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Abstract

Android is the most used operating system and thus, ensuring security for its applications is an essential task.
Securing an application consists in preventing potential attackers to divert the normal behavior of the targeted
application. In particular, the attacker may take advantage of vulnerabilities left by the developer in the
code and also tries to steal intellectual property of existing applications. To slow down the work of attackers
who try to reverse the logic of a released application, developers are incited to track potential vulnerabilities
and to introduce countermeasures in the code. Among the possible countermeasures, the obfuscation of
the code is a technique that hides the real intent of the developer by making the code unavailable to an
adversary using a reverse engineering tool. Mobile applications are complex entities that can be made of
both bytecode and assembly code. This creates new opportunities to enhance obfuscation techniques, and
also makes deobfuscation a more difficult challenge.

Obfuscating and deobfuscating programs have already been widely studied by the research community,
especially for desktop architecture. For mobile devices, ten years after the first release of Android, researchers
have mainly worked on the deobfuscation of the intermediate language, named Dalvik bytecode, executed by
the embedded virtual machine. Nevertheless, with the growing amount of malware and applications carrying
sensitive information, attackers want to hide their intents and developers want to protect their intellectual
property and the integrity of their application. Thus, a new generation of obfuscation methods based on
native code has appeared. Studying the consequences of mobile native code has not – so far – received the
same amount of attention as desktop programs even though more than one third of the available applications
embed assembly code.

This thesis presents the impact of native code on both reverse-engineering and vulnerability finding applied
to Android applications. First, by listing the possible interferences between assembly and bytecode, we
highlight new obfuscation techniques and software vulnerabilities. Then, we propose new analysis techniques
combining static and dynamic analysis blocks, such as taint tracking or system monitoring, to observe the
code behaviors that have been obfuscated or to reveal new vulnerabilities. These two objectives have led us to
develop two new tools. The first one spots a specific vulnerability that comes from inconsistently mixing
native and Java data. The second one extracts the object level behavior of an application, regardless of whether
this application contains native code, embedded for obfuscation purposes. Finally, we implemented these
new methods and conducted experimental evaluations. In particular, we automatically found a vulnerability
in the Android SSL library and we analyzed several Android firmware to detect usage of a specific class of
obfuscation.
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1: Common Vulnerabilities and Expo-
sures, publicly known vulnerabilities

2: https://zerodium.com/program.
html

3: Address Space Layout Randomization
4: Position-Independent Executable

Introduction 1
1.1 Problem statement

1.1.1 Android core security features

Android is the prevalent operating system for modern smartphones.
Due to the tremendous number of users, Android has attracted lots of
malicious activities [9]

[9]: Mohamed and Patel (2015), ‘Android
vs iOS security: A comparative study’

. As shown in Table 1.1, since the release of the
first version of Android, vulnerabilities are searched and found in this
system. More than six thousand CVEs1 contain the keyword “Android”.
Very critical vulnerabilities, such as Full Chain with Persistence (FCP)
zero click, can be sold for more than $2,500,0002.

< 2010 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
18 23 89 169 123 1686 422 872 1191 457 771 528

Source: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Android

Table 1.1: Number of CVE containing the
keyword Android

Because of the increasing number of Android users, and the increas-
ing number of applications handling sensitive information, Google has
brought a lot of attention to securing the Android platform. Indeed, they
have adopted a security-oriented architecture for running Android appli-
cations that mainly relies on two core features: application sandboxing
and permission management. Each application is run by a dedicated
Unix user, allowing application isolation using tried-and-tested kernel
mechanisms. Additionally, applications cannot access device features
without owning specific capabilities called permissions. These permis-
sions are reviewed and granted by the user himself. For example, an
application will be able to send SMSs only if it has been granted the
SEND_SMS permission. Furthermore, each new version of Android comes
with specific security features. Table 1.2 shows an excerpt of security
features added in each newAndroid version. In this table, we can see that
features target all aspects of security. For example, hardening techniques
such as ASLR3 or PIE4 have been added to the system. The operating sys-
tem constrains the accesses to resources using SELinux mandatory access
control. Network communications such as DNS queries are ciphered.

However, securing the whole Android system is not enough. Indeed,
applications installed by the user are potentially malicious or vulnerable.
An application is considered vulnerable if it can be diverted into per-
forming malicious operations. Since Android is a system built for mobile
platforms, these operations can differ from desktop ones [10, 11] [10]: Faruki, Bharmal, Laxmi, Ganmoor,

Gaur, Conti, and Rajarajan (2014), ‘An-
droid security: a survey of issues, malware
penetration, and defenses’
[11]: Sadeghi, Bagheri, Garcia, and Malek
(2016), ‘A taxonomy and qualitative com-
parison of programanalysis techniques for
security assessment of android software’

. We can
cite as notable malicious operations:
I Premium SMS services: an application can send SMS to premium

services, i. e. services that include fees.
I Privilege escalation: an application can exploit system vulnerabili-

ties to perform actions while not being granted the corresponding
permission.

https://zerodium.com/program.html
https://zerodium.com/program.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Android
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Table 1.2: Extract of security additions in
Android system Android

version
Release
date Added feature

4.0 Oct. 2011 Address Space Layout Randomization
(ASLR) support

4.1 Jul. 2012 Position Independent Executable (PIE)
support

4.1 Jul 2012 Read only relocation (RelRO) binaries
4.2 Nov. 2012 SELinux support
4.3 Jul. 2013 SELinux enabled by default
4.4 Oct. 2013 SELinux set in enforcing mode
5.0 Nov. 2014 Support of non-PIE executable dropped
6.0 Oct. 2015 App permissions granted at runtime
9 Aug. 2018 DNS over TLS

Source: https://en.wikipedia.org/wiki/Android_version_history

I Permission leakage, colluding applications: an application can
perform privileged operations when requested by other applica-
tions and omit to check requester permissions. If the omission is
intentional, the application is colluding.

I Privacy leakage: an application can steal users’ private data such
as SMS contents or contact list, or spy on the user by, for example,
recording the microphone.

I Ransomware: an application can make smartphone data, such as
pictures or contacts, unavailable by ciphering them and ask money
from user in exchange for the stolen data.

I Application cloning: an application can copy the code of another
and replace the Google Ads ID of the real owner of the application
by its own in order to steal its wages.

I Aggressive advertisement: an application can display numerous
advertisements by, for example, modifying the smartphone back-
ground or spawning pop-up windows.

I Botnet: an application can participate to massive network attacks.
I Denial of Service: an application can stress resources such as the

CPU or the battery of the smartphone to make it unusable.

Unfortunately, relying on application isolation and permission restriction
to keep the user safe is not enough. Indeed, the permission system is
misunderstood and harmful permissions may be granted to malicious
applications [12, 13][12]: Felt, Ha, Egelman, Haney, Chin, and

Wagner (2012), ‘Androidpermissions:User
attention, comprehension, and behavior’
[13]: Benton,Camp, andGarg (2013), ‘Study-
ing the effectiveness of android applica-
tion permissions requests’

. For example, in 2014, a fake copy of the eagerly
awaited video game Pokémon Go has been created and distributed to
countries where the official game was not released yet. The fake version,
which contained a malware called Droidjack, was installed by users
impatient to play the game and willing to grant any permission asked by
the application.

The security mechanisms provided by Android cannot prevent this type
of attack. Malicious or vulnerable application will eventually be installed
on some users’ smartphone. To minimize the impact of this phenomenon,
this thesis tackles the two following problems:

I Detecting malicious or vulnerable applications in order to remove
them from the Google Play store.

https://en.wikipedia.org/wiki/Android_version_history
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5: http://googlemobile.blogspot.
com/2012/02/android-and-security.

html

6: Formerly Android market

7: https://www.blog.
google/products/android/

google-play-protect/

8: https://research.checkpoint.com/2020/google-
play-store-played-again-tekya-clicker-
hides-in-24-childrens-games-and-32-
utility-apps/

Time

New obfuscation
technique

New detection
technique

t1 t2
Safe Exploitable Safe

Figure 1.1: Exploitable window

I Understanding the behavior of such applications in order to evalu-
ate the damage after a compromision.

Of course, Google already started, since 2012, to set up an automatic
service, called bouncer,5 to address the malicious application detection
problem. Since the bouncer architecture is not public, we have no clue
on how and if the vulnerability detection problem is addressed.

This service scans applications available on the Google Play store6, the
Android application official repository, in order to find malicious and
unsafe applications. When detected, applications are removed from the
store, therefore preventing users from installing them. Improving on the
bouncer service, Google released Google Play Protect7 in 2017. In addition
to the features provided by bouncer, this new service offers the possibility
to scan applications offline, i. e. observe the behavior of applications while
they are running directly on the users’ smartphone.

Despite all these efforts, some malicious applications still find their way
to the Google Play store,8 and vulnerabilities are still found in Android
applications, as shown in Table 1.1.

We believe that one of the reasons that malicious and vulnerable
applications can still bypass analysis systems is the usage of native
code inside applications. This thesis focuses on this specific problem.
The following section explains why the presence of native code makes
code analysis more difficult for malicious or vulnerable application
detection.

1.1.2 Challenges in analyzing native applications

Problems involved in malware and vulnerability detection, such as
determining if a given program is equivalent to an other, are undecidable
in the general case [14]

[14]: Selçuk, Orhan, and Batur (2017), ‘Un-
decidable problems in malware analysis’

. Thus, countermeasures such as the bouncer or
Google Play Protect can only partially solve these problems. This keeps
the door open for malicious applications to hide from program analysis.
Similarly, perfect obfuscation techniques do not exist [15]

[15]: Beaucamps and Filiol (2007), ‘On the
possibility of practically obfuscating pro-
grams towards a unified perspective of
code protection’, i. e. obfuscators

always leave information about the behavior of the original program.

Consequently, the race between malicious applications and analysis
services takes the form of a cat and mouse game: malicious applications
hide their intent using new techniques, analysis services adapt their
detection, and so on. Unfortunately, as shown in Figure 1.1, this race is in
favor of malicious applications since malware can take advantage of the
time that separate the usage of a new technique and its detection (t2 − t1).
Thus, computer security researchers should focus on reducing this time
by:
I developing more general analysis (increasing t1): this makes the

creation of new obfuscation techniques harder.
I predicting future obfuscation techniques (decreasing t2): this allows

to faster adapt detection technique.
It is worth noting that this assessment also applies to new vulnerabilities
exploitation and detection.

http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://www.blog.google/products/android/google-play-protect/
https://www.blog.google/products/android/google-play-protect/
https://www.blog.google/products/android/google-play-protect/
https://research.checkpoint.com/2020/google-play-store-played-again-tekya-clicker-hides-in-24-childrens-games-and-32-utility-apps/
https://research.checkpoint.com/2020/google-play-store-played-again-tekya-clicker-hides-in-24-childrens-games-and-32-utility-apps/
https://research.checkpoint.com/2020/google-play-store-played-again-tekya-clicker-hides-in-24-childrens-games-and-32-utility-apps/
https://research.checkpoint.com/2020/google-play-store-played-again-tekya-clicker-hides-in-24-childrens-games-and-32-utility-apps/
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In this context, Android security researchers have shown that native
applications are more and more present in Google Play store and that
state-of-the-art tools should improve their analysis on this kind of appli-
cations [16–18]

[16]: Afonso, Geus, Bianchi, Fratantonio,
Kruegel, Vigna, Doupé, and Polino (2016),
‘Going Native: Using a Large-Scale Analy-
sis of Android Apps to Create a Practical
Native-Code Sandboxing Policy’
[17]: Tam, Feizollah, Anuar, Salleh, and
Cavallaro (2017), ‘The evolution of android
malware and android analysis techniques’
[18]: Sadeghi, Bagheri, Garcia, and Malek
(2017), ‘A taxonomy and qualitative com-
parison of programanalysis techniques for
security assessment of android software’

.

Applications are traditionally written in Java or Kotlin, compiled into
bytecode and run by a Virtual Machine. This machine enforces the
correct execution of this bytecode as expected by the developer and is the
privileged interface for observing an execution. A native application is an
application that contains both Dalvik bytecode and assembly code. Due
to optimization purposes, Android supports applications that embed
assembly code obtained from, for example, C or C++ source code.

The usage of native code opens two new challenges:

I Native code usage allows to highly obfuscate applications. Indeed,
the cat and mouse game for obfuscating and desobfuscating as-
sembly code is a well studied area since the seventies, that is way
older than Android. Thus, the attacker can easily adapt advanced
assembly obfuscation techniques and bypass analysis tools.

I Native code usage may introduce vulnerabilities in applications.
The languages in which native code is typically written (C or C++)
are known to be error-prone. That is to say, it is easy for developers
using these languages to leave security vulnerabilities in their
programs. Indeed, contrary to Java/Kotlin, these languages do not
implement security mechanisms such as strong type verification
or security context execution. Then, allowing native code inside
Android applications drastically increases the attack surface for
malicious intents. Additionally, tips and best practices given by
Google for native Android application development9, are not
enforced when the applications are running. Native code and
bytecode run in the same context and the same address space[19,
20][19]: Sun andTan (2014), ‘Nativeguard: Pro-

tecting android applications from third-
party native libraries’
[20]: Athanasopoulos, Kemerlis, Portoka-
lidis, and Keromytis (2016), ‘NaClDroid:
Native Code Isolation for Android Appli-
cations’

, which allows native code to interfere with bytecode.

In this thesis, we mimic the cat and mouse game by building obfuscation
techniques and exploiting vulnerable applications and in a second time,
proposing associated detection techniques and analysis tools. We limit
our study to the challenges linked to the usage of native code inside
Android applications.

1.2 Contributions
[1]: Graux, Lalande, and Viet Triem Tong
(2018), ‘Etat de l’Art desTechniquesd’Unpacking
pour les Applications Android’
[2]: Lalande, Viet TriemTong, Leslous, and
Graux (2018), ‘Challenges for reliable and
large scale evaluation of android malware
analysis’
[3]:Graux, Lalande, and Viet Triem Tong
(2019), ‘Obfuscated Android Application
Development’
[7]:Graux, Lalande,Wilke, and Viet Triem
Tong (2020), ‘Abusing Android Runtime
for Application Obfuscation’
[8]:Graux, Lalande, Tong, andWilke (2021),
‘Preventing Serialization Vulnerabilities
through Transient Field Detection’

The contributions of this thesis are the following:
1. We propose two new obfuscation methods of the java bytecode,

one targeting the code and the other targeting the data [1, 3, 7].
2. We conducted two experimental studies of the usage of these

obfuscation methods in the wild [2, 7].
3. We developed an analysis framework, named OATs’inside, which

combines dynamic and symbolic analysis to retrieve the behavior
of obfuscated Android applications.

4. We designed and implemented a new detection method of applica-
tion vulnerabilities due to forgotten transient keyword [8].

https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
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1.3 Outline

This dissertation is divided in five parts. The first part contains this
introduction and Chapter 2, that gives the necessary background about
Android native and non-native application analysis techniques.

In order to describe the contributions of this thesis we reflect the cat and
mouse game by dividing the manuscript in two supplementary parts.
Chapters 3 and 4 explore attackers’ possibilities. They describe how
native code can lead to security issues, i. e. code obfuscation or vulnerable
code. These security issues are split on whether they impact Java code
(Chapter 3), or the Java data (Chapter 4). In addition to already known
issues, we introduce new obfuscation techniques.

The next two chapters, Chapters 5 and 6, tackle these security issues by
proposing detection methods and measuring their presence in the wild.
These two chapters are also divided into code and data issues.

The last two chapters before concluding, Chapters 7 and 8, present
OATs’inside, a new Android analysis tool and the technical challenges
involved in its implementation.OATs’inside is a stealth analysis framework
that recovers object-level CFGs of Android applications despite all known
obfuscation techniques.

Finally, Chapter 9 summarizes the contributions of this thesis and gives
perspectives for future work.





Analyzing native Android
applications: state of the art 2

This chapter reviews the contributions related to the security analy-
sis of Android applications. We will focus on approaches that output
qualitative and detailed information about the analyzed application.
During this review, wewill recall the technical notions about the Android
architecture.

At the end of the chapter, we focus on the impact of native code on the
challenges introduced in Chapter 2.1, i. e. obfuscation of applications and
vulnerabilities in applications.

We will make a review of the articles of the state-of-the-art that tries
to solve the aforementioned challenges. More thorough comparisons
with our work will be given later in the appropriate chapters of this
manuscript.

Section 2.1 presents goals that researchers follow when analyzing
Android applications. Then, Section 2.2 details the datasets available
for evaluating analysis methods. Section 2.3 reviews the techniques
that are used to achieve the previously described goals. Finally,
Section 2.4 highlights the challenges that native code raises for using
these techniques.

2.1 Research goals

Android applications analyses take an APK file as input. An APK file is
an archive that contains three types of files:
I metadata: a Manifestfile that declares the permissions, the services

and the activities of the application.
I code: files that contain Dalvik bytecode, usually obtained from the

compilation of Java or Kotlin source code.
I resources: additional files such as pictures, fonts, or sounds.

APK files can be processed in various ways: static approaches that only
look at the file itself, or dynamic ones that observe its execution.

Independently of the method used, security researchers have different
common goals in mind:
I Detecting malicious applications: decide whether a given applica-

tion is malicious or benign.
I Studying code protection: find new obfuscation techniques and

associated countermeasures.
I Exposing vulnerable applications: spot security vulnerabilities

inside applications.
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1: This runtime is described in Section 2.4

Detecting malicious applications Malicious application detection can
be declined in different annex problems. While some researchers focus
on deciding the maliciousness of an application [21–26], others try to
classify malicious applications into families [27–33]. The definition of
what a family is depends on the context. For example, family can desig-
nate the malicious operation performed such as ransomware, Remote
Access Tool (RAT), adware. It can also designate different versions of
the same malware. Some also try to identify clones and repackaged
applications. Here the goal is to detect when an attacker has introduced
his code inside an other application. These goals are often treated using
artificial intelligence and machine learning algorithms that uses APK
characteristics and artifacts obtained at execution time.

The problem of detecting malicious applications is outside of the scope
of this thesis: as stated in Chapter , we focus on studying code protection
and exposing vulnerable applications. Thus, we will not describe the
entirety of works related to this problem. Nevertheless, we highlight
DroidClone [30] which focuses on a problem close to this thesis: de-
tection of native Android malware specifically. DroidClone provides a
mechanism to build malware signatures. It operates on assembly code
but handles both native code and bytecode by compiling the bytecode
using the compiler provided by the ART runtime1. This idea is an elegant
way to handle bytecode and assembly code simultaneously. We used a
similar approach to propose a new obfuscation method in Chapter 3.

Studying code protection Studying code protection consists in two
opposite goals that both need to be explored. One may want to make the
analysis of an application more difficult. This process is called obfuscation.
At first sight, it could be surprising that some security researchers
try to invent new obfuscation techniques or improve existing ones
since they are used by malicious applications to circumvent analysis
tools. However, benign applications can legitimately use obfuscation,
for example, to protect their intellectual property or to avoid being
repackaged. Additionally, as mentioned in Chapter 2.1, determining
what kinds of obfuscations malware will potentially use in the future
allows to develop countermeasures and tackle malicious application
faster.

On the contrary, some researchers try to break obfuscation. Breaking
an obfuscation technique can itself be divided in different goal varia-
tions discussed hereinafter. It can consist in detecting the usage of the
obfuscation, retrieving the original code, or getting information about
the real application behavior while being agnostic about the targeted
obfuscation.

Detection techniques are useful to determine if a specific obfuscation
technique is used by applications in the wild. It can be used as a first
step, to determine if a deobfuscation technique, potentially resource-
consuming, should be launched. Most of the time detection techniques
try to spot artifacts that reveal traces of the usage of a known obfuscation
technique. Consequently, unknown obfuscationmethods are not detected
since their artifacts are also unknown.

When a tool tries to analyze an obfuscated application, it may fail, for
example if an obfuscation technique ciphers the code, therefore making
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it unavailable for static analysis. Facing this problem, the first solution
is to retrieve the original code of the application in order to work as
if the application had never been obfuscated. This process is called
deobfuscation.

Since deobfuscation is the principal threat of obfuscation, sophisticated
techniques aimat preventing it. In some cases, such as theusage of packers
or reflection methods, the obfuscation cannot be fully reverted. Then,
analysis tools need, in order to work properly, to determine information
that is relevant for their goal but invariant with the obfuscation. For
example, malicious application detection can be conducted over network
communications [34] or system calls patterns [35].

Discussions about code obfuscation in the specific context of native
applications are developed in Sections 3.1 and 5.1.

Exposing vulnerable applications Exposing vulnerable applications
consists in determining if a given application is vulnerable to security
attacks. This goal seems to be inherently malicious. But, this is also
legitimately used by developers or companies that want to check, before
using it, that an external library or an application is safe. It is also used
by developers to check their own application and, if a vulnerability is
found, patch their application.

First, security researchers can manually look for vulnerabilities and
highlight new problematic issues. For example, Peles and Hay [36]
showed that a missing transient keyword in a Java field can lead to
severe exploits if such a field contains a native address. This approach is
precisely described in Section 4.1 because a solution of this problem is
one contribution of this thesis.

Then, for particularly widespread vulnerabilities, researchers design
methods targeting them. This can be done by statically analyzing the
bytecode. Lu et al. [37] and Zhang and Yin [38] looked for component
hĳacking vulnerabilities and Sounthiraraj et al. [39] for SSL man-in-
the-middle vulnerabilities. Gu et al. [40] found JNI Global References
exhaustion (JGRE) by statically analyzing native code and bytecode. These
solutions have a high accuracy for detecting the considered vulnerability
but keep bounded to this specific vulnerability.

Some researchers adopt a more generic approach. They do not search
for a specific vulnerability but have designed methods that can work for
different ones. For example, Qian et al. [41] transform the bytecode of
an application into an annotated CFG and translate vulnerabilities into
graph-traversal properties. Dhaya and Poongodi [42] built a machine
learning system that translates application code into N-grams and au-
tomatically learns to recognize vulnerable applications. However, these
approaches [41, 42] do not evaluate their detection ratio but only report
vulnerabilities found in application datasets. While these approaches are
useful in the wild, they cannot prove that a given application is safe.

Some researchers focus on generic dynamic approaches. Sounthiraraj
et al. [39] run the application and redirect external SSL connections to
a crafted server that attempts to perform man-in-the-middle attacks.
Yang et al. [43] and Sasnauskas and Regehr [44] developed an Intent
fuzzer. A fuzzer is a tool that consists in generating invalid and faulty
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2: Android Interface Definition Language

3: Inter-Process Communication

inputs and pass them to a system under attack. This approach is well
suited for Android. Indeed, in Android, applications communicate with
each other using Intents. Intents are Java objects that are sent trough
the binder, the Android IPC mechanism. In order to work properly, the
binder requires applications to declare, in an AIDL2 file, the types of
Intents they are willing to receive. This file is stored in the APK archive
and fuzzers exploit this AIDL file to generate inputs that are not rejected
by the application, revealing vulnerabilities. Similarly to the preceding
generic approach, the accuracy detection is difficult to evaluate.

Finally, researchers develop solutions to improve and facilitate the cor-
rection of vulnerabilities. For example, Zhang and Yin [38] automatically
propose a patch for vulnerable bytecode and [45] developed a system to
patch the Android system when manufacturers do not update properly
the system.

In this thesis, we have studied a specific vulnerability involving native
code introduced by Peles andHay [36] forwhichwe have built a dedicated
method.

The implementation of some of the solutions presented above introduces
additional challenges. First, dynamic systems that emulate Android are
not transparent. This means that malicious applications can detect that
they are being analyzed, and then choose to behave differently. This is
called emulation system evasion [46, 47]. Another challenge, extensively
studied inAndroid, is the problem of code coverage [48–52]. TheAndroid
application architecture is very modular and event-driven. Applications
are composed of multiple activities and services, that can be triggered
using variousways such as user interaction and IPCs3. These services and
activities constitute multiple entry-points of the Android application, in
contrast with classic desktop executables that only have one single entry-
point. This is problematic when a dynamic system wants to stimulate
the execution to cover as much code as possible. For example, Abraham
et al. [49] propose to explore exhaustively the graphical interface of
applications under analysis.

These challenges have not been faced during this thesis and thus, these
solutions are not further described.

2.2 Android application datasets

As in any research field, the Android security community needs datasets
to evaluate their methods and produce easily reproducible experiments.
Thus, various datasets exist [53]:
I Google Play store: official Android application repository. It con-

tains more than two million applications. However, this dataset
is not suitable for scientific experiments since it highly dynamic:
applications are added, removed or updated frequently. It not
easily retrievable: Google does not provide an API to download
applications. Finally, applications are not labeled as goodware or
malware since malware are removed from the store.
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I Genome [54]: ground-truth dataset of more than 1,200 malware
samples. This dataset is qualified as ground-truth, meaning that
every application has beenmanually verified to bemalicious. Unfor-
tunately, the service is no longer maintained by the authors. Copies
of this dataset are still available but it is no longer representative of
malware in the wild [55].

I Drebin [56]: a dataset of 123,453 applications and 5,560 malware.
Malware have been detected using VirusTotal 4, an online malware
detection service. This dataset is largely used as a detection bench-
mark in the research community, such that at the time of writing, it
has been cited more than two thousands times. However, similarly
to the Genome dataset, it is getting old and not representative. For
example, it contains only very few native applications.

I AndroZoo [57]: a dataset of more than 13 million applications.
The authors are continuously downloading new samples from
various stores, including the Google Play store. Samples come with
metadata such as size, checksum and retrieve date. Additionally,
they also tag if the application is malicious using VirusTotal.

I AMD [58]: a ground-truth dataset of 24,553 malware classified
among different families.

I GM19 [4]: contains two balanced sets of 5,000 goodware (GOOD)
and 5,000 malware (MAL) with an homogeneous distribution of
dates (2015-2018) and APK size to avoid statistical biases.

I Contagio mobile5: web repository containing 252 malicious appli-
cations.

I Koodous6: web repository containing 19 million malware out of 66
million applications.

It is worth noting that Drebin, AndroZoo and GM19 datasets use Virus-
Total, an online detection service which aggregates the results of around
50 antivirus, to classify applications between goodware and malware.
However, we believe that this approach is not reliable. In [2], we collected
2,000 malware samples by downloading each day 20 recent samples from
the Koodous repository and 30 random samples from the AndroZoo
repository. As shown in Figure 2.1, 48% of samples are not recognized by
any antivirus used by VirusTotal. Figure 2.1 shows that there is no obvi-
ous threshold to decide that a sample has been recognized by enough
antiviruses to classify it as a malware. We were expecting a drop of
detection for a certain number of antiviruses7, as represented by the
light blue curve. Additionally, these results may change with time, as the
pool of antiviruses used by VirusTotal frequently updates their signature
database. From this experiment, we conclude that using VirusTotal as an
oracle for confirming that a sample is malicious is not reliable, especially
for recent samples.

All the aforementioned datasets are used to test malicious detection
techniques. For obfuscation studies of this thesis, as we do not attempt to
detect malicious applications, we only use datasets to detect the presence
of obfuscation techniques in the wild and thus, focus on recent datasets:
AndroZoo, AMD and GM19.

Also, we have not found any dataset of firmware applications, that
is applications pre-compiled and installed on the smartphone by the
manufacturer or the firmware vendor. Since we have developed an
obfuscation technique specifically for this kind of applications8, we have

https://www.virustotal.com
https://contagiominidump.blogspot.com/
https://contagiominidump.blogspot.com/
https://koodous.com/
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Figure 2.1: Ratio of recognized malware
by at least x antivirus

9: Alcatel, Archos, Huawei, Samsung,
Sony, Wiko

constructed one for our experiments. We have downloaded 17 firmwares
from six different brands9. All the firmwares run Android 7.0 or 7.1.
For each firmware, all compiled applications have been extracted. The
complete list of firmware is available in Appendix A.

For the detection of vulnerable applications, we found only one dataset
named Ghera [59]. It is an open source repository of vulnerable and
safe applications. For each vulnerable application, details about the
vulnerabilities present in the application are provided. Unfortunately,
this dataset does not contain samples for the vulnerability we have
studied in this thesis: missing transient keyword.

2.3 Analysis techniques

To achieve their goals (detecting malicious applications, studying code
protection and exposing vulnerable applications), researchers rely on
several techniques, used as building blocks that can be tuned and com-
bined together to tackle specific problems. This section reviews these
different techniques. Classically, techniques are separated between static,
that study the data and the code of the applications, and dynamic ones,
that observe executions of the applications.

However, these two sets of techniques are not disjoint. For example,
symbolic execution is a static technique since it does not execute the
application. Nevertheless it attempts to mimic a possible set of executions.
On the other side, some dynamic techniques, such as fuzzing, rely on
a preliminary static analysis phase used to configure the subsequent
dynamic phase.

In this section, we have chosen to present techniques from high-level to
low-level. Indeed, this thesis deals with applications composed of Java
and assembly code, that are languages of completely different levels.
Such a classification is relevant in this context.
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2.3.1 System side-effects

We consider as high level techniques, the ones that workwith artifacts left
by the execution of the analyzed application rather that the application
itself. For example, Shao et al. [60] observe the network communications
to detect unsafe applications that accept remote commands without
any preliminary authentication phase. Bhatia et al. [61] analyze memory
snapshots and reconstruct a timeline composed of, for example, activities
and services that have been launched. These approaches are too high-level
for handling specifically native code.

2.3.2 Application metadata

Looking at techniques getting closer to the application and the system,
researchers can work on the application metadata. Metadata about
Android applications is stored in the APK archive inside a file called
Manifest. This file contains:
I The list of permissions required by the application.
I The list of activities: classes that represent an interface window.
I The list of services: classes that are launched in the background.
I The list of receivers: classes that are able to receive messages sent

by other application or by the system.

Metadata-based techniques canwork on permissions andAPI calls [62] or
permissions and application description10 [63]. Actually, all the informa-
tion stored in theManifest can be used to achievemalicious detection [64].
Again, such approaches cannot be of interest for native code.

2.3.3 Bytecode level

Techniques can look at the application bytecode. This bytecode is stored
inside the APK archive as DEX11 files. New DEX files can be loaded
during the execution by the bytecode itself. That means static analysis
cannot, in the general case, cover all the code. This bytecode is named
Dalvik bytecode, after the name of the virtual machine that interprets
or JIT-compiles12 it: the Dalvik VM. This bytecode is a register-based
version of the Java bytecode. Bytecode level analysis techniques are
widely used by researchers because the bytecode is clearly the place
where the behavior of the application is described.

In order to analyze application bytecode, solutions can use bytecode
simplification techniques before conducting their analysis. This allows to
reduce the amount of resources needed to process an application. For
example, SAAF [65] proposes to compute slices of the bytecode according
the dataflow of this instruction. An instruction is part of a slice if, given
a value (variable, object field, ...), this instruction participates to the
computation of this value. Similarly, Harvester [66] slices the program
according to the dataflow of a given value. Then, it executes the obtained
slice and logs, at runtime, the value.

To simplify their analysis, tools can also use Intermediate Representation
(IR) such as Jimple [67]. An Intermediate Representation (IR) is a language
that abstract lower-level languages. It is used tomakewriting optimization
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Figure 2.2: Classical representation of An-
droid system architecture

Applications:
∗Pre-installed apps, user-installed apps

Framework:
Activity Manager, Package Manager, Content Providers, ...

Libraries:
libc, SSL, OpenGL, ∗Vendors libs, ...

Runtime:
Core libs, Dalvik VM

Linux Kernel:
Memory manager, Proccess scheduler, ∗Drivers, ...

∗: modified by vendors

AOSP

13: International Mobile Equipment Iden-
tity, number that identify uniquely a mo-
bile device

14: Android Open Source Project: https:
//source.android.com/

rules easier. For example, AppSealer [38] uses program slicing according
to dataflow performed over Jimple, rather than on the bytecode, to search
for component hĳacking vulnerabilities.

Taint analysis is a common analysis conducted on application bytecode.
In particular, we have used the taint analyzer provided by FlowDroid [68]
to perform the analysis conducted in Section 6.2. A taint analysis consists
in identifying, for a given list of sources, all the sinks that can receive
a taint. Usually, in bytecode analysis, sources and sinks are calls to
framework methods and taints are the return values of the sources. It
allows to represent, for example, the leakage of the IMEI13 using the
getImeimethod as a source and methods such as Socket.writeUTF or
File.write as sinks. In this case, the taint is the IMEI number.

An other common analysis technique is symbolic execution [69–71]. It
consists in following the program instructions and recording, for each
value, the constraints that are applied. This is midway between the static
and the dynamic execution: the code is run “symbolically” using abstract
values instead of concrete ones. In particular, it is used to compute all
the possible values that a variable can contain during an execution or to
determine if a given instruction could be reach during an execution.

2.3.4 Framework, runtime and system level

Analyzing only the bytecode of an application does not allow to easily
manipulate the application behavior. Indeed, for introducing or modify-
ing a specific behavior into an Android application, one has to translate
this behavior into bytecode and inject this bytecode in the application
itself.

To overcome this limitation, some techniques propose to modify the
framework, the runtime or the system. As shown in Figure 2.2, applica-
tions rely on these three elements to be executed. Thus, by modifying
these low-level architecture elements, solutions can manipulate and
instrument applications freely. These elements can be modified by re-
searchers since they are open-source: the system is a Linux kernel and
AOSP14 provides the source code of the framework, the libraries and
the runtime. However, Android systems installed on smartphones are
customized by the smartphone provider (also called vendor) in order to

https://source.android.com/
https://source.android.com/
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provide a functional device. This limits the portability of the techniques’
implementations.

Thus, numerous framework, runtime or system level techniques have
been proposed. For example, AndroBlare [72, 73] enhances the system
using Linux modules to hook system calls and perform taint analysis.
TaintDroid [74] modifies the Dalvik Virtual Machine (DVM) interpreter
to manage taints. CopperDroid [75] runs Android inside the QEMU [76]
emulator and introspects this emulator to reconstruct the behavior of the
application such as activity launching and SMS sending.

These kinds of contributions are very tuned and propose a complete
overview. Thus, most of them handle native code, which is the subject of
the following section.

2.4 Challenges implied by native applications

The Android runtime allows applications to embed native libraries
using the classical shared object file format15 and to call native code
from Java code. Such applications are called native applications. The
communication between Java and native code is realized through a
dedicated interface called the Java Native Interface (JNI). This interface
allows not only to call native functions from the Java world, but also
gives native code the opportunity to access Java objects and fields.

Since 2014, the usage of native Android applications is rising. Indeed,
researchers have started reporting usage of obfuscation techniques de-
signed for assembly code [77]. More recently, Afonso et al. [16] performed
a large-scale analysis to evaluate the usage of native code in a dataset of
1.2 million Android applications, and showed that more than one third
of these applications potentially used native code.

Additionally, Android released a new runtime called ART in 201416. This
runtimeno longer interprets or JIT17 compiles the bytecode of applications
but instead compiles the bytecode into assembly before the execution.
This is called AOTC for Ahead Of Time Compilation. Two years later18,
Android has reintegrated the interpreter and the JIT compiler on top of
the AOTC-compilation. Since then, Android applications are not fully
compiled. A method is compiled only when it is frequently executed.
The resulting assembly is stored using a new file format called OAT19.
For the sake of clarity, when the differentiation between assembly codes
stored in shared objects and OATs file is needed, the assembly code from
OAT is named quick_code20.

The usage of native obfuscation techniques and the compilation of
application bytecode have increased the needs for adapting solutions to
the assembly world. As discussing in details all the contributions of the
literature would be technically difficult at this stage of the manuscript,
we propose to briefly categorize the different objectives of authors. Then,
later in the manuscript, we point out the limitations of each approach for
the specific problem we solve. Globally, the research community has:
I Studied new obfuscations: Researchers have developed solutions

to tackle the new rising obfuscation technique called packing [78–
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80]. This technique consists in ciphering the bytecode to make it un-
available for static analysis. The various deobfuscation techniques
are detailed in Section 3.1 and the associated detection methods
are presented in Section 5.1. In Section 3.2, we proposed new na-
tive obfuscation techniques and associated detection techniques in
Section 5.2.

I Exposed new vulnerabilities: New vulnerabilities targeting An-
droid applications have been discovered [36, 40]. In Section 4.1,
we precisely describe the vulnerability proposed by Peles and Hay
[36]: a field that stores a native address can be exploited if it is not
declared transient. We propose, in Section 6.2, a solution to the
unresolved problem of detecting such vulnerable fields.

I Ported taint analysis across the Java Native Interface: Many
works [81–84] aimed at tracking the information flow during the ex-
ecution of a native Android application. For example, NDroid [81]
propagates taints generated by TaintDroid [74] by hooking the
Android framework methods that call native code and all JNI entry
points. All proposed solutions rely on JNI to perform their analysis
which, as stated in Section 4.2, it is possible to bypass. Also, as
discussed in Section 6.1, they cannot achieve taint analysis that
requires the type of assembly values.

I Improved instrumentation systems: Severalworks have presented
generic framework solutions [85–88] where the analyst can insert
some hooking code to audit native code actions. These frameworks
can beused to observe, for example, virtualmethod calls [85] (vtable
hooking) and library calls [86] (PLT hooking).While these solutions
bridge the gap between native code and bytecode analysis, we show
in Section 7.1 that they are not resilient to all native obfuscations.
We propose a new approach in Section 7.

While numerous articles focus on solving specific challenges implied
by native applications, no systematic studies about the impact of native
code on the security of Android applications in its entirety has been
conducted. This is one of the contributions of this thesis.

2.5 Conclusion

We discussed the different global goals of researchers when dealing with
Android security. We focused our research efforts on code protection
ensured by obfuscation techniques and the research of vulnerabilities.
The chapter summarized the state of the art for these two problems and
we identified that the introduction of native code in applications brings
new challenges. The precise discussion of the articles that are close to our
contributions are discussed in the relevant chapter. We also summarized
the analysis building blocks that are classically used when analyzing
statically and dynamically applications. Some of them will be reused in
our contributions.

As new challenges that the thesis address are brought by the interaction
between the native and bytecode codes, we conduce a systematic review
of all interferences between native and bytecode worlds, both at code and
data level, respectively in Chapter 3 and 4. We demonstrate that these
interferences help the developer to create newobfuscation techniques, but
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in the meantime, can introduce vulnerabilities. Then, the next part of the
manuscript gives solutions to detect these interferences inChapter 5 and 6.
Finally, in the last part, we describe inChapter 7 a generic analysis solution
for obfuscated applications and gives insight on its implementation in
Chapter 8.
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Android applications, when developed in Java or Kotlin, are composed of
Dalvik bytecode1 1: https://source.android.com/devices/

tech/dalvik/dalvik-bytecode
. This bytecodeworks at the object level, that is, bytecode

instructions use the abstractions defined in object-oriented programming.
Here are a few examples of Dalvik bytecode instructions that realize
object-level actions:
I move-object vA, vB: moves an object from the register vB to the

register vA;
I check-cast vAA, type@BBBB: throws a ClassCastException if

the reference in the given register vAA cannot be cast to the type
indicated by type@BBBB ;

I invoke-virtual vC, vD, vE, vF, vG, meth@BBBB: invokes the
virtual method meth@BBBB using vC-G as arguments.

On the other side, functions in C/C++ can be compiled into assembly
code and inserted into an Android application. This assembly code
changes depending on the underlying smartphone processor2 2: x86/x86_64 for Intel processors,ARMv7/v8

for ARM processors, MIPS32/MIPS64 for
MIPS processors.

: assembly
instructions are architecture-dependent. Thus, assembly code is low-
level, compared to the Dalvik bytecode. Object-oriented programming
abstractions such asmethods, types,memorymanagement are completely
absent from assembly code. Because assembly code has access to the
processor architecture, it can perform operations that Dalvik bytecode
cannot. For example, it directly accesses the memory and so can manage
it entirely. It also has access to kernel system calls and can, if given the
appropriate system permissions, tune the kernel.

Consequently, assembly code is harder to understand than bytecode.
Therefore, applicationdevelopersmaywant to leave native code instead of
Dalvik bytecode in their applications in order to prevent them from being
analyzed. However, developers are not likely to develop applications in
C/C++ rather than in Java. Indeed, the lack of high-level abstractions
complicates the development of C/C++ only applications. Developing
an application in C/C++ for the sole purpose of obfuscation is therefore
not conceivable. Even if native code cannot totally replace bytecode, it
can still be used to hide or to alter Dalvik bytecode behavior and, thereby,
fool analysis tools.

This chapter describes two obfuscation techniques that use native
code to hide Dalvik bytecode. The first technique, presented in Sec-
tion 3.1, is called packing and consists in ciphering the bytecode using
native code. The second technique, presented in Section 3.2, is called
AOTC-based bytecode hiding scheme and consists in replacing all the
bytecode by native code.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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Figure 3.1: Packing technique
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3.1 Modification of the Java bytecode by the
native code

A packer is a tool that aims to make reverse-engineering of a program
more complex, while retaining its original behavior, by ciphering all or
part of theprogramcode. Packers are not specific toAndroid and therefore
have already beenwidely studied, especially for the x86 environment [89]

[89]: Ugarte-Pedrero, Balzarotti, Santos,
and Bringas (2015), ‘SoK: Deep packer in-
spection: A longitudinal study of the com-
plexity of run-time packers’

.
These works study the effects of packers at the operating system level.
However, they are not applicable to Android [78–80]

[78]: Zhang, Luo, and Yin (2015), ‘Dex-
hunter: toward extracting hidden code
from packed android applications’
[79]: Yang, Zhang, Li, Shu, Li, Hu, and Gu
(2015), ‘Appspear: Bytecode decrypting
and dex reassembling for packed android
malware’
[80]: Xue, Luo, Yu, Wang, and Wu (2017),
‘Adaptive unpacking of Android apps’

. Indeed, AOSP
introduces an additional level between the kernel and the application
which is not present in classical operating systems, and which must be
taken into account.

A packer creates a new application, called a packed application, from
the original one. This process can be split into two main phases which
happens at compilation time and are depicted in Figure 3.1. First, the
packer ciphers the original code which is contained in the DEX3

3: The file that contains the bytecode of
the application. See Section 2.3.3.

of the
original application and therefore creates a new DEX called packed
DEX. Second, it adds a decryption routine, called unpacker, to this
packed DEX. This routine is in charge of deciphering the DEX file and
loading it dynamically during the execution. This mechanism is generally
implemented in a native library.

Thus, the DEX file of a packed application does not contain the original
bytecode but a stub that calls the native decryption routine. Statically
analyzing this DEX file would lead to analyze the decryption routine
which would be expensive and difficult. Manual techniques, that is to
say, understanding the complete functioning of the decryption to apply
the reverse function to all packed DEX files, are not processed as they
vary for each packer and therefore pose a scalability problem.

The evolution of packers has followed the evolution of unpackers, that is
the tools that aims to retrieve the original application from the packed
one. The remaining of this section traces this cat-and-mouse game.
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4: All DEX files begin by the following
bytes: 64,65,78,0A,30,33,35,00

3.1.1 Full unpacking

The decryption routines of the first packers fully decrypt the packed
DEX file before using the Android framework to dynamically load the
whole unpacked DEX file [77, 90] [77]: Yu (2014), ‘Android packers: facing

the challenges, building solutions’
[90]: Strazzere and Sawyer (2014), ‘An-
droid hacker protection level 0’

. The original DEX file is therefore
present in memory when the application is executed. Thus, the first
unpacking techniques consist in running the packed application. Once
it is launched, the unpacker searches for the signature of the DEX file
inside the memory. For example, it is possible to search for its magic
number, i. e. the characteristic bytes of the start of a DEX file4. When the
original DEX file is found, traditional analyses can be launched on the
recovered DEX file.

3.1.2 Unpacked bytecode hiding

When the Android framework loads a DEX file, some parts, for example
the magic number, are not used. It is therefore possible to modify them
without changing the behavior of the application. By altering these
specific points, some packers manage to prevent the localization of the
unpacked DEX file in memory. Thus, previously described unpackers
become ineffective. In any case, the Android framework needs to know
the location of the unpacked DEX file and so, this address is supplied by
the packer during the dynamic loading of the DEX file. The unpackers
have therefore chosen to overload the functions of theAndroid framework
responsible for loading the DEX files [91–93] [91]:Kim,Kwak, andRyou (2015), ‘Dwroid-

dump: Executable code extraction from
android applications for malware analy-
sis’
[92]: Park (2015), ‘We can still crack you!
general unpacking method for android
packer (no root)’
[93]: Bashan and Makkaveev (2017), ‘Un-
boxing Android: Everything You Wanted
To Know About Android Packers’

. Thanks to this method, the
memory location of the unpacked file is available to them which allows
them to recover the original bytecode of the application even if some
characteristics of the DEX are altered.

3.1.3 Partial unpacking

In order to prevent the original DEX file from being unpacked entirely,
the behavior of the decryption routines was subsequently changed to
no longer leave the DEX file completely unpacked in memory. DEX is
deciphered by parts. So a deciphering routine deciphers only one function
or one class, right before using it, and then re-ciphers it. Unpackers
have therefore also evolved in order to be able to recover the different
parts of the DEX file before assembling them again [78, 79, 94] [78]: Zhang, Luo, and Yin (2015), ‘Dex-

hunter: toward extracting hidden code
from packed android applications’
[79]: Yang, Zhang, Li, Shu, Li, Hu, and Gu
(2015), ‘Appspear: Bytecode decrypting
and dex reassembling for packed android
malware’
[94]: Jiang, Zhou, Liu, Jia, Liu, and Zuo
(2017), ‘CrackDex:Universal andautomatic
DEX extraction method’

. They
overload the Android framework functions that are responsible for
loading classes, methods, and opening a DEX file. When overloaded
functions are called, the unpacker retrieves each corresponding part. At
the end of the execution of the application, all parts are assembled in
one final DEX. These techniques, although automatic, suffer from not
fully retrieving the original DEX. Indeed, only the parts that are loaded
during a specific execution are retrieved. Some unpackers [94] fix this
problem by, for example, simulating class loading by directly calling the
function of the Android framework that loads classes. It assumes that
the method decryption is performed when loading the class.
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5: Using tools such as Valgrind [96]
[96]: Nethercote and Seward (2007),
‘Valgrind: a framework for heavyweight
dynamic binary instrumentation’

6: Since Android 7.0 (Nougat, 2016), the
Android runtime compiles methods of the
application when they are frequently run.

7: AOTC stands for Ahead Of Time Com-
pilation

3.1.4 Android framework bypassing

The last type of packer that have appeared are the packers which embed
their own copy of the Android framework [80, 95][80]: Xue, Luo, Yu, Wang, and Wu (2017),

‘Adaptive unpacking of Android apps’
[95]:WongandLie (2018), ‘Tackling runtime-
based obfuscation in Android with TIRO’

. They use their
own functions to load the different elements of the DEX file. Thus, the
function overloadingmade by unpackers are ineffective since theAndroid
framework is never called. Unpackers that manage this type of packers
are not fully automatic [80, 95]. They propose to trace the execution
of the packed application while monitoring modifications of the DEX
files present in memory. This trace is realized by hooking numerous
Android framework functions, system calls and all store instructions5.
By analyzing such traces, it is then possible to determine the moment
when a part of the DEX is unpacked. This is down manually by Xue et al.
[80] and automatically by Wong and Lie [95]. These points are used as
collecting points during a new run of the packed application. During
this new run, a new trace is also made and new collecting points can
be defined. The process is repeated until no new collecting points are
defined.

3.2 Replacement of the Java bytecode by native
code

Assembly code is harder to understand than Dalvik bytecode. Thus,
writing application fully in C/C++ is better for obfuscation purposes
than in Java. However, the low level of abstraction proposed by C
and C++ makes the development of such applications very difficult
and error prone. If the manual creation of full native applications is not
conceivable, the bytecode can be translated, compiled, into assembly. This
is not uncommon: the Android runtime performs this compilation, for
optimization purposes, when installing applications6. Such compilation,
whichhappens before executing the application, is called “ahead-of-time”,
in opposition with “just-in-time”, which corresponds to a compilation
happening during the execution of the application.

This section presents an obfuscation technique named AOTC-based7

bytecode hiding scheme which consists in compiling the Dalvik bytecode
into assembly code and then modifying the bytecode in order to make
the bytecode unavailable for analysis. Thus, the original bytecode, which
no longer exists, is protected against both static and dynamic analysiss.
This technique can be characterized by the type of compiler used and the
type of modifications made to the bytecode.

3.2.1 Bytecode compiler used

The bytecode of obfuscated methods can be compiled using a custom
compiler [97][97]: Bao, He, and Wen (2018), ‘DroidPro:

AnAOTC-BasedBytecode-Hiding Scheme
for Packing the Android Applications’

or the one given by Android system. If a custom compiler is
used, the resulting assembly is put into a shared library that is added to
the application and the DEX file is modified to remove bytecode and set
the method as native. This step is mandatory because Android does not
support that a method tagged as native, has bytecode. Finally, calls to
obfuscated methods are converted into Java Native Interface (JNI) calls.
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Figure 3.2: Bytecode Free OAT technique

8: Compilers can hardcode offsets of sys-
tem libraries functions for example.

If the Android compiler is used, the resulting assembly cannot be put
into a shared library file. Indeed, the Android compiler outputs code
which is supposed to be stored inside an OAT file. This assembly, named
quick code, differs from classical native code. The Android compiler
is customized to optimize the code for the smartphone on which the
compilation is made8. Additionally, native and quick code have different
calling conventions and thus can not be used interchangeably.

Since OAT files cannot be distributed through classical application mar-
kets, using the Android compiler to obfuscate the application would be
particularly well-suited to firmware vendors: these companies provide
their applications already pre-compiled for a specific phone model.

We have called this specific technique, represented in Figure 3.2, Bytecode
Free OAT (BFO). After the compilation, the OAT file is directly modified
to change the bytecode inside the DEX. Contrary to shared libraries,
OAT files support interleaved bytecode and assembly. When Android
executes an application, the quick code is always executed, if it is available,
regardless of whether bytecode is present or not. Thus, an attacker could
tamper with the bytecode without modifying the executed quick code.
Thereby, the application behavior is not changed but the analysis of the
bytecode would be erroneous since it is not performed on the actual code.
Possible bytecode modifications are discussed in the following section.

3.2.2 Types of bytecode modifications

Depending on how the bytecode is tampered with, we propose three
different BFO sub-techniques in the next three following sections: remov-
ing, replacing or modifying the bytecode. These techniques are classified
according to three criteria: their robustness, their stealthiness and the
possibility to automate them. Since assembly code works at a lower
abstraction level than the bytecode, we consider that analyzing bytecode
is simpler than analyzing assembly. Consequently, we consider that an
obfuscation technique is more robust than another if it requires to analyze
more assembly code. On the other hand, we consider that an obfuscation
technique is stealthier than another if the difference between the behavior
described by the bytecode and the one observed is smaller: analysts only
look at the assembly code if the result of the bytecode analysis seems
incorrect with respect to the behavior of the application.
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9: No-OPeration, assembly instruction
that does not have any effect except in-
creasing the instruction pointer

10: For example, a method that checks the
PIN code can be replaced by a hello world

11: 0xedb88320 in this case

3.2.2.1 Removing the bytecode

The first variant of this BFO technique consists in removing or “nopping”
the bytecode. This means replacing the bytecode by nop9 instructions or,
by extension, by instructions that do not have any special effect. Removing
the bytecode is allowed by the OAT file format in order to represent
abstractmethods. The native part, which is always executed regardless
of whether bytecode is present, is not modified, in order to preserve the
application behavior.

This technique perfectly fools bytecode analysis tools since the informa-
tion on which they perform their analyzes is deleted. Instead, the reverse
engineering of the application needs to be done directly on the assembly
code. Additionally, this technique is easily automatable since the modifi-
cations applied to the bytecode are the same for all applications and do
not depend on the removed bytecode. However using this technique is
not stealthy since bytecode analysis cannot give any result if there is no
bytecode provided at all.

3.2.2.2 Replacing the bytecode

As previously stated, removing or nopping the bytecode is not stealthy. A
stealthier approach is to replace the bytecode: the bytecode of a sensitive
method can be replaced by a benign method10. Thus, the robustness of
the obfuscation technique is kept while improving its stealthiness: the
bytecode still does not give any information about the behavior of the
application and analysis tools generate wrong results since they do not
have the right bytecode to work on.

The automation of this technique is still possible but is not trivial. The
bytecode cannot be replaced by repetitive patterns of bytecode because
this would be easily detectable. The automation can neither generate
random patterns because this would result in incorrect bytecode instruc-
tions, which is also easily detectable using a bytecode verifier. Thus,
automating this technique requires to generate random valid bytecode,
that is, bytecode which respects, among other, the signature of the re-
placed methods. While it is still doable, it requires some engineering
work, and is left as future work.

3.2.2.3 Modifying the bytecode

Finally, if the stealthiness of the obfuscation is consideredmore important
than the robustness, a third BFO technique can be used. This technique
consists in slightly modifying the bytecode. Instead of completely modi-
fying the bytecode behavior, only a few instructions that are chosen very
carefully are minutely touched.

For example, if someone wants to protect a code that contains a CRC
check of incoming network packets, obfuscating the creation of the CRC
table would be a typical goal. The bytecode corresponding to such a
method is presented in Listing 3.3a. This bytecode has been obtained by
compiling an application containing CRC computations and inspecting
the resulting DEX file. At line 8, the bytecode initializes the polynomial
that is used to compute the CRC table11. If only this line is modified,
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1 1200 | const/4 v0, #int 0
2 1301 0800 | const/16 v1, #int 8
3 3510 1400 | if-ge v0, v1, 14
4 dd01 0401 | and-int/lit8 v1, v4, #int 1
5 1212 | const/4 v2, #int 1
6 3321 0a00 | if-ne v1, v2, 11
7 e201 0401 | ushr-int/lit8 v1, v4, #int 1
8 1402 2083 b8ed | const v2, #edb88320
9 9704 0102 | xor-int v4, v1, v2
10 2803 | goto 12
11 e204 0401 | ushr-int/lit8 v4, v4, #int 1
12 d800 0001 | add-int/lit8 v0, v0, #int 1
13 28eb | goto 02
14 1500 00ff | const/high16 v0, #int -16777216
15 b740 | xor-int/2addr v0, v4
16 0f00 | return v0
17

(a) Original CRC32 bytecode

1 1200 | const/4 v0, #int 0
2 1301 0800 | const/16 v1, #int 8
3 3510 1400 | if-ge v0, v1, 14
4 dd01 0401 | and-int/lit8 v1, v4, #int 1
5 1212 | const/4 v2, #int 1
6 3321 0a00 | if-ne v1, v2, 11
7 e201 0401 | ushr-int/lit8 v1, v4, #int 1
8 1402 2ed8 31eb | const v2, #eb31d82e
9 9704 0102 | xor-int v4, v1, v2
10 2803 | goto 12
11 e204 0401 | ushr-int/lit8 v4, v4, #int 1
12 d800 0001 | add-int/lit8 v0, v0, #int 1
13 28eb | goto 02
14 1500 00ff | const/high16 v0, #int -16777216
15 b740 | xor-int/2addr v0, v4
16 0f00 | return v0
17

(b) Modified CRC32 bytecode

Figure 3.3: Bytecode modification example
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Figure 3.4: Classification of BFO sub-
techniques

as shown in Listing 3.3b, the bytecode analysis of the application does
not raise any alarm: the result is consistent with the behavior of the
application. Nevertheless, using the wrong polynomial12 would not
allow the analyst to generate correct CRCs.

However, this technique presents two main drawbacks. First, it is less
robust. Even if the bytecode differs from the assembly, it still gives a lot
of insight about what is the behavior of the application. Second, it is
not automatable. Indeed, modifications that are made to the bytecode
require a very precise knowledge about the behavior of the bytecode to
be obfuscated.

3.2.2.4 Comparison of the three bytecode modification
sub-techniques

The three BFO sub-techniques previously described are classified in Fig-
ure 3.4 according to their robustness, their stealthiness and the possibility
to automate them. Removing the bytecode is the one that is the easiest to
automate. However it is the least stealthy. Replacing the bytecode can be
viewed as an improvement of simply removing it, since it improves the
stealthiness while not reducing the robustness. Nevertheless, its process
is harder to automate. Finally, modifying the bytecode is the stealthiest
sub-technique but reduces robustness of the obfuscation and requires
manual editing.

3.3 Conclusion

This chapter has presented the possible interferences occurring on the
Java code from the native code. These interferences are particularly useful
for a developer who wants to obfuscate the bytecode of an applica-
tion. Different techniques of unpacking have been presented and we
introduced a new hiding technique, called BFO, where the native code
replaces the bytecode of a compiled pre-installed application. Chapter 5
will present the detection methods for these obfuscation techniques.
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In the next chapter, we continue to review the possible interferences of
the native code over the bytecode world by moving our attention from
the code to the data: more precisely, we will study the possible impact of
the native code on Java data.



1: Java defines eight primitive types:
boolean, byte, char, short, int, long, float,
and double
2: Runtime library is stored in the file
libart.so.

3: This task is not trivial and numerous
GC algorithms exist.

4: In the sense of class hierarchy

5: Integer, floating-point value, boolean,
character

Security issues introduced by
interferences in Java data 4

Java is an object-oriented programming language. That means data is
represented as small functional entities named objects. These objects
contain values named fields. These fields, in Java, can be either an other
object or a primitive type1.

Thememorymanagement of theobjects is not handledby theprogrammer
but rather by a library, called runtime2, in charge of running the Java
program. This library contains, among other, an allocator and a Garbage
Collector (GC). When an object is created, its corresponding memory
is reserved by the allocator. In Java, there is no standard way to delete
an object. Instead, the GC is in charge of detecting unused objects by
tracking references to objects and deleting them when they are no longer
referred to3. The implementation of the runtime library is not specified.

During the compilation, the types used in Java code are checked. In a
word, it checks that when a value is assigned to another, types of both
values are compatible4. When such checks are not doable at compilation
time, the compiler adds type checking instructions inside the code. If
the check fails, then a runtime exception is raised. This exception can be
caught and the problematic case can be handled at runtime. Additionally,
checks that do not focus on type checking but rather on performed
operations are also inserted at runtime. For example, before accessing
an array, the index is compared with the array size in order the raise an
exception if a buffer overflow or underflow occurs. When trying to use an
object that has not been initialized, a NullPointer exception is raised.

Whereas C++ is also an object-oriented programming language and
represents data as objects, the proposed data abstraction differs from the
Java language. Multiple primitive types5 exists depending on the size
used to store them inmemory. For example, an integer typed int is stored
on 32 bits and can contain values ranging from −(231) to 231 − 1, while an
integer typed unsigned short is stored on 16 bits and can represent non
negative values from 0 to 216 − 1. Additionally, C/C++ propose types
used to represent the address of entities. This types are called pointers
and are recognized using the * character. For example, unsigned int* is
the type of a pointer which stores the address of an unsigned integer.

C/C++ offers a data abstraction that is closer to the processor behavior
than that of Java. No garbage collector is provided, that is, programmers
have to manually free allocated memory when using these languages.
Moreover, no runtime-checks are added: if the compiled code tries to
perform operations forbidden by the operating system, the program
crashes and no standard way exists to recover from such errors.

When developing Android application using both Java and C/C++
languages, a developer may want to manipulate and transfer data from
one language to another. The conversion between data abstraction is
made by a dedicated interface called Java Native Interface (JNI). This
interface allows the developer to receive and modify Java data in C/C++
functions and so, C/C++ values can be spread in Java ones.
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6: Object instance inside an other object

7: For example cereal (http://uscilab.
github.io/cereal/) or boost (https://
www.boost.org/)

As mentioned above, the data abstractions offered by Java and by C/C++
gives different guarantees: C/C++ data are more permissive and ex-
pressive than Java ones. Thus, interferences between Java and C/C++
data can lead to security issues. In this chapter, we describe precisely
two types of security issues introduced by the duality between Java and
C/C++ code. Each issue belongs to a different type of security research
fields.

The first issue belongs to the field of vulnerability detection: the
injection of native data in Java data can lead to security vulnerabilities
since untrusted data may be used by Java as “trusted” data. This first
point is described in Section 4.1.

The second issue belongs to the field of obfuscation techniques: the
developer can intentionally bypass the JNI in order to directly modify
Java data using C/C++ code. This can be used as an obfuscation
technique. This second point is described in Section 4.2.

4.1 Injection of native data in Java data

Java and C/C++ data do not guarantee the same properties. Because
C/C++ languages are lower-level programming languages than Java,
some abstractions and data specifications, that are available in Java, lack a
C/C++ equivalent. A good example of such a property is the transient
keyword that can qualifies Java fields. An Android developer uses this
keyword to customize the serialization process of classes. Its functioning
is described in the following.

Android applications are composed of multiple components that are
running concurrently. Components communicate together by sending
intents. This messaging mechanism is also used to communicate between
different applications. At the implementation level, an intent is composed
of bytecode objects that are serialized. Serialized data is deserialized by
the called component. To tune the serialization process, developers can
declare fields as transient. A transient field is a field that is not part
of the persistent state of an object, and thus, should not be serialized.
Transient fields can, for example, be used to accelerate the serialization
process by not transmitting fields that can be recomputed using other
fields. Additionally, the transient keyword is used to avoid serializing
fields that have a meaning only in the current process state. For example,
a field storing a memory address should not be sent to another process
because the memory layout is randomized for each process. That is
why, each object reference6 should be declared transient since its value
is the address of the referred object. To avoid such a time-consuming
and error-prone task, the serialization process is able to handle object
references automatically and reconstructs the references in the destination
process.

However, serialization is not part of C/C++ language standard. Serializa-
tion should be implemented either manually or using external libraries7.
Thus there is no equivalent to the transient keyword in C/C++ and no
test can be made, either statically or dynamically, to check if the transient
property is kept when data is transferred between C/C++ and Java. For

http://uscilab.github.io/cereal/
http://uscilab.github.io/cereal/
https://www.boost.org/
https://www.boost.org/
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example, if an integer8 field is set to an address by some native code, the
serialization process cannot determine whether it refers to a memory
address or not. Then, it is processed as a number value and sent to the
other process.

Peles & Hay [36] have shown that breaking the transient property can
lead to severe vulnerabilities. If the transient value set by C/C++ is
serialized and used by the receiver without any verification, the receiving
application may process data that has no meaning in its current context.
Hence, developers have to carefully declare fields as transient when they
receive transient data from C/C++. This task is not straightforward and
developers sometimes forget to do it. The following section describes an
example of such an error.

4.1.1 CVE-2015-3837: Example of a vulnerable transient
field in an open source cryptography library

CVE-2015-38379 concerns the cryptography Java library named con-
scrypt10. This library provides a Java interface to BoringSSL11, a fork of
OpenSSL12. This CVE was patched in May 2015, and is referenced in
conscrypt by the bug ID 21437603. The patch commit13 is very interesting
since, besides some new tests, it only adds the transient keyword to the
field mContext of the class OpenSSLX509Certificate. This sole addition
is enough to remove the vulnerability.

Before the patch, the class OpenSSLX509Certificate contained a field of
type long named mContext, declared as private and final. This field is
used to store the address of a X509 instance, an OpenSSL struct allocated
in C++. The OpenSSLX509Certificate class extends X509Certificate,
a serializable class which is part of the Java default API14.

Thus, any application that uses an unpatched version of BoringSSL could
receive an Intent containing an instance of OpenSSLX509Certificate

https://nvd.nist.gov/vuln/detail/CVE-2015-3837
https://nvd.nist.gov/vuln/detail/CVE-2015-3837
https://github.com/google/conscrypt
https://github.com/google/conscrypt
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://www.openssl.org/
https://developer.android.com/reference/java/security/cert/X509Certificate
https://developer.android.com/reference/java/security/cert/X509Certificate
https://developer.android.com/reference/java/security/cert/X509Certificate
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15: Intents carry information of non-
primitive types through so-called extra
objects.

16: A complete exploitation chain and sev-
eral payloads can be found in [36].

as an extra object15. Such extra objects are automatically deserialized
upon reception. Thus, a malicious application could send any forged
instance of this vulnerable class. The resulting memory layout is repre-
sented in Figure 4.1. Both the sender’s and the receiver’s address spaces
are shown. In the illustrated case, the mContext field is not null and
points to a C++ allocated area. Because this field is not transient, the
exact same value is sent to the second process. When deserializing the
OpenSSLX509Certificate object, the mContext field does not point to
an X509 instance since Address Space Layout Randomization (ASLR)
may have moved the C++ heap around the memory, as represented in
the Figure 4.1. The field mContext now points to an arbitrary address
that has been chosen by the malicious sender.

However, injecting an arbitrary address into the targeted process does
not lead to any bug or exploitation as long as this value is not used. Since
the malicious object is not intended by the targeted application, no usage
will be made of it. Unfortunately, when the object get eventually freed
by the GC, the finalize method shown in Listing 4.1 is called. This
method calls an other native method named NativeCrypto.X509_free,
shown in Listing 4.2. This method takes the mContext field in argument
and frees it using the OpenSSL function presented in Listing 4.3. This
method, if called with an X509 instance as argument, decrements the field
named references of the given instances. The X509 struct is defined as in
Listing 4.4. If after decrementing the value becomes zero, the X509 struct
is freed. By sending numerous forged OpenSSLX509Certificate, the at-
tacker can decrement a value at a known address in the target application
process. This is called a “constrained write what where” primitive. Using
this primitive, an attacker can make the targeted application execute
arbitrary code, leading, for example, to privilege escalation16.

Listing 4.1: conscrypt/sr-
c/main/java/org/conscryp-
t/OpenSSLX509Certificate.java

1 @Override

2 protected void finalize() throws Throwable {

3 try {

4 if (mContext != 0) {

5 NativeCrypto.X509_free(mContext);

6 }

7 } finally {

8 super.finalize();

9 }

10 }

Listing 4.2: conscrypt/src/main/na-
tive/org_conscrypt_NativeCrypto.cpp

1 static void NativeCrypto_X509_free(JNIEnv* env, jclass, jlong x509Ref) {

2 X509* x509 = reinterpret_cast<X509*>(static_cast<uintptr_t>(x509Ref));

3 JNI_TRACE("X509_free(%p)", x509);

4

5 if (x509 == nullptr) {

6 jniThrowNullPointerException(env, "x509 == null");

7 JNI_TRACE("X509_free(%p) => x509 == null", x509);

8 return;

9 }

10

11 X509_free(x509);

12 }

Listing 4.3: boringssl/src/cryp-
to/asn1/tasn_fre.c

1 static void asn1_item_combine_free(ASN1_VALUE **pval, const ASN1_ITEM *it,

int combine)

2 {

3 [...]

4 if (!asn1_refcount_dec_and_test_zero(pval, it))

5 return;

6 [...]
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17: By declaring them transient.
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7 }

Listing 4.4: boringssl/src/in-
clude/openssl/x509.h

1 struct x509_st

2 {

3 X509_CINF *cert_info;

4 X509_ALGOR *sig_alg;

5 ASN1_BIT_STRING *signature;

6 int valid;

7 CRYPTO_refcount_t references;

8 [...]

9 } /* X509 */;

Thus, due to a missing transient keyword for the mContext field of
the OpenSSLX509Certificate class, every application that links an un-
patched version of BoringSSL library is vulnerable to an arbitrary code
execution exploit. The mContext should have been declared transient

because its value, a pointer, has been set by the C++ code. This highlights
the need for detecting such C/C++ interferences into Java data.

4.1.2 Formal definition of problematic transient fields

As shown in the previous section, fields that are not declared transient
but that should be because they store native pointers, may leave severe
vulnerabilities inside their application or library. Thus, it is essential
to be able to remove them from source code17. For this purpose, we
need to formally define the fields that are problematic. It is noteworthy
that a problematic field is not necessarily exploitable. Indeed, missing
transient keywords of not-serializable classes cannot be exploited but
could bring vulnerabilities if a developer updates these classes into
making them serializable.

We represent Java fields using a set view, shown in Figure 4.2. Since
the transient keyword is meaningful only for serializable classes, only
fields from such classes are taken into account here. The set of fields (F )
is divided between fields that should be transient (T ) and those which
should not (T ). Among T , some of the fields should be transient because
they store references (TR, TR ⊆ T ). Technically, in the source code such
references can be encoded inside object references but also in long or int.
If a field is typed as an int or a long, it is difficult to determine if it stores
a reference or simply a value, and thus needs to be declared transient by
the developer.

As a consequence, the developer has to declare the fields that are transient
(DT ). Thefields declared transient should be equal to the fields that should
be transient (DT �T ). However, the developer can forget to declare some
transient fields: T \DT , ∅. More dangerous, if the forgotten field should
be transient because it stores a reference (TR \DT , ∅), the programming
error might make the application vulnerable to serialization attack [36] [36]: Peles and Hay (2015), ‘One Class to

Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

.
This set of fields is named exploitable fields, FE �TR \DT .

In Chapter 6,wewill introduce amethod for detectingmissing transient
keywords in applications composed of Java and C/C++, based on a cross-
language taint analysis.
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4.2 Modification of Java data by native code

When Java and C/C++ source codes exchange data, they need to use
the provided JNI. This interface is in charge of hiding to the developer
the differences in data representation between the two languages. This
interface contains methods that allow the native code to access the heap,
the area where Java objects are stored. Developers use it extensively
because, first, the Java language does not constrain how data is stored in
the heap. Second,C/C++,which are languageswhose data representation
are closer to the underlying processor architecture, may handle data
storage and manipulation differently depending on the smartphone
model for which the code is compiled. Using JNI, developers can avoid
to treat all these potential different cases separately.

JNI is well known: analysis tools are able to setup hooks in this interface in
order to retrieve the behavior of the assembly part of an application and
to model how native code modifies the Java fields [81, 83, 84][84]:Wei, Lin, Ou, Chen, andZhang (2018),

‘JN-SAF: Precise and Efficient NDK/JNI-
aware Inter-languageStaticAnalysis Frame-
work for Security Vetting of Android Ap-
plications with Native Code’
[83]: Xue, Zhou, Chen, Luo, and Gu (2017),
‘Malton: TowardsOn-DeviceNon-Invasive
Mobile Malware Analysis for ART’
[81]: Qian, Luo, Shao, andChan (2014), ‘On
tracking information flows through jni in
android applications’

. However,
for obfuscation purposes, developers may hide how data is modified. For
example, for hiding a ciphering-key stored in a Java field, the developer
could initialize it with a dummy value and modify it in native code. By
hiding this modification, the analyst could be mislead into thinking that
the used key is the dummy one.

This section presents Direct Heap Access (DHA), a new obfuscation
technique that consists in using native code to modify Java object fields
directly on the heap without relying on bytecode or runtime functionali-
ties. Indeed, obfuscation techniques can consist in stealthily modifying
values of carefully chosen fields.

Modifying Java fields without JNI by directly modifying their value
allows to bypass the aforementioned state-of-the-art tools. This is the
purpose of DHA. The Dalvik virtual machine does not give any guarantee
on how fields are stored in the heap. Consequently, directly reading or
writing the heap without using JNI is not straightforward. We provide
three ways to implement a DHA. They are ordered increasingly on
the amount of knowledge required about Android runtime internals to
implement them. The first implementation we provide, in Section 4.2.1,
describes a solution based on a legitimate use of DirectByteBuffer, a
specific class provided by Android. Section 4.2.2 gives a naive way of
doing a DHA by scanning the whole heap memory. Finally, Section 4.2.3
gives an advanced implementation which is able to navigate through the
internal structures of the Dalvik virtual machine.

Each implementation is shown using the same example. In this example,
the obfuscation aims at modifying the value of the polynomial used to
compute a CRC table. The polynomial is stored in an integer field named
“polynomial”. The field is initialized with a dummy value 0xeb31d82e
and should be changed to 0xedb8832018.

4.2.1 Legitimate implementation: DirectByteBuffer

While implementing a DHA seems technically difficult, it is facili-
tated by the Java class ByteBuffer which provides a way to allocate
a buffer directly accessible by the native code. This buffer, named
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Listing 4.5: DHA using
DirectByteBuffer

1 extern "C" JNIEXPORT void JNICALL bytebuffer(JNIEnv *env, jobject thisObj,
jobject buf) {

2 void* addr = env->GetDirectBufferAddress(buf);
3 *(unsigned long*)addr = 0xedb88320;
4 }

Listing 4.6: Retrieving
DirectByteBuffer address without JNI

1 Field field;
2 field = Buffer.class.getDeclaredField("address");
3 field.setAccessible(true);
4 long addr = (long) field.get(directBytebuffer);

19: https://developer.android.com/
reference/java/nio/ByteBuffer

DirectByteBuffer19, has an address field, that locates the bytes in the
memoryheap. It is createdusing theByteBuffermethodallocateDirect.
DirectByteBuffer was introduced for native optimization purposes.

However, the address field is not visible. That is why JNI provides
GetDirectBufferAddress to directly access it, as shown in Listing 4.5.
To avoid using JNI, which is the goal of DHA, this field can be retrieved
using reflection. This is done in Listing 4.6. Using the obtained address,
native code can directly access the contents of the DirectByteBuffer.
In any case, the native code needs to receive or retrieve the byte buffer
address which can be detected by state-of-the-art tools[83, 84]. Thus,
using DirectByteBuffer does not fulfill the obfuscation goal of realizing
a stealthy access.

4.2.2 Naive implementation: memory lookup

Native code can avoid the need of receiving the address of the field.
Indeed, if the field has a specific unique value, such as 0xeb31d82e in the
CRC example, the native code can scan thememory to retrieve its location.
Listing 4.7 shows this process by reading the special /proc/self/maps
file. This file contains the memory mapping of the process that reads it,
including the memory area named “dalvik-main space” which is the one
that stores the fields. By searching for the obfuscated field value inside
this area, its address can be retrieved.

Even if this memory lookup fulfills the obfuscation goals, which are
modifying a Java field value without using anything from the Java code,
it still has two main drawbacks. First, the lookup incurs a high time
overhead: in order to modify a single field, the native code has to scan
the whole heap which can grow to tens or hundreds of megabytes [98] [98]: (2020), Android Compatibility Defini-

tion Document(depending on theAndroid version). Second, the field has to be initialized
to a unique value. This can lead to errors if the whole application code
is not obfuscated at the same time. For example, an application can be
obfuscated after adding a library that has been already obfuscated by its
owner. In this case, fields from both the application and the library have
been initialized to magic values. Some of them may be equal because
when obfuscating the application the potential library magic values are
not known.

https://developer.android.com/reference/java/nio/ByteBuffer
https://developer.android.com/reference/java/nio/ByteBuffer
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Listing 4.7: DHA using memory lookup 1 #define SEARCHED_VALUE 0xeb31d82e // Value of the searched field, known at
compilation time

2 extern "C" JNIEXPORT void JNICALL memLookup(JNIEnv *env, jobject thisObj)
{

3 // Read "/proc/self/maps" file line by line
4 FILE *file = fopen("/proc/self/maps", "r");
5 if (file == NULL) return;
6 char *line = NULL;
7 size_t n = 0;
8 while (getline(&line, &n, file) > 0) {
9 char *path = strchr(line, ’/’);

10 if (!path) continue;
11

12 // Retrieve the \gls{heapL} area
13 if (strcmp(path, "/dev/ashmem/dalvik-main space\n")!=0 && strcmp(path,

"/dev/ashmem/dalvik-main space (deleted)\n")!=0) continue;
14

15 // And get corresponding addresses
16 unsigned long vm_start, vm_end;
17 char r, w, x, s;
18 if (sscanf(line, "%lx-%lx %c%c%c%c", &vm_start, &vm_end, &r, &w, &x, &

s) < 6)
19 continue;
20 if (r != ’r’ || w != ’w’) continue;
21

22 // Search for the field value inside the \gls{heapL} area
23 for(unsigned long i=0; i < vm_end-vm_start-sizeof(unsigned long) ; i

++) {
24 if(*(unsigned long*)((unsigned char*) start + i) == SEARCHED_VALUE)

{
25 unsigned long* field_ptr = (unsigned long*)((unsigned char*)

vm_start + i);
26

27 // When found, \gls{dhaL} is realised
28 *field_ptr = 0xedb88320;
29 }
30 }
31 }
32 }

20: This allows the garbage collector to
move objects around the memory without
having to change all references to it but
only one.
21: AOSP source code, class_linker.cc
file.

4.2.3 Advanced implementation: reflection

Native code can avoid the need of scanning the heap memory of a field
by introspecting the obfuscated object itself. This requires to understand
how the runtime stores objects and fields in memory and what native
code has access to. This layout is presented in Figure 4.4. Native code has
access to Java objects and fields through handles, respectively jobject

and jfieldID. These are returned by the JNI and no guarantees are given
about their implementation.

However, by looking at the source code of the Android runtime, we
observe that they are pointers. A jfieldID is a pointer to an instance
of the ArtField class. This class is used, inside the runtime, to store
information about the field such as its declaring class, its access flags
(private, public) or even the offset of the field within an instance object
(offset_). These pieces of information are set up by the class linker.
A jobject is a pointer to an another pointer that refers to the actual
object20. This object stores the addresses of the different fields of the object.
Fields are sorted alphabetically, grouped by type. The order is wanted
“relatively stable [...] so that adding new fields minimizes disruption of
C++ version such as Class and Method.”21.
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in Android

Listing 4.8: Retrieving field offset1 #define OFFSET_OF_OFFSET_FIELD_IN_ARTFIELD_CLASS 3
2 extern "C" JNIEXPORT void JNICALL retrieve_offset(JNIEnv *env, jobject

thisObj) {
3 jclass cls = env->GetObjectClass(thisObj);
4 jfieldID fid=env->GetFieldID(cls,"polynomial","I");
5 unsigned long offset = *((unsigned long*)fid+

OFFSET_OF_OFFSET_FIELD_IN_ARTFIELD_CLASS);
6 }

Listing 4.9: DHA using reflection1 #define OFFSET 0x10
2 extern "C" JNIEXPORT void JNICALL reflection(JNIEnv *env, jobject thisObj)

{
3 unsigned long* thisPtr = *(unsigned long**)thisObj;
4 unsigned long* field_ptr = &thisPtr[OFFSET/4];
5 *field_ptr = 0xedb88320;
6 }

Thus, in order to implement a DHA trough reflection-like mechanism,
the code has to first, retrieve the value offset_, which is the offset of
the field address inside an object instance. This operation is realized in
Listing 4.8. The ArtField instance of the field is retrieved at Line 4 and
Line 5 retrieves the offset_ value by accessing the third long of the
ArtField instance. This offset (3) has been hardcoded at Line 1. Second,
using the obtained offset_, the code modifies directly the field value.
This is realized in Listing 4.9. The instance of the object is retrieved Line 3
by dereferencing two times the calling object. Then, at Line 4, the field
address is obtained using the offset_ value previously retrieved. It has
to be noted that the first operation, Listing 4.8, requires to use JNI. To
avoid being detected by JNI hooks, the value is computed and hardcoded
in the Listing 4.9, at Line 1. This way, the Listing 4.9, which is the code that
is finally embed in the application, does not have any calls to JNI. Both
listings have been successfully tested from Android 7.0 up to Android 10
without changing neither the value of offset_ (0x10) nor the offset of
offset_ in ArtField class (3).
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4.3 Conclusion

In this chapter, we have reviewed the possible interferences of native code
over Java data. Two consequences are presented. First, Java fields owned
by a serializable class should be declared transient if they store native
addresses. Indeed, if not, an attacker can send an arbitrary pointer to the
application, potentially leading to a vulnerability exploitation. Second, a
field object can be accessed directly by the native code, bypassing the JNI
interface. We named this bypassing method Direct Heap Access (DHA).
These two problems are solved in Chapter 6. We have also proposed
several implementations of DHA to show its practicability. The usage of
this technique in the wild is evaluated in Section 6.3 of Chapter 6.
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Table 4.1: Interferences between native
code and Java code, in an Android appli-
cation

In the previous part, we have seen that the presence of assembly code
inside Android applications allows interferences between the native code
and the Java part of the application. These interferences are summarized
in Table 4.1. They can happen on the Dalvik bytecode or on the Dalvik
data. This creates two types of issues. First, obfuscation issues: an attacker
can use assembly code to modify or replace the Dalvik bytecode itself or
the data the bytecode handles and thus, complicating the analysis of the
application. Second, vulnerability exploitation issues: a developer can
accidentally break Dalvik bytecode security properties by using assembly
code and leave vulnerabilities exposed for malicious exploitation.

Four distinct interferences have been presented:
I Packing: assembly code can load Dalvik bytecode at execution

time, making bytecode unavailable for static analysis.
I AOTC-based bytecode hiding scheme: Dalvik bytecode can be

compiled into assembly code and then removed, again making
bytecode unavailable for static analysis.

I Missing transient fields: storing memory addresses coming from
assembly into Dalvik serializable fields can make applications
vulnerable and potentially exploitable if these field are not properly
declared transient.

I Direct Heap Access: assembly code can modify Dalvik data with-
out using the standard JNI interface in order to obfuscate data
flow.

In this part,wewill describemethods to detect these interferences. Indeed,
detecting them is the first step towards tackling their corresponding
issues. For obfuscation issues, when the interference is detected, a specific
tool to deobfuscate the application can be used or the interference can be
taken into account by amore generic solution. Such a solution, that deeply
analyzes an application, will be presented in Chapter 7. For vulnerability
issues, when the problematic interference is detected, the developer can
patch the code to remove the issue.

Chapter 5 tackles code interferences. We present detection methods,
which consist in statically checking that the bytecode is not altered
either in the DEX file or in the OAT file. Then, Chapter 6 targets
data interactions. The solutions we propose consist in observing the
interface between the assembly and the bytecode data both on the
source code, or directly during the execution of an application. For
both chapters, detection techniques will be used to determine if the
discussed interferences are already present and used in the wild.





1: Several applications are re-
leased each minute: https://www.

statista.com/statistics/1020956/

android-app-releases-worldwide/

2: The DEX file format does not allow
more than 65,536 (ushort) methods. Thus,
a single application can contain several
DEX files.

3: Alibaba Inc., Baidu Inc., Bancle Inc.,
Ijiami Inc., Qihoo360, Tencent Inc.

Static detection of native
interferences in Java code 5

Aswehave seen inChapter 3, the assembly part of anAndroid application
can modify or replace its Dalvik bytecode. Since assembly code is harder
to understand than Dalvik bytecode, this allows to obfuscate the code.
These obfuscation techniques, when used, fool analysis tools into drawing
erroneous conclusions. Automatic systems, such as antiviruses, may not
properly handle applications if they do not use specific deobfuscation
methods. Hence, it is necessary to be able to detect native interferences
in Java code.

Due to the tremendous number of applications created each day1, anal-
ysis tools must work in a limited time. It is necessary to automatically
determine in a short amount of time if an application is likely to be
malicious. If so, a more thorough analysis can be performed. Hence, it is
necessary to develop bothmethods that scale very well, andmethods that
provide very precise information about how an application behaves.

Dalvik bytecode obfuscation, and by extension, native interferences in
Java code, should be treated with the same principle. Detecting that an
application bytecode is obfuscated needs to be fast and not requiring the
execution of the application. However, this task is not trivial. Indeed, the
studied obfuscation methods, that is packers and AOTC-bytecode hiding
schemes, prevent static analyzers to access the bytecode. Additionally,
as shown in Section 3.2, the obfuscation can be realized in a stealthy
way: the application under analysis may contain bytecode which is never
executed (because quick code for the same methods is available). Thus,
relying only on the absence of bytecode is not trustworthy.

In the Android runtime, bytecode is stored in DEX files2. When the
application is compiled ahead of time, the DEX file is stored in an OAT
file. Each file format is targeted by a specific obfuscation technique:
packers obfuscate DEXs when Bytecode Free OAT (BFO) targets OATs.

This chapter presents the detection methods corresponding to these
techniques, as well as the results of their usage in the wild. Section 5.1
tackles native interferences in DEX files, that is packer obfuscations,
while Section 5.2 deals with native interferences in OAT files, that is
BFO obfuscations.

5.1 Detecting native interferences in DEX files

Detection method: A packer ciphers the DEX file of an application,
replaces it by a code that deciphers and loads the original code during
the execution. This technique was described more precisely in Section 3.1.
Numerous packing services exist online3. They allow users to submit
applications on their platform, so that they receive a corresponding
packed application. Each service uses its own packer and thus it is
possible to list, for each of them, artifacts that allow to detect their

https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
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Table 5.1: Packer detection for various
datasets

GOOD [4] MAL [4] AMD [58] Drebin [56]
Total 4999 4991 24552 5560

Detection 3 542 31 0
0.06% 10.86% 0.13% 0%

Table 5.2: Packer detection evolution in-
side AndroZoo

Year 2008-2013 2014 2015 2016 2017 2018
Packed app. 0 1 4 5 7 7

5: Using APKiD

usage. Public and collaborative databases containing such artifacts can be
found on the web4

4: APKiD:https://github.com/rednaga/
APKiD . For example, specific classes or file names inside an

application can reveal that it is packed [78][78]: Zhang, Luo, and Yin (2015), ‘Dex-
hunter: toward extracting hidden code
from packed android applications’

. This method is very precise
since it allows not only to detect that a packer has been used but also to
identify which packer was used. However, it cannot detect new packers
until they are analyzed.

In order to statically detect unknown packers, detectors can use the
Manifest file [94][94]: Jiang, Zhou, Liu, Jia, Liu, and Zuo

(2017), ‘CrackDex:Universal andautomatic
DEX extraction method’

. This file, which is read by the Android system when
applications are installed, defines the activities and the services of the
application. A packer cannot alter this file: the Manifest is read by
Android before the application execution, i. e. before the deciphering
routine could decipher it. However, the classes that are referenced (as
activities or services) in this file may have been packed and thus, cannot
be found by statically analyzing the application’s DEX file. Thus, a class
referred to in the Manifest but not found in the application code is a
good indicator that the application under analysis has been packed.

Detection in the wild: To determine how much the packing technique
is used in the wild, we have searched for common known packing
signatures5 inside four datasets: AMD [58], Drebin [56], GM19 [4] (split
into GOOD and MAL datasets) and an extract of 9,041 applications
randomly picked from AndroZoo [57]. These datasets are more precisely
described in Section 2.2. Results are reported in Table 5.1 and 5.2.

In Table 5.1, when comparing goodware (GOOD dataset) and malware
(MAL dataset), it is clear that packing methods are more frequently used
in malware samples. Indeed, malicious applications very likely want to
prevent analysts from reverting them. Table 5.2 shows that the usage
of packers has increased starting from 2014. This explains why Drebin,
which is older than 2014, does not contain any packed application, even
if it is composed of malware. On the other hand, AMD, which is also a
dataset of malicious applications, contains a very low number of packed
applications. This can be explained by the fact that AMD is a manually
crafted dataset, i. e. every application has been manually reversed. This
tends to show that packing is a very effective technique to prevent reverse
engineering.

5.2 Detecting native interferences in OAT files

Section 3.2 introduced an obfuscation technique called BFO, which
consists in compiling the Dalvik bytecode into assembly code and then
modifying the bytecode in order to make the bytecode unavailable for

https://github.com/rednaga/APKiD
https://github.com/rednaga/APKiD
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6: DEX files contain the bytecode of the
application

7: Nougat, 2016

analysis. Thus, the original bytecode, which no longer exists, is protected
against both static and dynamic analyses.

When Android compiles a DEX file6, it creates an OAT file which contains
both the original bytecode and the obtained assembly code. Both bytecode
and assembly code are stored method by method, i. e. it is possible that
only a subset of the application’s methods is compiled to native code.
Similarly, the BFO obfuscator can work at the granularity of the method.
For each method it can remove, nop or replace the bytecode. This section
presents, for each case, a detection method and results when applied in
the wild.

The experiments will be conducted over two datasets:
I AOSP dataset: all the compiled applications from the AOSP An-

droid 7.07 firmware. These applications are used to validate that
methods do not generate false positives since they are not obfus-
cated.

I Firmware dataset: all the compiled applications from 17 firmwares
from various brands. This dataset has been described in Section 2.2
and the complete list is available in Appendix A.

5.2.1 Detecting removed bytecode

Detection method: The detection of bytecode removal is straightfor-
ward since it only consists in searching for methods that have assembly
code but no bytecode. We have also tried to develop a naive technique
to detect partially removed bytecode. It consists in, first, computing, for
each method, the ratio of the length of the bytecode over the length of the
assembly code and, then, checks if it exceeds a given threshold. Indeed,
one could say that number of assembly instructions used to represent a
bytecode instruction is bounded. However, compiler optimizations defeat
this relation between bytecode and assembly. For example, compilers
can decide that a method should be inlined, or that a condition can be
removed because it is always true or false. Thus, this method generates
too many false positives to be usable.

Detection in the wild: We have searched for methods containing as-
sembly code while not containing bytecode inside the precompiled
applications of the firwmare dataset. This would have been the evidence
of BFO usage. However, no such method has been found. This shows that
BFO based on removing the bytecode is, at least for studied firmwares,
not actively used in the wild.

5.2.2 Detecting nopped bytecode

Detection method: Detection of nopped bytecode can be achieved
using statistical properties such as entropy. Since nopping code consists
in rewriting bytecode using always the same pattern, it lowers its entropy.
By using an entropy threshold, the nopping can be detected. For each
method of the tested application, we compute the entropy of the bytecode.
A small entropy reveals a nopped bytecode. To determine the threshold
that reveals a nopped method, we have computed the entropy of the
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Figure 5.1: Bytecode entropy for methods
of AOSP Android 7.0 APKs
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Listing 5.1: Example of false positive for
nopped bytecode search

1 // Entropy: 0.197
2 public static final float[] horizontalFlipMatrix() {
3 return new float[] { -1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F,

0.0F, 0.0F, 1.0F, 0.0F, 1.0F, 0.0F, 0.0F, 1.0F };
4 }
5 // Entropy: 0.180
6 public static final float[] identityMatrix() {
7 return new float[] { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0

F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F };
8 }
9 // Entropy: 0.197

10 public static final float[] verticalFlipMatrix() {
11 return new float[] { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, -1.0F, 0.0F, 0.0F,

0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 1.0F, 0.0F, 1.0F };
12 }

methods of all applications of the AOSP dataset. This corresponds to
255,309 methods. These applications are not obfuscated, so their entropy
should be higher than the threshold. The obtained entropy for each
bytecode size is shown in Figure 5.1. For methods whose bytecode size is
lower that 20, the entropy does not reveal anything and is too fluctuating
to be able to set a threshold. Three thresholds are drawn on Figure 5.1:
0.1, 0.2 and 0.3. Results shows that 0.1 is too strict while 0.3 generates
too many false positives. Using a threshold of 0.2, only one method is
falsely reported which is completely acceptable. Thus, by considering
only bytecode of 20 bytes or more and by setting a threshold of 0.2, we
should be able to detect nopped bytecode.

Detection in the wild: We applied this detection technique to the
firmware dataset. As shown in Table 5.3, few methods have an entropy
less than 0.2. We manually checked these methods by looking at their
bytecode. Unfortunately, no true positive has been found. Listing 5.1
shows examples for three methods that are false positives. The code is
not a nopped code, but rather the initialization of several arrays. This
initialization is composed of many repetitions of the same value, which
lowers the entropy. However, this could have been a nopping pattern
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Firmwares
Total

Entropy
< 0.1 < 0.2 < 0.3

Alcatel APKs 338 0
0.00%

13
3.85%

138
40.83%

2 firmwares Methods 2,716,821 0
0.00%

23
0.00%

614
0.02%

Archos APKs 110 0
0.00%

2
1.82%

28
25.45%

1 firmwares Methods 246,962 0
0.00%

2
0.00%

95
0.04%

Huawei APKs 271 0
0.00%

9
3.32%

87
32.10%

3 firmwares Methods 1,146,585 0
0.00%

9
0.00%

317
0.03%

Samsung APKs 795 0
0.00%

6
0.75%

97
12.20%

5 firmwares Methods 1,817,146 0
0.00%

12
0.00%

667
0.04%

Sony APKs 1,412 0
0.00%

23
1.63%

341
24.15%

4 firmwares Methods 5,463,229 0
0.00%

31
0.00%

1,547
0.03%

Wiko APKs 188 0
0.00%

12
6.38%

81
43.09%

1 firmwares Methods 1,709,624 0
0.00%

22
0.00%

365
0.02%

Total APKs 3,114 0
0.00%

65
2.09%

772
24.79%

16 firmwares Methods 13,100,367 0
0.00%

99
0.00%

3,605
0.03%

Table 5.3: Nopped methods in firmware
dataset

used to obfuscate applications. Thus, we believe that this method is able
to detect nopped patterns to be confirmed by manual investigations.

5.2.3 Detecting replaced bytecode

Detection method: Detection of bytecode replacement consists in de-
tecting if a given assembly code is the result of the compilation of a
given bytecode. This can be done by compiling the bytecode and then
comparing the result of this compilation to the given assembly. For each
precompiled application (OAT file), we extract the bytecode file (DEX)
from the OAT file. Then, we recompile it using the compiler present
in the emulator provided by Google. We carefully choose the emulator
to reflect the Android version and the processor architecture used by
the real smartphone. Compiling using the same environment as the
firmware constructor is impossible since applications are cross-compiled
on vendor computers and no documentation is available about their
build systems. Finally, we compared the obtained assembly code with
that of the firmware. If no BFO techniques have been used, they should
be equal.

However, in practice, the output of a compiler is highly dependent on
the configuration of a particular system and many of them use non-
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Table 5.4: Difference percentage for one
firmware

Total
Difference

> 0% > 25% > 5% > 75%

Methods 14629 14578
99.7%

3029
20.7%

51
0.3%

9
0.1%

APKs 43 21
48.8%

15
34.9%

7
16.3%

3
7.0%

8: Immediate values directly wrote inside
assembly operands.

deterministic algorithms [99][99]: Dullien, Carrera, Eppler, and Porst
(2010), Automated attacker correlation for ma-

licious code

. Thus, the obtained assembly code and the
firmware’s one are slightly different, for almost all methods.

In order to investigate how much the codes are different, we have dis-
assembled them and removed the hardcoded8 values, which usually
correspond to offsets that are very likely to change between two compila-
tions. Then, we proceeded to perform a textual diff where each assembly
instruction constitutes a line. Finally, we computed the following ratio:

di f f erence_percenta ge �
naddition+ndeletion

2∗nline

This ratio, which is comprised between zero and one, has been calculated
for all the pre-compiled applications of one firmware. Table 5.4 shows
that more than twenty percent of the compiled methods differs from the
native code present in the firmware by at least one instruction out of
four.

By manually investigating the differences, we observed that they are due
to subtle choicesmade by the compiler. For example, we saw thatmultiple
if else structures are, sometimes, compiled into switch structures. That
is, instead of having multiple comparisons and jumps, one version of the
assembly computes an index and jumps at an address stored in a vector.
Also, we saw that the compilers did not choose to store the class fields at
the same offsets.

That is why, we tried to use state-of-the-art binary diffing tools [99, 100][99]: Dullien, Carrera, Eppler, and Porst
(2010), Automated attacker correlation for ma-

licious code

[100]: Flake (2004), ‘Structural comparison
of executable objects’

,
such as bindiff9

9: https://www.zynamics.com/bindiff/
manual/

or diaphora10

10: https://github.com/joxeankoret/diaphora/

, however they did not achieve to detect
more accurately if codes are the same. Indeed, these tools rely heavily
on the callgraph of the analyzed codes, which is almost nonexistent for
assembly code: due to its object and framework oriented compilation, all
calls are indirect and cannot be resolved statically.

5.2.3.1 Future work on detecting BFO usage

Thus, no BFO usage has been found in the wild for BFO consisting in
removing or noping the bytecode. For the replacement case, no suitable
detection technique is known. Thus, more specific techniques need to be
developed. Indeed, we have conducted a syntactic detection: we tried to
mimic the compiler used by the studied application and to remove incon-
sistent part of assembly code in order to minimize differences between
studied code and recompiled code. But, even in this case, compilers
outputs differ a lot. In such conditions, semantics-based approaches have
shown to be more resilient than syntactic ones [101][101]: Gabel, Jiang, and Su (2008), ‘Scalable

detection of semantic clones’
. Semantics-based

approaches work on high-level representations of programs and func-
tions. For example, code can be converted into dependency graph [101]

https://www.zynamics.com/bindiff/manual/
https://www.zynamics.com/bindiff/manual/
https://github.com/joxeankoret/diaphora/
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or functions can be summarized as formulas that represent their com-
putation [102] [102]: Pewny, Schuster, Bernhard, Holz,

and Rossow (2014), ‘Leveraging semantic
signatures for bug search in binary pro-
grams’

. This allows not to take into account low-level features of
the code that are highly volatile and very probably change between two
versions of the same code.

Such approaches have be conducted in the Android context [29, 30, 103] [29]: Crussell, Gibler, and Chen (2012),
‘Attack of the clones: Detecting cloned ap-
plications on android markets’
[103]: Crussell, Gibler, and Chen (2013),
‘Andarwin: Scalable detection of semanti-
cally similar android applications’
[30]: Alam, Riley, Sogukpinar, andCarkaci
(2016), ‘Droidclone:Detecting androidmal-
ware variants by exposing code clones’

.
While most of them target only bytecode [29, 103], some handle native
code by converting both bytecode and assembly to the same intermediate
language and conduct their analysis on this language [30]. However,
these works do not aim at matching application functions together but
rathermatchwhole applications. Outside the Android context, numerous
assembly functionsmatchingmethodshave beendeveloped [104, 105]

[104]: Rattan, Bhatia, and Singh (2013),
‘Software clone detection: A systematic
review’
[105]: Roy, Cordy, and Koschke (2009),
‘Comparison and evaluation of code clone
detection techniques and tools: A qualita-
tive approach’

. It is
noteworthy that assembly codeofOATfilesdiffers from theoneof classical
desktop programs: dependency between functions is almost nonexistent.
Thus, state-of-art semantic-based methods should be adapted to this
context. This is left as future work.

5.3 Conclusion

In this chapter, we have measured how much native interferences for
obfuscating the code are used in the wild. It is clear that packers are
widely used by malicious applications, and we can believe that normal
applications will also tend to resort more and more to these obfuscation
techniques.

We investigated the use of our new proposed obfuscation method, BFO,
that creates an OAT file without leaving the original DEX file intact.
Results indicate that the full nopping of bytecode is not used yet. If slight
modifications are introduced in the DEX part, detecting an inconsistency
between the compiled part and the modified DEX is a difficult problem.
We proposed a first approach but did not spot any application in our
dataset that performs such a complex obfuscation pattern. This result
could indicate that no application in the analyzed firmware have used
this technique – which is a reasonable hypothesis – or that our detection
method missed such a usage. Building a reliable detection technique
remains an open problem.
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2: Section 4.2

Detection of native interferences
in Java data 6

At stated in Chapter 4, native code can interfere with bytecode data.
These data interferences have been classified into two types:
I Data injection1: assembly code can unintentionally break properties

guaranteed by the Dalvik virtual machine on its data by storing
untrusted values inside Java fields. Doing so leaves vulnerabilities
inside the application by storing native data into Dalvik ones.
Missing transient keyword for Java fields storing native addresses
is an example of such a vulnerability.

I Data modification2: assembly code can circumvent the Java Native
Interface (JNI), the interface given by the Android runtime, to
stealthily modify bytecode values and bypass reverse-engineering
tools. This is called Direct Heap Accesses (DHAs).

These interferences are the cause of vulnerability and obfuscation issues.
The vulnerabilities should be detected before releasing the application
to users, in order to avoid spreading unsafe applications which, even
if a patch is proposed, might not be updated by users. The obfuscation
issues should be taken into account by analysis tools. However, creating
and maintaining tools that handle this kind of interferences complicates
a lot the analysis of applications. In Chapter 7, we will describe the
architecture of OATs’inside, a tool we developed that tackles this very
issue. Consequently, it is necessary to detect in advance if applications in
the wild already actively use this technique.

Thus, both types of interferences should be detected. They consist in
dataflow between two languages. of phenomenon is naturally made
by analyzing their interface, in this case JNI. Nevertheless, detection
methods of these two interferences do not happen at the same place: for
data injection, inside the source code and for datamodification, inside the
compiled application. Indeed, data injection, which leaves vulnerabilities
inside the application, should be treated by developers on their source
code and data modification, which bypasses JNI at runtime, should
be handle by dynamic analysis tools. To date, multiple efforts focusing
on observing dataflow in such contexts have already been conducted.
However:
I for data injection, already existing dataflow tools do not model the

transient property.
I for data modification, already existing methods rely on the JNI

interface and are, due to the inherent principle of DHA, bypassed.

This chapter presents the detection methods corresponding to the
aforementioned interferences and their associated issues. Section 6.1
reviews the contributions related to taint analysis of native Android
applications. Section 6.2 tackles missing transient keywords and
illustrates theproposeddetectionmethodonopen-source applications.
On the other hand, Section 6.3 describes how to detect DHAs and
presents their usage in the wild.
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3: International Mobile Equipment Iden-
tity (IMEI), number that uniquely identi-
fies a mobile device

4: Classically through JNI

5: As part of the continuous integration
tests, for example.

6.1 Taint-analysis across native and Java
interface

Conducting taint analysis across the interface between native and Java has
already been conducted in the Android context [84, 106–108]. Typically,
taint analysis is concerned with finding information flows from so-called
sources of sensitive information into sinks, that leak this information.
Android taint analysis are usually used to track privacy leaks made by
applications [72, 74]. For example, the getImei3 method is considered as
a source while Socket.writeUTF and File.write are potential sinks.

Researchers try to find privacy leaks in applications without the source
code in order to be able to vet applications that come from untrusted
developers. Thus, contrary to our solution proposed in Section 6.2, they
work on bytecode and assembly rather than the source code. Dynamic
solutions [106–108] store the taints among the value of the carriers by,
for example duplicating the size of the heap and using an integer to
represent the taint of each integer stored on the heap. Static solutions [84]
follows the code flow to summarize the stores that can happen during
the execution of the analyzed application.

Unfortunately, these approaches cannot beused formodeling the transient
property: they cannot capture if the value of a field has been computed
using a native pointer. Indeed, they work on assembly code and assembly
registers are not typed: a register is a value that can be interpreted as any
type such as pointer, integer or character.

These approaches, that can also be used to defeat obfuscation, are detailed
in greater detail in Section 7.1.

6.2 Analyzing dataflow between native and
Java at the source code level

We have seen in Section 4.1 that native and Java data do not have the
same nature, they do not carry the same types of data, and that Java
data gives more guarantees over its data than assembly. Then, we have
seen that when native data is transferred into Java data4, Java values’
properties, such as their type, may be broken and vulnerabilities may
be generated inside the application. In particular, Section 4.1 described
deeply how breaking the transient property is very dangerous and can
lead to arbitrary code execution inside the application scope.

In order to ensure users’ security, this kind of vulnerability should be
removed from any application. Since spotting them requires advanced
security knowledge and involves analyzing dataflow between different
languages, developers may miss some of them. Thus, it is necessary to
provide them with tools that automatically detect missing transient

keywords. Since the tool is intended for developers, it can directly work
on the source code and, thisway, not suffer from information loss inherent
to the compilation process. Additionally, the tool does not need to be run
frequently during the development cycle but rather only once before the
application is released5 and thus, its analysis is not time-constrained.
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Figure 6.1: Set view of targeted problem,
Reminder of Figure 4.2 Section 4.1

This section presents a method that detects Java fields that stores ref-
erences without being declared transient. After giving the method
architecture and its implementation, this section shows its effective-
ness by analyzing both a known CVE and the open-source Telegram
application.

6.2.1 Statically detecting reference fields in source code

The solution presented in this section is able to detect exploitable fields
(FE) that are reference fields, not declared transient. For the sake of clarity,
Figure 4.2 which represents missing transient properties using a set
view, has been reproduced here in Figure 6.1. To compute this set, the
analysis has to compute DT and TR. The set of declared fields (DT) is
easily obtained by looking at the Java definition of fields. Computing
the set of reference fields (TR) requires for each field to determine if it
encodes a memory address. As the type is not enough to decide, the
usage of this field in the code needs to be tracked. If it stores a reference
then it should be used at some point as a pointer. We propose a static
method to track the references manipulated in C/C++ code inside the
Java code using taint analysis. The difficulty lies in the duality of an
Android application: while the Java code declare fields, the C/C++ part
of the application code can manipulate them by writing into the memory
of the application.

The overall architecture of the proposed solution is given in Figure 6.2.
First, the C/C++ code is analyzed to list the fields that are manipulated
as pointers. This is the first part of the reference fields (TR1 ). Moreover,
the C/C++ analyzer lists all pointers that interface with the Java code.
Using this list, the Java analyzer conducts its own taint analysis to track
fields that interact with these pointers. This is the second part of the
reference fields (TR2 ). Finally, the declared fields (DT) are extracted and
subtracted from the reference fields (TR1 ∪ TR2 )\DT , in order to compute
the exploitable fields (FE).

6.2.1.1 Reference field patterns in source code

In order to determine precisely which taint analysis to conduct, we have
listed all possible implementations of reference fields (TR). Like every
variable or field, a reference field can be either written or read. Because
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Figure 6.2: Architecture overview
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1 public transient long referenceField;
2 JNIEXPORT void JNICALL native_method(JNIEnv* env,

jobject thisObj) {
3 jclass cid = env->FindClass("ThisClass");
4 jfieldID fid = env->GetFieldID(cid, "

referenceField", "L");
5 unsigned long ptr;
6 ptr = (unsigned long) malloc(sizeof(char));
7 env->SetLongField(thisObj, fid, ptr);
8 }

(a) Native only assignation

1 public transient long referenceField;
2 JNIEXPORT void JNICALL native_method(JNIEnv* env,

jobject thisObj) {
3 jclass cid = env->GetObjectClass(thisObj);
4 jfieldID fid = env->GetFieldID(cid, "

referenceField", "L");
5 unsigned long ptr = env->GetLongField(thisObj,

fid);
6 free((void*)ptr);
7 }

(b) Native only usage

1 public transient long referenceField;
2 JNIEXPORT jlong JNICALL native_method(JNIEnv* env,

jobject thisObj) {
3 return (unsigned long) malloc(sizeof(char));
4 }
5 public void java_method() {
6 this.referenceField = this.native_method();
7 }

(c) Native to Java assignation

1 public transient long referenceField;
2 public void java_method() {
3 this.native_method(this.referenceField);
4 }
5 JNIEXPORT void JNICALL native_method(JNIEnv* env,

jobject thisObj, jlong arg) {
6 free((void*)arg);
7 }

(d) Java to native usage

Figure 6.3: Reference fields in Android application source code

pointer values

SetField

return

GetField

nativeCall(y)

cast to pointer

Native code

x = nativeCall()

field = x

y = field

nativeCall(y)

Java code

tunneled source/sink

tunneled source/sink

Fields
write write

read read

sink:

source:

source:

sink:

:sink

:source

Clang
information flow

Flowdroid
information flow

Tunneled
information flow

Java to native usage

Native only usage

Native only assignation

Native to Java assignation

Figure 6.4: Representation of reference flow tracking

Table 6.1: Sources and sinks for detecting
reference field patterns Patterns Native source code Java source code

Sources Sinks Sources Sinks

Native
only

assignation Pointers JNI
Set fields ∅ ∅

usage JNI
Get fields

Casts to
pointer ∅ ∅

Native
to
Java

assignation Pointers Return
operations*

Native
method
returns*

Field
assignations

Java
to

native
usage Method

arguments*

Casts
to

pointer

Fields
value

Native
method

arguments*
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only native code is able to handle raw memory addresses, assignation or
usage can happen either directly in native code or within a mix of native
and Java code. This results in four distinct code patterns. These patterns
are shown in Listings 6.3a, 6.3b, 6.3c, 6.3d and are the following:

1. Native only assignation: an address, or pointer in C/C++, is used
to set a field through JNI. For example in Listing 6.3a, the address
retrieved from malloc at Line 6, is set to the field referenceField of
ID fid at Line 7 using the JNI SetLongFieldmethod.

2. Native only usage: a value obtained from a field through JNI is cast
to a pointer. For example in Listing 6.3b, the field value retrieved at
Line 5 using JNI GetLongFieldmethod, is cast to a pointer at Line 6.

3. Native to Java assignation: an address that is returned by a native
method is assigned to a field in a Java method. For example in
Listing 6.3c, the address returned by the C++ native_method at
Line 3 is assigned to the field referenceField by Java code at Line 6.

4. Java to native usage: a field is used, in a Java method, as an argument
to a native method that casts this argument to a pointer. For example
in Listing 6.3d, the field referenceField, is used as an argument
when calling the C++ native_method at Line 3. During this call, the
field is cast to a pointer at Line 6.

Focusing on the aforementioned patterns, we have the guarantee that
our approach will exhaustively retrieve all the reference fields (TR) and
therefore successfully build the list of fields whose transient keyword
is missing (FE).

6.2.1.2 Static patterns detection using taint analysis

In order to detect the patterns that we just presented, we compute
information flows where sources and sinks are associated to fields or
memory pointers. All possible sources and sinks, i. e. the elements of the
native or Java source code that may produce a flow, are summarized in
Table 6.1. For example, a “Native only assignation” flow exists if the native
code manipulates a pointer (source) and calls a JNI Set field method
using this pointer as an argument (sink). For patterns that are composed
of Java and C/C++ code, the information flow is more complex as at
least two parts of the code have to be analyzed together. For example, a
“Native to Java assignation” flow starts in the native code when a pointer
is used and returned by a method called in the Java code, and ends in the
Java code when the returned value is set to a field. This is symbolized by
an asterisk in Table 6.1 and we call this a "tunneled source/sink" because
the sink of the native code becomes a source for the Java code. When a
taint reaches a tunneled sink, in a given programming language, it does
not report a problematic flow but instead creates a new tunneled source,
in the other language.

All information flows associated to assignation/usage patterns are illus-
trated in Figure 6.4. When analyzing the code, the sources and sinks are
created using the following rules:

1. Native only assignation: all pointers, i.e. all values whose type con-
tains “*” or any cast to such a type, are considered as sources. All
JNI Set*Fieldmethods are considered as sinks. Thus, in Listing 6.3a,
Line 6 generates a taint that is propagated until the sink at Line 7.
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2. Native only usage: all field values retrieved using a JNI Get*Field
method are sources and every cast to a pointer type is considered as a
sink. Thus, in Listing 6.3b, Line 5 generates a taint that is propagated
until the sink at Line 6.

3. Native to Java assignation: in native source code, every pointer is
considered as a source and return operations are tunneled sinks.
Then, in Java source code, every return of a method corresponding
to a tunneled sink, is a tunneled source. The sinks are all the field
assignations that happened in Java. Thus, in Listing 6.3c, Line 3
generates a taint (malloc returns a pointer) and sinks this taint since
it is a return operation. Then, Line 6 generates an other taint, because
native_method is a tunneled source. Finally, the same Line 6 sinks
the taint during the assignation.

4. Java to native usage: in Java source code, all field values are sources
generating taints that may be sunk passing through native method
arguments. Then, in the native source code of these specific methods,
the argument that has sunk a field value is a tunneled source. The
taint finally sinks when reaching a cast to the pointer type. Thus, in
Listing 6.3d, Line 3 propagates the taint of the field referenceField

to the first argument of the native_method. Thus, the third argument
at Line 5 generates a taint that is propagated until the cast at Line 6.

Thus, a tool which correctly conducts all these taint analyses is able to
detect any pattern usage, in other words any reference field (TR).

6.2.1.3 Static analysis limitations

Due to its static nature, the proposed analysis suffers from common
static Android taint analysis drawbacks. In particular, when a field is
manipulated through reflection, the analysis cannot determine which
field is used and so cannot report a potential missing transient keyword,
leading to false-negative generation.

Moreover, the Java analysis has to match the name of the native method
in the C/C++ source code to the one in the Java source code. Even though
the Android native method loader uses a convention for the naming of
native methods, developers can register their own names by using the
JNI method RegisterNatives. As this registration is done at execution
time, this behavior cannot be retrieved by the static analysis and may
generate false positives and negatives. However, the developer could
inform about his specific mappings.

6.2.2 Analysis architecture

In practice, our taint analysis has been implemented following the
architecture presented in Figure 6.2. The source code is first split between
Java and C/C++ and each language is handled by its own analyzer which
are described in this section.
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6: version 2.7.1

C/C++ analyzer For the C/C++ part, the taint analysis is built over
clang [109] [109]: Lattner (2008), ‘LLVM and Clang:

Next generation compiler technology’
. Clang provides an event-driven API for developing static

analyzers. After converting the C/C++ source code into an Abstract
Syntax Tree (AST), clang offers the possibility to call hooks before or
after the evaluation of specific expressions. Our hooks are reported in
Algorithm 6.1.

For optimization purposes, all four taint analyses are conducted at the
same timewith threedifferent types of taints:A for themethod arguments;
F for the fields got using JNI; P for the pointers. Taints are applied to
C/C++ expressions. If no taint has been applied to an expression, then
this expression is considered to carry the taints of its sub-expressions
(e.g. a+b carries the taints of a and those of b).

Finally, the C/C++ analyzer outputs a JSON file that contains:

1. a list of fields that have been detected through “native only assignation”
and “native only usage” patterns;

2. a list of methods whose return values are pointers. This corresponds
to the native part of the “native to Java assignation” pattern;

3. a list of method arguments that are used as pointers that coincide
with the “Java to native usage” pattern.

Java analyzer For the Java part, the taint analysis is built over Flow-
droid6 [68]

[68]: Arzt, Rasthofer, Fritz, Bodden, Bartel,
Klein, Le Traon, Octeau, and McDaniel
(2014), ‘Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware
taint analysis for android apps’

. Flowdroid provides the same event-driven programming
fashion as clang. It also gives an additional class hierarchy lookup mech-
anism that is used to filter and treat only fields from serializable classes.
The Java analyzer takes as input the Java code, the list of methods and
the list of method arguments generated by the C/C++ analyzer. Using
these lists to setup its taints and sinks, Flowdroid generates a list of fields
detected through “native to Java assignation” and “Java to native usage”
patterns. Here no special taint management is made since the two taint
analyses are not mixed.

Final reporting Finally, a union is made between the two field lists
generated by respectively the C/C++ and Java analyses. This set is an
under-approximation of the reference fields (TR). By parsing the code,
the fields declared as transient (DT) are retrieved and the potentially
exploitable fields set FE is computed by subtracting the set of declared
transient fields to the set of reference fields (TR \DT).

6.2.3 Validation of the detection method

In order to evaluate and validate our novel approach, we need to analyze
the full source code of applications. To get a chance to find vulnerabilities
related to serialization, these applications should have native code and
additionally, should manipulate objects from both sides. Finding such
open source applications is very difficult, as most of candidate appli-
cations from the Google Play store do not release their source codes.
Moreover, by construction of our approach, systematic testing is not
easily automatable as the recompilation process needs fine-tuning. Thus,
large-scale benchmarking of our approach becomes unrealistic.
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Algorithm 6.1: C/C++ analyzer taint management
while after function call do

if called function is JNI Get Field then
Result expression is tainted with taint F

end if
end while

while before value declaration do
if value is an argument of the analyzed function then

Value expression is tainted with taint A
else if value is a variable then

Value expression is tainted with taint P
end if

end while

while before function call do
if called function is JNI Set Field then

if second argument of the called function is tainted with P then
print native only assignation

end if
end if

end while

while before function return do
if return value expression is tainted with P then

print native to java assignation
end if

end while

while before casting expression do
if expression is cast to a pointer then

if cast expression is tainted with F then
print native only usage

end if
if cast expression is tainted with A then

print java to native usage
end if

end if
end while

Table 6.2: Flows reported for Telegram

Reported fields FE Native to Java
assignation

Java to native
usage

Native only
patternsClass name Field name

tgnet.TLObject ip ipv6 peer_tag X
messenger.BaseController currentAccount X
messenger.
NotificationCenter

currentAccount X

SQLite.SQLiteDatabase sqliteHandle X X
SQLite.
SQLitePreparedStatement

sqlite
StatementHandle

X

tgnet.NativeByteBuffer address X
ui.Components.
RLottieDrawable

nativePtr X X
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7: https://github.com/google/
conscrypt

8: https://github.com/DrKLO/
Telegram, tag: release-5.15.0_1869

Nevertheless, we performed the following tests that clearly show the
benefit of the proposed methodology. We analyzed three cases:

1. Constructive validation: we construct an application that regroups
the four patterns described in Listings 6.3a, 6.3b, 6.3c, 6.3d. These
cases can be seen as unit tests that confirm that the tool works as
expected.

2. Literature confirmation:we review theOpenSSLX509Certificate class
from the conscrypt7 library, as according to Peles & Hay [36]

[36]: Peles and Hay (2015), ‘One Class to
Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

, this
class contains a field named mContext which should be vulnerable
for not being transient. This test shows that our tool can reproduce
previous results automatically, enhancing the results of Peles et al.
who discovered the vulnerabilities manually.

3. At-scale verification: we select, based on its popularity and its robust-
ness, the Telegram application8 as it constitutes a large open-source
Android application with more that 1 million lines of code spread
across Java and C++. This test shows the benefit of our tool when
analyzing the full source code of an application.

In a nutshell, instead of seeking exhaustivity, our experimental protocol
focuses on validating our approach and aims at showing that: a) our pat-
terns are catchable; b) the previously known vulnerabilities are retrieved
automatically; and c) our solution can be used to check large open-source
applications. Finally, on a different dimension, we also discuss the perfor-
mances of our approach in terms of computational time and resources
consumption.

6.2.3.1 Constructive validation of the patterns

As intended, all four transient fields have been detected by their respective
pattern. For patterns “native to Java assignation” and “Java to native
usage”, the analysis has logged the transient field names and their class
names. It also logged the name of the native method responsible for
setting or using the transient field. For “native only” patterns, the analysis
only logged the name of the transient fields. It also recovered the class
name for native only assignation but did not manage for the native
only usage pattern. This pattern, see Listing 6.3b, uses the JNI method
GetObjectClass (line 3) instead of FindClass whose argument is the
class name. As mentioned in Section 6.2.1.3, this method is not handled
yet.

6.2.3.2 Catching known errors

When running the C/C++ analyzer over the OpenSSLX509Certificate
class source code, no field were reported using the native only patterns.
For the “native to Java assignation” pattern, the C/C++ analyzer has
reported 127 native methods whose return value is a pointer, that is
127 tunneled sinks. On the Java side, the analyzer has not reported any
corresponding information flow because the returned values are used
for initializing fields that are object references. Object references do not
need to be declared transient, cf. Section 4.1. For the “Java to native usage”
pattern, the C/C++ analyzer has reported 111 native method arguments
treated as pointers inside the native code, i.e. 111 tunneled sources. The

https://github.com/google/conscrypt
https://github.com/google/conscrypt
https://github.com/DrKLO/Telegram
https://github.com/DrKLO/Telegram
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1 Source: <OpenSSLX509Certificate: long mContext>
2 Sink: $l4 = staticinvoke <NativeCrypto: long X509_get_notAfter(long,OpenSSLX509Certificate)>($l3, r0)
3 Source: <OpenSSLX509Certificate: long mContext>
4 Sink: $l2 = staticinvoke <NativeCrypto: long X509_get_notBefore(long,OpenSSLX509Certificate)>($l1, r0)
5 Source: <OpenSSLX509Certificate: long mContext>
6 Sink: staticinvoke <NativeCrypto: void X509_free(long,OpenSSLX509Certificate)>($l2, r0)

Figure 6.5: OpenSSLX509Certificate Java analysis output

9: 12 threads, 2.60GHz

Java analyzer has reported 3 corresponding information flows, all related
to the field mContext, which is the one that was previously reported
vulnerable [36][36]: Peles and Hay (2015), ‘One Class to

Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

. Thus, the analysis has reported no false positive and has
detected the three vulnerabilities.

The source / sink couples are reported in Figure 6.5. As shown in this
Figure, the fields are clearly identifiable and the output could be read by
any developer even without specific security-oriented knowledge.

6.2.3.3 Checking a large open-source application

We applied our detection method for missing transient keywords to the
open-source Telegram application. The warnings generated during the
analysis of this application are reported in Table 6.2. In order to assess
that the analysis scales with huge code bases, we have analyzed all classes,
including non-serializable ones. The C/C++ analysis of Telegram has
reported three fields using the “native only” pattern: ip, ipv6, peer_tag.
For all these fields the class name was not recovered since the C/C++
code uses GetObjectClass to retrieve the class of the accessed fields. By
manually looking at the source code, we found that the three fields are
declared several times in subclasses of the tgnet.TLObject class. The
three fields are String fields: they are references to objects, which are
automatically handled by the serialization process. Thus, they do not
need to be declared transient and are false positives. For the “native to Java
assignation” pattern, the C/C++ analyzer has reported 26 nativemethods
whose return value is a pointer (tunneled sinks). The Java analyzer then
reported 5 fields that should be transient. On the other hand, for the “Java
to native usage” pattern, the C/C++ analyzer has reported 62 method
arguments that are treated as pointers (tunneled sources) which has led
the Java analyzer to report 3 fields. Since 2 fields are reported by both
patterns, we finally obtained flows of int or long fields that should be
transient. Nevertheless, the 6 corresponding declaring classes are not
serializable. As a consequence, the forgotten transient keywords do
not lead to vulnerabilities, in the current state of Telegram. The results
reported are programming errors that could bring vulnerabilities if a
developer updates these classes into making them serializable.

6.2.3.4 Analysis time

We have recorded the time elapsed during the analysis of the three cases
(non-serializable classes omitted for Telegram analysis). The times and
the number of Source Line Of Code (SLOC) analyzed are reported in
Table 6.3. Analyses have been run using 26G of DDR4 RAM and an
Intel Core i7-8850H9 processor. Even for the huge Telegram application
(encompassing more than 1 million lines of code), the analysis terminates



6.3 Monitoring the interface between Java and native code at the execution time 63

Name
Java C++

SLOC duration SLOC duration
Patterns example 26 1.508s 42 0.34s
OpenSSLX509 663 5.499s 8,269 356.93s
Telegram 511,519 6min 6s 628,864 5h 02min

Table 6.3: Analysis time

10: Originally introduced for optimization
purposes.

11: https://play.google.com/store

but takes five hours. The proposed method is not intended to be used
frequently during the development cycle but rather only once before the
application release, as part of the continuous integration tests.

6.3 Monitoring the interface between Java and
native code at the execution time

Section 4.2 introduced a technique called DHA, which consists in access-
ing Java data using assembly code without using JNI. For this purpose,
the native code directly accesses or modifies the heap, the memory area
where Java objects are stored. While Android provides a specific class
named DirectBytebuffer to realize this operation10, we have shown
that an application could inspect the memory itself, therefore bypassing
state-of-the-art tools.

Since DHA is a newly proposed obfuscation technique that relies on
already known optimization mechanisms, we would like to determine
if and how DHA is used in the wild. This section presents a detection
method and its results when applied in the wild.

The experiments will be conducted over two datasets:
I Androzoo [57]

[57]: Allix, Bissyandé, Klein, and Le Traon
(2016), ‘AndroZoo: Collecting Millions of
Android Apps for the Research Commu-
nity’

: a dataset of about 13,000,000 different applications
retrieved from various market including Google Play11. Thus, ap-
plications can be either malware or goodware. The experiment will
be conducted on a subset of 100,000 applications chosen randomly.

I AMD [58]

[58]: Wei, Li, Roy, Ou, and Zhou (2017),
‘Deep Ground Truth Analysis of Current
Android Malware1’

: a ground-truth dataset of 24,552 malware that have
been reversed and classified among different malware families.

Detection method: In order to detect DHA, the analysis tool has to
track all reads or writes that are made to the heap. Statically determining
the addresses accessed by a piece of assembly code is an open research
problem. On the other hand, determining it during an execution of
the analyzed application is easier: this is done by disallowing, using
mprotect, any access to the heap addresses when running native code.
Then, when native code tries to access the heap, it generates a SEGV

signal which can then be caught. By parsing the internal structures of
the garbage collector, the tool retrieves the type of the accessed value.
Finally, the access is authorized and the execution is resumed.

We intentionally gave an insight of this detection method, which avoids
giving implementation details. It may give the feeling that implementing
this method is straightforward. In reality, this detection method is part
of a more global tool, OATs’inside, that is fully described in Chapter 7.
Technical challenges have been discussed apart, in Chapter 8.

https://play.google.com/store
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Table 6.4: Number of DHAs detected
Dataset Total ARMv8 DHA DHA without

system libs
Androzoo [57][57]: Allix, Bissyandé, Klein, and Le Traon

(2016), ‘AndroZoo: Collecting Millions
of Android Apps for the Research
Community’

100,018 10,661 8,158 (76.5 %) 4,021 (37.7 %)
AMD [58]

[58]: Wei, Li, Roy, Ou, and Zhou (2017),
‘Deep Ground Truth Analysis of Current
Android Malware1’

24,552 349 194 (55.6 %) 103 (29.5 %)
Total 124,570 11,010 8,352 (75.9 %) 4,124 (37.5%)

Table 6.5: Classes and libraries detected
to be using DHA Dataset

System libraries WebView Other
samples classes samples classes samples classes

Androzoo [57] 74.7% 1,797 37.3% 1,424 0.4% 7
AMD [58] 54.7% 154 29.5% 221 0% 0

12: Nougat, 2016

13: e.g. libc.so, boot.oat, libandroid_-
runtime.so

14: https://github.com/google/
conscrypt

Detection in thewild: The detection has been implemented forARMv8
and Android version 7.012. The datasets were first filtered to keep only
the compatible APKs, and we checked that these applications can be
launched correctly. Column “ARMv8” of Table 6.4 reports the number of
applications obtained after applying this filter.

We analyzed these filtered datasets and logged all performed DHAs, i. e.,
each time the heap was accessed from the native code. Note that each
application was run from only the main activity and without any user
interaction. Consequently, the results presented in Table 6.4 are a lower
bound on the actual usage of DHA. For each DHA, we logged the class
of the accessed value and the name of the library performing the access,
obtained from /proc/self/maps. The implementation of this logging
mechanism is available in Section 8.1.4.

Globally, between 55% and 76% of the applications performed DHAs.
This lower bound shows that DHA cannot be ignored when building
an analysis tool. When investigating which libraries perform DHAs, we
noticed that most accesses are done by systems libraries13. However, we
have still detected that 37% of applications perform DHAs using custom
libraries.

A comparison of the statistics retrieved for Androzoo and AMD datasets
showed that DHA usage does not discriminate a malicious behavior from
a benign one. In fact, according to the name of the libraries performing
DHA, it seems to be used mostly to increase performance.

We investigated the name of the classes accessed by DHA, the number
of unique class names is reported in Table 6.5. As expected, system
libraries access a large variety of objects of different classes as these
libraries are part of the runtime internals. Additionally, we separated a
specific library, WebView, because it manipulates a lot of internal objects
of the browser. Finally, remaining libraries modify seven different classes.
Almost every sample uses [F, String, [B or ByteArrayInputStream

which confirms that developers mainly use DHA as Google recommends,
without bypassing their guidelines [110]

[110]: (2019), JNI tips

. In particular, we notice that
one library, conscrypt14, accesses the OpenSSLX509Certificate and
OpenSSLX509CertificateFactory classes using DHA.

These results comfort the idea that DHA is not yet used as a way to
bypass analysis, even in the security community [97]

[97]: Bao, He, and Wen (2018), ‘DroidPro:
AnAOTC-BasedBytecode-Hiding Scheme
for Packing the Android Applications’ . However, due to

https://github.com/google/conscrypt
https://github.com/google/conscrypt
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the high number of benign DHA, a few malicious ones could be hidden
and remained undetected. This highlights the need for tools andmethods
that take into account this kind of accesses, such as the one described in
Chapter 7.

6.4 Conclusion

In this chapter we addressed the problem of interferences of native code
over Java data, presented before in Chapter 4. Two use cases have been
considered: an interference that would bring a vulnerability and an
interference that would be used for obfuscating a modification of an
object on the heap from the native code. For these problems, we designed
two independent solutions.

First, we designed an approach based on data flows, working across the
native and bytecode world. Contrary to other tainting approaches of the
literature, the proposed solution handles the source code of an application.
It enables to detect a missing transient keyword that possibly flaws
a memory pointer. We carefully designed unitary tests for covering all
combinations of flows going from native to native, native to Java and
Java to native. We confirmed the already known vulnerability of the
OpenSSLX509Certificate – this time automatically, and not manually –,
and we investigated the Telegram code source. We found programming
errors for Telegram that cannot be considered as vulnerabilities, but that
would be if a developer decides to serialize the concerned class. Observed
performances for Telegram, that contains more than one million lines
of code, show that our tool can be used when preparing a release of an
application.

Second, we designed a new method for detecting DHA that bypasses the
Java Native Interface. DHAs is widely used for optimization purpose and
our manual investigation of the suspicious uses show that no malicious
or obfuscation usage is present in the analyzed datasets. This is not
surprising as such a technique is introduced by this thesis [7].

Nevertheless, as an obfuscation method could be based on DHAs in the
near future, we develop a dedicated tool for handling such an obfuscation
technique. This is the contribution presented in the next part of this
thesis.
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In Chapters 3 and 4, we presented three obfuscation techniques: packers,
Bytecode Free OAT (BFO) and DHA. In Chapters 5 and 6, we showed
that the packers and DHA obfuscation techniques described in the first
part are actively used in the wild. No evidence of usages of BFO has been
found, but the detection techniques that have been implemented only
focus on the simple forms of this obfuscation and may have missed some
instances.

Thus, it is necessary for reverse-engineering tools that intend to work on
Android applications to handle these obfuscation techniques. However,
existing state-of-the-art tools do not work with BFO and DHA, the new
obfuscation techniques we introduced. Additionally, generally speaking
these tools try to recover the unobfuscated form of the bytecode of the
analyzed application. Although when successful, this approach is ideal
since it totally removes any benefit from using obfuscation techniques,
this forces tools to handle specifically every possible obfuscation. When
a new obfuscation technique appears, a corresponding deobfuscation
technique has to be developed and integrated inside the tool. This cat-
and-mouse game is in favor of the obfuscated applications since it is
very hard for analysis tool developers to correctly guess what the future
obfuscation techniques will be.

We believe that detecting if an application is a malware or analyzing
a malware does not require to have the full code of the application.
Indeed, understanding the overall behavior of an application does not
require to understand all the effects of all the instructions that compose
it. In this part, we focus on building OATs’inside, an hybrid tool that is
able to retrieve the behavior of an Android application regardless of
the potentially used obfuscation techniques. To this extent, OATs’inside
observes and reports, at execution time, all the effects of the application
on the Android system and create, statically after the execution, a graph-
based model of the application’s behavior. This allows to generically
study the application.

Chapter 7 describes the architecture ofOATs’inside, a new analysis tool
that generically handles the new obfuscation techniques presented
in this thesis. Chapter 8 describes the implementation challenges
encountered when developing OATs’inside and their corresponding
solutions.





1: https://source.android.
com/devices/tech/dalvik/

dalvik-bytecode

OATs’inside: Retrieving behavior
of multi-language applications 7

As shown in the first part of this manuscript, state-of-the-art Android
analysis tools can be defeated by obfuscations based on native inter-
ferences. Additionally, it has shown that static analysis can be easily
hindered. That is why this part presents OATs’inside, a new dynamic tool
that takes these interferences into account.

This tool is intended to analyze Android applications and retrieve their
behavior. It is noteworthy that it does not intend to retrieve the source
code of the analyzed application: it outputs graph representations of
what the application realizes. These graphs are composed of Java-level
behaviors, e.g. method invocations or object modifications. While this
representationmisses low-level native events, it allows to understand how
the application manipulates the Android environment. When manually
used, OATs’inside proposes to the analyst to conduct a symbolic analysis
on a method of special interest. This additional static analysis retrieves
the data flow between the different element of the output graphs.

Additionally, OATs’inside does not modify the analyzed application. That
is, all its analysis is conducted inside the Android runtime or on the
analysis computer. This prevents applications from crashing due to
unstable modifications.

Section 7.1 reviews the contributions in the literature related to na-
tive applications analysis and highlights gaps that OATs’inside fills.
Section 7.2 presents the architecture and the different modules of
OATs’inside, a new Android hybrid analysis tool. An example of ob-
fuscated application analysis using OATs’inside is given in Section 7.3.
Then, Section 7.4 shows the overhead induced when analyzing an
application using OATs’inside. Finally, Section 7.5 discuses the stealth-
iness of OATs’inside.

7.1 Adapting instrumentation system to
multi-language applications

As stated in Section 2.4, analysis techniques for native applications have
been mainly declined in three fields: unpackers [95], taint analysis [84,
106] and application instrumentation [83, 88].

To assess how these tools would perform their analysis on obfuscated
applications, we designed unit tests, as reported in Table 7.1. As these
tools are most of the time unavailable, we minutely read the papers
describing these fives tools: TIRO [95], ARTist [88], TaintART [106], JN-
SAF [84], andMalton [83]. In Table 7.1, each reported column corresponds
to a tool.

To build the test cases, we read the Dalvik bytecode specification1 to
enumerate all possible Java source statement behaviors. These behaviors

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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Table 7.1: State-of-the-art solutions against native obfuscations

Original source code Bytecode Native

Case DEX only Pack DEX Bytecode Free OAT (BFO) JNI JNI+obf Direct Heap Access (DHA)

Evaluated tool A Ta T J M A Ta T J M A Ta T J M A Ta T J M A Ta T J M A Ta T J M

Method Invoke / Return • • • • • - - • - ◦ - - - - ◦ - - - • ◦ - - - • ◦
Object • • • • • - - • - - - - - - - - - - - - - - - - -

Allocation Primitive variable • • • • • - - • - - - - - - - - - - - - - - - - -

Primitive Array • • • • • - - • - - - - - - - - - - - - - - - - -

Object Field • • • • • - - • - ◦ - - - - ◦ - - - • ◦ - - - • ◦ - - - - -

Access Primitive variable • • • • • - - • - - - - - - - - - - - - - - - - -

Primitive Array • • • • • - - • - ◦ - - - - ◦ - - - • ◦ - - - • ◦ - - - - -

Object Field • • • • • - - • - ◦ - - - - ◦ - - - ◦ ◦ - - - - ◦ - - - - -

Operations Primitive variable • • • • • - - • - - - - - - - - - - - - - - - - -

Primitive Array • • • • • - - • - ◦ - - - - ◦ - - - ◦ ◦ - - - - ◦ - - - - -

Object Field • • • • • - - • - ◦ - - - - ◦ - - - ◦ ◦ - - - - ◦ - - - - -

Condition Primitive variable • • • • • - - • - - - - - - - - - - - - - - - - -

Primitive Array • • • • • - - • - ◦ - - - - ◦ - - - ◦ ◦ - - - - ◦ - - - - -

Typing
Check • • • • • - - • - - - - - - - - - - - - - - - - -

Cast • • • • • - - • - - - - - - - - - - - - - - - - -

Exception Throw / Catch • • • • • - - • - - - - - - - - - - - - - - - - -

Monitor Enter / Exit • • • • • - - • - - - - - - - - - - - - - - - - -

O: OATs’inside; A: ARTist [88]; Ta: TaintART [106]; T: TIRO [95]; J: JN-SAF [84]; M: Malton [83]
Retrieval is •: fully, ◦: partially, -: empty

�: not applicable

2: Obfuscation technique described in Sec-
tion 3.1
3: Obfuscation technique proposed de-
scribed in Section 3.2

4: Obfuscation technique proposed in Sec-
tion 4.2

are divided into 8 families and 20 categories listed in the two first
columns of Table 7.1. For each category of behaviors, we distinguish,
when relevant, three Java types: object, primitive variable or primitive
array. For example, the condition category represents changing the
execution flow (e.g. if statements), depending on the value of an object
field, a primitive variable allocated onto the stack, or primitive array
element. Then, the test cases were packaged in a single application
obfuscated in five different versions:
I DEX only: test cases made in Dalvik bytecode.
I Pack DEX: packed2 version of DEX only.
I BFO: BFO3 version ofDEX only. BFO consists in compiling the DEX

file into assembly and then, keeping only the resulting assembly.
I JNI: test cases implemented in C++ using JNI.
I JNI+obf : resulting from the usage of Obfuscator-LLVM [111] on the

JNI version.
I DHA: DHA4 version of JNI. DHA consists in obfuscating heap

accesses, then other tests cases are irrelevant (grayed in Table 7.1).
Unit tests are precisely described in Appendix B.

We present below the evaluation of state-of-the-art tools on the designed
test cases.

TaintART [106] and ARTist [88] rely on dex2oat, the Android compiler
responsible for compiling Dalvik bytecode into assembly code. Both
approaches add instrumentation instructions during the compilation
step by customizing dex2oat. Since dex2oat can only compile Dalvik
bytecode, these tools can only work on this bytecode. That is why they
can only retrieve behaviors for the DEX only version.
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5: Accesses to Java fields

TIRO [95] is an unpacker. Thus, it can output the loaded bytecode of the
Pack DEX version. Then, the bytecode being available, the analyst can
retrieve all the application behaviors. However, excluding the behavior
related to code loading, which is not an elementary Java behavior, TIRO
does not analyze any native code. That is why it cannot work for other
versions.

JN-SAF [84] is a static analysis-based taint tracking tool. It uses angr [112]
to statically track information flows. The key idea is to initialize the JNI
entry point table with symbolic addresses representing the different
JNI methods. Then, JN-SAF can represent their effects symbolically. All
these approaches provide all the sensitive information flow between
methods, but retrieve only the behaviors involved in the information
flow. Therefore, it does not care about allocations, typing, exceptions, or
monitoring of events, and do not output them at all. Owing to its static
nature, it cannot work with the Pack DEX version. Moreover, JN-SAF
targets only native methods and does not handle AOTC-compiled code
and, thus, it misses the BFO version. Because JN-SAF aims at tracking
flows, it does not log explicitly the conditions and the operations made
by the code. However, these elements are taken into account when
computing a data flow. That is why some partial information about
operations and conditions is captured. Finally, because JN-SAF relies
on classical symbolic execution, obfuscated assembly can overload its
analysis by, for example, adding conditional instructions that depend on
the application inputs [113] [113]: Banescu, Collberg, Ganesh, New-

sham, and Pretschner (2016), ‘Code obfus-
cation against symbolic execution attacks’

. This prevent the JNI+obf version from being
handled.

Malton [83] is a hybrid analysis platform that performs data taint tracking
over framework libraries and system calls. It relies on Valgrind [96] to
hook method calls, ART, and framework libraries. It stores the address
of every Java and native method and then checks, for every jump, if the
destination address is the address of amethod. Then,Malton reconstructs
the Java objects corresponding to the arguments by parsing the memory.
It also hooks framework methods responsible for loading code and the
JNI entry points, and intercepts all system calls. Finally, it propagates
taints through every assembly instruction. Moreover, Malton leverages
concolic execution to trigger or force the execution of specific, manually
tagged, code areas. The output only focuses on information flow and
thus, does not include allocations, typing, exceptions, or monitoring
of events. Moreover, Malton cannot hook methods from the analyzed
APK, but only the runtime and framework ones. Therefore, it does not
retrieve information about the internal code methods and classes. That is
why all its outputs are qualified as partial. Moreover, because Malton is
dynamic, it can handle the Pack DEX version. The symbolic analysis that
is conducted is concolic: it follows the execution and, thus, is not sensitive
to obfuscation (unlike JN-SAF) and can tackle the JNI+obf version. Finally,
Malton works with the BFO version because it does not rely on the APK
structure but bases all its analysis on executed assembly instructions.

Additionally, all these tools relies, when they monitor native heap ac-
cesses5, on the JNI interface. Thus, as stated in Section 4.2, they all
miss the DHA version since DHA obfuscation consists in bypassing this
interface.

Thus, we design OATs’inside such that:
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I It handles all forms of Android applications: Dalvik bytecode,
compiled bytecode (BFO) and native code.

I It handles all Java instructions, including: operation, condition,
typing, exception and monitoring.

I It does not rely on the usage of the Java Native Interface (JNI),
hence it handles DHA.

7.2 OATs’inside architecture

To address native-based obfuscated Android applications, we describe
OATs’inside, a deobfuscator that supports every application that performs
Java operations, even if it is protected by full-native-based and runtime-
based obfuscation techniques. OATs’inside combines dynamic analysis
with symbolic execution. The dynamic analysis gathers sequences of
low-level events, and the symbolic execution is driven by these events.
OATs’inside outputs a CFG that can be passed to existing security analysis
tools such as GroddDroid[49]:Abraham,Andriatsimandefitra, Brunelat,

Lalande, and Tong (2015), ‘GroddDroid: a
gorilla for triggering malicious behaviors’
[50]: Wong and Lie (2016), ‘IntelliDroid: A
Targeted Input Generator for the Dynamic
Analysis of Android Malware’

[49], IntelliDroid [50], or directly to a human
analyst. The CFG is said to be at the object level because it contains instruc-
tions acting on objects such as calling methods or setting object fields.
It describes the contents of each method, the conditional expressions
involved in the control flow instructions, the data flow between actions,
and the interprocedural calls.

OATs’inside adopts a two-step analysis: first, a dynamic analysis, followed
by a concolic analysis. These steps are based on four main modules as
described in Figure 7.1.

During the dynamic step, the Runner module executes the application
and logs every action dealing with objects. As an application requires
external inputs, the execution is either drivenmanually or via a dedicated
exploration tool [49, 50, 52, 114][49]:Abraham,Andriatsimandefitra, Brunelat,

Lalande, and Tong (2015), ‘GroddDroid: a
gorilla for triggering malicious behaviors’
[50]: Wong and Lie (2016), ‘IntelliDroid: A
Targeted Input Generator for the Dynamic
Analysis of Android Malware’
[52]: Hao, Liu, Nath, Halfond, and Govin-
dan (2014), ‘PUMA: programmable UI-
automation for large-scale dynamic analy-
sis of mobile apps’
[114]: Machiry, Tahiliani, and Naik (2013),
‘Dynodroid: An input generation system
for android apps’

. The CFG Creator module initializes
a first version of the CFG from the actions obtained from the Runner
module.

During the concolic step, the Concolic Analyzer module performs a
symbolic execution based on the actions logged by the Runner module
and memory snapshots issued by the Memory Dumper. It enriches the
CFG by recovering conditional expressions at branching nodes and data
dependencies between actions.

To illustrate OATs’inside’s methodology, we developed PINtest, a PIN
verification application written in Java. It runs transparently on an An-
droid 7.0 smartphone. We will use this application as a running example
throughout the rest of this section. For the sake of readability, we give a
simplified version of its source code in Figure 7.1. SimpleTestPIN.test
has three possible behaviors. If the pin field of the calling object (this) is
negative, an exception is thrown. It returns true when the pin is the cor-
rect one (1337) and false otherwise. SimpleTestPIN.test is obfuscated
using BFO technique: the bytecode is compiled into assembly and then
removed.

Thewhole analysis is driven by a human analyst who runs the application
twice with two different PINs: a negative (-42), which generates an
exception, and a wrong positive (42). The final objective of OATs’inside is
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Figure 7.1: OATs’inside architecture

Listing 7.1: Simplified PIN test1 // Two executions: test() with pin = -42 and pin = 42
2 public class SimpleTestPIN {
3 public int pin = 0;
4 public boolean test() throws Exception {
5 if(this.pin < 0) throw new Exception("Negative PIN");
6 if((this.pin ^ 0x2323) == 9754) // 1337^0x2323=9754
7 return true;
8 else return false;
9 }}

to compute a CFG that best approximates the complete CFG which is,
for this example, given in Figure 7.2.

7.2.1 Runner module

The Runner module is in charge of running the analyzed application and
logging every object-level action performed by the application. There are
nine different object-level actions6

6: https://source.android.com/devices/
tech/dalvik/dalvik-bytecode

: invoking or returning from a method,
reading from or writing to an object field, allocating an object, entering
or exiting a monitor session, and throwing or catching exceptions.

Applications contain three types of code: DEX, OAT, or native. State-of-
the-art approaches suffer from one or more of the following limitations:
they do not support OAT, arguing that the DEX bytecode is always
available [84, 88, 95]

[95]:WongandLie (2018), ‘Tackling runtime-
based obfuscation in Android with TIRO’
[84]:Wei, Lin, Ou, Chen, andZhang (2018),
‘JN-SAF: Precise and Efficient NDK/JNI-
aware Inter-languageStaticAnalysis Frame-
work for Security Vetting of Android Ap-
plications with Native Code’
[88]: Backes, Bugiel, Schranz, Styp-Rekowsky,
and Weisgerber (2017), ‘Artist: The an-
droid runtime instrumentation and secu-
rity toolkit’

; they do not collect all the possible actions [81, 83,
84, 87]

[87]: Yan and Yin (2012), ‘DroidScope:
Seamlessly Reconstructing the OS and
Dalvik Semantic Views for Dynamic An-
droid Malware Analysis’
[81]: Qian, Luo, Shao, andChan (2014), ‘On
tracking information flows through jni in
android applications’
[83]: Xue, Zhou, Chen, Luo, and Gu (2017),
‘Malton: TowardsOn-DeviceNon-Invasive
Mobile Malware Analysis for ART’
[84]:Wei, Lin, Ou, Chen, andZhang (2018),
‘JN-SAF: Precise and Efficient NDK/JNI-
aware Inter-languageStaticAnalysis Frame-
work for Security Vetting of Android Ap-
plications with Native Code’

; or they are bypassed by DHA obfuscations because they rely on
JNI [83, 84]. The Runner module lifts these limitations by using simple
monitoring methods inside the ART library when possible and low-level
debug methods otherwise.

Table 7.2 summarizes how each action is monitored, depending on the
binary code type. If the action goes through the ART (all actions in the
Dalvik bytecode, and object allocation, monitoring of the entry or exit,
and exception handling in all code types), then a direct event is generated
by adding a call to the logger inside the runtime. Otherwise, the action is
retrieved by generating a low-level event based on debugging or memory
protection capabilities. In particular, an OAT code that accesses (read
or write) an object field is captured by disabling the heap memory: all

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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Figure 7.2: Expected output for
SimpleTestPIN.test

ROOT NODE

INVOKE SimpleTestPIN.test()

READ self.pin

THROW java.lang.Exception: "Negative PIN"

RETURN True RETURN False

SimpleTestPIN.pin >� 0x0 SimpleTestPIN.pin < 0x0

SimpleTestPIN.pin ^ 0x2323
== 0x261a

SimpleTestPIN.pin ^ 0x2323
!= 0x261a

Table 7.2:Monitoring of object actions for
different types of executed code Analyzed binary DEX OAT Native

Invoke
return

Method interpreter class linker class linker

Event type direct breakpoint breakpoint

Field access
(read/write)

Method interpreter disable
heap

disable heap
or JNI

Event type direct SEGV SEGV or
direct

Allocation
monitor

Method allocator allocator allocator

Event type direct direct direct

Exceptions
throw
or catch

Method exception
handler

exception
handler

exception
handler

Event type direct direct direct

heap accesses will generate a SEGV event. The same applies to native
code when bypassing the JNI interface. Additionally, an OAT or a native
code that invokes a method without calling the runtime is captured by
hooking the address table and generating a breakpoint event.

Consequently, three types of events are generated or captured: 1. direct
events: allocating an object, entering or exiting a monitor session, and
throwing or catching an exception; 2. breakpoint events: invoking and
returning a method; 3. SEGV events: reading or writing an object field.

To manage these events, we built the Runner module, a patch of the
Android runtime whose main components are represented in Figure 7.3,
where the three types of events are annotated as (D) for direct events,
(B) for breakpoint events, and (S) for SEGV events. The runtime has
information about high-level structures such as classes, signatures, and
objects, and also knows low-level entities such as register values, heap
addresses, and kernel signals. Thus, patching the runtime allows bridging
the semantic gap between the assembly and the bytecodeworld. The patch
is divided into two entities: the ProbeManager and the SignalManager.
The ProbeManager handles high-level events. It is the interface between
the runtime and the output filewhenactions are logged. It logs object-level
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Figure 7.3: Runtime patch architecture

actions when they occur. The SignalManager handles low-level events. It
sets breakpoints, handles kernel signals, and notifies the ProbeManager
to log associated actions.

The ProbeManager logs each event with its associated instruction address.
This allows linking of the bytecode events to the assembly code and
will be used by the Concolic Analyzer module (cf. Section 7.2.4). The
thread identifier from which the event originates is also logged, to avoid
concurrent execution issues. In the following, we detail how the three
types of events are handled by the Runner module.

Direct events These events, indicated as “direct” in Table 7.2, are
generated by the runtime library code. For example, when an object is
allocated, the runtime allocator is called. The allocator allocates memory
and returns it to the application. A call to the ProbeManager, containing
the class of the allocated object, is added to the allocator, before returning
to the APK code. This part of the Runner module links the assembly
world (the allocated address) and the bytecode world (the object class,
independently of the executed code type). Entering or exiting a monitor
session and throwing or catching an exception are logged using similar
mechanisms in the runtime monitor and exception handler.

Breakpoint events These events correspond to invoking or returning
from a method. To log the invoke action, the Runner module needs to be
notified when the first instruction of the method is executed. The classical
way to do this would be to set a breakpoint at this address, catch the
breakpoint (SIGTRAP signal), log the action, remove the breakpoint, and
resume the execution. However, removing the breakpoint would prevent
catching of future calls to this method. At first glance, instead of directly
resuming the execution, a possible improvement would be to step one
instruction, reset the breakpoint, and resume the execution. In this way,
the breakpoint would be available for further calls. However, removing
and then resetting the breakpoint would generate a concurrency issue if
multiple threads execute the same method. In practice, every application
runs more than five threads (garbage collector, intents, profiler, etc.).
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Figure 7.4: Method invocation hooking
process

...
Code ptr
...

Instruction
...
Instruction

Breakpoint
Original ptr
Class ptr

Method struct Method code Hook area

To solve this problem, the Runner module modifies the address of all the
methods linked by the class linker in the runtime. As shown in Figure 7.4,
the real address of the method (code ptr) is replaced by the address of a
new dedicated area (hooking area). It contains a breakpoint instruction,
for generating the invoke action; the original address of the method’s
code (original ptr); and a pointer to the runtime internal structure
representing the method. This last pointer is used, when the breakpoints
is hit, to easily access the information about the hooked method such as
its name or the list of its parameters.

The same problem exists for catching the return event and is thus solved
similarly. When this type of event occurs, as the breakpoint only carries
the information about the executed address, we retrieve the method
signature by using the runtime internal structure of the dedicated areas.
This bridges the semantic gap between the assembly (instruction address)
and the bytecode (method signature) world.

SEGV events These events correspond to accesses, by reading or writ-
ing, to object fields stored on the heap. Catching such accesses requires
watching every load or store instruction to detect those that target heap
addresses. To this end, the SignalManager uses the system page protec-
tion mechanism: it forbids all accesses to the heap memory pages using
mprotect, causing any access to object fields to generate a fault, a SEGV
kernel signal, which is caught by the SignalManager, which retrieves
the faulty address.

Then, the garbage collector’s internal structures are leveraged to map
the assembly address to an object field. This is then transmitted to the
ProbeManager, which in turns logs this heap access.

Finally, for an application to run as expected, the heap access should
actually be performed. The heap is re-enabled, and a single instruction is
executed before disabling the heap again. To avoid concurrent accesses to
the heap in the meanwhile, a thread-oriented mprotect has been added
to the kernel [115][115]: Razeen, Lebeck, Liu, Meĳer, Pistol,

and Cox (2018), ‘SandTrap: Tracking Infor-
mation Flows On Demand with Parallel
Permissions’

. More details about this thread-oriented mprotect are
given in Section 8.1.7.

Running example output Listing 7.2 gives the actions outputted by
the Runner module for the running example, from lines 2 to 18 for the
first execution and lines 21 to 28 for the second one. When these logs
and the source code of Listing 7.1 are compared, it shows that most of
the elements are retrieved. The access to the pin field (lines 5 and 6,
and lines 24 and 25) is present for each execution of the method. The
throw is divided into four events: the string creation (lines 8 and 9), the
initialization of the exception object and its associated return (lines 11 and
12, and lines 14 and 15), and the throw itself (lines 17 and 18). Finally, the
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Listing 7.2: Runner module output on
SimpleTestPIN

1 # first run
2 tid: 3520, event_address: 512236427828
3 invoke SimpleTestPIN;test()
4

5 tid: 3520, event_address: 512236429712
6 read SimpleTestPIN;pin => -42
7

8 tid: 3520, event_address: 512236429884
9 newObj String => 315654920

10

11 tid: 3520, event_address: 512236429832
12 invoke java/lang/Exception;<init>((String) 315654920)
13

14 tid: 3520, event_address: 512236429836
15 return void
16

17 tid: 3520, event_address: 512236429844
18 throw java.lang.Exception("Negative PIN")
19

20 # second run
21 tid: 3520, event_address: 512236427908
22 invoke SimpleTestPIN;test()
23

24 tid: 3520, event_address: 512236429712
25 read SimpleTestPIN;pin = > 42
26

27 tid: 3520, event_address: 512236427912
28 return false

7: https://source.android.
com/devices/tech/dalvik/

dalvik-bytecode

return false (lines 27 and 28) is detected. However, some Java actions
are missing. The return true, which is never executed in our case, is
not logged. The conditions are also lacking, as well as the usage of the
allocated string (lines 8 and 9), which is a dependency of the init call
(lines 11 and 12). Obtaining these pieces of information is the purpose of
the remaining modules.

7.2.2 CFG creator module

The CFG Creator module is in charge of creating the CFG. In fact, this
graph is the union of the interprocedural call graph (iCFG) and the
methods’ object-level control flow graphs (olCFGs). These CFGs are built
sequentially, using the events outputted by the Runner module: first,
actions are split by method and the iCFG is created, and then the olCFG
of each method is computed.

iCFG computation The logs are split by method. The boundary of a
method is defined by two properties of the Dalvik bytecode7. First, each
method begins with an invoke and ends with a return. Then, each return
comes after its corresponding invoke action. An invoke action is not
necessarily followed by a return: methods may never return (for example,
the main loops of graphical engines are infinite loops). Second, there is
no jump across method bodies (“goto”-like statement). Thus, if a method
mb is invoked after a method ma , the return of ma cannot occur before
the return of mb . Invocations cannot be interleaved. Thanks to this last
remark, we can easily split actions by method by reconstructing the call
stack. During the call stack computation, the iCFG is made: when an
invoke event occurs, an edge is added between it and the last method.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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Figure 7.5:Object-level control flow graph
of SimpleTestPIN.test

ROOT NODE

0: EXEC 1 - INVOKE (SimpleTestPIN 0x12ce53e0).test()
EXEC 2 - INVOKE (SimpleTestPIN 0x12ce53f0).test()

7743aba190: EXEC 1 - READ (SimpleTestPIN 0x12d06400).pin �⇒ -42
EXEC 2 - READ (SimpleTestPIN 0x12d06400).pin �⇒ 42

7743ab9a88: EXEC 2 - RET False7743aba23c: EXEC 1 - NEWOBJ String; �⇒ 0x12d08308

7743ab9a84: EXEC 1 - INVOKE (Exception 0x12c9dc40).<init>((String)0x12d08308)

7743aba20c: EXEC 1 - RET void

7743aba214: EXEC 1 - THROW java.lang.Exception: "Negative PIN"

8: Address Space Layout Randomization

Note that actions are mixed between different threads. The inclusion
of the thread identifier in logs allows each thread CFG to be built
independently.

olCFG computation This algorithm takes as input the sequence of
actions of a method. Each node is uniquely characterized by the address
of the assembly instruction generating the action. Thus, if the same
address is executed multiple times (several executions of the method or
loops in the method’s body), the node representing this action contains
the details of all executed actions. For example, in Figure 7.5, the node
7743aba190 contains two read actions from two different executions: the
first read obtains the value -42, and the second one, 42.

A special root node is added to mark the beginning of the method. When
iterating over the sequence of actions, the algorithm creates an edge
from the current instruction to the next one. When a node holds several
actions, several destinations can follow, hence revealing the existence
of a condition whose nature is not known yet. Note that, if ASLR8 is
activated, addresses change between two different executions, breaking
the node unicity previously mentioned. Nevertheless, using offsets to
the base address of the loaded binary solves this problem.

Running example output Figure 7.5 shows the olCFG computed for the
SimpleTestPIN.testmethod. This is a human-readable representation
of Listing 7.2. The same elements are missing: the “return true” case is
not present, the condition expressions are missing, and the dependency
between the allocation and the invocation is not explicit. Thus, the analyst
cannot retrieve the correct PIN number: he/she cannot identify the
conditions that need to be satisfied because they are not present.
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7.2.3 Memory Dumper module

The Memory Dumper module is responsible for making snapshots of the
memory. This module is called just before the execution of a method
and dumps the whole memory of the process. These snapshots give the
method’s code and data to the Concolic Analyzer module in charge of
the symbolic execution. In this way, if a method is used as a place holder
for several unpacked assembly codes, each snapshot will provide the
current version of the code. This module can be either activated by the
Runner at each method execution (but it considerably slows down the
analysis) or activated on demand by the human analyst.

7.2.4 Concolic analyzer module

The Concolic Analyzer module symbolically executes the dumped
assembly code and uses the values observed from the actions logged by
the Runner module. The first step allows building a CFG describing the
execution paths explored during the dynamic analysis; however, it lacks
both conditional expressions and how variables are manipulated by the
actions. Such knowledge is important for the analyst because it helps
to understand the behavior execution. For example, in Figure 7.5, the
parameter (0x12d08308) of the invoke (0x7743ab9a84) should be linked
with the preceding allocation.

The Concolic Analyzermodule takes as input the list of actions logged by
the Runner module and all the memory snapshots made by the Memory
Dumper module, and then it generates the conditional expressions at
branching nodes and the data dependencies between variables. This is
done in three steps:

1. Assembly breakpoints: in the assembly code returned by the Mem-
ory Dumper module, a breakpoint is set for all generated actions.
For example, we set a breakpoint at the address 0x7743aba190
(READ pin field action), which corresponds to the instruction ldr

w2, [x1, #12].
2. Symbolic execution: the symbolic execution is initialized: the PC is

set to the entry point of the method and a symbolic value is created
for each method parameter. The symbolic execution can stop for
one of three reasons: a breakpoint, a condition, or the end of the
method is reached.

3. Analysis stop and concretization: when the symbolic execution
is stopped, the analysis flow is guided and symbolic values are
managed. Two types of stops are handled:

a) Breakpoint: first, if the action type is allocation, read, or
return, a new symbolic value is created, named according
to the Java class or field name. For example, the read at
address 0x7743aba190 creates a symbol “SimpleTestPIN.pin,”
as shown in Listing 7.3, line 7. The instruction output register
w2 is set to this new symbolic value. Second, if the action type
is read, write, or invoke, the read register or memory value is
retrieved. If this expression is symbolic, it is outputted. For
example, the parameter of the invoke is logged in line 18 with
the name created previously in line 14.
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9: Unit tests are precisely described in
Appendix B.

b) Condition: the symbolic engine provides the two symbolic
conditions corresponding to the two branches. They are con-
cretized: symbolic values are replaced by the concrete value
given by the trace. The condition that holds is logged and
the symbolic execution is resumed, taking the corresponding
path. Note that the concretization happens only for logging
and choosing the branch; however, registers and memory stay
symbolic to continue tracking data dependencies.

One key point of this symbolic analysis is that no SMT solver is ever
called. Instead, only value replacement (concretization) is made. More-
over, the analysis always follows only one path. This saves the analysis
from the usual drawbacks of symbolic analysis that could lead to high
execution time or memory space overhead [116][116]: Baldoni, Coppa, D’elia, Demetrescu,

and Finocchi (2018), ‘A survey of symbolic
execution techniques’

. Additionally, we prove
in Appendix C that the Concolic Analyzer module terminates and is
correct (gives the expected results).

Finally, the results of the Concolic Analyzer module are sent to the
CFG Creator module to improve the olCFG. Blank nodes are added,
which represent the computation of a condition or branches that have
never been taken during the dynamic analysis step. This is the final
human-readable output of OATs’inside.

Running example output After the Concolic Analyzer execution on
the snapshot and the actions retrieved for the running example, the
enriched list of actions is given in Listing 7.3. Compared to Listing 7.2,
three new condition events have been added (lines 9 and 10, 34 and 35,
and 37 and 38). The first two (lines 9 and 10 and lines 34 and 35) are
the opposite because they represent the same condition that is taken or
not. It corresponds to the check that the pin field is positive, which is
expressed in the condition expression written in the listing. The third
condition (lines 37 and 38) is the comparison to the correct pin value,
which is XORed. The symbol SimpletestPIN.pin has been concretized
by 42 using line 31 to choose the branch to execute.

Moreover, four symbolic annotations have been added (lines 7, 14, 18,
and 32). The two lines attached to the read (lines 7 and 32) and the line
attached to the allocation (line 14) represent the new symbolic values
created. The remaining one (line 18) shows that the symbol representing
the output of the allocation (line 14) is directly used as an invocation
parameter when calling the constructor exception <init>.

The updated olCFG of the SimpleTestPIN.testmethod is shown in Fig-
ure 7.6. An analyst can now easily understand how the PIN is handled.

7.2.5 Unit test results

Coming back to the unit tests that we introduced in Section 7.19, we
evaluated if OATs’inside succeeds in capturing all Java source statement
behaviors. Results are reported in Table 7.3.

OATs’inside retrieved almost every behavior. When the payload of the
APK is executed through bytecode (DEX only and Pack DEX versions),
OATs’inside passes all the test cases because it hooks the bytecode inter-
preter in the runtime. For other versions, executed through assembly
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ROOT NODE

0: EXEC 1 - INVOKE (SimpleTestPIN 0x12ce53e0).test()
EXEC 2 - INVOKE (SimpleTestPIN 0x12ce53f0).test()

7743aba190: EXEC 1 - READ (SimpleTestPIN 0x12d06400).pin �⇒ -42 #SimpleTestPIN.pin
EXEC 2 - READ (SimpleTestPIN 0x12d06400).pin �⇒ 42 #SimpleTestPIN.pin

7743aba23c: EXEC 1 - NEWOBJ String; �⇒ 0x12d08308 #new_ui64 blank node

7743ab9a84: EXEC 1 - INVOKE (Exception 0x12c9dc20)
.<init>((String)0x12d08308 #new_ui64)

7743aba20c: EXEC 1 - RET void

7743aba214: EXEC 1 - THROW java.lang.Exception: "Negative PIN"

blank node 7743ab9a88: EXEC 2 - RET False

EXEC 2 -
(LShR(SimpleTestPIN.pin, 0x1f)

& 0x1) == 0x0

EXEC 1 - (LShR(SimpleTestPIN.pin, 0x1f)
& 0x1) != 0x0

EXEC 2 -
(SimpleTestPIN.pin
^ 0x2323)
!= 0x261a

Figure 7.6:Object-level control flow graph
of SimpleTestPIN.test

Original source code Bytecode Native

Case DEX only Pack DEX BFO JNI JNI+obf DHA

Method Invoke / Return R R R R R

Object R R R R R

Allocation Primitive variable R R - - -

Primitive Array R R R R R

Object Field R R R R R R

Access Primitive variable R R - - -

Primitive Array R R R R R R

Object Field R R R + C R + C R + C R + C

Operations Primitive variable R R - - -

Primitive Array R R R + C R + C R + C R + C

Object Field R R R + C R + C R + C R + C

Condition Primitive variable R R - - -

Primitive Array R R R + C R + C R + C R + C

Typing
Check R R ? R R

Cast R R ? ? ?
Exception Throw / Catch R R R R R

Monitor Enter / Exit R R R R R

R : Retrieved by the Runner module

R + C : Retrieved by the Concolic Analyzer module

? : Retrieving would require more static analyses

�: not applicable

Table 7.3: OATs’inside against native ob-
fuscations
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Listing 7.3: Concolic Analyzer module
output on SimpleTestPIN.test

1 # first run
2 tid: 3520, event_address: 512236427828
3 invoke SimpleTestPIN;test()
4

5 tid: 3520, event_address: 512236429712
6 read SimpleTestPIN;pin => -42
7 symb: "SimpleTestPIN.pin"
8

9 tid: 3520, event_address: 512236429716
10 condition "(LShR(SimpleTestPIN.pin, 0x1f) & 0x1) != 0x0"
11

12 tid: 3520, event_address: 512236429884
13 newObj String => 315654920
14 symb: "new_ui64"
15

16 tid: 3520, event_address: 512236429832
17 invoke java/lang/Exception;<init>((String) 315654920)
18 symb: ["new_ui64"]
19

20 tid: 3520, event_address: 512236429836
21 return void
22

23 tid: 3520, event_address: 512236429844
24 throw java.lang.Exception("Negative PIN")
25

26 # second run
27 tid: 3520, event_address: 512236427908
28 invoke SimpleTestPIN;test()
29

30 tid: 3520, event_address: 512236429712
31 read SimpleTestPIN;pin => 42
32 symb: "SimpleTestPIN.pin"
33

34 tid: 3520, event_address: 512236429716
35 condition "(LShR(SimpleTestPIN.pin, 0x1f) & 0x1) == 0x0"
36

37 tid: 3520, event_address: 512236429736
38 condition "(SimpleTestPIN.pin ^ 0x2323) != 0x261a"
39

40 tid: 3520, event_address: 512236427912
41 return false

instructions, only two classes of operations were missed that we detail in
the rest of the section.Nevertheless, we can state that, globally,OATs’inside
is robust against obfuscation and can analyze any type of APK.

For allocations, accesses, operations, and conditions realized on an
assembly variable, OATs’inside missed, as expected, these behaviors.
Indeed, it corresponds to manipulation of registers and the stack, which
are areas that are not monitored by the proposed method. It has to
be noted that watching them is not trivial. Stack and registers store
numerous different pieces of information such as return addresses,
arguments, and clobbered registers, and finely distinguishing between
them is a very difficult task. Missing these variable-oriented behaviors
for native code is not an important limitation because they are still
considered by the symbolic execution. For example, a Java field copied in
an assembly variable and copied back to another field would be detected
by OATs’inside as a data dependency between the two fields, silently
dropping the variable.

Second, type checking (for the OAT only version) and casting are not
retrieved by OATs’inside either. Indeed, these behaviors are performed
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at compile time and are never present in the generated assembly code.
However, the lost information could be retrieved by carrying out more
static analyses on the obtained CFG. Analyses such as type propagation
and checking [117] [117]: Cardelli and Wegner (1985), ‘On Un-

derstanding Types, Data Abstraction, and
Polymorphism’

could be used to detect missing typing operations.
This work is left as future improvement for OATs’inside.

7.3 OATs’inside output on obfuscated
application

In order to show OATs’inside output we have modified the running
example to integrate DHA accesses and native code obfuscation, while
still using BFO. Section 7.3.1 presents the resulting application and
Section 7.3.2 describes how a user could employ OATs’inside to conduct
an analyst of the application by playing, our-self, the role of the user.

7.3.1 Obfuscated application presentation

The test application is composed of two classes. The first one, see List-
ing 7.4, is a simple activity. This activity is composed of an edit area,
a button and a text area. When the button is pressed, it retrieves the
content of the edit area, uses the SimpleTestPIN class to check if this content
corresponds to the correct PIN and updates the text area accordingly.

Listing 7.4: Unobfuscated activity code1 package pg.testpin;

2 import [...]

3 public class MainActivity extends Activity {

4 static { System.loadLibrary("native-lib"); }

5 public SimpleTestPIN pin = new SimpleTestPIN();

6 @Override

7 protected void onCreate(Bundle savedInstanceState) {

8 super.onCreate(savedInstanceState); setContentView(R.layout.

activity_main);

9 Button bt1 = findViewById(R.id.button);

10 bt1.setOnClickListener(new View.OnClickListener() {

11 @Override

12 public void onClick(View v) {

13 TextView tv = findViewById(R.id.textView);

14 EditText pinview = findViewById(R.id.editText);

15 int entered_pin=-1;

16 try {

17 entered_pin = Integer.parseInt(pinview.getText().

toString());

18 pin.set_pin(entered_pin);

19 } catch (NumberFormatException e) { tv.setText("Incorrect

format"); }

20 try {

21 pin.test();

22 if(pin.validated) tv.setText("Good PIN");

23 else tv.setText("Wrong PIN");

24 } catch (Exception e) { tv.setText("Incorrect format"); }

25 }

26 });

27 }

28 }

The SimpleTestPIN class, shown in Listings 7.5 and 7.6, is composed of two
methods: test and set_pin. set_pin, see Listing 7.6, is implemented in C++.
It adds 7331 to its paramater value and stores it inside the pin field using
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DHA. Thus, no JNI call are made. test, see Listing 7.5, is implemented in
Java. It throws an exception if the pin field is lower than 7331 (that is if
the entered PIN is negative). Then, it sets validated field to false if the pin

field value is different from 8668 (0x2ff^0x2323=8668).

Listing 7.5: SimpleTestPIN unobfuscated
Java code

1 package pg.testpin;

2 public class SimpleTestPIN {

3 public int pin = -1;

4 public boolean validated = true;

5 public void test() throws Exception {

6 if (this.pin < 7331) throw new Exception("Negative PIN");

7 if ((this.pin ^ 0x2323) == 0x2ff) validated = true;

8 else validated = false;

9 }

10

11 public native void set_pin(int pin);

12 }

Listing 7.6: SimpleTestPIN unobfuscated
C++ code

1 #include <jni.h>

2 #define PIN_FIELD_OFFSET 0x8

3 extern "C" JNIEXPORT void JNICALL

4 Java_pg_testpin_SimpleTestPIN_set_1pin(JNIEnv *env, jobject thisObj, jint

pin) {

5 unsigned int* thisPtr = (unsigned int*) *(unsigned int*)thisObj;

6 unsigned int* field_ptr = &thisPtr[PIN_FIELD_OFFSET/4];

7 *field_ptr = pin;

8 *field_ptr += 7331;

9 }

Additionally, when compiling the native code, we use Obfuscator-
LLVM [111][111]: Junod,Rinaldini,Wehrli, andMichielin

(2015), ‘Obfuscator-LLVM – Software Pro-
tection for the Masses’

compiler to add opaque predicates and control flow flattening
to the assembly code. On the other side, the bytecode of the application
is compiled and removed from the APK and the OAT file.

7.3.2 OATs’inside output on the application

First, when analyzing an application using OATs’inside, the analyst has
to run the application and browse it. In our example, we have run the
application and we entered two PINs. First, we have entered -321 and we
saw the application complaining about the PIN format. Then, we entered
123 and saw that the application has rejected the PIN. We stopped our
first run here.

After this analysis, OATs’inside gave the list of analyzed method. This list
is shown in Listing 7.7. Since the PIN verification seems to be triggered
by the button, we chose to start our investigation by having a look at
pg.testpin.MainActivity$1.onClick.

Listing 7.7: List of executed method 1 pg/testpin

2 |-- MainActivity

3 | |-- <clinit>

4 | |-- <init>

5 | ‘-- onCreate

6 |-- MainActivity$1

7 | |-- <init>

8 | ‘-- onClick

9 ‘-- SimpleTestPIN

10 |-- <init>

11 |-- set_pin

12 ‘-- test
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Figure 7.7: Extract of MainActivity$1.onClick olCFG

Thus, we requested OATs’inside to build the olCFG of this method. For
sake of clarity, we have reported in Figure 7.7 only the relevant part of this
graph. In this graph, we noticed that the method SimpleTestPIN.set_pin

have been called with the PINs we entered as parameter (-321 and 123).
Straight after, SimpleTestPIN.test is called and a branching is generated:
either an exception is caught or a String is created. Using this graph we
made a preliminary conclusion: SimpleTestPIN.set_pin is used to set the
entered PIN and SimpleTestPIN.test checks if it is correct.

Naturally, we continued our analysis by digging into the olCFGs of
SimpleTestPIN.set_pin and SimpleTestPIN.test, respectively shown in Fig-
ures 7.8 and 7.9. Here, the analysis started to become a bit tricky with the
only information we had. Indeed, for SimpleTestPIN.set_pin, we noticed
than the value stored inside the pin (7010 and 7454) field differs from
the PINs we entered (-321 and 123) and we had no clue of how and if
these values were related. For SimpleTestPIN.test, we guessed, using string
related to the throw, that the exception is generated when a negative PIN
is entered. However, we had no indication on how and if the validated

field can be set to True.

Since the elements that we missed for continuing our analysis were: data
flow (for SimpleTestPIN.set_pin) and potential conditions (for SimpleTestPIN
.test), we decided to conduct a symbolic analysis on these two methods.
To this extend, the application was re-run and the memory snapshots
were made when calling these two methods. During this second run
we only entered a positive PIN (1234). Indeed, we already knew what
happen for negative PIN and thus we did not need to investigate more
this case.

After running the symbolic analysis on SimpleTestPIN.set_pin, we obtained
the olCFG shown in Figure 7.10. This new graph does not contain new
nodes but nodes are annotated by symbolic value. In particular, we
noticed that the last write value (8565) corresponds to the previous PIN
value plus 7331 (0x1ca3). Since the previous PIN value has been set to the
PIN we entered (1234), we concluded that the PIN check is made on PIN
entered plus 7331. It is noteworthy that no data flow has been detected
between the parameter (1234) and the first write. Indeed, parameters are
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Figure 7.8: SimpleTestPIN.set_pin ol-
CFG

Figure 7.9: SimpleTestPIN.test olCFG

Figure 7.10: SimpleTestPIN.set_pin olCFG after symbolic analysis
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Figure 7.11: SimpleTestPIN.test olCFG after symbolic analysis

10: stored on the stack

stored on the heap and thus are not tracked by OATs’inside.

After running the symbolic analysis on SimpleTestPIN.test, we obtained
the olCFG shown in Figure 7.11. As expected, new unexplored branching
path have been added. First branching condition (pg/testpin/SimpleTestPIN
.pin_1_32 >=s 0x1ca), corresponds to the negativity check. Indeed, we saw
using the olCFG of SimpleTestPIN.set_pin that pin field is added to 0x1ca,
so being superior to this value correspond to enter a positive PIN. The
second branch condition (pg/testpin/SimpleTestPIN.pin_1_32 ^ 0x2323 != 0

x2ff) is about the pin field value. By combining this formula with the one
of the SimpleTestPIN.set_pin method, we deduced that the other branch is
taken if we entered 1337 as PIN value ((0x2ff ^ 0x2323) - 0x1ca3). Finally,
we tested the 1337 value in the application and observed that the PIN is
accepted. The analysis was over.

7.3.3 Final words on OATs’inside output

Thus, using OATs’inside, we have been able to easily understand the
behavior of an obfuscated application. DHA, BFO and obfuscation of the
native code have been handled without any effort. While the usage of
native code prevent us from getting the data flow of the used variables10,
we can still conduct useful analysis.

7.4 Performance overhead

To quantify the overhead of the Runner module, we ran an AES-128 over
a 16-byte block of data using OATs’inside and a Sony Xperia X under
AOSP Android 7.0. We used two implementations: one in full Java that
stores intermediate results in Java arrays (hereinafter AES-J), and the
other is a native implementation manipulating C variables (hereinafter
AES-C). AES-J intensively stresses the heap, either from the interpreted
version (AES-J DEX) or from the compiled version (AES-J OAT). Indeed,
the runtime was dominated by heap accesses. The results are given in
Table 7.4. The overheadwas reasonable for theAES-JDEX implementation
and non-existent for the AES-C implementation. For these versions, most
of the time (around 70%) was consumed by protobuf for sending logs to
the host. For AES-C, no performance overhead is observed because, as
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Table 7.4: Time overhead and number of
actions/events AES-J DEX AES-J OAT AES-C

Time
(ms)

Bare-Metal Total 5.8 0.199 0.007

OATs’inside

Total
103 656 0.007
×18 ×3,296 ×1

Protobuf
72 481 0
70% 73% 0%

Runtime
31 175 0.007

30% 27% 100%

No. of
actions OATs’inside

Allocation 2 1 0
Access 5,287 11,384 0
Methods 6,828 6,828 0

No. of
signals OATs’inside

SEGV 0 21,136 0
BP 2 27,965 1

Table 7.5: Dump size depending on the
APK size

APK name Hello world 7146b3c02f0f4e3420c4471c2034de9d
APK size 174 Kb 140 Mb
Dump size 1.5 Gb 1.7 Gb
Dump time 8 sec. 687 ms 9 sec. 257 ms

expected, no events are generated. The overhead was much higher for
the fully compiled version (OAT): a factor of 3,296 was observed because
of the generation of the SEGV and BP events.

To quantify the evolution of the overhead depending on the number of
actions, we crafted special applications that perform a fixed number of
actions of type direct, breakpoint, and SEGV. The results are shown in
Figure 7.12: time is in nanoseconds and is represented with a logarithmic
scale. We observed that the overhead was linear with the number of
actions. The highest overhead was induced by SEGV actions.

To assess the overhead of the Memory Dumper module, we dumped the
contents of two applications: a simple “hello world” and the biggest
ARMv8-compatible APK from AndroZoo, which was retrieved in 2019
(md5 given in Table 7.5). The results are shown in Table 7.5. The dump
time and the size of the dump varied by only 12% for an application that
is 1000 times bigger. Indeed, most of the memory contained libraries.
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7.5 OATs’inside stealthiness

Obfuscated applications could try avoiding being analyzed [17] [17]: Tam, Feizollah, Anuar, Salleh, and
Cavallaro (2017), ‘The evolution of android
malware and android analysis techniques’

. Then, it
is important to assess the stealthiness ofOATs’inside, i. e. its capacity of not
being detected. One could argue that the behavior ofOATs’inside is finger-
printable by detecting the generation of SEGV and TRAP signals. However,
these signals can never be caught by the application (cf. Section 8.1.5),
making them stealthy.

Additionally, OATs’inside induces a time overhead when running the
application. Then, an application could fingerprint the time of the execu-
tion. A more sophisticated approach would be to measure the difference
between the time spent for accessing a variable or a field. Such techniques
can be defeated by hooking the syscall gettimeofday and changing its
return value to a nominal one [80] [80]: Xue, Luo, Yu, Wang, and Wu (2017),

‘Adaptive unpacking of Android apps’
.

Also, a standard way to avoid being debugged is to check that no
breakpoints have been set up, or that the code has not been modified by
using checksums. However, OATs’inside does not modify the application
code but rather modifies call and return addresses to redirect them to
breakpoints. One could argue that an application can scan specifically
these addresses, trying to detect specifically OATs’inside. OATs’inside
controls the MMU and could disallow read and write accesses to the
breakpoint area, and redirect the accesses to the legitimate code area [95] [95]:WongandLie (2018), ‘Tackling runtime-

based obfuscation in Android with TIRO’
,

making them stealthy. This is left as future work.

Finally,OATs’inside is not based on any emulation tool but is run on a real
smartphone. Then, all the numerous techniques [47]

[47]: Petsas,Voyatzis,Athanasopoulos, Poly-
chronakis, and Ioannidis (2014), ‘RageAgainst
the Virtual Machine: Hindering Dynamic
Analysis of Android Malware’

that detect specific
environments are ineffective.

7.6 Conclusion

This chapter has described OATs’inside, a tool that retrieves Java-level
behaviors even if they are obfuscated with native code. By observing
very finely the memory operations, OATs’inside catches the native code
that bypasses the Java Native Interface. By combining the observations
collected during a set of executions, with a concolic execution of the
code currently in memory, a control flow graph of a specific method
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can be extracted with the conditions involved in the branching nodes.
This is particularly useful for an analyst who investigates an obfuscated
application.

Experiments show a high overhead. Being agnostic of the obfuscation
technique and relying on the capture of reads and writes to the memory
incurs a high cost. However, we put a lot of efforts into optimizing
OATs’inside but the complexity of AOSP increases this challenge. This it
not the only challenge we had to face. In the next chapter we discuss the
most difficult technical issues of the implementation that we solved.



2: 32-bit ARM architecture
3: Android runtime functionalities have
not changed a lot since Android 7.0.

OATs’inside: implementation
challenges and solutions 8

Chapter 7 presented the overall architecture of OATs’inside and the
algorithms that we used to build it. OATs’inside is composed of four
distinct modules: Runner, CFG Creator, Memory Dumper and Concolic
Analyzer. This chapter presents the challenges that we faced during the
implementation of these modules. We developed our techniques on a
Sony Xperia X smartphone, running Android 7.01

1: Nougat, 2016
on an ARMv8 [118]

[118]: (2017), ARM Architecture Reference

Manual. ARMv8, for ARMv8-A architecture

profile

64-bit processor. It has to be noted that the implementation could be
easily ported to am ARMv72 or to a newer Android version3 since the
functionalities of the ART runtime that we modify and hook have not
changed.

TheRunner and theMemory Dumper are implemented inside theAndroid
runtime, which is the libart.so library, and thus are installed on
the smartphone. The two other modules are executed on the analysis
computer and are programmed in Python.

No technical challenges regarding the approach proposed in Section 7.2.4
has been encountered during the implementation of the Concolic Ana-
lyzer module. It was developed using angr [112] [112]: Shoshitaishvili,Wang, Salls, Stephens,

Polino, Dutcher, Grosen, Feng, Hauser,
Kruegel, and Vigna (2016), ‘SoK: (State of)
The Art of War: Offensive Techniques in
Binary Analysis’

as a symbolic execution
engine. A dedicated angr backend has been created to load memory
values from the dump file and a custom symbolic evaluation function
is used to replace calls to the SMT by concretization of values, as was
explained in Section 7.2.4. Thus, this chapter does not describe in more
detail the implementation of the Concolic Analyzer module.

Section 8.1 describes the challenges implied bymodifying the Android
runtime library to implement the Runner and the Memory Dumper
modules. Section 8.2 shows algorithms involved in the CFG Creator
module.

8.1 Runner and Memory Dumper modules:
libartmodifications

The ART runtime implementation is provided by AOSP, the Google open
source project associated with Android. Thus the whole source code
is available. However, no real documentation is provided. That is, to
understand how it works, one has to directly read the source code and
guess the role of the entities using their name. Also, very few comments
are present in the source code. The libart library is mainly written in
C++ and in assembly for the processor specific parts, and so are the
Runner and Memory Dumper modules.

This section presents the technical challenges for developing the logging
of Runner module events, as described in Section 7.2.1.
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4: Effective User ID

5: Android Debug Bridge, a command
line tool used to manage a smartphone

6: Protobuf: https://developers.

google.com/protocol-buffers/

7: Java, Python, Objective-C, C++, Dart,
Go, Ruby, and C#

8.1.1 Analysis initialization

Symptoms: Modifications of the runtime code affects all applications
and not only the one we want to observe.

Cure: Indeed, the runtime library is copied into the memory of every
application. When an application is launched, a process named zygote

is forked: this process contains all the basic libraries required to execute
an application, including the runtime library libart. Thus, the modified
version of this library is embedded into every application. If, as soon
as an event is captured, it is logged, the events of every application are
logged. However, to reduce the time overhead, only the events coming
from the application under analysis should be reported.

Inside the runtime, an easy way to distinguish which application the
library is running for is to use the process EUID4. The EUID, which is
a number, identifies the user that runs a process. In order to sandbox
applications, each Android application is run by a different user. Thus,
inside libart, we start OATs’inside only when the library EUIDmatches
the user corresponding to the application to be analyzed.

8.1.2 Communication channel

Symptoms: Observed events sent from Android to OATs’inside on the
PC side overloads the adb connection when streamed as full text.

Cure: When an event is captured, the runtime needs to send it to the
analysis computer. The smartphone is connected viaUSB to the computer.
Hence, we create, using adb5, a reverse socket connection. Inside the
runtime, information is serialized and sent using a socket connection.
Using a classical socket allows further extensions of OATs’inside, such as
remote application analysis.

To reduce the amount of data send, we use protobuf6, which helps
compress the data into a binary form. Protobuf, which is developed
by Google, is a language that allows to formally define data structures
intended to be sent. A set of libraries for several programming languages7
is available. Protobuf parses the protocol definition and manages all the
communication and memory allocations necessary.

Currently, the information is sent synchronously, that is, when an event
is captured, the data is encoded and send directly. If the socket is busy,
the runtime waits for logging to end before resuming the execution.
We plan, as future work, to create a thread dedicated to information
logging. When an event is captured, it will be written into a shared
memory and the application execution will resume almost immediately.
This asynchronous communication, as mentioned in Section 7.4, would
improve the time overhead.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
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8: Starts with “/system/lib/” or
“/system/lib64/”

9: Stored in “/system/framework/”

10: Offset of fields are saved by the run-
time to allow object introspection.

8.1.3 Methods white-listing

Symptoms: Android system native libraries generate a huge amount
of events on the memory, drastically slowing down the execution.

Cure: Due to its intensive usage of signals, OATs’inside suffers from
time overhead. To reduce this overhead, we have white-listed all Android
system libraries. Indeed, their methods are well-known and common
to every application and do not need to be analyzed. When a method
is called, we use the dladdr function to retrieve the name of the library
which contains it. If the name corresponds to a system library8, the
method is white-listed. We also white-list all Java libraries9 for the same
reasons.

When a method is white-listed, its invocations, and its returns, are still
logged since they are part of the callingmethod’s events. However, during
its execution, the heap is enabled and no SEGV signals are generated. The
heap is disabled when a non-white-listed, or “tracked”, method is called,
or when the white-listed method returns.

To keep track of the current protection applied to the heap, a stack
(composed of integers) that represents the state of the heap, is built
during the execution. This stack is maintained when OATs’inside hooks
method invocations and returns inside libart. Every time a tracked
method is called the number at the top of the stack is incremented. When
the method returns, it is decremented. When a white-listed method is
called, respectively returns, a zero is pushed onto, respectively popped
from, the stack. Hence, when a zero is written on top of the stack, the
heap is enabled. When a zero is overwritten, it is disabled.

8.1.4 Garbage Collector internal structures browsing and
resolution caching

Symptoms: Finding the object field corresponding to amemory address
is very slow, becausewe need to scan the full garbage collector structure.

Cure: As mentioned in Section 7.2.1, when an object field is accessed, a
SEGV signal is generated and the garbage collector’s internal structures
are leveraged to map the assembly address to an object field.

Indeed, in order to being able to free objects when needed, the heap
provides a visitor to walk on every allocated object. To determine the the
owning object of an address, we can then walk over every object on the
heap and check if the address is comprised inside the memory range of
the object. When the owner object is found, we use the offset between
the accessed address and the object address to determine the accessed
field10.

While practical, this method induces a huge time overhead: for every
field accessed, the whole heap is processed. To reduce this overhead, we
cache the mapping between addresses and object fields. This cache is
flushed when the garbage collector is triggered because it may move
objects around. Using a cache length of 512 entries, we noticed more than
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11: Google Breakpad: https://github.

com/google/breakpad

12: ACRA: https://github.com/ACRA/

acra

13: For example after a corrupt memory
access that generate a SEGV signal.

14: Execution of one assembly instruction.

15: Such as gdb

16: These instructions are defined for sev-
eral read/write sizes.

80% of successful cache requests, hence suggesting that the flushes are
not too frequent and that caching indeed improves the performance of
OATs’inside.

8.1.5 Signal handlers management

Symptoms: Application developers are free to overload signal handlers.
As we catch the signals TRAP and SEGV, our handlers may be overwritten
by the application’s code.

Cure: The Runner and the Memory Dumper modules heavily rely on
two signal handlers set up for the TRAP and SEGV signals. To prevent them
from being replaced or removed by the application, we added a new
syscall to the Linux kernel. This syscall sets up definitive signal handlers
whose addresses are given in the parameter.OATs’inside uses it to register
its own signal. The sigaction kernel syscall has been modified so that
when the set up of a new handler is requested, the handlers set up by
OATs’inside are kept. In order to preserve the behavior of the analyzed
application, that might want to set up its own handlers, the new handler
passed to sigaction is saved and is called whenever a generated signal
is not handled by OATs’inside.

This implementation allows to set up transparent signals and thus, make
OATs’inside stealthier, as mentioned in Section 7.5. Additionally, it solves
practical problems due to library helpers for native development such as
Google Breakpad11 or Application Crash Reports for Android (ACRA)12.
These libraries, that are used by many applications, set up their own
handlers to show debug information when a crash occurs13.

8.1.6 Single-stepping and atomic instructions
management

Symptoms: Some assembly instructions that OATs’inside interrupt gen-
erate an infinite loop.

Cure: Asmentioned in Section 7.2.1, when an analyzedmethod realizes
an access to a field, a SEGV signal is generated, the heap is enabled for a
single step14, after which the heap is disabled again. In order to realize
this single-step, the next assembly instruction, that is the instruction that
follows the one which realizes the access, is replaced by a breakpoint.
Thus, when the execution resumes, only one instruction is executed
before generating a new TRAP that is retrieved by OATs’inside. Then, the
original instruction is re-written over the breakpoint and the execution
can continue. This is the usual way for debuggers15 to implement single-
steps.

While this implementation is fully practical with most ARMv8 assembly
instructions, it breaks atomicity properties. Indeed, ARMv8 instruction
set contains twin instructions: ldx, for LoaD eXclusive, and stx, for STore
eXclusive16. The semantics of these instructions are the following: an stx

instruction succeeds only if no other process or thread has performed a

https://github.com/google/breakpad
https://github.com/google/breakpad
https://github.com/ACRA/acra
https://github.com/ACRA/acra
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more recent store to the address that has been previously read using an
ldx [118] [118]: (2017), ARM Architecture Reference

Manual. ARMv8, for ARMv8-A architecture

profile

.

However, when running a method analyzed by OATs’inside, if an address
stored by an stx instruction is located inside the heap, the store generates
a SEGV. Then, OATs’inside logs the value contained at that address before
the store instruction occurs. This breaks the atomicity property and
the stx fails when single-stepping. Since these instructions are used to
create mutexes, this creates a deadlock: the application retries infinitely
to perform the ldx and then the stx. These kinds of operations are
used in particular to implement the synchronized Java keyword. This
keyword indicates that a portion of the code cannot be run concurrently.
An associated mutex is in fact stored as a field inside the object that is
referred to by the synchronized keyword. This is exactly the problematic
case we described previously.

To overcome this limitation, OATs’inside emulates the semantics of ldx
and stx instructions. When a SEGV signal occurs,OATs’inside checks if the
faulty instruction is a ldx or stx instruction. If it is a ldx,OATs’inside saves
that the current thread held the faulty address. If it is a stx, OATs’inside
checks if the thread holds the address. If yes, the stx is replaced by
a classical store instruction and is single-stepped. After the step, the
original stx is re-written. If the thread does not hold the address, the
stx is single-stepped. The store fails, which is the correct semantics. We
have not encountered other problematic instructions, but in such cases,
the same resolution principle could be used: emulating the semantics of
the instruction.

8.1.7 Multi-thread management

Symptoms: An Android application contains always more than 7
threads. Monitoring and interrupting threads other than the one under
analysis is useless and slow down the execution.

Cure: As stated in Section 7.2.1, the Runner module needs a thread-
oriented mprotect. In a vanilla Linux kernel, all threads of the same
process share the same address space and thus, the samewrite protections
on their memory pages. However, we want OATs’inside to be able to
disable or enable the heap on a per-thread basis. Hence, we have added
to the kernel the possibility for processes to have two address spaces
with different write protections and to switch between them, following
the approach in [115] [115]: Razeen, Lebeck, Liu, Meĳer, Pistol,

and Cox (2018), ‘SandTrap: Tracking Infor-
mation Flows On Demand with Parallel
Permissions’

. In one of the address spaces, the heap is enabled,
while in the other, the heap is disabled. This allows to disable or enable
the heap for specific threads. Additionally, this speeds up the process of
enabling or disabling the heap: OATs’inside no longer has to walk over all
the heap pages and change their protections but rather only change the
address space pointer.
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17: https://networkx.github.io/

18: Thread ID

8.2 CFG Creator module: NetworkX
implementation

Symptoms: When detecting a conditional jump, the graph should
contain two branches, but only one is executed and we may miss the
alternative node.

Cure: The CFG Creator module runs on the analysis computer. It is
in charge of creating the iCFG (interprocedural CFG) and the olCFGs
(object-level CFGs). It implements, in Python, the algorithms described in
Sections 7.2.2 and 7.2.4, using the NetworkX library17 to perform graph
operations efficiently.

First, it creates the iCFG by splitting the events between methods, as
shown in Algorithm 8.1. Since events that occur in different threadsmight
be mixed inside the list of events, the structures (lines 2, 3 and 4) are
dictionaries indexed by the TID18 of the events. By tracking the current
method that is executed (line 11), the call-stack is built (lines 10 and 14).
During this operation, the iCFG is built incrementally (line 12).

Algorithm 8.1: Create an iCFG and separate events between methods.
Input: events
Output: icfg, methods_events
1: icfg← EmptyDirectedGraph()
2: call_stack← {}
3: current_method← {}
4: methods_events← {}
5: for all event ∈ events do
6: tid← event.tid
7: methods_events[tid][current_method[tid]].append(event)
8: if event is “invoke” then
9: last_method[tid]← current_method[tid]
10: call_stack[tid].push(current_method[tid])
11: current_method[tid]← event.method
12: icfg.add_edge( (last_method[tid], current_method[tid]) )
13: else if event is “return” then
14: current_method[tid]← call_stack[tid].pop()
15: end if
16: end for

Second, it creates the olCFG of the method, as shown in Algorithm 8.2.
It assumes that actions performed at a specific address originate from
the same instruction (line 14). While processing the events, the graph
edges are built (line 17). The events retrieved for a given method might
describe several executions of this method, the invocations and returns
are tracked (line 39) to determine when the next event is not linked with
the current one but instead is a new execution of the method (line 45).
Then, the olCFG is built from the dummy ROOT_NODE (line 46).

Special care is given to condition events (line 20). Indeed, as stated
in Section 7.2.4, when a conditional jump occurs, two “blank” nodes
are added (lines 25 to 31) to keep the information that a conditional
path has been taken. These blank nodes are then removed, according to
Algorithm 8.3, when the blank node follows an event and is followed by

https://networkx.github.io/
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an other event. Indeed, in this case, the path taken is already represented
in the graph by the edge between the two events. The blank nodes that
finally remains are the ones that have no successors, that is a path that
has not been taken, or the ones that follows an other blank node, that is
two conditions that have occurred successively.
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Algorithm 8.2: Create olCFG for a given method.
Input: method_events
Output: olCFG
1: olCFG← EmptyDirectedGraph()
2: number_of_invoke_without_return← 0
3: execution_number← 1
4: olCFG.add_node(ROOT_NODE)
5: previous_node← ROOT_NODE
6:
7: // Create olCFG with blank nodes
8: for all event ∈ method_events do
9: addr← event.event_address
10:
11: // General case
12: if event is not “condition” then
13: // Update the node label
14: olCFG.nodes(addr).append( (execution_number, event) )
15:
16: // Link the previous event with the current one
17: olCFG.add_edge(previous_node, addr)
18: previous_node← addr
19:
20: // Handle blank nodes for condition events
21: else
22: // Create or retrieve blank nodes if they already exist
23: cond_value← event.condition_value
24: target← event.target
25: if olCFG.blank_node_exists(target) then
26: blank_node_1← olCFG.blank_node(target)
27: blank_node_2← olCFG.blank_node(-target)
28: else
29: blank_node_1← olCFG.create_blank_node(target)
30: blank_node_2← olCFG.create_blank_node(-target)
31: end if
32:
33: // Update graph with blank nodes
34: blank_node_1.append((execution_number, event))
35: olCFG.add_edge(previous_node, blank_node_1)
36: olCFG.add_edge(previous_node, blank_node_2)
37: end if
38:
39: // Track when the last return of the method is reached
40: if event is “invoke” then
41: number_of_invoke_without_return += 1
42: else if event is “return” then
43: number_of_invoke_without_return -= 1
44: end if
45: if number_of_invoke_without_return == 0 then
46: previous_node← ROOT_NODE
47: execution_number += 1
48: end if
49: end for
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Algorithm 8.3: Remove useless blank nodes from an olCFG.
Input: olCFG
Output: olCFG
1: for all node ∈ olCFG.nodes do
2: if node.is_blank_node() then
3: if len(node.next_nodes) == 1 then
4: next_node = node.next_nodes[0]
5: if not next_node.is_blank_node() then
6: for all previous_node in node.previous_nodes do
7: olCFG.add_edge(previous_node, next_node)
8: end for
9: olCFG.remove(node)
10: end if
11: end if
12: end if
13: end for

8.3 Conclusion

A lot of challenges have been faced during the implementation of
OATs’inside. It shows that modifying the Android kernel and the An-
droid runtime is not a straightforward task. Nevertheless, the developed
patches are placed in components that should be relatively stable in fu-
ture versions, according to the modifications that have already occurred
in past AOSP releases. Thus, porting OATs’inside for new version of
Android is possible, unless some major changes are brought by Android
developers.





Epilogue





Conclusion 9
9.1 Thesis contribution summary

This thesis has presented the following contributions.

First, we have introduced Bytecode Free OAT (BFO) and Direct Heap
Access (DHA), two new obfuscation techniques that are fully applicable
to Android native applications. We have proposed, tested and classified
several implementations in order to evaluate their practicality. These
techniques, until now, were not known by the scientific community and
thus are able to bypass state-of-the-art tools.

Since their usage in the wild would be dangerous, we developed corre-
sponding detection techniques. Then, we used them to search for obfus-
cated applications inside application stores and smartphone firmwares.
Results are lukewarm: while we are able to detect obvious obfuscation
techniques, such as nopping or deleting the bytecode, the detection of
slighter modifications in the code remains an open problem.

We have detected a lot of DHA usage. These usages were legitimate and
driven by optimization goals. Thus, we are confident that we would also
be able to detect malicious usages of DHA. Then, appears a new problem
that is telling malicious DHA apart from benign ones.

Regarding the vulnerability issues, we have developed a tool that is able
to detect missing transient keywords.We have confirmed automatically
the manual results of Peles et. al. on the conscrypt library. The proposed
technique suffers for usual static analysis limitations. These limitations
are classically treated by asking the developer to annotate application
code, which is possible since the method works on the source code. Our
study of the Telegram application has shown the usability of the tool:
several flows were found, although none are directly exploitable.

Additionally, even though the proposed method has targeted the specific
transient keyword problem, it could be applied tomore general security
issues. For example, leakage of file descriptor numbers to external sockets
could be treated similarly. Similarly to DHA detection, the difficulty now
resides in distinguishing legitimate from malicious leakage.

Finally, we synthesize the knowledge obtained about Android obfusca-
tion to build OATs’inside, a new tool that is independent from potential
obfuscation techniques used by analyzed applications. OATs’inside com-
bines dynamic and symbolic analysis to retrieve the object-level behavior
of obfuscated Android applications. OATs’inside outputs an object-level
CFG that contains instructions acting on objects such as calling methods
or setting object fields, even when these actions are performed by native
code. It describes the contents of each method, the conditional expres-
sions involved in the control flow instructions, the data flow between
actions, and the interprocedural calls. This information is particularly
useful for an analyst who studies a particular obfuscated method. This
highly precise analysis is very costly in terms of time overhead. This is the
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1: Android Automotive
2: Android Wear
3: Android TV
4: Android Things

5: Netflix

consequence of the very fine granularity of observation. Since we detect
instruction-level behaviors, we are forced to stop the execution during
the analysis of the involved instruction. The more details we observe,
the more the execution is slowed down. We believe that this scientific
obstacle cannot be solved at the software level but requires modifications
of the underlying hardware.

9.2 Perspectives for future work

We suggest three axes for extending this thesis work.

First, we believe that this thesis work could be applied to other system
platforms. Indeed, the Android ecosystem is very wide: connected cars1,
smartwatches2, TVs3 and various connected devices4. All these platforms
have their own specificities but rely on the same Android AOSP core.
Thus, the work presented in this thesis, in particular OATs’inside, would
be usable in these new contexts. These specificities maymodify malicious
intents: for example, there is no gain in crafting a ransomware for a smart
watch that has no personal data. Consequently, we believe that our work
should be adapted to different malicious intents.

Since the devices are usually closed-source, device vendors pre-install a
lot of applications and sometimes force users to use them. For example,
in modern televisions, a well-known streaming platform5 is pre-installed
due to commercial agreements. The need for protection for these applica-
tions would push vendors to use security techniques such as obfuscations
and vulnerability detection. This highlights that adapting our work to
these new contexts is urgent.

Second, we suggest that this thesis work could be applied to other
languages. Indeed, Android is not the only system that allows developers
to mix one high-level language with a lower one. For example, the
reference Python interpreter, named CPython, allows to extend Python
scripts with assembly code and provides an interface to help Python and
C/C++ languages to operate together. Similarly to Android, CPython
does not enforce the usage of this interface and let assembly interact
freely with bytecode. Obviously, tools’ implementations presented in
this thesis are not directly usable in this context. We could evaluate if
proposed techniques can be adapted to the target context.

Third, we believe that Android should be modified in order to harden
the interface between bytecode and native code. Indeed, the challenges
described during this thesis are the consequences of an ill-defined and
too permissive interface between these two languages. Rebuilding a new
interface from scratch, while keeping in mind the issues described in this
thesis, will remove these challenges.

We could draw inspiration from web browser implementations of
Javascript and WebAssembly. These languages are used for creating
interactive web pages. Javascript is a high-level language that is executed,
inside the web browser, by a virtual machine.WebAssembly is a low-level
language that looks like assembly code, and is used for optimization
purposes. Similarly to Android, the web browser virtual machine offers
an interface that allows these languages to interact together. However,
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WebAssembly is run inside a sandbox that is instantiated and controlled
by the Javascript code. For example, Javascript code uses the API of the
interface to define memory areas that are accessible by WebAssembly.
Nevertheless, modifying Android in a such way will lead to backward
compatibility issues. Thus, we should design a solution that both de-
fines a new interface and allows to port current applications to this new
system transparently for application developers. This solution, even if
incompatible with existing applications, should be more restrictive while
allowing legitimate usage of native code.
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1: Solution presented in Chapter 7

List of tested firmwares A
Table A.1 lists all the 17 firmwares that constitute the dataset on which
we conducted experiments in Section 5.2. These firmwares have been re-
trieved on https://androidmtk.com, a web site that provides firmwares
and drivers for more than fifty brands.

We have chosen 6 brands among the most commonly distributed brands
and downloaded the firmwares of all their devices. We have limited
our dataset to one firmware by device and kept only firmwares that run
Android Nougat (7.x), the Android version targeted by OATs’inside

1.

Brand Phone model Android version

Alcatel
1T 10 7.0

OneTouch A3 Plus 5011A 7.0

Archos 50f Neon 7.0

Huawei

Ascend Mate 9 MHA-AL00 7.0

Enjoy 7 Plus TRT-TL10A 7.0

P10 VRT-AL00 7.0

Samsung

Galaxy A3 SM-A310M 7.0

Galaxy C7 Pro SM-C710F 7.1.1

Galaxy Note 5 SM-N920A 7.0

Galaxy S6 Edge SM-G925S 7.0

Galaxy A5 SM-A510M 7.1.1

Sony Xperia

Touch G1109 7.0

L1 Dual G3312 7.1.1

M2 Aqua D2403 7.0

Z5 Premium E6853 7.0

Z5 501SO 7.1.1

Wiko Jerry 2 7.0

Table A.1: List of tested firmwares

https://androidmtk.com




1: char, long, byte, boolean, double and
float

2: Invocations with numerous arguments,
in common Application Binary Interface
(ABI), are handled differently than “small”
invocations.

Java behavior unit tests B
This appendix presents unit tests used in Sections 7.1 and 7.2.5. Section B.1
describes the unobfuscated versions of the unit tests that is the DEX only

and the JNI versions. Section 2 describes the obfuscation techniques used
to generate the four other versions: Pack DEX, Bytecode Free OAT (BFO),
JNI+obf, Direct Heap Access (DHA).

B.1 unobfuscated unit tests

Unit tests are gather in two applications. One has implemented the
different test in Java, the other in C++. TheDEX only and the JNI versions
correspond to a vanilla compilation of the code presented here, using
Android studio. Each application is composed of a single activity. This
activity class contains a method for each test case and seven fields, one
for each primitive type1. Test cases (i.e. methods) are grouped in eight
families, each family standing for a Java behavior. All tests are launched
when the activity is created, inside onCreate method.

In order to help the writing of JNI test cases, two helpers are available in
the JNI test case application. They are shown in Listing B.1 and allow to
easily retrieve the JNI ID of a class or of the primitive fields.

Method behaviour This family is divided in two categories: invoke and
return. For each method we verify that the tested tool correctly reports
the invocation and the return behavior with the types and the values of
the method arguments and return value. Two other marginal tests have
been added: one that checks invocations using numerous arguments
are also handle2 and one that checks multi-level of invocations are all
handled correctly.

Allocationbehaviour This family is divided in three categories,whether
an object, a primitive variable or primitive array variable is allocated. For
each method, we verify that the tested tool correctly reports that an entity
has been allocated (on the heap for object and primitive array variables,
on the stack for primitive variables).

1 #define GET_CLS jclass cls = env->GetObjectClass(instance)
2

3 /* Usage: GET_FIELD(int, Int, "I"); for getting intField, GET_FIELD(char, Char, "C"); for getting charField, ...

*/
4 #define GET_FIELD(type, Type, sig) \
5 jfieldID fid = env->GetFieldID(cls, #type "Field", sig); \
6 j##type type##Field = env->Get##Type##Field(instance, fid);

Listing B.1: JNI test cases helpers
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1 public int testInvokeReturnInt(int intVar) { return intVar; }
2 public char testInvokeReturnChar(char charVar) { return charVar; }
3 [...] /* long, byte, boolean, double and float cases removed from snippet */
4 public int testInvokeManyIntArgs(int arg1,int arg2,int arg3,int arg4,int arg5,int arg6,int arg7,int arg8,int arg9,

int arg10,int arg11) { return arg1+arg2+arg3+arg4+arg5+arg6+arg7+arg8+arg9+arg10+arg11;}
5 public long testSubInvokeReturn() { return testInvokeReturnInt(1) + testInvokeReturnLong(2) + testInvokeReturnByte

((byte)3);}

Listing B.2: Java method test cases
1 extern "C" JNIEXPORT jint JNICALL testInvokeReturnInt(JNIEnv *env, jobject instance, jint intVar) { return intVar;

}
2 [...] /* char, long, byte, boolean, double and float cases removed from snippet */
3 extern "C" JNIEXPORT jint JNICALL testInvokeManyIntArgs(JNIEnv *env, jobject instance, jint arg1, jint arg2, jint

arg3, jint arg4, jint arg5, jint arg6, jint arg7, jint arg8, jint arg9, jint arg10, jint arg11) { return
arg1+arg2+arg3+arg4+arg5+arg6+arg7+arg8+arg9+arg10+arg10+arg11;}

4 extern "C" JNIEXPORT jlong JNICALL testSubInvokeReturn(JNIEnv *env, jobject instance) { GET_CLS; jmethodID mid;
jlong res = 0;

5 mid = env->GetMethodID(cls, "testInvokeReturnInt", "(I)I");
6 res += env->CallIntMethod(instance, mid, (jint)1);
7 mid = env->GetMethodID(cls, "testInvokeReturnLong", "(J)J");
8 res += env->CallLongMethod(instance, mid, (jlong)1);
9 mid = env->GetMethodID(cls, "testInvokeReturnByte", "(B)B");
10 res += env->CallByteMethod(instance, mid, (jbyte)3); return res; }

Listing B.3: JNI method test cases

Access behaviour This family is divided in three categories, whether
the access is performed on an object field, a primitive variable or primitive
array variable. For each method, we verify that the tested tool correctly
reports that a read-access and a write-access has been performed and
reports the read value, the written value and the overwritten value. The
variables are not local to the method to avoid aggressive optimizations
from the compiler.

Operationsbehaviour This family is divided in three categories,whether
the operation uses an object field, a primitive variable or primitive ar-
ray variable. For each method, we verify that the tested tool correctly
reports that an operation has been conducted and reports the formula
corresponding to the operation. The variables are not local to the method
to avoid aggressive optimizations from the compiler.

Conditionbehaviour This family is divided in three categories,whether
the condition depends on an object field, a primitive variable or primitive
array variable. For each method, we verify that the tested tool correctly
reports that a conditional path has been taken and reports the formula

1 /* Object */
2 public class AllocatedClass {int varI; char varC; long varL; byte varByte; boolean varB; double varD; float varF;}
3 public AllocatedClass testAllocateObject() {return new AllocatedClass();}
4 /* Primitive variable */
5 public void testAllocateVariable() {int varI; char varC; long varL; byte varByte; boolean varB; double varD; float

varF;}
6 /* Primitive Array */
7 public void testAllocateArray() {int[] varI={}; char[] varC={}; long[] varL={}; byte[] varByte={}; boolean[] varB

={}; double[] varD={}; float[] varF={};}

Listing B.4: Java allocation test cases
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1 /* Object field */
2 extern "C" JNIEXPORT jobject JNICALL testAllocateObject(JNIEnv *env, jobject instance) {
3 jclass cls = env->FindClass("pg/nativetests/TestLauncher$AllocatedClass"); return env->AllocObject(cls);}
4 /* Primitive variable */
5 extern "C" JNIEXPORT void JNICALL testAllocateVariable(JNIEnv *env, jobject instance) {
6 jint varI; jchar varC; jlong varL; jbyte varByte; jboolean varB; jdouble varD; jfloat varF;}
7 /* Primitive Array */
8 extern "C" JNIEXPORT void JNICALL testAllocateArray(JNIEnv *env, jobject instance) {
9 jintArray varI = env->NewIntArray(1);jcharArray varC = env->NewCharArray(1);jlongArray varL = env->NewLongArray

(1);jbyteArray varByte = env->NewByteArray(1); jbooleanArray varB = env->NewBooleanArray(1);jdoubleArray varD
= env->NewDoubleArray(1);jfloatArray varF = env->NewFloatArray(1);}

Listing B.5: JNI allocation test cases

1 /* Object field */
2 public int testAccessObjectInt() { int tmpInt; tmpInt=intField;intField=3000;return tmpInt;}
3 public char testAccessObjectChar() {char tmpChar; tmpChar=charField;charField=’o’;return tmpChar;}
4 [...] /* long, byte, boolean, double and float cases removed from snippet */
5 /* Primitive variable */
6 public int testAccessVariableInt(int intVar) { int tmpInt; tmpInt=intVar;intVar=3000;return tmpInt;}
7 public char testAccessVariableChar(char charVar) {char tmpChar; tmpChar=charVar;charVar=’o’;return tmpChar;}
8 [...] /* long, byte, boolean, double and float cases removed from snippet */
9 /* Primitive Array */

10 public int testAccessArrInt(int[] intVar) { int tmpInt; tmpInt=intVar[0];intVar[0]=3000;return tmpInt;}
11 public char testAccessArrChar(char[] charVar) {char tmpChar; tmpChar=charVar[0];charVar[0]=’o’;return tmpChar;}
12 [...] /* long, byte, boolean, double and float cases removed from snippet */

Listing B.6: Java access test cases

1 /* Object field */
2 extern "C" JNIEXPORT jint JNICALL testAccessObjectInt(JNIEnv *env, jobject instance) {
3 GET_CLS;GET_FIELD(int, Int, "I");jint tmp = intField;env->SetIntField(instance, fid, 3000);return tmp;}
4 extern "C" JNIEXPORT jchar JNICALL testAccessObjectChar(JNIEnv *env, jobject instance) {
5 GET_CLS;GET_FIELD(char, Char, "C");jchar tmp = charField;env->SetCharField(instance, fid, ’o’);return tmp;}
6 [...] /* long, byte, boolean, double and float cases removed from snippet */
7 /* Primitive variable */
8 extern "C" JNIEXPORT jint JNICALL testAccessVariableInt(JNIEnv *env, jobject instance, jint intVar) {
9 jint tmp=intVar; intVar=3000;return tmp;}

10 extern "C" JNIEXPORT jchar JNICALL testAccessVariableChar(JNIEnv *env, jobject instance, jchar charVar) {
11 jchar tmp=charVar; charVar=3000;return tmp;}
12 [...] /* long, byte, boolean, double and float cases removed from snippet */
13 /* Primitive Array */
14 extern "C" JNIEXPORT jint JNICALL testAccessArrInt(JNIEnv *env, jobject instance, jintArray intVar_) {
15 jint *intVar = env->GetIntArrayElements(intVar_, NULL);jint tmp = intVar[0];intVar[0] = 3000;env->

ReleaseIntArrayElements(intVar_, intVar, 0);return tmp;}
16 extern "C" JNIEXPORT jchar JNICALL testAccessArrChar(JNIEnv *env, jobject instance, jcharArray charVar_) {
17 jchar *charVar = env->GetCharArrayElements(charVar_, NULL);jchar tmp = charVar[0];env->ReleaseCharArrayElements(

charVar_, charVar, 0);return tmp;}
18 [...] /* long, byte, boolean, double and float cases removed from snippet */

Listing B.7: JNI access test cases

1 /* Object field */
2 public int testOperationsObjectInt() {return intField + 1;}
3 public char testOperationsObjectChar() {return (char)((int)(charField) + 2);}
4 [...] /* long, byte, boolean, double and float cases removed from snippet */
5 /* Primitive variable */
6 public int testOperationsVariableInt(int intVar) { return intVar + 1; }
7 public char testOperationsVariableChar(char charVar) { return (char)((int)(charVar)+2); }
8 [...] /* long, byte, boolean, double and float cases removed from snippet */
9 /* Primitive Array */

10 public int testOperationsArrInt(int[] intVar) { return intVar[0] + 1; }
11 public char testOperationsArrChar(char[] charVar) { return (char)((int)(charVar[0])+2); }
12 [...] /* long, byte, boolean, double and float cases removed from snippet */

Listing B.8: Java operations test cases



116 B Java behavior unit tests

1 /* Object field */
2 extern "C" JNIEXPORT jint JNICALL testOperationsObjectInt(JNIEnv *env, jobject instance) {
3 GET_CLS;GET_FIELD(int,Int,"I");return intField+1; }
4 extern "C" JNIEXPORT jchar JNICALL testOperationsObjectChar(JNIEnv *env, jobject instance) {
5 GET_CLS;GET_FIELD(char,Char,"C");return charField+2; }
6 [...] /* long, byte, boolean, double and float cases removed from snippet */
7 /* Primitive variable */
8 extern "C" JNIEXPORT jint JNICALL testOperationsVariableInt(JNIEnv *env, jobject instance, jint intVar) {return

intVar+1;}
9 extern "C" JNIEXPORT jchar JNICALL testOperationsVariableChar(JNIEnv *env, jobject instance, jchar charVar) {

return charVar+2;}
10 [...] /* long, byte, boolean, double and float cases removed from snippet */
11 /* Primitive Array */
12 extern "C" JNIEXPORT jint JNICALL testOperationsArrInt(JNIEnv *env, jobject instance, jintArray intVar_) {
13 jint *intVar = env->GetIntArrayElements(intVar_, NULL);jint res = intVar[0];env->ReleaseIntArrayElements(intVar_

, intVar, 0);return res+1;}
14 extern "C" JNIEXPORT jchar JNICALL testOperationsArrChar(JNIEnv *env, jobject instance, jcharArray charVar_) {
15 jchar *charVar = env->GetCharArrayElements(charVar_, NULL);jchar res = charVar[0];env->ReleaseCharArrayElements(

charVar_, charVar, 0);return res+2;}
16 [...] /* long, byte, boolean, double and float cases removed from snippet */

Listing B.9: JNI operations test cases
1 /* Object field */
2 public boolean testConditionObjectEq() {if( intField == 42) return true; else return false; }
3 public boolean testConditionObjectInfEq() { if( intField <= 42) return true; else return false; }
4 public boolean testConditionObjectSup() { if( intField > 42) return true; else return false; }
5 /* Primitive variable */
6 public boolean testConditionVariableEq(int i) {if( i == 42) return true; else return false; }
7 public boolean testConditionVariableInfEq(int i) { if( i <= 42) return true; else return false; }
8 public boolean testConditionVariableSup(int i) { if( i > 42) return true; else return false; }
9 /* Primitive Array */
10 public boolean testConditionArrEq(int[] i) {if( i[0] == 42) return true; else return false; }
11 public boolean testConditionArrInfEq(int[] i) { if( i[0] <= 42) return true; else return false; }
12 public boolean testConditionArrSup(int[] i) { if( i[0] > 42) return true; else return false; }

Listing B.10: Java condition test cases

corresponding to the condition taken. The variables are not local to the
method to avoid aggressive optimizations from the compiler.

Typing behaviour This family is divided in two categories, whether
argument type is checked or the argument is cast. For each method, we
verify that the tested tool correctly reports the check or the cast and gives
the types used.

Exception behaviour This family is divided in two categories, whether
an exception is raised or caught. For each method, we verify that the
tested tool correctly reports the exception. A supplementary test has
been added to test if inner method calls that leave exceptions are also
handled.

Monitor behaviour In this family,we verify that the tested tool correctly
reports the beginning and the ending of a Java monitored session.
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1 /* Primitive variable */
2 extern "C" JNIEXPORT jboolean JNICALL testConditionVariableEq(JNIEnv *env, jobject instance, jint i) { if( i == 42

) return true; else return false; }
3 [...] /* <= and > removed from snippet */
4 /* Primitive Array */
5 extern "C" JNIEXPORT jboolean JNICALL testConditionArrEq(JNIEnv *env, jobject instance, jintArray i_) {
6 jint *i = env->GetIntArrayElements(i_, NULL);
7 if( i[0] == 42 ) {env->ReleaseIntArrayElements(i_, i, 0);return true;}
8 else {env->ReleaseIntArrayElements(i_, i, 0);return false;}}
9 [...] /* <= and > removed from snippet */

10 /* Object field */
11 extern "C" JNIEXPORT jboolean JNICALL testConditionObjectEq(JNIEnv *env, jobject instance) {
12 GET_CLS; GET_FIELD(int, Int, "I"); if(intField == 42 ) return true; else return false;}
13 [...] /* <= and > removed from snippet */

Listing B.11: JNI condition test cases
1 public class Toto {}
2 public class Tata extends Toto {}
3 public class Tutu extends Toto {}
4 public boolean testCheckType(Toto t) {return t instanceof Tata;}
5 public Tata testCastType(Toto t) {return (Tata)t;}

Listing B.12: Java typing test cases

3: https://gitlab.
inria.fr/jlalande/

teaching-android-mobile-security

B.2 Obfuscated unit tests

Packer The Pack DEX version is built from the DEX only version. We
employed the home-made packer3 described in [5]:

1. The DEX only application is copied. The copied version, once
building, constitutes the Pack DEX version.

2. The DEX file of the original DEX only application is extracted.
3. The extracted DEX is xored with an hardcoded key (0x42) and is

stored in the resource folder of the copied application using an
other name (butterfly.png).

4. The DEX file of the copied application is noped by replacing all the
DEX instructions by const/4 v1, 0x1 instruction.

5. A native library is added to the copied DEX file. Before calling each
test method, the decodeMethod of this library is called to unpack the
test. This method, see Listing B.19:

a) retrieves the location of the DEX file by browsing the
/proc/self/maps file, see Listing B.18.

b) retrieves the address (APK_insns_) and the length
(APK_insns_size_in_code_units_) of the nopedmethodbyparsing
the DEX file.

c) loads the xored file (butterfly.png) and retrieves the address
(PNG_insns_size) of the xored method by browsing the DEX file
structure.

d) un-xors the xored method and writes the results over the

1 extern "C" JNIEXPORT jboolean JNICALL testCheckType(JNIEnv *env, jobject instance, jobject t) {
2 jclass cls = env->FindClass("pg/nativetests/TestLauncher$Tata"); return env->IsInstanceOf(t, cls);}
3

4 extern "C" JNIEXPORT jobject JNICALL testCastType(JNIEnv *env, jobject instance, jobject t) {return t;}

Listing B.13: JNI typing test cases

https://gitlab.inria.fr/jlalande/teaching-android-mobile-security
https://gitlab.inria.fr/jlalande/teaching-android-mobile-security
https://gitlab.inria.fr/jlalande/teaching-android-mobile-security


118 B Java behavior unit tests

1 public void testThrow() { throw new IllegalArgumentException("Testing throw"); }
2 public void testNoCatch() { testThrow(); }
3 public void testThrowCatch() { try { testNoCatch(); } catch (Exception e) {} }

Listing B.14: Java exception test cases
1 extern "C" JNIEXPORT void JNICALL testThrow(JNIEnv *env, jobject instance) {
2 jclass cls = env->FindClass("java/lang/IllegalArgumentException");env->ThrowNew(cls, "Testing throw");}
3 extern "C" JNIEXPORT void JNICALL testNoCatch(JNIEnv *env, jobject instance) {
4 GET_CLS;jmethodID mid= env->GetMethodID(cls, "testThrow", "()V");env->CallVoidMethod(instance, mid, (jint)1);}
5 extern "C" JNIEXPORT void JNICALL testThrowCatch(JNIEnv *env, jobject instance) {
6 GET_CLS;jmethodID mid= env->GetMethodID(cls, "testNoCatch", "()V");env->CallVoidMethod(instance, mid, (jint)1);

if(env->ExceptionCheck() == JNI_TRUE)env->ExceptionClear();}

Listing B.15: JNI exception test cases

5: Primitive arrays are also stored on the
heap

noped-method bytecode.

BFO The BFO version is built from the DEX only version. The DEX

only application is installed on the test-smartphone (or the test-emulator).
Then, all the methods of the application are compiled into OAT using
the command presented in Listing B.20. This command is run on the
test-smartphone. Finally, the DEX file of the application and the DEX file
of the OAT file are noped on the smartphone. They are located inside the
/data/app/unit_tests_package/ folder on the test-smartphone. This
folder constitutes the BFO version.

Listing B.20: Application compilation
command

1 cmd package compile -m speed -f unit_tests_package

Native obfuscation The JNI+obf version is built from the JNI ver-
sion. Instead of using the classical Android studio compiler (clang),
the IDE is set-up to use Obfuscator-LLVM [111]. The parameters passed
to Obfuscator-LLVM are shown in Listing B.21. These options activate
opaque predicate usage (-bcf -mllvm -bcf_prob=100) and control flow
flattening (-mllvm -split -mllvm -fla)

Listing B.21: Obfuscator-LLVM command
line

1 -mllvm -bcf -mllvm -bcf_prob=100 -mllvm -split -mllvm -fla

To illustrate the effect of Obfuscator-LLVM, we show here the resulting
Control Flow Graphs44: Retrievedusing IDA,https://www.hex-rays.

com/products/ida/.
of testConditionObjectEq method. Figure B.1 shows

the unobfuscated CFG (JNI version). Figure B.2a, resp. Figure B.2b, shows
the CFG of testConditionObjectEq method when opaque predicates, resp.
control flow flattening, are applied to testConditionObjectEq.

DHA The DHA version is built from the JNI version. In fact, DHA
obfuscation only applies when an object field or a primitive array5 is read
or written. This happens only for the access, operation and condition
behaviors. For these behaviors the read and the write operations that
are performed using JNI, are replaced by a direct memory access, see
Listing B.22.

1 public void testMonitor(int i) {synchronized(this){try{Thread.sleep(i);} catch(InterruptedException e){}}}

Listing B.16: monitor test cases

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
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1 extern "C" JNIEXPORT void JNICALL testMonitor(JNIEnv *env, jobject instance, jint i) {
2 env->MonitorEnter(instance);
3

4 jclass cls = env->FindClass("java/lang/Thread");
5 jmethodID mid = env->GetStaticMethodID(cls, "sleep", "(J)V");
6 env->CallStaticVoidMethod(cls, mid, i);
7

8 if(env->ExceptionCheck() == JNI_TRUE)
9 env->ExceptionClear();

10

11 env->MonitorExit(instance);
12 }

Listing B.17: JNI exception test cases

1 void* getDexFileLocation() {
2 FILE* fichier;
3 fichier = fopen("/proc/self/maps", "r");
4 if(fichier != NULL) {
5 char* line = NULL;
6 size_t n = 0;
7 ssize_t nb_read = 0;
8

9 while((nb_read = getline(&line, &n, fichier)) > 0) {
10 if(nb_read > 6) {
11 if (line[nb_read - 6] == ’.’ && line[nb_read - 5] == ’o’ && line[nb_read - 4] == ’d’ && line[nb_read - 3]

== ’e’ && line[nb_read - 2] == ’x’) {
12 fclose(fichier);
13

14 void* oat_addr = (void *) strtoll(line, NULL, 16);
15

16 line[nb_read-1] = ’\0’; // Remove ending ’\n’
17 char* oat_location = strchr(line, ’/’);
18

19 /* Already loaded so it only retrieves the handle */
20 void* oat_dl_handle = dlopen(oat_location, RTLD_LAZY);
21 void* oatdata_dl_addr = dlsym(oat_dl_handle, "oatdata");
22 Dl_info info; dladdr(oatdata_dl_addr, &info);
23 unsigned long oatdata_offset = (unsigned long)oatdata_dl_addr - (unsigned long)info.dli_fbase;
24 dlclose(oat_dl_handle);
25

26 void* oatdata_addr = (void*)((char*)oat_addr + oatdata_offset);
27

28 unsigned int dex_file_count = *(unsigned int*)((char*)oatdata_addr + 20);
29 unsigned int key_value_store_size = *(unsigned int*)((char*)oatdata_addr + 68);
30 unsigned int oat_header_size = 72 + key_value_store_size;
31

32 /* We only read the first \gls{dexL} */
33 void * oat_dex_header = (char*)oatdata_addr + oat_header_size;
34 unsigned int dex_file_location_size = *(unsigned int*)oat_dex_header;
35 unsigned int dex_file_pointer = *(unsigned int*)((char*)oat_dex_header + 8 + dex_file_location_size);
36

37 return (void*)((char*)oatdata_addr + dex_file_pointer);
38 }
39 }
40 }
41 fclose(fichier);
42 }
43 return NULL;
44 }

Listing B.18: DEX file location
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1 /* Constants than can move between different libart \gls{runtimeL} */
2 #define OFFSET_OF_CODE_ITEM_OFFSET_ART_METHOD 8
3 unsigned int getCodeItemOffset(JNIEnv* env, jclass thisClass, const char* methodName, const char* methodSignature)

{
4 void* art_method = (void*) env->GetMethodID(thisClass, methodName, methodSignature);
5 unsigned int code_item_offset = *(unsigned int*) ((char*)art_method + OFFSET_OF_CODE_ITEM_OFFSET_ART_METHOD);
6 return code_item_offset;
7 }
8

9 void* GetCodeItemInstructions(const void* dex_addr, unsigned int code_item_offset, unsigned int* code_size /* out

*/) {
10 void* code_item = (void*)((char*)dex_addr + code_item_offset);
11 *code_size = *(unsigned int*) ((char*)code_item + 12);
12 void* insns_ = (void*) ((char*)code_item + 16);
13 return insns_;
14 }
15

16 const void* GetXoredApk(JNIEnv* env, jobject thisPtr, jclass thisClass) {
17 jmethodID getAssetsId = env->GetMethodID(thisClass, "getAssets", "()Landroid/content/res/AssetManager;");
18 jobject jMgr = env->CallObjectMethod(thisPtr, getAssetsId);
19 AAssetManager* mgr = AAssetManager_fromJava(env, jMgr);
20 AAsset *asset = AAssetManager_open(mgr, "butterfly.png", AASSET_MODE_STREAMING);
21 off64_t start, length;
22 int fd = AAsset_openFileDescriptor64(asset, &start, &length);
23 return AAsset_getBuffer(asset);
24 }
25

26 extern "C" JNIEXPORT void
27 JNICALL
28 decodeMethod(
29 JNIEnv *env,
30 jobject thisPtr,
31 jstring jMethodName,
32 jstring jMethodSignature) {
33 /* Convert jstring to char* */
34 const char *methodName = env->GetStringUTFChars(jMethodName, 0);
35 const char *methodSignature = env->GetStringUTFChars(jMethodSignature, 0);
36

37 jclass thisClass = env->GetObjectClass(thisPtr);
38

39 unsigned int code_item_offset = getCodeItemOffset(env, thisClass, methodName, methodSignature);
40

41 void* dex_file_location = getDexFileLocation();
42

43 const void* mmaped_file_location = GetXoredApk(env, thisPtr, thisClass);
44

45 unsigned int APK_insns_size_in_code_units_;
46 void* APK_insns_ = GetCodeItemInstructions(dex_file_location, code_item_offset, &APK_insns_size_in_code_units_

);
47

48 unsigned int PNG_insns_size_in_code_units_;
49 void* PNG_insns_ = GetCodeItemInstructions(mmaped_file_location, code_item_offset, &

PNG_insns_size_in_code_units_);
50

51 /* Change right on APK instruction page */
52 void* base_addr = (void*)((char*)APK_insns_ - ((unsigned long)APK_insns_ % PAGE_SIZE));
53 mprotect(base_addr, (size_t)((char*)APK_insns_ + APK_insns_size_in_code_units_*2 - (char*)base_addr),

PROT_READ|PROT_WRITE|PROT_EXEC);
54

55 /* Copy all the instruction */
56 unsigned int i;
57 for(i=0 ; i < APK_insns_size_in_code_units_; i++) {
58 *((char*)APK_insns_ + 2*i) = *((char*)PNG_insns_ + 2*i) ^ 0x42;
59 *((char*)APK_insns_ + 2*i + 1) = *((char*)PNG_insns_ + 2*i + 1) ^ 0x42;
60 }
61

62 /* Release created char* */
63 env->ReleaseStringUTFChars(jMethodSignature, methodSignature);
64 env->ReleaseStringUTFChars(jMethodName, methodName);
65 }

Listing B.19: Packer decode method
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Figure B.1: Non obfuscated
testConditionObjectEqmethod

1 #define INTFIELD_OFFSET 0x8
2 extern "C" JNIEXPORT jint JNICALL testAccessObjectInt(JNIEnv *env, jobject instance) {
3 unsigned long * thisPtr = *(unsigned long **)thisObj;
4 unsigned long * field_ptr = &thisPtr[INTFIELD_OFFSET/4];
5 jint tmp = *field_ptr;
6 *field_ptr = 3000;
7 return tmp;
8 }

Listing B.22: Example of DHA unit test
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Figure B.2: Obfuscated
testConditionObjectEqmethod

(a) Opaque predicate obfuscation

(b) Control flow flattening obfuscation



Concolic analysis functioning
proof C

This appendix presents a proof of the functioning of the concolic analysis
presented in Section 7.2.4.

Definition 1. A dump d ∈ D is the whole memory of a process at a given
time. It comprises both data and code areas.

Definition 2. A location l ∈ Loc is either a CPU register or a memory
address. The special register PC (Program Counter) is the register that
identifies the current instruction address.

Definition 3. A symbolic value sv ∈ VSalue is an expression over
values (v ∈ Value) and symbols (s ∈ Symbol).

Definition 4. A symbolic state is a tuple (θ, π, ρ) ∈ S where:

I θ : Loc → VSalue
θ associates every location to a symbolic value.

I π is the current condition path, i.e. the set of conditions needs to
be satisfied in order to reach to current instruction.

I ρ : Symbol → Value
ρ is the concretization function that associates symbols to their
corresponding concrete value.
By extension we note ρ : Condition → Condition the func-
tion that replaces symbols with their corresponding values in a
condition.

Definition 5. Astate s ∈ S is satisfiable,written sat(s), if all its conditions
s .π are satisfiable when concretized.

sat(s) �
∧

p∈s .π
s .ρ(p)

Definition 6. A symbolic engine E : S × D → S is a function that
associates a state and a dump to a new state, resulting of the execution of
one instruction.

Definition 7. An action a ∈ A is one of the following:

I read r s ymb v, a memory read, returning the symbol s ymb con-
cretized by value v, stored in register r;

I write l s ymb v, a memory write at location l of the symbol s ymb,
concretized by value v;

I invoke n (l , s ymb , v)∗, an invocation of a method named n, with
each potential parameter being a symbol s ymb written at location
l and concretized by value v;

I ret r s ymb v, a return of a method, returning the symbol s ymb
concretized by value v, stored in register r;

I throw l s ymb v, a throw of the symbol (exception object) s ymb
concretized by value v, stored in register l;

I catch l s ymb v, a catch of the symbol (exception object) s ymb
concretized by value v, written in register l.
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Contextualized actions are tuples (addr, act , next_addr) where addr is
the address of the corresponding assembly instruction, act ∈ A is an
action, and next_addr is the address of the next instruction.

Definition 8. The application of an action to a state, written appl y :
A × S→ S, reflects the effect of an action on a state.

For a read, a write, a ret, or a catch: a � (addr, (l, symb, v), next_addr),

appl y(a , s) � (s .θ[l 7→ symb, PC 7→ next_addr], s .π, s .ρ[symb 7→ v])

For an invoke, or a throw, only the PC is updated.Note that the instruction
following an invoke, resp. a throw, is always a ret, resp. a catch.

Applying an action to a state generates the state in which subsequent
actions will be executed.

The algorithm described in Section 7.2.4 is reported in Listing C.1. This
algorithm outputs the conditions taken during the execution of a method
using the actions and the dump given by OATs’inside. This concolic
algorithm symbolically executes the instructions corresponding to the
specific execution recorded by OATs’inside. Conditions are evaluated
based on the values recovered from the execution traces, so only one
single path is explored.

The correctness of the concolic analysis of Algorithm C.1 is supported by
the following theorem:

Theorem 1. Given a dump, a list of actions, the entry point of a method
and the list of parameters, the algorithm inListingC.1 accurately generates
the conditions taken by the execution and all assertions always hold
(lines 17 and 27).

Under the hypothesis that the implementation of OATs’inside is accurate,
that is:

Hypothesis. OATs’inside gives the complete list of actions (read, write,
new, throw, catch, invoke, ret, monitor enter and exit) occurring during
the execution of the analyzed method.

Proof. Proving Theorem 1 requires to show that:

I the algorithm generates accurately the conditions associated to the
path taken during the concrete execution;

I for any generated symbolic state, the algorithm generates only one
satisfiable state (asserts lines 17 and 27 hold).

The proof is achieved by induction over the number of instructions
symbolically executed.

Base case:After the initialization (line 2), clearly only one state is generated
(Sc). No instruction has yet been executed thus no condition appears.

Induction step: Let Sk the symbolic state generated by the symbolic
execution of the k th instruction. Assuming the two previous properties
hold until the generation of Sk , we prove that these properties still hold
for the generation of Sk+1:

I all occurring conditions are accurately logged;
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I the next state is unique (asserts lines 17 and 27 hold) and accurate
unless the end of the method is reached.

The k th instruction can be either an instruction corresponding to an
action outputted by OATs’inside or not.

First case the k th instruction corresponds to an action (line 7). This in-
struction cannot be a conditional branching instructionbecauseOATs’inside
does not log such actions (note that throw and catch action can generate
non-conditional branching). Thus, no condition is generated for the
execution of the k th instruction which obviously keeps the generation of
conditions accurate.

The next step is generated by skipping the current instruction i.e. jumping
to the next instruction executed by the concrete execution. Thus, the
generated Sk+1 state is unique. Moreover, Sk+1 state is accurate because it
has been updated accordingly to the actions outputted by OATs’inside

(line 9), which is, by hypothesis, accurate.

Second case the k th instruction does not correspond to an action ob-
served by OATs’inside. The algorithm generates, line 14, the set S of
possible next symbolic states.

I If there is only one generated state i.e. the executed instruction is
not a conditional branching instruction, the next state is unique
and logged conditions are still accurate (line 20).

I If there is more than one state generated, the algorithm has to
determinewhich state has been taken during the concrete execution
and to log the taken condition.
To determine the next state, the algorithm obtains all the satisfiable
states among the generated ones by replacing the symbols with
concrete values inside the state condition (π) and checking that all
conditions are still satisfiable (line 24).
All the symbols added by the algorithm (line 9) have a correspond-
ing concrete value. The others, added by the symbolic engine
(line 14), would correspond to registers or memory areas. Such
symbol cannot correspond to an unknownmemory area because all
memory is initialized using the dump. Moreover, this symbol can-
not correspond to an uninitialized register: a well-formed method,
i.e., one respecting the ABI, only uses registers initialized by itself
or by the calling method which is done by the algorithm during
the initialization (line 1). Thus, when concretizing, all symbols are
replaced with concrete values.
Because a real execution cannot be in several states at the same time,
only one state remains satisfiable when replacing all the symbols.
Thus, only one next state is generated (assert line 27 hold).
The algorithm needs to log the exact condition that has determined
why this specific state has been taken rather than the other states
generated. In fact, the condition corresponds to the difference
between the previous state condition, Sc .π, and the conditions
of the new selected state, Ssat[0].π (line 28). The previous state
being accurate and the symbolic engine being correct, the condition
computed by difference is also accurate.
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I Because S is accurate, its symbolic execution generates at least the
state taken by the concrete execution (assert line 17 hold).
If there is no generated state, it means that the symbolic engine
considers that the program has crashed. Yet, the concrete execution
has not crashed, which is contradictory.
Nevertheless, the only potential case that could crash the symbolic
engine is a syscall because its code is not provided to the symbolic
engine. However, their results and effects can be easily retrieved
by OATs’inside. Then, the symbolic analysis can treat them as any
other action by applying syscall effects to the symbolic state instead
of trying to execute syscalls. This way, crashes are avoided.

In all cases, the algorithm generates an accurate and unique next state
and logs the eventual accurate conditions. This proves the induction step
and, thus, the overall theorem. �
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Algorithm C.1: Get taken conditions algorithm.
Input: c ∈ C, actions ∈ A∗, entr ypoint ∈ Value,

parameters_values ∈ Value∗, en gine ∈ E
1: Construct an initial state according to the entrypoint address and the

method parameters given by OATs’inside.
2: Sc � (θ � {PC 7→ entr ypoint}, π � ∅, ρ � {re gs 7→

parameters_values})
3: Get the first action.
4: ac = actions .pop()
5: While PC is in analyzed method.
6: while Sc .θ(PC) ∈ method do
7: If current address corresponds to the next action.
8: if Sc .θ(PC) == ac .addr then
9: Execute this action.
10: Sc = appl y(Sc , ac)
11: Get the next action.
12: ac = actions .pop()
13: else
14: Execute symbolically one instruction.
15: S � en gine(Sc , c)
16: At least one state must have been generated.
17: assert (len(S) ≥ 1)
18: If only one state has been generated.
19: if len(S) == 1 then
20: Go to this next state.
21: Sc = S[0]
22: If several states have been generated.
23: else
24: Get all the satisfiable states.
25: Ssat � {s | s ∈ S ∧ sat(s)}
26: Exactly one state must be satisfiable
27: assert (len(Ssat) �� 1)
28: Output the conditions that are present in this satisfiable state

but not in the previous state.
29: LOG(Ssat[0].π \ Sc .π)
30: The next state is this satisfiable state.
31: Sc = Ssat[0]
32: end if
33: end if
34: end while





1: Common Vulnerabilities and Exposures,
vulnérabilités connues publiquement.

2: Comme l’envoi de SMS ou l’accès à la
liste des contacts.

Résumé substantiel en français

1 Introduction

1.1 Sécurité du système Android

Android est le système d’exploitation le plus utilisé dans les smartphones
modernes. C’est pourquoi il constitue une cible de choix pour les per-
sonnes malveillantes comme en témoigne le grand nombre de CVEs1
reportées chaque année, voir Table 1. Google apporte donc un soin tout
particulier à développer une architecture sécurisée pour Android. Cette
dernière repose sur deux points :
I L’isolation des applications : chaque application est exécutée par

un utilisateur UNIX différent. Cela permet d’utiliser les mécan-
ismes d’isolation éprouvés du noyau Linux afin de séparer chaque
application.

I Une gestion fine des permissions : les opérations sensibles2 sont
uniquement réalisables par les applications disposant de la per-
mission adéquate. Ces permissions sont accordées par l’utilisateur
lui-même.

< 2010 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
18 23 89 169 123 1686 422 872 1191 457 771 528

Source: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Android

Table 1:Nombre de CVE contenant lemot-
clef “Android”

Néanmoins, sécuriser le système Android n’est pas suffisant. En effet, les
applications installées par les utilisateurs sont potentiellement malveil-
lantes ou vulnérables. Une application est considérée vulnérable si elle
peut être détournée par un attaquant afin de réaliser des opérations
malveillantes telles qu’envoyer des SMSs à des services payants, con-
tourner le système de permissions, obtenir des informations privées de
l’utilisateur, diffuser de la publicité intempestive.

Malheureusement, faire reposer la sécurité d’Android uniquement sur
l’isolation et l’emploi de permissions n’est pas fiable. Le système de
permissions est notamment mal compris par les utilisateurs, qui peuvent
octroyer des permissions dangereuses à des applications [12, 13]

[12]: Felt, Ha, Egelman, Haney, Chin, and
Wagner (2012), ‘Androidpermissions:User
attention, comprehension, and behavior’
[13]: Benton,Camp, andGarg (2013), ‘Study-
ing the effectiveness of android applica-
tion permissions requests’

. Puisque
le système Android ne peut se prémunir contre ce type d’attaque, il est
nécessaire:
I de détecter les applications malveillantes ou vulnérables afin de

les retirer des plateformes de diffusion d’application3
3: Notamment le Google Play store, plate-
forme officielle de Google.

.
I de comprendre le comportement de ces applications afinde pouvoir

évaluer et résorber les dommages commis après une compromis-
sion.

S’engage alors un jeu du chat et de la souris entre d’une part les analystes
et chercheurs qui tentent de mettre au point des systèmes de détection
et d’analyse, et d’autre part les applications malveillantes qui tentent
d’échapper à ces derniers en inventant de nouvelles techniques et en
trouvant de nouvelles vulnérabilités.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Android


1.2 Applications natives et sécurité

Dans ce contexte, un nouveau type d’applications Android voit, depuis
2014, son utilisation de plus en plus fréquente : les applications na-
tives [16–18][16]: Afonso, Geus, Bianchi, Fratantonio,

Kruegel, Vigna, Doupé, and Polino (2016),
‘Going Native: Using a Large-Scale Analy-
sis of Android Apps to Create a Practical
Native-Code Sandboxing Policy’
[17]: Tam, Feizollah, Anuar, Salleh, and
Cavallaro (2017), ‘The evolution of android
malware and android analysis techniques’
[18]: Sadeghi, Bagheri, Garcia, and Malek
(2017), ‘A taxonomy and qualitative com-
parison of programanalysis techniques for
security assessment of android software’

. Ces applications, contrairement aux applications classiques
développées en utilisant uniquement les langages Java et Kotlin, contien-
nent également du code assembleur, résultant de la compilation de code
C/C++. Android fournit une interface appelée Java Native Interface (JNI)
afin de permettre au code assembleur de communiquer avec le bytecode
Dalvik provenant de Java ou Kotlin.

Il est donc nécessaire d’adapter les techniques d’analyse fonctionnant
sur le bytecode au code assembleur. Ainsi, il convient de:
I Étudier les possibilités offertes par le code natif pour développer

de nouvelles techniques d’obfuscation et proposer des méthodes
de détection associées.

I Trouver quelles vulnérabilités pourraient être introduites par la
présence de code natif dans une application Android.

I Développer, fort des résultats obtenus dans les études précédentes,
de nouvelles techniques d’analyse capables de prendre en compte
le code natif des applications Android.

Le domaine de l’étude de la sécurité des applications natives n’est
cependant pas vierge de recherches.

En effet, Yu [77][77]: Yu (2014), ‘Android packers: facing
the challenges, building solutions’

a révélé l’utilisation, par les applications malveillantes,
d’une nouvelle technique d’obfuscation native appelée packing. Depuis,
de nombreux travaux [78–80] ont proposé des contre-mesures à cette
technique. Dans cette thèse, nous proposons, dans les Sections 2.1 et 2.2,
de nouvelles techniques d’obfuscation utilisant le code natif.

Par ailleurs, des vulnérabilités impliquant le code natif ont également été
trouvées [36, 40]. Dans la Section 3.2 nous proposerons uneméthode ainsi
qu’un outil, qui détecte automatiquement les vulnérabilités présentées
par Peles [36][36]: Peles and Hay (2015), ‘One Class to

Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

.

Enfin, différentes techniques d’analyse d’applications Android ont été
adaptées aux applications natives [83, 84, 88, 95, 106]. Cependant, nous
montrerons que ces outils ne parviennent pas à analyser des applications
natives obfusquées à l’aide des méthodes que nous proposons et nous
finirons par présenter un outil, appelé OATs’inside, capable de gérer de
telles applications dans la Section 4.

1.3 Contributions

Cette thèse présente:
I Deux nouvelles méthodes d’obfuscation pour les applications

Android utilisant le code natif [1, 3, 7]

[1]: Graux, Lalande, and Viet Triem Tong
(2018), ‘Etat de l’Art desTechniquesd’Unpacking
pour les Applications Android’
[3]:Graux, Lalande, and Viet Triem Tong
(2019), ‘Obfuscated Android Application
Development’
[7]:Graux, Lalande,Wilke, and Viet Triem
Tong (2020), ‘Abusing Android Runtime
for Application Obfuscation’

.
I Le résultat des expérimentations évaluant l’utilisation de ces tech-

niques dans la nature [2, 7]
[2]: Lalande, Viet TriemTong, Leslous, and
Graux (2018), ‘Challenges for reliable and
large scale evaluation of android malware
analysis’
[7]:Graux, Lalande,Wilke, and Viet Triem
Tong (2020), ‘Abusing Android Runtime
for Application Obfuscation’

.
I Un nouveau framework d’analyse, appeléOATs’inside, qui combine

analyses dynamique et symbolique afin de récupérer le comporte-
ment des applications Android obfusquées.

I Une nouvelle méthode de détection de vulnérabilité portant sur
l’oubli du mot-clef transient au sein des applications Android
natives.
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4: https://source.android.
com/devices/tech/dalvik/
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6: Une analyse qui exécute l’application.

7: Aucune explication officielle n’est
fournie pour cet acronyme.

2 Problèmes de sécurité induits par les
interférences natives dans les applications
Android Java

Afinde lister l’ensemble des problèmes quepeut poser la présence de code
natif dans une application Android, nous allons, dans cette section, lister
de manière systématique l’ensemble des interférences que le code natif
peut produire sur le code Java. Seront alors mis en lumière les différents
points faibles des analyses préexistantes. Nous présenterons d’abord
les interférences qui concernent le code Java, dans la Section 2.1, pour
ensuite étudier celles qui concernent les données, dans la Section 2.2.

2.1 Problèmes portant sur le bytecode

Le bytecode Dalvik est plus simple à analyser que le code assembleur.
En effet, le bytecode Dalvik4 est un langage haut-niveau puisqu’il utilise
la programmation orientée objet pour définir les objets sur lesquels il tra-
vaille. À contrario, le code assembleur est très proche de l’architecture du
téléphone puisqu’il change en fonction du processeur qui l’exécute. C’est
pourquoi, un développeur qui souhaite protéger son application peut
vouloir remplacer le bytecode qu’elle contient par du code assembleur.
L’écriture d’applications en assembleur étant fastidieuse et sujette aux
erreurs, il est nécessaire d’employer des techniques d’automatisation.

Nous avons vu dans l’état-de-l’art une telle technique appelée packing [77] [77]: Yu (2014), ‘Android packers: facing
the challenges, building solutions’

.
Elle consiste à chiffrer le bytecodede l’application et à le remplacer par une
routine de déchiffrement appelée unpacker. Cet unpacker, au moment de
l’exécution de l’application, déchiffre le bytecode original de l’application
et l’exécute. Ainsi, une analyse statique5 ne peut pas accéder au code de
l’application et est rendue caduque. Une évaluation de l’utilisation de
cette méthode dans la nature est proposée dans la Section 3.1.

Cependant, l’emploi de cette technique ne prémunit pas contre une anal-
yse dynamique6. La technique que nous proposons, appelée Bytecode-
Free OAT (BFO) consiste à compiler l’application en utilisant le compila-
teur d’Android, comme montré dans la Figure 1. Ce dernier, à des fins
d’optimisation, transforme le bytecode de l’application en code assem-
bleur, stocké dans un fichier au format OAT7. Le bytecode original est

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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9: Espace mémoire où sont stockés les
objets bytecode.

alors modifié. Le code assembleur étant exécuté à la place du bytecode, le
comportement de l’application n’est pas modifié mais un analyste ou un
outil qui ne prend en compte que le bytecode obtient un résultat faussé :
il ne se base pas sur le bon code. Une méthode de détection associée à
cette technique est proposée dans la Section 3.1.

2.2 Problèmes portant sur les données du bytecode

Les données décrites par le code Java offrent plus de garanties de
sécurité que celle décrites par les langages C/C++. En effet, le code Java
est fortement typé et la machine virtuelle qui l’exécute vérifie que les
données qu’elle manipule sont cohérentes8. D’un autre coté les langages
C/C++ sont très permissifs et permettent de manipuler librement les
données qui sont vues comme des suites de bits. Malheureusement un
développeur peut, par inadvertance, injecter des données assembleur
dans les données bytecode qui ne respectent pas les garanties offertes
par ces dernières. Peles [36][36]: Peles and Hay (2015), ‘One Class to

Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

a notamment montré que le stockage de
pointeurs mémoires (données assembleurs) dans un champ (donnée
bytecode) d’une classe sérialisable peut rendre l’application vulnérable
si le champ n’est pas déclaré transient. Une solution à ce problème est
proposée dans la Section 3.2.

En plus de ces injections de données, un développeur d’application peut
volontairement modifier les données Java depuis le code natif à des
fins d’obfuscation. Classiquement, cela est réalisé en utilisant l’interface
JNI fournie par Android. Tout naturellement, les différents outils de
l’état-de-l’art reposent sur cette interface pour prendre en compte les
effets du code natif sur les données bytecode. Afin d’outrepasser ces
analyses nous proposons une technique, appelée Direct Heap Access
(DHA), représentée par la Figure 2. Elle consiste à accéder directement au
tas9 afin de modifier les données bytecode sans utiliser JNI. Une méthode
de détection de cette technique est proposée dans la Section 3.2.

3 Détection des interférences natives dans les
applications Android Java

Dans la section précédente, nous avons montré que les interférences
entre le code assembleur et le bytecode peuvent être utilisées à des fins
d’obfuscation ou peuvent introduire de nouvelles vulnérabilités. Dans
cette section, nous nous attachons à donner de nouvelles méthodes pour
détecter ces interférences et à évaluer leur utilisation dans la nature.

3.1 Détection des interférences sur bytecode

Concernant l’utilisation de packing, des solutions de détection sont déjà
proposées [78, 94][78]: Zhang, Luo, and Yin (2015), ‘Dex-

hunter: toward extracting hidden code
from packed android applications’
[94]: Jiang, Zhou, Liu, Jia, Liu, and Zuo
(2017), ‘CrackDex:Universal andautomatic
DEX extraction method’

. Afin de montrer l’utilisation de cette technique
dans la nature, nous avons utilisé l’outil APKiD10

10: https://github.com/rednaga/APKiD

sur trois datasets:
un comprenant des malwares (MAL), un comprenant des goodwares
(GOOD) et un dernier dont les APKs sont plus ou moins datés. Comme

https://github.com/rednaga/APKiD


GOOD [4] MAL [4]
Total 4 999 4 991

Détection 3 542
0,06% 10,86%

Table 2: Détection de packing dans
plusieurs datasets

Année 2008-2013 2014 2015 2016 2017 2018
App. packée 0 1 4 5 7 7

Table 3: Détection de packing selon les
années

11: CVE-2015-3837: https://nvd.nist.

gov/vuln/detail/CVE-2015-3837

le montrent les Tables 2 et 3, l’utilisation du packing est prévalente chez
les malwares et est en progression.

BFO étant une nouvelle technique, l’état-de-l’art ne propose aucune solu-
tion. Nous avons donc proposé une nouvelle méthode pour détecter son
utilisation. Elle consiste à compiler le bytecode de l’application et com-
parer le code assembleur obtenu à celui déjà présent dans l’application.
Si les codes sont différents alors c’est que la technique BFO a été utilisée.
Nous avons utilisé cette technique de détection sur les applications de 17
firmwares sans trouver aucune utilisation de BFO.

3.2 Détection des interférences sur les données du
bytecode

Total ARMv8 DHA DHA sans
libs. systèmes

100 018 10 661 8 158 (76,5 %) 4 021 (37,7 %)

Table 4: Nombre de DHAs détectés

Afin de détecter l’utilisation de DHA au sein d’une application, nous
proposons de l’exécuter tout en interdisant le code natif d’accéder au tas.
Pour cela nous modifions la machine virtuelle d’Android qui exécute les
applications pour interdire, à l’aide de mprotect, l’accès au tas lorsque
du code natif est exécuté. Nous avons utilisé cette méthode sur une partie
(100 000 applications) du dataset Androzoo [57] [57]: Allix, Bissyandé, Klein, and Le Traon

(2016), ‘AndroZoo: Collecting Millions of
Android Apps for the Research Commu-
nity’

et trouvé qu’unemajorité
des applications utilisent du DHA. Les résultats sont reportés dans la
Table 4. Cependant, après investigation, nous n’avons pas été capables
d’isoler un cas d’utilisation à des fins d’obfuscation. En effet, DHA semble
n’être, pour l’instant, utilisé que pour optimiser l’application en évitant
d’utiliser JNI qui est une interface coûteuse en temps.

Pour détecter la vulnérabilité proposée par Peles [36] [36]: Peles and Hay (2015), ‘One Class to
Rule Them All: 0-day Deserialization Vul-
nerabilities in Android’

, il faut trouver
tous les champs, non déclarés transient, d’objets bytecode qui peuvent
recevoir un pointeur mémoire. Pour cela nous proposons de conduire sur
le code-source une analyse de teinte, comme représentée dans la Figure 3.
Deux analyses sont conduites.Durant la première, les pointeursmémoires
sont considérés comme des sources, l’écriture dans un champ comme
un puits. Cela permet de détecter tout pointeur qui est enregistré dans
un champ. Durant la seconde, les lectures de champs sont considérées
comme des sources, et l’utilisation d’un pointeur (cast en pointeur) est
considérée comme un puits. Cela permet de détecter tout champ qui est
utilisé comme un pointeur. L’utilisation de cette technique nous a permis
de retrouver une vulnérabilité connue11 dans la librairie SSL d’Android
et de trouver, au sein de l’application Telegram, des mot-clefs transient
manquants mais non exploitables.

https://nvd.nist.gov/vuln/detail/CVE-2015-3837
https://nvd.nist.gov/vuln/detail/CVE-2015-3837
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4 OATs’inside: rétro-ingénierie des applications
Android natives

Comme nous avons vu dans la Section 2, les outils de l’état-de-l’art ne
sont pas capables de prendre en compte tous les problèmes que le code
natif introduit dans les applications Android. En particulier, ils ne sont
pas capables de prendre en compte correctement BFO et DHA.

C’est pourquoi nous proposons un nouveau framework d’analyse ap-
pelé OATs’inside. L’analyse qu’il conduit est composée de deux phases
représentées par la Figure 4. Durant la première, l’application est exécutée
sur un téléphone dont la machine virtuelle est modifiée pour enregistrer
toutes les actions objets12 réalisées par l’application. Sont notamment
enregistrés les accès directs au tas (DHA), comme décrit en Section 3.2,
et les actions réalisées par le bytecode compilé (BFO). Ces actions, qui
constituent l’ensemble du comportement objet de l’application, sont
ensuite envoyées à un ordinateur d’analyse qui les présente sous forme
de graphe13 à un analyste. Ce graphe montre de quelle manière les
actions de l’application s’enchaînent. L’analyste peut alors choisir une
méthode du code qu’il trouve particulièrement intéressante à investiguer.
Une seconde exécution est alors effectuée pour récupérer l’état de la
mémoire (snapshot) lors de l’exécution de cette méthode. À l’aide de ce
snapshot, OATs’inside conduit une analyse symbolique qui enrichit le
graphe précédant en indiquant comment les données sont transmises
entre les différentes actions. Ce graphe final permet à un analyste de
comprendre correctement le comportement d’une application Android
native même obfusquée.
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5 Travaux futurs

Au cours de cette thèse, nous avons montré que la présence de code
natif au sein d’une application Android permet l’utilisation de nouvelles
techniques d’obfuscation et introduit de nouvelle vulnérabilités. Nous
avons également proposé des méthodes de détection correspondant à
ces deux problèmes ainsi qu’un framework d’analyse d’applications
Android natives obfusquées.

Dans un premier temps, nous pensons que ces travaux de thèse pour-
raient être appliqués à d’autres systèmes Android, comme Android
Automotive14 ou Android TV15. Ils pourraient également être adaptés à
d’autres langages comme Python qui est également capable d’exécuter
du code natif.

Dans un second temps, nous pensons qu’il est nécessaire de redéfinir
l’interface entre le code natif et le bytecode afin de mieux contrôler leurs
interactions. Pour cela, nous pourrions nous inspirer de l’implémentation
que font les navigateurs web de Javascript et de WebAssembly. En effet,
ces deux langages fonctionnent de la même manière que Java/Kotlin et
C/C++. Cependant, au sein des navigateurs web, ils sont fortement isolés
et c’est Javascript, le langage haut-niveau, qui déclare explicitement les
points d’interface avec WebAssembly. Cela permet de mieux contrôler et
d’analyser cette interface.
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Résumé :

Android est le système d’exploitation le plus utilisé et donc,
assurer la sécurité des applications est essentiel. Sécuriser
une application consiste à empêcher les attaquants poten-
tiels de corrompre le comportement attendude l’application.
En particulier, l’attaquant peut s’appuyer sur des vulnéra-
bilités laissées dans le code par le développeur, mais aussi
voler la propriété intellectuelle d’une application existante.
Pour ralentir le travail de l’attaquant qui essaie de re-

verser la logique applicative, le développeur est incité à
chercher les vulnérabilités potentielles et à introduire des
contremesures dans le code. Parmi les contremesures pos-
sibles, l’obfuscation de code est une technique qui cache
l’intention réelle du développeur en faisant en sorte de
rendre le code non disponible à l’adversaire qui utilise des
outils de reverser. Avec l’augmentation des applications soit
malveillantes, soit manipulant des informations sensibles,
obfusquer le code et chercher ses vulnérabilités devient
essentiel.

Cette thèse présente l’impact du code natif sur, à la fois le
reversing et la recherche de vulnérabilités, appliqué à des
applications Android. Premièrement, en listant les inter-
férences possibles entre l’assembleur et le bytecode, nous
mettons en évidencedes nouvelles techniques d’obfuscation
et vulnérabilités logicielles. Ensuite, nous proposons de nou-
velles techniques d’analyse combinant des blocs d’analyse
statiques et dynamiques, tels que la propagation de teintes
ou la surveillance du système, afin d’observer le comporte-
ment du code qui a été obfusqué ou de révéler de nouvelles
vulnérabilités. Ces deux objectifs nous ont menés à dévelop-
per deuxnouveaux outils. Le premier cible une vulnérabilité
spécifique due à l’interaction du natif et des données Java.
Le second extrait le comportement d’une application au
niveau objet, que l’application contienne du code natif
d’obfuscation ou non. Enfin, nous avons implémenté ces
nouvelles méthodes et les avons évaluées expérimentale-
ment. En particulier, nous avons trouvé automatiquement
une vulnérabilité dans la librairie SSL d’Android et nous
avons analysé plusieurs firmware Android pour détecter
l’usage d’une classe spécifique d’obfuscation.

Title: Challenges of Native Android Applications: Obfuscation and Vulnerabilities

Keywords: security, Android, native

Abstract:

Android is the most used operating system and thus, ensur-
ing security for its applications is an essential task. Securing
an application consists in preventing potential attackers
to divert the normal behavior of the targeted application.
In particular, the attacker may take advantage of vulner-
abilities left by the developer in the code and also tries
to steal intellectual property of existing applications. To
slow down the work of attackers who try to reverse the
logic of a released application, developers are incited to
track potential vulnerabilities and to introduce countermea-
sures in the code. Among the possible countermeasures,
the obfuscation of the code is a technique that hides the
real intent of the developer by making the code unavailable
to an adversary using a reverse engineering tool. With the
growing amount of malware and applications carrying
sensitive information, obfuscating the code and searching
vulnerabilities becomes essential.

This thesis presents the impact of native code on both
reverse-engineering and vulnerability finding applied to
Android applications. First, by listing the possible interfer-
ences between assembly and bytecode, we highlight new
obfuscation techniques and software vulnerabilities. Then,
we propose new analysis techniques combining static and
dynamic analysis blocks, such as taint tracking or system
monitoring, to observe the code behaviors that have been
obfuscated or to reveal new vulnerabilities. These two ob-
jectives have led us to develop two new tools. The first
one spots a specific vulnerability that comes from inconsis-
tently mixing native and Java data. The second one extracts
the object level behavior of an application, regardless of
whether this application contains native code, embedded
for obfuscation purposes. Finally, we implemented these
new methods and conducted experimental evaluations.
In particular, we automatically found a vulnerability in
the Android SSL library and we analyzed several Android
firmware to detect usage of a specific class of obfuscation.
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