)
and (VI.27), the first linear elastic estimates are

σ̄(0)
e = σ̄ C

e and ε̄(0)
e = 0, ∀e ∈ [1 . . M ] (VI.30)

with
{
σ̄ C
e

}M
e=1

the stress solution of the same macroscopic BVP with an ho-
mogeneous and linear elastic material of stiffness C.

At the end of Step 2 of Algorithm VI.2, the mechanical states are then either

S(0) =
{(
ε̄C
e ,0

)}M
e=1

(VI.31)

for a purely displacement-controlled simulation, or

S(0) =
{(

0, σ̄ C
e

)}M
e=1

(VI.32)

for a force-driven simulation.
In Step 3, the new material database D(1)

loc is determined from S(0). For the
two macroscopic loading cases considered, it is evident that the stress-from-strain
strategy Eq. (VI.24) must be chosen for purely displacement-controlled simulations
and that, conversely, the strain-from-stress strategy Eq. (VI.23) is adapted to force-
driven simulations: one of the state field in both situations is zero. In addition, the
local distances are respectively de = W (ε̄C

e ) and de = W ∗(σ̄ C
e ), with W and W ∗ as

in Eq. (VI.14). If the critical distance dc is sufficiently small, then every mechanical
state is most likely isolated: de ≤ dc for all e and I = [1 . . M ]. At the end of Step
3 of Algorithm VI.2, the material database is then

D(1)
loc = {(0,0)}

M⋃

e=1

{(
ε̄C
e ,H

(
Ω,u = ε̄C

e · x
))}

(VI.33)

for a displacement-controlled simulation, and

D(1)
loc = {(0,0)}

M⋃

e=1

{(
H
(

Ω, t = σ̄ C
e · n,

)
σ̄ C
e

)}
(VI.34)

for a force-driven simulation. The first iteration in the two-scale data-driven solver
is then merely a way to initialize the material database based on the macroscopic
loading conditions instead of from a guessed grid in strain space.

Starting from this linear elastic estimate, the objective is to efficiently and
rapidly populate the local phase space in the next iterations. It requires to adapt
the value of C and the update strategy to the macroscopic loading conditions, as
discussed next.
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2.2.4 Adapted parameter C and modified update strategy

For the sake of simplicity, we restrict to the pure displacement-controlled case from
here on out.

Assume that C is set to an isotropic linear elastic stiffness tensor H(E, ν), defined
by a Young’s modulus E and a Poisson’s ratio ν as

H(E, ν) = λ(E, ν) (I ⊗ I) + 2µ(E, ν) ISYM, (VI.35)

with λ(E, ν) = Eν/(1 + ν)/(1 − 2ν) (resp. µ(E, ν) = E/2/(1 + ν)) the standard
first (resp. second) Lamé constant, ISYM = 1/2(δikδjl+δilδik) the symmetric fourth-
order identity tensor, and I the second-order identity tensor. Then, the solutions
Eqs. (VI.31) and (VI.32) are independent of the modulus E. However, the value
of the modulus of C influences the selection of the closest material data point in
data-driven solvers. When the modulus is very large (resp. very small), the mini-
mization of the strain-deviation W (ε̄e − ε̄i) is favored (resp. depreciated) over the
stress part W ∗(σ̄e − σ̄i) in Eq. (VI.13). This yields a different pairing between the
mechanical and material states, as illustrated in Fig. VI.4 (see also Appendix A for a
geometrical interpretation in one dimension). Here, we follow the recommendation

Figure VI.4 – Influence of the modulus of C on the local data assignment.

made in the DDI approach, were the strains are directly prescribed by the displace-
ments obtained from DIC: C is more suitably set with a very large modulus, as the
mechanical strains are more likely to be accurately predicted and hence more trust-
worthy (Dalémat, 2019, Chapter 3). We also assessed the relevance of this choice
in DDCM with extensive study on truss structures, not reported here. In that case,
the next macroscopic data-driven solution S(1) is most likely to be close to the ma-
terial database D(1)

loc of Eq. (VI.33). Then, every mechanical state is paired with the
material data points resulting from the corresponding homogenization conducted in
the previous state. The mechanical strains are unchanged from one iteration to the
next, hence no new material data points can be added to the database, and our
iterative process (prematurely) stops at the end of iteration j = 1. The phenomena
is illustrated in Fig. VI.5 with M = 6. Each stage represented in Fig. VI.5 is de-
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Figure VI.5 – Premature exit of the two-scale data-driven solver for a purely
displacement-controlled macroscopic simulation and a large value of the C parame-
ter. See in the text for a description of each phase.

scribed below (note that k refer to the iterations in Algorithm VI.1 and j refers to
the iterations in Algorithm VI.3):

(a) j = 0, k = 0: the mechanical states (red circle) results from the zero singleton
database D(0)

loc (dark blue star), with zero initial material state (light blue
diamond).

(b) j = 0, k = 1: the mechanical states are all associated to the same zero material
state (light blue star). The macroscopic data-driven solver stops.

(c) end of j = 0: all mechanical states lie too far from their associated material
states: I = {1, 2, 3, 4, 5, 6}. Corresponding points are added to the database
with the stress-from-strain update strategy.

(d) j = 1, k = 0: the mechanical states (red circle) results from the new database
D(1)

loc (dark blue stars), with zero initial material state (light blue diamond).

(e) j = 1, end of k = 0: the new material states (light blue stars) are found from
a high value of C.

(f) j = 1, end of k = 1: the mechanical states (red circles) are computed from the
corresponding material states (light blue stars). The material and mechanical
strains are equal, the database can not be enriched further. The two-scale
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data-driven solver stops without having computed any other material data
points than those resulting from the first linear elastic estimate (orange stars
in (c)).

To avoid this issue, we slightly modified the update strategy: instead of adding
all isolated mechanical states to the database, we only add the most isolated ones,
provided that their number does not exceed a certain limit Mlimit < M . A typical
choice can be Mlimit = M/2. The threshold dc is then adapted at each iteration so
that |I| ≤ Mlim, where |I| denotes the number of elements in or cardinality of I.
We show in Section 3 that this simple modification is enough to get the two-scale
solver working. This also allows for limiting the number of microscopic evaluations.
All-in-all, the total number of microscopic evaluations required by our method is
bounded by:

Nmicro. eval. ≤ Nmulti. iter. ×Mlim. (VI.36)

As compared with standard FE2 (see Eq. (VI.8)) the number of microscopic evalu-
ations is greatly reduced, provided that Nmulti. iter. remains reasonably small, since
Mlim < M .

Note that alternative methods to the workarounds exposed in this section could
be employed in future work. In particular, instead of arbitrarily selecting the most
isolated mechanical states, one could think of adding a fixed number of centroids re-
sulting from a clustering of isolated mechanical states in phase space. In addition, it
might be preferable to have differents values of the C parameter for the macroscopic
simulation and for the selection of isolated mechanical states: the former should
insure good convergence properties of the macroscopic data-driven solver while the
latter could be optimized to add the relevant mechanical states.

The two-scale data-driven solver thus adapted to purely displacement-controlled
macroscopic simulations is listed in Algorithm VI.3.
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Algorithm VI.3 Two-scale data-driven solver for displacement-controlled simula-
tions.
INPUT:

• Macroscale: FE model with N nodes and M integration points, boundary
conditions

{
ūD
α

}
α∈D.

• Microscale: FE model of a RVE of the microstructure, constitutive models of
the constituents.

OUTPUT:

• Macroscale: mechanical states {(ε̄e, σ̄e)}Me=1, material data set D.
• Microscale: local and average mechanical response for every macroscopic load-

ing point in Dloc.

Require: C parameter with large modulus, dc critical distance threshold.

Step 1. Set j = 0. Initialize the material database D(0)
loc .

Step 2. Compute the macroscopic mechanical response from DDSOLVER in Algo-
rithm VI.1:

(
ε̄(j), σ̄(j)

)
= DDSOLVER

(
D(j)

loc

)
.

Step 3. Compare the local distances with the threshold dc and select up to Mlim
isolated mechanical states:

• I = {e ∈ [1 . . M ] | de > dc}
• if |I| > Mlim, then find dc,lim > dc such that

I = {e ∈ [1 . . M ] | de > dc,lim} and |I| ≤Mlim. (VI.37)

Step 4. Test convergence:

• if de ≤ dc, ∀e ∈ [1 . . M ] (or equivalently I = ∅), then exit.
• else,

– enrich the material database with the stress-from-strain update strat-
egy:

D(j+1)
loc = D(j)

loc

⋃

e∈I

{(
ε̄(j)
e , σ̄new

e = H
(

Ω, u = ε̄(j)
e · x

))}
,

– set j = j + 1 and return to Step 2.
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3 Numerical results

In this section, we evaluate the two-scale data-driven solver listed in Algorithm VI.3
by means of a two-dimensional macroscopic purely displacement-controlled problem.
We consider a l×h = 20 mm× 50 mm rectangular object with a circular hole in the
thickness. Plane strain is assumed. The macroscopic geometry, boundary conditions
and meshes of the sample are given in Fig. VI.6. We use two different meshes,
composed of bi-linear quadrangular elements comprising 4 integration points each:

• the so-called coarse mesh consists of N = 1092 nodes, connected by 1015

elements, and thus comprises M = 4060 integration points;

• the so-called fine mesh comprises N = 2495 and 2375 bi-linear quadrangular
elements, which amounts to M = 9500 integration points.

The Dirichlet boundary conditions are represented in Fig. VI.6 and write

ūa = 0 ∀a ∈ [1 . . N ] such that xa = (xa, 0) (VI.38a)

ūa = ūD
1 e1 + ūD

2 e2, ∀a ∈ [1 . . N ] such that xa = (xa, h) (VI.38b)

with ūD
1 = 0.3 mm and ūD

2 = 0.05 mm.
We study two different test cases:

• in a first example, the material is considered homogeneous. The stress-from-
strain update Eq. (VI.24) is then simply reduced to the evaluation of a macro-
scopic constitutive model.

• in a second example, the material is a two-phases isotropic composite, thus
requiring a computational homogenization of the microstructure.

3.1 Microscopically homogeneous test case

This example allows for (i) a quick assessment of the two-scale solver as the evalua-
tion of the constitutive model is cost-less, (ii) an easy comparison with the standard
FE reference solution, which does not require a FE2 simulation.

In this example, we only consider the fine mesh.

3.1.1 Computational problem

The macroscopically homogeneous material is represented by an isotropic nonlinear
elastic model of the form

σ̄ = κ tr ε̄
(

1 + β (tr ε̄)2
)
I + 2µ (1 + β dev ε̄ : dev ε̄) dev ε̄, (VI.39)

with κ = 20 MPa the bulk modulus, µ = 9.23 MPa the shear modulus and β =

1× 104 a nonlinear coefficient. The corresponding Young’s modulus and Poisson’s
ratio are E = 24 MPa and ν = 0.3.

The parameters of the data-driven solvers are as follows:
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Figure VI.6 – Geometry, boundary conditions and mesh of the macroscopic sample.

• the C parameter is set to an isotropic linear elastic stiffness tensor H, defined
as in Eq. (VI.35). We compare the results obtained from two different C:

– C1 = H(1000E, ν),
– C2 = H(1000E, 0.8 ν).

As recommended, the modulus of C in both cases is large and we evaluate the
influence of the Poisson’s ratio.

• the critical distance threshold dc is defined with respect to C and the maximum
desired gap ∆ε̄ = 1× 10−6 between mechanical and material strains as

dc = W (∆ε̄) =
1

2
(C∆ε̄)∆ε̄ (VI.40)

• the maximum number of points that can be added to the database at each
iteration is set to Mlim = M/2, thus restricting the number of constitutive
model evaluations allowed.
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3.1.2 Convergence analysis

Let us first evaluate the convergence of the successive macroscopic data-driven
solvers. We recall that, at the end of the iteration k in Algorithm VI.1, the ob-
jective function writes

f (k) =
M∑

e=1

we de

((
ε̄(k)
e , σ̄(k)

e

)
,
(
ε̄
∗,(k)
ie , σ̄

∗,(k)
ie

))
(VI.41)

As the material database is continuously enriched, we expect the value of the ob-
jective function (distance to the material data set) to decrease accordingly. This is
demonstrated in Fig. VI.7 for both two-scale simulations using C1 and C2. Each
solid line represent the convergence of f within one macroscopic data-driven simu-
lation. The iteration j indicated at the end of the line correspond to the iteration
in the two-scale data-driven solver Algorithm VI.3. The dot at the end of the line
indicates the final value f (kmax) of the objective function. In both cases, the two-
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Figure VI.7 – Convergence of the successive macroscopic data-driven solvers.

scale solvers required about 25 updates of the database. As expected, the value of
the objective function is lower and lower as the material database is completed.

This is also confirmed from Fig. VI.8 where we plot the converged value f (kmax(j))

of the objective function with respect to the number of points in the material
database D(j)

loc, for each two-scale iteration j. As can be seen in Fig. VI.8, the dis-
tance between mechanical and material states drastically decreases with the number
of material data points, in both cases. We remark that the C1 simulation gets to
a lower value of the objective function with slightly less material data points than
the C2 simulation.

Finally, we count the number of constitutive model evaluations throughout the
simulation and compare it with the systematic evaluations made in FE2 scheme. In
Table VI.1 we report the total number of times the constitutive model was evalu-
ated during the two-scale data-driven simulation. In this case, since the material is
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Figure VI.8 – Convergence of the two-scale data-driven solver with respect to the
size of the material database Dloc.

homogeneous, we compare with the number of stress evaluations in a standard FE

computation: Nstress eval. = Niter. ×M where Nit. is the number of iterations nec-
essary to reach equilibrium within a given tolerance tol (here, a Newton-Raphson
scheme was used). The number of constitutive evaluations is then at least two times

Table VI.1 – Number of constitutive model (stress) evaluations. The number of
integration points is M = 9500.

Type of simulation Number of stress evaluations
Standard FE simulation (tol = 1× 10−5) 76 000

Standard FE simulation (tol = 1× 10−12) 123 500

Data-driven simulation (C = C1) 43 632

Data-driven simulation (C = C2) 47 107

lower in the data-driven scheme. This result is very encouraging for two-scale simu-
lations as, here, we did not take into account the additional microscopic evaluations
required to compute the tangent operator in FE2 schemes (see Eq. (VI.8)).

Finally, in Fig. VI.9 we give the number of points added to the database at each
iteration of the two-scale solver. As aforementioned, the number of additions allowed
is limited byMlim = M/2. As can be seen from Fig. VI.9, the C1 simulation is more
efficient that the C2 one. Note that at the end of the C1 (resp. C2) simulation
there remain 29 (resp. 302) isolated mechanical states for which the corresponding
material data point already exists in the database (not visible in the figure).
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(b) Solution achieved from C2 =
H(1000E, 0.8ν)

Figure VI.9 – Number of points added to the database at each iterations. The violet
bins indicate the number of points actually added to the material database after each
iteration. The black solid line represents the cumulative number of material data
points in the database. The semi-transparent bins indicate the number of isolated
mechanical states for which de > dc, that were yet not added to the database for one
of following reasons: (i) the limitation Mlim was triggered, they were thus rejected
because more isolated points were prioritized, or (ii) the material data points already
exist in the database (previously added).

3.1.3 Strain and stress results

In Fig. VI.10, we compare the components of the macroscopic stress tensor with the
FE reference solution, for both C1 and C2 simulations. The solid black line represents
perfect identity. The data is binned in two-dimensional histograms: the darker the
bin, the more points in the corresponding area of the plot. As can be seen in the
figure, the majority of the stress data points are close to zero and very well predicted
by the data-driven two-scale solver in both cases. The value of the Poisson’s ratio
used in the distance parameter C has then little influence on the prediction of the
stress. In contrast, the values of the strain tensors are much more impacted, as can
be seen from Fig. VI.11. In particular, ε̄11 and shear ε̄12 components are poorly
predicted when C = C2 (Fig. VI.10(b)), as compared with C = C1 (Fig. VI.11(a)).
In both cases, the largest errors occur for large (positive or negative) values of ε̄11

and ε̄12. In the C1 case however, the number of concerned points is small (light
bins) and the error remains reasonable.

In addition, we report in Table VI.2 the strain and stress RMS percent errors for
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Figure VI.10 – Comparison of the data-driven and reference solution for the stress.

both C1 and C2 cases, re-defined as

ε̄RMS% =

∑M
e=1weW (ε̄e − ε̄ref

e )
∑M

e=1weW (ε̄ref
e )

σ̄RMS% =

∑M
e=1weW

∗(σ̄e − σ̄ref
e )

∑M
e=1weW

∗(σ̄ref
e )

,

with W and W ∗ depending on C as in Eq. (VI.14). Again, when the value of the
Poisson’s ratio in the data-driven parameter C equals the one of the material, the
accuracy with respect to the reference solution is higher.

Table VI.2 – Strain and stress RMS percent errors for the homogeneous test case.

Parameter C ε̄RMS% σ̄RMS%

C1 4.45 % 1.33 %

C2 9.37 % 1.98 %
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Figure VI.11 – Comparison of the data-driven and reference solution for the strain.

3.1.4 Summary

This first example has demonstrated that the zero initial database together with
the update strategy provide very satisfactory results with little to no assumption on
the material or the macroscopic response. In addition, the number of constitutive
model evaluations is much lower that in a standard FE2 scheme. It has also shown
the influence of the parameters of the method:

• the maximum number of constitutive model evaluations was set to Mlim =

M/2, which proved relevant;

• the pseudo-stiffness C was set to an isotropic linear elastic stiffness tensor,
for which the Poisson’s ratio must correspond to the one of the (nonlinear)
constitutive model.

Based on these encouraging results, we applied the method to a two-phases com-
posite test case, as detailed next.
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3.2 Two-phases composite test case

The macroscopic problem is the same as previously: the geometry and boundary
conditions are the ones represented in Fig. VI.6. Only the material changes: we
consider a two-phases composite.

In this example, we present the data-driven results only: we have not performed
the corresponding FE2 simulation.

3.2.1 Computational problem

The material is now a two-phases composite made of a stiff linear elastic circular
inclusion embedded in a softer nonlinear elastic matrix. The former has a Young’s
modulus E(i) = 24 GPa and a Poisson’s ratio ν(i) = 0.3. The latter is represented
by the same nonlinear constitutive model as in Eq. (VI.39):

σ(m) = κ(m) tr ε(m)
(

1 + β(m)(tr ε(m))2
)
I

+ 2µ(m)
(

1 + β(m) dev ε(m) : dev ε(m)
)

dev ε(m) (VI.43)

with κ(m) and µ(m) such that E(m) = 24 MPa and ν(m) = 0.3, and with β(m) =

1× 104. The geometry2 and mesh of the RVE of the microstructure are presented
in Fig. VI.12. The mesh consists of 235 nodes and 466 linear triangular elements

Figure VI.12 – Geometry and mesh of the microstructure.

2The microstructure used here is more a Representative Unit Cell (RUC) than a RVE per se.
Such a RUC is typically representative of a periodic unidirectional composite with infinitely long
fibers in the out-of-plane direction. For a distinction of RUC and RVE notions, see Matouš et al.
(2017). In addition, we know that using linear displacement boundary conditions overestimates
the linear elastic effective properties of such geometries (Bornert et al., 2001, Chapitre 2). In this
preliminary study, we neglected these difficulties and selected this type of microstructure for its
simplicity.
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with 1 integration point each. Note that the mesh is deliberately coarse to reduce
the computational cost of this preliminary study. The effective response of the
microstructure is obtained from the resolution of the local BVP Eq. (VI.2) on the
RVE Ω = Ω(m) ∪Ω(i) using the linear displacements boundary conditions Eq. (VI.4)
on ∂Ω.

The parameters of the data-driven solvers are as follows:

• as the inclusion is much more rigid than the matrix, the C parameter is set
to the isotropic linear elastic stiffness tensor H(E(i), ν(i)) of the inclusion. As
recommended, the modulus of C is then large while the Poisson’s ratio is
consistent with the expected one of the composite material.

• the critical distance threshold dc is defined as previously, with respect to C and
the maximum desired gap ∆ε̄ = 1× 10−6 between mechanical and material
strains as dc = W (∆ε̄).

• the maximum number of points that can be added to the database at each
iteration is set to Mlim = M/2, as previously.

We conduct two successive two-scale simulations with our method:

1. the macroscopic simulation is first conducted on the macroscopic coarse mesh
of Fig. VI.6, starting from the zero database D(0) = {(0,0)}.

2. the simulation is then conducted on the macroscopic fine mesh of Fig. VI.6,
starting from the final database of the previous computation D(0)

finemesh =

D(jmax)
coarsemesh.

That way, we aim to assess one interesting feature of the method: contrary to
standard FE2, the microscale computations are not discarded and can be re-used for
another simulation. Here, we only change the mesh resolution and not the boundary
conditions but the latter could be studied in future work.

3.2.2 Convergence analysis

Let us first evaluate the convergence of the two-scale data-driven solvers for both
macroscopic coarse and fine meshes. In Fig. VI.13, we give the converged value
f (kmax(j)) of the objective function Eq. (VI.41) as a function of the number of points
in the material database D(j)

loc. As before, the overall distance between mechanical
and material states decreases very rapidly. In addition, we see from Fig. VI.13 that
the simulation with the fine mesh required few additional material data points to
converge to the same values of objective function. Indeed, during the first simulation
with the coarse mesh, a total of 17 271 microstructure computations have been
conducted within 23 iterations. Starting from D(0)

loc,fine = D(23)
loc,coarse in the second

simulation, 34 094 additional microscopic evaluations have been made within 21

iterations. These figures are represented in Fig. VI.14. As expected, the number
of additions to the material database decreases with the iterations in both cases.
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Figure VI.13 – Convergence of the objective function with respect to the size of the
material database for the two-phases composite problem.
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(b) Simulation on the macroscopic fine mesh

Figure VI.14 – Number of point added to the material database during simulations
on the two-phases composite.

Interestingly, the number of microstructure computations required by the fine mesh
is higher than that of the coarse mesh, even if the simulations starts with a priori
a suitable material database. This indicates that the finer the mesh the denser the
material database needs to be: indeed, when refining the mesh, the region of local
phase space explored by the macroscopic mechanical response is enlarged due to
strain and stress concentrations in certain areas of the mesh.

Note that the microstructure computations conducted for the material database
used for the fine mesh were partly off-line and on-line. To honestly compare with
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a FE2 scheme, we must take into account both parts. In Fig. VI.15, we compare
the number of microscopic evaluations between data-driven and standard multi-level
simulations, using Eq. (VI.8), for both meshes. We see that, in the present case,
the data-driven solver outperforms the standard FE2 solver right from the second
iteration.
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Figure VI.15 – Number of microstructure computations depending on the solver.

Finally, we present in Fig. VI.16 the total number of microstructure computa-
tions conducted in each integration point of the mesh throughout the iterations.
As can be seen from Figs. VI.16 and VI.17, the area with the highest number of
microscopic evaluations coincide with the area of stress concentration.

3.2.3 Strain and stress results

In absence of a FE reference solution to compare with, we give in Fig. VI.17 the
strain and stress components achieved from the two scale data-driven simulation
only. The results are qualitatively reasonable given the loading conditions: positive
shear state in the structure and opposite tension states around the hole. In addition,
the fields are rather smooth, indicating good convergence with respect to mesh size.

As pointed out by Xu et al. (2020), the interesting feature in data-driven mul-
tiscale schemes is that the microscopic states are stored by default. Examining
the material strain state ε̄∗ie of a given macroscopic integration point, we then have
access to the corresponding microscopic response. In Fig. VI.18, we represent the
microscopic equivalent strain εeq and stress σeq corresponding to a macroscopic point
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Figure VI.16 – Number of microstructure computations at each macroscopic inte-
gration point.

around the hole. The in-plane equivalent strain and stress norms write:

εeq =
2

3

√
3ε2

12 + (ε11 − ε22)2 (VI.44a)

σeq =

√
6

2

√
3σ2

12 + (σ11 − σ22)2 (VI.44b)

At the price of one other microscopic computation, we can also evaluate the
microscopic strain and stress fields obtained from the corresponding macroscopic
mechanical strain state ε̄e. In Fig. VI.19, we give the maximum error norms between
the two types of microscopic fields, defined as

∆εmax = ‖εmat − εmech‖max, (VI.45a)

∆σmax = ‖σmat − σmech‖max, (VI.45b)

where the max norm of tensor A writes ‖A‖max = maxi,j |Aij |, εmat (resp. εmech)
denotes the microscopic strain field obtained from the macroscopic material (resp.
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Figure VI.18 – Microscopic strain and stress fields at a macroscopic point on the
edge of the hole. The deformed configuration of the microstructure is exaggerated
by a factor 20.

mechanical) strain ε̄∗ie (resp. ε̄e), and likewise for the microscopic field σmat (resp.
σmech). For the integration point considered, the macroscopic material and mechan-
ical strain tensors are very close:

ε̄mat =

(
0.037 681 07 0.122 335 27

0.122 335 27 −0.010 264 29

)
% (VI.46a)

ε̄mech =

(
0.037 668 51 0.122 334 68

0.122 334 68 −0.010 273 72

)
%. (VI.46b)

Consequently, the microscopic field are also very similar, as can be seen in Fig. VI.19.
This indicates that the microscopic response is reliable in a post-processing analysis.
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Figure VI.19 – Errors between the macroscopic strain and stress fields achieved from
the macroscopic material and mechanical strain tensor.

4 Conclusion

In this final chapter, we proposed a first attempt in accelerating multiscale compu-
tations with the aid of DDCM solvers, in small strain. For heterogeneous materials,
the material database used in DDCM is constituted from the computational homog-
enization of the effective response of the microstructure. Typically, as in standard
FE2 schemes, the macroscopic stress σ̄ is obtained from the volume average of the
microscopic stress field σ, solution of a local BVP on the RVE of the microstruc-
ture, with boundary conditions defined by the macroscopic strain ε̄ (Feyel, 1999).
Sampling the macroscopic strain space with a regular grid, Xu et al. (2020) thus
produced material databases suitable for single scale DDCM computations at the
macroscale, by performing a microscopic computation per point in the grid. Their
contribution is the first, to the best of our knowledge, to bring DDCM and com-
putational homogenization together. In their approach, all micro-evaluations are
performed off-line, which seems appealing at first glance. However, the range and
density of the grid must be guessed beforehand, based on the expected response of
the macrostructure under consideration. A large number of microscopic evaluations
are then likely to be performed in no use for the current problem.

In contrast, our method follows the philosophy of standard FE2: the microscopic
evaluations are performed only when necessary, with the loading defined by the cur-
rent macroscopic mechanical response. To reduce the amount of local computations
and avoid redundance, we make advantage of the data-driven paradigm: the aver-
age microscopic response can be stored in phase space and the distance-minimizing
solver provides information on the quality of the database. We then embedded the
original data-driven solver in an iterative process which consists in adaptively up-
dating the material database at each iteration. Specifically, the material database
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is enriched wherever its sparsity has been measured: the minimal distance between
a mechanical state and its associated material state indicates whether or not the
material database is sufficiently dense in the corresponding area of the phase space.
On that basis, we developed an efficient update strategy which allows for starting
with a quasi-empty database: the process starts with only the zero strain-stress
state. In particular, we discussed the application of our strategy depending on
the macroscopic boundary and loading conditions in the FE setting. Whether the
macro-simusimulation displacement- or force-controlled, the new material data point
is determined from the mechanical strain or the mechanical stress respectively.

The thus derived two-scale data-driven FE2 solver has been applied to a two-
dimensional problem, in plane strain. In a first test case, the structure was made of
a microscopically homogeneous material. Thanks to an easy comparison with the FE

reference solution and cost-less constitutive evaluations, we showed the robustness
of our method. In a second case, we considered a two-phases nonlinear composite.
We demonstrated that the number of micro-evaluations is greatly reduced with
respect to the theoretical number in standard FE2. Part of the reduction comes
from an interesting feature of data-driven solvers: there is no requirement for the
computation of a material tangent operator, as the material nonlinearity is not
specifically being dealt with in DDCM. In addition the macroscopic and microscopic
response was proved to be qualitatively satisfactory.

To conclude, from this preliminary study on coupling computational homoge-
nization and DDCM we found very encouraging results to explore further the con-
struction of multiscale data-driven solvers. Of course, our update strategy was de-
termined from a trial-and-error approach and must certainly be consolidated with
more rigorous considerations. In addition, the method has yet to be compared with
FE2 results. But we are confident that this kind of approaches offer a wide field
of applications for the DDCM paradigm. As a perspective, the same rationale can
be followed for the data-driven computational homogenization of nonlinear mate-
rials in large strain, using the finite strain data-driven solvers developed in this
thesis. Finally, one could even imagine a fully data-driven multiscale solver, where
both nested BVPs are solved using DDCM instead of standard FE method for the
microscale, as was done here.
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Conclusion and perspectives
The present thesis has explored the field of data-driven computational mechanics,
in which the constitutive model of the material response is replaced by a database
of raw constitutive points, namely strain-stress pairs in the case of elastic behavior.
With this new computing paradigm, appropriate data coverage of the strain-stress
space is critical to obtain a predictive mechanical response of the structure. We
have addressed this question in two particular cases, presented in two parts of the
manuscript: (i) the extension of the approach to finite strain elasticity, and (ii) the
application of the method to multiscale simulation of structures made of heteroge-
neous materials.

Before addressing these two aspects, we have recalled in Chapter I the governing
equations and numerical challenges met in nonlinear computational mechanics. In
particular, we have highlighted that several work conjugate pairs of strain and stress
tensors can be used to describe the static equilibrium of a deformable body, yielding
different, yet equivalent, formulations of the classical solid mechanics BVP. In this
opening chapter, we also showed that computational mechanics and data science are
intertwined at the level of material modeling, which motivates the development of
data-driven solvers. The data-driven computing paradigm introduced by Kirchdo-
erfer and Ortiz (2016) and consolidated in Conti et al. (2018) was then extensively
recalled in Chapter II. We insist on two specific features of the method, driving
the two aforementioned studies. First, the data-driven solvers reformulate the me-
chanical problem as a constrained distance-minimization problem coupled with a
combinatorial optimization: the mechanical state field (representing the admissible
mechanical response of the body) must verify both compatibility and equilibrium
equations, while minimizing the distance to the material state field (representing the
material response) which takes value in a discrete set of material data points. This
challenging numerical problem is addressed with dedicated schemes, which need be
adapted to finite strain. Second, the final distance between the mechanical and
material states indicates regions of the strain-stress space requiring higher density
of material data points. These regions can be adaptively enriched from numerical
simulations at finer scales in the context of heterogeneous materials.

The largest part of the manuscript (Part B) was dedicated to the study of finite
strain data-driven computational mechanics. Based on the work of Nguyen and Keip
(2018) and Conti et al. (2020), we compared their Lagrangian and nominal formu-
lations respectively. The former relies on the Green-Lagrange strain–second Piola-
Kirchhoff stress symmetric tensors as work conjugate pairs to formulate the data-
driven problem; the latter involves the deformation gradient–first Piola-Kirchhoff
stress non symmetric tensor pairs. In Chapter III, we proposed a finite element
solver for both, taking into account their respective implications. We then conducted
in Chapter IV a thorough study on material database generation and control of data
coverage with mechanically meaningful tools, focusing on the Lagrangian formula-
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tion only. Finally, a complex three-dimensional mechanical problem was considered
in Chapter V to evaluate the performance of both finite strain data-driven solvers.

In the last Part C and closing Chapter VI of this thesis, we have proposed a first
attempt to develop a multiscale data-driven solver. Here, the material database con-
sists of macroscopic strain-stress pairs, obtained from finite element computational
homogenization of the microstructure response. The original data-driven solver of
Kirchdoerfer and Ortiz (2016) is then used as a black-box in an iterative process.
At a fixed iteration, it provides (i) the macroscopic mechanical state of the body,
for a given database of homogenized strain-stress pairs, and (ii) the error mea-
sure between the current mechanical state and the current database. The material
database is subsequently enriched, on-the-fly, from appropriately chosen microscopic
evaluations, in the sparsest regions of the macroscopic strain-stress space only.

The major contributions of the present thesis are highlighted in the following.

• We have developed two finite element data-driven solvers for finite
strain elasticity, with full disclosure on the implementation, in concern of
open science: we provided extensive algorithms for both Lagrangian (Nguyen
and Keip, 2018) and nominal (Conti et al., 2020) formulations. If the La-
grangian solver is essentially a consolidation of the one presented in Nguyen
and Keip (2018), the nominal solver is an original contribution, to the
best of our knowledge. Both rely on the alternated minimization but differ
in their resolution method of the constrained minimization on the mechanical
states:

– The Lagrangian solver makes use of the same method of Lagrange multi-
pliers as the one presented in small strain to enforce equilibrium (Kirch-
doerfer and Ortiz, 2016). This yields two nonlinear coupled systems of
equations that are solved using a Newton-Raphson procedure (Nguyen
and Keip, 2018). The size of the linearized system is then (2ndof)

2, with
ndof the total number of degrees of freedom in the finite element mesh.

– The nominal solver requires an additional algorithmic layer: the mechan-
ical constraints are enforced with an augmented Lagrangian approach,
which solves a series of unconstrained minimization problems, defined
from the Lagrangian of the objective function, augmented with a penalty
term. This approach again yields two nonlinear coupled systems of equa-
tions addressed with a Newton-Raphson scheme. The size of the lin-
earized system is then (N × n+ nstates)

2, with N the number of nodes
in the mesh, n the dimension and nstates = M × n2 the number of stress
unknowns at M integration points3.

3As a concrete example, let us consider the two-dimensional mesh (n = 2) of the membrane
with a hole and three-dimensional mesh (n = 3) of the T-shaped column presented in this thesis.
The former (resp. the latter) contains N = 1092 (resp. N = 925) nodes and M = 4060 (resp.
M = 4608) integration points. The boundary conditions yields a total number of degrees of freedom
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The major difference between these two formulations can be summarized as
follows: while there is no mathematical proof of the existence of solu-
tions to the Lagrangian data-driven problem, contrary to its nominal
counterpart (Conti et al., 2020), the implementation of the corresponding
finite element solver is easier, the robustness is higher and the computa-
tional cost is much lower.

• We showed that, in practice, the conservation of angular momentum
in finite strain must be explicitly enforced in the minimization of the
mechanical state, whether working ad-hoc with symmetric stress tensors in the
Lagrangian formulation or handling the rotational equilibrium equation as a
minimization constraint in the nominal formulation.

• We have developed a dense sampling method which allows for generating tai-
lored material databases from a regular distribution of points in the high-
dimensional strain space, with acute control on the amplitudes and modes
of deformation. From comparing this (almost) infinitely rich database with
a specifically designed one, we showed that material databases resulting
from importance sampling of the strain-stress space are more per-
forming than those resulting from dense sampling , as they require far
fewer data points while providing comparable mechanical responses.

• We have performed the first data-driven computation of a complex
three-dimensional problem in finite strain, using the Lagrangian for-
mulation. This example revealed the challenge of data coverage in this case,
where the strain-stress space is of dimension 6 + 6 = 12.

• Finally, we provided a prototype multiscale data-driven solver in
small strain nonlinear elasticity, for accelerating and reducing the cost
of multilevel computational homogenization schemes, such as FE2.

Minor contributions of the present thesis include:

• a study on the initialization of the material states in the alternated minimiza-
tion and its impacts on the convergence of the solver. We showed that the most
reasonable choice is to initialize the material states to the zero strain-stress
state, so that the first iteration boils down to a linear elastic estimate of the
mechanical response, from the boundary and loading conditions only. Other-
wise, non-zero initial material states act as random pre-strain and pre-stress
conditions on the structure.

• we used efficient tree-based algorithms to search for optimal material states
in the material database. In particular, we provided the transformation of
strain-stress tensor pairs into standard Euclidean vectors, necessary to use

of ndof = 2120 and ndof = 2550 for each problem respectively. The system of the Lagrangian and
nominal systems are then respectively 4240 vs. 18 424 for the two-dimensional problem and 5100
vs. 44 247 for the three-dimensional problem.
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open-source interfaces to these nearest-neighbor search algorithms (Pedregosa
et al., 2011).

We organize the prospects of the present work around three central challenges:
the enhancement of data-driven solvers, the acquisition of material data, and mul-
tiscale data-driven simulation.

1. All studies conducted in the present thesis were limited by the alternated min-
imization, which we know is sub-optimal. The biggest challenge in developing
more robust data-driven solvers is then to find other heuristics. The problem
is particularly acute in finite strain as the minimization constraints are nonlin-
ear. Possible directions of research can be to extend the entropy-maximizing
scheme of Kirchdoerfer and Ortiz (2017) to finite strain or to investigate MIQP

formulations, as proposed by Kanno (2019). In the shorter term, the short-
comings of the nominal solver in the three-dimensional example studied in this
thesis should be elucidated and fixed.

2. Future work should focus on the acquisition of material data points and their
use in the data-driven computing paradigm. In particular, future work should
focus on using the material database obtained from the model-free stress iden-
tification technique developed by Leygue et al. (2018) and successfully applied
to elastomers by Dalémat et al. (2019) in finite strain data-driven simulations.
In the short term, care should be taken to define a training set used in data-
driven identification, and a validation set used in data-driven computation,
based on the experimental testing and numerical simulation of two different
structures made of the same material. In the long term, the standardization
of this type of approaches can provide an integrated framework of model-free
identification of the material response used in data-driven prediction of the
mechanical response of complex structures made of complex materials.

3. We showed in the last part of this thesis that material databases can be ap-
propriately generated from numerical simulations at the finer scale, with a
reasonable computational cost. The proposed prototype data-driven multi-
scale solver should be generalized to adaptively take into account any kind of
external loading conditions, as the present solver was developed and tested
for displacement-controlled simulations only. In addition, the update strat-
egy of the material database could be more carefully elaborated, based on
a more physically meaningful selection of regions requiring additional data
resolution. Nevertheless, we believe that bringing the data-driven computing
paradigm and multiscale simulation together offers very interesting industrial
applications.
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Appendix A

Analytical solution for a
one-dimensional bar

1 Small strain solution

1.1 Formulation of the problem

Let us consider the elementary problem represented in Fig. A.1 : an elastic one-
dimensional bar, of length l and sectional area a is loaded with a system of stiffness
k subject to a displacement u0. The linearized kinematics assumption hold; the
longitudinal cauchy stress σ and the longitudinal linearized strain ε are assumed
homogeneous in the bar. They must verify the following equations:

{
ε = u

l (compatibility),
σ = k

a (u0 − u) (equilibrium in the bulk and on the loaded edge).
(A.1)

The mechanical state of the bar z = (ε, σ) thus belong to a so-called constraint set
of mechanically admissible strain-stress states E = {z = (ε, σ) |σ = K(ε0 − ε)} with
K = kl

a and ε0 = u0
l . It is a subset of the so called phase space Z = {(ε, σ)} which

collects all possible strain-stress pairs. Here, Z ⊆ R2.
The classical elastic constitutive model σ̌(ε) is a (nonlinear) bijective relationship

which yields a constitutive manifold Ď in phase space:

Ď = {(ε, σ = σ̌(ε))} ⊂ Z (A.2)

In the classical approach, the solution of the BVP is determined by the strain-
stress state verifying both mechanical admissibility Eq. (A.1) and the constitutive
model, i.e. it is found at the exact intersection E ∩ Ď. Let us now assume that the
constitutive model is unknown. Instead, the material response is represented by m
material data points collected into a so-called material data set

D = {z∗i = (ε∗i , σ
∗
i ) | i = 1, · · · ,m} ; (A.3)

the intersection E ∩ D is then most likely to be empty. The data-driven approach,
illustrated in Fig. A.1 then consists in relaxing the intersection with the constitutive
model by reformulating the problem as a minimization problem of a distance d
between the two subspaces E and D :

min
z∈E

min
z∗i ∈D

d2(z, z∗i ), (A.4)
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where the distance d is defined by

∀z ∈ E , ∀z∗i ∈ D, d2(z, z∗i ) =
1

2
C (ε− ε∗i )2 +

1

2C
(σ − σ∗i )2 , (A.5)

with C a scalar parameter used to scale strain and stress values. The data-driven

b

l

a k u0σ, ε

σ

ε

E = {(ε, σ) | σ = K(ε0 − ε)}

D = {(ε∗
i , σ

∗
i ) | i = 1, · · · , m}

+
++

+
+

++
+ +

+++
+ +

+ + ++
+

+ +

+
+

+

+

++
+

+

++

E ∩ D = ∅

+
++ b d(z, z∗)

z = (ε, σ)

z = (ε∗, σ∗)

Figure A.1 – The data-driven solution is the mechanical state z ∈ E which is clos-
est to the material data set D, with associated material state z∗. Inspired from
Kirchdoerfer and Ortiz (2017).

problem also writes as a constrained double minimization problem:

min
z∈Z

min
z∗i ∈D

1

2
C (ε− ε∗i )2 +

1

2C
(σ − σ∗i )2 , (A.6a)

subject to z ∈ E : σ = K(ε0 − ε). (A.6b)

1.2 Resolution

The double minimization Eq. (A.6) couples continuous-valued functions z and
discrete-valued functions z∗i . To address this complex problem, Kirchdoerfer and
Ortiz (2016) proposed an alternated minimization scheme : the mechanical state z
is first determined from a fixed material state z∗, and then the material state z∗ is
updated as the closest material data points to z, selected from the material data set.
For the very simple problem under consideration herein, we show that the resolution
boils down to one iteration of the alternated minimization. We thus demonstrate
that there exists a unique, semi-analytical solution.

Let z∗ = (ε∗, σ∗) ∈ D be a fixed material state. Eq. (A.6) is solved using a
method of Lagrangian multipliers. The problem is then reformulated as the following
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stationary problem, for all z = (ε, σ) ∈ Z :

δ

(
1

2
C (ε− ε∗)2 +

1

2C
(σ − σ∗)2 − η (σ −K (ε0 − ε))

)
= 0 (A.7a)

δε⇒ C(ε− ε∗)− ηK = 0 (A.7b)

δσ ⇒ 1

C
(σ − σ∗)− η = 0 (A.7c)

δη ⇒ σ −K(ε0 − ε) = 0 (A.7d)

Manipulating Eq. (A.7) yields

d2 =
1

2
C (ε− ε∗)2 +

1

2C
(σ − σ∗)2 =

C

2(K2 + C2)
(K (ε0 − ε∗)− σ∗) , (A.8)

or equivalently
(
ε− ε∗
e

)2

+

(
σ − σ∗
s

)2

= 1, (A.9a)

with

e2 = C−1l2c and s2 = Cl2c (A.9b)

where

l2c =
C

K2 + C2
(K (ε0 − ε∗)− σ∗)2 . (A.9c)

Eq. (A.9) indicate that the mechanical state solution z = (ε, σ) belongs to an el-
lipse C(z, z∗) in the (ε, σ) plane, of center (ε∗, σ∗)and semi-axes e and s defined in
Eq. (A.9b). The aspect ratio s/e of the ellipse is then entirely determined by the
parameter C.

Since the mechanical state solution z ∈ E also verifies compatibility and equi-
librium equations, the ellipse C(z, z∗) is tangent to the constraint set E at point z.
The mechanical state solution z ∈ E then results from:

∀z∗ ∈ D, arg min
z∈E

d2(z, z∗) = C(z, z∗) ∩ E . (A.10)

Moreover, note that from Eq. (A.8) and Eq. (A.9b):

∀z ∈ E , min
z∗∈D

d2(z, z∗) = min
z∗∈D

2πd2(z, z∗) = min
z∗∈D

πes = min
z∗∈D

area(C(z, z∗)) (A.11)

From Eqs. (A.10) and (A.11), the data-driven solution of the present BVP is then the
mechanical state z = (ε, σ), defined as the intersection point between the constraint
set E and the ellipse C of smallest surface area. It is a semi-analytical solution: for
each material data point z∗i in D, one can compute the surface area Ai = πeisi
of the corresponding ellipse Ci from (Eq. (A.9b)), determined the smallest one and
consequently obtain the corresponding mechanical state from Eqs. (A.6b) and (A.8).

The data-driven approach then yields a model-free solution to the mechani-
cal BVP, directly from material data strain-stress points. We remark that the
(non)linearity of the material response sampled by the material data points has
no influence on the formulation nor the resolution of the problem.
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1.3 Numerical example

We illustrate the data-driven approach with a numerical example of the one-
dimensional bar. The material data set is synthetically generated from sampling
a nonlinear strain-stress curve σ = Eε+ 100Eε3 according to the parameters given
in Table A.1. The other parameters for the problem are given in Table A.2. The so-

Table A.1 – Parameters for sampling the constitutive model.

εmin (-) εmax (-) E (GPa) number of material data points m (-)
-0,01 0,01 210 101

Table A.2 – Parameters of mechanical problem.

l (cm) a (cm2) u0 (cm) k (N.m1) C (GPa)
10 3,1416 2,5 4,2E8 210

lution is obtained by computing the minimal distance between the mechanical state
and the material data set according to Eq. (A.8). Results are shown in Fig. A.2,
where we also plot a posteriori a few ellipses Ci, centered on some material data
points of D and on the material state solution, tangent to the constraint set E .

Figure A.2 – Data-driven solution for linearized kinematics: the mechanical state
solution is the tangent point between ellipse Ci of smallest area and the constraint
E (in red).
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2 Finite strain solution

Extending the approach to finite strain elasticity requires to redefine the phase
space and associated distance function. In this section, we compare two possible
formulations with the aid of the one-dimensional bar example presented above. The
initial or undeformed length (resp. cross sectional area) of the bar is denoted L

(resp. A).

2.1 Lagrangian formulation and resolution

The Lagrangian phase space ZL = {(E,S)} consisting of Lagrangian strain –
second Piola-Kirchhoff stress pairs has been proposed by Nguyen and Keip (2018).
As shown next, this choice induces nonlinearities which complicate the resolution.

Let DL = {(E∗i , S∗i )‖i = 1, · · · ,m} denote the Lagrangian material data set and
EL the Lagrangian constraint set. The minimization problem writes:

min
z∈ZL

min
z∗i ∈DL

1

2
C (E − E∗i )2 +

1

2C
(S − S∗i )2 , (A.12a)

subject to z ∈ EL ⇔
{
E = λ2−1

2 with λ = u
L + 1 (compatibility),

S = K
λ (λ0 − λ) (equilibrium).

(A.12b)

with K = kL/A and λ0 = u0/L+ 1. The minimization constraints Eq. (A.12b) are
nonlinear.

As previously, we first solve a stationary problem with fixed material state z∗ =

(E∗, S∗) ∈ D:

δ

(
1

2
C

(
λ2 − 1

2
− E∗

)2

+
1

2C
(S − S∗)2 − η

(
S − K

λ
(λ0 − λ)

))
= 0,(A.13a)

δλ⇒ η =
λ5C − λ3C (2E∗ + 1)

2λ0K
; (A.13b)

δS ⇒ 1

C
(S − S∗)− η = 0 ; (A.13c)

δη ⇒ S − K (λ0 − λ)

λ
= 0. (A.13d)

Combining Eqs. (A.13b) to (A.13d) yields a 6-order polynomial equation in λ:

C2λ6 − C2 (2E∗ + 1)λ4 + 2λ0K (S∗ +K)λ− 2λ2
0K

2 = 0 (A.14)

It then not possible in that case to find a semi-analytical to the data-driven problem.
The mechanical state solution is determined numerically, by computing the dis-

tance Eq. (A.12a) between all material data points in D and their associated me-
chanical states given by Eq. (A.14) and Eq. (A.13d).
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2.2 Nominal formulation and resolution

Another possible choice for the phase space is the so-called nominal state pairs:
ZN = {(F ,P )} of deformation gradient tensor – first Piola-Kirchhoff stress tensor,
proposed by Conti et al. (2020). In 1D, it is reduced to the longitudinal stretch
ratio – longitudinal stress plane ZN = {(λ, P )}. Let DN = {(λ∗i , P ∗i )‖i = 1, · · · ,m}
denote the nominal material data set and EN denote the nominal constraint set.
The data-driven minimization then writes:

min
z∈ZN

min
z∗i ∈DN

1

2
C (λ− λ∗i )2 +

1

2C
(P − P ∗i )2 , (A.15a)

subject to z ∈ EN ⇔
{
λ = u

L + 1 (compatibility),
P = K(λ0 − λ) (equilibrium).

(A.15b)

We remark that here, the minimization constraints Eq. (A.15b) are linear.
Resolution is then equivalent to the small strain case Appendix 1.2. For a fixed

material state z∗ = (λ∗, P ∗) the stationary problem

δ

(
1

2
C (λ− λ∗)2 +

1

2C
(P − P ∗)2 − η (P −K (λ0 − λ))

)
= 0 (A.16)

yields the equation of an ellipse CN (z, z∗), centered on z∗ = (λ∗, P ∗), of semi-axes
f and p defined as

(
λ− λ∗
f

)2

+

(
P − P ∗

p

)2

= 1, (A.17a)

with

f2 = C−1 L2
c and p2 = C L2

c , (A.17b)

with

L2
c =

C

K2 + C2
(K (λ0 − λ∗)− P ∗)2 . (A.17c)

The aspect ratio of the ellipse is again fully determined by the parameter C. Let us
remark also that

2π

(
1

2
C (λ− λ∗)2 +

1

2C
(P − P ∗)2

)
= πfp = aire(CN (z, z∗)), (A.18)

then, the semi-analytical data-driven solution to the nominal formulation is obtained
from the mechanical state z = (λ, P ) defined as the intersection point between EN
and the ellipse CN of smallest surface area.
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2.3 Numerical example

Both formulations are compared using identical material data sets, generating from
sampling the same constitutive model as follows:

• sample m evenly space values of stretch ratios λ between extremal values λmin

and λmax,

• compute the corresponding nominal stresses P and Lagrangian stresses S from
a neo-Hookean model (P = µ(λ− λ−2) and S = λP ),

• apply Gaussian noise to the data: λ← λ+ λ̃,

• compute the corresponding Lagrangian strains E =
(
λ2 − 1

)
/2.

The sampling parameters are given in Table A.3. The mechanical parameters are
listed in Table A.4.

Table A.3 – Sampling parameters for the constitutive model in large strain.

λmin (-) λmax (-) µ (MPa) number of material data points m (-)
1 3 0,276 100

Table A.4 – Parameters of the mechanical problem in large strain.

l (cm) a (cm2) k (N.m1) u0 (cm) C (MPa)
10 3,1416 828 20 0,828

Comparing numerical values of the mechanical state solution in Table A.5 in-
dicates that the two approaches are equivalent. In addition, Fig. A.3 shows the

Table A.5 – Mechanical state solution for both Lagrangian and nominal formulation
in large strain.

λ (-) P (MPa) E (%) S (MPa)
Nominal formulation 1,661 0,353 87,9 0,213

Lagrangian formulation 1,662 0,353 88,1 0,212

consistency between the nominal and small strain formulations as the solution again
lies at the intersection between the constraint set and the ellipse of smallest area.
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(a) Lagrangian phase space (E,S): the mechanical state solution is the point of
the constraint set E which is the closest to the discrete material data set

(b) Nominal phase space (λ, P ), the mechanical state solution lies at the intersec-
tion between the ellipse CNi of smallest area and the constraint set E .

Figure A.3 – Data-driven solution in large strain.
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3 Conclusion

The data-driven approach introduced by Kirchdoerfer and Ortiz (2016) has been
extended to large strain with a Lagrangian formulation (Nguyen and Keip, 2018)
and a nominal formulation (Conti et al., 2020). The former induces nonlinearities
which already complicates the resolution of a very simple one-dimensional prob-
lem. The latter yields a constrained minimization with linear constraints, easier
to solver. The geometrical interpretations formulated in small strain are then re-
trieved in large strain for the nominal formulation: the mechanical state solution
lies at the intersection of the ellipse of smallest surface area and the linear constraint
set of mechanical admissible states. These encouraging results invite to adopt this
formulation for more complex problems, in two or three dimensions.
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Euclidean mapping

The tree-based search algorithm interface of Pedregosa et al. (2011) requires the
data set and the query points to sit in a standard Euclidean space. The local states
ze ∈ Zeloc, which consist of pairs of second-order tensors, must then be recast into a
single vector, such that the data-driven distance between two points in local phase
space is equivalent to the Euclidean distance between their respective transformed
vectors. In the following, we give the corresponding transformation for each of the
Lagrangian and nominal formulations. In both cases, the transformation relies on
the Mandel notation.

1 Mandel notation

Let consider a second-order tensor A ∈ Rn×n, in dimension n. We denote A ∈ Rn2

the corresponding vector in Mandel notation. For n = 3, the components of A are
related to A as follows Brannon (2018)

A =
[
A11 A12 A33 A23 A31 A12 A32 A13 A21

]T
, (B.1a)

with

Aij =

√
2

2
(Aij +Aji) , (B.1b)

Aij =

√
2

2
(Aij −Aji) . (B.1c)

Note that when A is symmetrical, then Aij = 0, ∀(i, j) and the Mandel vector A

can be reduced to its upper part in Rn(n−1). In particular, when n = 2, the Mandel
notation of A(2) ∈ R2×2 writes

A(2) =

{[
A11 A22 A12

]T if AT = A,[
A11 A22 A12 A21

]T otherwise.
(B.2)

Taking into account the major and minor symmetries, the Mandel form of a
positive-definite fourth-order tensor C ∈ R2×2×2×2 in two dimensions is a positive-
definite matrix C ∈ R3×3

sym, defined as

C =



C1111 C1122

√
2C1112

C2222

√
2C2212

sym. 2C1212


 (B.3)
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2 Lagrangian formulation

We recall that the data-driven local distance d in the Lagrangian formulation is
defined as

d2
(
(E,S) ,

(
E′,S′

))
=

1

2

(
∆E : C : ∆E + ∆S : C−1 : ∆S

)
, (B.4)

with ∆E = E−E′ and ∆S = S−S′ and C a positive-definite fourth-order tensor.
Using the Mandel form of each tensor, the distance can be expressed as

d2
(
(E,S), (E′,S′)

)
=

1

2

(
∆E ·C∆E + ∆S ·C−1∆S

)
(B.5)

with ∆E = E−E′ and likewise for ∆S, and · the standard inner product in Rn(n−1).
Let denote C1/2 the positive-definite matrix such that C = C1/2C1/2 and C−1/2

such that C−1/2 = C−1/2C−1/2. Then, the data-driven distance can be expressed
as the standard inner product of a single vector z− z′ ∈ R2n(n−1):

d2
(
(E,S), (E′,S′)

)
=
(
z− z′

)
·
(
z− z′

)
(B.6)

where the transformed vector z (resp. z′) of the local state z = (E,S) (resp.
z′ = (E′,S′)) is obtained from the Lagrangian Euclidean mapping MLag, defined as

MLag : Rn×nsym × Rn×nsym → R2n(n−1) (B.7)

z = (E,S) 7→ z =

(
1√
2
C1/2 E

1√
2
C−1/2 S

)
. (B.8)

3 Nominal formulation

Provided that the C-parameter in the nominal distance is a scalar, the nominal
Euclidean mapping Mnom is more easily derived. The deformation gradient and
first Piola-Kirchhoff stress tensors are simply recast into their factorized Mandel
form by

Mnom : Rn×n × Rn×n → R2n2
(B.9)

z = (F ,P ) 7→ z =

(
1√
2
C1/2 F

1√
2
C−1/2 P

)
. (B.10)

Thus,

V (F ) + V ∗(P ) = z · z, (B.11)

with V and V ∗ the quadratic functions defined in Eq. (III.67) with (p, q) = (2, 2).
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neo-Hookean model for
incompressible plane stress
problems

The standard incompressible neo-Hookean hyperelastic potential Ψ(C) is given as

Ψ(C) =
1

2
µ (trC − 3) , (C.1)

where C = F TF ∈ R3×3
sym is the right Cauchy-Green stretch tensor and µ is the

shear modulus. The second Piola-Kirchhoff stress tensor S ∈ R3×3
sym is expressed as

a function of the unknown hydrostatic pressure p (Bonet et al., 2016):

S = µIII
−1/3
C

(
I − 1

3
ICC

−1

)
+ pJC−1, (C.2)

where IC = trC and IIIC = detC are the first and third invariants ofC respectively,
and J = detF . When the material is incompressible, J = 1, and plane stress condi-
tions are assumed, the hydrostatic pressure can be explicitly determined. Eq. (C.2)
is then reduced to a two-dimensional constitutive model.

Specifically, if e3 is the plane stress direction, Se3 = 0 and the right Cauchy-
Green tensor C writes

C =



C11 C12 0

C21 C22 0

0 0 C33


 , (C.3)

where, from the incompressibility constraint J =
√
IIIC = 1,

C33 =
(
detC(2)

)−1 (C.4)

with C(2) ∈ R2×2
sym the two-dimensional left upper part of C in Eq. (C.3). Together

with the plane stress condition S33 = 0, Eq. (C.4) enables the pressure p Eq. (C.2)
to be explicitly evaluated as

p =
1

3
µ
(

trC(2) − 2
(
detC(2)

)−1
)
. (C.5)

The in-plane components of the second Piola-Kirchhoff stress tensor are then de-
termined directly by the two-dimensional expression of the neo-Hookean model in
plane stress and incompressible conditions as

S(2) = µ
(
I(2) −

(
detC(2)

)−1
C−1

(2)

)
, (C.6)

where the subscript (2) indicates the 2× 2 components of a tensor.





Appendix D

Analysis of constitutive models for
nominal data-driven finite strain
elasticity

1 Introduction

1.1 Statements

In Lemma 3.6. and Example 3.7., Conti et al. (2020) provide us with two strain
energy density functions which generate (p, q)-coercive data sets, suitable for data-
driven finite elasticity computations.

In 2D, the strain energy functions writes:

Ŵ2(F ) =
1

2
|F |2 +

1

4
a|F |4 + g(detF ) (D.1)

with F ∈ R2×2 the 2D deformation gradient tensor and

g(detF ) =
1

2
β

(
detF − 1− 1 + 2a

β

)2

(D.2)

with a > 0 and β ∈ (0, 2a). |A| denotes the Frobenius norm of tensor A:

|A| =
√

tr (AT : A) (D.3)

In 3D, the strain energy density function writes:

Ŵ3(F ) =
1

2
|F |2 +

1

4
a|F |4 +

1

6
e|F |6 + g(detF ) (D.4)

with a ≥ 0, e > 0 and F ∈ R3×3 the 3D deformation gradient tensor. For the
volumetric function g we use a similar one to the 2D case, which insures that the
stress is 0 when no deformation occurs:

g(detF ) =
1

2
β

(
detF − 1− 1 + 3a+ 9e

β

)2

. (D.5)

1.2 Objective

The objective of this appendix is to compare the proposed Conti-Müller-Ortiz
(CMO) model to standard hyperelastic models for compressible materials, in or-
der to interpret the constants as material parameters.
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We first derive, analytically, the definition of the second Piola-Kirchhoff stress
tensors for the proposed and the standard models, namely compressible neo-Hookean
and Yeoh models (Section 2). We then compare the behavior of the different for-
mulations resulting from 3 standards tests (Section 3):

1. simple shear test,

2. uniaxial tensile test,

3. hydrostatic compression test (3D only).

Finally, we show that the CMO model is incompatible with physical considerations
in compression (Section 4).

2 Analytical derivation

2.1 Derive stress tensor of CMO model

The strain energy density functions can be re-written in terms of the invariants of
the 2D or 3D Cauchy-Green strain tensors:

W2(i1, i3) =
1

2
i1 +

1

4
ai21 +

1

2
β

(√
i3 − 1− 1 + 2a

β

)2

(D.6)

W3(I1, I3) =
1

2
I1 +

1

4
aI2

1 +
1

6
eI3

1 +
1

2
β

(√
I3 − 1− 1 + 3a+ 9e

β

)2

. (D.7)

where (i1, i3) (respectively (I1, I3)) are the first and third invariants of the 2D
(respectively 3D) strain tensor C = F TF . The 2D invariants may indeed differ
from the 3D case depending on the dimensionality reduction assumption. In the
following, j = detF (respectively J = detF ) denotes the determinant of the 2D
(respectively 3D) deformation gradient tensor.

First, we insure that the volumetric function g(detF ) verifies the condition for
(p, q)-coercivity of the material data set:

Let g ∈ C1(R) be convex and such that, for some b, d ≥ 0,

|g′(t)| ≤ b+ d|t|, ∀t ∈ R (D.8)

Here we have, for J > 0,

g(J) =
β
(
J − 1− 3a+9e+1

β

)2

2
(D.9)

hence,

g′(J) = Jβ − 3a− β − 9e− 1
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and then

|g′(J)| ≤ b+ δ|J | with (b, δ) = (3a+ β + 9e+ 1, β) > (0, 0)

Second, the strain energy density function is re-written so that W = 0 when no
deformation occurs:

W =
I1

2
+
a
(
I2

1 − 9
)

4
+
β
(√

I3 − 1− 3a+9e+1
β

)2

2
+
e
(
I3

1 − 27
)

6
− 3

2
(D.10)

Finally, the 2nd Piola-Kirchhoff stress tensor is derived using the standard for-
mula:

s = 2
∂W2

∂i1
i+ 2

∂W2

∂i3
i3(F TF )

in 2D and,

S = 2
∂W3

∂I1
I + 2

∂W3

∂I3
I3(F TF )

in 3D, where i (respectively I) is the 2D (respectively 3D) second-order identity
tensor. The 2nd Piola-Kirchhoff stress tensor writes

S(C) = Jβ

(
J − 1− 3a+ 9e+ 1

β

)
C−1 +

(
I2

1e+ I1a+ 1
)
I (D.11)

2.2 Linear elasticity limits

The linear elastic constants can be derived in the limit case where F → I, using
the following property:

∂2W

∂λiλj

∣∣∣∣
λ1=1λ2=1λ3=1

= λ+ 2µδij ,

where λi is the ith principal stretch and (λ, µ) the Lamé constants. Here,

W (λ1, λ2, λ3) =
a
((
λ2

1 + λ2
2 + λ2

3

)2 − 9
)

4

+
β
(
λ1λ2λ3 − 1− 3a+9e+1

β

)2

2
+
e
((
λ2

1 + λ2
2 + λ2

3

)3 − 27
)

6

+
λ2

1

2
+
λ2

2

2
+
λ2

3

2
− 3

2
. (D.12)

Then,

λ = −a+ β + 3e− 1 (D.13a)

µ = 3a+ 9e+ 1 (D.13b)

E =
(3a+ 9e+ 1) (3a+ 3β + 27e− 1)

2a+ β + 12e
(D.13c)

ν =
−a+ β + 3e− 1

2 (2a+ β + 12e)
(D.13d)
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2.3 Define neoHokean and Yeoh compressible models

The strain energy density function of standard compressible neo-Hookean and Yeoh
(Yeoh, 1993) models respectively write

WNH
d (I1, I3) = C10(I1 − d) + h(J) (D.14)

WYeoh
d (I1, I3) = C10(I1 − d) + C20(I1 − d)2 + h(J) (D.15)

with h(J) a volumetric function. We draw attention to the fact that this formulation
is not the standard additive split of the strain energy function between an isochoric
and a volumetric part.

2.3.1 Volumetric function

Here, we choose a commonly used volumetric function

h(J) = −2C10 log (J) +D1 (J − 1)2 (D.16)

As will be shown in the next sections, this choice insures that the hydrostatic pres-
sure exhibit a physical behavior at high compression levels:

p(J → 0)→ −∞ (D.17)

However, this function does not fully verify the condition for coercivity Eq. (D.8):

h′(J) = −2C10

J
+ 2D1J − 2D1

|h′(J)| ≤ b+ δ|J | with (b, δ) =

(
2C10

J
+ 2D1, 2D1

)
> (0, 0)

Nevertheless, we use these models as comparison for they are standard.

2.3.2 neo-Hookean compressible

The 2nd Piola-Kirchhoff stress tensor is derived as previously:

SNH = 2C10I + (−2C10 + 2D1J (J − 1))C−1 (D.18)

In the limit case, the linear elastic constants are also derived as before:

λNH = 2D1 (D.19a)

µNH = 2C10 (D.19b)

ENH =
2C10 (2C10 + 3D1)

C10 +D1
(D.19c)

νNH =
D1

2 (C10 +D1)
(D.19d)
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2.3.3 Yeoh compressible

Similarly, the 2nd Piola-Kirchhoff stress tensor and associated linear elastic constants
for the Yeoh model are:

SYeoh = (−2C10 + 2D1J (J − 1))C−1 + (2C10 + 4C20 (I1 − 3)) I (D.20)

and

λYeoh = 8C20 + 2D1 (D.21a)

µYeoh = 2C10 (D.21b)

EYeoh =
2C10 (2C10 + 12C20 + 3D1)

C10 + 4C20 +D1
(D.21c)

νYeoh =
2C20 + D1

2

C10 + 4C20 +D1
(D.21d)

3 Comparison of the models

3.1 Testing values for the parameters

We choose arbitrary values of the parameters for each model:

• the parameters for the CMO model are set to α = 0.1, β = 0.2, e = 0.3;

• the parameters of the neo-Hookean model read C10 = 1, D1 = 0.1;

• the parameters of the Yeoh model read C10 = 1, C20 = 0.2, D1 = 0.1.

3.2 Simple shear test

In a simple shear test, the deformation gradient writes:

F =




1 γ (0)

0 1 (0)

(0) (0) (1)




(~e1,~e2,(~e3))

(D.22)

where γ = tanα, with α the shear angle.

3.2.1 Conti-Müller-Ortiz model (CMO):

The shear stress writes

τ = γ
(
a
(
γ2 + 3

)
+ e

(
γ2 + 3

)2
+ 1
)

(D.23)

which yields the following Taylor expansion:

τ = γ (3a+ 9e+ 1) +O
(
γ2
)

(D.24)
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3.2.2 neo-Hookean model

The shear stress writes

τNH = 2C10γ (D.25)

which yields the following Taylor expansion:

τNH = 2C10γ +O
(
γ2
)

(D.26)

3.2.3 Yeoh model

The shear stress writes

τYeoh = 2γ
(
C10 + 2C20γ

2
)

(D.27)

which yields the following Taylor expansion:

τYeoh = 2C10γ +O
(
γ2
)

(D.28)

3.2.4 Strain-stress curves

Figure D.1 – Comparison of the consistutive models on a shear test.

3.3 Uniaxial tensile test

In a uniaxial tensile test, the deformation gradient writes:

F =



λ1 0 (0)

0 λ2 (0)

(0) (0) (λ2)




(~e1,~e2,(~e3))

(D.29)
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The first Piola-Kirchhoff stress tensor) is first derived with the usual push-
forward operation P = FS. To obtain the nominal tensile stress P11 as a function of
λ1, we proceed as follows: we first solve equation P22 = 0 to obtain λ2 as a function
of λ1. Reinjecting λ2(λ1) into P11(λ1, λ2) we then obtain P11(λ1).

In practice, the analytical solution for the equation λ2(λ1) is too complicated in
general. We then solve it for each point of the stretch-stress curve, numerically.

3.3.1 Conti-Muller-Ortiz model

The stress reads

P11(λ1, λ2) = λ1


a
(
λ2

1 + 2λ2
2

)
+
βλ2

2

(
λ1λ

2
2 − 1− 3a+9e+1

β

)

λ1
+ e

(
λ2

1 + 2λ2
2

)2
+ 1




(D.30)

and λ2 is obtained from P22 = 0:

λ2

(
a
(
λ2

1 + 2λ2
2

)
+ βλ1

(
λ1λ

2
2 − 1− 3a+ 9e+ 1

β

)
+ e

(
λ2

1 + 2λ2
2

)2
+ 1

)
= 0

(D.31)

3.3.2 neo-Hookean model

The stress reads

PNH
11 = λ2

(
2C10 + λ2

1λ
2
2

(
−2C10

λ2
1λ

4
2

+
2D1

(
λ1λ

2
2 − 1

)

λ1λ2
2

))
(D.32)

and λ2 is obtained from P22 = 0:

λ2

(
2C10 + λ2

1λ
2
2

(
−2C10

λ2
1λ

4
2

+
2D1

(
λ1λ

2
2 − 1

)

λ1λ2
2

))
= 0 (D.33)

Here, the solutions can be obtained analytically:

solutions =

[
1

2λ2
2

−
√
−4C10λ2

2 + 4C10 +D1

2
√
D1λ2

2

,
1

2λ2
2

+

√
−4C10λ2

2 + 4C10 +D1

2
√
D1λ2

2

]

(D.34)

3.3.3 Yeoh model

The stress reads

PYeoh
11 = λ1

(
2C10 + 2C20

(
2λ2

1 + 4λ2
2 − 6

)
+ λ4

2

(
−2C10

λ2
1λ

4
2

+
2D1

(
λ1λ

2
2 − 1

)

λ1λ2
2

))

(D.35)
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and λ2 is obtained from P22 = 0:

λ2

(
2C10 + 2C20

(
2λ2

1 + 4λ2
2 − 6

)
+ λ2

1λ
2
2

(
−2C10

λ2
1λ

4
2

+
2D1

(
λ1λ

2
2 − 1

)

λ1λ2
2

))
= 0

(D.36)

Here, the solutions can also be obtained analytically:

solutions =

[
D1λ2 −

√
∆

4C20λ2 + 2D1λ3
2

,
D1λ2 +

√
∆

4C20λ2 + 2D1λ3
2

]
(D.37)

where

∆2 = 8C10C20 − 16C20D1λ
6
2 + λ4

2

(
−4C10D1 − 32C2

20 + 24C20D1

)

+ λ2
2

(
−8C10C20 + 4C10D1 + 48C2

20 +D2
1

)
(D.38)

3.3.4 Response curves

Top-left Fig. D.2 represents the stress-stretch curves (P11, λ1) of the different models.
It shows hardening in extension phase (λ1 > 1) and a convex behavior in compression
phase (λ1 < 1). The (λ1, λ2) curves in the bottom-left Fig. D.2 shows that this
behavior in compression in non-physical: the contraction stretch λ2 is inferior to
1 when λ1 < 1, meaning that the more compressed in one direction, the more
contracted in the other. The (ε, P11/E) curves in the top-right Fig. D.2 show that
the derivation of the Young’s modulus in the two first sections was correct since all
three models exhibit linear elastic behavior in small strains. Finally, the bottom-
right Fig. D.2 shows the (J, p) curves of the different models: the unaxial tension
test does not yield enough compression (J is still “large”) to exhibit much differences
between the CMO model and the others.

Hence, in the next section, we evaluate the models in a pure dilata-
tion/compression test in 3D.

3.4 Pure dilatation / compression test in 3D

In a pure dilatation or compression test, the deformation gradient writes:

F =



λ 0 0

0 λ 0

0 0 λ




(~e1,~e2,~e3)

. (D.39)

with λ > 0. The hydrostatic pressure is defined from the Cauchy stress tensor
σ = 1

JF S F T as :

p =
1

3
tr σ (D.40)

For each model, we compute the hydrostatic pressure as a function of the Jacobian
and evaluate its limits. We also calculate the bulk modulus in the limit case J → 1.



Figure D.2 – Comparison of the constitutive models on a uniaxial tensile test.
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3.4.1 Conti-Müller-Ortiz model

p =
3aλ2 + βλ

(
λ3 − 1− 3a+9e+1

β

)
+ 9eλ4 + 1

λ
(D.41)

The limits of p(J) written as

p(J) = 3
3
√
Ja+ Jβ + 9Je− 3a− β − 9e− 1 +

1
3
√
J

(D.42)

read

p(J = 1) = 0, p(J → 0)→∞, and p(J →∞)→∞ (D.43)

As mentionned before, in a physical behavior, the hydrostatic pressure must
tend to −∞ when the continuum degenerates to a single point (J → 0) (Doll and
Schweizerhof, 2000). Here, it is not the case. This anomaly is discussed further in
the next section.

The bulk modulus can be obtained in the limit case where J → 1:

κCMO = lim
J→1

p(J) = a+ β + 9e− 1

3
(D.44)

3.4.2 neo-Hookean model

pNH(J) = 2D1J − 2D1 +
−2C10

3
√
J + 2C10J

J
4
3

(D.45)

and

pNH(J = 1) = 0, pNH(J → 0)→ −∞, and pNH(J →∞)→∞ (D.46)

The bulk modulus writes

κNH =
4C10

3
+ 2D1 (D.47)

3.4.3 Yeoh model

pYeoh(J) = 12C20
3
√
J + 2D1J − 2D1 +

−2C10
3
√
J + 2C10J − 12C20J

J
4
3

(D.48)

pYeoh(J = 1) = 0, pYeoh(J → 0)→ −∞, and pYeoh(J →∞)→∞ (D.49)

The bulk modulus reads

κYeoh =
4C10

3
+ 8C20 + 2D1 (D.50)
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3.4.4 Volume – pressure curves

The normalized compression curves given in Fig. D.3 show that:

• the bulk moduli were correctly evaluated using limJ→1 p(J);

• the behavior of the CMO model differs from the two other standard models
for relatively low compression levels (J ' 0.8);

• the hydrostatic pressure (volumetric stress) tends to positive infinity for high
compression levels.

Figure D.3 – Comparison of the constitutive models on a compression test.

4 Relationship between the volumetric function and
pressure

In this appendix, we compared the CMO models proposed in Conti et al. (2020) with
standard hyperlastic models for compressible materials. In both 2D (not shown)
and 3D cases, the CMO model exhibit a non-physical response in compression.
Proposition. The condition (3.24) in (Conti et al., 2020)

|g′(t)| ≤ b+ c|t|, ∀t ∈ R (D.51)

is incompatible with the physical condition on the hydrostatic pressure

lim
J→0

p = −∞. (D.52)

In this section, we attempt to prove the above proposition in the most general
case. Let first consider a generic strain energy density function of the form:

W (I1, J) = f(I1) + g(J) (D.53)
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Then, the hydrostatic pressure can be derived as a function of f and g:

p(I1, J) =
2I1

d
dI1
f(I1)

3J
+

d

dJ
g(J) (D.54)

Now, if the condition Eq. (D.51) is satisfied, we have:

−(b+ cJ) ≤ g′(J) ≤ b+ cJ, ∀J ∈ R+

with b > 0 and c > 0. Then

p−(I1, J) ≤ p(I1, J) ≤ p+(I1, J), ∀J ∈ R+ (D.55)

where

p−(I1, J) =
2I1f

′(I1)

3J
− (b+ cJ) (D.56)

p+(I1, J) =
2I1f

′(I1)

3J
+ (b+ cJ) (D.57)

It should be noted that I1 and J are not independent. Hence, determining the limits
of p+ or p− when J tends to 0 is not straightforward as they strongly depend on the
evolution of the f function. Let then evaluate these bounds when f is a polynomial
function, such as the one proposed in Conti et al. (2020), with:

fpoly(I1) =

n∑

k=1

Ik1αk, withαk > 0, ∀k (D.58)

Then

p+
poly(I1, J) =

2I1
∑n

k=1 I
k−1
1 kαk

3J
+ Jc+ b (D.59a)

p−poly(I1, J) =
2I1
∑n

k=1 I
k−1
1 kαk

3J
− Jc− b (D.59b)

To simplify further, let then consider the pure dilatation/compression case where
I1 = 3λ2 and J = λ3. Then

I1 = 3J
2
3 (D.60)

and

p+
poly(J) = Jc+ b+

2
∑n

k=1 k
(

3J
2
3

)k−1
αk

3
√
J

(D.61a)

p−poly(J) = −Jc− b+
2
∑n

k=1 k
(

3J
2
3

)k−1
αk

3
√
J

(D.61b)
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Hence, the limit of p+ (and equivalently p−) when the volume tends to 0 is driven
by the constant term in the summation. Indeed,

(
J

2
3

)k−1

3
√
J

(D.62)

always tends to 0 except when 2k
3 − 1 < 0, i.e. when k ≤ 1. Then, from the squeeze

theorem, if α1 > 0, then

lim
J→0

p = +∞, (D.63)

which completes the proof of the proposition, valid for the CMO model for which
f(I1) =

∑n
k=1 αkI

k
1 .

Following a similar rationale, the limit can also be derived when f takes the form
of the polynomial functions that are used for the neo-Hookean and Yeoh models
presented here:

fpoly =
n∑

k=1

(I1 − 3)k. (D.64)

The limit is again driven by the constant term in the summation which now writes:

ᾱ =
n∑

k=1

2kαk(−3)k−1. (D.65)

Then, the limit depends on the materials parameters and can be negative infinity:

lim
J→0

p = sign(ᾱ)×∞, (D.66)

which contradicts the above proposition.

5 Conclusion

To conclude, the coercivity condition and the form of the strain energy density
function proposed in Conti et al. (2020) both imply positive infinite pressure when
the continuum tends to a single point, which is non-physical. Possibles ways to
avoid this issue could be:

• either to relax the growth condition on the volumetric function g if the coer-
civity can still hold by other means;

• or to reformulate the strain energy function with the suitable polynomial form:

Wd(I1, J) =

n∑

k=1

αk(I1 − d)k + g(J) (D.67)

such that
n∑

k=1

2kαk(−3)k−1 < 0 (D.68)
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Résumé étendu en français

Résumé Cette dernière annexe répond à la demande de l’École Doctorale d’un
« résumé substantiel en français » lorsque le manuscrit est rédigé en anglais. Pour
qu’il soit utile au lecteur ou à la lectrice, nous avons choisi de suivre stricto sensus
le plan de la thèse. Pour alléger le manuscrit, la grande majorité des figures ne sont
pas reproduites ici.
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1 Chapitre 1 : État de l’art

Dans ce premier chapitre, nous faisons la relation entre les méthodes numériques
pour la mécanique non linéaire et la science des données. Dans un premier temps,
nous rappelons les principales équations de la mécanique non linéaire des solides et
les méthodes numériques associées. Dans un deuxième temps, nous montrons que la
modélisation du comportement mécanique des matériaux est un pan de la recherche
dans lequel il est pertinent de faire appel à la science des données.

1.1 Rappels de mécanique numérique non linéaire

Cette première section se veut un condensé du livre de référence de Bonet and Wood
(2008). Elle permet de présenter le cadre théorique nécessaire à l’étude des grandes
transformations élastiques, qui sont l’objet d’une grande partie de ce travail de thèse.
On rappelle à la fois les équations de mécanique des milieux continus et la méthode
des éléments finis.

1.1.1 Mécanique non linéaire des milieux continus

Dans le cadre de la mécanique non linéaire des solides, deux sources de non-linéarité
existent : (i) la non-linéarité dite géométrique qui provient notamment des grandes
transformations, (ii) la non-linéarité dite matériau qui provient de la non-linéarité
de la relation contrainte-déformation. De la première source découle notamment la
définition de deux configurations distinctes : la configuration de référence ou non
déformée, et la configuration courante ou déformée. La première est appelée ma-
térielle ou Lagrangienne tandis que la seconde est appelée spatiale ou Eulérienne.
Chaque quantité décrivant la déformation d’un corps peut alors se rapporter soit
aux coordonnées de la configuration de référence, notéesX, soit aux coordonnées de
la configuration déformée, notées x. L’ensemble de cette partie est structurée autour
de cette distinction : chaque type d’équation (décrivant le mouvement ou les efforts)
est classée selon la configuration à laquelle elle se rapporte. Nous ajoutons aux for-
mulations Lagrangienne et Eulérienne une formulation intermédiaire, dite nominale,
qui comprend les quantités de transport entre les deux configurations. L’ensemble
des équations nécessaires est fourni dans une série de tableaux récapitulatifs.

On rappelle d’abord les équations de la cinématique et notamment les relations
déplacements-déformation, qui sont désignées par la suite comme les équations de
compatibilité. En effet, en grandes transformations, le tenseur des petites défor-
mations ε = 1/2

(
∇u+ ∇T u

)
n’est plus suffisant pour décrire la déformation du

corps, où u = x − X est le champ de déplacement. La transformation est alors
mesurée par le tenseur gradient de la transformation F = ∇0u + I dont découle
les définitions du tenseur des déformations de Green-Lagrange E = 1/2

(
F TF − I

)

(matériel) et du tenseur des déformations d’Euler-Almansi e = 1/2
(
I − (FF T )−1

)

(spatial).
Les différentes mesures de contrainte sont ensuite introduites. Le tenseur (spa-

tial) des contraintes de Cauchy σ est défini comme une force par unité de surface



1. Chapitre 1 273

déformée tandis que les tenseurs de Piola-Kirchhoff 1 (P ) et 2 (S) sont définis au
moyen du principe des puissances virtuelles, comme les mesures de contrainte conju-
guées respectivement à Ḟ et Ė, les dérivées temporelles de F et E. Les équations
d’équilibre dans leurs formes forte (locale) et faible (intégrale) sont rappelées.

Après un rapide bilan des équations et des inconnues, il apparaît qu’une re-
lation est manquante : le modèle de comportement qui relie les déformations et
les contraintes. Nous rappelons alors le cadre théorique de développement des mo-
dèles de comportement avant de préciser le cas particulier de l’hyperélasticité.
La contrainte dérive d’un potentiel représentant l’énergie élastique stockée durant
la déformation du matériau. Dans le cas isotrope, on peut notamment écrire les
contraintes σ et S comme des fonctions des invariants des tenseurs C = F TF et
b = FF T . On définit également le module tangent au comportement élastique du
matériau qui provient de la dérivée directionnelle des relations de comportement.

1.1.2 Discrétisation éléments finis

La méthode des éléments finis, appliquée à la mécanique non linéaire, est rappelée
dans cette section.

La géométrie du corps est approchée par un maillage éléments finis composé de
nœuds reliés par des éléments isoparamétriques, qui constituent le support compact
des fonctions d’interpolation. On insiste dans un premier temps sur l’approximation
de la géométrie (des positions des points matériels), du déplacement et de la vitesse
virtuelle. En injectant ces approximations dans le principe des puissances virtuelles
on obtient un système d’équations non linéaires à résoudre : le résidu mesurant l’écart
entre les efforts intérieurs (énergie de déformation) et les efforts extérieurs (forces
appliquées) doit être nul. En raison des non-linéarités géométrique et matériau, ces
équations sont non linéaires.

Classiquement, ce système algébrique est résolu au moyen d’une méthode de
Newton-Raphson dont nous détaillons les différents ingrédients. Il s’agit d’une mé-
thode de résolution itérative qui consiste à résoudre une série de systèmes linéaires,
dont la matrice de raideur est chaque fois recalculée. Dans le cadre de l’hyperélas-
ticité, cette matrice de raideur contient deux termes : un premier terme constitutif
qui contient la tangente au modèle de comportement, et un second terme géomé-
trique qui provient de la relation non linéaire des déformations aux déplacements.
Les expressions détaillées de ces différents termes sont rappelées pour chacune des
formulations matérielle, nominale et Lagrangienne.

1.1.3 Bilan

La mécanique numérique non linéaire a été présentée dans le cadre de la méthode
des éléments finis appliquée aux grandes transformations élastiques. Dans ce cas,
l’équilibre est appliqué dans sa forme faible, le principe des puissances virtuelles,
dont la discrétisation aboutit à un système d’équations non linéaires. Nous avons
rappelée la méthode de résolution de Newton-Raphson habituellement utilisée.
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Cette présentation nous a permis de bien distinguer les différentes formulations
Lagrangienne, nominale et Eulérienne du problème, ce qui se révélera important dans
la suite du travail. Les formulations matérielle et spatiale présentent l’avantage de
ne faire intervenir que des tenseurs symétriques tandis que la formulation nominale
offre une relation de compatibilité linéaire.

1.1.4 La modélisation du comportement matériau : un défi central

Les équations de la mécanique non linéaire des milieux continus sont établies de-
puis longtemps ; de même la méthode des éléments finis est aujourd’hui considérée
mature. La difficulté centrale de la mécanique numérique non linéaire des maté-
riaux est donc la modélisation du comportement matériau. Il s’agit de développer,
implémenter et identifier des modèles de comportement toujours plus complexes.

• Les modèles sont généralement développés de façon phénoménologique consis-
tant à « ajuster une relation mathématiques à des données expérimentales »
sans « relier les mécanismes de déformation à la physique de la structure micro-
scopique sous-jacente du matériau » (Holzapfel, 2000). Des cadres théoriques
comme l’hyperélasticité ou l’approche thermodynamique pour les matériaux
standards généralisés permettent d’élaborer de tels modèles.

• Le cadre théorique étant fixé, le choix du modèle de comportement à utiliser
pour un matériau particulier reste ouvert. Par ailleurs la complexité du modèle
choisi implique de développer des méthodes numériques spécifiques et rendent
ainsi l’implémentation parfois complexe.

• L’identification des paramètres du modèle reste néanmoins le point le plus
difficile, le problème étant généralement mal-posé (solution non unique). Par
ailleurs, les données expérimentales utilisées sont bien souvent réduites à une
courbe de traction uniaxiale, à partir de laquelle le comportement triaxial est
extrapolé par la forme tensorielle de la relation de comportement, sans réelle
garantie de validité.

• Les points ci-dessus sont d’autant plus prégnants pour la modélisation du
comportement des matériaux hétérogènes. Leur réponse mécanique dépend de
manière complexe des différentes propriétés des constituants mais aussi de leur
arrangement dans la microstructure. Des modèles dits à champs moyens per-
mettent de prédire la réponse de certaines microstructures simplifiées. La plus
récente avancée est l’utilisation des méthodes numériques pour prédire, grâce
à de nombreux calculs microstructuraux, la réponse effective du matériau.

En définitive, une bonne partie de la recherche actuelle en mécanique des maté-
riaux est dédiée à l’élaboration de modèles de comportement. La complexité crois-
sante de ces modèles requiert un nombre important et une richesse de données
expérimentales pour identifier au mieux les paramètres. C’est pourquoi cet aspect
de la mécanique peut être considéré comme un point d’entrée pour la science des
données dans le domaine de la mécanique numérique.
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1.2 La science des données dans la mécanique numérique

1.2.1 Les données en mécanique numérique

En amont, les données sont utilisées pour identifier les paramètres du modèle de com-
portement utilisé dans le calcul éléments finis. Elles peuvent être massives et riches
grâce aux progrès expérimentaux et notamment aux mesures de champs. Ensuite
en aval, les simulations numériques effectuées sur des super-calculateurs génèrent
un très grand nombre de données ; c’est notamment le cas pour les calculs sur des
matériaux hétérogènes. Ces données microstructurales peuvent ensuite être utilisées
pour ajuster un modèle macroscopique. Une analyse éléments finis en mécanique se
trouve donc aujourd’hui à la fois en amont et en aval d’une chaîne de production de
données matériau.

1.2.2 Ce qu’est la science des données et où elle peut intervenir en
mécanique numérique

Nous reprenons dans cette partie la définition de la science des données (data
science) proposée par Dhar (2013). Il s’agit notamment d’extraire de la connaissance
de données non structurées et de répondre à la question « quel modèle satisfont ces
données ? » plutôt que « quelle données satisfont ce modèle ? ». Pour appliquer cette
approche à la mécanique numérique, nous revenons rapidement sur la structure d’un
problème aux conditions aux limites en mécanique. Les équations de ce problème
peuvent se diviser en trois groupes : (i) la cinématique et les conditions aux limites
de Dirichlet, qui proviennent de la géométrie, (ii) l’équilibre des efforts et les condi-
tions aux limites de Neumann, qui proviennent de lois de conservation, et (iii) les
modèles de comportement, qui traduisent la réponse mécanique du matériau. Tandis
que les deux premiers types d’équations sont universellement valides (elles reposent
sur des principes physiques fondamentaux), il existe davantage de sources d’incer-
titudes dans le troisième groupe. Mais surtout, c’est bien dans ce dernier groupe
que le besoin de données est le plus important. La science des données au sens de
Dhar (2013) nous paraît donc particulièrement adaptée à aux modèles de compor-
tement : il s’agit bien d’élaborer, à partir de connaissances extraites de données non
structurées, des relations mathématiques prédictives du comportement du matériau.

1.2.3 Exemples d’utilisation de la science des données en modélisation
et simulation

Les exemples sont très nombreux dans le champ de la micromécanique, qui s’in-
téresse à la modélisation et à la simulation numérique des matériaux hétérogènes.
On cite notamment l’utilisation de diverses techniques comme la réduction de mo-
dèle, les réseaux de neurones ou les méthodes de réduction de la dimensionalité qui
sont utilisées pour développer des métamodèles du comportement homogénéisé de
la microstructure. Il existe également des méthodes d’apprentissage de variété ou
d’approximation par des polynômes pour les matériaux homogènes.
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Néanmoins, dans tous ces exemples, il s’agit toujours d’élaborer un modèle de
comportement et non d’utiliser les données brutes, qui sont d’ailleurs souvent mises
de côté après le processus d’apprentissage ou d’identification du modèle. En fait, il
s’agit d’une perte de données massives et riches : le modèle de comportement agit
comme un entonnoir entre les données amont et les données aval. C’est pourquoi
Kirchdoerfer and Ortiz (2016) ont proposé un nouveau paradigme de la mécanique
numérique, appelé data-driven computational mechanics (DDCM) qui propose de
reformuler le problème mécanique pour utiliser directement les données, sans passer
par un modèle de comportement. Leur travail constitue la base de nos travaux de
recherche. Nous le détaillons donc dans le chapitre suivant.
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2 Chapitre 2 : data-driven computational mechanics

Dans ce chapitre, nous présentons la méthode DDCM telle qu’introduite par Kir-
chdoerfer and Ortiz (2016) et complétée par Conti et al. (2018). Nous présentons
ensuite les recherches qui se sont inspirées de cette approche avant de proposer nos
pistes de travail pour la thèse.

2.1 Présentation de la méthode

2.1.1 Idée générale

L’approche DDCM de Kirchdoerfer and Ortiz (2016) a été proposée comme un « nou-
veau paradigme » qui permet de se passer de la « modélisation empirique du com-
portement du matériau ». À la place d’une relation mathématique, la réponse mé-
canique du matériau est représentée par une base de données de couples tensoriels
déformation-contrainte. L’approche repose sur la séparation précédemment évoquée
des équations de la mécanique en deux groupes : la caractérisation de la réponse
matériau d’une part, et la satisfaction de principes physiques fondamentaux d’autre
part. Tandis que le modèle de comportement ne fait qu’approcher la réponse du ma-
tériau dans certaines conditions, les équations fondamentales de la mécanique (équi-
libre et compatibilité) doivent toujours être satisfaites. Le problème mécanique est
reformulé en ce sens comme un problème de minimisation de la distance entre deux
types de champs d’état (state fields) : l’état matériau représente la réponse matériau
du corps déformable et prend ses valeurs dans la base de données, l’état mécanique
vérifie les équations d’équilibre et de compatibilité. Le premier appartient à l’en-
semble données matériau (material data set) et le deuxième à l’ensemble contrainte
(constraint set), qui sont deux sous-espaces de l’espace des phases (phase space)
défini par l’ensemble des champs d’état possibles (c.-à-d. des couples déformation-
contrainte). Le solveur data-driven consiste alors à assigner à chaque point matériel
du corps un état déformation-contrainte qui (i) vérifie les contraintes de compati-
bilité et d’équilibre du problème dans l’espace physique, et (ii) est le plus proche
possible, dans l’espace des phases, d’une base de données matériau préétablie.

L’approche a d’abord été introduite par Kirchdoerfer and Ortiz (2016) comme
une façon d’utiliser les données brutes directement dans les simulations de structure.
Depuis, Conti et al. (2018) ont apporté une formulation en mécanique des milieux
continus du problème data-driven. Une formulation variationnelle a également été
proposée dans Nguyen et al. (2020).

Dans cette section, nous présentons d’abord la formulation en mécanique des
milieux continus de Conti et al. (2018) avant de rappeler la méthode et l’ensemble
des résultats numériques de Kirchdoerfer and Ortiz (2016).

2.1.2 Formulations continue et discrète

Dans la formulation continue, on travaille avec des champs d’état relatifs à des es-
paces fonctionnels distincts. Les états mécaniques définis ci-dessus appartiennent
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à l’ensemble contrainte, noté E , qui contient l’ensemble des champs déformation-
contrainte vérifiant la compatibilité et l’équilibre. Considérant un corps Ω ∈ R3 en
équilibre quasi-statique, soumis à des déplacements imposés uD et des forces volu-
miques f et surfaciques t, les équations de la cinématique et d’équilibre s’écrivent :

ε =
1

2

(
∇u+ ∇Tu

)
dans Ω, (E.1a)

u = uD sur ΓD, (E.1b)

et

divσ + f = 0 dans Ω, (E.2a)

σn = t sur ΓN , (E.2b)

avec n la normale à la surface ΓN tel que ΓD ∪ ΓN = ∂Ω et ΓN ∩ ΓD = ∅. Ainsi,
l’ensemble contrainte s’écrit :

E = {(ε,σ) | Eqs. (E.1) et (E.2)} . (E.3)

Les états matériau prennent leur valeur dans des bases de données

Dloc = {(εi,σi) | i ∈ [1 . . m]} ; (E.4)

ils appartiennent alors à l’ensemble données matériau, noté D et défini par

D = {(ε,σ) | (ε(x),σ(x)) ∈ Dloc pour tout x dans Ω} . (E.5)

La solution du problème classique se situe à l’intersection de ces deux sous-espaces :
elle doit à la fois vérifier les équations de la mécanique et le modèle de comportement.
Sans loi de comportement, la représentation de la réponse matériau est seulement
discrète ; cette intersection est donc probablement vide. Il convient donc de relaxer
le problème : la solution est déterminée comme le champ déformation-contrainte
qui vérifie les équations de la mécanique et s’approche au plus près de l’ensemble
données matériau. Le problème s’écrit alors comme une double minimisation :

S = arg min
(ε,σ)∈E

min
(ε′,σ′)∈D

‖ (ε,σ)−
(
ε′,σ′

)
‖C, (E.6)

où la norme ‖ • ‖C est définie par

‖ (ε,σ) ‖2C =

∫

Ω

(
1

2
(C : ε) : ε+

1

2

(
C−1 : σ

)
: σ

)
dv, (E.7)

avec C un tenseur du quatrième ordre défini positif.
Dans Conti et al. (2018), les auteurs prouvent que le problème ci-dessus est bien

posé et contient la solution classique linéaire élastique lorsque la base de données
est en fait le graphe de la réponse linéaire élastique. Ils démontrent également que
lorsque la base de données discrète converge (au sens de la densité de points et
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de leur écart au graphe) vers le graphe de la réponse linéaire, la solution data-
driven converge également vers la solution classique. Il en va de même lorsque la
réponse du matériau est non linéaire (mais toujours en petites déformations). Ainsi,
la formulation data-driven inclut la formulation classique du problème aux limites
en élasticité, sous l’hypothèse des petites perturbations.

La formulation discrète a d’abord été proposée dans Kirchdoerfer and Ortiz
(2016) pour les treillis. L’état déformation-contrainte d’un point matériel est alors
réduit au couple de scalaires (εe, σe), représentant la déformation et la contrainte
longitudinales (constantes) dans une barre e du treillis. Considérant un treillis deM
barres et N degrés de liberté, soumis à des efforts {fi}Ni=1, le problème data-driven
s’écrit comme la minimisation suivante :

Trouver S = {(εe, σe)}Me=1 tel que

S = arg min
(ε,σ)

M∑

e=1

we min
(ε′e,σ

′
e)∈D(e)

loc

(
1

2
Ce
(
εe − ε′e

)2
+

1

2
C−1
e

(
σe − σ′e

))
,

sous contraintes

εe =
N∑

i=1

Beiui, ∀e ;
M∑

e=1

weBeiσe − fi = 0, ∀i,

avec {ui}Ni=1 les degrés de liberté, we le poids d’une barre, Bei représentant la géo-
métrie et la connectivité du treillis, Ce une constante jouant le même rôle que C
et D(e)

loc = {(εi, σi) | i ∈ [1 . . me]} la base de données représentant la réponse du
matériau de la barre e par me couples déformation-contrainte.

L’approche est ensuite naturellement étendue en trois dimensions par une for-
mulation éléments finis, appliquée aux solides déformables élastiques. Considé-
rant un maillage de N nœuds et M points d’intégration, l’état d’un point ma-
tériel e ∈ [1 . . M ] est caractérisé par le couple tensoriel (εe,σe). La structure
est soumise à des forces nodales {fa}Na=1 et les déplacements nodaux sont no-
tés {ua}Na=1. La base de données est maintenant constituée de couple tensoriels :
D(e)

loc = {(εi,σi) | i ∈ [1 . . me]}. Le problème de minimisation s’écrit alors :

Trouver S = {(εe,σe)}Me=1 tel que

S = arg min
(ε,σ)

M∑

e=1

we min
(ε′e,σ

′
e)∈D(e)

loc

(
W
(
εe − ε′e

)
+W ∗

(
σe − σ′e

))

sous contraintes

εe =
N∑

a=1

Beaua, ∀e ;
M∑

e=1

weB
T
eaσe − fa = 0, ∀a

avec W (ε) = 1/2(C : ε) : ε et W−1(σ) = 1/2(C−1 : σ) : σ.
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2.1.3 Algorithme original

La double minimisation ci-dessus est complexe car elle couple une minimisation
sous contraintes avec une optimisation combinatoire : les états mécaniques sont à
valeurs continues tandis que les états matériau prennent des valeurs discrètes. Une
heuristique qui consiste à résoudre alternativement chacune des optimisations est
proposée dans Kirchdoerfer and Ortiz (2016).

• Les états matériau (ε∗e,σ
∗
e) sont déterminés par une recherche de plus proche

voisin dans l’espace des phases :

(ε∗e,σ
∗
e) = arg min

(ε′e,σ
′
e)∈D(e)

loc

(
W
(
εe − ε′e

)
+W ∗

(
σe − σ′e

))
. (E.8)

• Les états mécaniques sont alors obtenus par la minimisation sous contraintes
ci-dessus, où la minimisation locale sur D(e)

loc disparaît au profit d’états maté-
riau fixés (ε′e,σ

′
e) = (ε∗e,σ

∗
e). Pour résoudre cette dernière, Kirchdoerfer and

Ortiz (2016) emploient une méthode de multiplicateurs de Lagrange, qui fait
apparaître deux systèmes pseudo-élastiques linéaires de raideur C, faciles à
résoudre.

2.1.4 Résultats numériques

La première étude se concentre sur un treillis de barres d’un même matériau, dont la
représentation est un nuage de points échantillonnant une courbe (ε, σ) non linéaire.
Une base de données sans bruit et une contenant un bruit Gaussien sont étudiées.
Dans les deux cas, les auteurs démontrent la convergence de la solution data-driven
vers la solution classique du treillis lorsque le nombre de points dans la base de
données augmente. La convergence est linéaire et deux fois plus rapide dans le cas
non-bruité. Ils démontrent également que la distance finale entre les états mécaniques
et matériau (mesurée par la norme ‖•‖C) donne une information sur la qualité de la
base de données : lorsque la distance entre deux points est grande, cela signifie que,
dans la région de l’espace des phases déformation-contrainte de l’état mécanique
concerné, la densité de points dans la base de données est insuffisante.

Les résultats de convergence sont corroborés par un exemple tridimensionnel. Il
s’agit d’une éprouvette de traction, sous l’hypothèse des contraintes planes. La base
de données est générée à partir d’un modèle de comportement linéaire élastique par
la suite mis de côté dans la simulation data-driven. L’espace des contraintes planes
est échantillonné par une grille régulière et les déformations correspondantes sont
calculées par une loi de Hooke. La fonction objective décroît comme attendu avec
le nombre d’itérations de la minimisation alternée ainsi qu’avec le nombre de points
dans la base de données.

2.2 Perfectionnements, inspirations et extensions

La méthode data-driven développée par Kirchdoerfer and Ortiz (2016) et Conti
et al. (2018) est donc bien établie pour les petites déformations réversibles. Cette
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approche novatrice a généré un intérêt renouvelé pour recherche dans le domaine de
la mécanique numérique pilotée par les données, comme en témoignent les récentes
contributions, qui visent soit à améliorer le solveur, soit à s’en inspirer pour dévelop-
per des méthodes inverses d’acquisition de données ou bien qui étendent l’approche
à d’autres classes de problèmes mécaniques.

2.2.1 S’affranchir des minima locaux et du bruit

Une difficulté centrale de l’approche proposée est qu’elle utilise des données brutes.
Elle peut donc être sensible au bruit. Par ailleurs, la méthode de minimisation
alternée ne permet pas de trouver le minimum global du problème comme cela a été
démontré par Kanno (2018). Des publications récentes ont donc cherché à améliorer
le solveur pour le rendre davantage robuste au bruit et aux points aberrants :

• Kirchdoerfer and Ortiz (2017) ont tout d’abord proposé un solveur maximisant
l’entropie accompagné d’un recuit simulé qui permet de pénaliser les points
aberrants dans la base de données matériau.

• S’attaquant au « fléau de la dimensionalité » (la dimension de l’espace des
phases est de 12, pour un couple de tenseurs symétriques), Eggersmann et al.
(2020) ont adapté une méthode d’apprentissage (tenseur voting) pour calculer
un plan tangent à chacun des points dans la base de données et minimiser la
distance à ce plan plutôt qu’au point lui-même.

• Kanno (2019) a démontré que le problème est un problème de mixed integer
quadratic programming bien posé, ce qui permet d’accéder au minimum global
grâce à des solveurs efficaces mais très gourmands.

• Une autre approche consiste à approximer le nuage de points déformation-
contrainte par une variété afin de régulariser le problème (Gebhardt et al.,
2020; He and Chen, 2020; Kanno, 2020). Il s’agit alors de coupler une approche
sans modèle et des techniques d’apprentissage de variété.

• Enfin, on peut mentionner les couplages avec des approches stochastiques de
Ayensa-Jiménez et al. (2018); Korzeniowski and Weinberg (2019).

2.2.2 L’identification par les données

Le cadre de la micromécanique est particulièrement propice à la génération de don-
nées, comme indiqué plus haut. Ainsi, des bases de données pour la DDCM peuvent
être créées par une série de simulations éléments finis sur des microstructures.

Le défi principal de l’approche data-driven réside encore dans la capacité à géné-
rer des bases de données tensorielles expérimentales. Si le tenseur des déformations
peut être accessible grâce aux progrès des mesures de champs et de la corrélation
d’images numériques, ce n’est pas le cas du tenseur des contraintes. Souvent on n’en
connaît qu’une seule composante lors d’essais expérimentaux aux hypothèses fortes.
C’est dans cette optique que Leygue et al. (2018) ont proposé une méthode inverse
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à la DDCM, baptisée data-driven identification (DDI). Cette fois, la base de données
est une sortie et non une entrée du solveur data-driven. À partir des déformations
mécaniques, obtenues par dérivation des champs de déplacement résultant de la cor-
rélation d’images numériques, et des efforts appliqués à l’échantillon, la DDI permet
d’obtenir (i) les contraintes mécaniques équilibrées, et (ii) la base de données des
états matériau, qui échantillonnent la réponse matériau.

Stainier et al. (2019) ont démontré que cette approche pouvait fournir des base
de données pertinentes pour la DDCM, correspondant à un échantillonnage préféren-
tiel de la réponse matériau. D’abord développée avec des données synthétiques, la
méthode a été appliquée avec succès aux données expérimentales dans la thèse de
Dalémat (2019), ce qui ouvre la voie pour « mesurer des champs de contrainte sans
loi de comportement » (Dalémat et al., 2019). On peut également citer les travaux de
Réthoré et al. (2018) dont la méthode inverse s’applique en élasto-plasticité et ceux
de Leygue et al. (2019) pour l’élasticité non linéaire, la plasticité et la dynamique.

2.2.3 Extension à d’autre classes de problèmes

Enfin, la méthode a été étendue à différents types de problèmes, comme la dyna-
mique (Kirchdoerfer and Ortiz, 2018), la diffusion (Nguyen et al., 2020) ou encore
la mécanique de la rupture (Carrara et al., 2020).

En réalité, changer de classe de problème signifie change d’espace des phases : il
faut déterminer quelles sont les grandeurs intrinsèques suffisantes pour décrire l’état
mécanique d’un point matériel. Dans le cadre visco-élastique par exemple, il convient
de prendre en compte l’histoire de déformation du matériau dans la base de données
(Eggersmann et al., 2019). L’extension aux grandes transformations élastiques a été
explorée par Nguyen and Keip (2018) et Conti et al. (2020).

2.3 Bilan

L’approche DDCM ne fournit pas seulement un nouveau solveur éléments finis pour
les problèmes élastiques linéaires, peu à même de se comparer à la technologie mature
des éléments finis, mais bien davantage un nouveau paradigme pour la mécanique
numérique qui a inspiré de nombreuses contributions ces dernières années. Nous
pensons que ce travail invite à un changement radical de perspective : la loi de
comportement n’est plus écrite « en dur » dans le code mais on s’autorise à s’éloigner
légèrement de la réponse matériau, représentée par une base de données brutes. Au
contraire, les principes physiques que sont la compatibilité et l’équilibre des efforts
doivent toujours être respectés. De ce point de départ, plusieurs pistes de travail se
sont ouvertes pour la présente thèse. Nous avons choisies d’explorer deux thèmes,
qui font naturellement l’objet de deux parties distinctes dans le manuscrit :

1. l’extension aux grandes transformations élastiques,

2. l’application aux simulations multiéchelles.
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Nous nous intéressons dans un premier temps à l’extension aux grandes trans-
formations élastiques, pour laquelle deux formulations sont étudiées :

• Une formulation dite Lagrangienne, dans laquelle l’espace des phases est celui
des couples (E,S) de déformation de Green-Lagrange – second tenseur des
contraintes de Piola-Kirchhoff (Nguyen and Keip, 2018). Cette publication
présente une formulation éléments finis restreinte aux cas bidimensionnels et ne
peut ainsi pas être comparée aux standards présentés dans le Chapitre 1. Par
ailleurs, il n’existe pas de preuve mathématique de convergence similaire au cas
des petites déformations, car les contraintes de minimisation (la compatibilité
et l’équilibre) sont non linéaires.

• La formulation dit nominale de Conti et al. (2020) propose de résoudre ce
dernier point : l’espace des phases est défini par les champs (F ,P ) du ten-
seur gradient de la transformation – premier tenseur des contraintes de Piola-
Kirchhoff. Cependant, seule une formulation pour la mécanique des milieux
continus est proposée ; l’implémentation dans un solveur éléments finis reste
donc entièrement à faire.

Nos travaux visent à explorer et comparer les deux formulations. Les solveurs élé-
ments finis développés pour les deux approches sont présentés dans le Chapitre 3. Le
Chapitre 4 est consacré à la génération et à l’analyse de base de données nécessaires
aux simulations DDCM en grandes transformations. Enfin, le Chapitre 5 évalue les
approches développées dans les deux précédents chapitres à l’aide d’un problème tri-
dimensionnel complexe. En dernier lieu, le Chapitre 6 constitue une ouverture vers
la simulation multiéchelle de structure à matériaux hétérogènes. La base de données
est constituée des couples déformation-contrainte macroscopiques et est enrichie par
des calculs d’homogénéisation de la réponse microstructurale bien choisis, au cours
d’un processus itératif.
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3 Chapitre 3 : Solveurs data-driven pour les grandes
transformations élastiques

3.1 Introduction

L’approche DDCM consiste à minimiser la distance entre deux types de champs
déformation-contrainte : l’un représente la réponse du matériau et prend ses valeurs
dans une base de données, l’autre décrit la réponse mécanique de la structure et véri-
fie les principes de compatibilité et d’équilibre. Comme mentionné plus haut, étendre
l’approche aux grandes transformations élastiques suppose de choisir les nouvelles
variables d’état susceptibles de représenter les réponses matériau et mécanique.

Dans le cadre des matériaux capable de subir de grandes déformations réver-
sibles, dont le comportement est indépendant de l’histoire de déformation, le couple
déformation-contrainte suffit. En mécanique non linéaire, le Chapitre 1 nous a mon-
tré que plusieurs couples de déformation-contrainte conjugués existent : (i) le couple
dit Lagrangien (E,S), (ii) le couple dit nominal (F ,P ), (iii) le couple dit Eulérien
(d,σ).

Dans ce chapitre nous explorons les deux premières formulations, qui ont été
respectivement proposées par Nguyen and Keip (2018) et Conti et al. (2020). Nous
proposons une implémentation éléments finis pour chacune d’elles et discutons de
la robustesse des solveurs au moyen d’exemples tests.

3.2 Mécanique numérique en grandes transformations pilotée par
les données

La stratégie de résolution adoptée en grandes transformations suit l’heuristique pré-
sentée en petites déformations : une minimisation alternée sur les états mécaniques
puis matériau. Si la structure reste inchangée, plusieurs ingrédients de la DDCM

doivent néanmoins être reformulés :

• L’espace des phases correspond désormais soit à l’ensemble des couples de
tenseurs symétriques (E,S), soit à l’ensemble des couples de tenseurs (F ,P ) ;

• La mesure de distance entre états mécaniques et matériau s’en trouve modifiée ;

• La cinématique et l’équilibre des efforts sont reformulés d’après les équations
de la mécanique non linéaire rappelées au Chapitre 1 ;

• La non-linéarité des contraintes de minimisation mentionnées ci-dessus de-
mande de déployer des stratégies de résolution spécifiques à chaque formula-
tion.

Cette section est donc organisée comme suit : pour chaque formulation, nous
présentons d’abord la formulation continu du problème data-driven avant d’en dé-
tailler sa discrétisation par la méthode des éléments finis. Nous développons ensuite
les stratégies de résolution numérique spécifiques à chaque formulation.
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3.2.1 Approche Lagrangienne

Pour Nguyen and Keip (2018), le couple déformation-contrainte Lagrangien (E,S)

est particulièrement avantageux car la symétrie des tenseurs assure de fait l’objec-
tivité et car la linéarisation vers les petites déformations est directe. Nous ajoutons
que la symétrie des tenseurs assure de fait l’équilibre des moments comme en petites
déformations (σ = σT ) et limite la dimensionalité de l’espace des phases à 6+6 = 12

au plus.

Formulation continue Nous suivons ici l’approche en petites déformations qui
repose sur la définition d’espaces fonctionnels mécanique E et matériau D, sous-
ensembles de l’espace des phases des champs déformation-contrainte noté Z. Le
problème data-driven en grandes transformations est exprimé de la même manière
que le problème petites déformations. Considérant un corps occupant un domaine Ω0

dans sa configuration de référence et un domaine Ω ∈ R3 en équilibre quasi-statique,
soumis à des déplacements imposés uD et des forces volumiques f et surfaciques t,
les équations de la cinématique s’écrivent en formulation Lagrangienne comme suit :

E =
1

2

(
∇Tu∇u+ ∇u+ ∇Tu

)
dans Ω, (E.9a)

u = uD sur ΓD0 . (E.9b)

L’équilibre est imposé sous sa forme faible (principe des puissances virtuelles) :

δW =

∫

Ω0

S : δĖ dV −
∫

Ω0

f0 · δv dV −
∫

∂Ω0

t0 · δv dA = 0, (E.10)

où δv est une vitesse virtuelle cinématiquement admissible depuis la position ac-
tuelle du corps, δĖ = 1/2

(
δḞ TF + F T δḞ

)
avec δḞ = ∂(δv)/∂X, et f0 = Jf et

t0 = ( da/dA) t sont les forces volumiques et surfaciques respectivement exprimées
dans la configuration de référence (J = detF ). Ainsi, l’ensemble contrainte s’écrit
désormais :

E = {(E,S) | Eqs. (E.9) et (E.10)} . (E.11)

Les états matériau prennent leur valeur dans des bases de données de couples
déformation-contrainte Lagrangiens

Dloc = {(Ei,Si) | i ∈ [1 . . m]} (E.12)

et l’ensemble données matériau est défini sur la configuration de référence Ω0 :

D = {(E,S) | (E(x),S(x)) ∈ Dloc pour tout X dans Ω0} . (E.13)

Comme précédemment, la solution est déterminée comme le champ déformation-
contrainte qui vérifie les équations de la mécanique et s’approche au plus près de
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l’ensemble données matériau. Le problème s’écrit donc à nouveau comme une double
minimisation :

S = arg min
(E,S)∈E

min
(E′,S′)∈D

‖ (E,S)−
(
E′,S′

)
‖C, (E.14)

où la norme ‖ • ‖C sur Z est maintenant définie par

‖ (E,S) ‖2C =

∫

Ω0

(
1

2
(C : E) : E +

1

2

(
C−1 : S

)
: S

)
dV, (E.15)

avec C un tenseur du quatrième ordre défini positif.
La formulation ci-dessus est également valable en trois ou deux dimensions,

lorsque, par exemple, les hypothèses de déformations planes, ou de contraintes planes
et d’incompressibilité du matériau sont faites :

• En déformations planes, le tenseur des déformations E est complètement dé-
terminé par ses composantes dans le plan (E33 = 0). Pour le tenseur des
contraintes S, seule la composante S33 est non nulle hors plan. Cette valeur
ne peut pas être déterminée a posteriori comme lorsque le modèle de com-
portement est connu. L’approche data-driven donne alors seulement accès à
la solution en deux dimensions.

• En contraintes planes, le tenseur des contraintes S est complètement déterminé
par ses composantes dans le plan (S33 = 0). La déformation hors-plan E33 peut
être obtenue a posteriori lorsque le matériau est supposé incompressible.

Dans la suite, les tenseurs E et S sont donc indifféremment bi- ou tridimensionnels.

Formulation éléments finis Pour passer de la formulation continue à la formu-
lation éléments finis il convient de définir une approximation discrète du corps et de
la cinématique ainsi qu’une manière d’évaluer les contraintes : les déformations et
les contraintes n’étant plus reliées par une loi de comportement, l’interpolation des
contraintes ne découle plus naturellement de l’interpolation des déplacements dans
le maillage.

Considérons un maillage éléments finis composés de N nœuds connectés par des
éléments isoparamétriques de dimension n ∈ {2, 3}. Les éléments sont les supports
compacts des fonctions d’interpolation nodales, notées {Na(X)}Na=1. Le champ de
déplacement dans la structure est alors approché par

u(X) =

N∑

a=1

uaNa(X), ∀X ∈ Ω0. (E.16)

On note α ∈ [1 . . N ] les indices des degrés de liberté ; ils sont reliés aux nœuds
a ∈ [1 . . N ] et à la direction i ∈ [1 . . n] par une fonction α(a, i)1.

1Par exemple α(a, i) = (a− 1)n+ i.
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Par ailleurs, les éléments sont équipés d’une règle d’intégration, typiquement
une quadrature de Gauss, de telle sorte que l’intégrale d’une fonctionnelle F sur
le domaine Ω0 est évaluée par une somme pondérée des valeurs de la fonction aux
points d’intégration, indexés par la lettre e :

∫

Ω0

F(X) dV =
M∑

e=1

weF(Xe), (E.17)

avecM le nombre total de point d’intégration dans le maillage et we le poids associé
à chaque point d’intégration de coordonnées Xe dans Ω0.

Enfin, les conditions de Dirichlet sont encodées dans un tableau de nD dé-
placements imposés scalaires

{
uD
α

}
α∈D, avec D = {α1, · · · , αnD}, tel que αk ∈

[1 . . Nn], ∀k ∈ [1 . . nD].
D’après les équations cinématiques continues Eqs. (E.9) et la règle d’interpola-

tion Eq. (E.16), les équations discrètes de la cinématique s’écrivent :

E(Xe) = Ee =
1

2

(
∇e

0 u+ (∇e
0 u)T + (∇e

0 u)T ∇e
0 u
)
, ∀e ∈ [1 . . M ], (E.18a)

ua · ei = uD
α , ∀(a, i) : α(a, i) ∈ D,

(E.18b)

où

∇e
0 u =

N∑

a=1

(ua ⊗Bea) , (E.19)

avec Bea = ∇0Na(Xe) le vecteur encodant la géométrie et la connectivité au point
e et au nœud a. D’après l’Eq. (E.10), en utilisant la même interpolation pour les
vitesses virtuelles que celle utilisée pour les déplacements dans l’Eq. (E.16) et la
règle d’intégration Eq. (E.17), les équations discrètes de la statique s’écrivent :

Ra · ei = 0, ∀(a, i) : α(a, i) 6∈ D (E.20a)

avec

Ra =

M∑

e=1

we FeSeBea − T ext
a , ∀a ∈ [1 . . N ], (E.20b)

avec Fe = ∇e
0 u + I et Se = S(Xe) les tenseurs gradient de la transformation

et contrainte au point d’intégration Xe, et T ext
a le vecteur des efforts extérieurs

généralisés au nœud a, défini par :

T ext
a =

∫

Ω0

Naf0 dV +

∫

∂Ω0

Nat0 dA. (E.21)

Ainsi, l’interpolation des déformations découle de l’approximation des déplacements
tandis que les contraintes sont simplement évaluées aux points d’intégration. L’en-
semble contrainte s’écrit comme l’ensemble des champs discrets (à valeurs continues)
déformation-contrainte (E,S) = {(Ee,Se)}Me=1 vérifiant les équations ci-dessus :

E = {(E,S) | Eqs. (E.18) et (E.20)} . (E.22)



288 Annexe E. Résumé étendu en français

Il est un sous-espace de l’espace de phases qui s’écrit Z = Z(1)
loc × · · · × Z

(M)
loc , avec

Z(e)
loc = Rn×nsym × Rn×nsym .
L’ensemble données matériau est quasiment inchangé ; il s’agit de l’ensemble des

champs discrets, à valeurs discrètes dans la base de données locale D(e)
loc attachée à

chaque point d’intégration :

D =
{

(E,S) | ∀e ∈ [1 . . M ], (Ee,Se) ∈ D(e)
loc

}
, (E.23a)

avec

D(e)
loc = {(Ei,Si) | i ∈ [1 . . me]} ⊂ Zeloc. (E.23b)

La formulation éléments finis du problème data-driven s’écrit donc comme la
double minimisation sous contrainte

S = arg min
(E,S)∈E

min
(E′,S′)∈D

‖(E,S)− (E′,S′)‖2C, (E.24)

avec E et D définis par l’Eq. (E.22) et l’Eq. (E.23) et où la norme ‖ • ‖C Eq. (E.15)
est désormais évaluée de façon discrète par

‖(E,S)‖C =
∑

e

we
2

(
(C : Ee) : Ee +

(
C−1 : Se

)
: Se

)
. (E.25)

Solveur data-driven Lagrangien Le problème de minimisation est quasiment
inchangé par rapport à la formulation en petites déformations : il s’agit d’une double
minimisation sur des variables à valeurs discrètes (états matériau) et à valeurs conti-
nues (états mécaniques). Seul l’espace des phases a changé (tout en restant un espace
de couples de tenseurs symétriques) ce qui induit des contraintes de minimisation
non linéaires : la compatibilité Eq. (E.18a) est non linéaire en déplacement et l’équi-
libre Eq. (E.20) est bilinéaire en déplacement-contrainte.

Pour résoudre le problème de double minimisation, la stratégie de minimisation
alternée est de nouveau employée :

• Considérons dans un premier temps l’étape où l’état mécanique de la structure
(E,S) = {(Ee,Se)}Me=1 ∈ E est fixé. L’ensemble solution matériau Smat est
alors obtenu d’après l’Eq. (E.24) comme

Smat = arg min
(E′,S′)∈D

‖(E,S)− (E′,S′)‖2C (E.26)

Tous les termes dans la somme Eq. (E.25) étant indépendants les uns des
autres, la minimisation Eq. (E.26) peut être faite séparément dans chacune
des bases de données D(e)

loc. Ainsi, l’espace solution matériau Smat est obtenue
parM recherches de plus proches voisins dans l’espace des phases local Rn×nsym ×
Rn×nsym :

Smat(z) =

{
arg min

(Ei,Si)∈D(e)
loc

de ((Ee,Se) , (Ei,Si)) | ∀e ∈ [1 . . M ]

}
. (E.27)
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où de désigne la distance locale entre deux couples déformation-contrainte
définie par

d2
e ((Ee,Se) , (Ei,Si)) =

1

2
(C : (Ee −Ei)) : (Ee −Ei)

+
1

2

(
C−1 : (Se − Si)

)
: (Se − Si). (E.28)

L’état matériau du point d’intégration e, sélectionné comme le plus proche de
l’état mécanique considéré est noté (E∗ie,S

∗
ie) et est défini par

de ((Ee,Se) , (E
∗
ie,S

∗
ie)) ≤ de ((Ee,Se) , (Ei,Si)) ,

∀e ∈ [1 . . M ], ∀ (Ei,Si) ∈ D(e)
loc. (E.29)

L’indice entier ie est alors la véritable variable d’optimisation. Il relie le point
d’intégration e au i-ème point de la base de données D(e)

loc. Pour effectuer effica-
cement les recherches dans la base de données, nous utilisons des algorithmes
basés sur des structures en arbre, qui réduisent drastiquement le coût de calcul
(Bentley, 1975; Pedregosa et al., 2011).

• Considérons maintenant l’étape où l’état matériau de la structure (E∗,S∗) =

{(E∗ie,S∗ie)}Me=1 ∈ D est fixé. La double minimisation est simplifiée en une
simple minimisation sous contrainte. L’ensemble solution mécanique Smec est
alors déterminé comme suit :

Smec(z∗) = arg min
(E,S)∈Z

M∑

e=1

we de ((Ee,Se) , (E
∗
ie,S

∗
ie)) (E.30a)

sous contrainte

Ee =
1

2

(
∇e

0 u+ (∇e
0 u)T + (∇e

0 u)T ∇e
0 u
)
, ∀e ∈ [1 . . M ], (E.30b)

ua · ei = uDα , ∀(a, i) : α(a, i) ∈ D,
(E.30c)

Ra · ei =
M∑

e=1

weF
e
iJS

e
JKB

ea
K − T ext

a · ei = 0, ∀(a, i) : α(a, i) 6∈ D.

(E.30d)

Comme dans l’approche en petites déformations, la minimisation sous
contrainte Eq. (E.30) est traitée par une méthode de multiplicateurs de La-
grange. A nouveau, les équations de stationnarité conduisent à la formulation
de deux problèmes pseudo-élastiques. En revanche, ces systèmes sont désor-
mais couplés et non linéaires. Nous les résolvons, comme dans Nguyen and
Keip (2018), au moyen d’un schéma de Newton-Raphson. À chaque itération
de la minimisation alternée, et à chaque itération du schéma de Newton il
faut donc construire et résoudre un nouveau système linéaire dont la taille est
(2ndof × 2ndof), avec ndof = Nn−nD le nombre total de degrés de liberté dans
le maillage.
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3.2.2 Approche nominale

L’approche nominale a été proposée par Conti et al. (2020) comme une extension
du problème data-driven tel que présenté dans Conti et al. (2018). C’est donc à ce
jour la seule formulation qui possède les preuves mathématiques de convergence des
solutions vers les résultats classiques (Conti et al., 2020). L’espace des phases est
désormais l’ensemble des couples de tenseur gradient de la transformation – premier
tenseur de contrainte de Piola-Kirchhoff. Ces tenseurs ne sont pas symétriques, ce
qui ne permet plus d’imposer implicitement l’objectivité et l’équilibre des moments
comme précédemment. Dans cette section, nous reprenons la formulation continue
telle que présentée dans Conti et al. (2020) et proposons le solveur éléments finis
associé, ce qui est à notre connaissance une contribution originale du présent travail.

Formulation continue On considère à nouveau un corps occupant un domaine
Ω0 dans sa configuration de référence et un domaine Ω en équilibre statique, soumis
aux efforts f0 et t0, et aux déplacements imposés uD.

Pour assurer la convergence des solutions data-driven vers les solutions classiques
(avec une loi de comportement), les champs gradient de la transformation-contrainte
doivent respecter certaines conditions d’intégrabilité. L’espace des phases est ainsi
défini comme

Z = Lp(Ω0,Zloc)× Lq(Ω0,Zloc) (E.31)

avec (p, q) tel que 1/p+1/q = 1 et Lp (Ω0,Zloc) l’ensemble des fonctions continues de
Ω0 dans Zloc = R3×3 (l’espace local des phases) dont la valeur absolue à la puissance
p est Lesbegue intégrable.

L’espace contrainte est défini comme précédemment comme l’ensemble des
champs d’état gradient de la transformation-contrainte vérifiant les équations mé-
caniques. La cinématique s’écrit

F = ∇0u+ I dans Ω0, (E.32a)

u = uD sur Γ0N . (E.32b)

et l’équilibre des efforts s’écrit sous forme faible dans sa formulation nominale :

δW =

∫

Ω0

P : δḞ dV −
∫

Ω0

f0 · δv dV −
∫

∂Ω0

t0 dA = 0. (E.33)

A cela, il faut ajouter l’équilibre des moments FP T = P TF , qui peut s’écrire
comme l’équation vectorielle

E :
(
FP T

)
= 0, dans Ω0. (E.34)

Ainsi, l’ensemble contrainte s’écrit désormais

E = {(F ,P ) ∈ Z | Eqs. (E.32), (E.33) et (E.34)} . (E.35)
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L’ensemble données matériau D est simplement redéfini par le changement des
variables qui sont stockées dans la base de données matériau Dloc :

D = {(F ,P ) ∈ Z | (F ,P ) (X) ∈ Dloc} , (E.36a)

avec

Dloc = {(FiPi) ∈ Zloc | i ∈ [1 . . m]} . (E.36b)

Enfin, l’ensemble solution des états mécaniques vérifiant les principes mécaniques
tout en s’approchant au plus près de la base de données est défini par la minimisation
d’une nouvelle fonction distance :

S = arg min
(F ,P )∈E

min
(F ′,P ′)∈D

d
(
(F ,P ) ,

(
F ′,P ′

))
(E.37)

avec la distance d définie par

d
(
(F ,P ) ,

(
F ′,P ′

))
=

∫

Ω0

(
V
(
F − F ′

)
+ V ∗

(
P − P ′

))
dV (E.38)

où V est une fonction convexe, de conjuguée convexe V ∗ définie par

V (F ) =
1

p
|F |p, V (F ) =

1

q
|P |q. (E.39)

Formulation éléments finis La formulation éléments finis est développée exac-
tement comme pour la formulation Lagrangienne. Nous considérons à nouveau un
maillage de N nœuds et M points d’intégration. Les déplacements sont interpolés
pareillement à l’Eq. (E.16) et la règle d’intégration Eq. (E.17) est inchangée. Les
champs tenseur gradient de la transformation et premier tenseur de contrainte de
Piola-Kirchhoff sont donc à nouveau évalués seulement aux points d’intégration. Les
ensembles données matériaux D et contrainte E sont évalués de façon discrète sur
le maillage comme précédemment.

Le problème data-driven se résume à nouveau à une double minimisation sous
contraintes :

Smec(z∗) = arg min
(E,S)∈Z

min
(F ′,P ′)∈D

M∑

e=1

we de
(
(Fe,Pe) ,

(
F ′e,P

′
e

))
(E.40a)

sous contrainte

Fe = ∇e
0 u+ I, ∀e ∈ [1 . . M ], (E.40b)

ua · ei = uDα , ∀(a, i) : α(a, i) ∈ D, (E.40c)

Ra · ei =
M∑

e=1

weP
e
iJB

ea
J − T ext

a · ei = 0, ∀(a, i) : α(a, i) 6∈ D. (E.40d)

E :
(
FeP

T
e

)
= 0, ∀e ∈ [1 . . M ], (E.40e)
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où la distance locale de dans Zloc ×D(e)
loc est définie par2

de ((Fe,Pe) , (Fi,Pi)) =
1

2
C|Fe − Fi|2 +

1

2
C−1|Pe − Pi|2. (E.41)

A noter que les contraintes de compatibilité et d’équilibre translationnel Eq. (E.30b)
et Eq. (E.30d) sont désormais linéaires. En revanche, s’est ajoutée une contrainte
bilinéaire supplémentaire : l’équilibre rotationnel Eq. (E.40e).

Solveur data-driven nominal La stratégie de minimisation alternée est à nou-
veau employée pour résoudre séparément les états matériau et les états mécaniques.

• Les premiers, notés (F ∗ie,P
∗
ie), sont déterminés par une recherche des plus

proches voisins dans l’espace local des phases. La distance locale quadratique
que nous utilisons permet encore de bénéficier des algorithmes de recherche
efficaces basés sur des structures en arbre.

• Les états mécaniques résultent d’un problème de minimisation sous contrainte.
Cependant, celui-ci ne peut être traité comme précédemment par une méthode
de multiplicateurs de Lagrange, dont les équations de stationnarité sont inex-
tricables, car la contrainte supplémentaire est bilinéaire et attachée aux points
d’intégration plutôt qu’aux nœuds. Nous développons donc une approche de
Lagrangien augmenté qui permet de réduire le nombre d’inconnues du système
et d’éviter les problèmes de conditionnement bien connus des approches de pé-
nalité (Bertsekas, 1996). La fonction Lagrangien augmenté (non linéaire) est
minimisée au moyen d’un schéma de Newton-Raphson. Celui-ci nécessite que
soit construit et résolu un système de taille (Nn + nstates)× (Nn + nstates) à
chaque itération du schéma de Newton, chaque itération du Lagrangien aug-
menté, chaque itération de la minimisation alternée, où nstates = Mn2 est le
nombre d’inconnues en contrainte.

Solveur nominal linéaire Une version simplifiée du solveur nominal présenté
ci-dessus consiste à ne pas imposer explicitement la contrainte d’équilibre rotation-
nel, en supposant qu’elle soit vérifiée par les données matériau. La minimisation se
fait alors sur l’ensemble affine E0 défini par l’ensemble des champs gradient de la
transformation-contrainte vérifiant la cinématique et l’équilibre translationnel uni-
quement :

E0 = {(F ,P ) ∈ Z | Eqs. (E.32) et (E.33)} . (E.42)

Les équations de stationnarité du Lagrangien augmenté (qui ne comporte plus que
des contraintes linéaires en déplacement et contrainte) sont alors simplifiées et abou-
tissent à deux systèmes pseudo-élastiques linéaires indépendants. Cela est donc plus

2Les fonctions V et V ∗ définies dans l’Eq. (E.39) ont été modifiée pour les besoins numériques :
le scalaire C permet de rendre comparable les deux quantités et les paramètres p et q sont pris
égaux à 2.
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avantageux numériquement parlant. Il convient néanmoins de s’assurer qu’il est suffi-
sant de vérifier l’équilibre des moments dans l’ensemble données matériau D unique-
ment. En effet, la contrainte d’équilibre rotationnel étant locale, on peut espérer que
la vérifier à chaque point d’intégration à travers l’association état mécanique/état
matériau suffit, plutôt que de devoir l’imposer explicitement dans la minimisation
de l’état mécanique.

3.2.3 Comparaison théorique des deux approches

Avant de passer à la validation numérique des solveurs proposés nous analysons les
principales différences des deux formulations.

1. Il n’existe à notre connaissance aucune preuve mathématique d’existence ou
de convergence des solutions au problème data-driven Lagrangien, analogues
à celles fournies pour la formulation nominale par Conti et al. (2020). Le
caractère quadratique de l’équation de compatibilité complexifie le problème.
Néanmoins, les théorèmes d’existence et de convergence donnés dans Conti
et al. (2020) reposent sur des conditions topologiques particulières pour les
ensembles E et D. Les auteurs proposent notamment des exemples de bases
de données générées à partir de modèles hyperélastiques qui respectent ces
conditions et pour lesquelles des valeurs optimales des paramètres (p, q) 6=
(2, 2) doivent être choisies. Cela ne nous a pas permis d’évaluer numériquement
ces modèles, dont nous montrons par ailleurs dans l’Annexe D qu’ils sont non
physiques.

2. L’implémentation éléments finis de la formulation nominale est un peu plus
complexe et fastidieuse que pour la formulation Lagrangienne : il s’agit en
particulier de résoudre un problème de minimisation non contraint à l’intérieur
d’une boucle de Lagrangien augmenté, ce qui ajoute une couche à l’algorithme.
Par ailleurs, la taille des systèmes non linéaires à résoudre est plus grande dans
le cas nominal que dans le cas Lagrangien ((2ndof)

2 contre (Nn+ nstates)
2).

Ces difficultés sont dues à la non symétrie des tenseurs de l’espace des phases,
ce qui nécessite d’imposer explicitement la contrainte d’équilibre rotationnel.

3. Le fléau de la dimensionalité risque d’être d’autant plus prégnant en formu-
lation nominale que Lagrangienne : l’espace de recherche est de plus grande
dimension car l’ensemble des composantes indépendantes des états gradient de
la transformation-contrainte est de 18 pour un calcul tridimensionnel (contre
12 en formulation Lagrangienne).

En résumé, l’approche Lagrangienne peut être vue comme une « solution d’ingé-
nieur » au problème data-driven en grandes transformations. L’approche nominale
quant à elle présente des garanties mathématiques mais aboutit à un problème nu-
mérique plus lourd. Ce dernier peut être allégé si la contrainte d’équilibre rotationnel
n’est pas imposée mais seulement prise en compte dans les données.
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3.3 Résultats numériques

Cette partie a pour but de valider l’implémentation éléments finis des deux ap-
proches data-driven en grandes transformations et de discuter d’aspects pratiques
d’utilisation des solveurs. La validation s’entend ici comme la capacité du solveur à
converger vers la solution éléments finis classique du problème, lorsque la base de
données est générée à partir d’un échantillonnage d’une loi de comportement.

Les bases de données utilisées ici sont en effet générées à partir d’un échantillon-
nage de la loi de comportement ou bien d’une simulation éléments finis utilisant une
loi de comportement. On fait l’hypothèse des contraintes planes et d’un matériau
incompressible. On choisit un modèle neo-Hookéen. Dans ce cas, il est possible (cf.
Annexe C) d’exprimer le modèle entièrement à partir des tenseurs 2D de déformation
et de contrainte :

S = µ
(
I − (detC)−1C−1

)
(E.43)

avec S,C ∈ R2×2
sym et µ = 1.2 MPa le module de cisaillement.

On étudie alors trois exemples bidimensionnels de complexité croissante : (i) la
traction uniaxiale d’une fine membrane, (ii) la traction d’une fine membrane encas-
trée à l’autre extrémité et (iii) un chargement plus complexe (traction et cisaillement
simultané) d’une fine membrane trouée.

3.3.1 Validation : traction uniaxiale

Dans cet exemple, la base de données est simplement générée à partir d’un échan-
tillonnage de la courbe contrainte-extension P (λ) du modèle neo-Hookéen. L’espaces
des phases peut alors être observé dans le plan bidimensionnel (λ, P ). On génère deux
familles de base de données : (i) une qui contient la solution de référence, (ii) une
autre qui ne contient pas la solution de référence et pour laquelle on fait varier la
densité de points.

Dans ce premier exemple simple, pour lequel les champs mécanique doivent être
homogènes sur la structure, on montre déjà plusieurs resultats importants :

• Les deux méthodes Lagrangienne et nominale sont capables de retrouver la
solution de référence lorsque celle-ci est dans la base de données ;

• Lorsque la base de données ne contient pas la solution de référence, la solution
data-driven converge vers celle-ci à mesure que la densité de points dans la
base de données augmente, dans les deux cas. Cependant, les solutions La-
grangienne et nominale sont légèrement différentes.

3.3.2 Cas non homogène : traction contrainte

Dans cet exemple, la base de données est constituée des états déformation-contrainte
de référence, obtenue par une simulation éléments finis utilisant le modèle neo-
Hookéen donné par l’Eq. (E.43). On s’attend ainsi à ce que les deux solveurs re-
trouvent la solution de référence. On étudie par ailleurs les performances du solveur
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nominal linéaire, où la contrainte d’équilibre rotationnel n’est pas imposée sur les
états mécaniques (elle est naturellement vérifiée dans la base de données).

On observe tout d’abord que la minimisation alternée n’est pas capable de re-
trouver cette solution de référence (pourtant entièrement contenue dans la base de
données) : le minimum de la fonction objectif n’atteint pas zéro, mais une valeur
tout de même faible dans les deux cas. On montre néanmoins en étudiant les cartes
de la norme de Von Mises des contraintes de Cauchy que les résultants sont très
satisfaisants.

On s’intéresse ensuite à l’initialisation des états matériau à l’entrée du schéma
de minimisation alternée : initialisation aléatoire ou initialisation forcée à l’état
déformation-contrainte nul ((E∗ie,S

∗
ie) = (0,0) ou bien (F ∗ie,P

∗
ie) = (I,0)). On

montre que la méthode la plus robuste est l’initialisation à l’état déformation-
contrainte nul, dans les deux cas. À noter néanmoins que l’approche Lagrangienne
converge quasiment toujours, quelle que soit la méthode d’initialisation choisie tandis
que la convergence du solveur nominal est très difficile à obtenir pour des initialisa-
tions aléatoires.

On étudie enfin l’erreur à la conservation du moment angulaire lorsqu’on utilise le
solveur nominal linéaire. Celle-ci atteint jusqu’à 9 % de la densité d’énergie élastique
de déformation.

3.3.3 Chargement complexe

Cet exemple sert à étudier le comportement de la méthode vis-à-vis d’une structure
et d’un chargement complexes qui génèrent des champs mécaniques hétérogènes
sur la structure (membrane trouée, traction et cisaillement simultanés). La base de
données est construite comme précédemment à partir de la solution de référence.
Les deux formulations nominale et Lagrangienne sont évaluées séparément :

1. Dans l’exemple précédent, l’homogénéité des champs mécaniques sur la struc-
ture pouvait expliquer le fait que ne pas prendre en compte l’équilibre rotation-
nel ait un impact relativement faible. On évalue ici le solveur nominal linéaire
avec un exemple plus complexe. On construit une famille de bases de données
en ajoutant les orbites des tenseurs de la base de données de référence, pour
étudier l’équivalence invariance par rotation/conservation du moment angu-
laire.

2. On étudie ensuite la convergence de la solution Lagrangienne avec le nombre
de points dans la base de données, en utilisant une méthode d’enrichissement
artificiel de la base de données à partir de la solution éléments finis de réfé-
rence : une autre famille de bases de données est obtenue par la concaténation
de plusieurs solutions de référence du même problème avec différents maillages
de résolution croissante.

A nouveau, le minimum global d’optimisation n’est pas atteint. Par ailleurs,
la simulation Lagrangienne prend jusqu’à 13 fois moins de temps de calcul que la
simulation nominale.
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On étudie à nouveau le comportement du solveur nominal linéaire. Le temps
de calcul est divisé par deux mais l’erreur à la conservation du moment angulaire
est cette fois plus élevée (plusieurs centaines de pourcent au bord du trou) et cela
impacte également la réponse globale de la structure.

Enfin, l’enrichissement de la base de données par le raffinement du maillage uti-
lisé pour générer la solution de référence ne permet pas d’améliorer significativement
les résultats.

3.4 Conclusion

Ce chapitre constitue le cœur de la thèse. On y a développé les solveurs éléments finis
pour les deux formulations de l’approche data-driven étendue aux grandes transfor-
mations, sur la base des travaux de Nguyen and Keip (2018) et Conti et al. (2020).
Les deux approches utilisent la stratégie de minimisation alternée initialement pro-
posée par Kirchdoerfer and Ortiz (2016). Dans les deux cas, on utilise des algorithmes
efficaces de recherche des plus proches voisins basés sur des structures en arbre pour
l’optimisation des états matériau. Dans le cadre Lagrangien, la minimisation sous
contrainte des états mécaniques est traitée par une méthode de multiplicateurs de
Lagrange. Dans le cadre nominal, elle est traitée par une méthode de Lagrangien
augmenté.

Les exemples numériques ont permis de montrer que les résultats data-driven
sont très satisfaisants en comparaison de la solution de référence, même si le mi-
nimum global de l’optimisation n’est pas atteint par le schéma de minimisation
alternée. On a également montré qu’il est plus judicieux d’initialiser les états ma-
tériau à l’état de déformation-contrainte nul. Par ailleurs, il est démontré que le
solveur nominal linéaire n’est pas assez robuste : l’équilibre rotationnel doit être
imposé comme une contrainte sur les états mécaniques. Enfin, nous avons tenté
d’enrichir la base de données par des moyens qui se sont avérés infructueux. Cela
démontre que les notions de richesse ou de couverture de l’espace par les données ne
sont pas évidentes. Le Chapitre 4 est donc dédié à une étude approfondie des bases
de données nécessaires à la DDCM en grandes transformations.
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4 Chapitre 4

4.1 Introduction

4.1.1 Motivation

La base de données matériau est un ingrédient essentiel de la DDCM. En grandes
transformations, selon la formulation, elle est composé de couples tensoriels (E,S)

ou bien (F ,P ). En pratique, ces tenseurs sont évalués dans la base canonique B =

(eX , eY , eZ). Une base de données pour un problème bidimensionnel s’écrit alors,
pour la formulation Lagrangienne et nominale respectivement :

DLag
loc =

{(
EiXX , E

i
XY , E

i
Y Y , S

i
XX , S

i
XY , S

i
Y Y

)
|i ∈ [1 . . m]

}
(E.44a)

Dnom
loc =

{(
F iXX , F

i
XY , F

i
Y X , F

i
Y Y , P

i
XX , P

i
XY , P

i
Y X , P

i
Y Y

)
|i ∈ [1 . . m]

}
.

(E.44b)

La première est une base de données de m points en 6 dimensions quand la seconde
comporte m points en 8 dimensions. Dans ce chapitre nous étudions les questions
suivantes :

1. Comment peut-on obtenir les bases de données ci-dessus pour un matériau
homogène ?

2. Combien faut-il de points dans la base de données et comment doivent-ils être
répartis pour obtenir une solution mécanique fiable ?

Pour y répondre on se restreint à (i) l’étude d’un problème bidimensionnel (hypo-
thèse des contraintes planes et de l’incompressibilité du matériau), (ii) l’utilisation
de la formulation Lagrangienne seulement car elle est plus mature, utilise un es-
pace des phases de plus petite dimension et est moins coûteuse numériquement que
l’approche nominale.

On répond d’abord à la première question dans le reste de cette introduction en
présentant des considérations générales sur l’acquisition ou la génération de données.
La seconde question est traitée dans le reste du chapitre : d’abord d’un point de vue
théorique dans la Section 4.2, puis d’un point de vue numérique dans la Section 4.3.

4.1.2 Point de vue expérimental

Le développement récent des techniques de mesure de champs permet d’instrumenter
et de suivre de façon précise des essais expérimentaux complexes. Avec la méthode
DDI développée par Leygue et al. (2018) et appliquée avec succès sur des mem-
branes élastomères par Dalémat (2019), on peut désormais avoir accès à des couples
déformation-contrainte représentatifs de matériaux hyperélastiques, sans utiliser de
modèle de comportement. Nous n’avons néanmoins pas utilisé les résultats expéri-
mentaux de Dalémat pour plusieurs raisons :

• la formulation adoptée dans sa thèse est une formulation Eulérienne : l’espace
des phases est constitué des couples déformation vraie–contrainte de Cauchy
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(lnV ,σ), avec V la partie extension de la décomposition polaire gauche de
F = V R. Les couples d’états matériau (lnVi,σi) ainsi obtenus ne sont pas
immédiatement transposables dans un espace Lagrangien (E,S) sans faire
d’hypothèses particulières.

• Dalémat a également montré dans sa thèse qu’il pouvait être difficile d’obtenir
une grande variété de modes de déformation dans les essais expérimentaux :
même en utilisant un chargement complexe sur des membranes à plusieurs
trous, une grande partie des états mécaniques correspondent à la traction
uniaxiale ou au cisaillement pur. Cela pourrait indiquer qu’il est peu probable
que la simulation d’une structure ait besoin que l’intégralité de l’espace des
phases soit couvert par les données puisqu’une partie restreinte est en réalité
explorée par la solution mécanique. Il convient néanmoins de vérifier cette
hypothèse avec des données aussi riches que possible, ce que les essais de
Dalémat ne permettent pas pour l’instant.

• Enfin, le manque de maturité de l’approche expérimentale DDI nous a freiné
dans son utilisation pour valider la DDCM en grandes transformations, elle
aussi immature.

4.1.3 Point de vue numérique

De façon alternative les bases de données peuvent être générée numériquement :
soit de façon synthétique en échantillonnant une loi de comportement par la suite
oubliée, soit de façon numérique en réalisant des simulations aux échelles plus fines
et en homogénéisant la réponse effective à l’échelle considérée. La seconde méthode
s’applique pour les matériaux hétérogènes où l’hypothèse de séparation des échelles
prévaut. Dans un premier temps, nous considérons des matériaux homogènes comme
les élastomères, les gels ou les tissus biologiques simples. Nous générons donc des
bases de données synthétiques, à partir d’une loi de comportement. Cela permet éga-
lement de se comparer facilement à la solution éléments finis, prise comme solution
de référence.

Dans tous les cas, la génération numérique de bases de données nécessite d’échan-
tillonner l’espace des déformations, décrit par les composantes indépendantes du
tenseur E. Pour les problèmes mécaniques réduits à deux dimensions, cet espace est
tridimensionnel : {EXX , EY Y , EXY } ⊂ R3. Jusqu’à maintenant l’espace des défor-
mations a été échantillonnée au moyen de grilles régulières (Kirchdoerfer and Ortiz,
2016; Eggersmann et al., 2020; Nguyen et al., 2020). Si cette méthode simple peut
être pertinente en petites déformations, elle n’est pas appropriée pour les grandes
transformations. En effet, il est possible qu’une point de la grille corresponde à une
déformation non physique, c’est-à-dire à un tenseur gradient de la transformation
au Jacobien négatif.

Dans ce chapitre, nous allons donc explorer d’autres moyens de générer des bases
de données synthétiques adaptées à la DDCM en grandes transformations :
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1. Sur la base du travail de Kunc and Fritzen (2019a), nous générons des bases
de données denses aussi riches que possible (voir 4.2.1).

2. Nous reproduisons uniquement les essais standards (traction uniaxiale, cisaille-
ment pur, traction équi-biaxiale) classiquement utilisés pour identifier les mo-
dèles de comportement hyperélastiques (voir 4.2.2).

3. Nous simulons une base de données qui serait issue de la reformulation La-
grangienne de la méthode DDI (voir 4.2.3).

Enfin, en 4.3, nous analysons la prédiction des simulations DDCM obtenues avec
chacune des familles de bases de données ci-dessus. En particulier, nous les compa-
rons à la solution éléments finis de référence. Nous déployons également des moyens
d’analyse des résultats data-driven pour eux-mêmes, sans référence à la solution
classique.

4.2 Base de données synthétiques

Comme indiqué précédemment les bases de données synthétiques sont toutes géné-
rées au moyen d’un échantillonnage particulier d’une loi de comportement. On se
restreint ici aux problèmes bidimensionnels résultant d’hypothèses de contraintes
planes et d’incompressibilité du matériau. On utilise alors le modèle neo-Hookéen
purement 2D du Chapitre 3 :

Š(C) = µ
(
I − (detC)−1C−1

)
(E.45)

pour tout C ∈ R2×2
sym.

4.2.1 Méthode d’échantillonnage dense

La première méthode d’échantillonnage présentée dans cette partie consiste en un
échantillonnage dense de l’espace du tenseur des déformation pure symétrique U
issu de la décomposition polaire droite du tenseur gradient de la transformation
F = RU . Cette méthode a été développée par Kunc and Fritzen (2019a) pour
de générer des bases de données pour des modèles réduits d’homogénéisation de la
réponse d’une microstructure en grandes transformations. La représentation utilisée
est dense : pour n’importe quel tenseur U dans l’espace il est possible de raffiner la
méthode d’échantillonnage afin de d’obtenir un tenseur U ′ qui s’en approche aussi
près que possible. Afin de générer des bases de données aussi denses et aussi riches
que possible nous mettons donc à profit leur méthode :

1. Nous échantillonnons l’espace des tenseurs U de façon dense grâce à la mé-
thode de Kunc and Fritzen (2019a) ;

2. Les déformations de Green-Lagrange sont obtenues par E = 1
2

(
U2 − I

)
;

3. Les contraintes de Piola-Kirchhoff S = Š(U2) sont obtenues par le modèle
neo-Hookéen Š donné par l’Eq. (E.45).
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Cette famille de base de données est appelée DB-DENSE.
Cette partie est organisée comme suit. Dans un premier temps on présente la

méthode originale de Kunc and Fritzen (2019a) développée pour des problèmes en
trois dimensions. Dans un deuxième temps, on l’adapte aux problèmes en deux di-
mensions (contraintes planes et incompressible). Dans un troisième temps, on donne
un sens physique aux paramètres de la méthode en utilisant les invariants du tenseur
de Hencky H = lnV introduits par Criscione et al. (2000).

Stratégie de séparation amplitude-direction La méthode de Kunc and Frit-
zen (2019a) repose sur deux représentations distinctes de l’espace des tenseurs
U ∈ R3×3

sym admissibles, noté U .
En premier lieu la méthode repose sur la séparation multiplicative volumétrique-

déviatorique DDMS du tenseur U = J1/3Û avec J = detF = detU le Jacobien de
la transformation et Û la partie déviatorique du tenseur U , c.-à-d. det Û = 1.
L’échantillonnage de l’espace U est ainsi séparé en l’échantillonnage de déterminant
J d’une part et l’échantillonnage des tenseurs déviatoriques Û d’autre part :

{(
J (m)

)1/3
Û (j)

}m=Ndet,j=Ndev

m,j=1

. (E.46)

En deuxième lieu, l’espace des tenseurs Û est échantillonnée au moyen d’un pas-
sage par l’exponentielle matrice des tenseurs de Hencky Langrangien déviatoriques
Ŷ = ln Û = ln devU . On note Y la matrice de représentation des tenseurs Ŷ dans
la base canonique B = (eX , eY , eZ). La matrice Y prend ses valeurs dans l’espaces
des matrices 3×3 symétriques à trace nulles, qui est un espace de dimension 5, dont
on peut facilement écrire une base orthonormale Y =

(
Y (1), Y (2), Y (3), Y (4), Y (5)

)
.

La matrice Y est alors obtenue comme la décomposition linéaire unique des matrices
de la base Y :

Y = β

5∑

k=1

ak Y
(k), (E.47)

avec β l’« amplitude déviatorique » et le vecteur unitaire a = [a1, · · · , a5]T ∈ R5 la
« direction » de la matrice Y et donc du tenseur U (Kunc and Fritzen, 2019a).

L’ensemble U des tenseurs de déformation pure U est donc échantillonné comme
suit :

1. Prendre Ndet valeurs de Jacobien J régulièrement espacées entre Jmin et Jmax ;

2. Générer une distribution uniforme de Ndir directions a sur la sphère unité de
R5 ;

3. Prendre Namp valeurs d’amplitude déviatorique β régulièrement espacées dans
[0, βmax]
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4. Générer ainsi la base de données des représentations matricielles de U dans la
base canonique B par

{(
J (i)
)1/3

exp

(
β(j)

5∑

k=1

[
a(l)
]
k
Y (k)

)}i=Ndet,j=Namp,l=Ndir

i,j,l=1

⊂ U . (E.48)

Nous proposons dans cette partie une illustration pour les tenseurs U en dé-
formations planes qui ne comportent alors que 3 composantes indépendantes (les
composantes UXX , UXY , UY Y dans le plan, car UZZ = 1 et UXZ = UY Z = 0),
ce qui permet une visualisation des résultats. Dans ce cas l’espace des tenseurs
U à déterminant J (m) fixé représente un cône arrondi à sa base dans l’espace 3D
(UXX , UXY , UY Y ).

Adaptation aux problèmes bidimensionnels, incompressibles en
contraintes planes Nous nous intéressons ici à l’application de la méthode pour
les problèmes bidimensionnels, sous l’hypothèse des contraintes planes selon eZ ,
pour les matériaux incompressibles. Dans l’hypothèse d’incompressibilité, J = 1,
et les tenseurs complets et déviatoriques sont confondus : U = Û et Y = Ŷ . De
l’hypothèse des contraintes planes selon eZ , l’espace des représentations matricielles
Y des tenseurs Y dans la base B est dorénavant tridimensionnel :

Y = [Y ]B =



c b 0

b d 0

0 0 −(c+ d)


 (E.49)

avec c, b, d trois composantes indépendantes. La base Y est donc réduite à Y =(
Y (1), Y (2), Y (3)

)
. La méthode d’échantillonnage présentée précédemment reste va-

lable, à ceci près que la somme sur les indices k s’arrête à k = 3 et que J (m) = 1.
On note Ū l’ensemble des tenseurs de déformation pure U respectant les conditions
de contraintes planes et l’incompressibilité du matériau (detU = 1).

La partie critique de cette méthode est la génération de directions uniformes
sur la sphère unité de R3, nécessaire pour générer la combinaison linéaire des trois
matrices de la base Y. Nous faisons alors appel à une partie de la littérature très
dense sur ce sujet et choisissons de générer ces directions au moyen d’une répartition
régulière des points sur la sphère, initialement développée par Sloan and Womersley
(2004) pour l’interpolation de polynômes sur l’hypersphère unité de Rn en dimension
n quelconque.

Analyse mécanique de la méthode d’échantillonnage dense Dans cette
section, nous faisons le pont entre la méthode employée par Kunc and Fritzen
(2019a), que nous avons adaptée aux problèmes bidimensionnels incompressibles
en contraintes planes, et la définition d’invariants du tenseur de Hencky H = lnV

donnée par Criscione et al. (2000). En effet, le sens physique des paramètres β et
a = [a1, a2, a3] ∈ R3 n’est pas clair dans la méthode d’échantillonnage proposée
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par Kunc and Fritzen (2019a). Par ailleurs, la définition des invariants proposée par
Criscione et al. (2000) repose elle aussi sur la séparation volumétrique-déviatorique
du tenseur V .

Nous remarquons donc d’abord que les invariants de H sont les mêmes que les
invariants de Y . La théorie déployée par Criscione et al. (2000) s’applique donc de
façon équivalentes au tenseur Y . Les trois invariants ont un sens physiques bien
particulier :

• Le premier invariant K1 décrit la « quantité de dilatation » et est défini par

K1 = trY = lnJ ; (E.50)

• Le second invariant K2 mesure l’« amplitude de distorsion » et est défini par

K2 =
√

devY : devY ; (E.51)

• Le troisième invariant K3 décrit le « mode de distorsion » et est défini par

K3 =
3
√

6

(K2)3
det(devY ), (E.52)

où la constante 3
√

6 est choisie pour que K3 ∈ [−1, 1] (Criscione et al., 2000).

Dans le cas incompressible K1 = 0 et les deux invariants restants sont reliés par
des relations univoques aux valeurs principales yI > yII > yIII du tenseur Y . Il est
possible d’unifier ces relations par la fonction

y (K2,K3, z) = K2

√
2/3 sin

(
ϕ+ z

2π

3

)
(E.53)

avec ϕ = − arcsin (K3)/3 ∈ [−π/6, π/6] et z un entier ne prenant que trois valeurs
possibles, qui donne l’ordre des valeurs propres. En étudiant les valeurs propres
des tenseurs Y générés par la combinaison linéaire des matrices de la base Y, on
peut donc donner un sens physique aux paramètres β et a par l’intermédiaire des
invariants K2 et K3.

Néanmoins, dans le cas de contraintes planes, l’ordre des trois valeurs principales
n’est pas nécessairement respectées dans le plan. On note θ = (p1, eX) l’angle entre
le vecteur de la plus grande valeur propre dans le plan (eX , eY ) du tenseur bidimen-
sionnel Y et le vecteur eX . Cette angle est appelé l’angle d’orientation de l’extension
principale dans le plan. Grâce à ces définitions, nous montrons que l’« amplitude
déviatorique » β n’est autre que l’invariant K2, ce qui confirme l’intuition de Kunc
and Fritzen (2019a) d’une amplitude de distorsion. Nous montrons également que
les coefficients a1, a2, a3 sont reliés par une relation univoque à l’invariantK3, l’angle
d’orientation θ et l’ordre z1, z2 des valeurs propres y1, y2 dans le plan.

Ainsi la signification mécanique de la méthode d’échantillonnage dense est en-
tièrement maîtrisée.
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4.2.2 Méthode d’échantillonnage standard

Grâce l’analyse mécanique précédente il est possible de générer des bases de don-
nées sur mesure, en fonction du contenu mécanique désiré. L’échantillonnage de K2

permet de choisir l’amplitude et donc l’étendue des déformations désirées. L’échan-
tillonnage de K3 et θ permet de choisir le mode de déformation et l’angle de l’axe
selon lequel il s’applique dans le plan. Avec cette approche, il est donc aisé de
générer une base de données qui contient les trois essais standards classiquement
utilisés pour identifier les modèles de comportement hyperélastiques : K3 = 1 pour
la traction uniaxiale, K3 = 0 pour le cisaillement pur et K3 = −1 pour la traction
équibiaxiale. Cette famille de base de données vise à répondre à la question suivante :
peut-on faire de la simulation DDCM avec les données les plus simples disponibles
actuellement (pour lesquelles le tenseur des contraintes est connu notamment) ?

Ce type de base de données est appelé DB-STD dans la suite.

4.2.3 Méthode d’échantillonnage préférentiel

La notion d’« échantillonnage préférentiel » (importance sampling) pour les bases
de données de la DDCM a été utilisée par Stainier et al. (2019), dans une boucle
d’identification-simulation utilisant la méthode DDI pour générer une base de don-
nées matériau à partir d’une structure, utilisée ensuite pour la simulation DDCM

d’une autre structure, en petites déformations élastiques. Les auteurs ont alors mon-
tré que cette base de données donnait de meilleurs résultats qu’une base de données
générée à partir d’une grille régulière dans l’espace des tenseurs de déformation li-
néarisée ε. L’explication avancée est la suivante : la base de données DDI résultant
d’une expérience (ici synthétique) sur une structure, elle couvre de façon préféren-
tielle la région de l’espace déformation-contrainte susceptible d’être explorée par la
solution mécanique de la simulation DDCM. C’est-à-dire que, contrairement à la grille
régulière, la répartition des points dans l’espace des phases est telle qu’il existe une
concentration de points matériau là où il est susceptible d’exister une concentration
d’états mécaniques.

Pour reprendre cette analyse en grandes transformations, nous avons simulé la
sortie d’une méthode DDI, telle qu’elle résulterait d’une formulation Lagrangienne
du problème. Pour ce faire nous avons opéré un clustering par un algorithme stan-
dard de k-means (recherche de k centroïdes) sur les états de déformation-contrainte
(E,S) issus de plusieurs simulations éléments finis sur une membrane élastomère à
deux trous, sollicitée en traction, cisaillement et compression. Les simulations élé-
ments finis font également appel au modèle de comportement neo-Hookéen donné
par l’Eq. (E.45).

4.3 Application numérique

4.3.1 Exemple test et base de données matériau

Nous étudions ici le réponse d’une fine membrane trouée rectangulaire de dimension
l × h = 20 mm × 50 mm, encastrée à une extrémité et soumise à un déplacement
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imposé uD = 30 mm eX + 5 mm eY à l’autre extrémité. L’hypothèse des contraintes
planes est adoptée et le matériau est supposé incompressible. Deux maillages sont
étudiés : le maillage « grossier » (resp. « fin ») comporte N = 1092 (resp. 2495)
nœuds et M = 4060 (resp. 9500) points d’intégration.

Le modèle de comportement utilisé pour la génération des bases de données
et pour produire la solution éléments finis de référence est le modèle neo-Hookéen
donné par l’Eq. (E.45), avec µ = 1.2 MPa.

On génère des bases de données des trois familles DB-DENSE, DB-STD et DB-DDI

selon les méthodes précédemment présentées. Pour chacune des deux premières fa-
milles, on fait varier les paramètres d’échantillonnage pour générer des bases de
données de différentes tailles :

• 12 bases de données DB-DENSE qui comporte chacune m = Ndir×Namp points
avec Ndir ∈ {25, 256, 2500, 25 600} et Namp ∈ {10, 1000, 1000} ;

• 3 bases de données DB-STD qui comporte chacune m = 3NK3 × Nθ × Namp

points avec NK3 = 3 fixé, Nθ = 60 fixé et Namp =∈ {10, 1000, 1000}.

La base de données DB-DDI est générée par le clustering d’un total de 429 520

couples déformation-contrainte et comprend m = 2200 points. Nous remarquons
dans ce cas que la base de données DB-DDI comprend moins de points qu’il n’y a
de points d’intégration dans le maillage. Nous insistons également sur le fait que
celle-ci ne contient pas la solution de référence : les états matériau ont été obtenus
par l’analyse de la réponse d’une structure différente (bien que similaire) à celle
étudiée ici. Mais surtout, ils ne respectent ni la compatibilité ni l’équilibre car aucune
contrainte n’a été imposée dans le k-means.

4.3.2 Comparaison avec les solution éléments finis de référence

Dans un premier temps, nous évaluons les performances des bases de données à
l’aune de la solution éléments finis obtenue avec le même modèle de comportement,
considérée comme solution de référence.

Nous ainsi avons étudié plusieurs critères :

• Les résultats de la minimisation sont évalués en comparant la valeur finale de
la fonction objectif des simulations DDCM (distance états mécaniques – états
matériau) avec la distance entre la solution de référence et la base de données ;

• L’erreur relative entre les états mécaniques et la solution de référence, en
déformation et en contrainte séparément ;

• La réponse globale de la structure (courbe réaction-déplacement)

Ces différents indicateurs nous ont conduits aux mêmes conclusions :

• Les bases de données les plus performantes sont, comme attendu, la plus dense
des DB-DENSE et la DB-DDI.
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• À l’inverse, les bases DB-STD ne fournissent pas de résultats satisfaisants.

• Pour les bases DB-DENSE, la solution data-driven converge clairement vers la
solution de référence à mesure que le nombre Ndir de directions augmente. À
l’inverse, l’impact du nombre Namp d’amplitude déviatorique est très faible.
Si l’on se réfère à l’analyse mécanique des directions a, on se souvient qu’elles
contiennent en réalité le mode de déformation et l’orientation de cette défor-
mation principale dans le plan. Ainsi, ajouter des modes de déformation à la
base de données est plus judicieux que de raffiner les amplitudes de distorsion.

• La base de données DB-DDI présente des performances comparables aux bases
DB-DENSE pour un nombre de point très inférieur, ce qui montre l’intérêt de
l’échantillonnage préférentiel mentionné plus haut.

4.3.3 Analyse des résultats data-driven

Dans cette section, nous développons des outils pour analyser les résultats data-
driven pour eux-mêmes et non plus en référence avec une solution éléments finis. En
effet, l’approche a été introduite pour les cas où il n’est pas possible de représenter
fidèlement la réponse du matériau avec un modèle de comportement (complexité de
l’élaboration du modèle ou de l’identification de ses paramètres). Dans ces cas, il
n’existe pas de « solution de référence ». Il faut donc pouvoir analyser les résultats de
la DDCM pour ce qu’ils sont : la réponse mécaniquement admissible de la structure
la plus proche possible de ce qui a été mesuré de la réponse matériau à travers
seulement un nuage de points discrets.

Les résultats obtenus pour chacune des familles des bases de données sont com-
parés entre eux, au moyen des indicateurs suivants :

• la convergence de la fonction objectif avec la taille de la base de données ;

• les résultats en contrainte (carte des composantes du tenseur des contraintes
de Cauchy) ;

• les résultats en déformation (projection des états de déformation dans un
espace (K2,K3, θ)) ;

• l’écart à l’isotropie du matériau, non explicitement imposée dans la simulation
(angle de désalignement entre les vecteurs propres des tenseurs E et S (Leygue
et al., 2018; Dalémat et al., 2019))

Les résultats précédents sont confirmés et on ajoute également les conclusions
suivantes :

• Il apparaît tout d’abord que le mode de traction uniaxiale est massivement
représenté dans la structure (malgré un chargement assez complexe et la pré-
sence du trou). On retrouve en ce sens les résultats expérimentaux de Dalémat
(2019).
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• Les deux bases de données DB-DENSE et DB-DDI donnent des résultats très
comparables, alors que le nombre de points dans la DB-DDI est très inférieur
(2200 � 25 600 000). Ceci peut notamment s’expliquer par le fait que peu de
points de la DB-DENSE ont finalement été utilisés au cours de la simulation :
seulement 131 149 (resp. 259 257) points ont été sélectionnés au moins une fois
comme état matériau au cours des pas de chargement et de la minimisation
alternée pour le maillage grossier (resp. fin), sur les 25 600 000 disponibles.

• On remarque que les états mécaniques obtenus avec les bases DB-STD sont plus
riches (en termes de modes de déformation) que les états matériau présents
dans la base de données. La capacité d’« extrapolation » du solveur reste néan-
moins très limitée car les autres résultats sont nettement moins satisfaisants
en comparaison avec les autres bases de données.

Le résultat principal de cette étude est que la qualité de la solution mécanique
est d’autant plus fine que la base de données est riche, au sens de la variété des
modes, plutôt que des amplitudes, de déformation.

4.4 Conclusion

Ce chapitre a été consacré à la génération et l’étude des bases de données pour la
DDCM en grandes transformations. On s’est restreint à la formulation Lagrangienne
et à un exemple bidimensionnel pour des raisons pratiques mais une analyse similaire
peut être conduite pour la formulation nominale et des exemples tridimensionnels.
Pour ce faire, nous avons généré des bases de données synthétiques, c.-à-d. par
l’intermédiaire d’un modèle de comportement par la suite oublié dans les simulations
DDCM. Cela a permis de se comparer à la solution éléments finis classique obtenue
avec le même modèle. Les bases de données ont été générées par un échantillonnage
de l’espace des déformations. Trois méthodes ont été étudiées :

• Une méthode d’échantillonnage dit dense, qui permet de créer des bases aussi
riches que possible. Nous nous sommes inspirées de la méthode présentée dans
Kunc and Fritzen (2019a) et l’avons reliée au travail Criscione et al. (2000)
pour en fournir une analyse mécanique pertinente.

• Une méthode d’échantillonnage dit standard nous a permis de simuler les
résultats expérimentaux des essais de traction uniaxiale, cisaillement pur et
traction équi-biaxiale, communément utilisés pour identifier les modèles de
comportement hyperélastiques.

• Une méthode d’échantillonnage dit préférentiel qui simule la méthode d’iden-
tification DDI proposée par Leygue et al. (2018); Dalémat (2019).

Les performances des trois familles de bases de données ont été évaluées en
comparant les solution data-driven et éléments finis. Comme attendu la plus riche
DB-DENSE est la plus performante, au prix d’un nombre très important de points
néanmoins. Juste derrière, la DB-DDI a démontré la pertinence de l’échantillonnage
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préférentiel, qui nécessite beaucoup moins de points. Enfin, la DB-STD a démontré
ses limites pour le problème complexe considéré.

Dans la dernière partie du chapitre nous avons développé des outils d’analyse
de la solution data-driven pour elle-même. Nous avons étudié en particulier quatre
indicateurs : (i) la convergence de la fonction objectif avec la taille de la base de
données, (ii) la répartition des composantes des contraintes de Cauchy dans la struc-
ture, (iii) l’analyse mécanique des états de déformation, (iv) l’écart à l’isotropie. A
nouveau la plus riche DB-DENSE a surpassé les autres base de données, bien que
les résultats DB-DDI soient très satisfaisants. Il est néanmoins important de noter
qu’une partie très réduite seulement du nombre de points est utilisé par la DDCM :
cela indique que les états mécaniques d’un problème donné ne sont susceptibles de
couvrir qu’une région réduite de l’espace des phases. Il convient alors que cette ré-
gion soit concentrée en points matériau : le nombre de points matériau dans la base
de données importe peu, c’est leur répartition qui compte.

Grâce au travail présenté dans ce chapitre, nous sommes maintenant capables de
(i) générer des bases de données matériau aussi riches et denses que nécessaire, et
(ii) d’analyser les résultats de la DDCM au moyen d’outils mécaniquement motivés.
Le prochain chapitre est donc consacré à appliquer ces contributions dans le cadre
d’un problème tridimensionnel complexe.
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5 Chapitre 5 : Application à un problème tridimension-
nel

5.1 Introduction

Ce court chapitre est dédié à l’application la DDCM en grandes transformations à
un problème tridimensionnel, utilisant les solveurs éléments finis développés dans
le Chapitre 3. De plus, nous utilisons la méthode de génération dite dense de la
base de données développée au Chapitre 4. Le chapitre est organisé comme suit : le
problème mécanique est décrit en 5.2.1 et la génération de la base de données est
exposée en 5.2.2. Les résultats obtenus pour les deux formulations sont présentés
6.3 et discutés 5.4.

5.2 Méthodes

5.2.1 Problème mécanique

Nous étudions dans ce chapitre la torsion d’une colonne en forme de T, inspiré de
l’exemple présenté dans Bonet et al. (2016, Chapitre 10, page 302). La géométrie et
le maillage (éléments hexahèdres à 8 points d’intégration) du problème sont donnés
sur la Fig. E.1. Le pied de la colonne est encastrée tandis que les surfaces latérales

Figure E.1 – Géométrie et maillage du problème en trois dimensions.

de la partie supérieure du T (grisées sur la Fig. E.1) sont soumises à un déplacement
imposé entraînant une rotation d’angle θ autour de l’axe Z (X = Y = 0). Il faut
noter que l’axe de rotation n’est pas l’axe de symétrie de la géométrie (X = Y = 0.5).
La simulation est conduite en 45 pas de chargement réguliers.

5.2.2 Base de données matériau

Défi en trois dimensions Jusqu’à présent nous n’avons réalisé que des simula-
tions en deux dimensions. L’espace des phases était donc de dimension 3 + 3 = 6
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pour la formulation Lagrangienne et 4 + 4 = 8 pour la formulation nominale. La
dimension de l’espace des phases est doublée lorsqu’on passe en trois dimensions :
6 + 6 = 12 et 9 + 9 = 18 pour les deux formulations respectivement. Cette explosion
de la dimensionalité pose un double problème : (i) la définition de distance et la
recherche dans des espaces de grandes dimensions sont des problèmes complexes,
(ii) pour générer une base de données, il faut échantillonner un espace des déforma-
tions de plus grande dimension. Le fléau de la dimensionalité est alors réellement en
jeu : il va falloir énormément de point pour « remplir » l’espace des phases.

Par ailleurs, nous souhaitons dans notre étude comparer les deux formulations en
grandes transformations afin de les discriminer. Les solutions doivent donc être calcu-
lées avec des bases de données comparables : les deux types de couples déformation-
contrainte (E,S) et (F ,S) doivent représenter la même réponse matériau, c.-à-d.
échantillonner la même région de l’espace dans leur espace des phases respectif.

Nous capitalisons sur le travail précédent pour générer d’abord une base de don-
nées Lagrangienne :

DLag
loc =

{
(Ei,Si) ∈ R3×3

sym × R3×3
sym | i ∈ [1 . . m]

}
. (E.54)

Nous utilisons la méthode d’échantillonnage dense en trois dimensions, en reprenant
exactement les travaux de Kunc and Fritzen (2019a).

La base de données nominale

Dnom
loc =

{
(Fi,Pi) ∈ R3×3 × R3×3 | i ∈ [1 . . m]

}
(E.55)

est ensuite obtenue à partir de DLag
loc d’après les relations entre les différents tenseurs :

E =
1

2

(
F TF − I

)
(E.56)

S = F−1P . (E.57)

Formulation Lagrangienne On reprend ici la méthode originale de Kunc and
Fritzen (2019a) en trois dimensions. Les tenseurs de déformation pure U sont obtenu
selon l’Eq. (E.48). Le modèle de comportement utilisé ici est un modèle neo-Hookéen
isotrope compressible :

Š(C) = µ
(
I −C−1

)
+ λ ln (J)C−1, (E.58)

avec λ = µ = 100 tels que le module d’Young est E = 250 (sans unité) et le
cœfficient de Poisson est ν = 0.25. La base de données Lagrangienne s’écrit donc

DLag
loc =

{(
E(i,j,l),S(i,j,l)

)
| i ∈ [1 . . Ndet], j ∈ [1 . . Namp], l ∈ [1 . . Ndir]

}
, (E.59)

avec Ndet = 49 le nombre de valeurs de Jacobien J ∈ [0, 8; 1, 2] dans l’échantillon,
Namp = 100 le nombre de valeurs d’amplitude déviatorique β ∈]0; 0, 5] et Ndir =

2047 le nombre de directions a ∈ R5. Le nombre total de points est donc de m =

10 035 200.
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Formulation nominale La base de données nominale est obtenue à partir de
la base de données Lagrangienne. Pour ce faire on réécrit les relations Eqs. (E.56)
comme

F = RU with U2 = 2E + I (E.60)

P = FS = RUS, (E.61)

avec R ∈ SO(3) un tenseur de rotation du groupe spécial orthogonal en trois di-
mensions SO(3) =

{
R ∈ R3×3 | RTR = RRT = I, detR = 1

}
. Il est donc nécessaire

d’échantillonner en plus l’espace SO(3) pour obtenir une base de données nominale.
Le nombre de points dans l’échantillon de SO(3) est noté NR. Pour s’assurer que
n’importe quelle rotation R soit prise en compte, il faut que NR soit très grand.
Le nombre de points dans la base de données nominale Dnom

loc est alors m × NR,
ce qui peut vite devenir énorme. Pourtant, il est peu probable que l’intégralité des
m points Lagrangiens soient nécessaire à la simulation DDCM du problème étudié.
En effet, on a vu au chapitre précédent que peu de points de la base de données
DB-DENSE étaient réellement utilisés pour le problème bidimensionnel et on s’attend
à un comportement similaire ici. Pour réduire le nombre de points dans la base de
données nominale on utilise une première simulation DDCM Lagrangienne comme
un moyen de sélectionner les points pertinents dans la base de données DLag

loc : on ne
conserve dans une base de données notée DLagred

loc que les points qui sont sélectionnés
au moins une fois comme état matériau, au cours des pas de chargement t et des
itérations k du schéma de minimisation alternée. La base de données nominale Dnom

loc

est alors obtenue comme le produit de l’échantillonnage de SO(3) et de DLagred
loc .

Bilan La stratégie de génération de base de données comparables pour les deux
formulations du problème tridimensionnel en grandes transformations est donnée
sur la Fig E.2.

5.3 Résultats

5.3.1 Formulation nominale

Les tests conduits avec la formulation nominale n’ont pas abouti : la minimisa-
tion n’a pas convergé pour le problème considéré. Des études préliminaires avec un
maillage plus grossier et une base de données entièrement constituée de la solution
de référence conduisent également à des résultats non satisfaisants, ce qui montre
que la méthode de génération de la base de données employée ici n’est pas la seule
cause de non convergence. Nous pensons que la dimensionalité de l’espace des phases
peut jouer mais nous n’excluons pas que l’immaturité du solveur nominal (développé
dans les derniers mois de la thèse) explique qu’une solution n’ait pas pu être trouvée.
Il convient d’explorer plus avant ce problème dans des travaux futurs.
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Figure E.2 – Stratégie de génération de bases de données Lagrangiennes (gauche) et
nominales (droite) pour effectuer des calculs DDCM en trois dimensions comparables.

5.3.2 Formulation Lagrangienne

Nous nous concentrons donc dorénavant sur les résultats de la formulation Lagran-
gienne. Nous étudions les résultats issus de la deuxième simulation utilisant la base
de données réduites DLagred

loc qui comporte 75 077 sur les m = 10 035 200 de la base
de données originale.

Déformée et résultante Nous étudions d’abord la déformée du maillage : comme
on peut le voir sur la Fig. E.3 les résultats sont en concordance avec le chargement
imposé.

Nous étudions ensuite l’évolution du torseur (force et moment) résultant sur
la face encastrée en bas avec l’angle de rotation imposé. L’analyse qualitative des
résultats montre un comportement attendu et les résultats éléments finis sont fournis
à titre indicatif.

Résultats de la minimisation Nous étudions ensuite la convergence de l’algo-
rithme de minimisation alternée au sein de chaque pas de chargement. On constate
que plus le déplacement imposé est grand, plus la convergence est lente et plus la
valeur finale de la fonction objectif est grande. On sait d’après la Fig. E.3 que plus
la rotation imposée est grande, plus les déformations dans la structure sont grandes.
On en conclut que la minimisation est d’autant plus difficile à résoudre en grandes
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Figure E.3 – Maillage déformé et glissement FXY pour différents pas de charge-
ment.

transformations.

5.4 Discussion

5.4.1 Retrouver l’isotropie

Dans cette section, on s’intéresse à nouveau à l’écart à l’isotropie du matériau,
vérifiée par la base de données mais non imposée sur les états mécaniques. On
mesure les statistiques des angles entre les vecteurs propres des tenseurs Ee et Se
pour chaque pas de chargement. Pour 60 % des points d’intégrations du maillage,
l’angle d’écart à l’isotropie est inférieur à 12◦. Pour des valeurs proches de 90◦,
on montre par une analyse détaillée qu’il s’agit majoritairement d’une incertitude
sur la détermination de la plus grande valeur propre de chacun des tenseurs. Ceci
permet de conclure que la base de données réduite DLagred

loc conduit à des résultats
assez satisfaisants. Le moyen de l’enrichir de modes de déformation pertinents pour
améliorer ce critère reste cependant un sujet ouvert.
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5.4.2 Modes de déformation

Finalement, on analyse l’amplitude de dilatation, l’amplitude de distorsion et
le mode de déformation de chaque état mécanique au moyen des invariants
(K1,K2,K3) du tenseur de déformation pure U présentés au Chapitre 4. Il ap-
paraît que les répartition des états mécaniques et matériau dans cet espace à trois
dimensions sont très différentes. On voit notamment que la diversité d’amplitudes
de distorsion K2 est plus élevée parmi les états mécaniques que matériau. De même
pour les modes de déformation K3. Enfin, en accord avec le chargement imposé,
une grande partie des points d’intégration se trouve en contraction volumétrique :
K1 < 0.

5.5 Conclusion

Ce chapitre nous a permis de tester les solveurs DDCM en grandes transformations
pour un problème complexe en trois dimensions. L’enjeu de la dimensionalité de
l’espace des phases et donc de la taille de la base de données est évidemment plus
prégnant qu’en deux dimensions. Nous avons notamment présenté une stratégie pour
générer des bases de données adaptées à chaque formulation (Lagrangienne et no-
minale). Pour la formulation Lagrangienne, il s’agit essentiellement d’appliquer la
méthode d’échantillonnage de l’espace des tenseurs U développée par Kunc and
Fritzen (2019a). Pour la formulation nominale, il s’agit de sélectionner les points
pertinents dans la base de données Lagrangienne pour les multiplier avec un échan-
tillonnage dense des tenseurs R dans SO(3).

Malheureusement, il n’a pas été possible d’obtenir de résultat avec l’approche
nominale en raison de problèmes de convergence du solveur, encore non élucidés à
ce jour. Néanmoins, la formulation Lagrangienne a fourni des résultats très satisfai-
sants pour une première étude. Dans une première simulation, la base de données
comprend 10 035 200 points mais seulement 75 077 sont réellement utilisés dans la
simulation. Ce résultat était attendu : la méthode d’échantillonnage dense couvre
l’ensemble des amplitudes et modes de déformation possibles, tandis que les am-
plitudes et modes de déformation présents dans une structure particulière sont né-
cessairement en nombre restreints, c.-à-d. que seule une certaine région de l’espace
des phases est parcourue par la solution mécanique. Tous les points de la base de
données matériau en dehors de cette région semblent donc inutiles.

Cette étude est un premier pas encourageant vers des simulations DDCM en
grandes transformations en trois dimensions. Nous souhaitons en effet insister sur le
fait que cet étude est, à notre connaissance, la première du genre pour les solveurs
DDCM (en grandes transformations) : dans l’exemple 3D présenté dans Kirchdoer-
fer and Ortiz (2016), la base de données était en réalité réduite à une base 2D
par l’hypothèse des contraintes planes et les maillages ne comportaient qu’un ou
deux éléments dans l’épaisseur. Bien sûr, un étude systématique de l’influence des
différents paramètres Ndet ou Ndir devrait être conduite dans des travaux futurs.
L’adaptation du solveur nominal devra également être maîtrisée.
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Pour conclure sur cette deuxième partie de la thèse, nous souhaitons mettre en
avant une question qui reste non résolue. Dans les exemples 2D et 3D présentés jus-
qu’ici, la réponse mécaniquement admissible obtenue par la DDCM est aussi proche
que possible que ce qui est connu de la réponse matériau, c.-à-d. la base de données.
Néanmoins, on a vu que cette connaissance est parfois incomplète ou non adap-
tée au problème mécanique considéré. Il conviendrait donc de compléter de façon
adaptative la base de données. C’est notamment ce que nous avons tenté de faire
en ajoutant des amplitudes ou modes de déformation en augmentant les nombres
Namp et Ndir. Il serait cependant plus intéressant de trouver un moyen systématique
d’enrichir la base de données. Dans la dernière partie de cette thèse, au Chapitre
6, nous proposons une première stratégie adaptative d’enrichissement de la base de
données pour le cas particulier des matériaux hétérogènes.
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6 Chapitre 6 : une première approche pour des simula-
tions multiéchelles pilotée par les données

6.1 Introduction

Jusqu’à maintenant, les bases de données utilisées dans les exemples présentés
étaient artificielles : elles ont été générées par l’échantillonnage d’un modèle de
comportement. Nous avons ainsi pu les comparer à la solution éléments finis corres-
pondante pour valider nos approches DDCM en grandes transformations.

Cependant, la méthode DDCM a été introduite dans l’objectif d’utiliser des don-
nées brutes, sans passer pas des lois de comportement. Ces données sur la réponse
matériau peuvent provenir de deux sources :

• Les mesures expérimentales, par exemple en utilisant les mesures de champs
et la DDI. Il reste encore des défis à relever pour pouvoir utiliser ces approches
dans un cadre DDCM, comme nous l’avons montrés au Chapitre 2 et au Cha-
pitre 4.

• L’homogénéisation numérique, que ce soit par des simulations éléments fi-
nis sur une microstructure (polycristal, composite plastique renforcé fibres
courtes, élastomère chargé, etc.) ou même des calculs aux échelles très fines
(ab initio, dynamique moléculaire), peut fournir plus aisément (moyennant un
coût de calcul parfois important) des couples déformation-contrainte représen-
tatifs de la réponse homogénéisée d’un matériau hétérogène.

Dans ce chapitre, nous explorons la deuxième possibilité dans le cadre de matériaux
hétérogènes où l’hypothèse de séparation des échelles est vérifiée. Nous nous limitons
aux petites déformations élastiques et nous utilisons l’approche originale de la DDCM

(Kirchdoerfer and Ortiz, 2016).

6.1.1 Principes et défis de l’homogénéisation numérique

Dans cette section, nous revenons rapidement sur les aspects essentiels de l’homo-
généisation numérique.

On considère un matériau multiphasé, c.-à-d. qui contient des hétérogénéités
de petites tailles, incorporées dans une matrice. La taille de ces hétérogénéités est
supposées beaucoup plus petite que la taille de la structure composée du matériau
hétérogène considéré (séparation des échelles). On présente alors le problème aux
limites à résoudre sur le Volume Élémentaire Représentatif (VER) de la microstruc-
ture (compatibilité, équilibre, loi de comportement de chacune des hétérogénéités)
en chaque point de la macrostructure. Les conditions aux limites sont prescrites par
le tenseur de déformation macroscopique ε̄ et le tenseur de contrainte macroscopique
correspondant à ce chargement est obtenu par une moyenne volumique du champ
de contrainte sur le VER. La loi de comportement effective du matériau n’est alors
plus une relation mathématique explicite mais est obtenue par l’homogénéisation de
la réponse microstructurale qui se fait en trois étapes : (i) localisation (application
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des conditions aux limites), (ii) résolution du problème mécanique microstructural,
(iii) homogénéisation (moyenne volumique des champs). Ce processus est illustré sur
la Fig. E.4.

Figure E.4 – Loi de comportement effective d’un composite, obtenue par la résolu-
tion d’un problème aux limites sur le VER de la microstructure. Inspiré de Brassart
(2011).

Après une courte revue des différentes méthodes de la littérature pour résoudre
ce problème multiéchelle (théorie des champs moyens, théorie des modules effectifs
en élasticité linéaire, méthode champs complets par homogénéisation numérique), on
s’intéresse à la méthode de calcul multiéchelle popularisée sous le nom de FE2 (pour
« éléments finis au carré ») par Feyel (1999). Cette méthode multiéchelle consiste à
réaliser deux calculs éléments finis emboîtés : le premier est conduit sur la structure
(macroéchelle), le deuxième est conduit en chaque point d’intégration macroscopique
sur le VER d’une microstructure (microéchelle). Les conditions aux limites du calcul
microéchelle sont déterminées par l’état mécanique du point d’intégration corres-
pondant à la macroéchelle. Cette approche permet d’obtenir, sans hypothèse forte
sur le comportement effectif du matériau, la réponse macroscopique d’une structure
à moindre coût, comparé à un calcul éléments finis unique dont la résolution serait
suffisamment fine pour mailler toutes les hétérogénéités. Elle reste néanmoins assez
coûteuse car (i) il faut conduire de façon systématique un calcul microstructural à
chaque point d’intégration du maillage macroscopique, (ii) pour les comportements
non linéaires, il est nécessaire de connaître également le module tangent effectif de
la microstructure, qui est typiquement obtenu par perturbation numérique, ce qui
entraîne des évaluations microscopiques supplémentaires. Le maillage du VER de la
microstructure étant souvent très raffiné, la facteur limitant en terme de coût calcul
est le nombre d’évaluations microscopiques :

Néval. micro. = Nit. ×M × (1 + n(n− 1)), (E.62)

avec Nit le nombre d’itérations nécessaires pour atteindre l’équilibre de la macro-
structure (typiquement dans un schéma de Newton-Raphson), M le nombre de



6. Chapitre 6 317

points d’intégrations sur maillage macroscopique, n = 2, 3 la dimension du pro-
blème. Cependant, il est probable que certaines de ces évaluations soient redon-
dantes et donc inutiles : au cours de la simulation, deux points macroscopiques
peuvent très certainement partager le même état déformation-contrainte mécanique
et donc conduire à deux évaluations microscopiques similaires. Des stratégies d’accé-
lération des schémas FE2 ont donc été mises en place pour réduire le temps de calcul
en évitant ces redondance. Par exemple, Klusemann and Ortiz (2015) stockent les
états de déformation-contrainte macroscopiques dans un espace des phases et inter-
polent, au moyen d’une subdivision simpliciale de l’espace, la réponse microscopique
entre deux points voisins déjà calculés. Le nombre d’évaluations est ainsi fortement
réduit.

6.1.2 Vers l’homogénéisation multiéchelle pilotée par les données

Une autre approche pour réduire les coûts des calculs multiéchelles consiste à générer
une base de données représentative du comportement effectif, à partir de nombreux
calculs microstructuraux, dans un processus « hors-ligne ». Cette base de données
peut typiquement être utilisée pour alimenter un métamodèle de la réponse macro-
scopique, allant de la réduction de modèle au réseau de neurones (voir la revue de
Matouš et al. (2017) pour une liste exhaustive de ces approches). Cependant, ces
méthodes reposent toujours sur l’existence d’un modèle de comportement : il est soit
interpolé, réduit ou identifié à partir des données. En rupture avec cette vision, Xu
et al. (2020) ont proposé une première utilisation de la DDCM pour les matériaux
hétérogènes : la base de données des couples déformation-contrainte macroscopiques
est générée en amont puis utilisée dans un calcul DDCM sur la structure. Cette mé-
thode requiert de définir a priori les conditions aux limites appropriées qu’il faut
appliquer aux calculs microstructuraux, c.-à-d. déterminer à l’avance la région de
l’espace des phases susceptible d’être pertinente pour le calcul macroéchelle.

Nous proposons plutôt dans ce chapitre une première stratégie pour réaliser des
calculs FE2 utilisant la DDCM : la résolution du problème macroéchelle est faite par
DDCM et la résolution du problème microéchelle est faite par un calcul éléments finis
classique. Entre les deux échelles, la base de données est enrichie de façon adapta-
tive en fonction de la réponse mécanique de la macrostructure, dans un processus
« en-ligne ». De cette façon, il n’est pas besoin de connaître a priori la réponse de
la macrostructure. L’autre avantage de cette approche (déjà acquis par Xu et al.
(2020)) est que la DDCM ne nécessite pas de module tangent effectif. Notre métho-
dologie a donc pour objectif de réduire le nombre d’évaluations microscopiques :
grâce à la formulation du problème data-driven, seuls les points pertinents pour la
simulation macroéchelle sont calculés.

Le chapitre est organisé comme suit : le solveur data-driven FE2 est présenté
dans la Section 6.2, la méthode est évaluée au moyen d’exemples en deux dimensions
présentés à la Section 6.3, les résultats sont discutés dans la conclusion 6.4.
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6.2 Un solveur data-driven FE2

Nous développons une méthode itérative qui consiste à conduire successivement des
calculs DDCM macroéchelles avec une base de données enrichie entre chaque itération
des points jugés nécessaires par des calculs microéchelles. Le processus général de la
méthode est comparé à celui de la méthode FE2 sur la Fig. E.5.

Figure E.5 – Schéma de fonctionnement de la méthode FE2 standard et data-
driven.

Dans un cette partie, nous rappelons dans un premier temps la structure et les
ingrédients du solveur DDCM en petites déformations élastiques, appliqué au calcul
macrostructural. Nous exposons ensuite notre méthodologie pour un calcul à deux
échelles avec mise à jour adaptative de la base de données.

6.2.1 Solveur data-driven macroscopique

Nous rappelons ici rapidement la méthode DDCM présentée au Chapitre 2, qui
consiste en une minimisation alternée des états mécaniques macroscopiques (ε̄, σ̄)

(vérifiant la compatibilité et l’équilibre) et des états matériau (ε̄∗, σ̄∗) (sélection-
nés comme les plus proches dans la base de données). La base de données est alors
constituée d’états déformation-contrainte macroscopiques :

Dloc = {(ε̄i, σ̄i) | i ∈ [1 . . m]} . (E.63)

6.2.2 Solveur data-driven à deux échelles

Motivation Comme mentionné plus haut, l’approche de Xu et al. (2020) néces-
site de déterminer a priori une base de données pour le calcul. Dans leurs travaux,
Xu et al. (2020) utilisent une grille régulière pour échantillonner l’espace des défor-
mations macroscopiques qui prescrivent les conditions de chargement de la micro-
structure. À notre connaissance, il n’existe pourtant pas de moyens pour déterminer
efficacement les bornes et la densité nécessaire de cette grille. Par ailleurs, comme
nous l’avons vu précédemment, une bonne partie des points risquent d’avoir été pré-
calculés en vain car la réponse mécanique de la macrostructure ne couvre qu’une
région réduite de l’espace de phases.
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Idée générale et algorithme La méthode proposée est un processus itératif où,
entre chaque itération, la base de données Dloc Eq. (E.63) est enrichie de façon
adaptative. Pour choisir les points pertinents à lui ajouter, on utilise une des in-
formations très importante donnée par la DDCM : la distance finale entre les états
mécaniques et matériau. Si la distance de ((ε̄e, σ̄e) , (ε̄

∗
ie, σ̄

∗
ie)) est grande (supérieure

à une distance critique dc fixée par l’utilisateur), cela signifie qu’il manque des points
dans la base de données dans la région de l’espace local des phases entourant l’état
mécanique (ε̄e, σ̄e) considéré. Ce type d’états mécaniques est appelé état mécanique
isolé. On ajoute alors à la base de données l’état déformation-contrainte obtenu par
un calcul microstructural dont les conditions aux limites sont déterminées par l’état
mécanique (ε̄e, σ̄e). Un exemple de cet procédure pour des conditions aux limites
déterminées par la déformation macroscopique est donné sur la Fig E.6.

Figure E.6 – Stratégie de mise à jour de la base de données à partir des déforma-
tions. Le nouveau point matériau est obtenu à partir de la résolution d’un problème
mécanique sur le VER de la microstructure, dont les conditions aux limites sont dé-
terminées par la déformation mécanique ε̄e, sélectionnée parmi les états mécaniques
isolés (trop loin de leur état matériau associé).

L’algorithme de la méthode est fourni à l’Algorithme E.1.

Base de données matériau initiale Nous proposons d’initialiser la base de
données D(0)

loc le plus simplement possible et en ne faisant aucune hypothèse : la
base de données initiale ne contient que le point de déformation-contrainte nulles :
D(0)

loc = {(0,0)}.
Dans ce paragraphe, nous discutons les conséquences de ce choix et montrons

que cela revient à faire de la première itération du processus itératif Algorithme E.1
un estimateur linéaire élastique de raideur C de la solution du problème mécanique
macroscopique à partir des conditions aux limites sur la macrostructure. La base
de données D(1)

loc est donc obtenue par l’homogénéisation de la réponse mécanique
de la microstructure, à partir de la solution élastique linéaire en déformation sur
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Algorithme E.1 Solveur data-driven à deux échelles.
ENTRÉES :

• Macroéchelle : modèle éléments finis de N nœuds et M points d’intégration,
conditions aux limites et chargement

{
ūD
α

}
α∈D et

{
f̄a
}N
a=1

.

• Microéchelle : modèle éléments finis du VER de la microstructure, modèle de
comportement des constituants.

SORTIES :

• Macroéchelle : états mécaniques {(ε̄e, σ̄e)}Me=1, base de données matériau Dloc.

• Microéchelle : réponse mécanique locale et homogénéisée pour chaque point
de chargement macroscopic dans Dloc.

Étape 1. Fixer j = 0. Initialiser la base de données D(0)
loc .

Étape 2. Calculer les états mécaniques macroscopiques avec le solveur DDSOLVER :
(
ε̄(j), σ̄(j)

)
= DDSOLVER

(
D(j)

loc

)
.

Étape 3. Enrichir la base de données matériau d’après l’homogénéisation des états
mécaniques isolés :

D(j+1)
loc = D(j)

loc

⋃

e∈I
{(ε̄e, σ̄new

e )} ,

avec I = {e ∈ [1 . . M ] | de > dc} et σ̄new
e obtenu d’après la stratégie présentée

sur la Fig. E.6.

Étape 4. Tester la convergence :

• si de ≤ dc, ∀e ∈ [1 . . M ], alors fin.

• sinon, incrémenter j ← j + 1 et retourner à l’Étape 2.

la macrostructure. Ce premier remplissage de la base de données est donc plus
pertinent qu’utiliser une grille régulière dans l’espace des déformations.

Paramètre C et modification de la stratégie de mise à jour Dans ce pa-
ragraphe, on discute de l’influence du paramètre C sur l’association état méca-
nique/état matériau. On montre qu’il est préférable d’avoir un grand (resp. petit)
module de C pour une simulation pilotée en déplacements (resp. efforts), où la base
de données est enrichie à partir des déformations (resp. contraintes) macroscopiques.

On modifie également légèrement le nombre de points à ajouter dans la base
de données. Au lieu d’ajouter tous les états mécaniques isolés, on n’en sélectionne
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qu’une partie, de telle sorte que le nombre de points ajoutés à la base de données ne
dépassent pas une certaine limite Mlim. Typiquement on choisit Mlim = M/2 avec
M le nombre de points d’intégration dans le maillage macroéchelle.

Le nombre d’évaluations microscopiques effectuées dans notre méthode de calcul
multiéchelle est donc borné par

Néval. micro ≤ Nmulti. iter. ×Mlim. (E.64)

avecNmulti. iter. le nombre d’itérations du processus multiéchelle de l’Algorithme E.1.
Si ce nombre reste raisonnable, on peut donc espérer gagner beaucoup par rapport
à l’évaluation systématique de la méthode FE2 standard.

6.3 Résultats numériques

On étudie à nouveau la fine membrane rectangulaire trouée encastrée à une extrémité
et soumise à un déplacement imposé de traction-cisaillement à l’autre extrémité.
Dans un premier temps, on valide notre approche avec un matériau microscopique-
ment homogène : l’ajout de points à la base de données passe alors simplement par
l’évaluation d’un modèle de comportement non linéaire. Dans un deuxième temps,
on applique l’approche à un matériau composite biphasé, dont la microstructure
est isotrope : il s’agit d’une inclusion circulaire rigide (élastique linéaire) dans une
matrice plus souple (élastique non linéaire).

6.3.1 Cas test homogène

Dans cet exemple, on démontre à l’aide d’une comparaison entre les solutions data-
driven et éléments finis de référence que la méthode produit des résultats très satis-
faisants avec la base de données initialisée à zéro. Le nombre d’évaluations du modèle
de comportement est également bien inférieur à celui de la méthode éléments finis
classique.

6.3.2 Cas test sur un composite biphasé

Dans cette étude nous étudions deux maillages de la macrostructure (membrane) :

• Une première simulation multiéchelle est effectuée pour le maillage grossier
(M = 4060 points d’intégration), en partant de la base de données D(0)

loc =

{(0,0)} ;

• Une deuxième simulation multiéchelle identique est effectuée pour le maillage
fin (M = 9500 point d’intégration), en partant de la base de données finale du
précédent calcul : D(0)

maillage fin = D(jmax)
maillage grossier ;

On mesure ainsi la pertinence de stocker les bases de données ainsi enrichies pour
de futurs calculs similaires.

Dans une première analyse de la convergence des deux calculs multiéchelle, on
montre que la fonction objectif des calculs DDCM successifs décroît très rapidement
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à mesure que la base de données s’enrichit. Dans la première simulation 17 271

évaluations microscopiques ont été effectuées. Partant de ces calculs déjà effectués,
34 094 évaluations supplémentaires ont été nécessaires pour le calcul sur le maillage
raffiné. En tout, ces 51 365 évaluations sont en nombre très nettement inférieur au
besoin théorique d’une méthode FE2 standard, comme le montre la Fig. E.7.
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Figure E.7 – Nombre d’évaluations microscopiques effectuées par un calcul mul-
tiéchelle suivant la méthode FE2 standard, en fonction du nombre d’itérations né-
cessaires pour atteindre l’équilibre macroscopique (schéma de Newton-Raphson par
exemple).

On remarque que le nombre d’évaluations nécessaire au calcul sur le maillage raf-
finé est plus grand que pour le maillage grossier. Cela démontre que plus le maillage
est fin, plus la base de données doit être raffinée. C’est notamment nécessaire car
avec le raffinement du maillage, les zones de concentration des déformations et des
contraintes dans la macrostructure agrandissent la région parcourue par la solution
mécanique dans l’espace local des phases. On le démontre sur la Fig. E.8 où l’on
reporte le nombre d’évaluations microscopiques effectuées en chaque point d’inté-
gration du maillage fin (maximum de 13). Les zones au bord des trous nécessitent
en effet plus d’évaluations.

6.4 Conclusion

Dans ce chapitre final de la thèse nous avons proposé une première stratégie de
calcul adaptative pour les simulations multiéchelles, basée sur la DDCM. La base
de données est alors constituée de couples déformation-contrainte macroscopiques.
Typiquement, comme dans le schéma FE2 classique, la contrainte macroscopique σ̄
est obtenue à partir de la moyenne volumique du champ microscopique σ, solution
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Figure E.8 – Nombre d’évaluations microscopiques en chaque point d’intégration
du maillage macroscopique.

d’un problème microstructural dont les conditions aux limites sont déterminées par
la déformation macroscopique ε̄ (Feyel, 1999). En échantillonnant l’espace des dé-
formations macroscopiques par une grille régulière, Xu et al. (2020) ont proposé une
première manière de réunir DDCM et homogénéisation numérique. Néanmoins, leur
approche nécessite de déterminer la taille et la résolution de cette grille a priori
et une bonne partie des points pré-calculés est susceptible d’être inutile pour la
simulation macrostructurale considérée.

Notre méthodologie propose donc d’utiliser la DDCM comme un moyen de sé-
lectionner les points à calculer. C’est un processus itératif dans lequel la base de
données est successivement enrichie par les calculs microstructuraux correspondant
seulement aux états mécaniques isolés : la distance entre les états mécaniques et
matériau dans l’approche DDCM fournit en effet une information sur la qualité de
la base de données actuelle. Tous les points dont la distance est jugée trop grande
font l’objet d’un ajout à la base de données. Nous avons démontré que nous pouvons
ainsi partir d’une base de données quasi-vide : l’unique point déformation-contrainte
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nulles.
Nous avons d’abord validé notre approche sur un matériau microscopiquement

homogène. Nous l’avons ensuite appliquée à un matériau hétérogène : un composite
isotrope biphasé non linéaire. Notre méthodologie réduit drastiquement le nombre
d’évaluations microscopiques nécessaires, par rapport à une méthode FE2 standard.
De plus, la base de données enrichie par un premier calcul peut être efficacement
réutilisée comme point de départ d’un second calcul adaptatif. Les réponses micro-
scopique et macroscopique se sont alors révélées qualitativement satisfaisantes.

Pour conclure, les résultats de cette première étude pour une approche de calcul
adaptatif utilisant la DDCM et l’homogénéisation numérique sont très encourageants.
De nombreuses questions restent ouvertes et les paramètres de la méthode peuvent
certainement être améliorés (par exemple le paramètre C ou le nombre de point
à ajouter). Néanmoins, nous pensons que ce type d’approche offre une application
très intéressante du paradigme DDCM. En perspective, le même raisonnement peut
être appliqué pour développer une méthode analogue en grandes transformations
élastiques et ainsi offrir des solutions pour l’homogénéisation des matériaux hétéro-
gènes non linéaires. Enfin, il est aussi possible d’imaginer une approche multiéchelle
entièrement data-driven : les deux calculs (macro- et microéchelle) seraient effectués
en utilisant la DDCM, au lieu de la méthode des éléments finis standard comme ce
fut le cas ici pour le calcul microéchelle.
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Titre : Mécanique numérique en grandes transformations pilotée par les données. 
De la génération de données sur mesure à une stratégie adaptative de calcul multiéchelle. 

Mots clés : Méthodes data-driven ; Grandes déformations ; Hyperélasticité ; Multiéchelle. 

Résumé : La mécanique numérique est aujour-
d'hui au cœur d'un important flux de données. 
D'un côté, l'identification des lois de comporte-
ment utilisées dans les simulations éléments 
finis repose sur de riches données expérimen-
tales (mesures de champs). D'un autre côté, les 
calculs multiéchelles fournissent un très grand 
nombre de valeurs discrètes de champs de 
déplacement, déformation et contrainte, dont on 
extrait des connaissances sur la réponse effec-
tive du matériau. Entre ces données, la loi de 
comportement apparaît comme un goulot con-
traignant le champ des possibles. 

En rupture avec cette approche, Kirchdoerfer 
et Ortiz (Computer Methods in Applied Me-
chanics and Engineering, 304, 81-101) ont pro-
posé un paradigme de mécanique numérique 
sans modèle, appelé data-driven computational 
mechanics. La réponse matériau y est unique-
ment représentée par une base de données 
(couples déformation-contrainte). Le problème 
mécanique est alors reformulé comme une mini- 

misation sous contrainte de la distance entre  
(i) l'état déformation-contrainte mécanique de 
la structure, et (ii) la base de données maté-
riau. 

Ces travaux de thèse se concentrent sur la 
question de la couverture de l'espace par les 
données matériau, notamment dans le cadre 
des grandes transformations. Ainsi, l'approche 
data-driven est d'abord étendue à la méca-
nique non linéaire : nous considérons deux 
formulations différentes et proposons pour 
chacune d'elles un solveur éléments finis. Nous 
explorons ensuite la génération de base de 
données sur mesure, grâce à une méthode 
d'échantillonnage mécaniquement motivée. 
Nous évaluons l'approche au moyen d'ana-
lyses éléments finis de structures complexes 
en grandes déformations. Enfin, nous propo-
sons une première stratégie de calcul multi-
échelle pilotée par les données, qui permet 
d'enrichir de façon adaptative la base de don-
nées matériau. 

 

Title : Finite strain data-driven computational mechanics. 
From tailored data to adaptive solvers for multiscale simulations. 

Keywords : Data-driven computing; Finite strain; Hyperelasticity; Multiscale. 

Abstract :  Computational mechanics is a field 
in which a large amount of data is both consu-
med and produced. On the one hand, the recent 
developments of experimental measurement 
techniques have provided rich data for the iden-
tification process of constitutive models used in 
finite element simulations. On the other hand, 
multiscale analysis produces a huge amount of 
discrete values of displacements, strains and 
stresses from which knowledge is extracted on 
the overall material behavior. The constitutive 
model then acts as a bottleneck between 
upstream and downstream material data. 

In contrast, Kirchdoerfer and Ortiz (Computer 
Methods in Applied Mechanics and Engineering, 
304, 81-101) proposed a model-free computing 
paradigm, called data-driven computational 
mechanics. The material response is then only 
represented by a database of raw  material  data 

(strain-stress pairs). The boundary value pro-
blem is thus reformulated as a constrained 
distance minimization between (i) the mechani-
cal strain-stress state of the body, and (ii) the 
material database. 

In this thesis, we investigate the question of 
material data coverage, especially in the finite 
strain framework. The data-driven approach is 
first extended to a geometrically nonlinear set-
ting: two alternative formulations are consi-
dered and a finite element solver is proposed 
for both. Second, we explore the generation of 
tailored databases using a mechanically mea-
ningful sampling method. The approach is as-
sessed by means of finite element analyses of 
complex structures exhibiting large deforma-
tions. Finally, we propose a prototype multi-
scale data-driven solver, in which the material 
database is adaptively enriched. 
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