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Abstract

Large galaxy surveys are like open windows on our Universe: they provide precious
insights on its components and on its evolution. On the one hand, pencil surveys
go deep into the cosmos to explore the formation and evolution of galaxies. On the
other hand, wide surveys are mapping the distribution of matter on large scales to
understand the nature of dark energy and dark matter.

During my thesis, I explore the capabilities of these large surveys to address the
following questions:

1. What are the main drivers of galaxy evolution? More specifically, I investigate
the relation between the dark matter halo and the host galaxies and I explore
how galaxies build their stellar content.

2. What improvements on our knowledge of the Universe will be brought by
upcoming wide galaxy surveys? To maximize this improvements, I use an
alternative galaxy probe which helps in breaking degeneracies with standard
probes. I then investigate the gain of combining galaxy surveys with next
generation cosmic microwave background (CMB) surveys.

Using precise galaxy stellar-mass function measurements in the COSMOS field,
I first determine the stellar-to-halo mass relation through a parametric abundance
matching technique (Legrand et al. 2019). Thanks to the completeness of the COS-
MOS survey from z ∼ 0.2 to z ∼ 5, I obtain for the first time this relation over
such a large redshift range from a single coherent sample. I find that the ratio of
stellar-to-halo mass content peaks at a characteristic halo mass which increases up
to z = 2.3 and remains flat up to z = 4. This steady increase of the characteristic
halo mass questions the role of cold gas inflows as drivers of galaxy formation at
high redshift. To address this topic, I link observations of the cold molecular gas
content in galaxies up to z = 4 to the evolution of the dark matter halo mass. I find
that the joint evolution of cold gas mass fraction and halo mass is in agreement with
the hypothesis of cold gas inflows being responsible of efficient galaxy formation at
high redshift.

With the scope of maximising the cosmological power of next generation spec-
troscopic surveys, I show that a novel cosmological observable, the angular redshift
fluctuations (ARF) will provide complementary cosmological information in addi-
tion to the standard angular galaxy clustering (Legrand et al. 2020). Due to its
distinct sensitivity to the peculiar velocity field, I find that the cosmological and
galaxy bias parameters express different degeneracies when inferred from ARF or
from angular galaxy clustering. As such, combining both observables breaks these

iii



Abstract

degeneracies and greatly decreases the marginalised uncertainties, by a factor of at
least two on most parameters in the ΛCDM and wCDM models.

As part of the Euclid collaboration, I then investigate the cosmological power
of the upcoming Euclid survey, which will offer us an exquisite measurement of the
matter distributions on the full extra-galactic sky. In order to fully exploit all the
potential of the Euclid survey it is crucial to combine it with upcoming CMB surveys.
I use the Fisher formalism to forecast the benefits of performing a joint analysis of
CMB probes with Euclid main probes (weak lensing and galaxy clustering) (Euclid
Collaboration in prep.). I test both the standard cosmological model, ΛCDM, and
its extensions, and show that CMB will improve the constraints by a factor two on
most cosmological parameters, and most notably on dark energy modified models
which are of key interest for Euclid .

iv



Résumé

Les grands relevés de galaxies sont des fenêtres ouvertes sur notre Univers: ils nous
offrent de précieuses informations sur son contenu et sur son évolution. D’une part
les relevés profonds explorent la formation et l’évolution des galaxies. D’autre part,
les relevés à grand champ cartographient la distribution de la matière dans le but
de comprendre la nature de l’énergie noire et de la matière noire.

Au cours de cette thèse, j’explore les capacités offertes par ces relevés afin de
répondre aux questions suivantes:

1. Quels sont les principaux moteurs de l’évolution des galaxies ? Plus précisé-
ment, j’étudie la relation entre les galaxie et leurs halos de matière noire, et
j’explore leur efficacité à produire des étoiles.

2. Quels progrès dans notre connaissance de l’Univers seront apportés par les
futurs relevés de galaxies ? Dans le but de maximiser les résultats de ces
relevés, j’utilise une nouvelle sonde cosmologique qui permet, en combinaison
avec les sondes standards, de briser les dégénérescences entre les parametres
du modèle cosmologique. J’analyse ensuite le gain apporté par la combinaison
des relevés de galaxies avec des relevés du fond diffus cosmologique (CMB) de
prochaine génération.

Je commence par déterminer la relation entre la masse stellaire et la masse des
halos de matière noire des galaxies en utilisant des mesures précises de la fonction de
masse stellaire dans le champ COSMOS (Legrand et al. 2019). Grâce à l’exhaustivité
du relevé COSMOS entre z ∼ 0.2 et z ∼ 5, j’obtiens pour la première fois cette
relation sur une aussi grande gamme de redshifts à partir d’un seul relevé. Je
constate que la masse de halo caractéristique, définie comme maximisant le rapport
entre la masse stellaire et la masse du halo, augmente entre z = 0 et z = 2.3 et
reste stable jusqu’à z = 4. Cette augmentation de la masse de halo caractéristique
met en lumière le rôle des flux de gaz froid comme moteurs de la formation des
galaxies à grand redshift. Afin d’approfondir ce sujet, je combine des observations
de la teneur en gaz moléculaire froid des galaxies jusqu’à z = 4, avec la relation
entre masse stellaire et masse du halo de matière noire. Je constate que l’évolution
de la fraction de masse du gaz froid est en accord avec l’hypothèse selon laquelle les
apports de gaz froid sont responsables de la plus grande efficacité de formation des
galaxies à grand redshift dans les halos massifs.

Ensuite, dans le but de maximiser les contraintes cosmologiques qui seront ap-
portées par les prochains grands relevés spectroscopiques, je montre qu’une nouvelle
observable, les fluctuations angulaires de redshift (ARF), apportent des informations

v



Résumé

complémentaires par rapport au traditionnel angular galaxy clustering (Legrand
et al. 2020). Grâce à la sensibilité particulière des ARF au champ de vélocité de la
matière, je montre que les dégénérescences entre les paramètres cosmologiques et de
biais des galaxies sont différentes lorsqu’elles se basent sur les ARF ou sur le angular
galaxy clustering. Dès lors, la combinaison des deux observables permet de lever des
dégénérescences et d’améliorer les contraintes, d’un facteur au moins deux, sur la
plupart des paramètres des modèles ΛCDM et wCDM.

Finalement, en tant que membre de la collaboration Euclid , j’ai exploré le poten-
tiel cosmologique de ce futur relevé de galaxies. Ce relevé nous permettra de mesurer
très précisément la distribution de la matière sur tout le ciel extra-galactique. Dans
le but d’exploiter entièrement tout son potentiel, il est crucial de le combiner avec
les futurs relevés du CMB. J’utilise le formalisme de Fisher afin de prédire l’intérêt
d’une analyse combinée des sondes CMB avec les sondes Euclid (Euclid Collabo-
ration in prep.). Je teste à la fois le modèle ΛCDM standard et ses extensions, et
montre que le CMB améliorera les contraintes d’un facteur au moins deux sur la
plupart des paramètres cosmologiques, et notamment sur les modèles d’énergie noire
alternatifs, qui font partie des intérêts majeurs pour Euclid .
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Synthèse en Français

Dans le but de découvrir la nature de l’énergie sombre et de la matière sombre, de
nouveaux relevés à grand champ, tels que Euclid, DESI et LSST, vont cartographier
la distribution des galaxies dans l’Univers, au cours de la prochaine décennie. Ces
relevés utiliseront les galaxies comme traceurs de la distribution de la matière. Celles
si se forment et évoluent au sein de halos de matière noire. Cependant nous savons
que les galaxies sont un traceur biaisé de la matière: la densité de galaxies est plus
grande que la densité de matière dans les zones denses, et est plus faible dans les
zones sous-denses. De plus, aux petites échelles les effets complexes de la physique
des baryons tels que les noyaux actifs de galaxies vont empêcher le gaz de refroidir
et de former des étoiles, et vont avoir un impact sur la distribution de la matière.
Ainsi, si nous souhaitons maximiser les informations apportées par les futures grands
relevés de galaxies, il est important de comprendre précisément les processus de la
formation des galaxies et la relation avec leurs halos de matière noire.

La première partie de ma thèse se concentre sur cette problématique. Plus
précisément, je commence par déterminer la relation entre la masse stellaire et la
masse des halos de matière noire des galaxies en utilisant des mesures précises de la
fonction de masse stellaire dans le champ COSMOS (Legrand et al. 2019). Grâce à
l’exhaustivité du relevé COSMOS entre z ∼ 0.2 et z ∼ 5, j’obtiens pour la première
fois cette relation sur une aussi grande gamme de redshifts à partir d’un seul relevé.
Comme le montre la Figure 1, je constate que la masse de halo caractéristique,
définie comme maximisant le rapport entre la masse stellaire et la masse du halo,
augmente entre z = 0 et z = 2.3 et reste stable jusqu’à z = 4. Cette augmentation
de la masse de halo caractéristique met en lumière le rôle des flux de gaz froid
comme moteurs de la formation des galaxies à grand redshift. Afin d’approfondir ce
sujet, je combine des observations de la teneur en gaz moléculaire froid des galaxies
jusqu’à z = 4, avec la relation entre masse stellaire et masse du halo de matière
noire. Je constate que l’évolution de la fraction de masse du gaz froid est en accord
avec l’hypothèse selon laquelle les apports de gaz froid sont responsables de la plus
grande efficacité de formation des galaxies à grand redshift dans les halos massifs.
Pour aller plus loin, il sera nécessaire d’obtenir des observations directes de filament
de gaz froid nourrissant le coeur des halos massifs à grand redshift.

Une autre source majeure d’informations sur la distribution de la matière est
le fond diffus cosmologique (CMB). Comme les photons du CMB ont traversé tout
l’Univers pour nous parvenir, leur chemin a été dévié par les effets de lentillage grav-
itationnel. Reconstruire cette déviation permet d’obtenir un traceur non biaisé de
la distribution de la matière. Dans la prochaine décennie, de nouvelles observations
du CMB telles que Advanced ACT, SPT-3G et le Simons Observatory permettront
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Figure 1: Masse des halos maximisant le ratio masse stellaire sur masse de matière
noire, en fonction du redshift (points rouges). Nous montrons ici des exemples
de la littérature pour comparaison. Grace au relevé COSMIS, nos résultats sont les
premiers a être issus d’un échantillon cohérent sur un aussi grand interval de redshift.
Ceci montre que les halos massifs étaient plus efficaces pour créer des étoiles à grand
redshift qu’à bas redshift.

d’améliorer la résolution aux petites échelles. Combiner ce traceur avec la distribu-
tion des galaxies permet de lever les dégénérescences dû au biais des galaxies.

En tant que membre de la collaboration Euclid , j’ai exploré le potentiel cos-
mologique de l’analyse combinée de ce futur relevé de galaxies avec les futures ob-
servations du CMB. J’utilise le formalisme de Fisher afin de prédire l’intérêt d’une
analyse combinée des sondes CMB avec les sondes Euclid (Euclid Collaboration in
prep.). Je teste à la fois le modèle ΛCDM standard et ses extensions, et montre que
le CMB améliorera les contraintes d’un facteur au moins deux sur la plupart des
paramètres cosmologiques, et notamment sur les modèles d’énergie noire alternatifs,
qui font partie des intérêts majeurs pour Euclid .

Ensuite, dans le but de maximiser les contraintes cosmologiques qui seront ap-
portées par les prochains grands relevés spectroscopiques, je montre qu’une nouvelle
observable, les fluctuations angulaires de redshift (ARF), apportent des informations
complémentaires par rapport au traditionnel angular galaxy clustering (Legrand
et al. 2020). Grâce à la sensibilité particulière des ARF au champ de vélocité de la
matière, je montre que les dégénérescences entre les paramètres cosmologiques et de
biais des galaxies sont différentes lorsqu’elles se basent sur les ARF ou sur le angular
galaxy clustering. Dès lors, la combinaison des deux observables permet de lever des
dégénérescences et d’améliorer les contraintes, d’un facteur au moins deux, sur la
plupart des paramètres des modèles ΛCDM et wCDM, comme le montre la Figure
2. Ces résultats sont très prometteurs, et je souhaite poursuivre le développement
des ARF en incluant la masse des neutrinos et les modèles de gravité modifiée dans
cette analyse.

En conclusion, afin de maximiser le retour d’information des futures observations
de l’Univers, il sera nécessaire de combiner les relevés de galaxies et les relevés du
CMB. De plus, il sera nécessaire de développer le formalisme permettant d’extraire
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Figure 2: Contraintes à 1σ pour 5 paramètres cosmologiques et trois paramètres
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toute l’information contenue aux petites échelles, que ce soit dans la distribution
des galaxies, en tenant compte des effets de la physique des baryons, ou dans les
estimateurs du lentillage du CMB, qui ne sont pour l’instant pas optimaux pour
les petites échelles. Ce sont ces deux axes de recherche, physique des baryons et
estimateurs du lentillage du CMB, que je souhaite développer afin de poursuivre les
travaux présentés dans cette thèse.
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Introduction

Even if the standard model of cosmology has seen great successes in the last two
decades, its two main components, dark matter and dark energy, remain a mystery.
Indeed, this model does not provide any clue about their inner nature. Understand-
ing this dark sector is the main goal for the next decade in cosmology.

Within a few years, wide galaxy surveys such as DESI, Euclid , LSST and
WFIRST will measure the distribution of matter on the full extra-galactic sky with
exquisite precision. Using both galaxy distribution and the weak gravitational lens-
ing as cosmological probes, these wide surveys will test gravity at cosmological scales
and investigate the nature of the accelerated expansion of the Universe.

These surveys will use galaxies as a tracer of the (mostly invisible) underlying
distribution of matter. Galaxies are indeed tightly interwoven with dark matter:
galaxies form and evolve inside virialised collapsed structures of dark matter known
as haloes. However galaxies are a biased tracer of matter, they do not sample the
density field uniformly: the density of galaxies is higher than the matter density
in dense areas, and lower in underdense areas. Moreover at the smallest scales,
baryonic effects, such as active galactic nuclei feedback, will prevent star formation
and redistribute baryonic material on larger scales. Even if the broad picture of the
galaxy formation and evolution is known, the exact physical mechanisms driving
these processes remain to be elucidated. As such, if we want to maximize the
cosmological power of future galaxy surveys, and understand the relation between
galaxies and dark matter, we first have to understand precisely the processes of
galaxy formation.

The first part of my PhD thesis focus on this problematic. More specifically, I
measure the evolution of the stellar mass to halo mass relation of galaxies. In order
to test a scenario explaining the evolution I observed, where cold gas inflows plays
an important role at high redshift, I then measure the joint evolution of the cold
molecular gas with the halo mass of galaxies.

Another major source of information on our Universe is the cosmic microwave
background (CMB). In the last two decades, precise observations of its tiny temper-
ature fluctuations allowed us to get a picture of the primordial Universe. Moreover,
because the photons of the CMB interacted with all the structures along their path,
they carry precious information about the composition and the evolution of the
Universe. Ongoing or upcoming experiments such as Advanced ACT, SPT-3G, the
Simons Observatory and later on the CMB-Stage 4 will improve the resolution at
small scales compared to Planck , which will allow to accurately map the distribution
of matter in the Universe. This coincidence in the acquisition of datasets of tremen-
dous quality and huge size from both the large scale structures and CMB fronts
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Introduction

implies that we must develop the tools to fully exploit all their potential. Indeed,
combining these galaxy and CMB surveys will allow us to identify and mitigate all
the possible systematics, such as the galaxy bias discussed above, and validate the
results we obtain. But we first need to develop the tools to predict the cosmological
power for a combined analysis of these next generation surveys.

The second part of my PhD thesis presents the research performed inside the
Euclid XCMB science working group, which is dedicated to combine Euclid and
CMB observables. I show how combining the Euclid survey with next generation
CMB surveys will be of major interest to reach the high accuracy required to test
the nature of the dark sector.

Moreover, to go further in the exploitation of next generation surveys, alternative
cosmological probes are being developed. The interest of these new probes must be
tested in order to validate their use in cosmological analyses. The last part of my
manuscript, is dedicated to this work. I introduce an alternative probe which uses
the fluctuations in the redshift distribution of galaxies instead of their fluctuation
in term of number density, and show how it complements the traditional angular
galaxy clustering probe.

All these developments allow to improve our understanding of the matter distri-
bution, from galactic to cosmological scales. These results will allow us to maximize
the scientific outputs of next generation surveys and to push our knowledge of cos-
mological physics to its limits.

My thesis manuscript is organised as follows. I first introduce in Chapter 1 some
basic principles of cosmology, from the background and homogeneous evolution of
the Universe to the growth of structures. I then present in Chapter 2 my work on the
stellar-to-halo mass relation and on the evolution of the cold molecular gas at high
redshift. In Chapter 3 I present the cosmological interest of combining Euclid main
observables with CMB observables. In Chapter 4 I introduce a new cosmological
observable and show how it can be used to maximize the outcome of next generation
spectroscopic surveys. Finally, Chapter 5 summarizes the results and opens up to
future prospects.

xii
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Chapter 1

From the Big Bang to galaxies

1.1 Cosmological background

1.1.1 Content of the Universe

Our Universe is made of several components that are interacting together and are
affecting its shape and its size. Many independent experiments have made this
description of the Universe reliable. However, most of the content of the Universe
must be described by components that are not included in our present standard
model of physics. As such, cosmology is a huge test and real life laboratory that
poses a challenge to our understanding of physics.

The baryons1 are the basic components of matter, as they form the atoms that
are in the planets, the stars, the dust and the gas of our Universe. However, baryons
account for only five percent of the present day matter-energy2 budget of our Uni-
verse. Another 25% is in the form of cold dark matter, where cold means that the
particles are not relativistic, they move slowly compared to the speed of light. This
matter, not included in the standard model of physics, interacts only by gravitation.
As such it does not emit light, and is invisible with standard telescopes. Gravi-
tational effects, like dynamics of galaxies or gravitational lensing, allow to detect
its presence. The last part of the matter-energy budget, around 70%, is composed
of dark energy. Dark energy, also unknown to the standard model of physics, is
responsible for the acceleration of the expansion of the Universe. It is unclear today
if the dark energy takes the form of an unknown fluid, a gravitational constant, or
something else.

The last two species of this cosmic inventory are the photons and the neutrinos.
Photons mainly come from the relic radiation of the Big Bang. They are travelling
freely in the Universe since the moment it became transparent around 380, 000
years after the Big Bang. These photons are observed in what we call the cosmic
microwave background (CMB). Their energy budget is negligible today, but they
used to have a major impact as they were dominating the matter-energy budget of

1Cosmologists refers all components of atoms as baryons, so both nuclei and electrons. This
is technically incorrect (electrons are not baryons), but one can say that the mass of electrons is
much lower than the mass of nuclei.

2Matter and energy can be compared together thanks to the famous equation E = mc2.
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Figure 1.1: Relative importance on the matter-energy budget of the Universe for
each of its main component. The upper bar shows the budget at the time of recom-
bination, i.e. the moment of the emission of the CMB, and the bottom bar is the
present day budget.

Figure 1.2: Timeline of the Universe. The time goes from left to right, and each slice
on this axis is a representation of the Universe at this moment. This Figure repre-
sents the different phases of the Universe, from the primordial quantum fluctuations
that has been stretched out by inflation, to the present dark energy accelerated
expansion. Credits: NASA/WMAP.

the early Universe. Neutrinos are massive particles, even if we only have an upper
limit for their mass. They are weakly interacting with matter and their speed is
close to the speed of light.

Figure 1.1 shows the relative contribution to the matter-energy budget of the
main components of the Universe at two moments in its life: at the time of recom-
bination when the Universe became transparent around 13.5 billion years ago, and
today. As we can see, neutrinos and photons disappeared from the matter-energy
budget, while dark energy is now dominating.

The Figure 1.2 is a representation of the evolution of the Universe and of the
key moments of its existence, from initial quantum fluctuations to present day ac-
celerated expansion. We detail several of these moments in the present chapter to
introduce concepts that are of interest for this thesis.
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1.1. Cosmological background

1.1.2 The metric of an expanding Universe

The Universe must be described in the framework of general relativity, meaning
that we must define a metric. To a certain extent the Universe is homogeneous and
isotropic. These hypotheses, called the “cosmological principle”, are validated by
observations of the CMB and of the distribution of galaxies at large scales (typically
above ∼ 200 Mpc3). They imply that our position in the Universe is not special and
that observers anywhere in the Universe will see the same thing in all directions.

Derived from this homogeneity and isotropy hypothesis, the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric is the most general metric for our Universe

ds2 = c2 dt2 − a2(t) dχ2 , (1.1)

where t is the cosmic time, a(t) is the scale factor, and dχ2 is a comoving distance
element on a hypersurface. As our Universe is expanding it is convenient to work
in a coordinate system that decouples from the impact of this expansion. These are
the comoving coordinates χ. The scale factor links the proper (physical) distance d
to the comoving distance by d = a(t)

∫
dχ

The curvature of our Universe could be spheric, flat or hyperbolic. A general
form of the spatial metric can be expressed in spherical polar coordinates

dχ2 =
dr2

1− k r2
+ r2dΩ2 , (1.2)

where dΩ2 = dθ2 + sin2 θ dφ2, and k = −1, 0 or +1 if the geometry of the Universe
is respectively hyperbolic, flat or spheric. The proper physical distance between us
and an object at radial comoving coordinate r and at a given time t is then given
by

d(r, t) = a(t)

∫ r

0

dr√
1− k r2

. (1.3)

One particular interesting distance is the one travelled by a photon at a time t.
A photon travels along a geodesic following ds2 = 0, which gives

χ(t) =

∫ t

0

c dt

a(t)
. (1.4)

1.1.3 Redshift

Hubble (1929) observed that, in average, galaxies are recessing from us, and the
further they are the faster. This led to the discovery of the expansion of the Universe.
This expansion is characterized by the Hubble parameter H = ȧ/a. The present
value of this parameter H0 is called the Hubble constant. Due to the expansion,
the wavelength of photons emitted by distant galaxies is shifted towards longer
wavelengths. This effect is called redshift (noted z) and is defined by

λobs

λemit

= 1 + z =
1

a(temit)
. (1.5)

3Megaparsecs are a unit of distance: 1 Mpc ' 3.086× 1022m
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Finally, one can rewrite the comoving distance χ of Equation 1.4 with

χ(z) =

∫ z

0

c dz

H(z)
. (1.6)

To track the evolution of the Universe we then have the choice between different
variables that are related, but can all be used as a substitute of the cosmic time. In
the future we will use either the redshift, the scale factor or the comoving coordinate
χ.

1.1.4 Friedmann equations

The equation of general relativity of Einstein (1915) links the geometry of space-
time (given by the Einstein tensor Gµ,ν) to the matter-energy content of the Universe
(included in the stress-impulsion tensor Tµ,ν)

Gµ,ν + Λ gµ,ν =
8πG

c4
Tµ,ν , (1.7)

where G is the gravitational constant and Λ is the cosmological constant.
Developing this equation with the FLRW metric and assuming that the Universe

is filled by a perfect fluid with a given mass density ρ and pressure p, we obtain the
Friedmann (1924) equations which govern the expansion of space and the dynamic
of the Universe (

ȧ

a

)2

=
8πG ρ

3
− k c2

a2
+

Λ c2

3
, (1.8)

ä

a
= −4πG

3

(
ρ+

3 p

c2

)
+

Λ c2

3
. (1.9)

As we saw in Section 1.1.1, our universe is composed of a mixture of fluids.
Matter and radiation are assumed to be perfect fluids. Their equation of state
is given by p = ωρ, with the equation of state parameter ω = 0 for matter and
ω = 1/3 for radiation. The cosmological constant Λ can be interpreted as a fluid
(which is called dark energy), following an equation of state with parameter ω = −1
and with a density ρΛ = Λ/ (8πG). This exotic fluid thus has a negative pressure,
bringing the counterintuitive idea that the more you compress it, the faster it will
contract. The curvature of space can also be interpreted as a fluid with ω = −1/3
and ρK = −3 k c2/ (8πG a2). Introducing the critical density ρc = 3H2/ (8πG), we
define the dimensionless density parameters Ω = ρ/ρc. The Friedmann equations
then give

H(z) = H0

√
Ωk (1 + z)2 + Ωm (1 + z)3 + Ωγ (1 + z)4 + ΩΛ , (1.10)

where the density parameters Ω are taken at their present day value.
Each components of the Universe evolves differently with respect to the scale

factor. Figure 1.3 shows the evolution of the density of radiation, matter and dark
energy with respect to time. Following this we can determine three different periods

4



1.1. Cosmological background

Figure 1.3: Evolution of the densities of radiation, matter and dark energy with
time, assuming a flat universe (Ωk = 0). It is clear here that the Universe went
through three different stages: the radiation dominated era, the matter dominated
era and finally the dark energy dominated era. Credits: Pearson Education.

on the timeline of the Universe: the radiation dominated era, the matter dominated
era, and the present day dark energy dominated era.

1.1.5 The standard model of cosmology

The standard model of cosmology is called the ΛCDM model. It assumes that the
universe is filled with a dark energy (described by the constant Λ) and with cold
dark matter (CDM). The ΛCDM model also assumes that the space is flat (k = 0),
and that neutrinos are massless4

The flatness of the Universe is supported by strong evidence. Combining ob-
servations of the cosmic microwave background with galaxy survey data suggest
that Ωk = 0.001 ± 0.002 (Planck Collaboration et al. 2018a). Concerning neutri-
nos, cosmological analysis give an upper limit on the sum of the mass of neutrinos.
The tightest constrains,

∑
mν < 0.12 eV, comes from the combination of CMB and

galaxy surveys observations (Planck Collaboration et al. 2018a).
The ΛCDM model has been very successful in explaining and predicting a lot

of observations, from the CMB power spectrum (Planck Collaboration et al. 2018a)
to the Baryonic Accoustic Oscillations (Aubourg et al. 2015). In this thesis we will
also introduce extensions of the ΛCDM model, especially in Chapters 3 and 4.

4Note that the Planck collaboration baseline ΛCDM model assumes massive neutrinos with∑
mν = 0.06 eV, the minimal mass from experiments of neutrino oscillations (Planck Collaboration

et al. 2018a). See Appendix B for more details on neutrinos.
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1.2 The cosmic microwave background

1.2.1 The early Universe and the CMB

The most widely accepted theory is that soon after the Big Bang, at a time t .
10−35 s, the Universe went through an accelerated expansion phase called inflation.
Inflation was proposed in the 1980s (Guth 1981; Hawking 1982) to solve at least
two major observational problems: the extreme flatness of the Universe, and the
homogeneity of the CMB at distances that are not causally connected.

This inflation is also responsible for expanding some tiny quantum fluctuations
up to large scales (Mukhanov and Chibisov 1981; Linde 1982). These fluctuations
in density and temperature, on top of the homogeneous background, will grow with
time to form the anisotropies of the CMB, and later on the large scale structures
like galaxies and clusters of galaxies as we know them.

After this inflationary phase and during the radiation dominated era, the Uni-
verse continues to expand and to cool down, but at a decelerated rate. Between
t ∼ 3 and 20 minutes, light atoms like Hydrogen and Helium were created in what
is called the Big-Bang nucleosynthesis. At this time, the energy of photons was
sufficiently high to prevent electrons and atoms to bind. The Universe was totally
opaque, due to the permanent Compton scattering of photons on free electrons. This
plasma of baryonic matter and photons was in thermal equilibrium and experienced
acoustic oscillations under to the competing effects of gravity and radiative pressure.
Meanwhile the dark matter, interacting only by gravity, was not subject to radiative
pressure and was thermally decoupled.

At a redshift of z ∼ 1000 (around t ∼ 380, 000 years after the Big Bang) and
at a temperature of T ∼ 3000 K, photons were cooled enough to allow electrons to
recombine with atoms. After this recombination, photons were able to travel freely
in the Universe, and they still are today. We are now bathing in a sea of photons
coming from this moment of the Universe. This relic radiation is what we call the
cosmic microwave background (CMB). The energy spectrum of the photons of the
CMB is a perfect black-body, with a present day temperature of TCMB = 2.726 K.
Observations show small anisotropies in the temperature, of the order of ∆T/T =
10−5 at a scale of 1 degree. Figure 1.4 presents the temperature anisotropies of the
CMB as observed by the Planck satellite. These anisotropies are the precursor of
the present day large scale structures. After recombination the matter is almost
unaffected by photons, and under the influence of gravity, baryons will fall into the
gravitational potential wells that are formed by the dark matter.

1.2.2 Late-time anisotropies

The observed anisotropies of the CMB have multiple origins. They are a combina-
tion of primordial and late-time anisotropies. Primordial anisotropies were seeded
by the inflation and evolved under the competing effect of gravity and radiative
pressure until the recombination. Late-time anisotropies are created by the interac-
tion between the photons of the CMB and the structures they crossed during their
travel. Late-time anisotropies are a secondary effect but they contain a lot of cos-
mological information. Their analysis shed light on the evolution of the universe

6
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Figure 1.4: The 2018 Planck map of the temperature anisotropies of the CMB. The
grey outline shows the extent of the confidence mask. Credits: ESA and the Planck
Collaboration.

from the time of recombination until today. We describe below some of the most
important sources of late-time anisotropies, also known as secondary anisotropies
(see Aghanim et al. 2008, for a review).

Reionisation When the first stars start to shine and to emit photons powerful
enough to ionize their environment, the photons from the CMB will be Thom-
son scattered on these free electrons. The main effects are the suppression of the
CMB anisotropy on scales smaller than the horizon size at the epoch of reionisa-
tion, corresponding5 to ` > 20 (Bond and Efstathiou 1984; Vittorio and Silk 1984),
and the creation of a bump in the polarization power spectrum at large scales, for
` < 20 (Liu et al. 2001). The impact of reionisation on the CMB power spectrum is
often described with the Thomson optical depth parameter τ . Reionisation process
may happen inhomogeneously in the Universe, inside growing bubbles centred on
the most massive and most star forming galaxies. This patchy reionisation creates
secondary anisotropy on small scales (around ` ∼ 1000) due to the scattering of
CMB photons onto free electrons of ionised gas in galaxies that have a non zero
proper velocity compared to the CMB rest frame (Aghanim et al. 1996).

Gravitational lensing The presence of mass along the line of sight will deviate the
path of CMB photons due to gravitational effects (Blanchard and Schneider 1987;
Lewis and Challinor 2006). This lensing will distort the primordial image of the

5We jump a bit ahead here and introduce the angular scales ` which corresponds to multipole
moments in the spherical harmonic transformation (a larger ` means a smaller angular scale,
θ ' 180°/` gives a rough conversion). See Section 1.5.2 for more details.
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CMB, and will generate statistical anisotropies. Averaged on the sky, the lensing
will smooth the peaks and troughs of the power spectrum, and will create power on
the smallest scales (` > 3000). We introduce in more details the CMB lensing in
Chapter 3 and in Appendix A.

Integrated Sachs-Wolfe effect This effect is due to the interaction between the CMB
photons and a time varying gravitational potential (Sachs and Wolfe 1967). A
photon gains energy when falling in a gravitational potential and loses energy when
escaping from it. If the size of the potential well decreases while the photons cross
it, the energy gained on one side is larger than the one lost on the other side, which
causes a net gain of energy. The literature make the distinction between the early
integrated Sachs-Wolfe effect (ISW) and the late ISW. The early ISW happened
around the time of recombination, when the radiative pressure of photons made
the potentials wells decay inside the sound horizon. The late ISW arrived later on,
when the Universe expansion accelerated under the domination of dark energy. The
ISW effect is mainly seen on the largest scales (` < 30) because photon crossed very
few large wells, while it is negligible of small scales, as this effect cancels out when
averaging on a lot of wells and hills.

Sunyaev-Zeldovich effect When a photon crosses a dense structure, like a cluster of
galaxies, it will scatter on energetic free electrons of the hot gas and gain energy
through the Compton-inverse effect (Sunyaev and Zeldovich 1972, 1980). There are
two different kinds of Sunyaev-Zeldovich (SZ) effect, the thermal one, when photons
scatter on hot electrons and the kinetic one, which is due to the bulk motion of the
cloud of electrons. They both have a signature which depends of the frequency, but
the kinetic one has the same dependence as the CMB while the thermal one creates
spectral distortions which peaks at ` ∼ 2000.

Moreover, on top of the photons from the CMB there are other sources that emit
in the same wavelength range. These will add to the CMB signal and must be
removed or properly taken into account before doing any analysis of the primordial
or late-time anisotropies. These photons mainly come from:

The Milky Way Our galaxy also adds to the extra-galactic emission. There are four
main sources of galactic emission: synchrotron emission due to the Bremsstrahlung
emission of relativistic electrons spiralling in the galactic magnetic field (Davies and
Wilkinson 1998), free-free emission due to free electrons scattering on ions (Bartlett
and Amram 1998), thermal emission from cool interstellar dust (Draine 2004), and
anomalous microwave emission produced by spinning dust grains (Kogut 1999).

Other galaxies They are subject to the same mechanism as our galaxy, but they
are often sorted into two categories depending on the dominant effect: radio sources
are dominated by synchrotron and free-free emission, they are linked to galaxies
with an Active Galactic Nucleus (AGN) (Toffolatti et al. 1999); infrared sources are
dominated by the thermal emission from dust, they are dusty star forming galaxies
and are responsible for the Cosmic Infrared Background (CIB) (Lagache et al. 2005).

8
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The observed image of the CMB is a combination of all of these effects, and
we need to decouple and isolate them to be able to measure the primordial CMB.
These effects have both an impact on the temperature of the photons and on their
polarization.

The late-time anisotropies can be seen as a contamination of the primordial im-
age of the CMB, but they are also a huge source of information on the structures
and content of the Universe through all the stages of its evolution since the recom-
bination. These late-time anisotropies can be used as powerful cosmological probes
that provide additional information on the large scale structures. Two examples
among many others: the reconstructed lensing signal (Planck Collaboration et al.
2018b), or cluster counts detected by SZ effect (Planck Collaboration et al. 2016b).

1.2.3 Summary of CMB observations

Since its discovery by Penzias and Wilson (1965), the CMB has been extensively ob-
served, especially by satellites like the Cosmic Background Explorer (COBE, Smoot
et al. 1992), the Wilkinson Microwave Anisotropy Probe (WMAP, Larson et al.
2011) and Planck (Planck Collaboration et al. 2018c), the most recent and precise
to date.

These satellite observations are completed by ground-based telescopes such as
the South Pole Telescope (SPT, Story et al. 2013) and the Atacama Cosmology
Telescope (ACT, Sievers et al. 2013). They usually have a higher resolution than
space based telescope: for example ACT has a beam size of roughly 1.4 arcmin,
versus 7 arcmin for Planck . However they observed a smaller patch of the sky:
ACT covered 600 deg2 and SPT covered 2500 deg2 while Planck observed the full
sky, i.e. ∼ 41 000 deg2.

Upgraded versions of the instruments mounted on these telescopes, ACTPol
(Louis et al. 2017) and SPTPol (Keisler et al. 2015), focused particularly on mea-
suring the polarization of the CMB, together with other dedicated telescopes such
as Polarbear (Polarbear Collaboration et al. 2014) and BICEP2 (BICEP2 Collab-
oration et al. 2014). The targets are the primordial B modes of polarization, with
the scope of observing primordial gravitational waves and constrain scenarios of
inflation.

New generation experiments are currently ongoing, such as Advanced ACT (Hen-
derson et al. 2016; Aiola et al. 2020), SPT-3G (Benson et al. 2014), the Simons Array
(follow up of Polarbear, Suzuki et al. 2016), BICEP3 (Ahmed et al. 2014), or the
Cosmology Large Angular Scale Surveyor (CLASS, Harrington et al. 2016). They
all should provide results in the coming years.

The future of CMB observations is already full of promises. The Simons Obser-
vatory (The Simons Observatory Collaboration et al. 2019) a next generation ground
based telescope, is currently being built and should began operations in the early
2020s. Litebird (Matsumura et al. 2014) is a satellite currently into development,
targeting the detection of primordial gravitational waves by performing a full-sky
survey of the polarization of the CMB. Plans for a more distant future are already
laid down with the CMB Stage 4 telescope (Abazajian et al. 2019), which should
starts operations in the late 2020s.
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From the Big Bang to galaxies

1.3 Summary of upcoming galaxy surveys

In the coming years, large scale optical and infra-red (IR) surveys will map with
unprecedented accuracy our Universe from the present epoch up to when it was
roughly one tenth of its current age. A significant part of these surveys will be
spectroscopic, e.g., DESI (DESI Collaboration et al. 2016), 4MOST (de Jong and
4MOST Consortium 2015), WEAVE (Bonifacio et al. 2016), or Euclid with the
NISP instrument (Laureijs et al. 2011) and will provide us with spectra for large
samples of sources. Such spectra will not only enable deep insight on the physics
of those objects, but will also yield accurate estimates of their redshift and thus
of their distance to the observer. From the cosmological point of view, this will
enable a precise (statistical) characterization of the (apparent) spatial distribution
of those luminous tracers (via two- or three-point statistics), and this itself should
shed precious light on open topics such as, e.g., the nature of dark energy, the
possible interplay of dark energy and dark matter, the mass hierarchy of neutrinos,
or possible deviations of gravity from General Relativity, to quote a few.

At the same time, a different family of surveys will scan the sky at greater
depths with optical filters, and with exquisite image quality. These photometric
experiments build high quality, very large catalogues of sources, with however rel-
atively rough redshift estimations given their moderate number of filters/colours.
While mining the faint Universe, this type of surveys will be particularly sensitive,
from a cosmological perspective, to the angular clustering of luminous matter, the
cosmological aspects of gravitational lensing throughout cosmic epochs, the satellite
population in haloes, and the formation and evolution of the population of galaxy
clusters. In this context, the Dark Energy Survey (DES, Abbott et al. 2018) is cur-
rently providing state-of-the-art cosmological constraints in the late universe, and
these should be further complemented by the Vera Rubin Observatory (LSST, Ivezić
et al. 2019), which, at the same time, will also explore the variability of the night sky
in a regime of depth and time domain that so far remains practically unexplored.

An intermediate third class of experiments also exists. These are the spectro-
photometric surveys that conduct standard photometry in a relatively large set (from
∼ 10 up to ∼ 60) of narrow-band optical filters. This strategy combines the indis-
criminate character of the photometric surveys with high precision redshift estimates
(∆z/(1 + z) ∼ 10−3–10−2) for a large fraction (> 20–30 %) of the detected sources.
Given its multi-color character, these surveys are able to provide pseudo-spectrum /
photo-spectrum in each pixel of the surveyed area. The pioneer example of COMBO-
17 has been or is being followed by other efforts such as COSMOS (Scoville et al.
2007a), ALHAMBRA (Moles et al. 2008), SHARDS (Pérez-González et al. 2013),
PAU (Martí et al. 2014), J-PAS (Benitez et al. 2014), SPHEREx (Doré et al. 2014),
and J-PLUS (Cenarro et al. 2019).

1.4 Growth of inhomogeneities

Even if the Universe on large scales is well described by the Friedmann equations
derived in Section 1.1.4, we saw that the CMB is anisotropic, and observation of
galaxies showed that they are not homogeneously distributed on intermediate scales
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1.4. Growth of inhomogeneities

(e.g. de Lapparent et al. 1986). We derive in this section the general formalism to
describe the growth of structures from the small initial perturbation that are present
after the inflation up to the large scale structures as we know them.

We start from a simple case: the Newtonian and linearised case. The Newtonian
regime simplifies the equations of general relativity we saw in Section 1.1.4, and is
valid as long as we consider a region smaller than the Hubble horizon cH−1. For a
more detailed description of the hypotheses and derivations see e.g. Peebles (1980).

We define the comoving coordinates x of a position in space such that the physical
coordinate is r = xa. The proper velocity relative to the origin is u = ȧx+ v(x, t),
and v is the peculiar velocity. We define the overdensity field δ as the fluctuation
around the mean density

ρ(x, t) = ρ̄(t) (1 + δ(x, t)) (1.11)

We consider matter as an ideal fluid with a potential φ. The general fluid equa-
tions in comoving coordinates are given by

∂v

∂t
+

1

a
(v · ∇)v +

ȧ

a
v = − 1

ρ a
∇p− 1

a
∇φ , (1.12)

∂δ

∂t
+

1

a
∇ · (1 + δ)v = 0 , (1.13)

1

a2
∇2φ = 4π G ρ̄ δ . (1.14)

We assume small perturbations in the density (δ � 1) and small perturbation
in the peculiar velocity. This assumes that

(
v t
d

)2 � δ, with d the coherence length
for the spatial variation of δ, and t ∼ (G ρ̄)−1/2 the typical variation time of an
overdensity.

Developing the perturbation equations above to first order and combining them,
we obtain

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=
∇2p

ρ̄ a2
+ 4π G ρ̄ δ , (1.15)

∂δ

∂t
+

1

a
∇ · v = 0 . (1.16)

We see here that the density will oscillate under the combination of two forces,
pressure and gravity.

Let us now make the hypothesis of an adiabatic evolution of the fluid, i.e. no
heat is exchanged between particle elements. Introducing the speed of sound cs =√
∂P/∂ρ, adiabatic evolution brings the following relation between pressure and

density
1

ρ
∇P =

1

ρ
c2

s ∇ρ =
c2

s

1 + δ
∇δ . (1.17)

Equation 1.15 now becomes

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4π G ρ̄ δ +

1

a2
c2

s ∇2δ . (1.18)
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From the Big Bang to galaxies

We can develop the density field into plane waves δ(x, t) =
∑

δk(t) exp ix · k, and
λ = 2πa/k is the physical wavelength. This development put in Equation 1.18 brings
the Jeans length defined by

λJ = cs

√
π

G ρ̄
. (1.19)

All scales above the Jeans length will collapse, as the gravity dominates over pres-
sure. For smaller scales, the attraction of gravity is countered by the pressure of the
fluid, and the overdensity will oscillate. During the radiation domination era, it is
the radiative pressure of photons that prevents the collapse of the small scales. This
phenomenon is responsible for the Baryonic Acoustic Oscillation (BAO), a typical
scale at which the matter is distributed, and which is still present in the distribution
of galaxies, long after the decoupling between matter and radiation (Eisenstein et al.
2005).

During the matter domination era (and in the scenario of a weakly interacting
dark matter) the pressure can be neglected. This means that all scales will collapse
as they are all above the Jean’s length. Neglecting the pressure term, Equation 1.15
can be written

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
− 4π G ρ̄ δ = 0 , (1.20)

which is the equation of an harmonic oscillator without any spatial derivatives any-
more. It is then possible to decouple the density evolution into a spatial and a tem-
poral evolution, δ(x, t) = D(t)δ0(x). The time component D is called the growth
factor and follows the equation

d2D

dt2
+ 2H

dD

dt
− 3

2
H2 ΩD = 0 . (1.21)

The solution of the above equation is the sum of a growing and a decaying mode,
so we have

δ(x, t) = D+(t) δ+(x, 0) +D−(t) δ−(x, 0) . (1.22)

For an Einstein-de Sitter Universe, i.e. during the matter domination, an exact
solution is given by D+(t) ∝ t3/2 and D−(t) ∝ t−1.

As we see from Equation 1.20 and 1.22, it is possible to decouple the spatial and
the time evolution of an overdensity. This leads to a powerful way of measuring the
evolution of the Universe. As long as we are in the linear regime and for scales that
are below the horizon size, the distribution of matter at any time can be computed
by multiplying the initial distribution of matter by the growth factor.

1.5 Statistics of the distribution of matter

1.5.1 Power spectrum

From the Friedmann equations (section 1.1.4), we were able to model the growth of
matter perturbations (section 1.4). We now need a tool to test our model against
observations. This tool is the correlation function. The main advantage of the cor-
relation function (or its Fourier transform, the power spectrum), lies in the fact that
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1.5. Statistics of the distribution of matter

it allows to compress information of the matter distribution in only one statistical
tool. Moreover as long as we are interested in large scales this compression does not
lose information, because these scales are in the linear regime. In this regime the
overdensity field is Gaussian and isotropic, and is fully described by its two-point
correlation function.

In this section we derive relations for the matter (including both dark and bary-
onic) distribution. These hold also for e.g. the distribution of galaxies. We will later
assume that galaxies are sampling the underlying distribution of matter, with some
bias. We will discuss about this and the corresponding galaxy bias in Section 1.7.1.

We are interested in the over-density field δ(x, t), as defined in Equation 1.11.
We introduce the two-point correlation function as the covariance of δ(x, t) between
two positions in the universe with a comoving separation r,

ξ(r, t) = 〈δ(x+ r, t) δ(x, t)〉x , (1.23)

where 〈〉x denotes an average over the comoving coordinates x. As the Universe is
statistically homogeneous and isotropic, the correlation function depends only on r,
the modulus of r.

The Fourier transform of the correlation function is called the power spectrum,
and is given by

P (k, t) =

∫
d3r ξ(r, t) exp(ik · r) . (1.24)

Similarly, the power spectrum can be obtained as the covariance between two
modes of the Fourier transform of the density field noted with a tilde δ̃. As the
Universe is statistically homogeneous and isotropic, we get〈

δ̃(k, t)δ̃(k′, t)
〉

= (2π)3 P (k, t) δD(k − k′) , (1.25)

where δD is the Dirac delta function.
In the linear regime, each Fourier mode evolves independently, because Equation

1.21 does not involve spatial derivatives. The linear power spectrum P (k, t) can be
obtained from the linear growth of the power spectrum at the end of recombination.

The initial power spectrum of the gravitational potential at the end of inflation is
assumed to be scale invariant. Linking the potential to the density with the Poisson
equation gives

Pinit(k) = As k
ns , (1.26)

with As a constant and ns ≈ 1 the scalar spectral index.
Inflation creates fluctuations with size larger than the horizon. These fluctua-

tions grow through self-gravity. As time goes, the size of the horizon grows, and new
modes are entering the horizon. As long as radiation dominates over gravity, these
modes are frozen: the universe is expanding too rapidly under the effect of radiation
for the matter fluctuations to collapse under gravity. When matter and radiation
density reach equality, dark matter fluctuations can grow exponentially. Baryonic
matter and photons start oscillating under the competing effect of gravity and pres-
sure. After recombination, pressure is negligible and all modes start to grow. The
evolution of the primordial power spectrum during the radiation dominated era is
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From the Big Bang to galaxies

Figure 1.5: Figure from Planck Collaboration et al. (2018c). Inference of the linear
matter power spectrum at z = 0 from different measurements. The plain black line
is the best fit power spectrum from Planck measurements. The agreement on such
a large range of scales and redshifts is a huge credit to the predicting power of the
ΛCDM model. The dotted line shows the non linear power spectrum for reference.

encoded in the transfer function T (k). The power spectrum after recombination, at
the beginning of the matter domination era, is given by

P0(k) = As k
ns T 2(k) . (1.27)

An accurate description of the transfer function can be found in Bardeen et al.
(1986).

After recombination, matter decouples from radiation and at linear scales all
modes evolve independently and grow following Equation 1.22. The linear power
spectrum is then

P (k, t) = AsD+(t)2 T 2(k) kns . (1.28)

Figure 1.5 shows the linear power spectrum estimated by Planck . On large scales
the power spectrum is proportional to kns , following the power spectrum at the end of
inflation, whereas on small scales it evolves like k−3. The inflexion point corresponds
to the size of the Hubble horizon at time of the matter-radiation equivalence.

As we can see in Figure 1.5, for small scales (k & 0.2hMpc−1) Equation 1.28
does not hold anymore as the growth of structures is non linear. We discuss non
linear evolution in Section 1.6.
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1.5. Statistics of the distribution of matter

1.5.2 Angular power spectrum

The CMB is observed as a 2D field. We can also consider galaxy surveys as 2D
fields if we bin them by intervals of redshift. The 2-point correlation function on the
sphere is called the angular correlation function w(θ), which is the analogous of the
correlation function ξ(r) of Equation 1.23. The analogous of the power spectrum
P (k) on the sphere is called the angular power spectrum and is noted C`. It is obtain
by decomposing the observed field onto the spherical harmonics basis.

The spherical harmonics Y`m(θ, φ) are the solution of the Laplace equation in
spherical coordinates, ∆Y`m = 0. These functions are orthogonal, with normaliza-
tion ∫

dΩ Y ∗`m(θ, φ)Y`′m′(θ, φ) = δD(`− `′) δD(m−m′) . (1.29)

where dΩ = sin θ dθ dφ. See e.g. Dodelson (2003) for more details.
We can decompose any spherical 2D field f(θ, φ) (such as the observed CMB

temperature) on this basis

f(θ, φ) =
∞∑
`=0

l∑
m=−`

a`mY`m(θ, φ) , (1.30)

and the coefficients a`m are given by

a`m =

∫
Ω

dΩ f(θ, φ)Y ∗`m(θ, φ) . (1.31)

The information contained in the field f is equal to the one contained in its a`m.
As such, if the field is Gaussian and has zero mean, like the CMB temperature
fluctuations, all the information about this field is contained in the variance of the
a`m, which are called C`

〈a`ma∗`′m′〉 = δD(`− `′) δD(m−m′)C` . (1.32)

The CMB we observe is a given random realization of all possibilities. For a
given `, the observed a`m are drawn from a probability distribution function which
is Gaussian, with mean zero and with a variance C`. To recover the true underlying
C` from the observed field we can define an estimator Ĉ` by

Ĉ` =
1

2`+ 1

∑̀
m=−`

a`,m a
∗
`,m . (1.33)

Our estimator is limited by the number of multipoles m for each `. As such there
is a fundamental uncertainty in the estimation of the C` which is called the cosmic
variance, and is quantified by(

∆C`
C`

)
c.v.

=

√
2

2`+ 1
. (1.34)

Figure 1.6 presents the CMB angular power spectrum of the temperature field
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From the Big Bang to galaxies

Figure 1.6: Figure from Planck Collaboration et al. (2018a).Temperature power
spectrum of the CMB measured by Planck , with D` ≡ `(`+ 1)C`/(2π). The ΛCDM
theoretical spectrum best fit is plotted in light blue in the upper panel. Residuals
with respect to this model are shown in the lower panel.

measured by the Planck experiment (Planck Collaboration et al. 2018a). This shows
again the great agreement of the ΛCDM model with observations.

1.5.3 Projected observables

For galaxy surveys, especially when we do not have enough resolution on the redshift
measurements, it is common to study the distribution projected on a 2D sphere. We
then need to link the observable which is the angular power spectrum C` to the power
spectrum P (k) obtained from the cosmological model. If we project the 3D matter
distribution onto a 2D sphere, under a selection function φ(χ) normalized to unity,
we obtain the 2D overdensity field

δ2D(n) =

∫ χ∞

0

dχ φ(χ) δ(x) , (1.35)

where χ is the comoving distance (Equation 1.4) and n is unit vector defining a
direction on the sky, and x = χn is the galaxy position. We integrate up to the
maximum comoving distance covered by the survey χ∞. The 2D overdensity field is
noted δ2D while its 3D version is noted δ. Note that in practice for galaxy surveys
there is one more step to link the galaxy density field to the matter density, as
galaxies are a biased tracer of matter. We describe this step in more detail in
Section 1.7.1.
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We develop δ on its Fourier coefficients

δ(x) =

∫
R3

dk

(2π)3
exp(−ik · x)δ̃(k) , (1.36)

where a tilde denotes the Fourier transform.
Using the Equation 1.25, the 2 point correlation function is given by〈

δ2D(n) δ2D(n′)
〉

=

∫ χ∞

0

dχ

∫ χ∞

0

dχ′ φ(χ)φ(χ′)

×
∫
R3

dk

(2π)3
exp(ik · x) exp(−ik · x′)P (k;χ, χ′) ,

(1.37)

where P (k;χ, χ′) denotes the power spectrum between two different epochs. In
the linear theory, it is easy to decouple this power spectrum into P (k;χ, χ′) =
P (k)D(χ)D(χ′) where D is the growth factor. Note that here we take the growth
as a function of the comoving distance, whereas it was first described as a function
of time in Equation 1.22. This is not a problem thanks to the bijection between
time and comoving distance (Equation 1.4).

We then make use of the plane wave expansion, introducing the Legendre poly-
nomials P` and the spherical Bessel functions j`

exp(ik · x) =
∞∑
`=0

i` (2`+ 1)P`(k · x) j`(k χ) (1.38)

= 4π
∞∑
`=0

∑̀
m=−`

i`Y`m(k/k)Y ∗`m(n)j`(k χ) . (1.39)

Using the above relations and the properties of the spherical harmonic transform
defined in Section 1.5.2, we obtain the expression of the angular power spectrum

C` =
2

π

∫
dk k2 P (k)

[∫ χ∞

0

dχ φ(χ)D(χ) j`(k χ)

]2

(1.40)

This relation links our observable, the angular power spectrum, to the predictions
of the cosmological model made on the power spectrum and on the growth function.

One common approximation in the computation of the angular power spectrum
is the Limber (1953) approximation. For high ` (typically ` > 100) the power
spectrum varies slowly compared to the spherical Bessel function. In this sense the
Bessel will extract the typical scale k = `+1/2

χ
(see e.g. Loverde and Afshordi 2008).

Using ∫
dk k2j`(k χ) j`(k χ

′) =
π

2χ2
δD(χ− χ′) , (1.41)

we can remove some of the integrals of Equation 1.40 and we obtain

C` =

∫ χ∞

0

dχ

χ2
[φ(χ)D(χ)]2 P

(
k =

l + 1/2

χ

)
. (1.42)

17



From the Big Bang to galaxies

The main interest of this approximation is to reduce the computational time,
because due to the oscillatory nature of Bessel functions, accurate computation of
angular power spectra is time-consuming.

1.6 Non linear scales

1.6.1 Modelling non linear evolution

At small scales (k > 0.1hMpc−1), and when the overdensity δ becomes of the order
of unity, the linearisation of the equations performed in Section 1.4 is not valid
anymore. In order to model the non-linear evolution, different approaches have
been developed.

Perturbation theory is an analytical development of the perturbed equations to
higher orders. Every higher order development is increasingly complex, and in prac-
tice it is difficult to go beyond order three for two point statistics (Bernardeau et al.
2002). Typically, the maximum scale reached with precision by the perturbation
theory at second order is of kmax = 0.2hMpc−1 (Taruya et al. 2012). These de-
velopments allow to obtain an analytic evolution of the density field for the weakly
non-linear regime.

Another successful approach is to rely on dark matter simulations. These nu-
merical simulations (also called N-body simulations) reproduce the distribution of
matter by tracking the evolution of dark matter particles. They are mainly limited
by the computational power and the trade-off between the resolution and the size
of the simulation box. The improvement of dark matter simulation is tightly linked
with the development of high performance computing. Simulations like Millennium
(Springel 2005), HORIZON 4π (Teyssier et al. 2009), and more recently the Flagship
simulation (Potter et al. 2017) allowed to measure the power spectrum from large
to small scales, with increasing precision. For instance, the Flaghsip simulation in-
cludes 2× 1012 particles inside a box with a comoving side length of 3780h−1 Mpc.
However, as shown in Figure 1.7, when comparing the outcome of different numer-
ical simulations we see that the power spectrum estimation agree at the order of
1 % only for scales larger (smaller k’s) than kmax ∼ 1hMpc−1 at z . 1. Figure 1.8
compares the maximum scales where perturbation theory and numerical simulations
are considered as reliable.

A third approach is the halo model of large scale structures (Cooray and Sheth
2002). This development assumes that all the matter is contained inside virialised
spheres called haloes. This idea is based on the spherical collapse model, which we
introduce below in Section 1.6.2. Briefly, the main hypothesis of the halo model
is to separate the two-point correlation function into a one-halo term and a two-
halo term. The first corresponds to correlations inside one halo, and describes the
small scales (k > 1hMpc−1), and the second corresponds to correlations between
two haloes and describes the large scales (k < 0.1hMpc−1). The ingredients of
the halo model are the abundance and the spatial distribution of haloes and their
radial density profile. The key advantage of the halo model is its flexibility. Its
framework can be applied to a variety of observables such as galaxy clustering (e.g.
Lacasa and Rosenfeld 2016) or tSZ analysis (e.g. Salvati et al. 2018) to cite only two.
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Figure 1.7: Figure from Schneider et al. (2016). Comparison of auto power spectra
from three different N-body codes at different redshifts. Green lines correspond to
Pkdgrav3 (Potter et al. 2017), red lines to Gadget3 (Springel 2005), and blue lines
to Ramses (Teyssier 2002)(reference lines). One percent agreement (indicated by the
grey band) is obtained for k . 1hMpc−1 (dashed vertical line).

Figure 1.8: Summary of the non linear scales reached by perturbation theory (PT)
and numerical N-body simulations. Credits to A. Schneider and S. Codis.
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One just has to implement the density profile, abundance, and clustering properties
corresponding to the observable of interest.- One drawback of this approach is that
it must rely on external data (simulations or observations) to calibrate the halo mass
function (see Section 1.6.2), one of the main ingredients of this model.

1.6.2 Halo mass function

A first step to model the non linear regime is to study the collapse of a spherically
symmetric density distribution. In this configuration, an exact solution of the evolu-
tion equations can be obtained, assuming an Einstein-de Sitter universe (Gunn and
Gott 1972). Tracking the evolution of the density inside a collapsing sphere with
a constant mass, one can show that the sphere collapses (the radius tends to zero)
when the linear overdensity reaches δc = 1.686. Even if not mathematically correct
(it is an extrapolation of the linear equations), the δc value is used as a criterion to
describe collapsed objects: each time an overdensity reaches this threshold, it can
be considered as collapsed, and the linear equations does not hold anymore.

In practice the sphere will not collapse to a point, but the particles will relax and
reach the virial equilibrium when the total energy equals half of the potential energy.
The ratio between the density inside a virialized sphere and the mean density of the
universe (for an Einstein-de Sitter universe, i.e. Ωm = 1) is equal to (White 2001)

∆V ≡
ρ(r < rvir)

ρ̄
= 18π2 ' 178 . (1.43)

This development of the non linear evolution of the spherical model led to the idea
that we can describe dark matter haloes as virialised spherical objects characterised
only by their mass. The statistics that encompass this information is the halo mass
function (HMF), which gives the number density of virialised haloes as a function
of their mass.

The Press-Schechter formalism (Press and Schechter 1974) combines the linear
evolution of the density field with the overdensity criterion for the spherical collapse
as defined above. The basic idea is to assume that the initial overdensity field is
a Gaussian random field, which evolves linearly. Each time a perturbation reaches
the critical overdensity δc = 1.686, it collapses into a virialised halo. This leads to
the following expression of the halo mass function

d2n

dM dV
(M, z) =

√
2

π

δc ρ̄

M

∣∣∣∣d lnσM

dM

∣∣∣∣ exp

(
− δ2

c

2σ2
M

)
. (1.44)

This function gives the number of dark matter haloes per unit of mass and volume for
this density threshold. The parameter σM corresponds to the root mean square (rms)
of the fluctuation of the density field smoothed at a scale R(M) = (3M/ (4π ρ̄))1/3.

This mass function is shown in Figure 1.9. We see that the HMF scales as
M−2 for low masses, and presents an exponential cutoff at large masses, i.e. for
M > M∗ where M∗ is given by σM(M∗) = δc. This behaviour is related to the
hierarchical structure formation scenario: low mass haloes form first, and high mass
haloes appear later by merging of smaller haloes or by accretion of matter (Lacey
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Figure 1.9: Halo mass functions at different redshifts. The plain lines are the Tinker
et al. (2008) HMF, while the dashed line are the Press and Schechter (1974) HMF.

and Cole 1993, 1994). The most massive haloes are very rare structures that are
found only in the very dense environments. Because of the dependence of the HMF
to initial conditions of the density field and to the growth of structures, observations
of the halo mass function are a powerful cosmological probe (Press and Schechter
1974; Bond et al. 1991; Lucchin and Matarrese 1988).

Since Press and Schechter (1974), improvements have been made in the functional
form of the halo mass function. In their work, they used 1000 particles of an N-
boby simulation to validate their results, while Sheth and Tormen (1999) used 107

particles and replaced the spherical collapse scenario with an ellipsoïdal collapse.
Tinker et al. (2008) uses 22 independent N-body simulations with ∼ 109 particles
to obtain a fit of functional form of the HMF. More recently (Despali et al. 2016)
used 6 N-body simulations to test the universality (i.e. its robustness to the halo
definition) of the halo mass function. The use of different simulations, from small
volume with high resolution, to large volume with low resolution, allow to get a
robust estimate covering large ranges in terms of mass, volume and redshift. It also
allows to test for variations with cosmological parameters, and check for agreements
when size and resolution overlap.

The most massive haloes are the hosts of the galaxy clusters. These haloes are
sensitive to the initial matter density field and to the growth of structures, and
depends on the underlying cosmological model. Galaxy clusters are thus a powerful
cosmological probe. The difficulty here is that one needs to link an observable of
the galaxy cluster (such as the number of galaxies, the Sunyaev-Zeldovich or X-Ray
emission of the gas) to the total mass of the halo in order to fit the HMF and get
the cosmology (e.g Allen et al. 2011, for a review).

The whole Chapter 2 is dedicated to the calibration of the relation between dark
matter haloes and their host galaxies. We will use halo mass functions to calibrate
this relation and track its evolution with time.

21



From the Big Bang to galaxies

Figure 1.10: Figure from Codis (2016). The combination of large density modes
with smaller ones allows density peaks to reach the δc threshold more easily in dense
regions. It is then more probable to form haloes in dense regions. Haloes are thus a
biased tracer of the density field.

1.7 Astrophysical effects on galaxy power spectrum

We introduce here two main astrophysical effects that impact the power spectrum
of galaxies: the galaxy bias and the redshift space distortions (RSD). We need to
take these effects into account to accurately link the observed power spectrum of
galaxies to the matter power spectrum we derived in the Section 1.5.1.

1.7.1 Bias of haloes and galaxies

Both dark matter haloes and galaxies are sampling the matter density field, but they
do not sample it uniformly, we observe numerous galaxies in dense environment, and
almost no galaxies in less dense environments. We say that haloes, and the galaxies
they host, are biased tracers of the underlying matter density field. This idea was
first described in Kaiser (1984) and refined in Bardeen et al. (1986).

The threshold of linear density δc = 1.686 seen in Section 1.6.2 explains why
haloes are biased tracers of the density field. Due to the presence of both large and
short wavelength modes in the density field, a large overdensity inside a void will
not collapse as it cannot reach the δc threshold, while a small overdensity in a very
dense region will collapse. As such haloes can collapse more easily in dense regions.
The Figure 1.10 illustrate this fact. Haloes are then populated with galaxies, making
galaxies another biased tracer of the underlying matter density field.

The galaxy bias is often assumed to be scale independent, which is true at large
scales (McDonald and Roy 2009; Desjacques et al. 2018) and modelled as function
of redshift. We can then express the galaxy 3D density field as

δg(z, n̂) = b(z) δ(z, n̂) , (1.45)

with δg the galaxy density field and δ the matter density field. We then get this
expression for the power spectrum of galaxies

Pg(z, k) = b2(z)P (z, k) , (1.46)
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with P the matter power spectrum.
We see here that the bias behaves like a scaling factor which will affect the

amplitude of the power spectrum. As such it is highly degenerate with the cosmo-
logical parameter which governs the amplitude of the initial power spectrum As (see
Equation 1.26).

Equation 1.46 shows a simplified version of the impact of bias on the observed
galaxy power spectrum. Cosmological effects such as primordial non-gaussianities,
massive neutrinos, dark energy and modified gravity can complicate this picture, and
make the bias vary with the scale. Redshift space distortions (RSD), as introduced
below, will also impact this relation (see Desjacques et al. 2018, for a review).

1.7.2 Redshift space distortions

The observed redshift of galaxies is the sum of the redshift due to the Hubble flow
and the peculiar redshift of the galaxy

zobs(z, n̂) = z + (1 + z)
v(z, n̂) · n̂

c
, (1.47)

where v is the peculiar velocity field of galaxies, and z is the redshift due to the
Hubble expansion.

The redshift is our main quantity to get information about the position of the
galaxy along the line of sight axis6. The difference between the observed redshift
and the redshift due to the Hubble expansion will create distortions on the esti-
mated position of galaxies: galaxies moving in our direction will appear closer to
us, and galaxies moving away from us will appear further from us. We make the
distinction between the redhsift space, where the position of galaxies is the one given
by their observed redshift, and the real space which corresponds to the true position
of galaxies.

RSD will induce two main effects on the apparent distribution of galaxies. In
the linear regime, at large scales, spherical overdensities will appear flattened on
the direction perpendicular to the line of sight, due to the fact that galaxies are on
average moving towards the center of mass of the overdensity. Inversely, underdense
regions will appear elongated along the line of sight. This is known as the Kaiser
effect. In the non-linear regime, we speak about the finger of God effect. Galaxies
close to the center of mass of a cluster have a high peculiar velocity in random
directions. As a result, in the redshift space the cluster will appear elongated along
the line of sight.

As shown by Kaiser (1987) 3D power spectrum of galaxies will be anisotropic in
the redshift space, due to RSD, while it is isotropic in the real space.

The peculiar velocity field of galaxies v is related to the local matter density
field, through the linearised continuity equation

∂ δ

∂t
+

1

a
∇v = 0 , (1.48)

6One other example is the Tully and Fisher (1977) empirical relation linking the luminosity
and the rotation velocity of the galaxy to get an estimate of its distance, but it is less reliable and
difficult to measure at high redshift
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where we assumed that the velocity of galaxies is an unbiased tracer of the underlying
density field of matter (Strauss and Willick 1995).

We introduce the growth rate, which is the derivative of the logarithm of the
growth factor

f =
d lnD

d ln a
= −(1 + z)

1

D(z)

dD

dz
. (1.49)

The growth rate is well approximated by f(z) = Ωm(z)γ, with Ωm(z) = Ωm,0 (1 +
z)3/(H(z)/H0)2. The ΛCDM model imposes γ = 0.55 (Lahav et al. 1991; Linder
2005). Observing any departure from this value will hint towards a deviation from
ΛCDM, such as modified gravity models.

We can then get the following expression of the velocity field, in Fourier space
(Padmanabhan et al. 2007)

v(k) = −i k
k2
f(z) δ(k) = −i k

k2
β(z) δg(k) , (1.50)

which introduces the redshift distortion parameter β(z) = f(z)/bg(z).
At linear order in terms of density and velocity, we can link the density of matter

in redshift space δs to the density of matter in real space to obtain the Kaiser (1987)
formula

δs(k) = (1 + f(z)µ2) δ(k) , (1.51)

where µ = cos(k · n̂).
We see here that we have created an anisotropy in the density field. As such the

3D power spectrum becomes anisotropic, and must then be expressed as a function
of the wave number k but also in terms of µ. We have

P s(k, µ) = (1 + f(z)µ2)2 P (k) (1.52)

where P s is the matter power spectrum in the redshift space, and P is the matter
power spectrum in real space. Introducing the galaxy bias, we have the galaxy power
spectrum in redshift space which is given by

P s
g(k, µ) = (b(z) + f(z)µ2)2 P (k) = (1 + β(z)µ2)2Pg(k) (1.53)

We see that the bias parameter does not affect the term that appears due to the
RSD. This is due to the fact that RSD are sensitive to the matter density field, and
are as such not sensitive to the galaxy bias.
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Chapter 2

Galaxy evolution within dark matter haloes

The previous chapter presented the growth of matter density fluctuations from
large scales to the beginning of the non-linear regime, which corresponds to k ∼
0.2hMpc−1 i.e. a scale of ∼ 5h−1 Mpc. We will now zoom inside the dark matter
haloes and see how baryons evolve and form the galaxies we observe.

Before going more into details, we can make several preliminary comments. The
first one is that the galaxy formation process is highly inefficient. Indeed, only about
7 % of the baryon content of the universe lays inside galaxies (Shull et al. 2012).
The second one is that when comparing the halo mass function obtained from dark
matter simulations to the stellar mass function obtained from observations, one can
see that they do not have the same shape (see Figure 2.2 or Silk and Mamon 2012).
This means that the galaxy formation process depends at least on the mass of the
host halo. In this chapter, we will try to address the following question: How do
galaxies form and evolve inside the collapsed virialised haloes of dark matter ? To
answer this we will link properties of galaxies, such as their mass or star formation
rate, to properties of their host dark matter halo.

In a first part, I will present the analysis and the results obtained in Legrand
et al. (2019), where we relate the galaxies observed in the COSMOS field with dark
matter haloes from simulations. This work is presented in Sections 2.2 to 2.5

I will then present unpublished and ongoing work. In Section 2.6, I will first use
a hydrodynamical simulations to connect star formation inside dark matter haloes
to its stellar and dark matter mass. In Section 2.7, I will use observations of the
gas content in galaxies at high redshift to understand the cycle of baryonic material,
from gas to stars, in dark matter haloes.

All these results will allow us to draw a broad picture of the evolution of baryons
inside dark matter haloes. In Section 2.8, I will summarize our findings on the
evolution of the stellar-to-halo mass relation and of the cold gas. Finally, I will
propose cold gas inflows and AGN activity as an answer to the problem of the very
efficient galaxy formation in massive haloes at high redshift.
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2.1 Galaxies and haloes evolution

2.1.1 Gas cooling

In the current picture of galaxy formation, galaxies form by accretion of baryons
into dark matter virialised haloes (for recent reviews see Silk et al. 2014; Naab
and Ostriker 2017). Pioneering studies found that the gas has to cool efficiently
in order to collapse, to fragment and finally to form stars (Binney 1977; Silk 1977;
Rees and Ostriker 1977). In the range of temperatures 104 – 107 K and low-density
environments (less than one particle per cm3) corresponding to the inter-galactic
medium, cooling is achieved via radiative cooling (mainly through bremsstrahlung
radiation and recombination of ionised Hydrogen and Helium).

The cooling efficiency of a clump of gas is defined by the function Λ(T, n, Z)
which depends on the temperature T of the cloud, its density n and its metallicity
Z1 (Tucker and Gould 1966). One particular feature of gas clouds with such low
densities is that the cooling efficiency drops drastically when the cloud temperature
reaches 104 K as all the Hydrogen has become neutral and there are no other efficient
cooling processes.

The cooling time is the time it would take for a gas clump inside the halo to
radiate all its energy. It is the ratio between the kinetic energy of the gas and the
cooling efficiency (Peacock 1999)

tcool ≡
3 kB T

2Λ(T )n
, (2.1)

where kB is the Boltzmann constant.
This cooling time must be compared with the time for the halo to contract under

the gravity, which is given by the free-fall time

tff =

√
3π

32Gρ
. (2.2)

If the cooling time is longer than the free fall time, the cloud is in quasi-static
equilibrium: when the temperature decreases due to radiative cooling, the cloud
contracts, which increases its density and temperature. In this condition, the cloud
cannot collapse as pressure and gravity are always balanced.

If the cooling time is shorter than the free-fall time, then the temperature will
drop drastically to 104 K and the pressure will not be able to compete gravity: the
cloud will collapse. The frontier between quasi-static equilibrium and collapse is
where tcool ' tff , which is displayed in Figure 2.1. In this Figure we see that galaxies
are in the area where the collapse is allowed, while galaxy clusters are still non-
collapsed. Indeed observations show us that clusters are filled with hot gas (e.g.
Forman and Jones 1990) and are the hosts of several galaxies, instead of being only
one gigantic collapsed cloud of gas forming only one gigantic galaxy.

The metallicity plays an important role here, as cooling efficiency increases when
the metallicity is high. The metallicity of the gas increases with time, as massive

1The metallicity is the mass fraction of all elements more massive than Hydrogen and Helium.
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Figure 2.1: Figure from Peacock (1999). Diagram of the baryonic density versus
temperature of a gas clump. The diagonal broken lines are lines of constant total
mass (in Solar units), assuming 10% of the total mass to be baryonic. The solid
curves with minima show the locus along which the cooling time equals the free-
fall time; objects above these curves can cool efficiently and collapse. The bottom
curve is for a solar metallicity, the middle one is for a zero metallicity and the top
one includes the impact of photo-ionization, which makes cooling less efficient. The
location of galaxies is shown by the grey boxes, and galaxy clusters are represented
by the solid dots. This diagram draws the line between haloes hosting galaxies,
where the gas was able to collapse, and clusters filled with hot non-collapsed gas.
This line corresponds roughly to haloes of Mh = 1012 M�.

stars create heavy elements and disperse them in the gas with supernovae explosions.
This means that late time haloes should be more efficient at cooling than early time
haloes. The process of star formation is then more efficient at low redshift than
at high redshift. Assuming that the “reservoir” (or supply) of matter is steady, we
should see a higher star formation at low redshift that at high redshift.

However, we observe the opposite: star formation increases with redshift, with a
peak at z ∼ 2 (Madau and Dickinson 2014). Going from z ∼ 2 to today (z = 0), the
average star formation at the scale of the Universe decreases. We will see in Section
2.8 that this evolution of star formation could be associated to the starvation of cold
gas inflows that used to fuel massive galaxies at high redshift.

2.1.2 Galaxy formation efficiency

Galaxies form inside dark matter haloes. In the hierarchical clustering scenario,
small haloes are accreted onto more massive ones and become “sub-haloes”. Galaxies
are classified as either “satellite” if they are hosted by a sub-halo, or “central”. Central
galaxies correspond to the most massive galaxy in the halo, located near its center
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of mass. For the sake of simplicity, we often refer to any halo or sub-halo hosting a
galaxy as a “halo”.

If we make the simple hypothesis that the stellar content of a halo is directly
proportional to its mass, the ratio of stellar mass to halo mass would be a con-
stant. However, we do not observe a straightforward linear relation between the
dark matter halo mass (Mh) and the stellar mass of a galaxy (M∗).

This can be seen quantitatively if one compares the dark matter halo mass func-
tion and the galaxy stellar mass function, see Figure 2.2. The stellar mass function
(SMF) gives the number of galaxies per unit volume and per unit of mass. It has
traditionally been modelled by a Schechter (1976) function, although for certain
galaxy populations a combination of more than one such functions may provide a
better fit to observations (Binggeli et al. 1988; Kelvin et al. 2014).

In Figure 2.2 where we compare the stellar mass function to the halo mass
function, we see that there is a deficit of galaxies with a low stellar mass (M∗ <
1011M�) and with a high stellar mass (M∗ > 1011M�), compared to the number
density of dark matter haloes (see also e.g. Cole et al. 2001; Yang et al. 2003; Eke
et al. 2006; Behroozi et al. 2010; Moster et al. 2010).

Although such comparisons between mass functions are phenomenological in
nature (Mutch et al. 2013), they provide useful indications to models of galaxy
formation in particular when the comparison spans a large redshift range. Two
main physical processes have been proposed to explain the discrepancy at low and
high mass. Massive galaxies often host Active Galactic Nuclei (AGN) which will
heat the gas and expel the gas that would form the stars outside of the galaxy (for a
review see Heckman and Best 2014). Small galaxies instead are not massive enough
to retain the gas expelled by supernovae explosions (see e.g. Larson 1974; Powell
et al. 2011) which decreases the available material to form stars. In both cases,
these processes are lowering the efficiency of star formation, see Silk and Mamon
2012 for a detailed review on the feedback mechanisms.

2.1.3 Stellar to halo mass relation

Understanding how the stellar mass content of a galaxy relates to the mass of its
dark matter halo is an alternative way of considering the process of galaxy formation.

Highly complete mass-selected galaxy surveys at high redshift (see, e.g., Ilbert
et al. 2013) and accurate predictions for the halo mass function (Tinker et al. 2008;
Watson et al. 2013; Despali et al. 2016) allows us to measure the stellar-to-halo mass
relation (SHMR) of galaxies at different epochs.

There are many techniques to accomplish this. In the following, we will use the
“sub-halo abundance matching" technique, where the number density of galaxies
(from observations) and dark matter sub-haloes (from simulations) are matched to
derive the SHMR at a given redshift (see, e.g., Marinoni and Hudson 2002; Behroozi
et al. 2010, 2013, 2018; Moster et al. 2010, 2013, 2018; Reddick et al. 2013). This
technique can also be implemented by assuming a non-parametric monotonic relation
between the luminosity or stellar mass of the observed galaxies and sub-halo masses
at the time of their infall onto central haloes (Conroy et al. 2006).

Other studies use a “halo occupation distribution" modeling (HOD, see e.g. Vale
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Figure 2.2: Comparison of the stellar mass function from Davidzon et al. (2017)
(green line) with the halo mass function from Despali et al. (2016) at a redshift
z = 0.2. The dashed blue line show the halo mass function rescaled by the universal
baryon fraction Ωb/Ωm to illustrate the maximum available stellar content (assuming
all baryons are converted into stars). The shaded green area show the 1σ confidence
limit of the SMF of Davidzon et al. (2017). It is clear from this Figure that galaxies
at low mass (M∗ < 1011M�) and galaxies at high mass (M∗ > 1011M�) have a deficit
of stellar mass compared to the ones around 1011M�. This can be explained for low
mass galaxies by the Supernovae explosions that expels the stellar content out of
the galaxy, and for massive galaxies by the AGN feedback which heat the gas and
prevent star formation.
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Figure 2.3: Figure from (Behroozi et al. 2018). Compilation of estimations of the
stellar to halo mass relation at z = 0 from the literature. This Figure shows the
maximal mass in the history of the halo (see Section 2.3.2) versus the stellar to halo
mass ratio.

and Ostriker 2004; Zheng et al. 2007; Leauthaud et al. 2011; Coupon et al. 2015)
where a prescription for how galaxies populate dark matter haloes can be used to
simultaneously predict the number density of galaxies and their spatial distribution.
In this case, lensing combined with clustering measurements can provide additional
constraints on the SHMR.

Figure 2.3 from Behroozi et al. (2018) shows the ratio of the stellar mass of a
galaxy over the host dark matter halo mass for different results from the literature.
We see here that there is a “characteristic halo mass" Mpeak

h ' 1012M� at which the
M∗/Mh ratio is maximised. A natural interpretation is that Mpeak

h corresponds to
the halo mass at which star formation, integrated over the entire assembly history
of the galaxy, has been the most efficient (Silk et al. 2014). We consider “galaxy
formation efficiency" as the global process of forming stars in dark matter haloes,
from the accretion of gas to the actual transformation of baryons into stars. At
lower and higher halo masses, the M∗/Mh ratio decreases rapidly, presumably as a
consequence of the physical processes that suppress star formation in these haloes,
such as AGN feedback or supernovae explosions (see Section above.)

2.2 Galaxies

2.2.1 The COSMOS field

Our work is based on the stellar mass function of Davidzon et al. (2017) estimated
from observations of the COSMOS field (Scoville et al. 2007b). The COSMOS field
displayed in Figure 2.4 is a 2 deg2 field with deep UV-to-IR coverage. It is a gathering
of several observations of the same patch of the sky, observed with ground based
telescopes and satellites such as the Hubble Space Telescope or the Spitzer Space
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Telescope (see Laigle et al. 2016, and references therein).
The large area of COSMOS makes it ideal to collect robust statistics of distant,

massive galaxies. Moreover, exquisite IR photometry means precise stellar mass
estimates can be made over a large redshift range (see e.g. Steinhardt et al. 2014;
Davidzon et al. 2017). Extensive tests have been made to validate the mass com-
pleteness and the photometric redshift accuracy in COSMOS (Laigle et al. 2016;
Davidzon et al. 2017). Far-IR, radio, and X-ray observations are also available to
assess the crucial role of AGN (Delvecchio et al. 2017), and the quenching of distant
and massive galaxies (Gozaliasl et al. 2018).

The COSMOS catalog of Laigle et al. (2016) is a very deep and complete census
of more than half a million galaxies up to z ∼ 6. It represents a wealth of information
that can be used to understand the formation and evolution of galaxies.

In Laigle et al. (2016), redshifts of more than half a million galaxies out to
z ∼ 6 were estimated with Spectral Energy Distribution (SED) fitting. This method
consists in fitting templates of galaxy spectra on observed photometric fluxes in given
photometric bands. This is a low resolution spectroscopic redshift estimate. The
uncertainty on the photo-z is estimated by comparing to spectroscopic measurements
which has been obtained for almost 100 000 galaxies of the catalog (Lilly et al. 2007;
Le Fèvre et al. 2005, 2015; Hasinger et al. 2018).

In Davidzon et al. (2017), new estimates of the photometric redshift and of the
stellar mass have been made for galaxies at z > 2.5, based on an optimized method
for 3 < z < 6. This increased the accuracy of the stellar mass function at high
redshift. The 1σ error on the photometric redshift is estimated to be 0.03(1 + z)
and the outliers fraction (catastrophic photo-z estimation) is of 12%.

The unique combination of deep optical (Subaru), near-infrared (VISTA) and
mid-infrared (Spitzer/IRAC) observations results in a galaxy sample that is >90%
complete for M∗ > 1010M� up to z = 4; and it is >70% complete for M∗ > 1010M�
at 4 < z < 6.

2.2.2 Stellar mass function

We use stellar mass functions derived by Davidzon et al. (2017, hereafter D17) for
galaxies in the UltraVISTA-Ultra deep region of the COSMOS field (see McCracken
et al. 2012).

D17 estimated the SMF in ten redshift bins from z = 0.2 to z = 5.5 (see Figure
2.5) using three independent methods: the 1/Vmax technique (Schmidt 1968), the
step-wise maximum likelihood (Efstathiou et al. 1988) and the maximum likelihood
method of Sandage et al. (1979). These three estimators provide consistent SMF
estimates. However, they are all affected by observational uncertainties (M∗ and
zphot errors) that scatter galaxies from their original mass bin. This systematic effect,
known as Eddington (1913) bias, dominates at high masses (M∗ & 1011M�) because
here galaxy number density declines exponentially; this produces an asymmetric
scatter and consequently modifies the SMF profile. Depending on the “skewness”
and the magnitude dependence of observational errors the Eddington bias may have
a strong impact also at lower masses (Grazian et al. 2015).

When fitting a Schechter (1976) function to their 1/Vmax SMF determinations,
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Figure 2.4: Figure from Laigle et al. (2016). The COSMOS field. Colour lines show
the different observations footprints.

D17 account for the Eddington bias using the method introduced in Ilbert et al.
(2013). Therefore in our work we use these Schechter fits of D17 which should be
closer to the intrinsic SMF compared to the other estimators. For consistency, we
rescale these estimates to Planck Collaboration et al. (2016a, P16) cosmology. The
fitting function assumed by D17 is a double Schechter (see Eq. 4 in D17) at z < 3
and a single Schechter function (their Eq. 3) above that redshift. At low redshifts
two SMF components are clearly visible (e.g. Ilbert et al. 2010), above z > 3 there is
no evidence of this double Schechter profile (Wright et al. 2018). The SMF error bars
include both systematic and random errors including Poisson noise, cosmic variance
and the scatter due to uncertainties in the SED fitting.

2.3 Dark matter haloes

2.3.1 Halo mass function

Our main reference for the dark matter halo mass function2 (HMF) is the work
of Despali et al. (2016). They measure the HMF using six N -body cosmological
simulations with different volumes and resolutions: all of them have 10243 dark
matter particles with masses ranging from 1.94 × 107 to 6.35 × 1011 h−1M� and a
corresponding box size from 62.5 to 2000h−1 Mpc. Haloes are identified through
the “spherical overdensity” algorithm (Press and Schechter 1974), i.e. each halo is a
sphere with a matter density equal to the virial overdensity (see Eke et al. 1996) at
the given redshift (which is equal to the median z of the observed SMF, see Table

2HMFs were computed using the Colossus python module (Diemer 2018).
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Figure 2.5: Figure from Legrand et al. (2019). Our adopted stellar and halo mass
functions. For a given redshift (see legend) the top solid line shows our HMF (Despali
et al. 2016, fitted on the Bolshoï-Planck simulation) whilst the solid line and shaded
area is the SMF with the associated 1σ uncertainty (corresponding to the best fit
to 1/Vmax points corrected for Eddington bias, Davidzon et al. 2017).

2.1). The halo mass is defined as the sum of dark matter particles included in such
a sphere.

2.3.2 Fit on dark matter simulation

It has been shown (see e.g. Reddick et al. 2013) that for abundance matching ap-
plications the stellar mass of galaxies is better correlated to the maximal mass the
dark matter haloes have over their history (Mh,max) rather than the actual mass at
a given redshift. This is particularly true for sub-haloes which can lose mass due
to gravitational stripping by the neighbouring main halo whilst the galaxy inside
will keep the same stellar mass. Figure 2.6 illustrates the evolution with time of
the mass of a halo. Reddick et al. (2013) has demonstrated that using this Mh,max

better fits to observations such as galaxy clustering for abundance matching.
In order to carry out an abundance matching algorithm with the mass Mh,max

instead of the current mass, we fit the Despali et al. (2016) HMF on outputs from
the Bolshoï-Planck simulation (Rodríguez-Puebla et al. 2016; Behroozi et al. 2018).

This dark-matter-only simulation has a comoving volume of 250h−1Mpc on a
side with 20483 particles with a mass resolution of 1.6× 108h−1M� and uses Planck
Collaboration et al. (2016a) cosmology. Haloes are identified with the Rockstar
halo finder and masses are computed using the virial overdensity criterion of Bryan
and Norman (1998). Behroozi et al. (2018) provides halo number densities for several
halo mass bins and for 178 snapshots from z = 16 to z = 0 for this simulation, with
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Figure 2.6: Diagram of the evolution of the mass of a given halo with time. Left
panel shows the evolution of a main halo which grows by accretion of smaller haloes.
Right panel shows the evolution of a halo which became “sub-halo” and lose some
mass during the merging event. It has been shown (Reddick et al. 2013) that the
maximum mass of the haloMh,max (green line) is more correlated to the stellar mass
of its host galaxy than the actual mass at a given redshift (red line).

different mass definition, including M h,max.
We fit the HMF of Despali et al. (2016) using a modified version of the Colossus

code for these data points in the range 0 < z < 5 and 1011 h−1M� < Mh,max <
1015 h−1M�. The HMF is defined by (Equation 7 of Despali et al. 2016)

ν f(ν) = A0

(
1 +

1

ν ′p

) (
ν ′

2π

)1/2

exp (−ν ′/2) , (2.3)

ν = δ2
c/σ

2(M) , (2.4)
ν ′ = a ν , (2.5)

where δc(z) is the critical linear theory overdensity required for spherical collapse (see
Section 1.6.2) divided by the growth factor (Kitayama and Suto 1996), and σ(M, z) is
the variance of the fluctuations of density smoothed at a radius R = (3M/4π/ρb)1/3

with ρb = ρc Ωm,0 the mean background matter density.
This equation allows us to fit the HMF at all redshifts with only three free

parameters, (a, p, A0) which define the high-mass cutoff, the shape at lower masses,
and the normalisation of the HMF, respectively. Fitting this equation on the 178
snapshots HMFs using Mh,max halo masses from the Bolshoï-Planck simulation, we
find: a = 0.831, p = 0.351, A0 = 0.331. Figure 2.7 shows the resulting HMF for
several redshifts from 0 to 5.

2.4 Estimating the stellar-to-halo mass relation
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Figure 2.7: Figure from Legrand et al. (2019). Points show halo densities obtained
from the Bolshoï-Planck simulation for different redshift snapshots, using the max-
imal mass in the history of the haloes. The fit of the Despali et al. (2016) HMF on
this data points is shown as the plain lines.

2.4.1 Implementation

In the sub-halo abundance matching (SHAM) technique, dark matter haloes and
galaxies are ranked according to their mass, and then the galaxies are associated to
haloes by assuming a monotonic one-to-one relationship (Vale and Ostriker 2004;
Conroy et al. 2006; Behroozi et al. 2010; Moster et al. 2010; Reddick et al. 2013).

Note that in our definition of the halo mass (computed with the spherical over-
density criterion), the mass of the main halo includes the mass of possible sub-haloes,
while the mass of the central galaxy does not include the mass of the satellite galax-
ies. The SHAM method also does not consider either the gas mass or the intracluster
medium.

We carry out a “parametric” SHAM, assuming a functional form for the relation
between M∗ and Mh. Following the same formalism as in Behroozi et al. (2010),
such a parametric SHMR is described by the following equation:

log(Mh) = log(M1) + β log (M∗/M∗,0) +
(M∗/M∗,0)δ

1 + (M∗/M∗,0)−γ
− 1

2
. (2.6)

This model has five free parameters (M1, M∗,0, β, δ, γ) which determine the am-
plitude, the shape and the knee of the SHMR (see Behroozi et al. 2010, for a more
detailed description of the role of each parameter in shaping the SHMR).

The galaxy cumulative number density (N∗) and the halo cumulative number
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Figure 2.8: Diagram of the abundance matching procedure. The orange line shows
the cumulative distribution of the Despali et al. (2016) HMF and the blue line
is the cumulative distribution of Davidzon et al. (2017) SMF for the redshift bin
0.2 < z < 0.5. Stellar mass and halo mass are linked by equating N∗(M∗) = Nh(Mh).

density (Nh) above a certain mass are respectively given by

N∗(M∗) =

∫ +∞

M∗

φ∗(M)dM (2.7)

Nh(Mh) =

∫ +∞

Mh

φh(M)dM (2.8)

with φ∗ and φh being the stellar and halo mass functions. The main assumptions of
SHAM is that there is only one galaxy per dark matter halo and that the relation
between stellar and halo masses is monotonic. As a consequence, the M∗ value
associated to a given Mh is the one for which N∗(M∗) = Nh(Mh). This procedure is
illustrated in Figure 2.8.

The derivative of this equation gives the relation between SMF, HMF, and
SHMR:

φ∗,conv(M∗) =
dMh

dM∗
φh(Mh) , (2.9)

where the differential term on the right-hand side can be derived from Equation 2.6.
We use the notation φ∗,conv because we multiply the SMF φ∗ with a log-normal

distribution with a standard deviation ξ to account for scatter in stellar mass at
fixed halo mass.

The standard deviation (ξ) of this log-normal distribution is kept as an addi-
tional free parameter; we assume that ξ is independent of the halo mass (More et al.
2009; Moster et al. 2010) but can vary with redshift. We note here that new hydro-
dynamical simulations like Eagle (Schaye et al. 2015) have shown that this scatter
decreases from 0.25 dex at Mh = 1011M� to 0.12 dex at Mh = 1013M� (see Matthee
et al. 2017). This evolution of the scatter is in agreement with latest abundance
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matching models (Coupon et al. 2015; Behroozi et al. 2018; Moster et al. 2018). See
also figure 9 of Gozaliasl et al. (2018). However in our analysis, we restrict to a
mass-invariant scatter for simplicity.

The model SMF defined in Eq. (2.9) is then fitted to the observed one (i.e.,
φ∗,obs) through the procedure described in the next Section.

2.4.2 Fitting procedure

To fit the model SMF to real data, we define the negative log-likelihood

χ2 =
∑
i

(
φ∗,conv(M∗,i)− φ∗,obs(M∗,i)

σobs(M∗,i)

)2

, (2.10)

where σobs is the uncertainty of the observed SMF in a given stellar mass bin M∗,i
(with the first bin starting at M∗,min).

For each of the ten redshift bins, we minimise Equation (2.10) using a Markov
Chain Monte Carlo (MCMC) algorithm3. This algorithm allows the sampling of the
parameter space in order to derive the posterior distribution for the six free param-
eters. We use flat conservative priors on the parameters together with 250 walkers
each with a different starting point randomly selected in a Gaussian distribution
around the original starting point. The convergence criterion is based on the auto-
correlation length, which is an estimate of the number of steps between which two
positions of the walkers are considered uncorrelated (Goodman and Weare 2010).

The MCMC stops when the autocorrelation length has changed by less than 1%
and when the length of the chain is at least 50 times the autocorrelation length.
As an example, the chains in the case of the HMF fitted on Bolshoï-Planck have a
length between 5000 at low redshift and 25000 in the highest redshift bin. With our
250 walkers this gives between 1.25× 106 and 6.25× 106 samples. The first steps up
to two times the autocorrelation length are discarded as a burn-in phase. To speed
up the computation of the posteriors, we keep only the iterations separated by a
thin length which is half of the autocorrelation length.

We show the best fit and the 68% confidence interval for the six free parameters in
each of the ten redshift bins in Table 2.1. We show the 1σ confidence interval for the
redshift bin [0.8, 1.1] in Figure 2.18 (at the end of the chapter). The 1σ confidence
intervals of each of our ten fits are shown in the Appendix of (Legrand et al. 2019).
These figures show that the parameters M1 and M∗,0 are highly correlated. This
is expected because as M1 increases, M∗,0 should also increase. M1 and β are also
highly correlated which may be explained by the fact that log(M∗/M∗,0) is negative
for a large range of stellar masses so an increase of β is compensated by an increase
ofM1. The value of δ is not well constrained at high redshift, because this parameter
controls the high mass slope which is not well measured with our data.

3We use the Emcee python package (Foreman-Mackey et al. 2013).
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2.4.3 Main sources of SHAM uncertainties

There are several sources of uncertainties involved in the SHAM technique. A sub-
halo may be stripped after infall, leaving the hosted galaxy embedded in the larger,
central halo. This may break the one-to-one correspondence between galaxies and
dark matter haloes which is the main assumption of our method. The HOD model is
a viable solution to take this into account although it would introduce an additional
number of assumptions and free parameters. Moreover, observed galaxy clustering is
required to constrain the HOD model parameters (e.g. Coupon et al. 2015) but such
measurements are challenging at z > 2 (Durkalec et al. 2015). At lower redshift (z .
1) Leauthaud et al. (2012, see their Figure 13) have shown thatMpeak

h measurements
are consistent between HOD and SHAM measurements.

Another source of uncertainty comes from random and systematic errors in zphot

and M∗ estimates, with the former propagating into the M∗ error in a way difficult
to model (see discussion in D17). In D17, the logarithmic stellar mass uncertainty
is described by a Gaussian with standard deviation σM∗ = 0.35 dex multiplied by a
Lorentzian function with a parameter τ increasing with redshift to enhance the tails
of the distribution (see equation 1 of D17). These observational uncertainties which
cause the Eddington bias have been corrected for in the SMF estimates we adopt (see
Section 2.2.2) but some caveats remain (see D17; Grazian et al. 2015). Moreover in
our fitting procedure, we consider that different stellar mass bins are uncorrelated
(Eq. 2.10). This assumption is a consequence of the fact that in D17 (as in the
vast majority of the literature) covariance matrices are not provided for the SMF
estimates. Once corrected for M∗ observational uncertainties, the main source of
correlations between mass bins comes from the intrinsic covariance between them.
To avoid oversampling, we adopt a mass bin size of 0.3 dex which is comparable to
the scatter in D17. We verified that this choice does not introduce any significant
bias: modifying the bin size and centre (by ±0.1 dex) results remain consistent
within 1σ.

A final source of uncertainty comes from the M∗ scatter that we add to the
galaxy-to-halo monotonic relation. This is modelled with a log-normal distribution
characterised by the parameter ξ which is free to vary in the MCMC fit. This
parameter is usually fixed between 0.15 and 0.20 dex (see e.g. More et al. 2009;
Moster et al. 2010; Reddick et al. 2013) but in the large redshift range probed
here we expect a non-negligible variation due to the evolution of galaxies’ physical
properties as well as observational effects. We note however that the resulting values
(see Table 2.1) are compatible with the fixed ones assumed by the studies mentioned
previously.

2.5 Results: stellar-to-halo mass relation in COSMOS

2.5.1 Stellar-to-halo mass ratio

Figure 2.9 shows our derived stellar-to-halo mass ratios. The SHMR and the cor-
responding 1σ uncertainty are computed respectively as the 50th, the 16th and the
84th percentile of the distribution of Mh at a given M∗ in the remaining MCMC

38



2.5. Results: stellar-to-halo mass relation in COSMOS

11.5 12.0 12.5 13.0 13.5 14.0 14.5
log(Mh/M )

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

lo
g(

M
*/M

h)

0.2<z<0.5
0.5<z<0.8
0.8<z<1.1

1.1<z<1.5
1.5<z<2.0
2.0<z<2.5

11.5 12.0 12.5 13.0 13.5 14.0 14.5
log(Mh/M )

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

lo
g(

M
*/M

h)

2.5<z<3.0
3.0<z<3.5

3.5<z<4.5
4.5<z<5.5

Figure 2.9: Stellar-to-halo mass ratio from z = 0.2 to z = 2.5 (upper panel) and
from z = 2.5 to z = 5.5 (lower panel). Thick lines show the 50th percentile of the
Mh distribution at fixed M∗ computed from our MCMC runs. The coloured bands
show the 16th and 84th percentile.

chains (Section 2.4.2). These uncertainties are shown as shaded regions.
For each redshift, the M∗/Mh ratio peaks at Mh ' Mpeak

h and drops by one
order of magnitude at both the extremes of our halo mass range. At z < 0.5, Mpeak

h

= 1012M�, with log(M∗/Mh) = −1.55 ± 0.5. At higher redshifts, Mpeak
h increases

steadily up to 1012.5M� at z = 2, i.e. growing by a factor ∼3. It then remains flat
up to z = 4. At a fixed halo mass above Mpeak

h , M∗/Mh does not evolve, while in
haloes below Mpeak

h the ratio decreases from z ∼ 0 to z ∼ 2.5.

2.5.2 Variation of the peak halo mass with redshift

Figure 2.10 shows the redshift evolution of the peak halo mass between z = 0.2 and
4.5 computed from the medianMpeak

h for all the samples retained in the MCMC (see
Section 2.4.2). The results are reported also in Table 2.1. Figure 2.10 also presents
a compilation of recent measurements from the literature together with model pre-
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Figure 2.10: Figure from Legrand et al. (2019). Peak halo mass Mpeak
h as a function

of redshift (red dots). We plot Mpeak
h at the median redshift of each bin, rescaled to

H0 = 70 km.s−1Mpc−1. All masses from other studies have been rescaled to match
the H0 = 70 km.s−1Mpc−1 cosmology. Some points from the literature have been
slightly shifted along the redshift axis for clarity. We show results from Leauthaud
et al. (2011, L+11), Yang et al. (2012, Y+12), Coupon et al. (2012, C+12), Moster
et al. (2013, M+13), Behroozi et al. (2013, B+13), Behroozi and Silk (2015, B+15),
Coupon et al. (2015, C+15), Martinez-Manso et al. (2015, MM+15), Rodríguez-
Puebla et al. (2017, R+17), Ishikawa et al. (2017, I+17), Cowley et al. (2018, C+18),
Harikane et al. (2018, H+18), Moster et al. (2018, M+18), and Behroozi et al. (2018,
B+18). The brown arrow is the lower limit for Mpeak

h from Harikane et al. (2018,
H+18).

dictions (lines). At z > 3 it becomes progressively more difficult to measure the
position of the peak as the slopes of halo and stellar mass functions become similar
(Figure 2.5). In addition at higher redshifts, there are correspondingly smaller num-
bers of massive galaxies in the COSMOS volume. Nevertheless, our measurements
show clearly that the peak halo mass increases steadily from 1012M� at z = 0.3 to
1012.6M� at z = 4.

Below z ∼ 2.5 there is generally a good agreement in the literature with Mpeak
h

steadily increasing as a function of redshift. We confirm this trend despite some fluc-
tuation (e.g., at z ∼ 0.7) due to the over-abundance of rich structures in COSMOS
(see e.g. McCracken et al. 2015).

Above z & 3 the scatter in Mpeak
h increases. Moster et al. (2013) and Behroozi

et al. (2013) find different trends, i.e. a Mpeak
h (z) function that declines (Behroozi

et al. 2013) or flattens (Moster et al. 2013) with increasing redshift. One possible
explanation for the discrepancy is that Moster et al. and Behroozi et al. models are
based on different observational datasets. To address this issue,
Behroozi and Silk (2015) repeated Behroozi et al.’s analysis removing z > 5 con-
straints (which in their method influence also the fit at lower z). However, this test
is inconclusive as their Mpeak

h estimate (shown as the star symbol in Figure 2.10)
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falls between these curves 4.
Our higher Mpeak

h values with respect to Ishikawa et al. (2017) and Harikane
et al. (2018) may be a consequence of the near-infrared selection (a good proxy for
stellar mass, see D17). Ishikawa et al. (2017) and Harikane et al. (2018) samples
are selected in rest-frame UV (and a conversion to stellar mass is made through an
average LUV-M∗ relation). Moreover, their redshift estimation is derived (instead
of zphot estimates) from a Lyman-break colour–colour selection which may result in
lower levels of purity and completeness at z ∼ 3 (Duncan et al. 2014).

Recently, revised versions of Behroozi et al. (2013) and of Moster et al. (2013)
have been presented in Behroozi et al. (2018) and Moster et al. (2018). This new
analysis differs from the former ones by following closely the evolution of individual
halo-galaxy pairs through time. This results in a better understanding of the scatter
of the SHMR, because this scatter results from the evolution of each halo-galaxy
pairs, it is not an arbitrary scatter parameter added to the model. In Behroozi
et al. (2018), the feedback model regulating star formation has significantly changed
since Behroozi et al. (2013). In the updated model, the Mh threshold at which 50
per cent of the hosting galaxies are quiescent grows from 1012M� at z < 1 up to
∼1013M� at z = 3.5 (see Figure 2.17 and Section 2.8). As a consequence, theMpeak

h

evolution is now in excellent agreement with both Moster et al. (2013) and our
estimates. Moster et al. (2018) peak halo mass shown here corresponds to the peak
in the ratio between stellar mass and baryonic mass of galaxies (the [M∗/Mb] (Mh)
relation. We assumed here that the ratio between baryonic mass and halo mass is a
constant (equal to the universal baryon fraction), giving the same value for the peak
halo mass of the [M∗/Mh] (Mh) relation. The difference with our results might be
explained by a dependence of the baryon fraction of haloes with mass (see Kravtsov
et al. 2005; Davies et al. 2019).

2.5.3 Impact of the halo mass function on our results

Halo mass functions from the litterature

In order to estimate quantitatively how the choice of HMF impacts the results, we
repeat the analysis using different HMFs. Besides the variations due to different
cosmological parameters (Angulo and White 2010), it is difficult to model the un-
certainties affecting the HMF. Studies have investigated the impact of different halo
finding algorithms which produce changes in the HMF of the order of ∼ 10% (Knebe
et al. 2011). The HMF estimation will also depend on the simulations used to cali-
brate it, such as its volume or its resolution. Another potential issue is the impact
of baryons (not implemented in Despali et al.) on the growth of dark matter haloes:
Bocquet et al. (2016) show that in hydrodynamical simulations the halo number
density decreases by ∼15% at z . 0.5 with respect to dark matter only, whereas at
higher redshift the impact of baryons is negligible.

4Mpeak
h (z) error bars are not explicitly quoted either in Behroozi et al. (2013) or Moster et al.

(2013). However, we can quantify them through the uncertainties of their SHMR models. For
example in the model of Moster et al., the 1σ confidence level of the M1(z) parameter can be used
as a proxy, leading to Mpeak

h error bars of the same order of magnitude of ours.
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Figure 2.11: Figure from Legrand et al. (2019). Comparison of different halo mass
functions from the literature. For three sample redshift bins the relative differ-
ence as a function of halo mass between the original Despali et al. (2016) using
the virial overdensity criterion, our Bolshoï-Planck fit (solid magenta line), and a
selection of HMFs from the literature. Magenta lines show numerical simulations in
which haloes are defined according to a spherical over-density threshold (solid line:
Bolshoï-Planck, long-dashed line: Tinker et al. 2008, short dashed: Bocquet et al.
2016). Cyan lines show works that use a friends-of-friends algorithm (dotted line:
Bhattacharya et al. 2011, dot-dashed: Watson et al. 2013).

Our main analysis uses the Despali et al. mass function fitted on the Bolshoï-
Planck simulation as presented in Section 2.3.1. We also compare to the original
version of Despali et al. (2016) HMF with halo mass defined using the virial over-
density criterion.

We considered alternate HMF from the literature. These other versions are
divided into two categories according to how haloes are identified. HMF estimates
in the first category (Tinker et al. 2008; Bocquet et al. 2016) use the spherical
overdensity definition, while the others (Bhattacharya et al. 2011; Watson et al.
2013) rely on the so-called “friends of friends” (FoF5) algorithm (Davis et al. 1985).

Figure 2.11 shows how the Despali et al. (2016) fit and the other HMF differ
from Despali et al. in three redshift bins. At low redshifts, we find that differences
are negligible, in agreement with the literature. However for >1013M� haloes at
z > 2, i.e. in a range barely investigated in previous work, there are 0.2 – 0.5 dex
offsets between Despali et al. (2016) and other HMF estimates. Such a difference
may be fully explained by Poisson scatter since such massive haloes are rare in the
volume of cosmological simulations. We do not attempt to find the physical reasons
of the discrepancy and here we simply take the “inter-publication” bias as a measure
of HMF uncertainties.

5In the FoF algorithm, particles of the simulation are linked by pairs that are closer than a
given linking length. Haloes are identified as a combination of particles that are related by a chain
of pairs, i.e. they are “friends of friends”.
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Figure 2.12: Figure from Legrand et al. (2019). Peak halo mass (Mpeak
h ) computed

using different HMFs. Mpeak
h redshift evolution is independently measured six times,

using different HMF fits: our Bolshoï-Planck fit of Despali et al. (2016, our main
reference also shown in Figure 2.10); the original Despali et al. (2016); Tinker et al.
(2008); Bhattacharya et al. (2011); Watson et al. (2013); Bocquet et al. (2016).
Filled circles (triangles) indicate that the halo identification has been done with a
spherical overdensity (friends-of-friends) algorithm. Each set of Mpeak

h (z) values
derived for a given HMF is shifted by 0.05 in redshift for sake of clarity. SHAM
method and observed SMF are the same for all estimates. Literature measurements
are shown as in Figure 2.10.

Impact of the halo mass function on Mpeak
h

We show in Figure 2.12 the impact of changing the HMF on the estimation of the
peak halo mass Mpeak

h . Results at z . 2 are consistent, whilst at higher redshifts we
clearly observe the impact of halo identification techniques. Mpeak

h values using the
HMF of either Tinker et al. (2008), Bocquet et al. (2016), or Despali et al. (2016)
are grouped together, as those studies all applied a spherical overdensity criterion
to define haloes. Bhattacharya et al. (2011) and Watson et al. (2013) use a friends-
of-friends algorithm, and the resulting log(Mpeak

h /M�) is systematically higher by
∼0.1 dex at z > 2. In our study, these differences are smaller than other sources
of uncertainties, but it is clear that in future larger surveys these differences may
become important.

2.5.4 Stellar to halo mass ratio evolution at fixed halo mass

As we can see in Figure 2.9, the value of the stellar to halo mass ratio M∗/Mh

seems to be constant with redshift for massive haloes, while this ratio seems to be
increasing with redshift with lower mass haloes.

In order to get a better idea of the galaxy formation efficiency inside dark matter
haloes, we show in Figure 2.13 the evolution of the M∗/Mh ratio with redshift for
fixed values of halo mass. We restrict this analysis to z < 2.5 because at high mass
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Figure 2.13: Figure from Legrand et al. (2019), showing M∗/Mh as a function of
redshift for fixed halo masses (solid lines). We also show the value of this ratio at
the halo mass Mh ≡ Mpeak

h (z) which evolves with redshift (dashed line). Error bars
are derived from Figure 2.9.

bins (1013M�) uncertainties in the M∗/Mh ratio prevents a quantitative discussion
of its evolution with redshift between z = 2.5 and z = 5.5.

For massive haloes (Mh ' 1013M�), the ratio is nearly constant between z ∼ 0.2
and 2.5, there is no specific hints of star formation in the halo. For Mh ' 1012M�
the ratio increases with cosmic time, and it reaches its maximum value (about 0.03)
at z ' 1 and then remain constant until z ∼ 0.2.

Lower-mass haloes, which are < Mpeak
h across the whole redshift range, steadily

increase their M∗/Mh without any peak or plateau. For instance, haloes with
Mh ' 1011.5M� increase their M∗/Mh ratio by a factor ∼ 3.2 from z = 2.5 to 0.2.

For comparison, Figure 2.13 also shows the increase of the M∗/Mh ratio, from
z = 2.5 to 0.2, for haloes in a mass bin that evolves with redshift, i.e.Mh = Mpeak

h (z).

2.5.5 Interpretation of this evolution

The M∗/Mh ratio is usually interpreted as the comparison between the amount of
star formation and dark matter accretion integrated over a halo’s lifetime. Thus, a
highM∗/Mh ratio in a givenMh bin implies that those haloes have been (on average)
particularly efficient in forming stars. In addition to the in situ star formation,
further stellar mass can be accreted via galaxy merging. In such a framework, the
dependence of the M∗/Mh ratio on halo mass and redshift can be explained by a
combination of physical phenomena (see Section 2.8). Our observational constraint
onMpeak

h can help to understand which mechanisms, amongst those proposed in the
literature, are mostly responsible for regulating galaxy stellar mass assembly.

Mpeak
h can be considered as the threshold above which haloes maintain a nearly

constantM∗/Mh ratio across time (Figure 2.13). At a fixed halo mass belowMpeak
h ,

the M∗/Mh ratio increases with comic time, indicating that stellar mass has “kept
up” with dark matter accretion. For a fixed halo mass above Mh ' Mpeak

h , host
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galaxies are more likely to enter in a quiescent phase and thereafter passively evolve.
Figure 2.13 clearly shows this evolution with redshift for fixed halo masses. For
objects with Mh = 1012M�, their M∗/Mh increases until z ∼ 1 (i.e., when Mpeak

h =
1.3−1.6 × 1012M�) after which the ratio remains constant until z = 0.2. Note
that we do not track the evolution of individual haloes but instead the evolution
of the M∗/Mh ratio for a given halo mass. This makes the interpretation of the
evolution of individual haloes with time more difficult (haloes at high redshift are
not necessarily the same as haloes of the same mass at low redshift).

2.6 SHMR from a hydrodynamical simulation

To test the link betweenMpeak
h and the efficiency of galaxy formation, we investigate

the stellar to halo mass relation in the Horizon-AGN (Dubois et al. 2014) hydrody-
namical simulation. We use the lightcone catalog (Laigle et al. 2019; Davidzon et al.
2019) which reproduces the observed properties of galaxies as if they were observed
in the same photometric bands and with a similar depth as COSMOS. Dark matter
haloes and galaxies are matched in the simulation, allowing us to compare the stellar
mass of the central galaxy to the dark matter mass of the halo. The interest of this
catalog is that we can get information on the properties of the galaxies that have
been measured in the lightcone. In our test case, we are interested in the specific
star formation rate (sSFR) of the central galaxy, which is the star formation rate
(SFR) (expressed in units of stellar mass per unit of time) divided by the stellar
mass of the galaxy.

We fit the stellar-to-halo mass relation of Equation 2.6 on the matched halo-
central galaxy catalog. Figure 2.14 shows the average sSFR of galaxies as a function
of their stellar mass and halo mass, for different redshift bin of the snapshot. The
fitted stellar-to-halo mass relation are the plain black lines and the peak of the
M∗/Mh ratio is shown as the dotted lines. We note that the Mpeak

h values from the
simulation are ∼ 0.5 dex lower than our measurements in the COSMOS field.

As we can see in Figure 2.14, for a fixed halo mass, there is a scatter of stellar
mass around the average value given by the stellar-to-halo mass relation. For a fixed
halo mass < Mpeak

h , the sSFR decreases when the stellar mass increase. For a halo
mass > Mpeak

h , we see that the sSFR significantly drops compared to lower mass
haloes. Alternatively for a fixed stellar mass, the sSFR decreases when the halo
mass increases.

This shows that the galaxy formation is more efficient in small haloes hosting
a small galaxy. As time goes, halo mass and stellar mass increase and the galaxy
formation efficiency decreases. This Figure illustrates the fact that the sSFR is
tightly correlated with the position of the galaxy with respect to the stellar-to-halo
mass relation, and there is a drop of the star formation of the central galaxy in
haloes above the threshold given by Mpeak

h .
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Figure 2.14: Stellar to halo mass relation in Horizon AGN. The hexagonal bins are
colour coded as a function of the average specific star formation rate of galaxies that
fall in this bin. Panels from left to right are for different redshift bins (shown on the
upper left corner of each panel). In each panel, colorbars show the corresponding
values of log10(sSFR). The plain line is the fitted SHMR from Equation 2.6, and
the vertical dashed line show the Mpeak

h value. We only show bins containing more
than 50 haloes.

2.7 Cold molecular gas and dark matter haloes

We saw in the previous sections that massive haloes were efficiently converting
baryons into stars at high redshift. This seems to be in contradiction with Sec-
tion 2.1 where we saw that gas cooling is more efficient at low redshift due to a
higher metallicity of the gas. Moreover observations show that galaxies had on av-
erage a higher star formation rate at higher redshift, peaking at z ∼ 2 (Madau and
Dickinson 2014), and that it can be linked to a higher cold molecular gas to baryonic
mass fraction (Tacconi et al. 2010; Carilli and Walter 2013; Tacconi et al. 2018).

As the cold molecular gas is the basic ingredient of star formation, its presence
in massive haloes at high redshift could explain their efficient star formation. In this
section we test if evolution of the stellar mass to halo mass fraction can be linked
to the evolution of the cold gas mass to stellar mass fraction. To do this, we use
observations of the cold gas content of galaxies at high redshift and link the cold
gas mass of central galaxies to the mass of their host dark matter halo.

2.7.1 Linking gas mass to stellar mass

Cold (T ∼ 10 K) and dense (n > 30 cm−2) molecular clouds are mainly composed of
H2 (Kennicutt and Evans 2012). However the H2 gas is almost invisible in emission
as it is excited only for T ≥ 100 K. Fortunately the molecular interstellar medium
also contains heavier elements at the level of a few 10−4 per H nucleon, the most
abundant being carbon and oxygen which combine in the CO molecule. The CO
molecule is excited for T ≥ 5 K. As such the CO emission line is a good probe
of the cold gas mass, dominated by H2 (see e.g. Bolatto et al. 2013). However
this technique relies on spectroscopic observations and is therefore time consuming,
especially to get a statistically significant sample at high redshift.

Recently, Scoville et al. (2016) proposed an empirical calibration of the Raylegh-
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Jeans dust emission continuum over the CO emission. They used local galaxies and
galaxies at z ∼ 2 to calibrate this relation. This method gives a factor two accuracy
on the derived gas mass, provided that we restrict the analysis to massive galaxies
(> 1010 M�), as these are the ones where the gas is expected to follow a near-solar
metallicity.

Using this calibrated relation, Scoville et al. (2017) were able to measure the gas
mass (Mgas) for 708 galaxies in the COSMOS field between 0.3 < z < 4.5. These
measurements were obtained with the Atacama Large Millimetre Array (ALMA) at
240 GHz and 345 GHz. Combining with observations of the COSMOS field in other
wavelengths, they obtained the photometric redshift, the stellar mass and the star
formation rates for the galaxies of their sample.

From this dataset they proposed an empirical relation between the gas mass of
galaxies, their stellar mass M∗, their specific star formation rate sSFR and their
redshift (Scoville et al. 2017). However, the equations provided in Scoville et al.
(2017) are based on the star formation rate of main sequence6 galaxies estimated in
Speagle et al. (2014). Due to an error in the table giving the best fit parameters as
a function of redshift in Speagle et al. (2014), the equations of Scoville et al. (2017)
have been updated (N. Scoville, private communication). The gas mass, also called
interstellar medium (ISM) mass, is given by

Mgas = 6.885× 109 τ 0.5042
evol

(
sSFR

sSFRMS

)0.2802

M0.1206
10 , (2.11)

where
τevol ≡

SFRMS(t,M∗ = 5× 1010)

SFRMS(t0,M∗ = 5× 1010)
, (2.12)

tracks the time evolution, M10 = M∗/1010M� and sSFR = SFR/M∗ is the specific
star formation rate. The SFRMS is the SFR of main sequence galaxies and is taken
from Speagle et al. (2014) and Lee et al. (2015).

We define the cold gas mass fraction as

fgas ≡
Mgas

M∗ +Mgas

, (2.13)

and fitted relation between the SFR and the cold gas mass is given by

SFR = 0.1052
Mgas

109 M�
τ 0.5062

evol (sSFR / sSFRMS)0.7132M0.2522
10 (2.14)

2.7.2 Linking gas mass to halo mass

We now wish to link the above relation to the evolution of the dark matter halo
mass to obtain the full picture of the evolution of the cold gas content contained
in the central galaxies of dark matter haloes. In order to link the stellar mass in
equation 2.11 to the dark matter halo mass, we use the stellar-to-halo mass relation

6The main sequence (MS) of galaxies is a tight relation followed by most galaxies which links
their star formation rate to their stellar mass (e.g. Noeske et al. 2007).
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published in Behroozi et al. (2018).
Behroozi et al. (2018) used a combination of low and high redshift surveys to

constrain the SHMR and its evolution with redshift. Their stellar-to-halo mass
relation is given by

log10

(
M∗
M1

)
= ε− log

(
10−αx + 10−βx

)
+ γexp

[
−0.5

(x
δ

)2
]
, (2.15)

x ≡ log10

(
Mh

M1

)
, (2.16)

where each of the parameters (M1, ε, α, β, γ, δ) has a polynomial dependence on
redshift (not reproduced here) given by equations J3 to J8 of Behroozi et al. (2018).
Combining this equation with equation 2.11, we are able to track the gas content of
central galaxies as a function of their halo mass and redshift.

2.7.3 Results

We show in Figures 2.15a to 2.15c the cold gas mass, star formation rate and cold gas
mass fraction of main sequence galaxies as a function of their dark matter halo mass
and redshift. The grey areas in the bottom of the Figures correspond to galaxies with
a stellar mass lower than 1010 M�, which is the minimum mass of the calibrations
of Scoville et al. (2017). The white dashed lines track the median mass accretion
history of haloes, following the relations described in Behroozi et al. (2013) fitted
on dark matter simulations (their Equations H2 to H6). These lines allow to track
the previous mass of present day haloes. The top grey areas show haloes which will
get a present mass higher than 1015.5 M� and are not expected to exist.

Figure 2.15a shows that the cold gas mass peaks at z > 2 and for galaxies
hosted in haloes more massive than Mh = 1012.5 M�, reaching Mgas > 8× 109 M�.
Following the white dashed lines, we see that this cold gas will be depleted, and by
z = 0.5 the gas mass for all halo mass is lower than 2× 109 M�: it has decreased by
a factor of four.

This depletion of cold gas is correlated with a decrease of the star formation rate,
as we can see in Figure 2.15b. Star formation is higher at z > 2 and is maximum
in haloes with Mh > 1012.5 M�, reaching more than 30M� yr−1. We see that the
star formation rate decreases with time, going from SFR > 30M� yr−1 at z > 2
to SFR < 5M� yr−1 for z < 1. These figures are coherent with observations of the
decline of the SFR for main sequence galaxies with time (Noeske et al. 2007). Figure
2.15b, as well as 2.15a hint towards a dependence of the SFR with the halo mass at
high redshift, while we see that SFR does not depend on mass at lower redshift.

Figure 2.15c shows the gas fraction of main sequence galaxies as a function of
the host halo mass and redshift. We see in this Figure that for high redshift (z > 3),
more than 50 % of the baryonic content of central galaxies is in the form of gas.
This is especially true for galaxies inside haloes of mass Mh < 1012.5 M�, with a gas
fraction of more than 60% at z > 2.

Following the white dashed lines we can track the growth of the haloes. Haloes
of present day mass of 1014 M� had a mass of 1012 M� at z = 4. By z ∼ 2, their
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Figure 2.15: Properties of central galaxies as a function of their host halo mass
and redshift, for main sequence galaxies (sSFR = sSFRMS). (a): Cold gas mass,
(b): Star formation rate, (c): Cold gas fraction. Black lines show isocontours. The
white dashed lines track the mass accretion history of haloes, and the upper right
grey areas show location of haloes that are expected to have a present day mass of
Mh > 1015.5M� and thus not expected to exist. The bottom grey areas show the
locus of haloes hosting a galaxy with a stellar mass lower thanM∗ = 1010M�, results
below this limit are extrapolated and should be taken with care.
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central galaxies already converted 50% of their baryonic mass into stars. Central
galaxies in haloes with a present day mass of 1013 M� have depleted 50 % of their
gas at z ∼ 1.5 and the ones in haloes with a present day mass of 1012 M� have
reached this threshold at z ∼ 0.5.

Another way to track the evolution of gas is to track the halo mass and redshift
of galaxies with a constant gas fraction, which are the black lines on 2.15c.

We see that the galaxies with a gas fraction of 60% have a halo mass of 1012.5 M�
at z ∼ 4. This mass stays almost constant until z ∼ 2. And then we see that this
mass quickly decreases down to ∼ 1011.5 M� at z = 0 This evolution of a constant
gas fraction of 60% follows a trend similar to the evolution of the peak halo mass
we observed in Figure 2.10, with a plateau of the peak halo mass between z = 4
and z = 2 and then a decrease down to z = 0. This hints towards the importance
of the depletion of gas on the evolution of the shape of the SHMR. We discuss more
in Section 2.8 the role of gas in the galaxy evolution and star formation quenching.

To summarize our results of the link between cold gas and halo mass across time:

– Galaxies with the highest gas mass and the highest star formation rate lie
inside the most massive haloes at high redshift.

– However, the gas fraction is higher for galaxies inside a smaller halo.

– As halo mass grows, galaxies deplete their gas, decreasing both the gas fraction
and the SFR with time.

– The gas mass fraction quickly decreases between z = 2 and z = 0 for haloes
of a mass between 1012 and 1012.5 M�.

– The redshift evolution of the halo mass for which galaxies have a gas fraction
of 60 % is similar to the redshift evolution of the peak halo mass of the SHMR:
an increase from z = 0 to z = 2, then a plateau at Mh = 1012.5 M� for z > 2.

2.8 What could explain a redshift evolution of quenching ?

Based on observations in the COSMOS field, we saw that theM∗/Mh ratio has a bell
shape, with a peak around 1012 M� at z = 0. We interpreted this Mpeak

h as the mass
of haloes that have been most efficient in converting baryons into stars. Thanks
to a hydrodynamical simulation, we found in Section 2.6 that the star formation
of galaxies is correlated with the stellar-to-halo mass relation. Star formation is
very efficient in small haloes while haloes above Mpeak

h have entered the quenching
phase. As such, Mpeak

h gives the characteristic mass of haloes that are entering the
quenching phase.

We saw in Figure 2.10 that in the COSMOS field, Mpeak
h (z) increases with red-

shift, and changes slope at z ∼ 2, showing a plateau at higher redshift. The efficiency
of star formation has moved from massive haloes at high redshift, to less massive
ones at low redshift. This implies that the threshold for massive haloes to enter the
quenching phase depends on redshift: in the early universe quenching mechanisms
are less effective for galaxies in haloes between 1012 and 1012.5M�.
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Figure 2.16: Figure from Man and Belli (2018). The role of gas and different physical
processes of star formation quenching.

Cold molecular gas is the fuel of star formation. When the gas is accreted
inside the dark matter halo, it first needs to cool, as we saw in Section 2.1. Several
processes can halt galaxy formation, from external process that stop inflows of gas
inside the halo, such as the merging into a bigger halo, to internal processes that
prevent gas cooling such as AGN activity. Figure 2.16 lists some of the main physical
processes that could explain quenching. In Section 2.7, we used observations of the
cold molecular gas content of galaxies and we found that the cold molecular gas
is mainly found at high redshift. We also found that the cold molecular gas mass
fraction decreases drastically for haloes of a mass 1012 to 1012.5 M� between z = 2
and z = 0, similarly to the decrease of the peak halo mass from 1012.5 M� at z = 2
to 1012 M� at z = 0.

We now need to find a scenario that can explain our observations of the evolution
of Mpeak

h with redshift, which we assume to be linked to our observations of the
depletion of cold molecular gas in massive haloes.

In their cosmological hydrodynamical simulations, Gabor and Davé (2015) imple-
ment a heuristic prescription to halt star formation in systems with a large fraction
of hot gas. Namely, their model prevents gas cooling in dark matter haloes by setting
the circumgalactic gas temperature equal to the virial temperature. This condition
is triggered when a halo has 60% of its gas particles with a temperature > 105.4 K
(Kereš et al. 2005). The condition triggering the quenching phase, which Gabor and
Davé call “hot halo” mode, is reached exclusively at Mh > 1012M� in their simula-
tion. We find that this halo mass threshold is in agreement with Mpeak

h . However,
Gabor and Davé (2015) carried out their analysis at z < 2.5. For higher redshifts,
this temperature threshold would be in disagreement with our results. Also Behroozi
et al. (2018), considering the evolution of the quiescent galaxy fraction, emphasise
that a quenching recipe with a constant temperature threshold could not explain
the observational trend, see Figure 2.17. As the difference between a constant and
a time-evolving threshold becomes more relevant in the first ∼2Gyr after the Big
Bang, our results could help discriminate between these different scenarios.

The hot halo model is agnostic regarding the sub-grid physics of the simulation:
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Figure 2.17: Figure from Behroozi et al. (2018). Mass of haloes above which 50%
of the galaxy population is quenched, as a function of redshift. The plain red line
assumes that quenching happens above a constant virial temperature threshold of
6.4× 105 K. The blue line assumes quenching hapens when the ratio of the cooling
time over the dynamical time is greater than 0.4. The purple dashed line is the
model from Dekel and Birnboim (2006) assuming cold gas inflows penetrate the
halo at z > 1.5. The black line are the results from the empirical model of Behroozi
et al. (2018).

gas heating can be caused by other mechanisms (see Figure 2.16) such as stable
virial shocks (Birnboim and Dekel 2003) or AGN feedback (see a review in Heckman
and Best 2014). Simulations in Dekel and Birnboim (2006) show that shock heating
in massive haloes becomes inefficient at high redshift because cold streams are still
able to penetrate into the system and fuel star formation (see also Dekel et al. 2009).
However, despite that this trend is in general agreement with our results there are
quantitative differences in the evolutionary trend. With the fiducial parameters
assumed in Dekel and Birnboim (2006) the “critical redshift” at which ∼1012M�
haloes start to form stars more efficiently is zcrit ' 1.5. Moreover, according to their
model Mpeak

h should keep increasing at z > zcrit instead of plateauing.
Quenching models more compatible with our observational results have been pre-

sented e.g. in Feldmann and Mayer (2015). Under the assumption that gas inflow
(thus star formation) is strongly correlated to dark matter accretion, the authors
note that at z > 2 massive haloes are still collapsing fast and dark matter filaments
efficiently funnel cool gas into the galaxy. At z . 2 those haloes should enter in a
phase of slower accretion that eventually impedes star formation by gas starvation.
However, we caution that they study single galaxies in cosmological zoom-in simu-
lations: a larger sample may show considerable dispersion in the redshift marking
the transition between the two dark matter accretion phases. In addition, we em-
phasise that not only the accretion rate but also the cooling timescale varies with
redshift. Gas density follows the overall matter density of the universe, evolving
as ∝ (1 + z)3. Since the post-shock cooling time is proportional to gas density, it
would be significantly shorter at higher redshift. On the other hand, this argument
in absence of more complex factors should lead to a steeper, monotonic increase of
Mpeak

h that we do not observe.
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As mentioned above, AGN feedback at high redshifts can also regulate galaxy
star formation and explain our observedMpeak

h trend. AGN activity at high redshift
is expected to be almost exclusively in quasar mode (e.g., Silk and Rees 1998) with
powerful outflows that can heat or even expel gas. However such radiative feedback
has shown to be inefficient in hydrodynamical “zoom–in" simulations at z ∼ 6 (e.g.
Costa et al. 2014). Observations also indicate that high-z quasars do not prevent
significant reservoirs of cold gas from fuelling star formation (e.g., Maiolino et al.
2012; Cicone et al. 2014). Therefore, star formation in massive haloes can proceed for
2−3Gyr after the Big Bang without being significantly affected by AGN activity, in
agreement with our observations. At later times, perturbations to cold filamentary
accretion can starve galaxies of their gas supplies (Dubois et al. 2013).

Models of galaxy formation efficiency discussed so far do not account for the
role of large scale structures. Depending on their location within the cosmic web
(filaments, nodes, voids) haloes with similar masses may experience different accre-
tion histories (De Lucia et al. 2012). One key idea in this context is “cosmic web
detachment” (Aragon-Calvo et al. 2016): galaxies tied to nodes or filaments are
removed from their original location by interaction with another galaxy. After the
detachment gas supply – and then star formation – becomes less efficient. Aragon-
Calvo et al. (2016) suggest that massive haloes are the first to detach, whereas less
massive haloes 0.1−3×1010 h−1M� are still part of the cosmic web today. It is diffi-
cult to test this scenario beyond the local universe because precise measurements of
the SMF are required in addition to higher-order statistics (e.g., 3-point correlation
functions).

In summary, we have described different physical processes which could explain
our observed trends. The complete answer is likely to be some combination of these
mechanisms. But based on our discussion and observations, the physical processes
at work in our results seem to be best understood as a combination of starvation of
the cold-flow accretion and AGN feedback, with the precise role of evolutionary and
environmental effects yet to be determined.

2.9 Conclusions

We have used a sub-halo abundance matching technique combined with precise
stellar mass function measurements in COSMOS to measure the stellar-to-halo mass
relation with one coherent sample, on an unprecedented redshift interval from z ∼
0 to z ∼ 5. We accounted for the main sources of uncertainties in our stellar
mass measurements and photometric redshifts. We also tested the impact of halo
mass function uncertainties on the resulting SHMR. At z ∼ 0.2 we found that the
ratio of mass in stars to dark matter halo mass (M∗/Mh) peaks at a halo mass of
1012.05±0.07M�. This peak mass increases steadily to 1012.48±0.08M� at z ∼ 2.3, and
remains almost constant up to z = 4.

In order to validate our findings on the evolution of the peak halo mass, we
have used the lightcone catalog of the Horizon-AGN simulation, where galaxies and
haloes have been linked. We obtained a global view of the impact of the stellar-to-
halo mass relation on star formation rate of galaxies. Using a qualitative analysis,
we found that haloes with a mass higher than Mpeak

h are typically quenched, while
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small haloes and hosting a small galaxies are very efficient in forming stars.
We have used observations of the cold gas content in galaxies at high redshift

in the COSMOS field to follow the cold molecular gas and the efficiency of galaxy
formation. We found that the gas content is mainly contained in massive haloes at
high redshift. However, we found that haloes of 1012 M� host a central galaxy with
a gas fraction higher than 80% at z > 1.7. Following the evolution of halo growth,
we found that the redshift at which the central galaxy reaches a gas fraction of 50 %
depends on the initial mass of the halo. Following a line of constant gas fraction, we
found similarity with the evolution of the peak halo mass, hinting to a link between
gas depletion and quenching of star formation.

We discussed qualitatively which physical processes control these observations.
We propose that these evolutions can either be related to AGN feedback or to
environmental effects such as the starvation of cold gas inflows at high redshift,
maybe due to cosmic web detachment.

Our studies are based on phenomenological models and as a result can pro-
vide no direct information concerning the physical processes acting inside haloes.
Next-generation hydrodynamical simulations will allow us to better understand the
small-scale physical processes acting inside dark matter haloes and determine what
physical effects control star formation. In the next few years, the combined 20 deg2

Spitzer–Euclid legacy and Hawaii-2-0 surveys on the Euclid deep fields will provide
much better constraints on the massive end of the SMF at high redshifts. Precise
photometric redshifts will allow us to investigate in detail the role of environment
and in particular the “cosmic web" role in shaping galaxy and dark matter evolution.
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Figure 2.18: Figure from Legrand et al. (2019). One and two dimensional
marginalised distributions for the six free parameters of our SHMR (Equation 2.6)
in the redshift bin [0.8, 1.1]. Solid contours give the 68 and 95 per cent confidence
intervals.
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Chapter 3

The cosmological power of a joint analysis of
Euclid and CMB surveys

The last twenty years saw the triumph of the standard cosmological model. With
the ΛCDM model, we were able to model with very high fidelity the power spectrum
of the CMB observed by the Planck experiment. Concurrently, the galaxy clustering
and the BAO signals observed by galaxy surveys such as SDSS are also perfectly
compatible with ΛCDM. However, having a model that perfectly fit our observations
does not mean that we fully understand our Universe. In reality, the ΛCDM model
does not provide any clue about the nature of the dark matter nor of the dark energy.
Understanding the nature of this dark sector is the key question for the next decades
in cosmology.

To investigate the dark sector, next generation galaxy surveys will map the dis-
tribution of matter with unprecedented precision, offering a window on the evolution
of the Universe. Typically, the Euclid survey will probe a large volume of the uni-
verse, on 70% of the sky and up to a redshift of z = 2.5. This will provide a census
of billions of galaxies with a photometric redshift estimation, and millions of them
with a spectroscopic redshift. By targeting the era where the dark energy started
to dominate the energy budget of the Universe, we will surely discover a lot of
information about the nature of this accelerated expansion.

In parallel, next generation CMB surveys will map the microwave sky at a few
arcminutes resolution, both in temperature and polarisation. These surveys will
allow us to get a precise view of the early Universe. Moreover, because the CMB
photons crossed all the Universe up to us, we will get an integrated view of the
distribution of matter in the Universe (mainly thanks to CMB lensing) and on how
it has evolved.

This arrival of new and exquisite datasets requires that we develop the tools
to retrieve optimally the cosmological information they contain. Indeed, the era of
precision cosmology has now arrived: we are not limited by statistical uncertainties
anymore, our limits will be the systematic uncertainties. Because of the intrinsic
different nature of the CMB and galaxy probes, they are affected by different sys-
tematics. Combining and cross-correlating these datasets will be key to overcome
the limitations due to the systematic uncertainties and to get the tightest constraints
on our cosmological model.
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Forecasting constraints for Euclid X CMB

One necessary step is to assess how well these experiments will perform in terms
of constraints on cosmological parameters. These forecasts are key to provide the
reference needed to check the performance of the surveys and validate the choices
made during their design. These forecasts will also provide the templates and refer-
ence tools for the future data analysis.

In this context, I will detail in the present chapter forecasts on the combination
of Euclid and CMB observables. I will first introduce in Section 3.1 the interest of
probe combinations, before presenting our forecasting formalism in Section 3.2. I
will then introduce the Euclid survey in Section 3.4 and our observables of interest
in Section 3.3. I will then detail the numerical computations in Section 3.6. Finally I
will present our results in Section 3.7, focusing on the performance gain we will have
when including CMB observables to the main Euclid analysis, and I will conclude
in Section 3.8.

This chapter introduces the work of the Euclid XCMB science working group,
dedicated to the cross correlations of Euclid and CMB data. I present the work of the
SWG and my contribution to the activities of the group and to the article that will
be submitted by the collaboration (Euclid Collaboration in prep.). More specifically,
my participation in this project was dedicated to the modelling of CMB noise power
spectra, to the implementation and production of the covariance matrices between
our probes, of the Fisher matrices, and to the writing of the paper. Moreover, by
checking for consistency in the Final Fisher matrices between the different codes I
participated in the comparison and inter-validation of the codes developed in our
analysis.

In this chapter and in the next one, we use the following naming conventions:
observable refers to a field built on measured quantities, such as counts, redshifts,
or deflection angles, while probe refers to the combination of one, two or more
observables into a summary statistics. In practice, our probes will be the two-
point angular power spectra C`, and the two-point 3D power spectrum P (k). When
combining two different observables we will talk about a cross-correlation, while the
correlation of the same observable is an auto-correlation.

3.1 Interests of probe combination

The interest of probes combination has been widely demonstrated (see e.g. Eisenstein
et al. 1999; Lewis and Bridle 2002). Combining probes help in breaking degeneracies
between cosmological parameters, in lowering the importance of systematic effects
and in checking for inconsistencies between the different datasets.

In a recent example, the Figure 3.1 from Suzuki et al. (2012) shows that com-
bining supernovae observations with CMB and BAO constraints allows to break
degeneracies between ΩΛ and Ωm, and show that the Universe is almost completely
flat. However, in this paper they assumed that the observables were uncorrelated,
which is valid due to the very different nature of each of them: CMB is an early probe
while BAO measurements was done at z < 1 (Percival et al. 2010) and supernovae
can be considered as a local probe uncorrelated with the others.

In future surveys, we will not be able to assume a total independence between
CMB and galaxy probes, and a careful modelling of their covariances is needed to
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3.1. Interests of probe combination

Figure 3.1: Figure from Suzuki et al. (2012) showing the degeneracy between ΩΛ and
Ωm from different datasets: the CMB constraints from WMAP in orange (Komatsu
et al. 2011), the BAO constraints from SDSS in green (Percival et al. 2010) and the
Supernovae constraints from Suzuki et al. (2012) in blue. The grey area shows the
constraints obtained when combining the three.

perform accurate joint analyses. This is especially true when the footprints of the
CMB and galaxy surveys overlap, i.e. for Euclid and Planck , or for the Dark Energy
Survey (DES) and the South Pole Telescope (SPT). Indeed the matter density field
traced by the galaxies is correlated with the CMB observables, as the interaction of
CMB photons with the large scale structures will create secondary anisotropies (see
Section 1.2.2).

It is common practice to perform a joint analysis between different observables
from the same experiment. For instance the Planck Collaboration et al. (2018a)
analysis used the cross-power spectra between the temperature, polarisation and
CMB lensing potential fields to get the final constraints on cosmological parameters.
In this case, because all observables are taken from the same observation, it is easy
to cross-correlate them and to correctly take into account their covariances.

Similarly, weak lensing galaxy surveys like DES are using the auto- and cross-
correlations between galaxy weak lensing and galaxy clustering to constrain cosmo-
logical parameters (Abbott et al. 2018). In this case also, each observable comes
from the same dataset so they can easily be cross-correlated.

Performing a joint analysis between two completely different datasets is much
more difficult. However, it has been shown to be a very promising way to break de-
generacies between cosmological and astrophysical systematics parameters. Indeed
Vallinotto (2013), Pearson and Zahn (2014), Merkel and Schäfer (2017) and Schaan
et al. (2017) have shown that a joint analysis of CMB lensing and galaxy probes for
next generation surveys will help in breaking degeneracies between the amplitude
of the matter power spectrum, the galaxy bias and the weak lensing calibration
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Forecasting constraints for Euclid X CMB

bias. These degeneracies breaking with systematic parameters such as the galaxy
bias will greatly improve the constraints on cosmological parameters, such as the
sum of neutrino masses as shown in Giusarma et al. (2018). Moreover, the cross
correlations of galaxy surveys with iSW and CMB lensing was shown to be useful to
constrain primordial non-Gaussianity (Giannantonio et al. 2014; Giannantonio and
Percival 2014).

Joint analysis are now planned early on in the development stage. Indeed, the
Dark Energy Survey and the South Pole Telescope have been designed to maximize
the overlap between the galaxy and the CMB observations. Doing so they are able
to cross-correlate galaxy observables with the CMB lensing field. They chose to
perform a joint analysis by cross-correlating the galaxy weak lensing, the galaxy
clustering and the CMB lensing fields (Omori et al. 2017; Abbott et al. 2019) This
combination of probes helped in checking for inconsistencies between the datasets
and was a powerful confirmation test for the results of each experiment.

The above examples mainly concern cross-correlation of the CMB lensing field
with galaxy observables. Another possible cross-correlation is between CMB tem-
perature and CMB polarization with galaxy observables. Most notably, on large
scales (` < 30) the cross correlation of CMB temperature with galaxy clustering will
be dominated by the late-time iSW effect which is due to the accelerated expansion
(see e.g. Douspis et al. 2008; Dupé et al. 2011; Nishizawa 2014). Even if the iSW
has a very low signal to noise ratio (lower than 4), this effect is expected to be very
sensitive to dark energy and modified gravity models. See e.g. Challinor and Lewis
(2011) for details on the physical effects probed by the cross correlation of galaxy
density with CMB temperature and polarisation.

3.2 Cosmological forecasts

Our scope is to forecasts the improvements on cosmological parameters when per-
forming a joint analysis of Euclid main observables with CMB observables, such
as temperature, polarisation and CMB lensing potential. In order to assess the
performances of upcoming experiments, we will use the Fisher formalism. We first
introduce below the principles of cosmological analysis with a likelihood function,
before describing the derivation of the Fisher matrix.

3.2.1 The likelihood function

The likelihood function allows to test the validity of a model against data taken
from observations. More precisely, this function is defined as the probability that a
given experiment would get the data it did for a given theory

L(d;θ) ≡ P (d|θ) , (3.1)

where d is the data vector obtained from the experiment and θ is the set of param-
eters that describes our model.

We are interested in evaluating the parameters of the model that best reproduce
the data, P (θ|d). Thanks to the Bayes theorem, this probability is linked to the
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3.2. Cosmological forecasts

likelihood function with

P (θ|d) =
P (θ)P (d|θ)

P (d)
=
P (θ)L(d;θ)

P (d)
. (3.2)

P (θ|d) is called the posterior, P (θ) is the prior and P (d) is a normalisation factor.
The posterior is what we want to measure. The maximum of this distribution is

the most probable value of θ, and the width of the distribution gives the confidence
interval we have on this estimation.

The prior represents the information we have before performing the experiment.
It could come from a previous experiment or from theory. A flat prior (i.e. a constant
P (θ)) assumes that all values are equiprobable. In this case, we can directly link
the posterior to the likelihood

P (θ|d) ∝ L(d;θ). (3.3)

The parameters maximising the likelihood will be noted θML. It is a function of the
data vector d. Finding the maximum of the likelihood is the key question once the
likelihood is defined. It can be achieved through several possible maximum likelihood
estimators, or by sampling the parameter space with a Monte-Carlo algorithm.

If we assume that the data vector is a random realisation taken from a mul-
tivariate Gaussian distribution, defined with a covariance matrix C, the likelihood
function is

L(d;θ) =
1

(2π)N/2
√

detC
exp

(
−1

2
(d− d th(θ))TC−1(d− d th(θ))

)
, (3.4)

where N is the length of the data vector, d th is the theoretical data vector obtained
with parameters θ and T denotes the transposition operation.

In general the covariance matrix depends on the parameter θ. However it is
computationally costly to get the covariance matrix for each value of the parameter
space when we are trying to find the maximum of the likelihood. This is why it is
often assumed that the covariance matrix is independent of the parameters. This
common approximation may lead to overestimations of the parameter constraints,
especially when we start to be limited by systematic uncertainties (see e.g. Eifler
et al. 2009; Krause and Eifler 2017).

One of the difficult points of a likelihood analysis is to estimate the covariance
matrix. There are three main methods to estimate the covariance matrix: from the
data themselves, from simulations or from the theory.

If we estimate the covariance matrix from the data, we then need a large number
of data realisations to correctly sample all the possible values of the data. Assuming
that we have n realisations with d(k) one of the nth realisations, an estimate of the
covariance matrix is

Ĉ =
1

n− 1

n∑
k=1

(
d(k) − µ

) (
d(k) − µ

)T
, (3.5)

where µ is the average of the data realisations (Hartlap et al. 2007; Dodelson and

61



Forecasting constraints for Euclid X CMB

Schneider 2013; Taylor et al. 2013). If the average µ is not estimated from the data
but is known in advance, then the denominator is n not n− 1.

The problem in cosmology is that we cannot get several realisations of our Uni-
verse, as opposed to experimental physicists who could repeat their experiments
several times. For instance, we can only observe one image of the CMB, among the
many possible realisations based on the same cosmological model. To overcome this
we can rely on simulations (Blot et al. 2015; Schneider et al. 2020). The scope is
then to produce several realisations of the data to get as close as possible to the
actual data taken by the experiment. The covariance matrix is then estimated with
Equation 3.5 with the data vectors taken from the simulations. The inherent limita-
tions of numerical simulations are then the computational power needed to get both
a large volume and a small resolution. This is even more difficult when we have to
estimate the covariance matrix for each values of the parameter space.

Finally, one could rely on a theoretical estimation of the covariance matrix.
In this case, the covariance includes two contributions, one which is the fiducial
covariance matrix assuming the data vectors follow perfectly the theory, and one
which models the noise due to the experiment. The limitations here are that we must
accurately model all the covariance terms, especially the non-Gaussian terms due
to the coupling between different Fourier modes created by non-linear gravitational
interactions, and the super-sample covariance, due to the effect of a large scale
background density mode in the survey window (see e.g. Krause and Eifler 2017;
Sellentin and Heavens 2018; Lacasa 2018). In the present study we use a theoretical
estimation of the covariance matrix and we neglect all non-Gaussian terms, following
Euclid Collaboration et al. (2019). In future works, especially when the data will
be analysed, a more realistic modelling of the covariance matrix will have to be
implemented.

3.2.2 Fisher analysis

Fisher analysis allows to forecast of how well a given experiment will constrain pa-
rameters of a given model before actually taking any data or running any simulation.
It is very useful to design experiments and check there performances. Its first use
in a cosmology analysis can be dated to Tegmark (1997), and Tegmark et al. (1997)
for both CMB and galaxy clustering analysis.

A straightforward way to obtain the Fisher matrix is to expand the likelihood in
Taylor series close to its maximum

lnL(θ) = lnL(θML) +
1

2

∑
αβ

(θα − θα,ML)
∂2 lnL
∂θα ∂θβ

∣∣∣
ML

(θβ − θβ,ML) , (3.6)

where the derivatives are computed at the location of the maximum of the likelihood,
and the first derivative of the likelihood is zero at the location of the maximum by
definition. As we are simulating the data and the experiment, the maximum of the
likelihood is known by definition, we do not need to define a maximum likelihood
estimator. As we see here, close to its maximum the likelihood can always be
approximated by a multivariate Gaussian in the parameter space.
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The Fisher matrix is defined as the ensemble average (over the data) of the
Hessian matrix of Equation 3.6 (see e.g. Verde 2010)

Fαβ ≡ −
〈
∂2 lnL
∂θα∂ θβ

〉
θML

, (3.7)

where the average here is the ensemble average, which averages over all the possible
realisations of our Universe given the cosmological model defined by θML.

In fact, as can be seen in equation 3.6, the Fisher matrix corresponds to the
inverse of the covariance matrix of a Gaussian likelihood in the parameter space.

C = F−1 (3.8)

If the Fisher matrix is diagonal, then the covariance matrix C is diagonal and the
parameters are uncorrelated. Note that we previously have shown a Gaussian covari-
ance between the data vectors (with covariance C), while here we have a Gaussian
covariance between the parameters (with covariance C), we do not need to make the
assumption of a Gaussian covariance of the data to get the Fisher matrix.

The expected uncertainties on each parameter are then given by

σα =
√

(F−1)α,α . (3.9)

Here we have performed a marginalisation on the other parameters, i.e. we let them
vary freely. If we assume that all other parameters are fixed, then the uncertainty
on the parameter θα would be 1/

√
Fα,α.

Marginalising on all but two parameters is done by selecting the rows and
columns of two parameters of interest in the covariance matrix Cα,β. We thus obtain
a 2 × 2 covariance matrix which allow to easily plot the two dimensional confi-
dence region between the parameters. As we assumed a Gaussian covariance since
the beginning, the confidence regions drawn from a Fisher analysis will always be
ellipses.

One commonly used quantity is the figure of merit (FoM) between two parame-
ters. It is proportional to the area of the ellipse and is given by

FoM =
√

detF2 , (3.10)

where F2 is the marginalised 2 × 2 Fisher matrix, taken as the inverse of the 2 × 2
covariance matrix where we selected the rows and columns corresponding to param-
eters α and β

F2 = (Cα,β)−1 . (3.11)

3.2.3 MCMC as an alternative to Fisher

Among the alternatives to the Fisher matrix analysis for forecasting experiments, the
Markov Chain Monte Carlo (MCMC) analysis is often used. This method samples
the parameter space with a Monte Carlo algorithm in order to get an estimation of
maximum likelihood and to get the size of the confidence intervals.
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The advantage of an MCMC analysis is that it is able to sample non-Gaussian
posterior distributions. The Fisher analysis hypothesis that the likelihood is well
approximated by a Gaussian in the parameter space can be completely wrong in some
cases. As such the Fisher matrix could underestimate the errors on the parameters
(see e.g. Wolz et al. 2012; Sellentin et al. 2014).

However, the limit of a MCMC analysis is that it needs a lot of computation of the
likelihood to efficiently sample the parameter space. This can be computationally
costly especially when there is a large number of parameters. Fisher analysis is a
much faster alternative which allows to test a lot of different scenarios.

3.2.4 Fisher matrix using angular power spectra

We will use the angular power spectra as our data vectors. In this case, one can
show (see e.g Verde 2010) that the Fisher matrix can be expressed as

Fαβ =
∂C`
∂θα

C−1∂C`
∂θβ

, (3.12)

where C is the covariance matrix between the C`.
This definition of the Fisher matrix for the C` is often obtained in the literature

by assuming that the C` follow a Gaussian statistics. In practice, the C` are not
Gaussian, they follow aWishart distribution, but for high ` this can be approximated
as a Gaussian. However, the a`,m from which the C` are derived, are Gaussian. So
if one uses directly the a`,m as data vector, the likelihood is Gaussian in the data
space and Equation 3.4 applies, so we can easily derive the Fisher matrix using
Equation 3.7. One can show that deriving the Fisher matrix when using the a`,m
as a data vector gives the same results as deriving the Fisher matrix with C` as a
data vector and by correctly defining their likelihood with a Wishart distribution
(Carron 2013). As such, Equation 3.12 does not need to make the assumption that
the C`’s are Gaussian, it is the exact derivation of the Fisher matrix when using the
true Wishart distribution of the C`’s.

3.3 Modelling observables

The Euclid main observables are the the spectroscopic galaxy density field (GCs),
the weak lensing (WL) tomography and the photometric galaxy density (GCp) to-
mography. The 3D galaxy clustering probe is performed with the spectroscopic
galaxy survey, while the WL and GCp fields from the photometric survey are used
to compute 2D angular power spectra (auto and cross). The CMB observables we
are considering are the CMB temperature (T ), the CMB polarisation (E modes)
and the CMB lensing potential (φ). Given that our fiducial model does not include
any tensor modes, we ignore the B modes from polarisation.

Our analysis includes all the auto- and cross spectra between the 2D observables
of Euclid and of the CMB, namely GCp, WL, T , E and φ. However, because the
spectroscopic galaxy clustering is a 3D probe, and due to the difficulty of correctly
taking into account covariances between 3D and 2D probes, we assume that the GCs
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3.3. Modelling observables

probe is not correlated to the others. In practice in our Fisher analysis, we will sum
the Fisher matrix of the 3D galaxy clustering to the Fisher matrix of our combined
analysis of the 2D probes. Taking into account the correlation between a 2D and
3D probe is not trivial. Some approaches are being developed, such as Passaglia
et al. (2017) and Camera et al. (2018), but they imply to replace the traditional
3D galaxy clustering probe with a new formalism more easily compatible with 2D
probes.

We develop below the formalism to compute the auto- and cross power spectra
of our 2D observables. The general expression to model the angular power spectra
between two observables A and B is given by

CAB
` =

2

π

∫
z1

c dz1

H(z1)

∫
z2

c dz2

H(z2)

∫
k

k2 dk WA(k, z1)WB(k, z2)

× j`(k r(z1)) j`(k r(z2))P (k|z1, z2) ,

(3.13)

where the P (k|z1, z2) is the 3D matter power spectrum between two redshifts, j` are
the spherical Bessel functions of order `, and W (k, z) are the weight functions of
the observables A and B. The weight functions W (k, z) contain all the information
about the observables. They relate the underlying matter power spectrum to the
observables. See e.g Seljak and Zaldarriaga (1996) for CMB observables, Huterer
et al. (2001) for galaxy density observables and Kilbinger (2015) for the weak lensing
observable.

Measurements by Euclid will extend down to small scales and we must take
into account the non-linear evolution of the power spectrum. The matter power
specturm is computed with the non-linear corrections of Halofit Takahashi et al.
(2012), as well as the neutrino corrections of Bird et al. (2012).

3.3.1 Galaxy observables

For the galaxy observables, we assume the flat sky and the Limber approximations
(see Equation 1.42 and Loverde and Afshordi 2008). As such, we can simplify
Equation 3.13 and obtain only one line of sight integral

CA,B
` =

∫
c dz

H(z) r2(z)
WA(k`, z)W

B(k`, z)P (k`, z) , (3.14)

with k` = (l + 1/2)/r(z).
We assume that the projected galaxy density weight function is scale-independent.

It is given by

WGCpi(z) = bi(z)
ni(z)

n̄i

H(z)

c
, (3.15)

with ni the number density of galaxies in the redshift bin i. This number density
of galaxies is given by the convolution of the true redshift distribution of galaxies
n(z) with the photometric redshift uncertainty (see Kitching et al. 2009; Euclid
Collaboration et al. 2019, for more details).

We follow Euclid Collaboration et al. (2019) and assume that the galaxy bias
bi(z) is scale-independent and constant in each given redshift bin, with values bi =
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√
1 + zc,i where zc,i is the central redshift of the ith bin. The resulting 10 bias

parameters bi are part of the Fisher analysis as nuisance parameters.
The weak lensing convergence field is the distortion of the image of the back-

ground galaxies by the foreground matter. The weak lensing weight function includes
contributions from both the cosmic shear signal (γ) and the intrinsic alignment (IA)
systematic effect. The tidal processes during the formation and evolution of galaxies
may induce a preferred orientation of galaxy shapes. This intrinsic correlation of the
orientation of galaxies is a contaminant of the shear two-point correlation function,
and must be properly taken into account in a weak lensing survey.

The weak lensing weight function is expressed as

WWLi(z) = W γ
i (z)− PIA Ωm,0

D(z)
W IA
i (z) . (3.16)

The weight functions for the shear and intrinsic alignments are given by

W γ
i (z) =

3

2

H2
0

c2
Ωm,0 (1 + z) r(z)

∫ ∞
z

dz′
ni(z

′)

n̄i

[
1− r(z)

r(z′)

]
(3.17)

W IA
i (z) =

ni(z)

n̄i

H(z)

c
. (3.18)

The intrinsic alignment effect is modelled in PIA, which is described in Euclid
Collaboration et al. (2019), and introduces three nuisance parameters in the Fisher
analyses, namely AIA, ηIA and βIA, which correspond to the amplitude, the redshift
dependence and the galaxy luminosity dependence of the IA power spectrum

3.3.2 CMB lensing

The primary image of the CMB is distorted by the gravitational lensing effects of the
mass along the line of sight. We can recover the lensing potential signal by measuring
the distortions in the primary image of the CMB. The CMB lensing efficiency peaks
at a redshift of z ∼ 2. Due to its late-time nature we can express its auto and cross
angular power spectra using the Equation 4.10 in the Limber approximation and
with the following weight function

W φ(z) =
3

2
H2

0 Ωm,0 (1 + z) r(z)

[
1− r(z)

r∗

]
, (3.19)

where r? is the comoving distance to the surface of last scattering (see e.g. Lewis
and Challinor 2006, for a review).

Note that the galaxy weak lensing and the CMB lensing have a similar weight
function. The difference is that the source plane is at a known redshift for the CMB
while we must integrate on the photometric redshift distribution of source galaxies
for the galaxy weak lensing.
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3.4. Euclid observables

3.3.3 CMB temperature and polarisation

Computations of the power spectra of primordial observables such as the CMB
temperature and polarisation cannot be performed with the Limber approximation.
We should then rely on Equation 3.13 to compute their angular power spectra and
their cross-correlation with the late time observables described above.

In the linear regime, we can decouple the redshift and scale dependence in the
matter power spectrum and rewrite Equation 3.13 as

CA,B
` =

2

π

∫
k2 dk ∆A

` (k) ∆B
` (k)P (k) , (3.20)

with ∆`(k) the kernels corresponding to each probe.
The CMB kernels take into account linear effects that create anisotropies in the

CMB namely the Sachs-Wolfe effect, the Doppler effect, the integrated Sachs-Wolfe
effect (iSW), the polarisation and the reionisation. We refer to Ma and Bertschinger
(1995) and Seljak and Zaldarriaga (1996) for a detailed description of these kernels
for the CMB temperature and polarisation observables.

The cross-correlation of temperature and polarisation with late time probes
which are GCp, WL and φ are obtained with Equation 3.20. The Boltzmann codes
we use (CLASS and CAMB) implement specific recipes in order to take into account
non linear effects at the kernel levels, which we do not detail here.

Note that in our analysis we do not take into account non-linear effects such as
the Rees-Sciama effect, which is similar to the iSW but created by the non linear
collapse of graviational potential wells. We also do not include spectral distortions
effects such as the tSZ effect, the Cosmic Infrared Background (CIB) and point
sources. We assume that these contributions have been properly removed from the
observed temperature and polarisation maps that are used in the analysis.

3.4 Euclid observables

3.4.1 Introducing the Euclid mission

The main goals of the Euclid mission are to understand the nature of the apparent
expansion of the Universe and to test gravity on cosmological scales (Laureijs et al.
2011; Amendola et al. 2018). To reach these goals, Euclid will measure the shape
and redshift of galaxies over 15 000 deg2 of the extragalactic sky up to z ∼ 2.5. The
survey will estimate the spectroscopic redshift of thirty millions of galaxies, and will
get the image and photometric redshift of two billions of galaxies.

The current planned launch of the satellite is 2022, from the Kourou launchpad
in a Soyouz rocket. It will reach the Lagrange L2 point, and will start mapping the
sky shortly after that. The nominal mission duration is six years, with a possible
one year extension. The data will be released in three batches: two, four and seven
years after the launch.

The telescope has a mirror of 1.20 m of diameter and two instruments sharing
a common field of view of 0.54°. The two instruments are the visible light imager
(VIS) and the Near Infrared Spectrometer and Photometer (NISP).
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The VIS instrument is an imager with a broad-band filter which has a wave-
length range of 500 to 800 nm, and a pixel resolution of 0.1 arcseconds. The galaxy
catalogue will be complete down to a magnitude of 24.5 AB in this band.

The NISP instruments has two wheels (a filter wheel and a grism wheel) in front
of its detector that will allow to shift between a photometric and a spectroscopic
mode. On the filter wheel are mounted three filters in Y, J, and H bands with a
pixel resolution of 0.3 arcseconds. On the grism wheel are mounted four grism spec-
trographs, one ‘blue’ grism (920 – 1250 nm), and three ‘red’ grisms (1250 – 1850 nm)
each with a different orientation. The galaxy catalogue will be complete to magni-
tude of 24 AB in the Y, J and H bands.

The grism will perform slitless spectroscopy, allowing for precise redshift deter-
minations for about 1950 gal deg−2. The spectra of each galaxy will be directly
diffracted on the detector. As such the image will be composed of the spectra of
all the galaxies in the field of view, and the spectra of neighbouring galaxies may
overlap. Taking the same image with different grism orientations will ensure the
correct extraction of the spectra of each galaxy. The expected uncertainty on the
spectroscopic redshift is of σz = 0.001(1 + z)

The spectroscopic survey will target the Hα emission line of galaxies. This line
is emitted at 656.3 nm in the galaxy rest frame, and corresponds to the emission of
a photon when the electron of the hydrogen atom goes from the energy level n = 3
to n = 2. This transition usually happens just after an ionised hydrogen atom
recombines with an electron. This emission line is a good tracer of star forming
galaxies, as the powerful young stars emitting in the UV will ionise the surrounding
neutral hydrogen. We known that the star formation was higher at high redshift,
and peaked at z ∼ 2 (Madau and Dickinson 2014). As such we expect to detect more
Hα emitting galaxies when we observe galaxies in the redshift range 0.9 < z < 1.8,
which is the redshift window of the grisms (Pozzetti et al. 2016).

The photometric survey will allow to measure the redshift with a precision of
σz = 0.05(1 + z), by fitting a Spectral Energy Distribution (SED) template on the
fluxes of the four bands of the survey. Additional data from ground based telescopes
in other bands will help in reaching a high precision in the redshift estimate. When
fitting an SED template there is a risk of catastrophic redshift estimation when the
fit is completely wrong. In Euclid Collaboration et al. (2019), this outlier fraction
is estimated to be of 10%.

Three fields of the sky representing a total of 40 deg2 will be observed several
times and will allow for a deeper survey. This deep survey will reach an AB magni-
tude of 26.5 in the VIS band and 26 in the near infrared bands.

3.4.2 Implementation of the Euclid observables

The WL and GCp tomographic analysis is performed in 10 equi-populated redshift
bins, i.e. there is the same number of galaxy in each bin, between z = 0 and z = 2.5.
The underlying galaxy distribution is modelled by Laureijs et al. (2011)

n(z) ∝
(
z

z0

)2

exp

[
−
(
z

z0

)3/2
]

; (3.21)
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Table 3.1: Specifications for the Euclid photometric survey.

Parameter Euclid
Survey area in the sky Asurvey 15, 000 deg2

Sky fraction fsky ∼ 0.36
Galaxy number density n̄g 30 arcmin−2

Total intrinsic ellipticity dispersion σε 0.30
Minimum redshift zmin 0.001
Maximum redshift zmax 0.9 (pessimistic), 2.5 (optimistic)
Number of redshift bins Nz 5 (pessimistic), 10 (optimistic)
Minimum multipole `min 10
Maximum multipole `max 1500 (pessimistic), 5000 (optimistic)
Number of bins in multipole space N` 100

with zm = 0.9 and a mean surface density of galaxies of n̄g = 30 arcmin−2.
The shot-noise terms for the angular power spectra are modelled by

N
GCpi,GCpj
` = δK

i,j

1

n̄i
, (3.22)

N
WLi,WLj
` = δK

i,j

σε
n̄i
, (3.23)

where σε is the total intrinsic ellipticity dispersion and δK is the Kronecker delta.
We assume that there is no noise for the cross-correlation between the weak lensing
and the galaxy clustering.

In order to use the same hypotheses and recipes than in the analysis of Euclid
Collaboration et al. (2019), our analysis considers two different settings for Euclid
observables. These two settings are defined in order to test the amount of infor-
mation we will extract from the Euclid probes, assuming that we will be able to
perfectly reproduce the clustering of matter on the smallest scales, or that we will
still be limited and will only extract information on large scales. We summarize
below these two settings

Pessimistic setting: The spectroscopic galaxy clustering probe is performed out
to kmax = 0.25hMpc−1. The maximum multipole of the angular power spectra
is of `max = 1500 for WL, and of `max = 750 for GCp and the cross correlation
between the two. We also cut the GCp tomography to include only the redshift
bins z < zmax = 0.9, in order to avoid the overlap with the GCs probe. As
such we only have 5 redshift bins for the GCp ranging from z = 0 to z = 0.9.

Otimistic setting: The spectroscopic galaxy clustering probe is performed out to
kmax = 0.30hMpc−1. The maximum multipole of the angular power spectra is
of `max = 5000 for WL, and of `max = 3000 for GCp and the cross correlation
between the two. The tomography of GCp is performed in the ten redshift
bins.

The Table 3.1 summarizes the specifications of the Euclid WL and GCp observ-
ables.
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The 3D spectroscopic galaxy clustering GCs is considered as an independent
probe (thus uncorrelated with all other probes considered) throughout the whole
analysis. The contribution of GCs to our final Fisher matrices is therefore accounted
for via the simple addition of the official corresponding Fisher matrix published by
Euclid Collaboration et al. (2019). A pessimistic and optimistic version of GCs is
also considered.

3.5 CMB experiments and noise models

Similarly to Euclid observables, I have constructed the CMB noise models for the
forecasts. We considered a variety of scenarios for the characteristics of the CMB
observables: a Planck -like full extra-galactic sky survey and two types of ground-
based observatories based on future experiments, namely the Simons Observatory
(SO) and CMB Stage 4 (CMB-S4). In the latter two cases, the fraction of the sky
expected to be covered will be of order 40% and 60% respectively. In order to avoid
neglecting the precious amount of information contained in the CMB at large scales
(and their exquisite measurements by Planck), the two ground-based scenarios will
also include information on large scale based on signal observed by Planck (via a
split in the multipole range in the Fisher analysis, cf. Table 3.2).

3.5.1 Planck

The Planck satellite (Tauber et al. 2010; Planck Collaboration et al. 2018c) was
launched in 2009 and scanned the full sky until 2013 in nine frequencies from 30 to
857GHz. The satellite hosted two instruments, the HFI operating in six frequency
bands between 100 GHz and 857 GHz, and the LFI instrument operating in three
band between 30 GHz and 77 GHz. The CMB maps were produced by combining
these frequencies to remove the contributions from the Galaxy and other foreground
emissions.

In our analysis, the noise of the CMB power spectra is modelled as an isotropic
noise deconvolved by the instrument beam (Knox 1995)

NA,A
` = (∆A)2 b−2

` , (3.24)

b` = exp

(−` (`+ 1) θ2
FWHM

16 ln 2

)
, (3.25)

where θFWHM is the full-width-at-half-maximum (FWHM) of the beam given in
radian and ∆T and ∆E are the detector noise levels, for temperature and polarisa-
tion, given in µK arcmin. The total noise for multiple frequency channels is given
by their inverse noise weighted sum. For Planck , this corresponds to a noise of
∆T = 27µK arcmin in temperature and ∆E = 42µK arcmin in polarisation. We
use an effective beam size of of θFWHM = 7 arcmin. We use a sky fraction fsky = 0.7
and a maximum multipole `max = 1500 for TT, TE and EE angular power spectra.
In order to mimic the ΛCDM constraints given in Planck Collaboration et al. (2019),
we multiply NEE

` by a factor eight for ` < 30.
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The CMB lensing field has been estimated with a minimum variance quadratic
estimator, combining temperature and polarisation data (Okamoto and Hu 2003).
The Planck survey provided the most precise map of the integral of the density of
matter on the full extra galactic sky, covering ∼ 70 % of the sky, which allowed
to get an estimate of the lensing-potential power spectrum over lensing multipoles
8 ≤ ` ≤ 400. The noise of the CMB lensing field reconstructed from Planck is taken
from Planck Collaboration et al. (2018b).

3.5.2 Simons Observatory

The Simons Observatory (SO, The Simons Observatory Collaboration et al. 2019)
consists of four different telescopes placed in the Atacama Desert in Chile, with
the goal of providing an exquisite mapping of the CMB intensity and polarisation
anisotropies from a few degrees down to arcminute scales. It is expected to start
collecting data in 2022. Three of these telescopes have 0.5 m of aperture, and with
an angular resolution close to half a degree, will map 10 % of the sky targeting
the moderate to large angular scales. Their primary goal is to measure large-scale
polarisation from the background of primordial gravitational waves.

Alongside these small telescopes, one 6 m diameter telescope will produce data
appropriate for combination and cross-correlation with Euclid . It will observe at 27,
39, 93, 145, 225, and 280 GHz, with an angular resolution close to the arcminute
and will reach a sensitivity level of 6 µK arcmin on 40 % of the sky.

We use in our Fisher analysis the noise curves provided by the SO Collaboration1.
In practice, we took the noise curves obtained with the internal linear combination
(ILC) component separation method, assuming the baseline analysis for a sky frac-
tion of 0.4. We differ here from the formula used for Planck , as this noise is modelled
using the component separation method for all channels. For our forecasts with SO,
we use data from 40 ≤ ` ≤ 3000 for TT, TE and φφ, and 40 ≤ ` ≤ 5000 for EE. As
mentioned at the beginning of the section, this scenario also considers the addition
of large-scale data from the Planck survey; in practice, we add this information via
the first multipoles of all CMB spectra considered, up to ` = 40, with the same
specifications as described earlier for the Planck -like survey.

3.5.3 CMB-Stage 4

The CMB-Stage 4 (CMB-S4, Abazajian et al. 2019) experiment will be the successor
of the Simons Observatory, and will combine resources with the successor of the
South Pole Telescope and the BICEP/Keck collaborations. It should start taking
data in 2027. Its main scope is to measure the imprint of primordial gravitational
waves on the CMB polarisation anisotropy, but it will also perform a wide survey
with a high resolution which will allow to probe the secondary anisotropies with
unprecedented accuracy. Its deep and wide survey will cover ∼ 70% of the sky and
will be conducted over seven years using two 6 m telescopes located in Chile, each
equipped with 121, 760 detectors distributed over eight frequency bands from 30
GHz to 270 GHz. After removal of the galactic contamination, the sky fraction is

1We use the version 3.1.0 available at https://github.com/simonsobs/so_noise_models
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estimated to be between 40% and 60%. We choose to be conservative and to assume
a 40% sky fraction. We model the noise power spectra as in Equation 3.24. These
observations will provide CMB temperature and polarisation maps with a resolution
of θFWHM = 1 arcmin and with noise levels of ∆T = 1 µK arcmin and ∆E =

√
2

µK arcmin. CMB-S4 expects to use data from 40 ≤ ` ≤ 3000 in temperature, and
40 ≤ ` ≤ 5000 in polarisation.

The lensing noise curve is taken as the minimum variance (N0) bias, which is
computed using the code quicklens2. Similarly to the SO case, Planck -like large-
scale information is also added in this scenario.

All specifications for our three considered CMB experiments are summarized in
Table 3.2, while the noise curves for all CMB auto-spectra are shown in Fig. 3.2.

Table 3.2: Specifications for CMB experiments

Parameter Planck Simons Observatory CMB+Stage 4
+ Planck low-` + Planck low-`

Sky fraction fsky 0.7 0.4 0.4
Beam FWHM θFWHM 7 arcmin 2 arcmin 1 arcmin
Temperature noise ∆T 23 µK.arcmin 3 µK.arcmin 1 µK.arcmin

polarisation noise ∆E 42 µK.arcmin 3
√

2 µK.arcmin
√

2 µK.arcmin
TT multipole range [`TT,min, `TT,max] [2, 1500] [2, 39] + [40, 3000] [2, 39] + [40, 3000]
TE multipole range [`TE,min, `TE,max] [2, 1500] [2, 39] + [40, 3000] [2, 39] + [40, 3000]
EE multipole range [`EE,min, `EE,max] [2, 1500] [2, 39] + [40, 5000] [2, 39] + [40, 5000]
φφ multipole range [`φφ,min, `φφ,max] [8, 400] [2, 39] + [40, 3000] [2, 39] + [40, 3000]
Tφ multipole range [`Tφ,min, `Tφ,max] [8, 400] [2, 39] + [40, 3000] [2, 39] + [40, 3000]

3.6 Forecasting cosmological constraints

We describe in this Section the implementation of the Fisher analysis to forecast
constraints for the joint analysis of Euclid and CMB observables. Our probes are the
two-point angular power spectra, containing the auto and cross correlations between
the different observables. We tested different cosmological models and different
scenarios of probe combination (including or not the cross-correlation information
between Euclid and CMB observables).

3.6.1 Extensions of ΛCDM

In the following, we assume that the neutrinos have a mass of
∑
mν = 0.06 eV.

Our baseline ΛCDM model is described by six free parameters: the reduced Hubble
parameter (h = H0/100 km s−1 Mpc−1), the density of matter (Ωm), and of baryons
(Ωb), the spectral index of the primordial power spectrum (ns), the amplitude of the
matter fluctuation smoothed by a top-hat window of 8 Mpc (σ8), and the reionization
optical depth (τ).

Furthermore, we introduce several extensions to this baseline ΛCDM model.

2https://github.com/dhanson/quicklens
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Figure 3.2: Noise curves of the CMB experiments under consideration. Black plain
lines show the fiducial power spectra, dashed blue lines show the Planck noises,
dot-dashed lines show the Simons Observatory noises and dotted green lines are the
CMB-S4. Top panel is the Temperature power spectrum, central panel is the CMB
E mode polarisation, and bottom panel is for the CMB lensing.
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– The first one assumes that the dark energy equation of state evolves with
time. Instead of having a constant dark energy equation of state parameter
ωDE = −1, we let ωDE evolve with time. The CPL parametrisation (Chevallier
and Polarski 2001; Linder 2003) assumes ωDE(a) = ω0 + ωa (1 − a), with ω0

its present day value and ωa a constant to describe its time evolution. In the
following, we call this model ωCDM, and w0, wa are taken as free parameters.

– The second extension allows for non-flat cosmologies. We consider ΩK as a
free parameter of the model. Since, by definition, ΩK + ΩΛ + Ωm = 1, when
we explore non-flat models ΩΛ is also varied in conjunction with ΩK (so as to
keep all other parameters constant).

– The last extension modifies the γ parameter of the growth factor defined in
Equation 1.49, in order to test deviations from general relativity. In this model
γ is considered as a free parameter.

We can test each extension separately or we can combine them. We thus have
eight possible cosmological models: ΛCDM, wCDM, both flat or curved, and with
γ fixed or free. Table 3.3 gives the fiducial values of the parameters considered in
the baseline ΛCDM model and its extensions.

Table 3.3: Fiducial parameter values for the free parameters of our fiducial cosmo-
logical model, both in the baseline ΛCDM case and in its extensions.

Baseline Extensions
Ωb Ωm h ns σ8 τ ΩDE,0 w0 wa γ

0.05 0.32 0.67 0.96 0.816 0.058 0.68 −1 0 6/11

3.6.2 Fisher matrix

We assume that there is no correlation between different multipoles. Therefore, we
compute the Fisher matrix for each multipole, and the total Fisher matrix is the
sum on all multipoles

Fαβ =
∑
`

∂D(`)

∂θα
C −1∂D(`)

∂θβ
. (3.26)

The data vector D(`) contains the auto and cross angular power spectra CA,B
` of

the Euclid and CMB observables, for a given multipole `.
The covariance matrix C between the CA,B

` is assumed to be Gaussian

C`
(
C A,B
` , C C,D

`

)
=

1

(2`+ 1) ∆` fsky

[(
C A,C
` + δK

A,C N
A,A
`

)(
C B,D
` + δK

B,DN
B,B
`

)
+
(
C A,D
` + δK

A,DN
A,A
`

)(
C B,C
` + δK

B,C N
B,B
`

)]
,

(3.27)

where the noise power spectra N` are described in Sections 3.4.2 and 3.5
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3.6.3 Scenarios for the combined analysis

We tested different configurations for the combination of the 2D Euclid observables
(WL and GCp) to the CMB observables (T, E and φ). In all cases, we do not
take into account the covariances between the 3D galaxy clustering probe, which
we assume independent of the other 2D probes, as in (Euclid Collaboration et al.
2019).

In the first configuration, we assume that the CMB and Euclid observables are
independent. We thus did not include the cross power spectra between the Euclid
and CMB observables in the analysis, and we neglected the covariance between the
two types of probes in our covariance matrix (see Figure 3.3 a). In practice, this is
equivalent to summing the Fisher matrix of Euclid with that of the CMB to obtain
combined constraints assuming two completely independent datasets.

In the second configuration, we do not assume that Euclid and CMB probes are
independent anymore, and we properly take into account the covariance between
them in the covariance matrix (see Figure 3.3 b). However, we do not include
cross-power spectra in the data vector.

In the last configuration, we take into account in our data vector the probes
that are the cross-correlations between the CMB and Euclid observables. We thus
include the cross correlations between the temperature, polarisation and lensing of
the CMB with the galaxy density and the galaxy weak lensing of Euclid (see Figure
3.3 c).

We show in Figure 3.3 the covariance matrices for the data vector D(` = 83) in
the three configurations of probes combinations.

As we can see in Figure 3.3 (a), the first configuration assumes that there is no
correlation between the Euclid and CMB probes, the covariance matrix is composed
of two independent blocks (the top left and bottom right blocks) corresponding to the
covariance between CMB probes and Euclid probes only. The second configuration
shown in Figure 3.3 (b) includes the correlations between Euclid and CMB probes
(upper right and bottom left rectangles are now filled). Finally, the Figure 3.3 (c)
shows the third configuration with the inclusion of the cross-correlations between
Euclid and CMB observables in the data vector.

3.6.4 Limits of the numerical resolution

To test if the numerical analysis is stable and robust to the numerical uncertainties
that can affect our analysis, I have performed stability analysis. We can see in Figure
3.3 that the values of the covariance matrices can range over 30 orders of magnitude.
The computations in the Fisher matrix in Equation 3.26 relies on the inversion of
these covariance matrices. As such, the numerical operation of the inversion could
become very noisy if the resolution of the numerical inversion is not precise enough.

The condition number is a measure of the numerical accuracy needed for the
inversion of the matrix. It gives an estimate of how much a small difference on the
values in the covariance matrix C will affect the values in the inverse matrix C−1.
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Figure 3.3: Logarithm of the absolute value of the covariance matrix for ` = 83 be-
tween the auto and cross angular power spectra of the observables T, E, φ, GCpi=1..10

and WLi=1..10. We assume three different configurations of probe combination. Top
left : no correlations between CMB and Euclid probes. Top right : including corre-
lations between CMB and Euclid probes. Bottom: including cross-power spectra
between Euclid and CMB observables in the data vector. The labels on the axis of
each panel show roughly the location of CMB and Euclid probes, and in panel (c)
the cross between the two. As we can see the values in the covariance matrix can
span more than 30 orders of magnitudes. The smallest matrices (panels a and b)
have a shape of 216x216 and the largest (panel c) have a shape of 276x276.

In our case, the condition number is defined as

κ(C) =
|λmax(C)|
|λmin(C)| , (3.28)
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where λmax and λmin are the largest and lowest (in terms of absolute value) eigen-
values of the matrix C. If the condition number is very large, the inversion could be
numerically noisy. On the contrary if it is close to one then it is easily invertible.

When solving the linear system Ax = B, with x the unknown solution of the
system, one can show that we have

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ , (3.29)

with δb the error on the matrix b and δx the error on the solution x.
In our case, we use the numpy package in python. The precision of the float64

data type is of 2.22× 10−16. This precision is defined as the difference between
1.0 and the next smallest representable float larger than 1.0, so it is the numerical
uncertainty δb.

The maximum condition number we have in our covariance matrices was of 1036.
This mean that our matrix inversion is very sensitive to noise, and the upper bound
of the relative error on the inverted matrix is

‖δC−1‖
‖C−1‖ ≤ 1020 , (3.30)

which is quite large.
To test the validity of the inversion, we reproduced our Fisher analysis but we

introduce noise in the covariance matrix of the order of the precision of numpy. We
found that the Fisher analysis is be robust to this noise, with results changing by
less than 1%. We see that our inversion is not limited by the very large condition
number, and is robust to numerical noise.

Moreover, tests have been performed in our Euclid working group to use a python
module which increases the resolution of the floats. We found out that the results
stayed the same when using this increased precision.

3.7 Results

This section presents the results we obtained in our analysis. Note that these pre-
liminary results are confidential and that they have not yet been presented to the
Euclid publication board. The results shown here use results from the Fisher matrix
code I developed during my PhD and from a second code developed in parallel in the
CMBX working group. We have checked that our two Fisher codes give consistent
results, with a variation of ±5%.

In total, with the two Euclid settings (see Section 3.4.2) and the three CMB
experiments we considered, we have six different surveys combinations. We also
considered three different configurations of probe combinations (see Section 3.6.3).
We considered eight different cosmological models: ΛCDM and wCDM, both with
γ fixed or free, and both flat and non-flat (see Section 3.6.1). In total, we obtain
144 possible Fisher matrices, each with six to ten cosmological parameters and with
eight to thirteen astrophysical systematic parameters.

We first highlight some of our results in Figure 3.4. We show here the ratio
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Figure 3.4: Ratio of the 1σ marginalised uncertainties from Euclid only over the
1σ marginalised uncertainties from Euclid x CMB. The Euclid x CMB constraints
include the cross-correlated probes between the two datasets, and we include the
GCs constraints in both cases. The radial axis is increased between 1 and 2 to
better show small variations. We consider an optimistic Euclid experiment and a
flat cosmology. Blue contours are when combining with Planck , orange contours are
for Simons Observatory and green contours are for CMB-S4. Top panels assume
a ΛCDM cosmology, bottom panels assume a wCDM cosmology, and right panels
consider γ as a free parameter. We clearly see that Ωb constraints are greatly
improved in all cases, and that it is on the wCDM models that the combination
with CMB observables gives more improvements.
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of the 1σ marginalised uncertainties on the cosmological parameters from Euclid
probes only over the 1σ marginalised uncertainties from Euclid x CMB, including
the cross-correlated probes between the two datasets (configuration 3 of Section
3.6.3). This shows the factor of improvement gained on the marginalised constraints
when performing the full joint analysis between the two datasets. In this Figure,
we show different results for flat cosmologies, and assuming an optimistic Euclid
setting.

In all models shown here, Ωb is the parameter that is best improved by the com-
bination with CMB datasets, with a factor two improvement for Planck and a factor
eight for CMB-S4 in the ΛCDM cosmology. On the contrary, h is the parameter
that is the least improved, with only a ∼ 10% improvements in the extended models.
In this Figure, we clearly see that it is for extended cosmological models that the
combination with CMB brings the most information. Except for h, all parameters
have constraints improved by a factor of & 2 in the wCDM model (bottom left
panel), and by a factor of & 1.5 in the ΛCDM model when γ is considered as a free
parameter (upper right panel). The constraints on w0, wa in the wCDM model are
improved by at least a factor 1.5, and up to two, for the three CMB experiments
considered here. This means an increase in the figure of merit of w0, wa by a factor
two to four.

Of course, the best constraints are achieved by the combination with the CMB-
S4 experiment. However, it seems that the Simons Observatory will already greatly
improve the constraints in most of the cases. Even Planck alone performs well on
parameters of the wCDM model, by improving constraints on all parameters except
h by more than 50%.

Figure 3.5 summarizes most of our results. This Figure displays the ratio of the
1σ marginalised uncertainties for the Euclid observables alone over the constraints
for Euclid + CMB combined analysis. The Euclid + CMB case is the second configu-
ration described in Section 3.6.3 i.e. we do not take into account the cross-correlated
probes in our data vector but we properly take into account the covariances between
the two datasets. The colours correspond to the percentages of improvement, while
the numbers in the matrix correspond to the factors of improvement.

We see that there is no improvements on the intrinsic alignment parameters in
all the models considered here. It appears also that the addition of CMB constraints
is more helpful for the pessimistic Euclid scenario than for the optimistic one. This
is expected as the pessimistic scenario gives much less constraints on parameters
than the optimistic one.

The parameters that benefit the most from the addition of CMB constraints
are Ωb and ΩΛ (for relevant models), which are improved by a factor three to 13.7
depending on the model and setting considered. On the contrary, it seems like h is
the parameter which is the least improved by the addition of CMB constraints. It
is also clear, again as expected, that it is with CMB-S4 that we will get the highest
improvements.

We show in Figure 3.6 the improvements when including the cross-correlated
probes between Euclid and CMB in the data vector as opposed to not including
them. This time both the colours and the numbers in the matrix are the percentage
of improvements. This represents the improvement of including cross-correlated

79



Forecasting constraints for Euclid X CMB

Ω b,
0

Ωm
,0 n s h σ 8 τ w 0 w a

ΩD
E
,0 γ b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 A IA η I

A
β I
A

Pessimistic Euclid + Planck, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

Pessimistic Euclid + SO, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

Pessimistic Euclid + S4, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

Optimistic Euclid + Planck, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

Optimistic Euclid + SO, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

Optimistic Euclid + S4, flat LCDM

non-flat LCDM

flat w0waCDM

non-flat w0waCDM

flat w0waγCDM

non-flat w0waγCDM

6.0 1.5 2.3 2.3 1.5 1.5 1.3 1.3 1.2 1.3 1.0 1.0 1.0

4.1 1.5 1.8 2.2 1.6 3.7 1.7 1.9 2.0 1.8 2.2 1.0 1.0 1.0

5.0 2.2 2.4 1.8 2.1 1.5 1.6 1.3 1.3 1.3 1.3 1.5 1.0 1.0 1.0

5.1 1.7 1.9 1.8 2.0 1.4 2.1 5.1 1.5 1.4 1.4 1.3 1.5 1.0 1.0 1.0

5.6 2.6 2.4 1.8 2.2 1.4 1.4 1.4 1.3 1.3 1.4 1.4 1.6 1.0 1.0 1.0

5.6 2.1 2.0 1.8 2.4 1.4 2.3 5.3 1.8 1.5 1.3 1.3 1.2 1.3 1.0 1.0 1.0

8.0 1.6 2.7 2.9 1.6 1.5 1.4 1.3 1.2 1.3 1.0 1.0 1.0

6.0 1.8 2.3 2.3 1.9 4.9 1.9 2.1 2.1 1.8 2.4 1.0 1.0 1.0

6.2 2.2 2.8 1.9 2.2 1.5 1.6 1.4 1.4 1.5 1.4 1.7 1.0 1.0 1.0

7.0 2.4 2.5 2.0 2.6 1.6 2.2 7.7 1.6 1.6 1.6 1.5 1.7 1.0 1.0 1.0

7.1 2.7 2.8 1.9 2.3 1.4 1.5 1.6 1.4 1.5 1.6 1.5 1.9 1.0 1.0 1.0

7.6 3.1 2.8 2.0 3.1 1.5 2.4 8.6 2.1 1.7 1.6 1.5 1.5 1.7 1.0 1.0 1.0

9.9 1.9 3.2 3.4 2.0 1.8 1.6 1.5 1.3 1.5 1.0 1.0 1.0

6.9 2.2 2.9 2.4 2.5 6.7 2.3 2.3 2.3 2.0 2.6 1.0 1.0 1.0

6.7 2.3 3.3 1.9 2.4 1.6 1.6 1.6 1.6 1.7 1.6 2.0 1.0 1.0 1.0

7.9 3.3 3.0 2.2 3.4 1.8 2.2 11.9 1.8 1.9 1.9 1.8 2.2 1.0 1.0 1.0

7.7 2.8 3.2 1.9 2.5 1.4 1.5 2.2 1.5 1.6 1.8 1.7 2.3 1.0 1.0 1.0

8.7 4.3 3.4 2.2 4.1 1.6 2.5 13.7 2.9 1.9 1.8 1.9 1.7 2.2 1.0 1.0 1.0

3.1 1.1 1.4 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0

2.2 1.3 1.2 1.5 1.1 3.8 1.1 1.3 1.4 1.5 1.6 1.6 1.7 1.8 2.0 2.1 1.0 1.0 1.0

2.9 2.1 1.8 1.1 1.8 1.9 1.6 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.0 1.0 1.0

3.0 1.5 1.2 1.2 1.6 1.6 1.7 2.9 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0

3.1 2.1 1.8 1.1 1.9 1.6 1.3 1.2 1.0 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.0 1.0 1.0

3.1 1.8 1.6 1.1 1.9 1.4 1.6 2.8 1.6 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.0 1.0 1.0

5.5 1.1 1.5 1.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0

4.2 1.4 1.3 1.5 1.2 4.3 1.2 1.4 1.5 1.6 1.6 1.7 1.8 1.9 2.1 2.2 1.0 1.0 1.0

4.9 2.4 1.9 1.1 1.9 2.1 1.7 1.1 1.2 1.3 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.0 1.0 1.0

5.2 1.9 1.4 1.2 1.9 1.8 1.8 3.6 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.0 1.0 1.0

5.0 2.4 2.0 1.1 2.1 1.7 1.4 1.3 1.1 1.2 1.4 1.4 1.5 1.5 1.5 1.6 1.6 1.6 1.0 1.0 1.0

5.3 2.3 1.9 1.2 2.3 1.5 1.7 3.7 1.7 1.1 1.1 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.4 1.0 1.0 1.0

6.8 1.2 1.6 1.6 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2 1.2 1.2 1.0 1.0 1.0

5.2 1.6 1.4 1.5 1.4 5.1 1.3 1.6 1.7 1.7 1.8 1.8 1.9 2.0 2.2 2.3 1.0 1.0 1.0

5.9 2.4 2.0 1.2 2.1 2.2 1.8 1.2 1.4 1.5 1.5 1.6 1.6 1.6 1.7 1.8 1.8 1.0 1.0 1.0

6.5 2.5 1.7 1.3 2.4 2.1 1.9 5.2 1.2 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.6 1.6 1.0 1.0 1.0

6.3 2.5 2.2 1.3 2.2 1.9 1.6 1.5 1.1 1.3 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.1 1.0 1.0 1.0

6.9 3.2 2.4 1.4 2.9 1.7 1.9 5.5 2.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.9 1.0 1.0 1.0

100

101

102

103

%
of

im
pr

ov
em

en
t

in
co

n
st

ra
in

ts

Figure 3.5: Figure from Euclid Collaboration (in prep.). Summary of our results,
showing the ratio of the 1σ marginalised uncertainties on the parameters of the
models considered of the Euclid only case over the Euclid combined with CMB
case, neglecting correlations between the two datasets.
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Figure 3.6: Improvements on marginalised 1σ constraints after including cross-
correlated probes Euclid x CMB as opposed to not including them in the Euclid
+ CMB combination. The colours and the numbers in the matrix show the percent-
age of improvements. The Euclid + CMB combination (our reference here) includes
the correlations between observables in the covariance matrix.
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probes on top of the factor of improvement when combining Euclid and CMB probes.
We see that these cross-correlated observables are improving the constraints on

the intrinsic alignments parameters in case of a pessimistic Euclid scenario, with
improvements on AIA, ηIA and βIA of 2.7%, 1.8%, 5.1% for Planck and of 9.1%,
7.4%, 15% for CMB-S4, and for all cosmological models.

Except for IA, we see that the cross-correlation with Planck observables do not
bring great improvements, with a maximum of 0.5% improvement for a pessimistic
Euclid setting and a maximum of 0.3% improvement for an optimistic Euclid setting.

We see that for SO and CMB-S4, the use of cross-correlated observables is more
interesting in the optimistic Euclid setting. Indeed in this setting, we use the highest
redshift bins of galaxy clustering photometric, between z = 0.9 and z = 2.5, so the
cross-correlation of galaxy density and CMB lensing is probing the peak of the
CMB lensing efficiency (z ∼ 2, see Equation 3.19). It appears that the galaxy
bias parameters are improved by up to 4% when cross correlating CMB-S4 and
Euclid observables. The optical depth of reionization parameter also benefits from
the cross-correlation of Euclid and CMB, with an improvement of up to 6.6% with
CMB-S4.

Finally, we compare in Figure 3.7 the constraints when taking into account or
not the covariances between Euclid and CMB probes. This case is for the non flat
wCDM model where γ is free, and combining Euclid optimistic with CMB-S4. It
appears that the difference on the constraints when taking or not into account the
covariances between CMB and Euclid probes is very marginal, with less than 1%
of difference. It is probably due to the very low correlations between Euclid and
CMB probes. However, to perform a precise analysis, one has to properly take
into account the covariances between the probes, even if it appears here that the
difference might be marginal.

3.8 Conclusion

I have participated to the production of the forecasts for the joint analysis of Euclid
and CMB observables, as part of my collaboration inside the CMBX science working
group. Specifically, I was involved in the modelling of CMB noise power spectra,
the implementation and production of the covariance matrices between our probes,
the implementation of the Fisher matrices analyses with numerical stability tests,
and in the writing of the paper.

In this collaboration, we have produced forecasts for the constraints achieved
by the combination of the Euclid main probes, namely galaxy clustering spectro-
scopic, galaxy weak lensing and galaxy clustering photometric, with CMB observ-
ables, namely temperature, polarisation and lensing potential. We used the Fisher
formalism to forecast a priori how well the integration of CMB observables will
improve the constraints given by Euclid probes. We have tested two Euclid set-
tings and three CMB experiments over several extended cosmological models. We
included astrophysical systematics, namely the galaxy bias and the weak lensing
intrinsic alignments.

We found that a combined analysis of Euclid and CMB probes will greatly im-
prove constraints on cosmological parameters, especially on extensions of the ΛCDM
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Figure 3.7: Ratio of the 1σ marginalised uncertainty over the fiducial values of the
parameters of the non flat wCDM model where γ is let free, for a Euclid optimistic
and a CMB-S4 scenario. The three colours correspond to the three configuration
of probe combination described in Section 3.6.3. The blue bars correspond to not
taking into account the covariance between Euclid and CMB probes, the orange
bars correspond to properly taking their covariances, and the green bars correspond
to including the cross-correlations between Euclid and CMB observables in the data
vector.

model. For instance, we can expect a factor two improvement in the w0, wa figure
of merit for the combination of Euclid and Planck , and a factor four improvement
for the combination with CMB-S4.

The parameter which benefits most from the combination with CMB data is Ωb.
This may be due to the fact that the galaxy survey probes are sensitive to the total
matter (dark matter and baryons) and not specifically to baryons, while the shape
of the CMB power spectrum is greatly sensitive to density of baryons.

We have seen that the inclusion of cross-correlated probes seems to give marginal
improvements. This small improvement (< 10% compared to not including the
cross-correlations) principally benefits to astrophysical systematic parameters such
as the galaxy bias and the intrinsic alignments but also to the reionisation optical
depth. The fact that the reionisation optical depth parameter is improved when
using cross-correlated observables might come from the degeneracy between τ and
the amplitude of pertubations As, which is broken when adding the tight constraints
on σ8 from large scale surveys.

In order to explore how to fully benefit from the power of the cross-correlated
probes, we probably have to include more systematic effects in our settings, such as
instrumental systematics or other sources of contaminations of the signal (residual
galaxy emissions in the CMB for instance). Indeed, these types of systematics
specific to each observable should disappear in the cross-correlations.

Our analysis is greatly simplified compared to a real case scenario. Indeed we did
not include the effects of masking, we assumed a totally gaussian covariance between
the probes, without correlations between different multipoles, and we neglected the
super sample covariance. We also neglected the covariance between the 3D and 2D
galaxy power spectra. In future studies, especially when the real data will arrive,
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we will have to include all these effects in the likelihood analysis.
Our results are however very promising as we showed that the addition of CMB

probes can help in improving the constraints on most parameters, especially for
extended cosmological models. As the Euclid survey is specifically dedicated to
explore extensions of ΛCDM, we argue that the combination of Euclid observables
with CMB datasets will greatly help reaching this goal. A combined analysis of
both datasets will help us in making the distinction between different cosmological
scenarios.
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Chapter 4

An alternative probe for galaxy surveys

The previous chapter presented the forecasts on the constraints obtained by the
joint analysis of the Euclid survey with CMB surveys. In this context we used the
main Euclid probes which are the weak lensing and the galaxy clustering (2D and
3D).

In order to maximise the cosmological power of next generation galaxy surveys,
new probes of the distribution of matter are being developed. In this chapter we
forecast the cosmological power of the angular redshift fluctuation (ARF). We de-
scribe the modelling of this probe and we forecast the constraints it will achieve on
cosmological parameters. The work presented here has been submitted for publica-
tion (Legrand et al. 2020).

4.1 Introduction

In spectroscopic galaxy surveys, it is customary to convert redshift estimates into
radial distances under the assumption of a given fiducial cosmological model. An-
gular and redshift coordinates are thus converted into the three-dimensional space,
where standard 3D clustering analysis techniques are applied.

Here we choose to follow a different strategy. We focus on a new cosmological
observable, the angular redshift fluctuations (ARF) which has been introduced in
Hernández-Monteagudo et al. (2019). We explore its sensitivity to cosmology, either
when considered independently, or when combining it with other angular observ-
ables, such as the standard angular clustering, or the lensing of the CMB. Being a
2D observable, the ARF field can easily be cross-correlated with other 2D observ-
ables, such as the 2D galaxy density field and the CMB lensing fields. ARF present
other interesting features, such as being correlated to the cosmic, radial, peculiar
velocity fields (Hernández-Monteagudo et al. 2019; Chaves-Montero et al. 2019), or
being particularly insensitive to additive systematics that remain constant under
the redshift shell subject to analysis.

We apply the Fisher formalism on the angular galaxy clustering, the ARF and
the CMB lensing convergence observables, and explore their sensitivity to cosmology
in two different observational set ups, mimicking those expected for the DESI and
Euclid surveys. We consider the CMB lensing convergence field among our observ-
ables, since it constitutes an intrinsically different probe whose dependence on the
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parameters defining the galaxy sample is different from that of angular galaxy clus-
tering and ARF. Our scope is to assess if the ARF field can provide complementary
information on the galaxy density field and on the CMB lensing field.

Throughout this chapter, we use the Planck 2018 cosmology as our fiducial
cosmology. We take the values given in Table 2, in the column 6 (best-fit with
BAO), of Planck Collaboration et al. (2018a). As introduced in Section 1.7.2, the
redshift due to the Hubble expansion is denoted by z, while zobs is the measured
redshift (which includes redshift distortions induced by radial peculiar velocities).
In this Chapter, r(z) =

∫
dz c /H(z) is the line of sight comoving distance, and

dVΩ = dV/dΩ = r2 dr = r2(z) c/H(z) dz is the comoving volume element per solid
angle, with dΩ a differential element in solid angle.

4.2 Surveys under consideration

Among the wealth of current and upcoming experiments, we choose two represen-
tative cases for spectroscopic large scale structures (LSS) surveys, namely the DESI
and the Euclid experiments. We detail their specifications in Table 4.1. On the
CMB side we consider the same experiments which were introduced in Section 3.5,
namely a Planck -like experiment, the Simons Observatory and the CMB-Stage 4
We introduce below the specifications for the two galaxy surveys.

4.2.1 The DESI experiment

DESI is a ground-based survey that will cover 14, 000 deg2 on the sky and will
measure the redshift of about 30 million galaxies using optical fibers spectroscopy
(DESI Collaboration et al. 2016). It will target four different classes of galaxies.
In this chapter, we compute forecasts for the emission line galaxies (ELG) sample
which is the largest sample of the survey. It ranges from z = 0.6 up to z = 1.6.
The expected galaxy distribution n̄g(z) (see Figure 4.1a) and the galaxy bias b(z)
are calibrated based on the DEEP2 survey (Newman et al. 2013). The (linear) bias
of the spatial distribution of this galaxy population with respect to dark matter is
a redshift dependent quantity approximated by

bg(z) = 0.84/D(z) , (4.1)

with D(z) denoting the growth factor of linear matter density perturbations.
The DESI experiment successfully achieved the commissioning phase in the first

half of 2020 and should start observing the sky in the second half of 2020 for a five
year period. The DESI collaboration plans to release annual datasets.

4.2.2 The Euclid spectroscopic survey

We summarize here the key points that have been introduced already in Section
3.4. We are now focusing on the spectroscopic survey which will be performed with
the NISP instrument with slitless spectroscopy. This will allow for precise redshift
determinations for about 1950 gal deg−2 in the redshift range 0.9 < z < 1.8. We
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Survey Euclid DESI
Survey area 15 000 deg2 14 000 deg2

Redshift estimation Slitless spectroscopy Optical fiber spectroscopy
Targets Hα emission line [OII] doublet
Redshift range 0.9 < z < 1.8 0.6 < z < 1.6
Galaxy density 1950 gal deg−2 1220 gal deg−2

Galaxy bias bg(z) = 0.79 + 0.68 z bg(z) = 0.84/D(z)
Reference Euclid Collaboration et al. (2019) DESI Collaboration et al. (2016)

Table 4.1: Specifications for the two galaxy surveys under consideration.
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Figure 4.1: Galaxy density distribution as a function of redshift for the emission
line galaxies (ELG) of DESI (left panel), and the Euclid spectroscopic sample (right
panel). The filled coloured lines show the Gaussian bins used in our analysis, colour
coded as a funciton of bin index. The orange line shows the CMB lensing efficiency
kernel (with arbitrarily normalization).

assume the model 3 from Pozzetti et al. (2016) for the expected number density of
galaxies n̄g(z) (see Figure 4.1b). For the expected galaxy linear bias, we fit a linearly
redshift dependent bias on the values of the Table 3 of Euclid Collaboration et al.
(2019), yielding

bg(z) = 0.79 + 0.68 z . (4.2)

4.2.3 Tomography

As already mentioned above, our forecasts are based on a tomographic approach
where the entire redshift range covered by a galaxy survey is sliced into different
redshift bins. Centred at each of these redshift bins, we consider Gaussian redshift
shells of a given width σz centred on redshifts zi,

Wi(z) = exp

(
−(z − zi)2

2σ2
z

)
. (4.3)
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Provided that a Gaussian shell will be diluting information on radial scales shorter
than the Gaussian width, our choice for σz is a compromise between maximizing
the amount of radial scales under study, and minimizing the impact of non-linear,
radial scales in the analysis (Asorey et al. 2012; Di Dio et al. 2014). Hernández-
Monteagudo et al. (2019) has shown that, at z ' 1, down to σz = 0.01 the impact of
radial non-linearities was either negligible or easily tractable with a Gaussian kernel
describing thermal, stochastic, radial motions. We thus adopt σz = 0.01 for our
forecasts.

As shown in Asorey et al. (2012), the angular galaxy clustering analysis can re-
cover the same amount of information as the 3D analysis when the bin size is com-
parable to the maximum scale probed by the 3D analysis. This gives σz c/H(z) '
2π/kmax, so in our case, for z = 1 and kmax = 0.2 h Mpc−1 (see Section 4.3), we get
σz ' 0.01, corresponding to our choice of bin size.

For the two galaxy surveys under consideration we take the same number of
20 redshift bins, and since the overlap between consecutive bins is not zero, we
account for all cross-correlations between shells in the covariance matrix. In this
way, redundant information between different shells is fully accounted for. The
redshift bins sample the range from z = 0.65 to z = 1.65 for DESI, and from z = 0.9
to z = 1.8 for Euclid . These redshift bins are displayed in Figures 4.1a and 4.1b,
together with the expected number density of tracers for each survey.

4.3 Observables

We consider three different observables, namely the angular galaxy clustering, the
corresponding ARF, and the CMB lensing convergence field. In order to compute the
forecasts, we shall restrict to the linear scales, where the cosmological linear theory
of perturbations apply. In practice, we ignored all scales above kmax = 0.2 h Mpc−1

at all redshifts. This is a conservative approach, as one could consider a scale cutoff
which evolves with redshift as in Di Dio et al. (2014). We shall also assume that our
observables are Gaussian distributed, and that the information content is completely
captured by the two-point momenta, in particular the angular power spectrum,
either auto or cross, depending on whether we combine different observables or not.

The basics of the modelling of angular observables have been introduced in Sec-
tion 3.3. In what follows, we describe in more details the modelling of the angular
galaxy density and of the angular redshift fluctuation, and we include the redshift
space distortions introduced in Section 1.7.2. The CMB lensing has already been
introduced in Section 3.3.2.

4.3.1 Galaxy angular density fluctuations

The 3D field of the number density of galaxies is noted as ng(z, n̂), where n̂ denotes
a direction on the sky. The average number density of galaxies at a redshift z is
defined by n̄g(z) = 〈ng(z, n̂)〉n̂. The 3D field of galaxy density contrast is then given
by

δ3D
g (z, n̂) =

ng(z, n̂)− n̄g(z)

n̄g(z)
. (4.4)
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We assume that the galaxy density contrast traces the dark matter density contrast
δm via a scale-independent bias: δ3D

g (z, n̂) = bg(z) δ3D
m (z, n̂). This bias depends on

the properties of the galaxies used as a tracer for each survey, and are given in
Eqs. 4.1 and 4.2.

In our analysis, we model the observed redshift of galaxies zobs as a 3D field. It is
defined as the sum of the redshift induced by the Hubble flow, and the redshift due
to the peculiar velocity of galaxies (see Equation 1.47). We neglect other sources
of redshift distortions which are significantly smaller than those considered here
(Hernández-Monteagudo et al. 2019).

The angular galaxy density field is then modelled by an integral along the line
of sight in which, at every redshift z, only galaxies within the selection function
W (zobs; zi) are included:

δig(n̂) =
1

N i
g

∫ ∞
z=0

dVΩ n̄g(z) bg(z) δm(z, n̂)Wi [zobs(z, n̂)] , (4.5)

where N i
g =

∫ ∞
z=0

dVΩ n̄g(z)Wi(z) is the average number of galaxies per solid angle,

under the i-th selection function Wi centred on redshift zi, and in practice can be
computed from an angular average over the survey’s footprint.

We next expand the selection function, retaining only linear terms in density and
velocity fluctuations, finding

δig(n̂) ' 1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)Wi(z)

[
bg(z) δm(z, n̂) + (1 + z)

d lnWi

dz

v(z, n̂) · n̂
c

]
,

(4.6)

with the derivative d lnWi/dz = −(z − zi)/σ2
z .

4.3.2 Angular redshift fluctuations

The ARF field represents the spatial variations of the average redshift of galaxies
on the sky. The average redshift of galaxies is given by

z̄ =
1

N i
g

〈∫ ∞
z=0

dVΩ zobs(z, n̂)ng(z, n̂)Wi [zobs(z, n̂)]

〉
n̂

=
1

N i
g

∫ ∞
z=0

dVΩ z n̄g(z)Wi(z) .

(4.7)

We thus define the ARF field as

δiz(n̂) =
1

N i
g

∫ ∞
z=0

dVΩ (zobs(z, n̂)− z̄) n̄g(z) [1 + bg(z) δm(z, n̂)] Wi [zobs(z, n̂ )] ,

(4.8)

where we again refer to a redshift bin centred upon zi. Expanding the Gaussian se-
lection function at first order and retaining only linear terms in density and velocity,
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we find:

δiz(n̂) ' 1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)Wi(z)

[
(z − z̄) bg(z) δm(z, n̂)

+ (1 + z)
v(z, n̂) · n̂

c

(
1 + (z − z̄)

d lnWi

dz

)]
.

(4.9)

Note that given the small widths adopted (σz = 0.01), it is safe to assume that the
bias b(z) remains constant within the redshift bin.

4.3.3 Angular power spectra

Our statistical tool to test cosmological models are the angular two-point power
spectra C` performed over the three fields defined in Sections 4.3.1, 4.3.2 and 3.3.2.
Following the formalism introduced in Section 3.3, and assuming that the galaxy
bias and the growth factor are scale independent, one can show that our (cross
and auto) angular power spectra can be expressed as the convolution of two kernels
∆A
` (k) and ∆B

` (k), corresponding to the fields A and B (see, e.g. Huterer et al. 2001):

CA,B
` =

2

π

∫
dk k2 P (k) ∆A

` (k) ∆B
` (k), (4.10)

where P (k) is the linear 3D matter power spectrum at z = 0, function of the wave
number k.

To obtain the theoretical prediction of our angular power spectra, we start from
the 2D fields defined in Eqs. 4.6 and 4.9. The velocity field is related to the matter
density contrast field via the linearised continuity equation ∂ δm/∂t + ∇v/a = 0.
One can show that the angular galaxy clustering kernel is the sum of two terms,
one arising from the density of galaxies and the other from the peculiar line of sight
velocities, ∆g

` = ∆g
` |δ + ∆g

` |v (see e.g. Padmanabhan et al. 2007):

∆g,i
` |δ(k) =

1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)Wi(z) bg(z)D(z) j`(k r(z)) , (4.11)

∆g,i
` |v(k) =

1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)H(z) f(z)D(z)
dWi

dz

j′`(k r(z))

k
, (4.12)

where j`(x) is the spherical Bessel function of order ` and j′`(x) is its derivative
j′`(x) ≡ dj`/dx, and f(z) is the growth rate introduced in Equation 1.49.

One can thus write the power spectrum as the sum of the contributions from the
density and from the velocity kernels C` = C δ ,δ

` + 2C δ ,v
` + C v ,v

` .
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The ARF kernel can also be separated into two kernels:

∆z, i
` |δ(k) =

1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)Wi(z) bg(z)D(z) (z − z̄) j`(k r(z)) , (4.13)

∆z, i
` |v(k) =

1

N i
g

∫ ∞
z=0

dVΩ n̄g(z)H(z) f(z)D(z)Wi(z)

×
[
1 + (z − z̄)

d lnWi

dz

]
j′`(k r(z))

k
.

(4.14)

The kernel function of the CMB lensing convergence field is given by:

∆κ
` (k) =

3Ωm,0

2

(
H0

c

)2 ∫ r∗

r=0

dr
r

a(r)

r∗ − r
r∗

D(z(r)) j`(k r), (4.15)

where r∗ the comoving distance from the observer to the last scattering surface, and
a is the cosmological scale factor.

The top panel of Figure 4.2 shows the angular power spectra of the angular
galaxy clustering and ARF, for a Gaussian selection function of width σz = 0.01
centered on zi = 0.75 in a DESI-like survey. We show in the same figure the terms
arising from the density fluctuation kernel and the peculiar velocity kernel (c.f.
Eqs. 4.11 to 4.14). We can see that the peculiar velocity term is relatively more
important (compared to the total power spectrum) in the ARF power spectrum
than in the angular galaxy clustering power spectrum. To better illustrate this fact,
we show in the bottom panel of Figure 4.2 the ratio of the velocity part of the
power spectrum (which is the sum C v ,v

` + 2C δ ,v
` ) over the total power spectrum

for both angular galaxy clustering and ARF. For both fields, the peculiar velocity
contribution dominates at low `, while it vanishes to zero for ` > 300. At ` = 10, the
velocity-dependent part in the power spectrum represents around 67 % of the total
contribution for C z, z

` , while it represents only 58 % of C g, g
` . The difference between

the two is even more visible at ` = 60, where the velocity contribution represents
55 % of C z, z

` and only 35 % of C g, g
` .

This difference is caused by the intrinsic different nature of the angular galaxy
clustering and ARF transfer functions: angular galaxy clustering is sensitive to the
average of density and velocity under the Gaussian shell, whereas ARF is sensitive to
radial derivatives of those fields. For narrow shells, this makes both fields practically
uncorrelated (Hernández-Monteagudo et al. 2019), and given the ratio comparison
showed in Figure 4.2, one would expect ARF to be more sensitive than angular
galaxy clustering to cosmological parameters impacting peculiar velocities.

4.3.4 Numerical recipes

We can rewrite our kernels as

∆`(k) =

∫ ∞
0

dr A(r) j`(k r) , (4.16)
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Figure 4.2: Top panel : Power spectra of angular galaxy clustering (δg, in blue) and
ARF (δz, in red), for a Gaussian redshift bin taken in a DESI-like survey, down to
` = 10. As described in the text, we do not assume the Limber approximation.
The bin is centred on zi = 0.75 and has a standard deviation of σz = 0.01. The
dashed line show the term coming from the density kernel C δ ,δ

` ; the dotted line
show the part coming from the velocity kernel C v ,v

` and the dot-dashed line show
the cross term C δ ,v

` . The total C` power spectra (plain lines) correspond to the
sum C` = C δ ,δ

` + 2C δ ,v
` + C v ,v

` . Bottom panel : Ratio of the velocity dependence
in the power spectrum (C v ,v

` + 2C δ ,v
` ) over the complete power spectrum, for the

angular galaxy clustering (blue line) and for the ARF (red line). This figure shows
that ARF are more sensitive to the peculiar velocity of galaxies than angular galaxy
clustering, for the same redshift shell.
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Figure 4.3: Arguments A(z) (normalized to their maximum absolute value) of the
angular galaxy clustering (blue lines) and of the ARF (red lines), for an Euclid -like
galaxy survey. The plain lines show the density term, and the dashed lines show the
peculiar velocity term. This arguments corresponds to a Gaussian window centred
on zi = 1. with a standard deviation of σz = 0.01.

where we define A(r) the argument defined under the integrals of Equations 4.11 to
4.15. For example, the density argument of the δg observable is

Aδ
i
g

δ (r) =
1

N i
g

r2 n̄g(r)Wi(r) bg(r)D(r) . (4.17)

We show in Figure 4.3 the arguments for angular galaxy clustering and ARF
observables, for both the matter density and from the peculiar velocity terms.

The density argument of the angular galaxy clustering Aδgδ (plain red line) di-
rectly reflects our choice of Gaussian selection function. The observable field is
indeed the integral along the line of sight of the galaxy 3D overdensity field inside
this gaussian selection window. The peculiar velocity argument Aδgv (dashed red
line) also reflects our choice of Gaussian window, its shape is mainly due to the
derivative of our Gaussian selection function dWi

dz
(see Equation 4.12).

We see that the ARF density term Aδzδ (plain blue line) has a similar shape than
Aδgv , which seems to be its symmetric around the y = 0 axis. This shape comes from
the term (z − z̄) in its argument (see Equation 4.13). The density argument of the
ARF field directly probes the evolution in the number of galaxies inside the bin. If
there are more galaxies in the z < z̄ half of the bin then the integral along the line of
sight will be negative, and if there are more galaxies in the other half of the redshift
bin then the integral will be positive. In our equations, the argument is probing the
product bg(z)D(z) n̄g(z). If this product is a constant inside the redshift bin, the
integral of the argument along the z-axis would be zero.

We perform the numerical integration of Equations 4.11 to 4.15 using the FFT-
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Log algorithm (Hamilton 2000). This algorithm allows for accurate and fast com-
putations of Hankel transforms, defined by

F (k) =

∫ ∞
0

dr f(r) Jµ(k r) k , (4.18)

with Jµ(k r) the Bessel function of order µ. The spherical Bessel functions are linked
to the Bessel function by

j`(x) =

√
π

2x
J`+1/2(x) . (4.19)

We rewrite our kernels in order to express them as Hankel transforms

∆`(k) =
1

k
√
k

∫ ∞
0

dr

[
A(r)

√
π

2r

]
J`+1/2(k r) k , (4.20)

and we perform the FFTLog algorithm on these rewritten kernels.
We show in Figure 4.4 the resulting kernels obtained for the angular galaxy

clustering and the ARF observables, for ` = 10 and for ` = 300. These kernels
will be convolved with the matter power spectra as in Equation 4.10 to get the
angular power spectra (auto and cross) of our observables. This Figure also validate
our choice of maximum scale cutoff, as these kernels are almost negligible for k >
kmax = 0.2hMpc−1 for ` = 300.

4.4 Signal to noise forecasts

We forecast the expected signal to noise ratio (SNR) for different combinations
of observables. Our data vector D(`) contains the auto- and cross-power spectra
between the different observables and between the redshift bins. In order to compare
several combinations of probes, we define the following data vectors:

Dg(`) =
(
C
gi, gj
l

)
, (4.21)

Dz(`) =
(
C
zi, zj
l

)
,

Dg, z(`) =
(
C
gi, gj
l , C

gi, zj
l , C

zi, zj
l

)
,

Dg, κCMB
(`) =

(
C
gi, gj
l , C gi, κCMB

l , C κCMB, κCMB

l

)
,

Dg, z, κCMB
(`) =

(
C
gi, gj
l , C

gi, zj
l , C gi, κCMB

l , C
zi, zj
l , C zi, κCMB

l , C κCMB, κCMB

l

)
, (4.22)

where i and j are indexes running over the redshift bins. We perform a tomographic
analysis with 20 redshift bins, thus the data vectors containing only the auto-spectra
of angular galaxy clustering and ARF (Dg andDz) contain 210 C`’s each. The data
vector containing the cross-correlationDg, z has 820 C`’s and the longest data vector
Dg, z, κCMB

contains 861 C`’s.
In Figure 4.5, we display the correlation matrix for the Dg, z, κCMB

(` = 10) data
vector. We clearly see that, in the same redshift bin, angular galaxy clustering and
ARF are practically un-correlated (diagonal terms of the top left and lower right
blocks close to zero), but that there is some degree of anti-correlation in neighbouring
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Figure 4.4: The kernels for the angular galaxy clustering and the ARF fields, for a
Gaussian bin centred on z = 1 with a width of σz = 0.1 for an Euclid -like survey
galaxy distribution. The top row show the kernels for ` = 10, and the bottom row
show the kernels for ` = 300. The left panels are for the δg observable and the
right panels are for the δz observable.Plain lines show the kernel from the density
fluctuations and dashed lines are for the peculiar velocities on the line of sight.
These kernels are obtained through the FFTLog algorithm, and are then convolved
with the linear power spectrum of matter P (k) to obtain the angular power spectra
C` of our observables. Note that the axis range differs in every panel.
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Figure 4.5: Correlation matrix between our observables, for the 20 redshift bins in
an Euclid -like survey, at ` = 10. This matrix corresponds to the Dg, z, κCMB

(` = 10)

data vector. The value in each pixel corresponds to CA,B
` /

√
CA,A
` CB,B

` . All the data
vectors considered in Eqs. 4.21 to 4.22 are a subset of this matrix. We see that
there is no correlation between δg and δz inside the same redshift bin (diagonals
of the upper left and lower right blocks), and that there are opposite and positive
correlation for neighboring bins.

redshift bins. We can also observe that the CMB lensing field is almost uncorrelated
with the ARF.

The sign of the correlation between adjacent bins can be explained by the shape
of the argument functions shown in Figure 4.3. Indeed, the argument function from
the density fluctuations in the ARF field is negative and then positive, while the
density argument for angular galaxy clustering is always positive. As such, the
overlap of the two arguments will be negative if the redshift bin of angular galaxy
clustering is centred on a lower redshift than the bin of the ARF, and the correlation
will be positive if it is the opposite. As well, correlations between adjacent bins of
ARF will be always negative due to the product of the negative and the positive
parts of the density argument. Adjacent bins of the angular galaxy clustering have
a very low correlation. This is probably due to the fact that the line of sight velocity
arguments will be be negative and will cancel the positive term coming from the
density perturbations. For bins that are further away, the correlation is negative,
probably due to the fact that the product of the velocity argument dominates over
the product of the density argument.

We assume that there is no correlation between different multipoles and that the
covariance between the probes is totally captured by a Gaussian covariance.

The SNR of our data vectors as a function of `, taking into account all redshift
bins and the correlations between them, are given by

SNR (D(`)) =

√
D(`) t Cov−1

` D(`) , (4.23)
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Figure 4.6: Signal to noise ratios of angular galaxy clustering (Dg) in blue, ARF
(Dz) in orange and the combinations Dg, z in green and Dg, z, κCMB

in red. We
use 20 tomographic Gaussian bins of width σz = 0.01 in an Euclid -like survey, in
combination with a CMB-S4 survey. The total signal to noise ratios for the range
of multipoles ` = 10 to ` = 300 are shown in the text box on the bottom right.

and the total SNR are

SNR (D) =

√√√√ `max∑
`=`min

[SNR (D(`))]2 . (4.24)

Assuming that there is no correlation between different multipoles, we define our
Gaussian covariance matrix between our data vectors as in Hu and Jain (2004)

Cov`
(
C A,B
` , C C,D

`

)
=

1

(2`+ 1) ∆` fsky

×
[(
C A,C
` + δK

A,C N
A,A
`

)(
C B,D
` + δK

B,DN
B,B
`

)
+
(
C A,D
` + δK

A,D N
A,A
`

)(
C B,C
` + δK

B,C N
B,B
`

)]
,

(4.25)

with A, B, C, D are the observables {gi, zj, κCMB}, ∆` is the width of the multipole
bin, δKx,y is the Kronecker delta, N` are the probe specific noise power spectra and
fsky is the sky fraction of the survey considered.

For the sake of simplicity, when combining galaxy surveys with CMB lensing,
we always assume a full overlap of the two. As such, the sky fraction fsky is always
taken to be the one of either DESI or Euclid . Even if not accurate, this provides a
rough estimate of the available constraining power that the combination of galaxy
surveys with CMB lensing will be able to achieve.

We assume that the noise of the angular galaxy clustering and that of the ARF
are the shot noise arising from the discrete nature of galaxy surveys. We model it
by replacing the power spectrum of dark matter by a Poissonian term, Pshot(k, z) =
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1/n̄g(z), into Eq. 4.10. From this, we can derive the following expressions for the
shot noise

N
gi, gj
` =

δK
i, j

N i
gal

, (4.26)

N
zi, zj
` =

δK
i, j(

N i
gal

)2

∫
dVΩ n̄g(z)W (zi, z) (z − z̄i)2 , (4.27)

N
gi, zj
` =

δ ij(
N i

gal

)2

∫
dVΩ n̄g(z)W (zi, z) (z − z̄i) = 0 . (4.28)

We can see here that the shot noise cancels out when computing the cross correlation
between the angular galaxy density and the ARF fields.

In order to check the validity of the shot noise computations, we performed
simulations of the shot noise. We created a uniform random distribution of galaxies,
and projected it on a spherical map, based on the same redshift distribution as
Euclid. We then perform the computation of the ARF field and of its angular
power spectrum on this simulated sky map. Realising several random realisations of
this map we obtain an estimation of the shot noise. We found that the theoretical
estimation of the shot noise for the ARF field agree at 10% with the numerical
estimation with these mock maps.

For the CMB lensing field, we follow the same prescriptions as in the Section
3.5. In particular, we also include the low multipoles (` < 40) from Planck in the
forecasts of the Simons Observatory and CMB-Stage 4 surveys.

We use the linear matter power spectrum P (k) computed with the CLASS software
(Blas et al. 2011). In order to focus on the linear regime we restrict our analysis
to a maximum multipole of `max = 300. Assuming the Limber approximation k =
(`+ 1/2)/r(z), this `max corresponds to k = 0.18 h Mpc−1 at a redshift of z = 0.65.
Given that we will sample higher redshifts, we will probe larger scales (k lower
than 0.18 h Mpc−1). We hence expect little impact from non-linear physics in our
observables (these are expected to become relevant on k < 0.2 h Mpc−1 at z = 0,
and yet shorter at higher redshifts). Again this is a conservative approach as one
could consider a multipole cuttoff evolving with redshift as in Di Dio et al. (2014).
We stress that, in our computations, we do not use the Limber approximation but
the full computation of spherical Bessel functions.

Our minimum multipole is chosen to be `min = 10. To reduce numerical noise
and to speed up Fisher matrix computations, we perform a linear binning of the
multipoles. In each multipole bin [`i, `i+1[, the binned C` is the average of the C`’s
that fall in the bin, and the binned multipole is taken has ` = (`i + `i+1)/2. We
choose a bin size of ∆` = 3, which is applied on the full ` range. We check that this
binning does not impact the constraints from the Fisher matrix by comparing with
the case where we do not perform any binning of the multipoles.

We show in Figure 4.6 the SNR for an Euclid -like survey combined with a CMB-
S4 survey, for four combination of probes: Dg, Dz, Dg, z and Dg, z, κCMB

following
the redshift binning shown in Figure 4.1b. The total signal to noise for this four
data vectors is respectively 544, 545, 778 and 786. This shows that the tomographic
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Ωb Ωm ns h σ8 w0 wa

0.04897 0.3111 0.9665 0.6766 0.8102 -1 0

Table 4.2: Fiducial values of the free parameter of our fiducial cosmological model.
We first consider only parameters in the standard ΛCDM model, and later we include
the w0, wa parameters from the CPL parametrization of Dark Energy.

analysis of angular galaxy clustering and ARF have a similarly high SNR. Moreover,
the combined analysis Dg, z brings more information than measuring the angular
galaxy clustering alone Dg, as the SNR is increased by 40%.

4.5 Fisher forecasts

We use the Fisher formalism which was introduced in Section 3.2.2 to compute a
priori how well our data vectors defined in Section 4.4 will constrain cosmological
parameters in the context of future surveys. As we assumed that there is no cor-
relation between different multipoles, the Fisher matrix can be summed over the
multipoles and is given by

F i, j =
`max∑
`min

∂D(`)T

∂λi
Cov−1

`

∂D(`)

∂λj
, (4.29)

with D one of the data vectors defined in Eqs. 4.21 to 4.22, {λi}i is the set of free
parameters of our model, and Cov` the covariance matrix given in Eq. 4.25.

The derivatives ∂D(`)/∂λi are computed as the two-point variation with a 1%
step around the fiducial value. We have checked that our derivatives are numerically
stable when changing the step size.

We compute forecasts for two cosmological models. The first one assumes the
standard ΛCDM model, and the parameters we vary are {Ωm,Ωbaryon, σ8, ns, h, }.
The fiducial values of these parameters are given by Planck Collaboration et al.
(2018a). The second model assumes an evolving dark energy equation of state,
with the so-called CPL parametrization (Chevallier and Polarski 2001; Linder 2003):
w(z) = w0 + wa z/(1 + z). Our second set of free parameters is then

{Ωm,Ωbaryon, σ8, ns, h, w0, wa} .

In both cases, we assume a flat universe (Ωk = 0) with massless neutrinos (
∑
mν =

0). We show in Tab. 4.2 the fiducial values of the free parameters.
We also consider a bias parameter assumed constant within each redshift bin,

thus adding one free parameter for each redshift shell, over which we marginalise
in the Fisher analysis. The fiducial values of the galaxy bias depend on the survey
considered and are given in Eqs. 4.1 and 4.2. We take the value at zi, the center of
the Gaussian shell for each bin.
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Figure 4.7: Ratio of 1σ confidence interval relative to the 1σ value from angular
galaxy clustering (Dg) for ΛCDM parameters. Constraints are marginalised over
the 20 galaxy bias parameters. Plain lines are for a DESI-like survey while dashed
lines are for an Euclid -like survey. Blue line shows Dg (our reference here), orange
lines show Dz and green lines show Dg, z. We see that for most parameters (except
σ8) confidence intervals shrink by ∼ 50% when usingDz instead ofDg. When using
the combination Dg, z, 1σ intervals are shrinked by at least 60% for all parameters.

4.5.1 Results for the ΛCDM model

The results for the ΛCDM model are summarized in Figure 4.7, where we show the
ratio of the 1σ marginalised uncertainties when including ARF compared to using
only angular galaxy clustering, for a DESI-like and an Euclid -like surveys. Figure 4.8
and Figure 4.9 show the 1σ uncertainty ellipses for the ΛCDM parameters and three
out of the 20 galaxy bias parameters for a DESI-like survey and an Euclid -like survey
respectively. Error ellipses for Dg, Dz, and Dg, z are given by blue, orange, and
green curves, respectively, while marginalised 1σ uncertainties for each parameter
are quoted, for these three sets of observables, above the panels containing the one
dimensional probability density distributions (PDFs).

For both types of LSS surveys, we can see in Figure 4.7 that ARF (Dz) are signif-
icantly more sensitive than angular galaxy clustering (Dg), reducing by a factor two
the marginalised uncertainties of all cosmological parameters but σ8, to which both
observables are similarly sensitive. For the combined analysis Dg, z, marginalised
uncertainties are reduced by more than 60 % for all parameters (including σ8), com-
pared to the angular galaxy clustering probe alone Dg. We find that using ARF
in combination with angular galaxy clustering provides almost the same improve-
ment on the constraints on cosmological parameter for both surveys, although the
improvement is on average slightly better for our Euclid -like survey.

We see in Figures 4.8 and 4.9 that while the degeneracy direction between dif-
ferent cosmological parameter pairs seems very similar for both angular galaxy clus-
tering and ARF, this is again different for σ8. For Dz this parameter seems rather
independent from other cosmological parameters, while its degeneracy with bias pa-
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Figure 4.9: Same as Figure 4.8 for an Euclid -like survey.
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rameters is slightly tilted with respect to that ofDg. As a consequence the jointDg, z

ellipses show little degeneracy with other parameters, including bias. We also find
that the marginalised constraints from both experiments are very close, although
the Euclid -like experiment provides slightly more sensitive forecasts.

The correlation matrices in Figure 4.10 provide an alternative view of our results.
It shows the correlation matrices for the 5 ΛCDM parameters and the 20 galaxy
bias parameters for a DESI-like survey. We see the opposite correlation of the
cosmological parameters Ωb, Ωm, ns and h with σ8 for angular galaxy clustering
and ARF. This opposite correlation is mirrored in the correlations of those three
cosmological parameters with galaxy bias parameters. This is expected as σ8 and
bias are tightly correlated. The different nature of the correlation of σ8 and bias with
the other cosmological parameters for angular galaxy clustering and ARF is critical
for (partially) breaking degeneracies when combining angular galaxy clustering with
ARF.

Even for those parameters for which both angular galaxy clustering and ARF
show a similar direction of degeneracy, the combination of the two observables yields
significantly reduced error ellipses. This is mostly due to the lack of correlation
between the ARF and angular galaxy clustering under narrow redshift shells, as
shown in Hernández-Monteagudo et al. (2019) and in the Figure 4.5.

4.5.2 Extension to CPL Dark Energy parametrization

We repeat the analysis detailed above including two new parameters describing the
equation of state of dark energy following the CPL parametrization: w0 and wa.
We show in Figure 4.11a the improvement on the marginalised uncertainties of the
ARF with respect to angular galaxy clustering alone. We find that Dz improves the
constraints by 20 % and up to 50 % on this set of free wCDM parameters, for both
surveys. The combined analysis Dg, z reduces the uncertainties by at least 50 % and
up to 80 % for Ωm, σ8, w0 and wa.

In our idealized case, the combination of ARF with angular galaxy clustering
greatly improves the sensitivity of these surveys to dark energy. As shown in Fig-
ure 4.11b, the figure of merit of w0-wa increases by more than a factor of 10 when
ARF are combined to angular galaxy clustering. It increases from 17 to 189 for our
DESI-like survey and from 19 to 345 for our Euclid -like survey.

4.5.3 Combining with CMB lensing

We show in Figure 4.12 the improvements on the constraints of the ΛCDM and
wCDM parameters for an Euclid -like survey, when combined with CMB lensing
from Planck , Simons Observatory and CMB-S4, marginalised over the galaxy bias
parameters. We see that including CMB lensing from Planck improves the con-
straints by maximum of 10 % in both cosmologies. The improvement is more sig-
nificant when combining with Simons Observatory or CMB-S4. For the Simons
Observatory and CMB-S4, in the ΛCDM model, marginalised uncertainties on Ωm

and σ8 are decreased by up to 30 %. Other parameters are improved by 5 % to 10 %
. For the wCDM model, the improvement is of ∼ 15 % for most parameters, with

103



An alternative probe for galaxy surveys

ΩbΩmns h σ8 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9b10b11b12b13b14b15b16b17b18b19

Ωb
Ωm
ns

h
σ8
b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19

1.00 0.90 -0.96 0.98 -0.58 0.47 0.46 0.44 0.43 0.43 0.42 0.42 0.42 0.42 0.42 0.41 0.41 0.41 0.41 0.40 0.40 0.46 0.38 0.40 0.40

0.90 1.00 -0.96 0.87 -0.65 0.52 0.51 0.50 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.50 0.42 0.44 0.44

-0.96 -0.96 1.00 -0.97 0.68 -0.56 -0.55 -0.54 -0.53 -0.52 -0.52 -0.51 -0.51 -0.50 -0.51 -0.50 -0.50 -0.49 -0.50 -0.49 -0.49 -0.54 -0.46 -0.49 -0.48

0.98 0.87 -0.97 1.00 -0.58 0.47 0.46 0.45 0.44 0.43 0.42 0.42 0.42 0.42 0.42 0.41 0.41 0.41 0.41 0.41 0.40 0.46 0.38 0.40 0.40

-0.58 -0.65 0.68 -0.58 1.00 -0.98 -0.97 -0.97 -0.97 -0.97 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.95 -0.95 -0.97 -0.95 -0.95 -0.95

0.47 0.52 -0.56 0.47 -0.98 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96

0.46 0.51 -0.55 0.46 -0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97

0.44 0.50 -0.54 0.45 -0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.43 0.49 -0.53 0.44 -0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.43 0.48 -0.52 0.43 -0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.48 -0.52 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.47 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.47 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.46 -0.50 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.46 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.49 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97

0.40 0.44 -0.49 0.41 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97

0.40 0.44 -0.49 0.40 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97

0.46 0.50 -0.54 0.46 -0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.96 0.97 0.96

0.38 0.42 -0.46 0.38 -0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 1.00 0.97 0.96

0.40 0.44 -0.49 0.40 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.96

0.40 0.44 -0.48 0.40 -0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Dg

ΩbΩmns h σ8 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9b10b11b12b13b14b15b16b17b18b19

Ωb
Ωm
ns

h
σ8
b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19

1.00 0.67 -0.84 0.94 0.14 -0.21 -0.22 -0.22 -0.23 -0.23 -0.24 -0.23 -0.23 -0.24 -0.22 -0.22 -0.22 -0.21 -0.21 -0.20 -0.20 -0.13 -0.21 -0.18 -0.18
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-0.84 -0.74 1.00 -0.91 0.10 -0.00 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.02 0.03 0.02 0.02 0.01 0.01 -0.01 -0.08 0.01 -0.02 -0.02

0.94 0.57 -0.91 1.00 0.06 -0.13 -0.14 -0.14 -0.15 -0.15 -0.16 -0.16 -0.16 -0.16 -0.15 -0.15 -0.15 -0.14 -0.14 -0.13 -0.13 -0.07 -0.13 -0.11 -0.11

0.14 0.25 0.10 0.06 1.00 -0.98 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97
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-0.16 -0.23 0.15 -0.13 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.24 0.15 -0.13 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85
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-0.15 -0.24 0.14 -0.12 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.85
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Figure 4.10: Correlation between parameters of the ΛCDM model, for a DESI like
survey. The top panel is for the angular galaxy clustering alone, the central panel is
for ARF alone, and the bottom panel is when combining both observables. We see
that the angular galaxy clustering and ARF have opposite correlation coefficients
between cosmological paameters and the galaxy bias. The combination of both helps
greatly in breaking degeneracies with the galaxy bias.
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Figure 4.11: Left : Ratios of the 1σ marginalised uncertainties relative to the 1σ
marginalised uncertainty for Dg. We assume wCDM model and marginalise on 20
galaxy bias parameters (one for each redshift bin). Right : Marginalised constraints
(1σ contours) on the dark energy equation of state parameters. For both cases, blue
lines show Dg, orange lines show Dz and green lines show Dg, z. Solid lines are for
a DESI-like survey while dashed lines are for an Euclid -like survey. The upper right
box in the left panel display the figure of merit for each configuration.
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Figure 4.12: Ratio of the 1σ constraints in the ΛCDM and wCDM models (left and
right panels respectively), from Dg, z, κCMB

over the 1σ constraints from Dg, z for the
Euclid -like spectroscopic survey. We show combinations with CMB lensing from
Planck (brown), Simons Observatory (pink) and CMB Stage-4 (grey). Constraints
are marginalised over the 20 galaxy bias parameters.
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Figure 4.13: Marginalised 1σ confidence values for the galaxy bias parameters, with
an Euclid -like survey alone (plain lines) or in combination with CMB-S4 lensing
survey (dashed lines). We marginalised on the 5 free parameters of the ΛCDM
model. We show constraints with angular galaxy clustering (blue and brown lines)
and in combination with ARF (green and red lines). The mean redshift of each shell
is shown at the top. We see that the ARF combined with angular galaxy clustering
Dg, z provides better constraints on galaxy bias than the combination of angular
galaxy clustering with CMB lensing Dg, κCMB

.

the most significant for Ωm and wa, with uncertainties decreased by up to 30 %. We
see that the combination with CMB lensing help decreasing uncertainties on the
wCDM cosmology.

Since the CMB lensing is an unbiased probe of the distribution of matter, one
of the main interests of combining it with galaxy surveys is to produce tight con-
straints on the galaxy bias parameter. We show in Figure 4.13 the 1σ marginalised
uncertainties on the galaxy bias parameters for each of the 20 redshift bins in an
Euclid -like survey combined with CMB-S4 lensing, for the ΛCDM model. We com-
pare the constraints obtained for angular galaxy clustering alone (Dg), with the
ones obtained when combined with CMB lensing (Dg, κCMB

), with ARF (Dg, z), and
the full combination (Dg, z, κCMB

).
We see that the combination of angular galaxy clustering with ARF provides

better constraints on the galaxy bias than the combination with CMB lensing. For
instance, at a redshift of 1.06, the marginalised uncertainties for the galaxy bias
parameter b3 is of 0.025 for the angular galaxy clustering, it decreases to 0.020 when
combined with CMB lensing, and down to 0.013 when combined with ARF. The
combination of the three results in marginalised uncertainties of 0.08. We can see
that the CMB lensing improves constraints by ∼ 20 % only, while ARF improves
constraints by ∼ 50 % (a factor 2 improvement). We argue that this is due to the
importance of the velocity term in the ARF kernel (see Fig 4.2), which does not
depend on galaxy bias as it is sensitive to the full matter distribution.
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4.6 Discussion

One could argue several reasons why angular observables might be preferred over
standard 3D ones. Probably the main one is the lack of assumption of any fiducial
cosmological model to analyse the data. This means that angular observables may
be directly compared with theoretical predictions without any intermediate data
manipulations that hinge on an assumption whose implications in the analysis may
not always be clear. Moreover, this type of angular analysis are conducted tomo-
graphically in moderately narrow redshift shells, thus avoiding the assumption that
the universe remains effectively frozen in relatively long time spans, as it may occur
in 3D clustering analysis where an effective redshift must be defined for the entire
volume under analysis (see, e.g., Cuesta et al. 2016). Asorey et al. (2012) and Di
Dio et al. (2014) have shown that when using a large number of narrow redshift
slices, a 2D clustering analysis can produce the same constraints on cosmological
parameters than a 3D clustering analysis, provided that the width of the redshift
slices is comparable to the minimum scale probed in the 3D analysis. By including
the redshift information in a 2D field, the ARF observable keeps some information
about the distribution of galaxies along the line of sight, which normally disappear
when projecting the 3D galaxy density field on a 2D observable. As we have shown,
ARF are improving the usual 2D galaxy clustering analysis.

Another major interest of using angular observables is that they can easily be
cross-correlated with other 2D observables. Indeed the combination of 3D probes
with 2D probes is not straightforward, especially when one has to properly take into
account the covariances between them. In our work we used the CMB lensing field
and its cross-correlation with our tomographic analysis of angular galaxy cluster-
ing and ARF. We have shown that this cross-correlations improve the constraints,
especially on the galaxy bias. Chaves-Montero et al. (2019) have shown that the
cross-correlation of the ARF field with the CMB temperature field can detect the
kinematic Sunyaev-Zel’dovich (kSZ) effect at the 10σ level.

The point of our work is not a detailed comparison between 2D and 3D clus-
tering analysis, but rather an exploration of the added value of including ARF in
cosmological studies of the large scale structures, on top of the traditional angular
galaxy clustering. By its intrinsic different sensitivity to the cosmic density and
velocity fields under the Gaussian redshift shells, the ARF change the degeneracies
between cosmological parameters, especially with respect to σ8 and the galaxy bias,
compared to the angular galaxy clustering. This is due, as claimed in Hernández-
Monteagudo et al. (2019), to the fact that angular galaxy clustering is sensitive to
the first moment (the average) of matter density and velocity under the redshift
shells, whereas ARF are sensitive to the second moment (the variance) of matter
density and velocity along the line of sight, inside these redshift shells. Moreover,
we have shown that the ARF and the angular galaxy clustering inside the same to-
mographic redshift bin are almost uncorrelated. Due to this absence of correlation,
by combining both we are able to break degeneracies and give tighter constraints on
all the cosmological parameters we have considered.

The results we obtained in our work can be considered as an optimistic setting
for both galaxy and CMB surveys. We restricted our analysis to the linear regime
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and we did not include any systematic effects which could impact our results and
worsen the constraints. It was found in Hernández-Monteagudo et al. (2020) that
the impact of non-linear physics is more severe in angular galaxy clustering than in
ARF. They found that a linear bias was sufficient to describe the ARF on scales
larger than 60 h−1 Mpc, while it was not the case for angular galaxy clustering.
Indeed, ARF are built upon the average observed redshift along the line of sight in
a redshift selection function. This is intrinsically different to counting the number
of galaxies in a given region in the universe, and consequently systematics and
non-linearities are affecting differently each observable. In future works we plan
to address systematics and non-linearities, aiming to model more realistic settings.
We expect that the impact of both systematics and non-linearities will depend on
the survey and on the targeted galaxy sample, as ongoing work on existing galaxy
surveys is indicating.

The point of this work is not a detailed comparison with the forecasted con-
straints of the Euclid survey published in Euclid Collaboration et al. (2019). Indeed
our analysis consider a simplistic, linear model of the galaxy clustering. In this con-
text, our findings indicate that ARF brings significant cosmological information on
top of the traditional angular galaxy clustering. At best, our results with the angu-
lar galaxy clustering probe (Dg) could be compared with the linear setting shown in
the Table 9 of Euclid Collaboration et al. (2019) (first line). In that case, their probe
is the 3D linear galaxy power spectrum, with a cutoff value at kmax = 0.25 h Mpc−1,
in four different redshift bins. Their Fisher analysis account for more parameters
describing the anisotropies in the power spectrum and the shot noise residual. This
3D probe is intrinsically different to the (2D) angular power spectrum tomography
used in our work, in 20 Gaussian bins, for which we limit to kmax = 0.20 h Mpc−1.
Our forecasts with Dg for the errors on some parameters are tighter than theirs (by
a factor of ∼ 2 for σ8), while for others we find the opposite situation (e.g., the
reduced Hubble parameter h, whose uncertainty in Euclid Collaboration et al. 2019
is roughly one third of ours).

4.7 Conclusion

We showed that the ARF are a promising cosmological observable for next genera-
tion spectroscopic surveys. We found that for our choice of binning, the tomographic
analysis of ARF retrieves more information than the tomographic analysis of the
angular galaxy clustering. We showed that the joint analysis of both fields helps in
breaking degeneracies between cosmological parameters, due to their lack of corre-
lation and their different sensitivities to cosmology. The improvement appears to
be particularly significant for the wCDM model. We have shown that the figure of
merit for the w0-wa parameters was increased by a factor of more than ten when
combining angular galaxy clustering with ARF.

Finally, we have seen that combining angular galaxy clustering with ARF pro-
vides tighter constraints on the galaxy bias parameters compared to the combination
of angular galaxy clustering with CMB lensing. This shows that ARF are a very
powerful probe of the distribution of matter, as it allows to break the degeneracy
between σ8 and the galaxy bias. For future galaxy surveys, errors on the cosmologi-
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cal figure of merit will be dominated by systematic uncertainties and non-linearities,
and ARF might provide a novel, complementary view on those issues.

In our analysis we did not consider massive neutrinos. As the growth rate is
particularly sensitive to them, we expect ARF to be a powerful tool to constrain
the mass of neutrinos. We defer this detailed analysis to an upcoming work.

Simultaneously from the LSS and CMB fronts, the coincidence in the acquisition
of data sets of tremendous quality and huge size should enable the combination of
standard analyses with new, alternative ones like the one introduced in this chapter.
The combination of techniques and observables should work jointly in the efforts of
identifying and mitigating systematics, and pushing our knowledge of cosmological
physics to its limits.
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Chapter 5

Conclusion

During my thesis I investigated the evolution of galaxies and the nature of the
Universe. To address these topics, I probed the distribution of matter at different
scales. I first focused on the co-evolution of the stellar content, dark matter halo and
cold molecular gas to investigate the processes of galaxy formation. I then explored
larger scales to forecast the cosmological power of combining upcoming galaxy and
CMB surveys.

In the first part of my thesis, I investigated the main drivers of galaxy formation
and the interplay between galaxies and their host dark matter haloes. For the first
time with a consistent dataset on such a large redshift range, I established the
stellar-to-halo mass relation from z = 0.2 to z = 4.5. I thus confirmed that the
stellar-to-halo mass relation evolves with time. Moreover, I tracked the evolution of
the characteristic halo mass, which peaks the ratio of stellar mass over halo mass,
and found that it increases with redshift up to z ∼ 2, in agreement with other
observations, before plateauing up to z = 4, confirming the results of Moster et al.
(2013) and Behroozi et al. (2018). Among the scenarios I discussed to explain the
redshift evolution of the characteristic halo mass, I focused on cold gas inflows. To
do so, I carried out an innovative approach by combining observations of the cold
molecular gas content of galaxies with the stellar-to-halo mass relation. Based on
these original results, I found that the evolution of the halo mass of galaxies with
a constant cold gas to stellar mass ratio increases from z = 0 to z ∼ 2 before
plateauing up to z ∼ 4, displaying an evolution similar to the evolution of the
characteristic halo mass. This confirms that the cold molecular gas is one of the
major drivers of the high efficiency of the galaxy formation inside massive haloes
(Mh > 1012M�) at z & 2. Observations of the cold gas filaments in galaxy clusters
at z & 2, such as those of Salomé et al. (2006) in the local Universe, would be key
to better understand the relation between the distribution of the cold molecular gas
and galaxy formation across time.

In the second part of my thesis work, I focused on the large scale structure of
the Universe in order to understand its nature and its evolution. Specifically, I in-
vestigated how next generation wide-field surveys will improve our understanding
of the dark sector. As a member of the Euclid consortium and its CMBX science
working group, I have contributed to the various analyses aiming at probing the
gain of joint analyses of the Euclid survey with current and upcoming CMB obser-
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vations: Planck , the Simons Observatory and the CMB-Stage 4. My participation
to this collaborative work has covered all the aspects of the project, with specific
contributions including the modelling of the experimental noise, the tests and im-
plementation of the Fisher analysis and the writing of the article. In this work, we
showed that combining Euclid with CMB surveys will greatly improve most cosmo-
logical parameters, help in breaking degeneracies and in lowering the importance of
systematic uncertainties. In this idealistic modelling, we also found that the inclu-
sion of the cross-correlations between Euclid and CMB observables brings marginal
improvements. A more careful modelling of the systematic effects affecting each
experiment is needed to assess the full potential of the cross-correlations.

Finally, in the scope of maximizing the cosmological power of upcoming spec-
troscopic surveys, I show how a novel observable, the angular redshift fluctuations
(ARF), complements the standard angular galaxy clustering. By performing for the
first time a realistic forecast with this new observable, I found that a tomographic
analysis combining ARF and angular galaxy clustering will break degeneracies be-
tween cosmological parameters. I also discussed how this angular probe can be
complementary to traditional 3D probes for spectroscopic surveys. In addition, I
found that a joint analysis with the CMB lensing observable further improves con-
straints on the galaxy bias parameters. Most notably, I demonstrated for the first
time that the use of ARF will greatly improve the constraints on the nature of the
dark energy. Furthermore, its expected power on other aspects of the dark sector,
such as massive neutrinos, and modified gravity, is very promising and will be tested
in future works which I plan to contribute to.

Next generation galaxy surveys such as Euclid , DESI, J-PASS, or LSST will
offer us a huge volume of the Universe to observe, with a high resolution up to
the very small scales. We absolutely need to fully exploit these small scales up to
k ∼ 10hMpc−1, as they contain a lot of cosmological information, which was even
named the small scale miracle by Lacasa (2019). However, we know these scales
are where baryonic effects come into play and plague our modelling of the power
spectrum (see e.g. Rudd et al. 2008; Chisari et al. 2018).

Understanding these small scales is one of the major challenges that we will
need to face. In the coming years, I will contribute to the endeavor of including
astrophysical information such as the stellar mass, star-formation rate and galaxy
environments, into cosmological analyses, knowing that these astrophysical proper-
ties will be measured, as part of the legacy science, by upcoming surveys. A first
step would be for example to develop a model such as the baryonic correction model
of Schneider and Teyssier (2015), based on a modification of the halo model, and to
test its validity on hydrodynamical simulations. For this, I will benefit from my dual
expertise, acquired during my thesis, in the formation and evolution of galaxies and
in the cosmological analysis of galaxy surveys. By a careful modelling of the inter-
play between galaxies, baryons and dark matter, I will contribute to the construction
of a state-of-the-art modelling of the distribution of galaxies at small scales. This
absolutely crucial step will allows us to fully unleash the power of next generation
surveys, and optimise their scientific exploitation to which I will contribute.

In addition, I will pursue my work on the combination of CMB and galaxy surveys
with a focus on the CMB lensing as another probe of the small-scales distribution
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of matter. I propose to calibrate the bias between galaxies and the dark matter
density field using the CMB lensing field. To do so, we will need to go beyond the
standard estimations of the CMB lensing field, known to be noisy at small scales.
As a matter of fact, the upcoming CMB surveys such as Simons Observatory and
CMB-S4 will drastically improve the resolution on the small scales, going down to
one arcminute. I will develop new estimators of the CMB lensing field targeting the
small scales, following for example the works of Hadzhiyska et al. (2019) and Schaan
and Ferraro (2019). In the future, I will explore all possibilities offered to me to
participate in these future CMB surveys in order to take advantage of their unique
information on the dark matter distribution, and combine it with the information
on the galaxy distribution provided by Euclid .

It is only thanks to these optimised combinations of information that we will be
able to unveil some of the mysteries of the dark sector of the Universe.
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Appendix A

CMB lensing

This appendix introduces a brief summary of the weak lensing of the CMB. A more
detailed description can be found in the review Lewis and Challinor (2006) and in
the book Dodelson (2017).

A.1 Introduction

Under the effect of gravity, a light ray will be deflected by the mass it meets along
its path, as illustrated in Figure A.1. For a point source, and in the thin lens
approximation, the deflection angle α between the perturbed and original line of
sight is governed by the mass of the lens M and by the impact parameter ξ (the
shortest distance between the lens and the light ray)

δθ =
4M G

c2 ξ
(A.1)

The CMB lensing corresponds to a displacement of the temperature field. The
temperature at the position n will be seen at the position n−α

T (n) = T u(n−α) (A.2)

with T the observed (lensed) temperature field and T u the unlensed temperature
field. We can decompose the deflection vectorial field into a potential and rotational
term. We neglect the rotational term and we introduce the lensing potential φ given
by α = ∇φ. The convergence field κ is defined by

∇2φ = −2
Σ

Σcr

= −2κ (A.3)

with Σ =
∫
ρdz the surface mass density, and

Σcr =
c2

4πG

DS

DLDLS

, (A.4)

the critical surface mass density, defined using the angular diameter distance DS

between the observer and the source, DL between the observer and the lens, and
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Figure A.1: Deflection of a light ray coming from a point source by a mass present
on the line of sight.

DLS between the lens and the source.

A.2 Statistical anisotropy

The unlensed CMB temperature field is statistically isotrope, i.e. there is no corre-
lation between different multipoles. As we show below, the lensing of the CMB will
create statistically anisotropies. The power spectrum of the CMB will not be the
same in each direction, depending if there is a mass on this line of sight or not.

If α remains small, we can do a Taylor expansion of the observed temperature
in Equation A.2

T (n) = T u(n)−∇T u(n)∇φ+O(|∇φ|2) (A.5)

if we limit ourselves at the first order in ∇φ. We go to the Fourier space (denoted
by hats T̂ ) and we have

T̂ (`) ' T̂ u(`) +

∫
dl21

(2π)2
`1(`− `1)T̂ u(`1)φ̂(`− `1). (A.6)

where we have assumed the flat sky approximation, i.e. we identify the Fourier
modes to the spherical harmonics.

With this we can compute the non diagonal terms of the covariance matrix of
the observed temperature field

< T̂ (`)(T̂ (`′))∗ >`6=`′'
∫

dk2
1

(2π)2
`1(`− `1)φ̂(`− `1) < T̂ u(`1)(T̂ u(`′))∗ > +c.c.,

(A.7)
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A.3. Quadratic estimator

where c.c. stands for complex conjugate of the integral, and the brackets mean
averaging over several realisations of the unlensed CMB for a fixed lensing potential.

Because the unlensed CMB is statistically isotrope, we have C` the unlensed
power spectrum defined by

< T̂ u(`)(T̂ u(`′))∗ >= (2π)2δD(`− `′)C`, (A.8)

with δD the Dirac function. Replacing the average in the integral of Equation A.7
by the Delta function, we obtain the relation between the observed correlations of
T , the unlensed C` and φ

< T̂ (`)(T̂ (`′))∗ >` 6=`′' `′(`− `′)φ̂(`− `′)C` . (A.9)

We see here that indeed the CMB lensing potential φ will create statistical anisotropies,
i.e. non diagonal correlations in the CMB temperature field.

A.3 Quadratic estimator

We only have one realisation of the CMB, so we can build a really simple estimator
φ̃ by taking L = `− `′, and we have for any given L and `′

φ̃(L) =
T̂ (`)T̂ ∗(`−L)

C|`−L|L(`−L)
. (A.10)

This estimator combines two Fourier modes (hence “quadratic estimator”), each with
a wave number close to one another and separated by the vector L.

It is not optimal as it uses only one of all the scales ` we can measure in the
temperature map. A way to combine all scales is to use the the optimized weight
functions given by Okamoto and Hu (2003), which weights the ` modes in order to
optimally to recover the lensing power spectrum.

φ̃(L) = N(L)

∫
d2`

2π
T̂ (`)T̂ ∗(`−L) g(`,L) , (A.11)

with g(`,L) the weight function, and N(L) the normalisation given by

N(L)−1 =

∫
d2`

(2π)2

[
(L− `) ·LCu

|`−L| + ` ·LCu
`

]2

2Ctot
` Ctot

|`−L|
, (A.12)

with Cu
` the unlensed CMB temperature power spectrum, and Ctot

` the lensed power
spectrum including the noise. This normalisation is chosen so that the estimator is
unbiased at the lowest order, i.e if we could average on several CMB realisations we
should obtain the true lensing potential φ.

In fact, this estimator will be inherently noisy due to the presence of statistical
(gaussian) fluctuations of the CMB. As we cannot average over several CMB real-
isations this noise will contaminate our estimator. This noise can be estimated in
the power spectrum of Cφ,φ

L , and is often called the N0 bias. It appears that it is
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equal to the normalisation defined above in Equation A.12.
We showed here only the impact of lensing on the temperature field. In fact

the lensing also affects the polarisation field. In practice it will convert E modes
into B modes. We can also define a quadratic estimator on this E and B fields, as
well as quadratic estimators on the cross-correlations between this three fields. The
minimum variance (MV) estimator is obtained by combining the estimators from the
auto- and cross-correlations of the different fields via an inverse variance weighting,
in order to keep only the less noisy estimators.

118



Appendix B

Impact of massive neutrinos

Neutrinos are massless in the Standard Model of particle physics. There are three
flavours of neutrinos: electronic, muonique and tauique. Each neutrino flavour is a
linear combination of three states with a definite mass. There are evidences that
neutrinos oscillate between these three flavours thanks to solar, atmospheric, reactor
and accelerator observations (e.g. Fukuda et al. 1998). This oscillation implies that
neutrinos have a non zero mass. Oscillation experiments are able to measure the
square of the difference of masses, but not the actual mass of each state nor their
ranking. Figure B.1 present the two possible mass configurations: normal hierarchy
if the smaller mass interval is between the two less massive neutrinos, and inverted
hierarchy if the smaller mass interval is between the two most massive neutrinos.
The neutrino density is given by

Ων =
Mν

93.14h2eV
, (B.1)

and the current bound on neutrino mass is

0.06eV .Mν ≡
∑
i

mν,i . 0.14eV , (B.2)

with mν,i the mass of each neutrino species. The lower bound corresponds to the
normal hierarchy and is given by oscillation experiments (Gonzalez-Garcia et al.
2012). The upper bounds comes from CMB and large scale structures analysis
(Costanzi et al. 2014), because as we will show in this section, massive neutrinos
have an impact on the growth of structure.

After the big-bang, neutrinos decouple from matter when the universe cools
down, i.e. when the interaction rate of electrons and neutrinos is lower than the
expansion rate of the universe, in a process similar to the decoupling of photons
and matter. However neutrinos decouple from matter much earlier than photons as
they have a much lower interaction rate. Neutrinos behave like photons during the
radiation and matter dominated era. One can take into account their impact on
the energy budget by adding an effective number of relativistic species Neff to the

119



Impact of massive neutrinos

Figure B.1: Figure form Lesgourgues and Pastor (2006). The two possible neutrino
schemes: normal hierarchy (NH) and inverted hierarchy (IH).

radiation density (Shvartsman 1969; Steigman et al. 1977)

ρR =

[
1 +

7

8

4

11

4/3

Neff

]
ργ , (B.3)

In an universe with three relativistic neutrino species we have Neff = 3.046. Any
departure from this number is an hint of non-standard neutrinos or of the presence
of another relativistic species (Dolgov 2002).

The free-streaming scale is the scale under which a particle cannot be contained in
a gravitational potential well due to its dispersion velocity. For scales larger than the
free-streaming scale, neutrinos cannot escape the potential well and cluster together
with baryons and dark matter. However, for scales smaller than this free-streaming
scale, neutrinos will suppress the growth of matter perturbations (Lesgourgues and
Pastor 2006; Levi and Vlah 2016).

Massive neutrinos become non-relativistic when their mass become non-negligible
with respect to their total energy. This evolution is shown on the Figure B.2. At this
moment they are slowed down and their velocity dispersion will not allow them to
escape from large gravitational potential wells. The free streaming scale of neutrinos
reaches a maximum. This maximum scale is noted knr. The impact of neutrino
is characterized by the parameter fν ≡ Ων/Ωm, which is constant once neutrinos
become non-relativistic.

Massive neutrinos thus have a scale dependant effect on the growth of structures.
In Figure B.3 we see that massive neutrinos will impact the power spectrum for scales
k > knr ∼ 10−2 hMpc−1, by decreasing the amplitude of fluctuations by at least 4%.
However on large scales, for k < knr, neutrinos cluster similarly to dark matter and
baryons and do not change the power spectrum. The impact on the matter power
spectrum for scales k � knr is often approximated by (Hu et al. 1998)

P fν (k)

P fν=0(k)
∼ 1− 8fν . (B.4)
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Figure B.2: Figure form Lesgourgues and Pastor (2006). Evolution of the back-
ground densities from soon after the time of neutrino decoupling until now. The
three neutrino masses are distributed according to the Normal Hierarchy scheme
with m1 = 0, m2 = 0.009 eV and m3 = 0.05 eV. The top axis shows the neutrino
temperature. The decoupling from photons and matter happens when a/aO ∼ 10−3.
The density of the neutrino mass states ν2 and ν3 is clearly enhanced once they
become non-relativistic, when a/a0 ∼ 10−2.

Figure B.3: Figure from Levi and Vlah (2016). Ratio of the matter power spectrum
at z = 0 with three massive neutrinos over one with three massless neutrinos. The
solid lines correspond to total neutrino mass values Mν = 0, 0.06, 0.15, 0.24 eV,
parametrized by the neutrino fraction fν = 0, 0.004, 0.011, 0.018, respectively. The
baryon and total matter densities are fixed, and the neutrino and CDM densities
are varied accordingly. The non-relativistic transition is located at knr ∼ 10−3 −
10−2 hMpc−1.
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Appendix C

Related publications

In this appendix I include the publications related to the work presented in my
thesis. The first paper Legrand et al. (2019) corresponds to the Chapter 2 and has
been published in MNRAS. The second paper Legrand et al. (2020) corresponds to
the Chapter 4 and has been submitted to A&A. Finally, the collaborative work of
Euclid Collaboration (in prep.) presented in Chapter 3 has not yet been sent for
review to the Euclid consortium so I do not include it in this Appendix.
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ABSTRACT
Using precise galaxy stellar mass function measurements in the COSMOS field we determine
the stellar-to-halo mass relationship (SHMR) using a parametric abundance matching tech-
nique. The unique combination of size and highly complete stellar mass estimates in COSMOS
allows us to determine the SHMR over a wide range of halo masses from z ∼ 0.2 to 5. At z ∼
0.2, the ratio of stellar-to-halo mass content peaks at a characteristic halo mass Mh = 1012M�
and declines at higher and lower halo masses. This characteristic halo mass increases with
redshift reaching Mh = 1012.5M� at z ∼ 2.3 and remaining flat up to z = 4. We considered
the principal sources of uncertainty in our stellar mass measurements and also the variation
in halo mass estimates in the literature. We show that our results are robust to these sources
of uncertainty and explore likely explanation for differences between our results and those
published in the literature. The steady increase in characteristic halo mass with redshift points
to a scenario where cold gas inflows become progressively more important in driving star
formation at high redshifts, but larger samples of massive galaxies are needed to rigorously
test this hypothesis.

Key words: methods: statistical – galaxies: evolution – galaxies: haloes.

1 IN T RO D U C T I O N

Galaxy formation is a remarkably inefficient process (e.g. Silk 1977;
Persic & Salucci 1992; Dayal & Ferrara 2018). This can be seen
quantitatively if one compares the dark matter halo mass function
(HMF) and the galaxy stellar mass function (SMF): both in low- and
high-mass regimes they differ by several orders of magnitude (see
e.g. Cole et al. 2001; Yang, Mo & van den Bosch 2003; Eke et al.
2006; Behroozi, Conroy & Wechsler 2010; Moster et al. 2010).

Understanding how the stellar mass content (M∗) of a galaxy
relates to the mass of its dark matter halo (Mh) is, in fact, an
alternative way of considering the problem of galaxy formation.
In the local Universe, there is a ‘characteristic halo mass’ (Mpeak

h )
at which the M∗/Mh ratio is maximized. A natural interpretation is
that M

peak
h corresponds to the halo mass at which star formation,

integrated over the entire assembly history of the galaxy, has
been the most efficient (Silk, Di Cintio & Dvorkin 2013). We

� E-mail: louis.legrand@ias.u-psud.fr

consider ‘galaxy formation efficiency’ as the global process of
forming stars in dark matter haloes, from the accretion of gas to
the actual transformation of baryons into stars. At lower and higher
halo masses, the M∗/Mh ratio decreases rapidly, presumably as a
consequence of physical processes that suppress star formation in
these haloes. Various mechanisms have been proposed in order to
explain this inefficiency: for example, supernovae and stellar winds
in low-mass haloes and active galactic nuclei (AGNs) feedback
processes in more massive objects (see Silk & Mamon 2012 for a
detailed review).

Although such comparisons between mass functions are phe-
nomenological in nature (Mutch, Croton & Poole 2013) they
provide useful constraints to theoretical models of galaxy formation
in particular when the comparison spans a large redshift range. The
advent of highly complete, mass-selected galaxy surveys (see e.g.
Ilbert et al. 2013) and accurate predictions for the HMF (Tinker
et al. 2008; Watson et al. 2013; Despali et al. 2016) allows us to
measure the stellar-to-halo mass relationship (SHMR) of galaxies
at different epochs. There are many techniques to accomplish this:
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e.g. in the ‘subhalo abundance matching’ (SHAM), the number
density of galaxies (from observations) and dark matter subhaloes
(from simulations) are matched to derive the SHMR at a given
redshift (see e.g. Marinoni & Hudson 2002; Behroozi et al. 2010;
Behroozi, Wechsler & Conroy 2013b; Behroozi et al. 2018; Moster
et al. 2010; Moster, Naab & White 2013, 2018; Reddick et al.
2013). This technique can also be implemented by assuming
a non-parametric monotonic relation between the luminosity or
stellar mass of the observed galaxies and subhalo masses at the
time of their infall on to central haloes (Conroy, Wechsler &
Kravtsov 2006).

Other studies use a ‘halo occupation distribution’ modelling
(HOD, see e.g. Vale & Ostriker 2004; Zheng, Coil & Zehavi 2007;
Leauthaud et al. 2011; Coupon et al. 2015) where a prescription
for how galaxies populate dark matter haloes can be used to
simultaneously predict the number density of galaxies and their
spatial distribution. In this case, lensing combined with clustering
measurements can provide additional constraints on the SHMR.

However, until now, investigations of the SHMR over a large
redshift range have mostly relied on heterogeneous data sets each
with their own selection functions. Interpreting these results can be
challenging since different biases from each survey may introduce
artificial trends. In this work, we measure the SHMR and M

peak
h in

10 bins of redshifts between z = 0.2 and 5.5 in a homogeneous and
consistent way using the SHAM technique applied to a single data
set: the COSMOS2015 galaxy catalogue (Laigle et al. 2016).

COSMOS (Scoville et al. 2007) is a 2 deg2 field with deep
ultraviolet-to-infrared (UV-to-IR) coverage (see Laigle et al. 2016,
and references therein). The wealth of spectroscopic observations
(Lilly et al. 2007; Le Fèvre et al. 2005, 2015; Hasinger et al.
2018) means photometric redshifts can be validated even in the
traditionally poorly sampled 1 < z < 2 redshift range (see fig. 11
of Laigle et al. and fig. 4 of Davidzon et al.). The large area
of COSMOS makes it ideal to collect robust statistics of distant,
massive galaxies. Moreover, exquisite IR photometry means precise
stellar mass estimates can be made over a large redshift range
(see e.g. Steinhardt et al. 2014; Davidzon et al. 2017). Extensive
tests have been made to validate the mass completeness and the
photometric redshift accuracy in COSMOS (Laigle et al. 2016;
Davidzon et al. 2017). Far-IR, radio, and X-ray observations are
also available to assess the crucial role of AGN (Delvecchio et al.
2017), and the quenching of distant and massive galaxies (Gozaliasl
et al. 2018).

Previously in COSMOS Leauthaud et al. (2012) used a combi-
nation of parametric abundance matching, galaxy clustering, and
galaxy–galaxy lensing to derive the SHMR to z ∼ 1; galaxy–galaxy
lensing measurements with COSMOS ACS data are not feasible
above z ∼ 1. More recently, Cowley et al. (2018) made a halo
modelling analysis to derive the SHMR in the UltraVISTA ’deep
stripes‘ region.

The organization of the paper is as follows. In Section 2, we
introduce the observed SMF of COSMOS galaxies and discuss
the principal uncertainties; we then present the Despali et al.
(2016) dark matter HMF we use and our fit using a dark matter
simulation to derive the HMF for the maximum mass in the
history of the haloes. We also present comparisons with other
mass functions for consistency checks. In Section 3, we describe
our abundance matching technique, its assumptions and principal
sources of uncertainties, along with our Monte Carlo Markov Chain
(MCMC) fitting procedure. In Section 4, we present our results, i.e.
the SHMR and its redshift evolution up to z ∼ 5. We discuss the
physical mechanisms that may explain our observations in Section 5.

Throughout this paper, we use the Planck 2015 cosmol-
ogy (Planck Collaboration et al. 2016) with �m, 0 = 0.307,
��, 0 = 0.691, �b, 0 = 0.0486, Neff = 3.05, ns = 0.9667,
h = H0/(100 km s−1 Mpc−1) = 0.6774, except if noted otherwise.
Stellar mass scales as 1/h2 whereas halo mass scales as 1/h. The
notation φ will denote a mass function. The notation ln () refers to
the natural logarithm and log () refers to the base 10 logarithm.

2 MA S S FU N C T I O N S A N D T H E I R
UNCERTAI NTI ES

2.1 Stellar mass functions

The galaxy SMF corresponds to the number density per unit
comoving volume of galaxies in bins of M∗. It is one of the key
demographics to understand quantitatively the galaxy formation
process as it describes how stellar mass is distributed in galaxies.
Traditionally, the SMF has been modelled by a Schechter (1976)
function, although for certain galaxy populations a combination of
more than one such function may provide a better fit to observations
(Binggeli, Sandage & Tammann 1988; Kelvin et al. 2014). Here,
we use SMFs derived by Davidzon et al. (2017, hereafter D17) for
galaxies in the UltraVISTA-Ultra deep region of the COSMOS field
(see McCracken et al. 2012). The sample was constructed using
the photometric catalogue of Laigle et al. (2016) which contains
more than half a million galaxies with photometric redshifts (zphot)
between z = 0.2 and 6 (178 567 of them in the Ultra deep region). By
restricting the analysis to the high-sensitivity region (Ks < 24.7 mag
at 3σ , ∼0.7 mag deeper than the rest of COSMOS) the effective
area turns out to be ∼0.5 deg2. None the less, this represents a three
times larger volume than the one probed by other deep extragalactic
surveys like the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (Grogin et al. 2011; Koekemoer et al. 2011).

Both zphot and M∗ are derived by fitting the galaxy spectral energy
distribution (SED) with synthetic templates (see D17 for further
details). The unique combination of deep optical (Subaru), near-IR
(VISTA), and mid-IR (Spitzer/IRAC) observations results in a
galaxy sample that is >90 per cent complete at M∗ > 1010M� up to
z = 4; for galaxies at 4 < z < 6 above that threshold, the catalogue
is >70 per cent complete. More generally, D17 defined a minimal
mass (M∗,min) as the 75 per cent completeness limit, with a redshift
evolution described as M∗,min(z) = 6.3 × 107(1 + z)2.7M�. This
minimal mass is used as the lower boundary for the SMF.

D17 estimated the SMF in 10 redshift bins from z = 0.2 to 5.5
(see Fig. 1) using three independent methods: the 1/Vmax technique
(Schmidt 1968), the stepwise maximum likelihood (Efstathiou,
Ellis & Peterson 1988) and the maximum likelihood method of
Sandage, Tammann & Yahil (1979). These three estimators provide
consistent SMF estimates. However, they are all affected by obser-
vational uncertainties (M∗ and zphot errors) that scatter galaxies from
their original mass bin. This systematic effect, known as Eddington
(1913) bias, dominates at high masses (M∗ � 1011M�) because
here galaxy number density declines exponentially; this produces
an asymmetric scatter and consequently modifies the SMF profile.
Depending on the ‘skewness’ and the magnitude dependence of
observational errors the Eddington bias may have a strong impact
also at lower masses (Grazian et al. 2015).

When fitting a Schechter (1976) function to their 1/Vmax deter-
minations, D17 account for the Eddington bias using the method
introduced in Ilbert et al. (2013). Therefore, in our work, we use the
Schechter fits of D17 which should be closer to the intrinsic SMF
compared to the other estimators. For consistency, we rescale these
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Figure 1. Upper panel: our adopted stellar and HMFs. For the SMF at a
given redshift (see the legend), a solid line shows our HMF (Despali et al.
2016, fitted on the Bolshoı̈–Planck simulation) whilst the solid line and
shaded area is the SMF with the associated 1σ uncertainty (corresponding
to the best fit to 1/Vmax points corrected for Eddington bias, Davidzon et al.
2017). Lower panel: for three sample redshift bins, the relative difference
as a function of halo mass between the original (Despali et al. 2016) using
the virial overdensity criterion, our Bolshoı̈–Planck fit (solid magenta line),
and a selection of HMFs from the literature. Magenta lines show numerical
simulations in which haloes are defined according to a spherical overdensity
threshold (solid line: Bolshoı̈–Planck, long-dashed line: Tinker et al. 2008,
and short-dashed line: Bocquet et al. 2016). Cyan lines show works that
use an FoF algorithm (dotted line: Bhattacharya et al. 2011, dotted–dashed:
Watson et al. 2013).

estimates to Planck Collaboration et al. (2016, P16) cosmology. The
fitting function assumed by D17 is a double Schechter (see equation
4 in D17) at z < 3 and a single Schechter function (their equation
3) above that redshift. At low redshifts, two SMF components
are clearly visible (e.g. Ilbert et al. 2010), above z > 3, there is
no evidence of this double Schechter profile (Wright, Driver &
Robotham 2018).

The SMF error bars include both systematic and random errors
including Poisson noise, cosmic variance (computed using an
updated version of the software described in Moster et al. 2011) and
the scatter due to errors in the SED fitting. The SMF uncertainties
due to SED fitting are derived through Monte Carlo re-extraction
of zphot and M∗ estimates according to the likelihood function of
each galaxy. This procedure may be biased if the likelihood were
under- or overestimated by the SED fitting code (see Dahlen et al.
2013). However, recent work with simulated photometry suggests
that this should not be the case for the code used in D17 (Laigle
et al., in preparation).

2.2 Halo mass functions

Our main reference for the dark matter HMF1 is the work of Despali
et al. (2016, see fig. 1). They measure the HMF using six N-body
cosmological simulations with different volumes and resolutions:
all of them have 10243 dark matter particles with masses ranging
from 1.94 × 107 to 6.35 × 1011 h−1 M� and a corresponding box
size from 62.5 to 2000 h−1 Mpc. Haloes are identified through the
‘spherical overdensity’ algorithm (Press & Schechter 1974), i.e.
each halo is a sphere with a matter density equal to the virial
overdensity (see Eke, Cole & Frenk 1996) at the given redshift
(which is equal to the median z of the observed SMF, see Table B2).
The halo mass is defined as the sum of dark matter particles included
in such a sphere.

It has been shown (see e.g. Reddick et al. 2013) that for abundance
matching applications the stellar mass of galaxies is better correlated
to the maximal mass the dark matter haloes have over their history
(Mh, max) rather than the actual mass at a given redshift. This
is particularly true for subhaloes which can lose mass due to
gravitational stripping by the neighbouring main halo whilst the
galaxy inside will keep the same stellar mass. Reddick et al. (2013)
have demonstrated that using this Mh, max better fits to observations
such as galaxy clustering for abundance matching.

Our HMF for the maximal mass Mh, max are calculated using the
Bolshoı̈–Planck simulation (Rodrı́guez-Puebla et al. 2016; Behroozi
et al. 2018). This dark-matter-only simulation has a comoving
volume of 250h−1Mpc on a side with 20483 particles with a mass
resolution of 1.6 × 108h−1M� and uses Planck Collaboration et al.
(2016) cosmology. Haloes are identified with the ROCKSTAR halo
finder and masses are computed using the virial overdensity criterion
of Bryan & Norman (1998). Behroozi et al. (2018) provide halo
number densities for several halo mass bins and for 178 snapshots
from z = 16 to 0 for this simulation. We fit the HMF of Despali et al.
(2016) using a modified version of the COLOSSUS code for these
data points in the range 0 < z < 5 and 1011h−1M� < Mh,max <

1015h−1M�. The parameters of equation 7 of Despali et al. (2016)
we find are: A = 0.331, a = 0.831, and p = 0.351. Fig. A1 shows
the resulting HMF for several redshifts from 0 to 5.

Besides the variations due to different cosmological parameters
(Angulo & White 2010), it is difficult to model the uncertainties
affecting the HMF. Despali et al. (2016) thoroughly discuss
the implications of different density thresholds in the spherical
overdensity algorithm, e.g. replacing the virial overdensity with
200 times critical (ρc) or mean background (ρb) density. They
conclude that the virial definition leads to a ‘universal’ HMF fit,
while in the case of ρc or ρb the results are more redshift dependent.
A higher density threshold – e.g. 500ρc, as often used in the
literature – alters the HMF profile by decreasing the number density
of the most massive systems, as some of them are now identified
as a complex of smaller, independent haloes. The assumption of
sphericity in the finder algorithm is less problematic since its impact
on the HMF is mass-independent: accounting for haloes’ tri-axiality
has only a mild effect on the HMF (Despali, Giocoli & Tormen
2014).

Other studies have investigated the impact of different halo
finding algorithms which produce changes in the HMF of the order
of ∼10 per cent (Knebe et al. 2011). Another potential issue is
the impact of baryons (not implemented in Despali et al.) on the

1HMFs were computed using the COLOSSUS python module (Diemer
2018).
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growth of dark matter haloes: Bocquet et al. (2016) show that in
hydrodynamical simulations the halo number density decreases by
∼15 per cent at z � 0.5 with respect to dark matter only, whereas at
higher redshift, the impact of baryons is negligible.

In our analysis, we use Despali et al. mass function fitted on the
Bolshoı̈–Planck simulation where haloes are identified using the
virial overdensity criterion and where there mass is the maximal
mass in their history Mh, max . We also use the original version
of Despali et al. (2016) HMF with halo mass defined with the
virial overdensity criterion. To quantify how such a choice affects
our results we consider different HMF estimates. These alternate
versions are divided into two categories according to how haloes
are identified. HMF estimates in the first category (Tinker et al.
2008; Bocquet et al. 2016) use the spherical overdensity definition,
with halo masses defined with the >200ρb criterion, while the
others (Bhattacharya et al. 2011; Watson et al. 2013) rely on the
so-called friends-of-friends (FoF) algorithm (Davis et al. 1985).
The Bolshoı̈–Planck fit of Despali et al. HMF is shown in the
upper panel of Fig. 1 while the lower panel shows how this fit
and the other HMF differ from Despali et al. in three redshift
bins. At low redshifts, we find that differences are negligible,
in agreement with the literature. However for > 1013 M� haloes
at z > 2, i.e. in a range barely investigated in previous work,
there are 0.2−0.5 dex offsets between Despali et al. (2016) and
other HMF estimates. Such a difference may be fully explained by
Poisson scatter since such massive haloes are rare in the volume of
cosmological simulations. We do not attempt to find the physical
reasons of such a discrepancy and here we simply take the ‘inter-
publication’ bias as a measure of generic HMF uncertainties (see
Section 4.4).

3 THE STELLA R- TO - H A L O M A S S
RE LATIONSHIP

3.1 The subhalo abundance matching technique

In the SHAM technique, a ‘marker’ quantity is assigned to dark
matter haloes and galaxies (e.g. halo mass and stellar mass,
respectively). Both haloes and galaxies are ranked according to
their marker quantity, and then the latter are associated to the former
by assuming a monotonic one-to-one relationship (Vale & Ostriker
2004; Conroy et al. 2006; Behroozi et al. 2010; Moster et al. 2010;
Reddick et al. 2013). Here, the markers we use are the dark matter
halo mass and the galaxy stellar mass.

In the hierarchical clustering scenario, small haloes accrete on to
more massive ones and become ‘subhaloes’. Galaxies are classified
as either ‘satellite’ (those hosted by subhaloes) or ‘central’ (those
in the main halo). Since in the COSMOS2015 catalogue, there is
no distinction between satellite and central galaxies to correctly
perform the abundance matching we must consider all the haloes
(i.e. main haloes and subhaloes) as a whole sample. For sake of
simplicity, we will refer to any (sub-)halo hosting a galaxy as a
‘halo’. We do not take into account possible ‘orphan’ galaxies (i.e.
satellites with no subhalo, e.g. Moster et al. 2013).

These orphan galaxies may appear when matching a catalogue
of dark matter haloes with galaxies from observations (this is done
in e.g. Moster et al. 2018; Behroozi et al. 2018). If the resolution
of the simulation (or of the halo finder) is not precise enough, the
catalogue may miss the smallest haloes and some galaxies will be
unassociated. In our work, we do not use directly halo catalogues
from a simulation but instead fits of a functional form of the HMF

performed on outputs of simulations. Despali et al. (2016) made
sure that the fit is performed on a range of halo masses not affected
by the limits of the simulation and the HMF is extrapolated below
this limit to smaller masses. Campbell et al. (2018) investigated the
importance of the orphan galaxies in the Bolshoı̈–Planck simulation.
They concluded that less than 1 per cent of galaxies with M∗ >

109.5h−2M� are orphans. As such we consider that the different
HMF we use are not impacted by the resolution limits of the
simulations and that the impact of orphan galaxies on the SHMR is
negligible in the range of mass we consider.

The SHAM method also does not consider either the gas mass or
the intracluster medium. Our sources of uncertainties are discussed
in more detail in Section 3.3 (see also Behroozi et al. 2010; Campbell
et al. 2018).

We perform a ‘parametric’ SHAM, assuming a functional form
for the relation between M∗ and Mh. Following the same formalism
as in Behroozi et al. (2010), such a parametric SHMR is described
by the following equation:

log(Mh) = log(M1) + β log
(
M∗/M∗,0

)

+
(
M∗/M∗,0

)δ

1 + (
M∗/M∗,0

)−γ − 1

2
. (1)

This model has five free parameters M1, M∗, 0, β, δ, and γ , which
determine the amplitude, the shape, and the knee of the SHMR
(see Behroozi et al. 2010, for a more detailed description of the
role of each parameter in shaping the SHMR). Roughly speaking,
parameter values in equation (1) are adjusted during an iterative
process until the HMF, converted into stellar mass through the
SHMR, is in agreement with the observed SMF (see Section 3.2).

More specifically, the galaxy cumulative number density (N∗)
and the halo cumulative number density (Nh) above a certain mass
are respectively given by N∗(M∗) = ∫ +∞

M∗ φ∗(M)dM and Nh(Mh) =∫ +∞
Mh

φh(M)dM , with φ∗ and φh being the stellar and HMFs. The
main assumptions of SHAM is that there is only one galaxy per
dark matter halo and that the relation between stellar and halo
masses is monotonic. As a consequence, the M∗ value associated to
a given Mh is the one for which N∗(M∗) = Nh(Mh). The derivative
of this equation gives the relationship between SMF, HMF, and
SHMR:

φ∗,conv(M∗) = dMh

dM∗
φh(Mh), (2)

where the differential term on the right-hand side can be derived
from equation (1). We use the notation φ∗, conv because we convolve
this SMF with a lognormal distribution to account for scatter in
stellar mass at fixed halo mass. The standard deviation (ξ ) of the
lognormal distribution is kept as an additional free parameter; we
assume that ξ is independent of the halo mass (More et al. 2009;
Moster et al. 2010) but can vary with redshift. We note here that
new hydrodynamical simulations like Eagle (Schaye et al. 2015)
have shown that this scatter decreases from 0.25 dex at Mh =
1011M� to 0.12 dex at Mh = 1013M� (see Matthee et al. 2017).
This evolution of the scatter is in agreement with latest abundance
matching models (Coupon et al. 2015; Behroozi et al. 2018; Moster
et al. 2018). See also fig. 9 of Gozaliasl et al. (2018). However in
our analysis,f we restrict ourselves to a mass-invariant scatter for
simplicity.

The model SMF defined in equation (2) is then fitted to the
observed one (i.e. φ∗, obs) through the procedure described in the
next section.
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3.2 Fitting procedure

To fit the model SMF to real data, a negative log-likelihood is
defined as:

χ2 =
∑

i

(
φ∗,conv(M∗,i) − φ∗,obs(M∗,i)

σobs(M∗,i)

)2

, (3)

where σ obs is the uncertainty of the observed SMF in a given stellar
mass bin M∗, i (with the first bin starting at M∗, min).

For each of the 10 redshift bins, we minimize equation (3)
using an MCMC algorithm.2 This algorithm allow the sampling
of the parameter space in order to derive the posterior distribution
for the six free parameters. We use flat conservative priors on
the parameters together with 250 walkers each with a different
starting point randomly selected in a Gaussian distribution around
the original starting point. Our convergence criterion is based on
the autocorrelation length, which is an estimate of the number of
steps between which two positions of the walkers are considered
uncorrelated (Goodman & Weare 2010). Our MCMC stops when
the autocorrelation length has changed by less than 1 per cent and
when the length of the chain is at least 50 times the autocorrelation
length. As an example, our chains in the case of the HMF fitted
on Bolshoı̈–Planck have a length between 5000 at low redshift and
25 000 in the highest redshift bin. With our 250 walkers this gives
between 1.25 × 106 and 6.25 × 106 samples. The first steps up
to two times the autocorrelation length are discarded as a burn-
in phase. To speed up the computation of the posteriors, we keep
only the iterations separated by a thin length which is half of the
autocorrelation length.

We show in Table B2 the best fit and the 68 per cent confidence
interval for the six free parameters in each of the 10 redshift bins,
along with the marginalized posterior distributions in Figs B1–B3.
These figures show that the parameters M1 and M∗, 0 are highly
correlated. This is expected because as M1 increases, M∗, 0 should
also increase. M1 and β are also highly correlated which may be
explained by the fact that log(M∗/M∗, 0) is negative for a large range
of stellar masses so an increase of β is compensated by an increase
of M1. As we can see, the value of δ is not well constrained at
high redshift, because this parameters controls the high-mass slope
which is not well constrained in our data.

3.3 Principal sources of SHAM uncertainties

There are several sources of uncertainties in the SHAM technique.
A subhalo may be stripped after infall, leaving the hosted galaxy
embedded in the larger, central halo. This may break the one-to-one
correspondence between galaxies and dark matter haloes which is
the main assumption of our method. The HOD model is a viable
solution to take this into account although it would introduce an
additional number of assumptions and free parameters. Moreover,
observed galaxy clustering is required to constrain the HOD model
parameters (e.g. Coupon et al. 2015) but such measurements are
challenging at z > 2 (Durkalec et al. 2015). At lower redshift
(z � 1), Leauthaud et al. (2012, see their fig. 13) have shown
that M

peak
h measurements are consistent between HOD and SHAM

measurements.
Another source of uncertainty comes from random and systematic

errors in zphot and M∗ estimates, with the former propagating into

2We use the EMCEE PYTHON package (Foreman-Mackey et al. 2013).

the M∗ error in a way difficult to model (see discussion in D17).
In D17, the logarithmic stellar mass uncertainty is described by a
Gaussian with standard deviation σ M∗ = 0.35 dex multiplied by a
Lorentzian function with a parameter τ increasing with redshift to
enhance the tails of the distribution (see equation 1 of D17). These
observational uncertainties which cause the Eddington bias have
been corrected for in the SMF estimates we adopt (Section 2) but
some caveats remain (see D17; Grazian et al. 2015). Moreover, in
our fitting procedure, we consider that different stellar mass bins
are uncorrelated (equation 3). This assumption is a consequence
of the fact that in D17 (as the vast majority of the literature)
covariance matrices are not provided for their SMF estimates. Once
corrected for M∗ observational uncertainties, the main source of
correlations between mass bins comes from the intrinsic covariance
between them. To avoid oversampling, we adopt a mass bin size
of 0.3 dex which is comparable to the scatter in D17. We verified
that this choice does not introduce any significant bias: modifying
the bin size and centre (by ±0.1 dex) results remain consistent
within 1σ .

Besides their impact on M∗ estimates, zphot uncertainties affect
the observed SMF by scattering galaxies in the wrong redshift bin.
Our binning is large enough to mitigate this given that typical zphot

dispersion in COSMOS2015 estimated from a large spectroscopic
galaxy sample reaches σ z � 0.03(1 + z) at 2.5 < z < 6.

None the less, catastrophic zphot errors in the SED fitting (e.g. due
to degenerate low- and high-z solution) may still be a concern. The
fraction of catastrophic redshift outliers in COSMOS2015 is about
0.5 per cent at z < 3 and 12 per cent at higher redshifts, so it should
not introduce a significant covariance between z bins. This seems
to be confirmed by test with hydrodynamical simulations (Laigle
et al., in preparation).

Despite this, the impact of SED fitting systematics is still an open
question which will only be resolved with next-generation surveys
(e.g. large and unbiased spectroscopic samples with the Prime Focus
Spectrograph at Subaru, or the James Webb Space Telescope).

However, in this work, we independently constrain parameters of
equation (1) at each redshift bin without assuming a functional form
for their redshift evolution (contrary to Behroozi et al. 2010). Such a
redshift-independent fit reduces the overall number of assumptions
in the SHMR modelling.

A final source of uncertainty comes from the M∗ scatter we add
to the galaxy-to-halo monotonic relation. This is modelled with
a lognormal distribution characterized by the parameter ξ which
is free to vary in the MCMC fit. This parameter is usually fixed
between 0.15 and 0.20 dex (see e.g. More et al. 2009; Moster et al.
2010; Reddick et al. 2013) but in the large redshift range probed
here we expect a non-negligible variation due to the evolution
of galaxies’ physical properties as well as observational effects.
We note however that the resulting values (see Table B2) are
compatible with the fixed ones assumed by the studies mentioned
previously.

4 R ESULTS

4.1 The stellar-to-halo mass relationship

Figs 2 and 3 show our derived SHMR fits (upper panels) and the
corresponding ratio between stellar mass and halo mass (lower
panels) for samples in 0.2 < z < 2.5 and 2.5 < z < 5.5 redshift
intervals respectively. The SHMR and the corresponding 1σ uncer-
tainty are computed respectively as the 50th, the 16th, and the 84th
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Figure 2. Upper panel: SHMR from z = 0.2 to 2.5. Thick lines show the
50th percentile of the Mh distribution at fixed M∗ computed from our MCMC
runs. The coloured bands show the 16th and 84th percentile. The band is
shown for the 0.8 < z < 1.1 redshift bin only for clarity (for other redshift
bins, the uncertainty is of the same order). The limits in stellar mass for each
redshift is derived from observations. Lower panel: M∗/Mh ratio derived
from this SHMR.

percentile of the distribution of Mh at a given M∗ in the remaining
MCMC chains (Section 3.2). These uncertainties are shown as the
shaded regions. Considering the stellar mass completeness of our
data set (Section 2) we limit our samples to M∗ > M∗,min(z) and
also restrict ourselves at Mh < 1015M� since the number density of
haloes of such a mass is negligible across the whole redshift range
(<10−6Mpc−3; see Mo & White 2002).

We note that the stellar mass evolution of haloes between redshift
bins might sometime appear at odds with the expected stellar mass
assembly. A halo with Mh = 1013M� has a stellar mass of 1011.27M�
at z = 4. This halo is expected to grow to a mass of Mh = 1013.5M�
at z = 2.5 where our model says the galaxy should have a stellar
mass of 1011.12M�. This effect of haloes ‘loosing’ stellar mass is
a consequence of the fact that in our analysis each redshift bin
is treated independently and the consistency of the model across
different epochs is not guaranteed. The offset of about −0.15 dex
in the example above probably arises from systematic uncertainties
in the SMF at high redshift, from SED fitting effects (see e.g.
discussion in Stefanon et al. 2015) or from cosmic variance issues
(see e.g. Davidzon et al. 2017). Besides systematic errors, statistical
uncertainties are already able to explain part of the issue: running
our MCMC with an SMF shifted by −1σ (statistical error) at z =
4, and +1σ at z = 2.5, the stellar mass difference in the example
above is only −0.06dex.

Figure 3. Same as Fig. 2 for redshift bins from z = 2.5 to 5.5. We show
only uncertainties for the 2.5 < z < 3.0 and 4.5 < z < 5.5 bins for clarity.

The SHMR in the various redshift bins (upper panels of Figs 2
and 3) monotonically increases as a function of stellar mass with a
changing of slope at ∼M

peak
h . Below the characteristic halo mass, the

SHMR slope is approximately constant with redshift. Conversely,
for masses above M

peak
h , it becomes flatter as moving towards higher

redshifts (Fig. 3, upper panel) modulo the large error bars especially
at 4.5 < z < 5.5.

These trends are clearly illustrated also in the lower panels of
Figs 2 and 3 which show M∗/Mh versus Mh. In each bin, this ratio
peaks at Mh �M

peak
h and drops by one order of magnitude at both the

extremes of our halo mass range. At z < 0.5, Mpeak
h =1012M�, with

log(M∗/Mh) = −1.55 ± 0.5. At higher redshifts, M
peak
h increases

steadily up to 1012.5M� at z = 2, i.e. growing by a factor ∼3. It then
remains flat up to z = 4. At a fixed halo mass above M

peak
h , M∗/Mh

does not evolve, while in haloes below M
peak
h the ratio decreases

from z ∼ 0 to 2.5.

4.2 Dependence of the peak halo mass on redshift

Fig. 4 shows the redshift evolution of the peak halo mass between
z = 0.2 and 4.5 computed from the median M

peak
h for all the

samples retained in the MCMC (see Section 3.2). The results
are reported also in Table B2. Fig. 4 also presents a compilation
of recent measurements from the literature together with model
predictions (lines). At z > 3, it becomes progressively more difficult
to measure the position of the peak as the slopes of halo and
SMFs become similar (Fig. 1). In addition at higher redshifts, there
are correspondingly smaller numbers of massive galaxies in the
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Figure 4. Peak halo mass M
peak
h as a function of redshift (red dots). We plot M

peak
h at the median redshift of each bin, rescaled to H0 = 70 km s−1Mpc−1. All

masses from other studies have been rescaled to match the H0 = 70 km s−1Mpc−1 cosmology. Some points from the literature have been slightly shifted along
the redshift axis for clarity. We show results from Leauthaud et al. (2011, L + 11), Yang et al. (2012, Y + 12), Coupon et al. (2012, C + 12), Moster et al.
(2013, M + 13), Behroozi et al. (2013b, B + 13), Behroozi & Silk (2015, B + 15), Coupon et al. (2015, C + 15), Martinez-Manso et al. (2015, MM + 15),
Rodrı́guez-Puebla et al. (2017, R + 17), Ishikawa et al. (2017, I + 17), Cowley et al. (2018, C + 18), Harikane et al. (2018, H + 18), Moster et al. (2018,
M + 18), and Behroozi et al. (2018, B + 18). The brown arrow is the lower limit for M

peak
h from Harikane et al. (2018, H + 18).

COSMOS volume. Nevertheless, our measurements show clearly
that the peak halo mass increases steadily from 1012M� at z = 0.3
to 1012.6M� at z = 4.

Below z ∼ 2.5, there is generally a good agreement in the
literature with M

peak
h steadily increasing as a function of redshift.

We confirm this trend despite some fluctuation (e.g. at z ∼ 0.7)
due to the overabundance of rich structures in COSMOS (see e.g.
McCracken et al. 2015). Leauthaud et al. (2012), using a previous
measurement of the COSMOS SMF at z < 1, find the same
fluctuations. Leauthaud et al. perform a joint analysis of galaxy–
galaxy weak lensing and galaxy clustering to fit the SHMR modelled
as in Behroozi et al. (2010). Moreover, they use an HOD to describe
the number of galaxies per dark matter halo, instead of assuming
only a single galaxy inhabits each dark matter halo. In fact, such an
assumption has only a small impact on the M

peak
h position given the

fact that at ∼1012 M� most of the haloes contain only one galaxy
(McCracken et al. 2015). Cowley et al. (2018) used an HOD model
to derive M

peak
h for mass-selected sample of UltraVISTA galaxies

in COSMOS at 1.5 < z < 2 and 2 < z < 3; their results are in good
agreement with ours. Their error bars account for zphot errors but not
the stellar mass uncertainties; in their HMF, they apply Behroozi,
Wechsler & Wu (2013a) high-redshift correction and introduce a
large-scale halo bias parameter (Tinker et al. 2010).

Above z � 3, the scatter in M
peak
h increases. Moster et al. (2013)

and Behroozi et al. (2013b)3 find different trends, i.e. an M
peak
h (z)

function that declines (Behroozi et al. 2013b) or flattens (Moster
et al. 2013) with increasing redshift. One possible explanation for
the discrepancy is that Moster et al. and Behroozi et al. models
are based on different observational data sets. To address this issue,
Behroozi & Silk (2015) repeated Behroozi et al.’s analysis removing
z > 5 constraints (which in their method influence also the fit at

3Values shown here were obtained using Planck cosmology instead of
the published WMAP cosmology (Behroozi private communication). See
comparison in fig. 35 of Behroozi et al. (2018).

lower z). However, this test is inconclusive as their M
peak
h estimate

(shown as the star symbol in Fig. 4) falls between these curves.4

Our higher M
peak
h values with respect to Ishikawa et al. (2017) and

Harikane et al. (2018) may be a consequence of our near-IR selection
(a good proxy for stellar mass, see D17). Ishikawa et al. (2017) and
Harikane et al. (2018) samples are selected in rest-frame UV (and
a conversion to stellar mass is made through an average LUV–M∗
relation). Moreover their redshift classification is derived (instead of
zphot estimates) from a Lyman-break colour–colour selection which
may result in lower levels of purity and completeness at z ∼ 3
(Duncan et al. 2014).

Recently, revised versions of Behroozi et al. (2013b) and of
Moster et al. (2013) have been presented in Behroozi et al. (2018)
and Moster et al. (2018). This new analysis differs from the former
ones by following closely the evolution of individual halo–galaxy
pairs through time. This results in a better understanding of the
scatter of the SHMR, because this scatter results from the evolution
of each halo–galaxy pairs, it is not an arbitrary scatter parameter
added to the model. In Behroozi et al. (2018), the feedback model
regulating star formation has significantly changed since Behroozi
et al. (2013b). In the updated model, the Mh threshold at which
50 per cent of the hosting galaxies are quiescent grows from 1012 M�
at z < 1 up to ∼1013 M� at z = 3.5 (see fig. 28 of Behroozi et al.
2018). As a consequence, the M

peak
h evolution is now in excellent

agreement with both Moster et al. (2013) and our estimates. Moster
et al. (2018) peak halo mass shown here corresponds to the peak
in the ratio between stellar mass and baryonic mass of galaxies
(the [M∗/Mb](Mh) relation. We assumed here that the ratio between
baryonic mass and halo mass is a constant (equal to the universal
baryon fraction), giving the same value for the peak halo mass of

4M
peak
h (z) error bars are not explicitly quoted either in Behroozi et al.

(2013b) or Moster et al. (2013). However, we can quantify them through the
uncertainties of their SHMR models. For example in the model of Moster
et al. the 1σ confidence level of the M1(z) parameter can be used as a proxy,
leading to M

peak
h error bars of the same order of magnitude of ours.
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Figure 5. Evolution of M∗/Mh as a function of redshift for fixed halo masses
(solid lines) and at Mh ≡ M

peak
h (dashed line). Error bars are derived from

Figs 2 and 3.

the [M∗/Mh](Mh) relation. The difference with our results might be
explained by a dependence of the baryon fraction of haloes with
mass (see Kravtsov, Nagai & Vikhlinin 2005; Davies et al. 2018).

4.3 Dependence of M∗/Mh on redshift at fixed halo mass

Since M∗/Mh depends on host halo mass and redshift, we show in
Fig. 5 this trend in more detail by computing the M∗/Mh ratio at
different fixed values of halo mass. We restrict our analysis to z <

2.5 because at high-mass bins (1013M�) uncertainties in the M∗/Mh

ratio prohibits a quantitative discussion of its evolution with redshift
between z = 2.5 and 5.5.

For massive haloes (1013M�) the ratio is nearly constant between
z ∼ 0.2 and 2.5, whereas at Mh � 1012M� it increases as cosmic
time goes by reaching the maximum value (about 0.03) at z � 1
and then remaining constant until z ∼ 0.2. The redshift at which
1012M� haloes reach the maximum M∗/Mh ratio corresponds to the
epoch when M

peak
h is equal to their mass. Lower mass haloes, which

are <M
peak
h across the whole redshift range, steadily increase their

M∗/Mh without any peak or plateau. For instance haloes with Mh

� 1011.5M� increase their M∗/Mh ratio by a factor ∼3.2 from z =
2.5 to 0.2. For comparison, Fig. 5 also shows the increase of the
M∗/Mh ratio, from z = 2.5 to 0.2, for haloes in a mass bin that
evolves with redshift, i.e. Mh = M

peak
h (z). We discuss in Section 5

the interpretation of these evolutionary trends and the implications
in terms of galaxy star formation efficiency.

4.4 Impact of halo mass function uncertainties

In order to estimate quantitatively how the choice of the HMF
fit impacts our results, we repeat our analysis (Section 3) using
different HMFs (Fig. 6). The SMF remains D17 in all the cases.
Results at z � 2 are consistent, whilst at higher redshifts we
clearly observe the impact of halo identification techniques. M

peak
h

values using the HMF of either Tinker et al. (2008), Bocquet et al.
(2016), or Despali et al. (2016) are grouped together, as those
studies all applied a spherical overdensity criterion to define haloes.
Bhattacharya et al. (2011) and Watson et al. (2013) use an FoF
algorithm, and the resulting log(Mpeak

h /M�) is systematically higher
by ∼0.1 dex at z ≥ 2. In our study, these differences are smaller
than other sources of uncertainty, but it is clear that in future larger
surveys these differences may become important.

Figure 6. Peak halo mass (Mpeak
h ) computed using different HMFs. M

peak
h

redshift evolution is independently measured six times, using different HMF
fits: our Bolshoı̈–Planck fit of Despali et al. (2016, our main reference also
shown in Fig. 4); the original Despali et al. (2016), Tinker et al. (2008),
Bhattacharya et al. (2011), Watson et al. (2013), and Bocquet et al. (2016).
Filled circles (triangles) indicate that the halo identification has been done
with a spherical overdensity (FoF) algorithm. Each set of M

peak
h (z) values

derived for a given HMF is shifted by 0.05 in redshift for sake of clarity.
SHAM method and observed SMF are the same for all estimates. Literature
measurements are shown as in Fig. 4.

5 D ISCUSSION

5.1 Evolution of the SHMR observed in COSMOS

To interpret our results, it is worth first recalling how the shape of
the SMF changes from z = 5 to 0 (Fig. 1). The number density of
intermediate-mass galaxies (109.5M� < M∗ < 1011M�) increases
more rapidly compared to lower and higher masses galaxies.
This causes the ‘knee’ of the SMF at M∗ ∼ 1011M� to become
progressively more pronounced. In comparison halo number density
evolution is nearly independent of mass so the shape of the HMF
is similar between z = 2 and 6 (modulo a normalization factor, see
Fig. 1). The relative evolution of these two functions causes the
changes in the M∗/Mh ratio.

The redshift evolution of the SMF shape is governed by several
factors. On one hand, towards higher redshifts the high-mass end
becomes increasingly affected by larger observational uncertainties
(especially photometric redshift catastrophic failures: Caputi et al.
2015; Grazian et al. 2015). At the same time, specific physical
processes control star formation around the knee of the SMF which
are different from those affecting galaxies at lower masses (Peng
et al. 2010). Here, we assume that most of the observational errors
have been accounted for (Section 2) and consequently the redshift
evolution of M

peak
h we measure in COSMOS is primarily driven by

physical mechanisms.
The M∗/Mh ratio is usually interpreted as the comparison between

the amount of star formation and dark matter accretion integrated
over a halo’s lifetime. Thus, a high M∗/Mh ratio in a given Mh

bin implies that those haloes have been (on average) particularly
efficient in forming stars. ‘Star formation efficiency’ is used
hereafter to indicate ‘galaxy formation efficiency’, i.e. the whole
process of stellar mass assembly from baryon accretion to the
collapse of molecular clouds inside the galaxy. In addition to the
in situ star formation, further stellar mass can be accreted via galaxy
merging. In such a framework, the dependence of the M∗/Mh ratio
on halo mass and redshift can be explained by a combination of
physical phenomena. Our observational constraint on M

peak
h can

MNRAS 486, 5468–5481 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/4/5468/5484890 by guest on 08 June 2020



5476 L. Legrand et al.

help to understand which mechanisms, amongst those proposed in
the literature, are most responsible for regulating galaxy stellar mass
assembly.

M
peak
h can be considered as the threshold above which haloes

maintain a nearly constant M∗/Mh ratio across time (Fig. 5). At a
fixed halo mass below M

peak
h , the M∗/Mh ratio increases as comic

time goes by, indicating that stellar mass has ‘kept up’ with dark
matter accretion. For a fixed halo mass above Mh � M

peak
h , host

galaxies are more likely to enter in a quiescent phase (‘quenching’
the star formation) and thereafter passively evolve. Fig. 5 clearly
shows this evolution with redshift for fixed halo masses. For
objects with Mh = 1012 M�, their M∗/Mh increases until z ∼ 1 (i.e.
when M

peak
h = 1.3−1.6 × 1012 M�) after which the ratio remains

constant until z = 0.2. Note that we do not track the evolution of
individual haloes but instead the evolution of the M∗/Mh ratio for a
given halo mass. This makes the interpretation of the evolution of
individual haloes with time more difficult (haloes at high redshift are
not necessarily the same as haloes of the same mass at low redshift).

5.2 What physical mechanisms regulate star formation in our
sample?

In this work, we consider primarily the redshift evolution of
M

peak
h . Our deep near-IR observations allow us to leverage the

COSMOS2015 galaxy sample to constrain that threshold up to
z = 4 (Fig. 4). We find that the M

peak
h (z) function changes slope

at z ∼ 2, showing a plateau at higher redshift. This implies that the
threshold for massive galaxies to enter the quenching phase depends
on redshift: in the early Universe quenching mechanisms are less
effective for galaxies in haloes between 1012 and 1012.5 M�. This
scenario should also take into account the contribution of major
and minor mergers but in the redshift and halo mass ranges of our
analysis they can be considered sub-dominant (see Davidzon et al.
2018 and references therein). Therefore, in the following we will
focus on quenching models affecting the in situ star formation.

In their cosmological hydrodynamical simulations, Gabor &
Davé (2015) implement a heuristic prescription to halt star for-
mation in systems with a large fraction of hot gas.5 The condition
to trigger the quenching phase, which Gabor & Davé call ‘hot halo’
mode, happens exclusively at Mh > 1012 M� in their simulation.
This halo mass threshold is in agreement with M

peak
h . However,

Gabor & Davé (2015) carry out their analysis at z < 2.5. At
higher redshift, this prescription would be in disagreement with our
results. Also Behroozi et al. (2018), considering the evolution of the
quiescent galaxy fraction, emphasize that a quenching recipe with a
constant temperature threshold could not explain the observational
trend. As the difference between a constant and a time-evolving
threshold becomes more relevant in the first ∼2 Gyr after the big
bang (see fig. 28 in Behroozi et al. 2018), our results are extremely
useful to discriminate between these different scenarios.

The hot halo model is agnostic regarding the sub-grid physics
of the simulation: gas heating can be caused by either stable virial
shocks (Birnboim & Dekel 2003) or AGN feedback (see a review
in Heckman & Best 2014). With respect to the former mechanism,
simulations in Dekel & Birnboim (2006) show that shock heating
in massive haloes becomes inefficient at high redshift because cold
streams are still able to penetrate into the system and fuel star

5Namely, their code prevents gas cooling in FoF structures by setting the
circumgalactic gas equal to the virial temperature. This condition is triggered
when a structure has 60 per cent of gas particles with a temperature >105.4 K
(Kereš et al. 2005).

formation (see also Dekel et al. 2009). However, despite that this
trend is in general agreement with our results there are quantitative
differences in the evolutionary trend. With the fiducial parameters
assumed in Dekel & Birnboim (2006) the ‘critical redshift’ at which
∼1012 M� haloes start to form stars more efficiently is zcrit � 1.5.
Moreover, according to their model M

peak
h should keep increasing

at z > zcrit instead of plateauing.
Quenching models more compatible with our observational re-

sults have been presented e.g. in Feldmann & Mayer (2015). Under
the assumption that gas inflow (thus star formation) is strongly
correlated to dark matter accretion, the authors note that at z > 2
massive haloes are still collapsing fast and dark matter filaments
efficiently funnel cool gas into the galaxy. At z � 2, those haloes
should enter in a phase of slower accretion that eventually impedes
star formation by gas starvation. However, we caution that they
study single galaxies in cosmological zoom-in simulations: a larger
sample may show considerable variance in the redshift marking the
transition between the two dark matter accretion phases. In addition,
we emphasize that not only the accretion rate but also the cooling
timescale is a strong function of redshift. Gas density follows the
overall matter density of the Universe, evolving as ∝(1 + z)3. Since
the post-shock cooling time is proportional to gas density, it would
be significantly shorter at higher redshift. On the other hand, this
argument in absence of more complex factors should lead to a
steeper, monotonic increase of M

peak
h that we do not observe.

As mentioned above, AGN feedback at high redshifts can also
regulate galaxy star formation and explain our observed M

peak
h trend.

AGN activity at high redshift is expected to be almost exclusively
in quasar mode (e.g. Silk & Rees 1998) with powerful outflows that
can heat or even expel gas. However such radiative feedback has
shown to be inefficient in hydrodynamical ‘zoom-in’ simulations
at z ∼ 6 (e.g. Costa et al. 2014). Observations also indicate that
high-z quasars do not prevent significant reservoirs of cold gas
from fuelling star formation (e.g. Maiolino et al. 2012; Cicone et al.
2014). Therefore, star formation in massive haloes can proceed for
2–3 Gyr after the big bang without being significantly affected by
AGN activity, in agreement with our observations. At later times,
perturbations to cold filamentary accretion can starve galaxies of
their gas supplies (Dubois et al. 2013).

A deeper understanding of the role played by AGN comes from
studying their co-evolution with supermassive black hole (BH).
Beckmann et al. (2017) show that once renormalized for the ratio
between the BH mass (MBH) and the virial mass of the halo, the
impact of AGN feedback is the same from z = 0 to 5. According to
their hydrodynamical simulations (from the HORIZON-AGN suite,
Dubois et al. 2014) this process is able to suppress galaxy stellar
mass assembly when MBH/Mh > 4 × 10−5. In first approximation,
this critical threshold is in good agreement with the one that can
be derived from COSMOS if the critical BH mass (MBH, crit) is
correlated with M

peak
h . Assuming a BH-to-stellar mass ratio of

2 × 10−3 (Marconi & Hunt 2003) we can write

MBH,crit

M
peak
h

= MBH

M∗
×

(
M∗
Mh

)peak

= 2 × 10−3 × 10−1.7±0.1, (4)

which gives 3–5 × 10−5 including the variation in the M∗/Mh ratio
calculated at Mh ≡ M

peak
h (see Figs 2, 3, and 5). At least at z < 2,

the antihierarchical growth of the BH mass function (Marconi et al.
2004; Shankar, Weinberg & Miralda-Escudé 2009, 2013) implies
that more massive BHs form earlier, so M

peak
h must also increase (as

we find in COSMOS) in order to keep the ratio constant. In other
words, if we assume that the quenching threshold MBH,crit/M

peak
h is

universal, BH formation models can use the COSMOS SHMR as an
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indirect constraint. Part of the redshift evolution may also be due to
the ratio between MBH and M∗. In equation (4), we used a constant
value but other studies indicate that such a relationship varies
depending on the galaxy bulge component (Reines & Volonteri
2015). However, in the HORIZON-AGN simulation this quantity has
been shown to remain constant (∼2 × 10−3) up to z = 3 (Volonteri
et al. 2016).

Recently, Glazebrook et al. (2017) reported a massive (M∗ =
1.7 × 1011M�) and quiescent galaxy at a spectroscopic redshift
of z = 3.717. This observation suggests a scenario where in the
early Universe dark matter haloes are hosting massive star-forming
galaxies and that the quenching of star formation appears as early
as z ∼ 4. According to our SHMR relation, this stellar mass
corresponds to a halo mass of Mh = ∼1012.5M� so around our
value of M

peak
h for z = 4. This observation is in agreement with our

argument that M
peak
h is the characteristic mass for haloes currently

undergoing quenching.
Depending on their location within the cosmic web (filaments,

nodes, voids) haloes with similar masses may experience different
accretion histories (De Lucia et al. 2012). One key idea in this
context is ‘cosmic web detachment’ (Aragon-Calvo, Neyrinck &
Silk 2016): galaxies tied to nodes or filaments are removed
from their original location by interaction with another galaxy.
After the detachment gas supply – and then star formation –
becomes less efficient. Aragon-Calvo et al. (2016) suggest that
massive haloes are the first to detach, whereas less massive haloes
0.1−3 × 1010 h−1 M� are still part of the cosmic web today. It
is difficult to test this scenario beyond the local Universe because
precise measurements of the SMF are required in addition to
higher order statistics (e.g. three-point correlation functions). We
emphasize that COSMOS is the ideal laboratory to test the impact
of large-scale environment in the models mentioned above, because
the cosmic structure of this field has been reconstructed at least
up to z ∼ 1 (Darvish et al. 2014; Laigle et al. 2018). We aim to
perform such an analysis in a future work.

In summary, we have described different physical processes
which could explain our observed trends of M

peak
h and the SHMR

with redshift. Of course, in the real Universe the truth is likely
to be some combination of these mechanisms. But based on this
discussion, the physical processes at work in results seem to be
best understood as a combination of cold-flow accretion and AGN
feedback combined with antihierarchical growth of the BH mass
function, with the precise role of evolutionary and environmental
effects yet to be determined.

6 C O N C L U S I O N S

We have used an SHAM technique combined with precise SMF
measurements in COSMOS to make a new measurement of the
SHMR from z ∼ 0 to 5. We accounted for the principal sources of
uncertainties in our stellar mass measurements and photometric
redshifts. We also tested the impact of HMF uncertainties on
the resulting SHMR. At z ∼ 0.2, we found that the ratio of
mass in stars to dark matter halo mass (M∗/Mh) peaks at a halo
mass of 1012.05 ± 0.07M�. This peak mass increases steadily to
1012.48 ± 0.08M� at z ∼ 2.3, and remains almost constant up to
z = 4.

By comparing our results to studies that rely on models account-
ing for both central and satellite galaxies, we have shown that at
least at z < 2, the distinction between central and satellite galaxies
has only a limited impact on the peak halo mass M

peak
h . A complete

modelling including satellite galaxies is left to a future work.

We found that the M∗/Mh ratio has little dependence on redshift
for haloes more massive than M

peak
h , but strongly depends on redshift

for less-massive haloes, consistent with the picture that the star
formation has been quenched in massive haloes and continues in
less massive haloes. We showed that the evolution of the shape of the
SMF has a strong impact on the SHMR: the change in the position of
the knee of the SMF is responsible for the shift in the value of M

peak
h .

Accurate SMF estimations at high redshift for massive galaxies are
needed to constrain the SHMR. We also show how mass function
uncertainties can influence our measurements of M

peak
h .

We discussed qualitatively which physical processes control the
SHMR and M

peak
h , which we interpret as the characteristic mass of

quenched haloes. We speculate that this evolutions can either be
related to AGN feedback or to environmental effects such as cold
gas inflows at high redshift and cosmic web detachment.

Our study is based on a phenomenological model and as such
can provide no direct information concerning the physical processes
acting inside haloes. Next-generation hydrodynamical simulations
will allow us to better understand the small-scale physical processes
acting inside dark matter haloes and determine what physical effects
control star formation. In the next few years, the combined 20 deg2

Spitzer–Euclid legacy and Hawaii-2-0 surveys on the Euclid deep
fields will provide much better constraints on the massive end
of the SMF at high redshifts. Precise photometric redshifts will
allow us to investigate in detail the role of environment and in
particular the ‘cosmic web’ role in shaping galaxy and dark matter
evolution.

For future surveys like Euclid, errors on the cosmological figure
of merit will be dominated by systematic errors. For this reason, it
is essential to understand the interplay between baryons and dark
matter on small scales and the uncertainties present in estimates of
the HMF.
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APPEN D IX A : FI T T I N G THE
B O L S H O Ï - P L A N C K H M F FO R MM A X

Fig. A1 shows the fit of the Despali et al. (2016) HMF on the
halo number densities of the Bolshoı̈–Planck simulation, using the
maximal mass in the history of the haloes. See Section 2.2.

Figure A1. Points show halo densities obtained from the Bolshoı̈–Planck
simulation for different redshift snapshots. The fit of the Despali et al. (2016)
HMF on this data points is shown as the plain lines.

APPENDI X B: MCMC BEST FI T PARAME TERS

In this Appendix, we provide further details about the COS-
MOS2015 galaxy SMF (median z and limiting stellar mass
of each bin, see Table B1) and the best-fitting parameters of
equation (1) resulting from our MCMC method (see Table B2).
In addition, Figs B1–B3 show the MCMC posterior distribu-
tions in the 10 redshift bins independently considered in this
analysis.

Table B1. Median redshift of each redshift bin and limiting stellar mass of
COSMOS survey as defined in D17.

Redshift bin Median z log (M∗, lim/M�)

(0.2, 0.5] 0.370 8.17
(0.5, 0.8] 0.668 8.40
(0.8, 1.1] 0.938 8.58
(1.1, 1.5] 1.29 8.77
(1.5, 2.0] 1.74 8.98
(2.0, 2.5] 2.22 9.17
(2.5, 3.0] 2.68 9.32
(3.0, 3.5] 3.27 9.50
(3.5, 4.5] 3.93 9.67
(4.5, 5.5] 4.80 9.86

Table B2. Best-fitting parameters for the 10 redshift bins with their 68 per cent confidence intervals, and M
peak
h recovered from the best-fitting SHMR with its

68 per cent confidence interval.

Redshift bin log (M1/M�) log (M∗, 0/M�) β δ γ ξ log(Mpeak
h /M�)

[0.2, 0.5] 12.49+0.13
−0.094 10.84+0.11

−0.077 0.463+0.040
−0.030 0.77+0.16

−0.29 <0.802 0.138+0.034
−0.066 12.05 ± 0.07

[0.5, 0.8] 12.668+0.089
−0.074 11.039+0.074

−0.060 0.458+0.026
−0.023 0.81+0.17

−0.24 <0.723 0.099+0.022
−0.027 12.22 ± 0.05

[0.8, 1.1] 12.614+0.073
−0.060 11.006+0.056

−0.042 0.437+0.025
−0.022 0.93+0.19

−0.28 <0.955 0.088 ± 0.015 12.14 ± 0.04

[1.1, 1.5] 12.642+0.086
−0.069 10.978+0.072

−0.054 0.407+0.029
−0.023 0.80+0.16

−0.23 <0.629 0.092+0.023
−0.025 12.26 ± 0.04

[1.5, 2.0] 12.78+0.10
−0.072 11.053+0.080

−0.055 0.438+0.035
−0.026 0.82+0.17

−0.25 <0.724 0.075 ± 0.017 12.35 ± 0.04

[2.0, 2.5] 13.062+0.078
−0.087 11.15+0.11

−0.095 0.525+0.033
−0.027 1.09+0.36

−0.68 <2.08 0.128+0.045
−0.050 12.48 ± 0.08

[2.5, 3.0] 13.11 ± 0.18 11.09 ± 0.25 0.598+0.045
−0.036 1.01+0.55

−0.72 – 0.216+0.061
−0.14 12.47 ± 0.19

[3.0, 3.5] 13.14+0.22
−0.20 11.14 ± 0.27 0.631+0.071

−0.038 0.73+0.35
−0.54 <2.47 0.176+0.074

−0.085 12.49 ± 0.17

[3.5, 4.5] 13.30+0.20
−0.27 11.41+0.28

−0.46 0.625+0.056
−0.039 – <2.93 0.231 ± 0.099 12.63 ± 0.25

[4.5, 5.5] 14.35+0.89
−1.0 <13.5 0.642+0.094

−0.11 – – 0.45+0.22
−0.34 13.35 ± 0.54
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Figure B1. 1D and 2D marginalized distributions for the six free parameters. Solid contours give the 68 and 95 per cent confidence intervals. Left-hand panel
is for redshift bin [0.2, 0.5], and right-hand panel is for redshift bin [0.5, 0.8].

Figure B2. Same as B1 for (from left to right and top to bottom) [0.8, 1.1], [1.1, 1.5], [1.5, 2], and [2, 2.5] redshift bins.
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Figure B3. Same as B1 for (from left to right and top to bottom) [2.5, 3], [3, 3.5], [3.5, 4.5], and [4.5, 5.5] redshift bins.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 486, 5468–5481 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/4/5468/5484890 by guest on 08 June 2020



Astronomy & Astrophysics manuscript no. main c©ESO 2020
July 28, 2020

High resolution tomography for galaxy spectroscopic surveys
with Angular Redshift Fluctuations

L. Legrand1, C. Hernández-Monteagudo2, M. Douspis1, N. Aghanim1, and Raúl E. Angulo3, 4

1 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405, Orsay, France.
e-mail: louis.legrand@ias.u-psud.fr

2 Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Unidad Asociada al CSIC, Plaza San Juan, 1, planta 2, E-44001,
Teruel, Spain

3 Donostia International Physics Centre (DIPC), Paseo Manuel de Lardizabal 4, E-20018 Donostia-San Sebastian, Spain
4 IKERBASQUE, Basque Foundation for Science, E-48013, Bilbao, Spain

July 28, 2020

ABSTRACT

In the context of next generation spectroscopic galaxy surveys, new observables of the distribution of matter are currently being de-
veloped. Among these we investigate the angular redshift fluctuations (ARF), which probe the information contained in the projected
redshift distribution of galaxies. Relying on the Fisher formalism, we show how ARF will provide complementary cosmological in-
formation compared to traditional angular galaxy clustering. We test both the standard ΛCDM model and the wCDM extension. We
find that the cosmological and galaxy bias parameters express different degeneracies when inferred from ARF or from angular galaxy
clustering. As such, combining both observables breaks these degeneracies and greatly decreases the marginalised uncertainties, by
a factor of at least two on most parameters for the ΛCDM and wCDM model. We find that the ARF combined with angular galaxy
clustering are a great probe of dark energy by increasing the figure of merit of the w0-wa parameter set by a factor of more than 10
compared to angular galaxy clustering alone. Finally we compare ARF to the CMB lensing constraints on the galaxy bias parameters.
We show that a joint analysis of ARF and angular galaxy clustering improves constraints by ∼ 40% on galaxy bias compared to a
joint analysis of angular galaxy clustering and CMB lensing.

Key words. Cosmology: large-scale structure of Universe - observations - cosmological parameters - dark energy

1. Introduction

In the coming years, large scale optical and infra-red (IR) sur-
veys will map with unprecedented accuracy our Universe from
the present epoch up to when it was roughly one tenth of its
current age. A significant part of these surveys will be spectro-
scopic, e.g., DESI (DESI Collaboration et al. 2016), 4MOST (de
Jong & 4MOST Consortium 2015), WEAVE (Bonifacio et al.
2016), or NISP aboard Euclid (Laureijs et al. 2011) and will pro-
vide us with spectra for large samples of sources. Such spectra
will not only enable deep insight on the physics of those objects,
but will also yield accurate estimates of their redshift and thus
of their distance to the observer. From the cosmological point
of view, this will enable a precise (statistical) characterization of
the (apparent) spatial distribution of those luminous tracers (via
two- or three-point statistics), and this itself should shed precious
light on open topics such as, e.g., the nature of dark energy, the
possible interplay of dark energy and dark matter, the mass hier-
archy of neutrinos, or possible deviations of gravity from Gen-
eral Relativity, to quote a few.

At the same time, a different family of surveys will scan the
sky at greater depths with of optical filters, and with exquisite
image quality. These photometric experiments build high qual-
ity, very large catalogues of sources, with however relatively
rough redshift estimations given their moderate number of fil-
ters/colours. While mining the faint Universe, this type of sur-
veys will be particularly sensitive, from a cosmological perspec-
tive, to the angular clustering of luminous matter, the cosmolog-

ical aspects of gravitational lensing throughout cosmic epochs,
the satellite population in halos, and the formation and evolution
of the population of galaxy clusters. In this context, the Dark
Energy Survey (DES, Abbott et al. 2018) is currently providing
state-of-the-art cosmological constraints in the late universe, and
these should be further complemented by the Vera Rubin Obser-
vatory (LSST, Ivezić et al. 2019), which, at the same time, will
also explore the variability of the night sky in a regime of depth
and time domain that so far remains practically unexplored.

An intermediate third class of experiments also exists. These
are the spectro-photometric surveys that conduct standard pho-
tometry in a relatively large set (from ∼ 10 up to ∼ 60) of
narrow-band optical filters. This strategy combines the indis-
criminate character of the photometric surveys with high preci-
sion redshift estimates (∆z/(1 + z) ∼ 10−3–10−2) for a large frac-
tion (> 20–30 %) of the detected sources. Given its multi-color
character, these surveys are able to provide pseudo-spectrum /
photo-spectrum in each pixel of the surveyed area. The pioneer
example of COMBO-17 has been or is being followed by other
efforts such as COSMOS (Scoville et al. 2007), ALHAMBRA
(Moles et al. 2008), SHARDS (Pérez-González et al. 2013), PAU
(Martí et al. 2014), J-PAS (Benitez et al. 2014), SPHEREx (Doré
et al. 2014), and J-PLUS (Cenarro et al. 2019).

In this work, we forecast the power of cosmological analyses
in spectroscopic and spectro-photometric surveys. In this type of
surveys, it is customary to convert redshift estimates into radial
distances under the assumption of a given fiducial cosmologi-
cal model. Angular and redshift coordinates are thus converted
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into the three-dimensional space, where standard 3D clustering
analysis techniques are applied.

In our case however, we choose to follow a different strategy.
We focus on a new cosmological observable, namely the angular
redshift fluctuations (ARF, Hernández-Monteagudo et al. 2019,
hereafter HMCMA). Being a 2D observable, the ARF field can
easily be cross-correlated with other 2D observables, such as the
2D galaxy density filed and the CMB lensing fiels. ARF present
other interesting features, such as being correlated to the cosmic,
radial, peculiar velocity fields (HMCMA, Chaves-Montero et al.
2019), or being particularly insensitive to additive systematics
that remain constant under the redshift shell subject to analysis.

In this paper we apply the Fisher formalism on the angu-
lar galaxy clustering, the ARF and the CMB lensing conver-
gence observables, and explore their sensitivity to cosmology in
two different observational set ups, mimicking those expected
for the DESI and Euclid surveys. We consider the CMB lensing
convergence field among our observables, since it constitutes an
intrinsically different probe whose dependence on the parame-
ters defining the galaxy sample is different from that of angular
galaxy clustering and ARF. Our scope is to assess if the ARF
field can provide complementary information on the galaxy den-
sity field and on the CMB lensing field.

The paper is organized as follows. We introduce the spec-
troscopic galaxy surveys and CMB experiments that we use in
our analysis in Sect. 2. In Sect. 3, we present the angular galaxy
clustering, the ARF, and the CMB lensing convergence field. In
Sect. 4, we compute the foreseen signal to noise ratios of these
combination of probes, while also introducing the covariance
among those observables. In Sect. 5, we present the predicted
constraints on cosmological parameters in the fiducial ΛCDM
scenario. Finally we discuss our findings in Sect. 6 and con-
clude in Sect. 7.

Throughout this paper, we use the Planck 2018 cosmology
as our fiducial cosmology. We take the values given in Table
2, in the column 6 (best-fit with BAO), of Planck Collaboration
et al. (2018a). We use the following naming conventions: observ-
able refers to a spherical 2D field built on measured quantities,
such as counts, redshifts, or deflection angles, while probe refers
to the combination of one or two observables into a summary
statistics. In practice, our probes will be the two-point angular
power spectra C`. The redshift due to the Hubble expansion is
denoted by z, while zobs is the measured redshift (which includes
redshift distortions induced by radial peculiar velocities);Ωm,0 is
the density of matter at z = 0 in units of the critical density and
H0 is the Hubble constant; r(z) =

∫
dz c /H(z) is the line of sight

comoving distance, and dVΩ = dV/dΩ = r2 dr = r2(z) c/H(z) dz
is the comoving volume element per solid angle, with dΩ a dif-
ferential solid angle element. Vectors are in bold font and a hat
denotes a unit vector.

2. Surveys

Among the wealth of current and upcoming experiments, we
choose two representative cases for spectroscopic large scale
structures (LSS) surveys, namely the DESI and the Euclid ex-
periments. We detail their specifications in Table 1.

On the CMB side, we consider first a Planck-like experi-
ment, currently the state-of-the-art data base in terms of multifre-
quency, full sky CMB data (Planck Collaboration et al. 2018a).
In order to observe the future sensitivity reachable on the small-
est angular scales via ground CMB experiments, we also con-
sider the Simons Observatory (The Simons Observatory Collab-

oration et al. 2019) and the CMB-Stage 4 (Abazajian et al. 2019).
Both shall cover thousands of square degrees of the southern sky
(> 40% of the sky) with extremely high sensitivity (≤ 2 µK ar-
cmin) and fine angular resolution (at the arcmin level)

2.1. The DESI experiment

DESI is a ground-based survey that will cover 14, 000 deg2 on
the sky and will measure the redshift of about 30 million galax-
ies using optical fibers spectroscopy (DESI Collaboration et al.
2016). It will target four different classes of galaxies. In this pa-
per, we compute forecasts for the emission line galaxies (ELG)
sample which is the largest sample of the survey. It ranges from
z = 0.6 up to z = 1.6. The expected galaxy distribution n̄g(z)
(see Fig. 1a) and the galaxy bias b(z) are calibrated based on the
DEEP2 survey (Newman et al. 2013). The (linear) bias of the
spatial distribution of this galaxy population with respect to dark
matter is a redshift dependent quantity approximated by

bg(z) = 0.84/D(z) , (1)

with D(z) denoting the growth factor of linear matter density per-
turbations.

The DESI experiment successfuly achieved the comissioning
phase in the first halo of 2020 and should start observing the
sky in the second half of 2020 for a five year period. The DESI
collaboration plans to release annual datasets.

2.2. The Euclid spectroscopic survey

The Euclid satellite will observe about 15 000 deg2 of the ex-
tragalactic sky (Laureijs et al. 2011). The NISP instruments will
provide slitless spectroscopy, allowing for precise redshift de-
terminations for about 1950 gal deg−2. The spectroscopic sur-
vey will target Hα emission-line galaxies in the redshift range
0.9 < z < 1.8. We assume the model 3 from Pozzetti et al. (2016)
for the expected number density of galaxies n̄g(z) (see Fig. 1b).
For the expected galaxy linear bias, we fit a linearly redshift de-
pendent bias on the values of the Table 3 of Euclid Collaboration
et al. (2019), yielding

bg(z) = 0.79 + 0.68 z . (2)

The Euclid satellite will be launched in 2022 and will be
operated for six years. The data will be released in three batches:
2, 4 and 7 years after the launch.

2.3. Tomography

As already mentioned above, our forecasts are based on a to-
mographic approach where the entire redshift range covered by
a galaxy survey is sliced into different redshift bins. Centred at
each of these redshift bins, we consider Gaussian redshift shells
of a given width σz centered on redshifts zi.

Wi(z) = exp
(
− (z − zi)2

2σ2
z

)
. (3)

Provided that a Gaussian shell will be diluting information on
radial scales shorter than the Gaussian width, our choice for
σz is a compromise between maximizing the amount of radial
scales under study, and minimizing the impact of non-linear, ra-
dial scales in the analysis (Asorey et al. 2012; Di Dio et al. 2014).
In HMCMA, we found that, at z ' 1, down to σz = 0.01 the
impact of radial non-linearities was either negligible or easily
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Survey Euclid DESI
Survey area 15 000 deg2 14 000 deg2

Redshift estimation Slitless spectroscopy Optical fiber spectroscopy
Targets Hα emission line [OII] doublet
Redshift range 0.9 < z < 1.8 0.6 < z < 1.6
Average number of galaxies 1950 gal deg−2 1220 gal deg−2

Galaxy bias bg(z) = 0.79 + 0.68 z bg(z) = 0.84/D(z)
Reference Euclid Collaboration et al. (2019) DESI Collaboration et al. (2016)

Table 1: Specifications for the two galaxy surveys under consideration.
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Fig. 1: Galaxy density distribution as a function of redshift for the emission line galaxies (ELG) of DESI (left panel), and the Euclid
spectroscopic sample (right panel). The filled coloured lines show the Gaussian bins used in our analysis, colour coded as a funciton
of bin index. The orange line shows the CMB lensing efficiency kernel (with arbitrarily normalization).

tractable with a Gaussian kernel describing thermal, stochastic,
radial motions. We thus adopt σz = 0.01 for our forecasts.

As shown in Asorey et al. (2012), the angular galaxy cluster-
ing analysis can recover the same amount of information as the
3D analysis when the bin size is comparable to the maximum
scale probed by the 3D analysis. This givesσz c/H(z) ' 2π/kmax,
so in our case, for z = 1 and kmax = 0.2 h Mpc−1 (see Sect. 3),
we get σz ' 0.01, corresponding to our choice of bin size.

For the two galaxy survey under consideration we take the
same number of 20 redshift bins, and since the overlap between
consecutive bins is not zero, we account for all cross-correlations
between shells in the covariance matrix. In this way, redundant
information between different shells is fully accounted for. The
redshift bins sample the range from z = 0.65 to z = 1.65 for
DESI, and from z = 0.9 to z = 1.8 for Euclid. These redshift
bins are displayed in Figs. 1a and 1b, together with the expected
number density of tracers for each survey.

2.4. The Planck experiment

The Planck satellite was launched in 2009 and scanned the full
sky until 2013 in CMB frequencies. The satellite hosted two in-
struments, the HFI operating in six frequency bands between 100
GHz and 857 GHz, and the LFI instrument operating in three
band between 30 GHz and 77 GHz. The CMB maps were pro-
duced by combining these frequencies to remove the contribu-
tion from the galaxy and other foregrounds sources. The final

maps have noise of 27 µK arcmin, and an the effective beam with
full width at half maximum of 7 arcmin. The final data release
of Planck was published in Planck Collaboration et al. (2018a).

The CMB lensing field has been estimated with a minimum
variance quadratic estimator, combining temperature and polar-
ization data. It is to date the most precise map of the integral
of the density of matter on the full extra galactic sky, cover-
ing ∼ 70 % of the sky, which allowed to get an estimate of
the lensing-potential power spectrum over lensing multipoles
8 ≤ L ≤ 400 (Planck Collaboration et al. 2018b).

2.5. The Simons Observatory

The Simons Observatory consists of four different telescopes
placed in the Atacama Desert in Chile, with the goal of provid-
ing an exquisite mapping of the CMB intensity and polariza-
tion anisotropies from a few degrees down to arcminutes scales.
Three of the telescopes have 0.5 m of aperture, and with an an-
gular resolution close to half a degree, will map 10 % of the
sky targeting the moderate to large angular scales. Their primary
goal is to measure large-scale polarisation from the background
of primordial gravitational waves.

Alongside these small telescopes, one 6 m diameter tele-
scope will observe at 27, 39, 93, 145, 225, and 280 GHz, with an
angular resolution close to the arcminute, appropriate to obtain
a high resolution map of the lensing potential of the CMB. It is
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expected to reach a sensitivity level of 6 µK arcmin on 40 % of
the sky.

2.6. CMB Stage 4

The CMB Stage 4 (CMB-S4) experiment will be the successor of
the Simons Observatory, which will combine resources with the
successor of the South Pole telescope and the BICEP/Keck col-
laborations. Its main scope is to measure the imprint of primor-
dial gravitational waves on the CMB polarization anisotropy, but
it will also perform a wide survey with a high resolution which
will allow to probe the secondary anisotropies with unprece-
dented accuracy. Its deep and wide survey will cover ∼ 60%
of the extra-galactic sky and will be conducted over seven years
using two 6 m telescopes located in Chile, each equipped with
121, 760 detectors distributed over eight frequency bands from
30 GHz to 270 GHz. These observations will provide CMB tem-
perature and polarization maps with a resolution of ≤ 1.5 arcmin
and with a noise level of 1 µK arcmin. This very-high sensitivity
at small scales both in temperature and polarization, on a large
fraction of the sky, will allow to get an accurate estimation of the
CMB lensing potential.

3. Observables

In this paper, we consider three different observables, namely the
angular galaxy clustering, the corresponding ARF, and the CMB
lensing convergence field. In order to compute the forecasts, we
shall restrict to the linear scales, where the cosmological linear
theory of perturbations apply. In practice, we ignored all scales
above kmax = 0.2 h Mpc−1 at all redshifts. This is a conserva-
tive approach, as one could consider a scale cutoff which evolves
with redshift as in Di Dio et al. (2014). We shall also assume that
our observables are Gaussian distributed, and that the informa-
tion content is completely captured by the two-point momenta,
in particular the angular power spectrum, either auto or cross,
depending on whether we combine different observables or not.

In what follows, we describe our model of the observables,
so that expressions for their angular power spectrum can be de-
rived thereafter.

3.1. Galaxy Angular Density Fluctuations

The 3D field of the number density of galaxies is noted as
ng(z, n̂), where n̂ denotes a direction on the sky. The average
number density of galaxies at a redshift z is defined by n̄g(z) =〈
ng(z, n̂)

〉
n̂
. The 3D field of galaxy density contrast is then given

by

δ3D
g (z, n̂) =

ng(z, n̂) − n̄g(z)
n̄g(z)

. (4)

We assume that the galaxy density contrast traces the dark mat-
ter density contrast δ3D

m via a scale-independent bias: δ3D
g (z, n̂) =

bg(z) δ3D
m (z, n̂). This bias depends on the properties of the galax-

ies used as a tracer for each survey, and are given in Eqs. 1 and
2.

In our analysis, we model the observed redshift of galaxies
zobs as a 3D field. It is defined as the sum of the redshift induced
by the Hubble flow, and the redshift due to the peculiar velocity
of galaxies:

zobs(z, n̂) = z + (1 + z)
v(z, n̂) · n̂

c
, (5)

where v is the peculiar velocity field of galaxies. We neglect
other sources of redshift distortions which are significantly
smaller than those considered here (HMCMA).

The angular galaxy clustering field is then modelled by an
integral along the line of sight in which, at every redshift z, only
galaxies within the selection function W(zobs; zi) are included:

δi
g(n̂) =

1
N i

g

∫ ∞

z=0
dVΩ n̄g(z) bg(z) δ3D

m (z, n̂) Wi [zobs(z, n̂)] ,

(6)

where N i
g =

∫ ∞
z=0 dVΩ n̄g(z) Wi(z) is the average number of

galaxies per solid angle, under the i-th selection function Wi cen-
tred on redshift zi, and in practice can be computed from an an-
gular average over the survey’s footprint.

We next expand the selection function, retaining only linear
terms in density and velocity fluctuations, finding:

δi
g(n̂) ' 1

N i
g

∫ ∞

z=0
dVΩ n̄g(z) Wi(z)

×
[
bg(z) δ3D

m (z, n̂) + (1 + z)
d ln Wi

dz
v(z, n̂) · n̂

c

]
, (7)

with the derivative d ln Wi/dz = −(z − zi)/σ2
z .

3.2. Angular redshift fluctuations

The ARF field represents the spatial variations of the average
redshift of galaxies on the sky. The average redshift of galaxies
is given by

z̄ =
1

N i
g

〈∫ ∞

z=0
dVΩ zobs(z, n̂) ng(z, n̂) Wi [zobs(z, n̂)]

〉

n̂

=
1

N i
g

∫ ∞

z=0
dVΩ z n̄g(z) Wi(z) . (8)

We thus define the ARF field as follows,

δi
z(n̂) =

1
N i

g

∫ ∞

z=0
dVΩ (zobs(z, n̂) − z̄) n̄g(z)

×
[
1 + bg(z) δ3D

m (z, n̂)
]

Wi [zobs(z, n̂ )] , (9)

where we again refer to a redshift bin centred upon zi. Expanding
the Gaussian selection function at first order and retaining only
linear terms in density and velocity, we find:

δi
z(n̂) ' 1

N i
g

∫ ∞

z=0
dVΩ n̄g(z) Wi(z)

[
(z − z̄) bg(z) δ3D

m (z, n̂)

+ (1 + z)
v(z, n̂) · n̂

c

(
1 + (z − z̄)

d ln Wi

dz

)]
. (10)

Note that given the small widths adopted (σz = 0.01), it is safe
to assume that the bias b(z) remains constant within the redshift
bin.

3.3. CMB lensing

The image of the primary CMB, emitted at the moment of re-
combination at z ' 1100, is distorted by the gravitational lens-
ing arising as a consequence of the (slightly inhomogeneous)
mass distribution between us and the surface of last scattering.
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This modify the initial anisotropy pattern and creates statisti-
cal anisotropy (see Lewis & Challinor 2006, for a review). As-
suming that the primordial CMB is Gaussian and statistically
isotropic, we can reconstruct the lensing potential φ with the
so called quadratic estimator (Hu & Okamoto 2002; Okamoto
& Hu 2003). The lensing potential is linked to the convergence
field κCMB by

κCMB = −1
2

∆φ . (11)

This convergence field is directly proportional to the surface
mass density along the line of sight. The CMB lensing is as such
an unbiased estimation of the distribution of mass. However it
is an integrated estimation, whereas galaxy surveys can enable
tomographic analyses thanks to redshift measurements.

The CMB lensing has been characterized by the Planck
CMB survey (Planck Collaboration et al. 2018b), and by the
ACTPol (Sherwin et al. 2017), SPT-SZ (Omori et al. 2017) and
SPTpol (Wu et al. 2019) collaborations. Next generation CMB
surveys such as Simons Observatory or CMB-S4 will increase
the signal to noise ratios at all ` by almost one and two orders
of magnitude respectively. These new experiments will make the
CMB lensing as a sensitive probe of the dark matter distribution,
and via cross-correlation studies it will be crucial to constrain
the growth rate of structure, the neutrino masses, or the level of
primordial non-Gaussianities during the inflationary epoch.

3.4. Angular power spectra

Our statistical tool to test cosmological models are the angular
two-point power spectra C` performed over the three fields de-
fined in Sects. 3.1, 3.2 and 3.3. Assuming that the galaxy bias
and the growth factors are scale independent, one can show that
our (cross and auto) angular power spectra can be expressed as
the convolution of two kernels ∆A

` (k) and ∆B
` (k), corresponding

for the fields A and B (see, e.g. Huterer et al. 2001):

CA,B
`

=
2
π

∫
dk k2 P(k) ∆A

` (k) ∆B
` (k), (12)

where P(k) is the linear 3D matter power spectrum at z = 0,
function of the wave number k.

To obtain the theoretical prediction of our angular power
spectra, we start from the 2D fields defined in Eqs. 7 and 10.
The velocity field is related to the matter density contrast field
via the linearized continuity equation ∂ δ3D

m /∂t + ∇v/a = 0, with
a(z) the cosmological scale factor, a = 1/(1 + z). We introduce
the linear growth rate

f =
d ln D
d ln a

= −(1 + z)
1

D(z)
dD
dz

. (13)

We assume f (z) = Ωm(z) γ, with γ = 0.55 (Lahav et al. 1991;
Linder 2005). The growth factor D(z) is computed by integrating
the growth rate f (z).

One can show that the angular galaxy clustering kernel is
the sum of two terms, one arising from the density of galaxies
and the other from the peculiar line of sight velocities, ∆

g
`

=

∆
g
`
|δ + ∆

g
`
|v (see e.g. Padmanabhan et al. 2007):

∆
g,i
`
|δ(k) =

1
N i

g

∫ ∞

z=0
dVΩ n̄g(z) Wi(z) bg(z) D(z) j`(k r(z)) , (14)

∆
g,i
`
|v(k) =

1
N i

g

∫ ∞

z=0
dVΩ n̄g(z) H(z) f (z) D(z)

dWi

dz
j′`(k r(z))

k
,

(15)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

C
`

C g, g
`

C z, z
`

101 102

`

0.0

0.2

0.4

0.6

0.8

1.0

(C
v
,v

`
+

2C
δ,

v
`

)/
C
`

Fig. 2: Top panel: Power spectra of for angular galaxy clustering
(δg, in blue) and ARF (δz, in red), for a Gaussian redshift bin
taken in a DESI-like survey. The bin is centered on zi = 0.75 and
has a standard deviation of σz = 0.01. The dashed line show the
term coming from the density kernel C δ ,δ

`
; the dotted line show

the part coming from the velocity kernel C v ,v
`

and the dot-dashed
line show the cross term C δ ,v

`
. The total C` power spectra (plain

lines) correspond to the sum C` = C δ ,δ
`

+ 2 C δ ,v
`

+ C v ,v
`

. Bottom
panel: Ratio of the velocity dependence in the power spectrum
(C v ,v

`
+2 C δ ,v

`
) over the complete power spectrum, for the angular

galaxy clustering (blue line) and for the ARF (red line). This
figure shows that ARF are more sensitive to the peculiar velocity
of galaxies than angular galaxy clustering, for the same redshift
shell.

where j`(x) is the spherical Bessel function of order ` and
j′`(x) is its derivative j′`(x) ≡ d j`/dx.

One can thus write the power spectrum as the sum of the
contributions from the density and from the velocity kernels
C` = C δ ,δ

`
+ 2 C δ ,v

`
+ C v ,v

`
.

The ARF kernel can also be separated into two kernels:

∆
z, i
`
|δ(k) =

1
N i

g

∫ ∞

z=0
dVΩ n̄g(z) Wi(z) bg(z) D(z) (z − z̄) j`(k r(z)) ,

(16)

∆
z, i
`
|v(k) =

1
N i

g

∫ ∞

z=0
dVΩ n̄g(z) H(z) f (z) D(z) Wi(z)

×
[
1 + (z − z̄)

d ln Wi

dz

]
j′`(k r(z))

k
. (17)

The kernel function of the CMB lensing convergence field is
given by:

∆κ
`(k) =

3Ωm,0

2

(H0

c

)2 ∫ r∗

r=0
dr

r
a(r)

r∗ − r
r∗

D(z(r)) j`(k r), (18)

where r∗ the comoving distance from the observer to the last
scattering surface, and a is the cosmological scale factor.

The top panel of Fig. 2 shows the angular power spectra of
the angular galaxy clustering and ARF, for a Gaussian selection
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function of width σz = 0.01 centered on zi = 0.75 in a DESI-
like survey. We show in the same figure the terms arising from
the density fluctuation kernel and the peculiar velocity kernel
(c.f. Eqs. 14 to 17). We can see that the peculiar velocity term
is relatively more important (compared to the total power spec-
trum) in the ARF power spectrum than in the angular galaxy
clustering power spectrum. To better illustrate this fact, we show
in the bottom panel Fig. 2 the ratio of the velocity part of the
power spectrum (which is the sum C v ,v

`
+ 2 C δ ,v

`
) over the total

power spectrum for both angular galaxy clustering and ARF. For
both fields, the peculiar velocity contribution dominates at low
`, while it vanishes to zero for ` > 300. At ` = 10, the velocity-
dependent part in the power spectrum represents around 67 %
of the total contribution for C z, z

`
, while it represents only 58 %

of C g, g
`

. The difference between the two is even more visible at
` = 60, where the velocity contribution represents 55 % of C z, z

`

and only 35 % of C g, g
`

.
This difference is caused by the intrinsic different nature of

the angular galaxy clustering and ARF transfer functions: angu-
lar galaxy clustering is sensitive to the average of density and
velocity under the Gaussian shell, whereas ARF is sensitive to
radial derivatives of those fields. For narrow shells, this makes
both fields practically uncorrelated (HMCMA), and given the
ratio comparison showed in Fig. 2, one would expect ARF to be
more sensitive than angular galaxy clustering to cosmological
parameters impacting peculiar velocities.

4. Signal to noise forecasts

We forecast the expected signal to noise ratio (SNR) for differ-
ent combinations of observables. Our data vector D(`) contains
the auto- and cross-power spectra between the different observ-
ables and between the redshift bins. In order to compare several
combinations of probes, we define the following data vectors:

Dg(`) =
(
C gi, g j

l

)
, (19)

Dz(`) =
(
C zi, z j

l

)
,

Dg, z(`) =
(
C gi, g j

l ,C gi, z j

l ,C zi, z j

l

)
,

Dg, κCMB (`) =
(
C gi, g j

l ,C gi, κCMB
l ,C κCMB, κCMB

l

)
,

Dg, z, κCMB (`) =

(
C gi, g j

l ,C gi, z j

l ,C gi, κCMB
l ,C zi, z j

l ,

C zi, κCMB
l ,C κCMB, κCMB

l

)
, (20)

where i and j are indexes running over the redshift bins. We
perform a tomographic analysis with 20 redshift bins, thus the
data vectors containing only the auto-spectra of angular galaxy
clustering and ARF (Dg and Dz) contain 210 C` each. The data
vector containing the cross-correlation Dg, z has 820 C` and the
longest data vector Dg, z, κCMB contains 861 C`.

In Fig. 3, we display the correlation matrix for the
Dg, z, κCMB (` = 10) data vector. We clearly see that, in the same
redshift bin, angular galaxy clustering and ARF are practically
un-correlated (diagonal terms of the top left and lower right
blocks close to zero), but that there is some degree of anti-
correlation in neighbouring redshift bins. We can also observe
that the CMB lensing field is almost uncorrelated with the ARF.

We assume that there is no correlation between different mul-
tipoles and that the covariance between the probes is totally cap-
tured by a Gaussian covariance. This assumption is exact on
large (linear) scales and if the survey covers the full sky. On real
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Fig. 3: Correlation matrix between our observables, for the 20
redshift bins in a Euclid-like survey, at ` = 10. This matrix cor-
responds to the Dg, z, κCMB (` = 10) data vector. The value in each

pixel corresponds to CA,B
`
/
√

CA,A
`

CB,B
`

. All the data vectors con-
sidered in Eqs. 19 to 20 are a subset of this matrix. We see that
there is no correlation between δg and δz inside the same redshift
bin (diagonals of the upper left and lower right blocks), and that
there are opposite and positive correlation for neighboring bins.
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Fig. 4: Signal to noise ratios of angular galaxy clustering (Dg)
in blue, ARF (Dz) in orange and the combinations Dg, z in green
and Dg, z, κCMB in red. We use 20 tomographic Gaussian bins of
width σz = 0.01 in a Euclid-like survey, in combination with a
CMB-S4 survey. The total signal to noise ratios for the range of
multipoles ` = 10 to ` = 300 are shown in the text box on the
bottom right.

data, the footprint of the survey and the presence of masked area
will create correlations between multipoles. See e.g. Krause &
Eifler (2017) or Lacasa (2018) for the inclusion the higher-order
(non-Gaussian) terms in the covariance matrix. In this work we
neglect these effects.
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The SNR of our data vectors as a function of `, taking into
account all redshift bins and the correlations between them, are
given by

SNR (D(`)) =

√
D(`) t Cov−1

` D(`) , (21)

and the total SNR are

SNR (D) =

√√√ `max∑

`=`min

[SNR (D(`))]2 . (22)

Assuming that there is no correlation between different mul-
tipoles, we define our Gaussian covariance matrix between our
data vectors as in Hu & Jain (2004)

Cov`
(
C A,B
`

,C C,D
`

)
=

1
(2` + 1) ∆` fsky

×
[(

C A,C
`

+ δK
A,C N A

`

) (
C B,D
`

+ δK
B,D N B

`

)

+
(
C A,D
`

+ δK
A,D N A

`

) (
C B,C
`

+ δK
B,C N B

`

)]
,

(23)

with A, B, C, D are the observables
{
gi, z j, κCMB

}
, ∆` is the width

of the multipole bin, δK
x,y is the Kronecker delta, N` are the probe

specific noise power spectra and fsky is the sky fraction of the
survey considered.

For the sake of simplicity, when combining galaxy surveys
with CMB lensing, we always assume a full overlap of the two.
As such, the sky fraction fsky is always taken to be the one of ei-
ther DESI or Euclid. Even if not accurate, this provides a rough
estimate of the available constraining power that the combina-
tion of galaxy surveys with CMB lensing will be able to achieve.

We assume that the noise of the angular galaxy clustering and
that of the ARF are the shot noise arising from the discrete nature
of galaxy surveys. We model it by replacing the power spectrum
of dark matter by a Poissonian term, Pshot(k, z) = 1/n̄g(z), into
Eq. 12. From this, we can derive the following expressions for
the shot noise

N gi, g j

`
=
δK

i, j

N i
gal

, (24)

N zi, z j

`
=

δK
i, j

(
N i

gal

)2

∫
dVΩ n̄g(z) W(zi, z) (z − z̄i)2 , (25)

N gi, z j

`
=

δ i
j

(
N i

gal

)2

∫
dVΩ n̄g(z) W(zi, z) (z − z̄i) = 0 . (26)

We can see here that the shot noise cancels out when computing
the cross correlation between the angular galaxy density and the
ARF fields.

The noise of the CMB lensing field reconstructed from
Planck is taken from Planck Collaboration et al. (2018b). For the
forecasted Simons Observatory CMB lensing noise, we take the
publicly available noise curves provided by The Simons Obser-
vatory Collaboration et al. (2019)1. In practice, we use the noise
curves obtained with the internal linear combination (ILC) com-
ponent separation method, assuming the baseline analysis for a
sky fraction of fsky = 0.4. For CMB-S4, the lensing noise curve

1 We use the version 3.1.0 of the noise curves available on https:
//github.com/simonsobs/so_noise_models

is taken as the minimum variance N0 bias, which is computed us-
ing the code quicklens2. We assume that CMB-S4 will have
a beam size (full width at half maximum) of 1 arcmin, a tem-
perature noise of ∆T = 1 µK arcmin and a polarization noise of
∆P =

√
2 µK arcmin (Abazajian et al. 2019).

For both Simons Observatory and CMB-S4, ` = 40 is the
minimum multipole which will be accessible. We assume that
these measurements will be combined with the Planck lensing
signal for lower multipoles. As a result, we use the lensing noise
of Planck for mutipoles below ` = 40 when forecasting con-
straints with the Simons Observatory and CMB-S4.

We use the linear matter power spectrum P(k) computed
with the CLASS software (Blas et al. 2011). In order to fo-
cus on the linear regime we restrict our analysis to a maximum
multipole of `max = 300. Assuming the Limber approximation
k = (`+1/2)/χ(z), this `max corresponds to k = 0.18 h Mpc−1 at a
redshift of z = 0.65. Given that we will sample higher redshifts,
we will probe larger scales (k lower than 0.18 h Mpc−1). We
hence expect little impact from non-linear physics in our observ-
ables (these are expected to become relevant on k < 0.2 h Mpc−1

at z = 0, and yet shorter at higher redshifts). Again this is a
conservative approach as one could consider a multipole cuttoff
evolving with redshift as in Di Dio et al. (2014). We stress that,
in our computations, we do not use the Limber approximation
but the full computation of spherical Bessel functions.

Our minimum multipole is chosen to be `min = 10. To reduce
numerical noise and to speed up Fisher matrix computations, we
perform a linear binning of the multipoles. In each multipole bin
[`i, `i+1[, the binned C` is the average of the C`’s that fall in the
bin, and the binned multipole is taken has ` = (`i + `i+1)/2. We
choose a bin size of ∆` = 3, which is applied on the full ` range.
We check that this binning does not impact the constraints from
the Fisher matrix by comparing with the case where we do not
perform any binning of the multipoles.

We show in Fig. 4 the SNR for a Euclid-like survey com-
bined with a CMB-S4 survey, for four combination of probes:
Dg, Dz, Dg, z and Dg, z, κCMB following the redshift binning shown
in Fig. 1b. The total signal to noise for this four data vectors
is respectively 544, 545, 778 and 786. This shows that the to-
mographic analysis of angular galaxy clustering and ARF have
a similarly high SNR. Moreover, the combined analysis Dg, z
brings more information than measuring the angular galaxy clus-
tering alone Dg, as the SNR is increased by 40%.

5. Fisher forecasts

We use the Fisher formalism to compute a priori how well our
data vectors defined in Sect. 4 will constrain cosmological pa-
rameters in the context of future surveys. As we assumed that
there is no correlation between different multipoles, the Fisher
matrix can be summed over the multipoles and is given by

F i, j =

`max∑

`min

∂D(`)
∂λi

Cov−1
`

∂D(`)
∂λ j

, (27)

with D one of the data vectors defined in Eqs. 19 to 20, {λi}i is
the set of free parameters of our model, and Cov` the covariance
matrix given in Eq. 23.

The derivatives ∂D(`)/∂λi are computed as the two-point
variation with a 1% step around the fiducial value. We have
checked that our derivatives are numerically stable when chang-
ing the step size.
2 https://github.com/dhanson/quicklens
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Ωb Ωm ns h σ8 w0 wa
0.04897 0.3111 0.9665 0.6766 0.8102 -1 0

Table 2: Fiducial values of the free parameter of our fiducial cos-
mological model. We first consider only parameters in the stan-
dard ΛCDM model, and later we include the w0, wa parameters
from the CPL parametrization of Dark Energy.
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Fig. 5: Ratio of 1σ confidence interval relative to the 1σ value
from angular galaxy clustering (Dg) for ΛCDM parameters.
Constraints are marginalised over the 20 galaxy bias parame-
ters. Plain lines are for a DESI-like survey while dashed lines
are for a Euclid-like survey. Blue line shows Dg (our reference
here), orange lines show Dz and green lines show Dg, z. We see
that for most parameters (except σ8) confidence intervals shrink
by ∼ 50% when using Dz instead of Dg. When using the com-
bination Dg, z, 1σ intervals are shrinked by at least 60% for all
parameters.

We compute forecasts for two cosmological models. The first
one assumes the standard ΛCDM model, and the parameters we
vary are

{
Ωm,Ωbaryon, σ8, ns, h,

}
. The fiducial values of these pa-

rameters are given by Planck Collaboration et al. (2018a). The
second model assumes an evolving dark energy equation of state,
with the so-called CPL parametrization (Chevallier & Polarski
2001; Linder 2003): w(z) = w0 + wa z/(1 + z). Our second set
of free parameters is then

{
Ωm,Ωbaryon, σ8, ns, h,w0,wa

}
. In both

cases, we assume a flat universe (Ωk = 0) with massless neutri-
nos (

∑
mν = 0). We show in Tab. 2 the fiducial values of the free

parameters.
We also consider a bias parameter assumed constant within

each redshift bin, thus adding one free parameter for each red-
shift shell, over which we marginalise in the Fisher analysis. The
fiducial values of the galaxy bias depend on the survey consid-
ered and are given in Eqs. 1 and 2. We take the value at zi, the
center of the Gaussian shell for each bin.

5.1. Results for the ΛCDM model

The results for the ΛCDM model are summarized in Fig. 5,
where we show the ratio of the 1σ marginalised uncertainties
when including ARF compared to using only angular galaxy
clustering, for a DESI-like and a Euclid-like surveys. Fig. 6 and
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Fig. 6: Foreseen constraints (1σ contours) for a set of five
ΛCDM parameters, plus three galaxy bias parameters (out of a
total of 20) for a DESI-like survey. We assume 20 tomographic
Gaussian bins of size σz = 0.01. The blue line are the constraints
for angular galaxy clustering alone Dg, the orange line are for the
ARF alone Dz, and the green line is a joint analysis of both fields
Dg, z. The figures above the 1-D PDFs give the marginalised 1σ
uncertainty of the parameter for each data vector. We show here
only 3 galaxy bias parameters even if we marginalised upon the
20 bias parameters.
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Fig. 7: Same as Fig. 6 for a Euclid-like survey.

Fig. 7 show the 1σ uncertainty ellipses for the ΛCDM parame-
ters and three out of the 20 galaxy bias parameters for a DESI-
like survey and a Euclid-like survey respectively. Error ellipses
for Dg, Dz, and Dg, z are given by blue, orange, and green curves,
respectively, while marginalised 1σ uncertainties for each pa-
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rameter are quoted, for these three sets of observables, above the
panels containing the one dimensional probability density distri-
butions (PDFs).

For both types of LSS surveys, we can see in Fig. 5 that ARF
(Dz) are significantly more sensitive than angular galaxy cluster-
ing (Dg), reducing by a factor two the marginalised uncertainties
of all cosmological parameters but σ8, to which both observ-
ables are similarly sensitive. For the combined analysis Dg, z,
marginalised uncertainties are reduced by more than 60 % for
all parameters (including σ8), compared to the angular galaxy
clustering probe alone Dg. We find that using ARF in combi-
nation with angular galaxy clustering provides almost the same
improvement on the constraints on cosmological parameter for
both surveys, although the improvement is on average slightly
better for our Euclid-like survey.

We see in Figs. 6 and 7 that while the degeneracy direction
between different cosmological parameter pairs seems very sim-
ilar for both angular galaxy clustering and ARF, this is again
different for σ8. For Dz this parameter seems rather indepen-
dent from other cosmological parameters, while its degeneracy
with bias parameters is slightly tilted with respect to that of Dg.
As a consequence the joint Dg, z ellipses show little degener-
acy with other parameters, including bias. We also find that the
marginalised constraints from both experiments are very close,
although the Euclid-like experiment provides slightly more sen-
sitive forecasts.

Fig.A.1 in Appendix shows the correlation matrix between
our free parameters (including galaxy bias parameters) and il-
lustrates the opposite degeneracies that both σ8 and bias param-
eters have with the other parameters when comparing ARF and
angular galaxy clustering.

Even for those parameters for which both angular galaxy
clustering and ARF show a similar direction of degeneracy, the
combination of the two observables yields significantly reduced
error ellipses. This is mostly due to the lack of correlation be-
tween the ARF and angular galaxy clustering for narrow widths
used in this work (σz ≤ 0.01), as noted in HMCMA and shown
here in Fig. 3.

5.2. Extension to CPL Dark Energy parametrization

We repeat the analysis detailed above including two new param-
eters describing the equation of state of dark energy following
the CPL parametrization: w0 and wa. We show in Fig. 8 the im-
provement on the marginalised uncertainties of the ARF with
respect to angular galaxy clustering alone. We see that Dz im-
proves the constraints by 20 % to 50 % on this set of free wCDM
parameters, for both surveys. The combined analysis Dg, z re-
duces the uncertainties by at least 50 % and up to 80 % for Ωm,
σ8, w0 and wa.

The error ellipses are given in Appendix in Fig. B.1 for the
DESI-like and Euclid-like experiments, displaying a pattern sim-
ilar to what was found for ΛCDM, together with the correlation
matrices (Fig. B.2)

In our idealized case, the combination of ARF with angular
galaxy clustering greatly improves the sensitivity of these sur-
veys to dark energy. As shown in Fig. 9, the figure of merit of
w0-wrma increases by more than a factor of 10 when ARF are
combined to angular galaxy clustering. It increases from 17 to
189 for our DESI-like survey and from 19 to 345 for our Euclid-
like survey.
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Fig. 8: Ratios of the 1σ marginalised uncertainties relative to the
1σ marginalised uncertainty for Dg. We assume wCDM model
and marginalise on 20 galaxy bias parameters (one for each red-
shift bin). Orange lines show the ratio for Dz and green lines
show the ratio for Dg, z. Solid lines are for a DESI-like survey
while dashed lines are for a Euclid-like survey. We see that Dz
improves constraints by up to 50 % compared to Dg and the com-
bined analysis Dg, z improves constraints by up to 80 %.

5.3. Combining with CMB lensing

We show in Fig. 10 and Fig. 11 the improvements on the con-
straints of the ΛCDM and wCDM parameters for a Euclid-like
survey, when combined with CMB lensing from Planck, Simons
Observatory and CMB-S4, marginalised over the galaxy bias pa-
rameters. We see that including CMB lensing from Planck im-
proves the constraints by maximum of 10 % in both cosmolo-
gies. The improvement is more significant when combining with
Simons Observatory or CMB-S4. For the Simons Observatory
and CMB-S4, in the ΛCDM model, marginalised uncertainties
on Ωm and σ8 are decreased by up to 30 %. Other parameters are
improved by 5 % to 10 % . For the wCDM model, the improve-
ment is of ∼ 15 % for most parameters, with the most significant
for Ωm and wa, with uncertainties decreased by up to 30 %. We
see that the combination with CMB lensing help decreasing un-
certainties on the wCDM cosmology.

Since the CMB lensing is an unbiased probe of the distri-
bution of matter, one of the main interests of combining it with
galaxy surveys is to produce tight constraints on the galaxy bias
parameter. We show in Fig. 12 the 1σ marginalised uncertainties
on the galaxy bias parameters for each of the 20 redshift bins
in a Euclid-like survey combined with CMB-S4 lensing, for the
ΛCDM model. We compare the constraints obtained for angular
galaxy clustering alone (Dg), with the ones obtained when com-
bined with CMB lensing (Dg, κCMB ), with ARF (Dg, z), and the full
combination (Dg, z, κCMB ).

We see that the combination of angular galaxy clustering
with ARF provides better constraints on the galaxy bias than the
combination with CMB lensing. For instance, at a redshift of
1.06, the marginalised uncertainties for the galaxy bias parame-
ter b3 is of 0.025 for the angular galaxy clustering, it decreases
to 0.020 when combined with CMB lensing, and down to 0.013
when combined with ARF. The combination of the three results
in marginalised uncertainties of 0.08. We can see that the CMB
lensing improves constraints by ∼ 20 % only, while ARF im-
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Fig. 9: Marginalised constraints (1σ contours) on the dark en-
ergy equation of state parameters for the DESI-like (solid lines)
and for the Euclid-like (dashed lines) surveys, assuming 20 to-
mographic Gaussian bins of size σz = 0.01. The blue lines are
the constraints for angular galaxy clustering alone, the orange
lines are for ARF alone, and the green lines are a joint analysis
of both fields, Dg, z. These contours are marginalised over the set
of cosmological parameters as before, and over the galaxy bias in
the 20 redshift bins. We display the figure of merit (FoM) of this
pair of parameters in the upper right box for each combination
of observables and for each survey.
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Stage-4 (grey). Constraints are marginalised over the 20 galaxy
bias parameters.

proves constraints by ∼ 50 % (a factor 2 improvement). We ar-
gue that this is due to the importance of the velocity term in the
ARF kernel (see Fig 2), which does not depend on galaxy bias
as it is sensitive to the full matter distribution.
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Fig. 11: Same as Fig. 10 for wCDM parameters.
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Fig. 12: Marginalised 1σ confidence values for the galaxy bias
parameters, with a Euclid-like survey alone (plain lines) or in
combination with CMB-S4 lensing survey (dashed lines). We
marginalised on the 5 free parameters of the ΛCDM model. We
show constraints with angular galaxy clustering (blue and brown
lines) and in combination with ARF (green and red lines). The
mean redshift of each shell is shown at the top. We see that the
ARF combined with angular galaxy clustering Dg, z provides bet-
ter constraints on galaxy bias than the combination of angular
galaxy clustering with CMB lensing Dg, κCMB .

6. Discussion

One could argue several reasons why angular observables might
be preferred over standard 3D ones. Probably the main one is the
lack of assumption of any fiducial cosmological model to anal-
yse the data. This means that angular observables may be directly
compared with theoretical predictions without any intermediate
data manipulations that hinge on an assumption whose implica-
tions in the analysis may not always be clear. Moreover, this type
of angular analysis are conducted tomographically in moderately
narrow redshift shells, thus avoiding the assumption that the uni-
verse remains effectively frozen in relatively long time spans, as
it may occur in 3D clustering analysis where an effective redshift
must be defined for the entire volume under analysis (see, e.g.,
Cuesta et al. 2016). Asorey et al. (2012) and Di Dio et al. (2014)
have shown that when using a large number of narrow redshift
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slices, a 2D clustering analysis can produce the same constraints
on cosmological parameters than a 3D clustering analysis, pro-
vided that the width of the redshift slices is comparable to the
minimum scale probed in the 3D analysis. By including the red-
shift information in a 2D field, the ARF observable keeps some
information about the distribution of galaxies along the line of
sight, which normally disappear when projecting the 3D galaxy
density field on a 2D observable. As we have shown, ARF are
improving the usual 2D galaxy clustering analysis.

Another major interest of using angular observables is that
they can easily be cross-correlated with other 2D observables.
Indeed the combination of 3D probes with 2D probes is not
straightforward, especially when one has to properly take into
account the covariances between them (see e.g. Passaglia et al.
2017; Camera et al. 2018). In this work we used the CMB lens-
ing field and its cross-correlation with our tomographic analy-
sis of angular galaxy clustering and ARF. We have shown that
this cross-correlations improve the constraints, especially on the
galaxy bias. Chaves-Montero et al. (2019) have shown that the
cross-correlation of the ARF field with the CMB temperature
field can detect the kinematic Sunyaev-Zel’dovich (kSZ) effect
at the 10σ level.

The point of this paper is not a detailed comparison between
2D and 3D clustering analysis, but rather an exploration of the
added value of including ARF in cosmological studies of the
large scale structures, on top of the traditional angular galaxy
clustering. By its intrinsic different sensitivity to the cosmic den-
sity and velocity fields under the redshift shells, the ARF change
the degeneracies between cosmological parameters, especially
with respect to σ8 and the galaxy bias, compared to the angular
galaxy clustering. This is due, as claimed in HMCMA, to the fact
that angular galaxy clustering is sensitive to the first moment (the
average) of matter density and velocity under the redshift shells,
whereas ARF are sensitive to the second moment (the variance)
of matter density and velocity along the line of sight, inside these
redshift shells. Moreover, we have shown that the ARF and the
angular galaxy clustering inside the same tomographic redshift
bin are almost uncorrelated. Due to this absence of correlation,
by combining both we are able to break degeneracies and give
tighter constraints on all the cosmological parameters we have
considered.

The results we obtained in our work can be considered as
an optimistic setting for both galaxy and CMB surveys. We re-
stricted our analysis to the linear regime and we did not in-
clude any systematic effects which could impact our results and
worsen the constraints. It was found in Hernández-Monteagudo
et al. (2020) that the impact of non-linear physics is more severe
in angular galaxy clustering than in ARF. They found that a lin-
ear bias was sufficient to describe the ARF on scales larger than
60 h−1 Mpc, while it was not the case for angular galaxy clus-
tering. Indeed, ARF are built upon the average observed redshift
along the line of sight in a redshift selection function. This is
intrinsically different to counting the number of galaxies in a
given region in the universe, and consequently systematics and
non-linearities are affecting differently each observable. In fu-
ture works we plan to address systematics and non-linearities,
aiming to model more realistic settings. We expect that the im-
pact of both systematics and non-linearities will depend on the
survey and on the targeted galaxy sample, as ongoing work on
existing galaxy surveys is indicating.

We do not provide a detailed comparison with the forecasted
constraints of the Euclid survey published in Euclid Collabora-
tion et al. (2019). Indeed our analysis consider a simplistic, lin-
ear model of the galaxy clustering. In this context, our findings

indicate that ARF brings significant cosmological information
on top of the traditional angular galaxy clustering. At best, our
results with the angular galaxy clustering probe (Dg) could be
compared with the linear setting shown in the Table 9 of Euclid
Collaboration et al. (2019) (first line). In that case, their probe
is the 3D linear galaxy power spectrum, with a cutoff value at
kmax = 0.25 h Mpc−1, in four different redshift bins. Their Fisher
analysis account for more parameters describing the anisotropies
in the power spectrum and the shot noise residuals. This 3D
probe is intrinsically different to the (2D) angular power spec-
trum tomography used in our work, in 20 Gaussian bins, for
which we limit to kmax = 0.20 h Mpc−1. Our forecasts with Dg
for the errors on some parameters are tighter than theirs (by a
factor of ∼ 2 for σ8), while for others we find the opposite situa-
tion (e.g., the reduced Hubble parameter h, whose uncertainty in
Euclid Collaboration et al. 2019 is roughly one third of ours).

7. Conclusion

We showed that the ARF are a promising cosmological observ-
able for next generation spectroscopic surveys. We found that
for our choice of binning, the tomographic analysis of ARF re-
trieves more information than the tomographic analysis of the
angular galaxy clustering. We showed that the joint analysis of
both fields helps in breaking degeneracies between cosmologi-
cal parameters, due to their lack of correlation and their different
sensitivities to cosmology. The improvement appears to be par-
ticularly significant for the wCDM model. We have shown that
the figure of merit for the w0-wa parameters was increased by a
factor of more than ten when combining angular galaxy cluster-
ing with ARF.

Finally, we have seen that combining angular galaxy clus-
tering with ARF provides tighter constraints on the galaxy bias
parameters compared to the combination of angular galaxy clus-
tering with CMB lensing. This shows that ARF are a very pow-
erful probe of the distribution of matter, as it allows to break the
degeneracy between σ8 and the galaxy bias. For future galaxy
surveys, errors on the cosmological figure of merit will be dom-
inated by systematic uncertainties and non-linearities, and ARF
might provide a novel, complementary view on those issues.

In our analysis we did not consider massive neutrinos. As the
growth rate is particularly sensitive to them, we expect ARF to
be a powerful tool to constrain the mass of neutrinos. We defer
this detailed analysis to an upcoming work.

Simultaneously from the LSS and CMB fronts, the coinci-
dence in the acquisition of data sets of tremendous quality and
huge size should enable the combination of standard analyses
with new, alternative ones like the one introduced in this pa-
per. The combination of techniques and observables should work
jointly in the efforts of identifying and mitigating systematics,
and pushing our knowledge of cosmological physics to its lim-
its.
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Appendix A: Correlation matrices

The correlation matrices in Fig. A.1 provide an alternative view
of our results. It shows the correlation matrices for the 5 ΛCDM
parameters and the 20 galaxy bias parameters for a DESI-like
survey. We see the opposite correlation of the cosmological pa-
rameters Ωb, Ωm, ns and h with σ8 for angular galaxy clustering
and ARF. This opposite correlation is mirrored in the correla-
tions of those three cosmological parameters with galaxy bias
parameters. This is expected as σ8 and bias are tightly corre-
lated. The different nature of the correlation of σ8 and bias with
the other cosmological parameters for angular galaxy clustering
and ARF is critical for (partially) breaking degeneracies when
combining angular galaxy clustering with ARF.

Appendix B: Results for wCDM model

We show the ellipses obtained with our Fisher analysis for the
wCDM model in Fig. B.1, for a DESI-like and a Euclid-like su-
vey. For many parameter pairs, the degeneracy direction (or el-
lipse orientation) for angular galaxy clustering and ARF are sim-
ilar, although the resulting error ellipse in the joint Dg, z probe
shrink very significantly in all cases. As a result, foreseen uncer-
tainties in the parameters are divided by a factor of at least two
for all parameters.

We show in Fig. B.2 the correlation matrices for the wCDM
model. It turns out that for Dz the new parameters w0, wa,
together with σ8, constitute an almost separate (or largely
un-correlated) box with respect to all other parameters (see
Fig. B.2b). This does not seem to be the situation for angular
galaxy clustering Dg (Fig. B.2a), although this character remains
(to great extent) for the joint observable set (Dg, z, Fig. B.2c).

ΩbΩmns h σ8 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9b10b11b12b13b14b15b16b17b18b19

Ωb
Ωm
ns

h
σ8
b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19

1.00 0.90 -0.96 0.98 -0.58 0.47 0.46 0.44 0.43 0.43 0.42 0.42 0.42 0.42 0.42 0.41 0.41 0.41 0.41 0.40 0.40 0.46 0.38 0.40 0.40

0.90 1.00 -0.96 0.87 -0.65 0.52 0.51 0.50 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.50 0.42 0.44 0.44

-0.96 -0.96 1.00 -0.97 0.68 -0.56 -0.55 -0.54 -0.53 -0.52 -0.52 -0.51 -0.51 -0.50 -0.51 -0.50 -0.50 -0.49 -0.50 -0.49 -0.49 -0.54 -0.46 -0.49 -0.48

0.98 0.87 -0.97 1.00 -0.58 0.47 0.46 0.45 0.44 0.43 0.42 0.42 0.42 0.42 0.42 0.41 0.41 0.41 0.41 0.41 0.40 0.46 0.38 0.40 0.40

-0.58 -0.65 0.68 -0.58 1.00 -0.98 -0.97 -0.97 -0.97 -0.97 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.95 -0.95 -0.97 -0.95 -0.95 -0.95

0.47 0.52 -0.56 0.47 -0.98 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96

0.46 0.51 -0.55 0.46 -0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97

0.44 0.50 -0.54 0.45 -0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.43 0.49 -0.53 0.44 -0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.43 0.48 -0.52 0.43 -0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.48 -0.52 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.47 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.47 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.46 -0.50 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.42 0.46 -0.51 0.42 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.49 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.41 0.45 -0.50 0.41 -0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97

0.40 0.44 -0.49 0.41 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97 0.97

0.40 0.44 -0.49 0.40 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.97

0.46 0.50 -0.54 0.46 -0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.96 0.97 0.96

0.38 0.42 -0.46 0.38 -0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 1.00 0.97 0.96

0.40 0.44 -0.49 0.40 -0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.96

0.40 0.44 -0.48 0.40 -0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Dg

ΩbΩmns h σ8 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9b10b11b12b13b14b15b16b17b18b19

Ωb
Ωm
ns

h
σ8
b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19

1.00 0.67 -0.84 0.94 0.14 -0.21 -0.22 -0.22 -0.23 -0.23 -0.24 -0.23 -0.23 -0.24 -0.22 -0.22 -0.22 -0.21 -0.21 -0.20 -0.20 -0.13 -0.21 -0.18 -0.18

0.67 1.00 -0.74 0.57 0.25 -0.34 -0.35 -0.36 -0.37 -0.36 -0.37 -0.36 -0.36 -0.37 -0.35 -0.36 -0.35 -0.35 -0.34 -0.34 -0.32 -0.23 -0.34 -0.30 -0.30

-0.84 -0.74 1.00 -0.91 0.10 -0.00 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.02 0.03 0.02 0.02 0.01 0.01 -0.01 -0.08 0.01 -0.02 -0.02

0.94 0.57 -0.91 1.00 0.06 -0.13 -0.14 -0.14 -0.15 -0.15 -0.16 -0.16 -0.16 -0.16 -0.15 -0.15 -0.15 -0.14 -0.14 -0.13 -0.13 -0.07 -0.13 -0.11 -0.11

0.14 0.25 0.10 0.06 1.00 -0.98 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

-0.21 -0.34 -0.00 -0.13 -0.98 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.22 -0.35 0.01 -0.14 -0.97 0.96 1.00 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.22 -0.36 0.02 -0.14 -0.97 0.96 0.97 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.23 -0.37 0.02 -0.15 -0.97 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.23 -0.36 0.02 -0.15 -0.97 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.24 -0.37 0.03 -0.16 -0.97 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.23 -0.36 0.03 -0.16 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.23 -0.36 0.03 -0.16 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.24 -0.37 0.04 -0.16 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95

-0.22 -0.35 0.02 -0.15 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.22 -0.36 0.03 -0.15 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.22 -0.35 0.02 -0.15 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.21 -0.35 0.02 -0.14 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.96 0.95 0.96 0.96 0.95

-0.21 -0.34 0.01 -0.14 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.96 0.95 0.96 0.96 0.95

-0.20 -0.34 0.01 -0.13 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.95 0.96 0.95 0.95

-0.20 -0.32 -0.01 -0.13 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 0.95 0.96 0.95 0.95

-0.13 -0.23 -0.08 -0.07 -0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1.00 0.95 0.95 0.95

-0.21 -0.34 0.01 -0.13 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 1.00 0.95 0.95

-0.18 -0.30 -0.02 -0.11 -0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 1.00 0.95

-0.18 -0.30 -0.02 -0.11 -0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Dz

ΩbΩmns h σ8 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9b10b11b12b13b14b15b16b17b18b19

Ωb
Ωm
ns

h
σ8
b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19

1.00 0.73 -0.89 0.95 -0.03 -0.11 -0.13 -0.15 -0.16 -0.16 -0.17 -0.16 -0.16 -0.16 -0.15 -0.15 -0.15 -0.15 -0.14 -0.14 -0.14 -0.05 -0.16 -0.13 -0.13

0.73 1.00 -0.84 0.64 -0.01 -0.18 -0.21 -0.22 -0.23 -0.22 -0.23 -0.23 -0.24 -0.24 -0.22 -0.24 -0.23 -0.23 -0.22 -0.22 -0.21 -0.09 -0.24 -0.20 -0.20

-0.89 -0.84 1.00 -0.93 0.11 0.08 0.10 0.11 0.13 0.13 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.13 0.13 0.12 0.02 0.15 0.11 0.11

0.95 0.64 -0.93 1.00 -0.07 -0.08 -0.09 -0.11 -0.12 -0.13 -0.14 -0.13 -0.13 -0.13 -0.12 -0.12 -0.12 -0.11 -0.11 -0.11 -0.10 -0.02 -0.12 -0.09 -0.10

-0.03 -0.01 0.11 -0.07 1.00 -0.91 -0.90 -0.90 -0.90 -0.89 -0.89 -0.89 -0.89 -0.88 -0.89 -0.89 -0.89 -0.89 -0.89 -0.88 -0.88 -0.90 -0.88 -0.88 -0.87

-0.11 -0.18 0.08 -0.08 -0.91 1.00 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85

-0.13 -0.21 0.10 -0.09 -0.90 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.15 -0.22 0.11 -0.11 -0.90 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.23 0.13 -0.12 -0.90 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.22 0.13 -0.13 -0.89 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.17 -0.23 0.15 -0.14 -0.89 0.86 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.23 0.15 -0.13 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.24 0.15 -0.13 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.86 0.85

-0.16 -0.24 0.15 -0.13 -0.88 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.86 0.85 0.85

-0.15 -0.22 0.14 -0.12 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.87 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.85

-0.15 -0.24 0.14 -0.12 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.87 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.85

-0.15 -0.23 0.14 -0.12 -0.89 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 1.00 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.85

-0.15 -0.23 0.14 -0.11 -0.89 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 1.00 0.86 0.86 0.86 0.85 0.86 0.85 0.85

-0.14 -0.22 0.13 -0.11 -0.89 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.00 0.86 0.86 0.85 0.86 0.85 0.85

-0.14 -0.22 0.13 -0.11 -0.88 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.00 0.86 0.84 0.86 0.85 0.84

-0.14 -0.21 0.12 -0.10 -0.88 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.00 0.85 0.85 0.85 0.84

-0.05 -0.09 0.02 -0.02 -0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.84 0.85 1.00 0.84 0.84 0.84

-0.16 -0.24 0.15 -0.12 -0.88 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.84 1.00 0.85 0.84

-0.13 -0.20 0.11 -0.09 -0.88 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.84 0.85 1.00 0.84

-0.13 -0.20 0.11 -0.10 -0.87 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.84 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Dg, z

Fig. A.1: Correlation between parameters of the ΛCDM model,
for a DESI like survey. The top panel is for the angular galaxy
clustering alone, the central panel is for ARF alone, and the bot-
tom panel is when combining both observables. We see that the
angular galaxy clustering and ARF have opposite correlation co-
efficients between cosmological paameters and the galaxy bias.
The combination of both helps greatly in breaking degeneracies
with the galaxy bias.
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for each data-vector.
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Titre: Grands relevés: de l’évolution des galaxies aux sondes cosmologiques
Mots clés: Galaxies: evolution - halos; Cosmologie: grandes structures de l’Univers - paramètres cosmologiques

Résumé: Les grands relevés de galaxies sont des fenêtres
ouvertes sur notre Univers: ils nous offrent de précieuses in-
formations sur son contenu et sur son évolution. D’une part
les relevés profonds explorent la formation et l’évolution des
galaxies. D’autre part, les relevés à grand champ cartogra-
phient la distribution de la matière dans le but de comprendre
la nature de l’énergie noire et de la matière noire. Au cours
de cette thèse, j’explore les capacités offertes par ces relevés
afin de répondre aux questions suivantes:

1. Quels sont les principaux moteurs de l’évolutions des
galaxies ?

2. Quelles progrès dans notre connaissance de l’Univers
seront apportés par les futurs relevés de galaxies ?

Je commence par déterminer la relation entre la masse
stellaire et la masse des halos de matière noire des galaxies en
utilisant des mesures précises de la fonction de masse stellaire
dans le champ COSMOS. Grâce à l’exhaustivité du relevé
COSMOS entre z ∼ 0.2 et z ∼ 5, j’obtiens pour la première
fois cette relation sur une aussi grande gamme de redshifts
à partir d’un seul relevé. Je constate que la masse de halo
caractéristique, définie comme maximisant le rapport entre la
masse stellaire et la masse du halo, augmente entre z = 0 et
z = 2.3 et reste stable jusqu’à z = 4. Cette augmentation
de la masse de halo caractéristique met en lumière le rôle des
flux de gaz froid comme moteurs de la formation des galaxies
à grand redshift. Afin d’approfondir ce sujet, je combine des
observations de la teneur en gaz moléculaire froid des galaxies
jusqu’à z = 4, avec la relation entre masse stellaire et masse
du halo de matière noire. Je constate que l’évolution de la
fraction de masse du gaz froid est en accord avec l’hypothèse

selon laquelle les apports de gaz froid sont responsables de
la plus grande efficacité de formation des galaxies à grand
redshift dans les halos massifs.

Ensuite, dans le but de maximiser les contraintes cos-
mologique qui seront apportées par les prochains grands
relevés spectroscopiques, je montre qu’une nouvelle observ-
able, les fluctuations angulaires de redshift (ARF), apportent
des informations complémentaires par rapport au traditionnel
“angular galaxy clustering”. Grâce à leurs sensibilités parti-
culières au champ de vélocité de la matière, je montre que
les dégénérescences entre les paramètres cosmologiques et de
biais des galaxies sont différentes lorsqu’elles se basent sur les
ARF ou sur le “angular galaxy clustering”. Dès lors, la com-
binaison des deux observables permet de lever des dégénéres-
cences et d’améliorer les contraintes, d’un facteur au moins
deux, sur la plupart des paramètres des modèles ΛCDM et
wCDM.

Finalement, en tant que membre de la collaboration Eu-
clid, j’ai exploré le potentiel cosmologique de ce futur relevé
de galaxies. Ce relevé nous permettra de mesurer très pré-
cisément la distribution de la matière sur tout le ciel extra-
galactique. Dans le but d’exploiter entièrement tout son po-
tentiel, il est crucial de le combiner avec les futurs relevés du
CMB. J’utilise le formalisme de Fisher afin de prédire l’intérêt
d’une analyse combinée des sondes CMB avec les sondes Eu-
clid. Je teste à la fois le modèle ΛCDM standard et ses ex-
tensions, et montre que le CMB améliorera les contraintes
d’un facteur au moins deux sur la plupart des paramètres
cosmologiques, et notamment sur les modèles d’énergie noire
alternatifs, qui font partie des intérêts majeurs pour Euclid.

Title: Large surveys: from galaxy evolution to cosmological probes
Keywords: Galaxies: evolution - haloes; Cosmology: large-scale structure of Universe - cosmological parameters

Abstract: Large galaxy surveys are like open windows on
our Universe: they provide precious insights on its compo-
nents and on its evolution. On the one hand, pencil surveys
go deep into the cosmos to explore the formation and evolu-
tion of galaxies. On the other hand, wide surveys are mapping
the distribution of matter on large scales to understand the
nature of dark energy and dark matter. During my thesis, I
explore the capabilities of these large surveys to address the
following questions:

1. What are the main drivers of galaxy evolution?
2. What improvements on our knowledge of the Universe

will be brought by upcoming wide galaxy surveys?
Using precise galaxy stellar-mass function measurements

in the COSMOS field, I first determine the stellar-to-halo
mass relation through a parametric abundance matching tech-
nique. Thanks to the completeness of the COSMOS survey
from z ∼ 0.2 to z ∼ 5, I obtain for the first time this relation
over such a large redshift range from a single coherent sample.
I find that the ratio of stellar-to-halo mass content peaks at
a characteristic halo mass which increases up to z = 2.3 and
remains flat up to z = 4. This steady increase of the char-
acteristic halo mass questions the role of cold gas inflows as
drivers of galaxy formation at high redshift. To address this
question, I link observations of the cold molecular gas content
in galaxies up to z = 4 to the evolution of the dark matter
halo mass. I find that the joint evolution of cold gas mass
fraction and halo mass is in agreement with the hypothesis of

cold gas inflows being responsible of efficient galaxy formation
at high redshift.

With the scope of maximising the cosmological power of
next generation spectroscopic surveys, I show that a novel cos-
mological observable, the angular redshift fluctuations (ARF)
will provide complementary cosmological information in ad-
dition to the standard angular galaxy clustering. Due to its
distinct sensitivity to the peculiar velocity field, I find that
the cosmological and galaxy bias parameters express different
degeneracies when inferred from ARF or from angular galaxy
clustering. As such, combining both observables breaks these
degeneracies and greatly decreases the marginalised uncer-
tainties, by a factor of at least two on most parameters in the
ΛCDM and wCDM models.

As part of the Euclid collaboration, I then investigate the
cosmological power of the upcoming Euclid survey, which will
offer us an exquisite measurement of the matter distributions
on the full extra-galactic sky. In order to fully exploit all the
potential of the Euclid survey it is crucial to combine it with
upcoming CMB surveys. I use the Fisher formalism to fore-
cast the benefits of performing a joint analysis of CMB probes
with Euclid main probes (weak lensing and galaxy clustering).
I test both the standard cosmological model, ΛCDM, and its
extensions, and show that CMB will improve the constraints
by a factor two on most cosmological parameters, and most
notably on dark energy modified models which are of key in-
terest for Euclid.
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