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Last but not least, to the love of my life, my husband Ibrahim. Getting married was the greatest thing that happened during this journey. Since the rst day we met, I felt that with you by my side, I can go through anything. Your care, kindness, support, and trust provided me with the strength to accomplish this work. You were always by my side, in thick and thin. And I will be always there for you as well. You have bestowed me with my biggest source of happiness, that is your love! I will love you forever and always. Cette transition entre état doublet et singulet a généré un intérêt théorique important. Expérimentalement, il est à présent bien établi que cette transition peut être induite à l'équilibre par une tension grille, un champ magnétique ou une diérence de phase supraconductrice. Une partie de cette thèse est dédiée à la mesure de l'eet Josephson AC dans une jonction Josephson basée sur un nanotube de carbone pour sonder sa dynamique. Cela est réalisé en utilisant une détection Résumé de la thèse haute-fréquence "on-chip", dans un régime où eet Kondo et eet de proximité coexistent.

Pour améliorer la détection à basse température, nous avons réalisé deux autres expériences.

Dans la première nous avons réalisé au laboratoire des lignes de polarisations ltrées, de type ltre passe-bas, avec lesquelles nous avons mesuré la température électronique à l'aide d'un transistor à un électron. Dans la seconde expérience, nous avons fabriqué et mesuré un nouveau type de microrésonateur supraconducteur utilisant un matériau à forte inductance cinétique, à savoir des nanols de tungstène déposé sous faisceau d'ions hélium focalisés. Ce type de résonateur pourrait s'avérer très utiles pour le couplage "on-chip" haute-fréquence et ainsi aider à la détection de l'émission

Josephson AC de jonctions hybrides.

0.1 Boites quantiques à base de nanotube de carbone S D

V G Les paramètres de ces deux zones Kondo sont résumés dans le tableau 1. Sur la gure 3 nous montrons également une autre zone de grille, dénommée ci-après la région C, avec une conductance similaire à celle des zones A et B mais sans trace d'eet Kondo.
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Mesure du supercourant

Lorsque le champ magnétique appliqué est ramené à zéro, les contacts du nanotube de carbone deviennent supraconducteurs. La gure 3.b montre la résistance diérentielle de l'échantillon en fonction du courant de polarisation et de la tension de grille. La boite quantique présente un supercourant relativement important, modulé par la tension grille, dans la zone présentant de l'eet Kondo en régime normal. C'est une bonne indication que le système se comporte comme une jonction de type 0, avec un état fondamental qui reste l'état singulet de type Kondo. L'amplitude du courant critique, c'est à dire la valeur maximale du supercourant, est déduite de la caractéristique tension-courant de la jonction dans le cadre d'un modèle de jonction avec un shunt résistif et capacitif V G (V)

V G (V) V G (V) (modèle RCSJ). Ce modèle tient compte de l'environnement électromagnétique de la jonction. Le résultat de ce traitement est montré sur la gure 4.

Une forte réduction de l'émission Josephson

Pour mesurer l'émission Josephson aux fréquences de résonance du circuit de couplage, nous polarisons le détecteur à une tension V d inférieure au seuil d'apparition du courant de quasi-particules, de telle sorte que 2∆-hν 0 < eV d < 2∆ avec ν 0 la fréquence fondamentale du circuit résonant. Cette 
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V G (V) V G (V) République Tchèque). Ces calculs utilisent les paramètres déduits des mesures dans le régime normal. Le spectre d'énergie de la jonction au point de symétrie particule-trou est montré sur la gure 6.a. Ce spectre représente la diérence en énergie des états excités avec l'état fondamental, de type singulet. Les états excités sont l'état doublet, de dégénérescence 2 (ligne pleine) qui correspond à l'énergie de l'état lié d'Andreev (ABS), et l'état excité singulet (ligne pointillée). L'état doublet ne touche pas le continuum d'excitation de quasi-particule du fait des interactions électron-électron.

Pour des raisons techniques le calcul NRG ne fournit pas la valeur de l'état excité singulet pour des écarts en énergie supérieurs à E A = ∆. Le calcul NRG conrme que l'état fondamental du système est toujours de type singulet et conduit à un supercourant de quelques nanoampères (voir gure g.6.b), compatible avec les données expérimentales. Le système présente une dépendance en phase de type jonction 0. Les calculs NRG permettent également de prévoir l'évolution de l'écart au continuum (à la phase ϕ = 0) ainsi que la valeur minimale de l'écart en énergie entre l'état doublet et l'état fondamental singulet (à la phase ϕ = π). Cette évolution est montrée sur la gure 6.

Nous attribuons la réduction de l'émission Josephson à la dynamique du passage par eet tunnel de quasiparticules (QP) dans la boite quantique. Nous avons évalué la dynamique à tension de polarisation nulle de ces quasiparticules, qui mène à l'occupation de l'état doublet. Pour ce faire nous avons calculé les taux d'injection et d'échappement des QP en tenant compte de l'environnement Résumé de la thèse électromagnétique de la jonction. Celui-ci est essentiellement constitué par le circuit de couplage résonant. Nous en avons déduit la probabilité P D pour le système d'être dans l'état doublet en fonction de la position du niveau d'Andreev E A . Pour E A > 0.2∆, cette probabilité est extrêmement faible (inférieur à 0.05) et explique pourquoi le système se comporte comme une jonction 0 pour la mesure de courant critique à basse fréquence.

Cependant lorsqu'on applique une tension de polarisation à la jonction, ce qui est le cas dans une mesure d'eet Josephson AC, le taux d'injection de QP peut être sensiblement plus important.

De plus, proche du point de symétrie particule-trou, l'état doublet présente un écart en énergie avec le continuum de quasi-particules à cause des interactions électron-électron. Cela maintient le taux ε(meV) La carte de conductance de la gure 13.a montré la conductance diérentielle dI/dV SD du SET en fonction de la tension grille V g et de la tension source-drain V SD . Un champ magnétique est appliqué pour supprimer la supraconductivité de l'aluminium. La valeur de l'énergie de charge E C = 22 ± 2µeV est extraite de la largeur des diamants de Coulomb en fonction de la tension de polarisation. Lorsqu'on mesure la conductance à tension nulle en fonction de la tension de grille on obtient des pics réguliers de conductance. La gure 13.b montre ainsi 4 pics de Coulomb. La largeur de ces pics de conductance à tension de polarisation nulle constitue un moyen bien connu de mesurer la température électronique de manière absolue. Le SET constitue de ce fait un thermomètre primaire. Pour un ilot métallique avec une densité d'état constante et connecté à des contacts via des jonctions tunnel, la conductance peut s'écrire :

J singlet J Doublet ε(meV) (a)
I DC (µA) 0T 0.5T 1T 2T 3T 4T 5T 6T 7T 9T NW1, T=2K (c) 
L K, ≈ R h 2π 2 ∆ 0 . (1) 
G SET (δV g ) = G ∞ 2 2E C (δV g /∆)/k B T sinh(2E C (δV g /∆)/k B T )
.

(

) avec G ∞ = G S G D G D +G S 2 
la valeur de la conductance à haute tension, avec G S et G D la conductance du drain et de la source. ∆=e/C g est la période en tension grille et δV g la variation de tension grille par Résumé de la thèse rapport au point de dégénérescence de charge. Chaque pic de la gure 13.b est ajusté en utilisant la formule 2, et la valeur de la température électronique en est déduite pour diérents pics de conductance (gure 13). Nous en déduisons une température électronique de T electronic = 23±2mK alors que la température de base du réfrigérateur est de 10mK.

Conclusion

Nous avons ainsi montré que l'utilisation de câbles coaxiaux résistifs réalisés au laboratoire permettait d'obtenir une température électronique de T electronic = 23 ± 2mK pour une température de base du réfrigérateur sans hélium liquide de 10mK. Cette température a pu être mesurée grâce à une thermomètre primaire exploitant le blocage de Coulomb : le transistor à un électron. 

Conclusion

Introduction

Quantum transport refers to the investigation of coherent (∼ ten to a few hundred nanometers) and cold circuits (∼100mK). Consequently, quantum transport experiments require the fabrication of low-dimensional circuits. Because of their intermediate size between macroscopic and microscopic scales, these circuits are called mesoscopic.

One of the most studied systems in the eld of Quantum transport is quantum dots (QD).

Quantum dots are so small such that their energy levels are quantized due to connement eects, for that QD are referred to as "articial atoms". The advantage of using a QD is that its parameters can be controlled. For example, it is possible to control the number of electrons on the dot by an electrostatic gate. Coupling a QD to metallic normal electrodes, allows us to probe many interesting quantum eects. Depending on the coupling strength between the QD and the two reservoirs, the QD exhibits dierent transport phenomena such as the Coulomb blockade, Kondo eect. If the electrodes are superconducting, another quantum phenomenon, proximity-induced superconductivity will emerge. The Kondo eect was initially observed in alloys with magnetic impurities, through the anomalous increase of resistance as temperature drop as explained by Jun Kondo. The electrons at the Fermi energy tend to screen the magnetic moment of the impurity, forming a many-body spinsinglet state of binding energy expressed as a Kondo temperature T k . This Kondo screening gives rise to a resonance in the density of states. Kondo eect can occur also in a quantum dot with an unpaired spin in its highest occupied energy level. However, in QD, the Kondo resonance opens a transmitting channel, thus the conductance increases. The rst observation of the Kondo eect in quantum dots was made in GaAs-based two-dimensional structures. The Kondo eect has now been seen in quantum dots based on a wide variety of nano-scale devices such as carbon nanotubes, C 60 molecules, organic molecules, and semiconductor nanowires. S-wave superconductivity is a spin-singlet ground state where electrons condense in Cooper pairs with pairing energy ∆ (superconducting gap) and phase ϕ. The formation of Cooper pairs is due to attractive electron-electron interaction mediated by the phonons. A non-dissipative current "supercurrent" can ow through a superconductor, which is driven by a superconducting phase instead of a voltage gradient. When a weak link of length L such as a quantum dot is connected to superconducting electrodes, it can support a supercurrent at zero bias voltage due to the superconducting proximity eect, provided that the phase coherence is preserved along the length L. The current through the quantum dot and the phase are related through the current-phase relation (CPR). In such a system, the presence of the Coulomb interaction results in Coulomb blockade, which gives rise to a doublet state if there is an odd number of electrons on the dot. This doublet state hinders the ow of supercurrent, which manifests as a reduction of the critical current and a sign reversal of the DC current-phase relation. One has then a π junction. However, if the Kondo temperature T K exceeds the superconducting gap energy ∆, the Kondo screening survives and resonant Cooper pair tunneling occurs. In this limit, the Kondo eect and superconductivity cooperate to restore the singlet state i.e. the 0-junction.

The competition between these two eects has been already investigated at equilibrium, by monitoring the current phase relation of CNT based Josephson junctions. These experiments have revealed phase-dependent quantum transitions between the magnetic doublet state and the Kondo screened singlet non-magnetic state of the quantum dot. In the present work, we show that the dynamics of this induced transition can be probed by the Ac Josephson emission of carbon nanotubebased Josephson Junction.

The Ac Josephson eect is the phenomenon by which a superconducting weak link that is voltage biased generates an oscillating current. This is why superconducting tunnel junctions can be used as GHz radiation emitter or to dene the voltage standard thanks to the metrological precision of the AC Josephson eect. In Josephson junctions involving a normal material, measuring the AC-Josephson eect allows probing the states that carry the supercurrent at nite frequency and out-of-equilibrium. For instance, its measurement demonstrated the topological protection in several topological systems, that was not accessible through DC measurement.

The manuscript is organized as follows. Chapter one is dedicated to the description of carbon nanotubes and their physics. Then we discuss transport through a carbon nanotube quantum dot.

In chapter two, we present the dierent fabrication, cooling, and measuring techniques performed to realize this work. Chapter three details the Kondo eect. Chapter four presents a general introduction to superconductivity.

Chapter ve deals with the Josephson eect in a quantum dot. We present the dierent transport regimes arising from the competition between Coulomb blockade interactions and superconductivity. What happens when superconducting correlations compete with the Kondo eect? The last section of this chapter is devoted to answering this question.

In chapter six we present the central topic of this thesis: The dynamics of a carbon nanotubebased Josephson junction. We probe the dynamics of our system by measuring the AC Josephson emission of the junction and compare it to its DC Josephson current. The AC emission is measured by coupling the carbon nanotube to an on-chip detector (a Superconductor-Insulator-Superconductor junction), via a resonant circuit. In the rst part, we represent the experimental setup used for measurement. In the second part, we present the experimental results. Measurement of the Ac emission of the CNT in the gate regions that exhibit Kondo features in the normal state shows that this emission is strikingly reduced in the gate region where the critical current is enhanced due to the interplay of the Kondo eect and superconducting proximity eect. In the last section, we present the renormalization group calculation performed to understand the behavior of our CNT QD along with several interpretations. We show that the collapse of the AC emission observed experimentally is due to the transition between the singlet state and the doublet state. This transition can be traced to the dynamics of quasiparticle in the quantum dot.

Finally, to improve our detection methods at low temperature, we performed two other experiments which are presented in the last chapter of this thesis. In the rst experiment, we have designed and measured a new type of superconducting micro-resonator, based on a high kinetic inductance material, namely tungsten nanowires deposited using a helium focus ion beam. This kind of resonator can be very useful to improve the resonant coupling for on-chip detection and thus provide a better measurement of the AC Josephson emission of carbon nanotube-based Josephson junction. In the second experiment, we have tested new home-made ltering of DC lines in a cryo-free dilution refrigerator recently installed in the group, by measuring the electronic temperature of a single electron transistor.

Chapter 1

Electronic properties of carbon nanotube quantum dots

Since their discovery in 1991 [START_REF] Iijima | Helical microtubules of graphitic carbon[END_REF], carbon nanotube has become of a great interest. Due to its unique structural and electronic properties, CNT becomes a building block for several applications: bio sensors [START_REF] Kruss | Carbon nanotubes as optical biomedical sensors[END_REF][START_REF] Iverson | In vivo biosensing via tissue-localizable near-infrared-uorescent single-walled carbon nanotubes[END_REF], radio frequency applications [START_REF] Yang | Carbon nanotube network lmbased ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission[END_REF], exible electronic [START_REF] Park | A review of fabrication and applications of carbon nanotube lm-based exible electronics[END_REF], photonic circuits [START_REF] Jeantet | Widely tunable singlephoton source from a carbon nanotube in the Purcell regime[END_REF][START_REF] Khasminskaya | Fully integrated quantum photonic circuit with an electrically driven light source[END_REF] and transistors [START_REF] Franklin | Electronics: The road to carbon nanotube transistors[END_REF].

This chapter is devoted to the description of the system that we are studying: a carbon nanotube (CNT). First, we will present the structural and electronic properties of the carbon nanotube. Then, we explain the mesoscopic transport through a carbon nanotube quantum dot (CNT QD).

Single wall carbon nanotube 1.Geometrical properties

A carbon nanotube can be seen as a graphene sheet rolled into a cylinder. This graphene layer can be rolled in many dierent directions, described by the chiral vector C h = n a 1 + m a 2 , which is a linear combination of the unit vectors a 1 and a 2 of a graphene sheet with n and m integers. The value of n and m determines the structure of the CNT. The tube's diameter, chiral angle θ, unit vectors, number of atoms in the unit cell, can all be deduced from (n, m) numbers. Nanotubes with (n, n) (θ = 0°) and (n, 0) (θ= 30°) are armchair and zigzag, respectively. For n =m and 0 < θ < 30 the tube is said to be chiral (See g.1.1). Carbon nanotubes often grow in bundles, ropes or they appear nested within each other. They are consequently, named multi-wall carbon nanotubes (MWCNTs). In the following, we will limit ourselves to the description of single-wall carbon nanotubes (SWCNTs). 

Electronic band structure of carbon nanotubes

To know whether the carbon nanotube is metallic or superconducting, one must calculate its band structure. The dispersion relation of CNT can be determined from the one of graphene by projecting the graphene band dispersion into the 1D longitudinal CNT dimension.

Dispersion relation of graphene

Graphene is made up of carbon atoms arranged in hexagonal honeycomb-like structure as shown in g.1.1(a), with unit cell vector a 1 and a 2 such that:

a 1 = a 2 (3, √ 3), a 2 = a 2 (3, - √ 3) (1.1)
with a ≈ 1.4Åis the carbon-carbon distance. In the reciprocal space of graphene, the reciprocallattice vectors are:

b 1 = 2π 3a (1, √ 3), b 2 = 2π 3a (1, - √ 3) 
(1.2) At low energy ( < 1 eV) near the Dirac point K, the dispersion relation of graphene can be calculated using the tight binding model for the π orbital electrons:

E k = ± | k -k K,K | v f (1.3)
where k is the wave vector and v f is the Fermi velocity. This dispersion relation (See g. 1.3) shows that the carriers in graphene are Dirac fermions which should be described by Dirac relativistic equation.

Carbon nanotube band structure

The energy band structure of CNT is then derived from the one of graphene, by introducing periodic boundary conditions due to the cylindrical geometry of the tube. Since a CNT is considered as an innitely long cylinder with a very small diameter, the wave vector k (parallel to the tube axis) is continuous but the wave vector k ⊥ (perpendicular to the tube axis) becomes quantized k ⊥ . C h =2πp

The CNT band structure can be obtained by cutting the energy dispersion of graphene along the allowed k⊥ lines values. If the cutting line crosses at the K point then the CNT is metallic, otherwise, it is semi-conducting with a nite gap of the order of ∼0.5 eV.

Another way to determine whether a given nanotube is metallic or semiconducting is the indices (n, m), deduced from the intersection of k ⊥ with the Dirac points. For a given (n, m) if n-m is multiple of 3, then the tube is metallic. Thus: Armchair tubes (n, n) are metallic. Zigzag tubes (n,0) or chiral tubes (n, m), if n-m=3l, (where l is an integer), tubes metallic.

If not, the tubes are semiconducting.

The dispersion relation of carbon nanotube of dierent chiral numbers is shown in g.1.5. CNT four-fold energy level structure Due to its peculiar band structure, the CNT possesses two orbitals to degenerate conducting channels. This degeneracy can be traced back to the presence of two equivalent dispersion cones (K and K') in graphene. The orbital degeneracy can be understood as the way an electron can circles around a graphene cylinder, clockwise or anticlockwise. However, electrons can have spin up or spin down, so each orbital level can be spin degenerate (K↑,K↓), same for K' valley. In total the CNT have one four-fold degenerate channel (K↑,K↓,K'↑,K'↓) as shown in g.1.6.

In this work, the contacts of the nanotubes are separated by L = 400 nm, which is lower than the mean free path l e = 0.5 -10µm, thus the transport through the CNT is rather ballistic and coherent.

The maximum conductance of a CNT can be calculated using the Landauer-Büttiker formula given by:

G = s e 2 h m T m (1.4)
With s being the degeneracy of the channels (For example s=2 for spin 1/2). In this formalism a coherent conductor is described by m transport channels with transmission T m (0 < T m < 1).

Thus, for a CNT with one four-fold degenerated channel, the maximum conductance is G = 4 e 2 h , corresponding to a resistance of 6.45kΩ. 

Electronic transport in a carbon nanotube

To perform transport measurements, a single isolated carbon nanotube is contacted between two metallic electrodes which could be normal or superconductor. In what follows, we explain the physics of a Quantum dot, then we introduce the specic properties of a carbon nanotube quantum dot (CNT QD). After that, we show the dierent transport regimes for a CNT QD, from Coulomb blockade to the co-tunneling process and appearance of the Kondo correlation.

Quantum dot

When the electron wavelength is comparable to the size of a system such as in a quantum dot, electrons are conned in a set of discrete energy levels resembling that of an atom. For that quantum dot are said to be "articial atoms". Quantum dots exits in dierent size and materials: single molecules [START_REF] Kasumov | Proximity eect in a superconductor-metallofullerene-superconductor molecular junction[END_REF], metallic [START_REF] Ralph | Gate-Voltage Studies of Discrete Electronic States in Aluminum Nanoparticles[END_REF] or superconducting nanoparticles, lateral or vertical dots in semiconductor heterostructures [START_REF] L P Kouwenhoven | Few-electron quantum dots[END_REF], semiconducting nanowires [START_REF] Franceschi | Single electron tunneling in InP nanowires[END_REF], or carbon nanotubes [START_REF] Tans | Individual single-wall carbon nanotubes as quantum wires[END_REF].

Due to the small size of the dot, the capacitance of the QD with the gate and the leads induces a strong charging energy E C = e 2 /2C (C being the total capacitance of the QD) which has to be paid each time one needs to add an electron on the dot. Ec∼few meV for a typical QD. When Γ < E C , the energy levels on the dot are clearly dened and a discrete energy spectrum of single-particle levels is formed at energies d with a mean level spacing ∆E, of broadening width Γ, with Γ the total coupling constant to the metallic electrodes.(See g.1.7).

Depending on the transparency of the contacts the QD exhibits three transport regimes:

Strong coupling regime, Γ E C Week coupling regime, Γ E C given that k B T < E C Intermediate regime, Γ ≈ E C
The three dierent transport regimes will be explained in detail in the following section, focusing on the case of a carbon nanotube quantum dot. 

Carbon nanotube quantum dot

When a carbon nanotube is connected to metal electrodes, if the transmission of the contacts is low compared to the charging energy, the CNT will behave as a quantum dot at low temperatures.

To measure electrical transport through a CNT, the tube must be coupled via tunnel barriers to metallic electrodes with which electrons can be exchanged. When a CNT is brought into contact with metallic electrodes, and the Fermi level in the CNT is higher in energy than that in the metal, electrons move from the CNT into the metal leaving a positive background of ionized atoms leading to the formation of Schottky barriers at the interface. This phenomenon is more important in semiconductor nanotubes. However, due to defect or curvature, there is often a small gap forming even for metallic SWNT. into the vacuum and χ is the electron anity of the semiconductor which is the energy needed to remove an electron from the bottom of the conduction band. Taken from [START_REF] Svensson | Schottky barriers in carbon nanotube-metal contacts[END_REF].

Due to the formation of the Schottky barrier, the transparency of the contacts can be modied depending on the position of the Fermi energy of the CNT with respect to the metal. The position of the Fermi level is controlled by the capacitively coupled gate electrodes. For a CNT contacted between two metallic electrodes 200 nm apart (L=200nm), the value of the level spacing ∆E= hv f 2L will be in the order of few meV, same as the charging energy E C . Thus, for a given gate voltage, only one of its discrete energy levels participates to transport. Each of these energy levels is four-fold degenerate unless the orbital degeneracy is lifted with an energy gap δE. This gives two two-fold quasi-degenerate levels.

Weak coupling or Coulomb blockade regime

When the CNT is weakly coupled to the electrodes i.e. Γ E C , the interaction eect becomes dominant and the QD is in the so-called 'Coulomb blockade' regime. In this regime, the CNT will be considered as a quantum dot that possesses the same energy diagram shown in g.1.7. Here

E C = e 2
CΣ is the energy needed to overcome Coulomb interaction and add a single electron on the dot, with C Σ = C s + C d + C g is the total capacitance of the CNT QD. To add one electron to the QD, one should pay the charging energy E c , since at low temperature (T∼10 mK) the thermal uctuation is not enough to overcome this charging energy, the only way to lift the Coulomb blockade is by changing the source-drain voltage V SD and/or the gate voltage V g . The total energy of the dot U(N) is given by:

N 1 E(N ) = Q 2 2C Σ + N n=1 E(n) = (e(N -N 0 ) -(C g V g ) + (C s V s + C d V d )) 2 2C Σ + N n=1 E(n) (1.5)
where N 0 represents the number of electrons at V G =0. The electrochemical potential µ(N), which is by denition the energy required for adding the N th electron to the dot:

µ(N ) = E(N ) -E(N -1) = E C (N -N 0 - 1 2 ) -E C q e + E N , (1.6) 
Chpater 1. Electronic properties of carbon nanotubes quantum dots

with q = C g V g + (C s V s + C d V d ),
is the induced charged due to the three electrodes The discrete levels are separated by an addition energy dened by:

E add = µ(N ) -µ(N -1) = E c + ∆E (1.7)
∆E=0, when two consecutive electrons are added to the same spin-degenerate level or a dierent orbital degenerate channel.

For transport to occur, a level of the dot must fall within the bias window between the electrochemical potential of the source (µ S ) and drain (µ D ) electrodes, i.e. µ S > µ > µ D with V SD =(µ S -µ D )/e. In this case, an electron can tunnel in and out of the dot carrying a nite current. If no level lies within the bias window, the number of electrons is xed inside the dot and there is no current ow. This is known as the Coulomb blockade. (see g.1.9).

µ 𝑆 µ 𝐷 Γ 𝑅 , 𝐶 𝐷 Γ 𝐿 , 𝐶 𝑠 𝑉 𝐺 𝑉 𝐺 µ(N-1) µ(N) µ(N+1) (a) (b) (c) µ 𝑆 µ 𝐷 Γ 𝑅 , 𝐶 𝐷 Γ 𝐿 , 𝐶 𝑠 µ(N-1) µ(N) µ(N+1)

Coulomb blockade

Transport regime This cycle is known as sequential single electron tunneling.

Applying a nite bias voltage V SD (µ S -µ D =eV SD ) between the source and drain electrodes opens up a bias window between µ S and µ D . For transport to occur µ N should be within the bias window such that it aligned with a lled electronic state of one electrode and an empty electronic state of the other one. Thus, electrons can tunnel through the QD. For this condition to be fullled µ S > µ N > µ D . If this is not the case, the QD is in the Coulomb blockade regime.

Varying the gate voltage V G can shift the energy level ladder. Each time an energy potential level of the QD is aligned with the source and drain Fermi energy, sequential tunneling occurs, and a peak in conductance is observed as shown in g.1.9.c. However, in the valleys between the peaks in gate voltage, the number of electrons on the dot is xed due to the Coulomb blockade.

The distance between the peaks corresponds to αE add = α(E C + ∆E), where α = Cg eC is the lever arm which relates the gate voltage scale to the electrochemical potential. When sweeping both the gate voltage V G and source-drain voltage V SD at the same time, and measure the dierential conductance (G=dI/dV SD ), one obtains the so-called stability diagram of a quantum dot.

Let us consider a QD occupied by N number of electrons, it is thus in a charge state N. The number of charges can change in four ways. An electron can tunnel into the dot either from the left or right electrode, thus the charge state becomes N+1. Alternatively, an electron can tunnel from the dot into the left or right electrodes, and the N is replaced by N-1. Here we also must consider the work done by the voltage source V SD to bring a new charge e onto the QD. Let us consider a simple case where and the bias voltage is assumed to be anti-symmetrically applied on both contacts (V s = -V d = V SD /2). The electrostatic potential of the four previous processes is given by:

E(N ± 1) -E(N ) = E C (N -N 0 ± 1 2 ) + E C q e + E N ± eV SD /2 = E c (N -N 0 + 1 2 + C g V g + (C s -C d )V SD /2 e ) + E N ± eV SD /2 (1.8)
The transport occurs only if E(N ± 1) -E(N ) > 0. In the V SD -V G plane each inequality is represented by a straight line. Such four lines bound a diamond. Inside the diamond, the number of electrons is xed due to the Coulomb blockade, and no current ows. Outside the diamonds, the Coulomb blockade is lifted and single electron tunneling takes place. We have the same diamond shifted by ± e Cg , ± 2e Cg , . . . along the V G axis. The diamonds touch each other at the so-called 'charge degeneracy point', where the energy level is aligned with both µ S and µ D , and a current can ow even if V SD is innitely small. From the shape of Coulomb diamonds, the energy of excited states ∆E as well as the charging energy can be extracted. For fourfold degenerate energy level QD, to add the rst electron, one should pay the charging energy E c plus the single energy level spacing ∆E(N th diamond), to add the second, third, and fourth electron one should pay only E c . Now the level is full, and the next level could be lled.
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Thus, the stability diagram is composed of three consecutive "small" diamonds of addition energies E c followed by a "larger" one of addition energy E c + ∆E (See g.1.10). Fig. 1.11 represents the dierential conductance of a single-wall carbon nanotube QD, the contacts of the CNT are made with Au/Pd bilayers 400 nm apart. The sequence of one large diamond followed by three smaller ones of approximately equal size suggests that the measured SWCNT is four-fold degenerate.

A four-fold degenerate CNT will exhibit a stability diagram as shown in g.1.10. However, orbital degeneracy can be lifted by spin-orbit coupling, orbital mixing, and magnetic eld, leading to two doublets, namely (K↑, K↓) and (K'↑, K'↓). The distribution of the two electrons in the two levels depends on the relative values of the exchange coupling J, which tends to maximize the spin, and the breaking of degeneracy δE [START_REF] Oreg | Spin Congurations of a Carbon Nanotube in a Nonuniform External Potential[END_REF]. When orbital degeneracy is broken by the energy δE, the stability diagram will be modied. g.1.12 shows the stability diagram of spin 1/2 degenerate CNT. We observe a "large" diamond (N th ) of height E c +∆E, followed by a "small" one of addition energy E c (N+1), now to add the third electron, the addition energy is E c + δE, this will lead to a "middle-sized" diamond (N+2) which is slightly bigger than the previous one, followed by again a "small" diamond (N+3) of height E c . shown by the red and black arrows, respectively. Adapted from [START_REF] Grove-Rasmussen | Fabry-Perot interference, Kondo eect and Coulomb blockade in carbon nanotubes[END_REF]. 
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Strong coupling regime

In the strong coupling regime, the QD is well-coupled to the electrodes such that Γ E C . The QD is said to be open, the transmission of an electron through the dot is possible for any gate voltage, and no coulomb diamonds are observed. If the contacts are symmetric the conductance reaches its maximum value 2e 2 h for a single orbital level due to spin degeneracy and 4e 2 h if the level is spin and orbital degenerate. 

Hole transport Electron transport

Small Schottky Big Schottky Barrier barrier Taken from [START_REF] Grove-Rasmussen | Fabry-Perot interference, Kondo eect and Coulomb blockade in carbon nanotubes[END_REF].

(b) (&)
By sweeping the gate voltage one can induce the transition from an open (FabryPerot interference) to a closed quantum dot (Coulomb blockade) in the same sample as shown in g.1.14. By Chpater 1. Electronic properties of carbon nanotubes quantum dots applying a negative gate voltage, the Schottky barrier for hole transport is relatively small leading to a relatively high conductance. Transport can be changed to electron transport through the conduction band by applying a positive voltage to the gate. The Schottky barrier is in this case signicantly larger leading to a low coupling of the SWCNT to the electrodes.

Intermediate coupling regime

In the intermediate coupling regime, the electrical contacts are suciently transparent (U ≈ Γ), such that transport is not only possible through sequential tunneling but can also involve higher-order tunneling processes through virtual states. In this regime, the Heisenberg uncertainty principle allows the tunneling of an electron in and out of the dot during a very short time scale of the order h U . Even under Coulomb blockade conditions, two electrons can co-tunnel coherently through the dot without changing its occupancy. This process is known as the Co-tunneling process.

Co-tunneling processes The co-tunneling process can be either elastic or inelastic. In the case of elastic co-tunneling one electron can tunnel into the dot into a forbidden virtual state and have to leave the dot during a very short time scale t ∼ h Γ , such that t is of the order of the time scale associated to the charging energy ∼ h U , i.e. if Γ≈U. At the end of this process, the energy state of the dot does not change as shown in g.1.15.a. Initially, the dot is occupied by an electron of spin 'up'. After passing a virtual intermediate state, a spin 'up' electron can tunnel from the dot and be replaced immediately by tunneling of spin 'down' electron into the dot. The transfer of electron through the dot is accompanied by a spin-ip process. The coherent superposition of all possible co-tunneling processes involving spin ip can result in a time-averaged spin equal to zero. Thus, the localized spin on the dot is screened by the spins of electrons in metallic leads. This spin-ip co-tunneling process is the origin of the Kondo eect in quantum dots which will be discussed in detail in section 3.4).
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Initial state

Conclusion

In this chapter, we presented the system that we are studying during this work: A Carbon nanotube quantum dot. We have shown that a CNT sandwiched between two metallic contacts can be considered as a quantum dot with a discrete energy level spectrum. The electronic transport through a CNT QD depends on transmission between metallic contacts and the tube. A highly coupled CNT is said to be open. However, a weakly coupled CNT behaves as a quantum dot in the Coulomb blockade regime. The Four-fold degeneracy of a CNT is revealed by analyzing the shape and size of the Coulombs diamonds. In the intermediate regime, due to co-tunneling, the Kondo eect in a QD emerges.

Chapter 2

Experimental techniques 2.1 Nanofabrication and Measurement Setup

In this section, we present the dierent nanofabrication techniques used to fabricate the desired sample, the system used to cool it down, and the techniques used to perform the electrical transport and high frequency measurements.

The sample is made of a carbon nanotube (CNT) contacted between two superconducting contacts, which make it possible to induce superconductivity through it. In order to detect the emission of the CNT, the CNT is coupled to an on-chip detector, a superconductor-insulator-superconductor (SIS) junction, via a coplanar waveguide resonator.

Synthesis of carbon nanotubes

Various methods can be used for the synthesis of carbon nanotubes. Depending on the way of extraction of the carbon atoms from the used precursors or target and the temperature, these processes can be divided into two groups: physical or chemical.

Physical methods typically use high energy sources, such as plasma in an arc discharge experiment [START_REF] Bethune | Cobaltcatalysed growth of carbon nanotubes with single-atomic-layer walls[END_REF] or laser ablation [START_REF] Thess | Crystalline Ropes of Metallic Carbon Nanotubes[END_REF], to extract the carbon atoms. These methods require a very high temperature between 3000°C and 4000°C. However, in chemical methods, the carbon atoms are extracted through catalytic decomposition of precursors (Carbon monoxide [START_REF] Zheng | Ecient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor[END_REF], ethanol [START_REF] Xiang | Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes[END_REF],

methane [START_REF] Kong | Chemical vapor deposition of methane for single-walled carbon nanotubes[END_REF], ethylene [START_REF] Du | CVD growth of carbon nanotubes directly on nickel substrate[END_REF]) on metal nanoparticles at a temperature in the range of 500 1200 °C.

In our experiment, the carbon nanotube is synthesized by chemical vapor deposition (CVD)

where acetylene is used as a precursor. This process has been developed by one of the group's members: Alik Kasumov [START_REF] Kasumov | CVD growth of carbon nanotubes at very low pressure of acetylene[END_REF]. On a silicon substrate, a very thin layer of iron catalyst (thickness of few nm) is deposited by sputtering. The substrate with the catalyst is placed in a quartz tube and then introduced into the oven shown in g.2.1. The system is pumped down to pressure lower than 0.1 mbar and heated progressively until a temperature is around 900°C. Then few mbar of pure acetylene is introduced into the oven during 9s then pumped out and extracted from the oven using a cold trap at liquid nitrogen temperature. When the acetylene molecules touch the heated catalyst, it is cracked on the edges of the catalyst, and nanotubes are formed. When the synthesis is over, the oven is cooled down to room temperature. The carbon nanotubes synthesized by this process have a diameter around 1-5 nm and length of few micrometers, with a reduced number of defects and a clean surface compared to arc discharge or laser ablation technique [START_REF] Kasumov | CVD growth of carbon nanotubes at very low pressure of acetylene[END_REF]. After CVD, the sample is observed with a scanning electron microscope (SEM) with an Inlens detector, with this detector we probe the charging eect associated with the presence of carbon nanotubes. An SEM picture of carbon nanotubes grown during this work is shown in g.2.1.

Sample Carbon nanotube

Iron catalyst after CVD

Alignment mark acetylene tank Right: scanning electron microscope image of the sample after CVD, the carbon nanotubes are observed.

Fabricating the sample Lithography technique

To draw a nanoscale designed pattern on the sample, electron beam lithography is performed with a scanning electron microscope. Before starting the lithography process, we deposit a thin layer of electron-sensitive resist by spin-coating. The thickness of the layer is increasing with the polymer viscosity and decreasing with the speed rotation of the spin coater.

In this experiment, we used a bilayer of resists MMA EL10/PMMA A3:

MMA EL10 (methyl methacrylate, EL means ethyl lactate) is spin-coated during 60s at 2000 rpm (thickness ∼550 nm).

PMMA A3(poly methyl methacrylate) is spin-coated during 60s at 4000 rpm (thickness ∼100 nm).

Since the polymer was conserved in a solution, we heat the sample after each resist coating for two minutes at 180°C to let the solvent evaporate. The PMMA/MMA bilayer gives a large undercut prole upon exposure and development. The importance of this undercut appears in the fabrication of tunnel junctions. During lithography, the electron beam is accelerated by a voltage 30 keV with a dose equals 320 µC/cm². Note that two SEM diaphragms, leading to dierent electron currents are used during lithography: 7.5 µm (current: 16 pA) and 120 µm (current: 10 nA) for precise and coarse patterns, respectively. During exposure, the pattern is written directly onto the electron sensitive resist, point by point following the pattern designed previously with CAD software (DesignCad). The exposure causes a change in the chemical properties of the polymer, which can Chapter 2. Experimental techniques be eliminated by proper development. This is done by making the sample soak during 60s in a solution of MIBK (methyl buthyl ketone) diluted at 1:3 with isopropanol at room temperature.

After the development of the sample, one obtains a positive mask with the desired design which is ready for metallic deposition.

In this work, the sample is fabricated in two steps. First, we fabricate the contact on the CNT and, in a second step, design the SIS junction and the resonator.

connecting the carbon nanotube

Resist

Electron beam accelerated at 30 kV After CVD, one of the nanotubes is chosen and contacted between two metallic electrodes. For this purpose, the contact of the tube and the side gate are drawn using CAD software (DesignCad) in the right position thanks to the SEM image of the sample with alignment marks as the one shown in g.2.1. Then the sample is spin-coated with a bilayer of resist. Note that at this step the formation of an undercut is useful to make the lift-o easier. Then electron beam lithography with a small current is performed followed by developments with MIBK.

MIBK development

Electron beam deposition of Al/Pd Metallic layer

Lift-off Acetone at 60°c

Metallic contacts of CNT

Metal deposition The metal used to connect the tube is chosen to be superconducting. We have chosen Al because its superconductivity can be destroyed by a rather small magnetic eld. This allows characterizing the normal state of the CNT without aecting his property, especially the Kondo eect. The deposition of Al is preceded by the deposition of a thin layer of palladium Pd. Pd is necessary since it provides high transparency contact to the carbon nanotube [START_REF] Jorgensen | Electron Transport in Single-Wall Carbon Nanotube Weak Links in the Fabry-Perot Regime[END_REF], but it reduces the superconducting gap compared to bare aluminum. The two metals are deposited by e-gun metal deposition under the following conditions: Pd: 7 nm at a rate of 0.2nm/s,(e-gun current I=200mA), pressure P = 9 × 10 -8 mbar, angle of evaporation θ=0°.
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Al: 73 nm at a rate of 1nm/s, (e-gun current I=200mA), pressure p = 2 × 10 -7 mbar, angle of evaporation θ=0°.

To reach an optimal value of vacuum pressure, the chamber is pre-deposited with Niobium, which helps decrease vacuum pressure.

Lift-o After metallic deposition, the sample is placed in acetone at 60°C for almost 1 hour.

Acetone will dissolve the resist and the metallic layer covering it will be removed. The whole procedure is summarized in g.2.2. Once the contacts of the CNT are deposited, the sample undergoes another lithography step, where the tunnel junction and the resonator cavity are drawn with small and high current, respectively.

Fabricating Josephson Junctions

For metallic deposition, we use the angular evaporation technique (see g. 

SIS Josephson Junction

CNT Josephson Junction

Coplanar waveguide resonator An SEM image of the sample is represented in Fig. 2.5. In this sample, the CNT is contacted between two metallic contacts made with 7nm-Pd/23nm-Al 400 nm apart, with three gates. One central gate G 1 is used to tune the electrochemical potential and the two other side gates G 2 and G 3 aims to tune the transmission amplitudes of the barriers. To fabricate this sample, we perform the same lithography and metallic deposition steps explained previously. However, since for the side gates we aim at a very small width ∼ 50 nm, we have used CSAR 62 as a resist, which is based on methyl styrene-co-α-chloromethacrylate with the addition of halogenated acid. This resist provides high sensitivity and resolution up to 10 nm. By tuning the transparency of the contacts, we will be able to control the contact asymmetry a = Γ L /Γ R , thus we will have access to many dierent transport regimes within the same sample.

200nm CNT G 1 G 2 G 3

Cryogenic cooling

In order to investigate the electronic transport properties of CNT devices, a low-temperature environment is required, below 50 mK. This temperature can be reached by using the 3 He/ 4 He wet dilution fridge. However, during this work, we install a new dry fridge of base temperature around 10 mK. The electronic temperature of this dry fridge was measured using a single electron transistor thermometer, the calculated value is around 22 mK (See Chapter 7 section 7.1) for the detailed measurement). In what follow we describe the operation principle of wet and dry dilution refrigerators.

Wet dilution fridge

In a dilution refrigerator, the low temperature is achieved by using a mixture of 3 He/ 4 He. A vacuum pump at room temperature is used to circulate the mixture through the dilution fridge.

The wet dilution fridge is initially cooled down at 4.2K by a liquid helium bath. When the fridge is cold and running, the 3 He/ 4 He mixture is injected by a vacuum pump and undergoes a cool down to around 3k by the vapors of the still. On its way to the mixing chamber, the mixture passes through a series of impedances (Z 1 and Z 2 ) that perform Joule-Thomson expansions of the 3 He/ 4 He mixture cooling it down below 1 K. Its temperature further decreases inside the continuous heat exchanger due to the counter ow of the liquid towards the still. Finally, the Chapter 2. Experimental techniques mixture arrives at the mixing chamber. When cooled down below 1K, the mixture undergoes spontaneous phase separation to form a 3 He-rich phase (the concentrated phase) and a 3 He-poor phase (the dilute phase).

Dilution cooling occurs in the mixing chamber which is connected to the still through a distillation column. In the mixing chamber, two phases of the 3 He/ 4 He mixture, the concentrated phase (practically 100%

3 He) and the dilute phase (about 6.4% 3 He and 93.6% 4 He), are in equilibrium and separated by a phase boundary.

As we pump 3 He vapor from the liquid inside the still, the 3 He concentration in the liquid will decrease. The dierence in 3 He concentration between the still and the mixing chamber results in an osmotic pressure gradient along the distillation tube. This osmotic pressure pulls 3 He from the mixing chamber where it is separated from the 4 He. On its way to the still the cold, dilute 3 He cools the incoming 3 He via the heat exchangers. Meanwhile in the mixing chamber, the 3 He percentage of the diluted phase is reduced, which leads to the ow of 3 He from the concentrated phase to the diluted phase to maintain the 6.4%

3 He in the diluted phase . The process of moving the 3 He through the phase boundary is endothermic and removes heat from the mixing chamber environment, thus a base-temperature of 50 mK is achieved. The pumped 3 He is then re-injected using a compressor into the cryostat completing the cycle. 

Dry dilution fridge

In a dilution refrigerator instead of using liquid helium, a pulse Tube cryocooler is used to cool down the mixture down to 4K. The refrigeration temperature is achieved by the continuous expansion and compression of the working gas which is 4 He within a closed volume.

When the pulse tube (PT) started, the only cold part of the system is the cold head of the PT. First, the mixture is pre-cooled by the cold head, which will in turn cool down the Mixing Chamber (and the other parts of the fridge) before the condensation. During the pre-cooling phase, the mixture is injected directly into the pumping line surrounding the cold head of the pulse tube. Afterward, the mixture goes in the Joule-Thomson exchanger, then in the still and the mixing chamber. Finally, the mixture goes out from the Mixing Chamber to the fast pumping line and then out from the refrigerator to the gas handling system 'GHS' (The GHS consist of the mixture tank, the primary pump, the turbopump, the compressor, the auxiliary primary pump, and the electrical box). This process continues until the Mixing chamber is at 4k. The process is summarized in g.2.7.a.

To reach the lowest temperature on the mixing chamber plate, the circulation of the mixture is reversed (as shown in g. 

Wiring and ltering

In this work the CNT sample is measured at 50 mK using a wet dilution refrigerator equipped with a superconducting magnet, providing a magnetic eld going from 0 to 1 T.

The sample to measure is thermally connected to the coldest part of the dilution fridge: the mixing chamber and measured through low pass ltered lines with a standard lock-in amplier technique. The sample is connected to the BNC connector on top of the dilution fridge by DC lines made of manganin wires of resistance 30Ω, an alloy of copper, manganese, and nickel. The resistivity of this alloy depends very weakly on temperature. The DC ltering is achieved by two lters: a π-lter on the top of the fridge at room temperature which lters frequencies above 10 kHz if the sample resistance is about 5Ωk and a 100nF capacitance placed close to the sample. 

Sample Sample holder

Sample measurement

Here I present two examples of measurements we have performed, the measurements of the dierential conductance and dierential resistance versus the gate and the source-drain bias voltage.

For the dierential conductance measurements, the CNT is DC voltage biased and AC biased.

One side of the sample is grounded to the fridge, so the current is measured from the voltage 

Kondo eect

In normal metals, the main contribution to the resistivity is the electron-phonon scattering. As temperature decrease, the electrons can travel more easily as the lattice vibrations of the metallic crystal decrease. At zero temperature, the phonon population is zero and the nite residual resistivity is explained by the scattering with the defects of the metal. However, the resistance of alloys with magnetic impurities (e.g. in gold) is found to increase [START_REF] De Haas | The electrical resistance of gold, copper and lead at low temperatures[END_REF] at low temperature. In 1964, the theoretical physicist Jun Kondo explained this upturn of electrical resistance by the so-called Kondo eect [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF]. The Kondo eect is a many-body phenomenon that can appear when there is some localized, non-zero spin degree of freedom coupled to a Fermi sea of conduction electrons.

The conduction electrons of the host metal tend to screen the localized spin. This screening leads to the formation of a macroscopic coherent state called the `Kondo cloud'. The Kondo cloud has a large scattering cross-section. Thus, the conduction electron scattering is enhanced, and eventually the resistance increases. The temperature below which this phenomenon occurs is called the Kondo temperature T K [START_REF] Kouwenhoven | Revival of the Kondo eect[END_REF]. 

T>T K T<T K

Kondo Hamiltonian

In the Kondo model, the Kondo eect can be described by the following Hamiltonian:

H Kondo = kσ k c † kσ c kσ + J S. s b (3.1)
The rst term corresponds to the kinetic energy of the conduction electrons while the second one describes the exchange interaction J between a localized magnetic moment of spin S, and the conduction electrons with spin s b . The operator c † kσ (c kσ ) creates (destroys) a conduction electron with momentum k, and spin σ. J represents the strength of the interaction between the local conduction electron and the local moment states. Assuming J < 0, Kondo used a perturbation theory to calculate the resistivity due to the scattering with the impurity:

R(T ) = R 0 [1 -2Jρ log k B T D ] (3.2)
where R 0 is a constant, ρ is the conduction band density of state at the Fermi energy, and D the bandwidth of the density of state. The perturbation theory provides a good description of the magnetic impurity systems for T > T K but the expansion breaks down at T < T K . The perturbative approach gives a logarithmic divergence of the resistance at low temperature, while experimental studies show that the resistivity is given by the power law of T with T 2 terms. Non-perturbative techniques are required to investigate the low-T regime.

Renormalization Group

A complete understanding of the Kondo problem comes from renormalization. Anderson has proposed a poor man's scaling [START_REF] Anderson | A poor man's derivation of scaling laws for the Kondo problem[END_REF] consisting of the renormalization of the Kondo Hamiltonian by rescaling of all parameters. The scaling approach leads to the concept of the existence of a xed point when J(D) becomes scaling-invariant. The system is then described by the xed point. However, this approximation led to the divergence of the coupling constant J at a nite cuto D = T K which must be an artifact since the model can not have any phase transition at nite temperature.

The correct solution can only be obtained by the renormalization group technique [START_REF] Wilson | The renormalization group: critical phenomena and the Kondo Problem[END_REF]. The idea is to divide the conduction band into a set of discrete electron levels each one is called "Kondo state". Then one solves the Kondo Hamiltonian for each Kondo state by numerical methods. This proceeds in steps. First one solves the impurity coupled to the rst Kondo state. The next step is to add the second Kondo state and solve the combined coupling of the rst and second conduction band states to the impurity. Then one adds the third state, then the fourth state, and so forth. This corresponds to solving for the eigenvalues at successively smaller and smaller energy scales. The major result of this approximation was the demonstration that there is a unique stable xed point in the one-channel Kondo model: J → ∞, which means that the smaller is the energy scale, the stronger is the eective coupling to the impurity. In another word, this eective antiferromagnetic coupling increases for electrons close to the Fermi level. This leads to a resonance in the density of states of a width of the order of T K pinned to the Fermi energy, which is called the Kondo resonance. The Kondo eect is characterized by a single energy scale, T K , which is a scaling invariant. It can be expressed in terms of the coupling J and the density of state N 0 :

k B T K ∝ e -1 N 0 |J| (3.3) 58 
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Anderson model

A localized magnetic state, can be modeled by the Anderson single level impurity model, where the magnetic impurity is viewed as having one energy level with an unpaired electron at energy level 0 , and a Coulomb repulsion U. All energy levels below 0 are fully occupied with electrons, and all energy levels above 0 are unoccupied.

The position of 0 can be tuned by the gate voltage. The state giving rise to the Kondo eect, consisting of a localized degenerate state coupled to an electron reservoir, is well characterized by the Anderson Hamiltonian [START_REF] Anderson | Localized Magnetic States in Metals[END_REF]:

H = kσ k c † kσ c kσ + σ σ d † σ d σ + U n d↑ n d↓ + kσ (v k d † σ c kσ + v * k c † kσ d σ ) (3.4)
The rst two terms account for the conduction electrons and the impurity, respectively, where c † kσ (c kσ ) creates (destroys) an electron in the leads with momentum k, spin σ, and energy k . The third term represents the Coulomb repulsion when the level is lled with two electrons of opposite spin, and the last term is the coupling between the conduction electrons and the impurity with amplitude v k . For an isolated impurity v k = 0. This Hamiltonian has four eigenstates: |0 with energy 0, the two degenerate states |↑ , |↓ with energy 0 and the doubly occupied state |↑↓ with energy 2 0 +U . The ground state is |↑↓ for 0 < -U , the degenerate doublet |↑ , |↓ for -U < 0 < 0 and the empty state |0 for 0 > 0. Thus, the QD can carry an S=1/2 local moment only for -U < 0 < 0.

Note that 0 = -U 2 corresponds to the particlehole symmetry point.

Equivalence with the Kondo problem

In the case of the local moment (-U < 0 < 0), performing the Schrieer-Wol unitary transformation [START_REF] Schrieer | Relation Between the Anderson and Kondo Hamiltonians[END_REF] on eq.3.4, shows that the Anderson Hamiltonian was equivalent to the Kondo one, and J can be expressed in terms of the Anderson parameters such that [START_REF] Schrieer | Relation Between the Anderson and Kondo Hamiltonians[END_REF]:

J = 2| v k | 2 U 0 ( 0 + U ) (3.5)
v k can be expressed in terms of the coupling constant Γ and the density of states N 0 , such that

| v k | 2 = Γ πN0 .
The expression of J is given as follow:

J = 2ΓU πN 0 0 ( 0 + U ) (3.6)
where Γ is the width of the impurity energy level, and U the Coulomb repulsion between two electrons at the site of the impurity. For -U < 0 < 0, J is negative conrming the antiferromagnetic nature of the exchange between the conduction electron and the impurity.

From eq.3.3 and 3.6, the Kondo temperature, T K is expressed in terms of the parameters of the Anderson model [START_REF] Kouwenhoven | Revival of the Kondo eect[END_REF]:

k B T K = √ U Γ 2 e π 2 0 ( 0 +U ) (ΓU ) (3.7)
Note that the minimum value of T K is obtained at the electron/hole symmetry point, 0 = -U/2. The maximum T K is found on the edges of the -U < 0 < 0 zone.
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Kondo eect in quantum dot

A simple Kondo system can be realized with a quantum dot connected to metallic leads via two tunnel barriers. The Kondo eect was predicted to occur in QDs in 1988 [START_REF] Glazman | Resonant Kondo transparency of a barrier with quasilocal impurity states[END_REF][START_REF] Wingreen | Anderson model out of equilibrium: Noncrossingapproximation approach to transport through a quantum dot[END_REF], and then experimentally observed in semiconductor heterostructures [START_REF] Goldhaber-Gordon | Kondo eect in a single-electron transistor[END_REF], carbon nanotubes [START_REF] Nygård | Kondo physics in carbon nanotubes[END_REF], individual molecules [START_REF] Park | Coulomb blockade and the Kondo eect in single-atom transistors[END_REF], and semiconductor nanowires [START_REF] Jespersen | Kondo physics in tunable semiconductor nanowire quantum dots[END_REF] QDs.

The rst observation of the Kondo eect in quantum dots was made in GaAs-based twodimensional structures. The Kondo eect has now been seen in quantum dots based on a wide variety of nanomaterials such as carbon nanotubes, C 60 molecules, organic molecules, and semiconductor nanowires.

We have seen in the previous section 1.2.2, that depending on the coupling between a quantum dot and source-drain electrodes, the electronic transport through the QD can be either in the Coulomb blockade or Kondo regime. When the electrical contacts are suciently transparent, and the QD is occupied by an odd number of electrons i.e. its highest energy level carries a spin 1/2 magnetic moment, higher-order co-tunneling process are possible in which the transfer of an electron between the leads is accompanied by the simultaneous ip of the electron's spin of the dot (See

g.3.
2). The coherent superposition of many such co-tunneling events results in the screening of the local spin, which leads to the appearance of a peak in the density of states at the Fermi level of the electrodes, called Kondo resonance [START_REF] Kouwenhoven | Revival of the Kondo eect[END_REF]. To probe transport through a quantum dot, all the electrons have to travel through this single magnetic site. In this case, the Kondo resonance makes it easier for states belonging to the two opposite electrodes to mix. This mixing increases the conductance. In another word, even in the Coulomb blockade regime, the Kondo eect makes it possible for current to ow through the QD. The great advantage of using quantum dots to study the Kondo eect is that their parameters can be calculated and tuned easily. 

G = 2e 2 h 4Γ R Γ L (Γ R + Γ L ) 2 n sin 2 δ n 2 (3.8)
where δ n is the scattering phase shift of each channel participating to transport. According to the Friedel sum rule, δ n = π N n with N n the average occupation of the state n. In an ordinary spin-1/2 Kondo eect, there are two spin states and one electron, such that N n = 1/2. eq.3.8 is reduced to:

G = 2e 2 h 4Γ R Γ L (Γ R + Γ L ) 2 (3.9)
Kondo Ridge 

Specicity of a carbon nanotube Quantum dots

The Kondo eect requires the presence of unpaired spin in the highest occupied energy level of a QD. However, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number [START_REF] Cox | Exotic kondo eects in metals: magnetic ions in a crystalline electric eld and tunnelling center[END_REF][START_REF] Yu | Real-space imaging of an orbital kondo resonance on the cr(001) surface[END_REF]. The four-fold degeneracy of the carbon nanotube enables the observation of dierent types of Kondo eect. This degeneracy is generally broken with an energy splitting equal to δE. If δE U, Γ, the CNT is considered as a single level QD. Then the usual spin-1/2 SU(2) Kondo eect is observed. If δE = 0, i.e. orbital and spin degeneracies are present simultaneously, this leads to SU(4) Kondo eect of higher symmetry [START_REF] Choi | SU(4) Kondo Eect in Carbon Nanotubes[END_REF][START_REF] Makarovski | SU(2) and SU(4) Kondo eects in carbon nanotube quantum dots[END_REF]. Orbital Kondo eect has been also observed in CNT QD [START_REF] Jarillo-Herrero | Orbital Kondo eect in carbon nanotubes[END_REF]. All these situations are summarized in g.3.4.

SU(2) Kondo eect in CNT QD

Let us consider the case of a CNT QD connected to two metallic leads, where orbital degeneracy is broken by δE, such that δE U, Γ. In this case, only one level, which is spin degenerate, Kondo eect. Taken from [START_REF] Jarillo-Herrero | Orbital Kondo eect in carbon nanotubes[END_REF].

participates in the transport. Thus, we can assume the Anderson model to describe our system.

A CNT oddly occupied likely gives rise to the Kondo eect. The Kondo eect, creates a strongly correlated state between the CNT QD and both reservoirs, opening a well-transmitted channel only if the temperature is smaller than the Kondo temperature T K . T K can be well approximated by the expression predicted by the Bethe Ansatz [START_REF] Tsvelick | Exact results in the theory of magnetic alloys[END_REF][START_REF] Bickers | Review of techniques in the large-N expansion for dilute magnetic alloys[END_REF]:

T K = U Γ/2 exp - π 8U Γ |4 2 -U 2 | (3.10)
where U is the charging energy of the CNT quantum dot, Γ = Γ L + Γ R is the coupling to the electrodes, and is the energy level of the dot relative to the Fermi energy of the reservoirs.

Typically, in carbon nanotube quantum dots, the Kondo temperature reaches 1-2K [START_REF] Babi¢ | Kondo eect in carbon nanotubes at half lling[END_REF][START_REF] Basset | Measurement of Quantum Noise in a Carbon Nanotube Quantum Dot in the Kondo Regime[END_REF][START_REF] Maurand | First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot[END_REF],

values like the one obtained in InAs nanowires [START_REF] Jespersen | Gate-dependent spin-orbit coupling in multielectron carbon nanotubes[END_REF][START_REF] Kretinin | Spin-1/2 Kondo eect in an InAs nanowire quantum dot: Unitary limit, conductance scaling, and Zeeman splitting[END_REF].

The larger is the coupling Γ, the larger is T K : at a given temperature, as Γ increases, a stronger Chapter 3. Kondo eect Kondo screening is expected.

A typical stability diagram of a carbon nanotube in the Kondo SU(2) regime is shown in g.3.5.

Two Kondo ridges (bright yellow lines at V S = 0) for odd diamonds are observed. The maximum amplitude of the Kondo enhanced conductance peak in case of SU(2) Kondo eect is given by eq.3.8.

For spin-1/2 Kondo eect, the expression of conductance is recalled (see section 1.4):

G = 2e 2 h 4Γ R Γ L (Γ R + Γ L ) 2 (3.11)
The maximum conductance reached in the spin-1/2 Kondo eect with fully symmetric contacts 

(Γ R = Γ L ) is 2e 2 /h.

Temperature dependence

Exciting electrons around the Fermi energy, a nite temperature of the order of T K prevents electrons from participating in the Kondo singlet, and thus alters the Kondo resonance. Consequently, the zero-bias peak in conductance decreases as a function of temperature. The temperature dependence of the conductance can be described by the phenomenological expression

dI dV (T ) = G 0 (1 + (2 1/s -1)( T T K ) 2 ) s (3.12) 
With s a constant which depends on Kondo type correlations. This empirical formula derives from a t to NRG calculations. For a spin-1/2 Kondo eect s = 0.22 [START_REF] Kretinin | Spin-1/2 Kondo eect in an InAs nanowire quantum dot: Unitary limit, conductance scaling, and Zeeman splitting[END_REF][START_REF] Costi | Transport coecients of the Anderson model via the numerical renormalization group[END_REF]. All physical quantities are then universal functions of dimensionless parameters, k B T K being the scaling energy. Conductance, current and noise spectral density are functions of

T T K , eV SD k B T K , gµ B B k B T K
, respectively.

Magnetic eld dependence

The Kondo eect is a many-body eect, originates from local spin uctuations, to which magnetic eld couples strongly. When applying a magnetic eld, the spin degeneracy is lifted into two levels corresponding to spin ↑ and spin ↓. The Kondo zero-bias conductance peak is expected to split into two peaks of lower conductance. The position of those peaks is related to the Zeeman energy so that eV SD = ±gµ B B, where is µ B Bohr magneton and g is Landé factor. In carbon nanotubes g ≈ 2 [START_REF] Cobden | Spin Splitting and Even-Odd Eects in Carbon Nanotubes[END_REF][START_REF] Tans | Individual single-wall carbon nanotubes as quantum wires[END_REF]. CNT possesses a large g factor compared for example with GaAs-based dots of g=0.1 to 0.44. Magnetic eld parallel to the tube axis does strongly aect orbital states, so we apply eld perpendicular rather than parallel to the tube axis to ensure that only the Zeeman eect is dominant. 

B(T)

V S (mV) 

Eect of the contact asymmetry

Until now we have discussed the Kondo eect considering a CNT QD with symmetric contacts. In that case, the transmitting channel opened by the Kondo eect involves both reservoirs. However, in the experiment, this is in general not the case and we have to consider the contact asymmetry a = Γ L /Γ R . For asymmetric contact, the Kondo singlet is mainly formed between the dot and the best coupled reservoir. From eq.3.9, the conductance is reduced by a factor 4Γ R Γ L (Γ R +Γ L ) 2 compared to the symmetric case. Then, for the same applied bias voltage, the current in asymmetric contact is lower than that in the symmetric case. The decoherence rate is shown to be proportional to the current, thus the decoherence is reduced as well. For this reason, we can say that the asymmetry tends to stabilize the Kondo singlet.

SU(4) Kondo eect in CNT QD

Carbon nanotube is naturally four-fold degenerate, its electrons possess spin and orbital (valley) degrees of freedom. The orbital degeneracy of a CNT plays the role of a pseudospin. Thus, SU(4) Kondo eect can occur in CNT QD, which requires the screening of the orbital pseudospin, together with the real spin at low temperatures. This increased degeneracy yields an enhancement of T K [START_REF] Jarillo-Herrero | Orbital Kondo eect in carbon nanotubes[END_REF][START_REF] Choi | SU(4) Kondo Eect in Carbon Nanotubes[END_REF]. The SU(4) can only be observed when the symmetry of the four-fold degeneracy of CNT is well conserved during tunneling. For spin degeneracy this is the case, however, for orbital degeneracy, this conservation is not obvious, as it is not dened in the metallic electrode. If one considers that the leads to the dot are formed within the same nanotube, thus both the leads and QD have the same orbital symmetry, which should be conserved in tunneling processes [START_REF] Makarovski | SU(2) and SU(4) Kondo eects in carbon nanotube quantum dots[END_REF].

Another condition for the occurrence of SU(4) Kondo eect, is that Kondo temperature should be larger than the zero-eld splitting, either due to spin-orbit or valley-mixing (T K > ∆ SO , ∆ KK ).

In the upcoming section, we will discuss the possibility of breaking SU(4) Kondo eect by spin-orbit coupling and/or level mixing [START_REF] Cleuziou | Interplay of the Kondo Eect and Strong Spin-Orbit Coupling in Multihole Ultraclean Carbon Nanotubes[END_REF][START_REF] Galpin | Interplay between Kondo physics and spin-orbit coupling in carbon nanotube quantum dots[END_REF]. In SU(4) Kondo eect, the Kondo ridges appear both at the odd numbers diamonds (N=1,3) and half-lled diamonds (N=2). For N=1 or 3 there are 4 degenerate ground state and six degenerate ground state for N=2. All those states are illustrated in g.3.7. The N=1 and N=3 are equivalent due to electron-hole symmetry and have the same conductance of 2e 2 /h (we are considering here the case of symmetric tunnel barriers). This value is calculated using eq.3.8 with N n = 1/4 for N=1 or N n = 3/4 for N=3). For N=2 diamond we have two electrons in four states, giving N n = 3/4, thus the maximum conductance reached for fully symmetric contacts is 4e 2 /h. 

Breaking of the SU(4) symmetry

The breaking of SU(4) symmetry originates from the breaking of the four-fold degeneracy of CNT QD. The orbital degeneracy could be broken due to spin-orbit, boundary conditions, or disorder.

Eect of spin-orbit coupling Spinorbit coupling can be present in carbon nanotubes owing to their curvature and cylindrical topology [START_REF] Ando | Spinorbit interaction in carbon nanotubes[END_REF]. If the spin-orbit coupling energy ∆ SO = 0 and k B T K > ∆ SO , the spin and orbital degree of freedom are coupled and the four degenerated states of CNT become two degenerate Kramers doublets [START_REF] Kuemmeth | Coupling of spin and orbital motion of electrons in carbon nanotubes[END_REF]: (K↑, K↓) and (K↑, K'↓) with entangled spin and orbital degrees of freedom. In this case SU(4) Kondo eect is not possible anymore, however, the Kramers degeneracy can give rise to SU(2) Kondo eect.

Eect of orbital mixing The four-fold degeneracy of CNT can also be broken by orbital mixing attributed to the presence of weak disorder. The observation of orbital mixing can be related to the chirality of the CNT, such that A armchair nanotubes undergo orbital mixing, however zigzag nanotubes do not [START_REF] Marganska | The two classes of low-energy spectra in nite carbon nanotubes[END_REF]. Due to orbital mixing, the K and K' orbital levels undergo level anticrossing Breaking of the four-fold degeneracy of CNT QD can be due to both spin-orbit coupling and orbital mixing. g.3.9 shows the calculated single-particle energy-level spectra, considering the effect of ∆ SO and ∆ KK .

Ferrier et al. [START_REF] Ferrier | Quantum Fluctuations along Symmetry Crossover in a Kondo-Correlated Quantum Dot[END_REF] show that it is possible to induce a crossover between SU(4) and SU(2) symmetry of the ground state at half-lling (N=2, two electrons in the dot) by tuning the orbital and spin degeneracy with a magnetic eld. A magnetic eld making an angle θ with the nanotube axis is applied. The behavior of each ground state (N=1 and N=2) is studied under the eect of a SU(2) orbital Kondo eect Jarrillo-Herrero et al. [START_REF] Jarillo-Herrero | Orbital Kondo eect in carbon nanotubes[END_REF] shows that orbital Kondo eect can occur in carbon nanotubes. Applying a parallel magnetic eld breaks the four-fold degeneracy, thus no Kondo eect is observed. However, from g.3.9.c the state (K,↑) and (K',↑) undergoes levelcrossing at B = B 0 (indicated in red circle). Then, the orbital degree of freedom is degenerated, leading to the reappearance of a Kondo resonance due to pure orbital SU(2) Kondo eect.

Chapter 4

Introduction to superconductivity

In this chapter we will present the basics notions to understand the Josephson eect in nanoscale junction: the superconducting proximity eect, Josephson eect in a QD, physics of Andreev bound states, and the eect of Kondo correlations.

Superconductivity

In this section we will discuss the physics of conventional superconductors, where the electrons form coherent bound states called Cooper pairs, which dramatically change the macroscopic properties of the system, giving rise to perfect conductivity and perfect diamagnetism.

Phenomenology

In metals, the resistivity is expected to decrease with temperature, due to the reduction of electron- Conventional and unconventional superconductors dier by the pairing mechanism. In conventional superconductors, the pairing is due to electron-phonon attractive interaction. In unconventional superconductors, the Cooper pairs are not bound together by phonon exchange but instead by exchange of some other kind, e. g. spin uctuations [START_REF] Stewart | Unconventional superconductivity[END_REF], magnetic uctuations [START_REF] Stockert | Paramagnon-mediated superconductivity in CeCu2Si2?[END_REF] .

In what follow we limit ourselves to the case of conventional superconductors. According to Ginzburg-landau theory, at zero magnetic eld superconductivity is a second-order phase transition of the normal state. The superconducting state can be described with a single macroscopic wave function:

ψ =| ψ | exp(iϕ(r)) (4.1)
ψ is the superconducting order parameter, with | ψ | 2 represents the density of Cooper pairs, and ϕ is the superconducting phase. For a complex order parameter ψ the Landau expansion of the free energy would give the expression of current in a superconductor as a function of potential vector A, and the order parameter ψ:

I = - e m | ψ | 2 ( ∇ϕ - 2e c A) (4.2)
This relation emphasizes that a dissipation-less current is not induced by voltage bias but by a gradient of the superconducting phase ϕ.

BCS theory

In 1957 John Bardeen, Leon Cooper, and Bob Schrieer developed a microscopic theory of superconductivity, the BCS theory [START_REF] Bardeen | Theory of Superconductivity[END_REF]. The main point of the BCS theory is that the formation of Cooper pairs originates from a small attractive electron-electron interaction mediated by phonons.

The BCS theory describes only the conventional superconductor, where phonons are responsible for the formation of bound electron pairs.

Ground state In a BCS mean-eld approximation [START_REF] De Gennes | Superconductivity of metals and alloys[END_REF][START_REF] Tinkham | Introduction to superconductivity[END_REF], the eective Hamiltonian can be written as:

H = k,σ ξ kσ c † kσ c kσ + k ∆ k c † k↑ c † -k↓ + ∆ * k c -k↓ c k↑ (4.3)
where c kσ (c † kσ ) is the annihilation (creation) eld operator of an electron of spin σ and vector momentum k. With ξ kσ being the kinetic energy and ∆ k =k V kk (c -k ↓ c k ↑ ), with V kk the paring potential. In order to nd solutions of BCS theory in a homogeneous superconductor, this Hamiltonian can be diagonalized using Bogoliubov transformation: 

γ k,↑ = u k c k↑ -v k c † -k↓ γ † -k,↓ = u * k c † -k↓ + v * k c k↑ (4.4) with | u k | 2 + | v k | 2 = 1,
H = k,σ E k γ † k,σ γ k,σ (4.5) 
where γ k,σ and γ † k,σ , are the fermionic annihilation and creation operator, usually called Bogoliubons.

From eq.4.4, the Bogoliubon appears to be a mixture of electrons and holes excitation of exci- 

tation energy E k = ξ 2 k + ∆
|ψ BCS = k (| u k | + | v k | e iϕ c † k,↑ c † -k,↓ ) |0 (4.6)
The probability of the pair (k↑,-k↓) being occupied is | v k | 2 , whereas the probability that it is unoccupied | u k | 2 . When the pair is occupied, its phase is the macroscopic superconducting phase ϕ.

Superconducting density of state The superconducting density of state N s (E) can be derived by equating N s (E)dE = Nn(ξ) 2 dξ, where the normal density of states N n (ξ) can be considered constant and equal to the one at the Fermi level N n (ξ) = N (0). This leads directly to the simple result:

N s (E) = N (0)      |E| √ E 2 -∆ 2 | E |> ∆ 0 | E |< ∆ (4.7)
The density of state is sketch in g. The order parameter introduced in the context of Ginzburg-Landau theory can be associated, under certain conditions, to the superconducting gap ψ = ∆e iϕ(r)

Superconducting proximity eect

When a superconducting material brought into contact with non-superconducting one (normal or insulator), the superconducting correlations can survive in the normal (insulator) part, and can even carry a supercurrent when contacted between two superconductors: this the so called the superconducting proximity eect. The key underlying phenomenon of this eect is the Andreev reection.

Andreev transport

Andreev reection Let us consider an electron in a normal metal at energy E f + with < ∆,

wavevector k e = k F + q and phase φ e , arriving on NS interface. Due to the superconducting gap in the density of states of the superconductor, no available states are present in the superconductor at energies below the gap. Thus, the incoming electron is reected as a hole of energy E fand opposite spin: this is the Andreev reection. During Andreev reection a charge of 2e is transferred in the superconductor at the Fermi energy, in the form of a Cooper pair. The phase acquired by the hole compared to the one of the electrons after the reection is: E f + , wavevector k e = k F + q and phase φ e is reected backward into a hole with energy E h -, wavevector -k F + q and phase φ e .

φ h = φ e + ϕ +
Andreev bound state Let us consider the case where a normal part of length L is enclosed between two superconductors. The reected hole at the rst NS interface can propagate and reach the second NS interface where it will be reected backward as electron, closing the cycle (see g.4.4.a). If the length of the normal part is small enough to ensure coherence along the whole path, a Cooper pair is transferred coherently from one superconducting contact to the other, and a non-dissipative current ow through the junction. When several Andreev reections occurs, an entangled e-h pair is conned in the normal part forming a bound state called the Andreev bound state (ABS). These states carry supercurrent , and their energies depend periodically on the superconducting phase dierence ϕ = ϕ L -ϕ R such that:

2nπ = ϕ + 2 arccos ∆ + 2 v f L (4.9)
This gives the following energy spectrum of Andreev bound state:

= ∆ cos ϕ 2 -nπ - v f L (4.10)
where ϕ is the phase dierence between the superconducting electrodes. This equation admits multiple solutions which correspond to Andreev states inside the superconducting gap. In the case of perfectly transmitted short junction L ξ 0 , with ξ 0 being the superconducting coherence length, only two bound states are found at energies:

= ±∆ cos ϕ 2 

Josephson eect

In 1962, David Josephson made two remarkable predictions [START_REF] Josephson | Possible new eects in superconductive tunneling[END_REF], the DC and the AC Josephson eect in a Josephson junction. A Josephson junction is a combination of two superconducting material separated by a thin insulating layer of length L.

In 1966, de Gennes shows that the eect extends beyond Josephson's predictions and can exist if superconductors are connected by a weak link [START_REF] Likharev | Superconducting weak links[END_REF] such as normal metal, point contacts, graphene, carbon nanotubes, semiconducting nanowires, and thin ferromagnetic layers. If the nonsuperconducting part is an insulator, the junction is called an SIS junction, and SNS junction in case of a normal metal, SFS Junction in case of a ferromagnetic layer [START_REF] Tinkham | Introduction to superconductivity[END_REF].

In the non-superconducting part (N or I), there is no superconducting correlation. However, due to the superconducting proximity eect, at the interface with the superconducting part, some

Cooper pairs can penetrate in the non-superconducting part. If the length of the N or I part is small enough such that the coherence of the pair is conserved during the crossing of the N or I part, the superconducting wave functions of the two contacts overlap allowing tunneling of Cooper pairs from one contact to the other when a nite superconducting phase dierence exists between the two superconductors (See g.4.7). We can distinguish two regimes, with respect to the superconducting coherence length ξ 0 : L < ξ 0 corresponds to the short junction regime, L > ξ 0 to the long junction regime.

Dc Josephson eect

The DC eect refers to the owing of supercurrent between two superconductors due to tunneling of Cooper pairs from one superconductor towards the other. The maximum of this supercurrent is called the critical current of the junction. The existence of this supercurrent relies on the formation of Andreev bound states in the non-superconducting part.

𝑺 𝟐 𝑺 𝟏

I or N

Cooper pair V 𝝍 𝟏 = 𝒏 𝟏 𝒆 𝒊𝝋 𝟏 𝝍 𝟐 = 𝒏 𝟐 𝒆 𝒊𝝋 𝟐 L superconducting phases, such that there is a phase dierence ϕ=ϕ 2 -ϕ 1 across the junction. At zero bias voltage, a supercurrent can ow through the junction due to the tunneling of a Cooper pair. When a constant voltage V is applied between the two superconductors, the Junction emits radiation such that hν J = 2eV .

In the case of SIS Junction, Josephson predicted that a supercurrent can ows across the junction in the absence of any applied voltage given as:

I(ϕ) = I c sin(ϕ) (4.12)
where I c is the Josephson critical current, and ϕ=ϕ 2 -ϕ 1 is the superconducting phase dierence across the junction(see g.4.5).

In case of weak link, the supercurrent is a function of ϕ, such that I(ϕ) = I c f (ϕ).

Ac Josephson eect

When a bias voltage V is applied between the two superconductors, the phase evolves in time according to:

dϕ dt = 2eV (4.13)
Thus, an alternating supercurrent at the Josephson frequency ν J = 2eV /h and its harmonics is owing through the junction, this is the AC Josephson eect. The oscillating Josephson current is given by the Fourier series of eq.4.12 of period 2π:

I(t) = ∞ n=1 I c,n sin(2πν J nt) (4.14)
The oscillating phase accelerates the tunneling of Cooper pairs with energy gain 2eV . As the Cooper pairs are not allowed to alter their energy while tunneling, a photon at frequency hν J = 2eV is emitted. ν J is related to twice the electronic charge since the two electrodes exchange cooper pair rather than a single electron. Those photons can be absorbed by the environment and can be probed as photo-assisted tunneling steps in the I(V) characteristic of a nearby detector.

The AC Josephson emission has been rst detected in tunnel Josephson junctions by Giaever [START_REF] Giaever | Detection of the ac Josehson eect[END_REF] and Yanson et al. [START_REF] Yanson | Experimental Observation of the Tunnel Eect for Cooper Pairs with the Emission of Photons[END_REF]. Thanks to the metrological precision of the AC Josephson eect, a superconducting tunnel junction can be used as GHz radiation emitter [START_REF] Cassidy | Demonstration of an ac junction laser[END_REF] or to dene the voltage standard [START_REF] Benz | Application of the Josephson eect to voltage metrology[END_REF]. In Josephson junctions involving a non-superconducting but non-insulating material, measuring the AC-Josephson eect allows us to probe the Andreev Bound States (ABS) spectrum at a nite frequency and out-of-equilibrium [START_REF] Basset | Nonadiabatic dynamics in strongly driven diusive Josephson junctions[END_REF][START_REF] Billangeon | Ac Josephson Eect and Resonant Cooper Pair Tunneling Emission of a Single Cooper Pair Transistor[END_REF]. For instance, its measurement demonstrated the topologically protected crossing of ABS in HgTe [START_REF] Wiedenmann | 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions[END_REF][START_REF] Deacon | Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions[END_REF], InAs nanowires [START_REF] Laroche | Observation of the 4π-periodic Josephson eect in indium arsenide nanowires[END_REF] and Dirac semi-metals [START_REF] Li | 4πperiodic Andreev bound states in a Dirac semimetal[END_REF], that was not accessible through DC measurement because of quasiparticle poisoning.

Shapiro steps To probe the ac components of the current, one can apply an external microwave signal of frequency ω. Let us consider both a DC and an AC voltage across the junction.

V = V 0 + V cos(wt) (4.15) 
From eq.4.13 the phase dierence takes the form

ϕ(t) = ϕ 0 + 2eV 0 t + 2eV ω sin(ωt) (4.16)
From eq.4.16 the current across the junction can be expressed as a function of Bessel functions J n such that:

I(t) = Ic +∞ -∞ J n ( 2eV ω ) sin(ω 0 t + (n + m)ωt + ϕ 0 ) (4.17)
For an applied DC voltage V = n ω 2e , the DC component of the current is:

I(t) = I c J n ( 2eV ω ) sin(ϕ 0 ) (4.18)
Thus, when the DC voltage is an integer multiple of ω 2e the DC supercurrent suddenly jumps to the value given by eq.4.18. In the case of a DC current bias of the junction, together with irradiation, a simple ladder behavior appears in the I(V) characteristics. These are called Shapiro steps, known also as inverse of the AC Josephson eect. 

Current-phase relation

From the DC Josephson relations, we deduce that the supercurrent owing between two superconductors depends on the superconducting phase dierence ϕ, which is analog to the corresponding relation between current and the phase gradient eq.4.2. Applying a time reversal transformation changes the direction of the current and the sign of the phase, this implies that the current needs to be an odd, 2π periodic function of the superconducting phase dierence ϕ [START_REF] Golubov | The current-phase relation in Josephson junctions[END_REF]. The exact relation between the supercurrent and the superconducting phase is called the current-phase relation, which depends strongly on the strength and of the nature of the coupling between the two superconducting reservoirs.

Case of SNS Junction

For a SNS structure with N transport channels of transmissions T n , the ABS energy for a single conduction channel in the limit L ξ 0 is given by [START_REF] Beenakker | Three universal mesoscopic josephson eects[END_REF]:

= ±∆ 1 -T n sin 2 ( ϕ 2 ) (4.19)
Each one of the two Andreev bound states of a channel carries a supercurrent proportional to the derivative of the Andreev Bound states energy with respect to the phase: 

I(ϕ) = 2e n ∂ n ∂ϕ
I(ϕ) = e∆ 2 n T n sin(ϕ) 1 -T n sin 2 ( ϕ 2 ) (4.21)
For an arbitrary transmission, the current-phase relation contains harmonics, the extreme limit being T ≈ 1, yielding a singularity at ϕ = π: the current-phase relation is then strongly anharmonic, close to a saw-tooth (represented on g.4.7.a in blue). However, as soon as there is a nite temperature, the highest harmonics are suppressed rst, such that the current-phase relation tends to be sinusoidal.

Case of a tunnel junction

In the case of tunnel junction, where the channels are weakly transmitted T n 1, the current-phase relation is nearly harmonic I = I c sin(ϕ) (See g.4.7, represented in pink). The value of critical current is I c given by the Ambegaokar-Barato formula [START_REF] Ambegaokar | Tunneling Between Superconductors[END_REF]:

I c R n = π 2e ∆(T ) tanh ∆(T ) 2k B T (4.22)
where R n denotes the tunneling resistance of the electrons in the absence of the pair interaction.

At temperatures far below T c , ∆ is nearly constant. For T 0, tanh(∆/2k B T ) ≈ 1 then eq.4.22 becomes: 

I c R n = π 2e ∆ (4.23) (a) (b) 

Conclusion

Through this chapter, we have presented a brief introduction to superconductivity. Superconducting correlations result from the attractive interactions between conduction electrons in a metal mediated by phonon, forming Cooper pairs. At T < T C , the metal becomes a superconductor, as a result, a non-dissipative current "supercurrent" induced by the superconducting phase ϕ ow through the metal. We have seen that a weak link connected to superconducting electrodes can support a supercurrent due to the superconducting proximity eect. This supercurrent is a periodic function of ϕ. The exact relation between the current and the phase is called the current-phase relation (CPR).

Chapter 5

DC Josephson eect in a quantum dot

As we discussed in section 1.2.2, when a quantum dot (QD) is coupled to normal electrodes, the tunneling of electrons can lead to three dierent transport regimes depending on the ratio between the charging energy U and the coupling constant Γ. When a QD is coupled to superconducting electrodes, an additional energy scale will highly aect the electronic transport: the superconducting gap ∆. Depending on the relative value between the dot's parameters (Γ and U ) and ∆, three dierent coupling regimes are observed, the strong coupling regime, weak coupling regime, and intermediate regime [START_REF] De Franceschi | Hybrid superconductor-quantum dot devices[END_REF]. Superconducting-Quantum dot-Superconducting (S-QD-S) system has been realized in dierent nano-structures: Carbon nanotubes [START_REF] Cleuziou | Carbon nanotube superconducting quantum interference device[END_REF][START_REF] Jorgensen | Electron Transport in Single-Wall Carbon Nanotube Weak Links in the Fabry-Perot Regime[END_REF][START_REF] Jarillo-Herrero | Quantum supercurrent transistors in carbon nanotubes[END_REF], InAs nanowires [START_REF] Jorden | Supercurrent reversal in quantum dots[END_REF][START_REF] Hofstetter | Cooper pair splitter realized in a twoquantum-dot Y-junction[END_REF], and graphene [START_REF] Dirks | Transport through Andreev bound states in a graphene quantum dot[END_REF]. Carbon nanotubes are not intrinsically superconducting, however, when connected between two superconducting electrodes they can carry a supercurrent [START_REF] Yu | Proximityinduced superconductivity in carbon nanotubes[END_REF][START_REF] Kasumov | Quantum transport through carbon nanotubes: Proximity-induced and intrinsic superconductivity[END_REF] due to the superconducting proximity eect. In this chapter, we review the basics properties of the S-QD-S system.

Strong Coupling regime

In the strong coupling regime, the charging energy of the Cooper pair and the superconducting gap is small compared to the coupling constant. Resonant Cooper pair tunneling occurs when aligning the energy level in the dot with the Fermi level in the leads. The supercurrent owing through the dot is maximum when the dot level is aligned with the Fermi energy of the leads (ON state in g.5.1) and zero when driven out-of-resonance (OFF state in g. gate voltage, the dot can be in an ON state, where supercurrent is maximal due to resonant Cooper pair tunneling. When the energy level of the dot is put away from Fermi energy, the system is in an OFF state, and the supercurrent is suppressed.

Weak Coupling regime

The weak coupling regime refers to the case Γ U, ∆. In this regime, the tunneling of Cooper pairs is suppressed by Coulomb repulsion, and the transport is dominated by single quasi-particle tunneling. This tunneling happens for bias voltage high enough to overcome the superconducting gap eV SD > 2∆ and depends on the position of the energy levels in the QD, controlled by the gate voltage. 

E E

Intermediate Coupling regime

The intermediate regime is very interesting. In this regime, U is suciently high to give rise to Coulomb blockade, and Γ is high enough to allow the co-tunneling process. Rather than tunneling as one entity, the Cooper pair breaks and the two electrons co-tunnel coherently (during typically the time /Γ, the cooper pairs can reform in the second leads if Γ > ∆). Taken from [START_REF] Vecino | Josephson current through a correlated quantum level: Andreev states and π junction behavior[END_REF].

In this range, the amplitude and the sign of the supercurrent highly depend on the dot's occupancy, and two cases can be distinguished. When a QD is occupied by an even number of electrons, the dot is in a singlet state (S=0). The Cooper pairs tunnels through the QD preserving its spin order and the supercurrent is high ( See g.5.3). The Josephson coupling is positive this is known as the 0-junction. Whereas when the occupation number is odd the QD is in a doublet state.

There is only one spin in the highest occupied state, spin up or spin down electron. At the end of the co-tunneling process, the dot's spin is left unchanged, and a Cooper pair is transported with inverted spin ordering as illustrated in g.5.3. In this situation, the fourth-order tunneling process is accompanied by a spin-ip, which strongly aects the supercurrent [START_REF] Kulik | The Josephson tunnel eect in superconductors with paramagnetic impurities[END_REF]. The Josephson coupling is said to be negative, the supercurrent amplitude is weakened compared to the 0 junction case [START_REF] Novotný | Josephson current through a molecular transistor in a dissipative environment[END_REF] and the current-phase relation (CPR) is dephased by π [START_REF] Spivak | Negative local superuid densities: The dierence between dirty superconductors and dirty Bose liquids[END_REF][START_REF] Glazman | Resonant Josephson current through Kondo impurities in a tunnel Barrier[END_REF]: I(ϕ) = I c sin(ϕ + π): this is the π-Junction

Competition with Kondo eect

The Kondo eect occurs in an oddly occupied QD coupled to two electrodes made up of normal metal (See chapter 3). The screening of the magnetic impurity by the conduction electron of the We have seen that the tunneling of Coopers pair between two superconducting contacts coupled through a QD, depends on the parity of the dot, a QD with an even(odd) number of electron leads to 0-junction(π-junction)). However, in the presence of the Kondo correlation, the Kondo singlet state competes with the pairing energy ∆ of the Cooper pairs. The Kondo-superconductivity interplay has been extensively studied theoretically [START_REF] Glazman | Resonant Josephson current through Kondo impurities in a tunnel Barrier[END_REF][START_REF] Vecino | Josephson current through a correlated quantum level: Andreev states and π junction behavior[END_REF][START_REF] Rozhkov | Josephson Coupling through a Magnetic Impurity[END_REF][START_REF] Choi | SU(4) Kondo Eect in Carbon Nanotubes[END_REF][START_REF] Siano | A Reply to the Comment by Mahn-Soo Choi et al[END_REF][START_REF] Karrasch | Josephson current through a single Anderson impurity coupled to BCS leads[END_REF]:

The resulting physics of the system is controlled by the ratio of T K /∆: If k B T K /∆ ≈ 1, then one enters the intermediate regime. In this case, the magnetic state of the dot depends on the phase dierence between the two superconductors. In this limit, a transition between the singlet and doublet state can be observed driven by the ratio k B T K /∆ as predicted by Glazman [START_REF] Glazman | Resonant Josephson current through Kondo impurities in a tunnel Barrier[END_REF], and observed experimentally [START_REF] Buitelaar | Quantum Dot in the Kondo Regime Coupled to Superconductors[END_REF][START_REF] Eichler | Tuning the josephson current in carbon nanotubes with the kondo eect[END_REF]. 

If k B T K /∆ 1,
DOS E ε F 2Δ DOS E ε F 2Δ 2k B T K k B T K /Δ<<1 k B T K /Δ>>1 2k B T K (a) (b) 

Induced 0-π transition

In the strong coupling regime, the superconductor wave function spreads over the dot, inducing a BCS-singlet ground state i.e. a 0-junction. When the QD enters the Coulomb blockade regime, the dot is occupied by a xed number of electrons, alternating even or odd. Thus a 0-π transition is achieved by modifying the parity of the electronic charge on the dot using electrostatic gates. In the intermediate regime, where Kondo correlation is present, a 0-π transition is possible depending on the ratio between ∆ and T K , the latter can be tuned using a gate voltage via the position of the energy level. Thus, a rst-order quantum transition between 0 and π junction is achieved by tuning the microscopic parameters of the quantum dot. These parameters are the broadening Γ of the energy levels in the dot due to the coupling to the reservoirs, the superconducting gap ∆ of the contacts, the dot's charging energy U , and it's level energy . Note that, the ground state of the system (singlet or doublet) depends strongly on the superconducting phase ϕ.

�/U � 0 /U The phase diagram of the 0-π transition of a quantum dot (in this precise case a carbon nanotube quantum dot) is presented in g.5.5. In the center of the Coulomb diamonds, the charging energy U is high, the doublet state is more likely to appear due to Coulomb blockade. As we go towards the edges of the diamond, U starts to decrease, favoring the formation of a singlet state.

As Γ increases, co-tunneling processes allow some current to ow in the Coulomb blockade regime, this will reduce the range for π behavior. When Γ is high compared to U, co-tunneling processes become more important, there is no π-junction behavior, and a 0 junction is maintained.

The transition from a 0 to a π junction can be achieved by tuning the dot's parity with a gate voltage, this is called a gate-controlled 0-π transition. It has been experimentally observed in an InAs nanowire QDs [START_REF] Jorden | Supercurrent reversal in quantum dots[END_REF] and in a CNT QDs [START_REF] Cleuziou | Carbon nanotube superconducting quantum interference device[END_REF][START_REF] Maurand | First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot[END_REF][START_REF] Eichler | Tuning the josephson current in carbon nanotubes with the kondo eect[END_REF]. In both experiments, the QD is inserted in a superconducting loop so that the phase is controlled by a magnetic eld, allowing the measurement of the current-phase relation. Jorgensen et al. [START_REF] Jorgensen | Critical Current 0 -π Transition in Designed Josephson Quantum Dot Junctions[END_REF] measured as well this gate-controlled 0-π transition in a CNT but without control of the phase, the measurement is shown in g.5.6.

(a) (b) To phase bias the CNT Junction, a magnetic ux is applied with a magnetic eld perpendicular to the SQUID. The modulation of the switching current δI s versus magnetic eld B, proportional to the CPR of the carbon nanotube, is measured for various V g in an oddly occupied diamond and is represented on g.5.7.a. Close to the particle/hole symmetry point the system acts as a π-junction. Away from this point, the system exhibits a 0-junction behavior. This is compatible with 0-π transitions at T K ≈ ∆ of g.5.5, driven by the interplay between the Kondo eect and the superconductivity. In between, the phase dependence at dierent gate voltages shows that the CPR is anharmonic: A distortion appears rst around π and develops as T K decreases. The CPR is composite, with a part of type 0 around ϕ = 0 and a π junction behavior around ϕ = π. The CPR switched completely to the π-junction in the center of the Coulomb diamond where T K is minimum.

The transition from one part to the other is achieved by varying the superconducting phase. The critical phase ϕ C is the phase at which, the system undergoes the transition from 0 to π for a xed gate voltage. The CPR has 0-behavior for ϕ ∈ [0, ϕ C ] and π-behavior for ϕ ∈ 

Conclusion

In a QD between two superconductors, the tunneling of Cooper pairs across the QD is highly aected by the ration Γ/∆ and the CPR is strongly dependent on the parity of the number of electrons on the QD: for even occupancies, the supercurrent is positive and high: this is a 0-junction. However, for odd occupancies, the supercurrent undergoes a sign reversal: this is a π-junction. In the last section, we study the competition between the Kondo singlet ground state with characteristic energy k B T K and the spin singlet ground state of superconductivity composed of Cooper pairs with pairing energy ∆ and phase ϕ. If the Kondo eect is strong enough compared to superconductivity (T K > ∆), a BCS-Kondo singlet state is formed that restore a 0-junction. If T K ≈ ∆, the system undergoes a 0-π transition driven by ϕ, where the dot's spin is respectively screened or unscreened.

The transition for 0 to π can also be induced by tuning the dot's parameters, or the gate voltage.

Chapter 6

AC Josephson eect in carbon nanotube quantum dot

In this chapter, we focus on the dynamics of QD Josephson junctions by measuring the Ac Josephson eect in a CNT QD, in the regime where both superconducting proximity eect and Kondo eect are present. The rst section will be dedicated to describing the principle of the measurement along with the experimental setup. Then we will present the experimental results and interpretations. SIS Junction has been used as a quantum detector to measure the noise of a carbon nanotube quantum dot in the Coulomb blockade regime [START_REF] Onac | Using a quantum dot as a high-frequency shot noise detector[END_REF], the noise of a Josephson junction [START_REF] Billangeon | Emission and absorption asymmetry in the quantum noise of a josephson junction[END_REF], the asymmetrized noise of a two-level system [START_REF] Deblock | Detection of quantum noise from an electrically driven two-level system[END_REF], and high frequency emission of CNT QD in the Kondo regime [START_REF] Delagrange | Emission noise and high frequency cut-o of the Kondo eect in a quantum dot[END_REF] or InAs nanowires [START_REF] Laroche | Observation of the 4π-periodic Josephson eect in indium arsenide nanowires[END_REF]. 

Josephson Junction as quantum detector

For an SIS junction, the noise detection is based on the measurement of photo-assisted tunneling (PAT) current of quasi-particles in the junction. In this experiment, instead of using a simple SIS junction, we use two identical SIS junctions in a SQUID geometry. In such geometry the critical current is equal to I c = 2I 0 cos 2π Φ Φ0 , with Φ is the magnetic ux applied and Φ 0 = h 2e the ux quantum and I 0 the critical current of a single junction. This implies that applying a magnetic ux of Φ = (2n + 1) Φ0 4 with n is an integer, leads to the suppression of supercurrent features and AC Josephson radiation generated by the detector, that could disturb the measured signal coming from the CNT.

In an SIS Junction, due to the presence of a superconducting gap around the Fermi energy, there are no quasiparticles current when V d < 2∆/e, only current due to Cooper pair tunneling: supercurrent ows across the junction. When the junction is biased such that V d > 2∆/e, quasiparticles current ows as for the normal tunnel junction case due to elastic tunneling of quasiparticles. The typical I(V) characteristic of an SIS junction is shown in g.6.2.

However, when the SIS detector absorbs or emits a photon at energy hν, this will alter its I-V characteristics as follow: Here we are interested in PAT below the gap, i.e. related to the emission by the CNT junction.

If
The expression of I P AT will be derived in both cases in the following section. Below the gap, the detector is emission sensitive. Above the gap, the detector is mainly absorption sensitive. Taken from [START_REF] Billangeon | Emission and absorption asymmetry in the quantum noise of a josephson junction[END_REF].

Absorption Emission

Expression of the photo-assisted tunneling current with P(E) theory

In what follow we derive the I(V) characteristic of a tunnel junction in the absence and presence of an electro-magnetic environment based on derivation done by Ingold and Nazarov which address the charge tunneling rates in ultrasmall junctions [START_REF] Ingold | Charge Tunneling Rates in Ultrasmall Junctions[END_REF]. Changes due to the environment are calculated within the same P(E) formalism and an interpretation is given in terms of photo-assisted tunneling induced by the noisy environment.

Tunneling rate formula P(E) is the probability for the junction to absorb or emit the energy | E | in the environment. If E > 0, the energy is absorbed by the environment, if E < 0 it is emitted.

Starting from the denition of P(E), and using the Fermi Golden rule, one expresses the forward tunneling rate in a normal tunnel junction by :

→ Γ(V d ) = 1 e 2 R T +∞ -∞ dEdE f (E)(1 -f (E + eV d ))P (E -E ) (6.1)
Where V d is bias voltage of the junction, f (E) = [1 + e βE ] -1 is the Fermi function with β = 1/k B T , 1/R T is the tunneling conductance, and P (E -E ) is the probability for the electromagnetic environment to absorb the energy E -E . In absence of an environment, it is not possible to exchange any energy, this probability is reduced to the Dirac function:

P (E -E ) = δ(E -E ).
However, we are interested in the tunneling rate of a superconducting tunnel junction, thus we must include the superconducting density of states (eq.4.7) in eq.6.1. Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime That gives for the forward tunneling rate in a superconducting tunnel junction :

→ Γ(V d ) = 1 e 2 R T +∞ -∞ dEdE N s (E)N s (E + eV d ) N 0 2 f (E)(1 -f (E + eV d ))P (E -E ) (6.2)
P(E) and I(V) characteristic The current response I(V) of a superconducting tunnel junction to a voltage bias V d in presence of an environment having a probability P(E) to exchange energy E can be computed from the forward and backward tunneling rate

I qp (V d) = → Γ(V d ) - ← Γ(V d ) (6.3) knowing that ← Γ(V d ) = → Γ(-V d )
, due to voltage bias symmetry. eq.6.3 can be written as:

I qp (V d ) = → Γ(V d ) - → Γ(-V d ) = 1 e 2 R T +∞ -∞ dEdE N s (E)N s (E + eV d ) N 0 2 [f (E)(1 -f (E ))P (E -E + eV d ) -f (E )(1 -f (E))P (E -E -eV d )] (6.4)
To write I qp (V d ) in more convenient way, we include in eq.6.4 the two following properties:

P (-E) = e -βE P (E), the detailed balance relation of P(E) f (E)[1 -f (E + x)] = f (E)-f (E+x)
1-e βx After doing the calculation, eq.6.4 may be rewritten as:

I qp (V d ) = +∞ -∞ dE 1 -e -βeV
1 -e -βE × P (E -eV d )I 0 qp (E/e) (6.5)

Where I 0 qp (V d ) is the I(V) characteristic of a voltage biased SIS junction in absence of environment:

I 0 qp (V d ) = 1 eR T +∞ -∞ dE N s (E)N s (E + eV d ) N 0 2 [f (E) -f (E + eV d )] (6.6)
Photo-assisted tunneling current as a probe of voltage noise The photo-assisted tunneling current can be interpreted as the dierence between the quasi-particle current with and

without environment I P AT (V d ) = I qp (V d ) -I 0 qp (V d ).
In what follow we will derive the expression of P(E) in terms of the voltage uctuation across the detector. All the information about the environment is contained in the auto-correlation of the phase operators :

J(t) = [δ φ(t) -δ φ(0)] φ(0) . δ φ(t) = t -∞ dt δ V (t )
, are the conjugate phases of the voltage uctuations δ V (t ) across the detector[characterized by the spectral density S v (ω)] [START_REF] Aguado | Double quantum dots as detectors of highfrequency quantum noise in mesoscopic conductors[END_REF].

From [START_REF] Ingold | Charge Tunneling Rates in Ultrasmall Junctions[END_REF] we can deduce that P(E) is the Fourier transform of e J(t) :

P (E) = 1 h +∞ -∞ dt exp J(t) + i Et (6.7)
In the case of low noise amplitude, one has exp(J(t)) ≈ 1 + J(t). Once introduced into Eq.6.7, one obtains a simplied version of the probability P(E) in terms of S V (ν), the non-symmetrized spectral density of excess voltage uctuations at frequency ν across the detector [START_REF] Aguado | Double quantum dots as detectors of highfrequency quantum noise in mesoscopic conductors[END_REF]:

P (E) = 1 h +∞ -∞ dτ (1 + J(τ ))exp( i Eτ ) = 1 - e 2 h 2 +∞ -∞ dν S V (ν) ν 2 δ(E) + e 2 h 2 S V (E/h) E 2 (6.8)
By inserting the new expression of P(E) in eq.6.5, one obtains the expression for the total current I qp (V d ) owing through the junction in the presence of the environment. By subtracting the value of the current without environment I 0 qp (V d ) we obtain the expression of the photo-assisted tunneling I P AT (V d ) current through the detector [START_REF] Billangeon | Emission and absorption asymmetry in the quantum noise of a josephson junction[END_REF]:

I P AT (V d ) = I qp (V d ) -I 0 qp (V d ) = ∞ 0 dν e hν 2 S V (-ν)I 0 qp V d + hν e + eV d 0 dν e hν 2 S V (ν)I 0 qp V d - hν e - +∞ -∞ dν e hν 2 S V (ν)I 0 qp (V d ) (6.9)
As shown in g.6.2, depending on the value of V d , the SIS junction could be either in absorption or emission mode. I P AT due to absorption noise If the detector is biased above the gap, V d > 2∆/e, all the terms contribute but with a stronger weight for the absorption by the source.

Coupling to the resonance circuit

In this experiment the noise source (CNT QD) is coupled to the detector (SIS Josephson junction) via an on-chip coupling circuit characterized by the transimpedance Z t (ν). This transimpedance quanties the link between voltage noise S V (ν) appearing across the detector and current noise S I (ν) generated by the source such that [START_REF] Aguado | Double quantum dots as detectors of highfrequency quantum noise in mesoscopic conductors[END_REF]: In this experiment the coupling is chosen to be resonant, such that the detection occurs only at the resonance frequency of the coupling circuit. This make it easier to analyze the signal coming from the detector. Another advantage of using a resonant coupling is that its high transimpedance make it possible to collect a reasonable amount of photo-assisted tunneling current through the detector.

S V (ν) = | Z t (ν) | 2 S I (ν)
The transimpedance of a resonant coupling is: Z t (ν) = n Z n t (ν -ν n ) with Z n t (ν -ν n ) a resonance centered around the frequency ν n , n th harmonic of the resonator. Using eq.6.11 and the denition of transimpedance of a resonant coupling, the expression of photo-assisted tunneling current related to the emission of the source can be written as:

I P AT (V d ) = ∞ 0 dν e hν 2 S I (-ν) n | Z n t (ν -ν n ) | 2 I 0 qp V d + hν e (6.12)
We used a coplanar waveguide geometry, with a transmission line placed between two larges ground plane. One extremity of the transmission line is grounded while the source and the detector is connected to the other extremity (See g.6.1).

The length of the resonator L corresponds to the quarter of the wavelength, giving resonance frequencies such that L = λ n ( 1 4 + n 2 ) with n being an integer. The dimensions of the resonator made of Aluminum of thickness 200 nm on an undoped silicon wafer are shown in g.6.3. The length of the resonator is L=3mm, such that the resonance frequencies are at 12.5 GHz and the odd harmonics.

For an SIS junction with alternating current I = I c sin 2eVst . The associated current spectral

density is S I (ν, V s ) = I 2 c 4 δ ν -2eVs h + δ ν + 2eVs h .
We assume here a quasi-monochromatic

Josephson emission. This gives the emission contribution to the photo-assisted tunneling current [START_REF] Basset | Emission and Absorption Quantum Noise Measurement with an On-Chip Resonant Circuit[END_REF]: The measurement is presented on g.6.3. In the case of the Josephson emission with nite bandwidth, the resonance peak seen in the PAT current results from the convolution of the transimpedance and the nite bandwidth emission. To calculate the quality factor of the resonator, it can be modelized by the RLC circuit presented in g.6.1.b. The eective capacitance, inductance and resistance modeling the resonator is given by [START_REF] Göppl | Coplanar waveguide resonators for circuit quantum electrodynamics[END_REF]:

I P AT = 1 (2V SD ) 2 I 2 C 4 |Z t (2eV SD /h)| 2 I 0 qp (V d + 2V SD ).
L ef f = 2L l L π 2 , C ef f = C l L 2 , R ef f = Z 0 αL (6.14)
L l and C l are respectively the inductance and capacitance per unit of length, L the length of the line and α a coecient that quanties the losses in the system. The length of our resonator L=3mm, the Z 0 = L l C l = 46Ω and ν 0 =

1 2π √ L ef f C ef f = 10GHz, yielding: L l = 7.7 × 10 -7 H/m, L ef f = 0.46nH (6.15) C l = 3.62 × 10 -10 F/m, C ef f = 0.54pF (6.16)
The Quality factor is given by:

Q = 2πν 0 R tot C ef f (6.17) with R tot = (R -1 ef f + R -1 D + R -1 S ) -1
, R ef f represents the internal losses of the resonator, R D the resistance of the detector and R S of the source. we can assume that R tot is dominated in any case by R D and R S and not by the intrinsic losses of the resonator. For our sample, we have R S = 7KΩ and R D = 6KΩ. This gives R tot = 3.2kΩ and a quality factor Q=100. However, the width of the resonance peaks shown in g.6.3 gives a very low-quality factor Q=2 for 12 GHz. This could be due to the fact that the detector and the source are directly coupled to the transmission line, inducing extra losses. But we think that the main reason is the noise in the voltage bias line. Coplanar waveguide From g.6.3 we realize that the width of the resonance is the same (around 6 GHz), whatever the frequency of the resonance or the design of the resonator. This constant width may be due to the non-monochromaticity of our source (the SIS junction) instead of the resonant circuit itself. This non-monochromaticity may originate from uctuations of the biasing voltage V SD , and thus may be improved by better ltering. In the following section, we will present a new biasing circuit that aims to reduce the voltage noise, thus improving the monochromaticity of our source of emission.

ν 0 =12 GHz / Q = 2 ν 1 =31 GHz / Q = 6 ν 2 =50 GHz / Q = 10 ν 3 =73 GHz / Q = 12 ν 0 ν 1 ν 2 ν 3 (b) (c) (a)
Low noise voltage biasing In order to emit radiation that can be detected by the on-chip detector the source must be biased according to:

2eV = hν J (6.18)
with ν J is the resonance frequency of the coupling circuit. This relation implies that the voltage noise δV of the biasing line must be much lower than the band width δν of the emission:

δV hδν 2e (6.19)
The bandwidth of the detection is xed by the quality factor of the resonant circuit and is equal to: δν = ν0 Q = 10 100 = 0.1 GHz, it corresponds to δV = 20nV. The thermal noise of an R-C ltering stage due to resistance is given by: 

Thermal noise on the biasing line

δV 2 = 4k B T R∆f
δV 2 = 1 2π +∞ 0 4k B T R 1 + R 2 C 2 ω 2 dω = k B T C (6.21)
The value of the voltage noise depends on two factors: T, the temperature of the resistance. Decreasing T will lower the value of δV . Thus, when placing the biasing circuit at 10 mK, one expects to lower the voltage noise.

C, the value of capacitance placed in parallel with the resistor. δV is inversely proportional to the capacitance. So, to minimize the value of δV one must choose a suitable value of C. With T = 10mK and C= 100nF will give a very good value ≈ 2.9nV < 20nV . Because we need to measure the current, we add the 1kΩ, and lter them with the 10 nF, this leads to voltage uctuation around 10nV. To test the eciency of our biasing circuit, we measure the radiation of a Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime Josephson junction coupled to another Josephson junction that plays the role of a detector through the same resonant circuit explained previously. We measure the photo-assisted tunneling current I pat of the source rst with a biasing circuit at room temperature, then we use the biasing circuit at 10 mK and compare the results. g.6.5 shows the PAT current in two dierent biasing conditions.

Z(ν)(KΩ) ν(GHz)

Bias at T=10mK Bias at T=300mK A vertical cut at a given value of detector bias V d shows two peaks in PAT current, at ν=10 GHz and ν=30 GHz in both biasing conditions. However, for the cold bias circuit, the signal is sharper, and the peaks are narrower. From these curves, using eq.6.13 and knowing experimentally the value of I C and I 0 qp , we can calculate the transimpedance Z t (ν) (See g.6.6) and extract the quality factor from the full width at half maximum (FWHM) of the resonance peaks. The result of the calculation is summarized in table6.1. Comparing the obtained value for Q with the one expected from the dissipation introduced by the source and detector conductance shows that the improvement of Q is not satisfactory. Some improvement still needs to be done.

ν=10GHz ν=30GHz

Bias at T=300 K 1 2.2

Bias at T=10 mK 2.5 4 Table 6.1: Calculated quality factor from FWHM of resonance peaks of g.6.6.

Conclusion

In this section, we have shown that an SIS junction can be used as a quantum detector. Depending on the value of bias voltage with respect to ∆, the SIS junction can distinguish between emission and absorption processes. The response of the detector due to the presence of a noisy environment is calculated based on the P(E) theory. The inelastic tunneling of a quasi-particle enhanced by the environment is given in terms of photo-assisted tunneling current. In our experiment, we used an SIS quantum detector coupled to carbon nanotube-based Josephson Junction (source of emission) through a resonant circuit. The measurement of the photo-assisted current of the detector gives direct access to the signal emitted by the carbon nanotube. The AC emission manifests itself as steps in the I(V) characteristic of the detector. In order to calibrate our coupling circuit, an SIS junction is used as a source of emission coupled to an SIS detector. The measurement of the photoassisted tunneling current across the detector allows the extraction of the quality factor and the transimpedance of the resonant circuit. Finally, we have shown that by reducing the voltage noise using a new biasing circuit at low temperature, we manage to reduce the bandwidth of the emission of the source junction to improve the frequency resolution of the detection.

Characterization of the sample in the normal state

In this section, we present the experimental results of the CNT sample shown in g.6.1 in the normal and superconducting state.

As detailed in chapter 1, a QD is characterized by a set of parameters: the charging energy U, the coupling constant Γ, and the contact asymmetry Γ R Γ L

. Depending on the values of the coupling Γ between the dot and the reservoirs and the charging energy U, the transport regime goes from pure Coulomb blockade to Kondo eect, and nally Fabry-Pérot regime. To characterize the measured sample and determine the parameters of a CNT QD, the sample is rst measured in the normal state.

Dierential conductance in the normal state

In previous work [START_REF] Delagrange | Josephson eect and high frequency emission in a carbon nanotube in the Kondo regime[END_REF], a similar measurement was done for CNT samples, denoted S-NbAl, where the contracts were made of Pd(8 nm)/Nb(11 nm)/Al(50 nm) of superconducting gap ∆ pd/N b/Al = 150µeV . The presence of a thin layer of Pd provides good contact on the CNTs, however, it reduces the superconducting gap compared to that of Al or Nb.

For a sample contacted using Nb, one needs to apply a high magnetic eld around 1T to suppress superconductivity. Applying a high magnetic eld aects the normal state of the CNT QD, preventing a reliable extraction of all the parameters of the dot. For this reason, in the present work, the CNT sample was contacted with Pd/Al of superconducting gap ∆ pd/Al = 50 ± 5µeV .

Superconductivity in the Pd/Al contact is suppressed by a low magnetic eld of 0.1T, without aecting the normal state of the CNT quantum dot, thus allowing a good determination of the parameters of the dots. The dierential conductance of the CNT dI/dV SD as a function of the bias voltage V SD and the gate voltage V g in the normal state is measured using the lock-in-amplier technique at 50 mK as described in chapter 2 section 2.1.6. The resulting stability diagram is represented in g.6.7.

The stability diagram of the QD exhibits Coulomb blockade diamonds with the four-fold degeneracy found for clean CNT quantum dots( three small diamonds followed by a larger one). For the diamonds with an odd number of electrons, the Kondo eect manifests through a high conductance region at zero bias, the Kondo ridge. We focus here on two Kondo ridges A and B, with N=1 and N=3, respectively. A vertical cut in the center of the Kondo ridge, particle-hole symmetry point (red curves in Fig6.7) shows a peak in conductance at zero-bias voltage. The conductance reaches high value, 0.7 2e 2 h , 0.8 2e 2 h , 0.9 2e 2 h for Kondo A, B and region C respectively. The maximum conductance reached is lower than 2e 2 /h, indicating a not perfectly transmitted channel and thus an asymmetric coupling between left and right reservoirs. On g.6.7 we also show another gate region (21-23V), called hereafter region C, with a conductance close to the conductance quantum but without Kondo features. 
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dI dV (T ) = G 0 (1 + (2 1/s -1)( T T K ) 2 ) s (6.22) 
obtain: U 1 = 3.9meV and U 3 = 4meV for diamonds with Kondo ridges A and B respectively.

To conrm this value of the charging energy and extract the coupling constant, the Kondo temperature T K can be well approximated by the expression predicted by the Bethe Ansatz [START_REF] Tsvelick | Exact results in the theory of magnetic alloys[END_REF][START_REF] Bickers | Review of techniques in the large-N expansion for dilute magnetic alloys[END_REF]:

T K = U Γ/2 exp - π 8U Γ |4 2 -U 2 | (6.23)
where is the energy shift measured from the center of the Kondo ridge. The gate dependence of the Kondo temperature (g. 6.9.b) is then extracted from the evolution versus gate of the width of the zero-bias peak. By tting these data by formula 6.23, we can then extract the parameters of the quantum dot. The charging energy agrees with the one extracted from the stability diagram. The dierent parameters of the QD, described with the Anderson impurity model, are extracted for the Kondo ridges A and B are summarized in Table 6.2). The charging energy U is deduced from the size of the Coulomb diamond, the coupling to the reservoirs Γ = Γ L + Γ R from the gate dependence of the Kondo temperature, and the asymmetry a = Γ L /Γ R of the contact from the value of the conductance at the particle-hole symmetry point. Since Γ R /Γ L =1, the contacts are not fully symmetric. Calculating the ratio T K /∆, we nd that it is always higher than one (T K /∆ > 1.9 for Kondo ridge A and > 2.9 for region B). This means that the Kondo eect is strong enough to screen the magnetic impurity of the QD. Thus, the QD Q should stay in the singlet state, leading to a 0-junction behavior. This is conrmed by NRG calculation (see section 6.5).
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Superconducting state

By switching o the magnetic eld, the electrodes become superconducting. In what follows we will present rst the extraction of the supercurrent using the resistive and capacitively shunted junction (RCSJ) model. Then the measurement of the dierential conductance dI/dV SD as a function of the bias voltage and the gate voltage in the superconducting state. Finally, I will present the AC emission measurement.

DC supercurrent

The supercurrent branch is more reliably measured in a current bias scheme where the dierential resistance dV /dI is measured as a function of bias current I SD and gate voltage V G . We now current bias the device to obtain the value of the critical current. We simultaneously use AC and DC bias while measuring the resulting voltage drop across the CNT. From the AC part, we obtain data on the dierential resistance.

The color plot shown in g.6.10.a represents the dierential resistance of the sample as a function of the bias current. In part b of the gure are represented vertical cuts of the color plot at three gates voltages in the three dierent regions, from which the critical current will be extracted. By numerical integration of the color plots, we get I-V curves that show a supercurrent branch and a smooth transition to a resistive branch with higher resistance. The transition between the two regimes is not hysteretic, and the supercurrent part exhibits a nonzero resistance R S at low bias even. This behavior is common in mesoscopic Josephson junctions that have a high normal state resistance of the order of the resistance quantum h/e 2 .
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When a Josephson junction is current biased, currents smaller than the critical current I c can ows as supercurrent across the junction. Supercurrent is described in terms of the Josephson equation:

I J = I c sin(ϕ) (6.24) 
However, at nite voltages, a quasi-particle current I q (V ) also ows across the Josephson junction.

At not too large voltages the I q (V ) is treated in terms of an ohmic resistance R

I q = V R (6.25) 
In general, a Josephson junction has a nite capacitance C. This result a displacement current I d across the junction due to its capacitance given by:

I d = C dV dt (6.26) 
The total current I across the junction is the sum of the Josephson current I J , the quasiparticle current I q , and the displacement current I d Due to the eect of the electromagnetic environment, the supercurrent gives rise to a dissipative branch close to zero bias voltage. In order to extract more reliably the supercurrent of our device, we Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime use the (RCSJ) model [START_REF] Jarillo-Herrero | Quantum supercurrent transistors in carbon nanotubes[END_REF][START_REF] Jorgensen | Critical Current 0 -π Transition in Designed Josephson Quantum Dot Junctions[END_REF]. This model includes the eect of the dissipative electromagnetic environment.

I = I J + J q + I d = I c sin(ϕ) + V R + C dV dt
The input parameters are the value of the external resistor R and temperature T . The critical current I c and the junction resistance R J can then be extracted for every measured gate voltage, from a t to :

I(V bias ) = I c Im I 1-iη (I c /2ek B T ) I -iη (I c /2ek B T ) + V bias R j R j R j + R (6.28)
where η = V bias /2eRk B T and I α (x) is the modied Bessel function of complex order α [START_REF] Jorgensen | Critical Current 0 -π Transition in Designed Josephson Quantum Dot Junctions[END_REF]. The value of the critical current and the junction conductance 1/R J are plotted on g.6.12. The parameters used for the t are R = 0.9kΩ and T = 100mK. 
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Kondo Ridge B : The fact that the supercurrent in the Kondo regions A and B remains relatively large is a good indicator that the QD stays in the singlet state, leading to a 0-junction behavior. This is expected from the ratio T K /∆, which is always higher than one for both Kondo ridges. .a shows the dierential conductance dI/dV as a function of the bias voltage and the gate voltage in the superconducting state. The horizontal lines around V SD = ±0.1mV corresponds to the superconducting gap of 2∆ due to the onset of quasiparticle tunneling between source and drain electrodes, leading to ∆ = 50µeV. A zero-bias peak of conductance in regions of high normal state conductance of (g.6.7) is observed due to the supercurrent branch enhanced by the Kondo eect for zone A and B. Out of the zero bias, one also sees traces (conductance bumps) of the multiple Andreev reections (MAR) processes at xed voltages 2∆/n with n = ±1, ±2, ±3,....We can notice that the 3 regions A, B, and C exhibit a gate modulated supercurrent and a conductance, 1/R J , which is quite close to the experimentally measured dI/dV.
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AC Josephson emission measurement

We now present the measurement of AC Josephson emission. In order to measure all the frequencies available (ν 0 ,ν 1 ,ν 2 etc.), we bias the detector to a voltage V d below the gap (emission sensitive region of the detector) such that 2∆-hν 0 < eV d < 2∆, which is kept xed during a measurement. When biased by a voltage V SD , the CNT emits a radiation at the frequency ν, given by the Josephson relation hν = 2eV SD . The SIS detector absorbs the corresponding photons, and this will induce photo-assisted tunneling (PAT) current across it. In our setup, the coupling between the detector and the CNT quantum dot is ecient only at the resonance frequencies of the coupling circuit, which is designed to be 12.5GHz and odd harmonics. Assuming that the current through the CNT junctions oscillates at the Josephson frequency hν = 2eV SD with an amplitude I AC C , the I P AT current through the detector reads, at a detector bias voltage V D such that 2∆ -hν < V D < 2∆ :

I P AT = 1 (2V SD ) 2 (I AC C ) 2 4 |Z t (2eV SD /h)| 2 I 0 qp (V D + 2V SD ) (6.29) 
with I 0 qp (V D ) the IV characteristic of the detector without irradiation and Z t (ν) the impedance of the resonant coupling circuit at frequency ν. Consequently, the PAT current is sizeable only when the Josephson frequency matches one of the resonances frequencies of the coupling circuit.

Experimentally the value of I P AT is measured which allows us to extract the value of I AC C using equation 6.29.

We simultaneously measured the dierential conductance of the CNT Josephson junction and the PAT current through the detector. We measure the derivative of the photo-assisted tunneling current (PAT) through the detector as a function of the gate V G and bias voltage V SD of the CNT quantum dot. The color plot of dI P AT /dV SD is represented in g.6.14.a. By integrating this quantity with respect to V SD , we obtain the photo-assisted tunneling current across the detector.

The color plot of PAT current in the three interesting regions is shown in g.6.14.b. Two peaks of photo-assisted tunneling current are observed at ±V SD =22.4µeV. This value corresponds to Josephson frequencies ν J =12 GHz. The signal at other harmonics frequency of the resonator is too small to be observed. This could be because at higher harmonics the frequency is greater than ∆(for ν=31GHz,eV = 65µeV ∆ = 50µeV ). Note that it has been possible to measure it for the Pd/Nb/Al sample (see section 6.4.3) with ∆ = 150µeV . For region C, the photo-assisted tunneling peaks appear for all gate voltage, however, for Kondo ridges A and B no emission was detected close to the particle-hole symmetry point. To understand the reason behind that, we will extract the value of the PAT current more accurately and compare it to the DC current. 
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V G (V) An eect of decoherence?

The rst one is the eect of decoherence. Indeed due to the nite bias V SD applied on the junction, one may consider the voltage-induced spin relaxation [START_REF] Basset | Measurement of Quantum Noise in a Carbon Nanotube Quantum Dot in the Kondo Regime[END_REF][START_REF] Müller | Magnetic eld eects on the nite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium[END_REF][START_REF] Kaminski | Suppression of the Kondo eect in a quantum dot by external irradiation[END_REF][START_REF] Kaminski | Universality of the Kondo eect in a quantum dot out of equilibrium[END_REF][START_REF] Paaske | Nonequilibrium transport through a Kondo dot: Decoherence eects[END_REF], which is a dominant decoherence process when eV SD /k B T K ≥ 1. In the present experiment, at the resonance frequency, Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime one has eV SD /k B T K = 0.28 for Kondo ridge A and 0.17 for ridge B, so that this eect should be small [START_REF] Delagrange | Emission noise and high frequency cut-o of the Kondo eect in a quantum dot[END_REF].

What about the dynamics of the Kondo eect?

Dynamical eects can also aect AC emission. Indeed, it has been shown that there is a frequency cut-o, of the order of k B T K /h, in the high frequency emission of a quantum dot in the normal state [START_REF] Delagrange | Emission noise and high frequency cut-o of the Kondo eect in a quantum dot[END_REF]. However, in the present experiment, the ratio of hν/k B T K is always smaller than one (0.526 for Kondo ridge A and 0.34 for ridge B).

Numerical renormalization group calculation

To get a more quantitative understanding of the behavior of the quantum dot in region A and B

we have performed numerical renormalization group (NRG) calculation [START_REF] Zitko | NRG Ljubljana -open source numerical renormalization group code[END_REF][START_REF] Zitko | Energy resolution and discretization artifacts in the numerical renormalization group[END_REF] of the Andreev bound state spectrum and supercurrent of the ground state using the parameters determined in the normal state (table 6.2). The NRG calculations were done in collaboration with Tomá² Novotný and Alºb¥ta Kadlecová (University of Prague, Czech Republic).

Calculation of the Andreev spectrum of CNT QD

The NRG calculation gives the many-body state spectrum of our junction at the particle-hole symmetry point = 0 (see g.6.19.a), where the energy of the ground state is considered a reference state at zero energy, the solid line represent the rst excited doublet state, which is detached from the continuum due to electron-electron interaction. The dashed line represents the rst excited singlet state, which is overlapping with the continuum at E A = ∆. Note that, due to technical reasons, the NRG calculation does not give the energy of the singlet state for values higher than the gap ∆. The NRG calculation conrms that the ground state of the system is always the singlet state. This leads to a supercurrent in the nanoampere range as shown in g.6.19.b, consistent with the experiment, with the phase behavior of a "0-junction". NRG calculation allows us also to evaluate the evolution of the detachment of the ABS from the continuum at ϕ = 0 for the rst excited doublet state only, and the value of the ABS at ϕ = π for both the rst excited doublet and singlet state (see g.6.20). The amplitude of the supercurrent of the singlet ground state is given by the NRG calculation. The amplitude of the doublet state can then be deduced from this latter value and the phase dependence of the ABS. The idea is to calculate the ABS spectrum and the current of singlet state J S as a function of ϕ for dierent values of such that -U/2 < < U/2. Fig. 6.21.a,b shows the ABS spectrum and the current of the singlet state at = 0meV. The set of curves of J S (ϕ) allows us to plot J S as a function of (Blue curve of g.6.21.c). Then J D is calculated using the following expression:

Kondo ridge A

J D = J S + 2e ∂E A ∂ϕ (6.30)
This calculation is done at each value of , the result is shown in g.6.21.c (orange curve). Comparing J S and J D shows that the amplitude of the current in the doublet state is reduced compared to the singlet state, and the sign changes.
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Landau-Zener tunneling

The collapse of the AC emission corresponds to Kondo enhanced high critical current. For symmetric contacts, the Kondo eect opens a nearly perfectly transmitted channel (T≈1). The doublet Andreev bound states are very low in energy at ϕ = π. In this case, one may think about the transition to an excited level due to Landau Zener because of the phase evolution. This is what happens for a quantum channel junction with high transparencies [START_REF] Averin | ac Josephson Eect in a Single Quantum Channel[END_REF] and involves a transition between singlet states, due to parity constrain [START_REF] Beenakker | Josephson current through a superconducting quantum point contact shorter than the coherence length[END_REF]. Compared to a quantum channel with the same transmission in the normal state, a quantum dot Josephson junction, in the range of parameters explored here, has an excited singlet state with slightly higher energy and a doublet state detached from the continuum and with a decreased energy especially at phase ϕ = π (see Fig. 6.22).

Knowing the shape of the ABS one can calculate the value of the Landau Zener tunneling probability to the excited singlet state using the formula :

P LZ = exp - π 2 E 2 g eV D (6.31)
with E g the minimal value of the ABS, i.e. the ABS at phase value π and D the maximal value Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime of the ABS, i.e. its value at phase value equals 0. V is the applied voltage, which determined the phase evolution through the Josephson relation dϕ/dt = 2eV / [START_REF] Mullen | The dynamics of mesoscopic normal tunnel junctions[END_REF]. For a quantum channel E g = 2∆ √ 1 -T and D = 2∆. With a conductance of 0.71 in unit of 2e 2 /h this leads to E g = 1.07∆ and P LZ = 0.16. For the QD Josephson junction of similar conductance in the normal state, the NRG calculation, at the particle-hole symmetry point, gives E g = 0.74∆ so that P LZ = 0.42. This value is not extremely small but it does not change a lot when one goes away from the particle symmetry point. Hence at =1 meV, where we see in the experiment that the dynamical supercurrent increases, this Landau Zener probability is 0.24. Thus, the Landau-Zener tunneling mechanisms are not suitable to explain our experimental observation. the singlet ground state and the excited singlet state is denoted in red, with a solid line and a legend QD:S for the quantum dot and a dashed line and a legend QC:S for the quantum channel.

A renormalized-quantum-point-contact-based prediction

Quantum dots in the Kondo regime have been sometimes treated like a single quantum channel [START_REF] Levy Yeyati | Nonequilibrium Dynamics of Andreev States in the Kondo Regime[END_REF]142]. The idea is that Coulomb interaction U causes a renormalization of parameters (ABS energies, transmission), but does not produce qualitative dierences. Of course, this only holds as long as the junction remains in the zero phase in the entire range of the superconducting phase dierence ϕ, as is the case in our study. This section intends to show that even this crude approximation, which amounts to neglecting vertex corrections in the diagrammatic approach, predicts a drop in the AC current similar to the measured data. Chapter 6. Ac Josephson eect in CNT QD in the Kondo regime

The full transport theory for a short superconducting quantum channel (or quantum point contact) has been published in the nineteens by Averin and Bardas [START_REF] Averin | ac Josephson Eect in a Single Quantum Channel[END_REF] and Cuevas, Martín-Rodero and Levy Yeyati [START_REF] Cuevas | Hamiltonian approach to the transport properties of superconducting quantum point contacts[END_REF]. These studies feature results for the real and the imaginary part of the rst Fourier component I 1 of the AC current for several dierent values of transmission. We use their results (read o graphically) for applied bias voltage V = ∆/2 to construct the |I 1 (D)| dependence, where D is the transmission of the channel. In full analogy to the quantum point contact, we consider the transmission of our setup to be given by the energy of the doublet Andreev bound states at ϕ=π, namely D (ε) = 1 -E ABS (ε, ϕ=π) This approach is dierent from the microscopic considerations about Landau-Zener tunneling in that it is not limited to the adiabatic approximation, as refs. [START_REF] Averin | ac Josephson Eect in a Single Quantum Channel[END_REF][START_REF] Cuevas | Hamiltonian approach to the transport properties of superconducting quantum point contacts[END_REF] are working with a full numerical solution to the AC emission in the quantum point contact. Indeed, it is questionable whether the bias voltage V = ∆/2 is small enough for ABS energies computed for zero bias to remain meaningful. Being based on the case of a quantum channel this analysis needs to be taken cautiously in the case of a quantum dot where electron-electron interaction modies the many-body spectrum.

In particular, this analysis does not take into account the detachment of the rst ABS from the continuum. Moreover, if one does the same analysis considering only the transition between singlet states, which preserves spin and parity, the eective transmission of the system is lower. This leads to a very small reduction of the dynamical supercurrent, not consistent with the experiment.

Evaluation of the quasiparticle dynamics in the QD junction

In a superconductor, the density of unpaired electrons (quasiparticles) should decrease exponentially as the temperature is lowered, then vanish when approaching zero temperature [START_REF] Tinkham | Introduction to superconductivity[END_REF]. However, it has been shown that at temperatures much lower than the transition temperature T C , the number of quasiparticles can saturate [START_REF] Martinis | Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations[END_REF][START_REF] Catelani | Quasiparticle relaxation of superconducting qubits in the presence of ux[END_REF]. In the presence of non-equilibrium quasiparticles, the performance of superconducting devices can be degraded. This has been seen in Single-Cooper-Pair transistors [START_REF] Ferguson | Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair transistor[END_REF][START_REF] Aumentado | Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors[END_REF] as the parity of the total number of electrons matters. Also, in superconducting qubits [START_REF] Shaw | Kinetics of nonequilibrium quasiparticle tunneling in superconducting charge qubits[END_REF][START_REF] Lenander | Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles[END_REF], as quasiparticle tunneling imposes a sharp limit on the qubit operation time. The trapping of a single quasiparticle in such a superconducting device has been named as "poisoning", as it alters the expected behavior of the ground state of the system.

Chtchelkatchev et al. [START_REF] Chtchelkatchev | Andreev quantum dots for spin manipulation[END_REF] show that Bogoliubov quasiparticles can be trapped in discrete Andreev levels of a superconducting junction. This trapping should induce an excitation from the even ground state, to an odd excited state, which in turn should manifest itself as a change of supercurrent. The poisoning process can occur by injecting electron form an auxiliary electrode [START_REF] Pillet | Andreev bound states in supercurrent-carrying carbon nanotubes revealed[END_REF] or could happen spontaneously. The rst observation and characterization of single quasiparticles trapping in superconducting break junctions have been done by Zgirski et al. [START_REF] Zgirski | Evidence for long-lived quasiparticles trapped in superconducting point contacts[END_REF]. In their experiments, they show that in a superconducting point contacts quasiparticle could be trapped in one of the discrete subgap Andreev bound states. Those trapped quasiparticles are long-lived, with time scales up to hundreds of µs.

To see whether QP poisoning could explain the behavior of the AC Josephson emission seen experimentally, we study the dynamics of quasiparticle (QP) tunneling in the quantum dot. We evaluate here the quasiparticle dynamics, which may lead to the occupation of the doublet state, in the QD Josephson junction. We evaluate the dierent rates controlling the injection and escape of QP in the dot [START_REF] Olivares | Dynamics of quasiparticle trapping in Andreev levels[END_REF] because of the electromagnetic environment of the junction. This environment is, in the present experiment, constituted by the resonant coupling circuit of impedance Z env and it is assumed to be in equilibrium at a temperature T env , which can be, in general, dierent from the temperature of the QP in the continuum T QP . T env and T QP can be signicantly larger than the base temperature in our experiment (∼ 50 mK) due to incomplete ltering of radiation, for that, we have used T env = 120mK and T QP = 60mK. The numerical evaluation of this rate (and every other) for the dierent processes are illustrated in g.6.24. The dierent rates are :

Γ a out , the rate for a QP on the Andreev level to escape in the continuum at the energy E after absorbing energy E -E A from the environment. It reads :

Γ a out = 8∆ h +∞ ∆ dED(E - E A )g(E, E A )f BE (E -E A )(1 -f F D (E)).
In this expression, D(E) is related to the probability P (E) for the environment to exchange the energy E, by P 

(E) = D(E)f BE (E). D(E) = Re(Z env (E)/E)/R Q , with R Q = h/4e
A ) = (E 2 -∆ 2 )(∆ 2 -E 2 A )/[∆(E -E A )]. f F D (E)
is the Fermi-Dirac function, describing the QP in the continuum at a temperature T QP . 

Γ b out = 8∆ h +∞ ∆ dED(E + E A )g(E, -E A )(1 + f BE (E + E A ))f F D (E),
a in = 8∆ h +∞ ∆ dED(E -E A )g(E, E A )(1 + f BE (E -E A ))f F D (E)
, the rate for a particle of energy E to enter the QD and occupy the doublet state, of energy E A , after exchanging an energy E -E A with the environment.

Γ b in = 8∆ h +∞ ∆ dED(E + E A )g(E, -E A )f BE (E + E A ))(1 -f F D (E)
), the rate for breaking a Cooper pair into one QP occupying the Andreev level and another one in the continuum at energy E, after absorbing the energy E + E A from the environment. These rates can be evaluated numerically. We then deduce the probability to be in the doublet state P D = 2Γ in /(3Γ in + Γ out ) as a function of the position of the Andreev level E A . The result of the calculation is summarized in g.6.25. shows that for the energy of the Andreev level higher than 0.2∆, the probability for the QD to be in the doublet state is extremely small (below 0.05) in a DC current conguration with a current biasing changing in the kHz range. However, the situation is very dierent when we measure the AC emission.
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Indeed, due to the applied bias, the injection rate of QP can be signicantly higher. Moreover, close to the particle-hole symmetry point, the double state is detached from the continuum due to electron-electron interaction. This keeps the escape rate of quasi-particle relatively low.

Consequently, the probability for the QD to be in the doublet state is expected to be higher in a voltage bias situation. This leads to a decrease of I C AC since the critical current of the doublet state is lower than the one of the singlet ground state. Despite a higher gap value, the samples with Pd/Nb/Al contacts exhibit the same phenomenon (g. 6.18). This can be related to the existence of a soft gap for these samples [126], inducing a small but nite QP density at an energy below the gap.

Going away from the electron-hole symmetry point, by changing the value of , the gap between the doublet state and the continuum of excitation above ∆ is reduced signicantly (see g.6.20.b).

The probability for the QP present on the dot to escape increases then due to Demkov-Osherov tunneling processes between the doublet state and the continuum due to the phase evolution of the junction [START_REF] Badiane | Ac Josephson eect in topological Josephson junctions[END_REF][START_REF] Demkov | Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration[END_REF]. Figure 6.26c represents the probability to escape to the continuum. This data has been derived by using the result of [START_REF] Badiane | Ac Josephson eect in topological Josephson junctions[END_REF]. Note that this latter article was devoted to the topological superconductor. Consequently, the result of this article may need to be adapted to the case of a QD. Concurrently the minimum value of the energy of the doublet ABS, at ϕ = π, increases. This reduces the rate of QP injection in the QD. These two eects thus restore a high probability for the QD to be in the singlet ground state and increase its eective supercurrent. This is what is measured in the data. From the amplitude of the AC emission measured in the experiment, it is possible to extract the probability P D to be in the doublet state assuming that the dynamical Josephson current is given by I C AC = P D J D + (1 -P D )J S . J S and J D are given in g.6.21.d.

In the following, we will call coherent, a situation where the QP injection is correlated with the value of the superconducting phase. When this is not the case we deal with an incoherent case. In an incoherent calculation, only the amplitude of the singlet and doublet supercurrent is considered.

With a probability one to be in the doublet state close to the particle-hole symmetry point, one can qualitatively reproduce the reduction of the supercurrent. In a coherent scenario, the sign of the supercurrent (positive for the singlet and negative for the doublet) must be considered. This leads to a quantitative agreement with the data, with a nite probability to be in the doublet state but puts strong constraints on the model used to describe the dynamics of the junction. 

Conclusion

In this section, we have measured the dynamics of a carbon nanotube Josephson junction by probing its Josephson emission. We show that this emission is strikingly reduced in the gate region where the critical current is enhanced due to the interplay of the Kondo eect and superconducting proximity eect. Using the NRG technique, we were able to calculate the many-body state spectrum of our system. This helps us to evaluate the probability of the QD to be in a doublet state due to quasiparticle injection. The calculated data reproduces nicely (qualitatively and quantitatively) our experimental data. The measurement of the AC Josephson eect in the Kondo regime shows that it is possible to tune the quantum state of a quantum dot Josephson junction between a spin singlet and doublet state. This 0-π transition can be attributed to the dynamics of quasiparticle in the quantum dot which changes its state, from singlet to doublet. This points towards the importance of considering the electron-electron interaction in the dynamic of a QD Josephson junction.

123

Chapter 7

On-chip resonant circuit and measurement of electronic temperature

In this chapter, we present two dierent experiments that aim to improve our detection methods at low temperature.

High Kinetic Inductance Microwave Resonator Made with Tungsten Nanowires

High kinetic inductance superconducting materials have a growing impact on the superconducting circuits community. Operated in the microwave frequency domain, they allow to engineer high impedance circuits which have been shown to provide an ecient way to increase the lifetime of superconducting quantum bits [145,146,147,148], couple electron charge and spin to microwave photons [149,150], study the coherent quantum phase slip [151] or generate a high impedance environment in dynamical Coulomb blockade experiments [152,153].

Until now, these materials consisted of arrays of Josephson junctions, disordered thin lms of metallic compounds (NbN, TiN. . . ), granular aluminum, or superconducting semiconductors. Their use in superconducting circuits usually requires a nal sharpening step using electron-beam lithography which has so far reduced their range of application. In this experiment, we will show you that it's possible to fabricate very thin (5nm), narrow (35nm) and long (400µm) tungsten (W) nanowire made by helium beam assisted deposition, demonstrating a very high kinetic inductance, 250 times larger than the geometrical one. We fabricated and characterized a hybrid microwave resonator where the inductive part is set by a superconducting tungsten nanowire. Thanks to the large kinetic inductance of the nanowire, the resonator is nonlinear (120 Hz/photon) and exhibits a reasonably high quality factor (4000).

Focused ion beam (FIB) is a recent and powerful multitask micro/nano-fabrication tools. It is composed of a focused ion beam column and can be equipped with precursor-based gas injection systems (GIS). FIB provides precise and direct write lithography, imaging, deposition, sputtering, chemical analysis of the matter at ultra-high resolution, machining, and manipulation. The two more frequently used ions in a FIB system are gallium ions and helium ions.

Until now, tungsten superconducting nanowires have been deposited using Ga + ions in a Fo- cused Ion Beam (FIB) [START_REF] Sadki | Focused-ion-beam-induced deposition of superconducting nanowires[END_REF][START_REF] Kasumov | Proximity eect in a superconductor-metallofullerene-superconductor molecular junction[END_REF][START_REF] Sadki | Focused ion beam induced deposition of superconducting thin lms[END_REF] or electrons in an electron scanning microscope (SEM) [START_REF] Sengupta | Superconducting nanowires by electron-beam-induced deposition[END_REF].

However, in this experiment, we will study the properties of W nanowires deposited by a focused helium ion beam from gas eld-ion sources [START_REF] Ward | Helium ion microscope: A new tool for nanoscale microscopy and metrology[END_REF]. Since He-FIB exhibits a lower proximity eect compared to electron beam this could allow fabricating extremely narrow nanowires with potentially better superconducting properties. When compared to Ga-FIB, He-FIB provides higher resolution, less damage and lower contamination, and no Ga implantation. W nanowires have many potential applications in the eld of mesoscopic devices. It has already been used to connect nanoscale samples such as fullerenes [START_REF] Kasumov | Proximity eect in a superconductor-metallofullerene-superconductor molecular junction[END_REF], graphene [START_REF] Shailos | Proximity eect and multiple Andreev reections in few-layer graphene[END_REF], mesoscopic metallic samples [START_REF] Chiodi | Geometry-related magnetic interference patterns in long Josephson junctions[END_REF], Bi nanowires [START_REF] Li | Magnetic eld resistant quantum interferences in bismuth nanowires based Josephson junctions[END_REF][START_REF] Murani | Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry[END_REF] or study superconductivity in low dimension [START_REF] Guillamón | Direct observation of melting in a two-dimensional superconducting vortex lattice[END_REF][START_REF] Li | Superconductivity of ultra-ne tungsten nanowires grown by focused-ion-beam direct-writing[END_REF]. This work has been done in collaboration with Julien Basset, where I was mainly involved in the fabrication process and DC characterization of the tungsten nanowires.

Fabrication

To fabricate the hybrid resonator, rst 110 nm of Nb is sputtered on a high resistivity silicon substrate with 500 nm thick thermal oxide. Then optical lithography is performed to dene a positive mask on top of Nb, followed by reactive ion etching with SF 6 . Two dierent designs are prepared, a coplanar waveguide (CPW) resonator (g. 7.1.a-b) and a lumped element resonator (g. 7.1.d).

The W nanowire is then deposited to form a resonator: a long wire grounded on one side and capacitively coupled to a transmission line for the λ/4 CPW resonator and in parallel with an interdigitated capacitor in the lumped geometry (g. 7.1.c-d). The W nanowires are deposited using helium beam assisted deposition. The W precursor (tungsten hexacarbonyl W(CO) 6 ) is injected by a gas injection system (GIS) and exposed in the region of interest. Upon interacting with helium ions coming from an ultra-high brightness gas eld ionization source (GFIS) that is subjected to a high voltage (30 kV), the (W(CO) 6 ) molecule will be decomposed locally and deposit an almost-pure and thin layer of Tungsten onto the surface. During nano deposition, we use a He-beam current ranging from 10 to 30 pA. The target pressure in the chamber is 4 • 10 -6 Torr. The patterning geometry and parameters are controlled by the nanofabrication system NPVE from Fibics. For the lumped element resonator, a W nanowire of 9.8µm was realized whereas for the CPW λ/4 resonator a length of 390µm was used. Fabricating such a long nanowire is possible thanks to the very high stability of the He-FIB and He-IBID process compared to previous experiments with Ga-FIB [START_REF] Kasumov | Proximity eect in a superconductor-metallofullerene-superconductor molecular junction[END_REF].

For more details about the fabrication process and growth condition see [START_REF] Basset | High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires[END_REF] Sample With the indicated parameters the time needed to write the W part of the resonator "Lumped" is 88 seconds, whereas for the "λ/4" type it is 40 minutes. 

DC Characterization of the nanowires

In order to measure the critical temperature T C , critical magnetic eld, and the critical current of the W nanowires, three nanowires (NW1,NW2, and NW3) of 5.9µm length were grown with dierent growth conditions (See table 7.1) on a sample dedicated to electrical DC measurements. The sample is cooled down to 1.8K in a Physical Property Measurement System (PPMS) from Quantum Design company, where a magnetic eld up to 9T can be applied. The resistance measurement was done in a two-probe conguration and a contact resistance was substracted from the raw data. (e) Dierential resistance vs current of sample NW1 for dierent magnetic elds.

varying the perpendicular magnetic eld from 0T to 9T. The nanowires are superconducting with a resistance that develops a magnetic eld behavior consistent with a type 2 superconductor. Dening Hc 2 as the magnetic eld for which the nanowire recovers half of its normal state resistance, we see that all wires exhibit an H c2 larger than 5 T.

Then we study the eect of temperature T on the value of Hc 2 . Fig. 7.2, shows the temperature dependence of the resistance at dierent magnetic eld only for NW1. The temperature dependence of Hc 2 of the three nanowires is shown in g.7.2.d, superconducting transitions shifts to lower T with magnetic eld. The data can be tted to a power dependence eq. which is valid close to T c given by∼ :

H c2 (T ) ∝ ( 1 -T T c ) n (7.1)
with n is the power index reecting the dimensionality of the superconductivity. For a purely 2D superconductor n = 1 is expected for perpendicular magnetic elds and n = 0.5 for parallel magnetic elds. Using eq.7.1 we found that n=0.57, 0.63 and 0.72 for NW2, NW1 and NW3 respectively. Finding an intermediate value of n points towards reduced dimensionality of superconductivity in the W nanowires [START_REF] Makise | Duality picture of Superconductor-insulator transitions on Superconducting nanowire[END_REF][START_REF] Qin | Diameter-Dependent Superconductivity in Individual WS2 Nanotubes[END_REF][START_REF] Córdoba | Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition[END_REF].

To extract the value of critical current I C , we measured the dierential resistance dV /dI as the function of biased current I DC . Fig. 7.2.e shows dV /dI for NW1 at T = 2K for dierent magnetic elds. For NW1, the zero-eld critical current is 4.0 µA, and it decreases with the increase of the magnetic eld. At this temperature, the curves are non-hysteretic. For nanowires NW2 and NW3, the zero-eld critical currents are 1.3 and 3.8 µA respectively. To further study the behavior of critical current with temperature, NW2 was cooled down to 10 mk in a highly ltered dilution refrigerator. The dierential resistance as a function of current is shown in g.7.3. We observed an increase up to 12µA, with a thermal hysteresis behavior highlighting the increase of electron-phonon relaxation times at low temperature. The orange curve corresponds to an increase of the current whereas the black one is for decreasing current.

From the value of H C2 and T C we extract the superconducting coherence lengths ξ and London penetration lengths λ, reported in table 1, assuming [START_REF] Tinkham | Introduction to superconductivity[END_REF] µ 0 H C2 (T ) = Φ 0 /2πξ 2 (T ) and λ(0) = 1.0510 -3 ρ/T c with ρ the resistivity [START_REF] Kes | Two-dimensional collective ux pinning, defects, and structural relaxation in amorphous superconducting lms[END_REF].

Microwave characterization of W nanowires

To probe the microwave properties of a resonator made with W nanowires, the two designs are shown in g.7.1, the coplanar waveguide, and the lumped resonators are cooled down to 10 mK in a dry dilution fridge. The microwave signal is sent via attenuated and thermally anchored microwave lines. The transmitted wave is amplied and the complex transmission spectra S 21 through the lines are measured with a vectorial network analyzer. The interference of the incident microwave signal and the one reected from the resonator lead to a dip in S 21 . This dip is accounted theoretically 128 Chapter 7. On-chip resonant circuit and measurement of electronic temperature by:

S 21 = 1 - Q t Q c 1 -2jQ c u 1 + 2jQ t x (7.2)
with x = (ω -ω 0 )/ω 0 the fractional detuning of the readout angular frequency ω relative to the resonance frequency ω 0 . u = δω ω0 with δω = ω 1 -ω 0 is the frequency shift of the in-phase point on the resonance circle from ω 0 to ω 1 and represent the asymmetry. u is a dimensionless parameter considering the asymmetry in the transmission line and is essential to extract reliable quality factors in hanger-coupled resonators [START_REF] Khalil | An analysis method for asymmetric resonator transmission applied to superconducting devices[END_REF]. It reduces to 0 for a symmetric transmission line. The coupling quality factor Q c quanties the coupling between the transmission line and the resonator which has an intrinsic quality factor Q i . These two terms are related to the total (or loaded) quality factor Q

t via Q -1 t = Q -1 i + Q -1 c
. Q i which gives information on the quality of the resonator independently of the coupling to the measurement line and is a gure of merit of the material quality.

At low temperature, we found that the lumped resonator exhibits a resonance at f=4.46GHz (g.7.5), whereas the CPW resonator has a resonance at f=4.05GHz (g.7.4). In the following, using those values, we extract the kinetic inductance of the W nanowires.

The kinetic inductance can be estimated, at very low temperature, from R and T C [START_REF] Annunziata | Tunable superconducting nanoinductors[END_REF]: For the coplanar waveguide resonator, we extracted the lineic capacitance to ground to C≈ 48pF/m and the lineic geometrical inductance of the wire L geo ≈ 1.7µH/m. The lineic inductance was then deduced from the value of the resonance frequency f = 1/(4 (LC) and the length of the line. We found L=L geo +L K ≈ 512µH/m. From these numbers we extracted a phase velocity c = 1/ √ LC = 6.4 × 10 6 m/s and a characteristic impedance Z C = L/C = 3.3 kΩ. Such material is therefore highly suitable for dynamical Coulomb blockade experiments where the characteristic impedance Z C must be comparable to the resistance quantum R Q = h/4e 2 ≈ 6.5kΩ. More specically, the coupling of e.g. a tunnel junction to a high impedance microwave resonator is characterized by the coupling parameter λ = πZ C /R Q . With λ ≈ 1.26 in our experiment we would be at the onset of the strong coupling regime λ 1 where e.g. dc-driven single microwave photon generation could be achieved [START_REF] Souquet | Fock-state stabilization and emission in superconducting circuits using dc-biased Josephson junctions[END_REF][START_REF] Estève | Quantum dynamics of a microwave resonator strongly coupled to a tunnel junction[END_REF].

L K, ≈ R h 2π 2 ∆ 0 . ( 7 

Temperature dependence

In this section, we will study the eect of temperature on the value of resonance frequency and quality factor of a resonator made with W nanowires. c). Below T = 0.9K the resonance frequency is nearly constant and decreases strongly as one raises the temperature. Q i evolves similarly with a maximum value reaching Qi = 3990 at 10mK. The temperature dependence of the resonance frequency and the quality factor were both tted by Mattis-Bardeen (MB) theory, which relates the temperature dependence of the resonance frequency and quality factor to the complex conductivity of the material σ = σ 1 -iσ 2 (See SM of [START_REF] Basset | High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires[END_REF]). This theory allows us to reasonably tackle the temperature dependence of the resonance frequency whereas discrepancies are found regarding the quality factors for which the MB theory predicts a diverging Q i as the temperature is lowered. To reproduce our data, we introduce extra losses in the internal Q i factor as: Q

-1 i = Q -1 M B + Q -1
loss . First, we xed Q loss at 3990 for all the temperatures, see the yellow curve of g.7.5.c. We see that the agreement in the intermediate temperature regime is unsatisfactory. Then we introduce a temperature dependence Q loss given by Q loss = 3990(1 -T /3). The corresponding curve is shown in black in gure 7.5c demonstrating a reasonable agreement. This decay sheds light on the physics of losses into the resonator which increases as the temperature is raised. These extra losses need to be further understood and may be related to poisoning [START_REF] Oates | Surface-impedance measurements of superconducting NbN lms[END_REF][START_REF] Zemlicka | Finite quasiparticle lifetime in disordered superconductors[END_REF][START_REF] Maleeva | Circuit quantum electrodynamics of granular aluminum resonators[END_REF], TLS [START_REF] Samkharadze | High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field[END_REF][START_REF] Lesueur | Microscopic charged uctuators as a limit to the coherence of disordered superconductor devices[END_REF] and/or mobile vortices [START_REF] Tinkham | Introduction to superconductivity[END_REF].

The same data is measured for the CPW λ/4 resonator (See g.7.4.a) it shows the same temperature dependence behavior of the resonance frequency and quality factor as the lumped resonator.

This design exhibits a smaller quality factor Q i ≈ 710. In this geometry, the wire length was 390 µm long with a resonance frequency ω 0 /2π = 4.05 GHz. 

Power dependance

Studying the power dependence of the normalized transmission spectra will introduce nonlinearity to the system due to the nonlinear kinetic inductance of the nanowires. To quantitatively tackle this nonlinear eect, one needs to introduce into the fractional detuning parameter x of eq.7.2 the shift δω of the resonance frequency due to the nonlinear kinetic inductance. The shifted resonance reads [START_REF] Swenson | Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime[END_REF] ω r = ω 0 + δω = ω 0 + Kn ph where we have introduced the Kerr parameter K relating the frequency shift to n ph , the number of photons stored in the resonator. By inserting new expression of ω r into the fractional detuning we obtain:

x = ω -ω 0 -δω w 0 + δω ≈ x 0 -δx = x 0 -Kn ph ω 0 

P diss = P   2Q 2 t Q i Q c 1 + 4 Q 2 c Qt Qc-Qt ux 1 + 4Q 2 t x 2   . (7.6) 
Inserting in eq.7.6 the denition of the internal quality factor Q i ≈ n ph ω 2 0 /P diss gives access to the number of photons in the resonator as a function of the applied power:

n ph = 2Q 2 t P Q c ω 2 0 1 + 4 Q 2 c Qt
Qc-Qt ux 1 + 4Q 2 t x 2 .

(7.7)

Replacing the expression of n ph given by 7.7 into eq.7.4 we get:

x = x 0 - Kn ph ω 0 = x 0 -K 2Q 2 t P Q c ω 3 0 1 + 4 Q 2 c Qt Qc-Qt ux 1 + 4Q 2 t x 2 .
(7.8)

From eq.7.8 we can dene the non-linear parameter a N L given by: a N L = -2KQ 3 t Q c ω 3 0 P (7.9) Inserting eq.7.8 in the expression of S 21 , allows us to plot as a function of the applied microwave power P , the nonlinear term a N L , Q i , Q c and Q t . g.7.7.a and g.7.6.a shows the power dependence of the transmission spectra of the lumped resonator at 10 mK and 1.5 K respectively. As one increases the microwave power, the peak shifts towards smaller frequency, slants and eventually becomes bistable at high power. By tting the data with eq.7.2, considering δω, we extract the dierent quality factors for the resonators. At 10 mK, the quality factors (g. 7.7.b) slightly increase from Q i = 3990 to 4290 as the power is elevated up to 0.1 pW and remains stable at higher powers.

From the linear dependence of a N L parameter with respect to microwave power P (See Figure . 

Magnetic eld dependence

Studying the physics of mesoscopic devices made with superconducting materials, requires most of the time applying a magnetic eld. For example, for a carbon nanotube connected to superconducting contacts, a magnetic eld should be applied in order to characterize the carbon nanotube in the normal state. This is the same in many other experiments where the spin degree of freedom is of interest. To implement such a resonators design made with W nanowires of high critical magnetic eld in devices, we have to make sure that properties of the resonator are rather immune to the applied magnetic eld. g.7.8 shows the magnetic eld dependence of the transmission spectra for the lumped resonator measured at T = 1.55K in a pumped He bath. At 0 magnetic eld, the curve is tted with the S 21 formula and we found resonance frequency around 3.55GHz with an internal Q i factor of 700. We measured the microwave resonance up to 130 mT. The magnetic eld dependence of the resonance frequency and quality factor is shown in g.7.8.b. As expected, we observe a small change for Q i (< 10%) and f res (< 0.05%) for this range of magnetic eld. 

Conclusion

In this section, we have presented a new hybrid microwave resonator made with a thin lm of Nb and W nanowire grown with a He-beam induced deposition technique, which is a direct-write and resist-free process that does not involve any lithography steps. The nanowires exhibit high critical temperature T C 5K, and critical magnetic eld B C > 1T . Two dierent designs were measured at low temperature, a lumped, and a coplanar waveguide resonator. The microwave characterization of the resonators reveals that the measured resonators exhibit internal quality factors up to Qi = 4290 at 4.46 GHz for T = 10 mK. We measure a large kinetic inductance for the W nanowire of L K = 15.4 pH/ .

The magnetic eld dependence shows that the resonators are immune to an in-plane magnetic eld up to 130 mT. As such, this hybrid resonator could be interesting to study mesoscopic devices where the spin degree of freedom needs to be addressed. All those properties make W nanowires made with the He-FIB a good candidate for engineering a compact non-linear high impedance superconducting element for quantum electronics.

Single electron transistor thermometer

In this section, we will present measurements of electronic temperature using a micrometer scale mesoscopic circuit, a single electron transistor. When quantum properties of the atomic device can be observed at room temperature, devices of micrometer size require helium temperatures (4.2K) or even sub-kelvin temperatures. Performing transport measurement at the millikelvin range is possible, with the development of helium-based refrigeration technique, the temperature can be lowered down to 5-10 mK range at the mixing chamber (MC)(To know more about dilution fridges check chapter 2 section 2.1.4). However, due to thermal contact between the circuit and measurement lines, electrical noise, microwave heating, the electronic temperature is usually above this value.

Single electron transistor

In 1985 Dmitri Averin and Konstantin Likharev [START_REF] Averin | Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions[END_REF], proposed the idea of a new mesoscopic device called a single-electron transistor(SET). A few years later Theodore Fulton and Gerald Dolan [START_REF] Fulton | Observation of single-electron charging eects in small tunnel junctions[END_REF] fabricated and demonstrated how such a device works. A single electron transistor is a threeterminal device based on the Coulomb blockade eect. In such a device two electrodes, source and drain are connected through a tunnel barrier to a metallic island. For the current to ow, electrons are forced to tunnel from(to) the island to the (from) source-drain electrode. The two tunnel junctions are modeled by a capacitor (C D and C S ) and resistor (R D and R S ) in parallel. A third electrode, the gate, which is capacitively coupled (C G ) to the island, is used to control N g , the number of electron on it, such that, N g = Finally, a second layer of aluminum (100nm) deposited at an angle -15°(see gure7.9(b)). The sample is cooled down in a dry fridge of base temperature 10 mK and measured through low pass ltered lines. The inner part of these lines is made up of manganin wire (Lakeshore manganin 36AWG), placed inside a Cupronickel (CuNi) tube with a diameter 0.5mm x 0.8mm. The total capacitance to the ground of the wire is 7 nF. The dierential conductance of the set is probed with a lock-in technique.

Charging energy

When the temperature is lowered, such that k B T < E C , where E C is the charging energy, the number of charges on the island is quantized. To add one electron on the SET, one should pay the charging energy of the SET given by, E C = e 2CΣ ,with C Σ the total capacitance of the island C Σ = C S + C D + C g .

Charge quantization results in periodic peaks of the SET conductance G SET when sweeping gate voltage V g . In the presence of dc bias voltage (V SD ), the peaks develop into periodic `Coulomb Chapter 7. On-chip resonant circuit and measurement of electronic temperature Each peak of 7.11 is tted using eq. 7.10, and the value of the electronic temperature is obtained for several conductance peak (Fig7.12). V g (mV)

Exp Fit versus the index of the peak. We nd T electronic = 23±2 mK. Chapter 7. On-chip resonant circuit and measurement of electronic temperature

Conclusion

Even though the base temperature of our dry refrigerator reads 10 mK, the electronic temperature measured with a coulomb blockade thermometer, single electron transistor found to be slightly higher T electronic = 23±2 mK. For a wet dilution fridge, due to space limitation, the ltering is less ecient, one have T M C =50 mK and T electronics =80 mK. This implies that the condition of ltering in the dry fridge is better, since the dierence in temperature between the mixing chamber and that felt by electron is lower.

Additional thermalization and cooling techniques will lead to lower electronic temperature. The lowest electronic temperature reported is 3.7 mK [START_REF] Bradley | Nanoelectronic primary thermometer below 4 mK[END_REF]. Also 6 mk electronic temperature has been reported in a medium-sized dilution refrigerator using three dierent methods, Coulomb blockade thermometer, quantum shot noise thermometer, and dynamical Coulomb blockade thermometer [START_REF] Iftikhar | Primary thermometry triad at 6mK in mesoscopic circuits[END_REF].

Conclusion

To conclude, during this thesis we have probed the dynamics of a quantum dot Josephson junction by measuring its Josephson emission. To do this we use the AC Josephson eect to probe the quantum state of a quantum dot Josephson junction between a singlet state and a doublet state.

The sample which is a carbon nanotube-based-Josephson junction is rst measured in the normal state, where we were able to extract all the relevant parameters. Then we probe the dynamics of our system by measuring its AC Josephson emission. We show that this emission is strikingly reduced in the gate region where the critical current is enhanced due to the interplay of the Kondo eect and superconducting proximity eect. By performing numerical renormalization group calculation of the energy spectrum and supercurrent of the ground state using the parameters determined in the normal state, we were able to calculate the many-body spectrum of our system. This helps us to evaluate the probability of the QD to be in a doublet state due to quasi-particle dynamics. We found that this probability is low in DC current conguration. However, when we apply a voltage bias to probe the AC Josephson eect, we found that the probability for the QD to be in doublet state is high. This leads to a decrease of I C AC since the critical current of the doublet state is lower than the one of the singlet ground state. Thus, we can attribute the collapse of AC Josephson emission to the dynamics of quasiparticles in the quantum dot which induce a transition between a singlet ground state and a doublet excited state. This points towards the importance of understanding the role of electron-electron interaction and non-equilibrium conditions in the dynamics of a QD Josephson junction. This topic requires more theoretical studies. We have seen that the asymmetry of the contacts aects the physics of our system. For that, we started working on a new carbon nanotube device with side gates that aim to tune independently the transparency of the contacts.

In the experiment we performed, probing the dynamics of the junction was done by measuring the AC Josephson emission, which requires a voltage bias. This voltage drives the system out of equilibrium. Another experiment that could be done is to probe the dynamics of the junction by probing its AC response to a phase modulation, which can be induced by a nearby resonator. This way the system can stay closer to equilibrium and should help us to disentangle the eects of high frequency phase modulation and voltage bias which are inherent to AC Josephson eects experiments.

The detection of the AC Josephson eect has been done using a quantum detector which is coupled on-chip to the QD via a resonant coupling circuit. During this Ph.D., we have designed and measured a new type of resonators. We have fabricated and evaluated the performance of hybrid microwave resonators made by combining sputtered Nb thin lms with Tungsten nanowires grown with a He-beam induced deposition technique. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature. Microwave characterization of the two resonators reveals that they exhibit resonance frequency in the GHz range, high internal quality factor, and a large kinetic inductance. We also veried that the resonators are immune to an in-plane magnetic eld up to 130 mT. Thus, such a type of resonator is a good candidate for engineering a compact non-linear high impedance superconducting element for quantum electronics. A nice experiment could be by using such a resonator to couple a carbon nanotube Josephson Junction to an SIS detector, as this will improve and enhance the measured signal. It could be also very useful to probe the dynamics of junction based on topological systems. Since all these measurements require very low temperature and very low noise measurement we have tested homemade ltering in a dry fridge and low noise voltage biasing. We have used a Coulomb blockade thermometer (a single electron transistor) to measure the electronic temperature of a dry fridge. We found T electronic =23±2 mK, which is slightly higher than the base temperature.

Additional thermalization and cooling techniques will lead to lower electronic temperature. Pour améliorer la méthode de détection à basse température, nous avons réalisé deux autres expériences. Dans la première, nous avons testé des lignes de polarisation continue réalisée au laboratoire qui permettent d'atteindre de faible température électronique, température mesurée grâce à un transistor à un électron. Nous avons par ailleurs fabriqué et mesuré un nouveau type de micro-résonateur supraconducteur, basé sur un matériau à forte inductance cinétique, des nanols de tungstène déposé sous faisceau d'ions hélium focalisé. Ce type de résonateurs pourrait s'avérer très utile en tant que circuit de couplage résonant pour la détection haute fréquence "on-chip" et plus généralement pour réaliser des éléments supraconducteurs non-linéaires compacts pour l'électronique quantique.

Title: Supercurrent and dynamics in carbon nanotube Josephson Junction in the Kondo regime Keywords: Josephson eect, Kondo eect, carbon nanotube, quantum dot, 0-π transition. Abstract: During this thesis, we have studied the competition between two many-body eects: the Kondo eect, which is the screening of a localized magnetic moment by the conduction electrons of a conductor, and proximity induced superconductivity. The competition between these two eects has been already investigated at equilibrium, by monitoring the current phase relation of carbon nanotubebased Josephson junctions. These experiments have revealed phase and gate dependent quantum transitions between the magnetic doublet state and the Kondo screened singlet non-magnetic state of the nanotube. In the present work we show that this transition can be dynamically induced by exploring the AC Josephson emission. The AC Josephson emission can be measured by coupling the carbon nanotube to an on-chip quantum detector via a resonant coupling circuit. Experimental results show that this emission is strikingly reduced in the gate region where the critical current is enhanced due to the interplay of the Kondo eect and superconducting proximity eect. By comparing our data to numerical renormalization group calculations, we showed that the collapse of AC Josephson emission is due to the dynamics of quasiparticle in the quantum dot which induce a transition between a singlet ground state and a doublet excited state.

To improve our detection methods at low temperatures, we performed two other experiments. In the rst experiment, we have tested new homemade ltering of DC lines in a cryo-free dilution refrigerator, by measuring the electronic temperature of a single electron transistor. In the second experiment, we have designed and measured a new type of superconducting micro-resonator, based on a high kinetic inductance material, namely tungsten nanowires deposited using a helium focus ion beam. This kind of resonator can be very useful to improve the resonant coupling for on-chip detection and more generally to engineer a compact non-linear high impedance superconducting element for quantum electronics.

Introduction 1

 1 Electronic properties of carbon nanotube quantum dots 1.1 Single wall carbon nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Résumé de la thèse Introduction Ce travail de thèse s'inscrit dans le cadre de la physique mésoscopique, qui vise à mesurer et comprendre les propriétés électroniques de conducteurs qui sont quantiquement cohérents de par leur faible taille (typiquement en dessous du micron) et du fait de leur basse température (en dessous d'1K). Nous nous sommes particulièrement intéressés aux propriétés de boites quantiques, des systèmes avec un nombre faible et ajustable d'électrons, connectées à des contacts supraconducteurs. On a donc ainsi une jonction Josephson dont la partie normale est constituée par la boite quantique. Cette thèse s'est particulièrement attachée à un aspect relativement peu exploré de ce type de jonctions : leur dynamique. Cela s'est fait en mesurant l'eet Josephson AC d'une telle jonction, réalisée avec une boite quantique constituée par un nanotube de carbone. L'eet Josephson AC consiste en la génération par une jonction supraconductrice d'un courant oscillant lorsqu'une tension de polarisation lui est appliquée. C'est grâce à cet eet que les jonctions tunnel supraconductrices peuvent être utilisées comme émetteurs haute fréquence, ou bien comme étalon de tension grâce à la précision métrologique de l'eet Josephson AC. Pour des jonctions Josephson impliquant un système conducteur, mesurer l'eet Josephson AC permet de sonder les états qui portent le supercourant à fréquence nie et hors d'équilibre. Ainsi de telles mesures ont démontrées la protection topologique dans diérents systèmes topologiques, chose qui n'est pas mesurable avec une mesure DC. Dans cette thèse, nous avons utilisé l'eet Josephson AC pour induire des transitions dans une jonction Josephson à base de boite quantique entre un état singulet et un état doublet de spin. Dans ce type de jonction, l'interaction Coulombienne conduit au blocage de Coulomb qui amène un état doublet s'il y a un nombre impair d'électrons dans la boite. Cet état doublet entrave le passage des paires des Cooper, ce qui se manifeste par un faible supercourant et un changement de signe de la relation courant-phase. On parle alors de jonction π. Cependant, un état singulet peut être restauré si l'eet Kondo, qui apparait également pour un nombre impair d'électrons, a une échelle d'énergie, xée par la température Kondo, plus grande que le gap supraconducteur. L'eet Kondo résulte d'une interaction entre une impureté magnétique localisée et les électrons de conduction d'un métal et conduit à un état fortement corrélé avec une résonance Kondo à l'énergie de Fermi des contacts métalliques.
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 12 Figure 1: Gauche : schéma d'une boite quantique à base de nanotube de carbone (CNT QD) avec les contacts de source (S), de drain (D) et une grille électrostatique couplée capacitivement à la boite quantique, utilisée pour contrôler le nombre d'électrons. Droite : spectre de niveaux d'énergie discret de la CNT QD, illustrant les diérentes échelles d'énergie pertinentes : E C l'énergie de charge, le couplage aux électrodes de gauche et de droite Γ L et Γ R , le couplage total aux électrodes Γ = Γ L + Γ R , ∆E l'écart entre niveaux et d la position du niveau d'énergie.

Figure 3 :

 3 Figure 3: Diagramme de stabilité de la boite quantique à base de nanotube de carbone dans le régime normal. (a) Conductance diérentielle dI/dV SD en fonction de la tension de polarisation V SD et de la tension grille V g . Le nanotube de carbone montre un eet Kondo de type SU(2). Pour un nombre impair d'électrons, deux zones Kondo sont observées dans la zone de grille sélectionnée, l'une pour l'occupation N=1 (zone A) et l'autre pour l'occupation N=3 (zone B). Les courbes de conductance montrées en surimpression (en rouge) sont prises aux tensions grille 14V, 17.5V et 21.5V. (b) Résistance diérentielle du CNT en fonction du courant de polarisation et de la tension grille V g , dans la même zone que (a).

Figure 4 :

 4 Figure 4: Dépendance en grille du courant critique I C et de l'inverse de la résistance R J , extraits du modèle RCSJ (voir texte), ainsi que de la conductance mesurée dans l'état supraconducteur G s . Les trois zones A, B et C montrent un supercourant et une conductance modulée en grille, avec un comportement très similaire pour 1/R J et G S .

Figure 5 :

 5 Figure 5: Comparaison du courant critique I C et du courant critique dynamique I AC C pour les zones

Figure 6 :

 6 Figure 6: Résultats des calculs NRG. (a) Spectre en énergie du système à N corps et (b) amplitude du supercourant en fonction de la diérence de phase supraconductrice ϕ au point de dégénérescence particule-trou obtenu par des calculs NRG pour les zones Kondo A et B. (c) Evolution de l'énergie des états liés d'Andreev (ABS) à ϕ = 0 en fonction de la position du niveau d'énergie de la boite quantique, contrôlée par la tension grille. Cela mesure le détachement des ABS du continuum d'excitation de QPs. (d) Evolution du spectre d'énergie du système à N corps à ϕ = π.

Figure 7 :

 7 Figure 7: Probabilité pour la jonction de se trouver dans l'état doublet en fonction de l'énergie E A de l'état lié d'Andreev.

Figure 8 :

 8 Figure 8: (a) Amplitude de la première harmonique de la relation courant-phase pour les états singulet et doublet pour la zone Kondo A, déduite des calculs NRG. (b) Comparaison entre les données expérimentales pour la zone Kondo A (cercles bleus) et l'amplitude calculée pour le courant critique dynamique I C AC , obtenu en introduisant une probabilité nie pour le système d'être dans l'état doublet. Dans le modèle "cohérent" la cohérence en phase est préservée (ligne pointillée rouge) alors que dans la modèle incohérent (ligne pleine noire) elle ne l'est pas.

Figure 9 : 20 Résumé

 920 Figure 9: (a) Image obtenue par microscopie électronique à balayage de l'échantillon avec un résonateur de type ligne de transmission. Une ligne de transmission horizontale permet d'adresser trois résonateurs de type λ/4 réalisés en tungstène (W), qui sont placés verticalement sur l'image. (b) Agrandissement de la zone de couplage entre la ligne de transmission et un résonateur W. (c) Fil de tungstène déposé avec une zone de raccord plus large et plus épaisse avec le contact de niobium.

Figure 10 :

 10 Figure 10: Résistance des nanols de tungstène listés sur le tableau 1.1 en fonction de la température T (a) et du champ magnétique perpendiculaire (b). (c) Résistance de l'échantillon NW1 en fonction de la température pour diérentes valeurs du champ magnétique B. (d) Résistance diérentielle dV /dI en fonction du courant de polarisation à basse température pour l'échantillon NW1.

avec ∆ 0

 0 = 1.76k B T c . Avec T c ∈ [5 -6.5]K et R la résistance par carré, qui vaut typiquement 100 Ω pour les nanols fabriqués, on prévoit une valeur d'inductance cinétique L K, ∈ [7 -25] pH/ . Pour le résonateur à élément discret, la fréquence de résonance est de l'ordre de 4.46GHz avec un facteur de qualité de 4000. Connaissant la capacitance et l'inductance géométrique estimées par simulation numérique, cela conduit à une inductance cinétique L K, = 15.4 pH/ , une valeur 250 fois plus importante que l'inductance géométrique. Le résonateur de type ligne coplanaire conduit sensiblement à la même valeur d'inductance cinétique mais avec un facteur de qualité plus faible, de l'ordre de 700. La gure 11.a montré la dépendance en température de S 21 à basse puissance. La dépendance de la fréquence de résonance et du facteur de qualité peuvent être relativement bien compris dans le cadre d'un modèle de type Mattis-Bardeen, qui décrit la conductivité complexe du supraconducteur à haute fréquence. La dépendance en fonction du champ magnétique dans le plan du résonateur à élément discret a pu être mesuré jusqu'à 130mT. La fréquence de résonance et le facteur de qualité varie peu (pour Q i :< 10% et pour f res :< 0.05%), montrant que ce type de résonateur sont relativement insensibles à des champs magnétiques dans le plan. Enn la dépendance en fonction de la puissance micro-onde S 21 permet d'extraire le paramètre Kerr. Nous avons trouvé un paramètre Kerr non-linéaire K/2π = 200±120 Hz/photon at 4.465 GHz (T=10mK), et 74 Hz/photon at 3.55 GHz(T=1.5K).
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 1112 Figure 11: Dépendance en température du spectre en transmission pour le résonateur à élément discret (à gauche) et pour celui de type ligne de transmission (à droite). Ces deux types de résonateurs résonnent dans la gamme du GHz.

Figure 13 :

 13 Figure 13: (a) Carte de conductance du SET en fonction de la tension grille V g et la tension sourcedrain V SD . (b) Pic de blocage de Coulomb observé sur la conductance du SET G SET en fonction de la tension de grille V g . Ces pics sont utilisés pour extraire la température électronique à l'aide de l'équation 2.

Figure 14 :

 14 Figure 14: Température électronique en fonction de l'index du pic de conductance considéré. Nous trouvons T electronic = 23 ± 2mK.

  Au cours de cette thèse nous avons sondé la dynamique d'une jonction Josephson avec comme lien faible un nanotube de carbone en mesurant son émission Josephson. Nous avons montré que cette émission était fortement réduite dans des zones de tension grille pour lesquelles le courant critique est augmenté du fait de l'action conjuguée de l'eet Kondo et de l'eet de proximité supraconducteur. A l'aide de technique numérique du groupe de renormalisation et des paramètres du système obtenu dans le régime normal, il a été possible de calculer le spectre d'énergie et le supercourant de la jonction. La réduction dynamique du courant critique est alors attribuée à la dynamique des quasi-particules dans la boite quantique qui conduit à une transition entre l'état singulet et doublet de spin. Nous avons par ailleurs fabriqué et testé un nouveau type de micro-résonateur supraconducteur hybride combinant du niobium en couche mince et des nanols de tungstène déposés sous faisceau d'ions hélium focalisé. Ces derniers présentent une très forte inductance cinétique. Deux types de résonateur, à éléments discrets ou bien à ligne de transmission, ont été mesurés à basse température. Ils présentent tous deux des résonances dans la gamme du GHz avec une très forte inductance cinétique. Ces résonateurs sont prometteurs comme éléments supraconducteurs non-linéaires compacts à forte impédance, utiles en électroniques quantiques ainsi que comme circuit de couplage pour la détection haute fréquence "on-chip". Dans le souci d'obtenir de meilleures mesures à basse température, nous avons fabriqué des lignes de polarisation de type ltre passe-bas avec des câbles coaxiaux résistifs réalisés au laboratoire. Cela permet d'obtenir une températures électroniques T electronic = 23 ± 2mK, pour une température de base de réfrigérateur à dilution sans hélium liquide de 10mK. Cette température électronique a été mesurée avec un transistor à un électron.
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 11 Figure 1.1: (a) Hexagonal lattice of a graphene sheet rolled into a CNT around a chiral vector C h .(b) Carbon nanotubes with dierent structures: armchair (n, n), zigzag (n, 0) and chiral (n, m).Taken from [9].
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 12 Figure 1.2: Left: Honeycomb lattice structure of graphene with a 1 and a 2 unit cell vectors and δ i with i=1,2,3 is the nearest neighbor vectors. A and B denotes two inequivalent atomic sites. Right: Corresponding Brillouin zone. Dirac cones are located at the K and K' points. Taken from [10].
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 1 Figure.1.2 shows the graphene lattice structure in the real and reciprocal space. In the Brillouin zone (BZ), the Fermi surface is reduced to six points. Only two of them are independent, whereas the rest are equivalent by symmetry. These two points are called the Dirac point: K and K' located at the corners of the graphene BZ.
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 13 Figure 1.3: The energy dispersion of graphene showing the six Dirac points where the valence band and conduction band meet and zoom around the Dirac point K'.
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 14 Figure 1.4: Chirality map of a carbon nanotube. Adapted from [11].

Fig. 1 .

 1 Fig.1.4 summarize the metallic and semiconducting families of carbon nanotubes according to their chiral numbers.

Figure 1 . 5 :

 15 Figure 1.5: The band structure for carbon nanotubes, E given in eV and wave vector in -1 . (a) (5,5) Armchair, (b) (9,0) zigzag, (c) (10,0) zigzag nanotubes. The Fermi level is located at zero energy. (5,5) and (9,0) are metallic nanotubes while (10,0) is semiconducting.
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 16 Figure 1.6: (a) Electrons conned in a nanotube segment have quantized energy levels, each fourfold degenerate in the absence of spin-orbit coupling and defects. The purple arrow at the left (right) illustrates the magnetic moment arising from the clockwise (anticlockwise) orbital motion around the nanotube. The green arrows indicate positive moments due to spin. (b) Expected energy splitting for a defect-free nanotube in a magnetic eld B parallel to the nanotube axis in the absence of spin-orbit coupling: At B=0 T, all four states are degenerate. With increasing B, each state shifts according to its orbital and spin magnetic moments, as indicated by purple and green arrows, respectively. Taken from [53].
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 17 Figure 1.7: Left: Schematic of a quantum dot (QD) with the source (S), the drain (D) leads and a capacitively coupled gate (G), used to control the number of electrons on the QD. Right: Discrete energy levels of a QD, showing the relevant energy scales, the charging energy E C , the couplings with the left and right reservoirs Γ L and Γ R , the total coupling Γ = Γ L + Γ R , ∆E the energy level spacing and d the position of the energy levels in the dot.
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 18 Figure 1.8: (a) Energy band diagram before contact is made between a metal and a semiconductor. (b) When contact is made, the Fermi levels equilibrate and a Schottky barrier arises. φ m is the work function of the metal which is the energy needed to remove an electron from the Fermi level
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 19 Figure 1.9: (a) No level drops in the bias window of µ S and µ D . Transport is energetically forbidden, no current ows through the dot. It is Coulomb blocked. (b) By tuning the gate voltage, the ladder of energy level is shifted, such that an energy level of the dot coincides with Fermi energy and resonant single electron tunneling occurs. (c) Coulomb peaks in conductance versus gate voltage at zero bias. The valleys correspond to the Coulomb blockade.
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 110 Figure 1.10: Stability diagram for a four-fold degenerate CNT. Coulomb diamonds in dierential conductance dI/dV SD , versus V SD and V G . Each edge of the diamond-shaped regions corresponds to single particle transfer. Inside the diamonds, the number of electrons is xed by the Coulomb blockade. Each diamond corresponds to an integer number of electrons on the QD. From its size, one can determine the value of E C and ∆E.
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 111 Figure 1.11: The dierential conductance as a function of source-drain (V sd ) and gate voltage (V g ) at 4K of a carbon nanotube QD. Clear traces of Coulomb blockade are observed. The pattern of a large diamond followed by three smaller ones suggests a (nearly) fourfold degeneracy (including spin) of the single-electron dot states. The charging energy and level spacing can be extracted as
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 112 Figure 1.12: Stability diagram for a two-fold degenerate CNT. Due to the breaking of orbital degeneracy, the adding energy of N+2 diamonds increase by δE.

Figure 1 .

 1 Figure 1.13: (a) Schematic diagram of a CNT (represented in dark grey) device illustrating the multiple electron reection that gives rise to the observed interference pattern in conductance [20]. (b) Dierential conductance dI/dV SD , versus V SD and V G , showing a FabryPerot interference pattern, i.e., an open quantum dot. The maximum conductance is lower than 4e 2h which means that the contacts are not fully symmetric. Taken from[START_REF] Grove-Rasmussen | Fabry-Perot interference, Kondo eect and Coulomb blockade in carbon nanotubes[END_REF].

Figure 1 .

 1 Figure 1.14: (a) Linear conductance versus gate voltage. For negative gate voltage, high conductance FabryPerot oscillations are observed. The positive gate voltage is dominated by the Coulomb blockade. (b) Schematic band diagrams of a small band gap CNT, the band bending is controlled by the gate voltage. The red/blue band is the conduction/valence band, respectively. Left: the condition for hole transport through the valence band. Holes tunnel into/out of the valence band through a relatively small Schottky barrier. Right: condition for electron transport through the conduction band, where electrons tunnel into/out of the conduction band through a larger Schottky barrier. Thus, high conductance is observed through the valence band in contrast to low conductance through the conduction band, i.e., FabryPerot interference versus Coulomb blockade regime.

Fig. 1 .

 1 Fig.1.15.b shows the inelastic co-tunneling process. The tunneling of an electron from the left lead into the dot is immediately followed by the tunneling of another electron from the dot into the right lead, leaving the dot in an excited state due to the creation of an electron-hole pair.
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 115 Figure 1.15: Co-tunneling processes in a QD that leads to a current owing through the QD overcoming Coulomb blockade. (a) Elastic co-tunneling, an electron can tunnel through the QD during a very short time scale, the initial and nal state of the QD is the same. (b) In-elastic co-tunneling leaves the dot in an excited state due to the creation of an electron-hole pair.
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 1116 Fig.1.15 represents the co-tunneling process without considering the spin of the dot. However, considering the dot's spin during elastic co-tunneling leads to richer physics.
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 21 Figure 2.1: Left: Picture of the oven where the CVD synthesis of carbon nanotube takes place.

Figure 2 . 2 :

 22 Figure 2.2: Schematic description of all the steps to make metallic contacts on a carbon nanotube, as described in the text.

  of Al at 𝝷=-15°F igure 2.3: Schematic description of all the steps to fabricate a tunnel junction with directional angular deposition.

  2.3) which consists rst of depositing 100nm of Aluminum at a θ=-15°. Then the Al layer is oxidized by 0.2 mbar of oxygen Chapter 2. Experimental techniques for 20 minutes forming a thin layer of aluminum oxide of the order of nanometer. Finally, the AlO x layer is covered by 120 nm of Al deposited with an angle of 15°. After the metallic deposition, the sample is inserted in hot acetone for 60 minutes. Acetone dissolves all the unexposed resist and we are left with a metallic layer of the desired pattern. The obtained junctions have typically a surface of 200nm×200nm and their resistance of the order of tens of kΩ. The value of the resistance depends highly on the oxidation process. Since AlO x is very fragile and can break if any overvoltage pulse is applied to the junction, one should wear an antistatic bracelet and ground carefully the equipment during manipulation. Fig.2.4 shows a detailed SEM image of the sample, the CNT and the Josephson junction are coupled on-chip to a coplanar waveguide resonator made with aluminum.

500µm 2µmFigure 2 . 4 :

 500µm24 Figure 2.4: SEM image of the sample. A CNT connected to two metallic reservoirs 400 nm apart made with Al/Pd coupled on-chip via a coplanar waveguide to an SIS quantum detector.

Figure 2 . 5 :

 25 Figure 2.5: SEM image of the CNT sample with three gates. The small gates G 2 and G 3 are ∼50 nm in width and used to tune the transparency of the contacts.

Figure 2 . 6 :

 26 Figure 2.6: Left: phase diagram of 3 He/ 4 He mixture, when cooled down below 1k, the mixture

  2.7.a) and condensation of the mixture starts.The mixture undergoes the same thermodynamics cycle described in the previous section. A given amount of mixture is used during the condensation. After the condensation is nished, the fridge is kept running at its lowest temperature ∼ 10 mk. In this work, we have installed a new dry dilution refrigerator, which was used to characterize a high kinetic impedance resonator made with tungsten at 10 mK (See chapter 7 section 7.2 ).
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 27 Figure 2.7: (a): Working scheme of the gas circulation during the pre-cooling mode. (b): Working scheme of the gas circulation during the Condensation mode.

Figure 2 . 8 :

 28 Figure 2.8: Left: Schema of the DC wiring and ltering of the dilution fridge we used. The sample is thermally connected to the mixing chamber of the dilution fridge and electrically connected to the top of the dilution fridge by manganin wires. The ltering consists of a π-lter at room temperature as well as a capacitance of 100 nF placed close to the sample [60]. Right: Two Samples are connected via thin Al/Si wires to a sample holder made with copper.
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 29 Figure 2.9: Example of electrical setup used in measurements. Left: Measurements of the Dierential conductance of the CNT, the current is deduced from the voltage across the 1kΩ resistance. Right: Measurements the dierential resistance of the CNT, the voltage across it is measured directly.
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 31573 Figure 3.1: For T > T K , the magnetic impurity is decoupled from the conduction electrons. If, T < T K conduction electrons and the magnetic impurity interact coherently and form a Kondo cloud.
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 32 Figure 3.2: (a) Kondo screening mechanism in a QD. At the end of the co-tunneling process, the spin of the QD is ipped. (b) A resonance of width k B T K develops in the density of states of the quantum dot at the Fermi level of the electrodes due to the Kondo eect.

Figure 3 . 3 :

 33 Figure 3.3: Left: Stability diagram of Four-fold degenerate CNT QD as a function of V SD and V G of a quantum dot in the Kondo regime. Blue regions correspond to low conductance due to Coulomb blockade, and white corresponds to high conductance. The Kondo ridges appear at every diamond that corresponds to an odd number of electrons on the dot. Right: Vertical cut at the center of the Kondo ridge (indicated in red) showing the peak in conductance at zero bias. From the half-width at half maximum of the Kondo peak one can extract the Kondo temperature T K .

Figure 3 . 4 :

 34 Figure 3.4: Spin, orbital and SU(4) Kondo eect in a quantum dot (QD) with an odd number of electrons. (a) Schematic illustration of a spin-ip co-tunneling process connecting the two states spin up |↑ and spin down |↓ from a single orbital state. (b) Co-tunneling process for spinless electrons for two degenerate orbital states, labeled |+ and |-. The depicted process ips the orbital quantum number from |+ to |and vice versa. The coherent superposition of orbital-ip processes leads to the screening of the local orbital quantum number. (c) QD with two spindegenerate orbitals leading to an overall fourfold degeneracy. Spin and/or orbital states can ipby one-step co-tunneling processes (all possible processes are indicated by black arrows). These processes lead to the entanglement of spin and orbital states, resulting in an enhanced SU[START_REF] Yang | Carbon nanotube network lmbased ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission[END_REF] 
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 335 Figure 3.5: Temperature dependence of a spin-1/2 Kondo resonance in a carbon nanotube quantum dot contacted with Pd contacts. (a) Stability diagram (dierential conductance as a function of V and V g ) of the nanotube, exhibiting Kondo ridges for N=1 and N=3. For N=2, inelastic cotunneling peaks are visible. (b) Conductance at zero bias as a function of V g for various temperatures from 70 mK to 0.85 K. At the lowest temperature, the conductance almost reaches the maximum value of 2e 2 /h, meaning that the contacts are almost symmetric. (c) Temperature dependence of the Kondo peak at the center of the N=1 diamond. (d) Fit of the conductance to extract the Kondo temperature with eq.3.3, giving T K = 1.65K. From [60].
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 3637 Figure 3.6: Perpendicular to the plane magnetic eld splitting of the zero-bias peak at the center of the Kondo ridge. The exchange energy is E = 2µ B B. Red curves are traces taken for B = 0.108T and B = 1.302T. Green dashed curves are the expected lines of the position of the splitted peaks maximum for a g = 2 Landé factor. From [59].
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 38 Figure 3.8: SU(4) Kondo eect in CNT QD with Pd contacts. (a) Dierential conductance in the Kondo SU(4) regime. On the color plots, we can see that the Kondo ridge spreads all over the three diamonds N=1, 2, and 3. (b) Horizontal cut at Vs = 0, showing that the conductance goes up to 3.1 e 2 /h at N=2. (b) Kondo resonance for the three occupancies [60].

Fig. 3 .

 3 Fig.3.8 shows the stability diagram in a SU(4) Kondo regions. The outlines of the Coulomb diamonds are visible, hidden by the Kondo ridge that is very large and spreads all over the three diamonds N=1, 2, and 3. Kondo resonance at each occupancy (See g.3.8.c) shows that the width of the Kondo peak is larger at N=2 (≈1.3 meV) than at N=1 and 3 (≈1 meV). The Kondo temperature is roughly estimated from the half-width at half maximum of the Kondo peak: 7K for N=2 and 6K for N=1 or 3. These values of Kondo temperature are very large compared to the one typically obtained in a nanotube for SU(2) Kondo eect (1-2K) as predicted by theory [48, 49].
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 39 Figure 3.9: Calculated single-particle energy spectrum as a function of the magnetic eld applied perpendicular (B⊥) and parallel (B//) to the CNT axis. (a) Perfect four-fold degeneracy. (b) With the presence of ∆ KK > 0, (c) ∆ SO > 0, and (d) both ∆ KK > 0 and ∆ SO > 0. Adapted from [55].

magnetic eld and will be explained in whatFigure 3 . 10 :

 310 Figure 3.10: Stability diagrams for B=0, 4, 8, and 10 T at T=16 mK as contour plots of the conductance G as a function of V g and V sd . The Kondo resonance produces the bright broad vertical lines at V sd = 0. This ridge disappears at high eld for N=1 and 3. It is split into two satellite peaks at high V sd separated by ∆V sd ≈ 4µ B B. At N=2, G decreases but it remains maximum at V sd = 0. From [67].

  electron and electron-phonon interactions until it reaches a minimum nite value at the lowest temperature because of impurity scattering. In 1908, Heike Kamerlingh Onnes was the rst to liquefy helium. A few years later in 1911, Onnes was studying the transport properties of mercury (Hg) at low temperatures. He found that below the liquefying temperature of helium, at around 4.2 K, the resistivity of Hg suddenly drops to zero. His discovery was the opening of a new chapter in low-temperature physics: Superconductivity. Nowadays Hg and many other metals (aluminum, lead, tin...) are known to be superconductors whose electrical resistivity completely vanishes when cooled down below their critical temperature T c .Besides having zero resistance, another interesting propriety of superconductors is expelling magnetic elds. In 1933, Meissner discovers the so-called Meissner eect: the magnetic ux density B is expelled below the superconducting transition temperature Tc, i.e. inside a superconductor material the magnetic eld vanishes within a length λ, called the penetration length. This eect reveals the perfect diamagnetic properties of a superconductor. Because the current itself generates a magnetic eld, the existence of a critical magnetic eld B c implies the existence of a maximum current which can be sustained by a superconductor, called the critical current I c . The measurements of thermodynamic quantities, such as the low-temperature specic heat show an exponential dependence well below T c . This suggests the presence of an energy gap ∆ in the density of state of a superconductor between the ground state and quasi-particle excitation.Depending on their magnetic eld behavior superconductors can be classied into two categories: type I and type II superconductors. The type-I category of superconductors is mainly comprised of metals and metalloids (Pb, Al, Hg, Sn, In). However, the Type 2 category of superconductors is comprised of metallic compounds and alloys (Y Ba 2 Cu 3 O 7 , (La, Sr)CuO 2 , CuM gO 2 ), except for the elements vanadium, technetium, and niobium. Type-II tend to have higher transition temperature T c than type-I superconductors (e.g T c (P b) = 7.2K, T c (Y Ba 2 Cu 3 O 7 ) = 92K). In Type I superconductor the magnetic eld is completely expelled from the interior for H < H C . Above that eld, a type I superconductor is no longer in its superconducting state. A Type II superconductors have two values of critical magnetic eld, for H < H C1 the magnetic eld is completely expelled as type-I behavior. For H C1 < H < H C2 , there is a partial eld penetration in the form of vortex lines of magnetic ux. Each vortex contains one ux quantum Φ 0 = h 2e . Where the vortex appears the superconducting order parameter drops to zero. In this region, the metal is no longer a superconductor. Whereas the rest of the metal stays superconducting. When the eld reaches the second critical eld H c2 the metal stops to be superconducting.
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 41 Figure 4.1: For a type I superconductor, magnetic ux is expelled, producing a magnetization (M)that increases with magnetic eld H, when the eld reaches the critical value H c , the magnetization falls to zero as in normal metal. A type II has two critical magnetic elds (H c1 and H c2 ), below H c1 type II behaves as I, and above H c2 it becomes normal.

Figure 4 . 2 :

 42 Figure 4.2: The BCS density of state of a superconductor is gapped around Fermi level. The states below the Fermi level (colored region) are lled and the states above are empty.

Figure 4 . 3 :

 43 Figure 4.3: Andreev reection process at a N/S interface. An incoming electron e with energy

Figure 4 . 4 :

 44 Figure 4.4: Principle of Andreev Bound States (ABS). (a) Andreev reections in a SNS junction, leading to the formation of Andreev bound states (ABS) in the normal part. (b) The local DOS in the normal part exhibits a set of resonances in the gap at the energies of the ABS. The energies of the ABS depend periodically on the superconducting phase dierence. (c) Observation of individually resolved Andreev bound states in a tunneling spectroscopy experiment. In this experiment, a carbon nanotube plays the role of the coherent conductor. Taken from [88].

Figure 4 . 5 :

 45 Figure 4.5: Sketch of a Josephson junction consisting of two superconductors separated by a nonsuperconducting part: I for insulator and N for normal. The two superconductors have dierent

Figure 4 . 6 :

 46 Figure 4.6: Shapiro steps measured in Left: Nb-Nb point-contact Josephson junction. Right: InAs nanowire. The applied microwave radiation results in voltage plateaus (Shapiro steps) at integer multiples of V .From [84] and [85].
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 204 Introduction to superconductivityThis yields a current-phase relation (CPR) for an SNS junction at very low temperature:

Figure 4 . 7 :

 47 Figure 4.7: (a) Andreev bound states energy spectrum for a single channel with three dierent transmissions τ = 0.4, 0.8, 1. (b) Current phase relations associated to the previous spectrum at zero temperature. Taken from [59].

Figure 5 . 1 :

 51 Figure 5.1: Energy level diagram of the quantum dot in the strong coupling regime. Depending on

Figure 5 . 2 :

 52 Figure 5.2: Energy level diagram of a quantum dot in the weak coupling regime. The tunneling of Cooper pairs is suppressed. One needs to provide at least energy eV S D = ∆ for the quasiparticles tunneling to take place.

Figure 5 . 3 :

 53 Figure 5.3: Fourth order tunneling processes of a cooper pair in the intermediate regime. Left: For a total spin S=0 on the dot, the cooper pair is transported with the same spin order, supercurrent is important. For a total spin S=1/2, the cooper pairs spin order is reversed a π phase shift is induced. Right: Corresponding calculated current-phase relation for 0-Junction and π-Junction.

Chapter 5 .

 5 DC Josephson eect in a carbon nanotube quantum dot two electrodes provides a perfectly transmitting channel for transport. Let us consider the case where the electrodes become superconducting. In this case, the Kondo eect may compete with other quantum many-body phenomena: superconductivity. Would the Kondo correlations survive in the presence of Cooper pairs and the superconducting gap at the Fermi level? And what will happen to the Josephson current for such a junction?

Figure 5 . 4 :

 54 Figure 5.4: Density of state of the superconducting contacts together with the Kondo resonance in its normal state. (a) For k B T k /∆ 1, the electrons that could participate in the screening are not available because of the superconducting gap. (b) For k B T k /∆ 1, both the Kondo eect and superconductivity can exist leading to an enhanced supercurrent.

Figure 5 . 5 :

 55 Figure 5.5: Phase diagram of the 0-π transition of a carbon nanotube in the Kondo regime, as a function of the dot energy 0 /U and the level width Γ/U . Taken from [62].

Figure 5 . 6 :

 56 Figure 5.6: Measurement of the critical current amplitude in a carbon nanotube quantum dot contacted with superconducting electrodes. When the gate voltage is tuned, the critical currentamplitude alternate positive and negative, indicating a 0 to π transition. Adapted from[START_REF] Jorgensen | Critical Current 0 -π Transition in Designed Josephson Quantum Dot Junctions[END_REF].

  [ϕ C , π]. The critical phase is extracted for several dierent diamonds, giving a phase diagram of the transition. It shows that it exhibits a universal behavior, independent of the values of the parameters of the quantum dot (see g.5.7.c). This experiment demonstrates experimentally that the 0 -π transition can be controlled not only by the gate voltage but also by the superconducting phase.

Figure 5 . 7 :

 57 Figure 5.7: (a) Modulation of the switching current of the SQUID δI s , proportional to the CPR, as a function of the magnetic eld B and the gate voltage V g for an oddly occupied diamond. Vertical cuts at the 0-π transition, showing the whole transition. The dashed lines are guides to the eyes and represent the contributions of the singlet (0-junction, in blue) and the doublet state (π-junction, in red). (b) Denition of the critical phase ϕ C at which the system undergoes 0 to π transition. (c) Critical phase ϕ C plotted as a function of d , yielding a phase diagram of the 'ϕ-controlled transition, where δE the width of the transition. Taken from [60].

6. 1

 1 Measurement of AC Josephson eect6.1.1 Experimental setupIn order to measure the AC emission of a CNT QD connected with superconducting electrodes, one can use high frequency electronics (for frequencies below 10GHz at cryogenic temperature) or an on-chip quantum detector. In this experiment, we have chosen to use a superconducting tunnel junction (SIS junction) as a quantum noise detector. The source of emission (CNT) is coupled onchip to an SIS Josephson junction via a resonant circuit. The source and the detector are directly connected to the end of the central line of a coplanar waveguide resonator, whose other end is grounded so that they are coupled at the resonance frequencies of the circuit. The resonance is expected at ν 0 = 12GHz, ν 0 = 31GHz and ν 0 = 51GHz. The fabrication of the sample is explained in detail in Chapter 2. The experimental setup is represented in g.6.1.

Figure 6 . 1 :

 61 Figure 6.1: (a) The carbon nanotube Josephson junction is coupled to a quantum detector SIS junction via a coplanar waveguide resonator. (b) The equivalent electronic circuit is the coplanar waveguide is equivalent at resonance to an RLC circuit.

  photons at energy hν < 2∆-| eV d |. These inelastic events happen only if these photons are absorbed by the environment. This process leads to the decrease of quasiparticles current and a negative step I(V) is observed.

Figure 6 . 2 :

 62 Figure 6.2: Red curve: Typical current-voltage characteristic of an SIS junction. Blue: calculated I(V) of the detector under irradiation giving rise to photo-assisted tunneling current I P AT steps.

I 2 S

 2 P AT due to emission noise If the detector is biased below the gap, V d < 2∆/e: I 0 qp (V dhν e ) = I 0qp (V d ) = 0. Thus, only the rst term of eq.6.9 contributes: we are then measuring the emission of the source absorbed by the detector.I P AT (V d ) = V (-ν)I 0 qp V d + hν e(6.10)I P AT manifest itself as a small steps step at 2∆ > eV d > 2∆ -hν 0 .
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 116 Ac Josephson eect in CNT QD in the Kondo regime

(6. 13 )

 13 with I 0 qp (V D ) the IV characteristic of the detector without irradiation.The usual way for characterizing a resonator, i.e. determining its resonance frequencies and quality factors, is to measure the frequency dependent reection coecient with high frequency electronics. But here, the sample is designed to be addressed by DC measurements, AC signal being conned on-chip. The best way to characterize the resonator (and the detector) is to use an on-chip AC source. A very convenient one is given by the AC Josephson eect of a Josephson junction: when biased by the voltage V s , there is an AC current I(t) = I C sin 2eVs t in the junction. Using eq.6.13 and 4.23, and knowing the I(V ) characteristic in absence of environment I 0 qp , the measurement of I P AT at a xed eV d < 2∆ -hν 0 gives access to |Z t (ν)| at each resonant frequency.

L=3mm

  

Figure 6 . 3 :

 63 Figure 6.3: (a)Design of the coplanar waveguide resonator used in this experiment, showing the coupling between the source and the detector. (b) Photo-assisted quasiparticle current measured in the detector biased at 2∆ -hν 0 < eV d < 2∆ as a function of the bias V S of the source of AC Josephson eect. The frequency of the emission is given by the Josephson frequency ν = 2eVs h . (b) Trans-impedance Z t (ν) extracted from I P AT using formula 6.13. The corresponding resonance frequencies and quality factors are given. In this sample, the detector is a SQUID of normal resistance around 5 kΩ and the source a simple junction of normal resistance 12 kΩ.

Figure 6 . 4 :

 64 Figure 6.4: Low temperature biasing circuit.

(6. 20 )Chapter 6 .

 206 Ac Josephson eect in CNT QD in the Kondo regime with ∆f the bandwidth of with cut-o lter frequency 1/2πRC. The voltage noise then takes a very simple form:

Figure 6 . 5 :

 65 Figure 6.5: Color plot of the Photo assisted tunneling current across the detector as a function of source-drain voltage V s and detector bias voltage V d .(a) The bias circuit is at room temperature T=300K. (b) The bias circuit is placed near the sample at T=10 mK. (C) Vertical cut at V d = 0.33mV showing the PAT current peaks that correspond to a resonance frequency of 10 GHz and 30 GHz.

Figure 6 . 6 :

 66 Figure 6.6: Trans-impedance Z t (ν) extracted from I P AT using formula 6.13. (a) For ν=10 GHz. (b) For ν=30 GHz.

Figure 6 . 7 :

 67 Figure 6.7: Normal state stability diagram of the carbon nanotube quantum dot. (a) Dierential conductance dI/dV SD versus bias voltage V SD and gate voltage V g . The nanotube exhibits strong evidence for the Coulomb blockade and SU(2) Kondo eect. For an odd number of electrons occupying the QD, two Kondo ridges for occupancies 1 and 3, labels A and B are observed. The dI/dV SD curves (red curves) are taken at gate voltages 14V, 17.5V, and 21.5V. (b) Conductance at V SD = 0 of Kondo ridges A and B, and for zone C.

Figure 6 . 9 :

 69 Figure 6.9: Gate dependence of the Kondo temperature extracted from the evolution of the width of the zero-bias conductance peak for Kondo ridges A and B. The parameter extracted from the t is shown in the legend of the gure.

Figure 6 . 10 :

 610 Figure 6.10: (a) Dierential resistance of the CNT as a function of the biasing current, in the same region of gate voltage as g.6.7. (b) Vertical cuts of the color plot at three gate voltages.

(6. 27 )JFigure 6 . 11 :

 27611 Figure 6.11: Equivalent circuit of a Josephson junction according to the RCSJ model. The Josephson element is indicated by a cross.
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Figure 6 .

 6 Figure 6.12: (a) Gate dependence of the extracted critical current for Kondo ridge A and B and regions C. The parameters of the t are R = 0.9kΩ and T = 100mK. (b) Data and theoretical curves tted with eq.6.28 for three gate voltages of the Kondo ridge A (left) and the Kondo ridge B (right).
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 42 Dierential conductance in the superconducting state

Figure 6 .

 6 Figure 6.13: (a) Dierential conductance dI/dV as a function of bias voltage V SD and gate voltage V G for Kondo A and B and region C. (b) Vertical cuts of the three color plots given above at the gate voltages indicated by the dashed color lines. (c) Gate dependence of the critical current I C , the inverse of the resistance R J extracted from the RCSJ model, and the conductance in the superconducting state G s (Horizontal cut at V SD = 0 of color plot in (a)). 1/R J and G S , exhibit very similar values and behavior.
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 6615616 Figure 6.14: (a) Derivative of the photo-assisted tunneling current. (b) Quantity represented on (a) integrated over V SD , yielding I P AT (V SD , V g ). (c) Vertical cuts of the I P AT color plot at the gate voltages indicated by the dashed color lines, two photo-assisted tunneling peaks at V SD = ±22.4µeV is observed.

Figure 6 . 17 :

 617 Figure 6.17: Measurement of S-NbAl sample. (a) Dierential conductance of the CNT as a function of its bias voltage Vs in the superconducting state in the gate voltage region investigated above. (b) The derivative of the photo-assisted tunneling current. (c) Quantity represented on (b) integrated over Vs, yielding I P AT (Vs, Vg). Vertical cuts of the three-color plots are given on the right at the gate voltages indicated by the dashed color lines. Taken from [60].

Figure 6 . 18 :

 618 Figure 6.18: Comparison of the critical current I C and the AC critical current I AC C (extracted from eq.6.13) for (a) Kondo A. (b) Kondo B. (c) Region C. (b) Same comparison for the sample with Pd/Nb/Al contact S-NbAl where two harmonics at 10 and 30 GHz were detected.

Figure 6 . 19 :Figure 6 .

 6196 Figure 6.19: NRG calculation. (a) Andreev bound state spectrum (b) Supercurrent amplitude as a function of the superconducting phase dierence ϕ at the particle-hole symmetry point obtained by NRG calculation with the parameters of the Kondo ridge A and B.

Figure 6 . 21 :

 621 Figure 6.21: NRG calculation of at = 0 meV (a) ABS spectrum and (b) Supercurrent of the

Figure 6 . 22 :

 622 Figure 6.22: Comparison of the many-body spectrum for Kondo ridge A at the particle-hole symmetry point and a quantum channel with the same transmission in the normal state, as a the function of the phase dierence ϕ. The energy dierence between the singlet ground state and the spin degenerate doublet state is denoted in black, with a solid line and a legend QD:D for the quantum dot and a dashed line and a legend QC:D for the quantum channel. The energy dierence between

∆ 2 .

 2 We obtain equilibrium values of E ABS (ε, ϕ = π) from the NRG. Results for both A and B Kondo ridges are similar and given in g.6.23, showing a semi-quantitative agreement between the renormalized-quantum-point-contact based prediction and measured experimental data.

Figure 6 . 23 :

 623 Figure 6.23: Gate dependence of the rst Fourier component |I 1 | of the AC Josephson current. Bullets represent the experiment lines the theoretical prediction for a single quantum channel with a renormalized transmission. Transmission of the quantum dot has been evaluated from the energy of Andreev bound states at ϕ = π, obtained by the NRG. The dots represent experimental data for Kondo ridges A and B. The values of |I 1 | are based on [128, 131].

  the rate for two QP to recombine into a Cooper pair, one QP occupied the Andreev level and the other one was in the continuum at energy E. The excess of energy E + E A is emitted in the environment.

Γ

  

Figure 6 . 24 :

 624 Figure 6.24: The dynamics of trapping and untrapping quasiparticles in the dot as described in the text.

Figure 6 .

 6 Figure 6.25: (a)Numerical evaluation of the rate of the QP injection and escape in the QD junction with k B T env = 0.2∆ and k B T qp = 0.1∆. (b) Probability for the junction to be in the doublet state as a function of the energy E A of the Andreev level.

Figure. 6 .

 6 Figure.6.25.b shows that for the energy of the Andreev level higher than 0.2∆, the probability

Figure 6 . 26 :

 626 Figure 6.26: Probability for a QP present in the quantum dot to escape after tunneling into the continuum due to Demkov-Osherov tunneling. This curve is calculated at a voltage eV =∆/2 and use the result derived in reference [127].

Figure 6 .

 6 Figure 6.27: (a) Comparison between the data for Kondo ridge A (blue circles) and the calculated amplitude of the AC supercurrent I AC C introducing a nite probability for the system to be in the doublet state. In the incoherent calculation (black solid line), only the amplitude of the singlet and doublet supercurrent is considered. In the coherent scenario (red dashed line) the sign of this current is also considered. (b) Probability for the system to be in the doublet state in the incoherent (black solid line) and coherent regime (red dashed line).
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 71 Figure 7.1: (a) SEM image of a CPW sample. The transmission line runs horizontally with three λ/4 resonators hanging vertically. (b) SEM image of the coupling area between CPW resonator and transmission line. (c) SEM image of a W nanowire connected to Nb with a thick W patch at the junction. (d) Optical microscope picture of the lumped resonator. The arrow points to the nanowire placed horizontally.
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 7126772 Fig.7.2 shows the evolution of the dierential resistance as function of temperature (g.7.2.a)and magnetic eld (g.7.2.b) for the three measured nanowires. From 300K, when the temperature is lowered, the resistance increases slightly (≈ 5%) to nally show a superconducting transition around T c ∈ [5 -6.5]K. Then we x the temperature below the transition point at T=2 K while

Figure 7 . 3 :

 73 Figure 7.3: Dierential resistance vs current of sample NW2 at very low temperature (T=10mK).

. 3 )

 3 where ∆ 0 = 1.76k B T c . With T c ∈ [5 -6.5]K and the square resistances from table 7.1 we evaluate a kinetic inductance L K, ∈[7 -25] pH/ .Using a nite element simulation Sonnet ® software we could extract for the lumped resonator, the parallel capacitance C ≈ 240 fF, and the geometrical inductance of the wide Nb inductive part L geo,D ≈ 0.935 nH. From the value of the resonance frequency f = 1/(2π (LC)) we deduce the kinetic inductance of the wire L K = 4.3nH. The geometrical inductance of the nanowire alone is expected to be L geo,W ≈ 17 pH leading to the kinetic inductance fraction α = L K /(L geo,W + L K ) = 0.996 and kinetic over geometrical inductance ratio β = L K /L geo,W = 253 so that the geometrical inductance can be neglected. We obtain a kinetic inductance per unit length L K ≈ 439µH/m and a kinetic inductance per square L K, = 15.4pH/ which falls in the expectation window calculated earlier.

Figure 7 . 5 (a) shows the transmission spectra 129 Chapter 7 .

 751297 On-chip resonant circuit and measurement of electronic temperature of the lumped resonator at low power under various values of temperature ranging from 10 mK to 2.29K with ts using equation 7.2. At 10 mK, we found ω 0 /2π = 4.4642GHz and Q i = 3990 at low power. Decreasing the temperature leads to an increase of the resonance frequency together with a sharpening of the resonance (g. 7.5.b-

Figure 7 . 4 :

 74 Figure 7.4: (a) Temperature dependence of the normalized transmission spectra of the CPW resonator. (b) Extracted quality factors vs temperature. (c) Temperature dependence of the resonance frequency.

Figure 7 . 5 :

 75 Figure 7.5: (a) Temperature dependence of the normalized transmission spectra of the lumped resonator. (b) Temperature dependence of the resonance frequency. (c) Extracted quality factors vs temperature.

(7. 4 )

 4 with x 0 = ω-ω0 w0 . Using the power conservation law relating the lost energy into the resonator P diss with respect to the measurement lines accounted by the scattering parameters corresponding to wave reection S 11 and transmission S 21 . In a hanger resonator the conservation law reads:P diss = P [1 -|S 11 | 2 -|S 21 | 2 ] (7.5)with S 11 = S 21 -1. By replacing in this equation, the S 21 formula, we nd:

Figure 7 . 6 :

 76 Figure 7.6: (a) Power dependence of the normalized transmission spectra near the microwave resonance of the lumped resonator at 1.5K. (b) Power dependence of the a N L term allowing us to extract (see text) a Kerr parameter K W,He = 74 Hz/photon at 3.5GHz. (c) Extracted quality factors as a function of the microwave power. The Q's seem to be rather stable with respect to Power with a maximum internal quality factor of 700.

  photon detection experiments at a very moderate temperature such as the one of a pumped He bath.

Figure 7 . 7 :

 77 Figure 7.7: (a) Power dependence of the normalized transmission spectra of the lumped resonator at 10 mK.(b) Extracted quality factors vs microwave power.

Figure 7 . 8 :

 78 Figure 7.8: (a) In plane magnetic eld dependence of the normalized transmission spectra of the lumped resonator at 1.55K with ts using the S 21 formula. (b) Evolution of Q i and f res vs magnetic eld.

  single electron transistor made up of Aluminum as metal and Aluminum oxide as an insulator, we use the resist recipe and lithography technique explained in the fabrication chapter. First, 50 nm of Aluminum is evaporated with an angle 15°to form the source, drain, gate electrodes, and the transistor. The tunnel junctions are then formed by introducing 7 mbar of oxygen into the chamber for almost 20 mins so that the rst Al layer becomes coated by a thin layer of Al 2 O 3 .

Figure 7 . 10 :

 710 Figure 7.10: Coulomb blockade stability diagram. (a): Schematic representation of stability diagram of a single electron transistor, the red region corresponds to dI dV SD = 0 showing Coulomb blockade region. (b): Color plot of the conductance of the SET as a function of the gate voltage V g and source-drain voltage V SD .

Figure 7 . 11 :

 711 Figure 7.11: Coulomb blockade oscillations at zero bias voltage. Conductance of the SET G SET versus the gate voltage V g .

Figure 7 . 12 :

 712 Figure 7.12: Measured conductance G SET versus the gate voltage V g . The points represented the measured values, eq 7.10 ts well the peak (bleu curve), giving G ∞ = 116µS and 2E C∆k B T = 9.3 × 10 3 V -1 , which gives T electronic = 23mK for this peak.

Figure 7 . 13 :

 713 Figure 7.13: Electronic temperature extracted from tting of the averaged peaks using eq. 7.10

  Titre: Supercourant et dynamique d'une jonction Josephson constituée d'un nanotube de carbone dans le régime Kondo. Mots clés: Eet Josephson, eet Kondo, nanotube de carbone, boite quantique, transition 0-π Résumé: Au cours de cette thèse nous avons étudié la compétition entre deux types d'états fortement corrélés : l'eet Kondo, qui correspond à l'écrantage d'un moment magnétique isolé par les électrons de conduction d'un métal, et l'eet de proximité supraconducteur. Cette compétition a déjà été sondée à l'équilibre, en mesurant la relation courant-phase dans des jonctions Josephson à base de nanotube de carbone. Ces expériences ont révélé que l'état fondamental du système pouvait être soit un état doublet magnétique ou bien un état singulet nonmagnétique et qu'une transition entre ces deux états pouvait être contrôlée par une tension grille ou bien par la phase supaconductrice. Dans ce travail de thèse nous avons montré qu'une telle transition pouvait être induite dynamiquement en mesurant l'eet Josephson AC de la jonction. L'émission Josephson est mesurée en couplant sur le même échantillon le nanotube de carbone à un détecteur quantique grâce à un circuit résonant supraconducteur. L'expérience montre que cette émission est fortement réduite dans les zones de tension grille où le courant critique était augmenté du fait de l'action conjuguée de l'eet Kondo et de l'eet de proximité. En comparant nos données à des calculs utilisant les techniques numériques du groupe de renormalisation, nous attribuons la forte diminution de l'eet Josephson AC à la dynamique des quasiparticules dans la boite quantique constituée par le nanotube de carbone qui conduit à une transition entre l'état fondamental singulet et l'état excité doublet.

  Résumé de la thèse modie cette caractéristique courant-tension. Si la jonction détectrice est polarisée avec une tensionV d telle que | V d |< 2∆/e, un courant PAT apparait si un photon d'énergie hν > 2∆-| V d | est absorbé.Ainsi une marche de courant PAT de largeur hν/e apparait sur la caractéristique I(V ) avec une amplitude reliée à l'intensité de la radiation absorbée. Le courant PAT est donc directement relié à l'émission haute fréquence du CNT couplé au détecteur.Pour caractériser l'échantillon et déterminer ces paramètres, à savoir son énergie de charge U, le couplage aux contacts Γ et l'asymétrie des contacts Γ R /Γ L , l'échantillon est d'abord mesuré dans l'état normal. Pour cela, un champ magnétique de 0.1T est appliqué pour rendre les contacts Pd/Al normaux. La conductance diérentiel dI/dV SD du CNT dans le régime normal est présentée sur la gure 3.a. en fonction de la tension de polarisation V SD et de la tension de grille V g . Cette méthode de caractérisation nécessite un champ magnétique de plus de 1T pour les échantillons avec contacts

	0.2.2 Résultats expérimentaux
	Caractérisation du nanotube dans l'état normal

de Pd/Nb/Al, ce qui interdit une extraction able des paramètres de la boite quantique dans le régime normal. Nous nous focaliserons donc dans la suite sur les échantillons avec les contacts Pd/Al. Il est à noter toutefois que les échantillons avec des contacts Pd/Nb/Al présentent des comportements qualitativement similaires à ceux avec contacts Pd/Al. Le diagramme de stabilité présente des diamants de Coulomb avec une dégénérescence 4, typique d'une boite quantique à base de CNT sans défaut. Pour un nombre impair d'électrons dans la boite, l'eet Kondo se manifeste par une augmentation de la conductance à tension nulle. Nous nous sommes focalisés sur deux zones Kondo A et B avec un nombre d'électron N=1 et 3. Le maximum de conductance est plus petit que 2e 2 /h, indiquant une légère asymétrie des contacts.

Table 1 :

 1 Paramètres de la boite quantique à base de nanotube de carbone dans les zonesKondo A 

	Kondo A	1.1	97.9	3.9	0.62	3.3	0.05	1.958
	Kondo B	1.7	146.5	4	0.75	2.5	0.05	2.93
	et B.							

  2 supérieur à 5T. Pour mesurer la valeur du courant critique I C , nous avons mesuré la résistance diérentielle dV /dI en fonction de courant de polarisation I DC . La gure 10.c montre cette quantité pour le nanol NW1 à T = 2K pour diérents champs magnétiques. Pour NW1, le courant critique à champ nul est de 4.0 µA and il décroit lorsqu'on augmente le champ magnétique. A cette température

	le courant est non-hystérétique. Pour les nanols NW2 et NW3, le courant critique à champ nul
	est de 1.3 et 3.8 µA respectivement. Pour étudier le courant critique à plus basse température, le
	nanol NW2 a été refroidi à 10mK dans un réfrigérateur à dilution. La résistance diérentielle en
	fonction du courant de polarisation est montrée sur la gure 10.d. Le courant critique augmente
	jusqu'à 12µA, avec une hystérésis d'origine thermique.
	0.4.2 Résonateurs micro-onde incluant un nanol de tungstène

Pour mesurer les propriétés micro-onde des nanols de tungstène, les deux types de résonateurs présentés précédemment ont été refroidis à basse température, et le spectre de transmission S 21 mesuré avec un analyseur vectoriel.

De la valeur de la fréquence de résonance, il est possible d'extraire l'inductance cinétique du nanol de tungstène. On peut alors la comparer à la valeur théorique attendue à basse température :

50 mK Lock-in Voltmeter Lock-in Voltmeter

  

			Low pass filter	DC Voltage			DC Voltage Low pass filter
	Low noise Amplifier Input noise= 2nV/ 𝑯𝒛	dI/dV	Low noise Amplifier Input noise= 2nV/ 𝑯𝒛	dV/dI
			𝑉 𝐺			
			50 mK		R=10 M𝜴	CNT
		R=1 k𝜴	CNT			
	𝑉 𝑆𝐷	~*100 𝑉 𝐴𝐶		𝑉 𝑆𝐷	𝑉 𝐴𝐶 R=100 M𝜴	~*100	𝑉 𝐺

across the 1KΩ resistance in the superconducting (normal) state. Dierential conductance dI/dV is measured directly with a lock-in amplier, and the DC voltage is measured with a voltmeter. For the dierential resistance measurements, the CNT is current biased. dV/dI and the DC voltage are measured directly with a lock-in amplier and a voltmeter respectively at 0.1 nA modulations.

  In another word, the Kondo eect opens a single spin degenerate perfectly transmitted channel.

  is the normalization condition of Bogoliubov transformation. The diagonalized Hamiltonian takes the following form:

  2 . Solving the diagonalized Hamiltonian gives the usual BCS ground state:

  Kondo correlation cannot develop due to the lack of electrons at the Fermi level of the contacts as shown in g.5.4.a there is no co-tunneling process. Thus, the magnetic spin remains unscreened. In this case, the Josephson coupling is negative: this is a π-junction

If k B T K /∆ 1, the quasi-particle density of state of the superconductors overlap with that of the Kondo resonance (see g.5.4.b). The cotunneling processes are enhanced, making the transfer of Cooper pairs easier, and favoring the formation of a Kondo/BCS singlet state. The two phenomena cooperate to enhance the supercurrent. In this case, the Josephson coupling is expected to be positive, this leads to a 0-junction.

Table 6 .

 6 2: Parameters of the carbon nanotube quantum dot on the Kondo regions A and B.

		1.1	97.9	3.9	0.62	3.3	0.05	1.958
	Kondo B	1.7	146.5	4	0.75	2.5	0.05	2.93

  2 and f BE (E) the Bose-Einstein distribution at energy E and temperature T env . g(E, E A ) is related to the matrix element of the current operator and we approximate it by g(E, E

Table 7 .

 7 1: Growth parameters, dimensions, and transport properties of the fabricated W nanowires.

	Current(pA)		Dose	Length(µm)	Thickness (nm)	Width (nm)
	NW1	20	0.178nC/µm	5.9		40	50
	NW2	20		0.06nC/µm	5.9		5.5	35
	NW3	10		3nC/µm 2	5.9		20	70
	Resonator "Lumped"	20		0.16nC/µm	9.8		30	35
	Resonator "λ/4"	27		3nC/µm 2	390		12	75
	Resonator "Lumped2 "	27		3nC/µm 2	30		25	80
	Sample	Resistance	R	ρ	ξ(2K)	λ(0K)
		(kΩ)		(Ω)	(µΩ.cm)	(nm)	(nm)
	NW1	7.75		65.7	266	6.7	674
	NW2	25.15		149.2	80.6	7.6	400
	NW3	9.1		108.0	216.0	7	449

Conclusion

In this chapter, we presented the physics of an important many-body eect in condensed matter: the Kondo eect. This eect was initially observed in alloys with magnetic impurities, but it can occur also in a single impurity constituted by a quantum dot described by the Anderson model.

The electrons at the Fermi energy of the reservoirs screens the magnetic moment of the impurity, giving rise to a resonance in the density of states of the quantum dot: the Kondo resonance. Then we focus on the Kondo eect in Carbon nanotubes quantum dot. The four-fold degeneracy of a carbon nanotube QD makes it a very interesting system to study the Kondo eect. In particular, it can sustain dierent Kondo eects: spin-1/2 SU(2), SU(4), and orbital Kondo eect. The temperature dependence of the Kondo resonance at zero-bias voltage for both ridges A and B is represented in g.6.8.a. Fitting the conductance at zero-bias as a function of temperature with eq.6.22 allows one to extract the Kondo temperature (g.6.8). The agreement of this formula with our data is not completely satisfactory. We dene T K as the value of T where the conductance is divided by a factor 2 i.e. G(T = T K ) = G 0 /2, with G 0 = G(T = 50mK). Note that this denition is independent of the parameter s. The value extracted this way is consistent with the width of the zero-bias conductance peak as a function of bias voltage V SD .

G(2e²/h) T(mK)

Determination of the charging energy and coupling constant

From the size of Coulombs diamonds, we can determine the charging energy of diamonds with odd electronic occupancies (N=1 and N=3). First, the lever arm α between V g and the energy d (see g. as function of V g and V SD measured at B=2T. The value of E C is extracted using g 7.10 by measuring the width of the diamonds in the bias voltage axis, the value found is E C =22±2 µeV .

Coulomb blockade oscillations

When sweeping the gate voltage at zero bias voltage, the charge degeneracy point is crossed, a zero-bias conductance peak is observed. Thus, a periodic pattern of equidistant conductance peaks is obtained. In Fig 7 .11, 4 coulombs peak are observed spreading over 14 mV in gate voltage.

The width of these conductance peaks at zero dc bias voltage constitutes a well-known primary thermometer. For a metallic island, with a continuous density of states and connected through tunnel contact, the SET conductance reads [START_REF] Beenakker | Theory of coulomb-blockade oscillations in the conductance of a quantum dot[END_REF] G