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Résumé de la thèse

Introduction

Ce travail de thèse s'inscrit dans le cadre de la physique mésoscopique, qui vise à mesurer et
comprendre les propriétés électroniques de conducteurs qui sont quantiquement cohérents de par
leur faible taille (typiquement en dessous du micron) et du fait de leur basse température (en dessous
d'1K). Nous nous sommes particulièrement intéressés aux propriétés de boites quantiques, des
systèmes avec un nombre faible et ajustable d'électrons, connectées à des contacts supraconducteurs.
On a donc ainsi une jonction Josephson dont la partie normale est constituée par la boite quantique.
Cette thèse s'est particulièrement attachée à un aspect relativement peu exploré de ce type de
jonctions : leur dynamique. Cela s'est fait en mesurant l'e�et Josephson AC d'une telle jonction,
réalisée avec une boite quantique constituée par un nanotube de carbone.

L'e�et Josephson AC consiste en la génération par une jonction supraconductrice d'un courant
oscillant lorsqu'une tension de polarisation lui est appliquée. C'est grâce à cet e�et que les jonctions
tunnel supraconductrices peuvent être utilisées comme émetteurs haute fréquence, ou bien comme
étalon de tension grâce à la précision métrologique de l'e�et Josephson AC. Pour des jonctions
Josephson impliquant un système conducteur, mesurer l'e�et Josephson AC permet de sonder les
états qui portent le supercourant à fréquence �nie et hors d'équilibre. Ainsi de telles mesures ont
démontrées la protection topologique dans di�érents systèmes topologiques, chose qui n'est pas
mesurable avec une mesure DC.

Dans cette thèse, nous avons utilisé l'e�et Josephson AC pour induire des transitions dans une
jonction Josephson à base de boite quantique entre un état singulet et un état doublet de spin.
Dans ce type de jonction, l'interaction Coulombienne conduit au blocage de Coulomb qui amène
un état doublet s'il y a un nombre impair d'électrons dans la boite. Cet état doublet entrave le
passage des paires des Cooper, ce qui se manifeste par un faible supercourant et un changement
de signe de la relation courant-phase. On parle alors de jonction π. Cependant, un état singulet
peut être restauré si l'e�et Kondo, qui apparait également pour un nombre impair d'électrons, a
une échelle d'énergie, �xée par la température Kondo, plus grande que le gap supraconducteur.
L'e�et Kondo résulte d'une interaction entre une impureté magnétique localisée et les électrons de
conduction d'un métal et conduit à un état fortement corrélé avec une résonance Kondo à l'énergie
de Fermi des contacts métalliques.

Cette transition entre état doublet et singulet a généré un intérêt théorique important. Expérimen-
talement, il est à présent bien établi que cette transition peut être induite à l'équilibre par une
tension grille, un champ magnétique ou une di�érence de phase supraconductrice. Une partie de
cette thèse est dédiée à la mesure de l'e�et Josephson AC dans une jonction Josephson basée sur
un nanotube de carbone pour sonder sa dynamique. Cela est réalisé en utilisant une détection
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haute-fréquence "on-chip", dans un régime où e�et Kondo et e�et de proximité coexistent.

Pour améliorer la détection à basse température, nous avons réalisé deux autres expériences.
Dans la première nous avons réalisé au laboratoire des lignes de polarisations �ltrées, de type �ltre
passe-bas, avec lesquelles nous avons mesuré la température électronique à l'aide d'un transistor à
un électron. Dans la seconde expérience, nous avons fabriqué et mesuré un nouveau type de micro-
résonateur supraconducteur utilisant un matériau à forte inductance cinétique, à savoir des nano�ls
de tungstène déposé sous faisceau d'ions hélium focalisés. Ce type de résonateur pourrait s'avérer
très utiles pour le couplage "on-chip" haute-fréquence et ainsi aider à la détection de l'émission
Josephson AC de jonctions hybrides.

0.1 Boites quantiques à base de nanotube de carbone

S D

VG

Figure 1: Gauche : schéma d'une boite quantique à base de nanotube de carbone (CNT QD) avec
les contacts de source (S), de drain (D) et une grille électrostatique couplée capacitivement à la
boite quantique, utilisée pour contrôler le nombre d'électrons. Droite : spectre de niveaux d'énergie
discret de la CNT QD, illustrant les di�érentes échelles d'énergie pertinentes : EC l'énergie de
charge, le couplage aux électrodes de gauche et de droite ΓL et ΓR, le couplage total aux électrodes
Γ = ΓL + ΓR, ∆E l'écart entre niveaux et εd la position du niveau d'énergie.

Les nanotubes de carbone (CNTs) ont une longueur de plusieurs microns pour une largeur de
quelques nanomètres. Quand un nanotube est connecté à des électrodes métalliques, il peut se
comporter comme une boite quantique pour des transmissions relativement faibles avec les contacts.
A cause du con�nement des électrons, une boite quantique présente un spectre discret de niveaux
électroniques. La �gure 1 montre un tel spectre avec des niveaux à une énergie εd, un écart moyen
entre niveaux ∆E, un élargissement Γ due au couplage aux électrodes métalliques et une énergie
de charge EC = e2/2C, avec C la capacité totale de la boite quantique. EC est l'énergie nécessaire
pour ajouter un électron à la boite quantique. Le couplage de la boite aux électrodes métalliques
permet d'e�ectuer des mesures de transport au travers du nanotube.

12



Résumé de la thèse

0.2 E�et Josephson AC dans une boite quantique à base de

nanotube de carbone

Dans cette partie, nous présentons les résultats expérimentaux sur la mesure de l'e�et Josephson
DC et AC dans une boite quantique à base de nanotube de carbone dans le régime Kondo. Nous
nous focaliserons sur l'e�et Josephson AC, qui constitue la partie centrale de ce travail de thèse.

0.2.1 Dispositif expérimental

Pour mesurer l'émission Josephson d'une jonction Josephson constituée d'un nanotube de carbone
connecté à deux électrodes supraconductrices, nous avons choisi de coupler cette jonction à un
détecteur quantique. Dans ce travail, le détecteur est une jonction tunnel supraconductrice (une
jonction supraconducteur/isolant/supraconducteur (SIS)). Les contacts du nanotube de carbone
sont réalisés avec un bicouche palladium/aluminium qui présente un gap de ∆Pd/Al = 50± 5µeV .
D'autres échantillons avec un tricouche palladium/niobium/aluminium, présentant un gap plus
important ∆Pd/Nb/Al = 170µeV ont également été mesurés. Le CNT est couplé au détecteur
quantique via un résonateur supraconducteur réalisé sur le même échantillon. Le nanotube et le
détecteur sont alors bien couplés seulement aux fréquences de résonance du circuit de couplage,
qui sont attendues à ν0 = 12GHz, ν0 = 31GHz et ν0 = 51GHz. Le dispositif expérimental est
représenté sur la �gure 2.a.

AbsorptionEmission

hν/e

hν/e
Emission

2Δ
VD

 h�=2�-eVD

 h�=eVD-2�h�

2Δ

Vd

VD (mv) 2Δ/e0

I(
A
)

h�

R

SIS noise daetector

10 µm
R

1 µm
1 µm

CNT

D S
G

 
 source of noise

���

(a) (b)

Figure 2: (a) La jonction Josephson à base de nanotube de carbone est couplée au détecteur quan-
tique SIS par un résonateur à ligne de transmission. (b) Courbe rouge : caractéristique courant-
tension typique d'une jonction SIS. Courbe bleue : Caractéristique courant-tension calculée du
détecteur sous irradiation montrant des marches de courant photo-assisté IPAT . Lorsque le dé-
tecteur est polarisé à une tension inférieure à 2∆/e, il est sensible à l'émission de photon par le
CNT. Lorsque la tension est supérieure à cette valeur, le détecteur est essentiellement sensible à
l'absorption.

La détection de l'émission AC est basée sur la mesure du courant tunnel photo-assisté (PAT)
de quasi-particules dans le détecteur SIS. La caractéristique courant-tension typique d'une jonction
SIS est montrée sur la �gure 2.b. L'absorption ou l'émission de photon d'énergie hν par le détecteur
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modi�e cette caractéristique courant-tension. Si la jonction détectrice est polarisée avec une tension
Vd telle que | Vd |< 2∆/e, un courant PAT apparait si un photon d'énergie hν > 2∆− | Vd | est
absorbé. Ainsi une marche de courant PAT de largeur hν/e apparait sur la caractéristique I(V ) avec
une amplitude reliée à l'intensité de la radiation absorbée. Le courant PAT est donc directement
relié à l'émission haute fréquence du CNT couplé au détecteur.

0.2.2 Résultats expérimentaux

Caractérisation du nanotube dans l'état normal

Pour caractériser l'échantillon et déterminer ces paramètres, à savoir son énergie de charge U, le
couplage aux contacts Γ et l'asymétrie des contacts ΓR/ΓL, l'échantillon est d'abord mesuré dans
l'état normal. Pour cela, un champ magnétique de 0.1T est appliqué pour rendre les contacts Pd/Al
normaux. La conductance di�érentiel dI/dVSD du CNT dans le régime normal est présentée sur la
�gure 3.a. en fonction de la tension de polarisation VSD et de la tension de grille Vg. Cette méthode
de caractérisation nécessite un champ magnétique de plus de 1T pour les échantillons avec contacts
de Pd/Nb/Al, ce qui interdit une extraction �able des paramètres de la boite quantique dans le
régime normal. Nous nous focaliserons donc dans la suite sur les échantillons avec les contacts
Pd/Al. Il est à noter toutefois que les échantillons avec des contacts Pd/Nb/Al présentent des
comportements qualitativement similaires à ceux avec contacts Pd/Al.

Le diagramme de stabilité présente des diamants de Coulomb avec une dégénérescence 4, typique
d'une boite quantique à base de CNT sans défaut. Pour un nombre impair d'électrons dans la
boite, l'e�et Kondo se manifeste par une augmentation de la conductance à tension nulle. Nous
nous sommes focalisés sur deux zones Kondo A et B avec un nombre d'électron N=1 et 3. Le
maximum de conductance est plus petit que 2e2/h, indiquant une légère asymétrie des contacts.
Les paramètres de ces deux zones Kondo sont résumés dans le tableau 1. Sur la �gure 3 nous
montrons également une autre zone de grille, dénommée ci-après la région C, avec une conductance
similaire à celle des zones A et B mais sans trace d'e�et Kondo.

TK(K) TK(µeV) U (meV) Γ(meV) a ∆(meV) TK/∆
Kondo A 1.1 97.9 3.9 0.62 3.3 0.05 1.958
Kondo B 1.7 146.5 4 0.75 2.5 0.05 2.93

Table 1: Paramètres de la boite quantique à base de nanotube de carbone dans les zones Kondo A
et B.

Mesure du supercourant

Lorsque le champ magnétique appliqué est ramené à zéro, les contacts du nanotube de carbone
deviennent supraconducteurs. La �gure 3.b montre la résistance di�érentielle de l'échantillon en
fonction du courant de polarisation et de la tension de grille. La boite quantique présente un
supercourant relativement important, modulé par la tension grille, dans la zone présentant de
l'e�et Kondo en régime normal. C'est une bonne indication que le système se comporte comme une
jonction de type 0, avec un état fondamental qui reste l'état singulet de type Kondo. L'amplitude du
courant critique, c'est à dire la valeur maximale du supercourant, est déduite de la caractéristique
tension-courant de la jonction dans le cadre d'un modèle de jonction avec un shunt résistif et capacitif
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Figure 3: Diagramme de stabilité de la boite quantique à base de nanotube de carbone dans le
régime normal. (a) Conductance di�érentielle dI/dVSD en fonction de la tension de polarisation
VSD et de la tension grille Vg. Le nanotube de carbone montre un e�et Kondo de type SU(2). Pour
un nombre impair d'électrons, deux zones Kondo sont observées dans la zone de grille sélectionnée,
l'une pour l'occupation N=1 (zone A) et l'autre pour l'occupation N=3 (zone B). Les courbes de
conductance montrées en surimpression (en rouge) sont prises aux tensions grille 14V, 17.5V et
21.5V. (b) Résistance di�érentielle du CNT en fonction du courant de polarisation et de la tension
grille Vg, dans la même zone que (a).

(modèle RCSJ). Ce modèle tient compte de l'environnement électromagnétique de la jonction. Le
résultat de ce traitement est montré sur la �gure 4.

Une forte réduction de l'émission Josephson

Pour mesurer l'émission Josephson aux fréquences de résonance du circuit de couplage, nous polar-
isons le détecteur à une tension Vd inférieure au seuil d'apparition du courant de quasi-particules,
de telle sorte que 2∆-hν0 < eVd < 2∆ avec ν0 la fréquence fondamentale du circuit résonant. Cette
polarisation est gardée constante pendant la mesure. Nous modulons la tension dans le CNT autour
d'une tension donnée et mesurons le courant PAT continu et alternatif au travers du détecteur.
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Figure 5: Comparaison du courant critique IC et du courant critique dynamique IACC pour les zones
A, B et C.

Sur la �gure 5 est tracée l'amplitude de l'e�et Josephson AC, notée IACC et appelée courant
critique dynamique, déduite de l'amplitude du courant PAT. Le résultat principal de cette mesure
est que le courant critique dynamique ne suit pas le comportement du courant critique dans les
zones présentant de l'e�et Kondo dans le régime normal. En e�et il y a une forte réduction de ce
courant critique dynamique près du centre des régions Kondo A et B, alors que c'est précisément
la zone où le courant critique est augmenté grâce aux corrélations Kondo. Cette réduction n'a pas
lieu dans la zone C pour laquelle le courant critique dynamique suit le même comportement que
le courant critique. La forte diminution du courant critique dans les zones Kondo A et B suggère
que la jonction Josephson à base de CNT se comporte alors dynamiquement comme une jonction
π, alors que le comportement statique est celui d'une jonction 0. C'est le résultat central de cette
thèse.

Interprétation

Pour avoir une compréhension quantitative du comportement de la boite quantique dans les ré-
gions A et B nous avons e�ectué des calculs basés sur les techniques numériques du groupe de
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Figure 6: Résultats des calculs NRG. (a) Spectre en énergie du système à N corps et (b) amplitude
du supercourant en fonction de la di�érence de phase supraconductrice ϕ au point de dégénérescence
particule-trou obtenu par des calculs NRG pour les zones Kondo A et B. (c) Evolution de l'énergie
des états liés d'Andreev (ABS) à ϕ = 0 en fonction de la position du niveau d'énergie ε de la
boite quantique, contrôlée par la tension grille. Cela mesure le détachement des ABS du continuum
d'excitation de QPs. (d) Evolution du spectre d'énergie du système à N corps à ϕ = π.

renormalisation (NRG) en collaboration avec A. Kadlecová et T. Novotny (Université de Prague,
République Tchèque). Ces calculs utilisent les paramètres déduits des mesures dans le régime nor-
mal. Le spectre d'énergie de la jonction au point de symétrie particule-trou est montré sur la �gure
6.a. Ce spectre représente la di�érence en énergie des états excités avec l'état fondamental, de type
singulet. Les états excités sont l'état doublet, de dégénérescence 2 (ligne pleine) qui correspond à
l'énergie de l'état lié d'Andreev (ABS), et l'état excité singulet (ligne pointillée). L'état doublet ne
touche pas le continuum d'excitation de quasi-particule du fait des interactions électron-électron.
Pour des raisons techniques le calcul NRG ne fournit pas la valeur de l'état excité singulet pour
des écarts en énergie supérieurs à EA = ∆. Le calcul NRG con�rme que l'état fondamental du
système est toujours de type singulet et conduit à un supercourant de quelques nanoampères (voir
�gure �g.6.b), compatible avec les données expérimentales. Le système présente une dépendance en
phase de type jonction 0. Les calculs NRG permettent également de prévoir l'évolution de l'écart
au continuum (à la phase ϕ = 0) ainsi que la valeur minimale de l'écart en énergie entre l'état
doublet et l'état fondamental singulet (à la phase ϕ = π). Cette évolution est montrée sur la �gure
6.

Nous attribuons la réduction de l'émission Josephson à la dynamique du passage par e�et tunnel
de quasiparticules (QP) dans la boite quantique. Nous avons évalué la dynamique à tension de
polarisation nulle de ces quasiparticules, qui mène à l'occupation de l'état doublet. Pour ce faire nous
avons calculé les taux d'injection et d'échappement des QP en tenant compte de l'environnement
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électromagnétique de la jonction. Celui-ci est essentiellement constitué par le circuit de couplage
résonant. Nous en avons déduit la probabilité PD pour le système d'être dans l'état doublet en
fonction de la position du niveau d'Andreev EA. Pour EA > 0.2∆, cette probabilité est extrêmement
faible (inférieur à 0.05) et explique pourquoi le système se comporte comme une jonction 0 pour la
mesure de courant critique à basse fréquence.

Cependant lorsqu'on applique une tension de polarisation à la jonction, ce qui est le cas dans
une mesure d'e�et Josephson AC, le taux d'injection de QP peut être sensiblement plus important.
De plus, proche du point de symétrie particule-trou, l'état doublet présente un écart en énergie avec
le continuum de quasi-particules à cause des interactions électron-électron. Cela maintient le taux
d'échappement des QP relativement bas, même si la phase de la jonction évolue dans le temps. Par
conséquent la probabilité pour le système d'être dans l'état doublet s'accroit lorsque la jonction
est polarisée en tension. Cela conduit à une réduction du courant critique dynamique ICAC car le
courant dans l'état doublet est plus faible que dans l'état fondamental singulet.

0.3
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0

10.80.60.40.2

P d
ou
b
le
t

EA/Δ

Figure 7: Probabilité pour la jonction de se trouver dans l'état doublet en fonction de l'énergie EA
de l'état lié d'Andreev.

Lorsqu'on s'éloigne du point de symétrie particule-trou, en changeant le valeur de ε avec la
tension grille, l'écart en énergie entre l'état doublet et le continuum d'excitation au-dessus de ∆
est réduit de manière signi�cative (�gure 6.c). La probabilité pour une QP présente dans la boite
quantique de s'échapper s'accroit alors par des processus tunnel de type Demkov-Osherov entre
l'état doublet et le continuum du fait de l'évolution en phase de la jonction. Simultanément l'énergie
minimum de l'état doublet, à ϕ = π, augmente. Cela réduit le taux d'injection des QP dans la
boite quantique. Ces deux e�ets conduisent à une augmentation de la probabilité du système d'être
dans l'état fondamental singulet et donc à une remontée du supercourant e�ectif. C'est ce qui est
mesuré dans l'expérience.

On peut extraire de l'amplitude de l'émission AC mesurée dans l'expérience la probabilité PD
d'être dans l'état doublet. Pour cela on suppose que l'amplitude du courant critique dynamique
est donnée par ICAC = PDJD + (1 − PD)JS , avec JS l'amplitude de la première harmonique de la
relation courant phase dans l'état singulet, et JD celle dans l'état doublet. Ces deux quantités sont
déduites des calculs NRG et représentées sur la �gure 3.d.
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On considère dans un premier temps un scénario où la cohérence en phase n'est pas préservée
et où donc seule l'amplitude des supercourants dans l'état singulet et doublet importe. Avec une
probabilité 1 d'être dans l'état doublet proche du point de dégénérescence particule-trou, on rend
qualitativement compte de la réduction du supercourant observé expérimentalement. Un accord
plus quantitatif peut être obtenu avec une probabilité �nie d'être dans l'état doublet dans un
scénario où le signe du supercourant, positif pour l'état singlet et négatif pour l'état doublet, importe
et donc où la cohérence en phase est préservée (�g.3.c-d). Cependant cette dernière situation impose
une contrainte forte sur le modèle utilisé pour décrire la dynamique de la jonction.
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Figure 8: (a) Amplitude de la première harmonique de la relation courant-phase pour les états
singulet et doublet pour la zone Kondo A, déduite des calculs NRG. (b) Comparaison entre les
données expérimentales pour la zone Kondo A (cercles bleus) et l'amplitude calculée pour le courant
critique dynamique ICAC , obtenu en introduisant une probabilité �nie pour le système d'être dans
l'état doublet. Dans le modèle "cohérent" la cohérence en phase est préservée (ligne pointillée
rouge) alors que dans la modèle incohérent (ligne pleine noire) elle ne l'est pas.

0.3 Conclusion

Pour conclure sur cette partie de la thèse, nous avons sondé la dynamique d'une jonction Josephson
à base de nanotube de carbone en mesurant son émission Josephson grâce à une technique de
détection "on-chip". Nous avons montré que cette émission était fortement réduite dans des zones
de tension grille pour lesquels le courant critique était important grâce à l'action combinée de l'e�et
Kondo et de l'e�et de proximité supraconducteur. Grace à des calculs théoriques NRG, il a été
possible de prédire le spectre d'énergie et le supercourant du système étudié à partir des paramètres
issus des mesures dans le régime normal. La réduction observée de l'émission Josephson dans les
zones Kondo peut alors être expliqué par des transitions entre état singulet et doublet induite par
la dynamique des quasi-particule dans la boite quantique constituée par le nanotube de carbone.
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0.4 Résonateur à haute inductance cinétiques à base de nano�ls

de tungstène

Dans cette partie sont résumés les résultats obtenus sur la réalisation et la mesure de microré-
sonateurs supraconducteurs fabriqués avec des nano�ls de tungstène obtenu par dépôt assisté sous
un faisceau d'ions hélium focalisé (He-FIB). Les nano�ls ainsi réalisés présentent de meilleures pro-
priétés supraconductrices que ceux réalisés sous faisceaux d'électrons. Comparé au FIB utilisant
des ions gallium, le FIB avec ions hélium permet d'atteindre une meilleure résolution, de réduire
les dommages et la contamination de l'échantillon et d'éviter l'implantation d'ions gallium.

La �gure 9 montre les deux modèles de résonateur hybride qui ont été testés durant cette thèse.
L'un est un résonateur utilisant une ligne de transmission coplanaire (�gure 9a-b-c) réalisé avec un
nano�l de tungstène. Le reste du résonateur est réalisé en niobium. L'autre type de résonateur est
un résonateur à composant discret où la partie inductive et capacitive sont séparées (�g.9-d). La
partie inductive est constituée d'un nano�l de tungstène.

Figure 9: (a) Image obtenue par microscopie électronique à balayage de l'échantillon avec un ré-
sonateur de type ligne de transmission. Une ligne de transmission horizontale permet d'adresser
trois résonateurs de type λ/4 réalisés en tungstène (W), qui sont placés verticalement sur l'image.
(b) Agrandissement de la zone de couplage entre la ligne de transmission et un résonateur W. (c) Fil
de tungstène déposé avec une zone de raccord plus large et plus épaisse avec le contact de niobium.

0.4.1 Propriétés supraconductrices des nano�ls de tungstène.

Pour mesurer les propriétés supraconductrices (température critique TC , champ magnétique critique
et courant critique) des nano�ls de tungstène utilisés pour les résonateurs, nous avons fabriquer
des nano�ls (nommés ci-après NW1, NW2, and NW3) de longueur 5.9µm sur un échantillon dédié
au mesure de transport électrique. L'échantillon a été refroidi jusqu'à une température de 1.8K
dans un appareil de caractérisation, un "Physical Property Measurement System (PPMS" de la
compagnie Quantum Design, avec la possibilité d'appliquer un champ magnétique de 9T. Un des
échantillons a pu également être refroidi à plus basse température dans un réfrigérateur à dilution.

20



Résumé de la thèse

10

8

6

4

2

0
R

(k
Ω

)
2 4 6 8

10
2 4 6 8

100
2

T(K)

30

25

20

15

10

5

0

NW1
NW2 right scale
NW3

10

8

6

4

2

0

R
(k
Ω

)

86420

B (T)

30

25

20

15

10

5

0

NW1
NW2 right scale
NW3

(a) (b)

50

40

30

20

10

0

dV
/d

I(
kΩ

)

-8 -6 -4 -2 0 2 4 6 8

IDC (µA)

0T
0.5T
1T
2T
3T
4T
5T
6T
7T
9T

NW1, T=2K

(c)

30

20

10

0

dV
/d

I (
kΩ

)

151050-5-10-15

I (µA)

(d)

Figure 10: Résistance des nano�ls de tungstène listés sur le tableau 1.1 en fonction de la température
T (a) et du champ magnétique perpendiculaire (b). (c) Résistance de l'échantillon NW1 en fonction
de la température pour di�érentes valeurs du champ magnétique B. (d) Résistance di�érentielle
dV/dI en fonction du courant de polarisation à basse température pour l'échantillon NW1.

La �gure 10 montre la résistance di�érentielle en fonction de la température (�g.10.a) et du
champ magnétique (�g.10.b) pour les trois nano�ls mesurés. Entre la température ambiante et les
plus basses températures, la résistance augmente légèrement (≈ 5%) pour �nalement présenter une
transition vers un état supraconducteur à une température autour de Tc ∈ [5−6.5]K. Les mesures en
champ magnétique sont e�ectuées en �xant la température sous la température critique à T=2 K, et
en variant le champ magnétique perpendiculaire entre 0 et 9T. Les nano�ls sont supraconducteurs
avec une résistance qui développe le comportement en champ magnétique d'un supraconducteur de
type 2. En dé�nissant le champ critique Hc2 comme étant le champ pour lequel le nano�l présente
une résistance moitié de celle dans l'état normal, nous voyons que chacun des �ls mesurés possède
un champ Hc2 supérieur à 5T.

Pour mesurer la valeur du courant critique IC , nous avons mesuré la résistance di�érentielle
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dV/dI en fonction de courant de polarisation IDC . La �gure 10.c montre cette quantité pour le
nano�l NW1 à T = 2K pour di�érents champs magnétiques. Pour NW1, le courant critique à champ
nul est de 4.0 µA and il décroit lorsqu'on augmente le champ magnétique. A cette température
le courant est non-hystérétique. Pour les nano�ls NW2 et NW3, le courant critique à champ nul
est de 1.3 et 3.8 µA respectivement. Pour étudier le courant critique à plus basse température, le
nano�l NW2 a été refroidi à 10mK dans un réfrigérateur à dilution. La résistance di�érentielle en
fonction du courant de polarisation est montrée sur la �gure 10.d. Le courant critique augmente
jusqu'à 12µA, avec une hystérésis d'origine thermique.

0.4.2 Résonateurs micro-onde incluant un nano�l de tungstène

Pour mesurer les propriétés micro-onde des nano�ls de tungstène, les deux types de résonateurs
présentés précédemment ont été refroidis à basse température, et le spectre de transmission S21

mesuré avec un analyseur vectoriel.

De la valeur de la fréquence de résonance, il est possible d'extraire l'inductance cinétique du
nano�l de tungstène. On peut alors la comparer à la valeur théorique attendue à basse température
:

LK,� ≈
R�h

2π2∆0
. (1)

avec ∆0 = 1.76kBTc. Avec Tc ∈ [5− 6.5]K et R� la résistance par carré, qui vaut typiquement 100
Ω pour les nano�ls fabriqués, on prévoit une valeur d'inductance cinétique LK,� ∈ [7− 25] pH/�.
Pour le résonateur à élément discret, la fréquence de résonance est de l'ordre de 4.46GHz avec un
facteur de qualité de 4000. Connaissant la capacitance et l'inductance géométrique estimées par
simulation numérique, cela conduit à une inductance cinétique LK,� = 15.4 pH/�, une valeur 250
fois plus importante que l'inductance géométrique. Le résonateur de type ligne coplanaire conduit
sensiblement à la même valeur d'inductance cinétique mais avec un facteur de qualité plus faible,
de l'ordre de 700.

La �gure 11.a montré la dépendance en température de S21 à basse puissance. La dépendance
de la fréquence de résonance et du facteur de qualité peuvent être relativement bien compris dans le
cadre d'un modèle de type Mattis-Bardeen, qui décrit la conductivité complexe du supraconducteur
à haute fréquence.

La dépendance en fonction du champ magnétique dans le plan du résonateur à élément discret
a pu être mesuré jusqu'à 130mT. La fréquence de résonance et le facteur de qualité varie peu (pour
Qi :< 10% et pour fres :< 0.05%), montrant que ce type de résonateur sont relativement insensibles
à des champs magnétiques dans le plan.

En�n la dépendance en fonction de la puissance micro-onde S21 permet d'extraire le paramètre
Kerr. Nous avons trouvé un paramètre Kerr non-linéaireK/2π = 200±120 Hz/photon at 4.465 GHz
(T=10mK), et 74 Hz/photon at 3.55 GHz(T=1.5K).
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Figure 11: Dépendance en température du spectre en transmission pour le résonateur à élément dis-
cret (à gauche) et pour celui de type ligne de transmission (à droite). Ces deux types de résonateurs
résonnent dans la gamme du GHz.

0.4.3 Conclusion

Cette partie de la thèse portait sur la réalisation et la mesure d'un nouveau type de résonateur
micro-onde hybride, fabriqué en partie en niobium et pour la partie à haute inductance cinétique
avec des nano�ls en tungstène déposés sous un faisceau d'ion focalisé d'hélium. Deux types de
résonateurs ont été testés, l'un à élément discret et l'autre avec une ligne de transmission. Ces
résonateurs présentent une très forte inductance cinétique, de l'ordre de LK = 15 pH/�, 250 fois
plus importante que l'inductance géométrique.
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0.5 Mesure de la température électronique à l'aide d'un tran-

sistor à un électron

Cette section résume la mesure de la température électronique dans un réfrigérateur à dilution sans
hélium liquide équipé de ligne de polarisation DC réalisée avec des lignes coaxiales résistives. Cette
mesure s'est faite en utilisant comme thermomètre primaire un transistor à un électron (SET pour
"single electron transistor").

Une image de l'échantillon est montrée sur la �gure 12. L'échantillon, réalisé par évaporation
sous angle de deux couches d'aluminium, est refroidi dans un réfrigérateur de la marque Cryoconcept
à travers de lignes coaxiales résistives réalisées au laboratoire et thermalisées à chaque étage du
réfrigérateur. Ces lignes agissent comme des �ltres passe-bas. La conductance di�érentielle de
l'échantillon est mesurée avec une détection synchrone.

𝐕𝐠

Tunnel Junctions

𝐕𝐒𝐃

source

(a)                                                                          (b)

Drain

Figure 12: (a) Schéma équivalent d'un transistor à un électron (SET). (b) Image obtenue au micro-
scope électronique à balayage du SET mesuré. La structure est réalisée en aluminium en utilisant
de l'évaporation sous angle. Les barrières tunnel sont obtenues par oxydation de l'aluminium. Un
faible champ magnétique est appliqué pour rendre l'aluminium normal.

La carte de conductance de la �gure 13.a montré la conductance di�érentielle dI/dVSD du SET
en fonction de la tension grille Vg et de la tension source-drain VSD. Un champ magnétique est
appliqué pour supprimer la supraconductivité de l'aluminium. La valeur de l'énergie de charge
EC = 22 ± 2µeV est extraite de la largeur des diamants de Coulomb en fonction de la tension de
polarisation. Lorsqu'on mesure la conductance à tension nulle en fonction de la tension de grille on
obtient des pics réguliers de conductance. La �gure 13.b montre ainsi 4 pics de Coulomb.
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Figure 13: (a) Carte de conductance du SET en fonction de la tension grille Vg et la tension source-
drain VSD. (b) Pic de blocage de Coulomb observé sur la conductance du SET GSET en fonction
de la tension de grille Vg. Ces pics sont utilisés pour extraire la température électronique à l'aide
de l'équation 2.
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Figure 14: Température électronique en fonction de l'index du pic de conductance considéré. Nous
trouvons Telectronic = 23± 2mK.

La largeur de ces pics de conductance à tension de polarisation nulle constitue un moyen bien
connu de mesurer la température électronique de manière absolue. Le SET constitue de ce fait un
thermomètre primaire. Pour un ilot métallique avec une densité d'état constante et connecté à des
contacts via des jonctions tunnel, la conductance peut s'écrire :

GSET (δVg) =
G∞

2

2EC(δVg/∆)/kBT

sinh(2EC(δVg/∆)/kBT )
. (2)

avec G∞ = GSGD
GD+GS

la valeur de la conductance à haute tension, avec GS et GD la conductance du
drain et de la source. ∆=e/Cg est la période en tension grille et δVg la variation de tension grille par
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rapport au point de dégénérescence de charge. Chaque pic de la �gure 13.b est ajusté en utilisant
la formule 2, et la valeur de la température électronique en est déduite pour di�érents pics de
conductance (�gure 13). Nous en déduisons une température électronique de Telectronic = 23±2mK
alors que la température de base du réfrigérateur est de 10mK.

0.5.1 Conclusion

Nous avons ainsi montré que l'utilisation de câbles coaxiaux résistifs réalisés au laboratoire perme-
ttait d'obtenir une température électronique de Telectronic = 23 ± 2mK pour une température de
base du réfrigérateur sans hélium liquide de 10mK. Cette température a pu être mesurée grâce à
une thermomètre primaire exploitant le blocage de Coulomb : le transistor à un électron.
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Conclusion

Au cours de cette thèse nous avons sondé la dynamique d'une jonction Josephson avec comme
lien faible un nanotube de carbone en mesurant son émission Josephson. Nous avons montré que
cette émission était fortement réduite dans des zones de tension grille pour lesquelles le courant
critique est augmenté du fait de l'action conjuguée de l'e�et Kondo et de l'e�et de proximité
supraconducteur. A l'aide de technique numérique du groupe de renormalisation et des paramètres
du système obtenu dans le régime normal, il a été possible de calculer le spectre d'énergie et le
supercourant de la jonction. La réduction dynamique du courant critique est alors attribuée à la
dynamique des quasi-particules dans la boite quantique qui conduit à une transition entre l'état
singulet et doublet de spin.

Nous avons par ailleurs fabriqué et testé un nouveau type de micro-résonateur supraconducteur
hybride combinant du niobium en couche mince et des nano�ls de tungstène déposés sous faisceau
d'ions hélium focalisé. Ces derniers présentent une très forte inductance cinétique. Deux types de
résonateur, à éléments discrets ou bien à ligne de transmission, ont été mesurés à basse température.
Ils présentent tous deux des résonances dans la gamme du GHz avec une très forte inductance ciné-
tique. Ces résonateurs sont prometteurs comme éléments supraconducteurs non-linéaires compacts
à forte impédance, utiles en électroniques quantiques ainsi que comme circuit de couplage pour la
détection haute fréquence "on-chip".

Dans le souci d'obtenir de meilleures mesures à basse température, nous avons fabriqué des lignes
de polarisation de type �ltre passe-bas avec des câbles coaxiaux résistifs réalisés au laboratoire. Cela
permet d'obtenir une températures électroniques Telectronic = 23± 2mK, pour une température de
base de réfrigérateur à dilution sans hélium liquide de 10mK. Cette température électronique a été
mesurée avec un transistor à un électron.
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Introduction

Quantum transport refers to the investigation of coherent (∼ ten to a few hundred nanometers) and
cold circuits (∼100mK). Consequently, quantum transport experiments require the fabrication of
low-dimensional circuits. Because of their intermediate size between macroscopic and microscopic
scales, these circuits are called mesoscopic.

One of the most studied systems in the �eld of Quantum transport is quantum dots (QD).
Quantum dots are so small such that their energy levels are quantized due to con�nement e�ects,
for that QD are referred to as "arti�cial atoms". The advantage of using a QD is that its param-
eters can be controlled. For example, it is possible to control the number of electrons on the dot
by an electrostatic gate. Coupling a QD to metallic normal electrodes, allows us to probe many
interesting quantum e�ects. Depending on the coupling strength between the QD and the two
reservoirs, the QD exhibits di�erent transport phenomena such as the Coulomb blockade, Kondo
e�ect. If the electrodes are superconducting, another quantum phenomenon, proximity-induced
superconductivity will emerge.

The Kondo e�ect was initially observed in alloys with magnetic impurities, through the anoma-
lous increase of resistance as temperature drop as explained by Jun Kondo. The electrons at the
Fermi energy tend to screen the magnetic moment of the impurity, forming a many-body spin-
singlet state of binding energy expressed as a Kondo temperature Tk. This Kondo screening gives
rise to a resonance in the density of states. Kondo e�ect can occur also in a quantum dot with an
unpaired spin in its highest occupied energy level. However, in QD, the Kondo resonance opens
a transmitting channel, thus the conductance increases. The �rst observation of the Kondo e�ect
in quantum dots was made in GaAs-based two-dimensional structures. The Kondo e�ect has now
been seen in quantum dots based on a wide variety of nano-scale devices such as carbon nanotubes,
C60 molecules, organic molecules, and semiconductor nanowires.

S-wave superconductivity is a spin-singlet ground state where electrons condense in Cooper pairs
with pairing energy ∆ (superconducting gap) and phase ϕ. The formation of Cooper pairs is due to
attractive electron-electron interaction mediated by the phonons. A non-dissipative current "super-
current" can �ow through a superconductor, which is driven by a superconducting phase instead of
a voltage gradient. When a weak link of length L such as a quantum dot is connected to supercon-
ducting electrodes, it can support a supercurrent at zero bias voltage due to the superconducting
proximity e�ect, provided that the phase coherence is preserved along the length L. The current
through the quantum dot and the phase are related through the current-phase relation (CPR). In
such a system, the presence of the Coulomb interaction results in Coulomb blockade, which gives
rise to a doublet state if there is an odd number of electrons on the dot. This doublet state hinders
the �ow of supercurrent, which manifests as a reduction of the critical current and a sign reversal
of the DC current-phase relation. One has then a π junction. However, if the Kondo temperature
TK exceeds the superconducting gap energy ∆, the Kondo screening survives and resonant Cooper
pair tunneling occurs. In this limit, the Kondo e�ect and superconductivity cooperate to restore
the singlet state i.e. the 0-junction.

The competition between these two e�ects has been already investigated at equilibrium, by
monitoring the current phase relation of CNT based Josephson junctions. These experiments have
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revealed phase-dependent quantum transitions between the magnetic doublet state and the Kondo
screened singlet non-magnetic state of the quantum dot. In the present work, we show that the
dynamics of this induced transition can be probed by the Ac Josephson emission of carbon nanotube-
based Josephson Junction.

The Ac Josephson e�ect is the phenomenon by which a superconducting weak link that is volt-
age biased generates an oscillating current. This is why superconducting tunnel junctions can be
used as GHz radiation emitter or to de�ne the voltage standard thanks to the metrological preci-
sion of the AC Josephson e�ect. In Josephson junctions involving a normal material, measuring
the AC-Josephson e�ect allows probing the states that carry the supercurrent at �nite frequency
and out-of-equilibrium. For instance, its measurement demonstrated the topological protection in
several topological systems, that was not accessible through DC measurement.

The manuscript is organized as follows. Chapter one is dedicated to the description of carbon
nanotubes and their physics. Then we discuss transport through a carbon nanotube quantum dot.

In chapter two, we present the di�erent fabrication, cooling, and measuring techniques per-
formed to realize this work. Chapter three details the Kondo e�ect. Chapter four presents a
general introduction to superconductivity.

Chapter �ve deals with the Josephson e�ect in a quantum dot. We present the di�erent transport
regimes arising from the competition between Coulomb blockade interactions and superconductiv-
ity. What happens when superconducting correlations compete with the Kondo e�ect? The last
section of this chapter is devoted to answering this question.

In chapter six we present the central topic of this thesis: The dynamics of a carbon nanotube-
based Josephson junction. We probe the dynamics of our system by measuring the AC Joseph-
son emission of the junction and compare it to its DC Josephson current. The AC emission is
measured by coupling the carbon nanotube to an on-chip detector (a Superconductor-Insulator-
Superconductor junction), via a resonant circuit. In the �rst part, we represent the experimental
setup used for measurement. In the second part, we present the experimental results. Measure-
ment of the Ac emission of the CNT in the gate regions that exhibit Kondo features in the normal
state shows that this emission is strikingly reduced in the gate region where the critical current is
enhanced due to the interplay of the Kondo e�ect and superconducting proximity e�ect. In the last
section, we present the renormalization group calculation performed to understand the behavior of
our CNT QD along with several interpretations. We show that the collapse of the AC emission
observed experimentally is due to the transition between the singlet state and the doublet state.
This transition can be traced to the dynamics of quasiparticle in the quantum dot.

Finally, to improve our detection methods at low temperature, we performed two other exper-
iments which are presented in the last chapter of this thesis. In the �rst experiment, we have
designed and measured a new type of superconducting micro-resonator, based on a high kinetic
inductance material, namely tungsten nanowires deposited using a helium focus ion beam. This
kind of resonator can be very useful to improve the resonant coupling for on-chip detection and thus
provide a better measurement of the AC Josephson emission of carbon nanotube-based Josephson
junction. In the second experiment, we have tested new home-made �ltering of DC lines in a cryo-
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free dilution refrigerator recently installed in the group, by measuring the electronic temperature
of a single electron transistor.
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Chapter 1

Electronic properties of carbon

nanotube quantum dots

Since their discovery in 1991 [1], carbon nanotube has become of a great interest. Due to its unique
structural and electronic properties, CNT becomes a building block for several applications: bio
sensors [2, 3], radio frequency applications [4], �exible electronic [5], photonic circuits [6, 7] and
transistors [8].

This chapter is devoted to the description of the system that we are studying: a carbon nanotube
(CNT). First, we will present the structural and electronic properties of the carbon nanotube. Then,
we explain the mesoscopic transport through a carbon nanotube quantum dot (CNT QD).

1.1 Single wall carbon nanotube

1.1.1 Geometrical properties

A carbon nanotube can be seen as a graphene sheet rolled into a cylinder. This graphene layer can
be rolled in many di�erent directions, described by the chiral vector ~Ch = n ~a1 + m ~a2, which is a
linear combination of the unit vectors ~a1 and ~a2 of a graphene sheet with n and m integers. The
value of n and m determines the structure of the CNT. The tube's diameter, chiral angle θ, unit
vectors, number of atoms in the unit cell, can all be deduced from (n, m) numbers. Nanotubes
with (n, n) (θ = 0°) and (n, 0) (θ= 30°) are armchair and zigzag, respectively. For n 6=m and
0 < θ < 30 the tube is said to be chiral (See �g.1.1). Carbon nanotubes often grow in bundles,
ropes or they appear nested within each other. They are consequently, named multi-wall carbon
nanotubes (MWCNTs). In the following, we will limit ourselves to the description of single-wall
carbon nanotubes (SWCNTs).
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(a)                                                                                (b)
Armchair (n,m) with n=m

Zigzag (n,0)  

Chiral (n,m) with n≠m

Figure 1.1: (a) Hexagonal lattice of a graphene sheet rolled into a CNT around a chiral vector
~Ch.(b) Carbon nanotubes with di�erent structures: armchair (n, n), zigzag (n, 0) and chiral (n,
m).Taken from [9].

1.1.2 Electronic band structure of carbon nanotubes

To know whether the carbon nanotube is metallic or superconducting, one must calculate its band
structure. The dispersion relation of CNT can be determined from the one of graphene by projecting
the graphene band dispersion into the 1D longitudinal CNT dimension.

Dispersion relation of graphene

Graphene is made up of carbon atoms arranged in hexagonal honeycomb-like structure as shown
in �g.1.1(a), with unit cell vector ~a1 and ~a2 such that:

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3) (1.1)

with a ≈ 1.4Åis the carbon-carbon distance. In the reciprocal space of graphene, the reciprocal-
lattice vectors are:

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (1.2)
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Figure 1.2: Left: Honeycomb lattice structure of graphene with ~a1 and ~a2 unit cell vectors and δi
with i=1,2,3 is the nearest neighbor vectors. A and B denotes two inequivalent atomic sites. Right:
Corresponding Brillouin zone. Dirac cones are located at the K and K' points. Taken from [10].

Figure.1.2 shows the graphene lattice structure in the real and reciprocal space. In the Brillouin
zone (BZ), the Fermi surface is reduced to six points. Only two of them are independent, whereas
the rest are equivalent by symmetry. These two points are called the Dirac point: K and K' located
at the corners of the graphene BZ.

At low energy (ε < 1 eV) near the Dirac point K, the dispersion relation of graphene can be
calculated using the tight binding model for the π orbital electrons:

E~k = ±~ | ~k − ~kK,K′ | vf (1.3)

where ~k is the wave vector and vf is the Fermi velocity. This dispersion relation (See �g.1.3) shows
that the carriers in graphene are Dirac fermions which should be described by Dirac relativistic
equation.

Carbon nanotube band structure

The energy band structure of CNT is then derived from the one of graphene, by introducing periodic
boundary conditions due to the cylindrical geometry of the tube. Since a CNT is considered as an
in�nitely long cylinder with a very small diameter, the wave vector k‖ (parallel to the tube axis) is
continuous but the wave vector k⊥ (perpendicular to the tube axis) becomes quantized k⊥. ~Ch=2πp

The CNT band structure can be obtained by cutting the energy dispersion of graphene along
the allowed k⊥ lines values. If the cutting line crosses at the K point then the CNT is metallic,
otherwise, it is semi-conducting with a �nite gap of the order of ∼0.5 eV.

Another way to determine whether a given nanotube is metallic or semiconducting is the indices
(n, m), deduced from the intersection of k⊥ with the Dirac points. For a given (n, m) if n-m is
multiple of 3, then the tube is metallic. Thus:

� Armchair tubes (n, n) are metallic.
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𝑘𝑦
𝑘𝑥

Valence band

Conduction band

Figure 1.3: The energy dispersion of graphene showing the six Dirac points where the valence band
and conduction band meet and zoom around the Dirac point K'.

� Zigzag tubes (n,0) or chiral tubes (n, m), if n-m=3l, (where l is an integer), tubes metallic.
If not, the tubes are semiconducting.

The dispersion relation of carbon nanotube of di�erent chiral numbers is shown in �g.1.5.

Figure 1.4: Chirality map of a carbon nanotube. Adapted from [11].

Fig.1.4 summarize the metallic and semiconducting families of carbon nanotubes according to
their chiral numbers.
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Figure 1.5: The band structure for carbon nanotubes, E given in eV and wave vector in −1. (a)
(5,5) Armchair, (b) (9,0) zigzag, (c) (10,0) zigzag nanotubes. The Fermi level is located at zero
energy. (5,5) and (9,0) are metallic nanotubes while (10,0) is semiconducting.

CNT four-fold energy level structure Due to its peculiar band structure, the CNT pos-
sesses two orbitals to degenerate conducting channels. This degeneracy can be traced back to the
presence of two equivalent dispersion cones (K and K') in graphene. The orbital degeneracy can
be understood as the way an electron can circles around a graphene cylinder, clockwise or anti-
clockwise. However, electrons can have spin up or spin down, so each orbital level can be spin
degenerate (K↑,K↓), same for K' valley. In total the CNT have one four-fold degenerate channel
(K↑,K↓,K'↑,K'↓) as shown in �g.1.6.

In this work, the contacts of the nanotubes are separated by L = 400 nm, which is lower than
the mean free path le = 0.5 − 10µm, thus the transport through the CNT is rather ballistic and
coherent.

The maximum conductance of a CNT can be calculated using the Landauer-Büttiker formula
given by:

G = s
e2

h

∑
m

Tm (1.4)

With s being the degeneracy of the channels (For example s=2 for spin 1/2). In this formalism
a coherent conductor is described by m transport channels with transmission Tm (0 < Tm < 1).
Thus, for a CNT with one four-fold degenerated channel, the maximum conductance is G = 4 e

2

h ,
corresponding to a resistance of 6.45kΩ.

35



Chpater 1. Electronic properties of carbon nanotubes quantum dots

K

K

K'

K'

Figure 1.6: (a) Electrons con�ned in a nanotube segment have quantized energy levels, each four-
fold degenerate in the absence of spin-orbit coupling and defects. The purple arrow at the left
(right) illustrates the magnetic moment arising from the clockwise (anticlockwise) orbital motion
around the nanotube. The green arrows indicate positive moments due to spin. (b) Expected
energy splitting for a defect-free nanotube in a magnetic �eld B parallel to the nanotube axis in the
absence of spin-orbit coupling: At B=0 T, all four states are degenerate. With increasing B, each
state shifts according to its orbital and spin magnetic moments, as indicated by purple and green
arrows, respectively. Taken from [53].

1.2 Electronic transport in a carbon nanotube

To perform transport measurements, a single isolated carbon nanotube is contacted between two
metallic electrodes which could be normal or superconductor. In what follows, we explain the
physics of a Quantum dot, then we introduce the speci�c properties of a carbon nanotube quantum
dot (CNT QD). After that, we show the di�erent transport regimes for a CNT QD, from Coulomb
blockade to the co-tunneling process and appearance of the Kondo correlation.

1.2.1 Quantum dot

When the electron wavelength is comparable to the size of a system such as in a quantum dot, elec-
trons are con�ned in a set of discrete energy levels resembling that of an atom. For that quantum
dot are said to be "arti�cial atoms". Quantum dots exits in di�erent size and materials: single
molecules [12], metallic [13] or superconducting nanoparticles, lateral or vertical dots in semicon-
ductor heterostructures [14], semiconducting nanowires [15], or carbon nanotubes [16].

Due to the small size of the dot, the capacitance of the QD with the gate and the leads induces a
strong charging energy EC = e2/2C (C being the total capacitance of the QD) which has to be paid
each time one needs to add an electron on the dot. Ec∼few meV for a typical QD. When Γ < EC ,
the energy levels on the dot are clearly de�ned and a discrete energy spectrum of single-particle
levels is formed at energies εd with a mean level spacing ∆E, of broadening width Γ, with Γ the
total coupling constant to the metallic electrodes.(See �g.1.7).

Depending on the transparency of the contacts the QD exhibits three transport regimes:

� Strong coupling regime, Γ� EC
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� Week coupling regime, Γ� EC given that kBT < EC

� Intermediate regime, Γ ≈ EC

The three di�erent transport regimes will be explained in detail in the following section, focusing
on the case of a carbon nanotube quantum dot.

S DQD

G

Γ𝐿, 𝐶𝑠 Γ𝑅 , 𝐶𝐷

𝐶𝐺

µ𝑆

µ𝐷

Γ𝑅 , 𝐶𝐷Γ𝐿, 𝐶𝑠

𝜀𝑑

𝐸𝐶+∆𝐸

Γ

Figure 1.7: Left: Schematic of a quantum dot (QD) with the source (S), the drain (D) leads and a
capacitively coupled gate (G), used to control the number of electrons on the QD. Right: Discrete
energy levels of a QD, showing the relevant energy scales, the charging energy EC , the couplings
with the left and right reservoirs ΓL and ΓR, the total coupling Γ = ΓL + ΓR, ∆E the energy level
spacing and εd the position of the energy levels in the dot.

1.2.2 Carbon nanotube quantum dot

When a carbon nanotube is connected to metal electrodes, if the transmission of the contacts is
low compared to the charging energy, the CNT will behave as a quantum dot at low temperatures.
To measure electrical transport through a CNT, the tube must be coupled via tunnel barriers to
metallic electrodes with which electrons can be exchanged.

When a CNT is brought into contact with metallic electrodes, and the Fermi level in the CNT
is higher in energy than that in the metal, electrons move from the CNT into the metal leaving
a positive background of ionized atoms leading to the formation of Schottky barriers at the inter-
face. This phenomenon is more important in semiconductor nanotubes. However, due to defect or
curvature, there is often a small gap forming even for metallic SWNT.
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Figure 1.8: (a) Energy band diagram before contact is made between a metal and a semiconductor.
(b) When contact is made, the Fermi levels equilibrate and a Schottky barrier arises. φm is the
work function of the metal which is the energy needed to remove an electron from the Fermi level
into the vacuum and χ is the electron a�nity of the semiconductor which is the energy needed to
remove an electron from the bottom of the conduction band. Taken from [17].

Due to the formation of the Schottky barrier, the transparency of the contacts can be modi�ed
depending on the position of the Fermi energy of the CNT with respect to the metal. The position
of the Fermi level is controlled by the capacitively coupled gate electrodes. For a CNT contacted
between two metallic electrodes 200 nm apart (L=200nm), the value of the level spacing ∆E=hvf

2L
will be in the order of few meV, same as the charging energy EC . Thus, for a given gate voltage, only
one of its discrete energy levels participates to transport. Each of these energy levels is four-fold
degenerate unless the orbital degeneracy is lifted with an energy gap δE. This gives two two-fold
quasi-degenerate levels.

Weak coupling or Coulomb blockade regime

When the CNT is weakly coupled to the electrodes i.e. Γ � EC , the interaction e�ect becomes
dominant and the QD is in the so-called 'Coulomb blockade' regime. In this regime, the CNT will
be considered as a quantum dot that possesses the same energy diagram shown in �g.1.7. Here
EC = e2

CΣ
is the energy needed to overcome Coulomb interaction and add a single electron on the

dot, with CΣ = Cs + Cd + Cg is the total capacitance of the CNT QD. To add one electron to
the QD, one should pay the charging energy Ec, since at low temperature (T∼10 mK) the thermal
�uctuation is not enough to overcome this charging energy, the only way to lift the Coulomb
blockade is by changing the source-drain voltage VSD and/or the gate voltage Vg. The total energy
of the dot U(N) is given by:

N∑
1

E(N) =
Q2

2CΣ
+

N∑
n=1

E(n) =
(e(N −N0)− (CgVg) + (CsVs + CdVd))

2

2CΣ
+

N∑
n=1

E(n) (1.5)

where N0 represents the number of electrons at VG=0.
The electrochemical potential µ(N), which is by de�nition the energy required for adding the

N th electron to the dot:

µ(N) = E(N)− E(N − 1) = EC(N −N0 −
1

2
)− EC

q

e
+ EN , (1.6)

38



Chpater 1. Electronic properties of carbon nanotubes quantum dots

with q = CgVg + (CsVs + CdVd), is the induced charged due to the three electrodes The discrete
levels are separated by an addition energy de�ned by:

Eadd = µ(N)− µ(N − 1) = Ec + ∆E (1.7)

∆E=0, when two consecutive electrons are added to the same spin-degenerate level or a di�erent
orbital degenerate channel.

For transport to occur, a level of the dot must fall within the bias window between the elec-
trochemical potential of the source (µS) and drain (µD) electrodes, i.e. µS > µ > µD with
VSD=(µS − µD)/e. In this case, an electron can tunnel in and out of the dot carrying a �nite
current. If no level lies within the bias window, the number of electrons is �xed inside the dot and
there is no current �ow. This is known as the Coulomb blockade. (see �g.1.9).

µ𝑆
µ𝐷

Γ𝑅 , 𝐶𝐷Γ𝐿, 𝐶𝑠

𝑉𝐺 𝑉𝐺

µ(N-1)

µ(N)

µ(N+1)

(a) (b)

(c)

µ𝑆 µ𝐷

Γ𝑅 , 𝐶𝐷Γ𝐿, 𝐶𝑠

µ(N-1)

µ(N)

µ(N+1)

Coulomb blockade         Transport regime

Figure 1.9: (a) No level drops in the bias window of µS and µD. Transport is energetically forbidden,
no current �ows through the dot. It is Coulomb blocked. (b) By tuning the gate voltage, the ladder
of energy level is shifted, such that an energy level of the dot coincides with Fermi energy and
resonant single electron tunneling occurs. (c) Coulomb peaks in conductance versus gate voltage
at zero bias. The valleys correspond to the Coulomb blockade.

Coulomb blockade can be lifted by changing the voltage applied to the gate electrode which
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shifts the whole ladder of electrochemical potential levels up or down, or by changing the bias volt-
age (VSD) to open the bias window. When the µ(N) drops into the bias window, the N th electron
can tunnel from the dot to the drain followed by tunneling of another electron from the source onto
the dot. The number of electrons in the quantum dot then alternates between N-1 and N. Only
after one electron tunnels o� to the drain can another electron come onto the dot from the source.
This cycle is known as sequential single electron tunneling.

Applying a �nite bias voltage VSD (µS − µD=eVSD) between the source and drain electrodes
opens up a bias window between µS and µD. For transport to occur µN should be within the bias
window such that it aligned with a �lled electronic state of one electrode and an empty electronic
state of the other one. Thus, electrons can tunnel through the QD. For this condition to be ful�lled
µS > µN > µD. If this is not the case, the QD is in the Coulomb blockade regime.

Varying the gate voltage VG can shift the energy level ladder. Each time an energy potential
level of the QD is aligned with the source and drain Fermi energy, sequential tunneling occurs,
and a peak in conductance is observed as shown in �g.1.9.c. However, in the valleys between the
peaks in gate voltage, the number of electrons on the dot is �xed due to the Coulomb blockade.
The distance between the peaks corresponds to αEadd = α(EC + ∆E), where α =

Cg
eC is the lever

arm which relates the gate voltage scale to the electrochemical potential. When sweeping both
the gate voltage VG and source-drain voltage VSD at the same time, and measure the di�erential
conductance (G=dI/dVSD), one obtains the so-called stability diagram of a quantum dot.

Let us consider a QD occupied by N number of electrons, it is thus in a charge state N. The
number of charges can change in four ways. An electron can tunnel into the dot either from the
left or right electrode, thus the charge state becomes N+1. Alternatively, an electron can tunnel
from the dot into the left or right electrodes, and the N is replaced by N-1. Here we also must
consider the work done by the voltage source VSD to bring a new charge e onto the QD. Let us
consider a simple case where and the bias voltage is assumed to be anti-symmetrically applied on
both contacts (Vs = −Vd = VSD/2). The electrostatic potential of the four previous processes is
given by:

E(N ± 1)− E(N) = EC(N −N0 ±
1

2
) + EC

q

e
+ EN ± eVSD/2

= Ec(N −N0 +
1

2
+
CgVg + (Cs − Cd)VSD/2

e
) + EN ± eVSD/2

(1.8)

The transport occurs only if E(N ± 1) − E(N) > 0. In the VSD − VG plane each inequality is
represented by a straight line. Such four lines bound a diamond. Inside the diamond, the number
of electrons is �xed due to the Coulomb blockade, and no current �ows. Outside the diamonds, the
Coulomb blockade is lifted and single electron tunneling takes place. We have the same diamond
shifted by ± e

Cg
, ± 2e

Cg
, . . . along the VG axis. The diamonds touch each other at the so-called

'charge degeneracy point', where the energy level is aligned with both µS and µD, and a current
can �ow even if VSDis in�nitely small. From the shape of Coulomb diamonds, the energy of excited
states ∆E as well as the charging energy can be extracted.
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Figure 1.10: Stability diagram for a four-fold degenerate CNT. Coulomb diamonds in di�erential
conductance dI/dVSD, versus VSD and VG. Each edge of the diamond-shaped regions corresponds
to single particle transfer. Inside the diamonds, the number of electrons is �xed by the Coulomb
blockade. Each diamond corresponds to an integer number of electrons on the QD. From its size,
one can determine the value of EC and ∆E.

For fourfold degenerate energy level QD, to add the �rst electron, one should pay the charging
energy Ec plus the single energy level spacing ∆E(N thdiamond), to add the second, third, and
fourth electron one should pay only Ec. Now the level is full, and the next level could be �lled.
Thus, the stability diagram is composed of three consecutive "small" diamonds of addition ener-
gies Ec followed by a "larger" one of addition energy Ec + ∆E (See �g.1.10). Fig.1.11 represents
the di�erential conductance of a single-wall carbon nanotube QD, the contacts of the CNT are
made with Au/Pd bilayers 400 nm apart. The sequence of one large diamond followed by three
smaller ones of approximately equal size suggests that the measured SWCNT is four-fold degenerate.

A four-fold degenerate CNT will exhibit a stability diagram as shown in �g.1.10. However,
orbital degeneracy can be lifted by spin-orbit coupling, orbital mixing, and magnetic �eld, leading
to two doublets, namely (K↑, K↓) and (K'↑, K'↓). The distribution of the two electrons in the
two levels depends on the relative values of the exchange coupling J, which tends to maximize the
spin, and the breaking of degeneracy δE [19]. When orbital degeneracy is broken by the energy δE,
the stability diagram will be modi�ed. �g.1.12 shows the stability diagram of spin 1/2 degenerate
CNT. We observe a "large" diamond (N th) of height Ec+∆E, followed by a "small" one of addition
energy Ec (N+1), now to add the third electron, the addition energy is Ec + δE, this will lead to
a "middle-sized" diamond (N+2) which is slightly bigger than the previous one, followed by again
a "small" diamond (N+3) of height Ec.
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Figure 1.11: The di�erential conductance as a function of source-drain (Vsd) and gate voltage (Vg)
at 4K of a carbon nanotube QD. Clear traces of Coulomb blockade are observed. The pattern of
a large diamond followed by three smaller ones suggests a (nearly) fourfold degeneracy (including
spin) of the single-electron dot states. The charging energy and level spacing can be extracted as
shown by the red and black arrows, respectively. Adapted from [18].
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Figure 1.12: Stability diagram for a two-fold degenerate CNT. Due to the breaking of orbital
degeneracy, the adding energy of N+2 diamonds increase by δE.

Strong coupling regime

In the strong coupling regime, the QD is well-coupled to the electrodes such that Γ� EC . The QD
is said to be open, the transmission of an electron through the dot is possible for any gate voltage,
and no coulomb diamonds are observed. If the contacts are symmetric the conductance reaches its
maximum value 2e2

h for a single orbital level due to spin degeneracy and 4e2

h if the level is spin and
orbital degenerate.

42



Chpater 1. Electronic properties of carbon nanotubes quantum dots

(a) (b)

Figure 1.13: (a) Schematic diagram of a CNT (represented in dark grey) device illustrating the
multiple electron re�ection that gives rise to the observed interference pattern in conductance [20].
(b) Di�erential conductance dI/dVSD, versus VSD and VG, showing a Fabry�Perot interference
pattern, i.e., an open quantum dot. The maximum conductance is lower than 4e2

h which means
that the contacts are not fully symmetric. Taken from [18].

In this regime, the nanotube is considered as a coherent electron waveguide where electron waves
can be re�ected several times at the CNT/metal interface, analogous to the light transmission in
an optical Fabry-Perot cavity [18, 20, 28] (see Fig1.13.(a)). CNT possesses two propagation modes
owing to its orbital degeneracy. Electrons in the two propagating modes acquire di�erent phase
shifts as they travel through the nanotube. The phase change as a function of electron energy is
responsible for the oscillating patterns as a function of VSD and Vg as shown in �g.1.13(b).

Hole transport       Electron transport

Small Schottky          Big Schottky 
Barrier                       barrier

(b)(&)

Figure 1.14: (a) Linear conductance versus gate voltage. For negative gate voltage, high conduc-
tance Fabry�Perot oscillations are observed. The positive gate voltage is dominated by the Coulomb
blockade. (b) Schematic band diagrams of a small band gap CNT, the band bending is controlled
by the gate voltage. The red/blue band is the conduction/valence band, respectively. Left: the
condition for hole transport through the valence band. Holes tunnel into/out of the valence band
through a relatively small Schottky barrier. Right: condition for electron transport through the
conduction band, where electrons tunnel into/out of the conduction band through a larger Schottky
barrier. Thus, high conductance is observed through the valence band in contrast to low conduc-
tance through the conduction band, i.e., Fabry�Perot interference versus Coulomb blockade regime.
Taken from [18].

By sweeping the gate voltage one can induce the transition from an open (Fabry�Perot inter-
ference) to a closed quantum dot (Coulomb blockade) in the same sample as shown in �g.1.14. By
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applying a negative gate voltage, the Schottky barrier for hole transport is relatively small lead-
ing to a relatively high conductance. Transport can be changed to electron transport through the
conduction band by applying a positive voltage to the gate. The Schottky barrier is in this case
signi�cantly larger leading to a low coupling of the SWCNT to the electrodes.

Intermediate coupling regime

In the intermediate coupling regime, the electrical contacts are su�ciently transparent (U ≈ Γ), such
that transport is not only possible through sequential tunneling but can also involve higher-order
tunneling processes through virtual states. In this regime, the Heisenberg uncertainty principle
allows the tunneling of an electron in and out of the dot during a very short time scale of the order
h
U . Even under Coulomb blockade conditions, two electrons can co-tunnel coherently through the
dot without changing its occupancy. This process is known as the �Co-tunneling process�.

Co-tunneling processes The co-tunneling process can be either elastic or inelastic. In the
case of elastic co-tunneling one electron can tunnel into the dot into a forbidden virtual state and
have to leave the dot during a very short time scale t ∼ h

Γ , such that t is of the order of the time
scale associated to the charging energy ∼ h

U , i.e. if Γ≈U. At the end of this process, the energy
state of the dot does not change as shown in �g.1.15.a.

Fig.1.15.b shows the inelastic co-tunneling process. The tunneling of an electron from the left
lead into the dot is immediately followed by the tunneling of another electron from the dot into the
right lead, leaving the dot in an excited state due to the creation of an electron-hole pair.

µ𝑆 µ𝐷
µ𝑆

µ𝐷
µ𝑆 µ𝐷

µ𝑆 µ𝐷
µ𝑆 µ𝐷

µ𝑆 µ𝐷

Initial state                                      Virtual state                                     Final state

(a)

Elastic co-tunneling

(b)

Inelastic co-tunneling

Figure 1.15: Co-tunneling processes in a QD that leads to a current �owing through the QD
overcoming Coulomb blockade. (a) Elastic co-tunneling, an electron can tunnel through the QD
during a very short time scale, the initial and �nal state of the QD is the same. (b) In-elastic
co-tunneling leaves the dot in an excited state due to the creation of an electron-hole pair.

Fig.1.15 represents the co-tunneling process without considering the spin of the dot. However,
considering the dot's spin during elastic co-tunneling leads to richer physics.
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Figure 1.16: Spin �ip elastic co-tunneling, the initial state and the �nal state of the dot have
opposite spins. The localized spin in the dot is completely screened by the spins of electrons in
metallic reservoirs.

Initially, the dot is occupied by an electron of spin 'up'. After passing a virtual intermediate
state, a spin 'up' electron can tunnel from the dot and be replaced immediately by tunneling of
spin 'down' electron into the dot. The transfer of electron through the dot is accompanied by a
spin-�ip process. The coherent superposition of all possible co-tunneling processes involving spin
�ip can result in a time-averaged spin equal to zero. Thus, the localized spin on the dot is screened
by the spins of electrons in metallic leads. This spin-�ip co-tunneling process is the origin of the
Kondo e�ect in quantum dots which will be discussed in detail in section 3.4).

1.2.3 Conclusion

In this chapter, we presented the system that we are studying during this work: A Carbon nanotube
quantum dot. We have shown that a CNT sandwiched between two metallic contacts can be
considered as a quantum dot with a discrete energy level spectrum. The electronic transport
through a CNT QD depends on transmission between metallic contacts and the tube. A highly
coupled CNT is said to be open. However, a weakly coupled CNT behaves as a quantum dot in the
Coulomb blockade regime. The Four-fold degeneracy of a CNT is revealed by analyzing the shape
and size of the Coulombs diamonds. In the intermediate regime, due to co-tunneling, the Kondo
e�ect in a QD emerges.
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Chapter 2

Experimental techniques

2.1 Nanofabrication and Measurement Setup

In this section, we present the di�erent nanofabrication techniques used to fabricate the desired
sample, the system used to cool it down, and the techniques used to perform the electrical transport
and high frequency measurements.

The sample is made of a carbon nanotube (CNT) contacted between two superconducting con-
tacts, which make it possible to induce superconductivity through it. In order to detect the emission
of the CNT, the CNT is coupled to an on-chip detector, a superconductor-insulator-superconductor
(SIS) junction, via a coplanar waveguide resonator.

2.1.1 Synthesis of carbon nanotubes

Various methods can be used for the synthesis of carbon nanotubes. Depending on the way of
extraction of the carbon atoms from the used precursors or target and the temperature, these
processes can be divided into two groups: physical or chemical.

Physical methods typically use high energy sources, such as plasma in an arc discharge ex-
periment [21] or laser ablation [22], to extract the carbon atoms. These methods require a very
high temperature between 3000°C and 4000°C. However, in chemical methods, the carbon atoms
are extracted through catalytic decomposition of precursors (Carbon monoxide [23], ethanol [24],
methane [25], ethylene [26]) on metal nanoparticles at a temperature in the range of 500 � 1200 °C.

In our experiment, the carbon nanotube is synthesized by chemical vapor deposition (CVD)
where acetylene is used as a precursor. This process has been developed by one of the group's
members: Alik Kasumov [27]. On a silicon substrate, a very thin layer of iron catalyst (thickness
of few nm) is deposited by sputtering. The substrate with the catalyst is placed in a quartz tube
and then introduced into the oven shown in �g.2.1. The system is pumped down to pressure lower
than 0.1 mbar and heated progressively until a temperature is around 900°C. Then few mbar of
pure acetylene is introduced into the oven during 9s then pumped out and extracted from the oven
using a cold trap at liquid nitrogen temperature. When the acetylene molecules touch the heated
catalyst, it is cracked on the edges of the catalyst, and nanotubes are formed. When the synthesis
is over, the oven is cooled down to room temperature. The carbon nanotubes synthesized by this
process have a diameter around 1-5 nm and length of few micrometers, with a reduced number of
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defects and a clean surface compared to arc discharge or laser ablation technique [27]. After CVD,
the sample is observed with a scanning electron microscope (SEM) with an Inlens detector, with
this detector we probe the charging e�ect associated with the presence of carbon nanotubes. An
SEM picture of carbon nanotubes grown during this work is shown in �g.2.1.

Sample

Carbon nanotube

Iron catalyst after CVD

Alignment mark

acetylene tank

Figure 2.1: Left: Picture of the oven where the CVD synthesis of carbon nanotube takes place.
Right: scanning electron microscope image of the sample after CVD, the carbon nanotubes are
observed.

2.1.2 Fabricating the sample

Lithography technique

To draw a nanoscale designed pattern on the sample, electron beam lithography is performed with
a scanning electron microscope. Before starting the lithography process, we deposit a thin layer of
electron-sensitive resist by spin-coating. The thickness of the layer is increasing with the polymer
viscosity and decreasing with the speed rotation of the spin coater.

In this experiment, we used a bilayer of resists MMA EL10/PMMA A3:

� MMA EL10 (methyl methacrylate, EL means ethyl lactate) is spin-coated during 60s at 2000
rpm (thickness ∼550 nm).

� PMMA A3(poly methyl methacrylate) is spin-coated during 60s at 4000 rpm (thickness ∼100
nm).

Since the polymer was conserved in a solution, we heat the sample after each resist coating for two
minutes at 180°C to let the solvent evaporate. The PMMA/MMA bilayer gives a large undercut
pro�le upon exposure and development. The importance of this undercut appears in the fabrication
of tunnel junctions. During lithography, the electron beam is accelerated by a voltage 30 keV
with a dose equals 320 µC/cm². Note that two SEM diaphragms, leading to di�erent electron
currents are used during lithography: 7.5 µm (current: 16 pA) and 120 µm (current: 10 nA) for
precise and coarse patterns, respectively. During exposure, the pattern is written directly onto the
electron sensitive resist, point by point following the pattern designed previously with CAD software
(DesignCad). The exposure causes a change in the chemical properties of the polymer, which can
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be eliminated by proper development. This is done by making the sample soak during 60s in a
solution of MIBK (methyl buthyl ketone) diluted at 1:3 with isopropanol at room temperature.
After the development of the sample, one obtains a positive mask with the desired design which is
ready for metallic deposition.

In this work, the sample is fabricated in two steps. First, we fabricate the contact on the CNT
and, in a second step, design the SIS junction and the resonator.

connecting the carbon nanotube

Resist 

Electron beam accelerated at 30 kV

MIBK development

Electron beam 
deposition of Al/Pd

Metallic layer

Lift-off
Acetone at 60°c

Metallic contacts of CNT

Figure 2.2: Schematic description of all the steps to make metallic contacts on a carbon nanotube,
as described in the text.

After CVD, one of the nanotubes is chosen and contacted between two metallic electrodes. For this
purpose, the contact of the tube and the side gate are drawn using CAD software (DesignCad) in
the right position thanks to the SEM image of the sample with alignment marks as the one shown in
�g.2.1. Then the sample is spin-coated with a bilayer of resist. Note that at this step the formation
of an undercut is useful to make the lift-o� easier. Then electron beam lithography with a small
current is performed followed by developments with MIBK.

Metal deposition The metal used to connect the tube is chosen to be superconducting. We
have chosen Al because its superconductivity can be destroyed by a rather small magnetic �eld.
This allows characterizing the normal state of the CNT without a�ecting his property, especially
the Kondo e�ect. The deposition of Al is preceded by the deposition of a thin layer of palladium
Pd. Pd is necessary since it provides high transparency contact to the carbon nanotube [28], but
it reduces the superconducting gap compared to bare aluminum. The two metals are deposited by
e-gun metal deposition under the following conditions:

� Pd: 7 nm at a rate of 0.2nm/s,(e-gun current I=200mA), pressure P = 9× 10−8mbar, angle
of evaporation θ=0°.
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� Al: 73 nm at a rate of 1nm/s, (e-gun current I=200mA), pressure p = 2 × 10−7mbar, angle
of evaporation θ=0°.

To reach an optimal value of vacuum pressure, the chamber is pre-deposited with Niobium, which
helps decrease vacuum pressure.

Lift-o� After metallic deposition, the sample is placed in acetone at 60°C for almost 1 hour.
Acetone will dissolve the resist and the metallic layer covering it will be removed. The whole
procedure is summarized in �g.2.2.

Fabricating Josephson Junctions

Subtrate

MMA EL10

PMMA A3

Electron beam accelerated at 30 kV

MIBK development

Electron beam deposition 
of Al at 𝝷=15°

Suspended bridge

Tunnel junction

Lift-off
Acetone at 60°c

Oxidation p=0.2 
mbar for 20 mins

Thin layer of Aluminum oxide

Electron beam deposition 
of Al at 𝝷=-15°

Figure 2.3: Schematic description of all the steps to fabricate a tunnel junction with directional
angular deposition.

Once the contacts of the CNT are deposited, the sample undergoes another lithography step, where
the tunnel junction and the resonator cavity are drawn with small and high current, respectively.
For metallic deposition, we use the angular evaporation technique (see �g.2.3) which consists �rst
of depositing 100nm of Aluminum at a θ=-15°. Then the Al layer is oxidized by 0.2 mbar of oxygen
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for 20 minutes forming a thin layer of aluminum oxide of the order of nanometer. Finally, the AlOx
layer is covered by 120 nm of Al deposited with an angle of 15°. After the metallic deposition, the
sample is inserted in hot acetone for 60 minutes. Acetone dissolves all the unexposed resist and
we are left with a metallic layer of the desired pattern. The obtained junctions have typically a
surface of 200nm×200nm and their resistance of the order of tens of kΩ. The value of the resistance
depends highly on the oxidation process. Since AlOx is very fragile and can break if any overvoltage
pulse is applied to the junction, one should wear an antistatic bracelet and ground carefully the
equipment during manipulation. Fig.2.4 shows a detailed SEM image of the sample, the CNT and
the Josephson junction are coupled on-chip to a coplanar waveguide resonator made with aluminum.

SIS Josephson Junction

CNT Josephson Junction

Coplanar waveguide resonator

500µm

2µm

Figure 2.4: SEM image of the sample. A CNT connected to two metallic reservoirs 400 nm apart
made with Al/Pd coupled on-chip via a coplanar waveguide to an SIS quantum detector.

2.1.3 Carbon nanotube samples with side gates

During this Ph.D., I have worked with Meydi Ferrier on fabricating a new carbon nanotube device.
An SEM image of the sample is represented in Fig.2.5. In this sample, the CNT is contacted
between two metallic contacts made with 7nm-Pd/23nm-Al 400 nm apart, with three gates. One
central gate G1 is used to tune the electrochemical potential and the two other side gates G2 and
G3 aims to tune the transmission amplitudes of the barriers. To fabricate this sample, we perform
the same lithography and metallic deposition steps explained previously. However, since for the side
gates we aim at a very small width ∼ 50 nm, we have used CSAR 62 as a resist, which is based on
methyl styrene-co-α-chloromethacrylate with the addition of halogenated acid. This resist provides
high sensitivity and resolution up to 10 nm. By tuning the transparency of the contacts, we will
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200nm

CNT

G1

G2

G3

Figure 2.5: SEM image of the CNT sample with three gates. The small gates G2 and G3 are ∼50
nm in width and used to tune the transparency of the contacts.

be able to control the contact asymmetry a = ΓL/ΓR, thus we will have access to many di�erent
transport regimes within the same sample.

2.1.4 Cryogenic cooling

In order to investigate the electronic transport properties of CNT devices, a low-temperature en-
vironment is required, below 50 mK. This temperature can be reached by using the 3He/ 4He
wet dilution fridge. However, during this work, we install a new dry fridge of base temperature
around 10 mK. The electronic temperature of this dry fridge was measured using a single electron
transistor thermometer, the calculated value is around 22 mK (See Chapter 7 section 7.1) for the
detailed measurement). In what follow we describe the operation principle of wet and dry dilution
refrigerators.

Wet dilution fridge

In a dilution refrigerator, the low temperature is achieved by using a mixture of 3He/ 4He. A
vacuum pump at room temperature is used to circulate the mixture through the dilution fridge.

The wet dilution fridge is initially cooled down at 4.2K by a liquid helium bath. When the
fridge is cold and running, the 3He/ 4He mixture is injected by a vacuum pump and undergoes a
cool down to around 3k by the vapors of the still. On its way to the mixing chamber, the mixture
passes through a series of impedances (Z1 and Z2) that perform Joule-Thomson expansions of
the 3He/ 4He mixture cooling it down below 1 K. Its temperature further decreases inside the
continuous heat exchanger due to the counter �ow of the liquid towards the still. Finally, the
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mixture arrives at the mixing chamber. When cooled down below 1K, the mixture undergoes
spontaneous phase separation to form a 3He-rich phase (the concentrated phase) and a 3He-poor
phase (the dilute phase).

Dilution cooling occurs in the mixing chamber which is connected to the still through a distilla-
tion column. In the mixing chamber, two phases of the 3He/ 4He mixture, the concentrated phase
(practically 100% 3He) and the dilute phase (about 6.4% 3He and 93.6% 4He), are in equilibrium
and separated by a phase boundary.

As we pump 3He vapor from the liquid inside the still, the 3He concentration in the liquid will
decrease. The di�erence in 3He concentration between the still and the mixing chamber results
in an osmotic pressure gradient along the distillation tube. This osmotic pressure pulls 3He from
the mixing chamber where it is separated from the 4He. On its way to the still the cold, dilute
3He cools the incoming 3He via the heat exchangers. Meanwhile in the mixing chamber, the 3He
percentage of the diluted phase is reduced, which leads to the �ow of 3He from the concentrated
phase to the diluted phase to maintain the 6.4% 3He in the diluted phase . The process of moving
the 3He through the phase boundary is endothermic and removes heat from the mixing chamber
environment, thus a base-temperature of 50 mK is achieved. The pumped 3He is then re-injected
using a compressor into the cryostat completing the cycle.

Figure 2.6: Left: phase diagram of 3He/ 4He mixture, when cooled down below 1k, the mixture
separates into two phases with the 3He/-rich phase �oating on top of the heavier 4He/-rich phase
which contains 6.4%3He/ . Right: Schematic diagram of a wet 3He/ 4He dilution refrigerator. In
the mixing chamber the mixture undergoes spontaneous phase separation to form a 3He-rich phase
(the concentrated phase) and a 3He-poor phase (the dilute phase).

Dry dilution fridge

In a dilution refrigerator instead of using liquid helium, a pulse Tube cryocooler is used to cool down
the mixture down to 4K. The refrigeration temperature is achieved by the continuous expansion
and compression of the working gas which is 4He within a closed volume.

When the pulse tube (PT) started, the only cold part of the system is the cold head of the
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PT. First, the mixture is pre-cooled by the cold head, which will in turn cool down the Mixing
Chamber (and the other parts of the fridge) before the condensation. During the pre-cooling
phase, the mixture is injected directly into the pumping line surrounding the cold head of the pulse
tube. Afterward, the mixture goes in the Joule-Thomson exchanger, then in the still and the mixing
chamber. Finally, the mixture goes out from the Mixing Chamber to the fast pumping line and then
out from the refrigerator to the gas handling system 'GHS' (The GHS consist of the mixture tank,
the primary pump, the turbopump, the compressor, the auxiliary primary pump, and the electrical
box). This process continues until the Mixing chamber is at 4k. The process is summarized in
�g.2.7.a.

To reach the lowest temperature on the mixing chamber plate, the circulation of the mixture is
reversed (as shown in �g.2.7.a) and condensation of the mixture starts.

The mixture undergoes the same thermodynamics cycle described in the previous section. A
given amount of mixture is used during the condensation. After the condensation is �nished, the
fridge is kept running at its lowest temperature ∼ 10 mk. In this work, we have installed a new
dry dilution refrigerator, which was used to characterize a high kinetic impedance resonator made
with tungsten at 10 mK (See chapter 7 section 7.2 ).

(a)                                                                        (b)

Figure 2.7: (a): Working scheme of the gas circulation during the pre-cooling mode. (b): Working
scheme of the gas circulation during the Condensation mode.

2.1.5 Wiring and �ltering

In this work the CNT sample is measured at 50 mK using a wet dilution refrigerator equipped with
a superconducting magnet, providing a magnetic �eld going from 0 to 1 T.

The sample to measure is thermally connected to the coldest part of the dilution fridge: the
mixing chamber and measured through low pass �ltered lines with a standard lock-in ampli�er
technique. The sample is connected to the BNC connector on top of the dilution fridge by DC
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lines made of manganin wires of resistance 30Ω, an alloy of copper, manganese, and nickel. The
resistivity of this alloy depends very weakly on temperature. The DC �ltering is achieved by two
�lters: a π-�lter on the top of the fridge at room temperature which �lters frequencies above 10
kHz if the sample resistance is about 5Ωk and a 100nF capacitance placed close to the sample.

Sample

Sample holder

Figure 2.8: Left: Schema of the DC wiring and �ltering of the dilution fridge we used. The sample
is thermally connected to the mixing chamber of the dilution fridge and electrically connected
to the top of the dilution fridge by manganin wires. The �ltering consists of a π-�lter at room
temperature as well as a capacitance of 100 nF placed close to the sample [60]. Right: Two Samples
are connected via thin Al/Si wires to a sample holder made with copper.

2.1.6 Sample measurement

Here I present two examples of measurements we have performed, the measurements of the di�er-
ential conductance and di�erential resistance versus the gate and the source-drain bias voltage.

For the di�erential conductance measurements, the CNT is DC voltage biased and AC biased.
One side of the sample is grounded to the fridge, so the current is measured from the voltage
across the 1KΩ resistance in the superconducting (normal) state. Di�erential conductance dI/dV
is measured directly with a lock-in ampli�er, and the DC voltage is measured with a voltmeter. For
the di�erential resistance measurements, the CNT is current biased. dV/dI and the DC voltage are
measured directly with a lock-in ampli�er and a voltmeter respectively at 0.1 nA modulations.
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Figure 2.9: Example of electrical setup used in measurements. Left: Measurements of the Di�er-
ential conductance of the CNT, the current is deduced from the voltage across the 1kΩ resistance.
Right: Measurements the di�erential resistance of the CNT, the voltage across it is measured
directly.
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Kondo e�ect

In normal metals, the main contribution to the resistivity is the electron-phonon scattering. As
temperature decrease, the electrons can travel more easily as the lattice vibrations of the metallic
crystal decrease. At zero temperature, the phonon population is zero and the �nite residual re-
sistivity is explained by the scattering with the defects of the metal. However, the resistance of
alloys with magnetic impurities (e.g. in gold) is found to increase [29] at low temperature. In 1964,
the theoretical physicist Jun Kondo explained this upturn of electrical resistance by the so-called
Kondo e�ect [30]. The Kondo e�ect is a many-body phenomenon that can appear when there is
some localized, non-zero spin degree of freedom coupled to a Fermi sea of conduction electrons.
The conduction electrons of the host metal tend to screen the localized spin. This screening leads
to the formation of a macroscopic coherent state called the `Kondo cloud'. The Kondo cloud has a
large scattering cross-section. Thus, the conduction electron scattering is enhanced, and eventually
the resistance increases. The temperature below which this phenomenon occurs is called the Kondo
temperature TK [31].

T>TK T<TK

Figure 3.1: For T > TK , the magnetic impurity is decoupled from the conduction electrons. If,
T < TK conduction electrons and the magnetic impurity interact coherently and form a Kondo
cloud.
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3.1 Kondo Hamiltonian

In the Kondo model, the Kondo e�ect can be described by the following Hamiltonian:

HKondo =
∑
kσ

εkc
†
kσckσ + J ~S.~sb (3.1)

The �rst term corresponds to the kinetic energy of the conduction electrons while the second one
describes the exchange interaction J between a localized magnetic moment of spin ~S, and the
conduction electrons with spin ~sb. The operator c

†
kσ (ckσ) creates (destroys) a conduction electron

with momentum k, and spin σ. J represents the strength of the interaction between the local
conduction electron and the local moment states. Assuming J < 0, Kondo used a perturbation
theory to calculate the resistivity due to the scattering with the impurity:

R(T ) = R0[1− 2Jρ log

(
kBT

D

)
] (3.2)

where R0 is a constant, ρ is the conduction band density of state at the Fermi energy, and D
the bandwidth of the density of state. The perturbation theory provides a good description of the
magnetic impurity systems for T > TK but the expansion breaks down at T < TK . The perturbative
approach gives a logarithmic divergence of the resistance at low temperature, while experimental
studies show that the resistivity is given by the power law of T with T 2 terms. Non-perturbative
techniques are required to investigate the low-T regime.

3.1.1 Renormalization Group

A complete understanding of the Kondo problem comes from renormalization. Anderson has pro-
posed a poor man's scaling [32] consisting of the renormalization of the Kondo Hamiltonian by
rescaling of all parameters. The scaling approach leads to the concept of the existence of a �xed
point when J(D) becomes scaling-invariant. The system is then described by the �xed point. How-
ever, this approximation led to the divergence of the coupling constant J at a �nite cuto� D = TK
which must be an artifact since the model can not have any phase transition at �nite temperature.

The correct solution can only be obtained by the renormalization group technique [33]. The
idea is to divide the conduction band into a set of discrete electron levels each one is called "Kondo
state". Then one solves the Kondo Hamiltonian for each Kondo state by numerical methods. This
proceeds in steps. First one solves the impurity coupled to the �rst Kondo state. The next step is
to add the second Kondo state and solve the combined coupling of the �rst and second conduction
band states to the impurity. Then one adds the third state, then the fourth state, and so forth. This
corresponds to solving for the eigenvalues at successively smaller and smaller energy scales. The
major result of this approximation was the demonstration that there is a unique stable �xed point
in the one-channel Kondo model: J → ∞, which means that the smaller is the energy scale, the
stronger is the e�ective coupling to the impurity. In another word, this e�ective antiferromagnetic
coupling increases for electrons close to the Fermi level. This leads to a resonance in the density of
states of a width of the order of TK pinned to the Fermi energy, which is called the Kondo resonance.
The Kondo e�ect is characterized by a single energy scale, TK , which is a scaling invariant. It can
be expressed in terms of the coupling J and the density of state N0:

kBTK ∝ e
−1

N0|J| (3.3)
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3.2 Anderson model

A localized magnetic state, can be modeled by the Anderson single level impurity model, where the
magnetic impurity is viewed as having one energy level with an unpaired electron at energy level
ε0, and a Coulomb repulsion U. All energy levels below ε0 are fully occupied with electrons, and all
energy levels above ε0 are unoccupied.

The position of ε0 can be tuned by the gate voltage. The state giving rise to the Kondo e�ect,
consisting of a localized degenerate state coupled to an electron reservoir, is well characterized by
the Anderson Hamiltonian [37]:

H =
∑
kσ

εkc
†
kσckσ +

∑
σ

εσd
†
σdσ + Und↑nd↓ +

∑
kσ

(vkd
†
σckσ + v∗kc

†
kσdσ) (3.4)

The �rst two terms account for the conduction electrons and the impurity, respectively, where c†kσ
(ckσ) creates (destroys) an electron in the leads with momentum k, spin σ, and energy εk. The third
term represents the Coulomb repulsion when the level is �lled with two electrons of opposite spin,
and the last term is the coupling between the conduction electrons and the impurity with amplitude
vk. For an isolated impurity vk = 0. This Hamiltonian has four eigenstates: |0〉 with energy 0, the
two degenerate states |↑〉, |↓〉 with energy ε0 and the doubly occupied state |↑↓〉 with energy 2ε0 +U .
The ground state is |↑↓〉 for ε0 < −U , the degenerate doublet |↑〉, |↓〉 for −U < ε0 < 0 and the
empty state |0〉 for ε0 > 0. Thus, the QD can carry an S=1/2 local moment only for −U < ε0 < 0.
Note that ε0 = −U2 corresponds to the particle�hole symmetry point.

3.3 Equivalence with the Kondo problem

In the case of the local moment (−U < ε0 < 0), performing the Schrie�er-Wol� unitary transfor-
mation [38] on eq.3.4, shows that the Anderson Hamiltonian was equivalent to the Kondo one, and
J can be expressed in terms of the Anderson parameters such that [38]:

J = 2| vk |2
U

ε0(ε0 + U)
(3.5)

vk can be expressed in terms of the coupling constant Γ and the density of states N0, such that
| vk |2 = Γ

πN0
. The expression of J is given as follow:

J =
2ΓU

πN0ε0(ε0 + U)
(3.6)

where Γ is the width of the impurity energy level, and U the Coulomb repulsion between two elec-
trons at the site of the impurity. For −U < ε0 < 0, J is negative con�rming the antiferromagnetic
nature of the exchange between the conduction electron and the impurity.

From eq.3.3 and 3.6, the Kondo temperature, TK is expressed in terms of the parameters of the
Anderson model [31]:

kBTK =

√
UΓ

2
e
π
2 ε0

(ε0+U)

(ΓU) (3.7)

Note that the minimum value of TK is obtained at the electron/hole symmetry point, ε0 = −U/2.
The maximum TK is found on the edges of the −U < ε0 < 0 zone.
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3.4 Kondo e�ect in quantum dot

A simple Kondo system can be realized with a quantum dot connected to metallic leads via two
tunnel barriers. The Kondo e�ect was predicted to occur in QDs in 1988 [39, 40], and then ex-
perimentally observed in semiconductor heterostructures [41], carbon nanotubes [42], individual
molecules [43], and semiconductor nanowires [44] QDs.

The �rst observation of the Kondo e�ect in quantum dots was made in GaAs-based two-
dimensional structures. The Kondo e�ect has now been seen in quantum dots based on a wide
variety of nanomaterials such as carbon nanotubes, C60 molecules, organic molecules, and semicon-
ductor nanowires.

We have seen in the previous section 1.2.2, that depending on the coupling between a quantum
dot and source-drain electrodes, the electronic transport through the QD can be either in the
Coulomb blockade or Kondo regime. When the electrical contacts are su�ciently transparent, and
the QD is occupied by an odd number of electrons i.e. its highest energy level carries a spin 1/2
magnetic moment, higher-order co-tunneling process are possible in which the transfer of an electron
between the leads is accompanied by the simultaneous �ip of the electron's spin of the dot (See
�g.3.2). The coherent superposition of many such co-tunneling events results in the screening of
the local spin, which leads to the appearance of a peak in the density of states at the Fermi level
of the electrodes, called Kondo resonance [31]. To probe transport through a quantum dot, all
the electrons have to travel through this single magnetic site. In this case, the Kondo resonance
makes it easier for states belonging to the two opposite electrodes to mix. This mixing increases
the conductance. In another word, even in the Coulomb blockade regime, the Kondo e�ect makes
it possible for current to �ow through the QD. The great advantage of using quantum dots to study
the Kondo e�ect is that their parameters can be calculated and tuned easily.

(a)

S D S D S D
density of states

E
(b)

�0

U

Initial state Virtual state Final state

TK

�

Figure 3.2: (a) Kondo screening mechanism in a QD. At the end of the co-tunneling process, the
spin of the QD is �ipped. (b) A resonance of width kBTK develops in the density of states of the
quantum dot at the Fermi level of the electrodes due to the Kondo e�ect.

By measuring the stability diagram of a QD, if the temperature is below the Kondo temperature
TK , Coulombs diamonds with an odd number of electrons exhibit a strong conductance increase at
zero bias: the so-called Kondo ridge. From the width of the Kondo peak in bias voltage, we can
extract the Kondo temperature. The zero-bias conductance peak whose amplitude depends on the
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barrier's transmissions [45]:

G =
2e2

h

4ΓRΓL

(ΓR + ΓL)
2

∑
n

sin2 δn
2

(3.8)

where δn is the scattering phase shift of each channel participating to transport. According to
the Friedel sum rule, δn = π 〈Nn〉 with Nn the average occupation of the state n. In an ordinary
spin-1/2 Kondo e�ect, there are two spin states and one electron, such that 〈Nn〉 = 1/2. eq.3.8 is
reduced to:

G =
2e2

h

4ΓRΓL

(ΓR + ΓL)
2 (3.9)

Kondo Ridge

G
(2
e²
/h
)

VSD(mV)
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Figure 3.3: Left: Stability diagram of Four-fold degenerate CNT QD as a function of VSD and VG of
a quantum dot in the Kondo regime. Blue regions correspond to low conductance due to Coulomb
blockade, and white corresponds to high conductance. The Kondo ridges appear at every diamond
that corresponds to an odd number of electrons on the dot. Right: Vertical cut at the center of the
Kondo ridge (indicated in red) showing the peak in conductance at zero bias. From the half-width
at half maximum of the Kondo peak one can extract the Kondo temperature TK .

3.5 Speci�city of a carbon nanotube Quantum dots

The Kondo e�ect requires the presence of unpaired spin in the highest occupied energy level of
a QD. However, the role of the spin could be replaced by other degrees of freedom, such as an
orbital quantum number [46, 47]. The four-fold degeneracy of the carbon nanotube enables the
observation of di�erent types of Kondo e�ect. This degeneracy is generally broken with an energy
splitting equal to δE. If δE � U,Γ, the CNT is considered as a single level QD. Then the usual
spin-1/2 SU(2) Kondo e�ect is observed. If δE = 0, i.e. orbital and spin degeneracies are present
simultaneously, this leads to SU(4) Kondo e�ect of higher symmetry [49, 50]. Orbital Kondo e�ect
has been also observed in CNT QD [48]. All these situations are summarized in �g.3.4.

3.5.1 SU(2) Kondo e�ect in CNT QD

Let us consider the case of a CNT QD connected to two metallic leads, where orbital degeneracy
is broken by δE, such that δE � U,Γ. In this case, only one level, which is spin degenerate,
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Figure 3.4: Spin, orbital and SU(4) Kondo e�ect in a quantum dot (QD) with an odd number of
electrons. (a) Schematic illustration of a spin-�ip co-tunneling process connecting the two states
spin up |↑〉 and spin down |↓〉 from a single orbital state. (b) Co-tunneling process for spinless
electrons for two degenerate orbital states, labeled |+〉 and |−〉. The depicted process �ips the
orbital quantum number from |+〉 to |−〉 and vice versa. The coherent superposition of orbital-�ip
processes leads to the screening of the local orbital quantum number. (c) QD with two spin-
degenerate orbitals leading to an overall fourfold degeneracy. Spin and/or orbital states can �ip
by one-step co-tunneling processes (all possible processes are indicated by black arrows). These
processes lead to the entanglement of spin and orbital states, resulting in an enhanced SU(4)
Kondo e�ect. Taken from [48].

participates in the transport. Thus, we can assume the Anderson model to describe our system.
A CNT oddly occupied likely gives rise to the Kondo e�ect. The Kondo e�ect, creates a strongly
correlated state between the CNT QD and both reservoirs, opening a well-transmitted channel only
if the temperature is smaller than the Kondo temperature TK . TK can be well approximated by
the expression predicted by the Bethe Ansatz [57, 58]:

TK =
√
UΓ/2 exp

[
− π

8UΓ
|4ε2 − U2|

]
(3.10)

where U is the charging energy of the CNT quantum dot, Γ = ΓL + ΓR is the coupling to the
electrodes, and ε is the energy level of the dot relative to the Fermi energy of the reservoirs.
Typically, in carbon nanotube quantum dots, the Kondo temperature reaches 1-2K [61, 116, 62],
values like the one obtained in InAs nanowires [55, 63].

The larger is the coupling Γ, the larger is TK : at a given temperature, as Γ increases, a stronger
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Kondo screening is expected.
A typical stability diagram of a carbon nanotube in the Kondo SU(2) regime is shown in �g.3.5.

Two Kondo ridges (bright yellow lines at VS = 0) for odd diamonds are observed. The maximum
amplitude of the Kondo enhanced conductance peak in case of SU(2) Kondo e�ect is given by eq.3.8.
For spin-1/2 Kondo e�ect, the expression of conductance is recalled (see section 1.4):

G =
2e2

h

4ΓRΓL

(ΓR + ΓL)
2 (3.11)

The maximum conductance reached in the spin-1/2 Kondo e�ect with fully symmetric contacts
(ΓR = ΓL) is 2e2/h. In another word, the Kondo e�ect opens a single spin degenerate perfectly
transmitted channel.

Temperature dependence

Exciting electrons around the Fermi energy, a �nite temperature of the order of TK prevents elec-
trons from participating in the Kondo singlet, and thus alters the Kondo resonance. Consequently,
the zero-bias peak in conductance decreases as a function of temperature. The temperature depen-
dence of the conductance can be described by the phenomenological expression

dI

dV
(T ) =

G0

(1 + (21/s − 1)( T
TK

)2)s
(3.12)

With s a constant which depends on Kondo type correlations. This empirical formula derives from
a �t to NRG calculations. For a spin-1/2 Kondo e�ect s = 0.22 [63, 64]. All physical quantities are
then universal functions of dimensionless parameters, kBTK being the scaling energy. Conductance,
current and noise spectral density are functions of T

TK
, eVSD
kBTK

, gµBBkBTK
, respectively.

Magnetic �eld dependence

The Kondo e�ect is a many-body e�ect, originates from local spin �uctuations, to which magnetic
�eld couples strongly. When applying a magnetic �eld, the spin degeneracy is lifted into two levels
corresponding to spin ↑ and spin ↓. The Kondo zero-bias conductance peak is expected to split into
two peaks of lower conductance. The position of those peaks is related to the Zeeman energy so
that eVSD = ±gµBB, where is µB Bohr magneton and g is Landé factor.

In carbon nanotubes g ≈ 2 [65, 16]. CNT possesses a large g factor compared for example with
GaAs-based dots of g=0.1 to 0.44. Magnetic �eld parallel to the tube axis does strongly a�ect
orbital states, so we apply �eld perpendicular rather than parallel to the tube axis to ensure that
only the Zeeman e�ect is dominant. Fig.3.6 shows the conductance measurements in magnetic �elds
of a CNT QD, the split of the Kondo resonances occurs as a function of the magnetic �eld. As
B increases, the Kondo resonance splits into two inelastic cotunneling peaks, that are still Kondo
enhanced but weakened by the magnetic �eld.
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Figure 3.5: Temperature dependence of a spin-1/2 Kondo resonance in a carbon nanotube quantum
dot contacted with Pd contacts. (a) Stability diagram (di�erential conductance as a function of V
and Vg) of the nanotube, exhibiting Kondo ridges for N=1 and N=3. For N=2, inelastic cotunneling
peaks are visible. (b) Conductance at zero bias as a function of Vg for various temperatures from
70 mK to 0.85 K. At the lowest temperature, the conductance almost reaches the maximum value
of 2e2/h, meaning that the contacts are almost symmetric. (c) Temperature dependence of the
Kondo peak at the center of the N=1 diamond. (d) Fit of the conductance to extract the Kondo
temperature with eq.3.3, giving TK = 1.65K. From [60].

B
(T
)

VS(mV)

Figure 3.6: Perpendicular to the plane magnetic �eld splitting of the zero-bias peak at the center of
the Kondo ridge. The exchange energy is E = 2µBB. Red curves are traces taken for B = 0.108T
and B = 1.302T. Green dashed curves are the expected lines of the position of the splitted peaks
maximum for a g = 2 Landé factor. From [59].
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a) CNT dot with one electron (N=1) b) CNT dot with two electrons (N=2)

Isolated ground states Isolated ground states

1 2 3 4

1 2

4 5 6

3

Figure 3.7: ((a) Representation of the four degenerate ground states for a dot containing one particle
(N=1 and N=3). (b) Representation of the six degenerate ground states for a dot with two particles
(N=2).

E�ect of the contact asymmetry

Until now we have discussed the Kondo e�ect considering a CNT QD with symmetric contacts. In
that case, the transmitting channel opened by the Kondo e�ect involves both reservoirs. However,
in the experiment, this is in general not the case and we have to consider the contact asymmetry
a = ΓL/ΓR. For asymmetric contact, the Kondo singlet is mainly formed between the dot and the
best coupled reservoir. From eq.3.9, the conductance is reduced by a factor 4ΓRΓL

(ΓR+ΓL)2 compared to
the symmetric case. Then, for the same applied bias voltage, the current in asymmetric contact is
lower than that in the symmetric case. The decoherence rate is shown to be proportional to the
current, thus the decoherence is reduced as well. For this reason, we can say that the asymmetry
tends to stabilize the Kondo singlet.

3.5.2 SU(4) Kondo e�ect in CNT QD

Carbon nanotube is naturally four-fold degenerate, its electrons possess spin and orbital (valley)
degrees of freedom. The orbital degeneracy of a CNT plays the role of a pseudospin. Thus,
SU(4) Kondo e�ect can occur in CNT QD, which requires the screening of the orbital pseudospin,
together with the real spin at low temperatures. This increased degeneracy yields an enhancement
of TK [48, 49]. The SU(4) can only be observed when the symmetry of the four-fold degeneracy of
CNT is well conserved during tunneling. For spin degeneracy this is the case, however, for orbital
degeneracy, this conservation is not obvious, as it is not de�ned in the metallic electrode. If one
considers that the leads to the dot are formed within the same nanotube, thus both the leads and
QD have the same orbital symmetry, which should be conserved in tunneling processes [50].

Another condition for the occurrence of SU(4) Kondo e�ect, is that Kondo temperature should
be larger than the zero-�eld splitting, either due to spin-orbit or valley-mixing (TK > ∆SO,∆KK′).
In the upcoming section, we will discuss the possibility of breaking SU(4) Kondo e�ect by spin-orbit
coupling and/or level mixing [51, 52].
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Figure 3.8: SU(4) Kondo e�ect in CNT QD with Pd contacts. (a) Di�erential conductance in the
Kondo SU(4) regime. On the color plots, we can see that the Kondo ridge spreads all over the three
diamonds N=1, 2, and 3. (b) Horizontal cut at Vs = 0, showing that the conductance goes up to
3.1 e2/h at N=2. (b) Kondo resonance for the three occupancies [60].

In SU(4) Kondo e�ect, the Kondo ridges appear both at the odd numbers diamonds (N=1,3) and
half-�lled diamonds (N=2). For N=1 or 3 there are 4 degenerate ground state and six degenerate
ground state for N=2. All those states are illustrated in �g.3.7. The N=1 and N=3 are equivalent
due to electron-hole symmetry and have the same conductance of 2e2/h (we are considering here
the case of symmetric tunnel barriers). This value is calculated using eq.3.8 with 〈Nn〉 = 1/4 for
N=1 or 〈Nn〉 = 3/4 for N=3). For N=2 diamond we have two electrons in four states, giving
〈Nn〉 = 3/4, thus the maximum conductance reached for fully symmetric contacts is 4e2/h.

Fig.3.8 shows the stability diagram in a SU(4) Kondo regions. The outlines of the Coulomb
diamonds are visible, hidden by the Kondo ridge that is very large and spreads all over the three
diamonds N=1, 2, and 3. Kondo resonance at each occupancy (See �g.3.8.c) shows that the width of
the Kondo peak is larger at N=2 (≈1.3 meV) than at N=1 and 3 (≈1 meV). The Kondo temperature
is roughly estimated from the half-width at half maximum of the Kondo peak: 7K for N=2 and
6K for N=1 or 3. These values of Kondo temperature are very large compared to the one typically
obtained in a nanotube for SU(2) Kondo e�ect (1-2K) as predicted by theory [48, 49].

Breaking of the SU(4) symmetry

The breaking of SU(4) symmetry originates from the breaking of the four-fold degeneracy of CNT
QD. The orbital degeneracy could be broken due to spin-orbit, boundary conditions, or disorder.

E�ect of spin-orbit coupling Spin�orbit coupling can be present in carbon nanotubes owing
to their curvature and cylindrical topology [54]. If the spin-orbit coupling energy ∆SO 6= 0 and
kBTK > ∆SO, the spin and orbital degree of freedom are coupled and the four degenerated states
of CNT become two degenerate Kramers doublets [53]: (K↑, K↓) and (K↑, K'↓) with entangled spin
and orbital degrees of freedom. In this case SU(4) Kondo e�ect is not possible anymore, however,
the Kramers degeneracy can give rise to SU(2) Kondo e�ect.

E�ect of orbital mixing The four-fold degeneracy of CNT can also be broken by orbital mixing
attributed to the presence of weak disorder. The observation of orbital mixing can be related to
the chirality of the CNT, such that A armchair nanotubes undergo orbital mixing, however zigzag
nanotubes do not [56]. Due to orbital mixing, the K and K' orbital levels undergo level anticrossing
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Figure 3.9: Calculated single-particle energy spectrum as a function of the magnetic �eld applied
perpendicular (B⊥) and parallel (B//) to the CNT axis. (a) Perfect four-fold degeneracy. (b) With
the presence of ∆KK′ > 0, (c) ∆SO > 0, and (d) both ∆KK′ > 0 and ∆SO > 0. Adapted from [55].

and the four-fold degenerated state of CNT becomes two spin degenerated pairs: (A↑, B↓) and (C↑,
D↓), separated by ∆KK′ , where A, B, C, and D are combinations of orbital states K and K'). As
the split levels are spin degenerate, standard spin 1/2 SU(2) Kondo e�ect is possible.

Breaking of the four-fold degeneracy of CNT QD can be due to both spin-orbit coupling and
orbital mixing. �g.3.9 shows the calculated single-particle energy-level spectra, considering the ef-
fect of ∆SO and ∆KK′ .

Ferrier et al. [67] show that it is possible to induce a crossover between SU(4) and SU(2)
symmetry of the ground state at half-�lling (N=2, two electrons in the dot) by tuning the orbital
and spin degeneracy with a magnetic �eld. A magnetic �eld making an angle θ with the nanotube
axis is applied. The behavior of each ground state (N=1 and N=2) is studied under the e�ect of a
magnetic �eld and will be explained in what follows
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N = 2 ground state

SU(4) Kondo SU(2) Kondo

�Β

Figure 3.10: Stability diagrams for B=0, 4, 8, and 10 T at T=16 mK as contour plots of the
conductance G as a function of Vg and Vsd. The Kondo resonance produces the bright broad
vertical lines at Vsd = 0. This ridge disappears at high �eld for N=1 and 3. It is split into two
satellite peaks at high Vsd separated by ∆Vsd ≈ 4µBB. At N=2, G decreases but it remains
maximum at Vsd = 0. From [67].

N=1 ground state, Dot containing one electron At zero magnetic �eld, four states are
degenerate forming an SU(4) Kondo state. When the magnetic �eld is applied the spin and orbital
degeneracy is lifted and the Kondo e�ect disappears.

N=2 ground state, Dot containing two electrons For N=2, at zero magnetic �elds, six
states are degenerate, this leads to the formation of SU(4) Kondo state. As B increases, the orbital
and spin degeneracy is lifted. However, the ground state remains doubly degenerate for �nite B,
and can give rise to SU(2) Kondo e�ect.

The stability diagram of CNT with Pd/Al contacts is shown in �g.3.10. The measurement is
done for B=0, 4, 8, and 10 T. The number N=0, 1, 2, and 3 indicates the number of electrons in
the last occupied shell. At B=0 T, the Kondo resonance is seen for every �lling as expected for the
SU(4) Kondo e�ect. When the �eld increases from 0 to 10 T, ridges at N=1 and N=3 progressively
disappear whereas the N=2 ridge remains until a very high �eld. But with reduced intensity, at
B=0 the maximum conductance G = 1.85GQ (GQ = 2e2/h) which is close to 2GQ, the expected
value for the N=2 unitary SU(4) state. As B increases, G decreases toward GQ, the value expected
for the SU(2) Kondo e�ect.

SU(2) orbital Kondo e�ect Jarrillo-Herrero et al. [48] shows that orbital Kondo e�ect can
occur in carbon nanotubes. Applying a parallel magnetic �eld breaks the four-fold degeneracy, thus
no Kondo e�ect is observed. However, from �g.3.9.c the state (K,↑) and (K',↑) undergoes level-
crossing at B = B0 (indicated in red circle). Then, the orbital degree of freedom is degenerated,
leading to the reappearance of a Kondo resonance due to pure orbital SU(2) Kondo e�ect.
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3.6 Conclusion

In this chapter, we presented the physics of an important many-body e�ect in condensed matter:
the Kondo e�ect. This e�ect was initially observed in alloys with magnetic impurities, but it can
occur also in a single impurity constituted by a quantum dot described by the Anderson model.
The electrons at the Fermi energy of the reservoirs screens the magnetic moment of the impurity,
giving rise to a resonance in the density of states of the quantum dot: the Kondo resonance. Then
we focus on the Kondo e�ect in Carbon nanotubes quantum dot. The four-fold degeneracy of a
carbon nanotube QD makes it a very interesting system to study the Kondo e�ect. In particular,
it can sustain di�erent Kondo e�ects: spin-1/2 SU(2), SU(4), and orbital Kondo e�ect.
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Introduction to superconductivity

In this chapter we will present the basics notions to understand the Josephson e�ect in nanoscale
junction: the superconducting proximity e�ect, Josephson e�ect in a QD, physics of Andreev bound
states, and the e�ect of Kondo correlations.

4.1 Superconductivity

In this section we will discuss the physics of conventional superconductors, where the electrons form
coherent bound states called Cooper pairs, which dramatically change the macroscopic properties
of the system, giving rise to perfect conductivity and perfect diamagnetism.

4.1.1 Phenomenology

In metals, the resistivity is expected to decrease with temperature, due to the reduction of electron-
electron and electron-phonon interactions until it reaches a minimum �nite value at the lowest
temperature because of impurity scattering. In 1908, Heike Kamerlingh Onnes was the �rst to
liquefy helium. A few years later in 1911, Onnes was studying the transport properties of mercury
(Hg) at low temperatures. He found that below the liquefying temperature of helium, at around
4.2 K, the resistivity of Hg suddenly drops to zero. His discovery was the opening of a new chapter
in low-temperature physics: Superconductivity. Nowadays Hg and many other metals (aluminum,
lead, tin...) are known to be superconductors whose electrical resistivity completely vanishes when
cooled down below their critical temperature Tc.

Besides having zero resistance, another interesting propriety of superconductors is expelling
magnetic �elds. In 1933, Meissner discovers the so-called Meissner e�ect: the magnetic �ux density
B is expelled below the superconducting transition temperature Tc, i.e. inside a superconductor
material the magnetic �eld vanishes within a length λ, called the penetration length. This e�ect
reveals the perfect diamagnetic properties of a superconductor. Because the current itself generates
a magnetic �eld, the existence of a critical magnetic �eld Bc implies the existence of a maximum
current which can be sustained by a superconductor, called the critical current Ic. The measure-
ments of thermodynamic quantities, such as the low-temperature speci�c heat show an exponential
dependence well below Tc. This suggests the presence of an energy gap ∆ in the density of state of
a superconductor between the ground state and quasi-particle excitation.
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Depending on their magnetic �eld behavior superconductors can be classi�ed into two categories:
type I and type II superconductors. The type-I category of superconductors is mainly comprised
of metals and metalloids (Pb, Al, Hg, Sn, In). However, the Type 2 category of superconductors
is comprised of metallic compounds and alloys (Y Ba2Cu3O7, (La, Sr)CuO2, CuMgO2), except for
the elements vanadium, technetium, and niobium. Type-II tend to have higher transition temper-
ature Tc than type-I superconductors (e.g Tc(Pb) = 7.2K, Tc(Y Ba2Cu3O7) = 92K). In Type I
superconductor the magnetic �eld is completely expelled from the interior for H < HC . Above
that �eld, a type I superconductor is no longer in its superconducting state. A Type II supercon-
ductors have two values of critical magnetic �eld, for H < HC1 the magnetic �eld is completely
expelled as type-I behavior. For HC1 < H < HC2, there is a partial �eld penetration in the form
of vortex lines of magnetic �ux. Each vortex contains one �ux quantum Φ0= h

2e . Where the vortex
appears the superconducting order parameter drops to zero. In this region, the metal is no longer
a superconductor. Whereas the rest of the metal stays superconducting. When the �eld reaches
the second critical �eld Hc2 the metal stops to be superconducting.

Figure 4.1: For a type I superconductor, magnetic �ux is expelled, producing a magnetization (M)
that increases with magnetic �eld H, when the �eld reaches the critical value Hc, the magnetization
falls to zero as in normal metal. A type II has two critical magnetic �elds (Hc1 and Hc2), below
Hc1 type II behaves as I, and above Hc2 it becomes normal.

Interaction between electrons and lattice atoms is responsible for the existence of a supercon-
ducting state. The electron-electron coupling is weak and can be destroyed by the thermal motion
of the lattice. For this reason, superconductivity exists only at low temperatures. The attractive
electron-electron interaction mediated by the phonons gives rise to Cooper pairs. A Cooper pair
is a bound state formed by two electrons of opposite spins and momenta, of pairing energy ∆ and
spatial extension ξ0 =

~vf
π∆ . The net spin of a Cooper pair is zero, consequently, these Cooper pairs

form a coherent macroscopic ground state that obeys Bose-Einstein statistics.
Conventional and unconventional superconductors di�er by the pairing mechanism. In conventional
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superconductors, the pairing is due to electron-phonon attractive interaction. In unconventional
superconductors, the Cooper pairs are not bound together by phonon exchange but instead by
exchange of some other kind, e. g. spin �uctuations [68], magnetic �uctuations [69] .

In what follow we limit ourselves to the case of conventional superconductors. According to
Ginzburg-landau theory, at zero magnetic �eld superconductivity is a second-order phase transition
of the normal state. The superconducting state can be described with a single macroscopic wave
function:

ψ =| ψ | exp(iϕ(r)) (4.1)

ψ is the superconducting order parameter, with | ψ |2 represents the density of Cooper pairs, and ϕ
is the superconducting phase. For a complex order parameter ψ the Landau expansion of the free
energy would give the expression of current in a superconductor as a function of potential vector
~A, and the order parameter ψ:

I = −e~
m
| ψ |2(~∇ϕ− 2e

~c
~A) (4.2)

This relation emphasizes that a dissipation-less current is not induced by voltage bias but by a
gradient of the superconducting phase ϕ.

4.1.2 BCS theory

In 1957 John Bardeen, Leon Cooper, and Bob Schrie�er developed a microscopic theory of super-
conductivity, the BCS theory [70]. The main point of the BCS theory is that the formation of
Cooper pairs originates from a small attractive electron-electron interaction mediated by phonons.
The BCS theory describes only the conventional superconductor, where phonons are responsible
for the formation of bound electron pairs.

Ground state In a BCS mean-�eld approximation [71, 72], the e�ective Hamiltonian can be
written as:

H =
∑
k,σ

ξkσc
†
kσckσ +

∑
k

∆kc
†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ (4.3)

where ckσ (c†kσ) is the annihilation (creation) �eld operator of an electron of spin σ and vector
momentum k. With ξkσ being the kinetic energy and ∆k = −

∑
k′ Vkk′(c−k′↓ck′↑), with Vkk′ the

paring potential. In order to �nd solutions of BCS theory in a homogeneous superconductor, this
Hamiltonian can be diagonalized using Bogoliubov transformation:

γk,↑ = ukck↑ − vkc†−k↓ γ†−k,↓ = u∗kc
†
−k↓ + v∗kck↑ (4.4)

with | uk |2 + | vk |2= 1, is the normalization condition of Bogoliubov transformation. The
diagonalized Hamiltonian takes the following form:

H =
∑
k,σ

Ekγ
†
k,σγk,σ (4.5)

where γk,σ and γ
†
k,σ, are the fermionic annihilation and creation operator, usually calledBogoliubons.
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From eq.4.4, the Bogoliubon appears to be a mixture of electrons and holes excitation of exci-
tation energy Ek =

√
ξ2
k + ∆2. Solving the diagonalized Hamiltonian gives the usual BCS ground

state:
|ψBCS〉 =

∏
k

(| uk | + | vk | eiϕc†k,↑c
†
−k,↓) |0〉 (4.6)

The probability of the pair (k↑,-k↓) being occupied is | vk |2, whereas the probability that it is
unoccupied | uk |2. When the pair is occupied, its phase is the macroscopic superconducting phase
ϕ.

Superconducting density of state The superconducting density of state Ns(E) can be de-
rived by equating Ns(E)dE = Nn(ξ)

2 dξ, where the normal density of states Nn(ξ) can be considered
constant and equal to the one at the Fermi level Nn(ξ) = N(0). This leads directly to the simple
result:

Ns(E) = N(0)


|E|√
E2−∆2

| E |> ∆

0 | E |< ∆

(4.7)

The density of state is sketch in �g.4.2, the superconducting density of state exhibits a gap ∆, such
that no state is available around the Fermi energy. The value of the superconducting gap is shown
to be proportional to Tc: ∆=1.76 kBTc

D
O
S

EεF

2Δ

Figure 4.2: The BCS density of state of a superconductor is gapped around Fermi level. The states
below the Fermi level (colored region) are �lled and the states above are empty.

The order parameter introduced in the context of Ginzburg-Landau theory can be associated,
under certain conditions, to the superconducting gap ψ = ∆eiϕ(r)

4.2 Superconducting proximity e�ect

When a superconducting material brought into contact with non-superconducting one (normal or
insulator), the superconducting correlations can survive in the normal (insulator) part, and can
even carry a supercurrent when contacted between two superconductors: this the so called the
superconducting proximity e�ect. The key underlying phenomenon of this e�ect is the Andreev
re�ection.
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4.2.1 Andreev transport

Andreev re�ection Let us consider an electron in a normal metal at energy Ef + ε with ε < ∆,
wavevector ke = kF + q and phase φe, arriving on NS interface. Due to the superconducting gap in
the density of states of the superconductor, no available states are present in the superconductor
at energies below the gap. Thus, the incoming electron is re�ected as a hole of energy Ef − ε and
opposite spin: this is the Andreev re�ection. During Andreev re�ection a charge of 2e is transferred
in the superconductor at the Fermi energy, in the form of a Cooper pair. The phase acquired by
the hole compared to the one of the electrons after the re�ection is:

φh = φe + ϕ+ arccos
( ε

∆

)
(4.8)

with ϕ the superconducting phase in the superconductor and ∆ the superconducting energy gap

E

SN

e-

h

2e

Figure 4.3: Andreev re�ection process at a N/S interface. An incoming electron e with energy
Ef + ε, wavevector ke = kF + q and phase φe is re�ected backward into a hole with energy Eh − ε,
wavevector −kF + q and phase φe.

Andreev bound state Let us consider the case where a normal part of length L is enclosed
between two superconductors. The re�ected hole at the �rst NS interface can propagate and reach
the second NS interface where it will be re�ected backward as electron, closing the cycle (see
�g.4.4.a). If the length of the normal part is small enough to ensure coherence along the whole
path, a Cooper pair is transferred coherently from one superconducting contact to the other, and
a non-dissipative current �ow through the junction. When several Andreev re�ections occurs,
an entangled e-h pair is con�ned in the normal part forming a bound state called the Andreev
bound state (ABS). These states carry supercurrent , and their energies depend periodically on the
superconducting phase di�erence ϕ = ϕL − ϕR such that:

2nπ = ϕ+ 2 arccos
( ε

∆

)
+

2ε

~vf
L (4.9)

This gives the following energy spectrum of Andreev bound state:

ε = ∆ cos

(
ϕ

2
− nπ − ε

~vf
L

)
(4.10)
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where ϕ is the phase di�erence between the superconducting electrodes. This equation admits
multiple solutions which correspond to Andreev states inside the superconducting gap. In the case
of perfectly transmitted short junction L� ξ0, with ξ0 being the superconducting coherence length,
only two bound states are found at energies:

ε = ±∆ cos
(ϕ

2

)
(4.11)

E

SN

e-

h

2e

E

S

2e

(b)

ε-ε

Normal part(a)

(c)

DOS

EEF

ABSφL φR

L

Figure 4.4: Principle of Andreev Bound States (ABS). (a) Andreev re�ections in a SNS junction,
leading to the formation of Andreev bound states (ABS) in the normal part. (b) The local DOS in
the normal part exhibits a set of resonances in the gap at the energies of the ABS. The energies of the
ABS depend periodically on the superconducting phase di�erence. (c) Observation of individually
resolved Andreev bound states in a tunneling spectroscopy experiment. In this experiment, a carbon
nanotube plays the role of the coherent conductor. Taken from [88].

4.2.2 Josephson e�ect

In 1962, David Josephson made two remarkable predictions [73], the DC and the AC Josephson
e�ect in a Josephson junction. A Josephson junction is a combination of two superconducting ma-
terial separated by a thin insulating layer of length L.

In 1966, de Gennes shows that the e�ect extends beyond Josephson's predictions and can ex-
ist if superconductors are connected by a �weak link� [74] such as normal metal, point contacts,
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graphene, carbon nanotubes, semiconducting nanowires, and thin ferromagnetic layers. If the non-
superconducting part is an insulator, the junction is called an SIS junction, and SNS junction in
case of a normal metal, SFS Junction in case of a ferromagnetic layer [72].

In the non-superconducting part (N or I), there is no superconducting correlation. However,
due to the superconducting proximity e�ect, at the interface with the superconducting part, some
Cooper pairs can penetrate in the non-superconducting part. If the length of the N or I part is
small enough such that the coherence of the pair is conserved during the crossing of the N or I part,
the superconducting wave functions of the two contacts overlap allowing tunneling of Cooper pairs
from one contact to the other when a �nite superconducting phase di�erence exists between the two
superconductors (See �g.4.7). We can distinguish two regimes, with respect to the superconducting
coherence length ξ0: L < ξ0 corresponds to the short junction regime, L > ξ0 to the long junction
regime.

Dc Josephson e�ect

The DC e�ect refers to the �owing of supercurrent between two superconductors due to tunneling
of Cooper pairs from one superconductor towards the other. The maximum of this supercurrent is
called the critical current of the junction. The existence of this supercurrent relies on the formation
of Andreev bound states in the non-superconducting part.

𝑺𝟐𝑺𝟏
I or N

Cooper pair

V

𝝍𝟏 = 𝒏𝟏𝒆
𝒊𝝋𝟏 𝝍𝟐 = 𝒏𝟐𝒆

𝒊𝝋𝟐L

Figure 4.5: Sketch of a Josephson junction consisting of two superconductors separated by a non-
superconducting part: I for insulator and N for normal. The two superconductors have di�erent
superconducting phases, such that there is a phase di�erence ϕ=ϕ2 − ϕ1 across the junction. At
zero bias voltage, a supercurrent can �ow through the junction due to the tunneling of a Cooper
pair. When a constant voltage V is applied between the two superconductors, the Junction emits
radiation such that hνJ = 2eV .

In the case of SIS Junction, Josephson predicted that a supercurrent can �ows across the junction
in the absence of any applied voltage given as:

I(ϕ) = Ic sin(ϕ) (4.12)

where Ic is the Josephson critical current, and ϕ=ϕ2-ϕ1 is the superconducting phase di�erence
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across the junction(see �g.4.5).
In case of �weak link�, the supercurrent is a function of ϕ, such that I(ϕ) = Icf(ϕ).

Ac Josephson e�ect

When a bias voltage V is applied between the two superconductors, the phase evolves in time
according to:

dϕ

dt
=

2eV

~
(4.13)

Thus, an alternating supercurrent at the Josephson frequency νJ = 2eV/h and its harmonics is
�owing through the junction, this is the AC Josephson e�ect. The oscillating Josephson current is
given by the Fourier series of eq.4.12 of period 2π:

I(t) =

∞∑
n=1

Ic,n sin(2πνJnt) (4.14)

The oscillating phase accelerates the tunneling of Cooper pairs with energy gain 2eV . As the Cooper
pairs are not allowed to alter their energy while tunneling, a photon at frequency hνJ = 2eV is
emitted. νJ is related to twice the electronic charge since the two electrodes exchange cooper pair
rather than a single electron. Those photons can be absorbed by the environment and can be
probed as photo-assisted tunneling steps in the I(V) characteristic of a nearby detector.

The AC Josephson emission has been �rst detected in tunnel Josephson junctions by Giaever
[75] and Yanson et al.[76]. Thanks to the metrological precision of the AC Josephson e�ect, a
superconducting tunnel junction can be used as GHz radiation emitter [77] or to de�ne the voltage
standard [78]. In Josephson junctions involving a non-superconducting but non-insulating material,
measuring the AC-Josephson e�ect allows us to probe the Andreev Bound States (ABS) spectrum at
a �nite frequency and out-of-equilibrium [79, 80]. For instance, its measurement demonstrated the
topologically protected crossing of ABS in HgTe [81, 82], InAs nanowires [83] and Dirac semi-metals
[90], that was not accessible through DC measurement because of quasiparticle poisoning.

Shapiro steps To probe the ac components of the current, one can apply an external mi-
crowave signal of frequency ω. Let us consider both a DC and an AC voltage across the junction.

V = V0 + V cos(wt) (4.15)

From eq.4.13 the phase di�erence takes the form

ϕ(t) = ϕ0 +
2eV0

~
t+

2eV

~ω
sin(ωt) (4.16)

From eq.4.16 the current across the junction can be expressed as a function of Bessel functions Jn
such that:

I(t) = Ic

+∞∑
−∞

Jn(
2eV

~ω
) sin(ω0t+ (n+m)ωt+ ϕ0) (4.17)

For an applied DC voltage V = n~ω
2e , the DC component of the current is:

I(t) = IcJn(
2eV

~ω
) sin(ϕ0) (4.18)
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Thus, when the DC voltage is an integer multiple of ~ω
2e the DC supercurrent suddenly jumps to the

value given by eq.4.18. In the case of a DC current bias of the junction, together with irradiation,
a simple ladder behavior appears in the I(V) characteristics. These are called Shapiro steps, known
also as inverse of the AC Josephson e�ect.

Figure 4.6: Shapiro steps measured in Left: Nb-Nb point-contact Josephson junction. Right: InAs
nanowire. The applied microwave radiation results in voltage plateaus (Shapiro steps) at integer
multiples of V .From [84] and [85].

4.2.3 Current-phase relation

From the DC Josephson relations, we deduce that the supercurrent �owing between two supercon-
ductors depends on the superconducting phase di�erence ϕ, which is analog to the corresponding
relation between current and the phase gradient eq.4.2. Applying a time reversal transformation
changes the direction of the current and the sign of the phase, this implies that the current needs to
be an odd, 2π periodic function of the superconducting phase di�erence ϕ [86]. The exact relation
between the supercurrent and the superconducting phase is called the current-phase relation, which
depends strongly on the strength and of the nature of the coupling between the two superconducting
reservoirs.

Case of SNS Junction

For a SNS structure with N transport channels of transmissions Tn, the ABS energy for a single
conduction channel in the limit L� ξ0 is given by [87]:

ε = ±∆

√
1− Tn sin2(

ϕ

2
) (4.19)

Each one of the two Andreev bound states of a channel carries a supercurrent proportional to the
derivative of the Andreev Bound states energy with respect to the phase:

I(ϕ) =
2e

~
∑
n

∂εn
∂ϕ

(4.20)
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This yields a current-phase relation (CPR) for an SNS junction at very low temperature:

I(ϕ) =
e∆

2~
∑
n

Tn sin(ϕ)√
1− Tn sin2(ϕ2 )

(4.21)

For an arbitrary transmission, the current-phase relation contains harmonics, the extreme limit
being T ≈ 1, yielding a singularity at ϕ = π: the current-phase relation is then strongly anhar-
monic, close to a saw-tooth (represented on �g.4.7.a in blue). However, as soon as there is a �nite
temperature, the highest harmonics are suppressed �rst, such that the current-phase relation tends
to be sinusoidal.

Case of a tunnel junction

In the case of tunnel junction, where the channels are weakly transmitted Tn � 1, the current-phase
relation is nearly harmonic I = Ic sin(ϕ) (See �g.4.7, represented in pink). The value of critical
current is Ic given by the Ambegaokar-Barato� formula [89]:

IcRn =
π

2e
∆(T ) tanh

(
∆(T )

2kBT

)
(4.22)

where Rn denotes the tunneling resistance of the electrons in the absence of the pair interaction.
At temperatures far below Tc, ∆ is nearly constant. For T� 0, tanh(∆/2kBT ) ≈ 1 then eq.4.22

becomes:
IcRn =

π

2e
∆ (4.23)

(a) (b)

Figure 4.7: (a) Andreev bound states energy spectrum for a single channel with three di�erent
transmissions τ= 0.4, 0.8, 1. (b) Current phase relations associated to the previous spectrum at
zero temperature. Taken from [59].

4.3 Conclusion

Through this chapter, we have presented a brief introduction to superconductivity. Superconducting
correlations result from the attractive interactions between conduction electrons in a metal mediated
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by phonon, forming Cooper pairs. At T < TC , the metal becomes a superconductor, as a result,
a non-dissipative current "supercurrent" induced by the superconducting phase ϕ �ow through
the metal. We have seen that a weak link connected to superconducting electrodes can support a
supercurrent due to the superconducting proximity e�ect. This supercurrent is a periodic function
of ϕ. The exact relation between the current and the phase is called the current-phase relation
(CPR).
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Chapter 5

DC Josephson e�ect in a quantum

dot

As we discussed in section 1.2.2, when a quantum dot (QD) is coupled to normal electrodes, the
tunneling of electrons can lead to three di�erent transport regimes depending on the ratio between
the charging energy U and the coupling constant Γ. When a QD is coupled to superconducting
electrodes, an additional energy scale will highly a�ect the electronic transport: the superconducting
gap ∆. Depending on the relative value between the dot's parameters (Γ and U) and ∆, three
di�erent coupling regimes are observed, the strong coupling regime, weak coupling regime, and
intermediate regime [91]. Superconducting-Quantum dot-Superconducting (S-QD-S) system has
been realized in di�erent nano-structures: Carbon nanotubes [92, 28, 117], InAs nanowires [93,
94], and graphene [95]. Carbon nanotubes are not intrinsically superconducting, however, when
connected between two superconducting electrodes they can carry a supercurrent [107, 108] due
to the superconducting proximity e�ect. In this chapter, we review the basics properties of the
S-QD-S system.

5.1 Strong Coupling regime

In the strong coupling regime, the charging energy of the Cooper pair and the superconducting gap
is small compared to the coupling constant. Resonant Cooper pair tunneling occurs when aligning
the energy level in the dot with the Fermi level in the leads. The supercurrent �owing through
the dot is maximum when the dot level is aligned with the Fermi energy of the leads (ON state in
�g.5.1) and zero when driven out-of-resonance (OFF state in �g.5.1)
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EE

Gate

ON

OFF

Figure 5.1: Energy level diagram of the quantum dot in the strong coupling regime. Depending on
gate voltage, the dot can be in an ON state, where supercurrent is maximal due to resonant Cooper
pair tunneling. When the energy level of the dot is put away from Fermi energy, the system is in
an OFF state, and the supercurrent is suppressed.

5.2 Weak Coupling regime

The weak coupling regime refers to the case Γ � U,∆. In this regime, the tunneling of Cooper
pairs is suppressed by Coulomb repulsion, and the transport is dominated by single quasi-particle
tunneling. This tunneling happens for bias voltage high enough to overcome the superconducting
gap eVSD > 2∆ and depends on the position of the energy levels in the QD, controlled by the gate
voltage.

E

E

Gate

Figure 5.2: Energy level diagram of a quantum dot in the weak coupling regime. The tunneling of
Cooper pairs is suppressed. One needs to provide at least energy eVSD = ∆ for the quasiparticles
tunneling to take place.
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5.3 Intermediate Coupling regime

The intermediate regime is very interesting. In this regime, U is su�ciently high to give rise to
Coulomb blockade, and Γ is high enough to allow the co-tunneling process. Rather than tunneling
as one entity, the Cooper pair breaks and the two electrons co-tunnel coherently (during typically
the time ~/Γ, the cooper pairs can reform in the second leads if Γ > ∆).

12 34

12 34 = -

N even
 singlet

S=0 

N odd
doublet
S=1/2 

intermediate
 state

���

0-Junction

�-Junction

Figure 5.3: Fourth order tunneling processes of a cooper pair in the intermediate regime. Left: For
a total spin S=0 on the dot, the cooper pair is transported with the same spin order, supercurrent
is important. For a total spin S=1/2, the cooper pairs spin order is reversed a π phase shift is
induced. Right: Corresponding calculated current-phase relation for 0-Junction and π-Junction.
Taken from [100].

In this range, the amplitude and the sign of the supercurrent highly depend on the dot's occu-
pancy, and two cases can be distinguished. When a QD is occupied by an even number of electrons,
the dot is in a singlet state (S=0). The Cooper pairs tunnels through the QD preserving its spin
order and the supercurrent is high ( See �g.5.3). The Josephson coupling is positive this is known
as the 0-junction. Whereas when the occupation number is odd the QD is in a doublet state.
There is only one spin in the highest occupied state, spin up or spin down electron. At the end of
the co-tunneling process, the dot's spin is left unchanged, and a Cooper pair is transported with
inverted spin ordering as illustrated in �g.5.3. In this situation, the fourth-order tunneling process
is accompanied by a spin-�ip, which strongly a�ects the supercurrent [96]. The Josephson coupling
is said to be negative, the supercurrent amplitude is weakened compared to the 0 junction case [97]
and the current-phase relation (CPR) is dephased by π [98, 99]: I(ϕ) = Ic sin(ϕ+ π): this is the
π-Junction

5.4 Competition with Kondo e�ect

The Kondo e�ect occurs in an oddly occupied QD coupled to two electrodes made up of normal
metal (See chapter 3). The screening of the magnetic impurity by the conduction electron of the
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two electrodes provides a perfectly transmitting channel for transport. Let us consider the case
where the electrodes become superconducting. In this case, the Kondo e�ect may compete with
other quantum many-body phenomena: superconductivity.

Would the Kondo correlations survive in the presence of Cooper pairs and the superconducting
gap at the Fermi level? And what will happen to the Josephson current for such a junction?

We have seen that the tunneling of Coopers pair between two superconducting contacts coupled
through a QD, depends on the parity of the dot, a QD with an even(odd) number of electron leads to
0-junction(π-junction)). However, in the presence of the Kondo correlation, the Kondo singlet state
competes with the pairing energy ∆ of the Cooper pairs. The Kondo-superconductivity interplay
has been extensively studied theoretically [99, 100, 101, 49, 102, 103]:

The resulting physics of the system is controlled by the ratio of TK/∆:

� If kBTK/∆� 1, Kondo correlation cannot develop due to the lack of electrons at the Fermi
level of the contacts as shown in �g.5.4.a there is no co-tunneling process. Thus, the magnetic
spin remains unscreened. In this case, the Josephson coupling is negative: this is a π-junction

� If kBTK/∆� 1, the quasi-particle density of state of the superconductors overlap with that
of the Kondo resonance (see �g.5.4.b). The cotunneling processes are enhanced, making the
transfer of Cooper pairs easier, and favoring the formation of a Kondo/BCS singlet state. The
two phenomena cooperate to enhance the supercurrent. In this case, the Josephson coupling
is expected to be positive, this leads to a 0-junction.

� If kBTK/∆ ≈ 1, then one enters the intermediate regime. In this case, the magnetic state of
the dot depends on the phase di�erence between the two superconductors. In this limit, a
transition between the singlet and doublet state can be observed driven by the ratio kBTK/∆
as predicted by Glazman [99], and observed experimentally [104, 105].

D
O

S

EεF

2Δ D
O

S

EεF

2Δ

2kBTK

kBTK /Δ<<1 kBTK /Δ>>1

2kBTK

(a) (b)

Figure 5.4: Density of state of the superconducting contacts together with the Kondo resonance in
its normal state. (a) For kBTk/∆� 1, the electrons that could participate in the screening are not
available because of the superconducting gap. (b) For kBTk/∆ � 1, both the Kondo e�ect and
superconductivity can exist leading to an enhanced supercurrent.
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5.5 Induced 0-π transition

In the strong coupling regime, the superconductor wave function spreads over the dot, inducing a
BCS-singlet ground state i.e. a 0-junction. When the QD enters the Coulomb blockade regime, the
dot is occupied by a �xed number of electrons, alternating even or odd. Thus a 0-π transition is
achieved by modifying the parity of the electronic charge on the dot using electrostatic gates. In
the intermediate regime, where Kondo correlation is present, a 0-π transition is possible depending
on the ratio between ∆ and TK , the latter can be tuned using a gate voltage via the position of
the energy level. Thus, a �rst-order quantum transition between 0 and π junction is achieved by
tuning the microscopic parameters of the quantum dot. These parameters are the broadening Γ of
the energy levels in the dot due to the coupling to the reservoirs, the superconducting gap ∆ of the
contacts, the dot's charging energy U , and it's level energy ε. Note that, the ground state of the
system (singlet or doublet) depends strongly on the superconducting phase ϕ.

�
/U

�0/U

Figure 5.5: Phase diagram of the 0-π transition of a carbon nanotube in the Kondo regime, as a
function of the dot energy ε0/U and the level width Γ/U . Taken from [62].

The phase diagram of the 0-π transition of a quantum dot (in this precise case a carbon nan-
otube quantum dot) is presented in �g.5.5. In the center of the Coulomb diamonds, the charging
energy U is high, the doublet state is more likely to appear due to Coulomb blockade. As we go
towards the edges of the diamond, U starts to decrease, favoring the formation of a singlet state.
As Γ increases, co-tunneling processes allow some current to �ow in the Coulomb blockade regime,
this will reduce the range for π behavior. When Γ is high compared to U, co-tunneling processes
become more important, there is no π-junction behavior, and a 0 junction is maintained.

The transition from a 0 to a π junction can be achieved by tuning the dot's parity with a
gate voltage, this is called a gate-controlled 0-π transition. It has been experimentally observed
in an InAs nanowire QDs [93] and in a CNT QDs [92, 62, 105]. In both experiments, the QD is
inserted in a superconducting loop so that the phase is controlled by a magnetic �eld, allowing
the measurement of the current-phase relation. Jorgensen et al. [118] measured as well this gate-
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controlled 0-π transition in a CNT but without control of the phase, the measurement is shown in
�g.5.6.

(a)

(b)

Figure 5.6: Measurement of the critical current amplitude in a carbon nanotube quantum dot
contacted with superconducting electrodes. When the gate voltage is tuned, the critical current
amplitude alternate positive and negative, indicating a 0 to π transition. Adapted from [118].

More recently, Delagrange et al. [123] measured the current phase relation of a CNT QD
embedded in a superconducting loop with two Josephson junctions forming an asymmetric SQUID.
To phase bias the CNT Junction, a magnetic �ux is applied with a magnetic �eld perpendicular
to the SQUID. The modulation of the switching current δIs versus magnetic �eld B, proportional
to the CPR of the carbon nanotube, is measured for various Vg in an oddly occupied diamond
and is represented on �g.5.7.a. Close to the particle/hole symmetry point the system acts as a
π-junction. Away from this point, the system exhibits a 0-junction behavior. This is compatible
with 0-π transitions at TK ≈ ∆ of �g.5.5, driven by the interplay between the Kondo e�ect and
the superconductivity. In between, the phase dependence at di�erent gate voltages shows that the
CPR is anharmonic: A distortion appears �rst around π and develops as TK decreases. The CPR is
composite, with a part of type 0 around ϕ = 0 and a π junction behavior around ϕ = π. The CPR
switched completely to the π-junction in the center of the Coulomb diamond where TK is minimum.
The transition from one part to the other is achieved by varying the superconducting phase. The
critical phase ϕC is the phase at which, the system undergoes the transition from 0 to π for a �xed
gate voltage. The CPR has 0-behavior for ϕ ∈ [0, ϕC ] and π-behavior for ϕ ∈ [ϕC , π]. The critical
phase is extracted for several di�erent diamonds, giving a phase diagram of the transition. It shows
that it exhibits a universal behavior, independent of the values of the parameters of the quantum
dot (see �g.5.7.c). This experiment demonstrates experimentally that the 0 − π transition can be
controlled not only by the gate voltage but also by the superconducting phase.
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Figure 5.7: (a) Modulation of the switching current of the SQUID δIs, proportional to the CPR, as
a function of the magnetic �eld B and the gate voltage Vg for an oddly occupied diamond. Vertical
cuts at the 0-π transition, showing the whole transition. The dashed lines are guides to the eyes and
represent the contributions of the singlet (0-junction, in blue) and the doublet state (π-junction,
in red). (b) De�nition of the critical phase ϕC at which the system undergoes 0 to π transition.
(c) Critical phase ϕC plotted as a function of εd, yielding a phase diagram of the 'ϕ-controlled
transition, where δE the width of the transition. Taken from [60].

5.6 Conclusion

In a QD between two superconductors, the tunneling of Cooper pairs across the QD is highly a�ected
by the ration Γ/∆ and the CPR is strongly dependent on the parity of the number of electrons on
the QD: for even occupancies, the supercurrent is positive and high: this is a 0-junction. However,
for odd occupancies, the supercurrent undergoes a sign reversal: this is a π-junction. In the
last section, we study the competition between the Kondo singlet ground state with characteristic
energy kBTK and the spin singlet ground state of superconductivity composed of Cooper pairs with
pairing energy ∆ and phase ϕ. If the Kondo e�ect is strong enough compared to superconductivity
(TK > ∆), a BCS-Kondo singlet state is formed that restore a 0-junction. If TK ≈ ∆, the system
undergoes a 0-π transition driven by ϕ, where the dot's spin is respectively screened or unscreened.
The transition for 0 to π can also be induced by tuning the dot's parameters, or the gate voltage.
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Chapter 6

AC Josephson e�ect in carbon

nanotube quantum dot

In this chapter, we focus on the dynamics of QD Josephson junctions by measuring the Ac Josephson
e�ect in a CNT QD, in the regime where both superconducting proximity e�ect and Kondo e�ect
are present. The �rst section will be dedicated to describing the principle of the measurement along
with the experimental setup. Then we will present the experimental results and interpretations.

6.1 Measurement of AC Josephson e�ect

6.1.1 Experimental setup

In order to measure the AC emission of a CNT QD connected with superconducting electrodes,
one can use high frequency electronics (for frequencies below 10GHz at cryogenic temperature) or
an on-chip quantum detector. In this experiment, we have chosen to use a superconducting tunnel
junction (SIS junction) as a quantum noise detector. The source of emission (CNT) is coupled on-
chip to an SIS Josephson junction via a resonant circuit. The source and the detector are directly
connected to the end of the central line of a coplanar waveguide resonator, whose other end is
grounded so that they are coupled at the resonance frequencies of the circuit. The resonance is
expected at ν0 = 12GHz, ν0 = 31GHz and ν0 = 51GHz. The fabrication of the sample is explained
in detail in Chapter 2. The experimental setup is represented in �g.6.1.

SIS Junction has been used as a quantum detector to measure the noise of a carbon nanotube
quantum dot in the Coulomb blockade regime [109], the noise of a Josephson junction [110], the
asymmetrized noise of a two-level system [111], and high frequency emission of CNT QD in the
Kondo regime [123] or InAs nanowires [83].
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Figure 6.1: (a) The carbon nanotube Josephson junction is coupled to a quantum detector SIS
junction via a coplanar waveguide resonator. (b) The equivalent electronic circuit is the coplanar
waveguide is equivalent at resonance to an RLC circuit.

Josephson Junction as quantum detector

For an SIS junction, the noise detection is based on the measurement of photo-assisted tunneling
(PAT) current of quasi-particles in the junction. In this experiment, instead of using a simple SIS
junction, we use two identical SIS junctions in a SQUID geometry. In such geometry the critical
current is equal to Ic = 2I0 cos

(
2π Φ

Φ0

)
, with Φ is the magnetic �ux applied and Φ0= h

2e the �ux
quantum and I0 the critical current of a single junction. This implies that applying a magnetic
�ux of Φ = (2n + 1)Φ0

4 with n is an integer, leads to the suppression of supercurrent features and
AC Josephson radiation generated by the detector, that could disturb the measured signal coming
from the CNT.

In an SIS Junction, due to the presence of a superconducting gap around the Fermi energy, there
are no quasiparticles current when Vd < 2∆/e, only current due to Cooper pair tunneling: super-
current �ows across the junction. When the junction is biased such that Vd > 2∆/e, quasiparticles
current �ows as for the normal tunnel junction case due to elastic tunneling of quasiparticles. The
typical I(V) characteristic of an SIS junction is shown in �g.6.2.

However, when the SIS detector absorbs or emits a photon at energy hν, this will alter its I-V
characteristics as follow:

� If the junction is biased below the gap i.e. | Vd |< 2∆/e, a photo-assisted tunneling current of
quasi-particle is possible provided that a photon of energy hν > 2∆− | eVd | is absorbed. Thus,
a current step of width hν/e appears in the I(V) characteristics with a height proportional to
the amplitude of the absorbed radiation.

� If the junction is biased above the gap i.e. | Vd |> 2∆/e, in addition to the �nite quasiparticle
current due to elastic tunneling processes, quasiparticles can inelastically tunnel and emit
photons at energy hν < 2∆− | eVd |. These inelastic events happen only if these photons are
absorbed by the environment. This process leads to the decrease of quasiparticles current and
a negative step I(V) is observed.
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Here we are interested in PAT below the gap, i.e. related to the emission by the CNT junction.
The expression of IPAT will be derived in both cases in the following section.

AbsorptionEmission

e

Emission

2Δ
VD

 h�=2�-eVD

 h�=eVD-2�h�

2Δ

Vd

VD (mv) 2Δ/e0

I(
A
)

h�

Figure 6.2: Red curve: Typical current-voltage characteristic of an SIS junction. Blue: calculated
I(V) of the detector under irradiation giving rise to photo-assisted tunneling current IPAT steps.
Below the gap, the detector is emission sensitive. Above the gap, the detector is mainly absorption
sensitive. Taken from [110].

Expression of the photo-assisted tunneling current with P(E) theory

In what follow we derive the I(V) characteristic of a tunnel junction in the absence and presence of
an electro-magnetic environment based on derivation done by Ingold and Nazarov which address the
charge tunneling rates in ultrasmall junctions [112]. Changes due to the environment are calculated
within the same P(E) formalism and an interpretation is given in terms of photo-assisted tunneling
induced by the noisy environment.

Tunneling rate formula P(E) is the probability for the junction to absorb or emit the energy
| E | in the environment. If E > 0, the energy is absorbed by the environment, if E < 0 it is emitted.
Starting from the de�nition of P(E), and using the Fermi Golden rule, one expresses the forward
tunneling rate in a normal tunnel junction by :

→
Γ(Vd) =

1

e2RT

∫ +∞

−∞
dEdE′f(E)(1− f(E′ + eVd))P (E − E′) (6.1)

Where Vd is bias voltage of the junction, f(E) = [1+eβE ]−1 is the Fermi function with β = 1/kBT ,
1/RT is the tunneling conductance, and P (E − E′) is the probability for the electromagnetic
environment to absorb the energy E − E′. In absence of an environment, it is not possible to
exchange any energy, this probability is reduced to the Dirac function: P (E − E′) = δ(E − E′).

However, we are interested in the tunneling rate of a superconducting tunnel junction, thus we
must include the superconducting density of states (eq.4.7) in eq.6.1.
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That gives for the forward tunneling rate in a superconducting tunnel junction :

→
Γ(Vd) =

1

e2RT

∫ +∞

−∞
dEdE′

Ns(E)Ns(E
′ + eVd)

N0
2 f(E)(1− f(E′ + eVd))P (E − E′) (6.2)

P(E) and I(V) characteristic The current response I(V) of a superconducting tunnel junc-
tion to a voltage bias Vd in presence of an environment having a probability P(E) to exchange
energy E can be computed from the forward and backward tunneling rate

Iqp(V d) =
→
Γ(Vd)−

←
Γ(Vd) (6.3)

knowing that
←
Γ(Vd) =

→
Γ(−Vd), due to voltage bias symmetry. eq.6.3 can be written as:

Iqp(Vd) =
→
Γ(Vd)−

→
Γ(−Vd) =

1

e2RT

∫ +∞

−∞
dEdE′

Ns(E)Ns(E
′ + eVd)

N0
2 [f(E)(1− f(E′))P (E − E′ + eVd)

− f(E′)(1− f(E))P (E′ − E − eVd)]
(6.4)

To write Iqp(Vd) in more convenient way, we include in eq.6.4 the two following properties:

� P (−E) = e−βEP (E), the detailed balance relation of P(E)

� f(E)[1− f(E + x)] = f(E)−f(E+x)
1−eβx

After doing the calculation, eq.6.4 may be rewritten as:

Iqp(Vd) =

∫ +∞

−∞
dE

1− e−βeV

1− e−βE
× P (E − eVd)I0

qp(E/e) (6.5)

Where I0
qp(Vd) is the I(V) characteristic of a voltage biased SIS junction in absence of environment:

I0
qp(Vd) =

1

eRT

∫ +∞

−∞
dE

Ns(E)Ns(E + eVd)

N0
2 [f(E)− f(E + eVd)] (6.6)

Photo-assisted tunneling current as a probe of voltage noise The photo-assisted tun-
neling current can be interpreted as the di�erence between the quasi-particle current with and
without environment IPAT (Vd) = Iqp(Vd)− I0

qp(Vd). In what follow we will derive the expression of
P(E) in terms of the voltage �uctuation across the detector. All the information about the envi-
ronment is contained in the auto-correlation of the phase operators : J(t) = 〈[δφ̂(t)− δφ̂(0)]φ̂(0)〉.
δφ̂(t) =

∫ t
−∞ dt′δV̂ (t′), are the conjugate phases of the voltage �uctuations δV̂ (t′) across the detec-

tor[characterized by the spectral density Sv(ω)] [113].
From [112] we can deduce that P(E) is the Fourier transform of eJ(t) :

P (E) =
1

h

∫ +∞

−∞
dt exp

(
J(t) +

i

~
Et

)
(6.7)
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In the case of low noise amplitude, one has exp(J(t)) ≈ 1 + J(t). Once introduced into Eq.6.7,
one obtains a simpli�ed version of the probability P(E) in terms of SV (ν), the non-symmetrized
spectral density of excess voltage �uctuations at frequency ν across the detector [113]:

P (E) =
1

h

∫ +∞

−∞
dτ(1 + J(τ))exp(

i

~
Eτ)

=

[
1− e2

h2

∫ +∞

−∞
dν
SV (ν)

ν2

]
δ(E) +

e2

h2

SV (E/h)

E2

(6.8)

By inserting the new expression of P(E) in eq.6.5, one obtains the expression for the total current
Iqp(Vd) �owing through the junction in the presence of the environment. By subtracting the value
of the current without environment I0

qp(Vd) we obtain the expression of the photo-assisted tunneling
IPAT (Vd) current through the detector [110]:

IPAT (Vd) = Iqp(Vd)− I0
qp(Vd)

=

∫ ∞
0

dν

(
e

hν

)2

SV (−ν)I0
qp

(
Vd +

hν

e

)
+

∫ eVd

0

dν

(
e

hν

)2

SV (ν)I0
qp

(
Vd −

hν

e

)
−
∫ +∞

−∞
dν

(
e

hν

)2

SV (ν)I0
qp(Vd)

(6.9)

As shown in �g.6.2, depending on the value of Vd, the SIS junction could be either in absorption
or emission mode.

IPAT due to emission noise If the detector is biased below the gap, Vd < 2∆/e: I0
qp(Vd −

hν
e ) = I0

qp(Vd) = 0. Thus, only the �rst term of eq.6.9 contributes: we are then measuring the
emission of the source absorbed by the detector.

IPAT (Vd) =

∫ ∞
0

dν

(
e

hν

)2

SV (−ν)I0
qp

(
Vd +

hν

e

)
(6.10)

IPAT manifest itself as a small steps step at 2∆ > eVd > 2∆− hν0.

IPAT due to absorption noise If the detector is biased above the gap, Vd > 2∆/e, all the
terms contribute but with a stronger weight for the absorption by the source.

Coupling to the resonance circuit

In this experiment the noise source (CNT QD) is coupled to the detector (SIS Josephson junction)
via an on-chip coupling circuit characterized by the transimpedance Zt(ν). This transimpedance
quanti�es the link between voltage noise SV (ν) appearing across the detector and current noise
SI(ν) generated by the source such that [113]:

SV (ν) = | Zt(ν) |2SI(ν) (6.11)
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In this experiment the coupling is chosen to be resonant, such that the detection occurs only at the
resonance frequency of the coupling circuit. This make it easier to analyze the signal coming from
the detector. Another advantage of using a resonant coupling is that its high transimpedance make
it possible to collect a reasonable amount of photo-assisted tunneling current through the detector.

The transimpedance of a resonant coupling is: Zt(ν) =
∑
n Z

n
t (ν − νn) with Znt (ν − νn) a

resonance centered around the frequency νn, nth harmonic of the resonator. Using eq.6.11 and
the de�nition of transimpedance of a resonant coupling, the expression of photo-assisted tunneling
current related to the emission of the source can be written as:

IPAT (Vd) =

∫ ∞
0

dν

(
e

hν

)2

SI(−ν)
∑
n

| Znt (ν − νn) |2I0
qp

(
Vd +

hν

e

)
(6.12)

We used a coplanar waveguide geometry, with a transmission line placed between two larges ground
plane. One extremity of the transmission line is grounded while the source and the detector is con-
nected to the other extremity (See �g.6.1).

The length of the resonator L corresponds to the quarter of the wavelength, giving resonance
frequencies such that L = λn( 1

4 + n
2 ) with n being an integer. The dimensions of the resonator made

of Aluminum of thickness 200 nm on an undoped silicon wafer are shown in �g.6.3. The length of the
resonator is L=3mm, such that the resonance frequencies are at 12.5 GHz and the odd harmonics.
For an SIS junction with alternating current I = Ic sin

(
2eVst

~
)
. The associated current spectral

density is SI(ν, Vs) =
I2
c

4

(
δ
(
ν − 2eVs

h

)
+ δ

(
ν + 2eVs

h

))
. We assume here a quasi-monochromatic

Josephson emission. This gives the emission contribution to the photo-assisted tunneling current
[114]:

IPAT =
1

(2VSD)2

I2
C

4
|Zt(2eVSD/h)|2I0

qp(Vd + 2VSD). (6.13)

with I0
qp(VD) the IV characteristic of the detector without irradiation.

The usual way for characterizing a resonator, i.e. determining its resonance frequencies and
quality factors, is to measure the frequency dependent re�ection coe�cient with high frequency
electronics. But here, the sample is designed to be addressed by DC measurements, AC signal
being con�ned on-chip. The best way to characterize the resonator (and the detector) is to use an
on-chip AC source. A very convenient one is given by the AC Josephson e�ect of a Josephson junc-
tion: when biased by the voltage Vs, there is an AC current I(t) = IC sin

(
2eVs
~ t
)
in the junction.

Using eq.6.13 and 4.23, and knowing the I(V ) characteristic in absence of environment I0
qp, the

measurement of IPAT at a �xed eVd < 2∆− hν0 gives access to |Zt(ν)| at each resonant frequency.

The measurement is presented on �g.6.3. In the case of the Josephson emission with �nite
bandwidth, the resonance peak seen in the PAT current results from the convolution of the tran-
simpedance and the �nite bandwidth emission. To calculate the quality factor of the resonator, it
can be modelized by the RLC circuit presented in �g.6.1.b. The e�ective capacitance, inductance
and resistance modeling the resonator is given by [115]:

Leff =
2LlL

π2
, Ceff =

ClL

2
, Reff =

Z0

αL
(6.14)
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Ll and Cl are respectively the inductance and capacitance per unit of length, L the length of the line
and α a coe�cient that quanti�es the losses in the system. The length of our resonator L=3mm,

the Z0 =
√

Ll
Cl

= 46Ω and ν0 = 1

2π
√
LeffCeff

= 10GHz, yielding:

Ll = 7.7× 10−7H/m, Leff = 0.46nH (6.15)

Cl = 3.62× 10−10F/m, Ceff = 0.54pF (6.16)

The Quality factor is given by:
Q = 2πν0RtotCeff (6.17)

with Rtot = (R−1
eff +R−1

D +R−1
S )
−1

, Reff represents the internal losses of the resonator, RD the
resistance of the detector and RS of the source. we can assume that Rtot is dominated in any case
by RD and RS and not by the intrinsic losses of the resonator. For our sample, we have RS = 7KΩ
and RD = 6KΩ. This gives Rtot = 3.2kΩ and a quality factor Q=100. However, the width of the
resonance peaks shown in �g.6.3 gives a very low-quality factor Q=2 for 12 GHz. This could be due
to the fact that the detector and the source are directly coupled to the transmission line, inducing
extra losses. But we think that the main reason is the noise in the voltage bias line.

L=3mm
s=20µm

1 µm w=10µm

SIS 
detector

SIS 
source

Coplanar waveguide
 

 

ν0 =12 GHz / Q = 2
ν1 =31 GHz / Q = 6
ν2 =50 GHz / Q = 10
ν3 =73 GHz / Q = 12
 

ν0

ν1
ν2ν3

(b) (c)

(a)

Figure 6.3: (a)Design of the coplanar waveguide resonator used in this experiment, showing the
coupling between the source and the detector. (b) Photo-assisted quasiparticle current measured
in the detector biased at 2∆ − hν0 < eVd < 2∆ as a function of the bias VS of the source of AC
Josephson e�ect. The frequency of the emission is given by the Josephson frequency ν = 2eVs

h .
(b) Trans-impedance Zt(ν) extracted from IPAT using formula 6.13. The corresponding resonance
frequencies and quality factors are given. In this sample, the detector is a SQUID of normal
resistance around 5 kΩ and the source a simple junction of normal resistance 12 kΩ.
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From �g.6.3 we realize that the width of the resonance is the same (around 6 GHz), whatever the
frequency of the resonance or the design of the resonator. This constant width may be due to the
non-monochromaticity of our source (the SIS junction) instead of the resonant circuit itself. This
non-monochromaticity may originate from �uctuations of the biasing voltage VSD, and thus may
be improved by better �ltering. In the following section, we will present a new biasing circuit that
aims to reduce the voltage noise, thus improving the monochromaticity of our source of emission.

Low noise voltage biasing In order to emit radiation that can be detected by the on-chip
detector the source must be biased according to:

2eV = hνJ (6.18)

with νJ is the resonance frequency of the coupling circuit. This relation implies that the voltage
noise δV of the biasing line must be much lower than the band width δν of the emission:

δV � hδν

2e
(6.19)

The bandwidth of the detection is �xed by the quality factor of the resonant circuit and is equal
to: δν = ν0

Q = 10
100 = 0.1 GHz, it corresponds to δV = 20nV.

Thermal noise on the biasing line To reduce the voltage noise on the sample, the sample
is biased at low temperature through a biasing circuit placed near the sample inside the cryostat
as shown in �g.6.4. The sample is biased through a 110Ω with a 100nF in parallel to form an
RC �ltering stage. A 1kΩ resistance is used to detect the current through the source. A 10nF
capacitance is also used to �lter the noise of this resistance.

source

Vg

Out

�����

����
����

100nF 10nF 

10 mK

V

10nF 

Figure 6.4: Low temperature biasing circuit.

The thermal noise of an R-C �ltering stage due to resistance is given by:

δV 2 = 4kBTR∆f (6.20)
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with ∆f the bandwidth of with cut-o� �lter frequency 1/2πRC. The voltage noise then takes a
very simple form:

δV 2 =
1

2π

∫ +∞

0

4kBTR

1 +R2C2ω2
dω =

kBT

C
(6.21)

The value of the voltage noise depends on two factors:

� T, the temperature of the resistance. Decreasing T will lower the value of δV . Thus, when
placing the biasing circuit at 10 mK, one expects to lower the voltage noise.

� C, the value of capacitance placed in parallel with the resistor. δV is inversely proportional
to the capacitance. So, to minimize the value of δV one must choose a suitable value of C.
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Figure 6.5: Color plot of the Photo assisted tunneling current across the detector as a function of
source-drain voltage Vs and detector bias voltage Vd.(a) The bias circuit is at room temperature
T=300K. (b) The bias circuit is placed near the sample at T=10 mK. (C) Vertical cut at Vd =
0.33mV showing the PAT current peaks that correspond to a resonance frequency of 10 GHz and
30 GHz.

With T = 10mK and C= 100nF will give a very good value ≈ 2.9nV < 20nV . Because we need
to measure the current, we add the 1kΩ, and �lter them with the 10 nF, this leads to voltage
�uctuation around 10nV. To test the e�ciency of our biasing circuit, we measure the radiation of a
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Josephson junction coupled to another Josephson junction that plays the role of a detector through
the same resonant circuit explained previously. We measure the photo-assisted tunneling current
Ipat of the source �rst with a biasing circuit at room temperature, then we use the biasing circuit at
10 mK and compare the results. �g.6.5 shows the PAT current in two di�erent biasing conditions.
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Figure 6.6: Trans-impedance Zt(ν) extracted from IPAT using formula 6.13. (a) For ν=10 GHz.
(b) For ν=30 GHz.

A vertical cut at a given value of detector bias Vd shows two peaks in PAT current, at ν=10
GHz and ν=30 GHz in both biasing conditions. However, for the cold bias circuit, the signal is
sharper, and the peaks are narrower. From these curves, using eq.6.13 and knowing experimentally
the value of IC and I0

qp, we can calculate the transimpedance Zt(ν) (See �g.6.6) and extract the
quality factor from the full width at half maximum (FWHM) of the resonance peaks. The result
of the calculation is summarized in table6.1. Comparing the obtained value for Q with the one
expected from the dissipation introduced by the source and detector conductance shows that the
improvement of Q is not satisfactory. Some improvement still needs to be done.

ν=10GHz ν=30GHz
Bias at T=300 K 1 2.2
Bias at T=10 mK 2.5 4

Table 6.1: Calculated quality factor from FWHM of resonance peaks of �g.6.6.

6.2 Conclusion

In this section, we have shown that an SIS junction can be used as a quantum detector. Depending
on the value of bias voltage with respect to ∆, the SIS junction can distinguish between emission
and absorption processes. The response of the detector due to the presence of a noisy environment
is calculated based on the P(E) theory. The inelastic tunneling of a quasi-particle enhanced by the
environment is given in terms of photo-assisted tunneling current. In our experiment, we used an
SIS quantum detector coupled to carbon nanotube-based Josephson Junction (source of emission)
through a resonant circuit. The measurement of the photo-assisted current of the detector gives
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direct access to the signal emitted by the carbon nanotube. The AC emission manifests itself as
steps in the I(V) characteristic of the detector. In order to calibrate our coupling circuit, an SIS
junction is used as a source of emission coupled to an SIS detector. The measurement of the photo-
assisted tunneling current across the detector allows the extraction of the quality factor and the
transimpedance of the resonant circuit. Finally, we have shown that by reducing the voltage noise
using a new biasing circuit at low temperature, we manage to reduce the bandwidth of the emission
of the source junction to improve the frequency resolution of the detection.
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6.3 Characterization of the sample in the normal state

In this section, we present the experimental results of the CNT sample shown in �g.6.1 in the
normal and superconducting state.

As detailed in chapter 1, a QD is characterized by a set of parameters: the charging energy U,
the coupling constant Γ, and the contact asymmetry ΓR

ΓL
. Depending on the values of the coupling Γ

between the dot and the reservoirs and the charging energy U, the transport regime goes from pure
Coulomb blockade to Kondo e�ect, and �nally Fabry-Pérot regime. To characterize the measured
sample and determine the parameters of a CNT QD, the sample is �rst measured in the normal
state.

6.3.1 Di�erential conductance in the normal state

In previous work [60], a similar measurement was done for CNT samples, denoted S-NbAl, where
the contracts were made of Pd(8 nm)/Nb(11 nm)/Al(50 nm) of superconducting gap ∆pd/Nb/Al =
150µeV . The presence of a thin layer of Pd provides good contact on the CNTs, however, it reduces
the superconducting gap compared to that of Al or Nb.

For a sample contacted using Nb, one needs to apply a high magnetic �eld around 1T to sup-
press superconductivity. Applying a high magnetic �eld a�ects the normal state of the CNT QD,
preventing a reliable extraction of all the parameters of the dot. For this reason, in the present
work, the CNT sample was contacted with Pd/Al of superconducting gap ∆pd/Al = 50± 5µeV .

Superconductivity in the Pd/Al contact is suppressed by a low magnetic �eld of 0.1T, without
a�ecting the normal state of the CNT quantum dot, thus allowing a good determination of the
parameters of the dots. The di�erential conductance of the CNT dI/dVSD as a function of the bias
voltage VSD and the gate voltage Vg in the normal state is measured using the lock-in-ampli�er
technique at 50 mK as described in chapter 2 section 2.1.6. The resulting stability diagram is
represented in �g.6.7.

The stability diagram of the QD exhibits Coulomb blockade diamonds with the four-fold degen-
eracy found for clean CNT quantum dots( three small diamonds followed by a larger one). For the
diamonds with an odd number of electrons, the Kondo e�ect manifests through a high conductance
region at zero bias, the Kondo ridge. We focus here on two Kondo ridges A and B, with N=1
and N=3, respectively. A vertical cut in the center of the Kondo ridge, particle-hole symmetry
point (red curves in Fig6.7) shows a peak in conductance at zero-bias voltage. The conductance
reaches high value, 0.7 2e2

h , 0.8 2e2

h , 0.9 2e2

h for Kondo A, B and region C respectively. The maximum
conductance reached is lower than 2e2/h, indicating a not perfectly transmitted channel and thus
an asymmetric coupling between left and right reservoirs. On �g.6.7 we also show another gate
region (21-23V), called hereafter region C, with a conductance close to the conductance quantum
but without Kondo features.

101



Chapter 6. Ac Josephson e�ect in CNT QD in the Kondo regime

V
S

D
(m

V
)

dI
/d

V
 (2

e²
/h

)
(a)

-3

-2

-1

0

1

2

3

18.51817.51716.5
-3

-2

-1

0

1

2

3

151413
(b)

1.5

1

0.5

0

-0.5

-1

2322.52221.521

A              B              C
1.2

1.0

0.8

0.6

0.4

0.2

0.0

d
I/d

V
 (2

e
²/h

)

2322.52221.52118.51817.51716.5151413

0.2

0

0.4

0.6

0.8

1

0.2

0

0.4

0.6

0.8
1

0.2

0

0.4

0.6

0.8

1

0e-    1           2              3           4

VG(V) VG(V) VG(V)

Figure 6.7: Normal state stability diagram of the carbon nanotube quantum dot. (a) Di�erential
conductance dI/dVSD versus bias voltage VSD and gate voltage Vg. The nanotube exhibits strong
evidence for the Coulomb blockade and SU(2) Kondo e�ect. For an odd number of electrons
occupying the QD, two Kondo ridges for occupancies 1 and 3, labels A and B are observed. The
dI/dVSD curves (red curves) are taken at gate voltages 14V, 17.5V, and 21.5V. (b) Conductance
at VSD= 0 of Kondo ridges A and B, and for zone C.

6.3.2 Determination of the QD's parameters

Determination of the Kondo temperature

As explained in section 1.3.1.1, The temperature dependence of the conductance can be described
by the phenomenological expression

dI

dV
(T ) =

G0

(1 + (21/s − 1)( T
TK

)2)s
(6.22)
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Figure 6.8: (a) Temperature dependence of the conductance peak at the center of the Kondo ridges
for various temperatures from 50 mK to 1 K, and from 50 mK to 0.7 K for Kondo A and B
respectively. (b) Temperature dependence of the Conductance of the CNT quantum for zone A
and B. The agreement with the NRG calculation (s=0.22) is not extremely good. Consequently,
the data is �tted with s=1 and we took for the Kondo temperature the value of temperature where
G(T = TK) = G0/2. The parameter extracted from the �t is shown in the legend of the �gure.

The temperature dependence of the Kondo resonance at zero-bias voltage for both ridges A and
B is represented in �g.6.8.a. Fitting the conductance at zero-bias as a function of temperature with
eq.6.22 allows one to extract the Kondo temperature (�g.6.8). The agreement of this formula with
our data is not completely satisfactory. We de�ne TK as the value of T where the conductance is
divided by a factor 2 i.e. G(T = TK) = G0/2, with G0 = G(T = 50mK). Note that this de�nition
is independent of the parameter s. The value extracted this way is consistent with the width of the
zero-bias conductance peak as a function of bias voltage VSD.

Determination of the charging energy and coupling constant

From the size of Coulombs diamonds, we can determine the charging energy of diamonds with
odd electronic occupancies (N=1 and N=3). First, the lever arm α between Vg and the energy εd
(see �g.6.7) are extracted from the ratio between the height and width of N=2 diamonds. Then,
measuring the width ∆Vg(1,3) of N=1 and N=3 diamonds, and knowing that U1,2 = α∆Vg(1,3) we
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obtain: U1 = 3.9meV and U3 = 4meV for diamonds with Kondo ridges A and B respectively.
To con�rm this value of the charging energy and extract the coupling constant, the Kondo

temperature TK can be well approximated by the expression predicted by the Bethe Ansatz [57, 58]:

TK =
√
UΓ/2 exp

[
− π

8UΓ
|4ε2 − U2|

]
(6.23)

where ε is the energy shift measured from the center of the Kondo ridge. The gate dependence of
the Kondo temperature (�g. 6.9.b) is then extracted from the evolution versus gate of the width of
the zero-bias peak. By �tting these data by formula 6.23, we can then extract the parameters of
the quantum dot. The charging energy agrees with the one extracted from the stability diagram.
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Figure 6.9: Gate dependence of the Kondo temperature extracted from the evolution of the width
of the zero-bias conductance peak for Kondo ridges A and B. The parameter extracted from the �t
is shown in the legend of the �gure.

The di�erent parameters of the QD, described with the Anderson impurity model, are extracted
for the Kondo ridges A and B are summarized in Table 6.2). The charging energy U is deduced
from the size of the Coulomb diamond, the coupling to the reservoirs Γ = ΓL + ΓR from the gate
dependence of the Kondo temperature, and the asymmetry a = ΓL/ΓR of the contact from the
value of the conductance at the particle-hole symmetry point. Since ΓR/ΓL 6=1, the contacts are
not fully symmetric.

TK(K) TK(µeV) U (meV) Γ(meV) a ∆(meV) TK/∆
Kondo A 1.1 97.9 3.9 0.62 3.3 0.05 1.958
Kondo B 1.7 146.5 4 0.75 2.5 0.05 2.93

Table 6.2: Parameters of the carbon nanotube quantum dot on the Kondo regions A and B.

Calculating the ratio TK/∆, we �nd that it is always higher than one (TK/∆ > 1.9 for Kondo
ridge A and > 2.9 for region B). This means that the Kondo e�ect is strong enough to screen
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the magnetic impurity of the QD. Thus, the QD Q should stay in the singlet state, leading to a
0-junction behavior. This is con�rmed by NRG calculation (see section 6.5).

6.4 Superconducting state

By switching o� the magnetic �eld, the electrodes become superconducting. In what follows we will
present �rst the extraction of the supercurrent using the resistive and capacitively shunted junction
(RCSJ) model. Then the measurement of the di�erential conductance dI/dVSD as a function of
the bias voltage and the gate voltage in the superconducting state. Finally, I will present the AC
emission measurement.

6.4.1 DC supercurrent

The supercurrent branch is more reliably measured in a current bias scheme where the di�erential
resistance dV/dI is measured as a function of bias current ISD and gate voltage VG. We now current
bias the device to obtain the value of the critical current. We simultaneously use AC and DC bias
while measuring the resulting voltage drop across the CNT. From the AC part, we obtain data on
the di�erential resistance.

The color plot shown in �g.6.10.a represents the di�erential resistance of the sample as a function
of the bias current. In part b of the �gure are represented vertical cuts of the color plot at three
gates voltages in the three di�erent regions, from which the critical current will be extracted.
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Figure 6.10: (a) Di�erential resistance of the CNT as a function of the biasing current, in the same
region of gate voltage as �g.6.7. (b) Vertical cuts of the color plot at three gate voltages.
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By numerical integration of the color plots, we get I-V curves that show a supercurrent branch
and a smooth transition to a resistive branch with higher resistance. The transition between the
two regimes is not hysteretic, and the supercurrent part exhibits a nonzero resistance RS at low
bias even. This behavior is common in mesoscopic Josephson junctions that have a high normal
state resistance of the order of the resistance quantum h/e2.

When a Josephson junction is current biased, currents smaller than the critical current Ic can
�ows as supercurrent across the junction. Supercurrent is described in terms of the Josephson
equation:

IJ = Ic sin(ϕ) (6.24)

However, at �nite voltages, a quasi-particle current Iq(V ) also �ows across the Josephson junction.
At not too large voltages the Iq(V ) is treated in terms of an ohmic resistance R

Iq =
V

R
(6.25)

In general, a Josephson junction has a �nite capacitance C. This result a displacement current Id
across the junction due to its capacitance given by:

Id = C
dV

dt
(6.26)

The total current I across the junction is the sum of the Josephson current IJ , the quasiparticle
current Iq, and the displacement current Id

I = IJ + Jq + Id = Ic sin(ϕ) +
V

R
+ C

dV

dt
(6.27)

Thus, a Josephson junction can be modeled by means of a parallel connection of an ohmic resistance
R, a capacitor, and the Josephson element as shown in �g.6.11. Because of this circuit the model
is referred to resistive and capacitively shunted junction (RCSJ) model.

J

Figure 6.11: Equivalent circuit of a Josephson junction according to the RCSJ model. The Joseph-
son element is indicated by a cross.

Due to the e�ect of the electromagnetic environment, the supercurrent gives rise to a dissipative
branch close to zero bias voltage. In order to extract more reliably the supercurrent of our device, we
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use the (RCSJ) model [117, 118]. This model includes the e�ect of the dissipative electromagnetic
environment.

The input parameters are the value of the external resistor R and temperature T . The critical
current Ic and the junction resistance RJ can then be extracted for every measured gate voltage,
from a �t to :

I(Vbias) =

{
IcIm

[
I1−iη(Ic~/2ekBT )

I−iη(Ic~/2ekBT )

]
+
Vbias
Rj

}
Rj

Rj +R
(6.28)

where η = ~Vbias/2eRkBT and Iα(x) is the modi�ed Bessel function of complex order α [118].
The value of the critical current and the junction conductance 1/RJ are plotted on �g.6.12. The
parameters used for the �t are R = 0.9kΩ and T = 100mK.
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Figure 6.12: (a) Gate dependence of the extracted critical current for Kondo ridge A and B and
regions C. The parameters of the �t are R = 0.9kΩ and T = 100mK. (b) Data and theoretical
curves �tted with eq.6.28 for three gate voltages of the Kondo ridge A (left) and the Kondo ridge
B (right).

The fact that the supercurrent in the Kondo regions A and B remains relatively large is a good
indicator that the QD stays in the singlet state, leading to a 0-junction behavior. This is expected
from the ratio TK/∆, which is always higher than one for both Kondo ridges.
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6.4.2 Di�erential conductance in the superconducting state
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Figure 6.13: (a) Di�erential conductance dI/dV as a function of bias voltage VSD and gate voltage
VG for Kondo A and B and region C. (b) Vertical cuts of the three color plots given above at
the gate voltages indicated by the dashed color lines. (c) Gate dependence of the critical current
IC , the inverse of the resistance RJ extracted from the RCSJ model, and the conductance in the
superconducting state Gs (Horizontal cut at VSD = 0 of color plot in (a)). 1/RJ and GS , exhibit
very similar values and behavior.
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Figure.6.13.a shows the di�erential conductance dI/dV as a function of the bias voltage and the
gate voltage in the superconducting state. The horizontal lines around VSD = ±0.1mV corresponds
to the superconducting gap of 2∆ due to the onset of quasiparticle tunneling between source and
drain electrodes, leading to ∆ = 50µeV. A zero-bias peak of conductance in regions of high normal
state conductance of (�g.6.7) is observed due to the supercurrent branch enhanced by the Kondo
e�ect for zone A and B. Out of the zero bias, one also sees traces (conductance bumps) of the
multiple Andreev re�ections (MAR) processes at �xed voltages 2∆/n with n = ±1,±2,±3,....We
can notice that the 3 regions A, B, and C exhibit a gate modulated supercurrent and a conductance,
1/RJ , which is quite close to the experimentally measured dI/dV.

6.4.3 AC Josephson emission measurement

We now present the measurement of AC Josephson emission. In order to measure all the frequencies
available (ν0,ν1,ν2 etc.), we bias the detector to a voltage Vd below the gap (emission sensitive region
of the detector) such that 2∆-hν0 < eVd < 2∆, which is kept �xed during a measurement.
When biased by a voltage VSD, the CNT emits a radiation at the frequency ν, given by the Josephson
relation hν = 2eVSD. The SIS detector absorbs the corresponding photons, and this will induce
photo-assisted tunneling (PAT) current across it. In our setup, the coupling between the detector
and the CNT quantum dot is e�cient only at the resonance frequencies of the coupling circuit,
which is designed to be 12.5GHz and odd harmonics. Assuming that the current through the CNT
junctions oscillates at the Josephson frequency hν = 2eVSD with an amplitude IACC , the IPAT
current through the detector reads, at a detector bias voltage VD such that 2∆− hν < VD < 2∆ :

IPAT =
1

(2VSD)2

(IACC )2

4
|Zt(2eVSD/h)|2I0

qp(VD + 2VSD) (6.29)

with I0
qp(VD) the IV characteristic of the detector without irradiation and Zt(ν) the impedance

of the resonant coupling circuit at frequency ν. Consequently, the PAT current is sizeable only
when the Josephson frequency matches one of the resonances frequencies of the coupling circuit.
Experimentally the value of IPAT is measured which allows us to extract the value of IACC using
equation 6.29.

We simultaneously measured the di�erential conductance of the CNT Josephson junction and
the PAT current through the detector. We measure the derivative of the photo-assisted tunnel-
ing current (PAT) through the detector as a function of the gate VG and bias voltage VSD of the
CNT quantum dot. The color plot of dIPAT /dVSD is represented in �g.6.14.a. By integrating this
quantity with respect to VSD, we obtain the photo-assisted tunneling current across the detector.
The color plot of PAT current in the three interesting regions is shown in �g.6.14.b. Two peaks
of photo-assisted tunneling current are observed at ±VSD =22.4µeV. This value corresponds to
Josephson frequencies νJ =12 GHz. The signal at other harmonics frequency of the resonator is
too small to be observed. This could be because at higher harmonics the frequency is greater than
∆(for ν=31GHz,eV = 65µeV � ∆ = 50µeV ). Note that it has been possible to measure it for the
Pd/Nb/Al sample (see section 6.4.3) with ∆ = 150µeV . For region C, the photo-assisted tunneling
peaks appear for all gate voltage, however, for Kondo ridges A and B no emission was detected
close to the particle-hole symmetry point. To understand the reason behind that, we will extract
the value of the PAT current more accurately and compare it to the DC current.
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Figure 6.14: (a) Derivative of the photo-assisted tunneling current. (b) Quantity represented on (a)
integrated over VSD, yielding IPAT (VSD, Vg). (c) Vertical cuts of the IPAT color plot at the gate
voltages indicated by the dashed color lines, two photo-assisted tunneling peaks at VSD = ±22.4µeV
is observed.

The Josephson emission is extracted from the amplitude of the PAT current through the detector
as a function of the gate Vg and bias voltage VSD of the CNT quantum dot. The emission of the
carbon nanotube junction has two contributions. The �rst one is the AC Josephson e�ect of the CNT
junction, at the Josephson frequency given by hν = 2eVSD and depending on the anharmonicity
of the current-phase relation some harmonics. The second contribution is the shot-noise associated
with MAR processes and quasiparticle tunneling. In the PAT response, we did not detect any
signature of harmonics in the AC Josephson e�ect. Consequently, we separate the two processes
by attributing the peak at the Josephson frequency to the AC Josephson e�ect and the remaining
baseline to the shot-noise. This baseline is calculated by �tting the data away from the Josephson
peak with a polynomial (Fig. 6.15.a). This allows to separate the contribution of the AC Josephson
e�ect (�g.6.15.b) from the shot-noise (�g.6.15.c).
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Figure 6.15: Extraction procedure of the AC Josephson emission. (a) The PAT signal of 6.14.b is
separated in a baseline and a peak at the Josephson frequency. The baseline is obtained by �tting
the data away from the Josephson peak with a polynomial. (b) Extracted PAT current related to
the AC Josephson e�ect. It corresponds to the PAT current with the baseline subtracted for the
region of interest. (c) Extracted PAT current corresponding to the MAR process is the same region
as b. It corresponds to the baseline obtained by the procedure described in a.

Data for the Pd/Nb/Al sample

We show in this part the data on the CNT sample with Pd/Nb/Al measured during the thesis of
Raphaëlle Delagrange [60].

In this CNT sample, the contacts are 400 nm apart and made of Pd(8nm)/Nb(11nm)/Al(50nm)
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trilayer with an e�ective gap ∆ = 150µeV , higher than the one of the Pd/Al sample. For the
Pd/Al/Nb contact one must apply a magnetic �eld of more than 1T to suppress superconductivity
in the contacts. This strongly a�ects the Kondo resonance and thus prevents a reliable extraction
of all the parameters of the dots.

In �gure.6.16 we show the di�erential conductance of the CNT quantum dot with a 1T magnetic
�eld applied, with two Kondo ridges D and E. The superconducting gap of the trilayer Pd/Al/Nb
is higher than the one of the bilayers Pd/Al. This allows the detection of the Josephson emission
at the �rst and third resonance frequency of the coupling circuit, i.e. 11GHz and 31GHz. As
shown in �g.6.17 the photo-assisted tunneling current exhibits four peaks, symmetric in VSD. They
are centered around VSD = ±22µeV and VSD = ±64µeV . These values correspond to Josephson
frequencies νJ = 11GHz and νJ = 31GHz.

D E

Figure 6.16: Di�erential conductance of Pd/Nb/Al sample in presence of a 1T magnetic �eld
as a function of the bias and gate voltages. Horizontal cuts of these color plots are given for
Vs ≈ −0.3 mV, outside from the superconducting dip. Taken from [60].
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(a)

(b)

(c)

Figure 6.17: Measurement of S-NbAl sample. (a) Di�erential conductance of the CNT as a function
of its bias voltage Vs in the superconducting state in the gate voltage region investigated above. (b)
The derivative of the photo-assisted tunneling current. (c) Quantity represented on (b) integrated
over Vs, yielding IPAT (Vs, Vg). Vertical cuts of the three-color plots are given on the right at the
gate voltages indicated by the dashed color lines. Taken from [60].

Data for the Pd/Al sample

In �gure 6.18 we plot the amplitude of the dynamical critical current IACC extracted using formula
6.13 from the peak in the PAT current for the Pd/Al sample. The main result of these measurements
is that the dynamical critical current follows nicely the critical current IC for the reference region
C. However there is a strong reduction of IACC close to the center of the Kondo region A and B, in
a region where the critical current IC is enhanced thanks to Kondo correlations. Using the same
procedure as the one described for the Pd/Al samples, the critical current and the AC Josephson
emission of Kondo ridges D and E of the Pd/Nb/A l are compared and exhibit the same qualitative
behavior.
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Figure 6.18: Comparison of the critical current IC and the AC critical current IACC (extracted from
eq.6.13) for (a) Kondo A. (b) Kondo B. (c) Region C. (b) Same comparison for the sample with
Pd/Nb/Al contact S-NbAl where two harmonics at 10 and 30 GHz were detected.

6.4.4 Possible Interpretations

The collapse of the AC Josephson emission in Kondo regions A and B suggests that the nanotube
Josephson junction behaves like a π-junction, instead of the 0-junction expected from the DC critical
current measurement. One may think about di�erent scenarios.

An e�ect of decoherence?

The �rst one is the e�ect of decoherence. Indeed due to the �nite bias VSD applied on the junction,
one may consider the voltage-induced spin relaxation [116, 119, 120, 121, 122], which is a dominant
decoherence process when eVSD/kBTK ≥ 1. In the present experiment, at the resonance frequency,
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one has eVSD/kBTK = 0.28 for Kondo ridge A and 0.17 for ridge B, so that this e�ect should be
small [123].

What about the dynamics of the Kondo e�ect?

Dynamical e�ects can also a�ect AC emission. Indeed, it has been shown that there is a frequency
cut-o�, of the order of kBTK/h, in the high frequency emission of a quantum dot in the normal
state [123]. However, in the present experiment, the ratio of hν/kBTK is always smaller than one
(0.526 for Kondo ridge A and 0.34 for ridge B).

6.5 Numerical renormalization group calculation

To get a more quantitative understanding of the behavior of the quantum dot in region A and B
we have performed numerical renormalization group (NRG) calculation [124, 125] of the Andreev
bound state spectrum and supercurrent of the ground state using the parameters determined in the
normal state (table 6.2). The NRG calculations were done in collaboration with Tomá² Novotný
and Alºb¥ta Kadlecová (University of Prague, Czech Republic).

6.5.1 Calculation of the Andreev spectrum of CNT QD

The NRG calculation gives the many-body state spectrum of our junction at the particle-hole
symmetry point ε = 0 (see �g.6.19.a), where the energy of the ground state is considered a reference
state at zero energy, the solid line represent the �rst excited doublet state, which is detached from
the continuum due to electron-electron interaction. The dashed line represents the �rst excited
singlet state, which is overlapping with the continuum at EA = ∆. Note that, due to technical
reasons, the NRG calculation does not give the energy of the singlet state for values higher than
the gap ∆. The NRG calculation con�rms that the ground state of the system is always the singlet
state. This leads to a supercurrent in the nanoampere range as shown in �g.6.19.b, consistent
with the experiment, with the phase behavior of a "0-junction". NRG calculation allows us also
to evaluate the evolution of the detachment of the ABS from the continuum at ϕ = 0 for the �rst
excited doublet state only, and the value of the ABS at ϕ = π for both the �rst excited doublet
and singlet state (see �g.6.20).
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Figure 6.19: NRG calculation. (a) Andreev bound state spectrum (b) Supercurrent amplitude as
a function of the superconducting phase di�erence ϕ at the particle-hole symmetry point obtained
by NRG calculation with the parameters of the Kondo ridge A and B.
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as a function of the energy level of the QD ε for the Kondo ridge A and B. This measures the
detachment of the ABS from the continuum of excitation. (b) Same quantity at ϕ = π. Data for
both �rst excited doublet and singlet state are presented.

6.5.2 Calculation of the current of singlet state and doublet state

The amplitude of the supercurrent of the singlet ground state is given by the NRG calculation. The
amplitude of the doublet state can then be deduced from this latter value and the phase dependence
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of the ABS. The idea is to calculate the ABS spectrum and the current of singlet state JS as a
function of ϕ for di�erent values of ε such that −U/2 < ε < U/2. Fig.6.21.a,b shows the ABS
spectrum and the current of the singlet state at ε = 0meV. The set of curves of JS(ϕ) allows us
to plot JS as a function of ε (Blue curve of �g.6.21.c). Then JD is calculated using the following
expression:

JD = JS +
2e

~
∂EA
∂ϕ

(6.30)

This calculation is done at each value of ε, the result is shown in �g.6.21.c (orange curve). Comparing
JS and JD shows that the amplitude of the current in the doublet state is reduced compared to the
singlet state, and the sign changes.
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Figure 6.21: NRG calculation of at ε = 0 meV (a) ABS spectrum and (b) Supercurrent of the
singlet state and the doublet state at ε = 0meV as a function of ϕ for Kondo ridge A, calculated
using Eq.6.30(d) Calculated amplitude of the �rst harmonics of the current phase relation for zone
A in the singlet and doublet state. Note that what is plotted is the absolute value of JD.

6.6 Landau-Zener tunneling

The collapse of the AC emission corresponds to Kondo enhanced high critical current. For sym-
metric contacts, the Kondo e�ect opens a nearly perfectly transmitted channel (T≈1). The doublet
Andreev bound states are very low in energy at ϕ = π. In this case, one may think about the
transition to an excited level due to Landau Zener because of the phase evolution. This is what
happens for a quantum channel junction with high transparencies [128] and involves a transition
between singlet states, due to parity constrain [129]. Compared to a quantum channel with the
same transmission in the normal state, a quantum dot Josephson junction, in the range of param-
eters explored here, has an excited singlet state with slightly higher energy and a doublet state
detached from the continuum and with a decreased energy especially at phase ϕ = π (see Fig.6.22).

Knowing the shape of the ABS one can calculate the value of the Landau Zener tunneling
probability to the excited singlet state using the formula :

PLZ = exp

[
−π

2

E2
g

eV D

]
(6.31)

with Eg the minimal value of the ABS, i.e. the ABS at phase value π and D the maximal value
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of the ABS, i.e. its value at phase value equals 0. V is the applied voltage, which determined the
phase evolution through the Josephson relation dϕ/dt = 2eV/~ [130].

For a quantum channel Eg = 2∆
√

1− T and D = 2∆. With a conductance of 0.71 in unit
of 2e2/h this leads to Eg = 1.07∆ and PLZ = 0.16. For the QD Josephson junction of similar
conductance in the normal state, the NRG calculation, at the particle-hole symmetry point, gives
Eg= 0.74∆ so that PLZ = 0.42. This value is not extremely small but it does not change a lot
when one goes away from the particle symmetry point. Hence at ε=1 meV, where we see in the
experiment that the dynamical supercurrent increases, this Landau Zener probability is 0.24. Thus,
the Landau-Zener tunneling mechanisms are not suitable to explain our experimental observation.

QD:D

QC:D

QD:S

QC:S

Figure 6.22: Comparison of the many-body spectrum for Kondo ridge A at the particle-hole symme-
try point and a quantum channel with the same transmission in the normal state, as a the function
of the phase di�erence ϕ. The energy di�erence between the singlet ground state and the spin
degenerate doublet state is denoted in black, with a solid line and a legend QD:D for the quantum
dot and a dashed line and a legend QC:D for the quantum channel. The energy di�erence between
the singlet ground state and the excited singlet state is denoted in red, with a solid line and a
legend QD:S for the quantum dot and a dashed line and a legend QC:S for the quantum channel.

6.7 A renormalized-quantum-point-contact-based prediction

Quantum dots in the Kondo regime have been sometimes treated like a single quantum channel [141,
142]. The idea is that Coulomb interaction U causes a renormalization of parameters (ABS energies,
transmission), but does not produce qualitative di�erences. Of course, this only holds as long as
the junction remains in the zero phase in the entire range of the superconducting phase di�erence
ϕ, as is the case in our study. This section intends to show that even this crude approximation,
which amounts to neglecting vertex corrections in the diagrammatic approach, predicts a drop in
the AC current similar to the measured data.
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The full transport theory for a short superconducting quantum channel (or quantum point
contact) has been published in the nineteens by Averin and Bardas [128] and Cuevas, Martín-
Rodero and Levy Yeyati [131]. These studies feature results for the real and the imaginary part
of the �rst Fourier component I1 of the AC current for several di�erent values of transmission.
We use their results (read o� graphically) for applied bias voltage V = ∆/2 to construct the
|I1(D)| dependence, where D is the transmission of the channel. In full analogy to the quantum
point contact, we consider the transmission of our setup to be given by the energy of the doublet

Andreev bound states at ϕ=π, namely D (ε) = 1−
(
EABS(ε, ϕ=π)

∆

)2

. We obtain equilibrium values

of EABS(ε, ϕ = π) from the NRG. Results for both A and B Kondo ridges are similar and given in
�g.6.23, showing a semi-quantitative agreement between the renormalized-quantum-point-contact
based prediction and measured experimental data.

This approach is di�erent from the microscopic considerations about Landau-Zener tunneling
in that it is not limited to the adiabatic approximation, as refs. [128, 131] are working with a full
numerical solution to the AC emission in the quantum point contact. Indeed, it is questionable
whether the bias voltage V = ∆/2 is small enough for ABS energies computed for zero bias to
remain meaningful.
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Figure 6.23: Gate dependence of the �rst Fourier component |I1| of the AC Josephson current.
Bullets represent the experiment lines the theoretical prediction for a single quantum channel with
a renormalized transmission. Transmission of the quantum dot has been evaluated from the energy
of Andreev bound states at ϕ = π, obtained by the NRG. The dots represent experimental data for
Kondo ridges A and B. The values of |I1| are based on [128, 131].

Being based on the case of a quantum channel this analysis needs to be taken cautiously in
the case of a quantum dot where electron-electron interaction modi�es the many-body spectrum.
In particular, this analysis does not take into account the detachment of the �rst ABS from the
continuum. Moreover, if one does the same analysis considering only the transition between singlet
states, which preserves spin and parity, the e�ective transmission of the system is lower. This leads
to a very small reduction of the dynamical supercurrent, not consistent with the experiment.
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6.8 Evaluation of the quasiparticle dynamics in the QD junc-

tion

In a superconductor, the density of unpaired electrons (quasiparticles) should decrease exponen-
tially as the temperature is lowered, then vanish when approaching zero temperature [72]. However,
it has been shown that at temperatures much lower than the transition temperature TC , the number
of quasiparticles can saturate [132, 133]. In the presence of non-equilibrium quasiparticles, the per-
formance of superconducting devices can be degraded. This has been seen in Single-Cooper-Pair
transistors [135, 136] as the parity of the total number of electrons matters. Also, in supercon-
ducting qubits [137, 138], as quasiparticle tunneling imposes a sharp limit on the qubit operation
time. The trapping of a single quasiparticle in such a superconducting device has been named as
"poisoning", as it alters the expected behavior of the ground state of the system.

Chtchelkatchev et al.[139] show that Bogoliubov quasiparticles can be trapped in discrete An-
dreev levels of a superconducting junction. This trapping should induce an excitation from the
even ground state, to an odd excited state, which in turn should manifest itself as a change of
supercurrent. The poisoning process can occur by injecting electron form an auxiliary electrode
[88] or could happen spontaneously. The �rst observation and characterization of single quasipar-
ticles trapping in superconducting break junctions have been done by Zgirski et al. [140]. In their
experiments, they show that in a superconducting point contacts quasiparticle could be trapped in
one of the discrete subgap Andreev bound states. Those trapped quasiparticles are long-lived, with
time scales up to hundreds of µs.

To see whether QP poisoning could explain the behavior of the AC Josephson emission seen
experimentally, we study the dynamics of quasiparticle (QP) tunneling in the quantum dot. We
evaluate here the quasiparticle dynamics, which may lead to the occupation of the doublet state, in
the QD Josephson junction. We evaluate the di�erent rates controlling the injection and escape of
QP in the dot [143] because of the electromagnetic environment of the junction. This environment
is, in the present experiment, constituted by the resonant coupling circuit of impedance Zenv and it
is assumed to be in equilibrium at a temperature Tenv, which can be, in general, di�erent from the
temperature of the QP in the continuum TQP . Tenv and TQP can be signi�cantly larger than the
base temperature in our experiment (∼ 50 mK) due to incomplete �ltering of radiation, for that,
we have used Tenv = 120mK and TQP = 60mK. The numerical evaluation of this rate (and every
other) for the di�erent processes are illustrated in �g.6.24. The di�erent rates are :

� Γaout, the rate for a QP on the Andreev level to escape in the continuum at the energy E

after absorbing energy E − EA from the environment. It reads : Γaout = 8∆
h

∫ +∞
∆

dED(E −
EA)g(E,EA)fBE(E−EA)(1−fFD(E)). In this expression, D(E) is related to the probability
P (E) for the environment to exchange the energy E, by P (E) = D(E)fBE(E). D(E) =
Re(Zenv(E)/E)/RQ, with RQ = h/4e2 and fBE(E) the Bose-Einstein distribution at energy
E and temperature Tenv. g(E,EA) is related to the matrix element of the current operator
and we approximate it by g(E,EA) =

√
(E2 −∆2)(∆2 − E2

A)/[∆(E − EA)]. fFD(E) is the
Fermi-Dirac function, describing the QP in the continuum at a temperature TQP .

� Γbout = 8∆
h

∫ +∞
∆

dED(E + EA)g(E,−EA)(1 + fBE(E + EA))fFD(E), the rate for two QP to
recombine into a Cooper pair, one QP occupied the Andreev level and the other one was in
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the continuum at energy E. The excess of energy E + EA is emitted in the environment.

� Γain = 8∆
h

∫ +∞
∆

dED(E − EA)g(E,EA)(1 + fBE(E − EA))fFD(E), the rate for a particle of
energy E to enter the QD and occupy the doublet state, of energy EA, after exchanging an
energy E − EA with the environment.

� Γbin = 8∆
h

∫ +∞
∆

dED(E + EA)g(E,−EA)fBE(E + EA))(1− fFD(E)), the rate for breaking a
Cooper pair into one QP occupying the Andreev level and another one in the continuum at
energy E, after absorbing the energy E + EA from the environment.

These rates can be evaluated numerically. We then deduce the probability to be in the doublet
state PD = 2Γin/(3Γin + Γout) as a function of the position of the Andreev level EA. The result of
the calculation is summarized in �g.6.25.
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Figure 6.24: The dynamics of trapping and untrapping quasiparticles in the dot as described in the
text.
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Figure 6.25: (a)Numerical evaluation of the rate of the QP injection and escape in the QD junction
with kBTenv = 0.2∆ and kBTqp = 0.1∆. (b) Probability for the junction to be in the doublet state
as a function of the energy EA of the Andreev level.

Figure.6.25.b shows that for the energy of the Andreev level higher than 0.2∆, the probability
for the QD to be in the doublet state is extremely small (below 0.05) in a DC current con�guration
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with a current biasing changing in the kHz range. However, the situation is very di�erent when we
measure the AC emission.

Indeed, due to the applied bias, the injection rate of QP can be signi�cantly higher. More-
over, close to the particle-hole symmetry point, the double state is detached from the continuum
due to electron-electron interaction. This keeps the escape rate of quasi-particle relatively low.
Consequently, the probability for the QD to be in the doublet state is expected to be higher in a
voltage bias situation. This leads to a decrease of ICAC since the critical current of the doublet state
is lower than the one of the singlet ground state. Despite a higher gap value, the samples with
Pd/Nb/Al contacts exhibit the same phenomenon (�g.6.18). This can be related to the existence of
a soft gap for these samples [126], inducing a small but �nite QP density at an energy below the gap.

Going away from the electron-hole symmetry point, by changing the value of ε, the gap between
the doublet state and the continuum of excitation above ∆ is reduced signi�cantly (see �g.6.20.b).
The probability for the QP present on the dot to escape increases then due to Demkov-Osherov
tunneling processes between the doublet state and the continuum due to the phase evolution of
the junction [127, 144]. Figure 6.26c represents the probability to escape to the continuum. This
data has been derived by using the result of [127]. Note that this latter article was devoted to
the topological superconductor. Consequently, the result of this article may need to be adapted to
the case of a QD. Concurrently the minimum value of the energy of the doublet ABS, at ϕ = π,
increases. This reduces the rate of QP injection in the QD. These two e�ects thus restore a high
probability for the QD to be in the singlet ground state and increase its e�ective supercurrent. This
is what is measured in the data.
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P

Figure 6.26: Probability for a QP present in the quantum dot to escape after tunneling into the
continuum due to Demkov-Osherov tunneling. This curve is calculated at a voltage eV=∆/2 and
use the result derived in reference [127].

From the amplitude of the AC emission measured in the experiment, it is possible to extract
the probability PD to be in the doublet state assuming that the dynamical Josephson current is
given by ICAC = PDJD + (1− PD)JS . JS and JD are given in �g.6.21.d.

In the following, we will call coherent, a situation where the QP injection is correlated with the
value of the superconducting phase. When this is not the case we deal with an incoherent case. In
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an incoherent calculation, only the amplitude of the singlet and doublet supercurrent is considered.
With a probability one to be in the doublet state close to the particle-hole symmetry point, one
can qualitatively reproduce the reduction of the supercurrent. In a coherent scenario, the sign of
the supercurrent (positive for the singlet and negative for the doublet) must be considered. This
leads to a quantitative agreement with the data, with a �nite probability to be in the doublet state
but puts strong constraints on the model used to describe the dynamics of the junction.
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Figure 6.27: (a) Comparison between the data for Kondo ridge A (blue circles) and the calculated
amplitude of the AC supercurrent IACC introducing a �nite probability for the system to be in the
doublet state. In the incoherent calculation (black solid line), only the amplitude of the singlet
and doublet supercurrent is considered. In the coherent scenario (red dashed line) the sign of this
current is also considered. (b) Probability for the system to be in the doublet state in the incoherent
(black solid line) and coherent regime (red dashed line).

6.9 Conclusion

In this section, we have measured the dynamics of a carbon nanotube Josephson junction by probing
its Josephson emission. We show that this emission is strikingly reduced in the gate region where the
critical current is enhanced due to the interplay of the Kondo e�ect and superconducting proximity
e�ect. Using the NRG technique, we were able to calculate the many-body state spectrum of our
system. This helps us to evaluate the probability of the QD to be in a doublet state due to quasi-
particle injection. The calculated data reproduces nicely (qualitatively and quantitatively) our
experimental data. The measurement of the AC Josephson e�ect in the Kondo regime shows that
it is possible to tune the quantum state of a quantum dot Josephson junction between a spin singlet
and doublet state. This 0-π transition can be attributed to the dynamics of quasiparticle in the
quantum dot which changes its state, from singlet to doublet. This points towards the importance
of considering the electron-electron interaction in the dynamic of a QD Josephson junction.
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Chapter 7

On-chip resonant circuit and

measurement of electronic

temperature

In this chapter, we present two di�erent experiments that aim to improve our detection methods
at low temperature.

7.1 High Kinetic Inductance Microwave Resonator Made with

Tungsten Nanowires

High kinetic inductance superconducting materials have a growing impact on the superconducting
circuits community. Operated in the microwave frequency domain, they allow to engineer high
impedance circuits which have been shown to provide an e�cient way to increase the lifetime of
superconducting quantum bits [145, 146, 147, 148], couple electron charge and spin to microwave
photons [149, 150], study the coherent quantum phase slip [151] or generate a high impedance en-
vironment in dynamical Coulomb blockade experiments [152, 153].

Until now, these materials consisted of arrays of Josephson junctions, disordered thin �lms of
metallic compounds (NbN, TiN. . . ), granular aluminum, or superconducting semiconductors. Their
use in superconducting circuits usually requires a �nal sharpening step using electron-beam lithog-
raphy which has so far reduced their range of application. In this experiment, we will show you
that it's possible to fabricate very thin (5nm), narrow (35nm) and long (400µm) tungsten (W)
nanowire made by helium beam assisted deposition, demonstrating a very high kinetic inductance,
250 times larger than the geometrical one. We fabricated and characterized a hybrid microwave
resonator where the inductive part is set by a superconducting tungsten nanowire. Thanks to the
large kinetic inductance of the nanowire, the resonator is nonlinear (120 Hz/photon) and exhibits
a reasonably high quality factor (4000).

Focused ion beam (FIB) is a recent and powerful multitask micro/nano-fabrication tools. It is
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composed of a focused ion beam column and can be equipped with precursor-based gas injection
systems (GIS). FIB provides precise and direct write lithography, imaging, deposition, sputtering,
chemical analysis of the matter at ultra-high resolution, machining, and manipulation. The two
more frequently used ions in a FIB system are gallium ions and helium ions.

Until now, tungsten superconducting nanowires have been deposited using Ga+ ions in a Fo-
cused Ion Beam (FIB) [155, 12, 156] or electrons in an electron scanning microscope (SEM) [154].
However, in this experiment, we will study the properties of W nanowires deposited by a focused
helium ion beam from gas �eld-ion sources [163]. Since He-FIB exhibits a lower proximity e�ect
compared to electron beam this could allow fabricating extremely narrow nanowires with potentially
better superconducting properties. When compared to Ga-FIB, He-FIB provides higher resolution,
less damage and lower contamination, and no Ga implantation. W nanowires have many poten-
tial applications in the �eld of mesoscopic devices. It has already been used to connect nanoscale
samples such as fullerenes [12], graphene [157], mesoscopic metallic samples [158], Bi nanowires
[159, 160] or study superconductivity in low dimension [161, 162]. This work has been done in
collaboration with Julien Basset, where I was mainly involved in the fabrication process and DC
characterization of the tungsten nanowires.

7.1.1 Fabrication

To fabricate the hybrid resonator, �rst 110 nm of Nb is sputtered on a high resistivity silicon sub-
strate with 500 nm thick thermal oxide. Then optical lithography is performed to de�ne a positive
mask on top of Nb, followed by reactive ion etching with SF6. Two di�erent designs are prepared,
a coplanar waveguide (CPW) resonator (�g. 7.1.a-b) and a lumped element resonator (�g. 7.1.d).
The W nanowire is then deposited to form a resonator: a long wire grounded on one side and
capacitively coupled to a transmission line for the λ/4 CPW resonator and in parallel with an in-
terdigitated capacitor in the lumped geometry (�g. 7.1.c-d). The W nanowires are deposited using
helium beam assisted deposition. The W precursor (tungsten hexacarbonyl W(CO)6) is injected by
a gas injection system (GIS) and exposed in the region of interest. Upon interacting with helium
ions coming from an ultra-high brightness gas �eld ionization source (GFIS) that is subjected to a
high voltage (30 kV), the (W(CO)6) molecule will be decomposed locally and deposit an almost-pure
and thin layer of Tungsten onto the surface. During nano deposition, we use a He-beam current
ranging from 10 to 30 pA. The target pressure in the chamber is 4 · 10−6 Torr. The patterning
geometry and parameters are controlled by the nanofabrication system NPVE from Fibics. For the
lumped element resonator, a W nanowire of 9.8µm was realized whereas for the CPW λ/4 resonator
a length of 390µm was used. Fabricating such a long nanowire is possible thanks to the very high
stability of the He-FIB and He-IBID process compared to previous experiments with Ga-FIB [12].
For more details about the fabrication process and growth condition see [164]
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Sample Current(pA) Dose Length(µm) Thickness (nm) Width (nm)
NW1 20 0.178nC/µm 5.9 40 50
NW2 20 0.06nC/µm 5.9 5.5 35
NW3 10 3nC/µm2 5.9 20 70

Resonator "Lumped" 20 0.16nC/µm 9.8 30 35
Resonator "λ/4" 27 3nC/µm2 390 12 75

Resonator "Lumped2 " 27 3nC/µm2 30 25 80

Sample Resistance R� ρ ξ(2K) λ(0K)
(kΩ) (Ω) (µΩ.cm) (nm) (nm)

NW1 7.75 65.7 266 6.7 674
NW2 25.15 149.2 80.6 7.6 400
NW3 9.1 108.0 216.0 7 449

Table 7.1: Growth parameters, dimensions, and transport properties of the fabricated W nanowires.
With the indicated parameters the time needed to write the W part of the resonator "Lumped" is
88 seconds, whereas for the "λ/4" type it is 40 minutes.

Figure 7.1: (a) SEM image of a CPW sample. The transmission line runs horizontally with three
λ/4 resonators hanging vertically. (b) SEM image of the coupling area between CPW resonator
and transmission line. (c) SEM image of a W nanowire connected to Nb with a thick W patch
at the junction. (d) Optical microscope picture of the lumped resonator. The arrow points to the
nanowire placed horizontally.

7.1.2 DC Characterization of the nanowires

In order to measure the critical temperature TC , critical magnetic �eld, and the critical current of
the W nanowires, three nanowires (NW1,NW2, and NW3) of 5.9µm length were grown with di�erent
growth conditions (See table 7.1) on a sample dedicated to electrical DC measurements. The sample
is cooled down to 1.8K in a Physical Property Measurement System (PPMS) from Quantum Design
company, where a magnetic �eld up to 9T can be applied. The resistance measurement was done
in a two-probe con�guration and a contact resistance was substracted from the raw data.

Fig.7.2 shows the evolution of the di�erential resistance as function of temperature (�g.7.2.a)
and magnetic �eld (�g.7.2.b) for the three measured nanowires. From 300K, when the temperature
is lowered, the resistance increases slightly (≈ 5%) to �nally show a superconducting transition
around Tc ∈ [5 − 6.5]K. Then we �x the temperature below the transition point at T=2 K while
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Figure 7.2: (a) Resistance of W nanowires referenced in table 1.1 vs temperature T and (b) per-
pendicular magnetic �eld B. (c) Resistance of sample NW1 vs T for di�erent B. (d) Critical �eld
HC2 vs T of the wires with the corresponding �t. Fitting parameters are indicated in the legend.
(e) Di�erential resistance vs current of sample NW1 for di�erent magnetic �elds.

varying the perpendicular magnetic �eld from 0T to 9T. The nanowires are superconducting with a
resistance that develops a magnetic �eld behavior consistent with a type 2 superconductor. De�ning
Hc2 as the magnetic �eld for which the nanowire recovers half of its normal state resistance, we see
that all wires exhibit an Hc2 larger than 5 T.

Then we study the e�ect of temperature T on the value of Hc2. Fig.7.2, shows the temperature
dependence of the resistance at di�erent magnetic �eld only for NW1. The temperature dependence
of Hc2 of the three nanowires is shown in �g.7.2.d, superconducting transitions shifts to lower T
with magnetic �eld. The data can be �tted to a power dependence eq. which is valid close to Tc
given by∼ :

Hc2(T ) ∝ (
1− T
Tc

)n (7.1)

with n is the power index re�ecting the dimensionality of the superconductivity. For a purely 2D
superconductor n = 1 is expected for perpendicular magnetic �elds and n = 0.5 for parallel magnetic
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�elds. Using eq.7.1 we found that n=0.57, 0.63 and 0.72 for NW2, NW1 and NW3 respectively.
Finding an intermediate value of n points towards reduced dimensionality of superconductivity in
the W nanowires [165, 166, 167].

To extract the value of critical current IC , we measured the di�erential resistance dV/dI as the
function of biased current IDC . Fig.7.2.e shows dV/dI for NW1 at T = 2K for di�erent magnetic
�elds. For NW1, the zero-�eld critical current is 4.0 µA, and it decreases with the increase of the
magnetic �eld. At this temperature, the curves are non-hysteretic. For nanowires NW2 and NW3,
the zero-�eld critical currents are 1.3 and 3.8 µA respectively. To further study the behavior of
critical current with temperature, NW2 was cooled down to 10 mk in a highly �ltered dilution
refrigerator. The di�erential resistance as a function of current is shown in �g.7.3. We observed an
increase up to 12µA, with a thermal hysteresis behavior highlighting the increase of electron-phonon
relaxation times at low temperature.
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Figure 7.3: Di�erential resistance vs current of sample NW2 at very low temperature (T=10mK).
The orange curve corresponds to an increase of the current whereas the black one is for decreasing
current.

From the value of HC2 and TC we extract the superconducting coherence lengths ξ and London
penetration lengths λ, reported in table 1, assuming [72] µ0HC2(T ) = Φ0/2πξ

2(T ) and λ(0) =
1.0510−3

√
ρ/Tc with ρ the resistivity [168].

7.1.3 Microwave characterization of W nanowires

To probe the microwave properties of a resonator made with W nanowires, the two designs are
shown in �g.7.1, the coplanar waveguide, and the lumped resonators are cooled down to 10 mK in a
dry dilution fridge. The microwave signal is sent via attenuated and thermally anchored microwave
lines. The transmitted wave is ampli�ed and the complex transmission spectra S21 through the lines
are measured with a vectorial network analyzer. The interference of the incident microwave signal
and the one re�ected from the resonator lead to a dip in S21. This dip is accounted theoretically

128



Chapter 7. On-chip resonant circuit and measurement of electronic temperature

by:

S21 = 1− Qt
Qc

1− 2jQcu

1 + 2jQtx
(7.2)

with x = (ω − ω0)/ω0 the fractional detuning of the readout angular frequency ω relative to the
resonance frequency ω0. u = δω

ω0
with δω = ω1 − ω0 is the frequency shift of the in-phase point on

the resonance circle from ω0 to ω1 and represent the asymmetry. u is a dimensionless parameter
considering the asymmetry in the transmission line and is essential to extract reliable quality factors
in hanger-coupled resonators [169]. It reduces to 0 for a symmetric transmission line. The coupling
quality factor Qc quanti�es the coupling between the transmission line and the resonator which has
an intrinsic quality factor Qi. These two terms are related to the total (or loaded) quality factor Qt
via Q−1

t = Q−1
i + Q−1

c . Qi which gives information on the quality of the resonator independently
of the coupling to the measurement line and is a �gure of merit of the material quality.

At low temperature, we found that the lumped resonator exhibits a resonance at f=4.46GHz
(�g.7.5), whereas the CPW resonator has a resonance at f=4.05GHz (�g.7.4). In the following,
using those values, we extract the kinetic inductance of the W nanowires.

The kinetic inductance can be estimated, at very low temperature, from R� and TC [175]:

LK,� ≈
R�h

2π2∆0
. (7.3)

where ∆0 = 1.76kBTc. With Tc ∈ [5− 6.5]K and the square resistances from table 7.1 we evaluate
a kinetic inductance LK,� ∈ [7− 25] pH/�.

Using a �nite element simulation Sonnet® software we could extract for the lumped resonator,
the parallel capacitance C ≈ 240 fF, and the geometrical inductance of the wide Nb inductive part
Lgeo,D ≈ 0.935 nH. From the value of the resonance frequency f = 1/(2π

√
(LC)) we deduce the

kinetic inductance of the wire LK = 4.3nH. The geometrical inductance of the nanowire alone is
expected to be Lgeo,W≈ 17 pH leading to the kinetic inductance fraction α = LK/(Lgeo,W +LK) =
0.996 and kinetic over geometrical inductance ratio β = LK/Lgeo,W = 253 so that the geometrical
inductance can be neglected. We obtain a kinetic inductance per unit length LK≈ 439µH/m and a
kinetic inductance per square LK,� = 15.4pH/� which falls in the expectation window calculated
earlier.

For the coplanar waveguide resonator, we extracted the lineic capacitance to ground to C≈
48pF/m and the lineic geometrical inductance of the wire Lgeo≈ 1.7µH/m. The lineic inductance
was then deduced from the value of the resonance frequency f = 1/(4

√
(LC) and the length of

the line. We found L=Lgeo+LK≈ 512µH/m. From these numbers we extracted a phase velocity
c = 1/

√
LC = 6.4 × 106 m/s and a characteristic impedance ZC =

√
L/C = 3.3 kΩ. Such material

is therefore highly suitable for dynamical Coulomb blockade experiments where the characteris-
tic impedance ZC must be comparable to the resistance quantum RQ = h/4e2 ≈ 6.5kΩ. More
speci�cally, the coupling of e.g. a tunnel junction to a high impedance microwave resonator is char-
acterized by the coupling parameter λ =

√
πZC/RQ. With λ ≈ 1.26 in our experiment we would

be at the onset of the strong coupling regime λ > 1 where e.g. dc-driven single microwave photon
generation could be achieved [176, 177].

Temperature dependence

In this section, we will study the e�ect of temperature on the value of resonance frequency and
quality factor of a resonator made with W nanowires. Figure 7.5(a) shows the transmission spectra
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of the lumped resonator at low power under various values of temperature ranging from 10 mK to
2.29K with �ts using equation 7.2. At 10 mK, we found ω0/2π = 4.4642GHz and Qi = 3990 at low
power. Decreasing the temperature leads to an increase of the resonance frequency together with a
sharpening of the resonance (�g. 7.5.b-c). Below T = 0.9K the resonance frequency is nearly con-
stant and decreases strongly as one raises the temperature. Qi evolves similarly with a maximum
value reaching Qi = 3990 at 10mK.

Figure 7.4: (a) Temperature dependence of the normalized transmission spectra of the CPW res-
onator. (b) Extracted quality factors vs temperature. (c) Temperature dependence of the resonance
frequency.

The temperature dependence of the resonance frequency and the quality factor were both �t-
ted by Mattis-Bardeen (MB) theory, which relates the temperature dependence of the resonance
frequency and quality factor to the complex conductivity of the material σ = σ1 − iσ2 (See SM
of [164]). This theory allows us to reasonably tackle the temperature dependence of the resonance
frequency whereas discrepancies are found regarding the quality factors for which the MB theory
predicts a diverging Qi as the temperature is lowered. To reproduce our data, we introduce extra
losses in the internal Qi factor as: Q−1

i = Q−1
MB + Q−1

loss. First, we �xed Qloss at 3990 for all
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the temperatures, see the yellow curve of �g.7.5.c. We see that the agreement in the intermediate
temperature regime is unsatisfactory. Then we introduce a temperature dependence Qloss given by
Qloss = 3990(1 − T/3). The corresponding curve is shown in black in �gure 7.5c demonstrating
a reasonable agreement. This decay sheds light on the physics of losses into the resonator which
increases as the temperature is raised. These extra losses need to be further understood and may
be related to poisoning [170, 171, 172], TLS [173, 174] and/or mobile vortices [72].

The same data is measured for the CPW λ/4 resonator (See �g.7.4.a) it shows the same temper-
ature dependence behavior of the resonance frequency and quality factor as the lumped resonator.
This design exhibits a smaller quality factor Qi ≈ 710. In this geometry, the wire length was 390 µm
long with a resonance frequency ω0/2π = 4.05 GHz.

Figure 7.5: (a) Temperature dependence of the normalized transmission spectra of the lumped
resonator. (b) Temperature dependence of the resonance frequency. (c) Extracted quality factors
vs temperature.

Power dependance

Studying the power dependence of the normalized transmission spectra will introduce nonlinearity
to the system due to the nonlinear kinetic inductance of the nanowires. To quantitatively tackle
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this nonlinear e�ect, one needs to introduce into the fractional detuning parameter x of eq.7.2 the
shift δω of the resonance frequency due to the nonlinear kinetic inductance. The shifted resonance
reads [178] ωr = ω0 +δω = ω0 +Knph where we have introduced the Kerr parameter K relating the
frequency shift to nph, the number of photons stored in the resonator. By inserting new expression
of ωr into the fractional detuning we obtain:

x =
ω − ω0 − δω
w0 + δω

≈ x0 − δx = x0 −
Knph
ω0

(7.4)

with x0 = ω−ω0

w0
. Using the power conservation law relating the lost energy into the resonator Pdiss

with respect to the measurement lines accounted by the scattering parameters corresponding to
wave re�ection S11 and transmission S21. In a hanger resonator the conservation law reads:

Pdiss = P [1− |S11|2 − |S21|2] (7.5)

with S11 = S21 − 1. By replacing in this equation, the S21 formula, we �nd:

Pdiss = P

 2Q2
t

QiQc

1 + 4
Q2
cQt

Qc−Qtux

1 + 4Q2
tx

2

 . (7.6)

Inserting in eq.7.6 the de�nition of the internal quality factor Qi ≈ nph~ω2
0/Pdiss gives access to

the number of photons in the resonator as a function of the applied power:

nph =
2Q2

tP

Qc~ω2
0

1 + 4
Q2
cQt

Qc−Qtux

1 + 4Q2
tx

2
. (7.7)

Replacing the expression of nph given by 7.7 into eq.7.4 we get:

x = x0 −
Knph
ω0

= x0 −K
2Q2

tP

Qc~ω3
0

1 + 4
Q2
cQt

Qc−Qtux

1 + 4Q2
tx

2
. (7.8)

From eq.7.8 we can de�ne the non-linear parameter aNL given by:

aNL = − 2KQ3
t

Qc~ω3
0

P (7.9)

132



Chapter 7. On-chip resonant circuit and measurement of electronic temperature

4

3

2

1

|S
21

|² 

3.603.583.563.543.523.503.48

Frequency (GHz)

 Data
 Duffing fit P=-50dBm

P=-35dBm

P=-45dBm

P=-40dBm

0.6

0.5

0.4

0.3

0.2

0.1

0.0

aN
L

40302010

Power (pW)

 aNL
 fit_aNL

700

600

500

400

300

200

Q

40302010

Power (pW)

 Qi
 Qc
 Qt

(a)

(b)

(c)

Figure 7.6: (a) Power dependence of the normalized transmission spectra near the microwave
resonance of the lumped resonator at 1.5K. (b) Power dependence of the aNL term allowing us
to extract (see text) a Kerr parameter KW,He = 74 Hz/photon at 3.5GHz. (c) Extracted quality
factors as a function of the microwave power. The Q's seem to be rather stable with respect to
Power with a maximum internal quality factor of 700.

Inserting eq.7.8 in the expression of S21, allows us to plot as a function of the applied microwave
power P , the nonlinear term aNL, Qi, Qc and Qt. �g.7.7.a and �g.7.6.a shows the power dependence
of the transmission spectra of the lumped resonator at 10 mK and 1.5 K respectively. As one
increases the microwave power, the peak shifts towards smaller frequency, slants and eventually
becomes bistable at high power. By �tting the data with eq.7.2, considering δω, we extract the
di�erent quality factors for the resonators. At 10 mK, the quality factors (�g. 7.7.b) slightly increase
from Qi = 3990 to 4290 as the power is elevated up to 0.1 pW and remains stable at higher powers.
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However, at 1.5K the quality factor seems to be rather stable with respect to the power (�g. 7.6.b).
From the linear dependence of aNL parameter with respect to microwave power P (See Figure.7.6),
we extract a Kerr parameter. We �nd a non-linear Kerr parameter K/2π = 200± 120 Hz/photon
at 4.465 GHz (T=10mK), and KW,He = 74 Hz/photon at 3.55 GHz(T=1.5K). As such the hybrid
lumped resonator presented here is an interesting candidate to realize relatively high sensitivity
photon detection experiments at a very moderate temperature such as the one of a pumped He
bath.

Figure 7.7: (a) Power dependence of the normalized transmission spectra of the lumped resonator
at 10 mK.(b) Extracted quality factors vs microwave power.

Magnetic �eld dependence

Studying the physics of mesoscopic devices made with superconducting materials, requires most of
the time applying a magnetic �eld. For example, for a carbon nanotube connected to superconduct-
ing contacts, a magnetic �eld should be applied in order to characterize the carbon nanotube in the
normal state. This is the same in many other experiments where the spin degree of freedom is of
interest. To implement such a resonators design made with W nanowires of high critical magnetic
�eld in devices, we have to make sure that properties of the resonator are rather immune to the
applied magnetic �eld. �g.7.8 shows the magnetic �eld dependence of the transmission spectra for
the lumped resonator measured at T = 1.55K in a pumped He bath. At 0 magnetic �eld, the
curve is �tted with the S21 formula and we found resonance frequency around 3.55GHz with an
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internal Qi factor of 700. We measured the microwave resonance up to 130 mT. The magnetic �eld
dependence of the resonance frequency and quality factor is shown in �g.7.8.b. As expected, we
observe a small change for Qi (< 10%) and fres (< 0.05%) for this range of magnetic �eld.
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Figure 7.8: (a) In plane magnetic �eld dependence of the normalized transmission spectra of the
lumped resonator at 1.55K with �ts using the S21 formula. (b) Evolution of Qi and fres vs magnetic
�eld.

7.1.4 Conclusion

In this section, we have presented a new hybrid microwave resonator made with a thin �lm of Nb
and W nanowire grown with a He-beam induced deposition technique, which is a direct-write and
resist-free process that does not involve any lithography steps. The nanowires exhibit high critical
temperature TC 5K, and critical magnetic �eld BC > 1T . Two di�erent designs were measured at
low temperature, a lumped, and a coplanar waveguide resonator. The microwave characterization of
the resonators reveals that the measured resonators exhibit internal quality factors up to Qi = 4290
at 4.46 GHz for T = 10 mK. We measure a large kinetic inductance for the W nanowire of LK = 15.4
pH/�.

The magnetic �eld dependence shows that the resonators are immune to an in-plane magnetic
�eld up to 130 mT. As such, this hybrid resonator could be interesting to study mesoscopic devices
where the spin degree of freedom needs to be addressed. All those properties make W nanowires
made with the He-FIB a good candidate for engineering a compact non-linear high impedance
superconducting element for quantum electronics.
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7.2 Single electron transistor thermometer

In this section, we will present measurements of electronic temperature using a micrometer scale
mesoscopic circuit, a single electron transistor. When quantum properties of the atomic device
can be observed at room temperature, devices of micrometer size require helium temperatures
(4.2K) or even sub-kelvin temperatures. Performing transport measurement at the millikelvin
range is possible, with the development of helium-based refrigeration technique, the temperature
can be lowered down to 5-10 mK range at the mixing chamber (MC)(To know more about dilution
fridges check chapter 2 section 2.1.4). However, due to thermal contact between the circuit and
measurement lines, electrical noise, microwave heating, the electronic temperature is usually above
this value.

7.2.1 Single electron transistor

In 1985 Dmitri Averin and Konstantin Likharev [179], proposed the idea of a new mesoscopic device
called a single-electron transistor(SET). A few years later Theodore Fulton and Gerald Dolan [180]
fabricated and demonstrated how such a device works. A single electron transistor is a three-
terminal device based on the Coulomb blockade e�ect. In such a device two electrodes, source
and drain are connected through a tunnel barrier to a metallic island. For the current to �ow,
electrons are forced to tunnel from(to) the island to the (from) source-drain electrode. The two
tunnel junctions are modeled by a capacitor (CD and CS) and resistor (RD and RS) in parallel. A
third electrode, the gate, which is capacitively coupled (CG) to the island, is used to control Ng,
the number of electron on it, such that, Ng =

CgVg
e . (see Fig 7.9(a))

Fabrication

To fabricate a single electron transistor made up of Aluminum as metal and Aluminum oxide as an
insulator, we use the resist recipe and lithography technique explained in the fabrication chapter.
First, 50 nm of Aluminum is evaporated with an angle 15° to form the source, drain, gate electrodes,
and the transistor. The tunnel junctions are then formed by introducing 7 mbar of oxygen into
the chamber for almost 20 mins so that the �rst Al layer becomes coated by a thin layer of Al2O3.
Finally, a second layer of aluminum (100nm) deposited at an angle -15° (see �gure7.9(b)). The
sample is cooled down in a dry fridge of base temperature 10 mK and measured through low pass
�ltered lines. The inner part of these lines is made up of manganin wire (Lakeshore manganin
36AWG), placed inside a Cupronickel (CuNi) tube with a diameter 0.5mm x 0.8mm. The total
capacitance to the ground of the wire is 7 nF. The di�erential conductance of the set is probed with
a lock-in technique.

Charging energy

When the temperature is lowered, such that kBT < EC , where EC is the charging energy, the
number of charges on the island is quantized. To add one electron on the SET, one should pay
the charging energy of the SET given by, EC = e

2CΣ
,with CΣ the total capacitance of the island

CΣ = CS + CD + Cg.
Charge quantization results in periodic peaks of the SET conductance GSET when sweeping

gate voltage Vg. In the presence of dc bias voltage (VSD), the peaks develop into periodic `Coulomb
diamond' patterns. The plot obtained is known as the stability diagram (See Fig 7.10). The
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Figure 7.9: (a) Schema of the equivalent circuit of a single electron transistor. (b)Scanning electron
microscope image of the measured SET, the island, and the three electrodes are made of Al, the
tunnel barrier is made up of Al/Al2O3/Al using angle evaporation technique. A small magnetic
�eld is applied to suppress superconductivity of Al.

stability diagram is composed of consecutive diamonds of the same size for each integer value of
Ng. The width of the Coulomb diamond along the gate axis is e

Cg
and the diamond extends to ±

e
CΣ

in bias voltage VSD, thus the total high of the diamond is 4EC as shown in Fig 7.10. Inside
the diamonds tunneling is forbidden by the Coulomb blockade and conductance reads zero. The
diamonds touch each other at the so-called 'charge degeneracy point', where two charge states
have the same energy. Due to this degeneracy, the Coulomb blockade is lifted and electrons tunnel
through the SET. The Color plot in Fig 7.10 represent the di�erential conductance dI

dVSD
as function

of Vg and VSD measured at B=2T. The value of EC is extracted using �g 7.10 by measuring the
width of the diamonds in the bias voltage axis, the value found is EC=22±2 µeV .

Coulomb blockade oscillations

When sweeping the gate voltage at zero bias voltage, the charge degeneracy point is crossed, a
zero-bias conductance peak is observed. Thus, a periodic pattern of equidistant conductance peaks
is obtained. In Fig 7.11, 4 coulombs peak are observed spreading over 14 mV in gate voltage.

The width of these conductance peaks at zero dc bias voltage constitutes a well-known primary
thermometer. For a metallic island, with a continuous density of states and connected through
tunnel contact, the SET conductance reads [181]

GSET (δVg) =
G∞

2

2EC(δVg/β)/kBT

sinh(2EC(δVg/β)/kBT )
. (7.10)

Where G∞ = GSGD
GD+GS

is the high voltage di�erential conductance of the SET given by Ohm's
law, with GS and GD the conductance of source and drain electrode respectively. β=e/Cg the
gate voltage period and δVg the gate voltage di�erence to charge degeneracy. From 7.11 one �nd
β=e/Cg=3.22 mV. Knowing the value of β and EC , one can �t each peaks conductance in �gure
7.11 with equation 7.10 and extract the value of electronic temperature.
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Figure 7.10: Coulomb blockade stability diagram. (a): Schematic representation of stability diagram
of a single electron transistor, the red region corresponds to dI

dVSD
= 0 showing Coulomb blockade

region. (b): Color plot of the conductance of the SET as a function of the gate voltage Vg and
source-drain voltage VSD.
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Figure 7.11: Coulomb blockade oscillations at zero bias voltage. Conductance of the SET GSET
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Each peak of 7.11 is �tted using eq. 7.10, and the value of the electronic temperature is obtained
for several conductance peak (Fig7.12).
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Figure 7.12: Measured conductance GSET versus the gate voltage Vg. The points represented
the measured values, eq 7.10 �ts well the peak (bleu curve), giving G∞ = 116µS and 2EC

∆kBT
=

9.3× 103V −1, which gives Telectronic = 23mK for this peak.
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Figure 7.13: Electronic temperature extracted from �tting of the averaged peaks using eq. 7.10
versus the index of the peak. We �nd Telectronic = 23±2 mK.
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7.2.2 Conclusion

Even though the base temperature of our dry refrigerator reads 10 mK, the electronic temperature
measured with a coulomb blockade thermometer, single electron transistor found to be slightly
higher Telectronic = 23±2 mK. For a wet dilution fridge, due to space limitation, the �ltering is
less e�cient, one have TMC =50 mK and Telectronics =80 mK. This implies that the condition of
�ltering in the dry fridge is better, since the di�erence in temperature between the mixing chamber
and that felt by electron is lower.

Additional thermalization and cooling techniques will lead to lower electronic temperature. The
lowest electronic temperature reported is 3.7 mK [182]. Also 6 mk electronic temperature has been
reported in a medium-sized dilution refrigerator using three di�erent methods, Coulomb blockade
thermometer, quantum shot noise thermometer, and dynamical Coulomb blockade thermometer
[183].
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Conclusion

To conclude, during this thesis we have probed the dynamics of a quantum dot Josephson junction
by measuring its Josephson emission. To do this we use the AC Josephson e�ect to probe the
quantum state of a quantum dot Josephson junction between a singlet state and a doublet state.
The sample which is a carbon nanotube-based-Josephson junction is �rst measured in the normal
state, where we were able to extract all the relevant parameters. Then we probe the dynamics of our
system by measuring its AC Josephson emission. We show that this emission is strikingly reduced
in the gate region where the critical current is enhanced due to the interplay of the Kondo e�ect
and superconducting proximity e�ect. By performing numerical renormalization group calculation
of the energy spectrum and supercurrent of the ground state using the parameters determined in
the normal state, we were able to calculate the many-body spectrum of our system. This helps us
to evaluate the probability of the QD to be in a doublet state due to quasi-particle dynamics. We
found that this probability is low in DC current con�guration. However, when we apply a voltage
bias to probe the AC Josephson e�ect, we found that the probability for the QD to be in doublet
state is high. This leads to a decrease of ICAC since the critical current of the doublet state is lower
than the one of the singlet ground state. Thus, we can attribute the collapse of AC Josephson
emission to the dynamics of quasiparticles in the quantum dot which induce a transition between
a singlet ground state and a doublet excited state. This points towards the importance of under-
standing the role of electron-electron interaction and non-equilibrium conditions in the dynamics
of a QD Josephson junction. This topic requires more theoretical studies. We have seen that the
asymmetry of the contacts a�ects the physics of our system. For that, we started working on a
new carbon nanotube device with side gates that aim to tune independently the transparency of
the contacts.

In the experiment we performed, probing the dynamics of the junction was done by measuring
the AC Josephson emission, which requires a voltage bias. This voltage drives the system out of
equilibrium. Another experiment that could be done is to probe the dynamics of the junction by
probing its AC response to a phase modulation, which can be induced by a nearby resonator. This
way the system can stay closer to equilibrium and should help us to disentangle the e�ects of high
frequency phase modulation and voltage bias which are inherent to AC Josephson e�ects experi-
ments.

The detection of the AC Josephson e�ect has been done using a quantum detector which is cou-
pled on-chip to the QD via a resonant coupling circuit. During this Ph.D., we have designed and
measured a new type of resonators. We have fabricated and evaluated the performance of hybrid
microwave resonators made by combining sputtered Nb thin �lms with Tungsten nanowires grown
with a He-beam induced deposition technique. Both lumped and coplanar waveguide resonators
were fabricated and measured at low temperature. Microwave characterization of the two resonators
reveals that they exhibit resonance frequency in the GHz range, high internal quality factor, and a
large kinetic inductance. We also veri�ed that the resonators are immune to an in-plane magnetic
�eld up to 130 mT. Thus, such a type of resonator is a good candidate for engineering a compact
non-linear high impedance superconducting element for quantum electronics. A nice experiment
could be by using such a resonator to couple a carbon nanotube Josephson Junction to an SIS
detector, as this will improve and enhance the measured signal. It could be also very useful to
probe the dynamics of junction based on topological systems.
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Since all these measurements require very low temperature and very low noise measurement
we have tested homemade �ltering in a dry fridge and low noise voltage biasing. We have used a
Coulomb blockade thermometer (a single electron transistor) to measure the electronic temperature
of a dry fridge. We found Telectronic=23±2 mK, which is slightly higher than the base temperature.
Additional thermalization and cooling techniques will lead to lower electronic temperature.

142



Publications

This Ph.D. will lead to the publications of two papers :

� "High kinetic inductance microwave resonators made by He-Beam assisted deposition of tung-
sten nanowires". J. Basset, D. Watfa, G. Aiello, M. Féchant, A. Morvan, J. Estève, J.
Gabelli, M. Aprili, R. Weil, A. Kasumov, H. Bouchiat, and R. Deblock. . Appl. Phys. Lett.
114, 102601 (2019).

� "Collapse of the Josephson emission in a carbon nanotube junction in the Kondo regime". D.
Watfa, R. Delagrange, A. Kadlecová, M. Ferrier, A. Kasumov, H. Bouchiat, and R. Deblock.
(Watfa et al. arXiv:2009.09740)
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Titre: Supercourant et dynamique d'une jonction Josephson constituée d'un nanotube de carbone dans le
régime Kondo.

Mots clés: E�et Josephson, e�et Kondo, nanotube de carbone, boite quantique, transition 0-π

Résumé: Au cours de cette thèse nous avons étudié

la compétition entre deux types d'états fortement cor-

rélés : l'e�et Kondo, qui correspond à l'écrantage d'un

moment magnétique isolé par les électrons de conduction

d'un métal, et l'e�et de proximité supraconducteur. Cette

compétition a déjà été sondée à l'équilibre, en mesurant

la relation courant-phase dans des jonctions Josephson à

base de nanotube de carbone. Ces expériences ont révélé

que l'état fondamental du système pouvait être soit un

état doublet magnétique ou bien un état singulet non-

magnétique et qu'une transition entre ces deux états pou-

vait être contrôlée par une tension grille ou bien par la

phase supaconductrice. Dans ce travail de thèse nous

avons montré qu'une telle transition pouvait être induite

dynamiquement en mesurant l'e�et Josephson AC de la

jonction. L'émission Josephson est mesurée en couplant

sur le même échantillon le nanotube de carbone à un dé-

tecteur quantique grâce à un circuit résonant supraconduc-

teur. L'expérience montre que cette émission est fortement

réduite dans les zones de tension grille où le courant cri-

tique était augmenté du fait de l'action conjuguée de l'e�et

Kondo et de l'e�et de proximité. En comparant nos don-

nées à des calculs utilisant les techniques numériques du

groupe de renormalisation, nous attribuons la forte diminu-

tion de l'e�et Josephson AC à la dynamique des quasipar-

ticules dans la boite quantique constituée par le nanotube

de carbone qui conduit à une transition entre l'état fonda-

mental singulet et l'état excité doublet.

Pour améliorer la méthode de détection à basse tem-

pérature, nous avons réalisé deux autres expériences. Dans

la première, nous avons testé des lignes de polarisation

continue réalisée au laboratoire qui permettent d'atteindre

de faible température électronique, température mesurée

grâce à un transistor à un électron. Nous avons par ailleurs

fabriqué et mesuré un nouveau type de micro-résonateur

supraconducteur, basé sur un matériau à forte inductance

cinétique, des nano�ls de tungstène déposé sous faisceau

d'ions hélium focalisé. Ce type de résonateurs pourrait

s'avérer très utile en tant que circuit de couplage réso-

nant pour la détection haute fréquence "on-chip" et plus

généralement pour réaliser des éléments supraconducteurs

non-linéaires compacts pour l'électronique quantique.

Title: Supercurrent and dynamics in carbon nanotube Josephson Junction in the Kondo regime

Keywords: Josephson e�ect, Kondo e�ect, carbon nanotube, quantum dot, 0-π transition.

Abstract: During this thesis, we have studied the com-

petition between two many-body e�ects: the Kondo e�ect,

which is the screening of a localized magnetic moment by

the conduction electrons of a conductor, and proximity in-

duced superconductivity. The competition between these

two e�ects has been already investigated at equilibrium, by

monitoring the current phase relation of carbon nanotube-

based Josephson junctions. These experiments have re-

vealed phase and gate dependent quantum transitions be-

tween the magnetic doublet state and the Kondo screened

singlet non-magnetic state of the nanotube. In the present

work we show that this transition can be dynamically in-

duced by exploring the AC Josephson emission. The AC

Josephson emission can be measured by coupling the car-

bon nanotube to an on-chip quantum detector via a res-

onant coupling circuit. Experimental results show that

this emission is strikingly reduced in the gate region where

the critical current is enhanced due to the interplay of the

Kondo e�ect and superconducting proximity e�ect. By

comparing our data to numerical renormalization group

calculations, we showed that the collapse of AC Joseph-

son emission is due to the dynamics of quasiparticle in the

quantum dot which induce a transition between a singlet

ground state and a doublet excited state.

To improve our detection methods at low tempera-

tures, we performed two other experiments. In the �rst

experiment, we have tested new homemade �ltering of

DC lines in a cryo-free dilution refrigerator, by measur-

ing the electronic temperature of a single electron tran-

sistor. In the second experiment, we have designed and

measured a new type of superconducting micro-resonator,

based on a high kinetic inductance material, namely tung-

sten nanowires deposited using a helium focus ion beam.

This kind of resonator can be very useful to improve the

resonant coupling for on-chip detection and more generally

to engineer a compact non-linear high impedance super-

conducting element for quantum electronics.
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