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(zeneral introduction

Computational mechanics is a field in which a large amount of data is both con-
sumed and produced. On the one hand, the recent developments in experimental
measurement techniques have provided rich databases for the identification process
of constitutive models used in finite element simulations. In that case, data are
usually discarded once the parameters are identified. On the other hand, heavy
computations, such as multiscale analyses, produce a huge amount of discrete val-
ues of displacements, strains, stresses, or strain energy densities. Again, if databases
resulting from computational micromechanics can be stored, they are often used to
train a meta-model, and only this model is subsequently evaluated in macroscopic
simulations, without any further reference to the original microscopic data. The
constitutive model, understood in the broad sense as the relationship (not neces-
sarily explicit) between the constitutive variables (typically strain and stress), then
acts as a bottleneck between upstream and downstream material data.

In contrast, Kirchdoerfer and Ortiz (2016) recently introduced a model-free com-
puting paradigm, so called Data-Driven Computational Mechanics (DDCM), which
incorporates data directly into the computation, thus bypassing the need for a consti-
tutive model. This seminal work was consolidated by the mathematical framework
proposed in Conti et al. (2018), demonstrating that DDCM encompasses the classical
definition of the solid mechanics Boundary Value Problem (BVP).

The first part of this thesis (Part A) is dedicated to recalling the
motivation and principles of the approach. In short, the approach relies on
the fundamental separation between the characterization of the material response
and the satisfaction of essential constraints and conservation laws: while the former
is most likely to be approximately captured (e.g. due to noise in experimental data),
the latter ones must be exactly satisfied. In solid mechanics, the typical constitutive
variables involved are the strain and the stress. The BVP is therefore reformulated as
a minimization of a distance function between two types of strain-stress pair fields:
one, representing the material response, takes value in a database resulting from
experimental or numerical acquisition, and the other, verifying both compatibility
and equilibrium equations, represents the admissible mechanical state of the body.
The former strain-stress field is referred to as the material state and belongs to a
so-called material data set, while the latter mechanical state belongs to a so-called
constraint set. Both sets are subspaces of the so-called phase space, which collects
all possible strain-stress pair fields.

In this model-free approach, the material response is only represented by a dis-
crete set of material data points: no interpolation, approximation nor modeling
of the data set is ever performed. Likewise, the material response can not be ex-
trapolated from missing data points, contrary to the constitutive model which is
often used well beyond its domain of identification. Ideally, the material database
should then comprise an almost infinite number of points, covering every possible
mechanical state, in order to replace a constitutive model. However, the number
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of material data points that can be acquired either experimentally or through nu-
merical simulations is obviously limited. Hence, the arrangement and coverage of
material data points in phase space are critical for the prediction of the mechanical
response. In particular, the use of raw material data raises crucial questions such
as ‘“richness” or “density” of the database. The former can be understood as the
adequacy of the database to a large variety of mechanical sollicitations. The latter
refers not only to the size of the database (number of points) but also to notions
of clustering or sparsity of material data points in certain regions: e.g., should data
points be evenly spaced or clustered in relevant areas of phase space? In addition,
the curse of dimensionality can prevent the database from spanning the whole phase
space: using symmetric strain-stress tensor pairs, the dimension of the phase space
equals the number of independent components in each tensor, i.e. 6 +6 = 12 for
three-dimensional problems. Yet, it may not be necessary for the material database
to span the whole phase space; instead it may preferably span an appropriate region
of it. Our work then addresses the following questions:

e In what manner should material data points be distributed in phase space to
accurately predict the mechanical response of a structure?

e How can we control this distribution to generate tailored databases?

The present thesis investigates these questions from two points of view, which
are each presented in a part of the manuscript:

e the extension of DDCM to large strain (Part B),

e the application of DDCM to multiscale simulation of heterogeneous materials
(Part C).

In Part B, data coverage is investigated in the context of finite strain
elasticity. In particular, the choice of work conjugate strain-stress pairs has a
direct impact on the dimensionality of the phase space and on the formulation of
the problem. Here, we explore two possibilities: (i) the Lagrangian formulation of
Nguyen and Keip (2018), and (ii) the nominal formulation of Conti et al. (2018). In
the former, the work conjugate strain-stress pairs are the Green-Lagrange strain—
second Piola-Kirchhoff stress symmetric tensors, while in the latter, the deformation
gradient—first Piola-Kirchhoff stress non-symmetric tensors are favored. For both
formulations, we develop a finite element solver, which is an original contribution
in the case of the nominal formulation. In this context, the material database is
synthetic: we generate it from sampling a known constitutive model. This method
has several advantages:

e it allows for assessing the developed data-driven solvers by comparing the re-
sults with classical finite element analysis, taken as a reference solution (Chap-
ter I11);



e it allows for (almost) unlimited exploration of material databases, in partic-
ular to evaluate the necessary mechanical content and spread in phase space

(Chapter 1V);

e it allows for a controlled generation of a database suitable for a genuinely
three-dimensional computation, which is beyond the current capacity of ex-
perimental acquisition techniques (Chapter V).

The last part of our work (Part C) focuses on applying DDCM to
multiscale simulation of heterogeneous materials. For this application, the
databases are no longer synthetic but generated from computational micromechan-
ics. The material database is constituted with macroscopic strain-stress pairs, ob-
tained from the volume average of the microscopic fields in a Representative Volume
Element of the microstructure. It is established that the number of microscopic
evaluations is usually a critical aspect in multiscale schemes such as multilevel fi-
nite element approach (FE?), popularized by Feyel (1999). Here, we propose to
use data-driven solvers as a tool to accelerate FE* simulations. As mentioned by
Kirchdoerfer and Ortiz (2016), as distance-minimizing schemes, data-driven solvers
indeed provide “error measures which highlight data regions that require additional
resolution”. We use this specific feature of DDCM to select the relevant microscopic
evaluations to perform, based on the adequacy of the material database to the cur-
rent macroscopic mechanical response. We then develop, in the last chapter of this
thesis (Chapter VI) a first adaptive strategy for multiscale simulations, restricted
to small strain (nonlinear) elasticity.
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10 Chapter I. State of the art

1 Basics of nonlinear computational mechanics

Nonlinear computational mechanics refers to the “study of the numerical analy-
sis of nonlinear continua using a computer, [which| comprises nonlinear continuum
mechanics together with the numerical schemes for solving the resulting governing
equations” and is recognized as “the only route by which the behavior of a complex
component subject to complex loading can be successfully simulated” (Bonet and
Wood, 2008). Basics ingredients of (nonlinear) continuum mechanics are kinemat-
ics, stress and equilibrium, and constitutive behavior. In this section, we revisit the
governing equations of a Boundary Value Problem (BVP) in (nonlinear) continuum
mechanics and their discretization by the Finite Element (FE) method, to serve as
a basis to the definitions and notations used throughout this thesis. The follow-
ing is widely inspired by the textbook of Bonet and Wood (2008) and we refer the
interested reader to it for more details on the derivations.

Notations and conventions Throughout the text, Einstein’s summation con-
vention is used with indices ranging from 1 to 3, unless otherwise indicated:

3
ABrj =Y AirBy;. (I1)
k=1
Considering vectors u, v, w € R3, second-order tensors A, B € R3*3, a third-

order tensor D € R3*3*3 and a fourth-order tensor H € R3*3%3%3  the standard
inner and outer products are expressed as:

U -V = UVj; (u@v)w = (w-v)u; (1.2)
Au = Ajju; e;; u- A= u;A;jej; (1.3)
AB = Ay.Byj(e;® €j); A:B=tr(AB") = 4;;B;j; (1.4)
D:(u®v)=(Dv)u; D : B = D1 Bji, e;; (L.5)
H:A=HjuA (e ®ej); (1.6)

with (e1, e, e3) the canonical basis of R3.
The second- and symmetric fourth-order tensors are respectively written as

1
I=¢;(ei®ej); sYM = 3 (0irdj1 + 0adjr) (e; @ e; R ep @ €;) (L.7)

with d;; the Kronecker’s symbol: d;; = 1 if ¢ = j, §;; = 0 otherwise.

1.1 Governing equations of nonlinear continuum mechanics
1.1.1 Motion and kinematics

The general motion of a deformable body is described by the transformation map-
ping ¢ that relates the initial coordinate X (at time ¢ = 0) to the current coordinate
x (at time t) as

x = (X, 1), (L8)
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and the displacement field is defined by
u=x—X. (1.9)

In infinitesimal deformation theory, the displacement u is assumed to be small
in comparison with the dimensions of the body. The deformation of the body is
then entirely measured by the linearized “small strain” tensor

(Vu + V). (I.10)

N =

E =

where Ve = 0 o /Ox denotes the gradient with respect to the current coordinates.
In finite strain, the magnitude of the displacement field can be of the order or even
exceed the initial dimensions of the body. The small strain € does not account for
all geometrical changes. More general strain (and stress) measures must therefore
be defined. Kinematic and stress descriptions can either be referenced to the initial
state of the body (classically undeformed and referred to as the reference state)
or to its deformed state; the former is referred to as the material or Lagrangian
description whereas the latter is referred to as the spatial or Fulerian description.
Regardless of the chosen setting, all strain measures rely on the deformation gradient
tensor F':

F=%¢ =1+ Wu, (L11)

where Vhe = 0 e /0X denotes the gradient with respect to the initial coordinates.
The deformation gradient tensor transforms infinitesimal lengths, surface areas and
volumes. In particular, it is worth mentioning that the Jacobian J measures the
volume change during deformation and hence, is positive:

J =det F > 0. (L.12)

Strain tensors measure the change in the scalar product of two elemental vectors,
from the initial configuration to the current configuration, and are expressed either
with reference to material or spatial coordinates, leading to the following quantities:

e Lagrangian strain tensor: the Green-Lagrange strain tensor E is defined
thanks to the right Cauchy-Green deformation tensor C' as

C=F"F, (1.13)
E:%(C—I). (1.14)

e Eulerian strain tensor: the Euler-Almansi strain tensor e is defined thanks to
the left Cauchy-Green deformation tensor b as

b=FFT, (I.15)

1 -
e=5(I-b . (1.16)
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Throughout the text, we refer to the above displacement-strain relationships as
compatibility equations. Note that, classically, compatibility equations refer to the
mathematical conditions that € (resp. F') must satisfy to match a small strain (resp.
deformation gradient) tensor. Practically, € and F must be integrable, and there
must exist a displacement field from which they come from'.

Concurrently, the relative change of velocity v(x,t) = dx /0t between two neigh-
boring particles in the spatial configuration is measured by the velocity gradient

tensor I as
l=Vw. (I.17)
From the spatial point of view, the rate of deformation tensor d is defined as the

symmetric part of I:

d— % (1+17), (1.18)

the antisymmetric part being the spin tensor w = 1/2 (l — lT). In addition, the
time derivative of the deformation gradient writes

oOF ov

F —qot o = 7% (I.19)
and allows for the definition of the material strain rate tensor E to write as:

E= % (FTF + FTF> . (1.20)
Both the material and spatial strain rates are related through:

d=F TEF' « E=F"dF. (1.21)

1.1.2 Stress and equilibrium

In finite strain setting, the different stress measures can be introduced in several
ways. Here, we follow the same organization as in Bonet and Wood (2008): first, we
define the Cauchy stress tensor o as the force per unit area in the current configura-
tion. Second, other measures are introduced using work conjugacy by manipulating
the principle of virtual work, such as the first and second Piola-Kirchhoff stress
tensors P and S.

In small strain, the compatibility conditions write
V x (V xe)=0,
and in finite strain
Y x F =0.

Note that compatibility conditions are necessary when € (resp. F') derives from a continuous,
single-valued, displacement field as in Eq. (1.10) (resp. Eq. (I.11)).
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For this purpose, let us consider the general BVP illustrated in Fig. I.1. The
body occupies a domain €y € R? in the reference configuration (in its undeformed
state) and 2 € R? under quasi-static loading, i.e. under the action of body forces f
per unit deformed volume, traction forces t per unit deformed area of the boundary
I'y and a displacement field up prescribed on the boundary I'p. The boundary
0f) of the domain in the current configuration is such that I'y UT'p = 99 and
I'p NT'xy = 0. The latter boundary conditions is referred to as Dirichlet boundary
conditions and writes

u(x) = up, Ve € I'p. (1.22)

Figure I.1 — A general nonlinear continuum mechanics BVP involving reference {2
and current ) configurations.

First, the Cauchy stress tensor relates the traction vector ¢ to the outer normal
vector n of a deformed unit area as

t(x) =o(x)n(x), Ve € T'y. (1.23)

Eq. (I.23) is referred to as Neumann boundary conditions and can also be under-
stood as an equilibrium equation on the boundary of the body. By contrast, the
translational equilibrium, derived from the conservation of momentum inside the
body, writes

dive(xz) + f(x) =0, Vo € Q (I.24)

in the absence of inertial forces. The conservation of angular momentum in the body
yields the well-known symmetry of the Cauchy stress tensor, conveniently expressed
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using the Levi-Civita third-order tensor € (€5, = 1if 7, j, k is an even permutation
of {1,2,3}, —1if it is odd, and 0 if any indices are repeated) as the vector equation

c=0l c€:0" =0. (1.25)

The principle of virtual work is classically derived by multiplying the local spatial
equilibrium equation Eq. (I.24) by an arbitrary virtual velocity from the current
position of the body dv, integrating over the domain €2 and using the Gauss theorem.
Expressing the virtual velocity gradient in terms of the symmetric virtual rate of
deformation éd = % (V(Sv + VT5’U) and using the symmetry of the Cauchy stress
tensor, the spatial virtual work equation writes

5W:/a:6ddv/f-5'vdv/ t-ovda =0. (1.26)
Q Q a0

Alternative work conjugate pairs other than (d, o) can be defined by expressing
the principle of virtual work Eq. (1.26) in the material configuration. We write
fo = Jf the body forces per unit reference volume and tg = t(da/dA) the traction
vector per unit reference area’. The change of variables dV = JdV and some
manipulations gives a new expression of the virtual work equation Eq. (1.26),

W= [ P:§FdV — fo-évdV—/ to - dvdA =0, (1.27)
Qo Qo 00

which defines the first Piola-Kirchhoff stress tensor as work conjugate to the rate of

the deformation gradient F":

P=JoF T (1.28)

The term “nominal” or “engineering” stress is also employed to refer to the first Piola-
Kirchhoff stress tensor and is rooted in its physical meaning: while o measures the
traction force per unit deformed area, it can easily be shown that P measures the
traction force per unit reference area, i.e. a sort of nominal traction force (Bonet
and Wood, 2008). The nominal equivalent local equilibrium equations to Eqs. (1.23)
o (1.25), then write:

P(X)N(X) = to, VX €Ty, (1.29)
DIV P(X) + fo(X ) 0, VX € O, (L30)
£:(FP")(X)= VX € Q, (1.31)

where IN is the outer normal of a unit area on the boundary I'g, of the reference
domain corresponding to the boundary I'y of the current domain and DIV denotes
the divergence operator with respect to the initial coordinates.

2The area ratio is given by the Nanson’s formula as

da J
—_— = =JVN -C-1N,
dA vn-bn

where N is the outer normal in the reference configuration.
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As the deformation gradient tensor F', the first Piola-Kirchhoff stress tensor P
is an nonsymmetric two point tensor which relates reference and deformed config-
urations. It can be more convenient to use the totally material symmetric stress
tensor S, known as the second Piola-Kirchhoff stress tensor. Performing a pull-back
operation on the spatial element of force dp = tda = onda = PN dA yields the
material force vector dpy = todA = F~!dp, which defines S as dpy = SN dA,
i.€e.

S=F'P, (1.32)
or
S=JF loF T (1.33)

Now, injecting the second Piola-Kirchhoff — Cauchy stress relationship Eq. (1.33)
and the strain rates relationship Eq. (I.21) into the spatial virtual work Eq. (I.26),
we obtain the material virtual work equation

5W:/ S:0EdV — fo.avdV—/ to-dvdA =0, (1.34)
Qo Qo Q0

which shows that (E, S) is another valid work conjugate pair.

The virtual work 0W, regardless of the chosen form (material, nominal or spa-
tial), is split into two terms: (i) the internal virtual work 6WW" defined by the first
integral involving the contraction between strain and stress, (ii) the external virtual
work Wt containing the last two integrals involving the body and traction forces
(see Egs. (1.26), (1.27) and (1.34)).

We summarize the definitions and governing equations for kinematics and equi-
librium of nonlinear quasi-static continuum mechanics in Table 1.1; both material
and spatial descriptions are linked through nominal quantities. The unknowns of a
three-dimensional mechanical problem, namely the displacement, strain and stress
fields, then comprise 34+949 = 21 independent variables. The governing equations
derived so far provide 15 independent equations (see details in brackets in Table I.1).
To close the problem, one then need 6 additional independent equations, which are
provided by a constitutive model describing the mechanical response of the material.

1.1.3 Constitutive equations: special case of hyperelasticity

Constitutive equations relate the primary variables (transformation mapping ¢)
and their gradients (gradient of deformation tensor F') to the constitutive variables
(stress tensor). They generally result from models, either motivated by physical
phenomena or phenomenological observations. These relations involve parameters
which are often considered in the end as material properties. Even if a great freedom
is allowed in modeling, some physical principles must be verified by the constitutive
models:
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physical admissibility: respect of physical principles, such as non-decreasing net
entropy;

determinism: constitutive variables at time ¢ depend on primary variables at pre-
vious times (7 < t);

locality: constitutive variables at material point X depend on primary variables
within a close neighborhood of X;

objectivity: constitutive equations must be frame-invariant.

A fairly simple class of constitutive equations which apply to finite strain are
derived within the hyperelasticity theory. Such constitutive models conveniently de-
scribe the response of materials that exhibit large reversible deformations, such as
elastomers, gels or some biological tissues. Hyperelasticty often serves as a basis
for more complex constitutive models in finite strain, such as elastoplasticity, vis-
coelasticity, etc. In the present work, we focused on large elastic deformations only.
Hence, we briefly recall the basic postulates of hyperelasticity, which provide the
reference solution to compare with the data-driven computations conducted in this
thesis.

First, the first Piola-Kirchhoff stress tensor P derives from an potential ¥ rep-
resenting the stored elastic energy density:

P(F(X),X)= 2] (1.35)

Second, taking into account the objectivity principle implies that ¥ only depends on
the stretch component U of the right polar decomposition of the deformation gradi-
ent tensor F' = RU, as the rotation component R represents rigid body rotations.
Then, the constitutive relation Eq. (I.35) is more favorably expressed in terms of
the second Piola-Kirchhoff stress tensor and the right Cauchy-Green stretch tensor
C=F'F=U?as

ov (C(X),X) oV
—_— L= 1.36

oC oOFE (1:36)
Third, in the case of isotropic materials, the constitutive equation Eq. (I.36) furthers
simplifies to a function of the invariants of C"

oV (Ig, I, I, X)

S(Io, o, I, X) =2
(Ic, ¢, o, X) 90 ,

(1.37)
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where the invariants of C' are defined as?®

Iec=trC=C:1, (1.38)
Ic=trC*=C:C, (1.39)
Ilc = det C = J>. (1.40)

The derivative chain rule yields a compact form of the isotropic hyperelastic consti-
tutive equation in the material description as

ov ov ov
S=2_—T+4-—C+2J

olc " are " T Bt

Its spatial counterpart is readily derived using Eq. (1.33) and recalling that the

invariants of C' are the same as that of b:

ov O o
_ —1 —1 2
o =2J7 bk A b 2T (1.42)

To derive a hyperelastic model, it then suffices to propose a strain energy density
function ¥ as a function of the stretch invariants (I, I, o).

The relationship Eq. (1.36) is generally nonlinear. As detailed in the next para-
graph, its incorporation in the principle of virtual work Eq. (1.34) and its discretiza-
tion with a finite element approximation yields a nonlinear system of algebraic

c . (1.41)

equations. In computational mechanics, the system is usually addressed with an
iterative technique which requires knowledge of the linearized constitutive equation.
The linearization is a systematic process which is based on the concept of directional
derivative, extensively presented in Bonet and Wood (2008); Holzapfel (2000) inter
alia. Here, we merely provide the general definition below.

Definition I.1. Directional derivative. Let consider a general multi-dimensional
functional F(x) with x being a list of unknown variables or functions. The direc-
tional derivative of F(x) at xg in the direction of w is defined as

d

DF(xp)[u] = % .

F (o + eu). (1.43)

The linearization of the relationship between S and E, given by Eq. (1.36), with
respect to an increment w in the current configuration writes

DS(z)[u] = C: DE(x)[ul, (L.44)

where the symmetric fourth-order tensor C, known as the Lagrangian or material
elasticity tensor is defined as

05 _,08 _ o
~OE T0oC 0CcoC’

3The following alternate definition of the second invariant II¢ is also commonly used for its
more physical meaning:

C

(1.45)

1
e = (I& - C:C).

In the rest of the manuscript, we precise which one is adopted whenever necessary.
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The partial derivative 3S/0E in Eq. (1.45) is defined in indicial notation by *

95 _ 981y
OE 0FEgp

(61®6J®6K®6L). (1.46)

The equivalent Eulerian or spatial elasticity tensor D is obtained by the interpre-
tation of the constitutive relation Eq. (I.44) into a rate form. It relates the Truesdell
rate of the Cauchy stress tensor

o°=J 'FSFT (1.47)
to the rate of deformation tensor d as

o’ =D:d. (1.48)
The spatial elasticity tensor DD is related to its material counterpart C by

D=J'FyFFxFiCrikr(ei®@ej @ ex@ep). (1.49)
Note that in Eq. (1.49) and in the rest of the manuscript, lower case indices 1, j, k, [

refer to the spatial coordinate system while upper case indices I, J, K, L refer to the
material coordinate system.

In like manner, a nominal elasticity tensor M can be defined from the lineariza-
tion of the relationship Eq. (I.35) as

DP(z)[u] =M : DF(x)[u] (1.50)
with
oP
M = 87171 :MiJkL(ei®eJ®ek®eL)
0P,z
Mt = —=— = 0iSsr + FirCrix L Frr, (I.51)

where the directional derivative of the deformation gradient in the direction w is
simply given by

DF[u] = Wu. (1.52)

“We remark to the interested reader that there exists an alternate definition for the partial
derivative of a second-order tensor with respect to another second-order tensor, and hence for the
fourth-order elasticity tensor, introduced by Itskov (2000). This requires an entirely new framework
of tensor algebra and tensor analysis extensively presented in the textbook Itskov (2015). As these
conventions do not change the physical results, we followed the commonly adopted definition of
Bonet and Wood (2008) in the present work.
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1.1.4 Linearized equilibrium equations

The weak form of the equilibrium given in Table .1 is nonlinear with respect to both
the geometry, due to finite strain measures, and the material, through the constitu-
tive model. As aforementioned, the numerical procedure employed in computational
mechanics relies on the linearized version of the virtual work, defined at given trans-
formation mapping ¢ and virtual velocity dv, in the direction of an increment w.
Here, we do not give the detailed manipulations that yield this linearization; they
can be found in Chapter 8 of (Bonet and Wood, 2008). The linearization of the
equilibrium is considered in terms of an internal and external components as

DSW (¢, 0v) [u] = D& (W™ — W) (¢, 6v) [u]

- ) (1.53)
= DOW'™ (¢, dv) [u] — DOSW (¢, 0v) [u].

The material, nominal and spatial forms of the linearized internal virtual work
DSW™t (¢, §v) [u] are given in Table 1.2 where a hyperelastic constitutive relation
of the form Eqs. (I.44) and (1.48) is considered. The expression of the linearized
external virtual work is not given here, as it depends on the kind of traction forces
applied. In particular, the case of uniform normal pressure is detailed in the Chapter
8 of (Bonet and Wood, 2008). Here, we only mention that the linearized external
virtual work is null when the body forces are independent of the motion. Specifically,
in the case of gravity loading, the external virtual work writes

W]?Xt (¢, 0v) = /ng v dV, (I.54a)

and hence

D(WVJ‘EXt (¢, 0v) [u] =0, (I.54b)

with p the density of the material and g the acceleration due to gravity.

1.1.5 Special case of linear elasticity

To close this section, we briefly give the linearized or small strain counterpart of the
previous equations. First, all strain measures are reduced to the small strain tensor
€ and the rate of deformation tensor d is simply the time derivative of €

d= % (Vo+ Vo) =¢ (1.58)

Second, all stress measures are reduced to the Cauchy stress tensor o. The reference
and current configuration being indistinguishable, only one set of local equilibrium
equations remains:

on =t, vV € I'y, (L.59)
dive + f =0, VY € Q, (1.60)
E:0=0, Ve €, (I.61)



21

Basics of nonlinear computational mechanics

1.

O O

(L87) ap (agA MA) 0 \ + AP3: @ : P9 \ = [n] (a9 ‘P) uMeoq rerpedg
)

(9¢'1) APTOA A a9 [ = [n] (a9 ‘D), MOT [euruoN
) e

(¢q'1) AP (a9 nA) & \ +APE@q D [adlaa | =[n] (a0 ®) umoea [eLIOYRIN

YJI0M [enjiiA [eUIDJUI POZIIedul] uorydrioso(q

"suonydLdsop [eryeds pue [RUIIOU ‘[RLIOYeUW oY) UL [1] (A9 ‘D) 1 MO(T SIOM [BNIIA [RUIOIUT PIZLIBIUI] 93 JO SUOISSoIdX{ — '] 9[qeL



22 Chapter I. State of the art

which are summarized in the linearized principle of virtual work as

5W:/a:sdv/f-6vdv/ t - v da. (1.62)
Q Q o0

The constitutive relation is also linearized and reduces to the standard linear elastic
solid (Hooke’s law) defined by the constant fourth-order elasticity tensor H, such
that

c=H:e. (1.63)

In the case of isotropy, only two independent parameters suffice to describe H, and
Hooke’s law takes one of the following forms:

o = Mrel +2pue, (1.64)
or
o =3kvole + 2udeve, (1.65)
or
1
€= ;VO'—%U‘O'I, (1.66)

where A and p are the Lamé constants, x the bulk modulus accounting for the
compressibility of the material, v the Poisson’s ratio and E the Young’s modulus.
The 2! Lamé constant p is also the shear modulus. The operators vol e and dev e
acting on second-order tensors are defined as

1
vole = 3 tre I, (1.67)
deve =e —vole. (1.68)

1.2 Finite element discretization of nonlinear continuum mechan-
ics

In the governing equations of nonlinear continuum mechanics reminded above, two

sources of nonlinearity co-exist:

geometric nonlinearity arises when “changes in geometry have a significant effect
on the load deformation behavior”, which includes large strain, deformation-
dependent boundary conditions and loading, or geometric instabilities (Bonet
and Wood, 2008);

material nonlinearity occurs when the constitutive equation relating strain and
stress is nonlinear, which includes stiffening effects for instance.
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Both nonlinearities render the partial differential equations impossible to solve by-
hand, apart in simple problems. That is why numerical analysis, which relies on a
discretization of the domain, is an essential tool to calculate the mechanical response
of complex structures subject to complex loading conditions. The most commonly
used discretization technique in solid mechanics is the FE method which Bonet and
Wood (2008) summarize as follows:

It is a procedure whereby the continuum behavior described at an infinity
of points is approximated in terms of a finite number of points, called
nodes, located at specific points in the continuum. These nodes are used
to define regions, called finite elements, over which both the geometry
and the primary variables in the governing equations are approximated.

To complete this definition, we add that the finite elements constitute the compact
support of a set of approximation or basis or shape functions used to approximate
the solution (a shape function is nonzero only over the domain occupied by the
attached finite element). The FE method is based upon integral formulations of
partial differential equations. In mechanics, it thus uses the weak form Eqs. (1.26),
(I.27) and (I.34) of the governing equations. After discretization, these are rendered
into a nonlinear system of algebraic equations. In the following, we briefly revisit
the discretized form of these equations to provide the Newton-Raphson procedure
that is commonly used to solve such a nonlinear system.

1.2.1 Discretized equilibrium equations

The discretization is herein restricted to isoparametric elements, meaning that the
approximation functions for the geometry and for the primary variable (displacement
field) are the same. Let us consider a finite element mesh approximating the body in
Qo with N nodes and M elements. Each element e comprises N, nodes and occupies
a domain Qée) (Q(¢)) in the reference (current) configuration. The position X (z) of
a material point in the reference (current) configuration of element e is interpolated

from the positions X, of the nodes with the nodal shape functions N, () as

Ne

X =3 Nul€)Xa, (1.69)
v

2 =3 Nu(&)aa, (1.70)
a=1

where & is the isoparametric coordinate of the integration point in the unit reference
element. Consistently, the displacement field w and the virtual velocity field dv are
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interpolated as

Ne
U(X) = ZNa(s)um (1.71)
a=1
Ne
v =" Nu(£)dv,. (1.72)
a=1
The gradients of the primary variables are then easily derived as
Ne
F=%z=>) x,8 W\, (1.73)
a=1
Ne
1
od = > (0va ® YNg + VN, ® dvg) (1.74)
a=1

where the gradient of the shape functions with respect to the spatial and mate-
rial configuration are obtained from their (known) derivatives with respect to the
isoparametric coordinates as

ONg (0X\7! . 0X
V()Na == aé <a£> 5 with 875 = ;Xa & Vé“./\/’a, (175>
AL (8‘”)1 with &E—iaz ® VN, (1.76)
a ag 85 ) 85 s a &/Na- :

Injecting this discretization into each form of the principle of virtual work yields the
discretized virtual work equation

vy, R, =0,YVa=1..N, (L.77)
which involves the nodal residual force vector
R, =T - T (1.78)

representing the balance between the internal force vector Ti"* and the external force
vector TX'. The former is equivalently evaluated on all configurations, depending
on the choice of implementation; the different forms are then listed in Table 1.3,
in which the summation symbol Zé\ﬁl e denotes the assembly of the quantity e

eda

at node a over the M, elements of the mesh containing node a, labeled ¢ > a.
The reader is referred to Bonet and Wood (2008) for the detailed derivations of
these expressions and the assembly procedure. The latter is preferably expressed in
the spatial configuration as it allows for taking into account deformation-dependent
loading such as applied normal pressure more easily. Specifically,

M,
ext _
T =y (/Q(e)/\/afdan
e=1

eda

Nt da) : (1.79)

Q)
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Table 1.3 — Finite element discretizations of the internal force vector T assembled
at node a, using isoparametric elements, in the material, nominal and spatial form.

Description Discretized nodal force vectors
Material M
T =Y / FSWN, dV (1.80)
Q(E)
e=1 0
eda
Nominal ; M
=Y / PWN, dV (1.81)
Q(e)
e=1 0
eda
M,
Spatial it _ N
(or linearized T.” = Zl /me) o VN dv (1.82)
g

kinematics) e3a

The virtual nodal velocities Jv being arbitrary, Eq. (I.77) reduces to a nonlinear
system of equations expressed by the nodal residual force vectors as

R,=0,Ya=1..N. (1.83)

1.2.2 Solution to the nonlinear discrete problem

The discretized version of the principle of virtual work then yields a nonlinear system
of equations Eq. (I.78) which represents the balance between internal and external
forces at every node on the structure, with the nodal current positions (or displace-
ments) as the unknowns. The most commonly used numerical scheme to solve these
nonlinear equations is the Newton-Raphson iterative procedure which requires the
linearization of the residual in the direction of an incremental displacement u. A
typical iteration k£ of the algorithm writes:

where
D6W (y, 6v)[u] = DéWint(qbk, Sv)[u] — DSW ¢y, dv)[u]

with DSW™ (¢, dv)[u] as in Egs. (1.55) to (1.57). Using the finite element dis-
cretization of the geometry and the primary variables together with the linearized
virtual work equations given in Eq. (I.53) and Table 1.2, Eq. (1.84) is rendered in
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the following discrete form:

N
R,+» Kuuy=0Ya=1..N, (1.85)
b=1
with
Ku = (K — Kg') (1.86)

where K1 (respectively K) is the internal (respectively external) tangent stiff-
ness matrix of the system and N, denotes the number of nodes connected to node
a. The tangent stiffness matrix K,; measures the change in forces at node a due to
change in the current position of node b. The explicit formulation of the external
stiffness matrix K" is left aside here since it depends on the type of loading. How-
ever, a general expression of the internal stiffness matrix comprises two component:
(i) a constitutive component K¢, corresponding to the term of the linearized inter-
nal work which involves the constitutive relationship, (ii) an initial stress component
K, resulting from the additional stress term of the linearized internal work which
derives from the nonlinearity of the material and spatial strain measures:

KW' = K& + K3, (1.87)
We gather the expressions of the internal tangent stiffness matrix K;I;)t in the ma-
terial, nominal and spatial descriptions in Table 1.4.

A typical Newton-Raphson iteration k in a finite element code then writes:

R(zy) + K(xp)u =0, and @41 = o + u, (1.93)
where R = [RlT, Rg, e ,R%]T is the complete residual force vector gathering all
nodal equivalent forces, u = [ulT, ug, e ,u%]T the complete nodal displacements

vector and K the complete tangent stiffness matrix defined by assembling the nodal
components as

K1 K2 -+ Kin
Ky Ky - Kosy

K- |2 T (1.94)
Kyt Kyo -+ Knn

1.2.3 Discrete evaluation of integrals

As a final remark, all finite element quantities presented above require the evalua-
tion of integrals over elementary domains. However, the underlying mathematical
expressions of the integrands are generally too complex to perform an exact inte-
gration. The FE method thus also comprises an appropriate integration or Gauss
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quadrature rule, so as to replace integrals by weighted sums of the discrete evalua-
tions of the fields at integration points. Every integral of a functional F over the
elementary domain Q) of the current configuration is then computed as

ox =<
F(x)dv = F(&)det | = d_—E F, 1.95
Qe (@) dv ae) (§) de <8£) v po Wa7"g ( )

where Q©) is the elementary domain in the isoparametric coordinate system, wy =
wg det (%—?) is the current volume associated to integration point g of weight w

and coordinate x, in the current configuration, F, = F(x,) and P, the number
of integration points in the element. The same applies to the integrals over the

elementary domain Q(()e) in the reference configuration:

P,
0X =
F(X)dV = F(&)det | — | AV = F,, 1.96
o= [ Fea (%) >, (1.96)

with w, = wy det (%%) now being defined as the reference volume associated to in-

tegration point g of coordinate X in the reference configuration, and F, = F(X,).

Hence, in the finite element setting, the primary variables (displacement field)
are evaluated at the node while their gradient (constitutive variables, strain and
stress fields) are evaluated at the integration points. In the rest of the manuscript,
the finite element formulation of the BVP will then be directly defined by these
discrete unknowns. We shall only refer to the nodes and the integration points, by-
passing intermediate computations (integrals) on the elements. Every variational
formulation resulting in the integral of a functional F over the whole domain )
(and likewise over §2) is then directly expressed as the weighted sum

P
F(X)dV =) w,F, (1.97)
Qo g=1

with P = Ze]\/il P. the total number of integration points in the mesh.

1.3 Summary

To summarize, the finite element method applied to nonlinear mechanics of solids
consists in solving a nonlinear system of algebraic equations derived from the weak
form of equilibrium equations, using the Newton-Raphson scheme based on the
tangent stiffness matrix. It is worth noting that the primary variables (positions
and displacements) are computed at the nodes and that the constitutive variables
(strains and stress) are computed within the elements, discretely at the integration
points. The three formulations (material, nominal or spatial) are all equivalent
and yield the same results. Nevertheless, each presents specific features which can
advocate for their implementation, depending on the user’s preferences and the
problem:
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nominal: In this setting, the displacement-deformation relation Eq. (I.11) is linear,
which suppresses the initial stress component of the internal tangent stiffness
matrix. In addition, since the integration is performed on the reference con-
figuration, the gradient of the shapes functions can be computed once and for
all at the beginning of the calculation (see Eq. (1.75)).

spatial: This formulation is particularly adapted to deformation-dependent loading
conditions which require to update the current configuration at each iteration.
A convenient matrix formulation is also available which allows for the use of
sparse solvers.

material: This description is equally interesting than the nominal formulation in
terms of the gradient of the shape functions. In addition, it allows to work
with fully symmetric tensors.

1.4 The key concept and central difficulty of constitutive modeling

As discussed above, the FE method applied to nonlinear continuum mechanics is
more complex than the standard linear analysis of solids and requires a careful im-
plementation of the chosen formulation. Of course, we only presented the elastic
framework; additional derivations and concepts must be introduced in order to pre-
dict anelastic behaviors such as plasticity or viscoelasticity. Moreover, multi-physics
phenomena such as thermo-mechanics involve supplementary governing equations.
Leaving these complex couplings aside, the most difficult aspect of computational
mechanics is undoubtedly the derivation, implementation and identification of the
constitutive model.

1.4.1 Derivation

In solid mechanics, and particularly for hyperelasticity, most of the constitutive
models are derived following the so-called phenomenological approach. This ap-
proach consists in “fitting mathematical equations to experimental data”’, but is
“not capable of relating the mechanism of deformation to the underlying physical
(microscopic) structure of the material” (Holzapfel, 2000). In this context a consti-
tutive theory is developed in order to give a consistent framework for the elaboration
of a model able to reproduce the response of the material. For instance, much effort
has been devoted to the development of the finite (hyper)elasticity theory, which
involves the principles we recalled in Section 1.1.3 together with the polyconvexity
of strain-energy functions (see Holzapfel (2000, Chapter 6) for more explanation
and references on this subject). A thermodynamical approach, based on the work of
Coleman and Noll (1974) provides the generalized standard materials framework in
for anelastic materials using internal variables (Germain et al., 1983; Halphen and
Son Nguyen, 1975).
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1.4.2 Implementation

The thermo-mechanical framework for the development of constitutive models in
then well established. However, as it offers great freedom, one must choose the
most suitable model for the material considered among a large variety of proposi-
tions: entire scientific journals are exclusively dedicated to the research on constitu-
tive modeling and for rubber-like materials only, several reviews have compared the
performances of each model to date (see Boyce and Arruda (2000); Marckmann and
Verron (2006); Steinmann et al. (2012); Mihai and Goriely (2017) inter alia). In par-
ticular, for an engineer faced with a commercial FE software it is not straightforward
which constitutive equations to choose that will best predict the excepted behavior
of the material in the structure considered. For complex models, dedicated imple-
mentations and algorithms can be needed: see from example the book of Simo and
Hughes (1998) devoted to the implementation of inelasticity, or the LArge Time IN-
crement method (LATIN) method introduced by Ladevéze in 1984 and extensively
detailed in (Ladeveze, 1996) to deal with nonlinearity. We can also mention the
Z-mat material library, part of the Z-set suite, which provides a collection of con-
stitutive models for non-linear material behaviors Chaboche and Cailletaud (1996).
The availability of complex constitutive models and the development of associated
integrations tools in FE codes or softwares constitutes a large part of research effort
in computational mechanics.

1.4.3 Identification

Once the appropriate constitutive model has been selected and made available in
standard FE software, it still remains for the engineer to identify the parameters for
the considered material, with experimental data. Often, only one strain-stress curve
extracted from a uniaxial tensile test is available, but it offers insufficient data to
identify numerous parameters. The identification process is then generally an ill-
posed problem comprising multiple solutions. The reliability of the model in other
scenarios than the training one can then be uncertain: fitting a hyperelastic model
on uniaxial tensile test only or using supplementary data from other deformation
modes such as pure shear or biaxial tension can yield different values of the param-
eters. Hence, it results in different predictions for the three-dimensional material
behavior (Verron, 2018). As discussed next, the recent developments of experimen-
tal techniques and monitoring tools, e.g. full-field measurements, addresses these
identification issues by providing richer experimental data.

1.4.4 Special case of heterogeneous materials

The difficult process of developing, identifying and implementing a constitutive
model is even more so in the case of so-called heterogeneous materials, i.e. multi-
phase materials. Indeed, their effective behavior is strongly dependent on the ma-
terial response of the constituents themselves and on their arrangement in the mi-
crostructure. They are also generally anisotropic and complex microstructural phe-
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nomena occur during deformation, impacting the macroscopic response. An entire
branch of research on mechanics of materials is focused on the homogenization of
microscopic properties into an effective material response of heterogeneous mate-
rials. Starting from the Eshelby solution of an ellipsoidal inclusion embedded in
an infinite elastic medium and subject to a far-field strain (FEshelby and Peierls,
1957), mean field theory was developed to model more complex microstructures and
anelastic behaviors, such as elastoplasicity, based on the work of Hill (1965). Again,
the more microstructural phenomena one aims at capturing, the more complex the
mean field model. Breaking with this modeling approach the so-called computational
homogenization was introduced in the late 1990s and has seen various contributions
and developments ever since (see for instance the review of Geers et al. (2010)). An
application of this approach to elastoviscoplastic materials resulted in the so-called
FE? scheme introduced by Feyel (1999); Feyel and Chaboche (2000). It consists in
a multiscale numerical scheme, which bypasses the need for modeling the effective
behavior of the microstructure. Instead, two nested BVPs are concurrently solved
using FE analysis: a computation on a Representative Volume Element (RVE) of
the microstructure is conducted at each integration point of the macroscopic mesh,
with boundary conditions provided by the strain state of the macroscopic point.
The macroscopic stress state is subsequently obtained from a volume average of the
microscopic stress field in the RVE. This procedure makes use of the constitutive
equations at the microscopic level only, as illustrated in Fig. [.2. However, it is

Macropic scale Macropic scale
strain stress 3 = <g>
Locah’sationl Periodic media () T Homogenisation

Micro scale
g

Micro scale Constitutive equation
—>
€

Figure 1.2 — Schematic diagram of the FE? model. From Feyel (1999).

computationally very demanding, both in CPU time and in memory requirements,
and researchers are currently focusing on reducing the cost, either via parallel im-
plementation and/or through reduced order modeling concepts.

1.4.5 Summary

To sum up, constitutive models are one of the key ingredients in computational
mechanics. As demonstrated, a current major focus in mechanics of materials is the
development of constitutive models. However, the more complex the constitutive
models, the greater the need for experimental data to calibrate the parameters
and also the more carefully their domain of validity must be defined. Material
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modeling then appears as one possible entry-point for data science in computational
mechanics, as we show next.

2 Data science in computational mechanics

In this section, we take inspiration from the argument Michael Ortiz gave in his con-
ference at the XIII International Conference on Computational Plasticity (COM-
PLAS), in 2015, to motivate the data-driven computational mechanics approach
(Ortiz, 2015).

2.1 Data in computational mechanics

Computational mechanics is a field in which a large amount of data is both consumed
and produced. On the one side, the recent developments of experimental measure-
ments techniques have provided rich databases to the identification process of the
constitutive models used in FE simulations. In particular, identification techniques
coupling computational mechanics with full-field measurements such as Finite Ele-
ment Model Updating, Virtual Field Method, or Constitutive Equation Gap Method
have been developed in recent years (see the review of Avril et al. (2008)). On the
other side, heavy computations, such as multiscale analyses, produce a huge amount
of discrete values of displacements, strains, stresses, or strain energy densities, which
can be used in the end to extract knowledge on the overall material behavior. For
example, recent achievements in high performance computing has enabled Mosby
and Matous (2016) to perform a simulation consisting of 53.8 Billion finite elements
with 28.1 Billion nonlinear equations that was solved on 393216 computing cores,
using a hierarchically parallel implementation of the computational homogenization
formulation (Matous et al.,; 2017). These kind of massive multiscale computations
are intended to constitute “the basis of Virtual Materials Testing standards, and
to aid in the development of new material formulations with extreme properties”
(Mosby and Matous, 2016).

Any numerical analysis is then nowadays both further down and in the upstream
part of a production chain of data, making the field of computational mechanics a
perfect candidate for application of data science.

2.2 What is data science and how it fits in the field of computa-
tional mechanics

Here, data science is understood as “the study of the generalizable extraction of
knowledge from data”. “Knowledge” refers to underlying patterns or “insights” in
unstructured data; then, “unlike database querying, which asks ‘What data satisfies
this pattern (query)?’, discovery asks ‘What patterns satisfy this data?”. Further-
more, “what makes an insight actionable [...] is its predictive power”. Data science
uses techniques such as data management, machine learning and statistics to derive
mathematical models which can be “acted upon with high degree of confidence”
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(Dhar, 2013). It is widespread in fields such as marketing, advertising, medical
diagnosis, finance or social sciences. To understand its role and where it can be in-
corporated in solid mechanics and computational mechanics in particular, we must
take a look back at the anatomy of a mechanical problem. As aforementioned in
Section 1.1, a mechanical BVP is essentially driven by three groups of governing
equations: (i) kinematics together with Dirichlet boundary conditions, which derive
from geometry, (ii) equilibrium and Neumann conditions, which results from conser-
vation laws, (iil) constitutive models, which represent the behavior of the material.
On the first hand, the first two are universally valid, or uncertainty-free, as they
rely on general physical principles. On the other hand, the constitutive equations,
or material laws, are more questionable. More importantly, this is where computa-
tional mechanics needs data to calibrate the models. A typical application of data
science in the field of computational mechanics is then the modeling of the material
response: there, one does need a predictive mathematical relation that is based on
knowledge extracted from unstructured data, to fall back on the definition given by
Dhar (2013).

2.3 Instances of data science in material modeling and structural
computation

As aforementioned, micro-mechanics of materials is a typical field of applications
where computational mechanics actually generates data. It is then a particularly
adequate candidate for the use of data science techniques. A first example may be
the use of model reduction such as the proper orthogonal decomposition method.
It has notably been used by Yvonnet and He (2007) for both localization and ho-
mogenization of hyperelastic composites. Other examples can be found in the pre-
viously mentioned review of predictive nonlinear theories from multiscale modeling
of heterogeneous materials by Matous et al. (2017). Reduced order models may be
understood as meta-models of both the material and the structural response in a
given problem. Other approaches consists in calibrating a response surface model
of the microstructure with digital databases or discrete material maps (see inter
alia Le et al. (2015) for hyperelastic materials). In these approaches, a constitutive
equation is still to be derived beforehand and further calibrated with microstruc-
tural data. To directly extract knowledge from the microscopic response, Neural
Network (NN)-based material models where first introduced by Ghaboussi J. et al.
(1991). Hashash et al. (2004) discussed their implementations in FE analysis and
Ling et al. (2016) “incorporated domain knowledge in the machine learning pro-
cess” by taking into account invariance and symmetries of the problem. One of
the most popular and fairly simple machine learning technique is probably dimen-
sional reduction, that seek meaningful low-dimensional structures hidden in high
dimensional data, represented for instance by full-field experimental measurements
or microscopic simulations. In their review, Matous et al. (2017) classify Laplacian
eigenmaps or Locally linear embedding (LLE) (Roweis and Saul, 2000) as local tech-
niques and kernel-PCA, diffusion maps, or Isomap as global techniques to learn the
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manifold where the microscopic response lies. Other applications of manifold learn-
ing techniques have recently been introduced for homogeneous materials by [banez
et al. (2017, 2018), where the constitutive manifold is learned by LLE. For hy-
perelastic materials, Latorre and Montans (2014) introduced What-You-Prescribe-
is-What-You-Get hyperelastic models where the strain energy density function is
constructed with splines based on the resolution of the equilibrium equations of
different experiments (see also Crespo et al. (2017)). As a final example of data
science integration into computational mechanics, we care to mention the work of
Buffiere et al. (2006); Herbig et al. (2011); Rovinelli et al. (2018). It relies on a
careful generation of experimental big-data of the evolution of fatigue cracks rela-
tive to the local microstructure during in situ loading of polycrystalline materials.
A Bayesian network is then used to identify an analytical relationship for the crack
driving force. In their work, machine learning does not only automatically infer a
constitutive relation but is also used as a tool to understand the correlations between
the direction of propagation and usual fatigue metrics.

In all the aforementioned instances of data science in computational mechan-
ics or material modeling (which can hardly be taken for an exhaustive list), some
sort of constitutive model is still either learned, or postulated and calibrated with
relevant techniques and data. We see it as a loss of data: the constitutive model
acts as a bottle neck between the upstream data (obtained either experimentally
or computationally) and the downstream data generated by FE analysis. As a new
paradigm, so-called Data-Driven Computational Mechanics (DDCM), Kirchdoerfer
and Ortiz (2016) recently proposed to incorporate the data directly into the compu-
tation, i.e. to replace the constitutive equation with a database of material relevant
constitutive variables. In the case of elasticity, the material database is a discrete
set of strain-stress data points. This model-free approach roughly consists in min-
imizing some deviation function to the discrete material response, represented by
the material database, under the constraints that the mechanical state in the body
satisfies universal physical principles. Their proposition constitutes the basis of this
thesis and is detailed in the next chapter.
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1 Presentation of the method

In this section, we present the DDCM approach, first introduced by Kirchdoerfer and
Ortiz (2016) and complemented in Conti et al. (2018). We first recall the general idea
in Section 1.1. Then, both continuous and FE discrete formulations are presented
in Section 1.2. The subsequent data-driven solver is listed in Section 1.3. Finally,
we reproduce the original results of Kirchdoerfer and Ortiz (2016) in Section 1.4.

1.1 General idea

As motivated in State of the art, the DDCM approach was proposed by Kirchdoerfer
and Ortiz (2016) as a “new computing paradigm”, which allows for “bypassing the
empirical material modeling step of conventional computing altogether”. In lieu of
the constitutive model, the material behavior is represented by a database of mate-
rial data points, resulting from experimental acquisition or numerical simulations at
finer scales. In solid mechanics, the typical constitutive variables involved are the
strain and the stress. For elastic materials, in the linearized kinematics approxima-
tion, the material database is then constituted with (e, o) strain-stress state pairs.
The approach relies on the fundamental separation between the characterization of
the material response and the satisfaction of essential constraints and conservation
laws: while the former is most likely to be approximately captured (e.g. due to noise
in the acquisition of experimental data), the latter ones must be exactly satisfied.
The authors then developed a new class of solvers, called data-driven solvers, in a
small strain elastic framework, which allows for some discrepancy with respect to the
material response while satisfying physical principles at every material point in the
body. This is achieved by re-formulating the BVP as a minimization of a distance
function between two types of strain-stress fields: one, representing the material
response, takes value in the material database, and the other, verifying both com-
patibility and equilibrium equations, represents the mechanical states of the body.
The former strain-stress field is referred to as the material state and belongs to a
so-called material data set, while the latter mechanical state belongs to a so-called
constraint set. Both sets are subspaces of the so-called phase space, which collects
all possible strain-stress fields. The phase space can be opposed to the physical
space, where the body deforms and the coordinates of the material points are de-
fined. The data-driven solver then seeks to assign to each material point in the body
a strain-stress state that (i) verifies the compatibility and equilibrium constraints
of the BVP in physical space, and (ii) is the closest possible from a pre-specified
material database in phase space.

The approach was first introduced as a way to directly incorporate raw data
into the computations, hence developed from a purely numerical, computational
mechanics point of view. Specifically, Kirchdoerfer and Ortiz (2016) formulated
the data-driven problem in the case of the static equilibrium of nonlinear three-
dimensional trusses and of FE discretized linear elastic solids. However data-driven
small strain elasticity can also be formulated for continuum mechanics (see the
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authors attempt in the last section of Kirchdoerfer and Ortiz (2016)). It is only
two years later that Conti et al. (2018) complemented the data-driven paradigm
with a continuous formulation. They also provided the attendant mathematical
proofs of the existence of solutions together with specific notions of convergence
with respect to the material data set. We also care to mention the variational
formulation presented in Nguyen et al. (2020).

With the benefit of hindsight, we therefore choose in the next section not to
present the method in a chronological manner: we rather first introduce the data-
driven paradigm with the continuum mechanics formulation. Then, we summarize
the mathematical ground to the approach before recalling the original discrete for-
mulation.

1.2 Continuous and discrete formulation
1.2.1 Continuous formulation

In this section and throughout the manuscript when it is possible, we adopt the
formalism of Conti et al. (2018) together with the notations introduced in State
of the art. Let us consider an elastic body occupying a domain Q € R? under
quasi-static loading. The small-strain assumption is adopted; the compatibility and
equilibrium governing equations respectively write

e(z) = % (Vu(e) + VVu(e)) inQ, (IT.1a)

w(@) = up(@) on T'p, (IL1b)
and

divo(z) + f(z) = 0 in 0, (11.2a)

o(z)n(z) = Hz) on Ty. (I1.2b)

In elasticity, the above system of equations is classically closed by a constitutive
relation of the type

o(z) = &(e(x)). (IL.3)

As we previously mentioned, these three groups of governing equations are of two
types: universally valid physical principles on the one hand (Egs. (II.1) and (I1.2)),
and material-dependent relations on the other hand (Eq. (I1.3)). In the data-driven
approach, this separation is rooted in the re-formulation of the BVP as distance-
minimization problem, presented in the following. Note that the symmetry of the
stress tensor is admitted as classically, the conservation of angular momentum is
then directly enforced in the definition of the stress field.

Preliminary definitions The strain-stress tensor pair (e(x),o(x)) is referred
to as the local state at the material point & of the body 2. All possible strain-
stress pairs sit in a high dimensional space, which is referred to as the local phase
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space and denoted Zj,. = ngxn% X ngxn?; For instance, in a 3-dimensional problem,
the strain and stress tensors each comprise 6 independent variables, which yields a
12-dimensional local phase space. To relate the physical space 2, where the body de-
forms, to the local phase space, Conti et al. (2018) introduce the local state function

z as the mapping from every material point « to its local state in Zj,:

z: Q> Zloc
x— z(x) = (e(x),0(x)). (IL.4)

We also refer to the local state function as the local state field. The global phase space
Z is then merely the collection of all possible local state functions z : Q — Zj.:

Z = L*(Q,R2X™) x L*(Q, R2X™), (IL5)

sym sym

Two different subsets of Z are defined in the following, dividing material-
independent quantities and constitutive quantities.

1. The collection of local state fields verifying universally valid Egs. (II.1)
and (I1.2) defines a material-independent constraint set, denoted &:

£=1{z€ Z|Egs. (IL1) and (11.2)} C Z, (I1.6)

where the symbol | means “subject to” or “such that” throughout the
manuscript. We remark that kinematics and equilibrium constraints typically
define a continuous manifold in phase space.

2. The material behavior is described by a collection of admissible strain-stress
pairs, referred to as the local material data set Dyo.. We also refer to D as
the material database. If a constitutive model is known, then the local material
data set writes

Dioe = {2z(x) | Eq. (11.3)}. (I1.7)

However, the data-driven paradigm aims to address cases where the constitu-
tive model Eq. (I1.3) is not explicit nor identified; only a raw discrete sampling
of the material response is available, obtained e.g. through experimental tests
or numerical simulations at finer scales. The material data set Dj,. then col-
lects a finite number m of material strain-stress pairs and writes:

Dioe = {(€5,0%) | i € [1..m]} C Zioe. (IL.8)

The global material data set D C Z is, in any case, defined by the collection
of local state fields taking value in a local material data set:

D={z¢€ Z | z(x) € Dioc} - (IL.9)

The local and global definitions of the material data set allow for the possi-
ble inhomogeneity of the material: a distinct local material data set can be
associated to different phases of an heterogeneous material.
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The above definitions are illustrated in Fig. I1.1, where the phase space is schemat-
ically represented in two dimensions (it is of much higher dimension as previously
emphasized). In the small strain setting and for loading conditions independent of
the motion, the constraint set is a linear manifold (i.e. a line in 2D, in red) result-
ing from the linearity of the compatibility and equilibrium equations Eqs. (II.1a)
and (I1.2a). The local material data set is represented here as a discrete sampling
of a nonlinear constitutive relation.

Physical space Phase-space

Figure II.1 — Functional spaces defined in the continuous data-driven formulation of
Conti et al. (2018).

Reformulation of the boundary value problem The solution of the classical
BVP Egs. (II.1) to (IL.3) is defined as the tuple (u,e, o) of the fields verifying all
three equations, at the same time. With the definitions above, this statement can
be reformulated as follows: the solution of the classical BVP lies at the intersection S
between the constraint set of mechanically admissible states and the material data
set, defined with a constitutive model:

S=£END, (I1.10)

with D = {z €Z|zx) e 1510(,}.

Let us now consider the more general case where the material database is dis-
crete, as in Eq. (I1.8). Then, the solution set can no longer be determined as
previously, since the intersection £ ND is most likely to be empty, as illustrated in
Fig. 11.2, even if a solution does exist. The data-driven approach then boils down
to relaxing this characterization by allowing a certain amount of discrepancy be-
tween the solution set and the material data set. The solution is now defined as
the mechanical state field z = (g,0) € &, verifying both kinematics and equilibrium
constraints, that is closest to the material data set:

S =arg mig d(z,D), (IL.11)
zE
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Phase-space Phase-space
ag; j
\ D
S=END
€kl

Figure I1.2 — Exact and near intersections & between a possible constraint set &
and (left) a continuous material data set D, obtained from a constitutive model
and (right) a discrete material data set D, obtained from e.g. experimental testing.
Inspired from Kirchdoerfer and Ortiz (2016).

where d is an appropriate distance defined on the phase space Z. The phase space
Z=1I° (Q, R"X") x L? (Q, R”X”) is indeed equipped with the metric:

Sym sym

Izl = (/Q (;(C o) s+%((@‘1 o) : a’> dv>é, (I1.12)

where C is a constant fourth-order positive definite tensor. The distance between a
local state z and any subset A of the phase space is follows as

d = mi — . I1.13
(5 A) = min]|z — ac (1L.13)
The data-driven BVP is then reformulated as the double minimization problem

in min ||z — 2’ 11.14
min min [z — 2'lc, (I1.14)

or, equivalently, using the squared distance, as

: : 112
— . IL.15
nip il - 7lE )

For a given material data set D, the solution set S of the data-driven D-problem is
then defined as

S =arg min min /Q<1((C:(s—s’)):(s—s’)

z=(e,0)€€ z'=(e',0')eD

4z ((C—l i(o—0a')):(o— 0'/)> dv. (I1.16)

The material part z’ € D of the solution to Eq. (I1.16) is referred to as the material
state field.
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An elementary example, presented in Kirchdoerfer and Ortiz (2017), illustrates
the data-driven distance-minimizing paradigm: an elastic bar deforms uniformly
under the action of a loading device. We refer to Analytical solution for a one-
dimensional bar for the analytical data-driven solution and the attendant geomet-
rical interpretation we derived.

1.2.2 Mathematical proof

In their first contribution, Kirchdoerfer and Ortiz (2016) showed that “the data-
driven solutions converge to classical solutions when the data set approximates a
limiting constitutive law with increasing fidelity”. They particularly developed es-
timates of convergence rates for the data-driven solution to the reference solution,
with respect to the number of states in the material database. In addition, they
ensured that the convergence is preserved with spatial discretization (e.g. through
FE approximation) provided that the “fidelity of the data set increases appropriately
with increasing mesh resolution”.

A stronger mathematical proof that the problem Eq. (I1.11) is well-posed and
recovers the classical solution in the case of linear elasticity is provided by Conti
et al. (2018). Indeed, they demonstrate that the data-driven D¢-problem defined as

min d(z,Dc) (I1.17a)
where

E={z¢€ Z | Egs. (Il.1) and (I1.2)} (IL.17Db)

Dc={(e,o) e Z|oc=C:e} (IL.17¢)

has a unique solution (g, o) which coincides with the classical linear elastic solution

oc=C:e. (11.18)

See Conti et al. (2018, Theorem 2.2) for more details.

Furthermore, considering a sequence (Dp,) of material data sets which converges
to a limiting material data set D, the authors show that the solutions of the Dj-
problems converge to the solution of the D-problem. The data-driven D-problem
consists of finding

argmin d?(z,D) (I1.19)
ze€

or, equivalently,

argergin (d2 (2,D) + Ie(2)) (I1.20)
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where the indicator function I¢ of £ C Z is defined as

0, ifzc€
Ig(z)—{ o HEee (I1.21)

oo, otherwise.

The convergence of (Dy,) is understood in terms of spread away from the limiting
material data set, and in terms of density of material data points, as illustrated in
Fig. I1.3(a). It is detailed in (Conti et al., 2018, Lemma 2.11):

Let Z and &€ be as in Egs. (I1.5) and (I1.6). Suppose that
Dy, ={z € Z | z2(x) € Digc,, almost everywhere in Q}

for some sequence of local material data sets Diocpn C REGT x REZY. Let
D ={z¢€ Z| z(x) € Do almost everywhere in Q},

where

Dioc = {(e,0) e R xR [0 =C:e}.

Assume that

i) (Fine approximation) There is a sequence pp, | 0 such that
d(&, Dioc,n) < ph, V€ € Dige;
ii) (Uniform approximation) There is a sequence t5, | 0 such that
d(&, Do) < th, Y€ € Dige,n:
sequentially
Then, D = M — limj,_,o Dy in Z.

The limit operator M — lim denotes the Mosco convergence of sets, defined in Conti
et al. (2018, Definition 2.5, 2.6). Once the convergence of the sequence (Dy) to the
limiting material data set D is assumed, the convergence of the sequence (z;) of
associated data-driven solutions follows (see Conti et al. (2018, Theorem 2.8)):

Let Z be a reflexive, separable Banach space, D and (Dj,) subsets of Z,
£ a weakly sequentially closed subset of Z. Suppose:

i) (Mosco convergence) D = M — limp_,o Dp, in Z and

ii) (Equi-transversality) There are constants ¢ > 0 and b > 0 such
that, for all y € Dy, and z € &,

ly = zllc = e(llyllc + l[zlic) —b.
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(a) (b)

Figure I1.3 — Schematic of convergent sequence of local material data sets Djoc . The
parameter t; controls the spread of the material data sets away from the limiting
data set and the parameter py, controls the density of material data point. (a) Linear
elastic graph. (b) Nonlinear elastic graph. From Conti et al. (2018).

Then,

IS() + d2(aD) =I- hlinolo (IS() + d? (’Dh))

If (z1,) is a sequence of elements of Z with sup;, Ig(z) 4+ d?(zx, D) < 00
then there is a subsequence converging weakly to some z € £.

In the above Theorem, the limit operator I' — lim denotes the I'—convergence of
sequence of functionals in a topological space, defined in Conti et al. (2018, Definition
2.3). This Theorem states that the convergence of the material data set Dy, to D
and the equi-transversality condition are sufficient to ensure the convergence of
the solution z, to z of the corresponding data-driven Dp-problem and D-problem,
respectively. A corollary is that any data-driven D-problem in these conditions has
solutions (see Conti et al. (2018, Corollary 2.9)), provided that the material data set
D and the constraint set £ are weakly sequentially closed'. This holds in particular
for closed convex data sets, including linear subspaces of Z, i.e. collection of linear
elastic graphs. An analogous convergence theorem is derived in Conti et al. (2018,
Section 3.1) for cases where the material set D fails to be weakly closed, which is
the case for instance in nonlinear elasticity. It calls for the convergence of sequences
(D) of material data sets and sequences (y,) € &£ of compatible and balanced
local states simultaneously to ensure the convergence of the solution z;, € Dy N E
to z € DN E. Again, the convergence of the material data sets is understood in

closed in weak topology: given any convergent sequence of points in the subset, every limit of
the sequence lies inside the subset.
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terms of fine (density) and uniform (spread away) approximations, as illustrated in
Fig. 11.3(b).

From an engineering point of view, the most important results to retain from
the work of Conti et al. (2018), are, in our sense:

e the data-driven framework encompasses the classical linear elastic formula-
tion, since the unique solution to the D¢-problem is the linear elastic solution
Eq. (I1.18);

e there is a solid mathematical ground proving that the better the discrete ma-
terial data set Dy, approximates the limiting (linear) elastic graph D, the closer
the data-driven solution to the classical (linear) elastic solution. In that sense,
numerical data-driven schemes are expected to converge to the reference solu-
tion obtained with a constitutive model, as the material data set increasingly
approximates the constitutive model.

1.2.3 Discrete formulation

As aforementioned, the data-driven approach was first introduced in a more com-
putational manner by Kirchdoerfer and Ortiz (2016), through a finite dimensional?
numerical formulation we briefly recall in this section.

Truss structures First, the data-driven problem is formulated for truss struc-
tures. Let us consider a truss structure of M bars and N degrees of freedom, subject
to forces { fz}f\il In this one-dimensional setting, only the longitudinal strain e, and
stress o, are considered in each bar member e. The local phase space Zl(oeg = (e, 0¢)
is then conveniently reduced to a part of the R? plane. The global phase space is
now the finite product set
2=z x...xzM

loc

(11.22)

The global state of the truss is then represented by a point (g,0) = {(g¢, 0¢) } évil in
Z.

The governing equations for the structure write

M
e =Y Beui, Vee[l..M], (I1.23a)
e=1
M
> weBeioe — f; =0, Vie[l..N], (11.23D)
e=1

where {u;}i = 1" is the array of displacement degrees of freedom, the matrix B
encodes the connectivity and geometry of the truss (i.e. the derivatives of the shape

Zas opposed to the functional spaces of the continuum formulation which are of infinite dimen-

sion.
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functions in each bar) and w, = AL, is the volume of the bar with cross-sectional
area A. and length L.. This governing equations re-define the constraint set as

E=1{(e,0) € Z | BEq. (11.23)}. (11.24)

Let now assume that a local material data set Dl(sg ={(gl,0o}) |ie[l..me]} of
me strain-stress pairs collects a sampling of the material response of each bar, as
provided by uniaxial tensile tests performed a priori on the material for instance.

The global material data set is now the collection of the M local data sets:
(I1.25)

The objective of the data-driven solver is to find the global state (¢,0) € £ of
the truss which verifies Eq. (I1.23), while being as close as possible to the material
data set. This is achieved by formulating a penalty function as

M

F = ZweFe(se,ae), (11.26)
e=1

where the local deviation to the database is defined in local phase space as

F.= min (C’e (ee — 56)2 + -C! (ae — aé)2> , (I1.27)
(el,01)eD®)

loc

with C. a positive constant. In the end, the data-driven formulation for truss
structures consists in a constrained minimization problem of the form

Find S = {(e¢, 0¢)}M, such that

M
S = arg min We Fe(ge, 0¢), (I1.28a)
(g,0)€Z
e=1
subject to
N M
Ee = Z Beiui; Z weBeiae — fz =0. (1128b)
i=1 e=1

As one can see, this data-driven formulation for truss structures is directly related
to the continuous one recalled in Section 1.2.1: the compatibility and (the weak
form of) equilibrium equations have merely been evaluated in a finite dimensional
physical space (finite collection of bar elements). Likewise, the deviation function
Eq. (I1.26) results from a discrete integration of the square of the continuous norm
Eq. (I1.12), with constant strain and stress states in each bar element. Note that
the positive scalar constant C, plays the same role as the reference stiffness tensor
C in Eq. (I1.12).
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Elastic solids Second, Kirchdoerfer and Ortiz (2016) formulated the approach
for general geometrically linear elastic problems, where the strain-stress state is
now evaluated at the integration points of a FE mesh. They considered a FE model
of a nonlinear elastic solid in the linearized kinematics approximation. The mesh
is composed of M integration points and N nodes. The local state z. = (g, o)
of integration point e now belong to the 12-dimensional local phase space Zjo. =
R3S xRS, The material response of each integration point is then characterized by
a material database Dl(j():v
The local penalty function writes

consisting of a finite number of tensor pairs z, = (&, o).

F.= min (We(ec—€l)+W; (oc—0l)), (I1.29a)
CRAC
with
W,(e.) = %(@ ce): e, (I1.29D)
Wi(o.) = %((C*1 10c) 0. (I1.29¢)

two functionals that may regarded as reference strain and Complementary energy

(e) ,.

densities. We define the local distance |ze — zl|c in Zjpe X Dlo a

2e — 22|E = We (ec — €L) + W (0e — 7). (I1.30)
. Here, the reference stiffness tensor C is expressed as®
C=XAITI)+2ul%, (I1.31)

where ),y are some numerical parameters and I5YM (resp. I ® I) the symmetric
(resp. spherical) fourth-order identity tensor. As for truss structures, the data-
driven problem develops into a constrained minimization problem, which penalizes
the deviation from the material data set while ensuring the respect of mechanical
constraints. It is formulated as follows:

Find S = {(e., o) }1‘{1 such that

S = arg min Z We  min (VVe (se — sle) + W (O'e — 0-’)) (I1.32a)

€

(e0)€2 T (clonenf)
subject to
N
e =Y Bealla, Vee[l..M], (I1.32b)
M
> weBlLoe.— fa=0, Vae[l..N], (I1.32¢)

3Note that in Kirchdoerfer and Ortiz (2016), the stiffness parameter is in fact %(C; the local
reference energy densities hence do not comprise the % factor. The formulation adopted here is
obviously equivalent.
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where u = {u,}Y_| denote the nodal displacement vectors, {f,}2_, are the nodal
force vectors, the matrix B, encodes the connectivity and geometry of the FE mesh
and w. now denotes the integration weight. The solution of the minimization prob-
lem Eq. (I1.32) is the collection {2}, € & of mechanical states which verify the
compatibility and equilibrium equations Eqs. (I1.32b) and (I1.32¢). Concurrently,
the collection {z;‘}é\il € D of the closest material data points are referred to as the
material states. The material state of integration point e is thus defined as

*

f= (o) —arg min

(el o1)eD’)

loc

zZ

ze — 2|e, Ve e [1.. M]. (11.33)

To conclude this section, we summarize the above definitions and minimization
problem as well as we illustrate the relationship between the original FE data-driven
formulation of Kirchdoerfer and Ortiz (2016) and the mathematical framework of
functional spaces derived in Conti et al. (2018) with the schematic in Fig. I1.4.

Discrete physical space Local phase-space

€kl

Figure II.4 — Functional spaces of the data-driven FE formulation. The mechanical
state z (red circle) of the integration point can only move along the constraint set
(red solid line). The material state 2z} (light blue star) of the integration point is
the closest material data point selected from the material database Dl(ci); (dark blue
stars), according to the local distance |z, — 2}|c defined Eq. (I1.30).

1.3 Original algorithm

The data-driven problem Eq. (II.32) involves two nested minimization over a
continuous-valued functional space Z and a discrete-valued functional space D. It
then mixes a conventional multi-variate constrained optimization problem with a
combinatorial optimization. In that sense, it is a difficult problem to solve numeri-
cally. Kirchdoerfer and Ortiz (2016) originally proposed a simple heuristic consisting
in an alternated minimization illustrated in Fig. I1.5: first the material states are
fixed and the mechanical states are determined solving the continuous constrained
minimization problem; then the material states are updated from a search for nearest



Mesh of M integration points and N nodes

Boundary and loading conditions

Material data set D = DY x -.. x DA

loc loc

Y
=
y

Y

1 Initialize material states O

Select randomly in the material data set

20 « random(z)) € D, Ve € [1..M)]

loc?

Y

BT O
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M Local phase space

N .
{z0} "« arg min Z;welze —z22®)¢ i)
o

€e = Eivzl Beaua, Ve € [1]\/[]

subject to
: {Z,ﬁ”il wBLo, — f, =0, Va€[L.N]

i
* Zloc
1
Search for nearest neighbor %
220D arg min 2 — 2l|c, Ve € [1..M] »
2D DY)

loc

OUTPUT

— Mechanical response u, (g,0) = z*)

— Material states {z} = (ef,07) | e € [1..M]}

Figure I1.5 — Original alternated minimization proposed by Kirchdoerfer and Ortiz
(2016). We illustrate a typical local data assignment iteration in the local phase
space. The mechanical states (red circles) always lie on the constraint set while the
material states (light blue stars) are successively selected from the material data
set, according to the local distance |z, — z}|c defined Eq. (I1.30).
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neighbor in the material data set. The algorithm stops when the updated material
states are unchanged: the objective function can then no longer improve.

With this approach, the double minimization problem Eq. (I1.32) is split into
two distinct problems, presented below.

e Let us first consider the stage where the mechanical state
M
z={2 = (€e,0¢)} -1 €E

is fixed. The intermediate material solution set S™a C D is then determined
from Eqs. (I1.32a) and (I1.33). It results from M independent searches for
nearest neighbors in local phase space:

S™Mat(z) = {arg mir(l)
2,eD,¢

loc

Ze — 24| o yee[l..M]}. (11.34)
e Let us now consider the stage where the material state

== (el o)}, eD

is determined. The double minimization problem Eq. (II.32) is reduced to
a constrained simple minimization problem. The intermediate mechanical
solution set S™°° C & then results from

M
SMC(2") = arg min ;we |ze — 22| (I1.35a)
subject to
N
e =Y Bealla, Vee[l..M], (11.35b)
a=1
M
> weBlo.— fo=0, Ya € [l..N]. (I1.35¢)
e=1

The resolution method employed to solve this problem is detailed in the fol-
lowing.

To solve the continuous constrained minimization sub-problem Eq. (I1.35),
Kirchdoerfer and Ortiz (2016) adopted a Lagrange multipliers method to enforce
the equilibrium constraint. The Dirichlet boundary conditions and the compati-
bility constraint are classically enforced in the FE model by fixing the prescribed
nodal displacements and by directly expressing strains in terms of displacements,
respectively. Consequently, the stationary problem writes

M N
) [E We (We (Z B u, — EZ) + W: (Ue — 0':))
e=1 a=1 . y
- Zna ) (Z wBBgza'e - fa)] =0, (11.36)
a=1 e=1
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with n = {na}fz\[:1 the nodal Lagrange multiplier vectors. All possible variations
yield the following stationary equations

M N
duq = Y w.BL, (C : (Z Boyuy, — ez>> =0, Vae[l..N], (IL37a)
e=1 b=1

N
doc=C ' :(0c—07) =Y Beana =0, Vee [1..M], (IL37b)
a=1
M
e = > weBlLo.— f.=0, Vae[l..N], (IL37c)
e=1

which are rendered into two standard linear elastic systems of pseudo-stiffness C of

the form
N M M
Z(ZweBZa’Ce’Beb) ub:ZweBeTa((Ceue:), Va €[1..N],
b=1 \e=1 e=1
(11.38a)
N M M
Z(ZweBng:Ce’Beb> nb:fa—ZweBeTaaZ, Va € [1.. NJ.
b=1 \e=1 e=1
(IL.38h)

As Kirchdoerfer and Ortiz (2016) point out, “the displacement problem Eq. (I1.38a)
is driven by the optimal local strains, whereas the Lagrange multipliers problem
Eq. (I1.38b) is driven by the out-of-balance forces attendant to the optimal local
stresses”. Moreover, the two systems share the same stiffness matrix of standard
FE form, which can be computed, factorized and stored once and for all at the
beginning of the simulation. In addition, from Eq. (I1.37b), the mechanical stresses
are obtained by a correction of the material stresses as

N
oe=0;+Y» C:(Beana), Ve=1.. M. (I1.39)
a=1

Consequently, the Lagrange multipliers 1 can be regarded as virtual displacements
which, associated to a stiffness C, generate stresses that correct the out-of-balance
gap between the material and mechanical stresses and the external forces. The
computation of the mechanical states is then divided into two parts:

1. displacements v and Lagrange multipliers ) result from Eq. (I1.38),
2. mechanical strains € consequently derive from the compatibility Eq. (11.32b)
and mechanical stresses o are obtained from the correction Eq. (I1.39).
1.4 Numerical results

In their first contribution, Kirchdoerfer and Ortiz (2016) focused on numerically
assessing the convergence of the data-driven solvers to the classical solution, as the
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material data set approximates the strain-stress curve increasingly closely, for both
a truss structure and a 3D tensile test. In this section, we choose to reproduce
almost exhaustively their results, as they provide the specific method of analyzing
data-driven results we will adopt in our work.

1.4.1 Truss structures

The analysis of truss structures is a convenient way of discussing the performances
of data-driven solvers as it allows for a 2D representation of the material data set.
Kirchdoerfer and Ortiz (2016) then first evaluated the data-driven solver for the
truss formulation Eq. (I1.28). They focused on: (i) the convergence to the classical
solution with respect to the number of points for both noise-free and noisy material
data sets, and (ii) the sample quality of the material data set, i.e. the adequacy
between phase space coverage of the data sets and of the expected solution. For this
purpose, they sampled a nonlinear elastic constitutive model and studied the truss
structure both recalled in Fig. I1.6.
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Figure I1.6 — Physical space (left): geometry and loading of the truss containing
1048 degrees of freedom. Phase space (right): constitutive model (solid black line)
all bars obey used to sample the material data set and reference solution (brown
dots), to show the range of local states covered by the problem. From Kirchdoerfer
and Ortiz (2016).

Convergence with respect to the number of data points First Kirchdoer-
fer and Ortiz (2016) monitored the decrease of the objective function throughout
the data-driven iterations, for material database of different sizes, resulting from
the sampling of the constitutive model, as shown in Fig. 11.7(a). They emphasized
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Figure I1.7 — (a) Convergence of the global penalty function Eq. (I1.26) for noiseless
material data sets of increasing size. (b) Distribution of values of the local penalty

o

functions Fp Eq. (I1.29) at convergence. From Kirchdoerfer and Ortiz (2016).

that the number of fixed point iterations required to converge is relatively small
and increases with the number of material data points. The former is remarkable
while the latter was expected, considering the combinatorial complexity of the prob-
lem. Second, they monitored the convergence to the reference solution by means of
normalized percent root-mean-square (RMS) strain and stress errors defined as

1
2\ 2
1 (M we (g0 — et
E(%RMS) = eref ( = e](We - ) > (II.40a)
max
1
2\ 2
1 SM we (0, — otef
T(%RMS) = —yof < a eg\j ) ) ) (11.40b)
max

ref _ref

respectively, with {(ae N ,)}ezl the strain and stress states of the reference so-

vef gref ) the corresponding maximum values. We summarize their

lution and (5 o

max’ ¥ max?

results for both noise-free and noisy material databases of increasing size in Fig. [1.8.
From these figures, the authors highlighted the following key findings:

e For noise-free data sets:

— the truss data-driven solver exhibits close to linear convergence to the
reference solution, accordingly to the estimates derived in the last part
of their paper (Kirchdoerfer and Ortiz, 2016);

— the alternated minimization is insensitive to the random initial assign-

ment of the material states (see the tightness of the histograms in bottom-
left Fig. 11.8);
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e For noisy data sets:

— the data-driven solver still converges to the reference solution, although

the convergence rate of roughly 1/2 is lower than the one obtained with

noise-free data;
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Figure I1.8 — Top: material data sets, without noise (left) and with Gaussian random
noise (right). Bottom: corresponding convergence of strain and stress RMS errors
Eq. (I1.40) with number of sampling points; histograms correspond to 30 initial
random assignments (left) and to 100 different random data sets (right). From
Kirchdoerfer and Ortiz (2016).

Sample quality of the material data set Another feature of the data-driven
solver assesses the sample quality of the material data set. Indeed, the final value
of the local penalty function Eq. (I1.29) provides a measure of the distance between
the mechanical and material states of each member of the truss. Histograms of these

error measures for the data sets of different sizes are reported in Fig. I1.7(b). The
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average value decrease with the number of sampling points while a spread remains,
“indicating that the states of certain truss members are better sampled by the data
set than other”. A high value of F, indeed shows that no material data point exists
near enough the solution state of the bar, and conversely. The authors argue that the
analysis of this specific feature of the data-driven solver then provides a strategy to
adaptively expand the data set, in order to improve phase space coverage in regions
lacking data points.

1.4.2 Three-dimensional linear elasticity

The second contribution of Kirchdoerfer and Ortiz (2016) is the analysis of a three-
dimensional linear elastic problem. In that case, the high-dimensionality (12) of
the phase space, resulting from pairs of symmetric strain and stress tensors, is
enough to raise questions on sampling and coverage. To lower phase-space sampling
requirements, they restrict to a tensile test specimen, assuming plane stress state
and isotropy of the material. The former conditions allows for the phase space to be
reduced to a six-dimensional (or three-dimensional according to the authors) phase
space: only a neighborhood of the subspace 013 = 093 = 033 = 0 is needed, which is
accomplished by a sampling of the 011, 022, 012 plane stress plane only, on a uniform
cubid grid. The corresponding strain €11, €92, £12 are generated with an isotropic
linear elastic law. The sampling strategy is illustrated in Fig. 11.9. The latter
condition on isotropy also allows for reducing the amount of data points needed to
represent the material behavior: isotropy means that if (e¢, o) is a material data
point, then so are (ReTeeRe, RZO’eRe) for all rotations matrices R.. The search for
nearest neighbors Eq. (I1.33) is then modified to optimize on the rotation matrices
as well:

: : T _ * T
(eg,;?)lngjg R (We (ec — R €, R.) + W} (0. — R.o.R.)), (11.41)
where SO(3) is the group of proper orthogonal matrices in three dimensions. The
corresponding optimality condition is handled with a Lagrange multipliers method
resulting in a nonlinear system of equations that is solved using a Newton-Raphson
scheme and a parametrization of SO(3) (we refer to the original paper for more
details).

The thin tensile test specimen is meshed with eight-node hexahedral elements
containing eight quadrature or integration points each, with two different average
element edge lengths of h = 1mm and h = 0.5 mm. The corresponding coarse and
fine meshes contain one and two elements in the thickness respectively. The meshes
together with the material data sampling strategy are illustrated in Fig. 11.9.

The convergence of the data-driven solver is again monitored with the penalty
function F', which decreases with the number of iterations and increasing size of the
material databases, regardless of the mesh resolution, as shown in Fig. I1.10(a). The
convergence to the reference solution is linear, of rate 3, as shown in Fig. 11.10(b)