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Chapter 1

Introduction

Within the framework of the safety of nuclear installations, the development of predictive, reliable and fast simula-
tion tools enabling the multi-physics simulation of nuclear reactor cores (including thermal-hydraulics feedbacks,
in stationary and transient conditions) is the subject of a very extensive research program [106, 93, 94, 61, 30, 151].
The design of new reactor configurations, which are possibly highly heterogeneous and/or decoupled, also calls
for a numerical characterization, which might complement or even replace the need for experimental facilities,
especially in view of the characterization of the non-stationary neutron population behavior during operational and
accidental transients. These efforts have been capitalized in the form of the innovation agendas SNETP, NUGE-
NIA and H2020. Several European projects have risen, such as NURESIM (2005-2008), NURISP (2009-2012),
NURESAFE (2013-2015), HPMC (2011-2014), McSAFE (2017-2020) and its successor McSAFER (2020)1. Sim-
ilar strategies have been proposed in the USA (for instance, the CESAR project2 or the CASL consortium3) and in
China. The final goal of these efforts is to pave the way towards a “numerical reactor”, allowing even extreme (i.e.,
inaccessible to experimental evidence) conditions to be probed and the associated uncertainties to be quantified by
simulation.

The investigation of neutron kinetics, i.e., the time-dependent behavior of neutron transport, is predominantly
founded on deterministic methods, ranging from extremely simplified (point kinetics) to sophisticated (transport
theory) approaches [32, 36, 31, 48, 85, 77]. For non-stationary problems, the state of the art of the current gener-
ation of numerical simulation codes using deterministic methods typically relies on a “two-step” approach: a fine
calculation of the neutron distribution at the lattice level in stationary conditions and in two dimensions, followed
by a calculation of the time evolution of the neutron flux based on the cross sections determined in the first step
and introducing simplified models for transport (for example diffusion or SPN) with energy discretization having
a small number of groups [81]. These approximations being specific to each type of reactor, the validity of the
obtained results, as well as the quantification of the uncertainties associated with the physical quantities of interest,
therefore depends on the configuration under analysis. In order to overcome these issues and to be able to validate
deterministic codes in a non-stationary regime, it is primordial to develop reference calculation tools capable of
alleviating the paucity of experimental data related to transient regimes.

The Monte Carlo simulation is based on the realization of a very large number of random neutron trajecto-
ries, whose probability laws are determined in agreement with the underlying physical laws: the probability of
particle-matter interaction, post-collision angle and energy distributions, etc. Contrary to deterministic methods,
no approximations are introduced for the energy variable, which is explicitly dealt with during the particle flights
and collisions; furthermore, an exact treatment of the reactor geometry is in principle possible, without resorting
to discretization [96]. Therefore, the Monte Carlo simulation has been always considered as the reference method
for neutron transport [4]. Until very recently, Monte Carlo simulation has been almost exclusively devoted to the
solution of stationary transport problems, mainly due to the large computation cost (expressed in terms of CPU
and memory burden) required by the realization of the particle trajectories. This is also the case for the Tripoli-4®

1https://cordis.europa.eu/projects. McSAFER is an European project scheduled on September 2020.
2https://cesar.mcs.anl.gov
3https://www.casl.gov
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code [20], developed at CEA/Saclay.

Thanks to the increasing performances of computer clusters, the availability of super-computers for scientific
calculation in the last decade and the intrinsic parallelism of Monte Carlo simulation, this stochastic method has
begun to be applied to the investigation of non-stationary problems [88, 140, 79, 141, 142]. For this purpose, two
formidable obstacles have been identified. The first concerns the simultaneous presence of two very different time
scales for particle transport, the one of neutrons and the one of delayed neutron precursors [72], which are separated
by a factor of 104 for typical light water reactors and might thus induce serious under-sampling issues [41]. The
second concerns the need of taking into account the effects of physical feedbacks during the transient, since the
energy released by the fissions generates changes in temperature and density, which in turn modify the cross
sections and therefore the probability of neutron collisions. This calls for coupling the Monte Carlo codes with
external tools such as thermal-hydraulics [61] and/or thermo-mechanics solvers [83]. Such challenges have been
met by first developing specific and highly non-trivial variance-reduction techniques for the time variable (the so-
called “kinetic” Monte Carlo methods) and then coupling schemes capable of exchanging information back and
forth between the Monte Carlo simulation and the external feedback solvers, by taking into account subtle stability
and convergence issues due to the stochastic nature of the Monte Carlo simulation (the so-called “dynamic” Monte
Carlo methods [63, 146]). Despite having been the subject of a major research effort in recent years, kinetic and
dynamic Monte Carlo methods are still in their infancy and require such massive computer resources that their
daily use for reactor design is still beyond reach. Intensive work will be still required in the next future in order to
establish these methods as a practical tool for reactor physicists, as witnessed e.g. by the McSAFER project.

A somewhat complementary approach to reactor kinetics consists in transforming the original time-dependent
neutron transport equations into a stationary form, by introducing a set of eigenvalue equations associated to the
Boltzmann operator [34]. For this purpose, two main eigenbases have been historically proposed in the litera-
ture: the k-eigenpairs [28], which physically correspond to decomposing the system evolution with respect to the
successive fission generations, and the α-eigenpairs[82], which physically correspond to decomposing the system
evolution with respect to time. For this reason, the α-eigenbasis is in particular ideally suited for time-dependent
problems. Once determined, the eigenvalues and eigenfunctions associated with each basis can be used to per-
form the spectral analysis of the Boltzmann operator and reconstruct the transient behaviour by convoluting the
eigenbasis with the source.

The analysis of the operator eigenvalues and eigenfunctions (i.e. spectral analysis) can provide such informa-
tion as the shape of the fundamental mode, which represents the asymptotic behaviour of the neutron density with
respect to time or fission generations, depending on whether the α- or k- eigenbasis are adopted [28, 4]. Moreover,
it can be used to assess the eigenvalue separation and in particular the dominance ratio between the fundamental
and the following eigenvalue, which is a measure of the degree of “tightness” of a core and thus of the response
to external perturbations: the system is said to be tightly coupled if the first two eigenvalues are separated, and
loosely coupled otherwise [144, 120, 54, 113]. Finally, it can estimate the space and energy behaviour of higher
eigenmodes, which will shed light on the way perturbations will propagate through the reactor core [128, 126].

In this respect, a fundamental observable is provided by the eigenvalue separation E.S. [144], which for k-
eigenvalue problems is defined as follows:

E.S.n(k) =
1
kn
−

1
k0
≥ 0, (1.1)

for n > 0. Here kn are the n-th order k-eigenvalues 4, k0 being the fundamental eigenvalue (i.e., the multiplication
factor). The case n = 1 plays a special role, and is frequently referred to without using the index [120], namely,

E.S.(k) = E.S.1(k) =
1
k1
−

1
k0
≥ 0. (1.2)

A closely related quantity is the dominance ratio

DR =
k1

k0
≤ 1, (1.3)

4We are implicitly assuming here that the k-eigenvalues can be ordered, with k0 > k1 ≥ k2, · · · .
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CHAPTER 1. INTRODUCTION

which can be monotonically mapped onto the E.S., thus sharing the same information content [37, 73]. Although
in the mathematical literature the analogous notion of spectral gap 5 is widely used for eigenvalue problems
sharing some similarity to the α-eigenvalue formulation (for instance in the context of the time-dependent diffusion
equation [84, 125, 26, 2, 44]), the concept of eigenvalue separation or dominance ratio do not seem to have been
drawn much attention for α-eigenvalue, to the best of our knowledge.

Experimental and numerical investigations have shown that a small E.S. would increase the probability for a
system to propagate instabilities, thus enhancing complex space-time patterns (as opposed to systems displaying
a large E.S., which behave as point-kinetics) [120]. This is especially relevant for loosely coupled cores, such as
breeders having alternating regions of highly enriched fuel and depleted blankets. By virtue of its key role in un-
derstanding the system kinetics, and in particular the reactor response due to external actions such as perturbations
and tilts, the eigenvalue separation has been extensively investigated [128, 38, 3, 54, 113, 78].

For the k-eigenvalue formulation, Monte Carlo methods can determine (without approximations) the funda-
mental (direct) mode and eigenvalue by the power iteration method, which will yield the asymptotic neutron flux
within the core [96, 95]. The stochastic version of the power iteration has a long history, and has been in use
almost since the beginning of the Monte Carlo methods [47]. The calculation of the fundamental adjoint mode, on
the contrary, has been out of reach for many years6 and has been recently made possible by a major breakthrough:
the rediscovery that the fundamental adjoint mode is proportional to the neutron importance function (which can
be estimated by running a regular power iteration and recording the genealogy of each ancestor neutron) has been
key to the development of the Iterated Fission Probability (IFP) method[42, 43, 110, 75]. By resorting to the IFP,
most modern production Monte Carlo codes (including Tripoli-4®) can now provide an unbiased estimate of the
fundamental adjoint mode for k-eigenvalue problems [147, 138].

The α-eigenvalue problems, although their formulation is as old as (or maybe older than) that of k-eigenvalues,
has been cast in a stochastic algorithm adapted to Monte Carlo methods in later times [18]. The original method
was flawed for sub-critical configurations (the eigenvalue search led to numerical instabilities and to abnormal ter-
minations [57]) and did not include the contributions of delayed neutron precursors [115, 28, 169, 166, 162]. Since
then, several improvements (most notably, concerning the stability for sub-critical systems) and generalizations
have been proposed and successfully tested in production Monte Carlo codes [8, 94, 170]. The most widely used
algorithm for the fundamental (direct) α-eigenmode is based on an extension of the traditional power iteration,
where the dominant α-eigenvalue is treated as a parameter and progressively adjusted until a fictitious k eigenvalue
converges to one. The characterization of the adjoint fundamental mode for the α-eigenvalue problem has been
achieved quite recently, based on a slight modification of the IFP method [147].

Once the direct and adjoint fundamental modes have been computed by Monte Carlo, the effective (i.e., adjoint-
weighted) kinetics parameters of the core can be easily determined [75]: the time evolution of the reactor can then
be expressed by solving the approximated point-kinetics equations, whose coefficients are precisely the kinetics pa-
rameters. Point-kinetics equations, whose derivation is intrinsically based on collapsing the full phase-space of the
Boltzmann equation into a few effective parameters (representing the whole reactor as a “point”, provided that the
entire neutron population obeys the fundamental eigenmode with respect to space, angle and energy variable), are
widely used in the reactor physics community as a reliable and fast tool for the analysis of core kinetics [72, 55, 4].
However, their use is deemed to be appropriate only when i) the core is sufficiently homogeneous (for the col-
lapsing to a point to be a realistic approximation), and when ii) the fundamental mode of the neutron population
is sufficiently separated from higher harmonics (for the reduction to the fundamental mode to be meaningful). If
these conditions cannot be ensured, the analysis of higher-order eigenvalues and eigenfunctions becomes manda-
tory [21].

Monte Carlo methods have been also applied to the estimation of higher-order eigenvalues and eigenfunctions,
both for k- and α-eigenvalue problems [35, 68, 22, 8]. Contrary to the fundamental mode, which can be assessed
by simulating particles carrying positive statistical weights, the exact determination of higher eigenmodes in prin-
ciple requires weights with alternating signs, which is a daunting task for Monte Carlo methods: for k-eigenvalue
problems, some ingenuous strategies have been proposed in recent years, but most are hindered by convergence
issues and none has led so far to a practical implementation that can be transposed to production codes [12, 153].

5I.e., the distance between two consecutive eigenvalues, and most often the first and the second.
6The propagation of adjoint particles is notoriously unstable [96].
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For α-eigenvalue problems, the number of attempts is even smaller [164].

Nonetheless, a viable strategy for higher-order k-eigenvalues and eigenfunctions has been developed: the idea is
to discretize the operators appearing in the eigenvalue equations and to obtain finite-size matrices, whose elements
can be filled in the course of a regular Monte Carlo power iteration [22]. It is important to stress that the resulting
eigenvalues and eigenvectors are approximations, for two concurrent reasons: the matrix has a finite size, and
the neutron distribution used in order to fill the matrix element can preserve 7 at most the fundamental mode and
eigenvalue. By increasing the matrix size, the eigenvalues and eigenvectors are supposed to converge to those of
the original equation. The so-called ”fission matrix method” [152] belongs to this class of approaches and has been
in use for a long time, although it has been made popular only in recent years, when increased computer power
has become available, and thanks to the use of sparse-matrix storage techniques [22]. Based on a similar strategy,
a matrix-filling approach has been also proposed for α-eigenvalue problems, which poses specific challenges [8].

By building upon these considerations, the goal of this thesis is two-fold: on one hand, we will thoroughly
compare the Monte Carlo methods for eigenvalue problems and propose novel computational strategies for the
α-eigenvalues; on the other hand, we will apply these methods to the investigation of a few relevant reactor config-
urations, in order to show how pertinent information can be extracted and used in order to better grasp the features
of the nuclear systems.

On the methodological side, in the first part of this manuscript we will begin by addressing the case of the di-
rect and adjoint fundamental eigenmodes, and show that discrepancies might arise between the k- and α-eigenbasis
close to the critical point (i.e., k = 1 and α = 0). At criticality, the two fundamental modes coincide by definition,
whereas for an increasing departure from criticality deviations should appear, which are enhanced by the presence
of decoupling effects and/or heterogeneities in the cores. These spatial and spectral differences in the fundamental
modes are mirrored in the kinetics parameters (which are expressed as bilinear forms involving both the direct and
adjoint modes), and thus also on the system reactivity (via the in-hour equation). It is thus of utmost importance
to ascertain whether and to which extent the estimation of the kinetics parameters is affected by the system hetero-
geneities, which are conveyed in the shapes of the eigenmodes. Special attention will be paid to the contribution
of the delayed neutron precursors, which has been neglected so far in previous investigations.

Concerning higher eigenmodes and eigenvalues, we will focus on the case of matrix-filling methods for α-
eigenvalue problems, in view of their relevance for the time response of nuclear systems, and provide a novel
Monte Carlo strategy that can overcome some of the limitations of the existing approaches. These methods,
conceived and tested in a Monte Carlo code built from scratch for the purpose of exploring new algorithms, will
be implemented in Tripoli-4® to be deployed for the analysis of realistic reactor configurations.

In the second part of this manuscript, we will probe the impact of system geometry and material compositions
on the reactor kinetics, via an eigenmode decomposition computed by Monte Carlo methods, in view of interpreting
experimental data coming from the EPILOGUE experiments carried out at the EOLE critical facility (formerly
operated CEA Cadarache) [50, 51, 49]. We will first examine some simplified benchmark configurations, which
will allow us to understand how the mechanisms of heterogeneities (and other decoupling effects, such as the
system size) manifest themselves in the eigenvalues and eigenvectors of the k- and α-matrices. Then, we will
consider the EPILOGUE experiments, where special reactor configurations with an increased moderator fraction
at selected locations (under the form of a “water blade”) have been tested. Unfortunately, the experiments for a
single water blade were not conclusive, possibly due to a poor choice of the detector locations within the core. Our
numerical simulations, carried out by using the Tripoli-4® model of the EPILOGUE configuration and the newly
developed α-matrix capabilities, will allow exploring details that were inaccessible in the experimental campaign.
In particular, we will also consider a modified configuration where additional water blades are added: we will thus
investigate the effects of increasing the presence of a localised moderator region on the shape of the eigenmodes
and on the eigenvalues, which might shed light on the system response to perturbations such as control rods or
external sources. In this respect, the proposed approach plays the role of a “fully numerical experiment” and might
help in designing new experimental campaigns in research reactors.

7i.e., yield an unbiased estimate for.
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CHAPTER 1. INTRODUCTION

1.1 Plan of the thesis

This manuscript is organized as follows.

In Chapter 2 we will begin by providing a general overview of neutron transport problems in the context of
reactor physics. We will establish the basic notation and introduce the key quantities of interest. We will focus
in particular on time-dependent transport and present the integro-differential and integral forms of the Boltzmann
equations satisfied by the neutron density. The peculiar role of the delayed neutron precursors will be recalled.
The adjoint transport equations will be introduced as well. We will then show how a class of eigenvalue problem
formulations can be established based on the transport equation: two main classes of eigenvalue problems, namely
k-eigenvalues and α-eigenvalues, will be discussed, and their physical meaning will be emphasized. The spectral
analysis of such eigenvalue equations can provide useful information on the asymptotic behavior of the neutron
population, which can complement the full description stemming from the time-dependent transport equations. We
will conclude this chapter by considering the point-kinetics approach, which provides a fast, albeit approximated,
way of characterizing the time evolution of the nuclear systems.

In Chapter 3 we will recall the role and the principles of Monte Carlo simulation in the domain of reactor
physics. The basic methods will be briefly mentioned. We will in particular focus on the special role of Monte
Carlo simulation as a numerical tool capable of producing reference (i.e., unbiased) solutions for nuclear systems:
almost no approximations are introduced, since the energy, angle and space do not need to be discretized. We will
briefly illustrate how Monte Carlo simulation has been recently extended to kinetic (i.e., time-dependent) systems,
which demands even longer computing times. The remaining part of the chapter is devoted to introducing the
Monte Carlo methods specifically devoted to eigenvalue problems, which will be at the heart of the following parts
of the manuscript. A short description of the Monte Carlo codes used in this thesis will be provided: Tripoli-4®,
the general-purpose code developed at CEA [20], and a mock-up simplified code that was built from scratch in
order to test the algorithms, probe their stability and numerical convergence, and verify them against analytical
solutions (where possible).

Chapter 4 will be devoted to the analysis of the behavior of the fundamental modes, both forward and adjoint,
of the k- and α-eigenvalue formulations. We start by recalling the algorithms implemented in Tripoli-4® that
allow the fundamental modes to be estimated without approximations. The Iterated Fission Probability [150] and
the Generalized Iterated Fission Probability [147] methods, which have recently paved the way to the calculation
of the adjoint eigenmodes, will be described at length. Our first original contribution is the investigation of the
discrepancies between the k- and α-fundamental modes close to the critical point (where the two are known to
coincide): contrary to previous works [28], we will explicitly take into account the presence of the precursor con-
tributions and we will also focus on the adjoint eigenmodes. Slight, yet systematic differences will be highlighted
for a chosen set of reactor configurations, including two benchmarks based on spherical multiplying systems and
the CROCUS facility operated at the EPFL, Switzerland. The discrepancies observed for the fundamental modes
might have an impact on the calculation of derived reactor parameters, such as the effective kinetics parameters
and the reactivity: a thorough discussion will be presented.

In Chapter 5 we will examine how Monte Carlo methods can be successfully used for the calculation of higher-
order k- and α-eigenmodes and eigenvalues. We will first recall the basics of the fission matrix approach, a
matrix-filling Monte Carlo method that can be used in order to estimate the elements of a finite-size matrix whose
eigenvectors and eigenvalues converge to those of the k- eigenvalue problem in the limit of an infinite size. Contrary
to the methods used for the fundamental eigenmode and eigenvalue, the estimation of the higher eigenmodes and
eigenvalues via the fission matrix is affected by a bias. Inspired by this approach, our second original contribution
will consist in conceiving a new technique designed to estimate the elements of a distinct matrix whose eigenvectors
and eigenvalues converge to those of the α-eigenvalue problem. This novel matrix-filling Monte Carlo method lays
the bases for α-spectral analysis. A thorough description of the algorithm and its practical implementation will be
discussed. A few relevant applications will be analyzed and the discrepancies between the higher α- and k-higher-
order eigenmodes will be illustrated.

Chapter 6 will present some significant applications of the Monte Carlo methods for the determination of k-
and α-eigenmodes and eigenvalues. The third original contribution will be to examine whether the two modal
expansions may convey different information content concerning the behavior of the systems under analysis, with
special focus on the eigenvalue separation as defined above. In particular, we will examine how the fundamental
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and higher eigenmodes and eigenvalues behave in the presence of decoupling factors: starting from (homogeneous
or heterogeneous) tightly coupled reactor configurations, we will progressively modify these systems by introduc-
ing an increasingly stronger decoupling effect, either due to the system size or to the spatial heterogeneity. For
this purpose, we will select some simple benchmark configurations where these effects can be exacerbated. The
eigenvalue separation and the shape of the eigenfunctions will be carefully examined and commented. We will
examine on the discrepancies between the k- and α-basis and show how both eigenpairs react to the presence of
the decoupling effects.

Finally, in Chapter 7 our fourth original contribution will be to revisit the EPILOGUE experiment, carried out
in the EOLE critical facility of CEA Cadarache. The EPILOGUE experiment was aimed at exploring – among
others – the effects of the presence of a water blade with respect to the reactor response. By building on the
knowledge and numerical simulation tools developed in the previous chapters, we will first run the Tripoli-4®

model corresponding to the EPILOGUE experiment and compare the effects of the water blades on the fundamental
and higher eigenmodes and eigenvalues of the k and α-bases. Then, as a way of conceiving a “thought experiment”,
we will explore the effects of adding several other water blades into the core, thus increasing the decoupling effect.
A physical interpretation based on the Monte Carlo simulations will be provided. The obtained results might
suggest a better way of arranging the detector positions within the core, so as to emphasize their response, and
might thus help in conceiving a future experimental campaign in a dedicated research reactor, in view of assessing
the effects of heterogeneities with respect to the system behavior.

Conclusions will be finally drawn in Chapter 8.

1.2 List of published material

Part of the contents of this manuscript has appeared or will appear in the following peer-reviewed journals and
proceedings of international conferences:

• Vitali, V., Blaise, P., Chevallier, F., Jinaphanh, A., Zoia, A., 2019. Spectral analysis by direct and adjoint
Monte Carlo methods. Ann. Nucl. Energy 137, 107033.

• Vitali, V., Blaise, P., Chevallier, F., Jinaphanh, A., Zoia, A., 2019. Direct and adjoint Monte Carlo methods
for α-eigenvalue spectral analysis In Proceedings of the ICTT 2019 conference. Paris, France.

• Vitali, V., Blaise, P., Chevallier, F., Jinaphanh, A., Zoia, A., 2020. Comparison of direct and adjoint k- and
α-eigenfunctions In Proceedings of the PHYSOR 2020 conference. Cambridge, UK.

• Vitali, V., Blaise, P., Chevallier, F., Jinaphanh, A., Zoia, A., 2020. Monte Carlo analysis of spectral effects:
application to the EPILOGUE experiements, to be submitted to Ann. Nucl. Energy
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Chapter 2

Overview of time-dependent transport and
spectral analysis in reactor physics

The behaviour of the neutron population within a nuclear system is ruled by the Boltzmann equation, possibly
coupled with the equations describing the evolution of the delayed neutron precursors [4]. Since these equations
are key to the discussions and the development of the Monte Carlo methods presented in the following of this
manuscript, in this chapter we first provide an overview of the physical principles and the mathematical description
of non-stationary neutron transport, and successively show how complementary information can be extracted from
the associated eigenvalue equations.

2.1 Neutron interactions with matter

For the energy range considered in this work, neutrons are assumed to be distinct point particles, and wave prop-
erties are neglected [34]. Under these assumptions, neutrons freely travel through media and interact with the
background, which is the primary source of randomness for particle transport. In the applications of interest in
nuclear reactor physics, the neutron population is much more diluted (108 n/cm3 for a full power reactor) than the
one of the nuclei composing the traversed medium (roughly 1023 at/cm3) [4]. For this reason, the probability of
a neutron undergoing a collision at a generic point in phase-space is not related to the probability of encountering
other neutrons in the same position [23].

Neutron interactions are characterized by the total macroscopic cross section Σt(r,E), which represents the
probability per unit length for a neutron to undergo a collision event, at given position r and energy E [34, 23, 157].
This quantity does not depend on the direction of the particle, provided that the traversed medium is isotropic. In
the following we will assume that the physical properties of the medium are time-independent. Moreover, for a
generic nuclide A, the cross section can be expressed as the product

ΣA(r,E) = ρA(r)σA(E), (2.1)

where ρA(r) is the nuclide density and has units of the inverse of a volume, σA(E) is the microscopic cross section
and has units of a surface. The inverse of the total macroscopic cross section is defined as the mean free path and
represents the mean distance travelled by the neutron between any two successive collisions. This typical length is
considerably larger than both the particle wavelength and the interaction range, so that we can consider collisions
as localized events in the phase-space.

The interactions between neutrons and the medium occur during a negligible period of time, hence particles
freely stream up to the next collision site, where their state is randomly modified [34, 23, 24, 157]. The hypothesis
of an instantaneous collision is valid for short-range interaction forces and if the emission of the particle after
such collision occurs in a time interval considerably shorter than the time from one collision to another. These
conditions are typically satisfied if the particle mean free paths are much larger than the characteristic space scale
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over which collision events occur.

The collisions between neutrons and nuclei occur in about 10−14 s, with a correlation length of about 10−13

cm. The neutrons streaming in nuclear systems are characterized by a typical lifetime of about (10−6 −10−4 s and
the inter-collision distance exhibits values of the order of some cm [24, 157, 34]. As an example, the neutron
wavelength λ expressed in cm for energy value E expressed in MeV is given by

λ =
h

mn3
'

2.86×10−9
√

E
, (2.2)

where the neutron mass mn is around 939.56 MeV, h represents the Planck constant and 3 is the speed of the
neutron. By considering the typical linear size of an atom (10−10 cm), interference or diffraction phenomena for
neutrons related to the wave-particle duality will only occur for energy values smaller than 10−2 eV [117].

The stochastic motion of neutrons due to their interactions with the background medium suggests a probabilis-
tic approach [34, 157, 158]. Since it is not possible to predict the exact number of particles at a given position in
the phase-space, physical observables will be thus averaged over multiple particle histories in order to describe the
main properties of the system.

We will assume that the phase-space is entirely defined in terms of two variables, namely the vector position
r and the vector velocity v of the particles at a given time t. In other words, we will follow a classical approach,
and neglect the contributions of quantum variables (such as spin, for instance). A key physical observable is the
phase-space density function n(r,v, t), here defined as

n(r,v, t)drdv, (2.3)

representing the average number of particles in the infinitesimal phase-space volume drdv located around (r,v) at
time t [34, 157].

The phase-space current density J(r,v, t) can be formulated as the product of the velocity v times the phase-
space density function n(r,v, t). The average number of particles that cross the infinitesimal surface dS per unit
time having velocity dv around v at time t [34] is finally defined as

J(r,v, t) ·dSdv. (2.4)

2.2 General form of the transport equation

The transport equation for the particle density can be derived from a balance for the phase-space density function
n(r,v, t) [34, 157, 24]. Given a generic volume V in the phase-space, the variation of particles in the system can
be obtained by considering the leakage rate through the surface S = ∂V of V , the collision rate which randomly
modifies the velocity vector and the external source rate from a generic function Q(r,v, t). This yields the following
equation

∂

∂t

∫
V

drdv n(r,v, t) = −

∫
S

dS ·J(r,v, t)dv +

∫
V

drdv
(
∂n
∂t

)
coll

+

∫
V

drdv Q(r,v, t), (2.5)

where the term (∂tn)coll is the rate of change of n due to collisions of a generic particle with the medium. The
region V does not depend on time. Hence, it is possible to move the time derivative inside the integral operator.
Then, Gauss’ theorem can be applied in order to rewrite the leakage rate as∫

S
dS ·J(r,v, t) =

∫
V

dr ∇r ·J(r,v, t) =

∫
V

dr v · ∇rn(r,v, t), (2.6)

where we have used ∇r · vn = v · ∇rn, since r and v are independent variables. Equation (2.5) has to be valid for
any volume, hence the integrand has to be null, which yields

∂n(r,v, t)
∂t

+ v · ∇rn(r,v, t) =

(
∂n
∂t

)
coll

+ Q(r,v, t). (2.7)
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2.2. GENERAL FORM OF THE TRANSPORT EQUATION

Equation (2.7) is the general form of the transport equation for the phase-space density n(r,v, t).

2.2.1 Collision phenomena

For neutron transport, we can justify the linearity of the collision kernel (∂tn)coll in view of the fact that the neutron
population is highly diluted, which implies no interactions among neutrons [34, 23].

It is customary to introduce the collision kernel C(r,v′→ v) [24]

C(r,v′→ v)dv, (2.8)

which represents the average number of particles emitted at r with velocity in dv around v, given an incoming
particle having a collision at r with velocity v′ [157]. The general form of the collision kernel is

C(r,v′→ v) =
∑

A

ΣA,t(r,3′)
Σt(r,3′)

∑
j

σA, j(r,3′)
σA,t(r,3′)

ν̄A, j(3′) fA, j(v′→ v), (2.9)

where 3 = |v| (recall that the cross sections do not depend on the direction of the particle). The first sum of Eq. (2.9)
considers all the nuclides A composing a given material, and the second considers all possible reactions j for a given
nuclide A. Among the most common reactions we mention capture (the neutron is absorbed and no particles are
emitted), scattering (the energy and direction of the particle are modified according to the corresponding diffusion
law) and fission (the neutron is absorbed and a random number of fission neutrons is emitted with energy and
direction obeying the emission laws). The macroscopic cross section ΣA,t(r,3′) is the total cross section of nuclide
A and Σt(r,3′) is the cross section of the entire material. Furthermore, the microscopic cross section σA, j(r,3′) is
associated to the reaction j and nuclide A and σA,t(r,3′) is the total cross section of nuclide A [82].

From inspection of this kernel, three different components can be singled out. The first is expressed by the
probability for a neutron to interact with nuclide A:

pA =
ΣA,t(r,3′)
Σt(r,3′)

. (2.10)

The second is the probability for a neutron to have a collision of type j with nuclide A

pA, j =
σA, j(r,3′)
σA,t(r,3′)

. (2.11)

The third is given by the product of the multiplicity factor ν̄A, j(3′) and the probability density function fA, j(3′→ 3).
These quantities represent the yield associated to the emitted neutrons after the collision and the distribution for
the energy and direction of such particles for collision j.

Recalling the previous definitions, the collision rate density 3Σt(r,v)n(r,v, t) represents the rate of any possible
interaction per unit volume. Neutrons travelling with velocity v′ and creating secondary particles with velocity v
are described by the collision rate density 3′Σt(r,3′)C(r,v′→ v)n(r,v′, t).

The collision term (∂tn)coll can then be expressed as(
∂n
∂t

)
coll

=

∫
4π

∫ ∞

0
dv′ 3′Σt(r,3′)C(r,v′→ v)n(r,v′, t)− 3Σt(r,3)n(r,v, t). (2.12)

The linear transport equation for the phase-space density n(r,v, t) is finally expressed by coupling Eq. (2.12)
with the balance from Eq. (2.7)

∂n
∂t

+ v · ∇rn + 3Σt(r,3)n =

∫
4π

∫ ∞

0
dv′ 3′Σt(r,3′)C(r,v′→ v)n(r,v′, t) + Q(r,v, t). (2.13)

Equation (2.13) is the linear Boltzmann equation [34, 23, 24]. This is a linear integro-differential equation for the
phase-space density n, where linearity stems from assuming that cross sections do not depend on n(r,v, t) and from
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the absence of collisions between neutrons.

The collision term can be split in order to separately consider the scattering and the fission contributions:

Σt(r,v′)C(r,v′→ v) = Σt(r,v′)Cs(r,v′→ v) +Σt(r,v′)C f (r,v′→ v), (2.14)

with
Cs(r,v′→ v) =

Σs(r,v′)
Σt(r,v′)

ν̄s(3′) fs(v′→ v), (2.15)

and

C f (r,v′→ v) =
Σ f (r,v′)
Σt(r,v′)

ν̄ f (3′)χ f (v′→ v). (2.16)

The quantity ν̄s(3′) is the multiplicity of the scattering interactions (as in (n, xn) reactions), whereas ν̄ f (3′) is the
multiplicity of the fission events. The average number of fission neutrons is denoted by ν̄ f (3′) (of the order of 2.5
for 235U [72]), and the associated (normalized) fission spectrum is denoted by χ f (v′→ v).

2.2.2 Precursors and delayed neutrons

In the previous paragraphs, we have implicitly assumed that there is no delay between the collision time and the
emission time at collision events. Upon collision with a fissile nucleus, the neutron is absorbed, and the nucleus
becomes unstable. After a very short time lapse, the unstable nucleus may split into several fragments (typically
two), and sets free a variable number of other neutrons, each following an energy and angle distribution [72]. These
neutrons are conventionally labelled as prompt. It is a good approximation to assume that fission neutrons are
emitted isotropically in the laboratory system, and the energy spectrum is only weakly dependent on the incident
neutron energy, in which case we have

χp(v′→ v) =
χp(3)

4π
, (2.17)

where 4π is the normalization factor of the isotropic distribution [4]. The fission spectrum can be reasonably well
approximated by a Maxwellian distribution

χp(E) ≈ χp,Maxwell(E), (2.18)

where

χp,Maxwell(E) =
2
√
π

1
kT

√
E

kT
e−E/kT , (2.19)

with parameter kT = 1.29. Watt has also published an analytical formula based on data fitting, which reads

χp,Watt(E) = cwe−E sinh(
√

E), (2.20)

with E expressed in MeV and parameter cw = 0.484.

The fission fragments are in an excited state and decay to their fundamental state via β− nuclear reactions by
emitting supplementary neutrons. Each fissile isotope leads to wide range of possible fission fragments, which are
customarily grouped in so-called families, according to the value of their average decay times [4]. The correspond-
ing decay rates are usually denoted λ j, in units of s-1, whereas the average decay time is defined as 1/λ j with j the
index of the family. The extra neutrons emitted after the decay time of the β− nuclear reactions are conventionally
labelled as delayed, as opposed to prompt neutrons. Between the fission event and the actual emission from the
fission fragments by β− decay, the delayed neutrons are named precursors [72]. The average number of precur-
sors of family j created per fission event is denoted by ν̄ j

d(3′), and we typically have ν̄ j
d(3′)� ν̄p(3′). The emitted

delayed neutrons hold the same position as the associated precursors, and are emitted isotropically with an energy
spectrum χ

j
d(3).

For a typical light-water reactor, the average decay time of precursors is about λ−1 ≈ 10 s, which is to be com-
pared with the average mean generation time (i.e., the time between a birth from fission and a death by absorption)
in the reactor, which is of the order of Λ ' 20 µs. This difference is crucial for nuclear reactor control, since
the contribution due to delayed neutrons allows the time evolution of the system due to a change in reactivity to
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be slowed down by a considerable amount [72]. Table 2.1 collects the values of delayed neutron yields, decay
constants and emission energies for the six precursor families associated to the 235U isotope, according to the
ENDF/B-VI nuclear data library [102].

family ν̄
j
d[−] λ j [s-1] E j [MeV]

1 5.85 × 10−4 1.33 × 10−2 4.05 × 10−1

2 3.02 × 10−3 3.27 × 10−2 4.72 × 10−1

3 2.88 × 10−3 1.21 × 10−1 4.43 × 10−1

4 6.46 × 10−3 3.03 × 10−1 5.57 × 10−1

5 2.65 × 10−3 8.49 × 10−1 5.18 × 10−1

6 1.11 × 10−3 2.85 × 10+0 5.40 × 10−1

Table 2.1: 235U data from ENDF/B-VI nuclear data library: average values of delayed yields ν̄ j
d, decay constants

λ j and emission energies E j of the six precursor families.

As apparent from Tab. 2.1, another major difference in the properties of prompt and delayed neutrons concerns
their kinetic energy. In light-water reactors, fission events occur mostly at energies below 1 eV, so neutrons have
to slow down to thermal energies in order to maximise the probability of undergoing a fission event. However,
prompt neutrons are emitted at a mean energy of about 2 MeV, whereas delayed neutrons are generated at energies
around 500 keV. Thus, delayed neutrons have a larger probability of avoiding leakage and absorption during the
slow-down process and are more likely to induce thermal fissions than prompt neutrons [33].

As for the transport equation, precursors are considered separately. Recalling the fission collision kernel from
Eq. (2.16), the prompt fission component is expressed as

Σt(r,3′)C f ,p(r,v′→ v) = ν̄p(3′)Σ f (r,3′)
χp(3)

4π
, (2.21)

where Σ f (r,3′) is the fission cross section. By taking into account the concentration of precursors c j(r, t) for family
j, it is possible to define a balance equation as it follows:

∂c j(r, t)
∂t

=

∫
4π

∫ ∞

0
dv′ ν̄ j

d(3′)3′Σ f (r,3′)n(r,v′, t)−λ jc j(r, t). (2.22)

Delayed neutrons are created from the decay of the precursor belonging to family j with a rate equal to λ jc j(r, t).
This quantity can be derived by solving Eq. (2.22)

c j(r, t) = e−λ j(t−t0)c j(r, t0) +

∫
4π

∫ ∞

0
dv′

∫ t

t0
dt′ ν̄ j

d(3′)3′Σ f (r,3′)e−λ j(t−t′)n(r,v′, t′), (2.23)

where t0 is the initial time.

The total fission contribution to the collision kernel is then∫
4π

∫ ∞

0
dv′ Σt(r,3′)C f (r,v′→ v)3′n(r,v′, t) =

χp(3)
4π

∫
4π

∫ ∞

0
dv′ ν̄p(3′)Σ f (r,3′)3′n(r,v′, t) +

∑
j

λ j
χ

j
d(3)

4π
c j(r, t).

(2.24)
For stationary problems (implying that precursors have reached equilibrium),

λ jc j(r) =

∫
4π

∫ ∞

0
dv′ ν̄ j

d(3′)3′Σ f (r,3′)n(r,v′). (2.25)

The total fission contribution to the collision kernel for the stationary case is then

Σt(r,3′)C f (r,v′→ v) =
χp(3)

4π
ν̄p(3′)Σ f (r,3′) +

∑
j

χ
j
d(3)

4π
ν̄

j
d(3′)3′Σ f (r,3′). (2.26)
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2.2.3 Boundary and initial conditions

In order to compute solutions for the evolution of the phase-space density n(r,v, t) from Eq. (2.13), proper initial
and boundary conditions are required [34, 157]. It is customary to define the initial phase-space distribution n0(r,v)
as

n(r,v, t = t0) = n0(r,v). (2.27)

Different types of boundary conditions can be applied at the frontiers of the analyzed system. In particular, in the
context of the simulations investigated in the following, leakage and reflective boundary conditions will be consid-
ered. In the former case, particles cannot re-enter the system and are lost for the simulation domain. Conversely,
neutrons bounce on the reflected surface, continuing their walks in the system.

2.3 The integro-differential transport equations

In transport theory, it is customary to introduce the angular neutron flux ϕ(r,v, t) [34, 157], defined as

ϕ(r,v, t) = 3n(r,v, t). (2.28)

This function can be related to the current previously defined in Eq. (2.4): J(r,v, t) = Ωϕ(r,v, t), where the unit
vector Ω = v/3 denotes the neutron direction. The velocity vector can be equivalently expressed in terms of
the direction Ω and the energy E. In view of the derivation detailed in the previous sections, the angular flux
ϕ(r,Ω,E, t) obeys the Boltzmann equation, coupled with the equations for the precursor concentrations c j(r, t).
The integro-differential form of this problem reads [4, 23, 24]

1
3(E)

∂ϕ(r,Ω,E, t)
∂t

+Ω · ∇ϕ(r,Ω,E, t) +Σt(r,E)ϕ(r,Ω,E, t)−
∫

4π
dΩ′

∫ ∞

0
dE′ Σs(r,Ω′→Ω,E′→ E)ϕ(r,Ω′,E′, t) =

χp(E)
4π

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄p(E′)Σ f (r,E′)ϕ(r,Ω′,E′, t) +

∑
j

χ
j
d(E)

4π
λ jc j(r, t) + Q(r,Ω,E, t),

(2.29)
∂c j(r, t)
∂t

=

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄ j

d(E′)Σ f (r,E′)ϕ(r,Ω′,E′, t)−λ jc j(r, t). (2.30)

The term Σs(r,Ω′→Ω,E′→ E) is a short-hand for the scattering kernel

Σs(r,Ω′→Ω,E′→ E) = ν̄s(E′)Σs(r,E′) fs(Ω′→Ω,E′→ E), (2.31)

and the other notations have been previously introduced.

The system of coupled Eqs. (2.29) and (2.30) can be rewritten in a more compact form by introducing some
appropriate linear transport operators. In particular, at the left-hand side of the neutron equation it is possible to
define the net disappearance operatorM as

M =L+R−S, (2.32)

where the streaming operator L, the collisional operator R and the scattering operator S are respectively defined
as

L =Ω · ∇, (2.33)

R = Σt(r,E), (2.34)

S =

∫
4π

dΩ′
∫ ∞

0
dE′ Σs(r,Ω′→Ω,E′→ E). (2.35)

The prompt fission operator Fp and the precursor production operator F j
d are defined as

Fp =
χp(E)

4π

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄p(E′)Σ f (r,E′), (2.36)
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F
j

d =

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄ j

d(E′)Σ f (r,E′). (2.37)

In order to keep the notation compact, we can use a matrix form for this set of equations. First, we consider a
vector for the neutron flux and the precursor concentrations defined as Ψ = {ϕ,c1, . . . ,cJ}

T . Then, we combine the
transport operators as 

1
3

0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


∂Ψ

∂t
=


Fp−M λ

χ1
d

4π · · · λJ
χJ

d
4π

F 1
d −λ1 · · · 0
...

...
. . .

...
F J

d 0 · · · −λJ

Ψ+


Q
0
...
0

 , (2.38)

where J denotes the number of precursors families for the problem at hand. Finally, by introducing the linear
operators

A =


Fp−M λ1

χ1
d

4π · · · λJ
χJ

d
4π

F 1
d −λ1 · · · 0
...

...
. . .

...
F J

d 0 · · · −λJ

 , (2.39)

and

V−1 =


1
3

0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , (2.40)

Eq. (2.38) can be written as

V−1 ∂Ψ

∂t
=AΨ+Q, (2.41)

where Q = {Q,0, . . . ,0}T is a vector representing the external source distributions for neutrons and precursors. For
the sake of simplicity, in the following we neglect external precursor sources. The set of Eqs. (2.41) is well-posed
for suitable external source distribution, initial and boundary conditions [4, 82, 70, 157].

In general, one is interested in determining a response R at a given detector, which we express as a linear
functional of the neutron flux:

R =

∫
V

dr
∫

4π
dΩ

∫ ∞

0
dE

∫ t f

t0
dt ϕ(r,Ω,E, t)ηϕ(r,Ω,E, t), (2.42)

where ηϕ is the response function of the detector to the neutron flux (with ηϕ = 0 outside the detector region in the
phase-space), t0 and t f are the initial and the final time, respectively. It is assumed that precursors do not directly
contribute to the detector response.

2.4 The integral formulation of the transport equations

It is possible to express Eqs. (2.29) and (2.30) in a more compact form by formally solving Eq. (2.30) to yield

c j(t) = c j,0e−λ j(t−t0) +

∫ t

t0
dt′ F j

d ϕ(t′)e−λ j(t−t′).

where c j,0 corresponds to precursors concentration for family j at initial time t0.

Substituting this expression for c j(r, t) in Eq. (2.29) and using the formalisms introduced from Eq. (2.32) to
Eq. (2.41), we obtain

1
3

∂ϕ

∂t
+Mϕ = Fpϕ+

∑
j

χ
j
d

4π
λ j

∫ t

t0
dt′ F j

d ϕ(t′)e−λ j(t−t′) + Q. (2.43)
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Equation (2.43) is amenable to an integral formulation, which is the natural framework for Monte Carlo, as dis-
cussed in the next chapter. First, let P = (r,Ω,E, t) denote the coordinates of a generic point in the extended
phase-space (including time). It can be shown [100] that Eq. (2.43) can be rewritten as

ψ(P) = Tχ(P), (2.44)
χ(P) = Cψ(P) + Q(P). (2.45)

Here ψ(P) = Σt(r,E)ϕ(P) is the collision density and χ(P) is the emission density in P. The flight operator T reads

Tg(P) =

∫
dP′ T (P′→ P)g(P′),

where the integration over dP′ is short-hand for integration over all the coordinates of the phase-space and g(P) is
any suitable function:∫

dP′ T (P′→ P)g(P′) =

∫
dr′

∫
dΩ′

∫
dE′

∫
dt′ T (r′→ r,Ω′→Ω,E′→ E, t′→ t)g(r′,Ω′,E′, t′).

The flight kernel reads

T (P′→ P) = Σt(r,E)exp
−∫ |r−r′ |

0
d` Σt(r + ` ·Ω,E)


·
δ
(
Ω− r−r′

|r−r′ |

)
(r− r′)2 ·δ

(
t− t′−

|r− r′|
v

)
·δ(Ω−Ω′) ·δ(E−E′), (2.46)

where δ is a Dirac delta function.

Similarly, the collision operator C reads

Cg(P) =

∫
dP′ C(P′→ P)g(P′),

where the kernel C(P′→ P) consists of a prompt and a delayed term as discussed in Section 2.2.2:

C(P′→ P) = Cp(P′→ P) +Cd(P′→ P), (2.47)

with

Cp(P′→ P) =

[
ν̄s(E′)

Σs(r,E′)
Σt(r,E′)

fs(Ω′→Ω,E′→ E) + ν̄p(E′)
Σ f (r,E′)
Σt(r,E′)

·
χp(E)

4π

]
·δ(t− t′) ·δ(r− r′), (2.48)

Cd(P′→ P) =
∑

j

ν̄
j
d(E′)

Σ f (r,E′)
Σt(r,E′)

·
χ

j
d(E)

4π
·λ je−λ j(t−t′) ·δ(r− r′). (2.49)

2.5 The adjoint transport equations

For a well-defined operator K associated to a kernelK(z′→ z), the adjoint operator K† associated to the kernelK†

is defined by the scalar product∫
dz u(z)

∫
dz′ K(z′→ z)v(z′) =

∫
dz v(z)

∫
dz′ K†(z′→ z)u(z′), (2.50)

for every set of suitable integrable functions u(z) and v(z). By interchanging the integration variables in Eq. (2.50),
we have thus the definition of the adjoint kernel in terms of forward kernel, namely K†(z′→ z) =K(z→ z′).
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The adjoint formulation of the time-dependent transport equations reads [4, 62]

−
1
3(E)

∂ϕ†(r,Ω,E, t)
∂t

−Ω · ∇ϕ†(r,Ω,E, t) +Σt(r,E)ϕ†(r,Ω,E, t)−
∫

4π
dΩ′

∫ ∞

0
dE′ Σs(r,Ω→Ω′,E→ E′)ϕ†(r,Ω′,E′, t) =

ν̄p(E)Σ f (r,E)
∫

4π
dΩ′

∫ ∞

0
dE′

χp(E′)
4π

ϕ†(r,Ω′,E′, t) +
∑

j

ν̄
j
d(E)Σ f (r,E)λ jc

†

j (r, t) + Q†(r,Ω,E, t),

(2.51)

−
∂c†j (r, t)

∂t
=

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
ϕ†(r,Ω′,E′, t)−λ jc

†

j (r, t), (2.52)

where ϕ†(r,Ω,E, t) and c†j (r, t) are the adjoint neutron flux and the adjoint precursors concentration, respectively,
and Q†(r,Ω,E, t) is an arbitrary adjoint source. The physical interpretation of the adjoint flux and the precursor
concentrations will be thoroughly discussed in the next chapters. The adjoint transport operators appearing in
Eqs. (2.51) and (2.52) for the net disappearance, streaming, scattering and fission contributions are defined as:

M† =L†+R†−S†, (2.53)

L† = −Ω · ∇, (2.54)

R† = Σt(r,E), (2.55)

S† =

∫
4π

dΩ′
∫ ∞

0
dE′ Σs(r,Ω→Ω′,E→ E′), (2.56)

F
†
p = ν̄p(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χp(E′)
4π

, (2.57)

F
†

d, j =

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
. (2.58)

In analogy with Eq. (2.38), it is convenient to introduce the adjoint vector Ψ† = {ϕ†,c†1, . . . ,c
†

J}
T and the adjoint

matrix form of the transport equations as


1
3

0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


∂Ψ†

∂t
=


F
†
p −M

† ν̄1
dΣ f · · · ν̄J

dΣ f

λ1F
†

d,1 −λ1 · · · 0
...

...
. . .

...

λJF
†

d,J 0 · · · −λJ

Ψ†+


Q†

0
...
0

 . (2.59)

The final formulation of the adjoint transport equations is

V−1 ∂Ψ†

∂t
=A†Ψ†+Q†, (2.60)

where we have introduced the adjoint matrix operator

A† =


F
†
p −M

† ν̄1
dΣ f · · · ν̄J

dΣ f

λ1F
†

d,1 −λ1 · · · 0
...

...
. . .

...

λJF
†

d,J 0 · · · −λJ

 , (2.61)
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and the vector Q† = {Q†,0, . . . ,0}T representing the adjoint external source for neutrons and precursors.

2.6 Eigenvalue problems for the transport equations

The coupled system of Eqs. (2.38) fully describes the time evolution of the neutron and precursor populations
within the reactor. However, one may be interested in the solution of the stationary problem, which is tantamount
to determining the asymptotic state of the system [4, 34]. Let us introduce the time-independent neutron transport
equation in integro-differential form:

Ω · ∇ϕ(r,Ω,E) +Σt(r,E)ϕ(r,Ω,E) =

∫
4π

dΩ′
∫ ∞

0
dE′ Σt(r,E′)C(r,Ω′→Ω,E′→ E)ϕ(r,Ω′,E′) + Q(r,Ω,E).

(2.62)
To simplify notation, we introduce the total fission operator F as

F =
χp(E)

4π

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄p(E′)Σ f (r,E′) +

∑
j

χ
j
d(E)

4π

∫
4π

dΩ′
∫ ∞

0
dE′ ν̄ j

d(E′)Σ f (r,E′) = Fp +
∑

j

χ
j
d(E)

4π
F

j
d .

(2.63)
In this way, Eq. (2.62) can be rewritten in a more compact form as

Mϕ = F ϕ+ Q. (2.64)

One of the main challenges in reactor physics is to determine whether Eq. (2.64) admits stationary bounded, non-
negative and non-trivial solutions. In this context, the spectral analysis based on the eigenvalue formulation of
the neutron and precursor transport problem can provide useful information [4]. The spectral properties of the
Boltzmann operator B = F −M allow characterizing the asymptotic state of the reactor, as well as assessing how
this state is reached and whether the asymptotic state is stable with respect to external perturbations [34]. To have
an idea of the extent of this subject, we briefly list a series of applications: start-up of commercial reactors [123],
analysis of accelerator-driven systems [122], material control and accountability in critical assemblies [131], and
pulsed neutron reactivity measurements [21]. By imposing proper assumptions, it is possible to conceive different
eigenvalue problems associated to the transport operator [154]. In the following, we detail the main eigenvalue
formulations related to neutron transport.

2.6.1 The k-eigenvalue problem

Historically, the k-eigenvalue formulation stands as the possibly best-known formulation for criticality analy-
sis [34]. We assume the absence of external sources (i.e. independent source-driven problem), and we seek a
stationary solution. For this to happen, one needs to find a combination of geometry and materials for which a
stationary solution is possible. Therefore, one introduces a ”fictitious” factor k that artificially reduces (k > 1) or
increases (k < 1) the fission contribution to match the losses.

We seek then a value of k that makes the operatorM−F /k singular, such that the homogeneous problem will
allow a non-trivial solution (defined up to a multiplicative constant). This strategy transforms the original time-
dependent problem into an eigenvalue problem. Recalling Eq. (2.64) and applying these hypotheses leads to the
generalized eigenvalue problem

Mϕk =
1
k
F ϕk, (2.65)

where (k,ϕk) are the k-eigenpairs, composed of the eigenvalues k and the corresponding eigenmodes ϕk(r,Ω,E).
From a physical point of view, this eigenvalue problem corresponds to following the evolution of particles through
fission generations [55]. Neutrons emitted after g successive fission events are said to belong to generation g, hence
Eq. (2.65) can also be interpreted as a balance through generations. By inspection of Eq. (2.63), this operator carries
the contributions of prompt and delayed neutrons.

Equation (2.65) can be reformulated by introducing the fission emission density S f ,k = F ϕk, and the operator
K as

K =M−1F , (2.66)

whereM−1 is the inverse of the net disappearance operatorM, provided that it exists. The k-eigenvalue problem
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for the S f ,k distribution can be thus defined by the following equation

KS f ,k = kS f ,k. (2.67)

In relation with the eigenvalues, there exists an eigenvalue k0, positive and simple such that k0 > |kn| for n , 0,
associated to the real eigenfunction ϕk0 [1, 154].

Equation (2.65) represents a balance between the production and the disappearance of neutrons from the sys-
tem. A physical interpretation of the dominant eigenvalue k0 can be obtained by integrating over the phase-space

k0 =
〈F ϕk0〉

〈Mϕk0〉
, (2.68)

where < · · · > represents integration over the whole phase space.

The value k0, also known as the multiplication factor, represents the ratio between the rate of neutrons produced
by fission events and the rate of neutrons absorbed or leaked from the system. A critical system would be identified
by a perfect balance between production and disappearance, hence, a ratio k0 equal to 1. For k0 < 1 the system
is sub-critical, whereas for k0 > 1 the system is super-critical. The corresponding eigenmode ϕk0 is the dominant
eigenfunction, assumed to be real and non-negative [34]. The ratio k1/k0 is defined as the dominance ratio and
expresses the influence of the first excited eigenmode on the fundamental distribution [55]. The eigenvalue separa-
tion related to the the fundamental and the first order eigenvalues is a key parameter for the stability of the system.
In particular, it has been proved that it strongly influences the response of the system to a perturbation [46, 135].
Moreover, it can also be considered as an indicator of decoupling effects present in the system [98].

This eigenvalue problem can be reformulated by following the adjoint approach, under the same assumptions
previously introduced, which yields

M†ϕ†k =
1
k†
F †ϕ†k , (2.69)

where F † is the adjoint total fission operator defined as

F † = ν̄p(E)Σ f (r,E)
∫

4π
dΩ′

∫ ∞

0
dE′

χp(E′)
4π

+
∑

j

ν̄
j
d(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
. (2.70)

It can be shown that k† = k [34].

2.6.2 The α-eigenvalue problem

The k-eigenvalue formulation is intrinsically based on a decomposition of the system evolution through fission
generations. Although this approach is very useful in quickly ascertaining whether the system is critical, sub- or
super-critical, one might in general be interested also in determining the asymptotic reactor behaviour with respect
to time [25, 4, 34].

Assuming no delayed neutrons in the system, the most common hypotheses for the analysis of the time be-
haviour of the reactor are the separation of the phase-space variables and an exponential evolution of the neutron
flux with respect to time, namely

ϕ(r,Ω,E, t) = ϕα(r,Ω,E)eαt, (2.71)

where α is a suitable constant carrying the units of the inverse of a time.

In this way the so-called prompt α-eigenvalue problem is defined as

Bpϕα = αϕα, (2.72)

where the operator Bp =V(Fp −M) [34], the speed operator V is defined as the inverse of V−1 from Eq. (2.40)
and we assumed the absence of the source term Q.

The spectrum associated to this operator has been thoroughly investigated [82, 80, 34]. Pioneering work in this
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field has concerned mono-kinetic transport in slab geometries [89, 90, 124]. In general, the eigenvalues associated
to Eq. (2.72) are complex and include discrete points, lines and possibly a continuum portion of the complex
plane. The discrete and the continuum spectrum are separated into two half-planes by the so-called Corngold
limit, defined as the smallest value of 3Σt [27]. For more complex geometries and multi-group problems [67], it
has been shown that the continuum region of the spectrum disappears. In particular, if neutrons travel through the
system with a velocity such that no wave phenomena occur, the spectrum presents a collection of distinct points in
the phase-space. A broader overview related to the α-spectrum can be found in the references [130, 129].

Assuming the presence of a discrete set of α-eigenvalues, it has been demonstrated that this part of the spectrum
can be ordered as

Re(α∞) · · · ≤ Re(αi) · · · ≤ Re(α2) ≤ Re(αi) < α0, (2.73)

where the fundamental eigenvalue α0 exists and the corresponding fundamental eigenfunction ϕα0 is non-negative
and real [82, 80]. From a physical point of view, the absolute value of α0 represents the inverse of the asymptotic
reactor period, which is the time required by the neutron flux to scale by a factor e when all the transients related
to time constants αi shorter than α0 are over (this can be understood by inspection of the time-dependence of the
flux after introducing the variable separation in Eq. (2.71)) [159]. If particle populations do not evolve during time,
a value α0 = 0 is found and the system is critical. Conversely, a sub-critical system is characterized by α0 < 0,
whereas a super-critical configuration is defined by α0 > 0. Moreover, since the operator Bp is real, each complex
eigenvalue comes as a pair of complex conjugate values.

Let us now take into account also the delayed neutrons. If the hypothesis of separation of phase-space
variables and exponential time behaviour is now applied to the precursor concentrations [25, 4, 34], the vector
Ψ = {ϕ,c1, . . . ,cJ}

T reads
Ψ(P) = Ψα(r,Ω,E)eαt. (2.74)

By replacing Eq. (2.74) inside Eq. (2.38) the time derivative applied to the Ψ vector is equal to αΨαeαt. Dividing
both sides of Eq. (2.38) by eαt and in the absence of the source term Q, the α-eigenvalue problem is obtained as

α


1
3

0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Ψα =


Fp−M λ

χ1
d

4π · · · λJ
χJ

d
4π

F 1
d −λ1 · · · 0
...

...
. . .

...
F J

d 0 · · · −λJ

Ψα, (2.75)

which can also be expressed in a compact form as

AΨα = αV−1Ψα, (2.76)

where the direct operators A and V−1 have been introduced in Eqs. (2.39) and (2.40), respectively. The fun-
damental eigenpair (α0,Ψα0 ) physically represents the inverse of the asymptotic period of the reactor (including
delayed contributions), and the asymptotic particle distribution. The spectral properties of the full system (2.76),
including precursor contributions, have received comparatively less attention with respect to the prompt case (see
for instance [25, 55, 70] for a survey); however, these properties have recently attracted renewed attention in view
of the practical applications in reactor kinetics [139, 108, 5].

Contrary to the k-eigenvalue formulation, the delay of fission neutrons emitted from precursor decay is explic-
itly taken into account, and the distributions for precursor concentrations are additional unknowns for Eq. (2.76).
It is possible to recast Eq. (2.76) as an eigenvalue problem for the neutron flux alone by formally solving the
precursor distribution as

c j
α =

1
λ j +α

F
j

d ϕα, (2.77)

and substituting this formulation in the neutron equation. A new operator for the fission events is then defined as

Fα = Fp +
∑

j

λ j

λ j +α

χ
j
d

4π
F

j
d , (2.78)
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which yields
V

[
Fα−M

]
ϕα = αϕα. (2.79)

Equation (2.79) is now non-linear with respect to the eigenvalues [155, 25, 55].

The adjoint formulation of the α-eigenvalue problem can be obtained recalling the definition of adjoint transport
operators. In particular, the adjoint versions of Eqs. (2.76) and (2.79) can be respectively obtained as

A†Ψ
†
α = α†V−1Ψ

†
α, (2.80)

V
[
F
†
α −M

†]ϕ†α = αϕ†α, (2.81)

where the adjoint operator F †α is defined as

F
†
α = F

†
p +

∑
j

λ j

λ j +α
ν̄

j
dΣ fF

†

d, j. (2.82)

It can be proved that α† = α [34].

Time expansion on a modal basis

Assuming the access to all eigenmodes, and that the spectrum is purely discrete, the complete temporal evolution
of a system can be determined by expanding over a complete modal basis:

Ψ(P) =

M∑
m

wαm (t)Ψαm (r,Ω,E), (2.83)

where wαm and Ψαm are the coefficients of the expansion and the direct eigenmode of the m order according
to the α-eigenvalue problem, respectively. If this expression is applied in the compact version of the transport
Eq. (2.41), we obtain ∑

m

wαmAΨαm +Q =
∑

m

dwαm

dt
V−1Ψαm . (2.84)

It can be proven that the α-eigemodes are a complete set of functions for the modal expansion [34].

The speed operatorV can be applied to both sides of Eq. (2.76) in order to recast the α-eigenvalue problem as

VAΨαm = αmΨαm . (2.85)

This relation can be exploited by multiplying the operatorA of Eq. (2.84) by the direct and the inverse of the speed
operator and introducing the eigenvalue αm of the generic m order. Then each term of this equation is multiplied
by the sum of the adjoint eigenmodes Ψ

†
αn , where the index n denotes the generic order of these functions. Finally,

an integration over the phase-space is performed in order to obtain the following expression∑
n

∑
m

[
αmwαm (t)〈Ψ†αn ,V

−1Ψαm〉+ 〈Ψ
†
αn ,Q〉

]
=

∑
n

∑
m

dwαm

dt
〈Ψ
†
αn ,V

−1Ψαm〉. (2.86)

The scalar products between the adjoint eigenmodes and the inverse matrix operator applied to the direct eigen-
modes can be simplified by applying a bi-orthogonality condition [34]. For the α-eigenvalue problem, such product
is null in the case where the two functions have different order (m , n), hence

〈Ψ
†
αn ,V

−1Ψαm〉 = 0. (2.87)

Due to this property, only one summation over the modes is kept and, by dividing both sides of Eq. (2.86) by the
bi-orthogonality condition, the coefficient wαm is computed as solution of the following differential equation in
time [34, 21]

dwαm

dt
= αmwαm +

〈Ψ
†
αm ,Q〉

〈Ψ
†
αm ,V

−1Ψαm〉
, (2.88)
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given an initial value of wαm .

An important property coming from such expression is that the behaviour of the m-th order coefficient describ-
ing the evolution of particle populations depends on the source function Q, but also on the adjoint eigenmode of
the same order Ψ

†
αm .

In reality, as discussed in Section 2.6.2, a possible continuum spectrum can arise and the number of discrete
eigen-modes can be finite, say M. Therefore a residual term ζ(r,Ω,E) is introduced

Ψ(P) =

M∑
m

wαm (t)Ψαm (r,Ω,E) + ζ(r,Ω,E). (2.89)

For t→∞, ζ goes to zero and the influence of higher order harmonics will die out due to the negative real part
of the eigenvalues. If this is the case, the temporal behaviour of the flux is only ruled by the fundamental order.
The residual associated to the continuum is smaller as compared to the other contributions of the modal expansion:
even for the cases where the basis is incomplete, viable expansions can still be computed [90].

2.7 Point kinetics

The computation of the time-dependent neutron distribution requires the resolution of the Boltzmann equation: a
system of coupled integro-differential equations, depending on seven physical variables. However, if we are only
interested in the evolution of neutron and precursor populations with respect to time, it is possible to obtain a
simplified formulation of this problem. In order to apply this methodology, the main assumption is to split the
neutron flux distribution into a shape function φ(P), and an amplitude function A(t) [4, 55]:

ϕ(P) = A(t)φ(P). (2.90)

In order to ensure the uniqueness of the solution of this problem, an additional assumption for the shape function
is required. Often, it is assumed that such function has to fulfill the following property

∂

∂t

〈
ϕ†0,

1
3
φ
〉

= 0, (2.91)

where ϕ†0 is the adjoint fundamental mode of the k-eigenvalue problem and the scalar product is applied over the
whole phase-space. The normalization is arbitrary, but this particular expression satisfies the following relation

∂

∂t

〈
ϕ†0(r,Ω,E),

1
3(E)

ϕ(P)
〉

=
∂

∂t

(
A(t)

〈
ϕ†0(r,Ω,E),

1
3(E)

φ(P)
〉)
. (2.92)

The flux factorization from Eq. (2.90) can be applied to the Boltzmann Eq. (2.41). Then, the transport operators
are rearranged, multiplied by the weighting function ϕ†0 and integrated over the phase-space. The final formulation
for the exact point kinetics equations is expressed by

dA(t)
dt

=
ρ(t)−β(t)

Λ(t)
A(t) +

∑
j

λ jc̃ j(t) + q(t)

dc̃ j(t)
dt

=
β(t)
Λ(t)

A(t)−λ jc̃ j(t),

(2.93)

dA(t)
dt

=
ρ−β

Λ
A(t) +

∑
j

λ jc̃ j(t) + q(t)

dc̃ j(t)
dt

=
β

Λ
A(t)−λ jc̃ j(t),

(2.94)

A detailed derivation for Eq. (2.93) is given in Appendix B.

The solutions of this system are the amplitude function A and the amplitude of the rescaled precursor concen-
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trations c̃ j defined as

c̃ j(t) =
1

F(t)Λ(t)

〈
ϕ†0(r,Ω,E),χ j

dc j(r, t)
〉
, (2.95)

depending on the initial conditions of the problem and the source distribution q, defined as

q(t) =
1

F(t)Λ(t)

〈
ϕ†0(r,Ω,E),Q(P)

〉
, (2.96)

where F is a normalization function defined as

F(t) =

〈
ϕ†0(r,Ω,E),F φ(P)

〉
. (2.97)

From a mathematical point of view, the function F has no effect on the resolution of Eqs. (2.93) and its definition
is arbitrary. Nevertheless, the specific expression in Eq. (2.97) gives a physical meaning to the other quantities
describing the evolution of particles in the system: the point kinetics parameters. The reactivity ρ, the effective
delayed fraction βeff, and the effective mean generation lifetime Λeff are defined as

ρ(t) =
1

F(t)

〈
ϕ†0(r,Ω,E), [−M+F ]φ(P)

〉
, (2.98)

β
j
eff

(t) =
1

F(t)

〈
ϕ†0(r,Ω,E),F j

d φ(P)
〉
, (2.99)

βeff(t) =
∑

j

β
j
eff

(t), (2.100)

Λeff(t) =
1

F(t)

〈
ϕ†0(r,Ω,E),

1
3(E)

φ(P)
〉
, (2.101)

where effective refers to the fact that these quantities have been weighted by the adjoint eigenmode ϕ†0 [4, 72].

The effective mean generation time Λeff is the ratio between the adjoint-weighted neutron population and the
adjoint-weighted rate of emission of fission neutrons, the total effective neutron fraction βeff represents the adjoint-
weighted fraction of delayed neutrons in the system.

2.7.1 Simplified k- and α-point kinetics equations

The exact point kinetics equations introduced in Section 2.7 provide a complete solution for the time-dependence
of the system. Since the real shape function φ(P) is usually not accessible, it is customary to approximate φ(P)
with the direct fundamental eigenfunction from both the k- and the α-formulations, which does not depend on
time [34]. This assumption can be considered as valid if the shape function does not change significantly with
respect to time, which is the case for a system close to the critical condition, and in the absence of very localized
perturbations [55]. If the fundamental α eigenmode is chosen for the flux factorization, the weighting function is
correspondingly taken to be the adjoint fundamental α eigenmode.

Under these hypotheses, the kinetics parameters do not depend on time and can be rewritten as

ρ(α,k) =
1

F(α,k)

〈
ϕ†(α,k)(r,Ω,E), [−M+F ]ϕ(α,k)(r,Ω,E)

〉
, (2.102)

β
j
eff(α,k) =

1
F(α,k)

〈
ϕ†(α,k)(r,Ω,E),χ j

dF
j

d ϕ(α,k)(r,Ω,E)
〉
, (2.103)

Λeff,(α,k) =
1

F(α,k)

〈
ϕ†(α,k)(r,Ω,E),

1
3
ϕ(α,k)(r,Ω,E)

〉
, (2.104)

where the function F(α,k) again gives a physical meaning to these quantities and is defined as

F(α,k) =

〈
ϕ†(α,k)(r,Ω,E),F ϕ(α,k)(r,Ω,E)

〉
. (2.105)
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In particular, by taking into account the k-eigenvalue problem, the static reactivity ρk represents the relative change
in the effective multiplication factor k0. This can be proved by recalling Eq. (2.65) and substituting the net disap-
pearance operatorM applied to the direct eigenfunction ϕk0 , leading to

ρk =
k0−1

k0
. (2.106)

In a similar fashion, the dynamic reactivity ρα [55] is obtained by considering the non-linear form of the α-
eigenvalue problem

α

3(E)
ϕα(r,Ω,E) =

[
Fp +

∑
j

λ j

λ j +α
χ

j
dF

j
d −M

]
ϕα(r,Ω,E). (2.107)

A new term is added to both sides of equation in order to recall the total fission operator F from Eq. (2.63), which
yields [

α

3(E)
+

∑
j

α

λ j +α
χ

j
dF

j
d

]
ϕα(r,Ω,E) =

[
F −M

]
ϕα(r,Ω,E), (2.108)

which can be integrated over the phase-space in order to retrieve the so called inhour equation as [148, 110]

ρα = αΛeff,α +
∑ αβ

j
eff,α

α+λ j
. (2.109)

These definitions of reactivity depend on the approach used for the approximation of the shape function.

The kinetic parameters provide qualitative information on the time evolution of the neutron flux. In the case
where the shape function does not change significantly over time, the kinetics parameters are considered as constant
and solutions of the system (2.93) can be determined [4]. However, this could not always be the case. Moreover,
the kinetics parameters are integrated over the phase-space region. If the shape function is integrated over some
very heterogeneous domain, the system could be not considered as a ”point”, hence the assumption of variable
separation between space, energy, direction and time is no longer valid. If on the contrary the system is close to
the critical condition and in the absence of very localized perturbations), the shape function can be replaced by the
asymptotic distributions.
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Chapter 3

Monte Carlo methods for reactor physics

The resolution of the Boltzmann transport equation for neutral particles requires the implementation of specific
numerical methods. In this regard, two approaches can be adopted: deterministic methods and stochastic meth-
ods [95]. The first category introduces a discretization of the phase-space in order to obtain a matrix formulation
of the problem, which implies an error related to the approximations of continuous variables and functions [4, 34].
Furthermore, additional hypotheses are required for each specific configuration under analysis. Under these con-
ditions, the main advantage related to these methods is the ”smaller” computational time for the simulations with
respect to other approaches.

The Monte Carlo method is based on a stochastic approach, involving sampling techniques for the simulation
of the physical processes governing particle transport [96]. Unlike deterministic methods, Monte Carlo methods
for particle transport do not discretize the Boltzmann equations introduced in the previous sections, but sample the
underlying physical phenomena described in nuclear data. The ensemble average of the sampled quantities tends
to the solution of the Boltzmann equation. In Monte Carlo methods, almost no approximations are introduced: the
physical laws defining particles transport and the cross sections for different materials are retrieved from the nuclear
data libraries [134, 102] and are directly used for the sampling process during the simulation. The probabilistic
nature of this approach implies a statistical error carried by the estimation. In order to reduce these uncertainties,
a larger number of particle histories must be sampled, typically implying long simulation times. Despite the
computational cost, Monte Carlo method stands as the ”golden standard” for the simulation of neutron transport [4].

3.1 Monte Carlo estimation: average and variance

The main algorithm related to Monte Carlo simulation for particle transport concerns the sampling process. A large
set of random samples is collected in order to compute scores of physical observables. To ensure the convergence
of these results to the quantities of interest, a sufficiently large number of samples is required. The final goal of a
Monte Carlo simulation is the estimation of average quantities and the associated error [143]. The mean value m
and the variance σ2 associated to the generic random variable X are defined as

m = E[X] =

∫ b

a
dx x fX(x) =

∫ b

a
dFX(x) x, (3.1)

σ2 = E[(X−m)2] =

∫ b

a
dx (x−m)2 fX(x) =

∫ b

a
dFX(x) (x−m)2, (3.2)

where fX(x) and FX(x) are the corresponding probability density function and cumulative distribution associated
to the random variable X, respectively [96]. In general, the mean value is obtained as the sample average of a set
of N random variables:

m =
1
N

N∑
i=1

xi, (3.3)
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and the variance is consequently obtained as

σ2 =
1

(N −1)

N∑
i=1

(m− xi)2. (3.4)

The variance of the distribution σ2 measures the dispersion of the realizations, whereas the variance of the mean
value σ̄2

σ̄2 =
1

N(N −1)

N∑
i=1

(m− xi)2. (3.5)

provides an estimation of the error associated to m with respect to its exact value, based on the Central Limit
Theorem [143]. The two variances can be related since σ̄2 = σ2/N.

The performance of a simulation is quantified by the so-called figure of merit (FOM)

FOM =
1

σ̄2τc
, (3.6)

where τc is the required computation time, proportional to the total number of sampled variables N [143]. This
quantity is a commonly used metric for evaluating the efficiency of a Monte Carlo calculation: the FOM increases
for decreasing computer time and decreasing statistical uncertainty [96].

The main drawback of Monte Carlo methods is related to the fact that the uncertainty of the average results
decreases with the square root of the number N of sampled histories [96]. The convergence rate for deterministic
methods is typically proportional to the inverse of N2/d, where d is the dimensionality of the problem [118]. By
inspection of these rates for the two approaches, if d > 4 Monte Carlo methods allow a faster convergence to the
exact solution. Variance reduction methods can be applied during a non-analog Monte Carlo simulation in order
to reduce the uncertainties related to the score of interest (see Section 3.3).

3.2 Neutron random walks

In the previous section we have briefly recalled the basics of probability distributions and sampling techniques
applied for a generic Monte Carlo problem. In this section, we detail the implementation of such techniques for
neutron transport , which is formulated in terms of random walk processes. Particle histories start according to
source distributions and propagates through the media following the transport kernels. The steps presented in the
following paragraphs define the rules of an analog Monte Carlo game, in the sense that the simulated neutrons
obey the physical laws encoded in the transport equation [143].

3.2.1 Sampling source neutrons

Each neutron random walk starts from a generic source distribution defined as a function Q(P). An initial time t0
is set and the position of particles in the phase-space is sampled from the normalized probability density function

Q(P0)∫
P

dP0 Q(P0)
, (3.7)

where P0 represents the original coordinates and P is a phase-space region. Whenever the walker crosses the
scoring region, a normalization factor equal to

∫
P

dP0 Q(P0) is applied to the final score of the random walk.

3.2.2 Sampling the particle flights

The transition kernel T (P′→ P) from Eq. (2.46) is applied in order to sample particle flights. In general, neutrons
move through heterogeneous media composed of different materials, characterized by distinct total macroscopic
cross sections Σt(r,E). We make the hypothesis that the system is thus composed of a collection of material regions
of arbitrary shapes, each being homogeneous in its interior. Moreover, different boundary conditions can be applied
to the geometrical domain.
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Given the initial flight position r, direction Ω and energy E, the distance lmax to the next intersection with the
boundaries of the traversed material region is computed. It is possible that particles collide before reaching this
frontier according to the following probability density function

P(l|r,Ω,E) = Σt(r + lΩ,E)e−
∫ l
0 dl′ Σt(r+l′Ω,E), (3.8)

which can be integrated by applying the inverse transform in order to obtain the sampled distance l as

l = −
1

Σt(r,E)
ln(1−ui), (3.9)

where ui is a uniform sampled number in the interval [0,1].

If l < lmax, the neutron is moved to the collision site at position r + lΩ. Otherwise, the particle is transported to
the frontier at position r+ lmaxΩ. In the case where a different material region has been reached, a new distance l is
sampled by using the new total macroscopic cross section [96], which is in order to be compared with an updated
value for lmax. If instead the particle has arrived at the boundary of the system, boundary conditions are applied
and, if it has not leaked, new distances l and lmax are computed.

3.2.3 Interactions

At the end of the flight, particles may undergo collision events, which are ruled by the collision kernel C(P→ P′)
from Eq. (2.9). In particular, the interacting nuclide A, and the nuclear reaction j, are chosen with probabilities
pA(r,E′) and pA, j(r,E′) from Eqs. (2.10) and (2.11) respectively. Then, the number of emitted particles from the
collision and the corresponding energy and direction coordinates are sampled by considering the multiplicity factor
νA, j(E′) and the distribution fA, j(Ω′→Ω,E′→ E), respectively.

3.2.4 Sampling from fission

As introduced in Section 2.2.2, neutrons are absorbed during fission events and the unstable nucleus splits into fis-
sion fragments and a random number of fission neutrons with average ν̄ f (E). During analog simulations, neutrons
undergo fission events at collision site with probability

p f ission =
Σ f (r,E)
Σt(r,E)

. (3.10)

The directions of the emitted neutrons are isotropically sampled according to a uniform distribution over the solid
angle 4π. Moreover, the energy related to these particles are sampled from the Maxwellian or the Watt distributions
introduced in Eqs. (2.19) and (2.20) respectively. These distributions are representative for the emission spectrum
of the prompt neutrons χp(E). The same functions can be implemented for the energy sampling of the specific j
delayed family according to the spectrum χ

j
d(E) by using different constant values for kT and cw [72].

3.3 Non-analog neutron random walk

Despite Monte Carlo being suitable for parallel computing, since each history can in principle be processed by
an independent computing unit, strategies aimed at reducing the computational time for a given target statistical
uncertainty have been under development since the inception of this simulation method, and go generally under
the name of non-analog Monte Carlo methods [96, 143]. The main idea is to sample particles from modified
distributions in order to increase the number of events that contribute to the score of interest. To preserve the
unbiasedness of the score estimation, particles carry a statistical weight that can be different from unity.

In particular, particles sampled from a modified generic distribution or kernel f̃ (P′ → P) carry a correction
weight w̃(P′→ P) equal to

w̃(P′→ P) =
f (P′→ P)
f̃ (P′→ P)

, (3.11)

where f̃ (P′→ P) is the original distribution for sampling neutrons from P′ to P in the phase-space. Such modifi-
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cations can be applied to the source function Q(P), the flight kernel T (P′→ P) or the collision kernel C(P′→ P).
In the following paragraphs, further details will be given concerning the weight correction for specific variance
reduction methods.

3.3.1 Implicit capture

In the case where particles are captured due to physical reactions, their histories are terminated, possibly before
they could contribute to a detector. The implicit capture routine allows neutrons to survive captures in order to
increase the probability for the particle to reach the detector region. In order to compensate for the absence of this
capture event, the statistical weight of the particle is reduced by the survival probability after the collision:

w′ = w
Σs(r,E)
Σt(r,E)

, (3.12)

where w and w′ are the statistical weights of the particle before and after the collision, respectively.

3.3.2 Forced fission

For multiplying systems, fission events can be enhanced by implementation of forced fission: if a collision with a
fissile nuclide occurs, fission is systematically sampled. In order to ensure an unbiased simulation, it is necessary
to either modify the number of particles emitted from fission or adjust their statistical weights. In the first case, the
number of emitted particles n f ission is computed as

n f ission =

[
ξ+ ν̄ f (E)

Σ f (r,E)
Σt(r,E)

]
, (3.13)

where ξ is a uniform random number in the interval [0,1], ν̄ f (E) is the mean number of fission neutrons,
Σ f (r,E)
Σt(r,E) is

the probability to undergo a fission reaction.

3.3.3 Population control techniques

The implementation of the implicit capture implies that particles cannot terminate their histories at collision sites:
if an infinite system is analyzed, the simulation would never end. Population control techniques are therefore
introduced in order to avoid extreme values for the statistical weights of the particles and ensure that the histories
are terminated when needed [96, 143]. The coexistence of particles with very small and very large statistical
weights leads to a variance increase due to statistical dispersion and/or fluctuations. Population control techniques
are applied in order to balance the number of particles reaching the detector region. Specific techniques can be
further applied in order to resize a collection of particles in the simulation. Overall, these routines must preserve
the average statistical weight after their application and the unbiasedness of the simulation. In the following we
will provide a brief overview.

Russian roulette

This population control technique allows terminating particle histories with small statistical weights [96, 143].
Due to the implicit capture routine, the statistical weight of the particle after the collision is reduced by a factor
Σs(r,E)/Σt(r,E). If the weight is below a fixed threshold wr, the Russian roulette is activated: a random number ξ
is uniformly sampled in the interval [0,1], if the weight of the particle is such that w < ξ, the particle survives and
a new weight w′ = 1 is attributed, otherwise it is killed. This population control technique is usually applied after
each collision. A typical value for the threshold is wr = 0.8.

Splitting

Contrary to the previous procedure, the splitting is implemented in order to avoid the presence of particles with
large statistical weights [96, 143]. The main idea is to split the original particle into nc copies with weight w′ =

w/nc. If the weight of the particle increases beyond a general threshold ws > 1, the splitting is activated generating
an additional number of particles with smaller weights. Again, this technique is applied after a collision event. The
threshold value is typically set at ws = 2.
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Combing

The following technique is applied in order to change the population of K particles to M particles by preserving
the total statistical weight [11]. In particular, a set of K particles can be arranged as shown in Fig. 3.1 with
corresponding initial weights wi, with total weight:

W =

K∑
i=1

wi. (3.14)

A random number ui is uniformly sampled in the interval [0,1] and multiplied by W/M, where M is the total
number of particles after the combing. The obtained quantity is defined as the first tooth of the comb. All the
following teeth Tm will be located with a step equal to W/M. These considerations can be summarized by the
following formula

Tm = ξ
W
M

+ (m−1)
W
M
, m = 1,2, . . . ,M. (3.15)

In the end, a new set of M particles will be copied from the original population, each with a statistical weight equal
to W/M. The uniform random number ξ determines if j or j + 1 teeth are related to the interval of length wi, given

j ≤ wi
M
W
≤ j + 1. (3.16)

j teeth fall in the i-th interval with probability

pi, j = j + 1−wi
M
W
, (3.17)

whereas j + 1 teeth fall in the i-th interval with probability

pi, j+1 = wi
M
W
− j. (3.18)

Figure 3.1: Scheme for the weight distribution of 6 particles according to the combing technique [11].

3.4 Estimators for neutron histories

Random contributions are computed in order to relate the realization of a physical process to the average value of
the quantity of interest. As previously introduced in Eq. (2.42), it is possible to estimate a response R in a defined
detector region in the phase-space as the following integral

R =

∫
P

dP ϕ(P)ηϕ(P), (3.19)

where ϕ(P) is the neutron flux and ηϕ(P) is the corresponding response function. In the following, we consider
estimators related to the neutron flux, but additional estimators can also be applied by considering the emission
density χ(P) and the collision density ψ(P) from Eq. (2.45).
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The response R is computed as the sample average

R =
1
N

N∑
i=1

ωi, (3.20)

where ωi is the estimator for the i-th random walks, over a total number of N random walks. Now, we introduce
two estimators as the collision estimator ωcoll and the track-length estimator ωtrack

ωcoll =

M∑
m

wm

Σt(Pm)
, (3.21)

ωtrack =

M∑
m

wmlm, (3.22)

over M total particle tracks, where wm is the relative statistical weight and lm defined is the corresponding track-
length in the detector volume. These quantities are estimated for each neutron random walk. The first estimator
is updated at each collision in the detector region, whereas the second estimator scores a realization each time a
particle travels through the region of interest.

Similarly, the current J(P) = ϕ(P)Ω can be estimated with surface estimators for each particle crossing of the
detector surface S = ∂D

ωsur f =

M∑
m

wm. (3.23)

3.5 Kinetic Monte Carlo methods

The Monte Carlo methods described so far do not explicitly take into account time-dependent problems. Recently,
thanks to the increasing computational capabilities and many efforts on this field [140, 141, 88, 41, 92, 107], it has
become possible to perform kinetic Monte Carlo simulations of realistic nuclear systems. However, such simula-
tions are extremely expensive from a computational point of view. The major challenges related to time-dependent
Monte Carlo methods concern the presence of two different time scales for neutron and precursor particles, and the
influence of feedback effects during transients. The simulation of such physical problem is tantamount to solving
the time-dependent Boltzmann system coupled to the equations defining the thermal-hydraulics effects.

The times associated to particles during their histories need to be computed, so that a score can be averaged
over a proper time grid. The rate by which neutrons are converted into precursors is defined by the ratio βeff/Λeff;
conversely, precursors decay into delayed neutrons following the mean decay constant λ̄. By considering a general
system at equilibrium and the ratio of these two rates (βeff/(λ̄×Λeff) ' 104), precursors would be much more
abundant with respect to neutrons due to their longer lifetime. In order to properly fill each time bin, specific
techniques must be then applied for variance reduction and population control.

From the beginning of the simulation, each particle stores its local time and adds each partial contribution
during flights as the ratio between the distance travelled before the next collision and the speed at the given energy.
Prompt and delayed neutrons can be simulated in the same transport: the former are immediately emitted after a
fission and inherit the time of the parent neutron, the latter addition to their local time an additional delay related to
the precursor decay. If a critical configuration is considered, the difference in the time scales of these two particles
would prohibit an analog Monte Carlo simulation [88].

A possible solution to this problem is to apply additional population control techniques to the population of
precursors [88, 59]. These particles will not be transported, but will provide a ”buffer” for delayed neutrons that
can contribute to Monte Carlo scores. In particular, it is convenient to introduce a single representative (averaged)
precursor, carrying the total statistical weight of all possible precursors [41]. Its decay rate is defined according to
the following function

P(t|t0) =
∑

j

λ j
β j

β
e−λ j(t−t0), (3.24)
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given the fraction β j/β of delayed neutrons belonging to family j, and the relative generation time t0. Then, the
weight of the precursor at a generic time t is estimated as

W(t|t0) = wc

∑
j

β j

β
e−λ j(t−t0), (3.25)

where wc is its original weight. In order to improve the sampling of particles during the decay of the precursors,
it is possible to force the decay in order to ensure a larger number of neutrons during the fission chain, leading
to an overall variance reduction [142]. In particular, it has been proposed to force this decay uniformly in each
time bin of a specified temporal mesh from the initial time t0 up to the final time t f . Particle trajectories are
Markovian (i.e., they depend only on the particle state at the current time, and not on the past history) and thus can
be stopped and restarted at each bound of this grid preserving the ensemble averages for the physical quantities to
be computed [141].

The forced decay can be sampled uniformly over the chosen time mesh, following the distribution

pdecay =
1

tq+1− tq
χ(tq, tq+1), (3.26)

where χ(tq, tq+1) is a step function applied over the time interval [tq, tq+1]. The unbiased Monte Carlo simulation is
preserved by considering

Wdecay(t|t0) = (tq+1− tq)
∑

j

λ j
β j

β
e−λ j(t−t0)wc, (3.27)

as the statistical weight for the emitted delayed neutron [41, 142]. Energy and direction for the emitted delayed
neutron are sampled from the specific spectrum of family j, which can be chosen with probability p( j, t|t0) [141],
namely:

p( j, t|t0) =
λ j

β j
β e−λ j(t−t0)∑

k λk
βk
β e−λk(t−t0)

. (3.28)

The delayed neutron follows its history during the simulation, whereas, the precursor will be again forced to decay
in the next time bin.

Regardless of the refinement chosen for the temporal mesh, the Monte Carlo score performed over a time bin
is a fair estimate of the integral of a generic observable averaged over the phase-space in that time interval. Even
though the average scores are preserved for any arbitrary mesh, the variances associated to them are intimately
related to the size of the bin. Moreover, population control techniques must be applied at the end of each time bin,
in order to avoid a large CPU overhead caused by the application of such routines at each population size variation.

3.6 Monte Carlo methods for eigenvalue problems

Beside kinetic simulations, the assessment of the evolution of the neutron population can be usefully complemented
by the spectral analysis of the Boltzmann operator [34]. For this purpose, in the following, direct and adjoint
formulations of k- and α-eigenvalue problems will be briefly recalled and related to specific Monte Carlo methods.
A thorough description of these procedures will be further provided in Chapter 4.

The direct k-eigenvalue problem calculation

For direct k-eigenvalue calculations, the fundamental mode ϕk0 satisfying Eq. (2.65) is computed by using the
standard power iteration method [20]. The idea is to iteratively solve Eq. (2.67)

KS f ,k = kS f ,k, (3.29)

by following the distribution S f ,k at each generation g. Neutrons are transported from the initial guess source
distribution S (0)

f ,k until their deaths by leakage or absorption. Each fission event is considered as a promotion of the

particle to the next generation that will be sampled according to S (1)
f ,k = F ϕ(0)

k . At the beginning of each cycle, a
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proper normalization factor k(g) is applied in order to bound the particle population, computed as the ratio of two
successive fission emission density

k(g) =
S (g+1)

f ,k

S (g)
f ,k

. (3.30)

This factor provides an estimation for the fundamental eigenvalue k0 at each iteration. For these reasons, this
procedure is also known as the successive generations method [96].

The adjoint k-eigenvalue problem calculation

Concerning the adjoint k-eigenmodes ϕ†k , which satisfy Eq. (2.69)

M†ϕ†k =
1
k
F †ϕ†k , (3.31)

the Iterated Fission Probability (IFP) method has been recently proposed in [111, 75, 149]. The introduction of
the IFP method has paved the way to obtaining the fundamental adjoint flux ϕ†k0

for k-eigenvalue problems in

continuous-energy Monte Carlo simulations: the adjoint flux ϕ†k0
is equated to the neutron importance Ik, which

can be then estimated by running a direct calculation. The neutron importance Ik is obtained by recording the
descendants after M latent generations for an ancestor injected into the system at coordinates r,Ω,E (neutrons are
promoted to the next generation by fission events).

The direct α-eigenvalue problem calculation

For α-eigenvalue problems, in the form of Eq. (2.79)

V
[
Fα−M

]
ϕα = αϕα. (3.32)

the fundamental mode ϕα0 can be determined by using the α-k power iteration [170]. The α-k method was orig-
inally proposed for prompt eigenvalues [18] and later extended to the general case with neutrons and precur-
sors [108]. The basic idea is to iteratively search for the dominant α value that makes the α-eigenvalue equation
exactly critical with respect to a fictitious k-eigenvalue applied to the production terms. For positive α, a “capture”
cross section α/υ is taken into account while applying a modified power iteration [28]. For negative α, the contri-
bution −α/υ was originally interpreted as a “production” term. Improved algorithms have been proposed in order
to overcome the numerical instabilities of the original method and to take into account the presence of delayed
neuntrons in the system [99].

The adjoint α-eigenvalue problem calculation

By building upon these ideas, a novel method has been introduced in order to compute the fundamental adjoint
flux ϕ†α0 for α-eigenvalue problems, which solves Eq. (2.81)

V
[
F
†
α −M

†]ϕ†α = αϕ†α, (3.33)

by resorting to a generalized version of IFP (Generalized-IFP) [147]. The fundamental adjoint flux ϕ†α0 can be
again equated to the neutron importance Iα, i.e., can be estimated by recording the descendants after M latent
generations for an ancestor injected into the system at coordinates r,Ω,E. The only difference with respect to the
regular IFP method is that for α-eigenvalue problems additional events, other than fissions, contribute to promoting
the neutrons to the next generation. For positive α, the additional term α/υ acts as a sterile capture: neutrons can
thus contribute to the importance only being promoted to the next generation by prompt and delayed fission.
For negative α, neutrons can contribute to importance also via the α-production term, associated to the copy
operator with cross section −α/υ. In both cases, the weight of the delayed neutrons is assigned a correction factor
λ j/(λ j +α).

To sum up, the methodologies introduced in this section allow the computation of both direct and adjoint
fundamental eigenpairs, according to the k- and the α-eigenvalue formulations. A detailed investigation on the
comparison of these eigenpairs will be provided in Chapter 4. Regarding higher-order modes, the k-eigenvalue
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problem has been extensively analyzed in literature [105, 71, 53, 152, 76, 35, 156, 22]. In particular, matrix-filling
Monte Carlo methods can be applied in order to obtain a discrete version of the operator K from Eq. (2.66) and
will be described in Chapter 5. Standard algebraic methods are then applied for the computation of the spectrum
and the associated eigenfunctions. Similarly, a recent method [6, 7, 8] has suggested a similar procedure for the
estimation of the α-eigenvalue problem. In view of their importance in the context of reactor physics, a major part
of this thesis will be devoted to the implementation and investigation of matrix-filling Monte Carlo methods for
spectral analysis. In particular, we will investigate the performance and the accuracy of these methods as applied
to benchmark and realistic core configurations.

3.7 Numerical simulation tools developed and used in this work

The Monte Carlo simulations performed for this work have been carried out by using two distinct codes.

On one hand, we have developed a stand-alone test-bed Monte Carlo code with simplified physics, in order to
probe, verify and analyse the proposed algorithms. This code will be extensively used in Chapters 5 (development
and applications of the new alpha matrix method) and 6 (spectral analysis of benchmark configurations).

On the other hand, we have resorted to the production code Tripoli-4®, developed at CEA[20], in order to
explore more realistic configurations with continuous-energy transport and state-of-the art nuclear data. At the
time of the thesis, the code was already endowed with the possibility of computing k-weighted and α-weighted
quantities, both in forward and adjoint simulations. These functionalities have been used, with minor modifications
and improvements, in Chapter 4 for the analysis of fundamental modes. For the purpose of the spectral analysis of
the EOLE critical facility, carried out in Chapter 7, we have implemented and verified the α-matrix method in the
development version of the code.

In the following, we provide a succinct description of both codes.

3.7.1 Test-bed Monte Carlo code

In order to test the methodologies analyzed in this work, a test-bed Monte Carlo code has been developed from
scratch.

This code allows particle navigation in heterogeneous geometries with multigroup cross sections in dimension
1, 2 and 3. The geometries are described as a Cartesian mesh, where each cell can be associated to a different
material. In order to simulate multiple materials in the same mesh, a delta-tracking method has been implemented
on a mesh basis [160]. Leakage and reflective boundary conditions can be applied at the frontiers of the system.
The code allows the transport of both prompt and delayed neutrons.

Criticality calculations can be performed with k- or α-eigenvalue formulations. All of these calculations rely on
the algorithms introduced in Section 2.6. It is worth noting that an additional method is also implemented to solve
the α-formulation: the α-tally method [69]. Further details will be provided in Section 4.4.1. Adjoint criticality
calculations can be performed for both k- and α- eigenvalue problems via the implemented IFP and G-IFP methods,
respectively, described in Section 4.3 and 4.5.

During particle transport, matrix-filling methods are applied in order to score the discretized version of the
linear transport operators. The idea is to obtain the matrix operators associated to the analyzed eigenvalue problem,
as explained in Chapter 5. Standard linear algebra methods are then applied in order to compute the associated
eigenpairs with MATLAB® [101] by the implementation of the QZ algorithm [103]. The fission matrix method
is applied for the estimation of the k-eigenpairs during direct particle transport. An improved version of matrix-
filling method for α-eigenpairs calculation is also implemented. This version allows the estimation of direct and
adjoint transport operators during the Monte Carlo simulation of an eigenvalue problem, as described in Chapter 5.
Moreover, it allows the estimation of both direct and adjoint α-eigenmodes from both direct (α-k power iteration,
α-tally method) and adjoint (G-IFP method) calculations. The code has been applied to the investigation of the
benchmark configurations presented in Chapter 4 and of the novel α matrix-filling method discussed in Chapter 5.
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3.7.2 Tripoli-4® Monte Carlo code

Tripoli-4® is the fourth generation of a transport Monte Carlo code developed by the Service d’Études des
Réacteurs et de Mathématiques Appliquées (SERMA) at CEA/Saclay [20]. Tripoli-4® simulates 3D continuous-
energy problems and is devoted to shielding, reactor physics with depletion, criticality safety and nuclear instru-
mentation for both fission and fusion systems. The code has been under development at CEA since the mid-60s, at
the Fontenay-aux-Roses center first, then at the Saclay center. Version 4 has been developed starting from the mid
90s in C++ [16, 15].

For the purpose of this work, Tripoli-4® has been used for the simulations of 3D continuous-energy problems
by considering the transport of both prompt and delayed neutrons: the Godiva-like sphere geometry (Section 4.6),
the CROCUS reactor (Section 4.7) and the EOLE research reactor (Section 7.4).

Tripoli-4® allows computing the direct and the adjoint fundamental eigenmode according to the k- and the α-
eigenvalue formulation [150, 147, 169, 170], following the procedure introduced in Section 3.6 and detailed in the
Chapter 4. Moreover, a recently developed critical boron research allows iteratively adjusting the configurations at
a critical state, when needed. Such calculations allow the estimation of the fundamental eigenvalues k0 and α0, as
well as the effective kinetic parameters introduced in Section 2.7.

In order to access to the higher-order modes of the eigenvalue problems, matrix filling methods are used for
the estimation of the discretized linear operators. In particular, Tripoli-4® is capable of filling the elements of the
fission matrix during a k power iteration in order to compute the eigenpairs (S f ,k) related to the direct k-eigenvalue
problem. For the purpose of applying the α matrix-filling method to continuous-energy transport problems, we
have implemented new routines in order to score the matrix elements for the evaluation of the discretized linear
operators during a α-k power iteration, as shown in Chapter 7. This paves the way for the estimation of the direct
eigenpairs (Ψα,α) of arbitrary order for realistic configurations, as illustrated in Chapter 7 for the EOLE reactor.
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Chapter 4

Analysis of forward and adjoint
fundamental k and α-eigenfunctions

4.1 Introduction

Assessing the asymptotic behaviour of a nuclear system is intimately related to computing the dominant (direct, i.e.,
forward) eigenmode and the associated dominant eigenvalue of the configuration under analysis, which is central in
several applications in reactor physics, including pulsed neutron reactivity measurements [121] and reactor period
analysis [108, 167, 171]. Furthermore, for several key reactor coefficients, such as kinetics parameters, sensitivities
to nuclear and material data, or perturbations, bilinear forms involving both the direct and the adjoint fundamental
eigenfunctions are required [111, 75, 150, 148, 39, 66].

The most common bases for eigenfunction expansions are those related to the k-eigenvalues and to the α-
eigenvalues, respectively [34]. Calculations of dominant k- or α- eigenvalues/eigenfunctions try to assess the
asymptotic reactor behaviour, each with a distinct point of view: the former basically determines the shape of
the neutron population after a large number of fission generations, whereas the latter after a sufficiently long time.
When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunc-
tion bases coincide, as expected on physical grounds. However, for systems far from criticality the fundamental
k- and α-eigenmodes show discrepancies and (with the possible exception of very simple cases involving single-
speed transport) are not related to each other in any trivial manner [28]. Such discrepancies have been observed
even for very small deviations from criticality [147]. Since both direct and adjoint eigenmodes are involved in the
calculation of key reactor parameters, the investigation of the behaviour of the eigenfunctions might shed some
light on the behaviour of such parameters at and close to the critical point.

In the context of Monte Carlo simulation, the analysis of the prompt direct fundamental k- and α-eigenmodes
(neglecting delayed neutron contributions) has been previously carried out by D. E. Cullen in a seminal work
concerning a set of sub- and super-critical systems based on homogeneous and heterogeneous Godiva-like cores
with rapid and thermal spectra [28], recently reconsidered by [153]. In this chapter, we will revisit and extend
these findings on some benchmark configurations, with a twofold aim. First, we will explicitly include the effects
of delayed neutrons, which had been originally neglected. We will thus determine whether the presence of delayed
contributions has an impact on the shape of the eigenfunctions, and in particular whether the discrepancies between
k- and α-eigenmodes increase or decrease. Then, we will examine the behaviour of the fundamental adjoint
eigenmodes for both k- and α-eigenvalue problems, whose comparison has not been addressed so far, to the best of
our knowledge. For the numerical simulations presented in the following, we have used the development version
of Tripoli-4® [20].
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4.2 Monte Carlo power iteration for k-eigenvalue problems

The fundamental distribution ϕk0 and the corresponding eigenvalue k0, solutions of the k-eigenvalue problem in
Eq. (2.65), can be estimated by the power iteration technique [95]. This procedure, originally implemented for
deterministic methods, has been adapted to Monte Carlo simulation.

The k-eigenvalue problem can be expressed in integral form recalling the collision density ψ(P), obtained by
replacing the emission density χ(P) from Eq. (2.45) in Eq. (2.44)

ψ(P) = Kψ(P) +TQ(P), (4.1)

where the transport operator K is defined as a combination of the flight operator T from Eq. (2.4) and the collision
operator C from Eq. (2.4), namely,

Kg(P) =

∫
P′

dP′
∫
P′′

dP′′ C(P′→ P′′)T (P′′→ P)g(P′) =

∫
P′

dP′ K(P′→ P)g(P′).

The transport kernel K(P′ → P) can be split into a scattering contribution Ks(P′ → P) and a fission contribution
K f (P′→ P), defined as

Ks(P′→ P) = ν̄s(E′)
Σs(r,E′)
Σt(r,E′)

fs(Ω′→Ω′′,E′→ E′′) ·δ(r− r′′)T (P′′→ P), (4.2)

K f (P′→ P) = ν̄ f (E′)
Σ f (r,E′)
Σt(r,E′)

·
χ f (E′′)

4π
·δ(r− r′′)T (P′′→ P). (4.3)

By using the results derived in Section 2.6.1, the collision density is expressed as

ψk(r,Ω,E) = Ksψk(r,Ω,E) +
1
k
K fψk(r,Ω,E). (4.4)

A new function ζ(r→ r′,Ω′,E′) is now introduced [96] as

ζ(r→ r′,Ω′,E′) =

∫
P

dP′′ ζ(r→ r′′,Ω′′,E′′)Ks(P′′→ P′) +
χ f (E)

4π
T (r→ r′,Ω′,E′), (4.5)

which expresses the collision density at coordinates r′,Ω′,E′ given a fission neutron generated at position r.

Moreover, the fission density S f (r) is defined as

S f (r) =
1
k

∫
4π

dΩ
∫ ∞

0
dE ν̄ f (E)

Σ f (r,E)
Σt(r,E)

ψk(r,Ω,E), (4.6)

representing the density of neutrons emerged from fission at position r. If Eq. (4.5) is multiplied by the fission
density S f (r) and integrated over the spatial coordinates, Eq. (4.1) is retrieved, provided that

ψk(r,Ω,E) =

∫
V

dr′ ζ(r′→ r,Ω,E)S f (r′). (4.7)

The kernel Z(r′→ r) is then introduced as

Z(r′→ r) =

∫
4π

dΩ
∫ ∞

0
dE ν̄ f (E)

Σ f (r,E)
Σt(r,E)

ζ(r′→ r,Ω,E), (4.8)

representing the density of neutrons emitted from fission at position r given an initial fission neutron generated at
position r′ [96]. These last three definitions can be combined in order to obtain the formulation of the k-eigenvalue
problem as a function of S f (r), namely, ∫

V
dr′ Z(r′→ r)S f (r′) = kS f (r). (4.9)
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Two main properties can be derived from Eq. (4.9): it is expressed as an eigenvalue problem and it can be solved
by iteration. Fission density at iteration g + 1 can be defined as

S (g+1)
f (r) =

∫
V

dr′ Z(r′→ r)S (g)
f (r′), (4.10)

and, by integrating over the spatial domain, the multiplication factor can be expressed as the ratio between two
successive iterations

k(g) =

∫
V dr S (g+1)

f (r)∫
V dr S (g)

f (r)
. (4.11)

An initial distribution S (0)
f (r) is introduced and transported up to the next iteration according to Eq. (4.10). Particle

histories are followed during the simulation from fission events to the next ones, which suggests that each iteration
(or cycle) can be interpreted as a fission generation. For this reason, this procedure is also known as the method of
successive generations [96].

For a sufficient number of generations, it has been shown that this method will converge to the asymptotic
distribution. However, population control techniques are required in order to bound the particle number during
the simulation. As an example, if a super-critical system is considered, neutron population could diverge after
few generations, whereas particles transported in a sub-critical system could quickly disappear if not properly
normalized. For this purpose, the statistical weights of fission neutrons are divided by a factor k(g) at the end of
each generation in order to ensure a balanced number of particles in the system at each iteration.

The method discussed here could require a large number of iterations to achieve convergence. The initial
source distribution is introduced as a guess function in the power iteration process and will thus influence the
particle distribution during the following generations. The effect of this initial function, generally affected by the
higher-order eigenfunctions, can be quantified by the dominance ratio DR(g) = k(g)

1 /k(g)
0 . In particular, the closer this

value is to unit, the more the initial distribution will influence the successive generations, hence, a larger number
of iterations will be required to ensure convergence.

The fission density can be expanded over the eigenfunctions as follows [19]:

S (g+1)
f (r) = S f ,0(r) + cs(DR)(g+1)S f ,1(r) + · · · , (4.12)

where cs are normalization constants defined by the modal expansion. The corresponding eigenvalue is equiva-
lently expressed as

k(g+1) = k0− ck(DR)(g)(1− (DR)(g)) + . . . . (4.13)

This expansion states that the high-order eigemodes and eigenvalues are proportional to (DR)(g+1) and (DR)(g)(1−
(DR)(g)), respectively. Additionally, it shows that convergence needs to be achieved with respect to both quantities:
eigenvalues and eigenfunctions. For this reason, the dominance ratio plays a fundamental role in determining the
convergence rate of this method.

4.3 Determining the fundamental adjoint mode: the IFP method

The computation of bilinear-form quantities is required in several applications, such as the estimation of the kinetics
parameters, perturbation theory and sensitivity analysis. The aim of these problems is to determine a general
quantity R defined as

R =
〈ϕ†k ,Aϕk〉

〈ϕ†k ,Bϕk〉
, (4.14)

where A and B are given operators, ϕk and ϕ†k are the solutions of the direct and adjoint k-eigenvalue problems
introduced by Eqs. (2.65) and (2.69) respectively [4].

The k-power iteration method allows the computation of the fundamental direct distribution ϕk0 during forward
random walks. On the other hand, the estimation of the fundamental adjoint function ϕ†k0

by Monte Carlo methods
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requires in principle the simulation of backward transport according to the adjoint operators [96]. In this respect,
a first attempt has been performed via the simulation of fixed-source problems by defining backward random
walks of a new class of particle: the adjunctons [58]. However, serious flaws and obstacles have been found
in the simulation of continuous-energy transport problems and the normalization of the adjoint eigenmode. For
this reason, methods involving the forward transport of particles for the estimation of the adjoint flux have been
recently proposed. In particular, the rediscovery of the Iterated Fission Probability method has provided an exact
computation tool for this distribution by equating it with the importance function [42, 43, 110, 75].

The importance function I(r,Ω,E) represents the average number of neutrons generated at an asymptotic gen-
eration by an ancestor neutron introduced in the system at coordinates r,Ω,E [56]. All neutrons belonging to a
distant generation are defined as descendants (the name progeny can also be found in literature).

By imposing a backward balance equation, it can be shown that the neutron importance at a generic point in
the phase-space satisfies [110].

Ik(r,Ω,E) = pncI(r +Ωds,Ω,E) + Qk(r +Ωds,Ω,E), (4.15)

where pnc = 1− Σtds is the probability of non-collision during the infinitesimal path ds and Qk is the average
number of descendants for neutrons having a collision in ds = r− r′ =Ωds.

Given the kernel qk(r+Ωds,Ω→Ω′,E→ E′) as the average number of neutrons undergoing a collision during
the flight ds and the with incoming coordinates Ω′, E′ and defined as

qk(r +Ωds,Ω→Ω′,E→ E′) = Σs(r +Ωds,Ω→Ω′,E→ E′)ds+

1
k
ν̄p(E)Σ f (r +Ωds,E)

χp(E′)
4π

ds +
1
k

∑
j

ν̄
j
d(E)Σ f (r +Ωds,E)

χ
j
d(E′)

4π
ds,

(4.16)

the term Qk can be expressed as

Qk(r,Ω,E) =

∫
4π

dΩ′
∫ ∞

0
dE′qk(r,Ω→Ω′,E→ E′)Ik(r,Ω′,E′). (4.17)

Equation (4.15) can be divided by ds with ds→ 0, which yields

0 =
dIk(r,Ω,E)

ds
−Σt(r,E)Ik(r,Ω,E) +

Qk(r +Ωds,Ω,E)
ds

. (4.18)

By developing the total derivative along ds, Eq. (4.18) can be rewritten as

0 =Ω · ∇Ik(r,Ω,E)−Σt(r,E)Ik(r,Ω,E) +

∫
4π

dΩ′
∫ ∞

0
dE′Σs(r,Ω→Ω′,E→ E′)Ik(r,Ω′,E′)+

1
k
ν̄p(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χp(E′)
4π

Ik(r,Ω′,E′) +
1
k

∑
j

ν̄
j
d(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
Ik(r,Ω′,E′).

(4.19)
By inspection of Eq. (4.19), the importance Ik satisfies Eq. (2.69) defined for the adjoint eigenfunction ϕ†k

M†Ik =
1
k
F †Ik, (4.20)

where we have used the definitions of the adjoint operatorsM† and F † from Eqs. (2.53) and (2.70) respectively.

The next step is to obtain the number of descendants during a Monte Carlo simulation, in order to estimate the
neutron importance. First, a classic k-power iteration is performed in order to obtain the effective multiplication
factor k and to distribute the particles according to the fundamental mode ϕk0 . Once convergence has been reached,
neutrons belonging to each successive generation g are tagged as ancestors. Then, a fixed-source calculation is
performed by simulating independent replicas and collecting the total statistical weight of the fission neutrons after
M + 1 generations, produced by a common ancestor generated at coordinates r0,Ω0,E0. The M generations are
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defined as latent generations. In order to control the particle population, at the end of each generation a factor
1/k is applied for the normalization of the total statistical weights of the new generation. In this way, the adjoint
flux ϕ†k0

(r0,Ω0,E0) is estimated as being proportional to the importance function I(r0,Ω0,E0) after g + M + 1
generations.

The choice of the number of latent generations M used for this calculation is not trivial. In principle, a large
value of M provides a better accuracy for the convergence of the results. On the other hand, a large value of M
could terminate particle histories before reaching the scoring generation. Thorough considerations concerning the
optimization of the choice of the parameter M can be found in [150]. In practice, an asymptotic distribution is
usually reached for values of M between 10 and 20.

The results obtained by the IFP method can be used in order to estimate the kinetics parameters as the effective
mean generation time Λeff,k from Eq. (2.104) and the effective delayed fraction β

j
eff,k from Eq. (2.103). These

quantities are computed by using the fundamental direct mode ϕk0 , which is calculated during the k-power iteration,
and the fundamental adjoint mode ϕ†k0

, which is proportional to the importance I computed during a fixed-source
simulation over the cycles of the power iteration. An index i is attributed to each fission neutron at generation g and
it will be associated to all fission neutrons emitted at the following g + M + 1 generations from the same ancestor.
The IFP cycle is defined as the generations in the interval [g,g + M + 1] and M + 1 is the cycle length. During this
cycle, the importance of the ancestor i is defined as (π)i and it is decomposed into (πp)i and (πd)i depending on the
prompt or delayed nature of the fission event creating the ancestor.

The adjoint-weighted fission score for a given history can be estimated as

1
k
〈ϕ†k ,F ϕk〉history = ϕ†k,1w f 1 +ϕ†k,2w f 2 + · · · ∝

∑
i

(π)i

w f i
w f i =

∑
(π)i, (4.21)

where w f i is the simulation weight of the fission neutron. Moreover, a factor 1/k is applied in order to take into
account the normalization of the particle at the end of each generation [75, 74]. Prompt and delayed contributions
can be obtained by extending the sum for (πp)i and (πd)i respectively. In a similar way, the adjoint-weighted
neutron lifetime is estimated as

〈ϕ†k ,
1
3
ϕk〉history =

∑
(π)iti, (4.22)

where ti is the lifetime of the ancestor i created at generation g.

4.4 The fundamental α-eigenmode

4.4.1 The α-k power iteration method

The power iteration introduced in Section 4.2 for the k-eigenvalue formulation can be generalized to solve the direct
α-eigenvalue: the α-k power iteration method [18] is usually performed by considering separately sub-critical and
super-critical cases.

For both cases, the iterative procedure solves the following equation

M
(g+1)
α ϕ

(g+1)
α =

1
k(g) S (g)

f ,α, (4.23)

where the definitions of the operator M(g+1)
α and the emission density S (g)

f ,α(r) depend on the critical state of the
problem. For super-critical systems, Eq. (4.23) can be balanced by considering an additional capture reaction with
macroscopic cross section

Σα(E) =
α

3(E)
, (4.24)

defined as time absorption cross section and applied to the net disappearance operatorM in order to obtain

Mα = Σα +M. (4.25)
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The emission density S f ,α(r) is defined by the contribution of prompt and delayed fission neutrons and reads

S f ,α = Fpϕα +
∑

j

w j(α)χ j
dF

j
d ϕα, (4.26)

where w j(α) is

w j(α) =
λ j

λ j +α
. (4.27)

The aim of this procedure is to find the value of α such that the system is critical with respect to k, i.e.,
k0 = 1. For this purpose, a positive initial guess of α(0) is defined and neutrons are generated according to an
arbitrary source distribution S (0)

f ,α. Particle histories continue until their absorption: the resulting fission particles
are recorded and moved to the next generation. At the end of each cycle, a value k(0) can be estimated by taking
the ratio of the current and the produced total weight of neutrons. This factor is used to balance the system for the
next generation, according to:

α(g+1) = α(g)k(g). (4.28)

These steps will be repeated until convergence is achieved. In particular, k will converge to unity and the funda-
mental eigenpair (α0,ϕα0 ) will converge to the asymptotic values [99].

For sub-critical cases, α is negative and we cannot introduce a corresponding capture cross section. A possible
option to overcome this problem is to promote neutrons to the next generation by a new reaction, expressed by the
”copy” operator [169, 170]

Fα,η =

∫
4π

dΩ′
∫ ∞

0
dE′ νηΣα,η(E′)δ(Ω−Ω′)δ(E−E′), (4.29)

where Σα,η(E) is a macroscopic cross section defined as

Σα,η(E) = −
ηα

3(E)
, (4.30)

and the associated yield νη is equal to

νη =
η+ 1
η

> 0, (4.31)

for arbitrary η > 0.

The so called α-production term acts as a copy operator, applied in order to balance the promotion of neutrons
to the next batch [169]. The expressions forMα and S f ,α(r) are then respectively reformulated as

Mα = Σα,η +M, (4.32)

S f ,α = Fα,ηϕα +Fpϕα +
∑

j

w j(α)χ j
dF

j
d ϕα. (4.33)

The special interactions needed in the α-k algorithm can be interpreted as an absorption in the Mα kernel, and
as a copy in the emission density S f ,α. The simulation of non-multiplying media is allowed, since particles are
promoted by this α-copy operation. The eigenvalue α is finally updated as

α(g+1) =
α(g)

k(g+1) . (4.34)

The α-k power iteration method is considered as a reference for the evaluation of the fundamental eigenpairs of
the α-eigenvalue problem by Monte Carlo simulation [18, 169, 170]. Nevertheless, the implementation of this
procedure implies some drawbacks as well as limitations in the reliability of the results obtained. Singling out
sub-critical and super-critical cases forces the sign of the initial guess α(0) to be constant during the simulation.
This property could possibly lead to a bias if systems very close to the critical state are considered. Moreover,
for deeply sub-critical systems, the α estimated at the end of each iteration could be smaller than −min(λ j). Even
though specific routines can be applied in order to force α so that this physical limit is preserved, these operations
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are somewhat delicate and could lead to wrong predictions. Finally, the variances of the results obtained by power
iteration tend to be underestimated. This is due to the correlation between generations: the update of α is obtained
by either multiplying or dividing by k. When this factor is close to unity, the generic α(g+1) can only slightly change
with respect to α(g).

The α-tally method

Some of the limitations of the traditional α-k method can be removed by a recently proposed algorithm named
α-tally method, which provides an estimation of α(g) at the end of each generation g [69]. The main idea is to
collapse the transport operators as integrals over the entire phase-space and to search for the largest real root of a
non-linear equation, which is representative of the fundamental eigenvalue α0.

The α-eigenvalue problem from Eq. (2.79) is recast as

αV−1ϕα +Mϕα = Fpϕα +
∑

j

λ j

λ j +α

χ
j
d

4π
F

j
d ϕα. (4.35)

By expanding the net disappearance operatorM into the combination of the streaming term L, the collisional term
R and the scattering term S, the previous equation is integrated over the phase-space, which yields

α〈V−1ϕα〉+ 〈Lϕα〉+ 〈Rϕα〉− 〈Sϕα〉 = 〈Fpϕα〉+
∑

j

λ j

λ j +α

〈χ j
d

4π
F

j
d ϕα

〉
. (4.36)

These integrated quantities represent reaction rates that can be scored during a Monte Carlo simulation and
Eq. (4.36) is formally a polynomial as a function of α, once the coefficients appearing in the equation have been
estimated. Table 4.1 shows the distinct contributions and the physical interpretation associated to each score.

Equation (4.36) can then be solved with respect to the unknown α, obtained by bisection method as the largest
real root of the polynomial [69]. The α-tally method yields smaller correlations between successive generations
due to the estimation of α from a polynomial equation at each cycle. Moreover, α values estimated during the
simulation can cross the critical boundary at α = 0, allowing a more precise estimation with respect to the α-k
power iteration for systems very close to criticality.

rate contribution physical interpretation

〈V−1ϕα〉 w l
3

time of flight

〈Lϕα〉 w leakage from the system

〈Rϕα〉 w Σt
Σ∗t

collision rate

〈Sϕα〉 w Σs
Σ∗t

scattering rate

〈Fpϕα〉 w
νpΣ f
Σ∗t

prompt fission rate〈
χ

j
d

4πF
j

d ϕα

〉
w
νdΣ f
Σ∗t

delayed fission rate

Table 4.1: Estimation of the integrated transport operators for the α-tally method [69]. In particular, w it the
statistical weight, l is the length travelled by the particle and Σ∗t (r,E) is the macroscopic cross section obtained as
Σt(r,E) + Σα(E) if α is positive or Σt(r,E) + Σα,η(E) if α is negative. The virtual cross sections Σα(E) and Ση,α(E),
defined in Eqs. (4.24) and (4.30) respectively, take into account the additional reactions for time absorption and
α-copy.
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4.5 Adjoint α-eigenvalue equations

The IFP method discussed in Section 4.3 can be generalized in order to estimate adjoint-weighted quantities ac-
cording to the α-eigenvalue formulation. The main idea of the Generalized Iterated Fission probability method is
to basically follow the same procedure presented in Section 4.3 and adapt it to the equations introduced for the
description of the α-k power iteration in Section 4.4.1. For this reason, the procedure is different for positive and
negative α0. The idea is again to first relate the adjoint fundamental eigenfunction ϕ†α0 to the importance function
Iα, and then to estimate such observable as the total contributions of descendants from a given ancestor.

For super-critical systems, the probability of non-collision during the infinitesimal path ds is pnc,α = 1− (Σt +

Σα)ds, with Σα defined in Eq. (4.24). The kernel qα takes into account the modifications of the delayed fission
operators by an addition factor λ j/(λ j +α), namely

qα(r +Ωds,Ω→Ω′,E→ E′) = Σs(r +Ωds,Ω→Ω′,E→ E′)ds+

1
k
ν̄p(E)Σ f (r +Ωds,E)

χp(E′)
4π

ds +
1
k

∑
j

λ j

λ j +α
ν̄

j
d(E)Σ f (r +Ωds,E)

χ
j
d(E′)

4π
ds,

(4.37)

with k defined as the ratio between two successive population sizes. Recalling the same procedure described in
Section 4.3, the importance balance equation for sub-critical systems according to the α-eigenvalue formulation
yields

0 =Ω · ∇Iα(r,Ω,E)− (Σt(r,E) +Σα(E))Iα(r,Ω,E)+∫
4π

dΩ′
∫ ∞

0
dE′Σs(r,Ω→Ω′,E→ E′)Iα(r,Ω′,E′) +

1
k
ν̄p(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χp(E′)
4π

Iα(r,Ω′,E′)+

1
k

∑
j

λ j

λ j +α
ν̄

j
d(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
Iα(r,Ω′,E′).

(4.38)
For sub-critical systems, the probability of non-collision during the infinitesimal path ds is pnc,α,η = 1− (Σt +

Σα,η)ds, with Σα,η defined in Eq. (4.30). The kernel qα,η includes the α-copy operator from Eq. (4.29), which yields

qα,η(r +Ωds,Ω→Ω′,E→ E′) = Σs(r +Ωds,Ω→Ω′,E→ E′)ds+

1
k
ν̄p(E)Σ f (r +Ωds,E)

χp(E′)
4π

ds +
1
k

∑
j

λ j

λ j +α
ν̄

j
d(E)Σ f (r +Ωds,E)

χ
j
d(E′)

4π
ds +

1
k
ν̄ηΣα,η(E)δ(Ω−Ω′)δ(E−E′)ds.

(4.39)
The importance balance equation for siper-critical systems accoring to the α-eigenvalue formulation is expressed
as

0 =Ω · ∇Iα(r,Ω,E)− (Σt(r,E) +Σα,η(E))Iα(r,Ω,E)+∫
4π

dΩ′
∫ ∞

0
dE′Σs(r,Ω→Ω′,E→ E′)Iα(r,Ω′,E′) +

1
k
ν̄p(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χp(E′)
4π

Iα(r,Ω′,E′)+

1
k

∑
j

λ j

λ j +α
ν̄

j
d(E)Σ f (r,E)

∫
4π

dΩ′
∫ ∞

0
dE′

χ
j
d(E′)

4π
Iα(r,Ω′,E′) +

1
k
ν̄ηΣα,η(E)

∫
4π

dΩ′
∫ ∞

0
dE′δ(Ω−Ω′)δ(E−E′)Iα(r,Ω′,E′).

(4.40)

The relation between the neutron importance Iα and the adjoint fundamental mode ϕ†α0 yields

M
†
α,ηIα =

1
k

[
F
†
α,η +F

†
α

]
Iα, (4.41)

where the operatorsM†α,η and F †α,η are respectively defined as

M
†
α,η =M†+Σα,η, (4.42)
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F
†
α,η = νηΣα,η. (4.43)

For sub-critical configurations, the α-copy operation acts as an additional promotion of particles to the next gener-
ation.

Similarly as for the standard IFP method, the adjoint fundamental function ϕ†α0 is then estimated by collecting
all statistical weights of the descendants at generation M + 1, given an ancestor born at coordinate r0,Ω0,E0.
Contrary to the case of the k-eigenvalue problem, the eigenvalue α0 obtained from the direct simulation explicitly
appears in the transport operators for the importance function Iα. The general strategy is thus to first perform an
α-k power iteration in order to estimate α0, and then to start a fixed-source calculations according to the kernels
previously defined.

The generalized IFP method allows computing general bilinear forms of the kind 〈ϕ†α,Aϕα〉. At the end of the
α-k power iteration, the particle population is distributed according to the direct fundamental mode ϕα0 . Then,
the ancestors are defined for the successive g generations in order to compute the importance Iα up to the end of
the IFP cycle at generation g + M + 1. The bilinear form is then estimated by multiplying the score related to the
ancestor by its importance.

4.6 Analysis of Godiva-like benchmark configurations

As a preliminary step in view of characterizing the behaviour of the direct and adjoint fundamental modes for k-
and α-eigenvalue problems, we have selected two simple benchmark configurations, both inspired from Godiva-
like test-cases previously considered in the literature [28]. The first configuration consists in a bare sphere of
uranium, whose specifications are taken from [28] (Problem I) and are very close to those of the standard Godiva
benchmark [60]. In particular, the radius of the sphere is equal to 8.7407 cm and the uranium isotopic composition
(normalized with respect to the uranium density) consists of 93.7695% atoms of U235, 5.2053% atoms of U238

and 1.0252% atoms of U234. The system is spatially homogeneous, and the neutron spectrum is fast. The second
configuration is also taken from [28] (Problem III) and corresponds to a sphere of uranium with equal radius and
uranium isotopic composition, surrounded by a thick water reflector: the system is spatially heterogeneous with a
total radius of 38.7407 cm and a strong thermal component. The water density is equal to 1 g/cm3 with 2 atoms of
H1 and 1 atom of O16. For the sake of simplicity, we will call these configurations Problem I and Problem III.

4.6.1 Description of the benchmark configurations

For both cases, starting from the specifications given in [28], we have adjusted the uranium density in order to
obtain slightly sub-critical and sightly super-critical configurations, with the aim of examining the effects of slight
deviations from criticality on the shape of the direct and adjoint eigenmodes. The chosen values of uranium density
for each configuration are shown in Tab. 4.2.

configuration ρU[g/cm3]

I sub-critical 18.6836

I super-critical 18.9085

III sub-critical 13.5676

III super-critical 13.8600

Table 4.2: Uranium densities for benchmark configurations. Uranium isotopic mass fractions and water properties
are equal to those described in the reference [28].

The simulation results displayed in the following have been obtained by resorting to Tripoli-4®. The forward
simulations are performed via the power iteration method for the k-eigenvalue problem, and the α-k power iter-
ation method for the α-eigenvalue problem. The corresponding numerical simulation parameters are presented
in Tab. 4.3. The adjoint simulations are performed via the IFP method for the k-eigenvalue problem, and the G-
IFP method for the α-eigenvalue problem. The corresponding numerical simulation parameters are presented in
Tab. 4.4. All flux distributions have been scored into 281 energy meshes. Nuclear data for our calculations have
been taken from the JEFF3.1.1 library, where all fissile isotopes have 8 families of precursors. [134].
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configuration active cycles inactive cycles particles

I sub-critical 5×103 103 105

I super-critical 5×103 103 105

III sub-critical 2×103 2×103 104

III super-critical 2×103(∗) 2×103 104

(*) 5×103 for the α-simulation including delayed neutron contributions

Table 4.3: Numerical simulation parameters for benchmark configurations: forward simulations.

configuration particles latent generations

I sub-critical 5×107 20

I super-critical 5×107 20

III sub-critical 5×109 5

III super-critical 5×109 5

Table 4.4: Numerical simulation parameters for benchmark configurations: adjoint simulations.

4.6.2 Analysis of the fundamental eigenmodes

Problem I

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations for Problem I by including and
neglecting the delayed neutron contributions are given in Tabs. 4.5 and 4.6, respectively. It is worth noting that the
super-critical configuration in Problem I becomes sub-critical when delayed neutron contributions are neglected in
the calculations. Moreover, the fundamental eigenvalue k0 is reduced by approximately 650 pcm when the delayed
contribution is not considered. Concerning the α-eigenvalue formulation, the absolute value of α0 is smaller than
1 s−1 by including delayed neutrons, whereas the absolute value of this eigenvalue is larger than 105 s−1 when
neglecting delayed neutrons. Neglecting the presence of the delayed neutrons in this fast spectrum system implies
thus a decrease of the reactor period of approximately 5 orders of magnitude.

configuration k0[−], with delayed contributions k0[−], prompt fission only

I sub-critical 0.99396±5×10−5 0.98750±4×10−5

I super-critical 1.00389±6×10−5 0.99740±6×10−5

Table 4.5: Fundamental eigenvalues k0 for Problem I.

configuration α0[s-1] , including precursors α0[s-1], without precursors

I sub-critical −1.1880×10−2 ±2×10−6 −1.379×106 ±1×103

I super-critical 3.025×10−1 ±3×10−4 −4.339×105 ±4×102

Table 4.6: Fundamental eigenvalues α0 for Problem I.

For illustration, the shapes of direct and adjoint eigenmodes ϕ(†)
k0

and ϕ(†)
α0 (with and without delayed neutron

contributions) for the sub-critical configuration and the super-critical configuration of Problem I are shown in
Figs. 4.1 and 4.2, respectively. For comparison, all curves have been normalized. Deviations due to the kind
of eigenfunction (either k or α) and to the presence of delayed contributions are clearly visible in the adjoint
distributions.
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Figure 4.1: Problem I, sub-critical configuration, direct (left) and adjoint (right) fundamental distributions accord-
ing to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without (circles) delayed contributions.
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Figure 4.2: Problem I, super-critical configuration, direct (left) and adjoint (right) fundamental distributions ac-
cording to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without (circles) delayed contri-
butions.

In order to quantitatively assess these differences, in Figs. 4.3 and 4.4 we show the ratios between α- and k-
eigenfunctions for the direct and adjoint problem, respectively. For the direct eigenfunctions, deviations are overall
rather small (see Fig. 4.3). In the sub-critical configuration, we have ϕα0 < ϕk0 in the fast region and vice-versa in
the epithermal region, both with and without delayed neutrons (Fig. 4.3 left). For the super-critical configuration,
the situation is different: in the fast region, we have ϕα0 < ϕk0 without delayed neutrons and ϕα0 > ϕk0 with delayed
neutrons; in the epithermal region the behaviour is inverted. This is possibly due to the fact that in the super-critical
configuration the sign of α0 changes with or without delayed neutrons. In the thermal region, very few neutrons
contribute to the direct eigenfunctions (as expected from a fast neutron spectrum system), although statistical
uncertainty prevents from drawing solid conclusions.

As for the adjoint eigenfunctions, deviations are somewhat stronger when delayed neutrons are not considered
(see Fig. 4.4), especially in the resonance region. On the contrary, when delayed neutron contributions are taken
into account deviations of ϕ†k0

from ϕ†α0 become much smaller. Overall, neglecting the presence of delayed neutrons

leads to ϕ†α0 < ϕ
†

k0
outside the resonance region and the difference between the two distributions is larger for the

more sub-critical configuration.

Direct and adjoint eigenmodes computed by including delayed neutrons show similar distributions. In princi-
ple, the absolute value of α0 drops around 10−1 s-1, therefore the term α0/3ϕα0 is significantly reduced. Moreover,
the weight multiplier for both the k-delayed fission operator (1/k0) and the α-delayed fission operator (λ j/(λ j +α0))
are both around the unit value. For this reason, the k- and the α- eigenvalue problems presented in Eqs. (2.65),
(2.79) for the direct formulation and in Eqs. (2.69), (2.81) for the adjoint formulation would be close to each other.
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Figure 4.3: Problem I, ratios ϕα0/ϕk0 of the direct fundamental distributions, for sub-critical (left) and super-critical
(right) configuration, with (red squares) and without (blue circles) delayed contributions.
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Figure 4.4: Problem I, ratios ϕ†α0/ϕ
†

k0
of the adjoint fundamental distributions, for sub-critical (left) and super-

critical (right) configuration, with (red squares) and without (blue circles) delayed contributions.

Problem III

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations for Problem III with and
without the delayed neutron contributions are given in Tabs. 4.7 and 4.8, respectively. It is worth noting that
similarly to Problem I the system described in Problem III is sub-critical if delayed neutron contributions are
neglected in the calculations. Moreover, the fundamental eigenvalue k0 is reduced by approximately 700 pcm
when the delayed contribution is not considered. Concerning the α-eigenvalue formulation, the absolute value
of α0 is again smaller than 1 s−1 by including delayed neutrons, whereas the absolute value of this eigenvalue is
between 102 s−1 and 103 s−1 when neglecting delayed neutrons. Neglecting the presence of the delayed neutrons
in this thermal system implies a decrease of the reactor period of approximately 3 orders of magnitude.

configuration k0[−], with delayed contributions k0[−], prompt fission only

III sub-critical 0.9927±2×10−4 0.9858±2×10−4

III super-critical 1.0050±2×10−4 0.9979±2×10−4

Table 4.7: Fundamental eigenvalues k0 for Problem III.
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configuration α0[s−1], including precursors α0[s−1], without precursors

III sub-critical −1.1686×10−2 ±7×10−6 −9.820×102 ±9×10−1

III super-critical 4.71×10−1 ±1×10−3 −1.945×102 ±4×10−1

Table 4.8: Fundamental eigenvalues α0 for Problem III.
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Figure 4.5: Problem III, sub-critical configuration, direct (left) and adjoint (right) fundamental distributions accord-
ing to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without (circles) delayed contributions.
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Figure 4.6: Problem III, super-critical configuration, direct (left) and adjoint (right) fundamental distributions
according to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without (circles) delayed con-
tributions.

The shapes of the direct eigenmodes ϕk0 and ϕα0 (with and without delayed neutron contributions) for the
sub-critical configuration of Problem III are shown in Fig. 4.5 (left); the adjoint eigenmodes are also shown in
the same figure (right). The direct and the adjoint distributions for the super-critical configuration of the same
problem are shown in Fig. 4.6. The behaviour of the adjoint eigenmodes shows noticeable differences with respect
to what observed in spatially large systems, i.e. MOX and UOX assembly configurations [149], where the thermal
component was higher and the fast component was lower as compared to Problem III. The strong impact of the
fast component in our example, and the milder impact of the thermal component, can be justified by the fact that
Problem III is strongly spatially heterogeneous, with a fast spectrum localized in the fissile lump and a thermal
spectrum localized in the moderator. Due to normalization the amplitude of ϕ† shown in Figs. 4.5 and 4.6 is
smaller in the thermal region and larger in the fast region if compared to the results obtained from MOX and UOX
assembly configurations. For comparison, all curves have been normalized. Slight but significant deviations due to
the kind of eigenfunction (either k-or α-) and to the presence of delayed contributions are again visible, especially
for the adjoint fluxes.

The corresponding ratios for the direct and adjoint eigenfunctions are displayed in Figs. 4.7 and 4.8, respec-
tively. For the direct eigenfunctions, when delayed neutron contributions are taken into account deviations are
rather small (see Fig. 4.7) for both the sub- and super-critical configurations. However, it is possible to notice the
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presence of a deviation between the k- and α-eigenfunctions: for the sub-critical configuration, we have ϕα0 < ϕk0

for energy values larger than 0.6 MeV and ϕα0 > ϕk0 for energy values larger between 10 keV and 0.6 MeV; for
the super-critical configuration an opposite behaviour is noticeable in the same energy ranges. This inversion is
justified by the transition from a sub-critical to a super-critical system. For a sub-critical configuration, the k-
eigenvalue formulation hardens the energy spectrum by artificially increasing the amplitude of fission operator by
a factor 1/k0, whereas the α-eigenvalue formulation promotes the thermal spectrum by the term α0/3 and at the
same modifies the delayed fission operator by the factor γ = λ̄/(α0 + λ̄). Observe that we have γ > 1 for negative α0
and γ < 1 for positive α0. The presence of delayed neutrons shifts the behaviour where ϕα0 < ϕk0 towards 0.6 MeV
which is around the average emission energy for delayed neutrons [29]. According to the α-eigenvalue formula-
tion, the delayed fission operator is now rescaled by a factor λ̄ j/(λ̄ j +α0), with λ̄ j = β/

∑
j(β j/λ j) = 0.0768±0.0006

s-1 for U235 [102]. This factor is still smaller than 1/k0, hence ϕα0 is still smaller than ϕk0 at fast energy range. The
symmetric argument can be applied for the super-critical case.

The ratio shown for energies between 10 keV and 20 MeV for the super-critical configuration seems smaller
compared to the one computed for the sub-critical configuration. This result is coherent with the former configu-
ration being closer to the critical state (super-critical configuration) with respect to the latter (sub-critical configu-
ration). For energy ranges smaller than 10 keV, no significant differences are visible.
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Figure 4.7: Problem III, ratios ϕα0/ϕk0 of the direct fundamental distributions, for sub-critical (left) and super-
critical (right) configuration, with (red squares) and without (blue circles) delayed contributions.
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Figure 4.8: Problem III, ratios ϕ†α0/ϕ
†

k0
of the adjoint fundamental distributions, for sub-critical (left) and super-

critical (right) configuration, with (red squares) and without (blue circles) delayed contributions.

On the contrary, for the simulations excluding delayed neutrons deviations become larger: in the fast and
epithermal region, we have ϕα0 < ϕk0 , whereas ϕα0 > ϕk0 in the thermal region. Again, if only prompt neutrons
are considered, the fundamental eigenmode ϕk0 is shifted towards higher energies for a sub-critical system due
to the 1/k0 factor which artificially increases the number of fissions. This behaviour is smoothed in the super-
critical configuration (which is sub-critical, if delayed contributions are neglected) due to the system being closer
to the critical state. As for the adjoint eigenfunctions, strong deviations in the fast region (E > 0.1 MeV) are
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observed for the sub-critical configuration, when delayed neutrons are not considered (see Fig. 4.8). In all the
other configurations, no significant differences are visible.

4.6.3 Analysis of the effective kinetics parameters

Based on the observed discrepancies between the fundamental k- and α-eigenmodes, it would be interesting to
assess which is the practical impact on the reactor parameters that depend on these quantities. In this respect, a
prominent example is represented by the kinetics parameters, which are indeed bilinear forms depending on both
the forward and the adjoint eigenmodes. The kinetics parameters, in turn, influence the system reactivity, through
the in-hour (Nordheim) formula [4, 72]. In this section we will thus examine the practical consequences of the
slight differences on the fundamental eingenmodes detected in the previous sections.

The effective kinetics parameters discussed in Section 2.7.1 for both k- and α- eigenvalue formulations are
here recalled. The expressions of the effective mean generation time Λeff,(α,k) and the effective delayed fraction
according to Eqs. (2.103) and (2.104) respectively read

β
j
eff(α,k) =

〈
ϕ†(α,k),

χ
j
d

4πF
j

d ϕ(α,k)
〉

〈
ϕ†(α,k),F ϕ(α,k)

〉 , (4.44)

Λeff,(α,k) =

〈
ϕ†(α,k),

1
3
ϕ(α,k)

〉
〈
ϕ†(α,k),F ϕ(α,k)

〉 . (4.45)

In order to assess the criticality level of the system we can resort to Eqs. (2.106) and (2.109) for the ”static”
reactivity ρk and the ”dynamic” reactivity ρα [28, 147, 72, 4, 55]

ρk =
k0−1

k0
, (4.46)

ρα = α0Λeff,α +
∑

j

α0β
j
eff,α

α0 +λ j
. (4.47)

The static reactivity ρk depends only be the fundamental eigenvalue k0, whereas the dynamic reactivity ρα requires
the computation of Λeff,α and β

j
eff,α

in addition to the fundamental eigenvalue α0. As discussed in Sections 4.3

and 4.5, the IFP method and the G-IFP method allow the computation of the bilinear forms of the kind 〈ϕ†k ,Aϕk〉

and 〈ϕ†α,Aϕα〉 respectively, given a generic operator A. Both k and α weighted effective kinetics parameters have
been estimated by resorting the methods implemented in the development version of Tripoli-4® [150].

From Eqs. (4.21) and (4.22), we explicitly express the bilinear forms required in order to estimate the k-
weighted kinetics parameters as follows

〈ϕ†k ,
1
3
ϕk〉 =

∑
i

(π)iti, (4.48)

〈ϕ†k ,F ϕk〉 = k
∑

i

(π)i, (4.49)

〈ϕ†k ,F
j

d ϕk〉 = k
∑

i

(πd, j)i, (4.50)

where πi represents the importance of the ancestor i and ti its corresponding lifetime. A factor k is applied for the
estimation of the fission operators in order to normalize the ancestor contributions during generations.

In a similar way, the α-weighted kinetics parameters can be assessed by using the following estimators:

〈ϕ†α,
1
3
ϕα〉 =

∑
i

(π)iti, (4.51)
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〈ϕ†α,F ϕα〉 =
∑

i

(π)i, (4.52)

〈ϕ†α,F
j

d ϕα〉 =
λ j +α

λ j

∑
i

(πd, j)i, (4.53)

recalling that the α-copy operator is not counted for the ancestors scoring during the generations. We remark that
a weight multiplier equal to (λ j +α)/λ j is applied for the delayed fission operator.

The effective kinetics parameters estimated for Problem I are shown in Tabs. 4.9 and 4.10 for the sub-critical
configuration. Values for βeff weighted according to the k-formulation are statistically compatible to those weighted
according to the α-formulation. Simulation parameters for the evaluation of these parameters are the same as those
shown in Tabs. 4.3, estimated by considering 20 latent generations. A slight difference is observed in the values of
Λeff, whereas a relatively larger difference is observed between dynamic and static reactivity. The latter deviation
may be justified by the fact that the dynamic reactivity ρα depends on the eigenfunction distributions integrated for
the estimation of Λeff,α and βeff,α (Eq. (2.109)), whereas the static reactivity ρk only depends on the fundamental
eigenvalue k0. Significant differences are observed for both reactivity and effective mean generation time values
when only prompt neutrons are considered. In this case, the difference on the adjoint eigenmodes from Fig. 4.4
(left) plays a significant role in weighting the kinetics parameters.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -669 ± 5 -608 ± 6

Λeff [ns] 5.773 ± 0.003 5.728 ± 0.002

βeff [pcm] 644 ± 2 645 ± 2

β1
eff

[pcm] 23.5 ± 0.1 23.5 ± 0.4

β2
eff

[pcm] 90 ± 0.7 90.9 ± 0.8

β3
eff

[pcm] 66.8 ± 0.6 66.4 ± 0.7

β4
eff

[pcm] 128.7 ± 0.9 128 ± 1

β5
eff

[pcm] 198 ± 1 200 ± 1

β6
eff

[pcm] 63.2 ± 0.7 63.1 ± 0.7

β7
eff

[pcm] 58 ± 0.7 56.2 ± 0.6

β8
eff

[pcm] 15.9 ± 0.4 16.6 ± 0.3

Table 4.9: Effective kinetics parameters of Problem I, sub-critical configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -6289 ± 50 -1266 ± 4

Λeff [ns] 45.6 ± 0.3 5.728 ± 0.002

Table 4.10: Effective kinetics parameters of Problem I, sub-critical configuration without delayed contribution.

The results obtained from the super-critical configuration of the same problem are shown in Tabs. 4.11 and 4.12.
The system including delayed neutrons is super-critical and all kinetics parameters are statistically compatible.
Conversely, a non negligible discrepancy is still noticeable between static and dynamic reactivities for the config-
uration without delayed contributions. Overall, the differences between direct and adjoint eigenmodes according
to the k- and the α-eigenvalue formulations are observed as discrepancies of similar amplitudes in the effective
kinetics parameters.
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Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] 409 ± 9 388 ± 6

Λeff [ns] 5.654 ± 0.002 5.675 ± 0.002

βeff [pcm] 643 ± 5 644 ± 2

β1
eff

[pcm] 20 ± 2 23.8 ± 0.4

β2
eff

[pcm] 93 ± 3 91.1 ± 0.8

β3
eff

[pcm] 68 ± 2 65.5 ± 0.7

β4
eff

[pcm] 125 ± 2 128.3 ± 0.9

β5
eff

[pcm] 201 ± 2 200 ± 1

β6
eff

[pcm] 61.4 ± 0.8 60.9 ± 0.7

β7
eff

[pcm] 57.6 ± 0.7 57 ± 0.6

β8
eff

[pcm] 17.1 ± 0.4 16.9 ± 0.3

Table 4.11: Effective kinetics parameters of Problem I, super-critical configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -247.2 ± 0.4 -261 ± 6

Λeff [ns] 5.698 ± 0.002 5.677 ± 0.002

Table 4.12: Effective kinetics parameters of Problem I, super-critical configuration without delayed contribution.
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For Problem III, the effective kinetics parameters computed for the sub-critical configuration are shown in
Tabs. 4.13 and 4.14. The results from the simulation including delayed contributions shows minimal discrepancies
for the values of Λeff and βeff, whereas a clear difference is found between ρk and ρα. Conversely, the differences in
the eigenmode distributions from Figs. 4.7 and 4.8 strongly influence the parameters obtained from the simulation
without delayed neutrons.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -582 ± 10 -735 ± 20

Λeff [µs] 12.62 ± 0.05 12.71 ± 0.05

βeff [pcm] 704 ± 7 706 ± 7

β1
eff

[pcm] 25.4 ± 0.4 24 ± 1

β2
eff

[pcm] 97 ± 2 97 ± 2

β3
eff

[pcm] 74 ± 3 72 ± 2

β4
eff

[pcm] 134 ± 3 144± 3

β5
eff

[pcm] 223 ± 5 223 ± 4

β6
eff

[pcm] 70 ± 2 65 ± 2

β7
eff

[pcm] 63 ± 2 63 ± 2

β8
eff

[pcm] 19 ± 1 18 ± 1

Table 4.13: Effective kinetics parameters of Problem III, sub-critical configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -1658 ± 7 -1437 ± 20

Λeff [µs] 16.88 ± 0.06 12.79 ± 0.05

Table 4.14: Effective kinetics parameters of Problem III, sub-critical configuration without delayed contribution.

The parameters describing the super-critical configuration of Problem III are shown in Tabs. 4.15 and 4.16.
The presence of delayed neutrons and the proximity to the critical state leads to statistically compatible values of
the kinetics parameters. The results obtained from the simulation including only prompt neutrons show minimal
differences for Λeff values, whereas a more significant discrepancy is found between static and dynamic reactivity.

In conclusion, we have investigated the effective kinetics parameters related to the Godiva-like benchmark
problems. As expected, the differences between k- and α-eigenmode distributions are mirrored in the discrepancies
between the corresponding kinetics parameters. Overall, the reactivity ρ is more affected by the choice of the
eigenvalue formulation than the other kinetics parameters Λeff and βeff.

The kinetics parameters and the associated reactivities are crucial for the control and the safety of nuclear
reactors. A comparison with existing measurements (which typically involve neutron noise detection combined
with the application of a fitting procedure based on a formulation of the in-hour equation) might help in discrimi-
nating whether the k or α formulations have a prominent advantage over each other for the interpretation of these
parameters.
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Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] 478 ± 40 496 ± 20

Λeff [µs] 12.16 ± 0.04 12.21 ± 0.04

βeff [pcm] 681 ± 20 711 ± 7

β1
eff

[pcm] 22 ± 7 28 ± 1

β2
eff

[pcm] 92 ± 10 97 ± 2

β3
eff

[pcm] 77 ± 8 73 ± 2

β4
eff

[pcm] 132 ± 6 138 ± 3

β5
eff

[pcm] 215 ± 6 232 ± 4

β6
eff

[pcm] 65 ± 3 62 ± 2

β7
eff

[pcm] 61 ± 2 62 ± 2

β8
eff

[pcm] 18 ± 1 20 ± 1

Table 4.15: Effective kinetics parameters of Problem III, super-critical configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -252 ± 1 -213 ± 20

Λeff [µs] 12.93 ± 0.05 12.29 ± 0.05

Table 4.16: Effective kinetics parameters of Problem III, super-critical configuration without delayed contribution.

4.7 An application to the CROCUS reactor

In order to take into account a more realistic configuration, and ascertain whether the conclusions reached in
the previous section hold true for larger reactor cores, in this section we will consider two configurations of the
CROCUS critical facility, operated at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Thanks
to its detailed description and careful measurements, the CROCUS core has been selected as an international
benchmark for reactivity, kinetics parameters and reactor period calculations [116, 119].

CROCUS is an open-tank type zero-power reactor, characterized by two fuel regions and moderated by light
water. A radial section of this reactor is shown in Fig. 4.9: the outer fuel rods (green) are composed of metallic
uranium at 0.947 wt% 235U/U with 2.917cm pitch, whereas the inner fuel rods (orange) are composed by UO2
at 1.806 wt% 235U/U with 1.837cm pitch. Details on the number and positions of these fuel rods are given in
reference [119]. The core can be modeled as a cylinder with a diameter of about 60 cm and a height of 100 cm.
The critical state of the system is controlled by the level of light water filling the reactor from the bottom cadmium
plate. The critical configuration is achieved at a water level of 91.66 cm.
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Figure 4.9: Radial section of the CROCUS reactor obtained with Tripoli-4®. The inner fuel rods (UO2, orange)
and the outer fuel rods (metallic U, green) are moderated by light water (blue). The red regions denotes the 14 fuel
rod positions defined for the flux distribution [119].

A preliminary comparison for this facility between fundamental α-eigenpairs and time dependent calculations
has been carried out in [112]. Moreover, the kinetics parameters of the CROCUS core for the k-eigenvalue formu-
lation has been previously computed in [171] and the associated reactivity was examined in [172]. In the following,
we will investigate the behaviour (and possible discrepancies) of the fundamental forward and adjoint modes of
the k and α formulations for this core, and we will then examine the impact of their respective shapes on the ki-
netics parameters and on the reactivity. For this purpose, we will consider two sub-critical configurations of the
reactor, both obtained by lowering the water level. Configuration H1 is characterized by a water level equal to
90.8 cm, which induces a slightly sub-critical state. Configuration H2 is characterized by a water level equal to
80 cm, which corresponds to a more sub-critical condition. The fundamental eigenmodes will be computed by
using Tripoli-4® over 111 energy meshes and along 14 fuel pin positions, from the core center to the outer region,
denoted by the red rectangular regions in Fig. 4.9. The number of cycles and the particles per cycle simulated for
these configurations are listed in Tab. 4.17 for the forward simulations and in Tab. 4.18 for the adjoint simulations.

configuration active cycles inactive cycles particles

H1 5×103 5×103 2×104

H2 5×103 5×103 2×104

Table 4.17: Numerical simulation parameters for CROCUS configurations during forward simulations.

configuration particles latent generations

H1 2×107 20

H2 2×107 20

Table 4.18: Numerical simulation parameters for CROCUS configurations during adjoint simulations.

4.7.1 Analysis of the fundamental eigenmodes

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations for H1 and H2 configurations
of the CROCUS reactor (with and without precursor contributions) are given in Tabs. 4.19 and 4.20, respectively.
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As expected, the computed values show a slight sub-critical level for configuration H1 and a larger sub-critical
state for configuration H2. According to the results obtained from the k-eigenvalue formulation, the criticality
level of both configurations decreases by approximately 780 pcm when delayed neutrons are neglected. Concern-
ing the α-eigenvalue formulation, the absolute value of α0 is smaller than 1.2× 10−2 s-1 by including delayed
neutrons, whereas the absolute value of this eigenvalue is larger than 102 s-1 for the simulation without precursor
contributions.

configuration k0[−], with delayed contributions k0[−], prompt fission only

H1 0.9995±1×10−4 0.9918±1×10−4

H2 0.9919±1×10−4 0.9839±1×10−4

Table 4.19: Fundamental eigenvalues k0 for H1 and H2 configurations of the CROCUS reactor.

configuration α0[s-1], including precursors α0[s-1], without precursors

H1 −5.97×10−3 ±2×10−5 −1.711×102 ±2×10−1

H2 −1.1994×10−2 ±3×10−6 −3.336×102 ±2×10−1

Table 4.20: Fundamental eigenvalues α0 for H1 and H2 configurations of the CROCUS reactor.

The shapes of direct eigenmodes ϕk0 and ϕα0 (with and without delayed neutron contributions) are shown as a
function of energy (Fig. 4.10) and of the fuel pin position (Fig. 4.11) for H1 (left) and H2 (right) configurations. The
adjoint eigenmodes are shown as a function of the fuel pin position in Fig.4.12. All curves have been normalized.
No major differences can be easily spotted in these figures, so that we have computed the ratios ϕα0/ϕk0 and
ϕ†α0/ϕ

†

k0
in order to investigate possible discrepancies.
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Figure 4.10: Direct fundamental eigenmodes of the CROCUS reactor as a function of the energy, H1 (left) and H2
(right) configurations according to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without
(circles) precursor contributions.

57



CHAPTER 4. ANALYSIS OF FORWARD AND ADJOINT FUNDAMENTAL K AND α-EIGENFUNCTIONS

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 4.11: Direct fundamental eigenmodes of the CROCUS reactor as a function of the fuel pin positions, H1
(left) and H2 (right) configurations according to the α- (blue) and k- (red) eigenvalue formulations, with (squares)
and without (circles) precursor contributions.
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Figure 4.12: Adjoint fundamental eigenmodes of the CROCUS reactor as a function of the fuel pin positions, H1
(left) and H2 (right) configurations according to the α- (blue) and k- (red) eigenvalue formulations, with (squares)
and without (circles) precursor contributions.

Figure 4.13 shows the ratios of the direct fundamental eigenmodes in the energy domain. The results obtained
for configuration H1 (left) are similar to those previously discussed for the Problem III of the benchmark config-
urations. When delayed neutrons are considered, no differences are visible between ϕk0 (E) and ϕα0 (E). This is
mainly due to the system reactivity being close to critical (about -50 pcm, as shown in Tab. 4.19): the k and α
formulation are supposed to be very close to each other in this regime. If precursors are disregarded in the simula-
tion, for this configuration the fundamental k-eigenmode is slightly different from the fundamental α-eigenmode:
a shift towards high energy values is observed. The same behaviour is found for the H2 configuration (right), char-
acterized by a larger effect due to a larger sub-critical level with respect to the previous case (about −1600 pcm,
as shown in Tab. 4.19). The effect of precursors is clearly visible for this configuration: the k-eigenmode displays
significant discrepancies with respect to the α-eigenmode towards high energies for this sub-critical system, but
ϕα0 (E) > ϕk0 (E) only for E > 0.6 MeV, which is again similar to the findings of the Problem III configuration. Pre-
cursor contributions minimize the discrepancies between the two eigenvalue formulations and the delayed spectra
move the threshold for ϕα0 (E) > ϕk0 (E) at higher energy.
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Figure 4.13: Ratios ϕα0/ϕk0 of the CROCUS reactor as a function of the energy variable, H1 (left) and H2 (right)
configurations with (red squares) and without (blue circles) precursor contributions.

For the sake of completeness, we show the ratios of these eigenfunctions as a function of the fuel pin positions
in Fig. 4.14 for the direct formulation and in Fig. 4.15 for the adjoint formulation. Overall, the behaviour of these
two eigenmodes is similar: within uncertainty limits, no major differences can be detected with respect to the
spatial coordinate.
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Figure 4.14: Ratios ϕα0/ϕk0 of the CROCUS reactor as a function of the fuel pin positions, H1 (left) and H2 (right)
configurations with (red squares) and without (blue circles) precursor contributions.
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Figure 4.15: Ratios ϕ†α0/ϕ
†

k0
of the CROCUS reactor as a function of the fuel pin positions, H1 (left) and H2 (right)

configurations with (red squares) and without (blue circles) precursor contributions.

59



CHAPTER 4. ANALYSIS OF FORWARD AND ADJOINT FUNDAMENTAL K AND α-EIGENFUNCTIONS

4.7.2 Analysis of the effective kinetics parameters

The effective kinetics parameters have been computed for the two CROCUS configurations by using the newly
developed IFP and G-IFP of Tripoli-4®. Table 4.21 shows the parameters computed for the H1 configuration
with precursor contributions: the results obtained for both eigenvalue formulations are statistically compatible. As
expected, the proximity to the critical level of this configuration implies very close values of the k-weighted and α-
weighted effective kinetics parameters. Similar results are found in Tab. 4.22 by neglecting precursor contributions.

The effective kinetics parameters of the H2 configuration with precursor contributions are shown in Tab. 4.23.
A discrepancy is observed between the static and the dynamic reactivity (computed as Eqs. (2.106) and (2.109) re-
spectively), whereas the average values of all the other kinetics parameters are within one standard deviation for the
two eigenvalue formulations. Table 4.24 shows the parameters obtained when neglecting precursor contributions:
no significant discrepancies are observed in the computed values.

An application related to the effective kinetics parameters is the estimation of the reactor period and the sub-
criticality level of the system. Both quantities can also be measured during experiments by the pulsed neutron
source method [121] and reactor noise analysis methods [108, 167, 171]. The choice of the optimal adjoint weight-
ing function (ϕ†α or ϕ†k) in order to compare the results computed from numerical simulations to those obtained from
measurements depend on the procedure and the techniques adopted during the experiment. Moreover, mixing α
and k weighted kinetics parameters can be considered for the estimation of α and ρ [40].

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -73 ± 2 -50 ± 10

Λeff [µs] 47.69 ± 0.03 47.69 ± 0.03

βeff [pcm] 762 ± 4 760 ± 5

β1
eff

[pcm] 22.3 ± 0.6 23.4 ± 0.8

β2
eff

[pcm] 109 ± 2 113 ± 2

β3
eff

[pcm] 66 ± 1 62 ± 1

β4
eff

[pcm] 141 ± 2 141 ± 2

β5
eff

[pcm] 249 ± 3 245 ± 3

β6
eff

[pcm] 81 ± 2 83 ± 2

β7
eff

[pcm] 68 ± 1 67 ± 1

β8
eff

[pcm] 26.5 ± 0.8 26 ± 0.8

Table 4.21: Effective kinetics parameters for the H1 configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -824 ± 1 -827 ± 10

Λeff [µs] 48.15 ± 0.03 48.11 ± 0.03

Table 4.22: Effective kinetics parameters for the H1 configuration without delayed contribution.
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Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -723 ± 10 -822 ± 10

Λeff [µs] 48.06 ± 0.03 48.01 ± 0.03

βeff [pcm] 763 ± 5 766 ± 5

β1
eff

[pcm] 23.2 ± 0.2 22.2 ± 0.7

β2
eff

[pcm] 113 ± 2 113 ± 2

β3
eff

[pcm] 64 ± 1 66 ± 1

β4
eff

[pcm] 140 ± 2 143 ± 2

β5
eff

[pcm] 247 ± 3 251 ± 3

β6
eff

[pcm] 82 ± 2 82 ± 2

β7
eff

[pcm] 68 ± 2 66 ± 1

β8
eff

[pcm] 24.8 ± 0.9 24 ± 0.8

Table 4.23: Effective kinetics parameters for the H2 configuration with delayed contribution.

Parameters 〈ϕ†α,•〉 〈ϕ†k ,•〉

ρ [pcm] -1621 ± 2 -1638 ± 10

Λeff [µs] 48.59 ± 0.03 48.39 ± 0.03

Table 4.24: Effective kinetics parameters for the H2 configuration without delayed contribution.

4.8 Conclusions

Inspired by the analysis originally proposed by D. E. Cullen [28], we have applied Monte Carlo methods for
the estimation of k and α fundamental eigenmodes. We have extended the findings discussed in [28] in two
directions, by addressing the evaluation of the fundamental adjoint eigenmodes and the influence of precursor
contributions. Additional information regarding the discrepancies between the two eigenvalue formulations was
found by assessing the effective kinetics parameters weighted by the k- or by the α-eigenmodes. We have focused
our attention on the analysis of two Godiva-like benchmark configurations and the CROCUS reactor. In this
way, we have explored thermal and fast spectra, homogeneous and heterogeneous media, simplified and realistic
systems.

Significant, albeit globally small, differences have been detected, as expected on physical grounds based on
previous investigations. In particular, we have recovered the same behaviour previously analyzed [28] in the
energy domain for the distribution of the direct fundamental eigenfunctions ϕk0 and ϕα0 , and we have found
similar discrepancies in the corresponding adjoint fundamental distributions ϕ†k0

and ϕ†α0 . Moreover, the presence
of precursors has a non-trivial influence on the eigenfunctions, and this impact has been carefully examined for
each configuration. Overall, the presence of precursors reduces the discrepancies between the two eigenmodes.

As a general remark, based on the configurations investigated here, it seems that the discrepancies between the
k- and α-eigenfunctions are enhanced by the presence of strong spatial heterogeneities, such as those occurring in
a core surrounded by a thick moderator/reflector. In this case, the system will be characterized by multiple time
scales (as shown in [28]), related to the different times required by the neutrons to explore the multiplying and the
diffusing region. Then, it appears that the α-eigenvalue formulation is more sensitive to these different time scales
than the k-eigenvalue formulation, which is coherent with α being related to the time behaviour of the system
and k being related to the fission generation behavior. These discrepancies on the eigenmodes are mirrored in the
kinetics parameters and on the reactivity. In this respect, it is interesting to remark that the CROCUS reactor can
be basically considered as a homogeneous system, with minimal discrepancies between the α and k formulations.
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Chapter 5

A new matrix-filling Monte Carlo method
for α-spectral analysis

In the previous chapter, we have seen that Monte Carlo methods can be successfully applied to determining the
forward and adjoint fundamental modes and the associated eigenvalues of both k- and α-eigenvalue problems
without approximations, which paves the way towards reference solutions characterizing the asymptotic behaviour
of nuclear systems. In view of a full spectral analysis, the fundamental modes alone might prove insufficient so as to
characterize the systems under analysis: for instance, the shape of the first excited eigenmode can provide valuable
information concerning the behaviour of a perturbation introduced in the core, and the eigenvalue gap (e.g., the
dominance ratio DR = k1/k0) would convey the intensity of such perturbation with respect to the fundamental
mode [12, 13, 14, 161, 52, 154]. A natural question therefore arises whether the Monte Carlo methods described
in Chapter 4 can be extended and generalized to higher eigenmodes and eigenvalues.

For the case of k-eigenvalue problems, extensive work has been carried out in recent years in order to establish
modified power-iteration algorithms capable of extracting the first excited eigenmode ϕk1 and the associated eigen-
value k1, and possibly also higher eigenpairs, without introducing approximations [136, 137]. Basically, all these
methods are built upon the key idea that the eigenvalue formulation can be made local in the phase-space, so that
a system of coupled eigenvalue equations emerges, each defined over a portion of the phase space: by imposing
suitable constraints on the available degrees of freedom offered by this system of equations, one may force the
solution of the power iteration to converge to several eigenpairs, namely, (k0,ϕk0 ), (k1,ϕk1 ), and so on.

In this respect, we recall the strategy from a seminal paper by Booth [12]. Let us recast the k-eigenvalue
problem from Eq. (2.65) and the operator K from Eq. (2.66) as

kϕk = [M−1F ]ϕk =Kϕk. (5.1)

Suppose that the initial guess for the power iteration is written as ϕ =
∑

m wkmϕkm , where ϕkm are the eigenfunction
of order m, with m ≥ 0, and wkm are the expansion coefficients. Let us assume that the eigenvalues are ordered such
that k0 > |k1| ≥ |k2| ≥ · · · . If wk0 , 0, by successively applying the K operator the power iteration yields

lim
n→∞

1
kn

0
Knϕ = ϕk0 , (5.2)

where n is the iteration index, and we obtain the fundamental mode. However, if we can set wk0 = 0, then we will
have

lim
n→∞

1
kn

1
Knϕ = ϕk1 , (5.3)

i.e., the power iteration will converge to the first excited mode, provided that we can remove the fundamental
mode. In order to ensure this condition, the idea is to solve the power iteration separately on two regions R+ and
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R− of the phase-space:

k1 =
〈Kϕk1〉R+

〈ϕk1〉R+
=
〈Kϕk1〉R−

〈ϕk1〉R−
(5.4)

since the eigenvalue equation (5.1) holds on every subset of the viable domain [34, 114]. The two subsets R+ and
R− are not known a priori and must be progressively refined as the calculation proceeds. We can then consider two
different factors, k+

1 and k−1 , defined as

k+
1 =
〈Kϕk1〉R+

〈ϕk1〉R+
, (5.5)

and

k−1 =
〈Kϕk1〉R−

〈ϕk1〉R−
. (5.6)

Now, if the power iteration were to be applied separately on each region, the two eigenvalue problems would
still converge to the fundamental mode. In order to prevent this from happening, Booth proposes to postulate an
expansion of the kind ϕ = wk0ϕk0 +wk1ϕk1 and to formally determine the conditions on the relative weight given to
ϕk0 and ϕk1 in order to enforce the subtraction of ϕk0 to the solution that must converge to ϕk1 and conversely the
subtraction of ϕk1 to the solution that must converge to ϕk0 . Since the first excited eigenmode is partially positive
and partially negative on the phase-space, the use of subtraction methods necessarily demands the introduction
of particles carrying statistical weights of alternating signs. Furthermore, in order for the proposed method to
converge, particles having a negative/positive weight must annihilate particles having a positive/negative weight
when meeting in the phase-space: this is called the weight cancellation procedure [14, 137].

Booth’s technique is capable of determining the eigenpair (k1,ϕk1 ) without any approximation, and as such
represents an ingenuous extension of the standard power iteration algorithm [12]. Several refinements of this
pioneering approach have been later proposed, in particular concerning the use of more efficient or more robust
(albeit approximated) methods for the weight cancellation [13, 14, 137]. Although these methods have shown a
great potential for extracting higher-order eigenmodes in k-eigenvalue problems, their use in production Monte
Carlo codes is still hindered by the complexity of their implementation and most importantly by the possible
numerical instabilities that have been met in some applications, for which investigations are still ongoing [161].

5.1 Matrix-filling methods: the fission matrix approach

Actually, the idea of extracting higher harmonics in k-eigenvalue problems by Monte Carlo methods is not new, and
several methods have been proposed in the literature. Among these approaches, a prominent role is played by the
fission matrix method, whereupon a standard Monte Carlo power iteration is used in order to estimate the elements
of a matrix that represents a discretized version of the operators appearing in the k-eigenvalue problem [22]. The
obtained matrix can be then analyzed by classical numerical methods in order to extract the full spectrum and
the associated eigenmodes: this approach is not exact, since the matrix has necessarily a finite size and thus
discretization errors are introduced. Nonetheless, it offers a robust and reliable approach to the spectral analysis
of k-eigenvalue problems for reactor physics applications: the fission matrix has a long history [105, 71, 53] and
has been extensively investigated [152, 76, 35, 156]. An extension of this approach has also been studied in
literature: the Transient Fission Matrix method [87, 86, 85]. Conversely to the original fission matrix method, the
TFM approach preserves the temporal behaviour of the particles and distinguishes prompt neutrons from delayed
neutrons at fission events. Further details related to this approach will be provided in Section 5.4 and in the
Appendix A.

In the following we provide a short overview of the forward and adjoint forms of the standard fission matrix
treatment for k-eigenvalue problems.

5.1.1 The forward formulation

Recall the k-eigenvalue problem formulation from Eq. (2.65)

Mϕk(r,Ω,E) =
1
k
χ f (E)

4π
Q f (r), (5.7)
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where Q f (r) is the fission neutron source defined as

Q f (r) =

∫
4π

dΩ
∫ ∞

0
dE ν̄ f (E)Σ f (r,E)ϕk(r,Ω,E). (5.8)

Let us now introduce the Green’s function G(r0→ r,Ω0→Ω,E0→ E) associated to the operator M, namely

MG(r0→ r,Ω0→Ω,E0→ E) = δ(r0− r)δ(Ω0−Ω)δ(E0−E), (5.9)

which physically represents the response of the system to the injection of a pulse source.

Exploiting the linearity of the problem and the superposition principle, the direct eigenmode ϕk is obtained as

ϕk(r,Ω,E) =
1
k

∫
V

dr0

∫
4π

dΩ0

∫ ∞

0
dE0

χ f (E0)
4π

Q f (r0)G(r0→ r,Ω0→Ω,E0→ E). (5.10)

Equation (5.10) for the eigenfunction ϕk is multiplied by ν̄ f Σ f and integrated in energy and direction in order to
express Q f as

Q f (r) =
1
k

∫
V

dr0 Q f (r0)H(r0→ r), (5.11)

where H(r0 → r) is a kernel representing the Green’s function averaged on energy and direction, here explicitly
expressed as

H(r0→ r) =

∫
4π

dΩ
∫ ∞

0
dE

∫
4π

dΩ0

∫ ∞

0
dE0 ν̄ f (E)Σ f (r,E)

χ(E0)
4π

G(r0→ r,Ω0→Ω,E0→ E). (5.12)

No approximations have been introduced so far in this procedure and the averaged quantities can be estimated
during a Monte Carlo simulation: typically, one chooses to estimate the fission matrix elements during a regular
power iteration. Then, N finite spatial regions are defined for the fission sites of neutrons of generation g, V j, and
neutrons of generation g + 1, Vi, in order to express the spatially discretized version of Eq. (5.11) as

Qi =
1
k

N∑
j=1

Ki, jQ j, (5.13)

where

Ki, j =

∫
r0∈V j

dr0

∫
r∈Vi

dr
Q f (r0)

Q j
H(r0→ r), (5.14)

and
Q j =

∫
r′∈V j

dr′ Q f (r′). (5.15)

From a physical point of view, the element located at position (i, j) of the N×N matrix Ki, j represents the number of
fission neutrons born in region i stemming from one fission neutron born in region j. The matrix Ki, j in Eq. (5.14) is
defined as the fission matrix: the eigenvalue k associated to the nth eigenvector with 0 ≤ n ≤ N −1 can be obtained
from it and the corresponding eigenfunction is a discretized version of the neutron source distribution Q f (r) of
order n solving the k-eigenvalue problem in the form

Q f =
1
k
KQ f . (5.16)

Fission matrix elements are associated to discrete spatial intervals mapping the geometrical domain of the system.
It can be shown that the fundamental eigenvector and eigenvalue extracted from the fission matrix is exact, since
the elements of Ki j are by construction weighted on the fundamental mode obtained by the power iteration. On the
contrary, higher-order eigenvectors and eigenvalues will have a bias due to the discretization of the phase-space,
since they have been weighted by the fundamental mode instead of the corresponding higher-order eigenmode.
This bias vanishes in the limit of an infinitely fine discretization [22] (i.e., when the matrix size goes to infinity).
Moreover, fission matrix elements are estimated as scores during a Monte Carlo simulation and as such they are
intrinsically affected by a statistical error. The uncertainty related to these estimators will be propagated into the
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computation of the eigenpairs associated to the fission matrix, as shown in Section 5.3.1.

5.1.2 The backward formulation

The same procedure can be applied to the adjoint formulation of the k-eigenvalue problem [22], now defined as

M†ϕ†k(r,Ω,E) =
1
k
ν̄ f (E)Σ f (r,E)Q†f (r), (5.17)

where the adjoint fission neutron source Q†f (r) is introduced as

Q†f (r) =

∫
4π

dΩ
∫ ∞

0
dE

χ f (E)
4π

ϕ†k(r,Ω,E). (5.18)

The adjoint Green’s function G† is defined as:

M†G†(r0→ r,Ω0→Ω,E0→ E) = δ(r− r0)δ(Ω−Ω0)δ(E−E0). (5.19)

Similarly to the previous procedure, the adjoint eigenfunction ϕ†k is obtained as

ϕ†k(r,Ω,E) =
1
k

∫
V

dr0

∫
4π

dΩ0

∫ ∞

0
dE0 ν̄ f (E0)Σ f (r0,E0)Q f (r0)G†(r0→ r,Ω0→Ω,E0→ E). (5.20)

Then, the fission spectrum χ f (E) is multiplied and the equation is integrated in energy and direction in order to
express the adjoint fission source Q†f , as

Q†f (r) =
1
k

∫
V

dr0 Q†f (r0)H†(r0→ r), (5.21)

and the adjoint kernel H†(r0→ r) for the adjoint Green’s function averaged on energy and direction as

H†(r0→ r) =

∫
4π

dΩ
∫ ∞

0
dE

∫
4π

dΩ0

∫ ∞

0
dE0

χ f (E)
4π

ν̄ f (E0)Σ f (r0,E0)G†(r0→ r,Ω0→Ω,E0→ E). (5.22)

The direct and the adjoint Green’s function, G and G† respectively, are related by the reciprocity theorem

G†(r0→ r,Ω0→Ω,E0→ E) = G(r→ r0,Ω→Ω0,E→ E0), (5.23)

hence, also the direct and adjoint kernels, H and H† respectively, are related as

H†(r0→ r) = H(r→ r0). (5.24)

Exploiting this property, the adjoint fission source can be expressed via the direct kernel as follows

Q†f (r) =
1
k

∫
V

dr0 Q†f (r0)H(r→ r0). (5.25)

Finally, a spatial grid is considered in order to split N finite regions for the volumes V j and Vi, introducing a
discrete version of the problem as

Q†i =
1
k

N∑
j=1

K†i, jQ
†

j . (5.26)

where K†i, j is the adjoint fission matrix and it is defined as

K†i, j =

∫
r0∈V j

dr0

∫
r∈Vi

dr
Q†f (r0)

Q†j
H(r→ r0), (5.27)

66



5.2. A NEW MATRIX-FILLING METHOD FOR α-EIGENVALUES

where
Q†j =

∫
r′∈V j

dr′ Q†f (r′). (5.28)

It is possible to relate the forward and the adjoint fission matrices by considering the elements at positions (i, j)
and ( j, i) respectively:

Ki, j =

∫
r0∈V j

dr0

∫
r∈Vi

dr
Q f (r0)

Q j
H(r0→ r), (5.29)

K†j,i =

∫
r0∈V j

dr0

∫
r∈Vi

dr
Q†f (r)

Qi
H(r0→ r). (5.30)

From inspection of these definitions, two different spatial weighting functions are applied to the forward and adjoint
fission matrices: Q f (r0)/Q j and Q†f (r)/Qi respectively [22]. If the spatial discretization is chosen sufficiently fine,
so that

Q f (r0)
Q j

→
1
V j
, (5.31)

and
Q†f (r)

Q†i
→

1
Vi
, (5.32)

the matrix element K†j,i converges to the matrix element Ki, j, hence, the adjoint fission matrix can be obtained by
transposition of the direct fission matrix.

A final remark concerns the estimation of the k-eigenmodes, which can be performed by combining the discrete
linear transport operators in order to express the formulation of the k-eigenvalue problem:

Mϕk =
1
k

Fϕk, (5.33)

where M and F are the matrix forms of the net disappearance operator M and total fission operator F from
Eqs. (2.32) and (2.63), respectively. This formulation allows the computation of the eigenmodes ϕk as a function
of the phase-space coordinates. Conversely, the fission matrix yields the emission distribution S f ,k, which only
depends on the spatial coordinates. In principle, the implementation of matrix-form operators for the k-eigenvalue
problem allows the computation of the entire k-spectrum and of high-order eigenfunctions ϕk.

5.2 A new matrix-filling method for α-eigenvalues

Similarly to the case of k-eigenvalues, intensive work has been carried out concerning the possibility of estimating
higher-order eigenvalue and eigenfunctions for α-eigenvalue problems.

Despite some successful attempts, generalized power iteration methods performed via Monte Carlo simulations
for higher α-eigenvalues and eigenmodes (based on previous investigations for k-eigenvalues) have received only
limited attention [162]. On the contrary, matrix-filling Monte Carlo methods have recently drawn much interest [6,
7, 8, 153]. We remark in passing that an independent approach has been recently proposed for α-eigenvalue
problems, based on a time-discretization of the fission matrix [68]. However, it appears that such method allows
only determining the eigenvalues but not the eigenvectors.

The matrix-filling approach proposed by Betzler [8] is very similar in spirit to the better-known fission matrix
method for k-eigenvalues introduced in the previous section [35, 22]. Although the α-eigenvalues and eigenmodes
thus estimated are generally biased because of the finite size of the matrix, this method allows obtaining a fairly
accurate picture of the entire spectrum and thus grasping the time evolution of the system [6, 7], even for complex
three-dimensional configurations [8]. Moreover, once the α-spectrum and the associated eigenvectors have been
determined from the matrix, the full time-dependent evolution of the neutron and precursor populations can also
be reconstructed, at least in principle, by using the direct and adjoint matrices [8]. The idea is to compute the
coefficients wαm by solving Eq. (2.88) derived in Section 2.6.2. These coefficients preserve the time dependence of
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particles and stem from the separation between time and phase-space coordinates.

The matrix-filling Monte Carlo method of [8] is based on a transition rate method (related to the adjoint
formulation of the α-eigenvalue equation) and suffers from two approximations: the first is due to the fact that the
exact adjoint formulation is in practice replaced by a forward formulation, in order to avoid the explicit simulation
of backward random walks [8]. The second is due to the fact that the matrix elements are estimated and filled in
the course of a k-eigenvalue Monte Carlo calculation, which induces a systematic bias even on the fundamental
eigenvalue and eigenvector [8]. The adjoint formulation is required since the authors of [8] formally work with the
propagator of the underlying random walks, which is by construction associated to the adjoint evolution operators.
Although both approximation errors vanish in the limit of a sufficiently fine discretization of the phase-space, for
realistic systems this might require very large matrix sizes, entailing severe memory footprint issues: contrary to
the fission matrix, where only a spatial discretization is required, the matrix associated to α-eigenvalue problems
demands a full discretization of the phase-space, including position, direction and energy.

In this chapter we will propose a new matrix-filling Monte Carlo method for α-eigenvalue problems that will
improve the estimation of the matrix elements in two directions. First, we will show that it is convenient to fill
the elements of the matrix by using the α-k modified power iteration: this approach allows natively preserving
the fundamental eigenvalue and eigenvector, which will be computed exactly. Second, we will show that it is
actually possible to compute the matrix elements corresponding to the adjoint α-eigenvalue equations by using
the Generalized Iterated Fission Probability (G-IFP): the obtained adjoint-weighted matrix will correspondingly
preserve the fundamental (adjoint) eigenvalue and eigenvector, as opposed to building the adjoint operator matrix
by transposing the direct operator matrix.

5.2.1 Monte Carlo estimators for the operators

The direct and adjoint formulations for the α-eigenvalue problem introduced in Eqs. (2.76) and (2.80) are respec-
tively recalled in the following equations

AΨα = αV−1Ψα, (5.34)

A†Ψ
†
α = αV−1Ψ

†
α, (5.35)

where the vector Ψ
†
α = {ϕ†α,c

†

α,1, . . . ,c
†

α,J}
T is composed of the neutron flux and the precursor concentrations of J

families.

In order to derive a numerically tractable formulation of the systems in Eqs. (5.34) and (5.35), we would like to
replace the operators by matrices whose elements can be explicitly computed [8]. For this purpose, it is convenient
to discretize the phase-space over elements of the kind

∫
Vn

dr
∫
Ωm

dΩ
∫

Eg
dE, where Vn, Ωm and Eg denote position,

angle and energy intervals, respectively. The idea is then to approximate any generic operator H appearing in
Eqs. (5.34) and (5.35) by its average over the phase-space element n,m,g: this defines the matrix elements

Hn,m,g = 〈H〉n,m,g '
〈H f 〉n,m,g
〈 f 〉n,m,g

, (5.36)

for an arbitrary weighting function f . Consequently, the eigenvalue problem in Eq. (5.34) is replaced by the matrix
formulation

AΨα = αV−1Ψα (5.37)

and the adjoint problem in Eq. (5.35) is replaced by

A†Ψ†α = αV−1Ψ
†
α. (5.38)

Once the matrix elements have been estimated, the spectrum and the eigenvectors can be extracted by using stan-
dard linear algebra libraries [8], similarly to what is done for the fission matrices for k-eigenvalue problems [22].
In the limit of a sufficiently fine discretization of the position, angle and energy intervals the spectrum and the
eigenvectors of the matrices converge to those of the exact formulation. The accuracy of the introduced approx-
imation and the rate of convergence depend on the choice of the weighting function. We are thus left with two
constraints: the matrix elements Hn,m,g must correspond to scores that can be practically estimated by Monte Carlo
methods, and the weighting function must be chosen so to minimize the discretization bias.
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5.2.2 Matrix representation of the operators

In order to fill the elements of the (direct) fission matrix corresponding to k-eigenvalue problems, the natural choice
is to use the fundamental k-eigenmode, which can be estimated by the regular power iteration method in Monte
Carlo criticality calculations, previously described in Section 4.2 [22]. This approach preserves the fundamental
eigenvalue and eigenvector that can be computed from the resulting matrix, in the sense that they are unbiased
independently of the size of the discretization intervals. This property however does not carry over to higher
eigenvalues and eigenvectors of the direct fission matrix, nor to the fundamental (and higher) eigenmode of the
transposed fission matrix.

By analogy, and in view of obtaining a similar unbiased estimate of the fundamental α-eigenpair, it seems
reasonable to choose the fundamental α-eigenmode as a weighting function for the forward eigenvalue problem in
Eq. (2.76). The fundamental eigen-pair (α0,Ψα0 ) can be determined by applying the Monte Carlo implementation
of the α-k power iteration, previously described in Section 4.4. As mentioned, a few other methods exist to estimate
(α0,Ψα0 ), each with distinct merits and drawbacks [170, 108, 138, 69]. Here we have chosen the α-k method, which
is relatively straightforward and can be conveniently adapted to adjoint calculations, independently of the sign of
the system reactivity [147].

Once the discretized matrix A has been filled, the adjoint matrix A† can be in principle obtained by transposing
A [8], similarly as done for the adjoint fission matrix in k-eigenvalue problems [22]. This approach would preserve
the spectrum, since the eigenvalues associated to a transposed real matrix are identical to those computed from
the original matrix. However, it would also induce a bias on the fundamental adjoint eigenvector, since the matrix
elements would have been weighted by the forward fundamental eigenmode ϕα0 instead of the adjoint fundamental
eigenmode ϕ†α0 [8]. This issue is entirely analogous to what happens for the adjoint fission matrix in k-eigenvalue
problems [22]. Although this bias vanishes in the limit of sufficiently large matrices, for the sake of numerical
accuracy (and in view of reducing the memory footprint) it would be convenient to estimate the adjoint matrix
elements directly. We will thoroughly examine these issues in Section 5.3.

As previously described in Section 4.5, a generalization of the Iterated Fission Probability (IFP) method has
been proposed in order to evaluate ϕ†α0 (and more generally bi-linear forms requiring both ϕα0 and ϕ†α0 ) by relating
the fundamental adjoint eigenfunction to the neutron importance Iα [147], similarly to what is done for the regular
k-eigenvalue IFP formulation [110, 75]. The Generalized IFP method provides estimates of the neutron impor-
tance Iα in α-eigenvalue problems by recording the descendants after a given number of latent generations for an
ancestor neutron starting with coordinates r,Ω,E. In practice, Iα is estimated by using a fixed-source calculation,
where neutrons are followed over the latent generations. Since Iα ∝ ϕ

†
α0 , the importance of the ancestor neutron is

computed at the end of the latent generations as

〈ϕ†α0 Q〉 ∝
∑

i

πi (5.39)

where πi is the corresponding statistical weight of the descendants of the ancestor i collected at the end of the
G-IFP cycle for the neutrons initially sampled from a fixed source Q, the sum being extended over the ancestors.
In this way, it is possible to estimate the elements of the adjoint matrix A† by using ϕ†α0 as weighting function. The
adjoint operators estimated in this way require a proper normalization as in Section 5.2.4.

5.2.3 Estimating the direct matrix elements

Suppose now that we partition the phase-space into N space intervals, M angle intervals and G energy intervals.
The method proposed in this chapter for the direct matrices closely follows the strategy of [8], except for the choice
of ϕα and c j

α as the weighting functions and the use of the neutron flux ϕ (instead of the neutron density n) as the
normalization of the operators applied to neutrons. The corresponding matrix elements will be thus filled by using
the following Monte Carlo estimators.

Neutrons start their flights from source sites and travel through the medium according to the streaming operator
L. In order to estimate the corresponding matrix elements, this term is first transformed by applying the Gauss
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theorem, yielding

〈Lϕα〉 = 〈Ω · ∇ϕα(r,Ω,E)〉n,m,g =

〈∫
S n

dr′Ω ·nϕα(r′,Ω,E)
〉

m,g
, (5.40)

where S n is the surface enclosing the space element n and n is the normal to the surface. This term can be estimated
by computing the current of neutrons streaming in and out the surfaces of the space element n, projected over the
flight direction Ω [8]. This operator acts on the spatial coordinates of the neutrons, as well as on their directions if
reflection events occurred.

At collision sites, the matrix elements associated to the inverse speed operator V−1 and the removal operator
R are respectively estimated as

〈V−1ϕα〉 =
〈 1
3(E)

ϕα(r,Ω,E)
〉

n,m,g
, (5.41)

〈Rϕα〉 = 〈Σt(r,E)ϕα(r,Ω,E)〉n,m,g. (5.42)

Since these operators do not act on neutron positions in the phase-space, only the diagonal elements of the corre-
sponding matrices will be filled.

For fissile materials, the prompt fission operator Fp is approximated by the estimation of matrix elements
according to the following relation

〈Fpϕα〉 =
〈χp(E)

4π
〈ν̄p(E′)Σ f (r,E′)ϕα(r,Ω′,E′)〉m′,g′

〉
n,m,g

. (5.43)

Moreover, if precursors are considered, the matrix elements representing the precursor production operator F j
d and

the delayed neutron emission χ j
d can be expressed as

〈F
j

d ϕα〉 = 〈〈ν̄
j
d(E′)Σ f (r,E′)ϕα(r,Ω′,E′)〉m′,g′〉n, (5.44)

〈
λ j
χ

j
d

4π
c j
α

〉
=

〈χ j
d(E)

4π
〈λ jc

j
α(r)〉n

〉
m,g
. (5.45)

Finally, the scattering operator S is computed from the matrix elements estimated as

〈Sϕα〉 = 〈〈Σs(r,Ω′→Ω,E′→ E)ϕα(r,Ω′,E′)〉m′,g′〉n,m,g. (5.46)

All these collision operators act on the energy and the direction of neutrons according to the collision kernel laws.

The matrix elements related to operators applied to the neutron flux ϕα are normalized by

〈ϕα〉n,m,g, (5.47)

with respect to the incoming coordinates of the particle. The precursor concentration of family j is applied as a
normalization for delayed neutron emission and it is estimated in its discretized form as

〈c j
α〉n =

〈 1
λ j +α

F
j

d ϕα

〉
n
. (5.48)

When including the precursor contributions, the total matrix operator size is (NMG + N f J)2, where N f ≤ N is the
number of fissile regions for which the precursor contributions must be assigned. Mainly due to the structure of the
gradient operator and of the diagonal matrix associated to the precursor decay constants [8], the matrix operator is
however considerably sparse. Assuming a Cartesian grid for the space coordinates, with Nx, Ny and Nz components
along each axis (N = Nx ×Ny×Nz), the maximum number of non-null matrix entries is

MG
[
NMG + NxNy(Nz−1) + NyNz(Nx −1) + NxNz(Ny−1)

]
+ N f J

� (NMG + N f J)2, (5.49)

which is an important issue when considering real-world applications.
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For illustration, the sparsity pattern of the maximum number of non-null elements of the matrix operator A
from Eq. (5.37) is shown in Fig. 5.1.

Figure 5.1: Sparsity pattern of the maximum number of non-null elements of the matrix operator A for the fol-
lowing phase-space discretization: Nx = Ny = Nz = 4, Mx = My = Mz = 2, G = 3 and J = 1. The complete matrix
sparsity pattern (left) and a zoom of the first 768 rows/columns (right) have been shown in the figure.

5.2.4 Estimating the adjoint matrix elements

For the direct matrices, the α-k power iteration ensures that particles are sampled according to the fundamental
eigenmode distribution ϕα0 and matrix elements can be constructed as regular reaction rates, as detailed above.
For the adjoint matrix elements, on the contrary, the idea is to carefully select a source distribution Q such that
Eq. (5.39) yields the desired adjoint matrix element. Indeed, the adjoint matrix elements illustrated in the previous
sections can all be written in the form of a scalar product involving a ‘source’ weighted by the fundamental adjoint
mode, which can be thus estimated by computing the neutron importance function by the G-IFP method. Bearing
in mind these considerations, two cases are encountered: if the source for the matrix element is a probability
density function (e.g., a fission spectrum), this probability density can be straightforwardly used so as to sample
the initial coordinates of the neutron whose importance must be assessed. If the source for the matrix does not
lend itself to be interpreted as a probability density function (e.g., the total cross section appearing in the adjoint
collision operator R†), then an artificial uniform coordinate is sampled in the selected bin corresponding to the
matrix element, and the source appearing in the expression of the matrix element will be used as a final weighting
factor for the obtained importance following from the sampled neutron. For the discretized operators, a uniform
meshing of the phase-space is preferred, since the effect of the distribution will vanish when normalizing by the
bin-integrated adjoint flux 〈ϕ†α〉nmg.

The adjoint streaming matrix is expressed by applying again Gauss’ theorem in order to convert the volume
integration into a surface integration over the boundaries of the spatial bin. This leads to

〈L†ϕ†α〉 = 〈−Ω · ∇ϕ
†
α(r,Ω,E)〉n,m,g = −

〈∫
S n

dr′Ω ·nϕ†α(r′,Ω,E)
〉

m,g
. (5.50)

The expression in Eq. (5.50) can be given a probabilistic interpretation: the integral over the surface means that
the starting points for the neutron ancestors must be taken uniformly over the boundaries of the spatial bins. The
angular factor Ω · n, where n is the normal vector of the surface S n, implies that the starting direction for the
ancestors must be sampled by respecting an isotropic incident flux on S n. In particular, the term cosθ0 = Ω0 ·n
implies that in polar coordinates ancestors starting on the surface must enter the domain with θ0 = arcsin(2ξ−1) in
two dimensions and θ0 = 1/2arccos(1−2ξ) in three dimensions, ξ being uniformly distributed in (0,1] [168]. This
completely defines the source for the importance calculation associated to the streaming term.

Similarly as in the direct case, the non-trivial part of the inverse speed matrix and the adjoint removal matrix is

71



CHAPTER 5. A NEW MATRIX-FILLING MONTE CARLO METHOD FOR α-SPECTRAL ANALYSIS

represented by a diagonal matrix with corresponding elements

〈V−1ϕ†α〉 =
〈 1
3(E)

ϕ†α(r,Ω,E)
〉

n,m,g
, (5.51)

〈R†ϕ†α〉 = 〈Σt(r,E)ϕ†α(r,Ω,E)〉n,m,g. (5.52)

The adjoint scattering and prompt fission matrix elements, respectively

〈S†ϕ†α〉 = 〈〈Σs(r,Ω→Ω′,E→ E′)ϕ†α(r,Ω′,E′)〉m′,g′〉n,m,g, (5.53)

〈F
†
p ϕ
†
α〉 =

〈
ν̄p(E)Σ f (r,E)

〈χp(E′)
4π

ϕ†α(r,Ω′,E′)
〉

m′,g′

〉
n,m,g

, (5.54)

are obtained by uniformly sampling the incident energy and direction, then sampling the scattering (respectively
fission) spectrum and finally computing the adjoint flux by using the G-IFP scheme.

Finally, the adjoint operators related to the precursors are represented by the following matrix elements

〈λ jF
†

d, jϕ
†
α〉 =

〈〈χ j
d(E′)

4π
λ jϕ

†
α(r,Ω′,E′)

〉
m′,g′

〉
n
, (5.55)

〈ν̄
j
dΣ f c†α, j〉 = 〈ν̄

j
d(E)Σ f (r,E)〈c†α, j(r)〉m′,g′ .〉n, (5.56)

All the adjoint operators applied to the adjoint neutron flux ϕ† are normalized by

〈ϕ†α〉n,m,g, (5.57)

with respect to the outgoing coordinates, whereas the operator applied to the precursors concentration is normalized
by

〈c†α, j〉n =

〈 λ j

λ j +α
F
†

d, jϕ
†
α

〉
n
. (5.58)

It is worth noting that Eqs. (5.51) (5.52) (5.57) can be estimated in the same calculation, since the same source
function Q is applied. However, each matrix elements characterized by a different sampling law requires a separate
and independent simulation.

5.2.5 Estimating the eigenpairs

The matrix-form of all operators described in Sections 5.2.3 and 5.2.4 are scored as a three-column vector rep-
resenting the row numbers, the column numbers and the corresponding non-zeros matrix element values. This
storage method for the matrix elements provides an optimization for memory occupation of the matrix elements
due to the high sparsity pattern of the matrix-form operators. The same procedure has been applied for the estima-
tion of the fission matrix elements [22].

Then, the matrix elements need to be post-processed in order to assemble the matrix-form of the sought eigen-
value problem. For this purpose, a MATLAB code has been implemented to normalize each matrix element
(Eq. (5.36)) and to combine them in the final form of the eigenvalue problem [101]. For small matrix size (about
1.6×107 elements), the eig command in MATLAB provides the full set of eigenpairs associated with the general-
ized eigenvalue problem of the kind:

Ax = λBx, (5.59)

where λ and x are the eigenvalues and the eigenvectors, respectively, solving the eigenvalue problem defined
by the generic dense matrices A and B. The algorithm used for the computation of the eigenpairs is the QZ
algorithm [103]. For larger matrix size with high sparsity pattern, the eigs command uses an iterative algorithm
for the computation of the first eigenpairs of the problem [145]. Nevertheless, this iterative process has hard time
to converge to the correct solution if delayed contributions are considered: this is mainly due to the presence of
clusters of eigenvalues on the right of the negative values of the decay constants −λ j [133, 132]. The effect of the
eigenvalue clustering will be detailed in Chapter 6. Similar issues for the estimating the full α-spectrum (prompt
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and delayed contributions) for large matrices were already encountered in the reference [8] when using an iterative
eigenvalue solver [91]. In order to overcome this problem, we decided to maintain a dense structure for the matrices
associated to the transport operators and to use the QZ algorithm [103] for the computation of all eigenpairs.

5.3 Numerical simulations

In order to assess the impact of using the α-k power iteration and the G-IFP method in order to fill the matrix
elements of the direct and adjoint α-matrices, respectively, we have selected some simplified benchmark con-
figurations that allow more easily probing the proposed methods by comparing the obtained results to reference
solutions.

5.3.1 The rod model

The rod model is among the simplest space- and direction-dependent transport problems: neutrons move at constant
speed 3 along a line, where only two directions of flight are allowed, namely forward (Ω = +) and backward
(Ω = −) [159]. We will furthermore assume that scattering and fission are isotropic. Defining ϕα(x,±) the angular
flux in the positive and negative direction, the α eigenvalue equations read

±
∂

∂x
ϕα(x,±) +

[
α

3
+Σt

]
ϕα(x,±) =

ζα
2
ϕα(x), (5.60)

where we have defined ϕα(x) = ϕα(x,+) +ϕα(x,−), and

ζα = Σs + ν̄pΣ f +

J∑
j=1

λ j

λ j +α
ν̄

j
dΣ f . (5.61)

Let us consider a segment [0,L], with leakage boundary conditions ϕα(0,+) = 0 and ϕα(L,−) = 0. It is possible to
derive an equation for ϕα(x) alone, namely,

−Dα
∂2

∂x2ϕα(x) =
ζαDα−1

Dα
ϕα(x), (5.62)

with Robin boundary conditions ϕα(0)−Dα∂ϕα(0)/∂x = 0 and ϕα(L) + Dα∂ϕα(L)/∂x = 0, and

Dα =
1

Σt + α
3

. (5.63)

Taking into account the boundary conditions, the solution of Eq. (5.62) is expressed as

ϕα(x) =
√
ζαDα−1cos

 √
ζαDα−1

Dα
x

+ sin

 √
ζαDα−1

Dα
x

 , (5.64)

from which we can obtain the angular flux ϕα(x,±) and the precursor concentration

c j
α =

1
λ j +α

ν̄
j
dΣ fϕα(x) (5.65)

by observing that the particle current Pα(x) = ϕα(x,+)−ϕα(x,−) satisfies Pα(x) = −Dα∂xϕα(x). The adjoint eigen-
modes satisfy the relation ϕ†α(x,±) = ϕα(x,∓). The α-eigenvalues stem from the dispersion law [170]

Λ(α) = 2
√
ζαDα−1cos

 √
ζαDα−1

Dα
L

− ζαDα cos

 √
ζαDα−1

Dα
L

 = 0, (5.66)

which is obtained by imposing the boundary conditions on the general solutions in Eq. (5.64). The zeros of
Eq. (5.66) form the discrete spectrum of the α-eigenvalues for the rod model. When the precursor contributions
are neglected, Λ(α) yields a finite number of real eigenvalues, plus a countable infinity of complex eigenvalues
associated to oscillating modes [104]; when precursors are taken into account, J additional sets of denumerable real
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eigenvalues are introduced by the J singularities at α = −λ j, accumulating at the right of each −λ j (the ”clusters”
mentioned above).

Analysis of the direct eigenpairs

We begin our analysis by considering the case of direct eigenvalues and eigenfunctions. The physical parameters
for the rod model are given in Tab. 5.1. For this example, we have chosen a deep sub-critical configuration and we
have neglected the contributions of precursors. The dominant α-eigenvalue is α0 = −0.91112 (with corresponding
k-eigenvalue k0 = 0.21945). The matrix elements have been computed as described in the previous sections,
based on the α-k power iteration. Since the transport model does not depend on energy and only two discrete
directions are allowed, the only discretization left is with respect to the space coordinates, which makes easier the
investigation of the convergence of the proposed methods.

3 [cm/s] Σc [cm-1] Σ f [cm-1] Σs [cm-1] ν̄p [-] L [cm]

10 1 0.1 1 2.5 10

Table 5.1: Parameter values for the rod model.

The Monte Carlo matrix-filling calculation based on the α-k power iteration has been run with 103 inactive
cycles, 103 active cycles used for scoring the matrix elements, and 105 particles per cycle. The results of the
spectral analysis from the α-weighted matrices are recalled in Tab. 5.2 for a discretization of N = 1024 spatial
meshes. An excellent agreement is found between the numerical values coming from the A matrix filled by the
Monte Carlo calculation and the exact reference stemming from the numerical analysis of the roots of the dispersion
law in Eq. (5.66). Correspondingly, the first few eigenfunctions are compared in Fig. 5.2 for the same spatial
discretization: again, an excellent agreement is found between the eigenvectors of the A matrix filled by the Monte
Carlo calculation and the exact solutions stemming from Eq. (5.64).
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Figure 5.2: The first few (angular) eigenmodes ϕα(x,+): the eigenvectors of the A matrix filled by the Monte Carlo
calculation (symbols) are compared to the exact solutions stemming from Eq. (5.64) (solid lines). Blue circles:
fundamental eigenmode ϕα0 (x,+); red squares: second eigenmode ϕα1 (x,+); green triangles: third eigenmode
ϕα2 (x,+).
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weighting function α0 [s-1] α1 [s-1] α2,3 [s-1]

exact -0.91112 -1.14021 -1.59033 ± 0.46007i
α-k -0.91113 -1.14081 -1.59245± 0.45965i

Generalized IFP -0.91102 -1.14101 -1.59233± 0.45948i
k -0.91104 -1.14049 -1.59232 ± 0.45890i

fixed-source -0.91135 -1.14078 -1.59273 ± 0.45864i

Table 5.2: Rod model. Comparison of the α eigenvalues obtained from the matrices filled with the method shown
in the first column, for N = 1024 spatial meshes. Model parameters are shown in Tab. 5.1.

As discussed in the previous sections, an important issue concerns the convergence of the eigenvalues and
eigenvectors of A with respect to the size of the matrix, i.e., the discretization of the viable phase-space. The
key point is that the use of the α-k power iteration in order to weight the matrix elements by the fundamental
eigenfunction ϕα0 is expected to preserve the fundamental eigenvector of A for any choice of the matrix size.
For the purpose of probing the behaviour of A, in addition to the α-weighted matrix we have produced two other
matrices obtained by weighting their respective elements by using the fundamental mode of the k-eigenvalue
power iteration (with 103 inactive cycles, 103 active cycles used for scoring the matrix elements, and 105 particles
per cycle) and by using the flux resulting from a fixed-source calculation starting from a uniformly distributed
isotropic source within the domain (with 108 particles). In the limit of very large N, all these methods are expected
to converge to the exact limitA: for a more refined phase-space discretization, the choice of the weighting function
f introduced in Eq. (5.36) becomes less important. The corresponding numerical values are recalled in Tab. 5.2
for N = 1024 spatial meshes and different weighting functions.

The convergence analysis of the α-eigenvalues as a function of the spatial discretization N and of the choice of
the weighting function for A is shown in Fig. 5.3. As conjectured, the fundamental eigenvalue α0 resulting from
the α-weighted matrix A is unbiased with respect to the exact reference root of the dispersion law in Eq. (5.66),
independently of the discretization N (Fig. 5.3, left). On the contrary, the fundamental eigenvalues α0 resulting
from the matrix A with the two other weighting schemes shows a bias that is progressively reduced as N increases.
Even for this very simple benchmark example, it takes roughly N = 128 in order for the other schemes to converge
to the true fundamental eigenvalue, which motivates the choice of the α-weighting schemes. Concerning the second
and third eigenvalue α1 and α2, as expected the higher-order eigenfunctions are not preserved and the α-weighting
method does not offer any specific advantage (Fig. 5.3, right). For higher-order eigenvalues the rate of convergence
of the three schemes is similar.
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Figure 5.3: Convergence of the first few eigenvalues αi as a function of the number of spatial meshes N and of the
weighting function for the matrix A. Left: the fundamental eigenvalue α0; right: α1 and Re[α2]. Black solid lines
correspond to the exact reference values from the roots of the dispersion law in Eq. (5.66). Blue circles correspond
to results obtained from the α-weighted A matrix; red squares to the k-weighted A matrix; green triangles symbols
to the matrix A weighted by a fixed-source flux. Solid lines have been added to guide the eye. In addition, we
display with magenta diamonds the corresponding eigenvalues obtained from the adjoint matrix A† weighted by
the adjoint α-eigenfunction resulting from the Generalized IFP method.

An important issue concerns the impact of the statistical uncertainty intrinsically induced by the Monte Carlo
method on the elements of the matrices: in particular, we are interested in assessing the effects of such fluctuations
on the derived spectrum and eigenvectors. For this purpose, we have performed an ensemble of independent
replicas of the α-k power iterations and we have computed the average and the dispersion of the obtained α
spectrum and eigenvectors, as a function of the number of simulated particles per cycle. Numerical findings
are reported in Tab. 5.3 and show that the standard deviation of the first few eigenvalues scales roughly as 1/

√
P,

P being the number of particles per cycle.

Particles per cycle α0 [s-1] α1 [s-1] Re[α2,3] [s-1] Im[α2,3] [s-1]

exact -0.911121 -1.140209 -1.590327 ± 0.460074

103 -0.91112 -1.14497 -1.60753 ± 0.45378
Average 104 -0.911123 -1.14509 -1.60762 ± 0.45387

105 -0.911117 -1.145099 -1.607615 ± 0.453870

103 2 ×10−5 5 ×10−5 3 ×10−5 7 ×10−5

Std 104 8 ×10−6 1 ×10−5 1 ×10−5 2 ×10−5

105 2 ×10−6 5 ×10−6 3 ×10−6 7 ×10−6

Table 5.3: Rod model. Comparison of the eigenvalues obtained from the matrices scored during 103 replicas of
α-k power iterations, each using 103 inactive cycles, 103 active cycles and a variable number of particles per cycle.
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Figure 5.4: Convergence of the first few estimators Ri as a function of the number of spatial meshes N and of
the weighting function for the matrix A. Black solid lines correspond to the exact reference values based on
Eq. (5.64). Blue circles correspond to results obtained from the α-weighted A matrix; red squares correspond
to the k-weighted A matrix; green triangles correspond to the matrix A weighted by a fixed-source flux. Left:
the estimator R0 associated to the fundamental eigenfunction ϕα0 (x,+); right: the estimator R1 associated to the
second eigenfunction ϕα1 (x,+) and the estimator R2 associated to the second eigenfunction ϕα2 (x,+). Solid lines
have been added to guide the eye.

In order to perform a similar analysis on the behaviour of the eigenmodes, we have introduced an estimator
defined as the normalized integral of the eigenfunction of order i over the half-domain, namely,

Ri =

|
∫ L

L
2

dx ϕαi (x,+)|

|
∫ L

0 dx ϕαi (x,+)|
, (5.67)

where L is the length of the rod. The reference value for Ri can be computed based on Eq. (5.64). The numerical
values for the first few Ri are compared to the exact solutions in Tab. 5.4 for N = 1024 spatial meshes and different
weighting functions.

weighting function R0 [-] R1 [-] R2,3 [-]

exact 0.59054 3.04076 1.25702

α− k 0.59068 3.03938 1.26403
k 0.59068 3.04243 1.26346

fixed-source 0.59039 3.05016 1.26317

Table 5.4: Rod model. Comparison of the firs few estimators Ri obtained from the matrices filled with the method
shown in the first column, for N = 1024 spatial meshes.

The convergence analysis of the estimator Ri computed by the matrix A as a function of the spatial discretization
N and of the choice of the weighting function for A is shown in Fig. 5.4. As conjectured, the estimator R0 associated
to the fundamental eigenfunction resulting from the α-weighted matrix A is unbiased with respect to the exact
solution, independently of the discretization N. On the contrary, the estimator R0 resulting from the matrix A
with the two other weighting schemes shows a bias that decreases with increasing N. It takes roughly only N = 8
in order for the k-weighted scheme to converge to the true fundamental eigenvalue, which can be understood by
observing that the deviation between ϕk0 (x,+) and ϕα0 (x,+) is rather small for the parameters chosen here. For the
matrix weighted on the fixed-source flux, the deviation is much larger, and convergence is achieved after N = 256.
Concerning the estimators R1 and R2 associated with the second and third eigenfunction, all weighting schemes
are biased, and the rate of convergence of the three schemes is similar.
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Figure 5.5: The first few (angular) adjoint eigenmodes ϕ†α(x,+): the eigenvectors of the A matrix filled by the Monte
Carlo calculation (symbols) are compared to the exact solutions stemming from the equation adjoint to Eq. (5.64)
(solid lines). Blue circles: fundamental adjoint eigenmode ϕ†α0 (x,+); red squares: second adjoint eigenmode
ϕ†α1 (x,+); green triangles: third adjoint eigenmode ϕ†α2 (x,+).

In order to assess the impact of the statistical uncertainty induced by the Monte Carlo method on the eigenvec-
tors, we have performed an ensemble of independent replicas of the α-k power iterations and we have computed the
average and the dispersion of the obtained α-eigenvectors, as a function of the number of simulated particles per
cycle. Numerical findings are reported in Tab. 5.5 and show that the standard deviation of the first few estimators
Ri scales approximately as 1/

√
P, P being the number of particles per cycle.

Particles per cycle R0 [-] R1 [-] R2 [-]

exact 0.590542 3.0408 1.25702

103 0.59049 3.052 1.302
average 104 0.59053 3.053 1.3021

105 0.590534 3.0512 1.30201

103 7.7 ×10−5 3.3 ×10−3 2.2 ×10−3

Std 104 2.4 ×10−5 1.0 ×10−3 5.5 ×10−4

105 7.4 ×10−6 3.3 ×10−4 6.2 ×10−5

Table 5.5: Rod model. Comparison of the estimators Ri obtained from the matrices scored during 103 replicas of
α-k power iterations, each using 103 inactive cycles, 103 active cycles and a variable number of particles per cycle.

Analysis of the adjoint eigenpairs

We will now focus on the adjoint matrix A†, whose elements have been filled by using the Generalized IFP method,
as detailed above. For this example, the Monte Carlo calculation has been performed with 108 particles, and 15
latent generations. The α0 value needed for the Generalized IFP algorithm has been obtained from the direct cal-
culations done in the previous section. The results of the spectral analysis from the adjoint α-weighted matrix
are recalled in Tab. 5.2 for a discretization of N = 1024 spatial meshes. An excellent agreement is found between
the numerical values coming from the A† matrix filled by the Monte Carlo calculation and the exact results stem-
ming from the roots of the dispersion law in Eq. (5.66). This means that the relation α† = α on the spectrum of
the α-eigenvalues is correctly preserved when weighting A† by the fundamental eigenfunction ϕ†α0 . This prop-
erty is also preserved when approximating A† by taking the transposed matrix AT (although A is weighted by
the direct fundamental eigenfunction), since by construction transposition preserves the spectrum. The first few
adjoint eigenfunctions are compared in Fig. 5.5 for the same spatial discretization: again, an excellent agreement
is found between the eigenvectors of the A† matrix filled by the Generalized IFP method and the exact solutions

78



5.3. NUMERICAL SIMULATIONS

stemming from the eigenfunctions adjoint to Eq. (5.64). Observe in particular that ϕ†α satisfies ϕ†α(x,±) = ϕα(x,∓),
as expected.

The convergence of the eigenvalues associated to the A† matrix is analyzed in Fig. 5.3: not surprisingly, the
convergence of the eigenvalues with respect to the matrix discretization N follows the same pattern as in the direct
case. The fundamental eigenvalue α0 is similarly preserved by the matrix A†, independently of N, whereas the
higher eigenvalues are not and converge to the true values in the limit of large N.
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Figure 5.6: Convergence of the first few estimators R†i as a function of the number of spatial meshes N. Black solid
lines correspond to the exact reference values based on Eq. (5.64). Blue circles correspond to results obtained from
the adjoint α-weighted A† matrix; red squares correspond to the direct α-weighted AT matrix. Left: the estimator
R†0 associated to the fundamental adjoint eigenfunction ϕ†α0 (x,+); right: the estimator R†1 associated to the second
adjoint eigenfunction ϕ†α1 (x,+) and the estimator R†2 associated to the second adjoint eigenfunction ϕ†α2 (x,+). Solid
lines have been added to guide the eye.

Weighting function R†0 [-] R†1 [-] R†2,3 [-]

exact 0.40946 4.04076 1.65441

Generalized IFP 0.41055 4.00166 1.65293
α-k and transposition 0.40982 4.03249 1.65836

Table 5.6: Rod model. Comparison of the adjoint estimators R†i obtained from the matrices filled with the method
shown in the first column, for N = 1024 spatial meshes.

In order to analyze the behaviour of the adjoint eigenmodes, we introduce the estimator

R†i =

|
∫ L

L
2

dx ϕ†αi (x,+)|

|
∫ L

0 dx ϕ†αi (x,+)|
. (5.68)

The reference value for R†i can be computed based on the adjoint eigenfunctions derived from Eq. (5.64). Numeri-
cal values corresponding to the generalized IFP method and to the transposed matrix obtained from the α-k method
are recalled in Tab. 5.6 for N = 1024 spatial meshes. The convergence analysis of the estimator R†i estimated by
the matrix A† as a function of the spatial discretization N is shown in Fig. 5.6. As conjectured, the estimator R†0
associated to the fundamental adjoint eigenfunction resulting from the adjoint α-weighted matrix A† is unbiased
with respect to the exact solution, independently of the discretization N. As for the estimator R†1 associated with
the second eigenfunction, the adjoint α-weighted matrix A† yields a biased result, which converges to the exact
limit after approximatively N = 32.

In the same figure we also display the estimators of the adjoint eigenfunctions obtained by taking the transposed
direct α-weighted matrix AT in order to approximate A†. Figure 5.6 shows that this approach leads to a bias on R†i
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for the fundamental and the first eigenfunction. Although the bias vanishes as expected in the limit of large N, this
analysis suggests that it is general preferable to compute A† rather than approximating the adjoint-weighted matrix
by using the transposed matrix AT .

5.3.2 A continuous-energy transport model

We consider now a continuous-energy transport model in an infinite medium. The model includes scattering with
an amnesia kernel [34], capture and fission with two precursor families. All cross sections Σr are assumed to have a
1/
√

E behaviour, i.e., Σr(E) = Σ0
r/
√

E. The scattering kernel M(E) is a Maxwell distribution with average energy
Es. The prompt χp(E) and delayed χ j

d(E) fission kernels are also assumed to be Maxwellian distributions with
average Ep and E j

d, j = 1,2, respectively. These distributions can be expressed as normalized probability density
functions, given the following equation

M(E) =
2
√
π

1
Ē3/2

√
Ee−E/Ē , (5.69)

where Ē is the average energy of the corresponding distribution. The fission multiplicities are taken constant, for
the sake of simplicity.

The resulting α eigenvalue problem reads[
α

3(E)
+Σt(E)

]
ϕα(E) = M(E)

∫ ∞

0
dE′ Σs(E′)ϕα(E′) +χp(E)

∫ ∞

0
dE′ ν̄pΣ f (E′)ϕα(E′)

+
∑

j

λ j

λ j +α
χ

j
d(E)

∫ ∞

0
dE′ ν̄ j

dΣ f (E′)ϕα(E′), (5.70)

where 3(E) =
√

E. By virtue of the simple functional forms chosen for this configuration, the eigenvalues and
eigenfunctions can be determined exactly. In particular, the eigenvalues are the roots of the dispersion law

Λ(α) = α+Σ0
a− ν̄pΣ0

f −
∑

j

λ j

λ j +α
ν̄

j
dΣ0

f = 0, (5.71)

where Σ0
a = Σ0

t −Σ0
s , and the eigenfunctions read

ϕα(E) =

√
E

α+Σ0
t

Σ0
s M(E) + ν̄pΣ0

fχp(E) +
∑

j

λ j

λ j +α
ν̄

j
dΣ0

fχ
j
d(E)

 , (5.72)

for the values α that satisfy the dispersion law. As for the adjoint eigenvalue problem, we have the equation[
α

3(E)
+Σt(E)

]
ϕ†α(E) = Σs(E)

∫ ∞

0
dE′ M(E′)ϕ†α(E′) + ν̄pΣ f (E)

∫ ∞

0
dE′ χp(E′)ϕ†α(E′)

+
∑

j

λ j

λ j +α
ν̄

j
dΣ f (E′)

∫ ∞

0
dE′ χ j

d(E′)ϕ†α(E′). (5.73)

By inspection, the eigenfunctions are ϕ†α(E) = 1, independently of α, with the same associated spectrum as in the
direct problem.
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Figure 5.7: A continuous-energy transport problem. Comparison of the direct eigenfunctions resulting from the
matrices filled by α-k power iteration (displayed as symbols) with the reference solutions given in Eq. (5.72)
(displayed as solid lines). Left: blue circles denote the fundamental eigenfunction ϕα0 (E): right: red squares the
second eigenfunction ϕα1 (E) and green triangles the third eigenfunction ϕα2 (E).

For this example, we have chosen the following parameters: Σ0
c = 0.6, Σ0

s = 0.3, Σ0
f = 0.1; for the fission

multiplicities we have set ν̄p = 2 and ν̄ j
d = β jν̄d, with ν̄d = 0.5, β1 = 0.25 and β2 = 0.75; for the scattering law we

have taken Es = 10−5; for the prompt and delayed fission kernels we have taken the averages Ep = 1, E1
d = 0.1 and

E2
d = 0.01, respectively; for the precursor decay constants we have taken λ1 = 2.5 and λ2 = 5.

weighting function α0 [s-1] α1 [s-1] α2 [s-1]

exact -0.44365 -2.51495 -5.04140

α-k -0.44369 -2.51490 -5.04141
Generalized IFP -0.44367 -2.51493 -5.04132

Table 5.7: Continuous-energy model. Comparison of the first few eigenvalues obtained from the matrices scored
with the method shown in the first column, with N = 1024 energy groups.

The first few eigenvalues obtained from the matrices are compared to the reference solutions in Tab. 5.7 for N =

1024 energy meshes. The direct eigenfunctions resulting from the matrices filled by α-k power iteration (with 103

inactive cycles, 103 active cycles and 105 particles per cycle) are compared to the analytical solutions in Fig. 5.7,
for a discretization corresponding to G = 256 energy intervals. The first few modes are in excellent agreement
with the reference solutions. The numerical findings for the adjoint problem, obtained from the Generalized IFP
method with 108 particles and 15 latent generations, are shown in Fig. 5.8: again, an excellent agreement is found
between the eigenvectors stemming from the matrices and the exact solutions, despite the fact that the adjoint
eigenfunctions for this problem are degenerate.
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Figure 5.8: A continuous-energy transport problem. Comparison of the adjoint eigenfunctions resulting from the
matrices filled by Generalized IFP method (displayed as symbols) with the reference solutions given in Eq. (5.72)
(displayed as solid lines). Blue circles denote the fundamental adjoint eigenfunction ϕ†α0 (E); red squares the second
adjoint eigenfunction ϕ†α1 (E); green triangles the third adjoint eigenfunction ϕ†α2 (E).

5.4 Discussion

The examples discussed in the previous section are very simple and have been precisely chosen in order to compare
the obtained numerical results against reference solutions. In view of the application of the proposed methods to
real-world reactor configurations, some issues must be carefully examined and taken into account.

The first concerns the size of the matrix operators and hence the involved memory footprint. A first glance
to the involved order of magnitudes might suggest that the overall size of the matrices involved in α-eigenvalue
problems may become too large to work with for any practical case, due to the need of separately discretizing
space, direction and energy (contrary to the k-eigenvalue problem, where only a spatial discretization is typically
required [35, 22]). Consider for instance a three-dimensional configuration, and assume that each variable is
partitioned into 102 bins: this would lead to a total number of 1010 bins, i.e., to a number of 1020 matrix entries.
This applies to both direct and adjoint matrices. Such huge number, supposing that each entry is represented by a
double-precision floating-point number, clearly corresponds to an unaffordable memory on current machines (and
on future, at least for a very long time).

In practice, however, the α-eigenvalue matrices have been already applied to realistic systems, including small
research reactors [8]: as discussed in Section 5.2.1, the involved matrices have a sparse nature, and the number of
non-null entries is much smaller that the total size of the matrices (see in particular Eq. (5.49)). Furthermore, one
can often take advantage of the existing symmetries in order to reduce the dimension of the problem. Moreover,
for the energy and angle variable 102 bins are probably excessive with respect to most problems of interest. To
provide an example, for a two-dimensional representation of a reactor core, by taking Nx = Ny = 102 for the spatial
mesh, M = 8 for the directions, G = 30 for the energy groups and J = 6 for the precursor families, we would
have ∼ 6× 1013 bins for the full matrix, but less than ∼ 6× 108 non-null entries. Even in this case, however,
and despite all the simplifications, the memory footprint would be challenging for current machines. Numerical
tests of convergence should be also performed a posteriori in order to ensure that at least the spatial shape of the
eigenvectors has been correctly captured. The benchmark configurations examined in this chapter clearly do not
address these problems, since only a single dimension has been discretized and careful convergence tests were thus
possible.

The second issue concerns the applicability of these matrices to the analysis of system changes. The whole
α-eigenvalue expansion is based on the assumption that the physical properties of the system under analysis (such
as cross sections, fission spectra, multiplicities, etc.) do not evolve with time: eigenvalues and eigenvectors are
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computed for a specific state. In real-world configurations, these properties naturally change, due to external
actions (control rod movements), physical feedbacks (Doppler effect, etc.), or both. In principle, once the system
changes the computed alpha eigenvalues and eigenvectors are no longer valid and cannot be used. This leads to
two different approaches: one can either introduce (short) time steps and re-compute the required matrices at each
time step, or use some clever interpolation between the initial and final configurations of the system. The former
method would lead to an unreasonable memory occupation (and most probably also computation time). The latter
method has been suggested [85] and successfully applied [87] for the Transient Fission Matrix method, and seems
thus much more promising. In particular, the application of perturbation techniques such as correlated sampling
has been shown to enhance the performances of the interpolation methods in realistic applications, including multi-
physics feedbacks [86]. An overview of the Transient Fission Matrix method is provided in Appendix A.

In view of these considerations, and based on the increasing availability of direct time-dependent Monte Carlo
simulations for reactor physics problems (which natively include moving geometries and physical feedbacks [141,
41]), the main interest of the α-eigenvalue matrix operators seems for higher-order mode analysis rather than for
reconstructing the time evolution of a system via eigenmode expansion: knowledge of the first few α-eigenvalues
and eigenfunctions for a given reactor state might help, e.g., in locating the most appropriate detector positions
for on-line core monitoring. Nonetheless, a comparison in terms of performances and accuracy with respect to
existing matrix-based methods (using time-dependent Monte Carlo methods as a reference) for the approximation
of the reactor kinetics will deserve further investigation.

5.5 Conclusions

Knowledge of the α-eigenpairs is key to several applications in reactor physics. In a series of recent works, it has
been proposed to use Monte Carlo methods in order to estimate the elements of the matrices that represent the
discretized formulation of the operators involved in the α-eigenvalue problem. In this chapter, we have suggested
some strategies to overcome two possible shortcomings of the existing algorithms. We have shown that the bias
possibly appearing on the direct fundamental eigenvalue and eigenvector for smaller sizes of the discretized matrix
can be removed by using the α-k modified power iteration method as a weighing function. This corresponds
to weighting the matrix elements by the fundamental mode ϕα0 , which is expected to preserve the fundamental
eigenvalue and eigenvector of the matrix, similarly to what occurs for the fission matrix in k-eigenvalue problems.
We have successively shown that the matrix associated to the adjoint α-eigenvalue problem can be estimated
by using the G-IFP method, which was recently introduced as a reference Monte Carlo method to compute the
fundamental adjoint α-eigenfunction. Since this approach corresponds to weighting the matrix elements by the
fundamental adjoint eigenfunction, the fundamental adjoint eigenvector of the discretized matrix will be similarly
preserved.

The proposed direct and adjoint methods have been verified on two benchmark problems where exact reference
solutions were available for both the eigenvalue spectrum and the direct and adjoint eigenfunctions, and their
convergence and accuracy have been extensively assessed. The impact of alternative weighting schemes (such as
the k-eigenvalue fundamental mode or the flux resulting from solving a fixed-source problem) and the differences
between the adjoint matrix and the transposed direct matrix are most probably emphasized by the choice of the
benchmark problems presented in this chapter: in the remaining parts of this manuscript, we will extensively assess
the performances and the robustness of the proposed method for more realistic configurations combining spatial
and energy heterogeneities.

We conclude by observing that the strategy presented in order to fill the matrix elements of the adjoint matrix by
the G-IFP method might be easily extended to the k-eigenvalue formulation: instead of using the transposed direct
fission matrix, one could use the regular IFP method (which yields the importance function for the k-eigenvalue
problems) so as to produce the adjoint fission matrix, thus avoiding the bias on the fundamental adjoint eigenvector.
Moreover, since the proposed method estimate the linear and adjoint transport operators, it is in principle possible
to combine the corresponding matrices in order to recast and solve eigenvalue problems different from the α-
formulation.
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Chapter 6

Eigenvalue separation: a numerical
investigation

6.1 Introduction

In the previous Chapter, we have successfully generalized the well-known fission matrix method so as to fill
by Monte Carlo simulations the elements of matrix operators involved in the α-eigenvalue formulation, which
allows having a complete (albeit approximated) picture of the whole α-spectrum. In this Chapter, these tools
will be deployed together with the fission matrix method for the spectral analysis of a few relevant benchmark
configurations, for the purpose of illustrating how the higher-order k- and α-eigenvalues and eigenfunctions behave
as a function of the physical parameters. Such investigation extends the work done in Chapter 4 concerning the
fundamental eigenvalues and eigenfunctions. All the simulations presented in this Chapter have been performed
by using the newly implemented test-bed Monte Carlo code described in Section 3.7.1. As mentioned in Chapter 1,
the tightness (or equivalently the level of decoupling) of a reactor core is typically characterized in terms of the
eigenvalue separation, which for the k-eigenvalue formulation reads

E.S.n(k) =
1
kn
−

1
k0
, (6.1)

with n ≥ 1 [37, 98, 144, 73, 120]. The case n = 1 plays a peculiar role, and is frequently referred to without using
the index [120], namely,

E.S. = E.S.1(k) =
1
k1
−

1
k0
. (6.2)

The system is said to be tightly coupled if the first two eigenvalues are separated, and loosely coupled otherwise.
A closely related quantity is the dominance ratio

DR =
k1

k0
, (6.3)

which is a bounded value smaller than one and it can be monotonically mapped onto the E.S., thus sharing the
same information content.

As for the α-eigenvalues, the concept of eigenvalue separation or dominance ratio does not seem to have drawn
much attention, to the best of our knowledge, although in the mathematical literature the analogous notion of
spectral gap is widely used for eigenvalue problems similar to the α-eigenvalue formulation (for instance in the
context of the time-dependent diffusion equation [84, 125, 26, 2, 44]). In the same spirit as for the k-eigenvalue
problems, we can thus introduce the notion of eigenvalue separation for the α-eigenvalues, which immediately
calls for a distinction between the formulation including the precursor contributions (usually called the “delayed
eigenvalues”) and the one neglecting the precursor contributions (usually called the “prompt eigenvalues”). In the
following, we will denote by α the eigenvalues including the delayed contributions, whereas αp will denote the
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eigenvalues including only the prompt contributions. This distinction stems from the fact that, for a typical PWR
reactor, the α-spectrum will have a natural ordering imposed by the fact that [72, 133, 132, 70]

ν
j
d � 1, and λ j� Σt3. (6.4)

As a consequence, the α-spectrum splits into a “prompt” component and a “delayed” component, which are easily
distinguished on the complex plane [133, 132]. Numerical investigations have shown that the delayed part of the
α spectrum consists of J “clusters” of real eigenvalues, with the j-th cluster, j = 1, · · · , J, being a denumerable set
of eigenvalues in the interval (−λ j,−λ j−1), J being the total number of precursor families (we set λ0 to infinity).
These eigenvalues are tightly regrouped at the right of each decay constant −λ j for family j on the complex
plane [70, 133, 132]. The occurrence of the clustering of delayed eigenvalues had been first suggested by [45].
These considerations have been previously introduced for the ”rod model” analysis in Section 5.3.1. The prompt
part of the α-spectrum contains discrete eigenvalues, these latter appearing at the left of −λ j [70, 133, 132, 1] and
a continuum portion (if any) at the left of the Corngold limit. In view of these considerations, it seems natural to
introduce the delayed eigenvalue separation

E.S.n(αd) = αd,n−α0, (6.5)

where αd,n is the delayed eigenvalue of order n and α0 is the fundamental eigenvalue, and the prompt eigenvalue
separation

E.S.n(αp) = αp,n−αp,0, (6.6)

where αp,n is the prompt eigenvalue of order n and αp,0 is the prompt eigenvalue with the largest real part.

Experimental and numerical investigations have shown that a small E.S.(k) would increase the probability for a
system to propagate instabilities, thus enhancing complex space-time patterns (as opposed to systems displaying a
large E.S., which behave as point-kinetics) [120]. This is especially relevant for loosely-coupled nuclear reactors,
such as breeders having alternating regions of highly-enriched fuel and depleted blankets [120]. By virtue of its
key role in understanding the system kinetics, and in particular the reactor response due to external perturbations
and tilts, the k-eigenvalue separation has been extensively investigated [127, 38, 3, 54, 113, 78].

In the following, we will explore and compare the properties of E.S.n(k), E.S.n(αd) and E.S.n(αp) for a few sig-
nificant configurations, and will complement this analysis by a careful investigation of the associated fundamental
and higher-order eigenmodes. In order to probe the behavior of these estimators, we have selected some simple
systems, so that we can avoid unnecessary complications and yet retain the key physical ingredients. The underly-
ing idea is to ascertain whether the k and α spectral analysis can provide useful information concerning the system
response when a parameter related to a decoupling effect is progressively increased. The eigenpairs associated
to the eigenvalue problems discussed in this chapter have been computed with the MATLAB script mentioned in
Section 5.2.5, based on the matrices estimated by the test-bed Monte Carlo code.

6.2 Choice of the benchmark configurations

In [120] it has been pointed out that homogeneous and heterogeneous systems behave quite differently with re-
spect to eigenvalue separation. In homogeneous systems, small E.S.(k) can be attained only by increasing the
system size. Under these circumstances, not only E.S.1(k), but all higher-order E.S.n(k) will be small: the physical
meaning of this behavior is that many k-eigenmodes will be excited simultaneously. Thus, subject to local pertur-
bations, the system will generally respond with complex space-dependent patterns, where several k-eigenmodes
may be present at the same time, and the fundamental eigenmode will not have a privileged role [120]. On the
contrary, in heterogeneous systems it is possible to have a small E.S.1(k), but much larger higher-order E.S.n(k):
these configurations are typically obtained in loosely-coupled cores where two fissile regions are separated by a
sufficiently thick central moderator or absorber layer.

Based on these observations, for our numerical investigations we have selected two families of benchmark
configurations, respectively homogeneous and heterogeneous, whose physical parameters will be presented in
Section 6.3.

The systems will be made progressively more decoupled, in the sense defined above, by acting on the overall
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system size (for the homogeneous configurations), and on the thickness of the layers (for the heterogeneous con-
figurations): specific details will be provided in the following sections. In order to make our comparisons fair, we
have decided to make each configuration critical (i.e., k0 = 1 or equivalently α0 = 0) by adjusting a free parameter.
In practice, this is achieved by adjusting the capture cross section of the fissile material: the computed k0 must
lie close to 1, within 20 pcm uncertainty. An important point is that, since we set the physical parameters so that
the configurations are critical, the fundamental k-eigenmode will coincide with the fundamental α-eigenmode. As
a consequence, we will be allowed to use the regular k power iteration in order to weight the matrix elements
required for the spectral analysis, which ensures faster convergence of the Monte Carlo methods.

For both the homogeneous and heterogeneous systems, we will investigate 6 different configurations, corre-
sponding to an increasing degree of decoupling. Several kinds of boundary conditions will be tested, in order to
ascertain their impact on the eigenvalue separation. Since the properties of the α eigenvalue separation are rather
unexplored, we have primarily used the k-eigenvalue separation to assess the degree of decoupling of the proposed
configuration, by setting a target of at least DR = 0.95 for the most decoupled configuration of the benchmarks.
For each case, we will analyze the dominance ratio from Eq. (6.3), the k-eigenvalue separation from Eq. (6.1), and
the prompt and delayed α-eigenvalue separation using Eqs. (6.6) and (6.5). Moreover, when significant, we will
show the first few k- and α-eigenmodes.

6.3 Simulation settings

The configurations analyzed in this chapter address multi-group particle transport in simplified 1D and 2D geome-
tries, with reflecting and leakage boundary conditions. The energy domain is partitioned into three groups: fast,
epithermal and thermal. Macroscopic cross sections, velocity, neutron yields and prompt fission emission spectra
have been taken with minimal modifications from the reference [163], where homogenized materials compatible
with realistic configurations had been previously proposed. In particular, we have adjusted the velocities and con-
sequently modified the macroscopic cross sections defined for the UO2 and H2O materials of reference [163] in
order to preserve reaction rates.

Precursor families (which were not available in [163]) are defined by using the 235U delayed data from the
ENDF/B-VI nuclear library [102] recalled by Cullen in [29]. The average delayed emission energy Ē j

d is as-
sociated to a specific speed 3̄, which is linearly interpolated between the velocity values (31 and 32) defined in
reference [163]. Emission probabilities for each delayed neutron are linearly interpolated as:

χ
j
d1 = 1−

|3̄− 31|

31− 32
, (6.7)

χ
j
d2 = 1−

|3̄− 32|

31− 32
, (6.8)

for the first and the second energy group, respectively.

According to these modifications, the materials UO2 and H2O will have the properties shown in Tabs. 6.1, 6.2
and 6.3, respectively.

parameters fast group epithermal group thermal group

3(g) [cm/s] 1.66743×109 1.73734×107 3.46850×105

Σc(g) [cm-1] 3.264×10−4 9.7371×10−3 2.9252×10−2

Σ f (g) [cm-1] 3.0586×10−3 2.1579×10−3 5.6928×10−2

Σs(1→ g) [cm-1] 2.21062×10−1 7.3843×10−2 0

Σs(2→ g) [cm-1] 0 7.77642×10−1 4.3803×10−2

Σs(3→ g) [cm-1] 0 0 1.55272

ν̄(g) [-] 2.4 2.4 2.4

χp(g) [-] 0.878198 0.121802 0

Table 6.1: Parameters of the fissile material for the heterogeneous configuration.

87



CHAPTER 6. EIGENVALUE SEPARATION: A NUMERICAL INVESTIGATION

parameters 1st family 2nd family 3rd family 4th family 5th family 6th family

β j [pcm] 2.275×101 1.17455×102 1.12138×102 2.51407×102 1.03077×102 4.3173×101

λ j [cm-1] 1.3336×10−2 3.2739×10−2 1.2078×10−1 3.0278×10−1 8.4949×10−1 2.8530

χ
j
d(1) [-] 0.52296 0.56487 0.54697 0.61504 0.59265 0.60533

χ
j
d(2) [-] 0.47704 0.43513 0.45303 0.38496 0.40735 0.39467

Table 6.2: Delayed parameters of the fissile material.

parameters fast group epithermal group thermal group

3(g) [cm/s] 1.66743×109 1.73734×107 3.46850×105

Σc(g) [cm-1] 3.05×10−4 3.699×10−4 1.825×10−2

Σs(1→ g) [cm-1] 2.27125×10−1 1.0464×10−1 0

Σs(2→ g) [cm-1] 0 1.02817 9.7961×10−2

Σs(3→ g) [cm-1] 0 0 2.76295

Table 6.3: Parameters of the moderator material for the heterogeneous configuration.

The heterogeneous configurations described in Section 6.5 are composed of these two materials. The homo-
geneous configurations analyzed in Section 6.4 are characterized by a single material obtained by summing the
macroscopic cross sections of the fissile and the moderator materials. Properties and parameters of this homoge-
nized material are defined in Tab. 6.4.

parameters fast group epithermal group thermal group

3(g) [cm/s] 1.66743×109 1.73734×107 3.46850×105

Σc(g) [cm-1] 6.314×10−4 1.0107×10−2 4.7502×10−2

Σ f (g) [cm-1] 3.0586×10−3 2.1579×10−3 5.6928×10−2

Σs(1→ g) [cm-1] 4.48187×10−1 1.78483×10−1 0

Σs(2→ g) [cm-1] 0 1.805812 1.41764×10−1

Σs(3→ g) [cm-1] 0 0 1.55272×101

ν̄(g) [-] 2.4 2.4 2.4

χp(g) [-] 0.878198 0.121802 4.31567

Table 6.4: Parameters of the material for the homogeneous configurations.

6.4 Homogeneous benchmark configurations

We begin our analysis with the case of homogeneous configurations. The occurrence of decoupling effects for
homogeneous configurations can emerge for a sufficiently large size of the system with respect to the neutron mi-
gration area [120]. In this section, we investigate the presence of these effects for critical 1D and 2D homogeneous
configurations with reflective and leakage boundary conditions.

The critical state of the homogeneous configurations having reflective boundary conditions can be determined
exactly. The critical level is attained by adjusting the macroscopic capture cross sections by a factor a as follows:

Σ′c = aΣc. (6.9)

The value of a corresponding to the physical parameters given in Tab. 6.4 is equal to a = 1.49698 independently
of the domain size. For a given parameter a, the dominance ratio will be imposed by adjusting the size of the
domain [120]. Six cases have been selected for the analysis of homogeneous systems, each defined by a character-
istic length L ranging from 50 cm to 100 cm. This length corresponds to the actual length of the geometry for 1D
configurations and to the side of a square geometry for 2D configurations.
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The parametric study performed for homogeneous systems with leakage boundary conditions requires an ad-
ditional step, since the size of the domain L does influence the critical state of the configuration. In particular,
we have started our analysis from the largest (the most decoupled) 1D and 2D configurations found for reflective
boundary conditions. Then, we have estimated the new coefficient a in order to readjust the configuration to the
critical level after replacing reflective boundary conditions with leakage boundary conditions. This change of the
boundary conditions implies that the the critical level depends on the size of the system. For this reason, we have
adjusted a second time the capture cross section by adding a factor b as follows:

Σ′c = aΣc +
b
3
, (6.10)

for each size of the configuration under analysis.

The introduction of a second factor b/3 allows a finer adjustment with respect to the multiplicative factor a.
This additional adjustment is required in order to calibrate all cases of different sizes to the critical level. This
adjustment has been performed during a power iteration calculation that iteratively seeks the value of b which
makes the system critical.

6.4.1 Homogeneous configurations with reflective boundary conditions

1D geometry

The first benchmark configuration analyzed in this section concerns 1D homogeneous systems of different lengths
with reflective boundary conditions. The fundamental eigenvalues k0 computed by the k power iteration are shown
in the second column of Tab. 6.5. For these calculations, 5× 104 particles per cycle are simulated, for a total
of 4.1× 103 cycles (4× 103 active, 102 inactive). During these simulations, we have activated the matrix-filling
methods.

In order to build the matrix operators, the length of the domain has been partitioned into Nx = c×L space
intervals along the x-axis, where c = 10 cm-1, in order to keep a constant bin width. The cosine of the particle
direction with respect to the x-axis is uniformly partitioned into Mx = 4 intervals, whereas the energy groups and
precursor families are fixed at G = 3 and J = 6, respectively. The total size of the matrix defining the α-eigenvalue
problem ranges from 9.0×103 (L = 50 cm) to 1.8×104 (L = 100 cm), whereas the matrix defining the k-eigenvalue
problem ranges from 6.0×103 to 1.2×104. The eigenvalues computed from the matrix-form of the corresponding
eigenvalue problem are shown in Tabs. 6.5 (k-eigenvalues), 6.6 (α-eigenvalues) and 6.7 (prompt α-eigenvalues).
All fundamental eigenvalues k0 computed from the matrix of the corresponding eigenvalue problem are within 2σ
standard deviation from the Monte Carlo results obtained from the k power iteration. The absolute values of the
fundamental eigenvalues α0 are smaller than 2×10−3 s-1.

L [cm] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

50 0.9999±1.0×10−4 1.0000 0.9832 0.9356 0.8644 0.7789 0.6881

60 0.9999±1.0×10−4 1.0000 0.9882 0.9545 0.9024 0.8369 0.7639

70 0.9999±1.0×10−4 1.0000 0.9914 0.9661 0.9266 0.8757 0.8167

80 1.0001±1.0×10−4 1.0001 0.9934 0.9741 0.9431 0.9025 0.8543

90 0.9999±1.0×10−4 1.0000 0.9948 0.9793 0.9544 0.9215 0.8817

100 0.9999±1.0×10−4 0.9999 0.9956 0.9831 0.9628 0.9355 0.9023

Table 6.5: First k-eigenvalues for the 1D homogeneous configuration with reflective boundary conditions as a
function of the size L of the system. The second column displays the fundamental eigenvalues k0 computed by
the test-bed Monte Carlo code for the k-eigenvalue problem and the corresponding standard deviations. All other
eigenvalues have been computed from the matrix-form of the k-eigenvalue problem of the corresponding case.
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L [cm] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

50 4.518×10−4 −1.315×10−2 −1.329×10−2 −1.332×10−2 −1.332×10−2 −1.333×10−2

60 −4.818×10−4 −1.307×10−2 −1.327×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2

70 −1.451×10−4 −1.296×10−2 −1.325×10−2 −1.330×10−2 −1.331×10−2 −1.333×10−2

80 1.771×10−3 −1.282×10−2 −1.322×10−2 −1.329×10−2 −1.331×10−2 −1.333×10−2

90 −6.398×10−4 −1.267×10−2 −1.319×10−2 −1.327×10−2 −1.330×10−2 −1.333×10−2

100 −1.032×10−3 −1.251×10−2 −1.315×10−2 −1.326×10−2 −1.329×10−2 −1.333×10−2

Table 6.6: First α-eigenvalues for the 1D homogeneous configuration with reflective boundary conditions as a
function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.

L αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

50 −3.015×102 −1.086×103 −3.333×103 −6.762×103 −1.102×104 −1.576×104

60 −3.047×102 −8.536×102 −2.437×103 −4.922×103 −8.114×103 −1.179×104

70 −3.033×102 −7.049×102 −1.888×103 −3.763×103 −6.215×103 −9.118×103

80 −2.975×102 −6.087×102 −1.514×103 −2.977×103 −4.916×103 −7.258×103

90 −3.055×102 −5.481×102 −1.270×103 −2.444×103 −4.008×103 −5.920×103

100 −3.063×102 −5.059×102 −1.090×103 −2.048×103 −3.337×103 −4.927×103

Table 6.7: First prompt α-eigenvalues for the 1D homogeneous configuration with reflective boundary conditions as
a function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.

For the sake of completeness, we show both the k- and the α-spectra on the complex plane in Fig. 6.1. The
(very small) imaginary part of the k-spectrum is merely due to the statistical uncertainties propagated from the
stochastic estimation of the matrix elements on the eigenvalues. The α-spectrum displays two circles due to the
four direction intervals chosen for the simulations: this feature is repeated for each energy group considered in the
spectrum, as already pointed out in reference [8]. Figure 6.2 shows the zoom on all delayed eigenvalue clusters
(left) and on the delayed eigenvalue cluster associated to the first precursor family (right). The eigenvalues are
concentrated on the right of the −λ j values, as expected from reference [133, 132]. The dominant eigenvalue α j

d,0
of the j-th delayed cluster is separated from the other eigenvalues of the same precursor family [133, 132]. The
zoom of Fig. 6.2 (left) shows the gap between α j

d,0 and −λ j values for the last precursor families ( j = 4,5,6). The

computed values of α j
d,0 and α j

d,1 for the last three precursor families are shown in Tab. 6.8.

Figure 6.1: Spectra of the k (left) and the α (right) eigenvalue problem for the 1D homogeneous configuration with
reflective boundary conditions for the most decoupled case (L = 100 cm).
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Figure 6.2: Zoom on the α-spectrum on the delayed region (left) and in the first delayed cluster (right) for the
1D homogeneous configuration with reflective boundary conditions for the most decoupled case (L = 100 cm).
Vertical lines have been added in order to indicate the values of −λ1 (blue), −λ4 (magenta), −λ5 (cyan) and −λ6
(green).

L [cm] α4
d,0 [s-1] α4

d,1 [s-1] α5
d,0 [s-1] α5

d,1 [s-1] α6
d,0 [s-1] α6

d,1 [s-1]

50 −1.914×10−1 −2.693×10−1 −7.383×10−1 −8.139×10−1 −2.684 −2.802

60 −1.921×10−1 −2.596×10−1 −7.393×10−1 −8.049×10−1 −2.686 −2.789

70 −1.919×10−1 −2.505×10−1 −7.390×10−1 −7.960×10−1 −2.685 −2.776

80 −1.904×10−1 −2.420×10−1 −7.371×10−1 −7.882×10−1 −2.683 −2.765

90 −1.923×10−1 −2.353×10−1 −7.392×10−1 −7.821×10−1 −2.686 −2.755

100 −1.926×10−1 −2.300×10−1 −7.400×10−1 −7.776×10−1 −2.686 −2.748

Table 6.8: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 4,5,6) for the 1D
homogeneous configuration with reflective boundary conditions as a function of the size L of the system. These
values have been computed from the matrix-form of the α-eigenvalue problem of the corresponding case.

The k-eigenvalues computed from the matrix-form of the k-eigenvalue problem are used in order to estimate the
dominance ratio DR and the eigenvalue separations E.S.n(k) of the first five orders: they are shown in Tab. 6.9 and
plotted in Fig. 6.3. The values of the dominance ratio increase for increasing length of the system from DR = 0.9832
up to DR = 0.9957. The values of the eigenvalue separation for these homogeneous configurations decrease for
increasing length of the system and an even faster decrease is observed for higher orders. This behaviour seems to
support the claims previously discussed in the literature [120].

L [cm] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

50 9.832×10−1 1.710×10−2 6.886×10−2 1.569×10−1 2.838×10−1 4.534×10−1

60 9.882×10−1 1.190×10−2 4.762×10−2 1.081×10−1 1.949×10−1 3.091×10−1

70 9.914×10−1 8.689×10−3 3.503×10−2 7.923×10−2 1.420×10−1 2.245×10−1

80 9.933×10−1 6.726×10−3 2.671×10−2 6.044×10−2 1.081×10−1 1.707×10−1

90 9.948×10−1 5.232×10−3 2.108×10−2 4.776×10−2 8.520×10−2 1.341×10−1

100 9.957×10−1 4.301×10−3 1.708×10−2 3.861×10−2 6.884×10−2 1.082×10−1

Table 6.9: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for the 1D homogeneous
configuration with reflective boundary conditions as a function of the size L of the system.
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Figure 6.3: Dominance ratio (left) and k-eigenvalue separations (right) for the 1D homogeneous configuration
with reflective boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k) green squares, E.S.4(k)
cyan diamonds and E.S.5(k) magenta triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results
are shown in Tab. 6.10, whereas the prompt results are shown in Tab. 6.11. The values of delayed eigenvalue
separations (Fig. 6.4, left) are almost insensitive to the length of the system. This is mainly due to the presence
of the clusters of the delayed eigenvalues. Conversely, and quite surprisingly, the behaviour of the prompt α-
eigenvalue separations (Fig. 6.4, right) is qualitatively similar to the k-eigenvalue separations.

L [cm] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

50 −1.360×10−2 −1.374×10−2 −1.377×10−2 −1.378×10−2 −1.378×10−2

60 −1.259×10−2 −1.279×10−2 −1.283×10−2 −1.284×10−2 −1.284×10−2

70 −1.281×10−2 −1.310×10−2 −1.315×10−2 −1.317×10−2 −1.318×10−2

80 −1.460×10−2 −1.499×10−2 −1.506×10−2 −1.508×10−2 −1.509×10−2

90 −1.203×10−2 −1.255×10−2 −1.263×10−2 −1.266×10−2 −1.267×10−2

100 −1.148×10−2 −1.212×10−2 −1.222×10−2 −1.226×10−2 −1.228×10−2

Table 6.10: Eigenvalue separations of the first delayed α-eigenvalues for the 1D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.

L [cm] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

50 −7.849×102 −3.032×103 −6.460×103 −1.072×104 −1.546×104

60 −5.490×102 −2.133×103 −4.617×103 −7.810×103 −1.148×104

70 −4.016×102 −1.585×103 −3.460×103 −5.911×103 −8.815×103

80 −3.112×102 −1.217×103 −2.679×103 −4.618×103 −6.960×103

90 −2.426×102 −9.647×102 −2.138×103 −3.703×103 −5.615×103

100 −1.996×102 −7.840×102 −1.741×103 −3.030×103 −4.621×103

Table 6.11: Eigenvalue separations of the first prompt α-eigenvalues for the 1D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.
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Figure 6.4: Delayed (left) and prompt (right) α-eigenvalue separations for the 1D homogeneous configuration
with reflective boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(α) red circles, E.S.2(α) blue crosses, E.S.3(α) green squares, E.S.4(α)
cyan diamonds and E.S.5(α) magenta triangles.

We have also examined the corresponding fundamental and first-order eigenmodes for k, α and prompt α eigen-
value formulations. The reflective boundary conditions force the fundamental mode to be spatially flat, whereas
the derivative of the first-order mode is null at the boundaries and displays a node (i.e. a spatial location where
the eigenfunction flips sign) at the center of the system. No visible differences are observed with respect to the
eigenvalue formulation and to the length of the system. The α-eigenmodes associated to each dominant eigenvalue
α

j
d,0 as the j-th delayed cluster have the same spatial distribution of the fundamental eigenmodes ϕα,0 and ϕαp,0, as

expected from reference [133, 132]. Moreover, the α-eigenmodes associated to the precursor concentrations of the
fundamental order c j

α,0 are positive, whereas precursor concentrations associated to the dominant eigenvalue α j
d,0

of each delayed cluster change sign [133, 132].

2D geometry

The second set of benchmark configurations analyzed in this section concerns 2D homogeneous systems of dif-
ferent sizes with reflective boundary conditions. The geometry for these configurations is a square of side L. The
fundamental eigenvalues k0 computed by the k power iteration are shown in the second column of Tab. 6.12. For
these calculations, 5× 104 particles per cycle are simulated, for a total of 4.1× 103 cycles (4× 103 active, 102

discarded). During these simulations, we have activated the matrix-filling methods.

For the matrix operators, the size of the domain has been partitioned into Nx = Ny = c×L space intervals along
both x- and y- axes, where c = 0.3 cm-1, in order to keep a constant bin size. The cosine of the particle direction
with respect to both spatial axes is uniformly partitioned into Mx = My = 2 intervals, whereas the energy groups
and precursor families are fixed at G = 3 and J = 6, respectively. The total size of the matrix defining the α-
eigenvalue problem ranges from 4.050×103 (L = 50 cm) to 1.620×104 (L = 100 cm), whereas the matrix defining
the k-eigenvalue problem ranges from 2.700×103 to 1.080×104. The eigenvalues computed from the matrix-form
of the corresponding eigenvalue problem are shown in Tabs. 6.12 (k-eigenvalues), 6.13 (α-eigenvalues) and 6.14
(prompt α-eigenvalues). All fundamental eigenvalues k0 computed from the matrix of the corresponding eigenvalue
problem are within 1σ standard deviation from the Monte Carlo results obtained from the k power iteration. The
absolute values of the fundamental eigenvalues α0 are smaller than 2×10−3 s-1.
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L [cm] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

50 0.9999±1×10−4 1.0000 0.9320 0.9316 0.8702 0.7664 0.7661

60 0.9999±1×10−4 0.9999 0.9522 0.9515 0.9070 0.8277 0.8274

70 0.9999±1×10−4 0.9999 0.9642 0.9641 0.9300 0.8685 0.8683

80 1.0000±1×10−4 1.0000 0.9726 0.9722 0.9462 0.8971 0.8963

90 0.9999±1×10−4 0.9999 0.9781 0.9780 0.9568 0.9168 0.9167

100 1.0000±1×10−4 1.0000 0.9824 0.9821 0.9651 0.9322 0.9316

Table 6.12: First k-eigenvalues for the 2D homogeneous configuration with reflective boundary conditions as a
function of the size L of the system. The second column displays the fundamental eigenvalues k0 computed by
the test-bed Monte Carlo code for the k-eigenvalue problem and the corresponding standard deviations. All other
eigenvalues have been computed from the matrix-form of the k-eigenvalue problem of the corresponding case.

L [cm] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

50 −5.026×10−4 −1.329×10−2 −1.329×10−2 −1.332×10−2 −1.333×10−2 −1.333×10−2

60 −1.077×10−3 −1.327×10−2 −1.328×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2

70 −1.648×10−3 −1.325×10−2 −1.325×10−2 −1.330×10−2 −1.332×10−2 −1.333×10−2

80 −7.121×10−4 −1.323×10−2 −1.323×10−2 −1.328×10−2 −1.331×10−2 −1.333×10−2

90 −1.350×10−3 −1.320×10−2 −1.320×10−2 −1.327×10−2 −1.330×10−2 −1.333×10−2

100 4.074×10−4 −1.316×10−2 −1.316×10−2 −1.325×10−2 −1.329×10−2 −1.333×10−2

Table 6.13: First α-eigenvalues for the 2D homogeneous configuration with reflective boundary conditions as a
function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.

L [cm] αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

50 −3.046×102 −3.556×103 −3.576×103 −6.672×103 −1.232×104 −1.232×104

60 −3.068×102 −2.574×103 −2.604×103 −4.800×103 −8.917×103 −8.933×103

70 −3.087×102 −1.997×103 −2.002×103 −3.653×103 −6.760×103 −6.773×103

80 −3.058×102 −1.594×103 −1.612×103 −2.865×103 −5.296×103 −5.337×103

90 −3.074×102 −1.334×103 −1.335×103 −2.349×103 −4.305×103 −4.311×103

100 −3.017×102 −1.127×103 −1.145×103 −1.954×103 −3.546×103 −3.574×103

Table 6.14: First prompt α-eigenvalues for the 2D homogeneous configuration with reflective boundary conditions
as a function of the size L of the system. These values have been computed from the matrix-form of the α-
eigenvalue problem of the corresponding case.

The k- and the α-eigenvalue distributions are shown on the complex plane in Fig. 6.5. For the 2D geometry, the
prompt α eigenvalues fill one circle by leaving two circular regions empty along the imaginary axis. This behaviour
is repeated for the three energy groups. Figure 6.6 shows the zoom on all delayed eigenvalue clusters (left) and on
the delayed eigenvalue cluster associated to the first precursor family (right). Same comments as those presented
for the 1D configuration can be applied to the distribution of the delayed α-eigenvalues on the complex plane. The
zoom of Fig. 6.6 (left) shows the gap between α j

d,0 and −λ j values for the last precursor families. The computed

values of α j
d,0 and α j

d,1 for the last three precursor families ( j = 4,5,6) are shown in Tab. 6.15.
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Figure 6.5: Spectra of the k (left) and the α (right) eigenvalue problem for the 2D homogeneous configuration with
reflective boundary conditions for the most decoupled case (L = 100 cm).

Figure 6.6: Zoom on the α-spectrum in the delayed region (left) and on the first delayed cluster (right) for the
2D homogeneous configuration with reflective boundary conditions for the most decoupled case (L = 100 cm).
Vertical lines have been added in order to indicate the values of −λ1 (blue), −λ4 (magenta), −λ5 (cyan) and −λ6
(green).

L [cm] α4
d,0 [s-1] α4

d,1 [s-1] α5
d,0 [s-1] α5

d,1 [s-1] α6
d,0 [s-1] α6

d,1 [s-1]

50 −1.923×10−1 −2.931×10−1 −7.393×10−1 −8.386×10−1 −2.684 −2.838

60 −1.929×10−1 −2.892×10−1 −7.401×10−1 −8.344×10−1 −2.686 −2.832

70 −1.931×10−1 −2.849×10−1 −7.405×10−1 −8.299×10−1 −2.687 −2.825

80 −1.924×10−1 −2.802×10−1 −7.399×10−1 −8.251×10−1 −2.685 −2.818

90 −1.930×10−1 −2.757×10−1 −7.402×10−1 −8.204×10−1 −2.687 −2.812

100 −1.915×10−1 −2.704×10−1 −7.388×10−1 −8.152×10−1 −2.684 −2.804

Table 6.15: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 4,5,6) for the 2D
homogeneous configuration with reflective boundary conditions as a function of the size L of the system. These
values have been computed from the matrix-form of the α-eigenvalue problem of the corresponding case.

The k-eigenvalues computed from the matrix-form of the k-eigenvalue problem are used in order to estimate the
dominance ratio DR and the eigenvalue separations E.S.n(k) of the first five orders: they are shown in Tab. 6.16 and
plotted in Fig. 6.7. The values of the dominance ratio increase for increasing size of the system from DR = 0.9321
up to DR = 0.9824. The values of the eigenvalue separation for this homogeneous configurations decrease for
increasing size of the system and an even faster decrease is observed for higher-orders. Contrary to the case of the
1D configuration, the first and second, fourth and fifth orders of eigenvalue separations are extremely close for the
2D configuration: this feature is related to the symmetry properties of this system, which induces a degeneracy in
the eigenvalues.
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L [cm] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

50 9.321×10−1 7.290×10−2 7.337×10−2 1.491×10−1 3.047×10−1 3.053×10−1

60 9.522×10−1 5.015×10−2 5.085×10−2 1.025×10−1 2.081×10−1 2.086×10−1

70 9.643×10−1 3.706×10−2 3.717×10−2 7.509×10−2 1.513×10−1 1.516×10−1

80 9.726×10−1 2.814×10−2 2.851×10−2 5.685×10−2 1.146×10−1 1.157×10−1

90 9.781×10−1 2.234×10−2 2.237×10−2 4.503×10−2 9.060×10−2 9.073×10−2

100 9.824×10−1 1.790×10−2 1.830×10−2 3.624×10−2 7.272×10−2 7.340×10−2

Table 6.16: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for the 2D homogeneous
configuration with reflective boundary conditions as a function of the size L of the system.

Figure 6.7: Dominance ratio (left) and k-eigenvalue separations (right) for the 2D homogeneous configuration
with reflective boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k) green squares, E.S.4(k)
cyan diamonds and E.S.5(k) magenta triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results
are shown in Tab. 6.17, whereas the prompt results are shown in Tab. 6.18. The values of delayed eigenvalue
separations (Fig. 6.8, left) are almost constant as a function of the length of the system, similarly as previously
discussed for the 1D configuration. Moreover, also for this 2D configurations the behaviour of the prompt α-
eigenvalue separations (Fig. 6.4, right) is qualitatively similar to the k-eigenvalue separations. It appears that the
information content of the E.S.(k) concerning the system decoupling is also conveyed by the E.S.(αp), whereas the
E.S.(αd) are less affected, if affected at all. Furthermore, the degeneracy observed for the E.S.(k) affects also the
E.S.(αp), hinting once again to the symmetry properties of these 2D configurations.

L [cm] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

50 −1.279×10−2 −1.279×10−2 −1.281×10−2 −1.282×10−2 −1.282×10−2

60 −1.220×10−2 −1.220×10−2 −1.223×10−2 −1.224×10−2 −1.224×10−2

70 −1.160×10−2 −1.161×10−2 −1.165×10−2 −1.167×10−2 −1.167×10−2

80 −1.251×10−2 −1.252×10−2 −1.257×10−2 −1.260×10−2 −1.260×10−2

90 −1.185×10−2 −1.185×10−2 −1.192×10−2 −1.195×10−2 −1.195×10−2

100 −1.357×10−2 −1.357×10−2 −1.366×10−2 −1.370×10−2 −1.370×10−2

Table 6.17: Eigenvalue separations of the first delayed α-eigenvalues for the 2D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.
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L [cm] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

50 −3.251×103 −3.556×103 −6.368×103 −1.201×104 −1.203×104

60 −2.267×103 −2.574×103 −4.493×103 −8.610×103 −8.626×103

70 −1.689×103 −1.997×103 −3.344×103 −6.452×103 −6.465×103

80 −1.289×103 −1.594×103 −2.559×103 −4.990×103 −5.031×103

90 −1.027×103 −1.334×103 −2.041×103 −3.998×103 −4.004×103

100 −8.257×102 −1.127×102 −1.653×103 −3.244×103 −3.273×103

Table 6.18: Eigenvalue separations of the first prompt α-eigenvalues for the 2D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.

Figure 6.8: Delayed (left) and prompt (right) α-eigenvalue separations for the 2D homogeneous configuration
with reflective boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(α) red circles, E.S.2(α) blue crosses, E.S.3(α) green squares, E.S.4(α)
cyan diamonds and E.S.5(α) magenta triangles.

The corresponding fundamental and first-order eigenmodes have been examined for k, α and prompt α eigen-
value formulations for the most decoupled case (L = 100 cm). The conclusions related to the eigenmodes described
for the 1D configuration apply also to this 2D system.

6.4.2 Homogeneous configurations with leakage boundary conditions

Critical configuration search

We examine now 1D homogeneous systems of different lengths with leakage boundary conditions. For these
systems the factor a has been computed for the most decoupled case (L = 100 cm) from a parametric research
around the value computed for the reflected configurations of the previous sections. A value a = 1.4875 applied to
the macroscopic capture cross section leads to k0 = 0.9999±10−4 from a k power iteration performed with 2×104

particles per cycle and a total of 6×103 cycles (5×103 active, 103 inactive). Then, we have considered the same
lengths defined for Section 6.4.1 and we have estimated the coefficient b from Eq. (6.10) in order to readjust each
case to the critical level. The values b have been iteratively computed by simulating 5×104 particles per cycle and
a total of 5×103 cycles.

Furthermore, for 2D homogeneous systems of different sizes with leakage boundary conditions, a factor
a = 1.4775 has been applied to the macroscopic capture cross section. The k power iteration converges to the
fundamental eigenvalue k0 = 1.0001±10−4. For this simulation we have set 2×104 particles per cycle and a total
of 6×103 cycles (5×103 active, 103 inactive). The values b (from Eq. (6.10)) have been iteratively computed by
simulating 5×104 particles per cycle and a total of 5×103 cycles.

In the following, we will show the results computed for the 1D configurations (Section 6.4.2) and for the the
2D configurations (Section 6.4.2).
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1D geometry

The fundamental eigenvalues k0 computed by the k power iteration are shown in the second column of Tab. 6.19.
For these calculations, 105 particles per cycle are simulated, for a total of 1.2× 103 cycles (103 active, 2× 102

inactive).

In order to compute the matrix operators, the length of the domain has been partitioned into Nx = c×L space
intervals along the x-axis, where c = 10 cm-1, in order to keep a constant bin width. The cosine of the parti-
cle direction with respect to the x-axis is uniformly partitioned into M = 4 intervals, whereas the energy groups
and precursor families are fixed at G = 3 and J = 6, respectively. The total size of the matrix defining the α-
eigenvalue problem ranges from 9.0× 103 (L = 50 cm) to 1.8× 104 (L = 100 cm), whereas the matrix defining
the k-eigenvalue problem ranges from 6.0× 103 to 1.2× 104. The eigenvalues computed from the matrix-form
of the corresponding eigenvalue problem are shown in Tabs. 6.19 (k-eigenvalues), 6.20 (α-eigenvalues) and 6.21
(prompt α-eigenvalues). All fundamental eigenvalues k0 computed from the matrix of the corresponding eigen-
value problem are within 2σ standard deviation from the Monte Carlo results obtained from the k power iteration.
The absolute values of the fundamental eigenvalues α0 are smaller than 2×10−3 s-1. The dominant eigenvalue α j

d,0
of the j-th delayed cluster is separated from the other eigenvalues of the same precursor family [133, 132]. The
computed values of α j

d,0 and α j
d,1 for the last three precursor families ( j = 4,5,6) are shown in Tab. 6.22.

L [cm] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

50 1.0000±1×10−4 1.0001 0.9546 0.8856 0.8019 0.7117 0.6221

60 1.0003±1×10−4 1.0002 0.9680 0.9176 0.8539 0.7820 0.7066

70 1.0002±1×10−4 1.0002 0.9760 0.9379 0.8881 0.8304 0.7676

80 1.0000±1×10−4 1.0001 0.9814 0.9514 0.9118 0.8647 0.8123

90 1.0002±1×10−4 1.0002 0.9851 0.9611 0.9289 0.8900 0.8460

100 0.9999±1×10−4 0.9999 0.9878 0.9680 0.9414 0.9090 0.8718

Table 6.19: First k-eigenvalues for the 1D homogeneous configuration with leakage boundary conditions as a
function of the size L of the system. The second column displays the fundamental eigenvalues k0 computed by
the test-bed Monte Carlo code for the k-eigenvalue problem and the corresponding standard deviations. All other
eigenvalues have been computed from the matrix-form of the k-eigenvalue problem of the corresponding case.

L [cm] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

50 8.262×10−4 −1.327×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2 −1.333×10−2

60 2.611×10−3 −1.324×10−2 −1.330×10−2 −1.332×10−2 −1.332×10−2 −1.333×10−2

70 3.631×10−3 −1.321×10−2 −1.329×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2

80 7.799×10−4 −1.317×10−2 −1.328×10−2 −1.330×10−2 −1.332×10−2 −1.333×10−2

90 2.426×10−3 −1.313×10−2 −1.326×10−2 −1.330×10−2 −1.331×10−2 −1.333×10−2

100 −1.496×10−3 −1.308×10−2 −1.324×10−2 −1.329×10−2 −1.331×10−2 −1.333×10−2

Table 6.20: First α-eigenvalues for the 1D homogeneous configuration with leakage boundary conditions as a
function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.
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L [cm] αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

50 −2.972×102 −2.399×103 −5.658×103 −9.739×103 −1.434×104 −1.921×104

60 −2.926×102 −1.783×103 −4.157×103 −7.217×103 −1.078×104 −1.466×104

70 −2.907×102 −1.416×103 −3.206×103 −5.573×103 −8.386×103 −1.153×104

80 −2.995×102 −1.167×103 −2.574×103 −4.449×103 −6.717×103 −9.295×103

90 −2.949×102 −9.951×102 −2.119×103 −3.640×103 −5.499×103 −7.638×103

100 −3.081×102 −8.681×102 −1.796×103 −3.049×103 −4.592×103 −6.383×103

Table 6.21: First prompt α-eigenvalues for the 1D homogeneous configuration with leakage boundary conditions as
a function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.

L [cm] α4
d,0 [s-1] α4

d,1 [s-1] α5
d,0 [s-1] α5

d,1 [s-1] α6
d,0 [s-1] α6

d,1 [s-1]

50 −1.910×10−1 −2.883×10−1 −7.378×10−1 −8.334×10−1 −2.683 −2.831

60 −1.900×10−1 −2.830×10−1 −7.370×10−1 −8.281×10−1 −2.681 −2.823

70 −1.893×10−1 −2.775×10−1 −7.356×10−1 −8.223×10−1 −2.680 −2.814

80 −1.912×10−1 −2.717×10−1 −7.383×10−1 −8.166×10−1 −2.683 −2.806

90 −1.902×10−1 −2.661×10−1 −7.367×10−1 −8.110×10−1 −2.680 −2.798

100 −1.931×10−1 −2.605×10−1 −7.404×10−1 −8.055×10−1 −2.687 −2.791

Table 6.22: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 4,5,6) for the
1D homogeneous configuration with leakage boundary conditions as a function of the size L of the system. These
values have been computed from the matrix-form of the α-eigenvalue problem of the corresponding case.

The k-eigenvalues computed from the matrix-form of the k-eigenvalue problem are used in order to estimate
the dominance ratio DR and the eigenvalue separations E.S.n(k) of the first five orders: they are shown in Tab. 6.23
and plotted in Fig. 6.9. The values of the dominance ratio increase for increasing length of the system from
DR = 0.9546 up to DR = 0.9879. No major differences are observed with respect to the behaviour previously
analyzed for the reflected system from Fig. 6.3.

L [cm] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

50 9.546×10−1 4.758×10−2 1.292×10−1 2.471×10−1 4.051×10−1 6.076×10−1

60 9.679×10−1 3.321×10−2 9.003×10−2 1.713×10−1 2.790×10−1 4.154×10−1

70 9.758×10−1 2.481×10−2 6.650×10−2 1.262×10−1 2.045×10−1 3.030×10−1

80 9.813×10−1 1.903×10−2 5.119×10−2 9.681×10−2 1.565×10−1 2.311×10−1

90 9.849×10−1 1.528×10−2 4.067×10−2 7.675×10−2 1.238×10−1 1.822×10−1

100 9.879×10−1 1.220×10−2 3.294×10−2 6.212×10−2 1.000×10−1 1.469×10−1

Table 6.23: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for the 1D homogeneous
configuration with leakage boundary conditions as a function of the size L of the system.
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Figure 6.9: Dominance ratio (left) and k-eigenvalue separations (right) for the 1D homogeneous configuration with
leakage boundary conditions as a function of the size L of the system. The first five order of eigenvalue separations
are shown, in order, as: E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k) green squares, E.S.4(k) cyan diamonds
and E.S.5(k) magenta triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results are
shown in Tab. 6.24, whereas the prompt results are shown in Tab. 6.25. The eigenvalue separations E.S.(αd) and
the eigenvalue separations E.S.(αp) are shown in Fig. 6.10. The conclusions drawn from these results are similar
to those drawn from the corresponding reflective case previously discussed in Section 6.4.1.

L [cm] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

50 −1.410×10−2 −1.414×10−2 −1.415×10−2 −1.415×10−2 −1.416×10−2

60 −1.585×10−2 −1.591×10−2 −1.593×10−2 −1.594×10−2 −1.594×10−2

70 −1.684×10−2 −1.692×10−2 −1.694×10−2 −1.695×10−2 −1.696×10−2

80 −1.395×10−2 −1.406×10−2 −1.408×10−2 −1.410×10−2 −1.410×10−2

90 −1.555×10−2 −1.569×10−2 −1.572×10−2 −1.574×10−2 −1.575×10−2

100 −1.158×10−2 −1.175×10−2 −1.179×10−2 −1.181×10−2 −1.182×10−2

Table 6.24: Eigenvalue separations of the first delayed α-eigenvalues for the 1D homogeneous configuration with
leakage boundary conditions as a function of the size L of the system.

L [cm] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

50 −2.102×103 −5.361×103 −9.441×103 −1.404×104 −1.891×104

60 −1.491×103 −3.864×103 −6.924×103 −1.049×104 −1.437×104

70 −1.125×103 −2.915×103 −5.283×103 −8.096×103 −1.124×104

80 −8.677×102 −2.274×103 −4.150×103 −6.417×103 −8.995×103

90 −7.002×102 −1.824×103 −3.345×103 −5.204×103 −7.344×103

100 −5.599×102 −1.488×103 −2.741×103 −4.284×103 −6.075×103

Table 6.25: Eigenvalue separations of the first prompt α-eigenvalues for the 1D homogeneous configuration with
leakage boundary conditions as a function of the size L of the system.
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Figure 6.10: Delayed (left) and prompt (right) α-eigenvalue separations for the 1D homogeneous configuration
with leakage boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(α) red circles, E.S.2(α) blue crosses, E.S.3(α) green squares, E.S.4(α)
cyan diamonds and E.S.5(α) magenta triangles.

The similar behaviour observed between the 1D homogeneous configurations with reflective and leakage
boundary conditions was expected, since the length of each case has been chosen in order to enhance the de-
coupling effects. The selected geometries are very large with respect to the neutron migration area, hence only a
small percentage of the simulated particles will be affected by the boundaries.

Nevertheless, the effect of the leakage boundary conditions is clearly visible for the spatial shape of the funda-
mental and first-order eigenmodes of k, α and prompt α eigenvalue formulations. The usual cosine distributions
are found for the fundamental eigenfunction and a node is observed in the center of the system for the first-order
eigenfunction. No visible differences are observed with respect to the eigenvalue formulation and to the length of
the system. Same comments as those given for the 1D configuration with reflective boundary conditions apply to
the analysis of the delayed α-eigenmodes.

2D geometry

The fundamental eigenvalues k0 computed by the k power iteration are shown in the second column of Tab. 6.26.
For these calculations, 105 particles per cycle are simulated, for a total of 1.2× 103 cycles (103 active, 2× 102

inactive).

In order to compute the matrix operators, the size of the domain has been partitioned into Nx = Ny = c×L space
intervals along both x- and y- axes, where c = 0.3 cm-1, in order to keep a constant bin size. The cosine of the
particle direction with respect to both spatial axes is uniformly partitioned into Mx = My = 2 intervals, whereas
the energy groups and precursor families are fixed at G = 3 and J = 6, respectively. The total size of the matrix
defining the α-eigenvalue problem ranges from 4.050× 103 (L = 50 cm) to 1.620× 104 (L = 100 cm), whereas
the matrix defining the k-eigenvalue problem ranges from 2.700× 103 to 1.080× 104. The eigenvalues computed
from the matrix-form of the corresponding eigenvalue problem are shown in Tabs. 6.26 (k-eigenvalues), 6.27
(α-eigenvalues) and 6.28 (prompt α-eigenvalues). All fundamental eigenvalues k0 computed from the matrix of
the corresponding eigenvalue problem are within 2σ standard deviation from the Monte Carlo results obtained
from the k power iteration. The absolute values of the fundamental eigenvalues α0 are smaller than 2.5× 10−3

s-1. The dominant eigenvalue α j
d,0 of the j-th delayed cluster is separated from the other eigenvalues of the same

precursor family. The computed values of α j
d,0 and α j

d,1 for the last three precursor families ( j = 4,5,6) are shown
in Tab. 6.29.
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L [cm] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

50 0.9999±1×10−4 1.0001 0.8649 0.8645 0.7540 0.6749 0.6744

60 0.9999±1×10−4 1.0000 0.9024 0.9019 0.8174 0.7527 0.7525

70 1.0002±1×10−4 1.0003 0.9265 0.9256 0.8597 0.8075 0.8067

80 0.9999±1×10−4 1.0000 0.9424 0.9419 0.8894 0.8464 0.8455

90 1.0003±1×10−4 1.0001 0.9542 0.9535 0.9107 0.8749 0.8743

100 0.9999±1×10−4 1.0000 0.9622 0.9618 0.9263 0.8964 0.8959

Table 6.26: First k-eigenvalues for the 2D homogeneous configuration with leakage boundary conditions as a
function of the size L of the system. The second column displays mean value and standard deviation of the
fundamental eigenvalues k0 computed at the end of a power iteration with the test-bed Monte Carlo code for the
k-eigenvalue problem. All other eigenvalues have been computed from the matrix-form of linear transport operator
combined for the definition of the k-eigenvalue problem.

L [cm] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

50 1.376×10−3 −1.332×10−2 −1.332×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

60 −1.466×10−4 −1.331×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2 −1.333×10−2

70 4.043×10−3 −1.330×10−2 −1.330×10−2 −1.332×10−2 −1.332×10−2 −1.333×10−2

80 5.862×10−4 −1.329×10−2 −1.329×10−2 −1.331×10−2 −1.332×10−2 −1.333×10−2

90 2.012×10−3 −1.327×10−2 −1.327×10−2 −1.330×10−2 −1.331×10−2 −1.333×10−2

100 −5.929×10−4 −1.326×10−2 −1.326×10−2 −1.330×10−2 −1.331×10−2 −1.333×10−2

Table 6.27: First α-eigenvalues for the 2D homogeneous configuration with leakage boundary conditions as a
function of the size L of the system. These values have been computed from the matrix-form of linear transport
operator combined for the definition of the α-eigenvalue problem.

L [cm] αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

50 −2.922×102 −6.768×103 −6.788×103 −1.269×104 −1.739×104 −1.742×104

60 −2.991×102 −4.936×103 −4.962×103 −9.293×103 −1.287×104 −1.288×104

70 −2.888×102 −3.778×103 −3.823×103 −7.115×103 −9.880×103 −9.917×103

80 −2.983×102 −3.016×103 −3.039×103 −5.626×103 −7.836×103 −7.879×103

90 −2.950×102 −2.455×103 −2.490×103 −4.575×103 −6.376×103 −6.406×103

100 −3.033×102 −2.079×103 −2.095×103 −3.812×103 −5.297×103 −5.323×103

Table 6.28: First prompt α-eigenvalues for the 2D homogeneous configuration with leakage boundary conditions as
a function of the size L of the system. These values have been computed from the matrix-form of the α-eigenvalue
problem of the corresponding case.
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L [cm] α4
d,0 [s-1] α4

d,1 [s-1] α5
d,0 [s-1] α5

d,1 [s-1] α6
d,0 [s-1] α6

d,1 [s-1]

50 −1.909×10−1 −2.980×10−1 −7.379×10−1 −8.441×10−1 −2.683 −2.845

60 −1.919×10−1 −2.960×10−1 −7.389×10−1 −8.418×10−1 −2.685 −2.842

70 −1.889×10−1 −2.937×10−1 −7.358×10−1 −8.394×10−1 −2.679 −2.839

80 −1.914×10−1 −2.913×10−1 −7.381×10−1 −8.367×10−1 −2.682 −2.835

90 −1.905×10−1 −2.885×10−1 −7.371×10−1 −8.336×10−1 −2.682 −2.831

100 −1.924×10−1 −2.858×10−1 −7.393×10−1 −8.308×10−1 −2.686 −2.826

Table 6.29: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 4,5,6) for the
2D homogeneous configuration with leakage boundary conditions as a function of the size L of the system. These
values have been computed from the matrix-form of the α-eigenvalue problem of the corresponding case.

The k-eigenvalues computed from the matrix-form of the k-eigenvalue problem are used in order to estimate
the dominance ratio DR and the eigenvalue separations E.S.n(k) of the first five orders: they are shown in Tab. 6.30
and plotted in Fig. 6.11. The values of the dominance ratio increase for increasing length of the system from
DR = 0.8648 up to DR = 0.9622. No major differences are observed with respect to the behaviour previously
analyzed for the reflected system from Fig. 6.3. In particular, we observe that also for these 2D configurations the
first and second, fourth and fifth orders of eigenvalue separations are extremely close. This degeneracy observed
in the eigenvalues is related to the symmetry properties of the analyzed configurations.

L [cm] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

50 8.648×10−1 1.563×10−1 1.568×10−1 3.264×10−1 4.817×10−1 4.829×10−1

60 9.024×10−1 1.081×10−1 1.088×10−1 2.235×10−1 3.286×10−1 3.289×10−1

70 9.262×10−1 7.963×10−2 8.069×10−2 1.634×10−1 2.387×10−1 2.398×10−1

80 9.424×10−1 6.113×10−2 6.169×10−2 1.244×10−1 1.816×10−1 1.827×10−1

90 9.541×10−1 4.809×10−2 4.892×10−2 9.822×10−2 1.431×10−1 1.439×10−1

100 9.622×10−1 3.929×10−2 3.963×10−2 7.952×10−2 1.155×10−1 1.162×10−1

Table 6.30: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for the 2D homogeneous
configuration with leakage boundary conditions as a function of the size L of the system.

Figure 6.11: Dominance ratio (left) and k-eigenvalue separations (right) for the 2D homogeneous configuration
with leakage boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k) green squares, E.S.4(k)
cyan diamonds and E.S.5(k) magenta triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results
are shown in Tab. 6.31, whereas the prompt results are shown in Tab. 6.32. The eigenvalue separations E.S.(αd)
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and the eigenvalue separations E.S.(αp) are shown in Fig. 6.12. The conclusions drawn from these results are
equivalent to those found for the corresponding reflective case previously discussed in Section 6.4.1.

L [cm] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

50 −1.469×10−2 −1.469×10−2 −1.470×10−2 −1.471×10−2 −1.471×10−2

60 −1.316×10−2 −1.316×10−2 −1.318×10−2 −1.318×10−2 −1.318×10−2

70 −1.734×10−2 −1.734×10−2 −1.736×10−2 −1.737×10−2 −1.737×10−2

80 −1.387×10−2 −1.387×10−2 −1.390×10−2 −1.391×10−2 −1.391×10−2

90 −1.528×10−2 −1.528×10−2 −1.532×10−2 −1.533×10−2 −1.533×10−2

100 −1.267×10−2 −1.267×10−2 −1.271×10−2 −1.272×10−2 −1.272×10−2

Table 6.31: Eigenvalue separations of the first prompt α-eigenvalues for the 2D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.

L [cm] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

50 −6.476×103 −6.496×103 −1.240×104 −1.710×104 −1.713×104

60 −4.637×103 −4.663×103 −8.994×103 −1.257×104 −1.258×104

70 −3.490×103 −3.534×103 −6.827×103 −9.591×103 −9.628×103

80 −2.717×103 −2.741×103 −5.328×103 −7.537×103 −7.581×103

90 −2.160×103 −2.195×103 −4.280×103 −6.081×103 −6.111×103

100 −1.776×103 −1.791×103 −3.509×103 −4.994×103 −5.020×103

Table 6.32: Eigenvalue separations of the first prompt α-eigenvalues for the 2D homogeneous configuration with
leakage boundary conditions as a function of the size L of the system.

Figure 6.12: Delayed (left) and prompt (right) α-eigenvalue separations for the 2D homogeneous configuration
with leakage boundary conditions as a function of the size L of the system. The first five order of eigenvalue
separations are shown, in order, as: E.S.1(α) red circles, E.S.2(α) blue crosses, E.S.3(α) green squares, E.S.4(α)
cyan diamonds and E.S.5(α) magenta triangles.

The similar behaviour observed between the 2D homogeneous configurations with reflective and leakage
boundary conditions was expected, since the size of each case has been chosen in order to enhance the decou-
pling effects. The selected geometries are very large with respect to the neutron migration area, hence only a small
percentage of the simulated particles will be affected by the boundaries.

Nevertheless, the effect of leakage boundary conditions is clearly visible for the spatial shape of the fundamen-
tal (Fig. 6.13), first-order (Fig. 6.14) and second-order (Fig. 6.15) eigenmodes of k, α and prompt α eigenvalue
formulations. The usual Bessel-like distributions are found for the fundamental eigenfunction and the presence of
a node is observed for the first-order eigenfunction. The second-order distributions are similar to the first-order
distributions rotated by 90°: such behaviour confirms the presence of a degeneracy for higher-order eigenpairs due
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to the symmetries of the configuration. Same comments as those presented for the 2D configuration with reflective
boundary conditions apply to the analysis of the delayed α-eigenmodes.

Figure 6.13: Spatial distribution of the k (left), α (center) and prompt α (right) fundamental eigenmodes for the 2D
homogeneous configuration with leakage boundary conditions for the most decoupled case (L = 100 cm).

Figure 6.14: Spatial distribution of the k (left), α (center) and prompt α (right) first-order eigenmodes for the 2D
homogeneous configuration with leakage boundary conditions for the most decoupled case (L = 100 cm).

Figure 6.15: Spatial distribution of the k (left), α (center) and prompt α (right) second-order eigenmodes for the
2D homogeneous configuration with leakage boundary conditions for the most decoupled case (L = 100 cm).

6.5 Heterogeneous benchmark configurations

The occurrence of decoupling effects for heterogeneous configurations can be observed when neutrons are localized
into distinct regions of the system, due to the presence of strong spatial heterogeneities [120]. A perturbation
induced in a specific spatial location of the system has to overcome such heterogeneity in order to reach the other
decoupled regions. In this section, we investigate the spectral properties induced by the presence of these effects
for a critical 1D heterogeneous configuration with leakage boundary conditions.

In particular, we have considered a three-region slab geometry in which two fissile regions (of length Lfissile = 20
cm, respectively) are separated by a progressively larger moderator region (defined by the length Lmoderator). Six
cases have been selected for our analysis, with the total length of the geometry L = 2Lfissile + Lmoderator. The
choice of this configuration was inspired by the three-region slab geometry benchmark problem analyzed in refer-
ence [165]. The parameters describing these regions have been shown in Tabs. 6.1 and 6.2 for the fissile material
and in Tab. 6.3 for the moderator material. The first step of our analysis consists in the search of a critical configu-
ration by k power iteration.

The adjustment to the critical level for this first step of the parametric study has been performed by modify-
ing the macroscopic capture cross section in the fissile material by a parameter a following Eq. (6.9). Then, we
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analyzed five additional cases by decreasing the length of the moderator region in order to increase the coupling be-
tween the fissile regions. All cases have been readjusted to the critical level by an iteratively search of a coefficient
b applied to the macroscopic capture cross section of the fissile material according to Eq. 6.10.

6.5.1 1D heterogeneous configurations

In order to investigate the three-region slab geometries considered in this section, we have started by considering
a configuration characterized by regions having equal width. The emergence of decoupling effect was observed
for a 20 cm long slab region in reference [165], hence the length of the system will be set to 60 cm. A value
a = 1.167 applied to the macroscopic capture cross section of the fissile regions leads to k0 = 1.0002± 4× 10−4

from a k power iteration performed with 2×104 particles per cycle and a total of 6×102 cycles (5×102 active, 102

inactive). Five smaller lengths of the moderator region have been also considered: 15 cm, 10 cm, 7 cm, 5 cm and
2 cm, respectively. The coefficient b from Eq. (6.10) has been iteratively computed by simulating 5×104 particles
per cycle and a total of 2× 103 cycles. The fundamental eigenvalues k0 computed by the k power iteration are
shown in the second column of Tab. 6.33. For these calculations, 105 particles per cycle are simulated, for a total
of 1.2×103 cycles (103 active, 2×102 inactive).

In order to compute the matrix operators, the length of the domain has been partitioned into Nx = c×L space
intervals along the x-axis, where c = 20 cm-1, in order to keep a constant bin width. The cosine of the particle
direction with respect to the x-axis is uniformly partitioned into Mx = 4 intervals, whereas the energy groups and
precursor families are fixed at G = 3 and J = 6, respectively. The total size of the matrix defining the α-eigenvalue
problem ranges from 1.512× 104 (L = 42 cm) to 2.160× 104 (L = 60 cm), whereas the matrix defining the k-
eigenvalue problem ranges from 1.008× 104 to 1.440× 104. The eigenvalues computed from the matrix-form
of the corresponding eigenvalue problem are shown in Tabs. 6.33 (k-eigenvalues), 6.34 (α-eigenvalues) and 6.35
(prompt α-eigenvalues). All fundamental eigenvalues k0 computed from the matrix of the corresponding eigenvalue
problem are within 2σ standard deviation from the Monte Carlo results obtained from the k power iteration. The
absolute values of the fundamental eigenvalues α0 are smaller than 2.5× 10−3 s-1. The dominant eigenvalue α j

d,0
of the j-th delayed cluster is separated from the other eigenvalues of the same precursor family [133, 132]. The
computed values of α j

d,0 and α j
d,1 for the last three precursor families ( j = 4,5,6) are shown in Tab. 6.36.

L [cm] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

42 0.9997±2×10−4 0.9999 0.7907 0.5538 0.3909 0.2600 0.1904

45 1.0003±2×10−4 1.0001 0.8669 0.5699 0.4539 0.2726 0.2252

47 1.0000±2×10−4 1.0001 0.9122 0.5700 0.4891 0.2750 0.2422

50 1.0002±2×10−4 1.0001 0.9571 0.5650 0.5234 0.2747 0.2577

55 0.9996±2×10−4 0.9998 0.9882 0.5585 0.5469 0.2725 0.2676

60 0.9999±2×10−4 0.9998 0.9969 0.5563 0.5533 0.2716 0.2703

Table 6.33: First k-eigenvalues for the 1D heterogeneous configuration as a function of the size L of the system. The
second column displays mean value and standard deviation of the fundamental eigenvalues k0 computed at the end
of a power iteration with the test-bed Monte Carlo code for the k-eigenvalue problem. All other eigenvalues have
been computed from the matrix-form of linear transport operator combined for the definition of the k-eigenvalue
problem.
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L [cm] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

42 −1.973×10−3 −1.332×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

45 1.522×10−3 −1.332×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

47 6.714×10−4 −1.330×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

50 1.209×10−3 −1.326×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

55 −2.429×10−3 −1.305×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

60 −2.466×10−3 −1.205×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2 −1.333×10−2

Table 6.34: First α-eigenvalues for the 1D heterogeneous configuration as a function of the size L of the system.
These values have been computed from the matrix-form of linear transport operator combined for the definition of
the α-eigenvalue problem.

L [cm] αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

42 −2.419×102 −9.153×103 −1.716×104 −2.791×104 −3.332×104 −4.229×104

45 −1.900×102 −5.471×103 −1.211×104 −2.164×104 −2.708×104 −3.382×104

47 −1.874×102 −3.470×103 −1.025×104 −1.757×104 −2.403×104 −2.927×104

50 −1.908×102 −1.686×103 −8.744×103 −1.359×104 −2.017×104 −2.509×104

55 −2.076×102 −5.880×102 −7.671×103 −1.051×104 −1.514×104 −2.035×104

60 −2.115×102 −3.062×102 −7.196×103 −9.122×103 −1.218×104 −1.635×104

Table 6.35: First prompt α-eigenvalues for the 1D heterogeneous configuration as a function of the size L of the
system. These values have been computed from the matrix-form of linear transport operator combined for the
definition of the α-eigenvalue problem.

L [cm] α4
d,0 [s-1] α4

d,1 [s-1] α5
d,0 [s-1] α5

d,1 [s-1] α6
d,0 [s-1] α6

d,1 [s-1]

42 −1.936×10−1 −2.998×10−1 −7.407×10−1 −8.461×10−1 −2.687 −2.848

45 −1.908×10−1 −2.978×10−1 −7.376×10−1 −8.438×10−1 −2.681 −2.845

47 −1.915×10−1 −2.950×10−1 −7.384×10−1 −8.407×10−1 −2.680 −2.841

50 −1.913×10−1 −2.872×10−1 −7.374×10−1 −8.322×10−1 −2.681 −2.829

55 −1.943×10−1 −2.588×10−1 −7.415×10−1 −8.039×10−1 −2.687 −2.787

60 −1.942×10−1 −2.208×10−1 −7.408×10−1 −7.683×10−1 −2.688 −2.733

Table 6.36: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 4,5,6) for the 1D
heterogeneous configuration as a function of the size L of the system. These values have been computed from the
matrix-form of the α-eigenvalue problem of the corresponding case.

The k-eigenvalues computed from the matrix-form of the k-eigenvalue problem are used in order to estimate
the dominance ratio DR and the eigenvalue separations E.S.n(k) of the first five orders: they are shown in Tab. 6.37
and plotted in Fig. 6.9. The values of the dominance ratio increase for increasing length of the system from
DR = 0.7908 up to DR = 0.9971. The eigenvalue separation E.S.1(k) for this heterogeneous configuration decreases
for increasing length of the system. Contrary to the results observed for the homogeneous configurations (Figs. 6.3
and 6.9), the higher-order eigenvalue separations E.S.n(k), n > 1, are much larger than the first-order E.S.(k)1;
moreover, E.S.2n+1(k) converges to E.S.2n(k) for stronger decoupling between the fissile regions (Fig. 6.9). This
convergence behaviour may be related to the symmetry of the system, induced by the two fissile region being of
equal length.
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L [cm] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

42 7.908×10−1 2.646×10−1 8.056×10−1 1.558×100 2.846×100 4.253×100

45 8.668×10−1 1.537×10−1 7.549×10−1 1.203×100 2.669×100 3.440×100

47 9.122×10−1 9.628×10−2 7.545×10−1 1.045×100 2.637×100 3.129×100

50 9.570×10−1 4.488×10−2 7.700×10−1 9.108×10−1 2.640×100 2.881×100

55 9.884×10−1 1.173×10−2 7.903×10−1 8.285×10−1 2.669×100 2.736×100

60 9.971×10−1 2.947×10−3 7.975×10−1 8.072×10−1 2.682×100 2.699×100

Table 6.37: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for the 1D heterogeneous
configuration.

Figure 6.16: Dominance ratio (left) and k-eigenvalue separations (right) for the 1D heterogeneous configuration
as a function of the size L of the system. The first five order of eigenvalue separations are shown, in order, as:
E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k) green squares, E.S.4(k) cyan diamonds and E.S.5(k) magenta
triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results
are shown in Tab. 6.38, whereas the prompt results are shown in Tab. 6.39. The delayed eigenvalue separations
(Fig. 6.17, left) are almost insensitive to the length of the system. The prompt α-eigenvalue separations (Fig. 6.17,
right) have a distinct behaviour as opposed to the k-eigenvalue separations. Moreover, also E.S.(αp)2n+1 seems
to converge to E.S.(αp)2n, but a larger gap is observed between these two orders of eigenvalue separations with
respect to the k-eigenvalue separations of the corresponding orders. These results are specific to the presence of a
non-fissile region for this heterogeneous configuration. Contrary to the k-eigenvalue formulation, the α-eigenvalue
formulation is sensible to the time scales of the system: the moderator region subtly modifies the impact of the
fissile regions of the former eigenvalue formulation with respect to the latter.

L [cm] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

42 −1.135×10−2 −1.136×10−2 −1.136×10−2 −1.136×10−2 −1.136×10−2

45 −1.484×10−2 −1.485×10−2 −1.486×10−2 −1.486×10−2 −1.486×10−2

47 −1.397×10−2 −1.400×10−2 −1.400×10−2 −1.401×10−2 −1401×10−2

50 −1.447×10−2 −1.454×10−2 −1.454×10−2 −1.454×10−2 −1.454×10−2

55 −1.062×10−2 −1.090×10−2 −1.090×10−2 −1.091×10−2 −1.091×10−2

60 −9.583×10−3 −1.087×10−2 −1.087×10−2 −1.087×10−2 −1.087×10−2

Table 6.38: Eigenvalue separations of the first delayed α-eigenvalues for the 1D homogeneous configuration with
reflective boundary conditions as a function of the size L of the system.
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L [cm] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

42 −8.911×103 −1.692×104 −2.766×104 −3.308×104 −4.205×104

45 −5.281×103 −1.192×104 −2.145×104 −2.689×104 −3.363×104

47 −3.283×103 −1.006×104 −1.738×104 −2.385×104 −2.908×104

50 −1.495×103 −8.553×103 −1.340×104 −1.998×104 −2.480×104

55 −3.804×102 −7.464×103 −1.031×104 −1.493×104 −2.014×104

60 −9.470×101 −6.984×103 −8.911×103 −1.197×104 −1.614×104

Table 6.39: Eigenvalue separations of the first prompt α-eigenvalues for the 1D homogeneous configuration with
reflective boundary conditions.

Figure 6.17: Delayed (left) and prompt (right) α-eigenvalue separations for the 1D heterogeneous configuration as
a function of the size L of the system. The first five order of eigenvalue separations are shown, in order, as: E.S.1
red circles, E.S.2 blue crosses, E.S.3 green squares, E.S.4 cyan diamonds and E.S.5 magenta triangles.

The corresponding fundamental (Fig. 6.18) and first-order (Fig. 6.19) eigenmodes are examined for k, α and
prompt α eigenvalue formulations. By inspection of the fundamental eigenfunction, the central region of the
system over-moderates for small length of the moderator region (from L = 42 cm, up to L = 47 cm). For larger
sizes of the central region, the over-moderation effects are progressively less visible, only at the frontiers with
the fissile material. The spatial shape drops in the central region by decoupling the system behaviour into two
distinct spatial regions (from L = 50 cm, up to L = 60 cm). No visible differences are observed with respect
to the eigenvalue formulation and to the length of the system. Same comments as those presented for the 1D
homogeneous configuration can be applied for the analysis of the delayed α-eigenmodes.

Figure 6.18: Spatial distribution of the k (left), α (center) and prompt α fundamental eigenmodes for the 1D
heterogeneous as a function of the size L of the system. Color legend according to the ascending order of the size
L of the system is: L = 42 cm red, L = 45 cm blue, L = 47 cm green, L = 50 cm black, L = 55 cm cyan and L = 60
cm magenta.
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Figure 6.19: Spatial distribution of the k (left), α (center) and prompt α first-order eigenmodes for the 1D hetero-
geneous as a function of the size L of the system. Color legend according to the ascending order of the size L of
the system is: L = 42 cm red, L = 45 cm blue, L = 47 cm green, L = 50 cm black, L = 55 cm cyan and L = 60 cm
magenta.

6.6 Conclusions

Eigenvalue separation is a convenient estimator to provide information on the degree of decoupling of a reactor core
in a concise manner. In this Chapter, we have shown that the novel matrix-filling Monte Carlo methods developed
in Chapter 5 can be usefully used to assess these quantities. In order to better grasp the physical meaning of
the eigenvalue separation, which is traditionally formulated for the k-eigenvalue problems, we have extended this
analysis to the case of α-eigenvalues, both with and without precursor contributions. For this purpose, we have
selected a series of benchmark configurations covering homogeneous and heterogeneous systems.

Our main findings are the following: homogeneous and heterogeneous system behave differently with respect
to the decoupling parameter, in particular concerning higher-order eigenvalue separations, which is consistent with
previous claims appeared in the literature for the case of k-eigenvalue separations [120]. The delayed α-eigenvalue
are rather insensitive to the decoupling effects, and can hardly be used as a reliable estimator to detect such effects.
On the contrary, prompt eigenvalues respond to the decoupling parameter in a way that is qualitatively similar to the
k-eigenvalue for the homogeneous configurations, and might be thus usefully used as a complement to the classical
k-eigenvalue separations for reactor diagnostic. Distinct behaviours were found between the prompt α-eigenvalue
separation and the k-eigenvalue separation for the heterogeneous configurations, which suggests to a difference
in the response of the systems to a perturbation. In order to better apprehend the impact of these results on the
way a system reacts to an external impulsion, reference kinetics simulations would be needed. This would allow
discriminating which between the α eigenvalue separation of the k eigenvalue separation is the more pertinent
approach to the quantification of perturbations affecting the time behaviour of the neutron flux.

Our analysis has been carried out on benchmark configurations in multi-group transport, so that the validity
of the obtained results should be taken with care, as it might not be easily transposable to more realistic systems.
This issue will be partially dealt with in the following Chapter, where we will deploy these Monte Carlo methods
to continuous-energy transport for the investigation of the EOLE critical facility.

Despite their apparent simplicity, it should be noted that the simulations of the configurations discussed in
this chapter were time and memory consuming, due to the very nature of the matrix-filling methods. To provide
a rough estimate of the CPU and RAM burden involved in these calculations, in Tab. 6.40 we provide a few
significant examples for some representative configurations.
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configuration 1D homogeneous 2D homogeneous

α-matrix size [-] 1.8×103 1.62×103

k-matrix size [-] 1.2×103 1.08×103

tMC [s] 6×104 3.6×104

t+MC [s] 1.12×105 6.7×104

α-matrix storage [MB] 7.6×100 7.0×100

k-matrix storage [MB] 7.6×100 7.0×100

teig α-matrix [s] 4.3×103 3.3×103

teig k-matrix [s] 1.26×104 1.04×104

Table 6.40: Computational time and memory occupation of the homogeneous configurations with leakage bound-
ary conditions for the most decoupled case (L = 100 cm). The simulation times associated to the Monte Carlo
simulations performed with the test-bed code including and without matrix elements estimation are expressed as
t+MC and tMC, respectively.

In particular, we recall that the difference between the α- and the k-matrix size is related to the delayed con-
tribution, which is collapsed for the k-formulation expressed by Eq. (2.65). However, the storage associated to
the operators in their matrix-form is exactly the same: these operators are assembled only in the post-processing
MATLAB code, previously described in Section 5.2.5. Despite the smaller size of the k-matrix with respect to the
α-matrix, an additional operation is required in order to compute the k-eigenpairs: the discretized form of the net
leakage operator M (Eq. (2.32)) has to be inverted.
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Chapter 7

Spectral analysis of the EOLE reactor: the
EPILOGUE experimental program

7.1 Introduction

In the previous chapter, we have seen that the numerical tools developed in this thesis can be successfully applied to
the analysis of multiplying systems. In particular, we have been able to perform the spectral analysis and to detect
decoupling effects in simplified benchmark configurations, based on the test-bed Monte Carlo code developed from
scratch for this purpose.

In order to extend this analysis to more realistic systems, we have successively developed the necessary routines
and algorithms in Tripoli-4®, so that we can carry out spectral analysis in continuous-energy Monte Carlo transport
with complex geometries.

In this respect, we have chosen to revisit the EPILOGUE experimental campaign, which was the last one to be
performed in the EOLE critical facility at CEA Cadarache [50, 51, 49]. The EPILOGUE campaign was especially
conceived in order to ascertain whether heterogeneities and decoupling effects might occur in small reactor cores,
in view of the investigation of similar effects in large cores of Generation III+ reactors [9].

We will focus on two experimental configurations of the EPILOGUE program: the ”low fuel bubble” exper-
iment, and the ”water blade” experiment. In the former, a portion of the borated water around the fuel pins was
replaced, which was supposed to mimic the effects of a clear water ”bubble” passing through the core; in the latter,
a row and a column of fuel pins were replaced by moderator (the ”blade”), in order to induce a supposedly strong
heterogeneity in the core. In both cases, the final goal was to determine to what extent these perturbations affected
the neutron population by creating spatial effects (detectors located at different regions responding in different
manners), as opposed to the expected point-kinetics behaviour of the EOLE facility.

Our contribution to the analysis of such experiments was twofold. On one hand, we have taken part in the
post-processing of raw data of the ”low fuel bubble” experiment (which have been finalized during a visit to the
Cadarache center during the first year of the thesis), and the analysis of the such findings by comparison to Monte
Carlo simulations. On the other hand, we have applied the newly developed spectral analysis tools of Tripoli-4®

to the ”water blade” configuration, as an effective complement to the measurements.

This chapter is organized in three main sections. First, we describe the EOLE configurations and provide the
main features of each system. Then, we present the experiments and the results obtained during rod-drop mea-
surements in order to investigate the effect of perturbations and the occurrence of spatial kinetics effects induced
by reactivity insertions. Finally, we perform a spectral analysis (on both the k- and the α-modal basis) of different
configurations of the EOLE facility, in order to assess the decoupling effects introduced by a strong heterogene-
ity. The eigenpairs associated to the eigenvalue problems discussed in this chapter have been computed with the
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MATLAB code described in Section 5.2.5, based on the matrices filled with Tripoli-4®.

7.2 The EPILOGUE program and the EOLE configurations

The EPILOGUE program consists of a set of experiments performed on the EOLE zero-power facility operated at
CEA/Cadarache in 2017. One of the principal goals of this program was to qualify local perturbations induced by
in-core instrumentation in nuclear reactor cores of generation III+ [49]. The EOLE core has been assembled ac-
cording to different configurations in order to cover a broad spectrum of situations so as to improve the knowledge
of generation III+ nuclear reactors.

For the purpose of this work, we have analyzed three of the seven different configurations examined during the
EPILOGUE program:

• the reference configuration in the absence of strong spatial heterogeneities of the core,

• the low bubble fuel configuration for the analysis of reactivity variations and spatial kinetics effects resulting
from measurements with in-core detectors,

• the water blade configuration in the presence of strong spatial heterogeneities in the core.

The reference configuration was mainly used for the calibration of the instrumentation and for the first esti-
mations of reactivity insertions induced by local perturbations. During the latest days of the program, the low
fuel bubble configuration was examined in order to investigate the presence of spatial kinetics effects by analyzing
efficiency variations of the in-core fission chambers. For this purpose, rod-drop experiments were performed and
various detectors were placed in different positions of the core region. Three methods were used in order to convert
detector counting in reactivity values. Discrepancies between such values obtained at different locations of the core
may suggest the presence of spatial kinetics effects.

The main aim of the water blade configuration is to induce a local over-moderation effect in the core region. In
principle, the water layer substituting a section of fuel pins would separate the radial neutron flux distribution into
two distinct regions. This decoupling effect will be analyzed via spectral analysis by resorting to the matrix-filling
method discussed in Chapter 5 and recently implemented in Tripoli-4®. Moreover, additional configurations of the
core are simulated in order to extract additional information on the impact of the moderator region. In particular,
we will numerically explore the effects of adding two additional water blade configurations (obtained by replacing
more fuel elements with light borated water) with the aim of enhancing the decoupling of the core region.

In the following section we describe in details the core configurations of the EPILOGUE program considered
in this work. The corresponding experimental and numerical results will be analyzed in Sections 7.3 and 7.4,
respectively.

7.2.1 The reference configuration

The critical core configuration is obtained with 720 fuel pins in the central region, a total of 985 UO2 fuel pins
and a Boron concentration of 302.6 ppm. A schematic rappresentation of the radial section of this configuration
is shown in Fig. 7.1. The parameters measured during the first core divergence are shown in the first two parts
of Tab. 7.1. The pilot rod is made of natural B4C. The moderator is borated light water, its temperature is θ =

20.0± 0.1 °C. In addition to the fission chambers monitors (positions 16-09 and 26-33), three fission chambers
were placed in the core and in the reflector region: a Ø4 mm chamber in 26-26, a Ø8 mm chamber in 01-21 and
a long Ø8 mm chamber with so-called ”reduced-gap” (i.e. reduced distance between electrodes) in 36-36. The
computed reactivity variations and effective kinetic parameters are shown in the last part of Tab. 7.1. The reactivity
measurements have been computed with Tripoli-4® by using JEFF-3.1.1 nuclear data libraries [134] (JEFF-3.2 for
the temperature coefficient of fuel and moderator, θ = 20.0±0.1 °C). The kinetics parameters have been computed
by applying the Nauchi method [109].

The Boron concentration (CBoron of Tab. 7.1) has been determined based on the analyses performed by the
SA3C/LARC (the analysis laboratory of CEA/Cadarache) and the online tracking performed by the SPEx/L2EM
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(the EOLE/MINERVE operation laboratory of CEA/Cadarache) from volumetric monitoring of the moderator in
the storage tanks. The concentration is adjusted according to the value obtained by LARC, once these analyses
have been performed.

parameter value

CBoron [ppm] 303±8

τ2 [s] 37.7±0.3

ρ [pcm] 115±6

Hpilot rod [mm] 290±5

∆ρpilot rod [pcm] 160±8

∆ρ4 control rods [pcm] 7052±360

∆ρ1 control rod [pcm] 1494±84

∆ρ/∆CBoron [pcm/ppm] −14.0±0.2

∆ρ/∆θ [pcm/°C] −9.1±0.1

βeff [pcm] 782±20

Λeff [µs] 30.5±0.8

Table 7.1: Neutronics parameters computed for the reference configuration. Values reported in this table have been
extracted from reference [50, 51].

Figure 7.1: Schematic radial section of the EOLE reactor in the reference configuration. Fuel elements of enriched
UO2 at 3.7% are colored in yellow and are distinguished in monitored fuel elements (black cross, black circle and
red cross). Locations for control rods (red), pilot rod (dark blue) and guide tube (white, black cross) are shown.
Two fission chambers are shown: CF2268 (white, green circle) and CF2269 (white, blue circle). All the remaining
elements are filled with borated light water (light grey).

7.2.2 Low fuel bubble configuration

The critical core configuration is obtained with 720 fuel pins in the central region, a total of 993 UO2 fuel pins
(the 8 central guide tubes of the experimental area being replaced by fuel pins) and a Boron concentration of 275.6
ppm. The 25 central pins (block of 5 by 5 pins) are held in position by a block of high density polyethylene
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(HDPE) simulating a bubble of light water spreading along the pins. The height of this bubble region is 20 cm,
and the bottom of this region is located at the bottom of the fuel active height (dimension 135 mm). A schematic
representation of the radial section of this configuration is shown in Fig. 7.2. The parameters measured during
the first core divergence are shown in the first two parts of Tab. 7.2. The pilot rod is made of natural B4C. The
moderator is borated light water, its temperature is θ = 20.0±0.1°C. In addition to the fission chambers monitors
(positions 16-09 and 26-33), three fission chambers were placed in the core and in the reflector region: a Ø4 mm
chamber in 01-21, a Ø8 mm chamber in 36-06 and a long Ø8 mm chamber with so-called ”reduced gap” in 36-36.
The computed reactivity variations and effective kinetic parameters are shown in the last part of Tab. 7.2. The
reactivity measurements have been computed with Tripoli-4® by using JEFF-3.1.1 nuclear data libraries [134]
(JEFF-3.2 for the temperature coefficient of fuel and moderator, θ = 20.0± 0.1 °C). The kinetics parameters have
been computed by applying the Nauchi method [109].

The Boron concentration (CBoron of Tab. 7.2) has been determined based on the analyses performed by the
SA3C/LARC (the analysis laboratory of CEA/Cadarache) and the online tracking performed by the SPEx/L2EM
(the EOLE/MINERVE operation laboratory of CEA/Cadarache) from volumetric monitoring of the moderator in
the storage tanks. The concentration is adjusted according to the value obtained by LARC, once these analyses
have been performed.

parameter value

CBoron [ppm] 276±7

τ2 [s] 38.7±0.6

ρ [pcm] 114±6

Hpilot rod [mm] 391±5

∆ρpilot rod [pcm] 209±11

∆ρ4 control rods [pcm] 7380±381

∆ρ1 control rod [pcm] 1568±78

∆ρ/∆CBoron [pcm/ppm] −14.7±0.2

∆ρ/∆θ [pcm/°C] −9.2±0.2

βeff [pcm] 784±20

Λeff [µs] 30.6±0.8

Table 7.2: Neutronics parameters measured and computed for the low fuel bubble configuration. Values reported
in this table have been extracted from reference [50, 51].
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Figure 7.2: Schematic radial section of the EOLE reactor in the low fuel bubble configuration. Fuel elements of
enriched UO2 at 3.7% are colored in yellow and are distinguished in monitored fuel elements (black cross, black
circle and red cross). Locations for control rods (red), pilot rod (dark blue) and bubble region (dark grey) are
shown. Two fission chambers are shown: CF2268 (white, green circle) and CF2269 (white, blue circle). All the
remaining elements are filled with borated light water (light grey).

7.2.3 Water blade configuration

The critical core configuration is obtained with 720 fuel pins in the central region, a total of 952 UO2 fuel pins and
a Boron concentration of 302.6 ppm. A row and a column of fuel pins have been removed from the central region
of the core. Moreover, 2 pins made of B4C have been placed on opposite locations with respect to the water blade
in order to compensate the induced change in reactivity. A schematic representation of the radial section of this
configuration is shown in Fig. 7.3. The parameters measured during the first core divergence are shown in the first
two parts of Tab. 7.3. The pilot rod is made of natural B4C. The moderator is borated light water, its temperature is
θ = 20.0±0.1°C. In addition to the fission chambers monitors (positions 16-09 and 26-33), three fission chambers
were placed in the core and in the reflector region: a Ø4 mm chamber in 00-21, a Ø8 mm chamber in 36-06 and
a long Ø8 mm chamber with so-called ”reduced gap” in 36-36. The computed reactivity variations and effective
kinetic parameters are shown in the last part of Tab. 7.3. The reactivity measurements have been computed with
Tripoli-4® by using JEFF-3.1.1 nuclear data libraries [134] (JEFF-3.2 for the temperature coefficient of fuel and
moderator, θ = 20.0±0.1 °C). The kinetics parameters have been computed by applying the Nauchi method [109].

The Boron concentration (CBoron of Tab. 7.3) has been determined based on the analyses performed by the
SA3C/LARC (the analysis laboratory of CEA/Cadarache) and the online tracking performed by the SPEx/L2EM
(the EOLE/MINERVE operation laboratory of CEA/Cadarache) from volumetric monitoring of the moderator in
the storage tanks. The concentration is adjusted according to the value obtained by LARC, once these analyses
have been performed.
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parameter value

CBoron [ppm] 251±6

τ2 [s] 37.8±0.5

ρ [pcm] 116±6

Hpilot rod [mm] 420±5

∆ρpilot rod [pcm] 246±13

∆ρ4 control rods [pcm] 7336±373

∆ρ1 control rod [pcm] 1341±67

∆ρ/∆CBoron [pcm/ppm] −16.7±0.2

∆ρ/∆θ [pcm/°C] −7.3±0.1

βeff [pcm] 778±20

Λeff [µs] 32.7±0.8

Table 7.3: Neutronics parameters measured and computed for the water blade configuration. Values reported in
this table have been extracted from reference [50, 51].

Figure 7.3: Schematic radial section of the EOLE reactor in the water blade configuration. This configuration is
arranged by removing a row and a column of fuel pins from the core region. Fuel elements of enriched UO2 at
3.7% are colored in yellow and are distinguished in monitored fuel elements (black cross, black circle and red
cross). Locations for control rods (red), pilot rod (dark blue) and B4C rods (olive green) are shown. Two fission
chambers are shown: CF2268 (white, green circle) and CF2269 (white, blue circle). All the remaining elements
are filled with borated light water (light grey).

7.3 Analysis of multi-instrumented rod-drop measurements: investiga-
tion of spatial kinetics effects

The impact of spatial effects, i.e. effects that go beyond the hypothesis of the point kinetics, during power transients
is becoming increasingly important in view of the possible presence of decoupling phenomena in large cores of
PWR [36, 31, 135, 128, 38, 113]. The presence and detection of such effects in small cores (such as the EOLE
critical facility) might foster the development of a methodology for mapping the various perturbations inherent to
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the large PWR cores and for the optimization of in-core detector positions in order to cover the entire core volume.

The aim of this section is to describe the raw experimental results obtained from counting measurements from
”rod-drop” experiments, performed in the course of the last sets of measurements of the EPILOGUE program [9]
for the ”low fuel bubble” configuration [49], in order to highlight possible spatial kinetics effects. Different tests
have been performed by using fission chambers having different sensibilities and placed in different locations
both inside and outside the core region. These tests concern the investigation of a possible effect related to these
locations on the perturbation amplitude due to an insertion of negative reactivity caused by the pilot rod (∆ρ <
βeff/2, for a fast drop) or by the control rod (∆ρ >> βeff).

7.3.1 Measurement results

Fission chamber measurements were performed in the ”low fuel bubble” configuration. The core is at a temperature
of 20°C. A schematic representation of this configuration is shown in Fig. 7.4. All fission chambers are inserted in
sealed aluminium sheaths and located at the core mid-plane by using aluminium shims of the appropriate length,
depending on the type of chamber. Two Ø4 mm fission chambers are positioned in the core:

• CF 235U Ø4 mm (2268), located at 16-09,

• CF 239Pu Ø4 mm (2266), located at 26-33.

These two monitor detectors are connected to the MCS (Multi-Channel Scaler) measurement chain (ADS 7820
and Ni-DAQ card, two channels of measurement). Five additional fission chambers are positioned in the core:

• CF 235U Ø8mm with reduced gap (2284), located at 01-21,

• CF 235U Ø8mm with long reduced gap (2296), located at 26-26,

• CF 235U Ø8mm with long reduced gap (2295), located at 07-35,

• CF 235U Ø4mm (2299), located at 21-41,

• CF 235U Ø8mm (2272), located at 36-06.

The first three chambers (2284, 2295 and 2296) are connected to fast ADS amplifiers and to the measuring system
XMODE. The last two (2272 and 2299) are connected to the traditional MP2 system (pre-amplifier + charge
amplifier). The XMODE system is capable of recording neutronic measurements as logical (32 synchronized
channels) and analogical (8 synchronized channels) data. For the acquisition of logical signals, XMODE uses a
time stamping which enables to record all detector information. This operating mode is necessary for the realisation
of neutron noise experiments.

The CFUL fission chambers are traditionally used for neutron noise measurements. They are characterized by a
large usable volume and a large 235U deposit (1 g). Such large mass of fissile isotope denotes a higher sensitivity of
the fission chambers and a larger number of counting will be detected. This large counting rate is necessary in order
to record signals in current mode, since the neutronic measuring system processes signal inputs obtained in current
mode. The measuring sleeves for the introduction of the CFUL chambers (670 and 669) are located between the
core and the vessel. The signal transmission cables (high immunity) are connected to the SPECTRON measuring
system [64, 65]. This system is devoted to the analysis of neutron noise measurements and it has been developed
at CEA/Cadarache. The high immunity of these cables allows to reduce the parasite capture contributions during
signal acquisition in order to obtain a ”smoother” signal (lower influence of the background noise in terms of
electromagnetic perturbations).

A summary of the measuring devices and their associated electronics is given in the table below:
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CF location measuring system

2268 16−09 ADS−Ni-DAQ

2269 26−33 ADS−Ni-DAQ

CFUL 670 NO SPECTRON

CFUL 669 SE SPECTRON

2284 01−21 ADS−XMODE

2296 26−26 ADS−XMODE

2295 07−35 ADS−XMODE

2299 21−41 MP2−channel 3

2272 36−06 MP2−channel 1

Table 7.4: Detector locations and measuring systems for the rod-drop experiments.

Figure 7.4: Schematic radial section of the EOLE reactor in the low fuel bubble configuration during rod-drop
experiments. Fuel elements of enriched UO2 at 3.7% are located in the ”bubble” region (dark grey) and around it
(yellow). Locations for control rods (red) and pilot rod (dark blue) are shown. The locations of fission chambers
(colored circles) are shown are detailed in Tab. 7.4. All the remaining elements are filled with borated light water
(white and light grey).

7.3.2 Rod-drop measurements

Two types of measurements were carried out: a rod-drop measurement of control rod (BS1 Fig. 7.4) and a rapid
descent of the pilot rod (BP Fig. 7.4), from a power level at 5 W or 10 W. The measurement protocol is the
following:

• reach the reactor divergence and stabilize at the target power,

• after a few minutes, required in order to ensure stabilization, start the rapid descent of the pilot rod (BP),

• when the counting rate reaches about 10 counts per second (MCS) in the chamber with the larger counting
rate, start a new divergence,

• stabilize the power at 5 W,

120



7.3. ANALYSIS OF MULTI-INSTRUMENTED ROD-DROP MEASUREMENTS: INVESTIGATION OF
SPATIAL KINETICS EFFECTS

• After a few minutes for the second stabilization, start the control rod-drop (BS1).

Preliminary measurements of the settings of the various measuring systems and tests of the duplication of the
signal of chambers 2299 and 2272 with the XMODE system (December 20th 2017) have been realized before the
experiment at a power of 5 W. The last divergence (December 21th 2017) was followed by the drop (the last of the
reactor) of all four control rods and the pilot rod. The results obtained in terms of reactivity variation are given in
Tabs. 7.5 and 7.6 as an indication.

The results associated to the counts are given in pcm. The corresponding uncertainties do not consider the errors
on nuclear data (4% for 1σ standard deviation). Divergence measurements are analysed on ADS and MP2 channels
only. Drop measurements of the pilot rod (BP) and the control rods (BS) are solved using three methods: inversion
of the kinetics equation (method 1), non-linear fitting (method 2) and Modified Carpenter method (method 3). The
first method is based on the following formula for the reactivity estimation:

ρ(t) = 1 +
Λ

n(t)β

[dn(t)
dt
−Q(t)−

∑
j

λ jc j(t)
]
, (7.1)

where the neutron density n(t) is proportional to the counting rate registered by the detectors, and Q(t) is an
external source of neutrons. The other methods are based on non-linear adjustments of the point kinetics equations,
assuming known the temporal behaviours of ρ(t) and Q(t). The Method 3 is tested on ADS only (higher count
rates). Further details on these methods can be found in [17].

These methods are implemented in the TMN software [17] (Neutronic Measurement Toolbox), which is used
for reactivity estimation obtained from neutronic measurements and for the manipulation of these measurements.
This tool allows the analysis of power transient and neutron flux divergence. The former provides reactivity
estimation for a stabilized sub-critical configuration, obtained by perturbing the initial state of the system. The
latter allows the computation of both doubling time and reactivity for slightly super-critical systems.

Due to some difficulties in processing current values in TMN, measurements obtained by using SPECTRON
are not reported. Methods 2 and 3 are not suitable for the reactivity variation measurements for a rod ”descent”,
since it cannot verify the hypothesis of an instantaneous drop.

The following tables show the values of reactivity variation due to reactor divergence and to rod-drop. The
blank cells show unexplained inconsistencies.

detector divergence rod-drop (method 1) rod-drop (method 2) rod-drop (method 3) rod-drop (average)

20 Dec CF2295 90 −139±1.1% −132±1.2% −125±1.2% −132±5.3%

20 Dec CF2284 90 −127±1.3% −125±1.2% −126±1.3% −126±1.1%

20 Dec CF2296 90 −127±1.2% −123±1.1% −125±1.2% −125±1.7%

Table 7.5: Reactivity variations: pilot rod-drop (BP), analyzed with XMODE. The uncertainties shown in the last
column have been computed as root mean square of the uncertainties obtained from the implementation of the
corresponding methods.

detector rod-drop (method 1) rod-drop (method 2) rod-drop (method 3) rod-drop (average)

20 Dec CF2295 −1624±1.7% −1771±1.5% −1628±7.5% −1674±5.0%

20 Dec CF2284 −1397±2.2% −1616±1.5% −1613±7.7% −1542±8.1%

20 Dec CF2296 −1488±1.6% −1646±1.5% −1622±7.5% −1585±5.4%

21 Dec CF2295 −1776±1.0% −1849±1.9% −2061±7.0% −1895±7.8%

21 Dec CF2296 −1566±1.0% −1621±1.9% −1623±8.8% −1603±2.0%

Table 7.6: Reactivity variations: pilot rod-drop (BS1), analyzed with XMODE. The uncertainties shown in the
last column have been computed as root mean square of the uncertainties obtained from the implementation of the
corresponding methods.

121



CHAPTER 7. SPECTRAL ANALYSIS OF THE EOLE REACTOR: THE EPILOGUE EXPERIMENTAL
PROGRAM

Small discrepancies are observed in the reactivity variations for the pilot rod-drop BP (Tab. 7.5), whereas
larger differences are observed in the reactivity variations for the control rod-drop BS1 (Tab. 7.6). In principle,
such behaviour seems to suggest the possible presence of spatial effects.

The results obtained from the analysis of signal counting from MP2 channels are shown in Tab. 7.7. The corre-
sponding average values (neglecting uncertainty) and the relative standard deviations of the channel measurements
are shown in Tab. 7.8.

detector rod-drop divergence rod-drop (method 1) rod-drop (method 2) rod-drop (method 3) rod-drop (average)

20 Dec CF2272 5 W−BP 96 −118±2.0% −121±1.2% −126±1.5% −122±3.1%

CF2299 5 W−BP 95 −121±4.6% −121±1.2% −123±1.3% −122±1.3%

CF2272 10 W−BS 95 −1420±1.8% −1509±1.4% - −1464±4.3%

CF2299 10 W−BS 94 -1217±2.8% −1422±1.3% - −1329±12.0%

21 Dec CF2272 BP rod-drop 90 −124±1.4% −125±1.2% −130±1.5% −127±2.7%

CF2299 BP rod-drop 87 −119±1.4% −120±1.2% −124±1.4% −121±2.3%

CF2272 BS rod-drop 88 −1244±3.0% −1501±1.4% - −1373±13.2%

CF2299 BS rod-drop 86 −1872±1.3% −1882±2.3% - −1877±0.4%

CF2272 4BS rods drop 88 −6812±1.7% −7786±1.4% - −7299±9.4%

CF2299 4BS rods drop 87 −7581±1.8% −8053±3.4% - −7817±4.3%

Table 7.7: Reactivity variations: analyzed on MP2 channels. The uncertainties shown in the last column have
been computed as root mean square of the uncertainties obtained from the implementation of the corresponding
methods.

detector BP rod-drop BS1 rod-drop

CF2272 −124±3.4% −1418±8.7%
CF2299 −121±1.7% −1603±20.5%

Table 7.8: Average reactivity variations: analyzed on MP2 channels. The uncertainties shown in the last column
have been computed as root mean square of the uncertainties obtained from the implementation of the correspond-
ing methods.

The values computed for the pilot rod-drop BP do not show any significant discrepancy. Larger reactivity de-
viations are found for the control rod-drop BS1 experiment. The standard deviation corresponding to the counting
of fission chamber CF2299 is rather large, which suggests a low counting rate of the detector. This behaviour can
be justified by the location of the fission chambers with respect to the position of rod BS1. The efficiency of the
fission chamber CF2299 decreases after the insertion of negative reactivity, due to its proximity to the control rod.
Conversely, the efficiency of fission chamber CF2272, located far from the control rod, increases, although this
effect is less visible.

Table 7.9 shows the results obtained from ADS monitor channels. The results obtained at a power level of
5 W are inconsistent and are not considered in the calculation of the corresponding average value. Converesely,
small standard deviations are obtained for all the other results. The accuracy of these results is probably justified
by the excellent performance of the ADS systems. The average values computed from these results (neglecting
uncertainty) and the corresponding standard deviations are shown in Tab. 7.10.
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detector rod-drop divergence rod-drop (method 1) rod-drop (method 2) rod-drop (method 3) rod-drop (average)

20 Dec CF2268 5 W−BP 92 −71±9.4% −114±18.9% - −93±32.2%∗

CF2269 5 W−BP 93 −95±5.6% −118±9.5% - −107±15.2%∗

CF2268 10 W−BS 93 −1521±4.9% −1358±3.3% - −1439±8.0%

CF2269 10 W−BS 94 −1785±3.6% −1674±3.8% - −1730±4.5%

21 Dec CF2268 BP rod-drop 88 −126±3.5% −125±1.7% - −125±0.4%

CF2269 BP rod-drop 89 −123±2.8% −124±4.7% - −123±0.2%

CF2268 BS rod-drop 87 −1454±4.5% −1402±3.4% - −1428±2.6%

CF2269 BS rod-drop 88 −1694±4.0% −1687±4.1% - −1690±0.3%

CF2268 4BS rods drop 87 −7309±3.4% −7204±4.0% - −7257±1.0%

CF2269 4BS rods drop 87 −7671±3.1% −7587±3.3% - −7629±0.8%

Table 7.9: Reactivity variations: analyzed on ADS monitor channels (*incoherent values, not accounted in the
average results).

detector BP rod-drop BS1 rod-drop

CF2268 −125±1.5% −1434±4.9%

CF2269 −123±2.4% −1710±3.0%

Table 7.10: Average reactivity variations: analyzed on ADS monitor channels.

The two monitor chambers show a significant deviation of the reactivity variation related to the control rod
experiment. The corresponding mean value is −1572±195 pcm and the original values do not overlap by consid-
ering 2σ standard deviations. The CF2269 fission chamber is closer to the perturbation with respect to the CF2268
fission chamber and is located inside the neutron flux depression caused by the control rod-drop. Its position is
responsible for a larger measured reactivity variation.

Fission rate distributions have been calculated with Tripoli-4® for both pilot rod-drop and control rods drop
in order to determine the signal variation in the detector positions. Figure 7.5 shows the variations of these fission
rates for each rod-drop experiment with respect to the unperturbed configuration.

Figure 7.5: Fission rates perturbation due to pilot rod-drop (BP, left) and control rods drop (BS1, right). Pertur-
bations with respect to the unperturbed configuration ranges from -41% up to +6% due to the pilot rod-drop and
from -61% up tp +13% due to control rods drop.

123



CHAPTER 7. SPECTRAL ANALYSIS OF THE EOLE REACTOR: THE EPILOGUE EXPERIMENTAL
PROGRAM

The variations in fission rates at detector locations are strongly influenced by the introduced perturbation. The
corresponding minimum and maximum values are shown in Tab. 7.11 for the corresponding fission chamber. As
expected, the largest variations are observed for detector located closer to the perturbation: CF2295 for the pilot
rod-drop (the value for CF2268 is questionable, since this fission chamber is relatively far from the perturbation
in order to observe such large variation), CF2299 and CF2269 for control rods drop. Values associated to the
remaining detectors show smaller variations, except for the control rods drop experiment, where the reactivity
insertion implies a larger deformation of the neutron flux along the radial coordinate.

detector pilot rod-drop control rods drop

CFUL670 0.6% 7.8%

CFUL669 0.8% -3.2%

CF2284 -0.7% 3.1%

CF2295 -9.3% -8.0%

CF2296 -0.8% -3.1%

CF2272 2.0% 9.9%

CF2299 -0.7% -21%

CF2268 -7.2% -10.3%

CF2269 2.7% - 12.4%

Table 7.11: Fission rates variations on the detector locations.

7.3.3 Summary of the experimental results

We have illustrated the preliminary results of the rod-drop measurements carried out at the end of the experimental
campaign in the ”low fuel bubble” configuration of the program EPILOGUE in EOLE. In addition to the fission
chambers CF2268 and CF2269, five fission chambers of different types, connected to different measuring elec-
tronics, have been inserted in various core and reflector positions. The location of these detectors was intended
to identify possible spatial kinetics effects in the raw signals. The results were processed using the TMN tool,
according to three methods (inversion of kinetics, flow adjustment, Carpenter’s method). The variations of the
detector efficiency as a function of the respective location suggest the presence of spatial kinetic effects in the core.

The deviations counted without detector efficiency correction are consistent with the expected deviations on the
variation in fission rates at the measurement sites. The mean values and the corresponding standard deviations of
these measurements could be refined by a more complete calculation of the MSM (Modified Source Multiplication)
factors using the new options implemented in Tripoli-4® for the adjoint calculations, which have been successfully
tested on the control rod-drop measurements of CABRI [97].

7.4 Spectral analysis of the water blade configurations

The analysis of the experimental results presented in the previous section is devoted to a preliminary investigation
of spatial kinetics effects during the last experiments of the EOLE reactor. In order to gain further knowledge on
such effects, we have then analyzed the water blade configuration of the EPILOGUE program, which is character-
ized by a strong spatial heterogeneity described in Section 7.2.3. Unfortunately, it was not possible to draw solid
conclusions from the data collected during the experiments performed on this configuration.

Nevertheless, the effect caused by the over-moderation of the water blade has been examined by resorting to
the spectral analysis tools described in Chapter 5. In this respect, the Monte Carlo simulation has been used as a
”numerical experiment”, enabling the analysis of quantities that were not easily accessible by the measurements.
Monte Carlo calculations were performed with Tripoli-4® in order to deploy the matrix-filling method and the
fission matrix described in Chapter 5. These numerical simulations allow estimating:

• the fundamental and higher-order eigenpairs according to the α-eigenvalue formulation,

• the fundamental and higher-order eigenpairs according to the k-eigenvalue formulation,

124



7.4. SPECTRAL ANALYSIS OF THE WATER BLADE CONFIGURATIONS

• the effective kinetics parameters.

The k- and the α- eigenpairs yield an estimation of the critical level of the system (fundamental eigenvalues and
eigenmodes) and of the behaviour of particle distribution after a perturbation (higher-order eigenvalues and eigen-
modes). As discussed in the previous chapter, we can exploit the dominance ratio (Eq. (6.3)) and the eigenvalue
separation (Eqs. (6.1) and (6.6)) in order to assess the degree of decoupling of the system. The spatial distributions
of the eigenmodes related to both eigenvalue formulations provide an additional tool for the investigation of the de-
coupling effect caused by the water blade. Finally, the effective kinetic parameters computed for this configuration
can be usefully compared to those obtained during the experiments (Tab. 7.3).

For the purpose of enhancing the effects induced by the water blade, we have conceived additional configu-
rations where the original blade has been thickened by adding extra water layers (by removing fuel pins). For
our analysis, we will consider the configuration without water blades (described in Section 7.2.1) as the reference.
Then, we will remove additional fuel pins from the water blade configurations in order to artificially increase the
thickness of the water in the core region. Figure 7.6 shows the radial section of the two new configurations that
will be called for shortness ”2 water blades” configuration (left) and ”3 water blades” configuration (right). In the
following, by analogy we will define the (single) water blade configuration as the ”1 water blade” configuration.

Figure 7.6: Schematic radial section of the EOLE reactor in water blade configurations. The ”2 water blades”
configuration (left) and the ”3 water blades” configuration (right) are arranged by removing four and six lines of
fuel pins from the core region. Fuel elements of enriched UO2 at 3.7% are colored in yellow and are distinguished
in monitored fuel elements (black cross, black circle and red cross). Locations for control rods (red), pilot rod
(dark blue) and B4C rods (olive green) are shown. Two fission chambers are shown: CF2268 (white, green circle)
and CF2269 (white, blue circle). All the remaining elements are filled with borated light water (light grey).

7.4.1 Simulation settings

All the configurations defined in the previous section have been simulated by using Tripoli-4®. Before detailing
the simulation parameters of such calculations, a preliminary step is required for the calibration allowing each
simulated system to be critical (similarly to the procedure adopted in Chapter 6). In order to achieve this condition,
we modified the Boron concentration in the moderator of each configuration. This procedure can be performed
in Tripoli-4® by a recently developed critical Boron concentration research routine, which iteratively seeks a
multiplier coefficient for the Boron concentration CBoron. For these calculations, 105 particles are simulated for
a total of 1.5× 103 cycles (103 active, 5× 102 discarded). Water composition and Boron concentration of the
moderator for each configuration are shown in Tab. 7.12.
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water blades [-] H1 [atoms/cm3] H1,H2O [atoms/cm3] O16 [atoms/cm3] B10 [atoms/cm3] B11 [atoms/cm3] CBoron [ppm]

0 4.675×10−5 6.669×10−2 3.339×10−2 3.286×10−6 1.323×10−5 296.7

1 3.923×10−5 6.670×10−2 3.339×10−2 2.708×10−6 1.090×10−5 244.5

2 3.923×10−5 6.670×10−2 3.339×10−2 1.878×10−6 7.561×10−6 169.6

3 3.923×10−5 6.670×10−2 3.339×10−2 7.339×10−7 2.954×10−6 66.3

Table 7.12: Water composition and Boron concentration (ppm) of the moderator in water blade configurations.

As already discussed in Chapter 6, setting all these configurations to the critical level leads to two main ad-
vantages. The former is that the comparison of the dominance ratio and the eigenvalue separation is made easier
by fixing the fundamental eigenvalues to the critical level. The latter stems from an algorithmic reason related to
the equivalence between the k- and the α-eigenvalue formulations for a critical state: this property allows us to
freely choose between the k or α-k power iteration methods as a weighting function for the matrix-filling methods.
The k-power iteration is preferred with respect to the α-k power iteration method, thanks to its faster convergence.
Moreover, the estimation of the elements of the matrices associated to the linear transport operators is computed by
using the same weighting function. Since the systems are at a critical level, ϕk0 ' ϕα0 , the choice of the weighting
function becomes arbitrary.

The discretization of the phase-space variables for the EOLE configurations implies a large dimension of the
matrices corresponding to the eigenvalue formulations. The trade-off required to compute the eigenpairs in a
reasonable time and be able to detect the effect of the moderator heterogeneity consists in primarily refining the
spatial coordinates in the radial section of the reactor. By fixing the origin of the spatial reference system in
the center of the reactor, an uniform Cartesian grid is applied on the plane that divides the two coordinates in
Nx = Ny = 48 spatial bins from −52.8 cm to 52.8 cm. The axial coordinate is integrated over the whole height of
the system (Nz = 1). The angle discretization is kept at Mx = My = 2 and Mz = 1. The energy domain is divided into
G = 3 groups: a fast region in the interval [20 MeV, 94.66 keV], an epithermal region [94.66 keV, 0.625 eV] and
a thermal region [0.625 eV, 10-5 eV]. According to the JEFF nuclear data library [134], a total of J = 8 precursors
families are considered for the fissile nuclei. The total number of elements of the matrix for the α-eigenvalue
problem is about 2×109.

As for the k-eigenvalue problem, we used the estimation of the fission matrix in order to perform the spectral
analysis on the k-modal basis. According to this procedure, only the space coordinate needs to be discretized.
The eigenmodes computed from the fission matrix represent fission rates and as so there is no interest in a fine
discretization of the non-fissile regions of the reactor. Moreover, the linearity of this problem with respect to the
eigenvalue allows combining the contributions of prompt and delayed fission operators. All these considerations
imply a significant reduction of the matrix size for the k-eigenvalue formulation. In particular, we impose a
cartesian grid on the radial section of the core region, specifically Nx = Ny = 74 from -23.31 cm to 23.31 cm along
both axes. In this way, the spatial bins perfectly overlap on the square fuel pins section (1.26×1.26 cm2). The total
number of elements of the fission matrix is about 3×107.

7.4.2 Eigenvalue analysis

The Boron concentrations shown in Tab. 7.12 are used for the criticality simulations in order to adjust each con-
figuration to the critical level. All the results presented in the following paragraphs have been obtained during a
standard power iteration that was used to estimate the elements of the matrices needed for the α- and k- spectral
analysis. In particular, 105 particles per cycles are simulated for a total of 2.5×103 cycles (2×103 active, 5×102

discarded).
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water blades [-] kMC
0 [-] k0 [-] k1 [-] k2 [-] k3 [-] k4 [-] k5 [-]

0 0.99988±7 pcm 0.99988 0.70793 0.70552 0.48323 0.48112 0.42774

1 1.00012±7 pcm 1.00012 0.72320 0.71284 0.49605 0.49100 0.43236

2 1.00019±7 pcm 1.00019 0.73302 0.72089 0.50609 0.50061 0.44342

3 0.99997±7 pcm 0.99997 0.74483 0.73167 0.51801 0.51488 0.45587

Table 7.13: First k-eigenvalues for EOLE water blades configurations configurations. The second column displays
the fundamental eigenvalues k0 computed by Tripoli-4® power iteration for the k-eigenvalue problem and the
corresponding standard deviations. All other eigenvalues have been computed from the fission matrix of the
corresponding configuration.

The fundamental eigenvalues obtained with these calculations are shown in the second column of Tab. 7.13.
These values are less than 20 pcm from the critical state, with a standard deviation of 7 pcm for the chosen number
of particles and cycles. The other values presented in Tab. 7.13 have been computed from the fission matrices
associated to each configuration. An excellent agreement is found between the fundamental eigenvalues kMC

0
(obtained by using the power iteration) and k0 (computed from the post-processed fission matrices).

During the same calculations, the discretized version of linear transport operators have been estimated and
post-processed in order to obtain the matrices of the α-eigenvalue problems. The real parts of the corresponding
eigenvalues have been arranged in descending order in order to discriminate the fundamental eigenvalue, the clus-
ters of delayed eigenvalues and the prompt eigenvalues. The fundamental eigenvalues α0 and the first five delayed
eigenvalues are shown in Tab. 7.14. The sign and the magnitude of the fundamental α-eigenvalues are consistent
with the k0 eigenvalues from the previous table. The absolute value of the first delayed eigenvalues collapses on
the minimum decay constant equal to min(λ) = 1.247× 10−2 s-1. Conversely, the first five prompt α-eigenvalues
shown in Tab. 7.15 exhibit significant variations as a function of the configuration and of the mode order.

water blades [-] α0 [s-1] α1 [s-1] α2 [s-1] α3 [s-1] α4 [s-1] α5 [s-1]

0 −1.122×10−3 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.247×10−2

1 1.084×10−3 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.247×10−2

2 2.473×10−3 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2

3 −5.273×10−4 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2 −1.246×10−2

Table 7.14: First α-eigenvalues for EOLE water blades configurations. These values have been computed from the
matrix-form of linear transport operator combined for the definition of the α-eigenvalue problem.

water blades [-] αp,0 [s-1] αp,1 [s-1] αp,2 [s-1] αp,3 [s-1] αp,4 [s-1] αp,5 [s-1]

0 −2.233×102 −4.277×103 −4.883×103 −5.167×103 −6.051×103 −6.068×103

1 −2.010×102 −5.591×103 −5.662×103 −7.667×103 −7.688×103 −8.158×103

2 −1.715×102 −5.000×103 −5.088×103 −6.252×103 −7.000×103 −7.022×103

3 −1.508×102 −4.234×103 −4.328×103 −6.081×103 −6.103×103 −6.793×103

Table 7.15: First prompt α-eigenvalues for EOLE water blades configurations. These values have been computed
from the matrix-form of linear transport operator combined for the definition of the α-eigenvalue problem.

For the sake of completeness, we show both the k- and the α-spectra on the complex plane in Fig. 7.7. The
(small) imaginary part of the k-spectrum is merely due to the statistical uncertainties propagated from the stochastic
estimation of the matrix elements on the eigenvalues. Figure 7.8 shows the zoom on all delayed eigenvalue clusters
(left) and on the delayed eigenvalue cluster associated to the first precursor family (right). The eigenvalues are
concentrated on the right of the −λ j values. The dominant eigenvalue α j

d,0 of the j-th delayed cluster is separated

from the other eigenvalues of the same precursor family. The zoom of Fig. 7.8 (left) shows the gap between α j
d,0

and −λ j values for the last precursor families. The computed values of α j
d,0 and α j

d,1 for the last three precursor
families ( j = 6,7,8) are shown in Tab. 7.16. Values for the −λ j shown in Fig. are: −λ1 = −1.2467× 10−2 s−1,
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−λ6 = −6.6649×10−1 s−1, −λ7 = −1.6348 s−1 and −λ8 = −3.5546 s−1.

Figure 7.7: Spectra of the k (left) and the α (right) eigenvalue problem for the ”3 water blades” configuration.

Figure 7.8: Zoom on the α-spectrum on the delayed region (left) and in the first delayed cluster (right) for the
”3 water blades” configuration. Vertical lines have been added in order to indicate the values of −λ1 (blue), −λ6
(magenta), −λ7 (cyan) and −λ8 (green).

water blades [-] α6
d,0 [s-1] α6

d,1 [s-1] α7
d,0 [s-1] α7

d,1 [s-1] α8
d,0 [s-1] α8

d,1 [s-1]

0 −6.079×10−1 −6.653×10−1 −1.506 −1.632 −3.453 −3.553

1 −6.074×10−1 −6.653×10−1 −1.505 −1.632 −3.453 −3.553

2 −6.069×10−1 −6.652×10−1 −1.503 −1.632 −3.452 −3.553

3 −6.087×10−1 −6.652×10−1 −1.507 −1.632 −3.455 −3.552

Table 7.16: First α-eigenvalues of the clusters associated to the last three precursor families ( j = 6,7,8) for the
EOLE water blades configurations. These values have been computed from the matrix-form of linear transport
operator combined for the definition of the α-eigenvalue problem.

The eigenvalues computed for these configurations are combined in order to obtain the dominance ratio and the
eigenvalue separation according to the k- and the α-formulations. These values are collected in Tabs. 7.17 and 7.19
and are shown in Figs. 7.9 and 7.10.

The values of dominance ratio increase for a larger thickness of the water blade from DR = 0.7080 up to
DR = 0.7449. The eigenvalue separations according to the k-formulation follow a similar behaviour as the one
observed in the analysis of 2D systems in Chapter 6 (Figs. 6.7 and 6.11): the first and second, the third and fourth
order of the eigenvalue separations show close values. This feature might be related to the symmetry properties
of this system, which would in turn induce a degeneracy in the eigenvalues. Conversely, all these values do not
change significantly with respect to the chosen configuration (i.e., to the number of water blades).
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water blades [-] DR [-] E.S.1(k) [-] E.S.2(k) [-] E.S.3(k) [-] E.S.4(k) [-] E.S.5(k) [-]

0 7.080×10−1 4.125×10−1 4.173×10−1 1.069×100 1.078×100 1.338×100

1 7.231×10−1 3.829×10−1 4.030×10−1 1.016×100 1.037×100 1.313×100

2 7.329×10−1 3.644×10−1 3.874×10−1 9.761×10−1 9.977×10−1 1.255×100

3 7.449×10−1 3.426×10−1 3.667×10−1 9.304×10−1 9.422×10−1 1.194×100

Table 7.17: Dominance ratio and E.S.n(k) eigenvalue separations of the first k-eigenvalues for water blade config-
urations.

Figure 7.9: Dominance ratio (left) and k-eigenvalue separations (right) for EOLE water blade configurations. The
first five order of eigenvalue separations are shown, in order, as: E.S.1(k) red circles, E.S.2(k) blue crosses, E.S.3(k)
green squares, E.S.4(k) cyan diamonds and E.S.5(k) magenta triangles.

The α-eigenvalues computed from the matrix-form of the α-eigenvalue problem are used in order to estimate
the delayed E.S.(αd) and the prompt E.S.(αp) eigenvalue separations of the first five orders. The delayed results
are shown in Tab. 7.18, whereas the prompt results are shown in Tab. 7.19. The values of delayed eigenvalue
separations (Fig. 6.8, left) are almost constant as a function of the water blade configuration. The prompt α-
eigenvalue separations (Fig. 6.4, right) have a different behaviour with respect to the k-eigenvalue separations. In
particular, the eigenvalue separations associated to the ”0 water blade” configuration appear to have a different trend
with respect to the results obtained from the other configurations. This stems from this configuration not having
any strong heterogeneity along the spatial coordinates. For the configurations containing the water blades, on the
contrary, we notice a similar behaviour with respect to what examined for the 2D configurations of Sections 6.4.1
and 6.4.2. The proximity of the first and second, third and fourth order of the eigenvalue separations suggest again
a degeneracy effect related to the symmetry of the system.

Moreover, the values of dominance ratio hint the absence of strong decoupling effects in all these configura-
tions. For this reasons, no solid conclusions can be drawn relating spatial kinetics effects to the eigenvalue separa-
tions of the considered configurations. Therefore, in the next section we complement this analysis by considering
the eigenmodes.

water blades [-] E.S.1(αd) [s-1] E.S.2(αd) [s-1] E.S.3(αd) [s-1] E.S.4(αd) [s-1] E.S.5(αd) [s-1]

0 −1.134×10−2 −1.134×10−2 −1.134×10−2 −1.134×10−2 −1.134×10−2

1 −1.354×10−2 −1.354×10−2 −1.355×10−2 −1.355×10−2 −1.355×10−2

2 −1.493×10−2 −1.493×10−2 −1.494×10−2 −1.494×10−2 −1.494×10−2

3 −1.193×10−2 −1.193×10−2 −1.194×10−2 −1.194×10−2 −1.194×10−2

Table 7.18: Eigenvalue separations of the first delayed α-eigenvalues for water blade configurations.
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water blades [-] E.S.1(αp) [s-1] E.S.2(αp) [s-1] E.S.3(αp) [s-1] E.S.4(αp) [s-1] E.S.5(αp) [s-1]

0 −4.054×103 −4.660×103 −4.943×103 −5.827×103 −5.844×103

1 −5.390×103 −5.461×103 −7.466×103 −7.487×103 −7.957×103

2 −4.828×103 −4.916×103 −6.080×103 −6.828×103 −6.851×103

3 −4.083×103 −4.177×103 −5.930×103 −5.953×103 −6.642×103

Table 7.19: Eigenvalue separations of the first prompt α-eigenvalues for water blade configurations.

Figure 7.10: Delayed (left) and prompt (right) α-eigenvalue separations for EOLE water blade configurations.
The first five order of eigenvalue separations are shown, in order, as: E.S.1(α) red circles, E.S.2(α) blue crosses,
E.S.3(α) green squares, E.S.4(α) cyan diamonds and E.S.5(α) magenta triangles.

7.4.3 Eigenmode analysis

We will now examine the eigenvectors corresponding to the k- and the α-eigenvalue formulation as a function
of the spatial coordinates in the cross-section plane of the EOLE reactor. The distributions computed from fis-
sion matrices are fission rates Q f ,k(x,y) depending only on the spatial coordinates. For this reason, we applied
a finer discretization in the fissile regions. Conversely, α-eigenfunctions are related to particle population (neu-
trons and precursors), thus requiring the discretization of the whole phase-space, yielding distributions of the kind
ϕα(x,y,µx,µy,E) for neutrons and c j,α(x,y,E) for precursors.

Figures 7.11 and 7.12 show the spatial distribution of the fundamental and the first-order eigenmodes according
to the k-formulation, respectively. As expected, since the fission rates are located only in the fissile fuel pins of the
core, the effect of the moderator region is clearly visible. Concerning the fundamental eigenmode, the distribution
corresponding to the reference configuration (top left) shows large values of the fission rates in the central region of
the core and in its the peripheral region. The moderation caused by the borated water increases the fission rates in
proximity of the non fissile regions with respect to the usual Bessel-like distribution expected for an homogeneous
core. The replacement of fuel pins in the water layer region of the ”1 water blade” configuration (top right)
completely modifies the fission rates distribution in the core. Fuel pin regions over-moderated by this replacement
are characterized by larger values of fission rates, whereas all the regions far from this perturbation display smaller
values with respect to the distribution of the reference configuration. Increasing the thickness of the water layer in 2
(bottom left) and 3 (bottom right) water blades configurations enhance the localized behaviour of this perturbation
by amplifying the fission rates of fuel pins closer to the over-moderated regions. Moreover, the absorption caused
by the B4C rods placed on the other side with respect to the water layer is clearly visible, since it reduces the fission
rates in their proximity.

The adjoint distributions of the k-eigenvalue problem analyzed by transposition of the fission matrix are shown
in Figs. 7.13 and 7.14 for the fundamental and the first-order eigenmodes, respectively. The presence of the strong
moderator heterogeneity appears to slightly shift the peak of the adjoint eigenfunction towards the center of the
water blade. Overall, a Bessel-like shape is observed for the four configurations.
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Figure 7.11: Spatial behaviour of the forward fundamental eigenmodes Q f ,k0 (x,y) on the EOLE cross section.
Configurations with 0 (top left), 1 (top right), 2 (bottom left) and 3 (bottom right) water blades are shown. The
white frame indicates the boundaries of the core region. All the eigenfunctions have been normalized. Detector
positions of the water blade configuration (Section 7.2.3) are shown as black circles.

Figure 7.12: Spatial behaviour of the forward first-order eigenmodes Q f ,k1 (x,y) on the EOLE cross section. Con-
figurations with 0 (top left), 1 (top right), 2 (bottom left) and 3 (bottom right) water blades are shown. The white
frame indicates the boundaries of the core region. All the eigenfunctions have been normalized. Detector positions
of the water blade configuration (Section 7.2.3) are shown as black circles.
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Figure 7.13: Spatial behaviour of the adjoint fundamental eigenmodes Q†f ,k0
(x,y) on the EOLE cross section.

Configurations with 0 (top left), 1 (top right), 2 (bottom left) and 3 (bottom right) water blades are shown. The
white frame indicates the boundaries of the core region. All the eigenfunctions have been normalized. Detector
positions of the water blade configuration (Section 7.2.3) are shown as black circles.

Figure 7.14: Spatial behaviour of the adjoint first-order eigenmodes Q†f ,k1
(x,y) on the EOLE cross section. Con-

figurations with 0 (top left), 1 (top right), 2 (bottom left) and 3 (bottom right) water blades are shown. The white
frame indicates the boundaries of the core region. All the eigenfunctions have been normalized. Detector positions
of the water blade configuration (Section 7.2.3) are shown as black circles.

Concerning the α-eigenmodes, we resort to the discretization of the operators in energy groups by showing
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spatial distributions integrated over different energy ranges. In the Figs. 7.15 and 7.16 we display the results
obtained for the four configurations (columns) in thermal, epithermal, fast and whole energy ranges (rows).

Figure 7.15 shows the fundamental eigenmodes ϕα0 (x,y,g) for each configuration and energy range. The
distribution for the reference configuration in the thermal energy range shows large values on the peripheral zone
just outside the core and in its center. Results obtained in epithermal and fast energy range display the Bessel-like
shape of the neutron flux. Such shape is recovered by integrating over the whole energy range. The effect of the
water blade(s) is clearly visible in the other figures. In the thermal energy range, the flux distribution located inside
the water blade region assumes larger values for increasing thickness of the water layer. This effect can be justified
by the stronger over-moderation caused by gradually larger number of replaced fuel pins. In the epithermal energy
range the absorption caused by the B4C rods is visible and the neutron population migrates towards the center
of the core for increasing thickness of the water layer. In the fast region, the moderator progressively reduces
neutron flux moving from the ”1 water blade” configuration up to ”3 water blades” configuration. All these effects
are present and progressively more visible in the results integrated over the whole energy range. In particular,
for the ”3 water blade” configuration we notice a more localized peak in the center of the core, larger values
caused by the over-moderation of the water layer and smaller values due to the absorption of the B4C rods. The
behaviours discussed for the fundamental mode is observed also for the higher order modes. Nevertheless, the
presence of an increasing number of nodes for higher order eigenfunctions smoothens the perturbations caused by
the heterogeneity of each configuration. As previously discussed in Chapter 6 for the 2D benchmark configuration,
the first-order spatial distributions (Fig. 7.16) are similar to the second-order spatial distributions (Fig. 7.17) rotated
by 90°. This behaviour suggests the presence of a degeneracy of the analyzed configurations due the symmetries of
the system. For the sake of completeness we show the fundamental and first-order prompt eigenmodes in Figs. 7.18
and 7.19, respectively.

Figure 7.15: Spatial behaviour of the forward fundamental eigenmodes ϕα0 (x,y,g) on the EOLE cross section.
Configurations with 0 (first column), 1 (second column), 2 (third column) and 3 (fourth column) water blades
are shown. The spatial eigenfunctions have been integrated in thermal (first row), epithermal (second row), fast
(third row) and whole (forth row) energy region. The white frame indicates the boundaries of the core region. All
the eigenfunctions have been normalized. Detector positions of the water blade configuration (Section 7.2.3) are
shown as black circles.
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Figure 7.16: Spatial behaviour of the forward first-order eigenmodes ϕα1 (x,y,g) on the EOLE cross section. Con-
figurations with 0 (first column), 1 (second column), 2 (third column) and 3 (fourth column) water blades are
shown. The spatial eigenfunctions have been integrated in thermal (first row), epithermal (second row), fast (third
row) and whole (forth row) energy region. The white frame indicates the boundaries of the core region. All
the eigenfunctions have been normalized. Detector positions of the water blade configuration (Section 7.2.3) are
shown as black circles.
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Figure 7.17: Spatial behaviour of the forward second-order eigenmodes ϕα2 (x,y,g) on the EOLE cross section.
Configurations with 0 (first column), 1 (second column), 2 (third column) and 3 (fourth column) water blades
are shown. The spatial eigenfunctions have been integrated in thermal (first row), epithermal (second row), fast
(third row) and whole (forth row) energy region. The white frame indicates the boundaries of the core region. All
the eigenfunctions have been normalized. Detector positions of the water blade configuration (Section 7.2.3) are
shown as black circles.
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Figure 7.18: Spatial behaviour of the forward fundamental prompt eigenmodes ϕαp,0 (x,y,g) for the ”3 blades”
configuration on the EOLE cross section. The spatial eigenfunctions have been integrated in thermal (top left),
epithermal (top right), fast (bottom left) and whole (bottom right) energy region. The white frame indicates the
boundaries of the core region. All the eigenfunctions have been normalized. Detector positions of the water blade
configuration (Section 7.2.3) are shown as black circles.

Figure 7.19: Spatial behaviour of the forward first-order prompt eigenmodes ϕαp,1 (x,y,g) for the ”3 blades” config-
uration on the EOLE cross section. The spatial eigenfunctions have been integrated in thermal (top left), epithermal
(top right), fast (bottom left) and whole (bottom right) energy region. The white frame indicates the boundaries of
the core region. All the eigenfunctions have been normalized. Detector positions of the water blade configuration
(Section 7.2.3) are shown as black circles.
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The adjoint distributions of the α-eigenvalue problem analyzed by transposition of the α-matrix are shown
in Figs. 7.20 and 7.21 for the fundamental and the first-order eigenmodes, respectively. Similarly to the results
analyzed for the k-formulation, the fundamental adjoint distribution presents a Bessel-like shape. Conversely, the
influence of the water blade region and of the control rod absorption is clearly visible in thermal and epithermal
region, respectively, for increasing thickness of the water layer.

Figure 7.20: Spatial behaviour of the adjoint fundamental eigenmodes ϕ†α0 (x,y,g) on the EOLE cross section.
Configurations with 0 (first column), 1 (second column), 2 (third column) and 3 (fourth column) water blades
are shown. The spatial eigenfunctions have been integrated in thermal (first row), epithermal (second row), fast
(third row) and whole (forth row) energy region. The white frame indicates the boundaries of the core region. All
the eigenfunctions have been normalized. Detector positions of the water blade configuration (Section 7.2.3) are
shown as black circles.
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Figure 7.21: Spatial behaviour of the adjoint first-order eigenmodes ϕ†α1 (x,y,g) on the EOLE cross section. Config-
urations with 0 (first column), 1 (second column), 2 (third column) and 3 (fourth column) water blades are shown.
The spatial eigenfunctions have been integrated in thermal (first row), epithermal (second row), fast (third row)
and whole (forth row) energy region. The white frame indicates the boundaries of the core region. All the eigen-
functions have been normalized. Detector positions of the water blade configuration (Section 7.2.3) are shown as
black circles.
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7.4.4 Analysis of kinetics parameters

During the simulations described above, the effective kinetic parameters have also been computed. Criticality k-
calculations were performed, so the weighting functions applied to the bilinear forms are ϕk0 and ϕ†k0

. Since all
these systems have been adjusted to the critical level, the α- and k- fundamental eigenmodes are expected to be
almost identical. The computed values for ρ have been obtained as static reactivities according to Eq. (2.106).

The computed kinetics parameters and the corresponding reactivities parameters are shown in Tab. 7.20. Re-
activity mean values and standard deviations are intimately related to the fundamental eigenvalues k0 estimated
for each configuration and shown in Tab. 7.13. The mean generation time Λeff estimated for the ”1 water blade”
configuration is smaller than the value given in Tab. 7.3 (32.7±0.8 µs), probably due to the higher Boron content in
the moderator. Due to nuclear data, the reactivity corresponding to the ”1 water blade” configuration was not zero
at the Boron concentration used in the experiment. In order to adjust the reactivity, we have artificially modified
the Boron content of the moderator, which in turn has slightly modified the value of the mean generation time.
By inspection of the values computed for the remaining configurations, we notice that increasing the water blade
thickness leads to an increase of the mean generation time. This behaviour is expected since increasing the water
layer implies an increase in the overall moderation of the lattice. Values concerning the effective delayed fraction
βeff from Tab. 7.3 (778±20 pcm) and all four simulated configurations overlap within one standard deviation.

parameters reference 1 water blade 2 water blade 3 water blade

ρ [pcm] -12 ± 7 12 ± 7 19 ± 7 -3 ± 7

Λeff [µs] 26.91 ± 0.01 29.24 ± 0.01 33.94 ± 0.02 39.63 ± 0.02

βeff [pcm] 791 ± 3 786 ± 3 775 ± 3 779 ± 3

β1
eff

[pcm] 24.7 ± 0.6 23.4 ± 0.6 23.4 ± 0.6 23.8 ± 0.6

β2
eff

[pcm] 112 ± 1 117 ± 1 113 ± 1 113 ± 1

β3
eff

[pcm] 68.2 ± 0.9 69 ± 1 68.5 ± 0.9 70 ± 1

β4
eff

[pcm] 151 ± 1 149 ± 1 144 ± 1 148 ± 1

β5
eff

[pcm] 255 ± 2 252 ± 2 253 ± 2 251 ± 2

β6
eff

[pcm] 83 ± 1 82 ± 1 79 ± 1 82 ± 1

β7
eff

[pcm] 71 ± 1 68.1 ± 0.9 69 ± 0.9 66.8 ± 0.9

β8
eff

[pcm] 25.8 ± 0.6 25.5 ± 0.6 25.2 ± 0.6 25 ± 0.6

Table 7.20: Effective kinetics parameters for water blade configurations, weighted by the adjoint fundamental
mode ϕ†k0

.

7.5 Conclusions

In order to highlight the role of the spectral analysis in the characterization of real-world nuclear systems, we
have considered different configurations of the EOLE facility. The investigation of decoupling and spatial kinetics
effects analyzed by means of Monte Carlo simulation provides a useful complement of the experimental results
obtained during the EPILOGUE program.

During the EPILOGUE program, rod-drop experiments have been performed in the ”low fuel bubble” con-
figuration. The measurements collected from fission chambers located at different positions with respect to the
perturbation have been post-processed in order to compute a first estimation of reactivity variations. The discrep-
ancies found in the detector efficiency and reactivity variation with respect to the fission chambers position suggests
the presence of (weak) spatial kinetics effects.

We have then chosen to consider the ”water blade” configuration in order to examine the influence of a strong
heterogeneity introduced in the system. In order to investigate such effect, we have used the capabilities of the
matrix-filling Monte Carlo methods for the spectral analysis according to both k- and α-eigenvalue formulation.
For the study of realistic systems the procedure proposed in Chapter 5 for the estimation of high order α-eigenpairs
has been implemented in the Tripoli-4® code. In addition to examining the reference configuration and the one
containing a single water blade (which were tested in the experiment), we have used our simulation tools to
consider configurations containing 2 and 3 water blades. In this respect, we have used Monte Carlo simulation

139



CHAPTER 7. SPECTRAL ANALYSIS OF THE EOLE REACTOR: THE EPILOGUE EXPERIMENTAL
PROGRAM

as a numerical experiment, allowing us to explore configurations that were not accessible by experiments. We
have thus increased our understanding of the effects induced by the water blade on the behaviour of the eigenpairs
of the k- and α-eigenvalue formulation. The idea behind the ”water blade” experiment in EPILOGUE was to
search for decoupling effects in an heterogeneous core. Unfortunately, no decoupling effects were detected from
the experimental results. For this reason, we complemented our simulations of the ”single blade” configuration by
adding further moderator layers.

The over-moderation caused by the presence of the water layer does have an impact on the higher order eigen-
values k and α. Despite relatively small variations from the reference configuration, the dominance ratio and the
eigenvalue separation calculated from these eigenvalues suggest the presence of a weak decoupling effect. This
statement is also supported by the analysis of the spatial shape of both k- and α-eigenmodes. Overall, the effects
induced by the heterogeneity of the system are cleary detected by the spectral analysis. Nonetheless, our numer-
ical findings seem to point out that the decoupling effects are rather mild and do not separate the system into two
loosely-coupled cores, not even in the rather extreme case of 3 water blades.

Effective kinetics parameters were estimated during k power iteration proving consistent values with respect
to the results obtained during the experiments and shown in Tab. 7.3. This funding is an additional evidence of
the reliability of the computation of these key parameters weighted by the fundamental adjoint eigenmode. In this
respect, the fundamental and the first order adjoint eigenmode distributions were shown according to both k- and
α-eigenvalue formulation. The importance of neutrons for the analyzed configurations shows a radially decreasing
behaviour with respect to the center of the core. This result provides a useful information for the in-core detector
locations that would be most sensitive to the flux behaviour within the core. In this respect, our results suggest that
the analysis of the adjoint eigenmodes would have probably helped in the phase of preparation of the measurement
campaign in EOLE.

The eigenvalue spectrum analysis described in this Chapter has been performed with the goal of complement-
ing the interpretation with more traditional techniques. The experiment carried out in the EPILOGUE program
was prepared independently from the PhD, but an additional work was done afterwards in order to see whether the
spectral analysis would bring valuable information on the core behaviour. Our results do bring information on core
coupling/decoupling effects. Although the EOLE facility has been closed, the know-how stemming from the spec-
tral analysis methodology will be key for the future experimental programs in Zero-Power Reactors (ZPR [10]),
especially in view of using forward and adjoint spectra and spatial shapes to optimize detector positions and
thus enhance the detection of perturbations. This work will also profit from the PhD thesis of K. Routsonis at
CEA/Cadarache (2017-2020), aimed at the optimization of detector signal response to a given perturbation (for
example a rod drop). The potential outcomes of these combined approaches are numerous, covering among others
space-time dynamic responses for both critical and subcritical (i.e., fuel loading or ADS) systems and detector
optimization in large Gen-III cores.

To conclude, we provide in Tab. 7.21 an estimation of the computational time and the memory occupation
required by Tripoli-4® simulations and by MATLAB eig routine for the computation of the eigenpairs. Despite
the finer spatial discretization used for the fission matrix estimation (Nx = Ny = 76) with respect to the α-matrix
(Nx = Ny = 48), the total size of the fission matrix is smaller with respect to the matrix-form of the α-eigenvalue
problem, implying a large reduction in the computational time teig required by the MATLAB function eig for the
computation of the corresponding eigenpairs. Nevertheless, the memory occupation required for the storage of the
fission matrix is much larger than the one used for the α-matrix. This is mainly due to the high sparsity pattern of
the α-matrix, defined over the whole phase-space, whereas the discretization of the fission matrix has been chosen
in order to refine only the fissile region of the system.
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configuration 0 water blade 3 water blade

α-matrix size [-] 4.608×104 4.608×104

fission matrix size [-] 5.776×103 5.776×103

tMC [s] 3.37×105 4.04×105

t+MC [s] 4.29×105 5.05×105

α-matrix storage [MB] 9.6×100 9.5×100

fission matrix storage [MB] 2.35×102 1.91×102

teig α-matrix [s] 2.0×104 2.1×104

teig fission matrix [s] 1.0×102 9.3×101

Table 7.21: Computational time and memory occupation of the EOLE water blade configurations. The simulation
times associated to the Monte Carlo simulations performed with Tripoli-4® including and without matrix elements
estimation are expressed as t+MC and tMC, respectively.
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Chapter 8

Conclusions

In this thesis, we have addressed some aspects of eigenvalue problems emerging in reactor physics, and shown
how Monte Carlo methods can be successfully applied to the characterization of the spectral properties of nuclear
systems. After a general overview of time-dependent transport, the associated eigenvalue formulations (in particu-
lar k and α) and an introduction to Monte Carlo methods for reactor physics, the heart of the manuscript has been
devoted to two main axes. The first axis concerns the application of Monte Carlo simulation to spectral analysis,
with focus on the behavior of the fundamental modes, which provide information about the asymptotic behavior
of the neutron and precursor population. The second axis concerns the development of new Monte Carlo methods
for the estimation of higher-order eigenpairs of the α-eigenvalue problem and the application of these novel algo-
rithms to the analysis of benchmark problems and realistic reactor configurations. The newly developed methods
and the simulation results obtained in this work might provide a valuable help in the analysis of reactor cores and
the design of original reactor concepts. In the following, we briefly survey the contents and the major findings of
this thesis.

• In Chapter 2 we have described the general framework of neutron transport problems in the context of
reactor physics, by introducing in particular the time-dependent transport formulation, which is central in the
assessment of operational and accidental transient regimes. The peculiar role of delayed neutron precursors
has been mentioned. After introducing the integro-differential and integral formulations of the neutron
transport equations, we have recalled that two major families of eigenvalue equations (k and α) can be
established: the former is related to the neutron evolution as a function of the fission generations; the latter is
related to the neutron evolution as a function of time (and for this reason it represents the “natural” eigenvalue
formulation for time-dependent problems). We have shown that useful information can be extracted from
such eigenvalue equations: the fundamental eigenpairs describe the asymptotic (in generations or in time)
behavior of the reactor core, whereas higher-order quantities such as the eigenvalue separation or the first
and second eigenfunctions convey the details concerning the system response to an external perturbation
and thus a departure from the fundamental mode. As such, the eigenvalue formulation (either k or α) can
usefully complement the full description stemming from the time-dependent transport equations, which is
particularly important since the kinetics equations are often extremely demanding in terms of computer
resources (time and memory).

• The basic principles of Monte Carlo simulation as applied to reactor physics have been briefly recalled in
Chapter 3. In particular, we have stressed the peculiar role of Monte Carlo simulation as a numerical tool
capable of producing reference (i.e., unbiased) solutions for nuclear systems: almost no approximations are
introduced, since the energy, angle and space do not need to be discretized, which comes at the expense
of a “slow” convergence. Monte Carlo methods have been recently extended to the case of time-dependent
simulations, including delayed neutron precursors: the computer time involved in this class of simulations,
despite clever variance-reduction algorithms that have been proposed in order to make such calculations
feasible, is still prohibitively large for industrial applications. New strategies for the kinetic Monte Carlo
simulation have been suggested, including time-dependent CADIS methods [100]. However, in the next
future it seems probable that kinetic Monte Carlo simulations will be complemented, whenever possible,

143



CHAPTER 8. CONCLUSIONS

by computational tools requiring more parsimonious amounts of computer resources, at the expense of
sacrificing the target accuracy. In this respect, we have shown that the Monte Carlo methods devoted to
eigenvalue problems might represent a good compromise between efficiency and unbiasedness.

• After setting the theoretical basis and describing the computational tools, in Chapter 4 we have illustrated our
first original contribution, concerning the analysis of the fundamental modes of the eigenvalue formulations.
We have started by recalling the algorithms implemented in the Monte Carlo code Tripoli-4® that allow
the fundamental forward and adjoint modes to be estimated without approximations, for both k- and α-
eigenvalue problems. In particular, we have focused on the Iterated Fission Probability and the Generalized
Iterated Fission Probability methods, which have paved the way to the calculation of the adjoint eigenmodes
(until quite recently, adjoint eigenvalue calculations were not accessible by Monte Carlo methods, because of
numerical instabilities). Our main finding is a thorough characterization of the discrepancies between the k-
and α-eigenbases close to the critical point: for an exactly critical systems, the k- and α-eigenmodes coincide;
on the contrary, small departures from criticality induce small, yet significant deviations in the shapes of the
forward and adjoint eigenfunctions. Such discrepancies are mirrored in the key reactor parameters, which
are often expressed as ratios of bilinear forms involving the forward and adjoint fundamental modes: a
prominent example is represented by the kinetics parameters. Contrary to previous works, in our analysis we
have explicitly taken into account the presence of the delayed neutron contributions and we have also focused
on the behavior of adjoint eigenmodes. Our investigation has been carried out on two sets of configurations:
some simplified benchmark systems (Godiva-like spheres) proposed by D. E. Cullen in his seminal paper,
and the CROCUS zero-power facility operated at the EPFL, Switzerland. In both cases, we have shown
that the effective kinetics parameters (and thus the computed reactivity, via the in-hour equation) might be
affected by the choice of the eigenbasis. These slight differences have been shown to be exacerbated by the
presence of heterogeneities in the core, such as a reflector region: for homogeneous cores, a point-kinetics
behavior is observed, without spatial effects, and the impact of the eigenbasis becomes less relevant.

• The second original contribution has been presented in Chapter 5, where we have considered Monte Carlo
methods for the calculation of higher-order k- and α-eigenmodes and eigenvalues. We have first revisited
the fission matrix approach, a matrix-filling Monte Carlo method that can be used in order to estimate the
elements of a finite-size matrix whose eigenvectors and eigenvalues converge to those of the k-eigenvalue
problem in the limit of infinite size. Inspired by this approach, we have proposed and developed a novel
method capable of estimating the elements of a matrix whose eigenvectors and eigenvalues converge to
those of the α-eigenvalue problem. This new computational strategy has paved the way towards a viable
strategy for α-spectral analysis by Monte Carlo methods. Contrary to previous attempts proposed in the
literature, our method has been shown to have two major advantages: it yields an unbiased estimate of the
fundamental eigenvector (this minimizing the overall bias on the higher-order eigenvectors as well), and it
can natively take into account the adjoint eigenvalue problem without introducing an additional bias due
to matrix transposition. The developed method has been successfully tested and verified on benchmark
problems where reference analytical solutions were available.

• In Chapter 6 we have illustrated the third original contribution, concerning the spectral analysis of bench-
mark configurations where a physical parameter allows for an incremental decoupling effect. For this pur-
pose, we have selected a few relevant configurations involving multi-group transport with simplified physics,
in order to better apprehend the key features of these configurations without being hindered by complex
considerations related to nuclear data and/or detailed geometries. The methods developed in Chapter 5 have
been applied to the determination of k and α-eigenmodes and eigenvalues, in view of ascertaining whether
the two modal expansions may convey different information content concerning the behavior of the systems
under analysis. In particular, we have examined how the fundamental and higher-order eigenmodes and
eigenvalues behave in the presence of decoupling factors. Two classes of systems have been considered:
homogeneous cores, where the decoupling effect is introduced by increasing the system size, and heteroge-
neous cores, where the decoupling effect is introduced by increasing the size of a central layer separating two
fissile regions. These systems have been shown to behave differently: k- and α-eigenbases present distinct
features; furthermore, the eigenvalue separation (i.e., the estimator related to the spectral gap between con-
tiguous eigenvalues) and the shape of the eigenfunctions also present discrepancies. The spectral analysis as
performed by Monte Carlo matrix-filling methods has turned out to be a useful and practical numerical tool
to characterize such systems.
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• Finally, the fourth original contribution has been discussed in Chapter 7, where we have considered an ap-
plication to a realistic system: two sets of experiments carried out during the EPILOGUE program at the
EOLE critical facility of CEA Cadarache. The EPILOGUE experiment was aimed at exploring – among
others – the effects of the presence of a polyethylene region (mimicking a clear water bubble in the mod-
erator) and of a water blade (with fuel rows and columns being replaced by moderator) with respect to the
reactor response. The case of the polyethylene region has been examined by comparing the experimental
measurements obtained at several locations in the core (whose post-processing has been finalized during a
visit to the Cadarache center during the first year of the thesis) to the fission rates computed by Tripoli-4®

based on the fundamental k-eigenmode. This analysis suggests that (mild) spatial effects might emerge in
the EOLE core, despite its small size. By building on the knowledge and numerical tools developed in the
previous chapters, we have then simulated the water blade configuration, in search of possibly stronger het-
erogeneities and decoupling effects induced by the presence of the moderator. Instead of just interpreting the
case of single water blade, which was experimentally measured, we have used Monte Carlo simulation as a
“thought experiment”: we have explored the spectral effects induced by adding several other water blades
into the core. The obtained results might suggest a better way of arranging the detector positions within the
core, so as to emphasize their response, and might help in conceiving a future experimental campaign in
a dedicated research reactor, in view of assessing the effects of heterogeneities with respect to the system
behavior.

The spectral analysis performed by the implementation of matrix-filling Monte Carlo methods provides a useful
tool for the investigation of kinetics and decoupling effects. In particular, we have highlighted the discrepancies in
the fundamental eigenmode distributions and the effective kinetics parameters computed according to the k- and
the α-eigenvalue formulations. It could be interesting to extend this investigation to configurations characterized by
stronger heterogeneities and different critical levels. Moreover, the fundamental distributions obtained from these
eigenvalue formulations (ϕk,0 and ϕα,0) should be compared to the asymptotic distribution of the system computed
from a kinetic Monte Carlo simulation.

The access to high-order α-eigenpairs (forward and adjoint) allows the computation of the temporal behaviour
of the system via modal expansion reconstruction. The choice of the weighting function applied for the estimation
of the matrix elements for the forward formulation (ϕα,0, by α-k power iteration method) and the adjoint formula-
tion (ϕ†

α,0, by G-IFP method) has removed the bias on the fundamental eigenpairs. For this reason, a more precise
signal reconstruction is expected and a comparison to kinetic Monte Carlo results could be envisaged.
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The transient fission matrix method

The following method is based on the same principle applied on the fission matrix: the aim is to define a discrete
operator representative of the k-eigenvalue problem. The generic element of this matrix is defined as the number
of fission neutrons generated in the volume I from one average fission neutron born in region J. Two additional
properties have been considered: the distinction between prompt and delayed neutrons and the temporal behaviour
of particles.

The source fission neutrons, as well as the fission neutrons produced from it, are distinguished into prompt and
delayed particles. The probability for one neutron to generate other neutrons is then split into four possibilities,
hence four different matrices have been considered. Moreover, a time grid has been applied to the system in order
to take into account the time associated to each particle. For each time bin considered, a different set of the four
matrices needs to be accounted.

Since scoring a series of these matrices requires a large amount of storage memory, an approximation of the
temporal behaviour has been introduced. In particular, a fifth matrix is considered in order to retrieve the average
time response related to prompt neutrons generating prompt neutrons and it is defined as

Tχpνp (r′,r) =

∫
t′′〉0 Gχpνp (t′′,r′,r)t′′dt′′∫

t′′〉0 Gχpνp (t′′,r′,r)dt′′
, (A.1)

where Gχpνp (t′′,r′,r) is a continuous operator representing the probability that a prompt neutron born at coordinates
(r′, t′) induces a prompt neutron by fission in (r, t), with t′′ = t′− t.

Each sub-matrices Gχpνp (t′′,r′,r) is then integrated over time in order to get four discrete operators of the same
size of the fission matrix

G̃χp,dνp,d (r′,r) =

∫ t

−∞

dt′Gχp,dνp,d (t− t′,r′,r). (A.2)

Finally, the effective lifetime leff is computed as

leff =

!
Ñ†(r)

[
Tχpνp (r′,r)G̃χpνp (r′,r)

]
Ñ(r′)dr′dr!

Ñ†(r)G̃χpνp (r′,r)Ñ(r′)dr′dr
, (A.3)

where Ñ and Ñ† are the direct and adjoint eigenvectors associated to prompt neutron distributions, respectively.
With similar reasoning, transient fission matrix has been used for the estimation of the others kinetic parame-
ters [85].

From balance equations in terms of neutron production, variation and disappearance, a new set of equations
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are retrieved in order to describe the spatial distribution of particles as a function of time

dN
dt

=
1

leff

G̃χpνp N + G̃χdνp

∑
j

λ jP j−
1

leff

N,

dP j

dt
=
β

j
eff

βeff

[
1

leff

G̃χpνd N + G̃χdνp

∑
j

λ jP j

]
−λ jP j,

(A.4)

where N and P j are spatial and temporal distribution related to the neutron and precursor population respectively.

This method offers an hybrid approach between the fission matrix and the k point kinetics equations. For this
reason, it can be also used in order to study the evolution of the spatial distribution of particles for configurations
close to a critical state.
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Derivation of the point kinetics equations

The flux factorization from Eq. (2.90) can be applied to the Boltzmann Eq. (2.41), which yields

1
3(E)

∂

∂t
(A(t)φ(P)) +M(A(t)φ(P)) = Fp(A(t)φ(P)) +

∑
j

χ
j
d(E)

4π
λ jc j(r, t) + Q(P)

∂c j(r, t)
∂t

= F
j

d (A(t)φ(P))−λ jc j(r, t).

(B.1)

The prompt fission term is replaced by the difference between the total fission operator and the delayed fission con-
tribution according to Eq. (2.63). Then, the derivative rule is applied to the product Aφ and the net disappearance
operatorM is moved to the right hand side of the neutron equation. Finally, neutron equation is divided by the am-
plitude function A and the precursor equation is multiplied by the delayed neutron spectrum of the corresponding
family, so that

1
3(E)

[
φ(P)
A(t)

∂A(t)
∂t

+
∂φ(P)
∂t

]
= [F −M]φ(P) +

∑
j

[
χ

j
d(E)

4π
F

j
d φ(P) +

1
A(t)

χ
j
d(E)

4π
λ jc j(r, t)

]
+

1
A(t)

Q(P)

χ
j
d(E)

4π
∂c j(r, t)
∂t

=
χ

j
d(E)

4π
F

j
d A(t)φ(P)−

χ
j
d(E)

4π
λ jc j(r, t).

(B.2)

This set of equation is now multiplied by the adjoint fundamental mode ϕ†0 and integrated over the whole phase
space:

1
A(t)

∂A(t)
∂t

〈
ϕ†0(r,Ω,E),

1
3(E)

φ(P)
〉

+
∂

∂t

〈
ϕ†0(r,Ω,E),

1
3(E)

φ(P)
〉

= 〈ϕ†0(r,Ω,E), [F −M]φ(P)〉

+
∑

j

[〈
ϕ†0(r,Ω,E),

χ
j
d(E)

4π
F

j
d φ(P)

〉
+

1
A(t)

λ j

〈
ϕ†0(r,Ω,E),

χ
j
d(E)

4π
c j(r, t)

〉]
+

1
A(t)
〈ϕ†0(r,Ω,E),Q(P)〉

∂

∂t

〈
ϕ†0(r,Ω,E),

χ
j
d(E)

4π
c j(r, t)

〉
= A(t)

〈
ϕ†0(r,Ω,E),

χd(E) j

4π
F

j
d φ(P)

〉
−λ j

〈
ϕ†0(r,Ω,E),

χd(E) j

4π
c j(r, t)

〉
.

(B.3)

The assumption from Eq. (2.91) can be recalled in order to neglect the specific derivative. Moreover, we introduce
a normalization function F as

F(t) =

〈
ϕ†0(r,Ω,E),F φ(P)

〉
, (B.4)
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and we divide all terms of the previous equation by this quantity. Finally, rearranging this system yields the final
expression for the exact point kinetics equations:

dA(t)
dt

=
ρ(t)−β(t)

Λ(t)
A(t) +

∑
j

λ jc̃ j(t) + q(t)

dc̃ j(t)
dt

=
β(t)
Λ(t)

A(t)−λ jc̃ j(t).

(B.5)
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Résumé en français

Dans le cadre de la sûreté des installations nucléaires, le développement des outils pour la simulation multi-
physique prédictive, fiable et rapide des cœurs de réacteurs nucléaires (y compris les rétroactions thermo-hydrauliques,
en conditions stationnaires et transitoires) fait l’objet d’un programme de recherche très vaste. La conception de
nouvelles configurations de réacteurs, éventuellement très hétérogènes et/ou découplés, demande également une
caractérisation numérique, qui pourrait compléter ou même remplacer le besoin d’installations expérimentales,
notamment en vue de la caractérisation du comportement de la population de neutrons pendant les opérations
et les transitoires accidentels. Ces efforts ont été capitalisés sous la forme d’agendas d’innovation SNETP, NU-
GENIA et H2020. Plusieurs projets européens ont été développés, tels que NURESIM (2005-2008), NURISP
(2009-2012), NURESAFE (2013-2015), HPMC (2011-2014), McSAFE (2017-2020) et son successeur McSAFER
(2020). Également, des stratégies ont été proposées aux États-Unis (par exemple, le projet CESAR ou le consor-
tium CASL) et en Chine. L’objectif final de ces efforts est d’ouvrir la voie à un réacteur numérique, permettant
la simulation même des conditions extrêmes (c’est-à-dire inaccessibles aux expériences) et la quantification des
incertitudes associées.

L’étude de la cinétique des neutrons, c’est-à-dire le comportement du transport des neutrons en fonction du
temps, est principalement fondée sur des méthodes déterministes, allant d’extrêmement simplifiées (cinétique
ponctuelle) à sophistiquées (théorie du transport). Pour les problèmes non stationnaires, l’état de l’art de la
génération actuelle de codes de simulation numérique utilisant des méthodes déterministes repose généralement
sur une approche en deux étapes : un calcul fin de la distribution des neutrons au niveau du réseau dans des con-
ditions stationnaires et en deux dimensions, suivi par un calcul de l’évolution dans le temps du flux de neutrons
sur la base des sections efficaces déterminées lors de la première étape et l’introduction de modèles simplifiés
pour le transport (par exemple la diffusion ou le SPN) avec une discrétisation de l’énergie ayant un petit nombre
de groupes. Ces approximations étant spécifiques à chaque type de réacteur, la validité des les résultats obtenus,
ainsi que la quantification des incertitudes associées aux quantités physiques d’intérêt, dépend donc de la config-
uration analysée. Afin de surmonter ces problèmes et de pouvoir valider les codes déterministes dans un régime
non stationnaire, il est essentiel de développer des outils de calcul de référence capables de compenser le manque
de données expérimentales en aux régime transitoire.

La simulation Monte Carlo est fondée sur la réalisation d’un très grand nombre de trajectoires aléatoires, dont
les lois de probabilité sont déterminées en accord avec les lois physiques : la probabilité de l’interaction neutrons-
matière, l’angle de la particule après une collision et les distributions d’énergie, etc. Contrairement aux méthodes
déterministes, aucune approximation n’est introduite pour la variable énergie, qui est explicitement traitée lors
des vols de particules et les collisions ; en outre, un traitement exact de la géométrie du réacteur est en principe
possible, sans recourir à la discrétisation. Par conséquent, la simulation Monte Carlo a toujours été considérée
comme la méthode de référence pour le transport de neutrons. Jusqu’à très récemment, la simulation Monte Carlo
était presque exclusivement consacrée à la solution des problèmes de transport stationnaire, principalement en
raison du coût de calcul élevé (exprimé en termes de CPU et charge de mémoire) nécessaires à la réalisation des
trajectoires des particules. C’est également le cas du code TRIPOLI-4®, développé au CEA/Saclay.
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Grâce aux performances croissantes des clusters de calcul, la disponibilité de superordinateurs pour la recherche
scientifique de la dernière décennie et le parallélisme intrinsèque de la simulation Monte Carlo, cette méthode
stochastique a commencé à être appliquée à l’examen des problèmes non stationnaires. À cette fin, deux obstacles
formidables ont été identifiés. Le premier concerne la présence simultanée de deux temps très différents, ceux des
neutrons et ceux des précurseurs de neutrons retardés, qui sont séparées par un facteur de 104 pour les réacteurs
à eau légère et pourraient donc induire de sérieux problèmes de sous-échantillonnage. Le deuxième concerne
la nécessité de prendre en compte les effets des rétroactions physiques pendant la période transitoire, puisque
l’énergie libérée par les fissions génère des changements de température et de densité, qui modifient à leur tour
les sections efficaces et donc la probabilité de collisions de neutrons. Il faut donc coupler les codes Monte Carlo
avec des outils externes tels que des solveurs thermo-hydrauliques et/ou thermo-mécaniques. Ces défis demandent
d’abord des techniques spécifiques de réduction de la variance pour la variable temporelle, puis des schémas de
couplage entre la simulation Monte Carlo et les solveurs à rétroaction externe, en tenant compte de la stabilité et
des problèmes de convergence dus à la nature stochastique de la simulation Monte Carlo. Bien qu’elles aient fait
l’objet d’un important travail de recherche ces dernières années, ces méthodes Monte Carlo n’en sont qu’à leurs
débuts et nécessitent des ressources informatiques si importantes que leur utilisation quotidienne pour la concep-
tion de réacteurs est encore hors de portée. Des travaux intensifs seront encore nécessaires dans un avenir proche
afin de faire de ces méthodes un outil pratique pour les physiciens des réacteurs, comme en témoigne par exemple
le projet McSAFER.

Une approche quelque peu complémentaire de la cinétique des réacteurs consiste à transformer le modèle initial
sous une forme stationnaire, en introduisant un ensemble d’équations aux valeurs propres associées à l’équation de
transport des neutrons. À cette fin, deux bases principales ont été historiquement proposées dans la littérature : les
valeurs propres k, qui correspondent physiquement à la décomposition de l’évolution du système par rapport aux
générations de fission successives, et les valeurs propres α, qui correspondent physiquement à la décomposition de
l’évolution du système par rapport au temps. Pour cette raison, la base α est particulièrement adaptée à l’évolution
du système étuidé en fonction du temps. Une fois déterminées, les valeurs propres et les fonctions propres associées
à chaque base peuvent être utilisées pour effectuer l’analyse spectrale de l’opérateur de Boltzmann et reconstruire
le comportement transitoire en convoluant la base avec la source.

L’analyse des valeurs propres et des fonctions propres de l’opérateur (c’est-à-dire l’analyse spectrale) peut
fournir la forme du mode fondamental, qui représente le comportement asymptotique de la densité neutronique par
rapport au temps ou aux générations de fission, selon que l’on adopte la base k ou la base α. En outre, l’analyse
spectrale peut être utilisée pour évaluer la séparation des valeurs propres et en particulier le rapport de dominance
entre la valeur propre fondamentale et la valeur propre suivante, qui est une mesure du degré de ”découplage”
d’un cœur et donc de la réponse aux perturbations externes : on dit que le système est étroitement couplé si les
deux premières valeurs propres sont séparées. Enfin, l’analyse spectrale peut estimer le comportement spatial et
énergétique des harmoniques d’ordres supérieurs, ce qui permettra de comprendre comment les perturbations se
propagent dans le cœur du réacteur.

À cet égard, un observable fondamental est fourni par la séparation des valeurs propres E.S ., qui pour les
problèmes à valeurs propres k est définie comme suit :

E.S.n(k) =
1
kn
−

1
k0
≥ 0, (C.1)

pour n > 0. Ici kn sont les valeurs propres k d’ordre n, k0 étant la valeur propre fondamentale (c’est-à-dire le facteur
de multiplication). Le cas n = 1 joue un rôle particulier et est souvent mentionné sans utiliser l’indice, notamment,

E.S.(k) = E.S.1(k) =
1
k1
−

1
k0
≥ 0. (C.2)

Une quantité étroitement liée est le rapport de dominance

DR =
k1

k0
≤ 1, (C.3)

qui peut être tracé de façon monotone par rapport au E.S ., partageant ainsi le même contenu d’information. Bien
que dans la littérature mathématique, la notion analogue d’écart spectrale soit largement utilisée pour les problèmes
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aux valeurs propres, avec une certaine similitude avec la formulation de la valeur propre α (par exemple dans le
contexte de l’équation de diffusion dépendant du temps), le concept de séparation de valeurs propres ou de rapport
de dominance ne semble pas avoir reçu beaucoup d’attention pour les problèmes aux valeurs propres α, à notre
connaissance.

Des études expérimentales et numériques ont montré qu’une petite valeur de E.S . augmenterait la probabilité
qu’un système propage des instabilités, amenant ainsi vers des évolutions spatio-temporels complexes (par oppo-
sition aux systèmes affichant un grand E.S ., qui se comportent comme selon la cinétique point). Ceci est parti-
culièrement pertinent pour les cœurs faiblement couplés. En raison de son rôle clé dans la compréhension de la
cinétique du système, et en particulier de la réponse du réacteur à des actions externes telles que les perturbations
et les tilts, la séparation des valeurs propres a fait l’objet d’études approfondies.

Pour la formulation de la valeur propre k, les méthodes Monte Carlo peuvent déterminer (sans approximations)
le mode fundamental (direct) et la valeur propre par la méthode de l’itération de puissance, qui donnera le flux de
neutrons asymptotiques dans le cœur. La version stochastique de l’itération de puissance a une longue histoire,
et a été utilisée presque depuis le début des méthodes Monte Carlo. Le calcul du mode adjoint fondamental, au
contraire, a été hors de portée pendant de nombreuses années et a été récemment rendu possible par une avancée
majeure : la redécouverte que le mode adjoint fondamental est proportionnel à la fonction d’importance des neu-
trons (qui peut être estimée en enregistrant la généalogie de chaque neutron ancêtre) a été la clé du développement
de la méthode de la probabilité de fission itérative (IFP). En recourant à l’IFP, la plupart des codes Monte Carlo de
production modernes (y compris TRIPOLI-4®) peuvent désormais fournir une estimation non biaisée des modes
fondamentaux adjoints.

Les problèmes aux valeurs propres α, bien que leur formulation soit aussi ancienne que celle des problèmes de
la valeur propre k, ont donné lieu à un algorithme stochastique adapté aux méthodes Monte Carlo à une époque
ultérieure. La méthode originale était inadaptée aux configurations sous-critiques (la recherche des valeurs propres
a conduisant à des instabilités numériques et à des terminaisons anormales) et n’incluait pas les contributions
des précurseurs des neutrons retardés. Depuis lors, plusieurs améliorations (notamment en ce qui concerne la
stabilité des systèmes sous-critiques) et généralisations ont été proposées et testées avec succès dans les codes
Monte Carlo. L’algorithme le plus largement utilisé pour le mode propre fondamental (direct) α est fondé sur
une extension de l’itération de puissance traditionnelle, où la valeur propre dominante α est traitée comme un
paramètre et progressivement ajustée jusqu’à ce qu’une valeur propre fictive converge vers un. La caractérisation
du mode fondamental adjoint pour le problème de la valeur propre α a été réalisée assez récemment, sur la base
d’une légère modification de la méthode IFP.

Une fois que les modes fondamentaux direct et adjoint ont été calculés par Monte Carlo, les paramètres
cinétiques effectifs (c’est-à-dire pondérés par l’adjoint) du cœur peuvent être facilement déterminés : l’évolution
temporelle du réacteur peut alors s’exprimer en résolvant les équations approximatives de la cinétique ponctuelle,
dont les coefficients sont précisément les paramètres cinétiques. Les équations de la cinétique ponctuelle, dont la
dérivation est intrinsèquement fondée sur l’intégration de la totalité de l’espace de phase de l’équation de Boltz-
mann en quelques paramètres effectifs (représentant l’ensemble du réacteur comme un ”point”, à condition que
la population entière de neutrons obéisse au mode propre fondamental en ce qui concerne l’espace, l’angle et la
variable énergétique), sont largement utilisées dans la communauté de la physique des réacteurs comme un outil
fiable et rapide pour l’analyse de la cinétique du cœur. Cependant, leur utilisation n’est jugée appropriée que
lorsque i) le cœur est suffisamment homogène (pour que l’approximation à un point donné soit une approximation
réaliste), et lorsque ii) le mode fondamental de la population de neutrons est séparé de manière adéquate des har-
moniques supérieures (pour que la réduction au mode fondamental soit significative). Si ces conditions ne peuvent
être garanties, l’analyse des valeurs propres et des fonctions propres d’ordre supérieur devient obligatoire.

Les méthodes Monte Carlo ont également été appliquées à l’estimation des valeurs propres d’ordre supérieur
et des fonctions propres, pour les problémes aux valeurs propres k et α. Contrairement au mode fondamental,
qui peut être évalué en simulant des particules portant des poids statistiques positifs, la détermination exacte des
modes propres supérieurs en principe nécessite des poids avec des signes alternés, ce qui est une tâche ardue pour
les méthodes Monte Carlo : pour les problèmes aux valeurs propres k, certaines stratégies ingénieuses ont été
proposées ces dernières années, mais la plupart sont entravées par des questions de convergence et aucune n’a
conduit jusqu’à présent à une mise en œuvre pratique qui peut être transposée aux codes industriels. Pour les
problèmes aux valeurs propres α, le nombre de tentatives est encore plus faible.
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Néanmoins, une stratégie viable pour les valeurs propres d’ordre supérieur et les fonctions propres a été
développée : l’idée est de discrétiser les opérateurs apparaissant dans les équations de valeurs propres et d’obtenir
des matrices de taille finie, dont les éléments peuvent être remplis au cours d’une itération régulière de puissance
avec la méthode Monte Carlo [22]. Il est important de souligner que les valeurs propres résultantes et les vecteurs
propres sont des approximations, pour deux raisons simultanées : la matrice a une taille finie, et la distribution
des neutrons utilisée pour remplir les éléments de la matrice peut tout au plus préserver le mode fondamental et
la valeur propre fondamentale. En augmentant la taille de la matrice, les valeurs propres et les vecteurs propres
sont censés converger vers ceux de l’équation originale. La méthode dite de la matrice de fission appartient à cette
catégorie d’approches et est utilisée depuis longtemps, bien qu’elle n’ait été rendue populaire que ces dernières
années, lorsque la puissance des ordinateurs a augmenté et grâce à l’utilisation de techniques de stockage à matrice
creuses. Sur la base d’une stratégie similaire, une approche de remplissage de matrice a également été proposée
pour les problèmes aux valeurs propres α, ce qui pose des défis spécifiques.

En s’appuyant sur ces considérations, l’objectif de cette thèse est double : d’une part, nous comparerons les
méthodes Monte Carlo pour les problèmes aux valeurs propres et proposerons de nouvelles stratégies de calcul
pour les valeurs propres α ; d’autre part, nous appliquerons ces méthodes à l’étude de quelques configurations de
réacteur pertinentes, afin de montrer comment des informations peuvent être extraites et utilisées afin de mieux
saisir les caractéristiques des systèmes nucléaires.

Sur le plan méthodologique, dans la première partie de ce manuscrit, nous commencerons par aborder le cas
des modes propres fondamentaux direct et adjoint, et nous montrerons que des divergences peuvent survenir entre
la base k et α loin du point critique (c’est-à-dire k = 1 and α = 0). Au point critique, les deux modes fondamentaux
co3̈ncident par définition, alors que pour un écart croissant par rapport à la criticité des écarts devraient appara3̂tre,
qui sont renforcés par la présence d’effets de découplage et/ou d’hétérogénéités dans les cœurs. Ces différences
spatiales et spectrales dans les modes fondamentaux se reflètent dans les paramètres cinétiques (qui sont exprimés
sous forme de formes bilinéaires impliquant à la fois les modes direct et adjoint), et donc également sur la réactivité
du système. Il est donc de la plus haute importance de déterminer si et dans quelle mesure l’estimation des
paramètres cinétiques est affectée par les hétérogénéités du système, qui sont transmises dans les formes des modes
propres. Une attention particulière sera accordée à la contribution des précurseurs de neutrons retardés, qui a été
négligée jusqu’à présent dans les études précédentes.

En ce qui concerne les modes et les valeurs propres d’ordre supérieur, nous nous concentrerons sur le cas des
méthodes de remplissage de matrices pour les problèmes aux valeurs propres α, compte tenu de leur pertinence
pour la réponse temporelle des systèmes nucléaires, et nous fournirons une nouvelle stratégie de Monte Carlo qui
peut surmonter certaines des limites des approches existantes. Ces méthodes, conçues et testées dans un code
Monte Carlo construit à partir de zéro dans le but d’explorer de nouveaux algorithmes, seront mises en œuvre dans
TRIPOLI-4® pour être déployées pour l’analyse de configurations de réacteurs réalistes.

Dans la deuxième partie de ce manuscrit, nous étudierons l’impact de la géométrie des systèmes et de la compo-
sition des matériaux sur la cinétique du réacteur, via une décomposition en modes propres calculée par les méthodes
Monte Carlo, en vue d’interpréter les données expérimentales provenant des expériences EPILOGUE menées
dans l’installation critique EOLE (anciennement exploitée par le CEA à Cadarache). Nous examinerons d’abord
quelques configurations de référence simplifiées, qui nous permettront de comprendre comment les mécanismes
des hétérogénéités (et autres effets de découplage, comme la taille du système) se manifestent dans les valeurs
propres et les vecteurs propres k et α. Ensuite, nous examinerons les expériences EPILOGUE, où des configura-
tions spéciales de réacteurs avec un fractionnement accru du modérateur à certains endroits (sous la forme d’une
lame d’eau) ont été testées. Malheureusement, les expériences pour une seule lame d’eau n’ont pas été conclu-
antes, peut-être en raison d’un mauvais choix des emplacements des détecteurs dans le cœur. Des simulations
numériques, réalisées à l’aide du modèle TRIPOLI-4® de la configuration EOLE et des capacités de la nouvelle
méthode pour l’estimation de la matrice α, permettront d’explorer des détails qui étaient inaccessibles lors de la
campagne expérimentale. En particulier, nous envisagerons également une configuration modifiée où des lames
d’eau supplémentaires seront ajoutées : nous étudierons ainsi les effets de l’augmentation de la présence d’une
région modératrice localisée sur la forme des modes propres et sur les valeurs propres, ce qui pourrait éclairer
la réponse du système aux perturbations telles que les barres de contrôle ou les sources externes. À cet égard,
l’approche proposée joue le rôle d’une ”expérience entièrement numérique” et pourrait aider à concevoir de nou-
velles campagnes expérimentales dans les réacteurs de recherche.
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Structure du manuscrit

Dans cette thèse, nous avons abordé certains aspects des problèmes aux valeurs propres qui apparaissent dans la
physique des réacteurs, et montré comment les méthodes Monte Carlo peuvent être appliquées avec succès à la
caractérisation des propriétés spectrales des systèmes nucléaires. Après une introduction général du transport en
fonction du temps, des formulations aux valeurs propres associées (en particulier k et α) et une introduction aux
méthodes de Monte Carlo pour la physique des réacteurs, le cœur du manuscrit a été divisé en deux axes principaux.
Le premier axe concerne l’application de la simulation Monte Carlo à l’analyse spectrale, en mettant l’accent sur
le comportement des modes fondamentaux, qui fournissent des informations sur le comportement asymptotique
de la population de neutrons et de précurseurs. Le second axe concerne le développement de nouvelles méthodes
Monte Carlo pour l’estimation d’harmoniques d’ordre supérieur du problème aux valeurs propres α et l’application
de ces nouveaux algorithmes à l’analyse de problèmes de référence et de configurations réalistes de réacteurs. Les
méthodes nouvellement développées et les résultats de simulation obtenus dans le cadre de ce travail pourraient
apporter une aide précieuse dans l’analyse des cœurs de réacteur et la conception de concepts de réacteur originaux.
Dans ce qui suit, nous passons brièvement en revue le contenu et les principales conclusions de cette thèse.

• Dans le Chapitre 2, nous avons décrit le cadre général des problèmes de transport des neutrons dans le con-
texte de la physique des réacteurs, en introduisant notamment la formulation du transport en fonction du
temps, qui est essentielle pour l’évaluation des régimes transitoires opérationnels et accidentels. Le rôle par-
ticulier des précurseurs de neutrons retardés a été mentionné. Après avoir introduit les formulations integro-
differentielle et intégrale des équations de transport des neutrons, nous avons rappelé que deux grandes
familles d’équations aux valeurs propres (k et α) peuvent être établies : la première est liée à l’évolution des
neutrons en fonction des générations de fission ; la seconde est liée à l’évolution des neutrons en fonction
du temps (et représente donc la formulation ”naturelle” des valeurs propres pour les problèmes dépendant
du temps). Nous avons montré que des informations utiles peuvent être extraites de telles équations aux
valeurs propres : les harmoniques fondamentales décrivent le comportement asymptotique (en générations
ou en temps) du cœur du réacteur, tandis que les harmoniques d’ordre supérieur, ainsi que la séparation des
valeurs propres, donnent des détails sur la réponse du système à une perturbation externe, et donc sur un
écart par rapport au mode fondamental. En tant que telle, la formulation aux valeurs propres (k ou α) peut
utilement compléter la description complète découlant des équations de transport dépendantes du temps, ce
qui est particulièrement important puisque les équations de cinétique sont souvent extrêmement exigeantes
en termes de ressources informatiques (temps et mémoire).

• Les principes de base de la simulation Monte Carlo appliqués à la physique des réacteurs ont été brièvement
rappelés dans le Chapitre 3. En particulier, nous avons souligné le rôle particulier de la simulation Monte
Carlo en tant qu’outil numérique capable de produire des solutions de référence (c’est-à-dire non biaisées)
pour les systèmes nucléaires : presque aucune approximation n’est introduite, puisque l’énergie, l’angle
et l’espace n’ont pas besoin d’être discrétisés, ce qui se fait au détriment d’une convergence ”lente”. Les
méthodes Monte Carlo ont récemment été étendues au cas des simulations dépendantes du temps, incluant
les précurseurs de neutrons retardés : le temps de calcul nécessaire à cette classe de simulations, malgré
les algorithmes de réduction de la variance qui ont été proposés pour rendre ces calculs réalisables, reste
prohibitif pour les applications industrielles. De nouvelles stratégies pour la simulation cinétique Monte
Carlo ont été proposées, y compris des méthodes CADIS dépendantes du temps. Toutefois, dans l’avenir
proche, il semble probable que les simulations cinétiques Monte Carlo seront complétées, chaque fois que
possible par des outils de calcul nécessitant des quantités plus parcimonieuses de ressources informatiques,
au détriment de la précision de la cible. A cet égard, nous avons montré que les méthodes Monte Carlo
consacrées aux problèmes aux valeurs propres pourraient représenter un bon compromis entre efficacité et
assence des biais.

• Après avoir posé les bases théoriques et décrit les outils de calcul, nous avons illustré dans le Chapitre 4
notre première contribution originale, concernant l’analyse des modes fondamentaux des formulations aux
valeurs propres. Nous avons commencé par rappeler les algorithmes implémentés dans le code Monte Carlo
TRIPOLI-4® qui permettent l’estimation des modes fondamentaux directs et adjoints sans approximation,
pour les problèmes aux valeurs propres k et α. Nous avons notamment mis l’accent sur les méthodes IFP
et GIFP. Ces méthodes ont ouvert la voie au calcul des modes propres adjoints. Notre principale conclusion
est une caractérisation approfondie des écarts entre les formulations aux valeurs propres k et α au tour de
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la criticité : pour un système exactement critique, les modes propres k et α co3̈ncident; au contraire, de
petits écarts par rapport à la criticité induisent des déviations faibles mais significatives dans les formes des
fonctions propres directes et adjointes. Ces divergences se reflètent dans les paramètres clés du réacteur,
qui sont souvent exprimés sous forme de rapports de formes bilinéaires impliquant les modes fondamentaux
directs et adjoints : un exemple important est représenté par les paramètres cinétiques. Contrairement aux
travaux précédents, dans notre analyse nous avons explicitement pris en compte la présence des contributions
neutroniques retardées et nous avons également considéré le comportement des modes propres adjoints.
Notre recherche a été menée sur deux séries de configurations : certains systèmes de référence simplifiés
(sphères de type Godiva) proposés par D. E. Cullen, et l’installation à puissance nulle CROCUS exploitée à
l’EPFL, en Suisse. Dans les deux cas, nous avons montré que les paramètres cinétiques effectifs pourraient
être affectés par la choix de la base modale utilisée. Il a été démontré que ces légères différences sont
exacerbées par la présence d’hétérogénéités dans le cœur : pour les cœurs homogènes, un comportement de
cinétique ponctuelle est observé, sans effects spatiaux, et l’impact de la base modale choisie devient moins
important.

• La deuxième contribution originale a été présentée dans le Chapitre 5, où nous avons examiné la méthode
Monte Carlo pour le calcul des modes propres et des valeurs propres d’ordre supérieur k et α. Nous avons
d’abord réexaminé l’approche de la matrice de fission, une méthode Monte Carlo de remplissage de matrice
qui peut être utilisée pour estimer les éléments d’une matrice de taille finie dont les vecteurs et les valeurs pro-
pres convergent vers ceux de la valeur propre k dans la limite d’une taille infinie. Inspirés par cette approche,
nous avons proposé et développé une nouvelle méthode capable d’estimer les éléments d’une matrice dont
les vecteurs propres et les valeurs propres convergent vers celles du problème de la valeur propre α. Cette
nouvelle stratégie de calcul a ouvert la voie à une stratégie d’analyse spectrale par les méthodes Monte Carlo.
Contrairement aux tentatives précédentes proposées dans la littérature il a été démontré que notre méthode
présente deux avantages majeurs : elle donne une estimation non biaisée du vecteur propre fondamental
(ce qui minimise également le biais global sur les vecteurs propres d’ordre supérieur), et il peut prendre en
compte nativement le problème de la valeur propre adjointe sans introduire un biais supplémentaire dû à la
transposition matricielle. La méthode mise au point a été testée et vérifiée avec succès par rapport à des
problèmes pour lesquels des solutions analytiques de référence étaient disponibles.

• Dans le Chapitre 6, nous avons illustré la troisième contribution originale, concernant l’analyse spectrale
des configurations de référence où un paramètre physique permet un découplage du cœur. A cette fin,
nous avons sélectionné quelques configurations pertinentes impliquant un transport multigroupe avec une
physique simplifiée, afin de mieux appréhender les caractéristiques essentielles de ces configurations sans
être gêné par des considérations liées aux données nucléaires et/ou aux géométries détaillées. Les méthodes
développées dans le Chapitre 5 ont a été appliquées à la détermination des modes et valeurs propres k et
α, afin de vérifier si les deux expansions modales peuvent véhiculer des informations différentes sur le
comportement des systèmes en cours d’analyse. En particulier, nous avons examiné comment les modes
propres fondamentaux et les valeurs propres d’ordre supérieur se comportent en présence de facteurs de
découplage. Deux classes de systèmes ont été envisagées : les cœurs homogènes, où l’effet de découplage
est introduit en augmentant la taille du système, et les cœurs hétérogènes, où l’effet de découplage est
introduit en augmentant la taille d’une couche centrale séparant deux régions fissiles. Il a été démontré que
ces systèmes se comportent de manière différente : les bases k et α présentent des différences; de plus, la
séparation des valeurs propres (c’est-à-dire l’estimateur lié à l’écart spectral entre les valeurs propres) et
la forme des fonctions propres présentent également des divergences. L’analyse spectrale réalisée par les
méthodes de remplissage de matrice Monte Carlo s’est révélée être un outil numérique utile et pratique pour
caractériser ces systèmes.

• Enfin, la quatrième contribution originale a été discutée dans le Chapitre 7, où nous avons examiné une ap-
plication à un système réaliste : deux séries d’expériences menées dans le cadre du programme EPILOGUE à
l’installation critique EOLE du CEA Cadarache. L’expérience EPILOGUE visait à explorer - parmi d’autres
- les effets de la présence d’une région de polyéthylène (imitant une bulle d’eau claire dans le modérateur) et
d’une lame d’eau (les lignes et les colonnes de combustible étant remplacées par le modérateur) par rapport à
la réponse du réacteur. Le cas de la région de polyéthylène a été examiné en comparant les mesures obtenues
à plusieurs endroits du cœur (dont le post-traitement a été finalisé lors d’une visite du centre de Cadarache
pendant la première année de la thèse) aux taux de fission calculés par TRIPOLI-4® basée sur le mode
propre fondamental k. Cette analyse suggère que des effets spatiaux (légers) pourraient appara3̂tre dans le
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cœur EOLE, malgré sa petite taille. En s’appuyant sur les connaissances et les outils numériques développés
dans dans les chapitres précédents, nous avons ensuite simulé la configuration des lames d’eau, à la recherche
d’hétérogénéités éventuellement plus fortes et des effets de découplage induits par la présence du modérateur.
Au lieu de se contenter d’interpréter les cas d’une lame d’eau unique, qui a été mesurée expérimentalement,
nous avons utilisé la simulation Monte Carlo comme ”expérience numérique” : nous avons exploré les effets
spectraux induits par l’ajout de plusieurs autres lames d’eau dans le cœur. Les résultats obtenus pourraient
suggérer une meilleure façon d’organiser les positions des détecteurs dans le cœur afin de mettre l’accent sur
leur impact, et pourrait aider à concevoir une future campagne expérimentale dans un réacteur de recherche
dédié, en vue d’évaluer les effets des hétérogénéités par rapport au comportement du système.
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Hernandez, F. Maggini, J. Hadek, and D. Panayotov. Neutronics and thermal-hydraulic coupling in LWR
technology. OECD/NEA report, 2004.

[32] T. Downar, D. Barber, R. Miller, C. H. Lee, T. Kozlowski, D. Lee, Y. Xu, J. Gan, H. Joo, J. Jin, Y. Cho,
K. Lee, and A. Ulses. PARCS: Purdue advanced reactor core simulator. In Proceedings of PHYSOR 2002,
Seoul, Korea, 2002.

[33] J. J. Duderstadt and L. Hamilton. Nuclear Reactor Analysis. J. Wiley and sons, New York, 1976.

[34] J. J. Duderstadt and W. R. Martin. Transport theory. J. Wiley and sons, New York, 1979.

[35] J. Dufek and W. Gudowski. Fission matrix based Monte Carlo criticality calculations. Annals of Nuclear
Energy, 36:1270–1275, 2009.

[36] S. Dulla, E. H. Mund, and P. Ravetto. The quasi-static method revisited. Progress in Nuclear Energy, 50:
908, 2008.

[37] E. Dumonteil and T. Courau. Dominance ratio assessment and Monte Carlo criticality simulations. Nuclear
Technology, 172:120–131, 2010.

[38] D. D. Ebert, J. Clemence, and W. M. S. Jr. Interpretation of coherence function measurements in zero-power

160



BIBLIOGRAPHY

coupled-core reactors. Nuclear Science and Engineering, 55:380–386, 1974.

[39] T. Endo and A. Yamamoto. Sensitivity analysis of prompt neutron decay constant using perturbation theory.
Journal of Nuclear Science and Technology, 0:1–10, 2018.

[40] T. Endo and A. Yamamoto. Conversion from prompt neutron decay constant to subcriticality using point
kinetics parameters based on α- and keff-eigenfunctions. In Proceedings of ICNC 2019, Paris, France, 2019.

[41] M. Faucher, D. Mancusi, and A. Zoia. New kinetic simulation capabilities for Tripoli-4®: methods and
applications. Annals of Nuclear Energy, 120:74–88, 2018.

[42] S. Feghhi, M. Shahriari, and H. Afarideh. Calculation of neutron importance function in fissionable assem-
blies using Monte Carlo method. Annals of Nuclear Energy, 34:514–520, 2007.

[43] S. Feghhi, M. Shahriari, and H. Afarideh. Calculation of the importance-weighted neutron generation time
using MCNIC method. Annals of Nuclear Energy, 35:1397–1402, 2008.
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Résumé: L’analyse de la cinétique du réacteur est
un élément clé pour la caractérisation du comporte-
ment non-stationnaire de la population neutronique
lors de transitoires opérationnels ou accidentels. La
dérivation des équations de la cinétique ponctuelle est
intrinsèquement fondée sur le collapse de l’espace de
phases associé à l’équation de Boltzmann (décrivant
le transport des neutrons) en quelques paramètres ef-
ficaces permettant de représenter le réacteur comme
un ”point” , pourvu que la population neutronique
obéisse au mode propre fondamental. La cinétique
ponctuelle est très largement adoptée dans la com-
munauté de la physique des réacteurs en tant qu’outil
fiable et rapide pour l’analyse de la cinétique des
cœurs. Toutefois, il est connu que l’utilisation
des équations de la cinétique ponctuelle est perti-

nente seulement si le cœur est suffisamment ho-
mogène (pour que le collapse en un point soit une
approximation raisonnable) et si le mode propre fon-
damental est suffisamment séparé des harmoniques
supérieures (pour que la réduction au mode fonda-
mental soit bien posée). L’objectif de cette thèse est
de maitriser l’impact de la géométrie et des compo-
sitions matérielles du cœur sur la cinétique, en vue
de la possibilité d’interpréter des données issues de
l’expérience EPILOGUE (qui sera réalisée dans la
maquette EOLE du CEA/Cadarache). A cette fin, une
analyse spectrale par méthodes de Monte Carlo sera
mise en place dans le code TRIPOLI-4 développé au
SERMA, pour déterminer la séparation des modes
propres et des valeurs propres du réacteur en fonc-
tion des caractéristiques du cœur.

Title: Monte Carlo analysis of heterogeneity and core decoupling effects on reactor kinetics: Application to
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Abstract: The analysis of the reactor core kinetics
is key for the characterization of the non-stationary
neutron population behavior during operational or ac-
cidental transients. Point-kinetics equations, whose
derivation is intrinsically based on collapsing the full
phase space of the Boltzmann equation into a few ef-
fective parameters (representing the whole reactor as
a ”point”, provided that the entire neutron population
obeys the fundamental eigen-mode), are widely used
in the reactor physics community as a reliable and
fast tool for the analysis of core kinetics. However,
their use is deemed to be appropriate only when the
core is sufficiently homogeneous (for the collapsing
to a point to be a realistic approximation), and when
the fundamental mode of the neutron population is

sufficiently separated from higher harmonics (for the
reduction to the fundamental mode to be meaning-
ful). The goal of this thesis is to investigate the im-
pact of system geometry and material compositions
on the reactor kinetics, via an eigen- mode decom-
position, in view of interpreting experimental data
coming from the EPILOGUE experiments carried out
at the EOLE critical facility (CEA/Cadarache). To
this aim, spectral analysis techniques based on Monte
Carlo methods will be implemented in the Monte
Carlo code TRIPOLI-4 (developed at SERMA), so
as to determine the separation between reactor eigen-
modes and eigen-values as a function of the core fea-
tures.
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