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Once we accept our limits, we go beyond them.
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Abstract

The research field of urban mobility aims at the observation and design of human

trips within an urban environment, which information supports decision-making and

problem solving within public policies. In this context, there are many experts –

not necessarily transportation specialists – that need to handle more or less stan-

dardized urban data to extract synthetic and easily exploitable knowledge. Hence,

public transportation agencies commonly conduct trip-based surveys to collect in-

formation about day-to-day travel of the population within a particular territory

(i.e. where and when we travel), resulting in large and complex datasets which anal-

ysis requires crossing spatial, temporal, thematic and socioeconomic dimensions to

enable discoveries of daily urban mobility patterns. This way, information visual-

ization is a suitable approach to support the analysis of urban mobility data, since

analysts do not have to learn sophisticated methods to interpret the data visualiza-

tions that come to reinforce their cognition and enable the discovery of unstructured

insights within the data. Thereby, we propose a visualization framework to assist

the analysis of urban mobility through indicators describing complementary objects

of interest within the data that allow to address three categories of questions un-

derlying the urban mobility phenomenon. A first question seeks to understand the

daily traveling routine of a population and the resulting processes of exchange be-

tween places, which can be studied through the exploration of amounts, modalities,

direction, and variation of travel flows and trips according to different socioeconomic

aspects of individuals and land types. A second questioning concerns the temporal

variation of population presence throughout a territory, which allows to understand

the use of distinct locations by taking into account the socioeconomic character-

istics of the people visiting it and the activities they carry out there. The third

question seeks to explain the individuals’ need of traveling by studying the tempo-

ral ordering of trips and activities of individuals (i.e. daily trajectories) within the

spatial context of the territory. Our framework supports the derivation and visual

exploration of indicators describing the territory, travel flows and trips, and daily

trajectories, over multiple spatio-temporal resolutions and thematic attributes. Our

visualization interface allows to disperse visual representations over multiple analyt-

ical displays, enabling users to customize the spatial arrangement of visualizations

and indicators in meaningful ways according to the ongoing analysis. Furthermore,

we propose a movement-based interaction based on the tilting of a tablet that al-

lows to explore the temporal variation of indicators leveraging tactile and tangible

input. The conception of our visualization approach followed an interactive evalu-

ation process that consists of successive user-based evaluations aiming to refine a

prototype in order to achieve user performance and satisfaction.

Keywords: daily mobility, visualization, spatio-temporal data, activity pat-

terns, visual analysis





Résumé

L’observation de la mobilité urbaine permet de produire des connaissances sur les

pratiques de déplacements très utiles pour accompagner les prises de décision dans le

cadre des politiques publiques urbaines. De nombreux experts - pas nécessairement

spécialistes des transports - doivent traiter des données de mobilité urbaine plus

ou moins standardisées pour en extraire des connaissances synthétiques et facile-

ment exploitables. Les autorités organisatrices de la mobilité mènent régulièrement

des enquêtes pour recueillir des informations sur les déplacements quotidiens de la

population sur un territoire donné, dont les jeux de données qui en découlent sont

nombreuses et complexes. Leurs exploitations requièrent des analyses qui croisent

les dimensions spatiales, temporelles, thématiques et socio-économiques afin de dé-

couvrir les schémas ou profils spatio-temporels de mobilité quotidienne. Dans ce

contexte, la visualisation des données est une approche appropriée pour accompa-

gner ces analyses dans la mesure où elle renforce le processus cognitif de l’analyste

pour découvrir des structures et processus dans les données sans être forcément ex-

pert des méthodes statistiques de traitements des données. Ainsi, nous proposons

un environnement de géovisualisation pour aider à l’analyse de la mobilité urbaine à

travers des indicateurs produisant des connaissances sur des objets d’intérêts com-

plémentaires répondant à trois catégories de questionnements. Une première caté-

gorie relève des connaissances liées aux déplacements quotidiens et aux processus

d’échanges entre les lieux qu’ils génèrent. Des indicateurs sur le nombre, les modes,

les motifs des déplacements, ainsi que les directions et intensité des flux entre les

lieux sont explorés dans le temps et dans l’espace en fonction des attributs socio-

économiques des individus. Une deuxième orientation de questionnements porte

sur la variation temporelle de la présence de la population au sein des espaces d’un

territoire tenant compte de sa mobilité. Des indicateurs permettent de visualiser

les dynamiques de peuplement quotidien et de comprendre quels types de person-

nes fréquentent les différents “sous-espaces” et quelles activités elles y exercent au

cours des 24 heures. Le troisième type de questionnements cherche à expliquer la

mobilité des individus à travers leurs programmes d’activités. Il s’agit d’explorer

l’ordonnancement spatial et temporel des déplacements et des activités des indi-

vidus (aussi nommé “trajectoire quotidienne”). Nous proposons un environnement

de géovisualisation qui permet l’exploration d’indicateurs décrivant le territoire, les

flux et les déplacements et les trajectoires quotidiennes, à de multiples granularités

spatio-temporelles et en fonction de divers attributs thématiques. Notre interface de

visualisation permet de déployer les représentations visuelles sur plusieurs tableaux

de bords analytiques ce qui donne aux utilisateurs la possibilité de personnaliser

l’agencement spatial sur le ou les écrans des visualisations et des indicateurs en

fonction des besoins de l’analyse en cours. De plus, nous proposons le déport des



x

fonctions de gestion et sélection des indicateurs et des attributs sur une tablette

tactile et tangible. Le mode d’interaction est basé sur le mouvement corporel qui

joue sur l’inclinaison de la tablette pour faire varier la dimension temporelle des

indicateurs. Enfin, la conception de notre approche de visualisation a suivi un pro-

cessus d’évaluation itératif basé sur des expérimentations successives menées auprès

d’utilisateurs aux profils variés. Ce processus a permis d’affiner un prototype visant

à améliorer la performance et la satisfaction de l’utilisateur.

Mots-clés: mobilités quotidiennes, visualisation, données spatio-temporelles, pro-

grammes d’activités, analyse visuelle
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L. (2020). eSTIMe : une approche visuelle, interactive et modulable pour

l’analyse multi-points de vue des mobilités quotidiennes. Geomatica, pages

1–22
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Chapter 1

Introduction

1.1 Context and Motivation

The knowledge resulting from the study of human movement patterns helps to

understand transformation phases regarding the relationships between global

and local development (Montanari, 2005), and to expand planning policies to

provide transportation facilities to the users’ demands (Horton and Wagner,

1969). The earliest studies about human mobility were primarily focused on

the movement of a population within metropolitan areas due to the original

forms of urbanization, which would concentrate places of production and res-

idence in specific areas, making it easier to identify and predict commuting

patterns. This suggests that individuals migrate based on their attraction

by areas that offer better employment opportunities than those in their place

of residence, which is no longer the case. Human mobility is also driven by

recreation, tourism and new lifestyles which vary according to people’s age

and place of origin.

The political, technological and economic repercussions of globalization

at the end of the 20th century changed the nature of human mobility, while

reducing the differences between places of work, leisure, education and train-

ing (Montanari, 2005). Further, the telecommuting work arrangement, pop-

ular in the 21st century, eliminates the necessity of commuting to a central

place of work (e.g., office building or warehouse). It allows teleworkers to use

technologies such as Wi-Fi equipped laptops or tablet computers to work from

coffee shops, or yet desktop computers and landline phones to do office work

from home. In either scenarios, places of work, home and leisure (i.e. coffee

shop) are ambiguous.

Particularly, within the research fields embedded by human mobility, we

focus on urban mobility, which aims at the observation and design of hu-

man trips within an urban environment (Marilleau, 2005). During the last
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30 years, researchers’ attention have been placed on the analysis of individ-

ual urban travel behavior as an attempt to find ordering factors that can

help urban and transportation planners to better understand and forecast the

travel patterns in the city. Since the 1950s, conventional trip-based surveys

have been used for assessing the relative performance of transportation al-

ternatives. These surveys provide datasets that describe single trips through

geographic (i.e. origin and destination locations, and possibly travel route),

temporal (i.e. starting/ending time), and thematic information (e.g., trip pur-

pose, transportation mode, and traveler information) (Yu and Shaw, 2004).

Although urban trip movements tend to be a closed-circuit system, in

which people leave home, make one or more stops, and then return home (Hor-

ton and Wagner, 1969), individuals often participate in several daily activities

at different time and locations, generating complex travel-activity patterns.

The spatial distribution of trips, the travel purposes, linkages and distance

could vary among different socioeconomic-occupational groups, which infor-

mation could provide the basis for general modes of urban travel patterns (Hor-

ton and Wagner, 1969). In the early 1970s, the Swedish geographer Torsten

Hägerstrand proposed the time-geography framework, in which space and time

are basic dimensions of analysis. This promoted the evolution of conventional

trip-based surveys into activity-based ones, which improved the quality of re-

sponses, but kept collecting a similar range of information. This transition

allowed researchers to focus their attention on the travel-activity patterns

underlying human travel behavior, which reflect the linkages between trips

and activities, individual temporal constraints and dependencies of activity

scheduling, and the underlying activity behavior that generates trips (Mc-

Nally and Rindt, 2007).

In this work, we exploit data from household travel surveys (HTS) reg-

ularly carried out in France. Since 1976, more than 170 surveys have been

carried out on all major French cities and involved about three quarters of the

country’s population (Richard and Rabaud, 2018). Depending on the territory

size and type (i.e. urban or rural area), different surveys are available. The

conventional HTS relates to urban areas and, further to the aforementioned in-

formation, gathers socio-demographic data to describe the interviewed person

and household. These surveys are standardized throughout France, which en-

ables to assess and compare public development and urban transport policies

changes over time and across different territories.

Although individual and household travel behavior vary from day-to-day

based on their trip purposes and constraints (Pas and Koppelman, 1987),
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this behavior has been shown to be more stable during weekdays than week-

ends (Schlich and Axhausen, 2003). Thereby, the analysis of urban travel be-

havior is typically undertaken using data for a single day for each individual or

household in the sample. Understanding the daily mobility patterns of indi-

viduals provide insights into their daily activities and livelihood, which can be

used as a measure of life quality (Hägerstrand, 1970). Numerous professionals

within urban policies, such as researchers, diagnostic managers, and local au-

thorities use the outcomes of daily mobility analysis to assist decision-making

on transportation offers, accessibility, air quality control, public health, well-

being, crisis management, and others. In this thesis, we propose the study

and categorization of the urban mobility phenomenon via the analysis of three

complementary objects of interest within the data:

1. the description of travel flows and trips between spatial locations forms

the skeleton of a urban or metropolitan spatial system. The flow pat-

terns and spatial structures are the outcome of long-term development

and their basic character is reproduced and confirmed by everyday hu-

man activity, which can themselves be responsible for reshaping the

mobility patterns. For instance, the construction of a shopping center

in a suburban location could significantly reshape the pattern of travel

for shopping in the metropolitan area (Novák and Sỳkora, 2007).

2. the dynamics of a territory described through the variation on presence

and absence of people over time reveal the spatiotemporal activity of

an urban area across multiple temporal resolutions, i.e. the urban pulse

of a city (Miranda et al., 2016). This information helps to understand

where and when people agglomerate, which could help the government

to anticipate the consequences of natural disasters or epidemics, and to

propose investments that are consistent with the real rhythm of the city.

3. the daily trajectories, defined as the daily activity programs of individu-

als, i.e. the sequences of activities and trips one performs over a 24-hour

period of time. Their analysis together with social and economic infor-

mation can help to better understand the mobility needs and constraints

of different population groups (Chen et al., 2011).

Individual aspects (e.g., social class and position, ethnicity, life cycle sta-

tus, and residential location) are determinant factors of activity and travel

patterns, which are themselves impacted by social roles and norms, resource

constraints, and perception of opportunities (Fried et al., 1977). A single socio-

demographic variable is unlikely enough to define population sub-groups for
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modeling all aspects of travel behavior (Hanson and Hanson, 1981). Some

well-known urban mobility patterns show that:

• the overall travel frequency does not depend only on trip purpose but

also on automobile availability (Hanson and Hanson, 1981);

• travel decisions are made within the context of household demands,

which directly relate the household size to individuals’ travel frequency

(Hanson and Hanson, 1981), and trips distance (Pouyanne et al., 2005);

• people with higher social status travel longer distances to perform their

activities, and their trips would also have a higher number of stops,

indicating that they are mostly multipurpose in nature, as opposite to

the trips performed by individuals of lower social status (Hanson and

Hanson, 1981, Horton and Wagner, 1969).

• women tend to perform numerous and shorter trips than men, being

mostly restricted to their residential zone (Horton and Wagner, 1969,

Hanson and Hanson, 1981, Pouyanne et al., 2005);

• younger individuals, men, married people, and those without a full-time

job engage more frequently in out-of-home social activities (Hanson and

Hanson, 1981); and

• the urban form influence travel patterns (Pouyanne et al., 2005) in a

way that

– high density settlements enable shorter trips, which reduces the

use of automobile, while increasing the use of soft transportation

modes, such as bicycles;

– residential areas mainly composed of isolated houses encourage the

ownership and use of automobiles, and therefore, promote longer

trips originating from these places.

The phenomenon of urban mobility is often described through large and

complex datasets, which analysis requires crossing spatial, temporal, thematic

and socioeconomic dimensions to reveal those well-known patterns and/or to

enable new discoveries within the data. These outcomes will which serve to

support decision-making and problem solving within public policies to provide

outputs of a political system, such as transportation policies, management of

public health service and education systems.
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The accelerated population growth required the data collection process to

reach a greater number of people in order to accurately assess the performance

of current public policies and to propose suitable ones according the socioe-

conomic and demographic profiles of different populations. Furthermore, the

technological growth made it easier and faster to collect greater amounts of

data describing people’s movements within a particular territory. Therefore,

there are nowadays numerous, complex and huge datasets that require pow-

erful and user-friendly software, for supporting the extraction of synthetic

knowledge to describe the urban mobility phenomenon. Moreover, movement

data is intrinsically spatio-temporal, which implies on considering the varia-

tion of urban traveling patterns over space and time.

Information visualization proposes visual representations of abstract data

to reinforce human cognition, which allows the discovery of unstructured in-

sights limited by human imagination and creativity. In this context, analysts

do not have to learn sophisticated methods to interpret the data visualizations,

which makes it suitable to support the analysis of complex and large datasets.

Although powered by technological solutions, the use of visualization is not

a new practice. Visual imagery has been an effective way to communicate

both abstract and concrete ideas since the dawn of humanity, which examples

include the cave paintings and Egyptian hieroglyphs.

A Brief History of Cartography and Time-Geography

The graphical representation of a geographical area, i.e. cartography, date

from the prehistoric depiction of hunting and fishing territories, which disci-

pline became popular in the 14th century when the earliest world maps were

compiled for navigation (Encyclopædia Britannica, 2017). Cartography pro-

vides tools that allow to model reality in ways that effectively communicate

spatial information by combining science, aesthetics, and technique. Particu-

larly, the branch of thematic cartography supports the communication of more

than geographical locations and relationship, including themes, patterns, and

data relating to physical, social, economic, political and other aspects of a

geographical location. Hereafter we briefly describe the origin of thematic

cartography and the time-geography, which concepts enable a visual represen-

tation of urban mobility data through the analysis of the three aforementioned

objects of interest.
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Thematic and flows cartography

Figure 1.1.1: Carte figurative de l’instruction populaire de la France, 1826.

Source: Dupin (1826).

Thematic maps (i.e. maps showing the connection between themes and

specific geographic areas) emerged in the 19th century, when events such as

the industrial revolution, the launching of great topographic surveys, the in-

stauration of censuses, and the proliferation of investigation and education of

physical and social science provided an opportune environment to the develop-

ment of geographical cartography (Robinson, 1955). The first choropleth map

was conceived in 1826 by Charles Dupin to illustrate the theme of primary

education by département in France (Palsky, 2008). The “Carte figurative

de l’instruction populaire de la France” was conceived to verify the connec-

tion between people’s education and prosperity (Dupin, 1827), and uses color

intensity to encode education level (Figure 1.1.1). In fact, almost every tech-

nique known for representing population numbers, distribution, density and
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movements were introduced during a short period of 20 years between 1835

and 1855 (Robinson, 1955).

Figure 1.1.2: Harness’ Passenger Conveyance Map, 1837. Source: Robin-

son (1955).

Around 1837, the cartography of flows emerged in England through a

set of maps designed by the British soldier Henry Drury Harness to accom-

pany the Second Report of the Irish Railway Commissioners, which examples

include the Passenger Conveyance map (Figure 1.1.2). The map displays

the routes of regular public transportation through ribbons, which thickness

represents the number of passengers traveling in different directions (Robin-

son, 1955). Nevertheless, flows cartography became known only around 1869

through the famous map of Napoleon’s disastrous Russian campaign of 1812

(Figure 1.1.3), conceived by the French engineer Charles Minard. The map de-

picts Napoleon’s army campaign in Russia through a band graph (i.e. Sankey

diagram), which band thickness encodes the size of his army at specific geo-
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graphic points during their advance and retreat. The chart displays six types

of data in two dimensions: number of troops, traveled distance, temperature,

latitude and longitude, traveling direction, and spatial location at different

dates.

Figure 1.1.3: Charles Minard’s map of Napoleon’s disastrous Russian

campaign of 1812. Source: Minard (1869).

These examples show the suitability of maps to visualize a spatial situ-

ation due to their capacity of summarizing the complexity of reality via an

abstract representation of data (Kraak, 2006). Nevertheless, movement data is

intrinsically spatio-temporal, which introduce the necessity to investigate the

variation of a spatial situation over time. This exploration is often supported

by time-juxtaposing and animation techniques. The former, also known as

small multiples, enables the representation of time-series data by displaying

several maps side-by-side, which leverage our common exposure to sequential

art and the absence of occlusion, simplifying their interpretation (Bach et al.,

2017).

Animated maps have long drawn the interest of cartographers to display

the interrelations among space, attributes and time components (Kraak et al.,

1997), since we live in an animated world and humans possess an eye–brain

system that is finely tuned to seeing (perceptually) and understanding (cog-

nitively) motion and change. The concept of animation became popular in

the 1950s, when Norman Thrower animated a series of static maps through

photographic tricks (Thrower, 1959). Twenty years later, the American-Swiss

geographer and cartographer Waldo Tobler created one of the first animations

as it is known today, using a 3D map generated through computer graphics
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to portray population growth in the city of Detroit over a specific time pe-

riod (Tobler, 1970).

Time-geography

In order to represent life stories of people and their interaction in space and

time, Hägerstrand (1970) introduced the idea of a space-time cube (STC),

which consists of a 2D geographical space (depicted on the cube’s basis) plus

time (depicted via the cube’s height). Together with symbols and colors,

one can easily represent movement data through space, time and thematic

information. The STC is a suitable approach to display and analyze paths

of (multiple) individuals, groups or other objects moving through space and

time, since it supports the perceptual integration of multiple data dimen-

sions (Kraak, 2003).

home

a

b

c

d
e

f

g

6 am
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6 pm

Physical activities:
a) go to work (7:30-8:00)
b) lunch (12:00-12:40)
d) leave work (17:00-18:00)
f) meet a friend at a coffee shop 
(18:00-19:00)
g) drive home (19:00-19:30)

Virtual activities:
c) teleconference (14:00-16:00)
e) receive a phone call from a friend to 
meet at the coffee shop (17:10-17:20)

time
space-time path

Figure 1.1.4: Temporal segmentation of a space-time path. Source: Shaw

and Yu (2009).

The pioneer implementation of the STC in a geographical information sys-

tem (GIS) belongs to Kwan (2000). The author used activity travel diary data

organized in the form of a space-time path (Figure 1.1.4) and activities were

represented as projects, i.e. sequences of actions undertaken in the pursuit of

predetermined goals (Adams, 1995). Everything being done (including “to do

nothing”) is considered an activity, thus every point in the space-time path

is associated to at least one activity, which may occur in the virtual (e.g.

e-shopping and online education) or physical space, causing multiple tasks
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to overlap each other, such as a mobile phone call while traveling from one

location to another (Shaw and Yu, 2009).

The technological development allows to continuously innovate the way we

use visualization to communicate information, while fulfilling the demands of

new generations. This way, these disciplines, i.e. information visualization and

cartography, together became a new field of research known as geovisualization

(short for geographic visualization), which enables the design and development

of powerful tools for visual analysis and communication of information.

Although the term visualization has been known in cartography since the

early 1950s, geovisualization developed as a field of research only in the early

1980s, based largely on the work of the French cartographer and graphic the-

orist Jacques Bertin, known for his book Semiology of Graphics (Bertin et al.,

1967). Since then, geographers and computer scientists work together to de-

velop conceptual frameworks and methodologies to provide visual and ex-

ploratory analysis of spatio-temporal data, which includes human movement

data (Andrienko et al., 2016b).

Nowadays, various combinations of these conventional and novel interac-

tive visualization techniques are found in the literature to support the anal-

ysis of human mobility data at different spatio-temporal granularity levels

and thematic attributes. However, they are often conceived to answer spe-

cific questions, such as traffic jam detection (Anwar et al., 2014), usage pat-

terns of shared bicycle systems (Yan et al., 2018), and life trajectories anal-

ysis (Otten et al., 2015), which results on a partial description of the hu-

man mobility phenomenon. Further, the majority of these mobility patterns

are explored through purely spatio-temporal data, which lacks the semantic

information that support the understanding of complex travel behavior by

considering activity chains and modes of transport that characterize people’s

movements (Noulas et al., 2012) (see Chapter 2 for a complete review of the

literature), and only a few visualization systems provide the analysis of human

mobility at the individual level.

The design of a visualization environment that provide the analysis of

urban mobility at both population and individual level, while covering space,

time and thematic information at different granularity levels requires:

• to design and develop appropriate visualization and interaction tech-

niques to represent the mobility indicators while handling the dialogue
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between space and time, and the data exploration at different levels of

aggregation; and

• to consider the reasoning mechanisms supporting the visual analysis and

the cognitive process associated, which results in different ways to which

users perceive the visual representations.

In the following, we present our research problematic and questions while de-

lineating the main challenges we attempt to overcome throughout this thesis.

1.2 Problem Statement and Research Questions

A better understanding of the daily mobility practices is a relevant issue when

defining local public policies that favor sustainable and plural mobility prac-

tices within urban areas, which help to ensure the good health of the popu-

lation by promoting air quality and the use of active modes (i.e. pedestrian

and bike traffic) (Offner, 2020). Thus, more than just calibrating the trans-

portation infrastructure via the understanding of travel flows, it is necessary

to understand how individuals’ activity programs influence their needs for mo-

bility and service (e.g., shopping, leisure) and how these programs impact the

usage of different places within a metropolitan area. In this context, many

experts within public policies need to manipulate more or less standardized

mobility data – without being transport specialists – in order to extract syn-

thetic and easily exploitable knowledge. Particularly, we intend to provide

solutions of visual analysis for the following three categories of users:

• the professionals of mobility (e.g., researchers, technical developers),

whose goal would be to enrich the already acquired knowledge about

human mobility patterns and their temporal variations;

• the professionals within public policies (e.g., urban planners), whose

objective would be to integrate the mobility data in a global analysis of

urban and territorial dynamics to propose solutions for transportation

policies, accessibility, public health, well-being and others; and

• the experimental users, whose goal would be to report on a cohort study

of individual mobility by easily exploring their datasets.
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In this spirit, the main goal of this thesis was to conceive a visualization

framework that facilitate the exploration and analysis of daily urban mobility

data via three categories of questions of great concern within the fields of

geography and urban planning, defined as follows:

1. How the inhabitants of a territory move around on a daily basis? What

are the resulting processes of exchange between geographical areas within

the territory? Hereafter, the trips correspond to the object of interest,

which we address the amounts (per individual and population), modal-

ities (purposes and transportation modes), and variation according to

different socioeconomic aspects of individuals or land types. Afterwards,

we describe the spatial structure resulting from daily mobility by deriv-

ing travel flows, which are the aggregate of trips between places of origin

and destination (O/D).

2. What is the temporal variation of population presence throughout a ter-

ritory? This question allows to better understand how the different

locations are used by taking into account the socioeconomic character-

istics of the people that visits it and the types of activities they carry

out there. These spatial locations are the object of interest, which we

analyze to estimate the presence of people at different times of the day.

Thus, one must specify the boundaries of locations and time step at

which to observe the variations in presence. These analyses provide

better knowledge regarding the daily rhythms of the studied territories.

3. What are the latent activity patterns of mobility? This question seeks

to understand how the individuals order their activities and trips over

time in the spatial context of the territory. We focus on the daily tra-

jectories, which are defined as a space-time path described by activi-

ties performed in each visited place and transportation modes used to

travel from one place to another. The temporal sequences of activities

extracted from the space-time paths are used to set up typologies to de-

scribe the diversity of daily activity programs underlying the traveling

demands (Robette, 2011).

The framework should include the whole process of preparing the input

data to derive the mobility indicators that allow to respond the above men-

tioned questions. Furthermore, it should support the visualization of these

indicators through appropriate visual representations and interaction mecha-

nisms to enable the exploration of data over multiple spatio-temporal granu-

larity levels and thematic attributes. Ideally, the approach should allow the
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effortless integration of new datasets (i.e. automatically prepare, derive and

visualize indicators) for enabling the comparison of daily urban mobility pat-

terns within different urban areas. On a more particular level, the approach

should enable users to

• describe the daily mobility from the perspectives of travel flows and trips,

the territory, and daily trajectories, which are themselves characterized

by demographic, socioeconomic and travel-related aspects;

• explore and compare indicators at the aggregate and individual levels

through suitable visual and interaction tools within a single environment

to leverage their complementary aspect;

• explore the temporal variation of indicators to reveal the dynamics re-

sulting from the human mobility phenomenon; and

• compose the visualization display in meaningful ways according to the

ongoing analysis. Although the complementary aspect of indicators is es-

sential for understanding the human mobility phenomenon as a whole,

each aforementioned question could focus on indicators derived from

only one object of interest, which could be also interesting for the ana-

lyst. Therefore, assuming users may not need to deal with every indi-

cator and their spatio-temporal combinations simultaneously, we should

allow them to display, hide, and modify visualizations according to differ-

ent indicators, spatial locations, time intervals and thematic attributes

as it better fit their analysis.

The multivariate aspect of movement data implies on manifold indicators

defined over space, time, objects and thematic attributes, which analysis over

different levels of aggregation and granularity (i.e. the level of detail in the

dataset) could rapidly become complex. As mentioned earlier, information vi-

sualization is a suitable approach to assist the analysis of urban mobility data

since it reinforces human cognition through visual representations of abstract

data. However, the range of visualization techniques becomes larger and more

diversified every day, which requires the designer of a such visualization frame-

work to carefully select the appropriate visual representations and interaction

mechanisms that enable data querying without increasing cognitive attention.

Thus, the proposed visualization interface should be validate through user-

based evaluations to ensure usability and user satisfaction. During the course

of this thesis, we attempted to answer a set of research questions organized
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over three fields of research: visualization, interaction and user-based evalua-

tions. We defined them as follows:

1. How to visualize indicators describing the territory, travel flows and

trips, and daily trajectories over multiple granularity levels of space and

time while taking into account the thematic information?

As we have seen earlier, maps are essential and successful to represent

the spatial dimension of mobility data, enabling particularly the analy-

sis of territory dynamics and travel flows. However, depending on the

underlying visual encoding that represents thematic information, maps

can present cognitive and graphical limitations, which hinder the un-

derstanding and extraction of information (Bahoken, 2016b, Fish et al.,

2011). Further, the time-geography approach was a breakthrough for

spatio-temporal data, and particularly, space-time paths representation,

while including thematic information. The first implementations of the

STC appeared around twenty years ago, thirty years after it was con-

ceptually introduced. However, the technology revealed some formerly

unnoticed shortcomings of the concept such as information loss and oc-

clusion caused by exploring a 3D visualization on a 2D display through

basic interaction techniques unsuited to leverage the full potential of a

3D virtual environment (Bach et al., 2017). The use of 3D interaction

technologies (e.g., virtual reality) appears to be the more suitable ap-

proach to reduce the negative effects of these deficiencies (Filho et al.,

2020). Nevertheless, the democratization of 3D technologies might take

some time. The challenge relies on meeting our requirements by design-

ing new visualization techniques; improving the existing ones to reduce

their negative effects on user performance; or combining available tech-

niques to leverage the positive aspects of each one.

2. How to leverage interaction for establishing the relationship of indi-

cators with space, time and thematic dimensions while handling data

exploration at different levels of aggregation and granularity?

Analytical displays1 are powerful decision-support tools able to trans-

fer, at a glance, the relevant information to the analyst by presenting

charts as tiled displays, with each display visualizing a different perspec-

tive to the data (Few and Edge, 2007), while increasing spatial thinking

1The dictionary, Merriam-Webster’s Collegiate Dictionary (1828), defines display as “an

electronic device (such as a LCD) or part of a device (such as the screen of a tablet) that

presents information in visual form”, which is the definition we use throughout this thesis

report.
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and user performance (Fischer, 2018). However, screen space is a lim-

ited resource, which reduces the amount of screen space that can be

allocated to each view and, consequently, the number and diversity of

indicators that can be explored simultaneously. Likewise, it restricts

the approach of juxtaposing time slices for representing the variation

of data over time by reducing the resolution of every additional image.

Further, the animation relies strongly on human memory, which makes

it sometimes difficult to understand or follow the successive changes.

Therefore, our challenge relies on comfortably and efficiently accommo-

date the necessary visualizations to explore the different perspectives

of urban mobility data, while overcoming the cognitive and technologi-

cal drawbacks of these well-known techniques to enable spatio-temporal

exploration of indicators without increasing cognitive load.

3. How to evaluate the visualization approach to ensure usability and user

satisfaction?

The process of designing a visualization framework that fulfill the afore-

mentioned requirements could increase the cognitive load due to the

integration of several visualizations to represent different indicators ex-

ploitable at various spatial, temporal and thematic granularity levels.

Therefore, user evaluations should be conducted to ensure that the pro-

posed approach does not increase cognitive attention in a way that neg-

atively affects user experience and, consequently, the analysis outcomes.

A review of the literature performed by Ellis and Dix (2006) showed

that only a small number of authors evaluate their visualization propos-

als with participation of users, which may be consequence, among other

things, of a difficulty to (1) recruit a group of “real users” (i.e. people

working on the domain for which the visualization tool was conceived),

and (2) replicate, in an experiment, the exploratory tasks for which vi-

sualizations are suitable. Furthermore, the authors conclude that any

evaluation would be insufficient on telling whether a visualization works

or not, but that empirical evaluations together with reasoned justifica-

tion would lead to a reliable validation of the visualization. Despite the

difficulty to completely assess a visualization, gathering feedback from

users, specially experts on the domain, is extremely relevant to improve

the visual and interactive tools, while ensuring usability through mini-

mal cognitive attention and a pleasant user experience. Therefore, our

challenge relies on finding a solution to appropriately evaluate the us-

ability and suitability of our visualization framework to explore urban

mobility data.
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1.3 Contributions

The main contribution of this thesis comprises the design and implementation

of a visualization framework that enable the analysis of daily urban mobility

through the exploration of three complementary objects of interest: territory,

travel flows and trips, and daily trajectories. On a more particular level,

the framework embeds two contributions within the fields of interaction and

information visualization.

Firstly, in order to overcome the well-known limitations of time animation

we propose TiltingMap, a movement-based interaction technique designed to

ensure better control of time animation and improve time reading. The tech-

nique implements the lenticular printing metaphor, allowing the user to view

a different version of the indicator according to the tilting angle of a tablet,

which is mapped to one of the twenty-four time periods on a time picker repre-

senting a whole day. The inspiration of this design comes from the possibility

of leveraging users’ proprioceptive sense, which is triggered by physical inter-

action and has shown benefits for improving memory, enjoyment and spatial

navigation (Arvola and Holm, 2014, Besançon et al., 2017, Maciel et al., 2010).

In our context, the proprioception is activated on users’ hands and wrists via

the tilting movement of a tablet.

Secondly, we designed and implemented eSTIMe2, a multi-display visual-

ization system that embeds customizable analytical displays, which the user

can personalize in meaningful ways according to the ongoing analysis. We

provide a set of six visualization techniques, which the user can customize

according to indicators, spatio-temporal granularity levels and thematic at-

tributes that suits their analysis, and to disperse the visual representations

over the multiple analytical displays, which each one supports the simultane-

ous exploration of up to four tiled and synchronized maps and charts. In an

attempt to facilitate interaction with multiple screens, we leverage the tablet

tactile input to control visualizations (i.e. open, close, modify indicators) in

each analytical display, and the tablet’s screen to visualize certain indicators.

The system leverage a large visualization space, which can be progressively

increased via the addition of another display, allowing the simultaneous ex-

ploration and comparison of multifaceted data through various indicators and

over multiple spatio-temporal granularity levels and thematic attributes. Fur-

ther, we offer the possibility of exploring time through animation and juxta-

2The visualization interface is accessible at http://lig-coin.imag.fr/estime/
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posing techniques, which latter also allows the comparison of indicators over

other data dimensions, such as space and semantic.

1.4 Thesis Outline

Data	Processing

Derivation	of
Indicators

Development

User	Evaluation

Conception
Refinement
Completion

Experiment
Analysis	of	Empirical	Data
Hypotheses	Assessment

Structuration
Extraction	of	information	matrices

Global	at	population	level
Thematic

Figure 1.4.1: The cyclic and incremental methodology underlying the

conception of our visualization framework. Source: the author.

During this thesis, we followed a cyclic and incremental methodology con-

sisting of four phases (Figure 1.4.1). Firstly, we study the data we are dealing

with and process it for extracting information matrices. Secondly, we use these

matrices for deriving indicators from our three objects of interest. Thirdly, we

implement a first prototype including indicators that enable the study of the

urban mobility phenomenon through indicators describing the territory, travel

flows and trips. The interface implements the multi-display approach and the

interaction mechanisms that enable data querying. Afterwards, the proto-

type undergo a user-based evaluation process that aims to identify usability

issues, which outcomes are used to refine the visual and interaction tools. The

process continues as the refined prototype undergo subsequent usability eval-

uations, and we derive the remaining indicators to complete the prototype.

Ultimately, we present eSTIMe to a group of experts that help us to validate
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the suitability of our visualization framework to answer the domain-related

questions, specifically the three questionings that drove this research.

In order to ease the reading of this document, instead of presenting these

steps in the chronological order that they happened, we present them in the

order of a single passage through the process, which results in the arrangement

described hereafter.

Chapter 2 describes the state-of-the-art of urban mobility visualization.

Firstly, we present an extensive (yet not exhaustive) literature review of visu-

alization techniques and visual analytical systems designed to support the

exploration of urban mobility data through indicators of travel flows and

trips, population and territory dynamics, and daily trajectories. Secondly,

we present relevant solutions to overcome the screen space shortcoming when

using multiple linked views. Finally, we present a literature review regard-

ing user-based evaluations methods, their advantages and limitations whilst

applied to the evaluation of visualization interfaces.

The Chapter 3 presents our contributions to the fields of visualization and

interaction. Firstly, section 3.2 described the process of data structuring and

derivation of indicators. Section 3.4 presents a system of tasks for guiding the

user queries over space, time and thematic dimensions through our visual and

interactive tools. In Section 3.5 we present the reasoning that led to eSTIMe,

the used visual encoding and interaction techniques, including the reasoning

and development of TiltingMap. Finally, section 3.6 describes a set of usage

scenarios to demonstrate the use of our visual and interactive tools to explore

real data sets.

The user-based evaluations are presented in Chapter 4. Section 4.3 de-

scribes the first experiment, which was designed for gathering feedback on

the first prototype of eSTIMe. Section 4.4 presents an user experiment that

evaluates the usability of TiltingMap with regard to the traditional anima-

tion technique. Section 4.5 present an user experiment performed to evaluate

the usability of an improved prototype of eSTIMe. Finally, the experiment

presented in Section 4.6 involved experts on mobility and transportation to

evaluate the suitability of our visualization framework for solving domain-

related tasks.

In chapter 5 we present our final considerations regarding the contributions

done in this thesis, the lessons we learned during the realization of this work,

and discuss the possibilities of future research derived from this work.
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State of the Art

2.1 Introduction

Numerous professionals within urban policies with possibly no knowledge in

transportation, statistics or visualization, such as researchers, diagnostic man-

agers, and local authorities, use the outcomes of daily urban mobility analyses

to assist decision-making on public policies such as transportation offers, ac-

cessibility, public health, well-being, and air quality control. As a remainder,

we propose the analysis of daily urban mobility data via the derivation of

indicators describing three complementary objects of interest (i.e. flows and

trips, population and territory, and daily trajectories) over space, time, and

thematic attributes.

The multi-dimensional aspect of the data requires a diversified range of

visualizations to better summarize and transfer the information. Further to

representing the information over multiple spatio-temporal granularity levels,

the definition of space goes beyond two or three coordinates, including the

geographical context, which is difficult to formalize and represent. Moreover,

time modeling can be linear and cyclical, often comprising several temporal

cycles simultaneously (monthly, weekly, daily, etc) (Andrienko and Andrienko,

2007). The use of composite or multiple visualizations supports the representa-

tion of high complex, large scale, or heterogeneous data (Javed and Elmqvist,

2012), which make them essential to provide enough flexibility and power to

deal with the complex analyses resulting from the combination of ordinary

data dimensions (e.g., thematic attributes) with space and time (Andrienko

and Andrienko, 2007).

The use of multiple views can increase user performance by supporting

the discovery of unforeseen relationships and unify the desktop (North and

Shneiderman, 1997), while reducing the cognitive load produced by a single

and complex view of the data. However, the poor design of multiple view
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systems could decrease their utility, both in terms of higher cognitive overhead

(e.g., increasing the load on working memory, the time and effort required to

learn the system, and to make comparison tasks and context switching) and

increased system requirements (e.g., requiring high computational and display

space resources). Therefore, Baldonado et al. (2000) propose a set of guidelines

that establish the use of multiple views in situations where:

• the data contains at least one type of diversity regarding attributes,

models, user profiles, levels of abstraction, or genres;

• the additional views are complementary, bringing out correlations or

disparities within the data;

• the decomposition of complex visualizations into smaller and manage-

able views could reduce the amount of data held in the visual working

memory; and

• there is a compelling reason to introduce additional views (i.e. the use

of parsimony)

The remaining guidelines establish the means to present and interact with

views: whether to display them sequentially or side-by-side to optimize re-

sources of space and time; to make relationships within the data self-evident

via perceptual cues; to be consistent throughout interfaces and states; and to

ensure the user’s attention is at the right place at the right time.

The term multiple views designates the representation of data in several

windows. The typical layout of a multiple view system place visualizations

in subsequent windows and the operations on each view are coordinated, the

so-called Coordinated and Multiple Views (CMV) (Roberts, 2007). A stan-

dard implementation of CMVs comprises several statistical graphics and/or

geographical maps embedded into analytical displays to represent individual

entities and/or aggregates (e.g., histograms) linked together by brushing and

selection techniques (Andrienko and Andrienko, 2007). Javed and Elmqvist

(2012) introduced the notion of composite visualization views (CVV) as a

theoretical model intended to unify the CMV paradigm with other strate-

gies for combining visual representations in the same geometrical space. The

authors derive design patterns according to the spatial layout of component

visualizations defined as follows:
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• the juxtaposed views (Figure 2.1.1a), which place visualizations side-by-

side in one view (e.g., CMV), leveraging the independence of components

that can be composed without interference. However, the technique

suffer from the implicit visual linking among views that is sometimes

difficult to perceive, and the shared space between views, which yields

less space for each view;

• the integrated views (Figure 2.1.1b), which place visualizations in the

same view with visual links, making it easier to perceive one-to-one

and one-to-many relations between items. The drawback lies on the

additional visual clutter to the overall view, and the shared display space

between views. Further, the components have dependencies to enable

visual linking;

• the superimposed views (Figure 2.1.1c), which overlay two visualizations

in a single view, leveraging direct comparison in the same visual space.

Nevertheless, it may cause occlusion and high visual clutter, since both

visualizations share the same spatial mapping;

• the overloaded views (Figure 2.1.1d), which use the space of one visu-

alization for another, leveraging more flexibility and control over visual

clutter, even though the latter is increased. Further, the components

are highly dependent on each other; and

• the nested views (Figure 2.1.1e), which nest the contents of one visual-

ization inside another, leveraging a compact representation. However,

each visualization has limited space and the visual cluttering and de-

pendencies between components are high.

Figure 2.1.1: The design patterns of composite visualization views ac-

cording to the spatial layout of component visualizations. Source: Javed

and Elmqvist (2012).

These visualization methods combined with human-computer interaction

mechanisms and the cognitive capabilities of human beings allows to extract

knowledge from otherwise meaningless data (Raghavan et al., 2016). This pro-

cess is known as visual analytics, which is the science of analytical reasoning
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supported by interactive visual interfaces (Keim et al., 2009). Hence, visual

analytics systems (VAS) embedding multiple views are widely used to repre-

sent multivariate data and support decision-making in diverse areas. Particu-

larly, this chapter focuses on identifying the visual and interactive techniques

supporting the analytical reasoning within VASs designed for urban mobility

analysis.

The remaining of this chapter is organized as follows. Section 2.2 presents

an extensive (yet not exhaustive) literature review of VAS classified according

to the objects of interest addressed by the analysis. Section 2.3 focus on the

use of analytical displays and their use together with large, high resolution dis-

plays and innovative interactive techniques leveraging kinesthetic interaction.

Section 2.4 present the urban-based evaluation methods usually employed for

evaluating the usability and suitability of visualization interfaces, and discuss

the advantages and difficulties to implement it. Finally, Section 2.5 summa-

rizes the visual, interactive and evaluative aspects of these previous works and

discuss to what extent they could respond to the problematic addressed in this

thesis.

2.2 Visual Analysis of Urban Mobility Data

Although surveys (e.g., travel, activity, and household-travel surveys) remain

a great source of information to assess the performance of transportation sys-

tems within metropolitan areas, the emergence of tracking technologies pro-

mote the surge of new data sources to describe human movements, which

themselves open up research opportunities within visual analytics. The visu-

alization techniques and systems presented in this section enable the analyst

to explore and extract urban mobility patterns described from data of diverse

sources. Therefore, to guide the reader through the remaining of this chapter,

we delineate the main types of data used in previous works, as follows:

• the call detailed records (CDR) are geo-referenced records produced by

a telephone exchange that document the details (without the content)

of a telephone call. They are typically used by telecom operators to

troubleshooting and improve the network’s performance. Nevertheless,

each data record (i.e. a telephone call) contains information describing

its starting/ending date and time; the identifier of who made it and who

was called; its duration; whether it was incoming or outgoing; and the
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originating/terminating towers (Sammons, 2015), which coupled with

external data on customers (e.g. age or gender) makes CDRs a rich

and informative source of data to study personal mobility, geographical

partitioning, urban planning, and so on (Blondel et al., 2015);

• the telco data are exchange records between each mobile phone and cell

stations when users make phone calls, send messages or connect to in-

ternet. This type of data has significantly increased with the popularity

of smartphones running various apps both in the back and foreground,

opening up opportunities for in-depth study of human behaviors (Zheng

et al., 2016);

• the taxi trip data include information of pick-up and drop-off dates/-

times and locations, trip distances, itemized fares, rate and payment

types, and driver-reported passenger counts. Taxis are considered a

valuable sensor to assess many aspects of urban life, such as economic

activity and human mobility behavior (Ferreira et al., 2013);

• the check-in data is provided by applications such as Foursquare and

Twitter, which allow one to announce their arrival at a hotel, airport,

hospital and so on. Further to information on the type, name, geograph-

ical location and attendance time of a visited place, the data is often

semantically enriched with users impressions on the place or event linked

to that location;

• the bike-sharing data originate from bicycle-sharing systems, which dis-

pense bicycles to individuals on a short term basis for a price or fee.

These systems embed smart-technology that were at first intended to

overcome losses from theft, and enable nowadays the collection of infor-

mation on when and where bikes were borrowed/returned, and on the

individual who rented it (e.g., their age). This type of data has a great

potential on revealing human mobility behavior. However, bicycles are

often used to travel short distances, which means the data would likely

describe only the mobility patterns of people traveling within a part of

the city, often downtown; and

• the smart card data contain records from validation cards used in sub-

ways and buses that provide information on where and when a passenger

touched in/out. This type of data can be very useful to transport plan-

ners, from the day-to-day operation of the transportation system to the

strategic long-term planning of the network (Pelletier et al., 2009).
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These data sources describe movements through purely spatio-temporal in-

formation. Therefore, to semantically enrich the data, each data record is often

segmented into moves and stops, which are coupled with external data to esti-

mate information such as activities and transportation modes (Paiva Nogueira,

2017). The stops’ positions in space help to estimate places of interest (POIs),

which function could suggest the activity one performed while staying in that

place (e.g. a restaurant would suggest the stop was for lunch or dinner ac-

cording to the time it took place), and/or certain socio-demographic aspects

of people, such as their occupation based on the time spent in a business-like

place. Transportation modes are sometimes explored by combining different

data sources, such as taxi trajectory, public transportation and bike-sharing

data, which could help to distinguish the movements performed by car, bus,

train, metro and bicycle, for instance. Another approach would be to combine

the information on start/end time and trip duration with external data (e.g.

train, flights timetables) to determine which transportation mode was used to

perform each trip (Chen et al., 2015).

The remaining of this section is organized as follows. Subsection 2.2.1

presents visual techniques and VAS that enable ones to explore travel flows

and trips. Subsection 2.2.2 focus on the visual analysis of presence dynamics

over time of a population within an urban area. Subsection 2.2.3 focus on the

visualization of trajectories on space, time or both. Subsection 2.2.4 presents

visualization interfaces that allow the simultaneous and complementary anal-

ysis of two or three of these objects of interest.

2.2.1 Travel Flows and Trips

The analysis of human movement flows reveals the degree of connectivity and

accessibility of a territory. For instance, within a metropolitan area, this

information helps to understand how the urban core is connected to the less-

populated surrounding territories. The description of flow variation over time

helps to describe the appealing aspect of different locations according to when

people move the most towards or from certain regions or locations. Further,

information on trip purposes and transportation modes help to understand

how the urban environment enables the establishment of these inter-territorial

connections at different times of the day, which is relevant to make pertinent

investment decisions on public transportation and activities such as the con-

struction of new leisure and shopping places.
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Figure 2.2.1: The visual representation have the shape of a tangled and

overlapping pile of links, which characterizes the graphic overcharge that

causes the spaghetti effect. Source: http://www.martingrandjean.ch/w

p-content/uploads/2016/05/airports-world-network.png.

Flow maps are a combination of maps and flows charts that enable the

depiction of movement flow between origin and destination (O/D) spatial lo-

cations. These O/D locations are represented by their geographical positions

and therefore unchangeable, which often causes the arrows and lines to over-

lay each other provoking the well-known spaghetti effect (Bahoken, 2016b)

(see Figure 2.2.1). However, the understanding of flow data is strongly de-

pendent on the geographical information to provide visual insights on aspects

such as distance, neighboring area, and surface of the involved territories.

Therefore, we begin by summarizing previous contributions attempting to

improve travel flow representation via the enhancement of flow maps’ symbol-

ism (Koylu and Guo, 2017); the abstract representation of space embedded

into common charts; or the use of CMVs approaches, which link geographical

maps and abstract flow charts through interaction techniques.

In order to reduce data dimensionality and improve interactive analysis,

rather than intersecting lines, Andrienko et al. (2016a) and Jiang et al. (2015)

visualize aggregate O/D data by drawing radial diagrams at the places of trip

http://www.martingrandjean.ch/wp-content/uploads/2016/05/airports-world-network.png
http://www.martingrandjean.ch/wp-content/uploads/2016/05/airports-world-network.png
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origins or destinations, which can represent the count of trips to/from different

directions and distance ranges. Color encodes the latter in Figure 2.2.2a,

while several inner rings (i.e. tracks) encodes distance on the diagram of

Figure 2.2.2b, where each track represents a certain distance range from the

represented location, and orientation is encoded by sectors (e.g., a circular

partitioning into 10°). The superposition of tracks and sectors results into

pixels, which color encodes the number of trips having the given location as

destination.

round trips

distance range 1 (short)

distance range 2 (medium)

distance range 3 (long)

(a) Source: Andrienko et al. (2016a). (b) Source: Jiang et al. (2015).

Figure 2.2.2: Flow magnitude from different directions and distance

ranges are represented through radial diagrams which sectors represent

directions from a particular location.

The intersection of rows and columns within an O/D matrix display the

number of trips between O/D locations, which implies that these types of

matrices could be easily transformed into heat maps, where cells are colored

to encode the flow magnitude between each O/D pair. However, this visual-

ization technique cannot represent geographical information, which led Yang

et al. (2016) and Boyandin et al. (2011) to propose techniques that link two

geographical maps through an O/D matrix (Figure 2.2.3). In this visualiza-

tion, lines connect the edge of each row/column to their geographical position

in both origin and destination maps. In addition, the Flowstrates technique

(Figure 2.2.3b) reveals the temporal variation of flow magnitude by converting

the matrix’s columns into time intervals and the rows into pairs of locations.

The authors propose yet a variation of the flow matrix that uses color hue
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(a) MapTrix. Source: Yang et al. (2016).

(b) Flowstrates. Source: Boyandin et al. (2011).

Figure 2.2.3: Geographical maps linked through heat maps to represent

O/D flow data. The edge of each row/column is connected to an origin or

destination map through lines, which flow magnitude is encoded by color.

(red, gray, and blue) to encode the difference of flow magnitude between a

time period to the previous one.
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Figure 2.2.4: The visualization of flow exchanges between bicycle sta-

tions via a chord diagram (top), and the effects of contextual attributes

(e.g. weather, holidays) on hire amounts of a particular station through a

parallel coordinated plot (bottom). Source: Shi et al. (2018).

Shi et al. (2018) represent flow exchanges between bicycle stations (i.e.

pick-up and drop-off actions) within a bike-sharing system (Figure 2.2.4 –

top) using a chord diagram, where each station is represented as an arc with

unique color. The arc length indicates the total flow magnitude of that station

within the specified time period. The arcs are connected by ribbons, which

thickness represents the flow magnitude exchanged between stations, and the

direction is indicated by a white gap inside the arc. Finally, the peripheral

three stacked bars provide comparative information on incoming and outgoing

flows. This diagram is part of a VAS designed to explore flow exchanges and

rental patterns of PBS data. The authors use a temporal heat map to represent

the patterns of hire amounts per station over different days (y-axis) during

the station’s opening hours (x -axis – from 6am to 9pm), and a coordinate

parallel view (Figure 2.2.4 – bottom) to explore the effect of attributes such

as climate condition, weather, and calendar events on hire amounts.
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(a)

(b)

Figure 2.2.5: Visual exploration of bus passengers flow. The arc diagram

(a) represents flow exchanges between pairs of bus stations, and the pixel-

based chart (b) displays flow magnitude per bus station and time interval,

which color encodes magnitude from red (high) to green (low). Source:

Wang (2016).

Wang (2016) represent travel flows direction and magnitude between bus

stations through an arc diagram (Figure 2.2.5a), which axis of circles repre-

sents the stations connected by ribbons, over or under the axis, according to

the bus line direction. The circles size encode the amount of people getting on

board of buses in each station, while the ribbons color and thickness encode

flow magnitude between stations. The authors visualize traffic congestion at

the road segment level through a line-route map, and flow volume for different

bus stations via a pixel-based plot (Figure 2.2.5 – b1) at a time granularity

of 15-minutes intervals. In both visualizations, color encodes traffic magni-

tude (i.e. red for high and green for low magnitude). Further, two bar charts

(Figures 2.2.5 – b2-3) represent the flow magnitude of different bus stations

at a particular time interval, and the variation of flow volume in a particular

station along the day, respectively (red encodes people getting on board of

buses and green otherwise).
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Similarly, Oliveira et al. (2016) uses a pixel-based chart to represent bicy-

cle rental over 24 hours at different days, months, or seasons of a year and

according to diverse variables, such as bike and station availability, station ca-

pacity, bike return/rental counting and frequency. Subsequently, travel flows

are represented per station according to trip distance and direction (i.e. in-

coming, outgoing and cyclic, which are trips starting and finishing in the same

station), and considering the spatial context where the trips took place.

(a) (b)

(c) (d)

Figure 2.2.6: Visual exploration of mobility-related factors on a public

transportation system. The isochrome map view (a) reveals the accessible

regions from a particular location within a certain travel duration. The

isotime flow map (b) visualizes mobility information along the time axis

and clear pathways between O/D pairs. The OD-pair journey view (c) and

the mobility wheel (d) display the temporal variation of waiting, transfer

and riding times for a particular journey. Source: Zeng et al. (2014).

Zeng et al. (2014) visualize mobility-related factors (i.e. waiting, riding and

transfer time, and travel efficiency) of a public transportation system. The

proposed VAS comprises a isochrome map view, which presents geographi-

cal regions accessible within a certain duration from a given starting location

(Figure 2.2.6a). The isotime flow map view represents journeys in a parallel

isotime fashion with their corresponding travel time and efficiency indicated

by the horizontal time axis and the nodes’ colors, respectively (Figure 2.2.6b).

The OD-pair journey view (Figure 2.2.6c) is revealed upon the selection of a
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journey in the isotime flow map, which also enlarge the branches that forms

the selected route and color-code different portions of the flow line to repre-

sent mobility-related conditions: light blue for waiting, gray for transfer, and

standard colors of the public transportation lines. Further, the mobility wheel

show the temporal variation of mobility-related factors around the clock by

stacking small vertical bars representing each factor (Figure 2.2.6d), which

summarizes the contribution of all factors together. Although the visualiza-

tion allows to determine the efficiency of public transportation solutions by

measuring the time one takes to travel between places, it does not support

analyses based on the number of people are traveling between places and/or

the amount of trips these people generate.

The OD-Wheel proposed by Lu et al. (2016) enables the exploration and

comparison of O/D flow data over different locations (Figure 2.2.7). The

technique sort O/D locations by traffic flow volume and place them along

circular and linear axes. The rings represent different days and embed each a

bar plot displaying the traffic volume of each region over the 24 hours. This

same time axis is extended over the linear view, which detail either travel

duration or traffic volume at each origin and destination.

a) b)

c)

Figure 2.2.7: For a particular region selected on the map view (a), one

can explore the incoming and outgoing flows dynamics over different days

and time periods using the OD-Wheel (b). The detail view (c) displays

the flow volume per travel distance along the day over a time granularity

of 10 minutes. Source: Lu et al. (2016).

The Mobiseg system (Wu et al., 2017) visualizes latent activity patterns

from taxi, metro and telco data, which datasets are separately treated to

identify whether the activity (i.e. the action of arriving and departing) origi-

nate from taxi or public transportation. The geographical space is segmented

into Voronoi cells, which embed glyphs that summarize the location’s over-
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all activity pattern (Figure 2.2.8b), while indicating whether it is an origin

or a destination. Furthermore, an horizon graph along a circular time axis

(Figure 2.2.8c) presents the temporal variation of different activity patterns

according to the number of arrivals and departures.

Figure 2.2.8: Visualization of latent activity patterns extracted from taxi,

metro and telco data. Source: Wu et al. (2017).

Itoh et al. (2016) explore the effects of unusual phenomena (e.g., disasters,

accidents, and public gatherings) in passenger flow within a metro system.

The crowdedness of each train is estimated through the shortest time path

for each trip (O/D pair). Upon the detection of an unusual phenomenon, the

system estimates alternative routes possibly taken by passengers via external

information regarding the train suspension (e.g., from the metro operating

company or the transport information webpage). The temporal variation of

unusual events over a particular day for one or multiple train lines is rep-

resented through a heat map (Figure 2.2.9a). The AnimatedRibbon (Fig-

ure 2.2.9b) consists of a geographical map overlaid with animated 3D bands

that represent the temporal variation of unusual phenomenon effects in pas-

senger flow of each metro line. Semantic information explaining the situation

is displayed on a TweetBubble view (Figure 2.2.9c), which gives an overview

of keywords trends during the event.
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a) b) c)

Figure 2.2.9: Visual exploration of unusual phenomenon effects in pas-

senger flow within a metro system. Source: Itoh et al. (2016).

These contributions focus on improving the visualization of movement flow

or supporting the analysis of certain aspects regarding urban mobility (i.e. us-

age and passenger behavior within biking-sharing and public transportation

systems, and the effect of traffic incidents) via the visual exploration of travel

flows. These visualization systems and techniques enable the representation

of flows according to indicators of magnitude, speed, distance and direction,

and their variation over space and time. However, we could notice that most

approaches do not embed the spatial information in their flow visualization

technique, but rather link geographical maps that indirectly provide the spa-

tial information to allow the understanding of traveling patterns within the

spatial context of the territory under analysis. We also observe that most

approaches would focus on representing magnitude and distance, rather than

direction, or at least the actual connections between different spatial loca-

tions. Further, they do not represent information regarding activities and

transportation modes. Nevertheless, we will particularly explore the visual-

ization techniques introduced by Shi et al. (2018) and Zeng et al. (2014) to

represent flows and other travel attributes within our framework. In the fol-

lowing, we present previous contributions to the analysis of presence dynamics

over time within urban areas.

2.2.2 Territory and Population Dynamics

Understanding the overall mobility patterns of a population is relevant to en-

able transport researchers to propose investments that are consistent with the

spatiotemporal activity of an urban area across multiple temporal resolutions,

i.e. the urban pulses resulting from human mobility (Miranda et al., 2016).

In this spirit, Miranda et al. propose a framework to assist the visual explo-



50 Chapter 2. State of the Art

ration of urban pulses across multiple cities under different conditions (e.g.

weather, time of the day, or day of the week) through a geographical map

and a timeline that shows the evolution of pulses at different locations over a

temporal granularity of one-hour intervals. The UrbanFACET interface (Shi

et al., 2017) allows to explore the spatial distribution of entropy-based mobil-

ity metrics according to POIs, regional demographics and population density

in a metropolitan scale. One can select, filter and compare urban mobility

patterns of different regions over a temporal granularity of 10-minutes inter-

vals.

Figure 2.2.10: The greographical maps (bottom) display the spatial distri-

bution of different activity patterns; the circular views (top left) represent

the distribution of people per age group; and the line chart (top right)

represents the temporal evolution of patterns. Source: Yan et al. (2018).

Yan et al. (2018) cluster bicycle docks of a bike-sharing system into spa-

tial regions to explore the evolution of activity patterns (i.e. rental/return

of bikes) along different days of the week, with a time granularity into one-

hour intervals. The activity patterns are defined according to different spatial

regions, time periods, and age ranges. For a particular activity pattern, a

geographical map displays the spatial distribution of people (Figure 2.2.10 –

bottom); circular views represent the age distribution through color intensity

that encodes ranges of age (Figure 2.2.10 – top left); and a line chart presents

the variation of different patterns over time, encoded by color (Figure 2.2.10

– top right). Likewise, Shi et al. (2015) visualize the spatio-temporal distri-

bution of bicycle rental amounts. A map view displays every bike station as

circles, which color intensity and size encode the number of rental or return.

For a particular dock station, the temporal variation of rental/return amount

can be compared over different days via a stacked area chart, and over one-
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hour periods of a particular day via a bar chart. Both authors estimate spatial

hotpots from bike rental amounts to indicate regions where people are present

at different times of the day, which is possible due to the fact that most people

would use bicycles for short trips. However, the data is not enough to describe

the dynamics within a whole urban area.

Figure 2.2.11: Visual interface to explore the propagation of traffic conges-

tion. The circles clears the locations where an incident occurred revealing

the traffic conditions. The temporal variation of traffic can be explored

via a timeline that gives the intensity of traffic incidents over time (bottom

right). Source: Anwar et al. (2014).

Anwar et al. (2014) explore traffic flow data to reveal the propagation of

traffic congestion induced by incidents over the network. An interactive map

displays time-varying traffic flow and road incident data simultaneously. A

50% opacity mask is uniformly applied over the map to mute the color of

major road segments (red for heavy traffic, green for fast moving traffic) so

that the user’s attention is fixed on the road incidents. Just before a road in-

cident occurs, an expanding circle clears the mask over the location, thereby

allowing the user to see how traffic behaves in the immediate vicinity of the in-

cident. The circle’s color encodes the incident’s type: pink indicate accidents,

blue reports heavy traffic, and orange signal vehicle breakdowns. The inci-

dent’s duration (indication of severity) is proportional to the amount of time

the circle stays open. Since it remains open until just after the event ends,

users can compare traffic conditions before and after the incident occurred.

Although the authors used data describing flows of vehicles, we classify this
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VAS under territory and population dynamics since the displayed information

correspond to the number of vehicles at different spatial positions and time

moments, which allows to estimate where people are and for how long rather

than where they are coming from and going to (i.e. our understanding of

travel flows).

Figure 2.2.12: The visualization of POI-mobility signatures. The charts

are placed on regions of interest, which displays the mobility intensity

over different time periods by means of a stacked graph, and the activity

context via a pie chart. Source: Zeng et al. (2017).

On the basis of a geographical map, Jahnke et al. (2017) explore the varia-

tion of hotspots and POIs spatial distribution over time. Hotspots are defined

as areas with high concentration of taxi’s pick-up and drop-off events, and

the POIs are hotels, commercials, offices, restaurants, exhibition or business

centers placed within a particular ratio from each hotspot location. Along the

same lines, Zeng et al. (2017) visualize the POI-mobility signature of partic-

ular regions through the volume of departures and arrivals of people, and the

activity context (i.e. available POIs in the area). A bivariate map gives an

overview of the spatial situation, i.e. the density of departure and arrival of

each public transportation station and the major POIs in the territory. The

POI-mobility signature chart (Figure 2.2.12) provides further exploration of

a particular region by displaying the variation of mobility intensity over time

and the activity context. A central pie chart presents the distribution of POIs

within a radius of 10-minutes walking distance (i.e. traveling speed of 5 km/h)

from the region of interest. The stacked graph surrounding the pie chart dis-
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play the number of people arriving and departing at different time periods

encoded by color (i.e. aqua and pink, respectively). The temporal granularity

can be customized to display the average mobility during weekdays, each day

of the week, or the average over weekdays and weekends.

Inversely to what we have seen regarding the representation of flows, when

representing presence dynamics, a geographical map is often the main visual

component of the system, often linked to or overlaid by graphic diagrams that

display complementary information (e.g., temporal or other). Particularly, we

consider the POI-signature diagram proposed by Zeng et al. (2017) an inter-

esting technique to represent the temporal variation of presence at a particular

location, which we used as inspiration for visualizing certain indicators within

our framework.

2.2.3 Individual Trajectories

The visual analysis of individual trajectories helps to understand the effects

of spatial and socioeconomic constraints on the trips spatio-temporal shape

and extent, and the daily activity schedules.

Figure 2.2.13: Ranking based visual analysis of taxi travel behav-

ior. Source: Lu et al. (2015).

Lu et al. (2015) propose a ranking-based visualization to explore taxi travel

behavior. On each road segment, the trajectories with similar duration are

clustered together into groups, which represent different travel behaviors and
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are ranked according to average duration. The user can configure filters and

route segmentation via the spatio-temporal view (Figure 2.2.13A). The hori-

zon graph displays the distribution of trajectories over a day (Figure 2.2.13B).

The ranking view (Figure 2.2.13C) comprises a rank diagram of travel be-

haviors on multiple road segments; a temporal distribution of groups; and

a modified box-plot that displays the average travel duration on each road

segment.

a) b)

c)

Figure 2.2.14: The TrajectoryWall approach. The individual trajectories

are represented as stacked 3D colored bands on a 2D geographical map (a).

The time lens (b) displays travel attributes aggregated on time according

to a spatial query. The time graph (c) displays trajectories as stacked

horizontal bands. Source: Tominski et al. (2012).

Tominski et al. (2012) focus on visualizing the thematic attributes of in-

dividual trajectories, which are represented as color-coded bands, and sets of

trajectories by stacking these bands, which results on a 3D visualization where

color-coded bands are stacked up on a geographical 2D map (Figure 2.2.14a).

Their approach has been applied to taxi trip data, which travel speed is en-

coded by the band colors. The bands can be ordered according to the absolute

times of the starts or ends of trajectories or according to their positions within

a daily, weekly or seasonal temporal cycle. This ordering supports synoptic

S × T → A tasks (i.e. identify and compare one or many attributes over

different locations and times) thanks to the human vision capacity to perceive

relatively homogeneous colored spots throughout the stacked bands, which

correspond to spatio-temporal regions of constant behavior. Likewise, grad-
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ual changes of color along the horizontal axis indicate a spatial trend, while

changes along the vertical axis suggest a temporal trend.

The TrajectoryWall supports spatial querying, which triggers an aggregate

representation of attributes over time through the time lens (Figure 2.2.14b).

The inner lens shows the trajectory points that match a circular spatial query.

The ring is segmented into time bins (e.g., 4 quarters of the year, months, days

of the week or hours of the day), which present for that query area: the number

of trajectories intersecting it, their total duration, and the average time they

were on that spatial region. Further, a 2D time graph (Figure 2.2.14c) displays

individual trajectories as stacked horizontal bands, which provides a synoptic

view regarding time, since overall temporal behavior can be characterized and

searched for.

Figure 2.2.15: The spatio-temporal representation of individual trajecto-

ries in the RelationLines visual approach. The radial charts depict weekly

movement behaviors of individuals, which colors encode activities per-

formed in the spatial position of charts on the map. Source: Chen et al.

(2018).

The RelationLines approach (Chen et al., 2018) merge five data sets (i.e.

CDR, telco, taxi trips, check-in, and POI data) to explore egocentric networks

among individuals who share similar locations or trajectories over space and

time. These egocentric relations reveal how different persons connect and

their connection degree, both socially and geographically. The spatial traces
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are visualized on a road map overlaid by radial charts indicating the locations

where people performed certain activities (Figure 2.2.15). Each ring of the

chart represents a day of the week, which is segmented into 24 hours and

colored to encode POIs and the action of traveling between places (gray).

Based on the premise that people with similar living and working envi-

ronments have high probability of becoming friends, Zhang and Wang (2017)

propose a visualization to improve online chat apps by revealing people’s living

and working locations. A heat map displays the spatial distribution of people

living and working in the same regions, and with similar commuting time. A

multi-ring donut chart supports comparison among daily behaviors of differ-

ent individuals. Each person is represented by a ring, which are themselves

segmented into 24 hours and colored to encode three activities: at home, on

the road, at work.

Space-Time Cube (STC)

The STC is a powerful technique to simultaneously represent data in space

and time, while enabling the visualization of thematic attributes. The in-

teraction with the data is mostly based on 2D operations, as we can observe

through the generalized space-time cube proposed by Bach et al. (2017), which

comprises a descriptive model for visualizations of temporal data, transform-

ing the cube’s 3D shape into readable 2D visualizations. The model support

operations such as extracting sub-parts of the cube, flattening it across space

or time, and transforming the cube’s geometry and content. However, this

dependency can cause loss of information since the visualization must be sim-

plified over a particular dimension (i.e. space or time), and can sometimes

create visualizations that are hinder to interpret, such as the result of a space

flattening operation on a base plane which coordinate system is not natural.

The operation involves flattening the cube along a particular direction on the

data plane instead of extracting a cut so that the final result can be read as

a regular timeline.

The VISUAL-TimePAcTS system (Vrotsou et al., 2010) embeds a 3D

activity-time cube, which represents activities, visited places and compan-

ionship as continuous trajectories (Figure 2.2.16). The y-axis represents time,

the x -axis the individuals, and the z -axis depicts the activities. Color en-

codes seven categories of activities: care for oneself (green), care for others

(turquoise), household care (pink), reflection/recreation (purple), transporta-
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Figure 2.2.16: Visual representation of an activity-time cube of six activity

paths. From left to right: front, rotated and side view. Source: (Vrotsou

et al., 2010)..

tion (yellow), procure and prepare food (blue), and work/school (red). Basic

interaction is provided for rotating, scaling and translating the cube.

The space-time GIS proposed by (Chen et al., 2011) supports exploratory

analysis of activity data by generating space-time paths and providing a series

of queries and analysis functions to investigate hidden activity patterns in an

individual level activity diary data set. The analyst can filter space-time paths

according to non-spatial attributes (e.g., gender, age, education, occupation

and income), and spatial characteristics (e.g., residential location). The tra-

jectories are colored to encode different types of activities, which helps to

identify distinct characteristics of human activity patterns and facilitate the

interactive visualization of individual and/or groups activity patterns (Fig-

ure 2.2.17a). Kernel density estimation is used to derive aggregate activity

distribution surfaces at different time points, which comparison enable to ex-

plore the change patterns and find locations that gained or lost activities dur-

ing the time period (Figure 2.2.17b). Further, the system provides a clustering

method to group space-time paths of similar geometry, which could helps to

identify useful activity patterns hidden in a large data set (Figure 2.2.17c).

Shoval and Isaacson (2007) use a method of sequence alignment for analyz-

ing the sequential aspects of human activities within the temporal and spatial

dimensions (Figure 2.2.18). The geographical area is divided into polygons,

which are coded by single characters. The temporal dimension is represented

by sequences coded using an equal amount of time per character, which cap-

tures the time spent in each location. This approach can be used to recognize
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a) b)

c)

Figure 2.2.17: The individual space-time paths are colored to encode

different types of activities (a). A kernel density estimation algorithm

reveal aggregate activity distributions surfaces at different time units (b).

Space-time paths are clustered together based on their similar geometry

(c). Source: Chen et al. (2011).

common sequences of elements that appear in a large database describing

spatial behavior. However, contrary to the previous STC representations,

this visualization does not support semantically enriched trajectories, i.e. one

cannot know why and/or how people traveled between places.

To overcome the drawbacks of STC, Gonçalves et al. (2016) propose to

combine a 2D map and a 3D STC to explore spatiotemporal trajectories (Fig-

ure 2.2.19), which they found to be advantageous for simultaneously analyzing

spatial and temporal information, and although users liked the map better,

the STC provided more accuracy in spatio-temporal tasks. Likewise, Kveladze

et al. (2015) study the usage of a visualization system that combines a map,

parallel coordinates and multiple instances of the STC, enabling the simulta-

neous exploration of different perspectives to the data (i.e. time, space, and

individual characteristics) to study the movement of suburban commuters in

Tallinn. Users found useful to switch between 2D and 3D views, while the

parallel coordinate plot was not really used. Both systems support simple

interaction (pan, rotate, zoom in/out) via a traditional mouse device.
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Figure 2.2.18: Typical space-time paths visualized through a sequence

alignment method. The vertical pillars represent the stops of an indi-

vidual, which height encodes the duration of the individual’s trajectory

and red segment encodes the time they spent there. Source: Shoval and

Isaacson (2007).

Figure 2.2.19: Visualization of trajectory data using both the STC and a

geographical map. Source: Gonçalves et al. (2016).

Whilst there are a few approaches that combine multiple 2D visualiza-

tion techniques, we observe that most authors would employ 3D visualization

techniques to represent multiple dimensions of the data, which is unavoidable

when representing trajectories, since their evolution occurs simultaneously in

space and time. Furthermore, contrary to the aforementioned visualizations

of flows and presence dynamics indicators, these approaches focus much more
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on representing the attributes that describe the trajectories, either related to

the trip (e.g., speed) or to the individual (e.g., activities, socio-demographic

aspects). We can notice that using 3D visualization is advantageous to repre-

sent multivariate data when they are combined to other techniques, specially

a geographical map to provide spatial information.

2.2.4 Multiple Objects of Interest

Up to this point, we presented VASs that enable the analysis of urban mobility

based on indicators derived from a single object of interest, which can provide

insights to certain aspects of the urban mobility phenomenon. For instance,

one can understand the exchanges between places resulting from individuals’

trips, or the evolution of the territory according to who visited it and why, or

yet how the activity programs of individuals influence their need for traveling.

However, one cannot cross those information to understand the whole scenario

underlying the urban mobility phenomenon. Therefore, we focus hereafter on

VASs that enable the analysis of urban mobility data via the simultaneous

exploration of indicators derived from more than one object of interest.

a

b c

Figure 2.2.20: The iVizTrans interface. The spatial distribution of people

according to their activities (home, work, others) at 10am (a). The spatio-

temporal visualization of individual commuting trips (b). Travel flows

from home to work locations (c). Source: Yu et al. (2015).
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The iVizTrans system (Yu et al., 2015) allows the analysis of travel flows,

territory dynamics (Figure 2.2.20a) and individual trajectories according to

thematic attributes describing home and work locations. The system combines

spatiotemporal visualization and machine learning techniques to learn from

human users and apply knowledge to automate the classification of smart

card data records revealing commuting patterns and, consequently, home/-

work locations. The visualization represents spatial and temporal attributes

of movements and trips’ O/D locations, while highlighting the important lo-

cations and the dominant travel patterns. For a particular region, a 3D arc

diagram reveals the incoming and outgoing flows (Figure 2.2.20c). Trips are

displayed in a space-time cube, where they may be explored individually or

clustered to remove random trips and retain only the ones with recurrent

patterns (Figure 2.2.20b).

a) b) c)

Figure 2.2.21: Spatio-temporal visualization of individual trajectories (a),

hotspots of human activity (b), and flows of information or movement

(c). Source: Gao (2015).

Gao (2015) proposes a processing and analytical framework that integrates

spatio-temporal visualization, kernel density estimation and auto-correlation

analysis for exploring dynamic mobility and intra-urban flow patterns (Fig-

ure 2.2.21). Their approach enables the visualization of individual space-time

paths (i.e. a person’s mobile tracking in space over a week), spatio-temporal

hotspots of human activity (i.e. phone calls), and flows between O/D loca-

tions (i.e. the call interactions between mobile cells in different time moments)

by means of magnitude, direction, distance and duration. A 3D flow visual-

ization using vertical Bézier curves provides interactive visual exploration of

information or movement flow between places, which variation over time is

supported via multiple time snapshots or continuous animation.

Chen et al. (2015) visualize movement patterns from check-in data en-

riched with semantic information describing travel purposes and transporta-

tion modes. The former is estimated from the number of people geographically

co-located, and the latter from a combination of distance and timestamp of
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online posts at different locations. The temporal distribution of check-ins at

each POI is represented through a radial chart on a geographical map (Fig-

ure 2.2.22b), which rings have each two histograms at opposite directions,

encoding movements in and out the place. Bar charts display the temporal

distribution of check-ins (Figure 2.2.22e), while a pixel-based chart presents

the intensity of movement at different travel distances and duration (Fig-

ure 2.2.22c). Travel flows and individual trajectories are visualized via di-

rected line segments in the central map area of the radial chart, and through

a line-based chart (Figure 2.2.22d), where travel duration and distance are

simultaneously represented in opposed sides of the y-axis. The user can cus-

tomize time granularity as 24-hours or 7-days intervals.

Figure 2.2.22: A visual analytics system for exploring sparse microblog-

ging data. Source: Chen et al. (2015).

The Mobiliscope (Le Roux et al., 2017) uses household travel survey data

to explore segregation of various social groups in the same urban areas over

24 hours. The system supports comparison of “night-time” (residence-based)

and “day-time” (activity-based) measures of segregation, and identification of

the most segregated group or the areas with substantial changes in their pop-

ulation’s social composition. The visual interface (Figure 2.2.23) comprises

an animated map view, where the number/proportion of people present at

each location can be explored per one-hour interval over a day; the line chart

presents the temporal variation of the segregation index over 24 hours; and

a stacked chart displays the temporal variation of people present in a par-

ticular location over 24 hours. The statistical indicator represented in these

charts is calculated according to a particular variable, such as activity, mode

of transport, age, household income, education level, and so on.
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Figure 2.2.23: The Mobiliscope (Le Roux et al., 2017), a visual analytical

system for studying social segregation. Source: Snapshot from https:

//mobiliscope.parisgeo.cnrs.fr/.

Figure 2.2.24: The TelcoFlow visual interface. Source: Zheng et al. (2016).

Zheng et al. (2016) propose a visual interface to explore the collective

behavior of people by analyzing different perspectives of the data. The Multi-

facet Filter view (Figure 2.2.24a) supports dynamic aggregation and filtering

https://mobiliscope.parisgeo.cnrs.fr/
https://mobiliscope.parisgeo.cnrs.fr/
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of data over space and time according to population type, activeness and

correlations. The flow river-based chart displays the variation of states (i.e.

POIs) over time (Figure 2.2.24b), which reveals the linear evolution of state

clusters, cluster merging and splitting. Colored stripes represent state clus-

ters, which height encodes the number of people at that state over each time

period. The stripe can either split into several branches when people’s states

become diverse, or merge with other branches when people get into similar

states. A particular state can be further explored through the stacked radial

chart (Figure 2.2.24d), which time people spent in that state and the distance

traveled after their departure can help to estimate where they came from.

The layers’ height encodes the number of people at that state cluster and

color intensity inversely encodes distance (i.e. darker purple means shorter

distance).

The VAS proposed by Wang et al. (2017) enables the exploration of move-

ment flow and presence of people at different locations and time periods, which

can be a single time slot of 60 minutes or multiple periodic time slots. The

space is segmented into voronoi cells based on the geographical position of

base radio stations. On the top of a multivariate map, movement flows be-

tween locations are displayed by means of directed lines, while a heat map

display population density at different locations and time periods. Further,

the temporal variation of population flow for different speeds is visualized via

a stack graph. Wang et al. (2013) use pixel-based charts and line-route maps

to represent traffic congestion at the road segment level, which visualization

aims to reveal relationships between traffic jams, while identifying whether an

event was caused by or has led to any other event.

The co-presence of individuals (i.e. the simultaneous presence of differ-

ent people in the same geographical location) can reveal phenomena such as

the attractiveness of certain geographical regions and the social segregation

throughout an urban territory over different time intervals. Wu et al. (2015)

use two linked geographical heat maps to represent the spatial distribution

of incoming and outgoing flows. Thereby, a high density of incoming flows

indicates that people from different locations co-occur there (Figure 2.2.25b),

while a high density of outgoing flows indicates that people from this location

would likely co-occur with others elsewhere (Figure 2.2.25a). A contour-based

tree map view (Figure 2.2.25d) displays the variation of people present in a

particular place over time, the distance to where these people come from, and

the visit frequency per region. The chart represents time ranging from 6am to

10pm at a two-hour granularity on a circular axis, which time slices comprise

a contour line detailing distribution of people visiting the place at a finer time
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granularity. Each time slice is filled out with rectangles representing the space,

which size and color intensity encode the number of people present and the

distance where they come from, respectively. Further, a Parallel Coordinates

(Figure 2.2.25e) and an Extended LineUp (Figure 2.2.25f) charts are used

to quantitatively analyze biclusters (i.e. bundled origins and destinations of

people) over multi-varied attributes and to explore their diversity.

Figure 2.2.25: The visual interface of TelCoVis. Source: Wu et al. (2015).

2.2.5 Synthesis

This section summarized the contributions made by thirty-five publications

to the visual analysis of urban mobility data, classified according to the ad-

dressed object of interest. The surveyed studies mostly focus on exploring

specific issues of urban mobility analysis, particularly regarding urban traffic

flows and monitoring, people dynamics in an urban environment, road traffic

accidents (Sobral et al., 2019), and more recently, the usage of bike-sharing

systems, which not necessarily addresses the reasons that drive human mobil-

ity (see Table 2.2.1). Figure 2.2.26a shows that twenty publications provide

visualization of travel flows and trips, sixteen represent the territory dynam-

ics through the variation of presence of people at different spatial locations

and time intervals, and thirteen represent data at the individual level (i.e.

trajectories of people).
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ID Reference Topic

1 Yu et al. (2015) people dynamics in urban areas

2 Gao (2015) travel patterns

3 Chen et al. (2015) sparse trajectory data

4 Tominski et al. (2012) traffic analysis

5 Lu et al. (2015) travel behavior of vehicles

6 Zhang and Wang (2017) passenger behavior in PTS

7 Chen et al. (2018) egocentric relationships

8 Gonçalves et al. (2016) spatiotemporal trajectories

9 Kveladze et al. (2015) commuting patterns

10 Vrotsou et al. (2010) activity patterns

11 Chen et al. (2011) activity patterns

12 Shoval and Isaacson (2007) spatiotemporal behavior

13 Le Roux et al. (2017) social segregation

14 Zheng et al. (2016) co-occurence

15 Wang et al. (2017) people dynamics in urban areas

16 Wang et al. (2013) traffic jams

17 Jiang et al. (2015) travel patterns

18 Wu et al. (2015) co-occurence

19 Shi et al. (2017) people dynamics in urban areas

20 Miranda et al. (2016) urban pulse

21 Yan et al. (2018) PBS usage

22 Jahnke et al. (2017) people dynamics in urban areas

23 Shi et al. (2015) PBS usage

24 Zeng et al. (2017) activity patterns

25 Zeng et al. (2014) travel behavior in PTS

26 Shi et al. (2018) PBS usage

27 Itoh et al. (2016) passenger behavior in PTS

28 Lu et al. (2016) travel demand

29 Wang (2016) travel patterns in PTS

30 Wu et al. (2017) activity patterns

31 Oliveira et al. (2016) PBS usage

32 Anwar et al. (2014) traffic incidents

33 Andrienko et al. (2016a) trip patterns

34 Boyandin et al. (2011) migration

35 Yang et al. (2016) people and resources flows

Table 2.2.1: Surveyed publications according to the urban mobility issue

they address.
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Although human mobility seems to be evenly described from every per-

spective, most solutions providing the analysis of more than one object of

interest would often combine travel flows with territory dynamics, since both

analysis are done at the population level, or travel flows and daily trajecto-

ries, since the former result from the aggregation of single trips. Only the

solutions proposed by Gao (2015) and Yu et al. (2015) enable the analysis of

urban mobility data via the exploration of all three object of interest. Both

solutions employ 3D visualization techniques to represent the information in

space and time simultaneously, while including the possibility of representing

thematic attributes, such as trip purposes. Firstly, 3D visualizations that sup-

port interaction via 2D operations have issues such as occlusion and loss of

information. Secondly, both systems present certain restrictions regarding the

extent to which each object is addressed within the system and the freedom

one have to explore the information.

One can analyze the population and territory dynamics through the vari-

ation of people estimated presence over time at different spatial locations.

The iVizTrans system (Yu et al., 2015) also allows to identify work and home

places, which range of activities could be easily expanded by modifying the

recognition algorithm. Further, when exploring flows and trajectories, one

can only visualize connections between places of work and residence of peo-

ple, which allows one to understand where people work and live, and how far

one travel to perform these activities. Nevertheless, this segmentation of daily

trajectories into trips between home and work locations prevent one to obtain

information about where people were located in between trips and what types

of activities they were performing (e.g., whether they stayed at the workplace

during the whole day, or went for a walk, lunch or sport activities). In the

framework proposed by Gao (2015) the visualization of flows is clearly clut-

tered by the amount of data, and the geographical information can only be

recovered through latitude and longitude coordinates, which without being

associated to a geographical map is not intuitive to users.

Thematic attributes are often represented, yet they are either derived from

the spatio-temporal dimensions of data to describe trips via attributes such

as speed, distance and duration, or external, such as calendar events and

weather information. There is about one-third of papers (1, 3, 6, 7, 10, 11, 13,

14, 18, 19, 22, 24) that explore mobility according to activities, from which

the majority (except 10, 11, 13) are estimated POIs from the combination

of geographically co-presence of individuals and external data. Further, the

activity information would often be used to describe individual trajectories or

territory dynamics.
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Transportation modes are difficult to represent because the data frequently

originate from a type of transportation system, such as bike-sharing and taxis,

which transportation mode is intrinsic to the data and invariable. Smart

card data provides information on people movement within the PTS system,

where different modes of transport, such as metro, train, and bus, could be

identified. This information could help transport planners to understand how

people use the city’s PTS and on which types of public transportation make

investments. Moreover, in social media and mobile phones data (e.g. CDR

and telco data) the transportation mode is unknown. Thus, this information

is hardly explored, except when using survey-based data, where individuals

explicitly inform the used transportation for every trip, or combining different

data sources to estimate travel modes. We identified three papers that describe

transportation modes using estimation methods. A fourth publication (13)

uses data from a household travel survey, where this information is explicitly

provided by the interviewed people.

Daily Trajectories

Territory Dynamics

Travel Flows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Type of Analysis Daily Trajectories Territory Dynamics Travel Flows

(a) Types of analysis.

Activites

Socio−demographic aspects

Transportation Modes

Calendar Events

Opinions

Weather

Distance

Duration

Speed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Attribute Type Activites Context Socio−demographic aspects Transportation Modes Travel

(b) The thematic attributes.

Figure 2.2.26: Distribution of surveyed papers according to types of anal-

ysis they support and thematic information they represent. Source: the

author.

The majority of surveyed papers addresses the analysis of human mobil-

ity from the aggregate level, which reveals movement patterns of a whole

population based on indicators that describe the territory and travel flows.
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Particularly, we observed that flow analysis is often supported through the

counting of trips at origins and destinations or along road segments, which

gives the magnitude or density of flows. These indicators have been used in the

literature to reveal the spatio-temporal dynamics of human movement, while

highlighting the attractive locations at different time intervals. This informa-

tion is also used to detect co-presence of individuals, since a high density of

incoming flows in a particular location likely indicates that people from other

locations co-occur there. Nonetheless, flow orientation is equally important to

understand where people come from or go to, which helps to explain how the

different locations are connected within a territory.

In order to represent flow direction without losing the spatial dimension

and avoiding the well-known spaghetti effect, authors would combine maps and

geometric visualizations such as linking origin and destination maps through

arrows connected to cells of a shading matrix. Other approaches would simply

provide diagrams where the connection between O/D locations is unambigu-

ous, without representing the spatial information. Although both approaches

have a great potential to display O/D flows, the former would require a large

visualization space and the latter would have to be somehow combined with

maps to transfer more meaningful information.

Regardless the spatial layout of visualization components, the VASs we

surveyed share the aspect of being designed over a CVV paradigm, which

enable them to combine complementary techniques to visualize the multiple

dimensions of data. Particularly, the authors often employ the juxtaposed

layout (CMV) due to the independence among views and little visual clut-

tering, which are both relevant aspects to explore movement data, since it

requires the derivation of various complementary measures that are not nec-

essarily dependent from each other. Plumlee and Ware (2006) showed that

multiple views are advantageous when visual comparison involves items of a

greater complexity than what can be held in visual working memory, because

the latter can only hold one graphical object at the time in comparisons tasks

mediated by eye movements, which means that mitigating the load on visual

memory helps to reduce errors.

Furthermore, the visual analysis procedure embedded in the surveyed VAS

follow a well-known mantra consisting of overview, zoom and filter, then

details-on-demand (Shneiderman, 1996) to explore different perspectives of

a data set. Despite the rise of technology and the surge of new interactive

visualization techniques, maps continue to be a powerful tool to represent the

geographical space. Therefore, we usually find them as the central view in
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a visualization environment, which provide overview to the situation before

an in-depth analysis of the phenomenon within a specific location or set of

locations.

The temporal variation of indicators is often explored through continu-

ous animation, composite visualizations connected via linking and brushing

interaction techniques, or temporal matrices, which displays the whole data

at once for every time period. The latter have been often used to repre-

sent flow magnitude either at a certain location (i.e. incoming or outgoing

flows) or between pairs of locations. Either way, the columns would repre-

sent different time intervals, while the rows would correspond to a location

or pair of locations, and their intersection would be color-coded to represent

the magnitude values. Since urban mobility patterns present little variation

over similar days, particularly over weekdays, it is common to observe cyclic

representation of time to represent these repetitive patterns every 24 hours. In

this context, the temporal information is commonly combined with space by

overlaying a timewheel-based visualization over a particular location, which

summarizes the temporal variation of a particular mobility indicator for that

spatial location.

The interactive visualization supports filtering methods to subset the data

according to semantic, spatial and/or temporal attributes, depending on the

dimensions supported by the analysis. Selection, zooming, panning, and

brushing and linking are typical operations supported to enable deep explo-

ration and comparison of data, while highlighting the relevant information to

keep the user’s attention at the right place at the right time. Some systems

support visual querying by allowing users to draw circles or other geometric

shapes on the map, which spatial region serve as input for the query. Further,

a few visualizations allow users to modify the spatial and temporal granularity,

such as changing the territorial segmentation or the extent of time intervals.

Among the VASs, only one system uses a device other than mouse and

keyboard for interacting with the visualization, which is displayed on a large,

high resolution screen and interactively explored via a touch pad. We observed

that the combination of large visualization spaces with tactile and tangible

interaction can be beneficial for exploring large datasets, while making the

user experience more engaging.

The topic of non-conventional interaction has a particular importance

within our approach due to our choice of using multiple and possibly large

displays to explore urban mobility data. Although CMVs have been shown
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to be effective and are widely used in visualization, they present views side-

by-side, therefore restricting the screen space that can be allocated to each

view. Therefore, the natural approach to overcome the screen space limitation

is to use large high-resolution displays (LHRD), which allows to display more

data and details, while leveraging spatial memory and facilitating collabora-

tion. Nonetheless, one cannot simply scale up visualizations or display more

data, but rather adopt a more human-centric perspective (Andrews et al.,

2011), which also implies on designing interaction interfaces that are more

adapted to these displays than the traditional mouse and keyboard, for in-

stance. Thereby, the next section presents alternative approaches that use

LHRDs or combine multiple conventional displays to improve the exploration

of multi-dimensional data using CMVs, and explore the potential of mobile

devices as visualization and interaction tools to explore data over these alter-

native displays.

2.3 Non-conventional Displays and Interaction Tech-

niques

This section focus on the advantages and limitations of using large, high res-

olution displays or multiple display to visualize large and multidimensional

datasets. Further, we explore the possibilities of using handheld devices as

intermediary apparatus to interact with these non-conventional displays.

2.3.1 Large, High Resolution Displays

There are numerous applications within information visualization that lever-

age large, high resolution displays (LHRD) to explore data at human-scale

physical sizes, where large amounts of data can be simultaneously visualized

through a great number of pixels (Ni et al., 2006). Andrews and North (2012)

stated that a flexible spatial environment encourages the adoption of incre-

mental formalism and exploration, and that using detailed representations and

visual links to highlight connections in the workspace reduce cognitive bias by

reducing the reliance on memory. Rajabiyazdi et al. (2015) showed that the

combination of size and resolution of large displays support the discovery of

new information within a data set previously explored on conventional dis-

plays.
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To ensure the use of advantages offered by these displays, Andrews et al.

(2011) drew attention to the fact that LHRDs are human-scale environments

defined more by the abilities and limitations of the user than by the technol-

ogy, which implies that one cannot simply scale up existing visualizations or

display more data, but rather adopt a more human-centric perspective. The

authors propose yet a set of guidelines regarding aspects of visual encoding,

visualizations adaptation, large data displaying, graphic scalability of encod-

ing and visual representation, navigation techniques, selecting and marking,

to improve the design of applications for LHRDs.

Human-computer interaction (HCI) techniques are intrinsic to information

visualization, enabling the user to deepen data exploration and ensuring user

performance in visual analysis. In this context, the democratization of smart-

phones has opened up research opportunities within diverse branches of HCI,

seeking to improve distant and wireless interaction while leveraging tangible

and tactile input. Particularly, we observe their use as interaction devices in

visualizations of large amounts of data on LHRD, where the traditional inter-

action through mouse and keyboard might not be efficient (or comfortable) to

exploit the potential of these large displays.

In this context, Bezerianos and Isenberg (2012) suggest the viewer should

stand far away from the display to conduct tasks that require perception, and

in case the tasks need to be conducted close to the display, the important in-

formation should be placed directly in front or above the viewer, who should

also receive an estimation of distortion effects or be encouraged to physi-

cally “navigate” throughout the display in specific ways to reduce judgment

error. Langner et al. (2018) used a large scale CMV visualization interface

that supports interaction through the handling of a tracked mobile device

and direct touch on the display (Figure 2.3.1), to show that users associate

movement positively and often move varying their distance to the display,

stand and walk close to each other most of time, and use natural, non-digital

interaction such as pointing fingers.

In the following we present a number of contributions to the design of

interaction mechanisms using mobile and wearable devices to enable more

freely distant interactions with LHRD-based visualizations.



2.3. Non-conventional Displays and Interaction Techniques 73

Figure 2.3.1: Multi-user CMV application on an interactive wall-sized

display: (a) Interaction from close (touch) and distance (mobile device);

(b) Data selection; (c) Details on demand; (d) Interactive ruler for value

comparison; and (e) Magic lens with menu. Source: Langner et al. (2018).

2.3.2 Interaction via Handheld Devices

Hereafter, we focus on mechanisms that enable distant interaction with large

displays (i.e. interacting without touching the display) mediated through

mobile and wearable devices. The goal is to understand whether and how

one could leverage these devices to improve visual data exploration on large

or wall-sized displays.

Kister et al. (2017) proposed a set of techniques to support interaction

with graph visualizations using mobile devices as a prop, which serve both as

an additional visualization display and as a pointing device to interact with

the LHRD. The interaction mechanisms cover different types of tasks (e.g.,

selection, details-on-demand, and filtering), and can be performed from close

proximity to the display and remotely from afar. They are defined as follows:

• the selection techniques and details on demand include

– tapping a node on the large display opens associated details on the

mobile (Figure 2.3.2a1);

– encircling multiple nodes enables group selections (Figure 2.3.2a2);

– physically manipulating the mobile device for remotely pointing to

an area in the visualization provides a focus view on the mobile

(Figure 2.3.2a3); and
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a) Selection techniques and details on demand

b) Alternative representation c) Tangible graph lenses

d) Body-relative filtering e) Sieve filtering tool

1 2 3 4

1

2 1 2

2 31321

Figure 2.3.2: Set of mobile-based interaction technique for LHRD-based

graph visualizations. Source: Kister et al. (2017).

– the focus view can be used for remotely selecting nodes in the vi-

sualization using either tap or encircling selection techniques (Fig-

ure 2.3.2a4).

• the adjacency matrix consists of an alternative representation that can

be extracted from the large display to the device and moved freely in

space, which can also be used to modify the edges within the graph

(Figure 2.3.2b);

• the tangible graph lenses allows to

– bring neighbors by pulling in the adjacent nodes of all nodes in

focus as the user moves the mobile in the space in front of the wall-

sized display, which creates a local “friendship” overview of nodes

(Figure 2.3.2c1); and

– to enlarge nodes with specific attribute values (Figure 2.3.2c2).

• the body-relative attribute filtering support selection of individual at-

tribute ranges via a left-right movement of the device, and to brings the

selection into focus via a down movement (Figure 2.3.2d); and

• the sieve filter tool enable the user to compare nodes within a cluster

based on attributes (e.g., age); it visualizes every node as an independent
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object and, through a shake gesture, the user can virtually throw all

elements in the previously defined filter barriers (Figure 2.3.2e).

Figure 2.3.3: A mobile-based interaction technique to directly sketch vi-

sualization controllers. Source: Tsandilas et al. (2015).

The authors showed that when using the above interaction technique, users

would either spread their attention between the wall-sized display and the mo-

bile device or mostly focus on the mobile. In order to decouple control and

visualization in a wall-sized display, Tsandilas et al. (2015) proposes a mo-

bile sketching interface (Figure 2.3.3) that allows the users to draw controllers

that best suit their needs instead of using a set of predefined widgets. A small

combination of sketches and gestures enable users to create interactive com-

ponents, such as slider branches and data transformation tools, to investigate

detailed aspects and subsets of a dataset.

Figure 2.3.4: A technique that enables 3D interaction with nearby large

displays by vertically swiping a mobile device. Source: Pietroszek et al.

(2015).
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The Tiltcasting technique enables 3D interaction with large displays via

a smartphone (Pietroszek et al., 2015). The technique allows to scan the 3D

space by vertically swiping the phone, which reveals occluded targets in the

space (Figure 2.3.4). Then, users can interact with virtual objects through

a 2D plane that correspond to a “cast” from their phone into the 3D space,

which enables to select targets regardless of occlusion, and to easily judge the

target depth. Along the same lines, Grandi et al. (2018) propose a collabo-

rative interaction (i.e. two or more people interacting with the same virtual

interface in order to achieve a common goal) technique leveraging a mobile

device tangible and tactile input to translate, rotate and scale 3D objects in

virtual environments.

Spindler et al. (2010) employ handheld tangible views, such as a piece of

cardboard, as magnifying lenses that serve to augment the visualization on

a large display with additional representations. Their findings showed that

visual feedback helps users to mentally link local and global views; transla-

tion should be used for navigation within the presentation space; freezing is

essential to temporarily decouple a tangible view from or multiple axes, which

support comparison tasks; direct pointing is essential for interacting within

local or global views.

Figure 2.3.5: Bar chart visualization fixed on the mobile device (left) and

in space (right). Source: Büschel et al. (2016).

Handheld devices can serve as portals on a virtual data visualization (Pahud

et al., 2018), which do not augment the existing display, but rather enable the

viewer to interact with the virtual object. Using a similar approach where vi-

sualizations are fixed in space or on the device, Büschel et al. (2016) reported

that simple navigation tasks benefit from spatial interaction for being free

touch input, which latter could be used for other tasks, such as manipulating

the visualization through widgets (Figure 2.3.5). Further, they observe that

using a set of constrained gestures, the physical demand is lower when having
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the data fixed on the device than on space. In a wider study using this same

approach, users perceived spatial interaction as more supportive, comfortable

and overall preferable to touch input (Büschel et al., 2017).

Although the extensive use of these devices can be tiring, the use of tech-

niques such as clutching and freezing help to reduce the physical demand

by allowing the user to lay down the device for a while. Furthermore, wear-

able devices (e.g., smartwatches, wristbands) could reduce tiredness caused by

handheld devices and increase the user’s concentration towards the visualiza-

tion. The framework proposed by Horak et al. (2018) uses interaction mech-

anisms embedded in a smartwatch to explore data items, track interaction

histories, and alter visualization configurations on a wall-sized display. User

studies performed by the authors showed that the participants were focused

on the large display while interacting eyes-free on the watch, which augments

and mediates the functionalities by serving as a personalized toolbox. Eyes-

and ears-free interaction is possible due to wearable devices triggering users’

proprioception sense, which enables instantly invocation and dismissal of the

device at any time for immediately switching between tasks, and intuitive in-

teraction by using the same actions for input and output (e.g., clicking on a

single button on the wristband) (Lopes et al., 2015).

2.3.3 Multiple Displays

Although physical navigation and interaction has shown benefits for explor-

ing data on large high-resolution displays, while improving users’ approach,

perception and engagement with the visualization, such displays are still com-

paratively scarce to conventional ones. Therefore, alternative approaches have

been proposed to leverage the convenience of ordinary displays, while increas-

ing the visualization space. The Disperse framework proposed by Monroe

and Dugan (2015) allows to split CMV applications across multiple screens

and devices (i.e. displaying one view per screen or device) to enable more

data-rich displays, provenance and both remote and co-located collaboration

(Figure 2.3.6a).

Using mobile devices, Langner et al. (2017) proposes VisTiles, a framework

that allows to organize visualizations by spatially co-locating mobile devices,

which enables the user to construct and adapt their individual interface in

terms of positioning visual components (Figure 2.3.6b). Each mobile device

correspond to a tile, which role can be to display visual representations of
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data, or to display menus or widgets that are used for additional functionalities

(e.g., changing visualization parameters or dynamically querying data items).

The approach leverage a physical workspace, which does not constrain the

arrangement of views to a grid-based layout, but allow the user to freely

position views wherever within the workspace, and the views become both

physical and tangible. To address issues of limited screen space and visual

clutter, they use a strategy of one visualization per device, requiring the use

of several devices, which are not always available.

(a) The Disperse framework. Source: Monroe and Dugan (2015).

(b) The VisTiles framework. Source: Langner et al. (2017).

Figure 2.3.6: Visualization approaches to increase screen space through

the distribution of views throughout multiple screens and/or devices.

To preserve the informative and usefulness aspects of a visualization when

dispersing views across multiple heterogeneous devices, Horak et al. (2019)

proposes the following heuristics:
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• to closely place views with data degree and visual similarity or depen-

dencies (e.g., a view that serve as input to others);

• to allocate space proportional to the number of data points the view

encodes and keep uniform scaling to avoid tempering the original per-

ception;

• to assign view according to device suitability; and

• if applicable, user preferences outweigh all other heuristics.

According to Weiser (1999), users can easily interact with multiple devices,

perceiving them as components of the same underlying system instead of sin-

gle entities. In this context, Zagermann et al. (2020) studied the influence of

interaction techniques, device utilization, and task-specific activities on user

performance within a multi-display system, which enables the use of multiple

tablets to work with pieces of information by freely moving and arranging

sticky notes on a single tablet or transferring them across multiple tablets.

The authors showed that the interaction has little influence on completion

time of tasks (i.e. explore, sort and distribute stick notes across tablets), and

users prefer fast techniques even if they are not familiar with them. Further-

more, using many devices helped users to develop different problem-solving

strategies, which authors suggest to be influenced by legacy bias (i.e. pre-

existing knowledge with prior interfaces and technologies). The latter could

be mitigated by guiding and training users on the purpose of each device

within the multi-display system to solve a particular task.

2.3.4 Synthesis

In this thesis, we are dealing with large and multidimensional datasets to de-

scribe the urban mobility phenomenon via complementary objects of interest

(trips and travel flows, the territory, and daily trajectories), which are them-

selves described over multiple spatio-temporal granularity levels and different

thematic attributes. One of our goals consist on providing enough flexibil-

ity to allow the user to construct their visualization interface in meaningful

ways according to the mobility indicators and data dimensions that are more

suitable to the ongoing analysis. Assuming, for instance, that one may not

need to explore the three objects simultaneously, or even focus on only some

of the thematic attributes, when the goal of the analysis is to answer one or

two specific questions underlying urban mobility.
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In this context, we are particularly interested on using conventional dis-

plays instead of large, high resolution ones, since they are more accessible to

our prospect users, i.e. urban planners and researchers on the field of urban

mobility. Therefore, to provide flexibility and enough visualization space to

explore the data, we opted for using multiple synchronized analytical displays,

which amount and spatial position are chosen by the user. Thus, we believe

that using mouse and keyboard-based techniques to interact with multiple

synchronized displays could also be uncomfortable, since the user would stay

quite close to the visualization, which could become large when more than two

displays are involved and, as we have seen, this proximity may be prejudicial

to user experience and performance. To provide a more comfortable and ef-

ficient interaction, we use the tactile and tangible input of a mobile device,

i.e. a tablet. Particularly, the physical interaction supports the exploration of

data over time, which intends to reduce some limitations of the time animation

technique, such as color-blindness.

The idea implies on“scaling up”the visualization and adding non-conventional

interaction methods to what is already a complex visual analytics approach

due to the multidimensional aspect of the data and the analysis based on the

exploration of three objects of interest. This approach could easily engender

high cognitive load, which could negatively affect user performance and sat-

isfaction. There are two ways to prevent this outcome: (1) wisely choosing

which methods to include and how to combine them, and (2) to evaluate the

approach with “real” users. In this spirit, the next section describes the ex-

isting user experiments protocols, the advantages and difficulties of applying

them to assess the usability and suitability of visualizations.

2.4 User-based Evaluation of Visualizations

The thirty-five surveyed studies presented in section 2.2 provided some sort

of validation of the proposed visualization, which was mostly done through

case studies, where the visualization approach was applied to a real dataset.

Fourteen authors could gather a small group of experts (i.e. 2 to 7 people),

to whom they demonstrate the system’s interactive and visual encoding, and

the case studies. The experts were then asked to provide feedback regarding

the visual encoding and suitability of the visualization to explore the dataset.

These feedback were mostly collected through informal interviews. Three

publications reported formal experiments with a large sample of participants
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(i.e. from 15 to 62 people) non-experts on the domain of application. These

experiments were mostly interested on evaluating the graphics suitability to

represent the data through factors such as user performance, system’s usabil-

ity, response accuracy and time. Further, some publications were focused on

visualizing big data, where machine learning algorithms were employed for

identifying mobility patterns. In these cases, the authors were also interested

on evaluating the suitability of the data treating process through measures

such as scalability and efficiency.

This pattern of evaluation absence is consistent to what has been observed

by other authors, such as Ellis and Dix (2006) and Andrews (2006), who em-

phasized the lack of user-based evaluations and the weakness and strengths

of the few performed in the field of information visualization. From the 65

papers reviewed by Ellis and Dix (2006), only 12 report any kind of user eval-

uation, and from these, only two studies were considered particularly useful.

We notice that, although these studies date from 2006, the evoked issues are

still topical, particularly the difficulty for recruiting real users and performing

the “right tasks”, considering the exploratory nature of visualizations.

According to Knight (2001), evaluating a visualization consists on consid-

ering the suitability of (1) the interface to support the tasks it was designed

for, and (2) the representation and metaphor levels as to how well the graphics

support the data. However, this process is not trivial because visualizations

are often designed for more exploratory tasks, which are the hardest ones to

replicate in an experiment. Furthermore, visualizations are generative arti-

facts, which means that they are not something of value by themselves, but

only yield results in some context (Ellis and Dix, 2006), i.e. a thematic do-

main of application. Therefore, one should have professionals on that domain

using the tool to observe its added value. However, these people are diffi-

cult to recruit because they are not necessarily available to take part in the

experiments and specially not to participate in long-term studies, which are

the best method to thoroughly evaluate an information visualization interface

while refining and understanding general principles or guidelines for designing

such tools, and allowing expert users to achieve their goals (Shneiderman and

Plaisant, 2006).

In this spirit, a user-based evaluation is certainly the most suitable ap-

proach to assess usability and usefulness of visualizations, since they involve

the people for whom the system is intended: the users. Usability measure

the tool’s ability to meet user performance and satisfaction objectives, and is

conducted based on a number of representative user tasks, for which usability
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factors are measured (Koua and Kraak, 2004). Usefulness is the quality of

having utility, and specially practical worth and applicability, which can only

be measured by the end-user, who is intended to use the tool in their daily

work routine. These aspects are typically measured through three main kinds

of testing methods (Andrews, 2006), defined as follows:

• the formative test consists on observing a small number (3 – 5) test

users using the interface in order to gain insight into which problems

occur and why they occur, which distinguishes this testing method from

others. It follows a classical design of thinking aloud, which provide

valuable feedback for improving design and fixing bugs. However, they

are rarely generalizable to other information visualization tools because

of the small number of test users, which is usually too small to be con-

sidered a representative sample, and evidence shows that users who are

thinking aloud both change their behavior and are slower than users

who do not think aloud (Ericsson and Simon, 1984, pg. 105).

• the summative test consists on collecting bottom-line measurement data,

such as task completion time or number of clicks, through a formal exper-

iment, which are mainly applied for comparing two or more information

visualization interfaces. There are typically three experimental designs

that can be followed to allocate test users to different conditions:

1. Independent / unpaired measures / between-groups, which uses dif-

ferent participants in each conditions of the independent variable

2. Repeated / paired measures / within-groups, which uses participants

in each condition of the independent variable

3. Matched pairs, which uses different participants in each condition,

but they are matched in terms of important characteristics (e.g.,

gender, age, education level, etc.)

Statistical significance is rarely found with less than 10 test users, which

make the second design tempting, since significant differences could be

found with fewer users. Further, the design allow to “re-use” the same

participants for each interface, eliminating any effect of individual dif-

ference between users, which could also be mitigated via the matched

pairs design.

• the usage studies involve observation and/or recording of users over a

long period of time working on an interface. Many usage studies rely

on self-reporting data (i.e. users keep a diary of what they did), which
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accuracy could be arguable. The alternative consists of recording and

manually describing user events, which is extremely time-consuming (i.e.

for each hour of video, around ten hours are spent manually coding user

events). Although they are well-suited for learning how users use a piece

of software, they are not useful for objective comparison of two or more

interfaces.

Formal experiments are the most reliable testing method for evaluating

an information visualization and generalizing the outcomes, since it compares

the interface under evaluation with traditional interfaces and engages enough

test users to ensure statistical significance. However, according to Andrews

(2006), it would be unfair to compare novel visualization tools, often buggy

and incomplete (i.e. prototypes), to tested traditional interfaces. Further,

even after extended training of test users with the new interface, it is extremely

difficult to overcome the bias caused by familiarity with the traditional ones.

Typically, formal experiments test simple locate, count and compare tasks,

which are well-adapted to evaluate specific aspects of a visualization, such as

color-code interpretation, and to detect problems. Furthermore, researchers

often choose tasks (and datasets) that suit a novel technique. However, the

real benefit from information visualization systems comes from a deeper in-

sight gained from much more exploratory tasks (Andrews, 2006, Ellis and Dix,

2006).

Moreover, the specific objective for which it was developed might make the

interface “incomparable” in terms of the domain questions it aim to answer

and the kind of data being explored, for instance. One would have to find

a visualization designed for the exactly same purpose, and considering the

same power of analysis (i.e. the extent to what the represented data enable

the answering of thematic questions) that the novel tool intends to provide.

This issue combined with the difficulty to find real users might be probably

what cause many authors to validate their approaches only via case studies.

Nonetheless, Ellis and Dix (2006) states that although one cannot really eval-

uate a visualization, empirical evaluations complemented with reasoned justi-

fication can lead to reliable and strong validation of the visualization. These

justification elements could be arguments based on existing published results

of experiments and analysis, our own empirical data, and expert’s opinion.
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2.5 Summary

In this chapter, we presented an extensive literature review of VASs conceived

to support the analysis of urban mobility data. These visualization interfaces

are classified according to the object of interest supported by the visual anal-

ysis. We could notice that no existing visual analytical interface enable an

analysis of urban mobility data through indicators that describe the three ob-

jects of interest over multiple spatio-temporal granularity levels and thematic

attributes. Two solutions cover those objects of interest at some level, but

the variety of thematic information is quite limited and they are totally based

on 3D visualizations, which are still limited by 2D-based interaction. Fur-

thermore, we presented a brief overview regarding non-conventional displays

and interaction techniques that could improve the visual exploration of large

and multivariate datasets, and user evaluation methods that could be used

to assess the usability and suitability of a visualization interface, while also

pointing out the advantages and difficulties of such evaluation processes. The

content of this chapter should be sufficient to guide the reader throughout the

remaining of this thesis, which present (1) our visualization framework and

(2) the incremental methodology based on user evaluations we followed during

the conception and implementation of the referred framework.



Chapter 3

The eSTIMe Framework

3.1 Introduction

In the last decades, many in-depth studies have been carried out in social

sciences and various other related disciplines for understanding the numerous

aspects of human migration and their impacts on social, economic and cultural

changes (Montanari, 2002). In this work, we are particularly interested in the

aspects of daily human migration within an urban area in order to address

three categories of questions that are of great concern within the fields of

geography and urban planning, defined as follows:

1. Which are the daily traveling patterns of a population? Which are the

resulting processes of exchanges between places within an urban area?

2. How the presence of people varies over time throughout the different

places within an urban area? How the activities and socioeconomic and

demographic profiles of individuals determine the usage of these places?

3. How individuals schedule their activities and trips over time according

to a particular spatial context?

The eSTIMe framework addresses these questions by exploring the varia-

tion over space, time and thematic attributes of three complementary objects

of interest extracted from urban mobility data:

1. the travel flows and trips, which exploration helps to describe the trav-

eling patterns of a population. Travel flows reveal the urban structure

through the aggregation of trips between origin and destination (O/D)
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locations. Further, we derive the trips amounts per individual and ag-

gregate over the whole population, the modalities per trip purposes and

transportation modes, and the trips variation over different socioeco-

nomic and demographic aspects of individuals or land types.

2. the territory, which exploration helps to understand the usage patterns

of different places within the urban area according to the demographic

and socioeconomic aspects of the people that visit each place and the

types of activities they perform there. Thus, we estimate the presence

of people at each place and its variation at different times of the day.

3. the daily trajectories, which are defined as a space-time path described

by the activities one performed over time in the visited places and the

transportation modes one used to travel from one place to another.

These trajectories are used to set up typologies that describe the di-

versity of activity schedules that underlay and explain the need of trav-

eling (Robette, 2011).

The analysis of daily urban mobility through the eSTIMe framework fol-

lows a four-step workflow (Figure 3.1.1), which is thoroughly presented in this

chapter. The data preparation stage consists on structuring the input dataset

(see Section 3.2) in order to extract information matrices of flows, presence,

and activity sequences. These matrices allow us to derive statistical indicators

and a typology (see Section 3.3) from the aforementioned objects of interest,

which together describe the daily urban mobility phenomenon. We derive sta-

tistical indicators of travel flows, variation of mobility and presence of people

per transportation mode and trip purpose over multiple spatio-temporal gran-

ularity levels, and a typology that group together daily trajectories according

to the similarity of their embedded activity programs. The whole process of

structuring data and deriving indicators was performed using the R statistical

and graphical environment (R Development Core Team et al., 2011).

The querying stage consists on establishing a system of tasks (see Sec-

tion 3.4) that allows the user to query the mobility indicators from different

spatio-temporal granularity levels (i.e. multiple spatial or time partitioning)

and thematic attributes (i.e. transportation modes, trip purposes and activi-

ties), and objects. The latter corresponds to a group of individuals belonging

to a particular cluster of the typology. Finally, the interactive visualization

comprises the eSTIMe interface (see Section 3.5), which support the visual

representation of indicators through a set of charts and maps, which tactile
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and tangible interaction allows one to query the displayed indicators through

our system of tasks.

Conceptual Framework

Objects of Interest:
1. Trips and Travel Flows
2. Territory
3. Daily Trajectories

3. Querying

4. Interactive Visualization

1. Data Preparation

Visualization Framework

Object

Space

Time Theme

2. Statistical Indicators and Typology

Figure 3.1.1: The eSTIMe Framework supports the analysis of daily urban

mobility on the basis of three complementary objects of interest explored

through a four-step workflow. The (1) data preparation phase structures

the input data and extracts information matrices, which are afterwards

used for (2) deriving a typology of activity sequences and statistical indica-

tors to describe daily urban mobility. The (3) querying stage establishes

a system of queries to explore indicators over space, time, objects and

attributes. Finally, the interactive visualization proposes visual and in-

teraction tools to explore the data through our indicators and system of

tasks.

3.2 Data Preparation

Typically, movement data contain items called position records, which specify

the geographical position of some entity at a particular time moment (An-

drienko and Andrienko, 2010). The data can be either continuous, i.e. defined

by a sequence of geographical coordinates x, y separated by short timestamps

(e.g., GPS-based data) or discrete, i.e. defined by origin end destination po-

sitions in space, which may be sparsely disposed throughout the time period

under observation (e.g., survey-based data). The data is often enriched with
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semantic information describing the trips and/or entities in terms of trip pur-

poses, transportation modes, activities and socio-demographic aspects.

Daily urban mobility patterns can be described through a spatio-temporal

dataset detailing individual’s movements within a urban area during a time

interval of 24 hours. The data has three fundamental sets: space (where)

defined by a set of locations S, time (when) defined by a set of time units

T , and objects O (what) defined as physical and abstract entities. Andrienko

et al. (2011) classify objects into five categories according to their spatial and

temporal properties:

• a spatial object is an object having a particular position in space at any

time of its existence;

• a temporal object, or event, is an object having limited time of existence

with respect to the time period under observation;

• spatial events are objects having particular positions in space and time;

• a moving object, or mover, is a spatial object capable of changing their

spatial positions over time; and

• moving events are events that can change their spatial positions over

time (e.g., an hurricane).

In this work, we are particularly interested in movers and spatial events,

which are jointly called spatio-temporal objects. A spatial event is defined as

the pair (t, s), t ∈ T , s ∈ S, where s corresponds to a particular position

in space and t to a position in time, which defines a change on the spatial

position of a mover. The set of spatial events triggered by a mover results

on a trajectory, which is itself a spatial object whose position in space is the

set of places visited by the mover. Thus, a trajectory is defined as a complex

spatial event that can be segmented into a set of elementary spatial events,

i.e. moves and stops. Baglioni et al. (2008) define stop as a time interval when

the mover was present in a spatial location carrying out a particular activity,

and move as a spatio-temporal line between two locations representing either

two consecutive stops or a trajectory start or end.

Furthermore, the elements of each set have properties represented by a set

of attributes A, which values can be elements of T , S, or O (e.g., a move-

ment’s duration and distance), more complex constructs involving elements of
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T , S, or O (e.g., speed), or thematic attributes, which do not involve space or

time (e.g., activity, transportation mode, and socio-demographic characteris-

tics). Particularly, our visualization framework addresses the latter type of

attributes, which input data should ideally provide (or allow the derivation of

it) in order to analyze urban mobility through our visualization framework.

Henceforth, we present the structure of the original dataset used as input in

our analysis workflow and the transformation process we applied to the data

in order to obtain information matrices of flows, presence and sequences of

activities which are the basis for deriving mobility indicators.

3.2.1 Original Dataset

Since 1976, the French ministry of transportation proposed a detailed method-

ology for conducting surveys on the daily mobility of inhabitants of an area:

the Household Travel Surveys (Enquête Ménage Déplacements in French).

These are today standardized by Cerema (acronym for Centre d’études et

d’expertise sur les risques, l’environnement, la mobilité et l’aménagement in

French), which is a public institution focused on supporting public policies

placed under the dual supervision of the ministry of ecological transition and

the ministry of territorial cohesion and relations with local authorities1. Fur-

ther to the conventional HTS, which is applied to urban areas, a Medium-

sized Town Travel Survey (MTTS, Enquête Déplacements Villes Moyennes

in French) and a Large Area Travel Survey (LATS, Enquête Déplacements

Grand Territoire in French) are available for surveying medium-sized towns

and large areas, respectively (Richard and Rabaud, 2018).

These surveys typically interview 1 to 2 percent of the resident population

randomly selected from fiscal databases with geographic stratification and

represent currently the main reference for local mobility knowledge in France,

being used for preparing and assess development and urban transportation

policies, and for travel modeling (Richard and Rabaud, 2018). The territory

is geographically divided into polling sectors, which are compatible with the

IRIS20002 territorial partition from INSEE3. To ensure statistical significance,

at least 20 polling districts must be defined, and at least 70 households and

1https://www.cerema.fr
2A system for dividing the country into units of equal size, known as IRIS2000. In

French, IRIS is an acronym of ‘aggregated units for statistical information’, and the 2000

refers to the target size of 2000 residents per basic unit.
3Institut National de la Statistique et des Etudes Economiques (https://www.insee.fr)

https://www.cerema.fr
https://www.insee.fr
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160 persons must be interviewed in each one, totaling a minimum of 1,500

households interviewed over the territory (Certu, 2013). Then, to represent the

real size of the area’s population, the sample is adjusted via coefficients defined

on the basis of place of residence, household size and automobile ownership.

In this work, we recovered data from an HTS applied on the urban area

of Grenoble metropolis (CEREMA, 2010), and from two LATSs applied on

the metropolitan areas of Lyon (CEREMA, 2015) and Rennes (CEREMA,

2017) (see Table 3.2.1 for sampling details). Recruitment and interviews are

performed face-to-face (FTF) in the respondents’ place of residence in the case

of HTS and densely populated LATS areas, and by telephone in the case of

MTTS and the rest of LATS area (Richard and Rabaud, 2018). The resulting

dataset describe the mobility of every household member aged five and older

during the 24 hours of a weekday, from 4am (the day before) to 4am (the

survey day). The survey also gathers socio-demographic information about

the interviewed person and household (Richard and Rabaud, 2018). The data

records are arranged as rows in five tables describing the following components:

• the interviewed households, which table contains the weekday when the

reported trips took part, household size (i.e. number of residents), resi-

dence type (e.g., individual house, building), the type of occupancy (e.g.,

owner, tenant), code of commune where the household is located, owner-

ship and type of vehicle, parking place during day and night, possession

of internet connection, type of household (i.e. ordinary or student), and

an adjustment factor based on the place of residence, the household size

and automobile ownership;

• the interviewed people, which table contains information describing the

household to which they belong, their gender, age, working status and

schedule, whether the latter is free or imposed, socioprofessional cat-

egory4, education level, possession of mobile phone, e-mail, driving li-

cense, subscription to the public transportation system, and their use

frequency of various transportation modes (e.g., automobile, bicycle,

public transportation);

• the trips of each person, which table contains information that describe

the person to which the trip belongs, the departure and arrival hours and

4The Classification of Professions and Socioprofessional Categories, or PCS, classifies

the population by a combination of profession (or former profession), hierarchical position

and status (salaried employee or otherwise) (see https://www.insee.fr/en/metadonnee

s/definition/c1493)

https://www.insee.fr/en/metadonnees/definition/c1493
https://www.insee.fr/en/metadonnees/definition/c1493
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minutes, origin and destination (O/D) locations, activity performed at

the origin and destination, duration, number of mechanical transporta-

tion modes used, traveled distance, and distance as the crow flies (both

in meters);

• the rides of each trip, which table contains information that describe the

trip to which the ride belongs, the walking time to the location where

the ride begins and after it finishes, the transportation mode, the O/D

locations, type and place of parking, traveled distance and distance as

the crow flies (in meters); and

• the opinion of interviewed people regarding life quality in the urban

area (e.g., security, education, leisure, environment, employment oppor-

tunities), the urban travel conditions (e.g., accidents risks, traffic noise,

public transportation, pollution, parking), transportation modes rating,

among other aspects that may vary across territories.

Aspect HTS Grenoble LATS Lyon LATS Rennes

Year 2010 2015 2018

Interview method FTF
FTF and

telephone

FTF and

telephone

Number of Cities 354 446 392

Number of Households 7,600 16,361 7,981

People
Interviewed 16,641 28,230 11,000

Representingi 800,000 2,292,000 1,000,000

Trips
Counting 63,336 99,585 44,000

Representing 2,900,000 6,006,000 4,000,000

i The number of people and trips represented by the data is estimated through adjustment

factors based on the place of residence, the household size and automobile ownership.

Table 3.2.1: Summary of the datasets’ sample for Grenoble, Lyon and

Rennes metropolitan areas.

The temporal information describing departure and arrival time is sub-

jectively reported by the interviewed person in hours and minutes, which

precision may vary according to the person’s memory of the event. In order

to define time as a continuous variable, the dataset present time from 4 to 28

hours, where the values from 24 to 28 stand for the night hours from midnight

to 4am.
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30 km

N

Small Areas (526 locations)

30 km

N

Polling Districts (97 locations)

30 km

N

Intermediate Areas (39 locations)

30 km

N

Large Areas (12 locations)

Figure 3.2.1: The territorial partitions of the great region of Grenoble

metropolitan area.

The O/D locations are predefined districts in the survey, which surface

varies according to the spatial granularity. For each area, the survey provides

four territorial partitions with increasing coarse granularity (exemplified in

Figure 3.2.1 and summarized in Table 3.2.2), which locations in each partition

correspond to a grouping of locations existing in the finer territorial partitions.

They are defined as it follows:

• a set of small areas, a fine-grained territorial partition used to help the

interviewed people to describe their trips during the survey application;

• a set of polling districts, which are the primary sampling units to dis-

seminate the survey’s results, in which a number x (roughly the same
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Region Small areas
Polling

districts

Intermediate

areas
Large areas

Grenoble 526 97 39 12

Lyon 1,191 169 58 11

Rennesi 570 83 - -

i At the time of this thesis, the data for the region of Rennes was only available for small

areas and polling districts.

Table 3.2.2: Number of locations per territorial partition within each

dataset.

for every district) of people was interviewed. The polling districts’ size

varies according to the population density: they are smaller in the urban

centre, corresponding to large neighborhoods, and larger in the suburban

areas, corresponding to a group of municipalities;

• a set of intermediate areas, which reconstitute the department council5

areas within the region of Grenoble, and represent the inter-municipalities

or neighborhood groups of Lyon; and

• a set of large areas, which represents the inter-municipalities within the

region of Grenoble, and reconstitute the SCOT (Schéma de Cohérence

Territoriale)6 areas of Lyon’s agglomeration.

The interviewed people can describe their trips according to a detailed list

of around thirty types of trip purposes and twenty types of transportation

modes, which elements may vary according to the available transportation or

possible activities in the surveyed area.

5The department councils of France are representative assemblies elected by universal

suffrage in 98 of the country’s 101 departments. A description of department councils areas

of Isère can be found in https://www.data.gouv.fr/fr/datasets/territoires-du-co

nseil-departemental-isere/.
6The Schéma de Cohérence Territoriale is a French urban planning document which

determines a territorial project aiming to align the municipalities’ policies, specially with

regard to housing, mobility, commercial development, the environment and landscape. The

description of Lyon’s SCOT areas can be found in https://www.scot-agglolyon.fr/.

https://www.data.gouv.fr/fr/datasets/territoires-du-conseil-departemental-isere/
https://www.data.gouv.fr/fr/datasets/territoires-du-conseil-departemental-isere/
https://www.scot-agglolyon.fr/
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3.2.2 Information Matrices

The input dataset underwent a transformation procedure that consists on es-

tablishing the spatial and temporal granularity levels and thematic attributes

from which we deduce the information matrices that serve as basis for the

derivation of the typology of activity programs and the statistical indica-

tors from flows, trips, and territory describing the daily urban mobility phe-

nomenon.

We set the spatial granularity level as the four territorial partitions origi-

nally provided in the dataset, and the temporal dimension is discretized into

two sets of time intervals with increasing fine granularity:

• a set of one-hour intervals from 4 to 28 resulting in a set of twenty-four

time units, which we use to obtain information matrices of flows and

presence; and

• a set of 5-minutes intervals from 240 to 1680 resulting in a set of 588

time units, which is used to produce the table of activity sequences,

enabling a higher precision to identify the changes of activity within

sequences.

We kept the time range from 4 to 28 hours to avoid invalid situations where

activities start before midnight and finish during the night, in which case a

range with time resetting at midnight would result in an end time that is

before the starting time. However, we will visually represent such information

through a time range resetting at midnight for the sake of consistency with

the real-life time. We address three kinds of thematic attributes, defined as

follows:

• the trip purposes are grouped into seven categories:

– home, which comprises trips destined to one’s place of residence,

either primary or secondary one (e.g., occasional residence or hotel);

– leisure, which comprises mainly sports, promenades, eating out,

and window-shopping;

– shopping, which comprises trips to the shops and supermarkets;

– education, which describes trips destined to a school or college;
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– business, which describes trips destined to one’s workplace;

– personal business, which includes visits to services, medical consul-

tations, job searching, and so on; and

– escort trips, which comprises trips with the purpose to accompany

someone else (e.g., taking a child to school is escort education).

• the transportation modes are grouped into five categories:

– walking, which does not include the displacements between home

and a motorized transport;

– cycling, either as a driver or a passenger;

– car/van, either as a driver or a passenger;

– public transport, which includes bus, metro, train, taxi, and other

vehicles within the public transportation system; and

– other modes, which include motorcycles, trucks (professional drivers),

plane, wheelchair, agricultural vehicle, scooter, and so on.

• the socio-demographic aspects describe individuals according to their

– gender, which indicates whether the individual is male or female;

– age, which we aggregate into six ranges: 5-17, 18-24, 25-34, 35-49,

50-64 and 65+ years of age;

– occupation, which includes full-time employment, part-time em-

ployment, internship, university student, school student, unem-

ployed, retired, and stay at home;

– professional category, which includes business owners and shop

keepers, executive and professionals, technicians and associate pro-

fessionals, employees, blue collar workers, and no professional ac-

tivity; and

– frequency of mode use, which measures the frequency with which

the individuals use each transportation mode in terms of several

days per week, several days per month, rarely or never.

As we mentioned earlier, the data describes moves between O/D locations.

However, for studying the presence dynamics of a population, we must know

where each individual is located at different time intervals. Therefore, we

transformed the trips table to extract the stops in between moves. Firstly,

the tables of trips and rides were combined to associate the transportation
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mode of each trip (Figure 3.2.2 – left); trips with multiple rides performed

with different transportation modes are identified as intermodals. Secondly,

we extracted the stop from each trip (Figure 3.2.2 – right), which corresponds

to the time spent at the trip’s destination, which is itself the origin location of

the next trip. The activity performed while in the stop is determined by the

activity associated to the origin location of the trip, and the stop’s duration

corresponds to the time difference between the arrival time of this trip and

the departure time of the next one.

08:00 08:30 Home Business Car/Van 1502 101

17:30 18:00 Business Shopping Bicycle 101 301

18:30 18:45 Shopping Home Car/Van 301 1502

Time of 
Depart

Time of 
Arrival

Activity at 
Origin

Trip 
Purpose

Mode of 
Transport

Location 
of Origin

Location of 
Destination

Start Time End Time Activity Location

18:45 28:00 Home 1502

18:30 18:45 Traveling by car/van

18:00 18:30 Shopping 301

17:30 18:00 Traveling by bicycle

08:30 17:30 Business 101

08:00 08:30 Traveling by car/van

04:00 08:00 Home 1502

Home Traveling by 
car/van Business Traveling 

by bicycle Shopping Traveling 
by car/van Home

Daily Trajectory

Figure 3.2.2: The data is organized into trips with depart and arrival

times, trip purpose, transportation mode, and O/D locations (left), from

which we derive the stops and moves (right). Adapted from: Cochey and

Tabaka (2007).

Further, since we are interested on the daily activity schedule of individu-

als, we sequenced stops and moves to form daily trajectories, where stops are

characterized by a location and an activity, and moves are described by the

transportation mode used for traveling from one place to another (Figure 3.2.2

– bottom). The trajectories have a total duration of 24 hours, which arise out

of summing up the duration of each stop and move.

Figure 3.2.3 presents the resulting structure of the dataset. Space and

time exist independently of objects and are characterized by a size, which

corresponds to the number of spatial locations and time intervals, respectively.

Space is composed of spatial locations, which are described by a name, a

geographical area (i.e. a polygon), latitude and longitude (i.e. the center of

the area) and a surface measured in square kilometers. Time is composed of

time intervals, which are described by a duration, starting and ending hours

and minutes. Both time intervals and spatial locations characteristics change

according to the granularity level.
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A mover is characterized by an identifier (i.e. based on the polling district,

place of residence, sample and person number according to their household)

and the aforementioned socio-demographic information, and it is associated

to only one daily trajectory. The latter is characterized by an identifier and is

composed of stops and moves, which are defined according to space, time and

thematic attributes. Both stops and moves contain a time interval describing

their duration, start and end times. Each stop is characterized by an activity

and is associated to a location that describes where it took place, while a

move is characterized by a transportation mode and a trip purpose, and is

associated to two locations, which describe its origin and destination.

1

1..*

1..*

1..*

1..* 1

1

1

2

Stop

+	activity:	characterDailyTrajectory

+	id:	numeric

Move

+	purpose:	character

+	mode:	character

TimeUnit

+	startHour:	numeric
+	endHour:	numeric

+	startMinute:	numeric

+	endMinute:	numeric

+	duration:	numeric

SpatialLocation

+	name:	character

+	geometry:	polygon

+	latitude:	numeric

+	longitude:	numeric

+	surface:	numeric

Space

+	size:	numeric

Mover

+	id:	numeric

+	age:	numeric

+	gender:	character

+	workStatus:	character

+	spc:	character

Time

+	size:	numeric

Figure 3.2.3: Components and relationship among entities of human mo-

bility data.

This data structure allowed us to generate the information matrices for

each spatio-temporal granularity levels and thematic attributes, as follows:

• Flows matrix: For each time unit t ∈ T and trip attribute a ∈ A (i.e.

trip purpose or transportation mode), we generate a data table where

each row represents a flow in the dataset, and columns represent origin

and destination locations, and flow magnitude between them. Using the

Flows package (Giraud and Beauguitte, 2016), we transform this data

table into a matrix, which rows and columns correspond to the origin

(i) and destination (j) locations, and the value in each position (i, j) of

the matrix corresponds to the flow magnitude between these locations

(Figure 3.2.4a);

• Presence matrix: For each activity a ∈ A and for all activities taken

together, we count the number of movers visiting each spatial location

s ∈ S at each time unit t ∈ T . This process results on a matrix of
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presence per activity (Figure 3.2.4b), where rows i correspond to spatial

locations and columns j to time units, and the value of each position

(i, j) correspond to the number of visitors in the location at that par-

ticular time unit; and

A B C

A 10 15 0

B 0 20 15

C 20 0 5

4 5 6 ... 27 28

A 10 15 20 ... 15 10

B 15 20 30 ... 20 10

C 10 25 35 .. 15 5

Id Start Time End Time State
1 240 480 H (home)
1 480 510 T (traveling)
1 510 1050 B (business)
1 1050 1080 T (traveling)
1 1080 1110 S (shopping)
1 1110 1125 T (traveling)
1 1125 1680 H (home)
2 240 540 H (home)
2 540 570 T (traveling)
2 570 1080 B (business)
2 1080 1110 T (traveling)
2 1110 1680 H (home)

Id 240 241 242 ... 1080 1081 1082 ... 1110 1111 1112 1113 ... 1679 1680
1 H H H ... S S S ... T T T T ... H H
2 H H H ... T T T ... H H H H ... H H

O
ri

gi
ns

Destinations

Sp
at

ia
l l

oc
at

io
ns

Time unitsa) b)

c)

Figure 3.2.4: Information matrices of (a) flows, (b) presence, and (c)

activity sequences. A flow matrix is calculated for each time unit.

• Sequences matrix: Analogous to a categorical sequence, the activity

programs can be defined as a chronologically ordered list of n successive

elements chosen from a finite alphabet Σ. Our alphabet contains the

activities (i.e. states) represented as: H (home), L (leisure), S (shop-

ping), ED (education), B (business), PB (personal business), ET (escort
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trips), T (traveling). As mentioned earlier, we first converted the input

dataset into a SPELL format table7, which rows correspond to stops

and moves of individuals (see Figure 3.2.4c – top). In order to represent

each sequence as a listing of its successive elements, we converted the

SPELL data into STS (STate-Sequence) format, which is the internal

format used by the TraMineR package8. It is one of the most intuitive

and common way of representing a sequence, where the successive states

(statuses) of an individual are given in consecutive columns, which cor-

respond to a predetermined time unit (Gabadinho et al., 2009b). Thus,

our resulting table arranges sequences as rows composed by elements

(activities) in a one-minute scale within a time range from 240 to 1680

minutes (columns) (see Figure 3.2.4c – bottom).

3.3 Statistical Indicators and Typology

This section presents the process of derivation of statistical indicators and the

typology of activity programs from the information matrices of flows, presence

and sequences.

Indicators of travel flows and trips

Firstly, we extracted from the flow matrices of each time unit t ∈ T and

thematic attribute a ∈ A the number of trips having each spatial location

s ∈ S as destination to derive the following indicators:

• the mobility rate (Eq. 3.3.1) of a location s at a time unit t is the count

of trips taken during that time unit which destination is the spatial

location s, divided by the same counting aggregate over 24 hours. Al-

ternatively, the indicator can refer to the number of different movers

traveling towards or internally that particular spatial location during

that time unit; and

7A spell dataset have multiple observations for each subject, each covering a span of time

(a spell) during which the subject is in a given state, such as traveling or a stop (Gabadinho

et al., 2009b).
8TraMineR is a R-package for mining, describing and visualizing sequences of states or

events, and more generally discrete sequence data (http://traminer.unige.ch/).

http://traminer.unige.ch/
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count of trips during time t

total count of trips over 24 hours
3.3.1

Mobility rate

• the attribute share (Eq. 3.3.2) of a location s at a time unit t is the

number of trips performed during that time unit with the spatial loca-

tion s as destination according to each attribute a (i.e. trip purposes

and transportation modes), divided by the total count of trips having

location s as destination during that time unit. Alternatively, the indi-

cator can refer to the number of different movers traveling towards or

internally the location s during that particular time unit per attribute

a divided by the same counting for all attributes taken together.

count of trips per attribute a

total count of trips (all attributes taken together)
3.3.2

Attribute share

Secondly, we derive the indicators of flows magnitude and direction from

the aggregation of moves between O/D locations < s, s > ∈ S × S per trip

purpose, transportation modes and all attributes taken together. The data

complexity often generates dense O/D matrices, which hinder the design of

efficient visualization techniques to represent it (Bahoken, 2016a). Further-

more, the study of travel flows focuses on the relationships between places

rather than on their characteristics, which consequently leads analysts to as-

sume a selection to ease interpretation (Giraud et al., 2016). Nystuen and

Dacey (1961) proposed one of the first selection methods, so-called dominant

flows, which allows to highlight the hierarchy between locations. Subsequently,

several methods have been proposed to better reflect this intensity, one of the

most frequently used being the so-called major flows, which selects only the

most important flows, absolute or relative, either locally or globally (Giraud

et al., 2016).

Particularly, we apply a local absolute selection of the k first flows from all

origins to reduce the flow matrix to only the important flows. Based on the

characteristics of our data (i.e. a great number of locations – the suburban

districts – tend to produce a small amount of important flows, which are often

towards the metropolitan area), we decided to use k = 5. We have chosen a

local selection to allow the user to display flows for a subset of locations and/or

for a particular time unit. In this case, a global selection would eliminate flows

that are important within a subset formed by suburban areas, since the most
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important flows were likely towards the metropolitan area that would not be

currently represented, or during a time period when few trips were performed,

since the global selection would keep the flows generated during the time

periods when the most trips happened (e.g. during daytime).

Indicators of territory and population dynamics

The indicators that describe the territory are based on the estimation of people

present in the different spatial locations over time determined by the counting

of movers visiting each spatial location s ∈ S at different time units t ∈ T ,

defined as follows:

• the presence of movers in the location s at the time unit t is defined as

the count of different movers that visited the spatial location s during

that time unit. The indicator can yet represent the aggregate count of

different movers visiting the location s over 24 hours;

• the presence of movers per activity is defined as the count of different

movers that visited the location s at each time unit t to perform each

activity a ∈ A;

• the activity share (Eq. 3.3.3) of location s at the time unit t is defined

as the count of different movers that visited the location s during the

time unit t to perform the activity a divided by the total count of people

visiting the location s during that time unit;

count of people doing activity a

total count of people visiting the location s
3.3.3

Activity share

• the presence density (Eq. 3.3.4) of a location s at the time unit t is

defined as the proportion of people present in the location s during time

unit t per square kilometer. The indicator also describes the average

presence density of a location s over 24 hours;

count of people present in the location

location’s surface in km2
3.3.4

Presence density

• the presence fluctuation of a location s during the time unit t, is defined

as the difference between the count of different movers that visited the
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location s during the time unit t and the location’s estimated population

size. In the study of population dynamics, fluctuation represents the rise

and fall of the number of individuals in a population over time according

to births, deaths, arrival and departure of immigrants. We borrow the

term to represent the temporal variation of individuals presence in a

location relatively to the location’s population;

• the fluctuation rate (Eq. 3.3.5) of a location s during the time unit t is

the ratio of presence fluctuation measure of location s and the location’s

estimated population size; and(
count of people

present in the location

)
−

(
location’s

population size

)
location’s population size

3.3.5

Fluctuation rate

• the attractiveness (Eq. 3.3.6) of a location s is calculated over 24 hours

and refers to the aggregate number of different movers that visited the lo-

cation s over 24 hours divided by the location’s population size adjusted

by the global value of this same ratio for the whole region. A value over

1 indicates the location’s “real density” is greater than its population

density, and a value under 1 indicates otherwise (André-Poyaud et al.,

2008).

(
count of people in

activity in the location

)
(

location’s

population size

) ×

(
region’s

population size

)
(

count of people in

activity in the region

) 3.3.6
Attractiveness

Typology of activity programs

As mentioned earlier, the daily trajectory of a mover corresponds to the se-

quence of spatial events (i.e. stops and moves) that establish the changes of

the spatial position of that mover. Further, a set of thematic attributes allows

to describe spatial events according to activities and transportation modes,

and movers according to socio-demographic information. Hence, the daily tra-

jectory of mover i can be defined as D = {Si, Ti, Ai}, where Si ⊂ S contains

the spatial locations the mover visited during the day, Ti ⊂ T represents the

set of time units that define the duration, starting and ending time of each
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spatial event, and Ai ⊂ A is formed by the set of activities and transporta-

tion modes associated to stops and moves, and the set of socio-demographic

aspects associated to the mover. From each daily trajectory, we derive the

following indicators:

• the space-time path, which comprises a collection of triples < s, t, a > ∈
S × T × A, where s represents a visited location, t corresponds to the

time unit when the visit took place, and a corresponds to an activity or

transportation mode depending on whether the segment formed by the

linking of two points < si, ti > and < sj, tj > correspond to a move or a

stop. In case the segment describes a stop, si and sj correspond to the

same spatial location, while in a move, si describes the origin and sj the

destination spatial location of the trip; and

• the activity program, which comprises a sequence of tuples < a, t > ∈
A×T , where a represents an activity, including the act of traveling from

one place to another, and t represents the time unit when the activity

took place.

a

b

c

d

e

a b

d e

c d e

a b c d e

Step 0 Step 1 Step 2 Step 3 Step 4

Le
af

s

Root

Nodes

Figure 3.3.1: Workflow of AGNES algorithm. At each step, leafs are

clustered together based on their similarity. Adapted from: Kassambara

(2020).
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The set of activity programs within each dataset (14,821 sequences for

the region of Grenoble; 25,202 sequences for Lyon; and 10,096 sequences for

Rennes) underwent a classification process that allowed us to extract a typol-

ogy that describes the variety of daily activity programs within the data. The

classification follows a hierarchical clustering based on the AGNES (Agglom-

erative Nesting) algorithm (Kaufman and Rousseeuw, 2009), which considers

initially each element as a single-element cluster (leaf) and, at each step,

combines the most similar clusters into a new bigger cluster (nodes). This

procedure is iterated until all points are members of just one single big cluster

(root) (see Figure 3.3.1). The classification process was performed with sup-

port of tools for mining and visualizing sequences of categorical data provided

by TraMineR package (Gabadinho et al., 2011), and consists of the following

steps (Kassambara, 2020):

1. Computing dissimilarity information between every pair of sequences in

the dataset. This stage allows to decide which sequences (i.e. activ-

ity programs) can be grouped together based on their similarity. In

social sciences, sequence analysis aims to uncover socio-temporal regu-

larities in the data, where Optimal Matching (OM) is often the most

used method. It determines the degree of dissimilarity between two se-

quences by the smallest number of operations that are necessary to turn

one sequence into another. The allowed operations are insertion, dele-

tion and substitution, which are penalized by a cost often equal to one.

Indel (i.e. insertion and deletion) operations distort time in order to

align identically coded events, which consequently destroy the temporal

link between sequences, their contemporaneity (Lesnard, 2010).

Low rate of 
unemployment

High rate of 
unemployment

1 2 3 4 5 6

i E E E U U E

j U U E E E E

k E E E E E E

Figure 3.3.2: Dynamic Hamming Distance: an example. Source: Lesnard

(2009).

When analyzing daily activity programs, timing of everyday activities

is crucial to keep the social structure of sequences, which means that

what matters is not only the events but when they occur. This way,
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identical events happening at distinct moments in time should be con-

sidered as different. Therefore, we chose to use the Dynamic Hamming

Distance (DHD) method (Lesnard, 2010), which only uses substitution

operations, which cost depends on the position t in the sequence, to de-

termine the dissimilarity of sequences. The method is applicable when

they are of equal length. Substitution costs reflect the penalty of replac-

ing a state by another, i.e. the higher the penalty, the more different

the states are. Let us exemplify it using the sequences i, j, k describ-

ing work stability with two states, employed (E) and unemployed (U)

(Figure 3.3.2) (Lesnard, 2009). Using time-varying substitution costs,

it is possible to define unemployment states to being closer to employ-

ment ones when the unemployment rate is high. For instance, if the

employment rate is low at the beginning of the studied period (t = 1, 2)

but high later, then the distance between j and k will be higher than

the one between i and k because being unemployed at a time of full

employment is more atypical than when unemployment is widespread.

This also means that the distance between i and j will be higher than

the one between k and j, even though i and j have more events in com-

mon, because those events occur at different dates with different rates

of unemployment.

2. Using linkage function to group sequences into hierarchical cluster tree

based on the distance information. Clusters that are in close proxim-

ity are linked together using a linkage function. We apply the Ward’s

method (Ward, 1963), which minimizes the total within-cluster vari-

ance. The clustering algorithm (Figure 3.3.1) uses the distance ma-

trix (obtained in step 2) as input and merges clusters together based

on whether their squared distance lead to a minimum increase in total

within-cluster variance after merging. This procedure results in a hierar-

chical tree, with the number of clusters ranging from one to the number

of sequences.

3. Determining where to cut the hierarchical tree into clusters. Dendro-

grams correspond to the graphical representation of the hierarchical tree

generated by the clustering algorithm in step 3. We use the dendrogram

derived from each dataset as a guide to determine the number of clus-

ters in the typology of activity patterns (see Figure 3.3.3). Each leaf in

the tree correspond to one sequence. As we move up the tree, similar

sequences are combined into branches, which are themselves fused at a

higher height. The height of the fusion, provided on the vertical axis,

indicates the distance between two clusters. The higher the fusion’s

height, the less similar the clusters are. This information allows us to
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choose a height where to cut the dendrogram to form clusters. Based

on our hierarchical trees, we notice that they are mostly similar among

datasets, so we cut at a height that results into 6 clusters, which we

judge relevant to our analysis.
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Figure 3.3.3: The dendrograms resulting from the hierarchical clustering

performed on the sets of daily trajectories of Grenoble, Lyon and Rennes

metropolitan areas. The dashed line represents the height where we cut

each tree to extract the clusters of the typologies.

The resulting typology of activity programs of each dataset contains six

clusters, which are significantly large considering the number of activity se-

quences used as input for the classification. A typical example are the clusters

formed by programs where the main activity is studying or working, which

correspond to a large part of programs within any dataset (see Appendix A

for a complete description of clusters). Therefore, we summarize the clusters

by extracting a group of representative patterns that cover all the spectrum

of distinct sequences present in each cluster. We follow an algorithm pro-

posed by Gabadinho et al. (2009a) which determines a representative set by

(1) preparing a sorted list of candidate representative sequences based on a

particular criterion and (2) eliminating redundancy within this list according

to a similarity threshold. The method defines the coverage level of the repre-

sentative set through a threshold, that is the percentage of sequences having

a representative in their neighborhood. We define this threshold as 25% and

extract four different representative sets according to the following criteria:

• Neighborhood density, which selects candidate sequences based on the

number – the density– of sequences in their neighborhood. Given a
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radius, which is by default the maximal theoretical distance between

two sequences, the neighborhood density for each sequence in the set is

obtained from the distance matrix by counting by row or column the

number of distances that are lower than the established radius;

• Centrality, which identifies the most central sequence, i.e. the one with

minimal sum of distances to all other sequences in the set. The resulting

sequence is the medoid, a classical representative measure used in cluster

analyses;

• Frequency, which determines candidate sequences according to their ap-

pearance frequency in the set. The more frequent a sequence, the more

representative it is supposed to be. The frequency of each sequence

in the set is obtained from the distance matrix by counting by row or

column the distances that are equal to 0 (a distance of 0 between two

sequences indicates they are equal); and

• Likelihood, which determines candidate sequences according to the prob-

ability with which each of its successive elements are supposed to occur

at its position. The criterion considers the probabilities derived from

the first order Markov model, which assumes the probability of an ele-

ment occurring at its position depends only on the previous element’s

probability.

A set of representative trajectories allows to identify one or several pro-

grams that summarize the whole cluster, which enables the visual represen-

tation of only a set of sequences reducing visual cluttering while transferring

the relevant information to the analyst.

Summary

Table 3.3.1 summarizes the statistical indicators and the typology of activity

programs according to the objects of interest from which they were derived

and the spatio-temporal granularity levels and thematic attributes over which

they can be explored. Particularly, certain indicators of travel flows and trips,

population and territory dynamics can be explored according to a particular

group of people belonging to a cluster of the typology of activity programs.

The typology group movers together according to similarities within their

daily activity programs, which behavior could be generalized to the popu-

lation they represent. Therefore, we consider these groups to be both an
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Object of

Interest
Indicator Space i Time Modes Purposes

Socio-

demographic
Groupii

Trips
Travel flows

PD, IA,

LA

One-hour,

AGGiii Yes Yes No No

Mobility Rate
PD, IA,

LA, AGG

One-hour,

AGG
Yes Yes No Yes

Territory and

Population

Presence
PD, IA,

LA, AGG

One-hour,

24h
No Yes No Yes

Presence

Density

PD, IA,

LA

One-

Hour,

AGG

No No No Yes

Presence

Fluctuation

PD, IA,

LA

One-hour,

AGG
No No No No

Attractiveness
PD, IA,

LA
AGG No No No No

Daily

Trajectories

Typology of

Activity

Patterns

SA, AGG 5-minutes Yes Yes Yes Yes

i Territorial Partitions: Small Areas (SA); Polling Districts (PD); Intermediate Areas (IA); Large Areas (LA).
ii Group of individuals belonging to a particular cluster of the typology of activity patterns.
iii AGG stands for all spatial locations or time units taken together as one single location or time unit.

Table 3.3.1: Summary of statistical indicators and the typology of activity

patterns.

indicator that reveal the diversity and necessity of daily traveling according

to individuals socio-demographic characteristics, and a filtering variable that

enable to explore the variation of mobility and presence dynamics indicators

over different population groups. Hereafter, we present a system of tasks to

guide the exploration of indicators variation over the three dimensions of the

data.

3.4 Querying

As mentioned earlier, there are three fundamental sets within the data (i.e.

space, time and objects), which relationship can be established by the spatio-

temporal triad framework of Peuquet (1994) (Figure 3.4.1 – left) through three

basic kinds of questions:
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• when + where → what : describe the object or set of objects that are

present at a given location or set of locations at a given time or set of

times

• when + what→ where: describe the location or set of locations occupied

by a given object or set of objects at a given time or set of times

• where + what → when: describe the time or set of times that a given

object or set of objects occupied a given location or set of locations

object

timespace

object

timespace

attribute

Figure 3.4.1: Overview of the Triad (left) and Pyramid (right) frame-

works. Adapted from: Peuquet (1994), Mennis et al. (2000).

Further, the pyramid framework (Figure 3.4.1 – right) proposed by (Men-

nis et al., 2000) extends the spatio-temporal triad in order to allow the in-

clusion of a fourth dimension, the theme, which we refer in this work as the-

matic attribute. This dimension allows to describe the objects and spatial

events according to socio-demographic aspects, activities and trip purposes,

and transportation modes. Overall, the relationship among attributes and the

fundamental sets of the data is established through four types of questions,

defined as follows:

• when + where + attribute→ what : describe the objects of set of objects

described by a given attribute or set of attributes existing at a given

location or set of locations at a given time or set of times;

• when + what + attribute → where: describe the location or set of loca-

tions occupied by a given object or set of objects described by a given

attribute or set of attributes at a given time or set of times;
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• where + what + attribute → when: describe a time or a set of times

that a given object or set of objects described by a given attribute or

set of attributes occupied a given location or set of locations; and

• when + where + what→ attribute: give the attribute or set of attributes

describing the object or set of objects existing at a given location or set

of locations at a given time or set of times.

We used the definition of question levels proposed by Andrienko et al.

(2008) to expand these basic questions and propose a set of user queries that

are either elementary (Elem), which addresses elements of the reference set,

or synoptic (Syn), which addresses sets of references that may be the whole

reference set or subsets. Particularly, the overarching analysis supported by

our framework consists in exploring the variation of the indicators of daily

urban mobility over the Cartesian product of four dimensions S×T ×O×A,

which inputs are defined as follows:

• the spatial input, which elementary components are single locations s ∈
S, and the synoptic element is the whole set S, which represent the whole

urban area. The spatial locations forming the set S change according to

the chosen territorial partition;

• the temporal input, which elementary components are single time units

t ∈ T , and the synoptic element is the whole set T , which represent

the 24 hours of a day. The time units change according to the chosen

temporal granularity level;

• the object input, which elementary components are subsets of movers

Oi ⊂ O, where i correspond to the number of a cluster of the typology

to where belong the activity programs associated to the referred movers,

or a spatial event o ∈ O, and the synoptic elements are the whole set of

movers Om ⊂ O or the whole set of spatial events Oe ⊂ O; and

• the attribute input, which elementary components are single transporta-

tion modes, trip purposes, activities or socio-demographic aspects a ∈ A,

and the synoptic components are subsets of attributes

{Aa, Am, Ap, As} ⊂ A corresponding to the set of activities Aa, trans-

portation modes Am, trip purposes Ap, or socio-demographic aspects

As, or the whole set of thematic attributes A.
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Furthermore, we used the general querying schema introduced by Li et al.

(2018) to propose the variation of indicators as a function S×T ×O×A→ I,

where I represents the value of indicators according to the given space, time,

object and attribute inputs. The system of tasks allows to treat elementary

and synoptic tasks based on:

• time units t→ (S×O×A→ I) or set of time units Σ(T )→ (S×O×A→
I) (Table 3.4.1a);

• locations s→ (T×O×A→ I) or set of locations Σ(S)→ (T×O×A→
I) (Table 3.4.1b);

• thematic attributes a→ (T×S×O → I) or the set of thematic attributes

Σ(A)→ (T × S ×O → I) (Table 3.4.1c);

• objects o→ (S×T ×A→ I) or set of objects Σ(O)→ (S×T ×A→ I)

(Table 3.4.1d);

• any combination of two dimensions of the data, enabling the exploration

of indicators over the remaining two dimensions, e.g., S×T → A×O → I

(Table 3.4.2).

Furthermore, there may be questions comparing indicators over multiple

locations, time units, objects or attributes. Hence each task can be split into

two sub-types of tasks: identification and comparison (Andrienko et al., 2003),

according to the input level. For instance, let us take t→ (S × O × A→ I),

where the temporal input is a time unit. One could formulate the following

tasks:

• Compare the value of indicator I for object o and attribute a, or different

objects and attributes at locations l1 and l2;

• Compare the value of indicator I at location l considering the attribute

a or different attributes, and the objects o1 and o2; and

• Compare the value of indicator I at location l considering the object o

or different objects, and the attributes a1 and a2.

This collection of tasks are performed within our visualization framework

through selection operations that enable one to explore the variation of indi-

cators over any combination derived from the structure S × T × O × A by
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Objects

Elem Syn

S
pa

ce

E
le

m

What is the value of the indicator I at spatial

location s regarding the object o and the at-

tribute a?

What is the value of the indicator I at spatial

location s regarding different objects and at-

tributes?

S
yn

What is the spatial distribution of the indicator

I regarding the object o and attribute a?

What is the spatial distribution of the indicator

I for different objects and attributes?

Elem Syn

Attributes

(a) Tasks based on time units t→ (S ×O ×A→ I) or set of time units Σ(T )→ (S ×O ×A→ I).

Objects

Elem Syn

T
im

e

E
le

m What is the value of the indicator I at time unit

t regarding object o and attribute a?

What is the value of the indicator I at time unit

t considering different objects and attributes?

S
yn

What is the temporal variation of indicator I

considering the object o and attribute a?

What is the temporal variation of indicator I

for different objects and attributes?

Elem Syn

Attributes

(b) Tasks based on locations s→ (T ×O ×A→ I) or set of locations Σ(S)→ (T ×O ×A→ I).

Objects

Elem Syn

S
pa

ce

E
le

m What is the value of the indicator I at spatial

location s and time unit t regarding object o?

What is the temporal variation of the indica-

tor I at spatial location s regarding different

objects?

S
yn

What is the spatial distribution of the indicator

I at time unit t regarding the object o?

How the spatial distribution of the indicator I

regarding different objects varies from time to

time?

Elem Syn

Time

(c) Tasks based on thematic attributes a→ (T×S×O → I) or the set of thematic attributes Σ(A)→ (T×S×O → I).

Attributes

Elem Syn

S
pa

ce

E
le

m

What is the value of the indicator I at spatial

location s and time unit t regarding attribute

a?

What is the temporal variation of the indica-

tor I at spatial location s regarding different

attributes?

S
yn

What is the spatial distribution of the indicator

I at time unit t regarding the attribute a?

How the spatial distribution of the indicator I

regarding different attributes varies from time

to time?

Elem Syn

Time

(d) Tasks based on objects o→ (S × T ×A→ I) or set of objects Σ(O)→ (S × T ×A→ I).

Table 3.4.1: Tasks for exploring the variation of indicators over three

dimensions of the data.
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Objects

Elem Syn

A
tt

ri
bu

te
s

E
le

m What is the value of indicator I regarding the

attribute a and the object o?

What is the value of indicator I regarding the

attribute a for different objects?

S
yn

What is the attribute share of indicator I regard-

ing the object o?

What is the attribute share of indicator I regard-

ing different objects?

(a) Tasks based on time units or set of time units and locations or set of locations, overall defined as T×S → O×A→ I

Objects

Elem Syn

S
pa

ce E
le

m What is the value of indicator I at spatial loca-

tion s regarding the object o?

What is the value of indicator I at spatial loca-

tion s regarding different objects?

S
yn

What is the spatial distribution of indicator I

regarding the object o?

What is the spatial distribution of indicator I

regarding different objects?

(b) Tasks based on time units or set of time units and attributes or set of attributes, overall defined as T×A→ S×O → I

Objects

Elem Syn

T
im

e

E
le

m What is the value of indicator I at time unit t

regarding the object o?

What is the value of indicator I at time unit t

regarding different objects?

S
yn

What is the temporal variation of indicator I re-

garding the object a?

What is the temporal variation of indicator I re-

garding different objects?

(c) Tasks based on locations or set of locations and attributes or set of attributes, overall defined as S×A→ T ×O → I

Attributes

Elem Syn

S
pa

ce E
le

m What is the value of indicator I at spatial loca-

tion s regarding the attribute a?

What is the value of indicator I at spatial loca-

tion s regarding different attributes?

S
yn

What is the spatial distribution of indicator I

regarding the attribute a?

What is the spatial distribution of indicator I

regarding different attributes?

(d) Tasks based on time units or set of time units and objects or set of objects, overall defined as T ×O → S ×A→ I

Attributes

Elem Syn

T
im

e

E
le

m What is the value of indicator I at time unit t

regarding the attribute a?

What is the value of indicator I at time unit t

regarding different attributes?

S
yn

What is the temporal variation of indicator I re-

garding the attribute a?

What is the temporal variation of indicator I re-

garding different attributes?

(e) Tasks based on locations or set of locations and objects or set of objects, overall defined as S ×O → T ×A→ I

Space

Elem Syn

T
im

e

E
le

m What is the value of indicator I at time unit t

and spatial location s?

What is the spatial distribution of indicator I at

time unit t?

S
yn

What is the temporal variation of indicator I at

spatial location s?

What is the spatio-temporal variation of indica-

tor I?

(f) Tasks based on attributes or set of attributes and objects or set of objects, overall defined as A×O → T × S → I

Table 3.4.2: Tasks for exploring the variation of indicators over two di-

mensions of the data.
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selecting elements of one or two of these dimensions as the query input. The

analyst has autonomy to use these queries to conduct the analysis as they

consider appropriate to their needs; no specific exploration flow is imposed

within our framework.

A set of visual and interaction tools support these selection operations

through an one-to-many relation from a mobile-based interface that leverages

tactile and tangible input to improve multivariate data exploration. The re-

maining of this chapter describes the design rationale and implementation of

our visual and interaction tools, while establishing the relationship of system

of tasks and the visual analysis.

3.5 Interactive Visualization

The visual interface should be able to represent indicators describing trips and

travel flows, the territory, and daily trajectories defined over four heteroge-

neous dimensions of the data (i.e. space, time, objects, and theme). The data

representations need to reflect their inherent properties (i.e. the geographical

arrangement of locations and the ordering of time units), and the interaction

tools should enable the querying of indicators through the system of tasks

defined earlier. Therefore, considering concerns and guidelines evoked by Bal-

donado et al. (2000) regarding the use of multiple views, we assume that these

are necessary to provide an efficient visual analysis of urban mobility data.

We deal with data records that are defined over multiple dimensions, de-

scribing human movements through various thematic attributes (i.e. trip

purposes, transportation modes, and socio-demographic aspects), which are

themselves linked to multiple spatio-temporal granularity levels. Therefore,

we aim to design a system that allows the analyst to perform different types of

analysis, each one focusing on a distinct and complementary object of inter-

est within the data, which exploration and comparison of derived indicators

should be possible over multiple spatio-temporal granularity levels and the-

matic attributes. The easiest and fastest way to provide such comparison is

by displaying views side-by-side, while also reducing the dependency on user’s

memory due to the possibility of presenting all the important information at

a glance.
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Figure 3.5.1: Overview of eSTIMe visualization interface.

These requirements evoke the necessity of a large visualization space and

flexibility to visualize the data from different perspectives. Nonetheless, con-

sidering that our potential end-users may not have access to large high-

resolution displays at their everyday work environment, we opted for a disperse

visualization over multiple linked conventional displays (e.g., desktop moni-

tors) (see Figure 3.5.1). Depending on the ongoing analysis, one may not have

to deal with all indicators at once, or with every possible spatio-temporal com-

bination. Therefore, each display embeds a customizable analytical dashboard

that can be progressively filled out with visual representations of indicators

built over locations, time units, objects and attributes that the analyst con-

siders appropriate to their analysis.

We assume that, as the number of conventional displays increase, the in-

teraction might not be comfortable through traditional mouse- and keyboard-

based techniques. Therefore, our system includes a one-to-many interaction

from a mobile-based interface, which leverage tactile and tangible input to
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control the set of views dispersed over one or multiple analytical dashboards.

The tangible interaction serve to control the temporal animation of indica-

tors by tilting the device, which resulting angle is mapped to time units on a

virtual time picker.

The remaining of this section is organized as follows. Subsection 3.5.1 de-

scribes the visual representations chosen for visualizing each indicator. Subsec-

tion 3.5.2 presents the movement-based interaction interface we designed for

improving map reading while using time animation. Subsection 3.5.3 presents

the interaction mechanisms that enable to query indicators over space, time,

objects and attributes enabling the use of our system of tasks (see Section 3.4

for more information). Subsection 3.5.4 describes the provenance mechanism

included in our approach to enable the understanding on which flows of anal-

ysis are relevant to the domain and supported by our framework. Finally,

Subsection 3.5.5 details the technical aspects of our implementation.

3.5.1 Visual Encoding

On top of the inherent complexity of the data and indicators, our environ-

ment combines customizable dashboards embedded into multiple displays and

a non-conventional interaction interface based on a mobile device. In order to

simplify the analysis, we follow a uniformity principle (Li et al., 2018). The de-

sign of our views follows a similar layout of display elements and components.

Colors, fonts, labeling and other kinds of visual marks are consistent across

the views. For categorical data, i.e. activities and transportation modes, we

are using a single legend per dashboard to reduce visual cluttering, since colors

are common across different views. We use the ColorBrewer tool (Harrower

and Brewer, 2003), which provides color advice for cartography, to define the

color schemes in our visualizations.

Nowadays, there are a variety of visual techniques designed to represent the

most diverse perspectives to movement data. The reasoning behind the choice

of visualization techniques does not considers only the novelty of a method, but

its effectiveness to represent the data. Classic representations such as maps are

powerful tools to represent a spatial situation, while being well known to our

prospect users. Thus, they are considered into our design. We implemented

a set of six visualization techniques to represent our set of indicators. The

map is the only view that represents the geographical information and serves,

therefore, as a spatial reference to the remaining views. Since every indicator
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is defined over different locations and time units, multiple versions of a view

may be displayed for a different version of the corresponding indicator. As

well, they may be animated to represent the indicator at different time units.

Map View

Maps have been used over a hundred years to represent information over

the geographical space. We visualize indicators summarizing the dynamics

of different locations over time through choropleth and proportional symbols

maps. The former enables encoding indicators which values correspond to a

ratio (i.e. activity and fluctuation rate), while the latter are used for encoding

indicators which value corresponds to a count (i.e. presence of movers and

fluctuation).

In the choropleth maps, color shades encode values of presence density,

attractiveness, activity (Figure 3.5.2a) and fluctuation rates. Two different

diverging color schemes are used to represent the variance of fluctuation and

attractiveness indicators, which neutral value is coded in white. Shades of

blue encode negative values of fluctuation, which represent the amount of

people present in the location that is negatively proportional to the population

size, while shades of red encode the positive values representing otherwise

(Figure 3.5.2b). The attractiveness indicator diverges around the value 1,

which higher values are coded in shades of brown, indicating the “real density”

of the location is greater than the population density, and lower values are

coded in shades of green indicating the opposite. The remaining indicators are

encoded by linear color schemes, where darker colors indicate higher values

(i.e. closest to the extremity of that scale either negative or positive).

In the proportional symbol maps, each location is overlaid by a circle which

size encodes the indicator’s value at each time unit. The color encodes activity,

if one chooses to visualize the presence of movers per activity (Figure 3.5.2c).

Otherwise we use purple to represent the total count of movers present in each

location. The presence fluctuation is represented in red and blue to encode

positive and negative values, respectively. In this case, larger blue circles

encode lower values, and larger red circles otherwise (Figure 3.5.2d).

The legends are consistent throughout different time units, which colors

and circle dimensions are based on the absolute minimum and maximum val-

ues for every location and time unit.
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a) b)

c) d)

Figure 3.5.2: The maps represent indicators of business and fluctuation

rates via the choropleth technique (top) and the presence of movers for

business activity and fluctuation in different locations via the proportional

symbols technique (bottom).

Mobility Wheel

A common approach in the analysis of mobility data is to represent why and

how people travel. In this context, we could represent the attribute share

indicator over 24 hours for the whole territory or a particular spatial loca-

tion through simple visualization techniques, such as the pie chart. However,

this information varies over different times of the day and understanding this

variation is important to provide investments that are consistent to the real

rhythms of the urban area.

Since daily mobility patterns tend to repeat themselves each 24 hours,

cyclic representations of time are common in the literature. Particularly,

timewheels are largely used to represent movement patterns around the clock.

Inspired by Zhao et al. (2008) and Zeng et al. (2017), we append a double-ring

donut chart to the pie chart representing the attribute share over 24 hours,
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No movement

Figure 3.5.3: The Mobility Wheels representing the mobility rate indica-

tor of Oisans, a suburban district in the region of Grenoble, along with

attribute share (trip purposes (top) and transportation modes (bottom)).

The donut charts display the attribute rate aggregate over 24 hours (bot-

tom) or magnifies the indicator for a particular time interval (top). The

gray rectangles encode time units when no movement was recorded.

to represent the variation of a particular location’ mobility rate over time

(Figure 3.5.3). The rings are segmented into 24 rectangles, one for each time

unit. The outermost ring encodes the mobility rate of a particular location,

while the innermost ring displays the attribute share based on trip purposes

or transportation modes. Further to displaying the attribute share over 24
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hours, the central pie chart can display this indicator for a particular time

unit, which serve as a lens to magnify the indicator and contribute to pre-

vent misinterpretation of information due to the small size of each attribute

partition inside the rectangles.

Upon demand, one can have detailed information on the displayed indica-

tor (Figure 3.5.3 – top left corner of each chart). In this thesis, the indicators

represented by the Mobility Wheel are calculated based on the number of

people traveling towards or internally each spatial location. Therefore, for a

particular time interval (i.e. a time unit or over 24 hours), we provide the

total count of people traveling towards or inner the chosen location and the

part of the region’s population that count represents. We also present detailed

information on the distribution of these people per attribute, which informa-

tion consists on the counting of individuals traveling there and the proportion

of people that is represented by that count.

Both indicators (i.e. mobility and attribute rates) take only different

movers into account, which causes people who made several trips to that loca-

tion under the referred time interval to be counted only once. Therefore, we

also provide the number of individuals that perform several trips for different

purposes or using various transportation modes. This information allows the

analyst to estimate the amount of trips those people represent, which actual

value can be retrieved by exploring travel flows indicators (below).

Flows Diagram

Flow maps are a widely used technique to represent magnitude and direction

of flows within a territory. However, the unchangeable property of geograph-

ical positions is a constraint on the design of legible maps, i.e. that avoid

the so-called spaghetti effect, which makes it challenging to represent travel

flows without losing the spatial component, while avoiding occlusion (Baho-

ken, 2016b). The multi-display property of our system enables one to keep a

geographical map visible on the mobile device during the whole analysis (de-

tails in Subsection 3.5.3). Therefore, we chose to represent flows by removing

the geographical space.

We use a chord diagram, a graphical method typically used to display

the inter-relationships between entities (called nodes). Their format can be

aesthetically pleasing and they are quite popular in data visualization (Abel,
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Source: The Data Visualization Catalogue (datavizcatalogue.com)
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Figure 3.5.4: The flows diagram is based on a chord diagram, which

arcs represent nodes and ribbons connect related nodes (top left). The

figure represents the estimated flows exchanges within Grenoble’s inter-

municipalities (12 districts) for business (top right). Upon selection, the

connections of a particular location are highlighted and details on flow

exchanges for that locations are displayed (bottom).

2018, Shi et al., 2018). Figure 3.5.4a presents a simple diagram to portray

the relationship between entities A, B and C defined in a matrix (bottom of

the image). The nodes are arranged along a circular axis, connected to each

other either through ribbons or Bézier curves. The values are assigned to each

connection, encoded by the size of each arc.
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Applied to travel flows, the arcs along the axis represent spatial locations

(Figure 3.5.4b), which are sorted in a descending order according to the total

volume of flows generated per location within the selection. The ribbons’

thickness describe the volume of flows exchange between locations, and color

encodes trip attributes (i.e. purpose or transportation mode). To improve

readability, the destination of flows are indicated through a white gap between

the arc and ribbons. Thereby, each flow originates in the location which ribbon

touches the arc, and the flows generated by trips inside the location’s territory

are represented through a half circle (i.e. a ribbon which origin and destination

are the same).

By default, the view portray flows exchanges between every location within

the whole region. Filtering tools are available to select meaningful sets of

locations, either one location which connections are detected to generate the

diagram, or a set of up to 10 locations selected by means of direct touch on the

geographical map. Regardless the spatial selection, only the five (if possible)

stronger connections are kept to avoid over-cluttering.

Interaction tools allow the user to highlight the connections of a particu-

lar location by directly selecting it on the map (Figure 3.5.4c). If the details

panel is enabled, the user can see detailed information on the flows exchanges

regarding the selected location. We provide the total amount of incoming,

outgoing and inner trips regarding that location. In case the diagram repre-

sents travel flows for a given trip purpose or transportation mode, we inform

the amount of trips that is generated for that attribute.

State Distribution Plot

For a particular location or the whole region, the state distribution plot dis-

plays the proportion of individuals per attribute over time while traveling or

performing an activity there (Figure 3.5.5). It is a percentage stacked area

chart, which x -axis represents time (24 hours) and y-axis gives the estimated

proportion of movers per attribute, either per activity when present in that

location or per transportation mode when traveling towards or inner the lo-

cation.

To improve readability, we display horizontal and vertical grid lines identi-

fying two-hours periods, while a gray bar follows the temporal selection created

by animation or a time unit selection by means of direct touch. By default,
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Figure 3.5.5: The state distribution plot. The x -axis represent time and

the y-axis represents the indicator of either attribute or activity share.

it displays the activity rate for the whole region. Filtering tools enable the

user to change the indicator to display the mobility rate per transportation

mode, and to visualize either indicators for a particular location or for a group

of individuals from the activity patterns typology. For the latter, values are

adjusted so that the individuals represent a “real” part of the population.

Upon demand, one can have detailed information on the indicator both

aggregate over 24 hours and regarding the current selected time unit. The first

piece of information is the number of different movers visiting the location or

traveling there and the part of the region’s population they represents. The

second information gives the number of people per activity or transportation

mode and the proportion of people that number represents. We also indicate
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the count and proportion of people who perform multiple trips for different

activities or using different transportation modes.

Sequence Index Plot

The sequences index plot is used to give the analyst a representation of qualita-

tive sequence patterns within relatively homogeneous sets of sequences (Fasang

and Liao, 2014). It is implemented on a basis of an horizontal proportional

stacked bar chart, which y-axis represents the individuals. Within a daily tra-

jectory, stops and moves may last less than one hour, we therefore use a time

granularity in 5-minutes intervals to better encode them. However, to keep

visual uniformity, the x -axis presents time through a granularity of one-hour

intervals, from 4am (the day before) to 4am (the survey day).

Each segment between a 5-minute interval and the next one is colored to

encode the activity of a stop or the transportation mode used to travel from

one location to another. By default, the plot displays every daily trajectory

in the dataset with color encoding activity. Filtering tools enable the user to

select a group of individuals clustered together by the typology from which to

display the activity programs and to choose which thematic information the

color encodes. In case the plot is set to represent activities, gray encodes the

action of traveling without discriminating transportation modes. Likewise,

when the latter is represented, gray encodes the action of being on a stop,

without activities distinction.

The sequences index plots in Figure 3.5.6 display the activity programs of

individuals in the second group of the typology (Grenoble’s dataset) with color

encoding activities (top) and transportation modes (bottom). To improve

readability, we draw vertical grid lines identifying two-hours time intervals,

and a gray bar follows the time unit selection performed by means of direct

touch or animation to retain one’s attention on the data corresponding to the

current time unit.

Upon demand, a details panel displays information to summarize the pro-

file of individuals (i.e. age, gender, working hours, shift and status), which help

to characterize and understand the typology’s patterns. We highlight certain

information in blue or red according to whether that aspect is under- or over-

represented in relation to the average profile of all individuals in the dataset.

For instance, we observe in Figure 3.5.6 that, for the selected group, people
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Figure 3.5.6: The sequences index plot. The x -axis represents time from

4am (the day before) to 4am (the survey day) and y-axis the individuals.

Color encodes activities (top) of stops and transportation modes of moves

(bottom). Gray encodes the time period when the individual was traveling

(top) or stationary (bottom). The details panel (left) displays information

that describe the profile of individuals.

aged 65 and plus, either retired or unemployed are over-represented (red),

while children aged 17 and less, mostly school students are under-represented

(blue). We consider a profile to be over-represented if the count of individuals

in that group is higher than the average plus standard deviation of people in
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all groups taken together, and under-represented otherwise (i.e. lower than

the average minus standard deviation).

Space-time Cube

Despite the visual cluttering triggered by displaying a great number of tra-

jectories in the STC, Gonçalves et al. (2016) showed that this visualization

works well together with 2D representations. Therefore, considering its po-

tential to explore data in space and time simultaneously, we use a classical

3D representation of the STC, which height represents time and the 2D plan

depicts the space. This visualization is the result of a collaborative work with

Michael Ortega9 from the PIMLIG team of the Laboratoire d’Informatique de

Grenoble.

The spatial locations within our dataset are identified as named spatial

features. Therefore, we estimated seven GPS coordinates within each spatial

feature to map all possible activities performed in each location, which allowed

to encode line segments with the color that represents the activity performed

at stops. The choice of seven points intends to avoid overlapping segments

which activities were performed at the same spatial location and, therefore,

making it impossible to visually identify these activities. Furthermore, since

the survey’s goal consists on studying the mobility within a urban area, every

trip which origin or destination corresponds to locations outside the urban

area have these locations coded as a single random point that goes beyond

the geographical limits of the urban area under study. Since the coordinates

are the same for every trip under these conditions, representing it on the cube

would clutter the visualization. Hence, we removed these trips, and therefore,

the daily trajectories that included them from the data visualized in the STC.

We display space-time paths in a 5-minutes temporal granularity to better

detail stops and moves. Nevertheless, to maintain visual uniformity, the height

displays time as one-hour intervals from 4am (the day before) to 4am (the

survey day). Likewise, the spatial information correspond to the territorial

partition in small areas to give a more accurate representation of the spatial

shape of trajectories. Thematic information are encoded through colored seg-

ments between two spatio-temporal points representing the activities and/or

transportation modes (Chen et al., 2011). The user can choose whether the

color encodes activities, transportation modes or both. Further, we use gray

9http://iihm.imag.fr/en/member/ortega/
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to encode the temporal gaps when the mover was traveling from one place to

another if color encodes activities, and to encode the time intervals when the

mover was stationary if color encodes transportation modes (Figure 3.5.7).

Figure 3.5.7: The representative trajectories of the typology’s fourth

group. The 2D plane represents the territory of the urban area partitioned

into small areas, while the height presents time as one-hour intervals. The

color encodes activities of stops. The details panel (right) displays infor-

mation that characterized the movers.

To reduce visual cluttering, we display only the representative trajectories

of each group in the typology. By default, the trajectories of all groups are

displayed together, and color encodes activities. Filtering tools enable the user

to choose which trajectories to display based on users’ socio-demographic as-

pects (i.e. age, gender, work status), the typology’s groups (more than one can

be visualized together) and/or the criterion used to extract the representative

sequences. One can use interaction tools to rotate, translate, zoom in/out

the view, and to select trajectories directly touching on them, which provides

spatial information by highlighting the locations visited by the individual(s)

along the day. Further, if sequences index plots are being displayed in one or
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more analytical displays, the corresponding sequence(s) are also highlighted

in those views.

Users can also enable a details panel, which presents aggregate socio-

demographic aspects of represented individuals according to the groups they

belong (Figure 3.5.7 – right). Further to age, gender and work status, we

provide information on socio-professional categories and the use frequency of

certain transportation modes, which types depend on the data set of each

urban area.

3.5.2 TiltingMap

Animation is largely used to explore data over time regardless the underlying

visualization technique. It consists on presenting a sequence of time slices

one at the time analogously to the process of assembling image frames into

a movie file. Animations are preferable over time juxtaposing because they

enable the representation of multiple charts while saving screen space. They

have been shown to improve performance on memory-recall and map-reading

when compared to static graphs (Harrower, 2001). However, they are heavily

dependent on human’s memory, which make them sometimes difficult to follow

and understand the changes between data slices. Tversky et al. (2002) showed

that most of the so-called successful applications of animation were likely a

consequence of better visualization or study procedures such as interactivity

or prediction that are known to improve learning independent of graphics.

The same authors suggest the perceptual and cognitive limitations in the

processing of a changing visual situation reduces the benefits of animation.

Therefore, interactive techniques such as speed control, stop and start, zoom

in and out, are essential to effectively support knowledge extraction through

animation.

Although the use of multiple customizable analytical dashboards already

enables the temporal comparison of indicators through the juxtaposition of

visualizations displaying data for different time units, we understand that not

all users dispose of multiple displays to compare several indicators or spatio-

temporal combinations. One of our goals is to provide a flexible visual interface

to the user, which includes a range of interaction techniques from which the

user can choose the one that better fit their needs, e.g. based on cognitive

demand and/or technological setup. Taking into account the drawbacks of

animation, particularly the negative effects of animated choropleth maps, such
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as color blindness (Fish et al., 2011), we designed a movement-based animation

technique that aims to improve user experience by providing more control over

animation, starting and ending it at different points in time and leveraging

the position and orientation of their hands and wrists as a reference to recall

the spatial situation depicted by the map on each time slice.

We designed this movement-based interface, called TiltingMap, on the ba-

sis of a tablet which serve as actuating lever for the tilting movement that

controls time. The interface implements the metaphor of lenticular images in

a way that each time slice appears from a different viewing angle triggered by

tilting the device. Lenticular images are pictures made using the lenticular

printing technique, which combines a set of images with lenticular lenses to

produce printed images with an illusion of depth, or the ability to change or

move as the image is viewed from different angles.

One can create both 2D and 3D effects using lenticular foils, i.e. translu-

cent plastic sheets with one smooth side and another made of lenticules, which

are small convex lenses that allow the transformation of a 2D image into a va-

riety of visual illusions. Up to this date, the technique has been mostly used to

display information through the so-called true-3D, which allows one to display

3D effects without the use of specific devices such as glasses. In the literature,

we see applications of this technique on tourism through the interactive map

proposed by Buchroithner et al. (2010), which displays touristic places in the

region of Granatspitz Massif in the Eastern Alps, and the map of Manhat-

tan city by Wagman (2009), which shows the New York’s subway system, the

neighborhood, and the streets grid depending on the viewer’s angle.

Figure 3.5.8: Functionality of the flip technique. When tilted vertically,

different stripes of the map shift into the focus of the half-lenses. Source:

Dickmann (2010).

We focus here on the creation of 2D effects through tilting movements.

The simplest way to achieve this effect is by flipping lenticular cards, which
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technique works with sets of at least two images. Figure 3.5.8 depicts the

mechanics of this technique, which shows one image or the other according

to the tilting degree of the map. One can use several images to increase the

amount of information layers, which makes it suitable for comparing time-

cuts of the spatial development of a region (Dickmann, 2010). We replaced

the cards by a tablet, with smooth tilting movements to create twenty-four

angles corresponding to each time unit, while being careful to avoid blindness

caused by light reflection on the device’s screen.

We support the efficacy of our technique on the use of kinesthesia, which

enables humans to be aware of the position and movements of parts of our

body by means of sensory organs (proprioceptors) in the muscles and joints,

without relying on information from the five senses. Through kinesthesia, we

are able to tell where different parts of our body are located even if they are

not visible to our eyes. Since the kinesthetic experience can be more or less

conscious, our acting in the world is constantly mediated by our “motor mem-

ory”, which comprises motor skills and the kinesthetic memory of performing

them (Merleau-Ponty, 1996). Therefore, kinesthetic interaction technologies

enable to directly address the bodily potential in interactive systems, leverag-

ing the body’s awareness and the perception of movements to enhance, utilize

or develop one’s motor skills (Fogtmann et al., 2008).

Kinesthesia has shown advantages in virtual reality applications, where it

assists users to spatially orientate themselves inside virtual environments (Ma-

ciel et al., 2010), and improves object manipulation, which presents better

performance when supported by a handheld device guiding the user from the

physical space (Mine et al., 1997). Using tangible user interfaces reduces cog-

nitive workload, while physical mobility may increase user creativity, which

suggests that less constrained interaction styles are likely to improve users abil-

ity to think and communicate, while leveraging embodied cognition (Klemmer

et al., 2006). The latter assumes that one’s cognition is strongly influenced by

aspects of one’s body beyond the brain itself (Wilson and Foglia, 2017). Arvola

and Holm (2014) showed that device-orientation based panning on hand-held

devices is useful when engagement is considered important, which strengthen

the idea that more intensive bodily interaction can be more engaging. Be-

sançon et al. (2017) explore the possibility of using both tactile and tangible

input for fluid dynamics data visualization using a portable, position-aware

device, which was better appreciated by the users than a traditional mouse-

and-keyboard setup.
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Figure 3.5.9: The interactive styles of TiltingMap implemented on the

basis of accelerator and gyroscopes inputs. Following the assumption that

mobility patterns repeat themselves daily, we use a circular tilting move-

ment to control time through a timewheel representation (top). We also

provide a linear tilting movement to control time, due to the fewer degrees

of freedom this movement requires compared to the circular one, and the

familiarity of users to timelines (bottom).

Implementation We used a combination of accelerators and gyroscope input

sensors embedded in the tablet to determine the inclination angle, which is

mapped to one of the twenty-four time units on the time picker. Following

the assumption that human mobility patterns repeat themselves daily (at

least during weekdays), we provide a time picker in the shape of a timewheel,

which is controlled by tilting the tablet in a circular way (Figure 3.5.9 –

top). Nonetheless, our prospect users are well accustomed to timelines, which

corresponding tilting movement leverage fewer degrees of freedom than the

circular one. Therefore, the technique can be used to control time either

through a circular movement or a linear one, tilting the tablet from left to right

and contrariwise (Figure 3.5.9 – bottom). The latter is, however, limited by

not providing continuity to represent the repetitive property of patterns, since
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one should incline the device back to return on a certain time unit, instead of

keep performing the movement as for the timewheel.

3.5.3 Interactive Exploration

Like most visual analytical systems, our visualization approach follows the vi-

sual information seeking mantra – overview first, zoom and filter, then details-

on-demand – proposed by Shneiderman (1996), who defines a set of interactive

tasks to support information visualization, which include:

• Overview: gain overview of the entire collection;

• Zoom: zoom on items of interest;

• Filter: filter out uninteresting items;

• Details-on-demand: select an item or groups and get details when needed;

• Relate: view relationships among items;

• History: keep a history of actions to support undo, replay, and progres-

sive refinement; and

• Extract: allow extraction of sub-collections and of the query parameters.

As mentioned earlier, our system comprises multiple displays, each one

embedding an analytical dashboard that can hold up to four multiple views

(see Figure 3.5.10). Further, we extended our TiltingMap interface into a

control unit that provides interaction with visualizations displayed over every

dashboard using tactile and tangible input. The control unit displays the map

view or the STC upon choice, which displays data information and supports

tactile input to interact with other maps and charts on the dashboards. Each

control unit comprises four interchangeable interactive interfaces, defined as

follows:
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Input

spatio-temporal explorer

trajectory explorer

the data selector (tab-based menu)

All the concerned views
The view on the chosen window

The selection affects:

Dashboard #1 Dashboard #N

Control Unit

Touches
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Space Time Thematic 
Attributes Trajectories

history panel

Figure 3.5.10: The overall structure of eSTIMe’s interactive visualization.

A mobile device serves as a control unit for interacting with analytical

dashboards through four interchangeable interfaces: the data selector for

opening, closing and modifying indicators; the spatio-temporal explorer

for querying indicators over different spatial locations and time units; the

trajectory explorer for visualizing and exploring daily trajectories; and the

history panel that records user activity.

• the data selector, which exists in two formats:

– a tab-based menu, where tabs comprise four “windows” (such as the

dashboard interface) for directly managing the visualization and

indicators on the connected dashboards. These windows contain

each a dropdown-based menu to display and modify indicators, and

a set of widgets to interact with the current displayed visualization

(Figure 3.5.11); and
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– a navigation bar manages the visualizations and indicators on the

control unit interface (i.e. the map and the STC), and the selection

of datasets and territorial partitions. The modifications regarding

the latter two affect all displays, which means that it restores the

visualizations previously opened with the selected dataset and/or

territorial partition, while removing the ones that do not match the

selection.
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Current Visualization

1. Information
2. Clear View
3. Save as Image
4. Freeze Time
5. Freeze Space
6. Freeze Zoom
7. Change Location(s)

From left to right

Figure 3.5.11: The layout of each tab in the tab-based menu supports four

windows, each one comprising a dropdown-based menu (A-I) for building

and visualizing indicators, and a set of widgets (1-6) to interact with the

current visualization on that window.

• the spatio-temporal explorer, which serve as support to build and inter-

act with indicators, changing them according to different districts and

time units, or activating the details-on-demand functionality. A map

provides the geographical information and an interactive timeline dis-

plays time as hours from 4am (the day before) to 4am (the survey day),

which serves as a support for time unit selection by means of animation

(see Subsection 3.5.2) or direct touch;

• the trajectory explorer, which comprises the STC and serves as visu-

alization and exploration of daily trajectories. It is synchronized with

sequences index plot to simultaneously analyze the shape and extent of

trajectories and the temporal order of events; and
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• the history panel, which keeps a record of the user activity within the

environment, and can be used to undo/redo actions and to further un-

derstand the analyst’s reasoning by reviewing their usage of the system

(see Subsection 3.5.4).

A complete setup of our visualization interface requires a Control Unit and

at least one dashboard, which synchronization is handled by a WebSocket-

based server (see Subsection 3.5.5 for more details). The interaction happens

through a one-to-many relationship from the control unit towards the dash-

boards (Figure 3.5.10). In a simple setup, the Control Unit could be used

stand-alone, in which case the user would be able to explore indicators of

presence dynamics and daily trajectories. In order to visualize and explore

the remaining indicators, one must add at least one analytical dashboard by

instantiating the application in a conventional display and associating it to

the control unit by opening a new tab on the tab-based menu.

The user interaction follows the activity diagram depicted in Figure 3.5.12,

which is defined to each sub-menu in the control unit. The activity flow starts

upon a user input and finishes once the system made the action triggered by

the input. Most actions are only applied to a chosen window, such as open a

view, modifying the displayed indicator, and downloading the visualization as

image (Figure 3.5.12 – green boxes). However, a few actions affect the whole

environment (i.e. every associated dashboard and the control unit itself), such

as changing the dataset and territorial partition, undo/redo actions, and selec-

tion operations of spatial locations, time units and trajectories (Figure 3.5.12

– yellow boxes).

Further to the action being local or global, it has two types: (1) the ones

that users can apply at any moment regardless whether a visualization is being

displayed or not, and (2) the ones that can only be applied to a visualization.

Regarding the first type of action, one can use an event from the history panel

for restoring the visualizations previously displayed on every or a particular

dashboard, and change the dataset and territorial partition with which they

want to work. Finally, they may display a visualization from the navigation

bar or one of the dropdown-based menus on the tab-based menu.

The map view can represent a variety of indicators describing the presence

and absence of movers over the territory, while the remaining views represent

only a particular indicator. Therefore, upon a view selection (Figure 3.5.11A),

the default behavior of the system is to display either an empty map or the
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corresponding indicator aggregate on time, space and/or thematic dimensions.

A second step is required for the map view, where the user selects one of the

following indicators: presence of movers, fluctuation, density or attractiveness

(Figure 3.5.11B), which data is by default aggregate over 24 hours. Regardless

the visualization, upon an indicator selection the system replaces the displayed

data by the one corresponding to the indicator. For maps, the same behavior is

expected upon the selection of a different representation of data (i.e. quantity

or ratio).

The user may also freeze the spatial or temporal dimensions of one or mul-

tiple views (Figure 3.5.11 – 4-5), while the others preserve spatio-temporal

animation. This approach enables comparison of indicators through time jux-

taposing, which allows one to display side-by-side multiple versions of an in-

dicator for different time units and/or locations.

The preselected values for spatio-temporal aggregation and thematic infor-

mation of every indicator can be modified at any time, which triggers a filtering

action. Upon a time unit selection, via direct touch or animation, the data

and details-on-demand of every view are updated accordingly: if the temporal

dimension is not frozen, the system replaces the data on maps, flows diagrams

and the pie chart of mobility wheels, and place the time bar over the referred

time unit on state distribution and sequences index plots. Picking a location

on the map reveals the actual value of the indicator displayed on a map view,

and highlight the ribbons connected to that location on flows diagrams when

the spatial dimension is not frozen, while also presenting detailed information

on flows exchanges when the details panel is enabled (Figure 3.5.11I). The

“change location” widget (Figure 3.5.11 – 7) allows one to modify the spa-

tial location(s) for which the indicator was initially built without changing

spatio-temporal aggregation and thematic attributes already displayed. Upon

tapping the widget, the system shows the map where the user may choose the

new location(s) or cancel the action. The former will update the data on the

visualization accordingly. The spatio-temporal interaction through the map

and timeline modifies all the indicators on every connected dashboard, while

using the widget requires one to choose a specific dashboard and window,

where the indicator should be modified.

Finally, since producing reports is a standard practice within exploratory

analysis, we provide two functionalities to enrich the report: a snapshot func-

tion to export the views as images (Figure 3.5.11 – 3) and a mechanism to

display details on the data.
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Figure 3.5.12: Overview of eSTIMe’s activity flow.
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3.5.4 History of User Activity

Further to allowing undo, replay, and progressive refinement actions, keeping

the interaction history of an user inside the visualization interface produces

provenance information, which can help to describe the process of the anal-

ysis, revealing discovered insights and the users’ reasoning that led to these

insights (North et al., 2011). Xu et al. (2015) define provenance information

via a four-level hierarchical model, where the bottom-level consists of low-

level user interactions such as mouse clicks and keystrokes, which have little

semantic meaning. The next level up consists of actions, which are analytical

steps such as querying the database or changing the zooming level of a data

visualization. Further up are the subtasks, which are the analyses required

to reach the sense-making goal, which in our case refer to the user queries

applied to indicators. The top level shows the task – the overall sense-making

undertaking – which in our case is “analyze daily urban mobility”.

Our framework provides a exploratory visual analysis of multidimensional

data describing daily urban mobility, which combined with our interactive ap-

proach allow users to produce diverse analysis workflows that allow to answer

the same sense-making question, but also enable many other discoveries in

the process. For instance, understanding whether users explore the temporal

variation of an indicator using animation or juxtaposing and how this techni-

cal choice may or may not affect the outcomes could be relevant to improve

and even to propose appropriate workflows of analysis.

Although we could not address analytic provenance in the context of this

thesis, we did provide a history panel (Figure 3.5.13) within our visualization

interface that record relevant actions to understand the reasoning of analysts

in a further study. The recorded actions are defined as follows:

• view opening/closing ;

• attributes modification, which describes a change of indicator, thematic

and spatial data, displaying/hiding details and filtering by typology’s

group;

• environment restoring, which refers to undo/redo operations through

an episode, by restoring a dashboard or the entire environment, i.e.

affecting the control unit and every connected dashboard, to the event’s

date;
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• global settings, which describes changes that affect the entire environ-

ment, such as changing the territorial partition or the data set;

• interactive view switching, which refers to the action of switching be-

tween map and STC on the control unit interface.

Figure 3.5.13: The history panel of control unit A, which dashboard B is

associated with. Each window has its own history, which records actions

of opening/closing a view, attributes modification, environment restor-

ing, global settings and interactive view switching. A menu is available

over each episode (red dashed rectangle), allowing the user to restore the

dashboard or entire environment to the time of that event, or to delete

that event or all events from the corresponding window or dashboard from

history.

Each historical episode contains the date and time when it happened, a

symbol representing the type of action, and information of currently displayed

elements in every dashboard. Each analytical dashboard and window has its

own history, which records actions of opening/closing a view, attributes modi-

fication, environment restoring, global settings and interactive view switching.
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A menu is available over each episode (red dashed rectangle), allowing the user

to restore the dashboard or entire environment to the time of that event, or

delete that event or all events from the corresponding window or dashboard

from history. Up to this date, this information is used for undo/redo actions

and for recovering the visualization setup on a later date. However, further

analysis on the collected data could easily allow one to understand the analyst

reasoning through the collected information, since we can know exactly where

and when a visualization was opened, closed, modified, and the modification

types.

3.5.5 Technical Aspects

Dashboard #1 Dashboard #N

Pre-treatment of data (offline)

➢ Trips (sav, csv, xlsx)
➢ Territorial partitions (shapefile)

➢ Geographical features (geojson)
➢ Presence indicators (csv)
➢ Travel flows (json)
➢ Activity patterns (csv)
➢ Daily trajectories (csv)
➢ Individual profiles (csv)

Input

Output

TraMineR
Flows

Visualization (online)

Control Unit

STC server

eSTIMe server

Figure 3.5.14: The working flow of eSTIMe. Firstly, the data goes through

a cleaning and statistical treatment to calculate the mobility indicators.

Secondly, the output data are visualized through Web-based technologies.

The application can be instantiated multiple times simultaneously, with

each setup comprising a control unit and at least one dashboard, which

communication is managed by a central Websocket server. The control

unit communicates yet with a second server, which provides and manages

the space-time cube.

Figure 3.5.14 presents the working flow of eSTIMe, which has two phases:

data treatment and visualization. The former is performed using the free R

statistical and graphical environment (R Development Core Team et al., 2011).
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Further to the functionalities provided by the Tidyverse package (Wickham,

2017) for manipulating data, we particularly use the Flows (Giraud and Beau-

guitte, 2016) and TraMineR (Gabadinho et al., 2011) packages to, respectively,

extract the matrices of flows and the typology of activity patterns. The input

of our scripts are the raw data from each survey, which might take different

file formats (e.g. sav, xlsx, shapefile), describing the individual trips and the

different territorial partitions provided in the data. We locally store the out-

put data as geojson files for geographical features, json for flows data, and csv

for the remaining.

The visualization is almost completely developed on the basis of web tech-

nologies (i.e. Javascript), except for the STC, which uses Python and the

OpenGL library for rendering the 3D image. We use D3 (Data-Driven Doc-

uments) and Leaflet libraries to generate charts and cartographic representa-

tions, respectively. The map tiles are provided by the Mapbox Styles API 10.

Although eSTIMe can be launched standalone on the tablet, where the user

can explore presence dynamics indicators and daily trajectories, a complete

setup consists of a control unit and at least one dashboard. A central server

(i.e. eSTIMe server) implemented in Java and handled by the Apache Tomcat

software, a free and open-source cross-platform Web server software11, man-

ages the communication between a control unit and its associated dashboards.

Further, the control unit communicates with another server (i.e. STC server)

implemented in Python using the gevent-websocket project12, which provides

and manages the STC visualization.

The current version of our prototype enables one to instantiate eSTIMe-

several times simultaneously. However, the exploration of daily trajectories is

limited due to the STC being only available for one of them at the time. eS-

TIMe can be used independently of the STC, which only limitation is that

one would not be able to visualize daily trajectories in space and time, but

rather to explore them through the sequences index plot.

10https://docs.mapbox.com/api/maps/#styles
11https://tomcat.apache.org/
12https://pypi.org/project/gevent-websocket/
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3.6 Use Case Scenarios

To demonstrate the usage of our visual and interactive tools, we describe the

mobility and presence patterns of people within the great regions surround-

ing different metropolitan areas to understand the relationship between the

metropolis and its adjacent territories. At the time of this thesis, we did not

have access to a coarser spatial granularity than polling districts where to

represent the dataset of Rennes region, which territorial partition would ease

the exploration of such relationship by highlighting the metropolitan terri-

tory. Therefore, the scenarios hereafter are built through the exploration of

Lyon and Grenoble’s datasets which derived indicators are described over a

spatial granularity of intermediate and large areas. Both metropolitan areas

are located in the same region of France, Auvergne-Rhône-Alpes. Lyon is the

regional capital and the second biggest metropolis after Paris, which surveyed

territory has a population of around 2.2 million people. Grenoble is located

at the French Alps’ foot and is an important European scientific center, which

surveyed territory includes a great mountain area and has a population of

around 800,000 people.

3.6.1 Scenario 1: The reasons driving human mobility

This scenario investigates the reasons that drive the daily mobility of peo-

ple within the urban area of Grenoble. The studied territory is particu-

larly shaped, with great part of towns and villages located on the mountains.

Thereby, we start the analysis by looking at the attractiveness indices of dis-

tricts in the set of intermediate areas (Fig. 3.6.1a), which territorial partition

allows to identify attractive locations within the metropolis. As expected, we

notice that the two greatest agglomerations in the territory, i.e.Voiron and

Grenoble, have a capacity to accommodate along the day an amount of peo-

ple that is almost twice their population size. Within the metropolitan area,

we spot three strongly attractive locations: Grenoble’s city center; the area

around Meylan, where a science park is installed; and the University campus

area, which draws in about 250% more people than its population from 8am

to 4pm.

We pursue the analysis using a coarse spatial granularity, which represents

the region’s inter-municipalities, and can therefore helps us to understand the

relationship between suburban locations and the metropolitan area. In this
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territorial partition, the Metropolis area (as defined at the time of the survey)

is centralized in the map, partitioned as: Grenoble – the metropolis heart –

and Reste Agglo, which aggregate the remaining towns (Figure 3.6.1b – left).

The average presence fluctuation indicates that every location in the region

accommodate more people than their population over 24 hours. Nonetheless,

the variation of this indicator over time shows that while the metropolitan

area can be overpopulated by up to 11% at certain time units, the remain-

ing locations remain constantly underpopulated. Particularly, we observe this

phenomenon in the locations of Sud Grésivaudan (SGres) and Sud Grenoblois

(SGren), which over the day accumulate a number of people that is 8% and

39% above their population size, while hourly, they can have a number of

people up to 13% and 24% lower of their population size, respectively. Fig-

ure 3.6.1b shows specific time slots chosen to represent the temporal variation

of presence fluctuation across the territory, which shows a similar behavior in

both locations. They are both located on the mountains, which make them ge-

ographically far away from each other in terms of daily migrations. They also

differ in terms of distance to the Metropolis, with SGres located farther away

than SGren. Thus we continue the analysis seeking to understand whether

and why they depend on the metropolis.

The flow diagrams of SGres and SGren (Figure 3.6.1c) represent the ag-

gregate count of trips over 24 hours for all purposes and transportation modes

combined, which shows absence of movement between them along the day.

Further, they are responsible for only a small part of trips among the loca-

tions with which they are linked (SGres generates 5% of flows – 140,000 trips,

and SGren generates 4% – 108,000 trips). This small contribution might be

a consequence of their relationship with the metropolitan area, which is re-

sponsible for the majority of travel flows within the whole region. Following

a deeper exploration of both locations’ travel patterns, we observe that trips

concerning SGres are predominantly within the district (86.1%), and the few

interterritorial relationships are mainly with neighboring locations. Regarding

SGren, we notice that about half of trips are inner district (48.5%) and the

remaining are mostly going to or coming from the metropolitan area (43%).

These patterns do not vary much over time, which suggests that SGren is

highly dependent of the Metropolis, while SGres seems to be self-sufficient.

Analogous to the pattern observed for the whole region, the mobility rate is

roughly the same for SGres and SGren, where peaks of movement are observed

in the morning (from 8am to 9am), midday (from 11am to 2pm) and evening

(from 4pm to 7pm) periods, when up to 30% of people that travel inner or

towards both locations are on a move (Figure 3.6.1d depicts this pattern within
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SGren and SGen). In the morning, people travel mostly for business and

education, which pattern repeats itself short after the lunch pause, around

1pm. We observe that near midday (from 11am to 12pm) people mostly

travel home, where they supposedly have lunch. From 6pm people would

start traveling home or for leisure activities, which last up to 10pm.
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Figure 3.6.1: Scenario 1: Understanding the reasons that drive human

mobility within the great region of Grenoble metropolitan area.

During the morning, the movement peak is slightly less intense in SGres

than SGren, where the main reasons to travel are business and education, re-

spectively (Figure 3.6.1d). The trips regarding education are mostly inner dis-

trict, probably because the people concerned by these trips are children, which

respective schools are normally within their neighborhood. There is about the

same proportion of people traveling to escort someone in both districts, who,

based in the previous assumption, could be the parents accompanying their

children to school before going to work, since more than 25% of people per-
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form various trips for different reasons. Lastly, we observe that SGres has no

incoming trips during this period, suggesting that the 23% of people traveling

there for work are actually residents moving inner district. The scenario is

quite different regarding SGren (Figure 3.6.1e), where the 32% of people there

for business during the morning generate about half of the trips concerning

this location (54%). From these, about half are inner district (27%) and the

other half come from other locations, particularly from the metropolitan area

(19%).

3.6.2 Scenario 2: The reasons and transportation means un-

derlying traveling patterns

This scenario focuses on the transportation modes that underlay the mobility

patterns of the urban area of Lyon. We use the territorial partition into

large areas, which attractiveness indices show without surprise that the most

attractive district is the one where the airport is situated (Figure 3.6.2a).

The heart of the metropolitan area, which comprises the cities of Lyon and

Villeurbanne, and the commune of Chaponost are second placed with a slightly

lower index. The latter is known for its Roman aqueducts, which may be

appealing to tourists visiting the region.

The average presence fluctuation shows that these locations receive along

the day a number of people that is 30 to 50 percent greater than their popula-

tion size. Particularly, the airport area accommodate 50.6% more people than

its population. However, similar to the urban area of Grenoble, every loca-

tion receives in average more people than their population over the day, while

remaining underpopulated throughout different time units (Figure 3.6.2b).

Considering how the areas around Chaponost and the airport are attractive,

it is curious to observe that they are constantly underpopulated at different

hours of the day. From 8am to 5pm, the former accommodates a total number

of people that is equivalent to maximum 75% of the population. The airport

area is less visited in the afternoon, registering a number of people present

that is equivalent to maximum 84% of the population size. Finally, although

the urban core is overpopulated from 8am to 3pm, the number of visitors is

at the most 7% higher than the population size.

Both locations, Chaponost and the airport area, do not exchange flows

(Figure 3.6.2c), which is curious since the airport constitute an important

transport facility for the entire Auvergne-Rhône-Alpes region. Further they
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are responsible for only a small part of trips among the locations with which

they are linked, which is likely because the major part of trips is from or

towards the metropolitan area. The latter is responsible for around 34.6% of

outgoing trips from Chaponost and 45.6% of incoming and outgoing flows of

the airport area.

4pm - 5pm

11am - 12pm5am - 6am

(a) Attractiveness over 24 hours (b) Presence fluctuation per spatial location over time

Chaponost

Airport area

Metropolis

Lyon

(c) Total flows exchanges in the airport area over 24 hours and travel flows per trip purpose during peak hours

Travel flows for business from 
5am to 6am 

Travel flows for shopping from 
4pm to 5pm 

(d) Mobility rate per transportation mode
Airport area ChaponostGreat region of Lyon

Figure 3.6.2: Scenario 2: The reasons and transportation means underly-

ing traveling patterns within the great region of Lyon metropolitan area.
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Although the airport area does not have a high mobility rate in the morning

period from 5am to 6am (2.64%), this location seems overpopulated at this

time, having the equivalent to 1.13% more people present than its population

size. Our hypothesis is that the residents are still asleep while people are

traveling towards the airport to catch a flight or to work. Therefore, we

continue the analysis looking for understanding the reasons why people travel

there during this period. At the early morning, only 17% of the flows are

inside the district, while 64% are incoming flows from everywhere within the

region, which main reason to travel is business-related. In the afternoon from

3pm to 4pm, when the location has the lowest proportion of people present

with reference to the population (-16.67%), there are 44.5% of trips inside the

district and 26% of outgoing trips are towards the metropolis and neighboring

locations, predominantly for leisure and shopping, which 42% of outgoing trips

are towards communes in the metropolitan area (excluding the urban core).

Considering the imposed schedule by society for business and education,

the movement peak hours tend to be roughly the same across different territo-

ries, i.e. high mobility rate in the morning and evening, and moderate move-

ment at noon (Figure 3.6.2d). The commune of Chaponost does not have a

particular period of high mobility rate at midday, conversely to what we notice

for the whole region and airport area. Despite the automobile being largely

used throughout the whole region (49% of people), the population tend to

travel quite as much by walking (29%) and public transportation (17%) com-

bined. For the airport area and the commune of Chaponost, the automobile

is predominantly employed for traveling inside or towards the district, being

responsible for 76.2% and 67% of the trips generated by the airport area and

Chaponost, respectively. The latter has around 5% more people traveling in

by public transportation and walking than the airport area.

3.6.3 Scenario 3: The latent activity programs of daily mobil-

ity

As mentioned earlier, we performed a cluster analysis based on the Dynamic

Hamming Distance method to extract groups of daily trajectories according

to similar activity patterns of 14,821 individuals from the dataset of Grenoble

and 25,202 from the dataset of Lyon. Therefore, this scenario discusses the

typology of activity patterns resulting from these datasets, and highlights the

similarities and differences between travel-activity patterns of both regions’

populations.
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Figure 3.6.3: Scenario 3: The travel-activity patterns resulting from daily

trajectories of individuals within the urban areas of Grenoble and Lyon.

The typology distinctly extracts three groups from both datasets: full-time

employees, full-time students and stay-at-home people (Figure 3.6.3a – pattern

1). The group of individuals with a full-time employment represents 26% and

29% of people in Lyon and Grenoble, respectively. They work in average from

8am to 6pm, with varying arrival and departure times, ranging from 6am to

9am and 4pm to 7pm, respectively. During the lunch break – between 12pm

and 2pm – the individuals who leave their workplace travel mostly home,

where we assume they have lunch, or elsewhere to perform leisure activities.

They are aged from 25 to 64 years, which most represented age range is 35 to

49 years old (43.6% of individuals).
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The group of full-time students represent a similar part of individuals in

both regions (around 22%). They seem to have a tight schedule, which arrival

time at school (about 79% of individuals, aged from 5 to 17 years) or University

(around 18%, aged from 18 to 25 years) would be the latest 8:30am. The

event distribution chart for this group shows that the estimated proportion of

people studying reduces from 97% in the morning to 80% in the afternoon,

when people would go home or chain up leisure activities (Figure 3.6.3a –

pattern 2). The third group represents people that tend to stay at home

during the whole day, performing temporally sparse and short trips for leisure

or shopping activities (Figure 3.6.3a – pattern 3). This group constitute 36%

of the population in both regions, whom are mostly retired, aged 60 years or

more.

The spatio-temporal visualization of representative patterns in each group

(Figure 3.6.3a – bottom) shows that people would travel longer distances for

business than education purposes. According to the previous scenarios, this

spatial pattern is expected, since the suburban population would likely move

towards the metropolitan area for work, resulting in longer trips, while the

majority of individuals in the students class are minors, which means they

attend elementary, middle or high schools located in their respective neigh-

borhoods. Further, the space-time paths of individuals in pattern 3 resembles

straight vertical lines, indicating that their trips are not only short in time,

but also in distance.

These are nonetheless expected patterns considering that most people are

usually employed, studying or retired. We discuss now the profile and traveling

patterns of individuals that compose a group of “atypical” daily trajectories

in both regions. They present a similar pattern in terms of the time they

leave and return home, yet different activities are performed outside their

residence location. These people would spend their daily time either at home

or studying, and the evening and night time would be predominantly dedicated

to leisure in Lyon, while in Grenoble the individuals are evenly split between

business and leisure activities (Figure 3.6.3b). Such activity pattern can be

explained by individuals profile, whom are mostly students (52%) and retired

people (17%) in Lyon, while in Grenoble, there are more individuals in a

full-time employment (53%) and only 27% of students.
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3.7 Summary

In this chapter, we presented the visualization framework we propose to assist

the visual analysis of urban mobility data. Since we focus on daily movement

patterns, we use data from a household travel survey, which records individ-

ual trips of a population over 24 hours, from 4am (the day before) to 4am

(the survey day) within an urban area. The trips are semantically enriched

with information on travel’s purposes and transportation modes. Further, the

data describes people through information such as age, gender, occupation,

socio-professional category, and place of residence. Thereby, the data allow

to address the daily urban mobility phenomenon through the analysis of the

variation of indicators derived from three objects of interest:

• the travel flows and trips, which reveals the urban structure through the

aggregation of trips between pairs of locations at different time units;

• the territory and population dynamics, which address the variation of

presence and absence of people in different locations over time; and

• the daily trajectories, which are defined as the space-time path (i.e. the

sequence of activities and trips) of an individual along the day, and

allows to understand how the individuals schedule their activities over

time according to the spatial context of the territory.

To enable these analyses, we followed a four-step workflow (Figure 3.7.1).

Firstly, we prepared the raw data to enable the extraction of information ma-

trices of flows, presence and sequences. Secondly, we used these matrices to

derive a set of indicators that describe our objects of interest from various

spatio-temporal granularity levels and thematic attributes. Thirdly, we pro-

posed a system of tasks based on the framework of Andrienko et al. (2011)

to guide the querying of indicators over the Cartesian product of four dimen-

sions S × T ×O × A. The proposed questions can be synoptic, targeting the

whole set of reference (e.g. all spatial locations or time units), or elementary,

targeting only one element (e.g. how are the flow exchanges between a pair of

locations at a particular time unit). The system is generic enough to target

any subset of locations, time units, objects, and thematic attributes. However,

the current prototype supports only the querying of indicators over predefined

spatio-temporal aggregation and thematic categories.
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Conceptual Framework

Objects of Interest:
1. Trips and Travel Flows
2. Territory
3. Daily Trajectories

1. Data Preparation

Information Matrices

3. Querying

S ⨉ T ⨉ O ⨉ A→I

4. Interactive Visualization

Visualization Framework

Territory Daily TrajectoriesTrips and Travel Flows
2. Statistical Indicators and Typology

Object

Space

Time Theme

Figure 3.7.1: The four-step workflow followed to conceive the eSTIMe vi-

sualization framework.

Finally, we provided a visualization interface that assist the querying of

data through interactive maps and charts to support the representation of

indicators derived from our three objects of interest (Table 3.7.1) and their

exploration via multiple spatio-temporal granularity levels and thematic at-

tributes. Our system was designed to assist analysts who are not necessar-

ily transportation experts, which means they might not have the necessary

knowledge to extract indicators from the data, but they need the information

to support decision-making in urban planning, transportation offers, catas-

trophe or epidemics management, and so on. Therefore, eSTIMe’s interface

is flexible, customizable to allow the analyst to visualize any indicator that

is considered appropriate to the ongoing analysis, while exploring them over

different spatio-temporal granularity levels, and comparing them side-by-side

or through animation to reveal their variation over time.

The system can manage multiple displays, which provide as much space

as needed to thoroughly explore the data. Further, the system adapts it-

self to different technological setups, e.g., one can use the control unit on a

conventional display, when a tablet is not available, using mouse and key-
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Object of Interest Indicator Visualization

Travel Flows and Trips

Travel flows (per mode /

purpose)
Flow Diagram

Mobility Rate
Mobility Wheel; State

Distribution Plot

Attribute Share
Mobility Wheel; State

Distribution Plot

Territory

Presence (total / per

activity)

Choropleth and

Proportional Symbols

Maps; State

Distribution Plot

Presence Density Choropleth map

Presence Fluctuation

Choropleth and

Proportional Symbols

Maps

Attractiveness Choropleth map

Daily Trajectories
Typology of Activity

Patterns

Sequence Index Plot;

Space-Time Cube

Table 3.7.1: Summary of visual representations proposed for exploring the

statistical indicators and the typology of activity patterns.

board input instead of touches. These modifications remove the possibility

of animating time through the inclination of a device, but comparison is still

possible through time juxtaposing and the direct selection of time units on

the timeline.

To demonstrate the usage of our visualization and interaction tools to ex-

ecute the different types of analysis through our system of tasks, we presented

three use case scenarios that reveal the territorial dynamics of two metropoli-

tan areas in France, which differ in terms of geographical and economical

aspects. These scenarios allow us to establish the complementarity of indica-

tors, maps and charts on the discovery of new patterns or simply to highlight

well-known behaviors of a population.

Furthermore, we could demonstrate that our framework is generic enough

to enable the analysis of daily mobility data from different urban areas. Al-

though the data source is standardized, the datasets originate from different

survey formats, which implies some differences on how the data is collected

and structured (e.g., in the Grenoble dataset, arrival and departure time are
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stored as separated columns for hours and minutes, while for the other two

this information is concatenated into a single column per time). These small

modifications allowed us to establish a script of data treating that is generic

enough to process any HTS type of data.

The remaining of this thesis will focus on the user evaluations performed

to assess the usability and suitability of our framework. Four user experi-

ments were conducted with people of different profiles, such as age, gender,

and expertise level regarding human mobility. Furthermore, we performed

several demonstrations of eSTIMe to professionals on the domain, which al-

lowed us to better understand their needs, and the advantages and drawbacks

of our proposition according to the required cognitive effort, preferences or

limitations of analysts’ everyday work.





Chapter 4

User Evaluation

4.1 Introduction

The conception of our visualization interface was accompanied by a researcher1

with substantial knowledge on the domain of human mobility, and followed

an interactive cycle in five-steps (Figure 4.1.1), defined as follows:

1. the implementation step consists on developing a first prototype that

embeds the main visual and interaction tools, i.e. multiple synchronized

displays, and tactile and tangible interaction through a mobile device.

Particularly, the outcome of this step was eSTIMe 1.0, which enable the

exploration of urban mobility data through indicators of travel flows,

presence density and fluctuation, attractiveness, mobility rate and at-

tribute share (i.e. transportation mode).

2. the user evaluation step consists on evaluating the usability of our visual

and interaction tools through user participation. Particularly, we per-

formed four user evaluations, three of them followed a quasi-experiment

design without control groups, which aimed to evaluate the interface

as a whole, and one evaluation followed a formal experiment design to

compare the usability and suitability of our movement-based interaction

interface against traditional time animation methods.

3. the statistical analysis step processes the empirical data resulting of

these evaluations in order to accept or refuse the hypotheses that drove

each evaluation.

4. the hypotheses assessment step uses the outcomes of the statistical anal-

ysis and user feedback collected during the previous evaluation to accept

or refuse the hypotheses.

1Sonia Chardonnel, a researcher fellow at CNRS (Centre National de la Recherche Sci-

entifique, in French)
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5. the refinement step improve the visual and interaction tools of the proto-

type according to the previous experiment outcomes. Particularly, this

step was performed three times, twice to improve the whole interface

resulting on two other prototypes: eSTIMe 2.0 and eSTIMe 3.0, the

latter being the current version of our visualization interface.

Data

User	Evaluation Prototype Refinement

Statistical	Analysis

Prototype
Implementation

Hypotheses
Assessment

Results

Figure 4.1.1: The eSTIMe implementation cycle. Several user evaluations

were performed to progressively improve our prototype.

As mentioned earlier, it is difficult to get access to a group of experts on

the domain, specially to take part in a iterative evaluation process, which

requires a long term involvement. Therefore, we invited people from diverse

backgrounds to evaluate different aspects of the visualization. Overall, mainly

three types of users took part in our experiments, defined as follows:

• non-experts on the domain, which were mainly researchers on computer

science-related disciplines;

• trainees, which correspond to a group of people (students) involved on

disciplines of geography that address in-depth the subject of human

mobility; and

• experts, which correspond to a group of people with substantial knowl-

edge on the domain, working with human mobility data for many years

and on a daily basis.

The remaining of this chapter is organized as follows. Section 4.2 presents

the mutual material and methods to all user experiments. Section 4.3 describes

a first experiment performed with non-experts to evaluate the usability of
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eSTIMe 1.0 and whether the users would be able to control time via our

animation technique. Section 4.4 describes an experiment to evaluate the

performance of TiltingMap (TM) technique compared to traditional animation

for exploring presence dynamics indicators depicted through choropleth maps.

Section 4.5 describes an experiment performed with trainee users to evaluate

the usability of a refined version of our prototype (i.e. eSTIMe 2.0 ). Finally,

Section 4.6 describes a study performed with experts to evaluate the suitability

of eSTIMe 3.0, a refined and complete version of our visualization interface,

to explore daily urban mobility data through the three objects of interest.

4.2 Mutual Materials and Methods

The set of user-based evaluations performed during this thesis share the goal

of assessing the usability and usefulness of our geovisualization environment

throughout its several stages of development. Each experiment gathers feed-

back from users to improve our visual and interaction tools to achieve effec-

tiveness, efficiency and satisfaction while supporting the querying of data to

answer the domain-related questions.

Three experiments evaluate different versions of eSTIMe (i.e. an improved

prototype based on the outcomes and user feedback of previous experiments),

while one experiment specifically evaluates the usability of the TiltingMap

technique for time animation. Every experiment follows a similar protocol,

metrics and statistical analysis plan, which allows to suggest whether our

modifications were successful by comparing the same measures across experi-

ments.

Procedure

The experiments followed a standard procedure (Figure 4.2.1) divided in six

parts:

1. the terms and conditions agreement, which participants read and signed,

authorizing us to use their anonymized data and/or images produced

while undertaking the experiment only and exclusively in the context of

this research. They could participate of the experiment without allow-

ing the use of their image, in which case we would only use the data
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Socio-demographic 
Questionnaire

Learning

Socio-demographic information that allows to profile the 
participants.

The participant follows a sequence of interactive tasks to show 
them how to use the visualization system.

Trial

Post-test questionnaire Usability, workload, open feedback and other specific measures 
according to the experiment’s goals.

Introduction The evaluator presents the experiment’s goals and protocol, and the 
system under evaluation.

Terms and Conditions 
Agreement

The participants signed an agreement document authorizing the 
anonymous use of their data in the context of this research only.

The participant uses the system on their own to solve a set of 
analytical tasks, which, together with this phase protocol, are 
adapted according to the experiment.

Figure 4.2.1: The general experimental protocol followed by every user-

base evaluation.

generated by the participant without taking pictures of them while un-

dertaking the experiment;

2. the socio-demographic questionnaire, which gathers information on par-

ticipants’ age, gender, occupation, education level, and personalized in-

formation regarding their experience on the subject, and using visual-

ization systems and non-conventional interaction interfaces (e.g., tactile

and tangible input). We personalized the questionnaire according to the

context of each experiment;

3. the introduction, which comprises a presentation of the experiment goals

and protocol, and a demonstration of the visual and interaction tools

under evaluation. This phase takes around 10 to 15 minutes;

4. the learning phase, which consists of teaching the participant about how

to use the visual and interaction tools. Typically, the participant follows

a sequence of interactive tasks within the Control Unit interface such

as opening, closing and modifying the visualizations. We personalized

this phase according to temporal constraints, participants profile and

experiment’s goals;
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5. the trial phase, which comprises on using the visual and interaction tools

to complete a set of tasks. We adapted this phase’s protocol (i.e. order of

tasks, use of additional questionnaires, etc) and tasks type, complexity

and amount according to the experiment design and objectives. Fur-

ther, every quantitative data (i.e. completion time, response of tasks,

interaction aspects) are collected during this phase; and

6. the post-test questionnaire, which gather participant’s assessed system

usability and perceived task workload (Subsection 4.2 describes the used

metrics). The questionnaire also includes a field where the participant

may leave their critical opinion and suggestions regarding the visualiza-

tion system and/or the experiment itself.

Measures and Metrics

The usability of a system is defined as the level of suitability for the context

in which it is used (Brooke, 1996). According to ISO 9241-11:2018 (2018)

usability should cover the following aspects:

• effectiveness, which measures the extent to what users can achieve their

objectives with completeness and accuracy (Forsell and Cooper, 2014);

• efficiency, which measures the amount of effort (time spent or cognitive

load) expended in relation to the accuracy and completeness (Forsell

and Cooper, 2014); and

• satisfaction, which refers to users’ perceptions, feelings, and opinions

about the product (Rubin and Chisnell, 2008).

Overall Usability To measure the overall usability of our visual and inter-

action tools, we used the well-known System Usability Scale (SUS) question-

naire (Brooke, 1996), which consists of a ten-item scale giving a global view

of subjective assessments of usability. Each item correspond to a statement

covering one aspect of system usability (e.g., need for support, training, and

complexity). The method has become an industry standard (i.e. more than

1300 citations), due to being easy to administer, while providing reliable re-

sults both on large and small samples, and it is valid, i.e. it can effectively

differentiate between usable and unusable systems (U.S. Dept. of Health and

Human Services, 2006).
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The standard version of SUS (the one we used) contains items with mixed

tone – odd items have a positive tone, while even items have a negative tone.

We applied the questionnaire immediately after the trial, before any debriefing

or discussion to avoid bias. The respondent was asked to rate each item on

a 5-points Likert scale according to their level of agreement or disagreement

with it. To compute the overall SUS score, (a) each item was converted to

a 0-4 scale for which higher numbers indicate a greater amount of perceived

usability, (b) the converted scores were summed up, and (c) the sum was

multiplied by 2.5. This process produces scores that can range from 0 to

100 (Borsci et al., 2015).

Grade SUS score Interpretation

A+ 84.1 – 100
Excellent, i.e. high performance and

satisfaction; no improvements are necessary
A 80.8 – 84.0

A- 78.9 – 80.7

B+ 77.2 – 78.8
Good, i.e. good performance and satisfaction;

minor improvements could be put in place
B 74.1 – 77.1

B- 72.6 – 74.0

C+ 71.1 – 72.5
Satisfactory, i.e. average performance and

satisfaction; improvements are necessary
C 65.0 – 71.0

C- 62.7 – 64.9

D 51.8 – 62.6

Below average, i.e. inadequate performance

and satisfaction; major improvements are nec-

essary; borderline re-design

F 0 – 51.7

Inadequate, i.e. one cannot achieve perfor-

mance neither satisfaction using the system;

the design must be retaught

Table 4.2.1: The Curved Grading Scale (CGS) proposed by Sauro and

Lewis (2016) for assigning grades to usability as a function of SUS scores.

In the experiments with a temporal constraint, we assessed usability via the

UMUX-Lite questionnaire (see Appendix D), which corresponds to a reduced

alternative to the SUS questionnaire that uses the two positive items of an-

other reduced alternative, the Usability Metric for User Experience (UMUX).

To compute the overall UMUX-Lite score, (a) we subtract 1 from each 5-point

item, (b) add them together, and (c) multiply by 100/12. Then, we apply a

regression equation proposed by Lewis et al. (2013) to bring the UMUX-Lite

score into correspondence with the SUS score.
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We interpreted the usability scores based on the Curved Grading Scale

(CGS) proposed by Sauro and Lewis (2016) to assign grades as a function

ranging from F (absolutely unsatisfactory) to A+ (absolutely satisfactory)

(Table 4.2.1). The authors analyzed data from 446 studies and more than

5,000 individual SUS responses, from which the overall mean score of SUS

was found to be 68 (SD = 12.5) – the center of the range for a grade C.

Response Accuracy In each experiment, we asked participants to complete

a set of domain-related tasks based on the system of tasks proposed in sec-

tion 3.4, which would overall require them to discover or describe mobility

patterns of a particular population over space, time and thematic dimensions.

Therefore, we use the response accuracy (i.e. the exactitude of the mobility

pattern description according to the tools they dispose) to measure the effec-

tiveness of our visual and interaction tools. The responses were subjectively

scored on a 10-points scale ranging from 0 (totally inaccurate) to 1 (totally

accurate) (i.e. 0, 0.1, 0.2, ..., 1), according to the responses formulated by

the expert who designed the tasks while using the same visual and interaction

tools used by the participants. The scores are multiplied by 100 to describe

accuracy as the percentage of correct answers.

Completion Time We measured the amount of effort required to achieve

accuracy through the completion time (total and per task), amount of inter-

actions, and perceived task workload. The completion time and amount of

each interaction type were automatically collected via a questionnaire inter-

face embedded in the Control Unit that mainly presents tasks and, eventually,

collect responses. The participant was asked to read the task on this interface,

and tap on a starting button that recorded the timestamp that marked the

beginning of the task. After completing each task, they would return to the

questionnaire interface and proceed to the next task, which action recorded

the timestamp that marked the end of the task. During the whole process

of completion the task, their interactions with visualizations (e.g., zooming

in/out, time units selection, opening/closing) were recorded.

Workload We gathered users self-reported workload through the NASA Task

Load Index (TLX) (Hart and Staveland, 1988), which is a multi-dimensional

rating procedure that provides an overall workload score based on a weighted

average of ratings of six workload-related factors (sub-scales):
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• Mental Demand (MD), which refers to the amount of mental activity

that was required (e.g., thinking, deciding, calculating, remembering,

looking, searching);

• Physical Demand (PD), which refers to the amount of physical activity

that was required (e.g., pushing, pulling, turning, controlling, activat-

ing);

• Temporal Demand (TD), which refers to the amount of pressure felt due

to the rate at which the task elements occurred, i.e. was the task slow

and leisurely or fast and frantic?

• Own Performance (OP), which refers to how successful one think they

were in doing what they were asked to do and how satisfied they were

with what they accomplished.

• Effort (EF), which refers to how work one had to work (i.e. mentally

and physically) to accomplish their level of performance; and

• Frustration (FR), which refers to how insecure, discouraged, irritated,

and annoyed versus secure, gratified, content and complacent one felt.

The evaluation procedure consists of two parts: a pairwise comparison of

factors, where the respondent should choose the member of each pair that pro-

vided the most significant source of workload variation in the task, and rating

scales, where the respondent should rate in a 100-points scale the magnitude

of each factor in the task they just performed. In order to reduce complexity

when rating each factor, we use a 10-points scale and multiply the rating of

each statement by 10.

To compute the workload score of each sub-scale, (a) we tallied the factors

selection in the pairwise comparison, and (b) multiplied the result by related

statement’s rating (Figure 4.2.2). This process produces scores that can range

from 0 to 500 for determining the importance of each workload-related factor.

To compute the overall workload score, we sum the scores of sub-scales and

divided it by 15, which is the number of pair-wise comparisons. This process

gives scores that can range from 0 to 100.

In the experiments with a temporal constraint (i.e. maximum time par-

ticipants could grant to the experiment), we applied a modified version of the

NASA TLX questionnaire that consists on eliminating the weighting process

all together. This version is referred to as Raw TLX (RTLX), and it has
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been shown to be as sensitive as the original version (Hart, 2006). The scores

per factor correspond to the rating value on each statement. To compute the

overall workload score, we average the scores of each factor. Analogous to

the original version, we use a 10-points scale for the ratings, which result is

multiplied by 10 to produce scores that can range from 0 to 100.

a) Pairwise comparison of factors
Instructions: select the value of each pair that provided the most significant source of workload variation in the task

b) Rating scale
Instructions: select the value on each scale that represents the magnitude of each factor in the task you just performed 

PD / MD

TD / MD

OP / MD

FR / MD

EF / MD

TD / PD

OP / PD

FR / PD

EF / PD

TD / OP

TD / FR

TD / EF

OP / FR

OP / EF

EF / FR

MD 3
PD 0
TD 5
OP 1
FR 3
EF 3
Sum 15

Tally of importance 
selections

Demands 1 2 3 4 5 6 7 8 9 10
MD X
PD X
TD X
OP X
FR X
EF X

Rating Weight Product
30 (3x10) 3 90

10 0 0
60 5 150
40 1 40
30 3 90
40 3 120

Sum 490
Weights 15

Mean 
Score

32 
(Sum/Weights)

Figure 4.2.2: The process of computing the mean workload score from the

NASA-TLX questionnaire. Adapted from: Hart and Staveland (1988).

The questionnaires were applied either at the post-test phase of each exper-

iment or right after each experimental condition, when a formal experiment

were in place. Exceptionally, we have not measured self-reported workload

during the evaluation of the TiltingMap technique due to temporal constraints,

i.e. we tested many experimental conditions during a one hour maximum in-

terval.

Statistical analysis of empirical data

The outcome of user experiments are qualitative and quantitative data col-

lected through the aforementioned metrics. This information can help us to
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accept or refuse the hypotheses that drove each experiment. Therefore, we

subjected the data to a statistical analysis process to compare the results

between groups, when possible. We set a 95% confidence level to determine

whether the difference of means between groups is statistical significant. How-

ever, since our experiments involve human beings and the data is mostly sub-

jective, we sometimes accept a 90% confidence level in the difference of means

in order to produce hypotheses that could explain the results.

We subjected the variables to a decision diagram to decide which statis-

tical test was appropriate to compare two or more variables (Figure 4.2.3).

Firstly, we performed a Shapiro-Wilk Normality test (Ghasemi and Zahedi-

asl, 2012) of the null hypothesis that verifies whether the data come from a

normal distribution, and a Fligner-Killeen test (Conover et al., 1981) of the

null hypothesis that verifies whether the variances of each group are the same.

In case the data pass both tests (i.e. p < .05) we performed a parametric test

through a One-Way ANOVA (Quirk, 2016) test for comparing more than two

groups, or a paired/unpaired (depending on whether the data come from the

same individuals or not) Two-Samples t Test (Student, 1908) for a comparison

between exactly two groups.

p	<	.05 One-Way	Anova
of	Variances
(ANOVA)

paired
	samples?

groups	>	2 Yes
Yes

No

groups	>	2groups	>	2 No Yes

Friedman	Rank
Test

Yes

Kruskal-Wallis
Test

Yes

NoNo

Parametric	Tests

Non-Parametric	Tests

Normality	and	Homogeneity	Tests

Post-hoc	Test

Post-hoc	Test

No

Nemenyi	Test

Wilcoxon
Signed-Rank

Test

Wilcoxon
Rank	Sum

Test

Tukey's	HSD
Test

Shapiro-Wilk
Normality	Test

Fligner-Killeen
Test

Welch	
Two-Sample	

t	Test

Figure 4.2.3: The workflow for performing the statistical analysis of the

output data of the user studies.

Otherwise, when the data do not present a normal distribution nor equal

variances, we performed a non-parametric test. In case the comparison involve
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more than two groups we performed a Friedman Rank test (Friedman, 1937)

for paired or a Kruskal-Wallis test (Kruskal and Wallis, 1952) for unpaired

groups. To compare the difference of means between exactly two variables we

performed a Wilcoxon (Wilcoxon, 1945) signed-rank test for paired, or a rank

sum test for unpaired groups. Further, we ran post-hoc tests in case we find

statistical significance when testing three or more groups: Tukey’s range test

after One-Way ANOVA, and Nemenyi test after Friedman and Kruskal-Wallis

tests.

For the sake of reproducibility, the output data of the user studies and

the scripts used to analyze it, including an automated version of our decision

diagram are available at https://gitlab.com/amenin/estime---user-st

udies. The whole data was processed and analyzed using the R statistical and

graphical environment (R Development Core Team et al., 2011). Particularly

we used tidyverse (Wickham, 2017) and plyr (Wickham, 2011) packages for

structuring the data, and ggplot2 (Wickham, 2016) package for generating

graphical charts. The stats package, which is part of R, provide the majority

of statistical methods mentioned above. Further, we use the post-hoc Nemenyi

test functions provided by the PMCMRplus (Pohlert, 2020) package, and the

glht function provided by the multcomp (Hothorn et al., 2008) package for

running the Tukey’s range test.

4.3 Experiment I: eSTIMe v1.0

In this experiment, we assessed whether our first prototype, eSTIMe v.1.0,

was capable to assist users on solving analytical tasks regarding the discov-

ery/identification of daily urban mobility patterns. The visualization and

interaction tools available enabled an analysis at the population level through

indicators that describe the territory, travel flows and trips. However, the

thematic dimension of data was not yet fully integrated, supporting only the

exploration of attribute share indicator per transportation modes. We also

investigated how users employ the TiltingMap (TM) technique to explore the

variation of indicators (i.e. derived from the presence matrix) over time, and

which interaction style they prefer (i.e. circular or linear tilting movement).

https://gitlab.com/amenin/estime---user-studies
https://gitlab.com/amenin/estime---user-studies
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4.3.1 Visual and Interaction Tools

Regarding the visualization components, eSTIMe v1.0 contains a first design

of the flows diagram, the mobility wheel, and the map view. As an attempt to

reduce bias during the experiment, we identified the locations through numer-

ical codes (i.e. defined in the survey), instead of their names. At this stage,

we visualized flows through a basic chord diagram design (Figure 4.3.1a),

which arcs represent color-coded spatial locations. The ribbons’ thickness

encodes flow magnitude, and color indicates the flow origin. For instance,

Figure 4.3.1a (right) highlights the outgoing and incoming flows of location

2, where the navy blue ribbon connecting locations 1 and 2 indicates an in-

coming flow from location 1, while the green ribbon (same color as location

2) represents an outgoing flow from 2 to 7 (i.e. incoming flow of location 7).

The mobility wheel consists of a two-part chart (Figure 4.3.1b). The first

component is the wheel itself, which outermost ring encodes mobility rate

via color intensity and the innermost ring depicts the transportation modes

share per time unit. The set of bar charts displayed side-by-side next to the

wheel allow one to zoom into the transportation modes distribution, and to

compare them across six time units (Figure 4.3.1b – right). These charts

are progressively displayed/removed as the user finds it necessary by directly

selecting time units on the time picker. A list of valid charts (i.e. the spatial

locations for which they are built) is available close to the time picker, so the

user can choose on which mobility wheel to display the bar chart. Upon a bar

chart removal, the remaining plots are re-arranged to fill the leftmost empty

tiles.

The Control Unit contains a map view, where indicators of attractiveness,

presence density and fluctuation can be visualized through a choropleth map

(Figure 4.3.2e). We used a side navigation menu (Figure 4.3.2a) to manage

the visualizations on each display (i.e. control unit and dashboards). This

menu has three hierarchical sub-menus: territorial partition, indicator, and

visualization spaces (i.e. analytical dashboards), and two buttons: memory

and submit. We allowed the user to save the visualization at its current state

(i.e. regarding territorial partition, spatial location, time unit) by using the

save icon under each indicator. A list of these recordings was available by

clicking on the memory button. Further, the information icon provided a

detailed description of the corresponding indicator. To display/remove an

indicator from the control unit or an analytical dashboard, the user must

follow a four-step process:
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Filtering

Spatial location
Inner flow

Incoming flow

Outgoing flow

b) Mobility Wheel 

a) Flows Diagram

Transportation modes share 
between 7am and 8am

Transportation modes share 
between 12pm and 1pm

Transportation modes share 
between 5pm and 6pm

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Mobility Wheel of the Whole Region
Mobility rate

Figure 4.3.1: eSTIMe v1.0: (a) flows diagram and (b) mobility wheel.

1. Choose the territorial partition: 12 sectors (large areas), 39 sectors (in-

termediate areas), 97 sectors (polling districts);

2. Define the indicator(s), action and display: under the chosen indicator,

click on the tablet (1st) or desktop (2nd) icon, which automatically

selects the indicator and display where to visualize/remove it from: the

control unit or an analytical dashboard, respectively. The icon becomes

green when the indicator was successfully visualized on a display. This

process can be applied to several indicators at once;

3. Choose the analytical dashboard: in case the desktop icon is enabled

for any indicator selected in the previous step, select the proper display
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to apply the changes (enumerated according to the connection order)

under the visualization spaces section;

4. Apply the changes: click on the submit button at the bottom, which

firstly applies the removal actions, shifting the remaining visualizations

to fill the leftmost empty windows, then it displays the corresponding

visualization of each indicator on the leftmost available window in the

dashboard.

a) e)

d)

b)

c)

Figure 4.3.2: eSTIMe v1.0: Control Unit interface. (a) A side navigation

menu allows the opening/closing of indicators on the dashboards. (b)

An automatic questionnaire guide the analytical tasks during the Trial

phase and records the tasks’ completion time. (c) The settings serve to

change the time picker format: circular or linear (d), and to manage the

questionnaire. The map (e) enables spatial filtering and the visualization

of presence-related indicators.

The above process displayed the indicator(s) for the whole region. In order

to explore the indicator for a particular spatial location, the user must open a

context menu embedded in that location on the map, which will present them

with the possible indicators and analytical dashboards where to display it.

The interface contained yet a form icon, which opens an automatic ques-

tionnaire used during the experiment to present the tasks to the users and

record the tasks’ completion time. The TM technique was implemented via a



4.3. Experiment I: eSTIMe v1.0 169

circular time picker as the default, and could be changed to a linear one via the

settings icon (Figure 4.3.3), which action was restricted to the experimenter

during the evaluation.

Figure 4.3.3: The TiltingMap technique can be used through a circular

or a linear time picker, which affects the tilting movement (rotational and

left to right, respectively). The time representation can be changed at any

time.

4.3.2 Hypotheses

In this experiment, the overarching hypothesis is that eSTIMe v1.0 can enable

the understanding of the urban structure and the usage of different spatial

locations through the visual exploration of indicators describing travel flows

and presence dynamics (over time) of people throughout the territory. On a

more particular level, we investigated the following hypotheses:

H1: Users will effectively and efficiently complete analytic tasks regarding

urban mobility phenomenon described by travel flows, trips, population

and territory dynamics.

The indicators represented in this version of our visualization interface

allow to explore the spatio-temporal variation (and thematic at a cer-

tain degree) of indicators describing two objects of interest within urban

mobility data. Furthermore, the customizable aspect of the interface en-

ables one to display and remove views according to the ongoing analysis,

and to explore the variation of indicators by juxtaposing views or using

animation, which allows the user to choose the most appropriate method
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according to their needs. Thus, we believe this flexibility will help them

to quickly retrieve these urban mobility patterns enabling an effective

and efficient completion of the analytical tasks.

H2: The circular time picker will positively affect response accuracy.

The circular design of the time picker is based on the metaphor that daily

mobility patterns repeat themselves each 24 hours. Thus, we believe that

the circular movement will help users to identify recurrent patterns, since

they do not need to shift the time selector back to the first time unit in

order to restart the daily pattern, but instead they follow a continuous

animation.

H3: Participants will prefer to use the linear time picker over the circular

one.

Using the circular movement requires a rotational movement (3 degrees

of freedom – 3DoF, i.e. pitch, yaw, and roll) to track whether the tablet

was tilted left or right, up or down, or a combination of both, while the

linear movement only requires 1DoF (i.e. yaw) for tracking whether the

tablet was tilted left or right. Therefore, since the rotational movement

may hinder the control of the circular time picker and the users are

quite accustomed with timelines, they might prefer the later, reducing

cognitive load.

4.3.3 Materials and Methods

Participants

Thirteen (13) unpaid persons (5 female), aged from 26 to 57 years old

(M = 36, SD = 10.01), took part in this experiment. The majority of par-

ticipants were French native speakers with good understanding of English

(self-reported), which information helps to avoid bias, since tasks and the vi-

sualization interface were provided in English. Nevertheless, the experimenter

would administer the experiment in French to prevent misunderstandings.

Although our volunteers lived in the studied area during a time span from

less than 2 months up to 57 years (M = 21, SD = 19.33), we did not observe

any correlation between this factor and their accuracy on completing the an-

alytic tasks. Similarly, their prior knowledge regarding the human mobility

patterns within the studied area and their experience on Geographical Infor-



4.3. Experiment I: eSTIMe v1.0 171

mation Systems (GIS) (M = 2.76 and M = 3.53 in a 5-point Likert scale,

respectively) did not show any influence on the results.

Experimental Conditions and Tasks

The experiment followed a completely randomized design to explore the afore-

mentioned assumptions, which experimental conditions correspond to the tilt-

ing movement necessary to control time animation:

a) the circular, which represents time as 24 rectangles (i.e. one per time

unit) placed over a circular axis and requires the use of 3DoF to per-

form a rotational movement in a clock- and counterclockwise direction

producing tilting angles that are mapped into time units; and

b) the linear, which represents time as 24 rectangles placed over a linear

axis and requires the use of 1DoF to perform a movement from left to

right and contrariwise producing tilting angles that are mapped into

time units.

Following a within-subjects design, we assigned each participant to both

treatment groups, and asked them to complete two different sets of tasks.

Each set contains six tasks prepared by a researcher specialized on human

mobility. The overall complexity (i.e. the amount of variables and therefore

views necessary to solve the task) is equivalent in both sets. Nonetheless, this

complexity increases from one task to another within each set. The tasks can

be elementary or synoptic regarding the spatial and temporal dimensions of

indicators.

Table 4.3.1 presents the types and description of both sets. The types

of tasks were defined accordingly to our system of tasks (see Section 3.4),

for querying indicators over space and time (attributes and objects were not

considered at this stage). The studied territory was the urban area of Greno-

ble, which elementary spatial components were a single location s ∈ S, and

the synoptic components were sets of locations S. The region was considered

an elementary spatial component formed by all locations taken together as a

whole. The elementary temporal components were time units (i.e. one-hour

intervals) t ∈ T , and the synoptic components were sets of time units T .

Analogously to the spatial dimension, the aggregation of all time units form
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a singular 24-hour interval, which was considered as an elementary temporal

component. In this experiment, the elementary tasks in respect to the tem-

poral dimension targeted three particular time units: morning (between 7am

and 8am), noon (from 12pm to 1pm), and evening (from 6pm to 7pm).

ID Set 1 Set 2

1

s → t → M : Give the presence

density of location 5 during the

morning period.

s → t → M : Give the fluctua-

tion rate of location 6 during the

morning period.

2

s → T → M : Give the mobility

rate for the whole region during

the morning and evening periods.

t → S → M : List the five most

attractive locations in descending

order of attractiveness.

3

s → T → M : Give the trans-

portation modes share for the

whole region during the morning,

noon and evening periods.

S → t → M : Identify the time

period when the two most at-

tractive locations have the high-

est mobility rate.

4

S → t → M : Identify where

the majors incoming travel flows

to the three most attractive loca-

tions over 24 hours come from.

S → t → M : Identify where the

major outgoing travel flows from

the two less attractive locations

over 24 hours are going to.

5

S → T → M : Classify loca-

tions 1, 6, 61 and 51 accord-

ing to the transportation modes

share during the morning, noon

and evening periods.

S → T → M : Identify the two

locations with the higher overall

mobility rate among locations 2,

6, 61, and 51.

6

T → S → M : For each

time period (i.e. morning, noon,

evening), choose a location that

presents a positive fluctuation

rate.

T → S → M : For each

time period (i.e. morning, noon,

evening), choose a location that

presents a negative fluctuation

rate.

S → T → M : Then, for each

chosen location, give the trans-

portation modes share during the

morning, noon, and evening peri-

ods.

S → T → M : Then, for each

chosen location, give the trans-

portation modes share during the

morning, noon, and evening peri-

ods.

Table 4.3.1: The sets of analytic tasks applied during the Experiment I.
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Procedure

The volunteers were directly contacted by e-mail. We asked them to digitally

sign the Term and Conditions agreement (see Appendix D.2) in case of ac-

cepting to participate of the experiment, and to answer the socio-demographic

questionnaire (see Appendix D.3). An experimenter guided each individual

session, which duration varied from one hour and 15 minutes to two hours and

a half. The average duration of each experimental condition was 26 minutes.

The session starts with a presentation about the thematic objectives of eS-

TIMe and the experiment’s goals, and a short demonstration of the visual and

interactive tools usage. Afterwards, during the learning phase, the participant

was given a moderate time to freely explore the visual and interactive tools

(from 10 to 15 minutes).

The trial phase was divided into two parts, one per experimental condi-

tion. We counterbalanced the order of conditions and sets of tasks to ensure

that the order does not affect the results of the experiment (see Table 4.3.2).

Participants could ask for clarifications about the visual and interaction tools

and/or the tasks themselves during the whole experiment time. The Control

Unit interface embedded a slide-like presentation of tasks, displaying the tasks

description one-by-one together with a step-by-step procedure to open and ex-

plore the visualizations necessary to complete the tasks (see Appendix D.1 for

a complete description of tasks). This interface would also record the com-

pletion time of each task upon the user’s confirmation that they finished it.

Although time was measured, the participants were not given any temporal

restrictions for completing the different phases of the experiment.

ID Part 1 Part 2

1 linear + Set 1 circular + Set 2

2 linear + Set 2 circular + Set 1

3 circular + Set 1 linear + Set 2

4 circular + Set 2 linear + Set 1

Table 4.3.2: Combinations of experimental conditions and sets of tasks

used in both parts of the Trial phase of Experiment I.

After each experimental condition, participants were asked to report their

perceived workload by answering the NASA TLX questionnaire. Finally, in

the post-test phase, we applied the SUS and preference questionnaires, and
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asked users for their opinion about the visual and interaction tools, and the

experiment itself.

Apparatus

Figure 4.3.4 presents the environment setting used in this experiment. The an-

alytical dashboard was displayed on a 24-inch LED monitor, with a 1920x1200

pixels resolution at 60 Hz and an aspect ratio of 16:10. The Control Unit in-

terface run on a 9.7-inch Samsung Galaxy Tab S3, with a 2048x1536 pixels

resolution and an aspect ratio of 4:3. An extra laptop, which characteristics

are negligible, served as support for users entering the answers of the analytic

tasks and questionnaires (pre- and post-test).

Figure 4.3.4: Environment setting of Experiment I. The tablet served as

the Control Unit, the desktop monitor held the analytical dashboard, and

the laptop served as support for typing the tasks’ answers in a digital

form.
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4.3.4 Results

Completion Time and Accuracy

Overall, we did not observe statistical significance between the experimental

conditions regarding neither the response time nor accuracy. Participants

took in average 26 minutes to answer each set of questions and they provided

around 86.25% of correct answers under both experimental condition. As

expected, the completion time increases according to the complexity of tasks

Figure 4.3.5(left) regardless the experimental condition.
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Figure 4.3.5: Comparison of mean completion times per task (both sets

combined) across experimental conditions.

The graph of intervals (Figure 4.3.5 – right) presents a pairwise compar-

ison of completion means between tasks, which we interpret as follows: if an

interval contains zero, we cannot conclude a difference between the two means;

if the interval does not contain zero, then a difference between the two means

is supported. From the analysis of intervals, we observed that the difference

of completion times was statistical significant between the two first tasks and

the three last ones. The 3rd task is somehow neutral regarding the completion
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time, which difference was only statistical significant with regard to the 6th

task, a composite and complex task regarding both thematic input and the

necessary amount of charts for interpretation.

We observed a 56% correlation between the completion time and accuracy

in the circular experimental condition (p = .058), which suggests that users

who took longer to answer the questions also gave more accurate answers. We

also observed that the older the participants, the longer they took to complete

the tasks using the linear interaction style, which variables are 72% correlated

(p < .01). However, when using the circular time representation, completion

time was about the same regardless of participants’ age.
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Figure 4.3.6: Comparison of mean scores of NASA TLX workload-related

factors across experimental conditions.

The overall mean score of NASA TLX questionnaire was similar in both

experimental conditions (M = 63.7, SD = 9.83 for circular, and M = 63.6,

SD = 6.20 for linear). Although the mean scores per workload-related factor
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were similar between the conditions (Figure 4.3.6 – left), we did observe statis-

tical significance within each experimental condition while comparing factors

in a pairwise fashion (Figure 4.3.6 – right).

Overall, regardless the experimental condition, the mental demand (MD)

appears to be the main source of workload, while the physical demand (PD)

did not significantly affected overall workload. Particularly, in the linear con-

dition, we found statistical significance in the difference of mean scores of MD

and every other factor indicating it was the most important source of work-

load. However, in the circular condition, although the mean scores of MD

were higher than the remaining factors, only the difference with PD, temporal

demand (TD) and frustration (FR) (p < .001) was statistical significant. PD

was also significantly lower than effort (EF) and subjective own performance

(OP) (p < .001) in both conditions. Moreover, in the linear experimental con-

dition, the difference between EF and FR scores was statistically significant,

suggesting that users found it to be less frustrating than effortful (p < .001),

which effort is likely related to the high scores of mental demand.

We found correlations within certain workload-related factors and between

workload scales and response accuracy, completion time and users’ age (see

Table 4.3.3). In both experimental conditions, a negative correlation suggests

that when MD is perceived as an important source of workload, users tend

to perceive little PD. In the linear experimental condition, the most users

perceived PD as an important source of workload, the lower was the response

accuracy. Under both conditions, the scores of OP appears to reduce as MD

and FR increase, which indicates that users seem to believe they failed the

task when it was high mentally demanding or frustrating. Nevertheless, no

correlation was found within MD, FR and response accuracy.

Variables
Circular Movement Linear Movement

R p R p

MD & PD -0.59 0.032 -0.6 0.029

PD & Response Accuracy No correlation 0.69 0.016

OP & MD -0.83 < 0.001 -0.51 0.078

OP & FR -0.51 0.091 -0.61 0.037

MD & Age 0.52 0.084 0.6 0.038

FR & Completion Time No correlation -0.4 < 0.001

Table 4.3.3: Summary of correlations found within workload-related fac-

tors and/or other variables.
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Regarding the users profile, older people seem to perceive the task more

mentally demanding than younger ones. We have found a 52% correlation

between these variables in the circular experimental condition (p = .084) and

a 60% correlation in the linear condition (p = .038). We found a negative

40% correlation (p < .001) between completion time and FR, which suggests

that higher completion times reduces frustration. We believe that higher

exposition times to the visualization interface helped users to get accustomed

with it, mastering the visual and interaction tools, consequently reducing their

frustration feelings.

Usability and Preference

The mean score of the SUS questionnaire was of 58.3 (SD = 16.5) from a

maximum score of 100 points. This correspond to a grade D (see Table 4.2.1),

which is considered below average, requiring major improvements for allowing

the user to achieve performance and satisfaction while using the system.

We measured preference by asking users to rate the following statement:

“I prefer interacting with the timeline rather than with the cyclic time repre-

sentation” in a 5-points Likert scale. Overall, users agreed with it, indicating

their preference for linear over circular tilting movement (M = 3.53, SD =

1.19). Participants justified this choice through arguments such as “the linear

representation is more practical than the circular one”, “the lower degrees-

of-freedom ease the manipulation”, “we are more used to this kind of repre-

sentation”, and “the circular format made it difficult to place the marker on

a particular time period”. Paradoxically, the participants who did not agree

with this statement, argued that “the circular representation was easier to

manipulate” and that “the linear one required more extreme tilting”.

Although the participants could see the potential of eSTIMe, we found

plenty of room for improvement. Some participants found that the tasks

were difficult because of their background, since they were not experts in the

field of human mobility. They reported having trouble interpreting the flows

diagram and they would have liked to interact with the visualizations displayed

on the dashboard, along with a details-on-demand feature to improve the

interpretation of data in each chart. Recurrent comments were made regarding

the time dedicated for learning how to use the interface, which they would have

liked to be longer so they could have mastered the visual and interaction tools.
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4.3.5 Synthesis

Hypotheses Assessment

H1: Users will effectively and efficiently complete analytic tasks regarding

urban mobility phenomenon described by travel flows, trips, population

and territory dynamics.

The participants were able to complete every task with a high accuracy,

that is they provided more than 80% of correct answers. This positive

result was acquired despite the unsatisfactory usability and workload

scores, and the troubles understanding some of the visualizations. How-

ever, improvements are necessary to increase usability, since this satis-

factory response accuracy was positively correlated to completion time,

which should be shorter for implementing the system on experts’ work

environment. Therefore we refuse this hypothesis, since effectiveness

was achieved at the expense of efficiency and satisfaction.

H2: The circular time picker will positively affect response accuracy.

We did not observe any statistical significance supporting this hypoth-

esis. The response accuracy did not present any observable differences

between the experimental conditions. Hence, due to lack of evidences

we cannot accept neither refuse this hypothesis.

H3: Participants will prefer to use the linear time picker over the circular

one.

Our participants preferred to use the linear representation of time over

the circular one, which arguments included the lower degrees-of-freedom

needed to tilt the device. Therefore, we can accept this hypothesis.

Overall, the opinion of participants suggest that our approach was interest-

ing and has potential to answer our research questions. However, the assessed

usability of this version of eSTIMe is unsatisfactory, and participants reported

a high overall workload with mental demand being considered the main source

of workload. These results indicate that major improvements are necessary to

make our visual and interaction tools user-friendly, while allowing the users

to achieve performance and satisfaction.

The only source of information about how to read and interpret the vi-

sual representations was the experimenter, who explained the indicators and

visualizations during the learning phase. Therefore, users reported that the
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absence of a tutorial and accurate legends hindered the process of interpret-

ing the visualizations, specially regarding the flow diagram, which they were

unfamiliar with. The absence of a feature that provides details-on-demand

hindered the completion of elementary tasks, since they require users to ex-

tract a precise information from the chart (i.e. presence density, mobility rate),

which accuracy was impossible to accomplish only via the interpretation of

colors.

Our interaction mechanism between the tablet and the analytical dash-

boards should be re-taught. The four-step process required on the main menu

and the existence of one sub-menu per spatial location for opening/closing

visualizations turned out to be confusing and hard to remember. Regarding

the sub-menu on each spatial location, one participant said that “it would be

more intuitive to select the indicator and then the location for which to dis-

play it”, not the other way around. We should also include more perceptual

cues, such as to highlight the spatial location on the map upon its selection

for filtering flows in the flow diagram.

The lack of experience on the domain of human mobility was pointed

several times as a difficulty for completing the tasks, which could explain the

high scores for mental demand and effort, and the negative correlation between

how they evaluate the quality of their performance and their perceived mental

demand and frustration.

We could gather feedback regarding the TM technique such as how paus-

ing/resuming the animation hindered time units selection, since the user would

slightly move the tablet while performing the action. The physical demand

for animating time via the TM technique appears to be low regardless the

movement style, which is a positive result since we would like the users to

leverage the movement and position of their arms and wrists, without having

to switch their attention from the visualization. Nevertheless, further studies

are necessary to evaluate the added value of TM for exploring the variation

of data over time.

The outcomes of this experiment allowed us to improve our prototype ac-

cording to the feedback of participants and our own observations during the

trials. Two new user experiments were then conducted to evaluate the im-

proved prototype. The first experiment compares the performance of the TM

technique with traditional animation regarding user perception and map read-

ing (Section 4.4). The second experiment evaluates the re-designed prototype,

i.e. eSTIMe v2.0 (Section 4.5).
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4.4 Experiment II: TiltingMap

The previous experiment revealed some of users preferences, criticisms and

suggestions regarding the TiltingMap (TM) technique. However, the chosen

experiment protocol could not reveal the actual added value of our movement-

based interaction technique. Therefore, we designed this experiment to explore

the TM technique’s effects on the effectiveness of animated map reading. We

compared the TM technique using both tilting movement styles (circular and

linear), and the traditional animation, which interaction is provided through

the conventional mouse and direct touch. Since our Control Unit runs on a

tablet, we included the touch interaction to verify whether using direct touches

would affect the performance of traditional animation.

4.4.1 Hypotheses

In this experiment, the overarching hypothesis is that using the propriocep-

tive sense (i.e. the sense of self-movement and body position) triggered by the

movement of hands and wrists for tilting the device will improve map reading

compared to traditional animation, since the user could use the position and

orientation of their hands and wrists as reference recall to the visualized infor-

mation. On a more particular level, we investigated the following hypotheses:

H1: User performance will be similar whether interacting with traditional an-

imation via mouse clicks or direct touch.

Despite the fact that we are very used to interact with virtual informa-

tion via the traditional mouse and keyboard devices, we use our fingers

to interact with objects in real life. This naturalness in the way we in-

teract in the physical world has made the introduction of smartphones

into our daily lives very simple, in a manner that this new way of inter-

acting with virtual objects required almost no adaptation process. As a

result, it is unlikely that we will see a difference in performance between

controlling animation through mouse clicks and direct touch.

H2: The TM technique will provide higher accuracy than the traditional an-

imation.

We based the TM technique on the premise that one can use their propri-

oceptive sense as a tool for recalling information through muscle mem-

ory (i.e. the process of consolidating a motor task into memory through



182 Chapter 4. User Evaluation

repetition). Further, the TM technique allows one to start/resume the

animation on whatever position of the time picker they judge useful and

to animate time forward or backwards as it better meet the ongoing

analysis or one’s cognitive abilities. We believe that our technique can

provide better answers to the analytic tasks than the traditional ani-

mation, which is strongly dependent on users’ memory, even though it

supports control via interactive methods such as play, pause, and re-

sume.

H3: Users will prefer to use the TM technique rather than the traditional

animation.

There are evidences in the literature showing that physical interaction

is more engaging (Arvola and Holm, 2014). Further, the TM technique

gives the user full control over time animation, behaving according to

their tilting movement. Thereby, we believe that users will found our

technique more fun, favoring it over mouse clicks to control animation.

4.4.2 Materials and Methods

Experimental Conditions and Tasks

The experiment follows a completely randomized design to explore the afore-

mentioned assumptions, which experimental conditions correspond to four

interaction styles for animating time through the TM technique and the tra-

ditional animation (TA). They are defined as follows:

a) the TM Circular refers to the rotational tilting movement creating clock-

wise and counterclockwise curves that allow to place a marker on time

units placed over a circular axis. A button is available to play/pause/re-

sume animation via direct touch;

b) the TM Linear refers to a linear tilting movement from left to right and

contrariwise that controls a marker on time units placed over a linear

axis. A button is available to play/pause/resume animation via direct

touch;

c) the TA Mouse refers to the mouse input, which allows to play/pause/re-

sume the animation. The technique works as a movie of 24 frames de-

picting the presence indicator at each time unit, and selecting particular
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time units by directly clicking on the corresponding position on a linear

axis; and

d) the TA Touch refers to a tactile input, which operates in a similar way

to the previous condition, except that the user plays/pauses/resumes

the animation and selects time units by means of direct touch on the

buttons and linear axis, respectively.

Following a within-subjects design, we assigned each participant to all

experimental conditions and asked them to complete two sets of tasks (Ta-

ble 4.4.1). Each set contains three tasks regarding either presence density or

fluctuation rate indicators. The tasks are elementary regarding the spatial

dimension and synoptic with regard to time (s→ T →M), and their level of

complexity is constant. Each set was applied twice, which difference was the

spatial location referred by the tasks.

ID
Set 1-3 Set 2-4

Task Locationsi Task Locations

1

Describe the variation of

presence density in loca-

tion X along the day.

3 5

Describe the variation of

fluctuation rate in location

X along the day.

1 50

2

List the time units when

presence density of loca-

tion X is low.

8 6

List the time intervals

when fluctuation rate of

location X is negative.

4 56

3

List the time units when

presence density of loca-

tion X is high.

9 4

List the time intervals

when fluctuation rate of

location X is positive.

7 5

i One spatial location per set

Table 4.4.1: The sets of analytic tasks applied during the Experiment II.

Apparatus

We used an HP EliteBook 840 g3 Notebook PC, with a 14-inch screen and

1920x1080 pixels resolution, and a Samsung Galaxy Tab S3 tablet with a 9.7-

inch screen and 2048x1536 pixels resolution. The laptop served for execute

the TA Mouse experimental condition and to answer the pre- and post-test

questionnaires. The tablet was the basis for the remaining experimental con-

ditions.
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Procedure

Considering that the goal of this experiment was to assess an animation in-

terface and different interaction styles through direct identification tasks, we

considered irrelevant the users’ experience on urban mobility analysis. There-

fore, we recruited volunteers through an e-mail list of a Computer Lab. An

experimenter guided each individual session, which lasted about 30 minutes.

To avoid possible bias introduced by misunderstandings and because the re-

search was conducted in France, we run the experiment, including question-

naires and tasks, in English or French languages, according to the participant’s

preference.

The session started with the participant reading and signing the Term

and Conditions agreement (see Appendix E.3). Secondly, they answered the

socio-demographic questionnaire, which additionally to the general informa-

tion about the participant, included questions regarding any existing medical

condition or recurrent pain on their wrists/hands, and whether they are color-

blinded (see Appendix E.4). Afterwards the experimenter performed a short

presentation and demonstration of the TM technique, and explained the goals

and protocol to be followed in the experimental session. During the learning

phase, the participant was given a moderate time (i.e. 10 minutes) to freely

explore the variation of presence density over time of polling districts defined

in the Grenoble’s survey. To avoid this contact with the geographical map and

indicators to affect the results, we used a territorial partition into intermediate

areas during the trial phase.

The trial phase comprised four parts, one per experimental condition (Fig-

ure 4.4.1). Each part consisted of completing a set of tasks using one of

the experimental conditions, which were counterbalanced using every possible

combination. The visual interface embedded a slide-like questionnaire for pre-

senting and answering the tasks, which would automatically set the presence

indicator and interaction technique necessary for solving the tasks in each

part. This interface would also record the completion time per task and the

interactions made for selecting time units and zooming in/out the map view.

Alternatively, users could write their answers in an external form displayed on

the laptop where they could use a physical keyboard. Since most experimental

conditions ran on a tablet, we gave users this choice to prevent the discomfort

caused by their possible lack of practice with virtual keyboards.
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Condition 2
Set 1

UMUX-Lite

Set 2

UMUX-Lite

Set 3

UMUX-Lite

Set 4

UMUX-Lite

Condition 1

Condition 3Condition 4

Figure 4.4.1: The protocol followed during the trial phase of Experiment

II. The conditions 1-4 are replaced by a counterbalanced order of experi-

mental conditions.

After each experimental condition, we applied the UMUX-Lite question-

naire (see Appendix E.1) to assess usability of the interaction style. Partici-

pants could ask for clarifications about the visual and interaction tools and/or

the tasks themselves during the whole experiment. The post-test questionnaire

gathered information about users preferences over the techniques through a

pairwise comparison among the conditions and a rating 4-item scale in each

we assessed the satisfaction on using each technique (see Appendix E.2). Fi-

nally, we asked participants to share their thoughts on the techniques and the

experiment itself.

Participants

Seventeen (17) unpaid persons took part in this experiment (9 females), mostly

researchers or PhD students on computer science. They were aged between

23 and 58 years old (M = 33, SD = 11.18). Three people reported left-

handedness, which information was used to place the time picker in a way

that the participant could comfortably reach the button for pause/resuming

the animation.

Two people reported a medical condition affecting their wrists (i.e. early

osteoarthritis and carpal tunnel), and one person reported to recurrently feel

pain in their wrists, which information served to check whether a possible

difficulty in carrying out the tilting movement affects the results. Everyone

self-reported normal or corrected-to-normal vision and not to be color blind.
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This would help to determine whether misinterpretations of information from

the choropleth maps could be due to preexisting visual impairments or disor-

ders, since we use color hue and intensity to encode information.

4.4.3 Results

Completion Time and Response Accuracy

We did not observe statistical significance among experimental conditions re-

garding the difference of mean completion times of tasks groups, which average

time to finish the whole set of tasks was 5 minutes and 30 seconds. Regardless

the experimental condition, we found statistical significance in the difference

of mean completion times of the 1st and 3rd tasks (TA Mouse: p < .01; others:

p < .001), showing that users could combine the obtained experience with the

interaction and task styles to complete the next task faster (Figure 4.4.2 –

left).

Further, we found statistical significance in the difference of mean comple-

tion times of the 1st and 2nd tasks when using the TM technique regardless

to the movement style (circular: p < .05; linear: p < .01), while using the

TA technique we found statistical significance (90% confidence level) in the

difference of mean completion times of the 2nd and 3rd tasks (TA Mouse:

p = .053; TA Touch: p = .098). The former shows that users could improve

their completion times from the 1st to 2nd tasks, which could reflect a smooth

learning curve for the TM technique, or the good memory of users, since the

1st task requires them to explore the indicator over every possible time unit

and the 2nd/3rd would require them to identify the time units when a given

event occurs (e.g. the fluctuation rate is negative). This similarity regarding

the type of 2nd and 3rd tasks could also explain the lack of statistical signifi-

cance with a 95% confidence level between the mean completion times of 2nd

and 3rd tasks regardless the experimental condition.

For all experimental conditions taken together, the tasks responses were

76% accurate. Nevertheless, the mean accuracy of results obtained using the

TM Circular condition was 50% (SD = .24), while the remaining interaction

styles provided responses which accuracy was over 83% (M = .84, SD = .2).

We found statistical significance regarding the mean scores obtained under

the TM Circular and every other experimental condition (TM Circular – TA
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Figure 4.4.2: Mean completion times and response accuracy per task

across experimental conditions.

Mouse: p = .047; TM Circular – TA Touches : p = 0.0062; TM Circular

– TM Linear : p = .0182). The accuracy was similar across tasks for every

experimental condition, except for the TM Circular (Figure 4.4.2 – right).

Regarding the latter, we found statistical significance in the difference of mean

response accuracy of 1st and 2nd/3rd tasks (p < .01).

Taking all experimental conditions together, users performed around 4

zooming in/out operations to solve the 1st task (M = 4.69, SD = 2.34), while

only 2 operations were necessary to solve the 2nd (M = 2.37, SD = 1.79) and

3rd (M = 2.79, SD = 2.47) tasks. This difference was statistically significant

between the 1st and 2nd tasks while using the TM technique (irrespective to

the movement style) and under the TA Touch condition (p < .01). Further,

we observed statistical significance in the difference of means regarding the

number of zoom operations necessary to solve the 1st and 3rd tasks while

using the TM Linear (p < .05) and the traditional animation, regardless

the interaction style (TA Touches : p < .05; TA Mouse: p < .01). These

differences could be resulting from a learning curve (of the interface and/or

interaction techniques) or from users taking longer to center the map during
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the 1st task in a way that every necessary spatial location was clear and

readable without further adjustments.

The difference of means in neither zoom in/out operations nor time units

selection was statistically significant among experimental conditions. Al-

though a greater number of time units selection would be expected for the

1st task over the remaining, since it required a thorough exploration of the

indicator over every possible time unit, we have only found statistical signif-

icance between the 1st and 3rd tasks when performing the experiment under

the TA Mouse condition (p = .017).
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Having Recurrent Pain or Medical Condition on Wrists/Hands No Yes

Figure 4.4.3: Comparison of mean completion times per experimental

condition between people that reported having recurrent pain or a medical

condition involving their wrists/hands (blue) and people without pain in

these body regions (red).

Considering a 90% confidence level, we found a positive correlation between

the mean amount of time units selection and completion time when using TA

Touch (R = .29, p = .098) and the TM Linear (R = .32, p = .076). While

more interactions were necessary for completing tasks under the TA Touch

condition, the longer users took to solve the tasks, the less accurate were

the responses (R = -.48, p = .05). Under this same experimental condition,

users who reported higher prior experience with non-conventional interaction

techniques seem to have provided more accurate answers to the tasks (R =

.43, p = .082). Finally, under the TM Circular condition, older people tend

to take longer than younger ones to complete the tasks (R = .46, p = .098).
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The TM technique requires the user to manipulate a physical device by

performing a rotational/left to right movement with their hands and wrists to

explore the variation of indicators over time, which could affect the experience

of people that have recurrent pain or medical conditions involving these body

regions (3 persons of our sample). In fact, mean scores suggest that these

people took longer to complete the tasks under every experimental condition

(Figure 4.4.3), which difference was statistical significant under the TM Linear

condition (p < .01).

Usability and Preference

As a reminder, we applied a two-part preference questionnaire, which con-

sisted of rating a statement that reflects the satisfaction of undertaking each

experimental condition and to choose one condition over the other in a pair-

wise comparison. Considering the satisfaction statement, they enjoyed better

the TA Touch and the TA Mouse conditions (Figure 4.4.4 – top), which was

expected since we are accustomed to use direct touch to interact with our

smartphones and mouse interaction in computer desktops in our daily rou-

tines. Regarding the TM technique, they enjoyed using the TM Linear condi-

tion, which the great majority of users either “agreed” (4 points) or “strongly

agreed” (5 points) with the statement, while the TM Circular was strongly

disliked.

The pairwise comparison of experimental conditions showed that the TM

Circular was never chosen against the other conditions (Figure 4.4.4 – bot-

tom). The preference of users regarding the TM Linear and the traditional

animation irrespective of the interaction input seems to be balanced, since

about half of them chose the TM Linear over both mouse and touch inputs.

The mean UMUX score of all experimental conditions taken together was

47.3 (SD=6.65) from a maximum score of 100 points. Surprisingly, consider-

ing the preference of users over the experimental conditions, the TM Circular

obtained a slightly higher score (M = 48.7, SD = 5.91) than the remaining

conditions (M=46.8), which difference did not present statistical significance.

Nevertheless, the overall usability of every interaction style is considered ab-

solutely unsatisfactory according to the CGS (see Table 4.2.1), in which the

obtained mean scores are within the range of grade F.
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TA Touch

TA Mouse

TM Linear

TM Circular

0% 25% 50% 75% 100%

From 1 (Totally Disagree) to 5 (Totally Agree) 1 2 3 4 5

I enjoyed using...

TM Circular (A)

TM Circular (A)

TM Linear (A)

TA Mouse (A)

TA Mouse (A)

TA Touch (A)

(B) TM Linear

(B) TA Mouse

(B) TA Touch

(B) TM Linear

(B) TA Touch

(B) TM Circular

0% 25% 50% 75% 100%

Experimental condition B A

I preferred to use...

Figure 4.4.4: Participants rating of a statement reflecting the satisfaction

of using each interaction style (top) and their choices of one style over the

other in a pairwise comparison.

Participants found it difficult to select time units using the circular move-

ment, mostly due to the feeling of performing a non-natural movement, and the

size of rectangles, which were too small to accurately place the time marker on

them. Further, they found the map sometimes difficult to read. For instance,

the diverging colors and the data format (percent) of the fluctuation rate map

hindered the indicator interpretation because they could not naturally estab-

lish the connection between numbers (proportion of location’ population size)

and colors (red: increasing; blue: decreasing). Changing the legends accord-

ing to the selected time unit turned out to be disturbing for some participants,

while others would take a long time to realize the legend was changing in the

first place.
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4.4.4 Synthesis

Hypotheses Assessment

H1: User performance will be similar whether interacting with traditional an-

imation via mouse clicks or direct touch.

Under the experimental condition which interaction was via direct touch,

we did observe a small positive correlation between the number of time

units selection and completion time, which latter seems to be negatively

correlated to response accuracy. However, the difference of means of

scores and completion time was not statistical significant between these

interaction styles, neither was the difference in the number of time units

selection and zooming operations. Hence, we accept this hypothesis.

H2: The TM technique will provide higher accuracy than the traditional an-

imation.

The rotational movement required for controlling the TM technique is

harder to perform than the linear one, which combined with the diffi-

culties encountered to place the time marker on a particular time unit,

hindered the successful accomplishment of the proposed tasks. In fact,

the difference between response accuracy in the circular condition and

the remaining was statistically significant dropping from 83% to 50%

of correct answers. On a positive note, when completing tasks using

the linear movement, the response accuracy and completion time were

similar to traditional animation, irrespective to the interaction style.

Considering that response accuracy was worse (circular movement) or

equivalent (linear) to the traditional animation, we refuse this hypothe-

sis. Nevertheless, we could use the TM technique with a linear movement

instead of traditional animation without losing performance, since users

also considered it easy to use and enjoyable.

H3: Users will prefer to use the TM technique rather than the traditional

animation.

Similarly to the previous hypothesis, we observed that users did not en-

joy using the circular movement for exploring the variation of data over

time, and they found it to be frustrating and difficult to use. Nonethe-

less, participants enjoyed using the linear movement and they even chose

it over the traditional animation in our pairwise comparisons. Interact-
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ing with the traditional animation by means of direct touch also received

a great approval from the participants. Therefore, we accept this hy-

pothesis, and consider merging both techniques so the user can animate

time using the movement and select particular time units via direct

touch.

This experiment aimed to test whether the TM technique could provide

better user performance than the traditional animation. Participants under-

went a within-subjects design with four experimental conditions. We asked

them to answer a set of three tasks (synoptic with regard to time and ele-

mentary regarding the space dimension) under each condition, i.e. animating

time through the TM technique controlled by a circular and linear movements,

and the traditional animation controlled by means of mouse clicks and direct

touch. This configuration allowed us to investigate whether and how each

interaction style affects the user performance while exploring the variation of

presence indicators represented through choropleth maps.

Our results suggest that the TM technique would have to be significantly

improved for allowing one to achieve performance through a rotational tilting

movement. These improvements would regard not only the physical interac-

tion, i.e. reducing the movement sensibility, but specially the visual repre-

sentation. We have chosen to place the circular axis on the screen’s bottom

(either left or right), using 25% of the window’s height, which appeared to be

appropriate since the map must be visible during the whole time the animation

is enabled to allow map reading (see Figure 4.3.3). However, as reported by

users, this choice turned out to be uncomfortable for placing the time marker

on the rectangles, which were excessively small for achieving precision.

The difficulty for selecting particular time units could explain the radical

drop of response accuracy from the 1st task of each set to the 2nd and 3rd.

The latter two tasks required users to identify the time units when a certain

event happened (e.g. presence density increase), which require them to pause

the animation over certain time units for verifying the information. The first

task would be easier to accomplish, since it consisted of describing the general

behavior of presence density/fluctuation rate indicators for a given spatial

location, hence reducing the “pause/resume” operations.

On a positive note, the TM technique could replace the traditional anima-

tion (regardless the interaction style) without performance loss, since response
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accuracy and completion time were similar among them. Participants equally

enjoyed using the linear tilting movement, mouse clicks and direct touch for

controlling time animation.

We believe our system can benefit from combining the linear movement

with direct touches, which would help users to animate time with greater flex-

ibility while selecting particular time units via direct touch. In the following,

we report the user experiment performed to evaluate the re-designed visual

and interaction tools (i.e. eSTIMe2.0 ), which uses this improved version of

TM technique for animating time.

4.5 Experiment III: eSTIMe v2.0

This experiment aims to evaluate the usability of a redesigned version of our

prototype, called eSTIMe v2.0. We have made significantly changes on the vi-

sual and interaction tools to provide a better experience to our prospect users,

while achieving effectiveness and efficiency to solve domain-related tasks. Our

main goal was to investigate the usability of the visual and interactive tools

to assist the analysis of human mobility patterns through the exploration and

comparison of diverse indicators over multiple spatio-temporal granularity lev-

els.

Regarding the represented data, this prototype does not include yet indi-

cators describing the daily trajectories of individuals, neither thematic infor-

mation describing trip purposes or activities. Likewise the first experiment,

this prototype allows the analysis of population presence dynamics through-

out the territory, travel flows and trips, which latter are described by used

transportation modes.

Users provided satisfactory answers to the proposed questions in the first

experiment, yet their response time was longer than desirable for everyday

use and they reported high workload scores. The interface lacked on intu-

itiveness, specially regarding interaction with dashboards. For reminder, a

four-step process was necessary to visualize an indicator: choose the terri-

torial partition, one or many indicators, the analytical dashboard where to

display it and submit the choices, which would result on displaying each vi-

sualization on the leftmost blank window of the selected dashboard, which

re-assorted the views/indicators each time the user deleted or added some-
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thing. In the following we describe the modifications we made in order to

improve the intuitiveness and, therefore, the usability of our prototype.

4.5.1 Visual and Interaction Tools

Mobility Wheel of 
Location 2

Mobility Wheel of 
Location 30

Flow Diagram of Locations 
3, 4, 9, 52, 55, 60, 70

Flow Diagram of 
Locations 3, 4, 7, 8, 9, 40

Figure 4.5.1: The menu interface was re-designed using the slideshow

metaphor, which slides represent the dashboards and the four sections

allow to directly choose where to visualize indicator, controlling the ar-

rangement of visualizations on each dashboard.

To improve intuitiveness, we re-designed the menu following a slideshow

metaphor, which slides correspond to dashboards. Each slide is cut into four

sections to represent the layout in four windows of the dashboard, allowing the

user to directly control the arrangement of visualizations (Figure 4.5.1). The

user would interact directly on a section within the slide corresponding to the

dashboard of their preference where the visualization ought to be displayed.

Each section contains two drop-down lists, which allow the user to choose the

territorial partition and the indicator, which automatically applies changes on

the dashboard, i.e. display the visualization, replacing the current one in that

window, if necessary. The top right corner of each section contains two icons

for saving the visualizations as a png image, and for clearing a window of the

dashboard (i.e. delete the visualization), respectively.
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Transportation modes share 
between 7am and 8am

Transportation modes share 
between 12pm and 1pm

Transportation modes share 
between 5pm and 6pm

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Select a time period on the time 
picker to get the corresponding 

transportation modes share

Mobility Wheel of the Whole Region

Transportation modes shareMobility Wheel of Location 2

Select a time slot in the time 
picker 

Select a time slot in the time 
picker 

Mobility rate

Mobility rate (%)

a b

Figure 4.5.2: The modifications made to the Mobility Wheel. (a) We

used the Jenks natural breaks classification method to better represent

the mobility rate values, which also reflects in more comprehensible color

code and legend. (b) The bar charts were replaced by arcs, which leverage

the same color code of the Mobility Wheel to represent transportation

modes.

During the first trial of eSTIMe, the users reported having trouble to

interpret the information displayed by the Mobility Wheel, which led us to

make two main modifications to the chart. Firstly, considering the difficulty to

interpret the mobility rate values encoded by color intensity on the outermost

ring of the Mobility Wheel, we re-classified the range of values using Jenks

natural breaks method, which determines the best arrangement of values into

different classes. This way we could better represent the similar and different

mobility rate between time units, while reflecting in a more comprehensible

color code and, consequently, a clearer legend (Figure 4.5.2a). Further, to
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allow for an accurate reading of the chart, we included the actual mobility

rate value at the side of each time unit.

For a reminder, we represented the transportation modes share per time

period through tiled bar charts next to the Mobility Wheel. This representa-

tion turned out to be unsatisfactory for comparing the transportation mode

share across time units due to the y-axis changing according to the maximum

value of each group. Moreover, the modes were identified via a code on the

x -axis, which could cause confusion. We replaced the bars into arc charts

(Figure 4.5.2b), identifying modes through the same color code as the one

used in the innermost ring of the wheel, which accelerate the assimilation of

information.

Internal 
flow

Incoming 
flow

Outgoing 
flow

Internal 
flow

Incoming 
flow

Outgoing 
flow

Figure 4.5.3: The modifications made to the Flows Diagram. A white

gap has been drawn between arcs and ribbons to indicate incoming flows,

and three peripheral bars present aggregate information about general,

incoming and outgoing flows for each location.

Previously, travel flows between pairs of locations were represented through

a simple chord diagram, which ribbons color and thickness were the only

indication of flows direction and volume. This simplicity turned out to be

a barrier to effectively transfer the information. Therefore, we upgraded the

diagram into a more legible and intuitive visualization, following the layout

used by Shi et al. (2018) (Figure 4.5.3). Further to the ribbons color to

encode the flow origin, we added a white gap between each arc and ribbons

to encode incoming flows. We represent the internal flow to a spatial location

as a ribbon that starts and ends on the same arc. Three peripheral bars

placed externally to the diagram represent aggregate information on flows

for each spatial location, which color encodes the locations with which they
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have flows exchanges. The outermost bar presents the total proportion of flows

being exchanged with the corresponding location (regardless the direction and

including internal flows), and the middle and innermost bars represent the

proportion of outgoing and incoming flows to/from the remaining locations,

respectively. Adjacently to the arcs, we included information on the amount

of trips that location is responsible for, which gives a better picture of that

location’s influence within the group.

According to the outcomes of experiment II (see Section 4.4), we used the

TM technique with a linear tilting movement for animating time and allow the

selection of particular time units by means of direct touch on a timeline. The

latter has two roles: (1) selecting time units, and (2) opening the arc charts

next to a mobility wheel, which should be enabled on a checkbox determining

the current role of the time picker. The latter is a two-step process: choose

the chart (spatial location) where to apply the modifications on a list next

to the timeline, and select the time unit to which display the indicator of

transportation modes share. We colored the rectangles composing the timeline

in red to indicate that an arc chart for that time unit (and spatial location)

is already being displayed.

To avoid confusion while reading the maps of presence density and fluctu-

ation rate due to changing the legends at each time unit, we adopted a single

legend and a color scale defined by the minimum and maximum possible val-

ues within the indicator’s measures for all time units combined. The map

displayed on the Control Unit has two roles: (1) pan & zoom this and other

maps, and (2) interact with the flows diagrams by selecting spatial locations

that highlight the incoming, outgoing and internal flows regarding that loca-

tion. Similar to the double function of the timeline, these should be enabled

via a checkbox that indicates the current function of the map.

4.5.2 Hypotheses

In this experiment, the overarching hypothesis is that the improvements made

on our prototype can enable users to solve domain-related tasks effectively and

efficiently while feeling comfortable using our interface. On a more particular

level, we investigate the following hypotheses:

H1: Users will be able to efficiently explore the indicators to solve domain-

related tasks.
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The outcomes of our first experiment showed that users could achieve

a response accuracy of around 80% despite the unsatisfactory usability

and the high workload scores. Nevertheless, the price for such response

accuracy was a long exploration time, which is undesirable for a regular

use of the tool. We believe that the improvements we made in our visual

and interactive tools will allow users to achieve a better or equivalent

response accuracy within a satisfactory exploration time.

H2: Users will feel comfortable using eSTIMe.

The former layout of menu(s) for visualizing and modifying indicators

turned out to be confusing for participants, since it was not clear what

and where something would be displayed. Rearranging the visualizations

without users’ consent could cause them to lose their track of thought

since their spatial memory of before the change would be incoherent

with the new spatial arrangement. Moreover, as pointed out for some

users (particularly the ones with some knowledge on the domain), it

would be more intuitive to firstly choose the visualization and then the

spatial location for which explore the indicator, which is possible in the

present version of eSTIMe. We believe that this intuitiveness added by

the straightforwardness of indicators exploration will make users com-

fortable while using the tool to solve the domain-related tasks.

4.5.3 Materials and Methods

Participants

Twenty-four (24) unpaid persons took part in this experiment (8 females).

Two of them did not finish the trial in time and we lost the log files of a

third one. Thus, we considered the data from twenty-one (21) participants to

assess our hypotheses. The volunteers were all master students on geography

aged from 21 to 28 years old (M = 22.71). Particularly, they were following a

class focused on the representation of territorial dynamics that is part of the

Master’s degree GAED (Master en géographie, aménagement, environnement

et développement, in French)2.

Everyone reported to have normal or corrected-to-normal vision, and not

to be color blind. This would help to determine whether misinterpretations

2Course M1 MOBAT, see https://master-gaed.univ-grenoble-alpes.fr/7-parco

urs/m1-m2-mobat/parcours-mobat-m1-m2--412604.kjsp?RH=3987605545251016

https://master-gaed.univ-grenoble-alpes.fr/7-parcours/m1-m2-mobat/parcours-mobat-m1-m2--412604.kjsp?RH=3987605545251016
https://master-gaed.univ-grenoble-alpes.fr/7-parcours/m1-m2-mobat/parcours-mobat-m1-m2--412604.kjsp?RH=3987605545251016
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of information from the charts could be due to preexisting visual impairments

or disorders, since we encode information through color hue and intensity.

Procedure

From our first experiment, we recognized the necessity of allowing users to

use the visualization environment for a longer time to master the visual and

interactive tools before beginning the trial. Therefore, we ran this experi-

ment in two moments. The first moment comprised two 3-hours sessions in

which users worked in pairs to complete a set of exploratory tasks regarding

indicators of travel flows, population and territory dynamics using eSTIMe.

These sessions intended to accustom users with the interface, while confirm-

ing the adaptability of the prototype for solving domain-related tasks. We

followed a relaxed format to avoid pressuring the participants, which could af-

fect their experience. The sessions were accompanied by three experimenters

who would answer any question they had regarding thematic and interactive

aspect of eSTIMe.

For a technical matter (availability of tablets for everyone at the same

time), the learning phase was performed using two conventional desktop dis-

plays, one being the Control Unit and the other holding an analytical dash-

board. The TM technique is a component for animating time, which does

not affect the learning of remaining components to visualize and interact with

indicators, since mouse interaction can handle the remaining interactions.

The trial happened two weeks after the learning phase and comprised

two collective sessions, in which twelve participants were in the same room

working individually for completing a set of analytic tasks. Three experi-

menters accompanied the sessions, which lasted around one hour each. The

session started with the participant reading and signing the Term and Con-

ditions agreement (see Appendix F.2). Secondly, they answered the socio-

demographic questionnaire (see Appendix F.3). Afterwards the experimenters

reminded participants about the available mobility indicators and visualiza-

tions. They also made a short demonstration of the TM technique, which

would be later tried by the participants in a short training phase before com-

pleting the analytic tasks.

Participants were provided with a sheet of paper where they should write

down the solution for each task. A questionnaire interface embedded into
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the prototype would present the tasks description one after the other, which

gathered the completion time and interactions (i.e. time units selection, zoom

in/out, and opening views) performed to answer each task. They had 16 train-

ing tasks to help them to remember how to use the interface (e.g., visualize

the presence density indicator) and to practice the linear tilting movement for

animating time through the TM technique (e.g., tilt the tablet from left to

right and contrariwise, placing the marker over different time units).

The post-test questionnaire gathered the subjective usability of eSTIMe

and perceived workload. The latter was measured through a reduced version

of the NASA TLX questionnaire, known as Raw TLX (RTLX) (Hart, 2006),

which eliminates the weighting process all together, and keeps only the ratings

of sub-scales, allowing for measures as sensitive as the original format. We

establish the scores of sub-scales as the averaged ratings times 10, and the

general score as the average of sub-scales’ scores. Finally, to evaluate the dif-

ferences of apparatus in the learning and trial phases, we asked users whether

they prefer using the tablet or a second desktop monitor as Control Unit. We

also gathered their opinion about the visual and interactive tools, and the

experiment itself.

Tasks

During the learning phase we asked participants to complete three sets of

tasks regarding the analysis of two objects of interest (see Appendix F.1),

making a total of twelve tasks. The first set had five tasks regarding the

dynamics of population presence over the territory. The second set contained

four tasks regarding the variation of travel flows and trips over the day. Finally,

the third set had three tasks regarding a cross analysis of travel flows, trips,

population and territory. These tasks were mainly synoptic, requiring the user

to explore different indicators over space and time to understand their spatial

distribution and temporal variation. Since users were working in pairs and

could use eSTIMe during six hours, we use this learning time to understand

whether the system was ready to assist the solving of complex tasks.

In the trial phase we asked participants to complete a set of 14 analytic

tasks, which were simpler than the previous ones to ensure feasibility within

the time available to accomplish the experiment (Table 4.5.1). The tasks cov-

ered the spatio-temporal variation of indicators describing presence density,

fluctuation rate, attractiveness, mobility rate, transportation modes share,
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Type Task Description

1 s→ T →M

Identify whether the measures of presence density of lo-

cation Xi varies along the day. In a positive case, identify

the time unit when this indicator has the highest mea-

sure.

2 s→ T →M

Identify whether the measures of fluctuation rate in lo-

cation X varies along the day. In a positive case, identify

the time unit when the indicator has the highest measure.

3 t→ S →M

Over 24 hours, identify whether the adjacent neighbors

to location X have the same measure of presence den-

sity. In a negative case, identify the different measures

of presence density for those neighbors.

4 t→ S →M

Over 24 hours, identify whether the adjacent neighbors

to location X have the same measure of fluctuation rate.

In a negative case, identify the different measures of fluc-

tuation rate for those neighbors.

5 s→ T →M
Identify the time intervals when the mobility rate of lo-

cation X is the highest.

6 t→ s→M
Over 24 hours, identify the three most used transporta-

tion means to reach location X

7 T → s→M

Identify the most used transportation modes during the

one or two time units when the mobility rate of location

X is the highest.

8 T → s→M

Identify the most used transportation modes during the

one or two time units when the mobility rate of location

X is the lowest.

9 t→ S →M
Identify whether location X is attractive regarding the

remaining locations within the territory.

10 t→ S →M
Identify whether location X is more or less attractive than

its neighboring locations.

11 t→ s→M Identify where the incoming flows of location X are from.

12 t→ s→M
Identify where the most important incoming flow of lo-

cation X is from.

13 t→ s→M
Identify where the outgoing flows of location X are di-

rected to.

14 t→ s→M
Identify where the most important outgoing flow from

location X is directed to.

i The X is randomly replaced by one of the following spatial locations: 5, 7, 31, 52

Table 4.5.1: Set of tasks used during the trial phase of Experiment III.
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and travel flows. Considering the natural difference of geographical and social

characteristics of spatial locations, which may affect the measure of indica-

tors, we applied the tasks on different locations (i.e. 5, 7, 31 and 52), which

were randomly distributed among participants to avoid the bias of completing

every task regarding the same location. Therefore, the set of tasks could be

elementary on space (focusing on one spatial location s ∈ S) and synoptic

regarding time (focusing on a set of time units T ), or elementary on time

(focusing on a time unit t ∈ T ) and synoptic regarding space (focusing on a

set of spatial locations S), or even elementary regarding both space and time

dimensions.

Apparatus

In the learning phase, participants used a 24-inch monitor to display the ana-

lytical dashboard and a second PC monitor, which characteristics are negligi-

ble, to display the Control Unit interface. During the trial phase, the Control

Unit ran either on a 10.5-inch Galaxy Tab S (10 devices) or a 9.7-inch Galaxy

Tab S3 (2 devices), and the dashboard ran on a 24-inch monitor (Figure 4.5.4).

Figure 4.5.4: The apparatus and setup of Experiment III. Twelve par-

ticipants undertook the experiment simultaneously in a class-like environ-

ment.
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4.5.4 Results

Completion Time and Response Accuracy

The overall response accuracy was 81% (SD = .34), which we noticed to be

different depending on the spatial location under analysis. We found statisti-

cal significance in the difference of mean scores for tasks regarding the spatial

location 52, which average response accuracy was 66% (SD = .43), and the

remaining locations (52 – 7: p < .001; 52 – 31: p < .05; 52 – 5: p = .056),

which mean response accuracy was 85% (SD = .3). These results show that

participants could provide less accurate answers for tasks regarding location

52 than 7 and 31 (95% confidence level), and 5 (90% confidence level). Fig-

ure 4.5.5 (left) shows that the difference of response accuracy was higher for

tasks regarding the attractiveness and presence density indicators, which sug-

gest the reason for this difference could have been caused by map reading

issues.
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Figure 4.5.5: Average response accuracy per indicator (right) and spatial

location under analysis (left).

Regardless the spatial locations under analysis, we found statistical signif-

icance in the difference of mean response accuracy between certain indicators

(Figure 4.5.5 – right). Overall, the tasks regarding transportation modes share

had the most accurate answers, while the ones about presence density had the

less accurate answers. Particularly, mean scores of the latter were significantly

lower than mobility rate (p = .081 – 90% confidence level) and transportation
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modes share (p < .001). The accuracy of tasks regarding the latter indi-

cator were also significantly higher than the fluctuation rate (p < .05) and

attractiveness (p = .097 – 90% confidence level). These differences could be

a consequence of exploring the variation of presence density and fluctuation

rate over time, which requires reading and comparing several maps, while the

information regarding mobility rate and transportation modes share could be

extracted from the interpretation of a single chart, without mandatory inter-

action. Perhaps for the same reason, the response accuracy for these tasks

were also higher than for tasks regarding travel flows (mobility rate: p = .074;

transportation modes share: p < .001), which measures could be tough to in-

terpret when the flow exchange between a pair of locations is low reflecting the

ribbon’s thickness and, consequently, on the extraction of precise information.

The mean completion time for the whole set of tasks was 35 minutes

(SD = 12.9), with a mean completion time per task of 2.49 minutes

(SD = 2.26). Similarly to response accuracy, we found statistical signifi-

cance in the difference of mean completion time for tasks regarding different

indicators. Figure 4.5.6 shows that the mean time for completing tasks about

presence density (M = 4.46, SD = 2.61) and fluctuation rate (M = 3.62,

SD = 2.73) was longer than to complete tasks regarding the remaining indi-

cators. We found statistical significance in the difference of completion times

between these indicators and attractiveness (p < .001), travel flows (p < .001),

and transportation modes share (p < .001). Users also took a significantly

longer time to complete presence density-related tasks than the ones regarding

mobility rate (p < .01).

These differences in mean completion times may be explained by the ne-

cessity of exploring the presence density and fluctuation indicators over every

possible time unit in order to describe its overall behavior along the day,

which could understandably take longer than interpreting a single chart with

(i.e. travel flows) or without (i.e. attractiveness) further interaction. We

support this hypothesis via the statistical significance found in the differ-

ence of time units selections made to answer tasks about presence density

(M = 53, SD = 57.3) and fluctuation rate (M = 39.5, SD = 42.8), and all

other indicators (p < .001), which together required less than 2 selections of

time units (M = 1.69, SD = 8.71). We also found statistical significance in

the difference of zoom in/out operations necessary to complete tasks regard-

ing presence density (M = 6.71, SD = 9.26) and fluctuation rate (M = 3.26,

SD = 4.94), with p < .05, and the remaining indicators (M = 1.47, SD =

3.95) with p < .001.
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Figure 4.5.6: Mean completion times of tasks regarding each indicator.

Usability

The mean score of the SUS questionnaire was 69.9 (SD = 13.6), which corre-

sponds to a grade C in the CGS (see Table 4.2.1). This means the assessed

usability of eSTIMe is satisfactory, which mean score increased 11.6 points

from the first experiment, suggesting the improvements positively affected

the overall usability of our prototype.

Overall, participants enjoyed using the tablet as a second screen (M = 3.95

in a 5-points Likert scale, SD = 1.43) and preferred using it as Control Unit

rather than a second desktop monitor (M = 4, SD = 1.22). Users declared

that it was easier to complete the task when they could display visualizations

on the desktop monitor and directly interact on the tablet screen, which al-

lowed them to “focus their attention on a single display”. One participant

felt that “the physical efforts previously made for manipulating the mouse re-

duced when using the tablet”. On another note, the few users who disagreed

with the statement, appear to prefer a second desktop screen because of the

mouse interaction, which they claim to be “more intuitive than the tactile and

tangible (TM technique) input” we provide.
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Figure 4.5.7: Mean scores of RTLX for each workload-related factor and

overall workload score.

Workload

The mean score of overall workload (OW) was 33.3 points (SD = 6.8) over a

maximum scoring of 100, which is 30 points lower than the reported workload

scores during the first experiment.

Figure 4.5.7 presents the mean scores for each workload-related factor.

Overall, participants highly scored their own performance (OP), which dif-

ference of mean scores regarding the remaining sub-scales, except the mental

demand (MD), was statistical significant (OP – EF: p < .05; OP - remaining:

p < .001). The second main source of workload was MD, which mean scores

were higher than physical demand (PD) and frustration (FR) with statistical

significance of p < .001.

The FR factor does not appear to affect the workload, which mean scores

were the lowest among all factors, which difference was statistical significant

in comparison to PD (p < .001), effort (EF) (p < .05) and temporal demand

(TD) (p < .001). Despite this difference between FR and PD scores, the latter

were considerably low regarding the remaining sub-scales, which differences

were statistically significant in comparison to MD, PD and EF (p < .05).

Nevertheless, the perceived physical demand is 50% correlated with the over-

all workload (p < .01), indicating that despite the low scores, this sub-scale

affected the way users perceive how hard they had to work in order to ac-
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complish the task. Similarly, OW has a 58% correlation with TD (p < .001),

which is understandable since we had to establish a time limit of one hour

and 30 minutes to finish the experiment according to students’ time schedule.

In general, users self-reported to have a fair prior knowledge regarding the

human mobility patterns within the studied region (M = 2.95,

SD = 1), which is expected since they were following a class on the subject

before undertaking the experiment. This prior knowledge is 49% correlated

with OP (p < .01), suggesting that they might have perceived a high quality

on their performance based on their own prior knowledge instead of the pro-

cess of completing the tasks, since we did not observe any correlation between

OP and response accuracy neither completion time.

4.5.5 Synthesis

Hypotheses Assessment

H1: Users will be able to efficiently explore the indicators to solve domain-

related tasks.

Participants were able to complete fourteen tasks regarding six indica-

tors describing travel flows and presence dynamics in about 35 minutes

and providing 81% of accuracy in the responses. The differences we

observed in completion time for tasks regarding presence density and

fluctuation rate indicators are consistent with the amount of work re-

quired to interpret the data representations. Further the number of

operations for zooming in/out and selecting time units are equally con-

sistent with the visualization and expected interactions imposed by the

task. Therefore, we accept this hypothesis since the users understood

how to properly use the visual and interaction tools to quickly complete

the different tasks. It is relevant to remark that we did not provide a

step-by-step support for completing tasks as we did in the first experi-

ment, but we rather left them apply the knowledge acquired during the

learning phase.

H2: Users will feel comfortable using eSTIMe.

While the assessed usability of eSTIMe increased 10 points after the

modifications made to the visual and interactive tools, the overall work-

load reduced 20 points. Mental demand was still considered the main

source of workload, which is probably a consequence of handling mul-
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tiple visualizations to explore different indicators over space, time and

thematic attributes. The temporal demand was directly correlated to

the perceived overall workload due to the time limit we imposed to fit

the experiment in the users’ schedule. Nevertheless, users could still per-

ceive their own performance as of high quality. Based on the satisfactory

usability score, low overall workload and users’ feeling of achievement,

we accept this hypothesis.

Overall, the assessed usability and the perceived workload scores were sat-

isfactory, showing that our modifications improved the user experience. The

prolonged time taken for the learning phase allowed users to properly apply

the knowledge acquired regarding the visual and interaction tools two weeks

later for completing a set of tasks with only a short reminder of the interface

main functions. One participant specifically said that “once we master the

visual and interaction tools, it is easy and quick to complete the tasks, even

though the interface seems complex at a first glance”.

The learning phase allowed us to identify necessary improvements, such as

to change back the representation of internal flows to a half circle, since the

current format turned out to be confusing for users who could not understand

why the flow started as an outgoing flow and finished as an incoming flow,

when the flow actually never left the location. Another observation of partici-

pants regards the necessity of visualizing the same indicator for different time

units side-by-side, not only through animation.

For reminding, both the map and timeline were equipped with a “switch”

button that enabled users to choose whether selecting a location on the map

would trigger the details on presence indicators or affect the chord diagram,

highlighting the ribbons connected to that location, and whether choosing a

time unit would open an arc chart next to a Mobility Wheel visualization or

affect every indicator according to that time unit. During the learning phase,

we observed that users had difficulty remembering to set the current role of

the map and the timeline before interacting, which would result on a different

outcome than the one they expected. A participant specifically reported after

the trial phase that he “could not distinguish the different functions, neither

their relevance”.

The absence of direct interaction with charts on the dashboard was again

reported by participants as necessary to improve the data exploration, which

indicates that we should improve the interactive tools to increase intuitiveness.
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Participants also said that the flow diagram should be more legible, such as

allowing zooming in/out the visualization. We also observed that participants

would visualize maps mostly on the dashboard, even though they were con-

ceived to be explored on the tablet where we believe is easier to follow the

changes resulting from animation. This behavior could be a consequence of

teaching them how to use the visual and interactive tools without the tablet

during the learning phase.

Although improvements are still necessary, this experiment allowed us to

validate our visualization approach, showing that one can learn the visual and

interactive tools, and use them to resolve domain-related tasks. Therefore,

the next step in this research is to apply the improvements suggestions and

complete the environment to allow the analysis of urban mobility data at

the population and individual levels by including the description of travel

flows and population dynamics through trip purposes and activities, and the

analysis of individual daily activity schedules. The next section describes the

usage study conducted with experts on the domain to evaluate this complete

version of eSTIMe (i.e. eSTIMe3.0 ).

4.6 Experiment IV: Experts Feedback

This experiment aims to evaluate the usefulness of eSTIMe among our poten-

tial users, i.e. professionals working with human mobility at a daily basis either

within academic research or urban policies for decision-making on transporta-

tion offers, urban planning, and overall mobility issues. Based on the feedback

obtained during previous experiments, we modified some relevant aspects of

the visual and interactive tools in order to increase intuitiveness and improve

their interpretation. We extended the set of visualizations to include the miss-

ing indicators that describe travel flows and population presence according to

different activities, transportation modes and trip purposes, and the typol-

ogy of daily trajectories. Additionally, we included the remaining datasets to

enable the analysis and comparison of different population mobility patterns

within the great regions of Grenoble, Lyon and Rennes metropolitan areas.
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4.6.1 Visual and Interaction Tools

The visual and interaction tools used in this experiment are the ones presented

in Section 3.5, which correspond to our final prototype. Further to extending

the set of visualizations to represent the remaining indicators (i.e. travel flows,

trips and presence per activity, trip purpose, and transportation mode, and

the typology of activity patterns), we improved the existing visualizations and

interaction mechanisms.

The main modifications affected the interactive mechanisms linked to the

Control Unit. Firstly, we removed the concept of “roles” linked to the map

and time picker, since it was confusing for users. Instead, the selection of

spatial locations and/or time units automatically affect every chart which

displayed indicator are disaggregate on space and/or time. Likewise, spatial

selection and pan & zoom operations function simultaneously, and can be

disabled/enabled in each chart by freezing space and zoom, respectively, as

the user deems necessary. The action of freezing time rose from the necessity

expressed by users for visualizing an indicator on a particular time unit while

animating the remaining, which was extended to space dimension and pan &

zoom operations. The former works on flow diagrams, where one can freeze

the selected ribbons for different spatial locations on various diagrams for

comparing them via juxtaposing.

Internal 
flow

Incoming 
flow

Outgoing 
flow

Internal flow

Outgoing flow

Incoming flow

Figure 4.6.1: The modifications applied to the Flow Diagram.

The flow diagrams were modified to represent travel flows generated for

different trip purposes and transportation modes. Respecting our uniformity

principle, while making visual comparison easier, we decided to color the whole

diagram according to the represented trip purpose or transportation mode

(Figure 4.6.1). Further, we removed the peripheral bars since it would be

impossible to represent the percentage of incoming and outgoing flow through
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color coding. Instead, we included a details panel (which currently exists for

every chart) that presents information about the actual number of trips rep-

resented by the ribbons’ thickness, and the proportion of outgoing, incoming

and internal trips.

Transportation modes shareMobility Wheel of Location 2

Select a time slot in the time 
picker 

Select a time slot in the time 
picker 

Mobility rate (%)

Transportation 
modes

Mobility rate (%)

c

a

b

Figure 4.6.2: The modifications applied to the Mobility Wheel.

The first modifications carried out on the Mobility Wheel concern the leg-

ends. We improved the legibility of the one for interpreting the mobility rate

ranges (Figure 4.6.2 – a), while the one listing transportation modes/trip pur-

poses was moved out of the chart to integrate a shared space in the dashboard
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dedicated to the legends listing thematic attributes, once the color code is

shared by all charts (Figure 4.6.2 – b, the legend was manually included back

in the chart for illustration purposes). Instead, we included a pie chart at

the wheel’s center, which gives the transportation modes/trip purposes share

aggregate over 24 hours or per time unit through animation (Figure 4.6.2 – c).

Hence, the second role previously used for opening arc charts next to the wheel

is no longer necessary. Instead if one needs to compare the attribute share

indicator over different time units using an enlarged view, they can use the

time freezing technique, opening several charts side-by-side each one frozen

on a different time unit.

4.6.2 Hypothesis

This experiment explores the following hypothesis

H1: experts will appreciate our visualization environment to explore daily

mobility data.

The previous experiments allowed us to identify the major issues that

damage user experience, which consequently reduces assessed usabil-

ity and increases workload. The outcomes of experiment III were sat-

isfactory as for increasing usability and considerably reducing overall

workload. Further, our observations and participants’ feedback could

be applied for improving the existing visualizations and for designing

new ones to represent the remaining indicators of daily human mobil-

ity. Therefore, we believe to have been able to complete our prototype

in terms of the analysis it supports, while providing a satisfactory user

experience that have been validated by previous users.

4.6.3 Materials and Methods

Participants

Eight professionals working on different aspects of urban planning took part

in this experiment. Four of them were academic researchers, which research

focus on diverse aspects of human mobility. Two people are head of studies
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within the Syndicat Mixte des Mobilités de l’Aire Grenobloise (SMMAG) re-

sponsible for analyzing and developing forward looking strategies regarding

transportation solutions within the Grenoble urban area. Another two profes-

sionals are head of studies within the urban planning agency responsible for

developing expert assessments regarding the various domains of urban plan-

ning and territorial development (e.g., planning, housing, mobility, economy,

environment, real estate) of Grenoble urban area.

One participant could not finish the experiment for personal reasons. Thus,

we considered data generated from 7 participants (4 female) to assess the

usefulness and user experience of eSTIMe. They were aged from 29 to 50

years old (M=38.9). Everyone reported to have normal or corrected-to-normal

vision, and not to be color blind. One person reported to have recurrent pain

on their wrists, which information could help us to determine whether this

condition affected their experience while using the TM technique to animate

time.

Procedure

The experiment happened in three exploratory sessions, each one involving

two to four participants (according to their availability) individually working

in the same room to complete a set of tasks using visual and interaction tools

of eSTIMe. The sessions had a time limit of 3 hours and were accompanied by

three experimenters, who would help participants with any questions they had

regarding any aspect of eSTIMe(e.g., conceptual, visual, interactive). During

the whole experiment, the experimenter would listen to users’ feedback and

take notes on their behavior while using the system.

Each session started with a 15-minutes presentation about the experiment

goals, the system purpose and overall mode of operation. We gave partici-

pants a moment to read and sign the Term and Conditions agreement (see

Appendix G.1), and asked them to answer a socio-demographic questionnaire.

During the learning phase, we asked participants to follow a semi-automatic

tutorial embedded in the Control Unit, through which they could learn how

to use the data selector (i.e. the tab-based menu and navigation bar) to vi-

sualize and modify indicators, and to associate an analytical dashboard. This

phase took around 15 minutes and participants were assisted during the whole

process to ensure the tools were correctly configured.



214 Chapter 4. User Evaluation

Presentation

Practice

1. Travel flows and trips

Indicators: travel flows, mobility rate, and attribute share
Visualizations: Flow Diagram and Mobility Wheel

Complete a set of tasks using the visualizations and indicators

Presentation

Practice

Indicators: presence of movers in general / per activity, 
presence density, fluctuation (rate), and attractiveness
Visualizations: Map and State Distribution Plot

Complete a set of tasks using the visualizations and indicators

Presentation

Practice

Indicators: activity patterns and typology
Visualizations: Sequence Index Plot and Space-Time Cube

Complete a set of tasks using the visualizations and indicators

2. Territory and population

3. Daily trajectories

Figure 4.6.3: Protocol of the trial phase of Experiment IV.

Figure 4.6.3 presents the protocol followed during the trial phase, which

took around 2 hours. In order to ease the introduction of participants to the

visual and interaction tools, we split this phase into 3 moments correspond-

ing to the three objects of interest within the data we represent through the

available indicators and visualizations. Before starting the tasks, we made a

short presentation regarding the indicators derived from the data and visual-

izations chosen to explore the corresponding object of interest. Afterwards,

participants could take their time to explore the indicators and visualizations

in order to complete the tasks. Despite temporal constraints, we allowed

users to take their time to thoroughly explore the visual and interaction tools

without pressure to complete every task.

The final 15 minutes of each session were devoted for the post-test question-

naire, which gathered the subjective usability and perceived workload through

the SUS and Raw TLX questionnaires, respectively. Further, we asked them

to rate on a 5-points Likert scale how much they agreed with each one of the

following statements:
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• I enjoyed using the tablet for interacting with the visualizations.

• I enjoyed using multiple displays for exploring the data.

Tasks

Table 4.6.1 presents the three sets of tasks we asked participants to complete.

Each set focus on one of the following objects of interest: travel flows and trips,

population and territory, and daily trajectories. These tasks were intended as

a guide to what kind of analysis can be performed using our geovisualization

environment. Therefore, participants were free to complete tasks using the

data set (i.e. Grenoble, Lyon or Rennes) and territorial partition of their

choice, and to explore alternative hypotheses regarding the data.

Apparatus

Figure 4.6.4: The apparatus and setup of the Experiment IV. Two or

four people side-by-side would explore the visual and interactive tools to

complete the proposed tasks.

Each participant was placed on a workstation containing one 24-inch mon-

itor and a tablet device. The former held the analytical dashboard, while

the latter served to run the Control Unit, which device could be a 10.5-inch

Galaxy Tab S (1 device) or a 9.7-inch Galaxy Tab S3 (3 devices in total)

(Figure 4.6.4). We provided a document containing the indicators and visu-

alization descriptions, which they could use as support, and a paper sheet

containing the tasks. They could write their answers directly on the paper

sheet or type them on an interactive version of the questionnaire. Further, we

provided a notebook, where they could take notes to support their analysis.
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Set 1. Travel flows and trips (for the 3 most attractive spatial locations)

1 t→ S →M : How many people travel there over 24 hours.

2 t→ (S ×A)→M : What are the purposes of their trips over 24 hours.

3
t → (S × A) → M : What are the transportation modes used for trav-

eling there over 24 hours.

4
T → S → M : Which are the time units when there are more/less

people traveling there.

5

t → (S × S) → M : How many trips are connected to these spatial

locations over 24 hours. Where the outgoing/incoming flows go to/come

from.

6

T → (S × S) → M : How many trips are connected to these spatial

locations during the time units with the highest mobility rate. Where

the outgoing/incoming flows go to/come from.

Set 2. Population and territory dynamics

7
T → S → M : How the spatial distribution of people varies along the

day.

8
T → (S×A)→M : How the spatial distribution of people varies along

the day according to different activities.

Set 3. Daily trajectories

9
s → (A × T ) → M : How the distribution of people per activity varies

over time in the whole region.

10
O → (T × A) → M : Describe the different groups of the typology

according to individuals’ activity patterns.

11
O → A→ M : Which is the socio-demographic profile of individuals in

different groups of the typology.

12
O → (A× T )→ M : How the distribution of people per activity varies

over time for the different groups of the typology.

13
O → (S × T ) → M : How are shaped the spatio-temporal paths of

individuals in the different groups of the typology.

14

A→ (S×T )→M : How are shaped the spatio-temporal paths for indi-

viduals according to different socio-demographic criteria (e.g., gender,

occupation, age).

Table 4.6.1: Set of tasks used during the trial phase of the Experiment

IV.
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4.6.4 Results

Usability

The mean score of the SUS questionnaire was 69.6 points (SD = 14.9) –

grade C in the CGS (see Table 4.2.1) – which corresponds to a satisfactory

usability score. We observed that the additional indicators and visualizations

we included to complete the analysis of human mobility did not affect the

assessed usability of our prototype, which continues satisfactory.

Figure 4.6.5 presents the participants ratings of statements regarding whether

they enjoyed using the tablet as interaction device and the combination of

multiple displays for exploring the data. Mean ratings were 4 over 5 points,

suggesting that the technological setup of eSTIMe was appreciate.

...the tablet for
interacting with

visualizations

...multiple
displays for

exploring the data

0% 25% 50% 75% 100%

From 1 (Totally Disagree) to 5 (Totally Agree) 1 2 3 4 5

I enjoyed using...

Figure 4.6.5: Participants ratings regarding the satisfaction statements in

Experiment IV.

Workload

The mean score of overall workload (OW) was 37.6 points (SD = 16.2) over

a maximum scoring of 100. Figure 4.6.6 presents the mean scores obtained

for each sub-scale. Consistent to previous experiments, the mental demand

was perceived as the main source of workload (M = 52.9, SD = 9.51). Mean

scores of physical demand (M = 20, SD = 12.9) and frustration (M = 22.9,

SD = 9.51) scales were the lowest among all factors.

Considering a 90% confidence level, we found correlations between mean

scores of effort (EF) and own performance (OP) with participants’ profile.

We found a negative 58% correlation between EF and age (p = .08), which
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Figure 4.6.6: Mean scores of RTLX questionnaire per sub-scale and overall

workload.

suggests that older participants would perceive the task more effortful that

younger ones, and a 58% correlation between OP and their experience using

multiple displays in their everyday routine (p = .094), suggesting that people

with more experience on handling information distributed over multiple dis-

plays evaluate the quality of their performance as higher than the ones who

would normally work with a single display.

Users Reaction

During this experiment, the information regarding how indicators were calcu-

lated and what they represent was provided on an external document, which

users could access during the whole time. However, participants reported to

prefer having this information embedded in the interface, which would facili-

tate the understanding and use of visualizations.

The state distribution plot was overall appreciated by the experts, since

it allows to understand an entire temporal situation at a glance. Interpreting

the sequences index plot was harder due to users lack of experience with this

type of representation, and because the sequences were displayed without any

particular arrangement, which hindered the extraction of information, such

as existing sub-clusters of similar activities. One expert suggested to sort
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the sequences according to a particular criterion (which was done after the

experiment), or to display only the x (e.g., ten) more frequent sequences.

Although the mobility rate indicator can be calculated both by counting

trips or movers traveling towards a particular location, the prototype included

only the latter. This choice hindered the understanding of this indicator by

people who have long experience studying mobility rate based on the count-

ing of trips. One expert said that “linking trip purpose to people is unnat-

ural” when talking about mobility. They also suggested to re-categorize the

modes as particular, public and smooth transportation, and to represent them

through opposing colors due to their importance during decision-making pro-

cess within urban policies, where the difference among these categories of

transportation are used to measure aspects such as population’s well-being.

Currently car and public transportation are represented through different tons

of blue, which could cause them to be interpret as having similar impact on

mobility.

The general definition of our indicators and the system of tasks allow to

query them over different groups of our typology of activity patterns. How-

ever, the prototype does not support filtering travel flows neither presence

indicators for different groups of individuals, which was noticed by our ex-

perts and suggested as an interesting feature to include. Further, experts

evoked the necessity of a feature that enables the definition of different tem-

poral granularity levels, since longer intervals than one hour are often more

statistically significant for the analysis.

The satisfaction expressed about using multiple displays might reflect the

usefulness of comparing several indicators side-by-side, according to the de-

scription of an expert on how they explored two indicators for different spatial

locations. They visualized the mobility wheel for each location on the top

windows of the dashboard and the flow diagram of each one on the bottom

windows, being able to simultaneously compare the locations according to

both indicators.

The head of studies within public agencies alerted us to the fact that

tablets are not yet a common device on their working environment, making it

difficult for them to integrate our tool into their working routine. Nevertheless,

they showed great interest on having such a visual analysis tool that they can

handle by themselves (without the intermediary of a cartographer technician

for example) in order to explore the various indicators in all the locations in

which they have to intervene on a daily basis. Further, they found the tool
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overall interesting, easy to use and “ready to be used without problems and

adopted in its present version”. One expert suggested to use eSTIMe as a

presentation tool, in which users would produce their analysis in “real time”,

while presenting it to the public of interest.

4.6.5 Synthesis

Hypotheses Assessment

H1: the experts will appreciate our visualization environment to explore daily

mobility data.

Our results showed the appreciation of experts regarding our visualiza-

tion approach through the satisfactory SUS and RTLX scores, which

show their perception of effectiveness and satisfaction while using the

environment. Their observations and suggestions regarded some indica-

tors and visualizations (i.e. statistical significance, using different data

categories, opposing colors for variables with opposed meaning within

urban planning studies), and the difficulty of introducing such a tool in

their everyday work routine due to the use of multiple displays and a

tablet. Nevertheless, they claimed to have appreciated using the tablet

and multiple displays, which latter has proven useful for comparing in-

dicators side-by-side, facilitating the analysis. Hence we accept this

hypothesis.

After modifying our prototype to improve the intuitiveness of our interac-

tion mechanisms and the visualizations, while extending them to include the

remaining indicators that allow the analysis of daily mobility data through

the exploration of three complementary objects of interest (i.e. travel flows

and trips, territory and population, and daily trajectories), we conducted a

final experiment to gather feedback from experts regarding the usefulness of

our visual and interactive tools. We invited eight experts, researchers of hu-

man mobility, working on the academy or within urban planning to assess

the current transportation solutions and overall mobility-related aspects, and

propose foresighted strategies aiming to improve mobility of population within

urban areas.

The SUS and RTLX scores showed that assessed usability is satisfactory,

while the overall workload score is below average, indicating that a low amount
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of work is required for using our prototype. The mean scores are similar to the

ones obtained in the Experiment III (see Section 4.5.4), when the participants

(geography students working on the subject during that semester) had about 6

hours of learning time, which allowed them to get comfortable with the visual

and interaction tools. In this experiment, due to temporal constraints, par-

ticipants had to learn quickly how to interact with the visualizations through

an embedded tutorial in the Control Unit. A short presentation and a cheat-

sheet material were provided to help them to understand the visualizations

that they were supposed to use for completing the tasks, which were them-

selves more complex than the ones in the previous experiment since they were

exploratory and involved more indicators (i.e. activity patterns) and data di-

mensions (i.e. activities and trip purposes). Therefore, we observe that with

less training and more indicators/visualizations, users were capable to explore

the data to complete the tasks, while judging the interface usable (one expert

even called it a “therapeutic experience”) and perceiving low overall workload.

The participants gave us valuable feedback regarding the indicators and

visual representations. There are still improvements to be made, particularly:

• to better communicate the description of indicators (e.g., how were they

calculated, what feature of the phenomenon are they measuring, how

many data records were used as input (for statistical significance verifi-

cation), etc);

• to improve visualization reading (e.g., use histograms instead of propor-

tional circles to avoid overlapping, and use a relevant criterion to sort

sequences in the index plot); and

• to increase the power of analysis (e.g. through the interactive definition

of different time granularity levels).

Some of these improvements were already applied to the prototype, such

as the ordering of sequences. Particularly, the interactive definition of time

granularity levels and automation of the analysis process (i.e. indicators re-

calculation) was the subject of a internship that took place after the experi-

ment, which outcomes are the starting point to include the feature on eSTIMe.

Despite the improvements necessary and small problems found during the

experiment (i.e. the resolution of analytical dashboards is not compatible to

smaller than 24-inch displays with a 1920 × 1080 resolution), the experts
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enjoyed using our visualization approach, finding that it is accessible and easy

to use, and that it could be already employed for analyzing daily mobility

data.

4.7 Summary

In this chapter, we presented the methodological procedures we followed to

evaluate the usefulness our visualization framework, eSTIMe, and the usability

of the visual and interaction tools. The main characteristic of a user-based

evaluation is that it involves the users, preferentially the ones for whom the

system was designed. Regardless of their profile or the experiment’s goal, we

are asking these people to take a moment of their time for using a tool in

development, which could be buggy and incomplete, while following a strict

protocol and giving their opinions about it.

The evaluation of a visualization system, specially one that represents

multivariate data, requires the assessment of various aspects, such as verify-

ing that maps and charts are comprehensible and able to efficiently transfer

information, and that the interaction mechanisms allow users to freely browse

within the visualization interface to extract the data information they need,

and assessing the added value of multiple visualizations to investigate the

domain-related questionings. While assessing map/chart reading and the us-

ability of interaction mechanisms is achievable through simple tasks such as

locate, identify, and compare, the evaluation of added value require more ex-

ploratory tasks. These are difficult to replicate in an experiment and take

long to be completed due to their intrinsic complexity involving multiple data

dimensions and granularity levels, and because one needs to become accus-

tomed with the visual and interaction tools before actually exploring the data

representations for completing the tasks.

The visual and interaction techniques embedded in our visualization frame-

work are not novel per se, as we could observe in Section 2. However, to the

extent of our knowledge, the novelty lies on combining them to allow a flex-

ible exploration of urban mobility data via three complementary objects of

interest through a multi-display system embedding customizable analytical

dashboards, which can themselves hold multiple views simultaneously while

supporting interaction through tactile and tangible input from a mobile de-

vice. This fusion of rather non-conventional interaction techniques with the
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usage of multiple conventional displays could engender high cognitive load

which, consequently, could affect user performance while exploring the data.

EXP Workload Usability Accuracy

1 63.7 58.3 0.86

2 Not applicable 47.3i 0.76 & 0.5ii

3 33.3 69.9 0.81

4 37.6 69.6 Not applicable

i In average for all experimental conditions. No statistical significance in the difference of

means.
ii Response accuracy was significantly lower when using the TM technique with a circular

tilting movement than the remaining conditions, within which scores were about the same.

Table 4.7.1: Summary of user experiments outcomes.

In this context, we followed an incremental evaluation protocol that en-

abled us to refine our visual and interaction tools based on continuous user

feedback. We performed a total of four evaluations with the participation of

users that were non-experts on the domain of urban mobility, trainees learn-

ing the concepts of the domain, and experts actively working on the field. Ta-

ble 4.7.1 summarizes the scores of overall workload, usability and response

accuracy (when applicable) for every experiment, which allows to determine

how each refinement step affected these variables. Overall, we notice that

each evaluation allowed us to improve the interface intuitiveness which yielded

positive effects on usability and workload, while response accuracy remained

sufficient to suggest that our framework enable the understanding of the urban

mobility phenomenon. We summarize the experiments goals and outcomes as

follows:

• the experiment I (Section 4.3) evaluated the usability of a first pro-

totype, and focused on understanding how users would respond to a

multi-display approach and to the TiltingMap technique. This prototype

enabled the exploration of urban mobility data through the following:

– Objects of Interest: territory, travel flows and trips;

– Indicators: travel flows, mobility rate, transportation modes share,

presence density, fluctuation rate and attractiveness;

– Views: flows diagram, mobility wheel, and map view.

The main outcomes were:
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– There was a lack of intuitiveness in the interaction mechanism that

established the relationship between control unit and dashboards;

– Legends and details-on-demand are essential;

– The circular movement is difficult to perform;

– Users found that the approach has potential;

– Users need longer learning time to master the visual and interaction

tools;

– Major improvements and further studies with experts are neces-

sary; and

– Despite the necessary improvements, the response accuracy is en-

couraging.

• the experiment II (Section 4.4) evaluated the usability and suitability of

the TiltingMap technique for exploring indicators of presence dynamics

over time compared to the traditional animation technique. The main

outcomes were:

– The circular movement is difficult to perform and negatively affects

response accuracy;

– Response accuracy is encouraging while using the TM technique

with linear tilting movement;

– The TM technique with linear movement is as effective and efficient

as the traditional animation;

– Users enjoyed controlling the TM technique with a linear tilting

movement; and

– Combining direct touch to the TM technique may improve inter-

action.

• the experiment III (Section 4.5) evaluated a refined version of the vi-

sual and interaction tools of the previous eSTIMe prototype, covering

the exploration of urban mobility data through the same indicators, ob-

jects of interest, and visual representations. However, supporting the

TiltingMap through a linear tilting movement instead of a circular one.

The main outcomes were:

– Users could learn how to use the visual and interaction tools;

– Users enjoyed using the tablet to interact with the analytical dash-

boards;
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– The modifications reduced workload and increased usability com-

paring to the first experiment;

– More interaction mechanisms are necessary between tablet and

dashboards; and

– Users evoked the need for a technique that allows to freezing space

and time.

• the experiment IV (Section 4.6) evaluated the usability and suitability of

a complete version of eSTIMe to support the analysis of urban mobility

data through the exploration of three complementary objects of interest

over space, time and thematic attributes. This experiment involved

experts actively working on the field. The main outcomes were:

– Users could explore the data without much training, which reflects

into a satisfactory usability and intuitiveness of the visual and in-

teraction tools of eSTIMe;

– Usability and overall workload scores were similar to the previous

experiment, which are both satisfactory;

– Users provided valuable feedback regarding the indicators, specially

the activity programs and mobility rate;

– The multiple views layout was found useful to compare several

indicators side-by-side;

– Users told us that a tablet is not a common device on their work-

ing environment, and suggested using eSTIMe as a communication

tool.

– Experts found the tool accessible, easy to use, and that it could be

employed right away for analyzing urban mobility data.

From these experiments, we observed that a long time slot should be allo-

cated for the learning phase and the trial phase would take around one hour

minimum if the experiment involved simple tasks. Particularly, we allocated

a slot of six hours for training a group of geography students (enthusiasts of

human mobility) on how to use our visualization system for discovering and

describing human mobility patterns. However, students are usually easy to

recruit and they have more time to spare, while the same cannot be expected

from expert users.

In our final experiment we provide a short learning time and allow the

experts to freely explore the tool trying to solve a set of exploratory tasks that
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would serve as a guide to what they could do within the system. The expert

users were able to progressively learn how to use the visual and interaction

tools, which consequently led some of them not being able to complete all

tasks during the two hours allocated for the trial phase. Nonetheless, this

could also be consequent from exploring their own hypotheses, since we did

not forced them to strictly follow our list of tasks. They found the interface

easy to use and reported low overall workload. Therefore, we believe that

performing periodic experiments with specific objectives for finding obvious

usability issues and refining the system is a suitable solution for minimizing

the time of experiments, while making them more attractive to volunteers

and reducing the time necessary for learning to manipulate the visual and

interaction tools.

The literature has exhaustively mentioned that the test users of a visual-

ization tool should be the potential users from whom it was designed (Ellis and

Dix, 2006, Knight, 2001, Shneiderman and Plaisant, 2006), since they under-

stand the domain’s needs and know better than anyone what functionalities

they need from it. While we agree with this statement, a recurring problem

with evaluations is the difficulty to find a group of expert users to take part in

the many trials necessary for evaluating a visualization system, which lead to

conveniently using students. Regardless the negative tent of replacing expert

users by students, they can be valuable on detecting usability issues, since

these can be identified through simple identify, locate and compare tasks, for

which one does not need to be an expert on the application domain. The feed-

back gathered from two groups of non-experts on the subject and a group of

trainees, which were students on geography being trained on human mobility

during that semester, was extremely valuable for refining our tool and hav-

ing an interface with satisfactory usability for presenting to the expert users.

Thus, we could have a feedback from experts mainly focused on the data and

exploratory process, instead of issues regarding the interface usability.

The next and final chapter concludes the work carried out during this

thesis, while discussing the limitations of our framework and exploring the

perspectives of future research resulting from this work.
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Conclusion

Numerous experts in urban policies – not necessarily transport specialists

– need to manipulate more or less standardized urban mobility data to ex-

tract synthetic and easily exploitable knowledge that serve as support for the

decision-making process on public policies such as transportation offers, ac-

cessibility, public health, well-being, and air quality control. In this thesis,

we focused on assisting these professionals through a visualization framework

that enables the answering of three great questions underlying the urban mo-

bility phenomenon and that are of great concern within the fields of geography

and urban planning. These questionings pursue the understanding of:

• how people travel within an urban area on a daily basis, which are the

resulting exchange processes and how they shape the urban structure. In

this context, the objects of interest are travel flows and trips, from which

we derive indicators that describe their amounts, modalities, direction,

and variation according to different socioeconomic aspects of individuals

and land types;

• how the different spatial locations within an urban area are used accord-

ing to the socioeconomic characteristics of people that visits them and

the types of activities they carry out there. Here, the object of interest

is the territory, which is explored through indicators that describe the

temporal variation of presence in the spatial locations that constitute

the territory. This analysis reveals the urban pulse of different spatial

locations (Miranda et al., 2016), which enables a better understanding

of their daily rhythms (Le Roux et al., 2017); and

• how people order their activities and trips according to the spatial con-

text of the studied territory, which helps to explain their need of trav-

eling. In this case, the object of interest is the daily trajectory of indi-

viduals, which are defined as the travel-activity schedules resulting from
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the daily mobility of individuals, i.e. the sequence of trips and activities

one perform within the period of a day.

The answering to these questionings can be achieved through the visual ex-

ploration of a dataset describing individual trips in space (i.e. a urban area)

and time (i.e. 24 hours), and characterized by reasons to travel and used

transportation modes. The individuals are themselves characterized through

socio-demographic aspects, such as age, occupation, and place of residence.

These multivariate aspect of the data implies on manifold indicators defined

over space, time, objects and thematic attributes, which analysis can become

rapidly complex when considering multiple levels of aggregation and granular-

ity. This way, information visualization is a suitable approach to support the

analysis of urban mobility data, since analysts do not have to learn sophisti-

cated methods to interpret the data visualizations that come to reinforce their

cognition, enabling the discovery of unstructured insights within the data.

Although there are a great amount of work being done in information vi-

sualization aiming the analysis of urban mobility data, we have not found

visualization approaches that allow the understanding of urban mobility phe-

nomena through the analysis of complementary objects of interest, specially

the ones that support the answering to the above questionings. Particularly,

we identified the following issues from our literature review:

• the majority of surveyed studies focus on exploring specific issues of

urban mobility analysis, particularly regarding urban traffic flows and

monitoring, people dynamics in an urban environment, road traffic acci-

dents (Sobral et al., 2019), and more recently, the usage of bike-sharing

systems, which not necessarily addresses the reasons that drive human

mobility;

• the analysis is often supported either at the population or individual

level, rarely at both;

• thematic attributes are rarely represented, which probably results from

the type of data they explore (e.g., public transportation and bike-

sharing data);

• only two surveyed VAS support urban mobility analysis via our three

objects of interest, but the visual representation is completely based

on 3D techniques which interaction remains restrict to 2D operations,

causing issues such as occlusion and loss of information;
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• the majority of surveyed studies, including the ones supporting the com-

plementary analysis through our three objects of interest, did not evalu-

ate the proposed VAS with participation of users, which makes it difficult

to assess whether these proposals are suitable for our potential users; and

• the visualization interface, although built on the basis of multiple co-

ordinated views, present views in a predetermined spatial arrangement,

which prevent the user of modifying that arrangement or replacing views

for data representations that are more suitable to the ongoing analysis.

For instance, instead of exploring a particular indicator using a single

view which variation over space, time and thematic attributes is pre-

sented one at the time according to the selection of a spatial location,

time unit or attribute, one could prefer to compare the indicator over

those different attributes side-by-side by displaying a new instance of

the view built with different data attributes.

In this context, designing a visualization framework that supports the

efficient exploration of urban mobility data requires to address issues regarding

visualization, interaction, and user-based evaluations, described as follows:

• from a visualization perspective, we sought to identify, among the great

range of well-known visualization techniques largely used to represent

spatio-temporal data, the ones that were appropriate to visualize the

variation of indicators describing the territory, travel flows and trips,

and daily trajectories over multiple spatio-temporal granularity levels

and thematic attributes. Furthermore, when the existing techniques

were not suitable to our requirements, we sought to improve them or

propose novel ones;

• from the interaction perspective, we sought to establish the relationship

of indicators with the multiple granularity levels of space and time, and

the various thematic attributes through interaction mechanisms. We

were particularly interested on:

– improving the way users explored data over time, since the tradi-

tional animation techniques have shown shortcomings due to being

strongly dependent on users’ memory;

– supporting a comfortable and efficient interaction with a large and

customizable visualization space, which would assist users on com-

posing their visualization display according to the ongoing analysis;

and
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– supporting the data synchronization within multiple visualizations

and analytical displays.

• from the perspective of user-based evaluations, we sought to identify

suitable experimental protocol(s), measures, metrics and user profiles

that could help us to evaluate the usability and suitability of our visu-

alization framework.

5.1 Summary of Contributions

In order to overcome the aforementioned shortcomings, our main contribution

consists of a visualization framework, eSTIMe, which incorporate the pro-

cess of transforming and deriving indicators from the input data to describe

the territory, travel flows and trips, and daily trajectories. An interactive

visualization interface supports the exploration of those indicators through

appropriate visual and interaction tools, enabling the exploration of indica-

tors over multiple spatio-temporal granularity levels and thematic attributes.

eSTIMe supports the integration of different datasets to allow comparison of

daily urban mobility patterns within different urban areas. On a more partic-

ular level, it enables users to:

• describe daily mobility patterns through complementary analyses of

travel flows and trips, territory, and daily trajectories, which indica-

tors are defined and explored over multiple spatio-temporal granularity

levels, and thematic attributes;

• explore and compare indicators at the aggregate and individual levels

through suitable visual and interaction tools within a single interface to

leverage their complementary aspect;

• explore the temporal variation of indicators to reveal the dynamics re-

sulting from the urban mobility phenomenon; and

• compose the visualization display in meaningful ways according to the

ongoing analysis. Although the complementary aspect of the indica-

tors is essential for understanding the human mobility phenomenon as a

whole, each aforementioned question could focus on indicators derived

from only one object of interest, which could be also interesting for the

analyst. Assuming users may not need to deal with every indicator and
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their spatio-temporal combinations simultaneously, we allow them to de-

fine the spatial arrangement of visualizations across multiple analytical

dashboards and to modify them according to different indicators, spatial

locations, time intervals and thematic attributes as it better suits their

analysis.

Our visualization framework comprises contributions spread over two axes:

• interaction: we proposed a movement-based interface that enable the

exploration of data over time and uses tactile input to handle the visual

representations within our visualization interface; and

• visualization: we proposed a multi-display visualization embedding cus-

tomizable analytical dashboards to enable the analysis of urban mo-

bility data via the exploration of three objects of interest (travel flows

and trips, territory, and daily trajectories), and according to the spatio-

temporal granularity levels and thematic attributes that are suitable to

the ongoing analysis.

Firstly, traditional animation techniques rely strongly on humans’ mem-

ory, which presents some well-known issues for exploring data over time. Fish

et al. (2011) draw attention to the blindness caused by subtle changes be-

tween time slices combined with the speed of animations, which reduces the

effectiveness of animated maps, leading map readers to falsely believe they

have correctly perceived more displays than they actually have. This misin-

terpretation of information would, in our context, mislead the production of

knowledge that is further used to assist decision-making in important areas

of public policies. Considering the benefits of physical interaction combined

with humans’ proprioceptive sense (Arvola and Holm, 2014, Besançon et al.,

2017, Maciel et al., 2010) we proposed TiltingMap, a movement-based in-

teraction technique designed to offer more control of time animation and

to improve map reading by using the position and orientation of the user’s

hands and wrists as reference recall for the observed changes between time

slices. It implements the lenticular printing metaphor, allowing the user to

view different time slices according to the tilting angles of a tablet, which are

mapped to the time units displayed on a timeline.

Secondly, we designed and implemented eSTIMe, a multi-display visu-

alization interface that embeds customizable analytical displays, which the
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user can personalize in meaningful ways according to the ongoing analysis.

We provide users with a set of visualization techniques considered appropriate

for representing each indicator. Most of them are not novel per se, except by

the mobility wheel, which displays the temporal variation of mobility rate and

attribute share simultaneously, allowing this information to be absorbed by

the user at a glance. Our contribution lies on the design of a customizable

interface that allow users to build the visualizations according to different

indicators, spatio-temporal resolutions and thematic attributes that support

the ongoing analysis, and to disperse the visual representations over multiple

synchronized analytical displays in meaningful ways to build a visualization

space that is suitable to their analysis. Furthermore, we leverage tactile input

from a mobile device (i.e. a tablet) to interact with visualizations (i.e. open,

close, modify indicators through data selection) in each analytical display. We

also use the tablet screen to visualize indicators of presence through the map

view, and daily trajectories on the space-time cube. Thus, eSTIMe lever-

age a large visualization space that can be progressively increased via the

addition of an analytical display, allowing the simultaneous exploration and

comparison of multifaceted data through various indicators and over multiple

spatio-temporal granularity levels and thematic attributes. The combination

of customizable analytical dashboards and the TiltingMap technique offer the

possibility of exploring data over time through juxtaposing and animation

techniques, respectively. The former allows yet the comparison of indicators

over different spatial locations and thematic attributes.

The usability and suitability of both proposals were assessed through user-

based evaluations and many demonstrations involving experts on the domain.

The results showed that our visualization system is suitable to explore the

data, answering the questionings that guided this research, while being satis-

factory with respect to overall usability and requiring a low amount of work

from users (trainees and experts on urban mobility). Our visualization frame-

work was well received by the expert users, who were able to quickly master

the visual and interaction tools, and demonstrated interest on using the sys-

tem to explore their own datasets, in particular other HTS data from different

metropolitan regions of France for the purpose of comparison.
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5.2 Future Research Perspectives

Hereafter, we delineate the research possibilities steaming from the work per-

formed during this thesis.

Using provenance information to improve the analysis workflow

The design of eSTIMe follows a flexible approach enabling the users to gener-

ate the analysis workflow that better suits the task in hand by choosing the

indicators that describe the objects of interest they want to explore and the

spatio-temporal granularity levels and thematic attributes suitable to their

analysis. Nevertheless, user experience can be improved through the under-

standing of how analysts use a visualization interface such as eSTIMe to solve

different types of tasks, i.e. which selections and order of usage of indicators,

spatio-temporal granularity levels, and thematic attributes, and how visual-

izations are dispersed over the multiple displays.

The field of Analytical Provenance focus on the understanding of users’

reasoning process through the study of their interactions with a visualiza-

tion, which addresses issues of perception, capture, encoding, recovering and

reusing (North et al., 2011), through research questions such as follows:

• Perception: how the visual presentation of information affects the user’s

reasoning process?

• Capture: what types of user interactions should be captured, and how

much semantic information should be included based on a user’s task?

• Encoding: how should the system store the recorded user interactions?

• Recovering: how can a user’s reasoning process be recovered from cap-

tured interactions, and could it be done automatically?

• Reusing: how can a visual analytics system apply what it had learned

about a user’s reasoning process to assist the user performing future

analyses, and can the learned reasoning be applied to other tasks and

systems?
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In our context, eSTIMe can be used in diverse ways to solve the same task,

for example, “how does presence fluctuates over the day in the most attractive

spatial locations?”, for which one would likely answer via the exploration of

indicators describing the attractiveness and presence fluctuation at different

spatial locations within the territory. However, the manner these indicators

will be visualized and explored might change according to the usage one does

of the system. Let us illustrate the solution of this task with three different

possible usages:

1. The user displays on the control unit interface a map that represents the

attractiveness index over 24 hours of every spatial location within the

territory and they identify which are the most attractive ones. Subse-

quently, they would replace this indicator with presence fluctuation and

use animation to identify its variation over the day.

2. The analyst chooses to use only one analytical dashboard, where they

display a map representing the attractiveness index of every spatial lo-

cation within the territory, and displays other three maps representing

the indicator of presence fluctuation, each one frozen at a different time

unit, exploring the temporal variation of the indicator through time jux-

taposing.

3. The analyst displays a map representing the attractiveness indicator

on the control unit interface and, subsequently, display on the analyt-

ical dashboard a map representing the presence fluctuation indicator

and explore it through animation, or display four maps representing the

presence fluctuation of different spatial locations and freeze them at four

different time units to compare side-by-side.

Particularly, our system collects a set of operations considered relevant

to understand these usage patterns, such as when and where a visualiza-

tion was opened, closed, and modified (e.g., spatial granularity, time unit,

spatio-temporal freezing). Identifying the most common usages of a system

according to different types of tasks could be used to introduce the system

to new users, such as by suggesting some well-known workflows of analysis,

i.e. opening up visualizations at a certain order and dispersion to solve the

task in hand. Furthermore, one should validate these usage patterns through

a user-based evaluations involving experts on the domain, such as suggest-

ing different analysis workflows according to a set of tasks and asking them

whether that workflow responds to their needs and how it could be improved.
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Data visualization and interaction in the space-time cube

The space-time cube is an important element of our visualization system,

since it enables the visual exploration and understanding of the individuals’

spatio-temporal ordering of activities and trips. According to Kraak (2003),

alternative graphics should appear next to the cube and be linked together

to stimulate thinking new insights and explanations. Particularly within our

approach, the state distribution and index sequences plot serve to complement

the information displayed on the space-time cube. Nevertheless, a limitation

of our design lies on the interactive aspects that enable the user to effec-

tively manipulate the cube in space to find the best possible view and query

the cube’s content. Furthermore, we only provide simple linking operations

between the cube and index sequences plots, highlighting the corresponding

sequence on the plot upon a selection on the cube’s content.

In this regard, Kraak (2003) evokes a series of research questions, which

certain remain open to this date: (1) how many multiple linked views can the

user handle? (2) can the user understand the cube when multiple space-time-

paths are displayed? (3) how should the interface look like? These questions

can only be answered through user-based evaluations, which unfortunately are

still scarce comparing to the amount of work that have been performed on the

domain. Furthermore, as evoked repeatedly throughout this work, evaluations

with the participation of users are difficult for several well-known reasons,

which hinders the process of understanding which design choices are more

suitable to help users explore data via multiple views and, more specifically,

to leverage of often 2D visualizations linked to 3D representations.

As for the second question, the literature has shown that only a certain

amount of data can be explored on the STC without causing occlusion. Like-

wise every other 3D representation, the STC suffers from well-known limita-

tions in terms of perception and interaction when used in conventional desktop

setups (Ware, 2019). In this spirit, researchers have lately focused their at-

tention on mitigating the negative effects of using 2D operations to interact

with 3D environments by using tangible interaction, which enables to map

user actions in physical space into the virtual space of data in a visualiza-

tion. These proposals are often combined with virtual reality as an attempt

to improve perception by immersing the user in the virtual space of the visu-

alization (Filho et al., 2020, Cordeil et al., 2017).
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Another emerging field of research addresses the provision of spatial in-

teraction through mobile devices (Fröhlich et al., 2007), which can serve as

bridges between the real and virtual information space (Grandi et al., 2018).

Our visualization framework leverages tangible interaction through the orien-

tation of a mobile device. In this context, the interaction mechanism could be

extended to map movements of forward/back, up/down, and left/right into

the movement of the virtual camera enabling the user to find suitable views

in a more natural fashion (Besançon et al., 2017, Pahud et al., 2018).

Whilst using spatial interaction may improve the relationship between user

and 3D visualization, it requires the use of non-conventional interaction de-

vices (e.g., mobile device, virtual reality headset) that are not part of the

experts users’ working routine, as evoked during our user-based evaluations.

Therefore, “how to design comfortable interaction mechanisms for extended

periods of work while leveraging spatial interaction and, eventually, virtual

reality?” and “are resting mechanisms such as clutching and freezing (Kister

et al., 2017) enough to support interaction during long periods?”.

A second research aspect surrounding the STC refers to the visual encod-

ing, which could be explored and extended to represent more complementary

thematic variables. For instance, our implementation of the STC focus on

representing activities. We put in place solutions that suits the data we were

working with, such as using seven geographical coordinates within each spatial

feature to represent the seven categories of activities that could be possibly

performed in each spatial location. However, this design decision prevented

us from appropriately representing transportation modes, since we cannot ex-

pect that everyone traveling to a particular spatial location for performing

a specific activity would do so using the same transportation modes, which

generates many segments between geographical positions that may overlay

each other (i.e. multiple trips between the same O/D pair), hiding the color

code of one or more transportation modes and causing, consequently, loss of

information. Thus, “how to visually encode multiple variables without losing

information neither overcharging the view?”.

When representing daily trajectories, one could also be interested on ex-

ploring the overall spatio-temporal pattern, which could be shown through the

visualization of kernel density estimation (Demšar and Virrantaus, 2010), or

by aggregating trips between O/D pairs (Yu et al., 2015). These techniques

eliminate the individual aspect of trajectories, but help to improve the explo-

ration of the data since it reduces the volume of information been visualized.

However, both visualization techniques evoke an issue regarding the represen-
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tation of thematic attributes. Using kernel density estimation, the algorithm

should be executed for every category of activity, which rise questions such

as “how to display every pattern without increasing visual clutter?” and “is it

useful to explore one pattern at the time?”. The aggregation of trips rises the

same question we evoked above, “how to represent different variables, such as

transportation modes and activities simultaneously?”.

Evaluating the visualization suitability with user participation

As we mentioned earlier, it might be almost impossible to completely evalu-

ate a visualization interface (Ellis and Dix, 2006). Further to the difficulty

of accessing expert users and replicating exploratory tasks to evaluate the

suitability of the visualization to solve domain-related tasks, we encounter

an extra challenge regarding the evaluation of the usability of our layout de-

sign (multiple synchronized displays) and non-conventional interaction mech-

anisms, as well as their suitability to assist the exploration of urban mobility

data. Hence, we were confronted with evaluating how several variables could

impact the usability of eSTIMe: multiple indicators, visualizations, displays,

and non-conventional interaction mechanisms.

This multiplicity of variables prevented us of following conventional evalu-

ation protocols, which includes formal experiments comparing the product in

hand with traditional interfaces and/or techniques. This format of experiment

was only applied to evaluate the usability of the TiltingMap technique com-

pared to traditional animation. Therefore, we adopted an incremental eval-

uation protocol following a quasi-experiment format, which outcomes have

showed us that eSTIMe can ultimately assist the analysis of urban mobil-

ity data and that users are able to use the interface after a short learning

period, which is possible thanks to applying the outcomes of previous experi-

ments focused on improving usability. However, we could notice that solving

domain-related tasks with eSTIMe takes a long exploration time, particularly

when referring to exploratory tasks, and users repeatedly reported high men-

tal demand while using the interface. We could hypothesize that these results

are a consequence of the inherent complexity of the data, or from using visual

and interaction tools users are not familiar with, or perhaps both.

These results show that we could validate the suitability of our approach to

assist analysts on visually querying the data to answer their research questions.

Nevertheless, our experiments could not show whether and how our design
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decisions are better or worse than the traditional analytical dashboards. A

direct comparison to an existing visualization interface would not be possible,

since there is no system that provides the analysis of urban mobility data at

the same extent as our framework does. Hence, the question that remains

is “how to evaluate the effects of a multiple display interface combined with

non-conventional interaction on usability and user experience compared to

traditional visualization interfaces?” .

As we could observe through our literature review, there are little work

on visualizing urban mobility data through non-conventional visual and inter-

action techniques, which makes the single display analytical dashboards and

mouse/keyboard interaction the known way of expert users to visually explore

this kind of information. Therefore, we believe that a solution could be to con-

duct a formal experiment comparing eSTIMe with a“conventionalized”version

of itself, which would display our six visualizations techniques side-by-side and

completely coordinated them through brushing and linking techniques, while

interaction would be provided through mouse and keyboard. In this scenario,

the user would not have access to the time juxtaposing technique to compare

indicators side-by-side, but they would rather use their memory to make com-

parisons with previously viewed information. This way, we would be able to

determine the long exploration time and high mental demand origin based on

the difference of these measures using a traditional analytical dashboard and

eSTIMe. Furthermore, this proposal could help to answer questions such as

the following:

• Is eSTIMe better than a traditional analytical dashboard in terms of

usability (i.e. efficiency, effectiveness and satisfaction)?

• Are there effects of the absence and/or presence of time juxtaposing for

the analysis and user experience?

• How using one or multiple displays affects the way users explore the

data? Which are the effects on usability and user experience?

Collaborative visual analysis

Collaborative visualization involves two or more people using visualization

tools to collectively frame and address a task (Brewer et al., 2000). It has

become an important topic of research in the recent years due to analysts being
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confronted with problems that are becoming increasingly large and complex,

uncertain, ill-defined and broadly scoped, which makes it no longer feasible for

a single analyst to tackle the immense datasets describing realistic problems

that require broad expertise, diverse perspectives and a number of dedicated

people to solve (Isenberg et al., 2011).

Collaboration can be achieved through the sharing of a physical or virtual

space. Langner et al. (2018) have shown how people collaborate when working

together on wall-sized visualization, which interaction was supported through

mobile devices. This setup requires people to be located in the same physical

space and to interact within the same visualization space. Another approach

addresses the collaboration between users in different places working on the

same problem at the same time (Hardisty, 2009). We could have two peo-

ple working together in the same workstation, likewise the pair programming

development technique, in which one person drives the interaction with the

visualization, while the other, the observer, follows and provide insights on

the data exploration.

During our experiments, one expert user suggested using eSTIMe for com-

municating information by visualizing the data on a large high-resolution dis-

play or projection of one analytical dashboard and using the tablet for long-

distance interaction. This setup would be useful since they constantly need

to present the results of their analysis to the people responsible for decision-

making within urban policies, allowing them to develop and even explore new

hypotheses together with other team members. Using a secondary handheld

device for assisting the presentation and “real time” exploration of a dataset

on large screens have been proposed earlier on the literature (see Chegini et al.

(2019) for an example). This setup could also support a form of collaborative

visualization by involving two or more people in the discussion regarding the

information being visualized.

Regarding the exploration of urban mobility data via eSTIMe, collabora-

tion could provide an alternative solution for combining 2D and 3D represen-

tations. For instance, the STC could be developed separately and explored

through virtual reality techniques, which according to Filho et al. (2020),

improves the user experience, while the remaining of indicators could be ex-

plored through 2D visualizations, such as within eSTIMe. There are different

possibilities on how the collaboration could happen in this scenario:
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• both systems could be completely independent from each other, which

would force users to inform each other about what they observe in each

interface. Then, together they could formulate hypothesis and continue

the exploration; or

• the systems could be synchronized, in a way that information (e.g.,

screenshots, annotations, messages) could be sent to one another al-

lowing to integrate that new information in the ongoing analysis.

These forms of collaboration could also be integrated into eSTIMe without

virtual reality, but instead using two independent instances of the interface or

by including communication protocols into a collaborative visualization session

that enable people located in different spatial locations to explore together the

same dataset.

Using eSTIMe on different domains and/or datasets

The visual and interaction tools embedded into eSTIMe are generic enough

to enable the visual exploration of information other than mobility, or the

analysis of mobility data described through alternative thematic attributes

(i.e. other than activities and transportation modes). The temporal and

spatial dimensions could be discretized into time periods (e.g., hours, weeks,

months, years) and spatial locations that better suit the data, which requires

a rather easy adaptation of the visual representations. Hereafter, we describe

two examples of alternative application domains that could benefit from the

visualizations embedded into eSTIMe to answer domain-related questions. In

both examples, we consider that the temporal dimension could be discretized

into months or years, and the spatial dimension could cover the whole world

or a single country, depending on the granularity level of the ongoing analysis.

We describe the data and embedding process into eSTIMe as follows:

• life trajectories data that describe the sequence of events over the life-

time of individuals. In this scenario, the thematic attributes would de-

scribe life events (e.g., new job, marriage) that may trigger a relocation

to another city, state or country. We could represent the individual

trajectories using the state distribution plot, index sequences plot and

the space-time cube subsequently to similarity analyses (Robette, 2011),

such as we performed to classify the activity patterns. The flow diagram
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could serve to represent the relationship between spatial locations ac-

cording to different life events, which reveal the migratory patterns of

people throughout life. Similarly, the map view can show where people

are living during different periods of time and why they moved there.

Finally, the outermost ring of the mobility wheel could represent the

number of people relocating to a certain spatial location, while the in-

nermost ring could display the distribution of life events that triggered

the relocation; and

• scientific publications data that describe where and when a paper was

published, whom it belongs, and which topic it addresses. In this sce-

nario, the thematic attributes could describe categories of research top-

ics. We could adapt eSTIMe to represent relationships between publi-

cations using the flow diagram such as the aggregation of publications

between pairs of authors or topics. For one author/location or a set of

authors/locations, the mobility wheel could display on the outermost

ring the number of publications per time period, while the innermost

ring could display the distribution of covered topics. Similarly, the map

view could display the spatial distribution of publications per topic/au-

thor at different time periods. The state distribution plot could display

the temporal variation of the number of publications per topic, which

could be explored per spatial location and/or author. Finally, the in-

dex sequences plot and the space-time cube could serve to explore the

individual “publication path” of different authors, allowing to analyze

the frequency of publications over space and time according to different

topics, as well as to identify their periods of inactivity.

As we can observe, it is possible to visualize different datasets through

eSTIMe, assisting the exploration of different data and therefore the under-

standing of phenomena other than urban mobility. Nevertheless, the suitabil-

ity of this approach to solve domain-related tasks should be validated through

user-based evaluations involving expert users of the referred domains. Regard-

less of whether eSTIMe is adapted or not to assist the analysis of data from

other field of researches, further investigation remains necessary to verify the

suitability of our design decisions and whether they are better or worse than

the traditional single display analytical dashboards.



242 Chapter 5. Conclusion

5.3 Final Considerations

This thesis was developed within an interdisciplinary research group that fo-

cus on proposing models, methods and tools to improve acquisition, mod-

eling, querying, reasoning and visualization of spatio-temporal data, which

topics are at the confluence of many disciplines, particularly Computer Sci-

ence and Geography (i.e. Geographic Information Science or Geomatics).

This cooperation between computer scientists and geographers prevail since

2007, which long-term teamwork allowed to improve the communication be-

tween researchers from different backgrounds, enabling the development of

efficient solutions to assist spatial analysis, natural hazard prevention, and

digital humanities.

Particularly, the work accomplished during this thesis is a product of the

cooperation of researchers within the fields of Computer Science, Geomatics,

and Geography, which latter corresponds to a researcher with a deep knowl-

edge on human mobility and, therefore, able to understand the needs of social

scientists towards the subject and to accompany the development of our vi-

sualization framework from a thematic point of view.This cooperation among

disciplines supported an extensive work in order to understand and exploit

the datasets describing the urban mobility phenomenon. This process of com-

prehension of a real dataset improved not only the derivation of proper indica-

tors and the definition of suitable visual representations, but contributed for a

greater comprehension of the application domain. Further, we could develop

a procedure of data processing, indicators derivation and visualization generic

enough to fast and easily integrate new datasets from similar data sources.
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Theses, Université Paris Diderot (Paris 7). 30, 41, 120, 245

[ Baldonado et al., 2000 ] Baldonado, M. Q. W., Woodruff, A., and Kuchinsky, A.

(2000). Guidelines for using multiple views in information visualization. In

Proceedings of the working conference on Advanced visual interfaces, pages

110–119. ACM. 36, 114, 245

[ Bertin et al., 1967 ] Bertin, J. et al. (1967). Sémiologie graphique. Paris,
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Appendix A. Typology of Activity Programs: Characteristics of

Individuals

Grenoble: Socio-demographic aspects of individuals.

Category Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A
g

e

05-17 86 (9.89%) 258 (4.88%) 2506 (78.85%) 15 (0.36%) 37 (13.41%) 1 (0.09%)

18-24 53 (6.09%) 312 (5.90%) 596 (18.75%) 237 (5.74%) 66 (23.91%) 50 (4.64%)

25-34 90 (10.34%) 526 (9.94%) 56 (1.76%) 851 (20.61%) 55 (19.93%) 146 (13.54%)

35-49 146 (16.78%) 863 (16.31%) 15 (0.47%) 1909 (46.23%) 63 (22.83%) 521 (48.33%)

50-64 250 (28.74%) 1477 (27.92%) 1 (0.03%) 1096 (26.54%) 50 (18.12%) 350 (32.47%)

65+ 245 (28.16%) 1854 (35.05%) 4 (0.13%) 21 (0.51%) 5 (1.81%) 10 (0.93%)

G
en

d
er female 452 (51.95%) 2985 (56.43%) 1549 (48.74%) 1902 (46.06%) 104 (37.68%) 472 (43.78%)

male 418 (48.05%) 2305 (43.57%) 1629 (51.26%) 2227 (53.94%) 172 (62.32%) 606 (56.22%)

W
o

rk
in

g
S

ta
tu

s

full-time

employment
197 (22.64%) 812 (15.35%) 2 (0.06%) 3433 (83.14%) 151 (54.71%) 831 (77.09%)

internship 5 (0.57%) 18 (0.34%) 38 (1.20%) 47 (1.14%) 3 (1.09%) 5 (0.46%)

other 18 (2.07%) 224 (4.23%) - - 2 (0.72%) -

part-time em-

ployment
67 (7.70%) 354 (6.69%) 3 (0.09%) 585 (14.17%) 23 (8.33%) 232 (21.52%)

retired 353 (40.57%) 2531 (47.84%) 4 (0.13%) 18 (0.44%) 8 (2.90%) 6 (0.56%)

school student 85 (9.77%) 267 (5.05%) 2613 (82.22%) 2 (0.05%) 44 (15.94%) -

stay at home 50 (5.75%) 496 (9.38%) 1 (0.03%) - 2 (0.72%) -

unemployed 76 (8.74%) 423 (8.00%) 2 (0.06%) 6 (0.15%) 11 (3.99%) 2 (0.19%)

university stu-

dent
19 (2.18%) 165 (3.12%) 515 (16.21%) 38 (0.92%) 32 (11.59%) 2 (0.19%)

S
o

ci
o

-p
ro

fe
ss

io
n

a
l

C
a

te
g

o
ry

apprentices 5 (0.57%) 18 (0.34%) 38 (1.20%) 47 (1.14%) 3 (1.09%) 5 (0.46%)

blue collar

workers
136 (15.63%) 981 (18.54%) - 481 (11.65%) 33 (11.96%) 287 (26.62%)

business own-

ers and shop

keepers

51 (5.86%) 304 (5.75%) - 213 (5.16%) 20 (7.25%) 54 (5.01%)

employees 164 (18.85%) 1353 (25.58%) 2 (0.06%) 938 (22.72%) 54 (19.57%) 330 (30.61%)

executives and

professionals
170 (19.54%) 699 (13.21%) 4 (0.13%) 1315 (31.85%) 32 (11.59%) 145 (13.45%)

farmers 15 (1.72%) 134 (2.53%) - 27 (0.65%) 2 (0.72%) 13 (1.21%)

no professional

activity
149 (17.13%) 841 (15.90%) 3129 (98.46%) 40 (0.97%) 81 (29.35%) 4 (0.37%)

technicians

and associate

professionals

178 (20.46%) 957 (18.09%) 5 (0.16%) 1067 (25.84%) 51 (18.48%) 240 (22.26%)

Table A.1: Socio-demographic aspects of surveyed individuals in the urban

area of Grenoble per group of the typology of activity programs.
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Grenoble: Usage frequency of private transportation modes.

Frequency Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

C
ar

/
va

n
a

s
a

d
ri

ve
r

everyday 457 (52.53%) 2371 (44.82%) 135 (4.25%) 3159 (76.51%) 146 (52.90%) 815 (75.60%)

never 198 (22.76%) 1326 (25.07%) 2779 (87.44%) 274 (6.64%) 77 (27.90%) 104 (9.65%)

rarely 21 (2.41%) 185 (3.50%) 56 (1.76%) 114 (2.76%) 10 (3.62%) 25 (2.32%)

twice-

month
26 (2.99%) 181 (3.42%) 52 (1.64%) 122 (2.95%) 7 (2.54%) 23 (2.13%)

twice-week 166 (19.08%) 1218 (23.02%) 123 (3.87%) 459 (11.12%) 29 (10.51%) 110 (10.20%)

C
ar

/
va

n
a

s
a

p
a

ss
en

g
er everyday 119 (13.68%) 534 (10.09%) 1231 (38.74%) 210 (5.09%) 40 (14.49%) 63 (5.84%)

never 155 (17.82%) 1112 (21.02%) 245 (7.71%) 1375 (33.30%) 57 (20.65%) 342 (31.73%)

rarely 286 (32.87%) 1544 (29.19%) 382 (12.02%) 1472 (35.65%) 85 (30.80%) 360 (33.40%)

twice-

month
104 (11.95%) 688 (13.01%) 284 (8.94%) 431 (10.44%) 35 (12.68%) 129 (11.97%)

twice-week 204 (23.45%) 1403 (26.52%) 1003 (31.56%) 640 (15.50%) 52 (18.84%) 183 (16.98%)

T
w

o
-w

h
ee

le
d

m
o

to
rc

yc
le

everyday 4 (0.46%) 24 (0.45%) 17 (0.53%) 46 (1.11%) 5 (1.81%) 14 (1.30%)

never 813 (93.45%) 5060 (95.65%) 3021 (95.06%) 3723 (90.17%) 241 (87.32%) 951 (88.22%)

rarely 21 (2.41%) 101 (1.91%) 52 (1.64%) 173 (4.19%) 14 (5.07%) 63 (5.84%)

twice-

month
14 (1.61%) 48 (0.91%) 25 (0.79%) 86 (2.08%) 5 (1.81%) 26 (2.41%)

twice-week 16 (1.84%) 48 (0.91%) 30 (0.94%) 100 (2.42%) 4 (1.45%) 23 (2.13%)

B
yc

ic
le

everyday 36 (4.14%) 230 (4.35%) 203 (6.39%) 281 (6.81%) 15 (5.43%) 54 (5.01%)

never 524 (60.23%) 3383 (63.95%) 1352 (42.54%) 2295 (55.58%) 160 (57.97%) 638 (59.18%)

rarely 185 (21.26%) 1035 (19.57%) 894 (28.13%) 975 (23.61%) 55 (19.93%) 243 (22.54%)

twice-

month
60 (6.90%) 260 (4.91%) 323 (10.16%) 280 (6.78%) 15 (5.43%) 68 (6.31%)

twice-week 63 (7.24%) 373 (7.05%) 373 (11.74%) 297 (7.19%) 24 (8.70%) 74 (6.86%)

Table A.2: Usage frequency of private transportation modes of the sur-

veyed individuals of the urban area of Grenoble per group in the typology

of activity programs.
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Appendix A. Typology of Activity Programs: Characteristics of

Individuals

Grenoble: Usage frequency of the public transportation system.

Frequency Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

T
A

G
i

everyday 73 (8.39%) 456 (8.62%) 779 (24.51%) 385 (9.32%) 46 (16.67%) 115 (10.67%)

never 432 (49.66%) 2678 (50.62%) 1344 (42.29%) 2220 (53.77%) 127 (46.01%) 640 (59.37%)

rarely 170 (19.54%) 966 (18.26%) 572 (18.00%) 901 (21.82%) 50 (18.12%) 189 (17.53%)

twice-

month
91 (10.46%) 557 (10.53%) 231 (7.27%) 385 (9.32%) 22 (7.97%) 89 (8.26%)

twice-week 102 (11.72%) 624 (11.80%) 219 (6.89%) 237 (5.74%) 24 (8.70%) 44 (4.08%)

T
E

R
ii

everyday 10 (1.15%) 36 (0.68%) 48 (1.51%) 142 (3.44%) 1 (0.36%) 28 (2.60%)

never 631 (72.53%) 4047 (76.50%) 2391 (75.24%) 3083 (74.67%) 174 (63.04%) 855 (79.31%)

rarely 185 (21.26%) 983 (18.58%) 514 (16.17%) 733 (17.75%) 65 (23.55%) 161 (14.94%)

twice-

month
24 (2.76%) 154 (2.91%) 129 (4.06%) 135 (3.27%) 21 (7.61%) 25 (2.32%)

twice-week 18 (2.07%) 61 (1.15%) 63 (1.98%) 35 (0.85%) 8 (2.90%) 8 (0.74%)

T
ra

m
w

ay
o

n
ly everyday 53 (6.09%) 353 (6.67%) 538 (16.93%) 289 (7.00%) 30 (10.87%) 83 (7.70%)

never 434 (49.89%) 2820 (53.31%) 1491 (46.92%) 2245 (54.37%) 128 (46.38%) 643 (59.65%)

rarely 196 (22.53%) 1063 (20.09%) 659 (20.74%) 974 (23.59%) 66 (23.91%) 216 (20.04%)

twice-

month
92 (10.57%) 512 (9.68%) 224 (7.05%) 365 (8.84%) 22 (7.97%) 89 (8.26%)

twice-week 93 (10.69%) 533 (10.08%) 233 (7.33%) 255 (6.18%) 23 (8.33%) 46 (4.27%)

T
R

A
N

S
IS

E
R

E
iii everyday 14 (1.61%) 62 (1.17%) 569 (17.90%) 103 (2.49%) 9 (3.26%) 19 (1.76%)

never 710 (81.61%) 4418 (83.52%) 2072 (65.20%) 3545 (85.86%) 214 (77.54%) 960 (89.05%)

rarely 106 (12.18%) 553 (10.45%) 355 (11.17%) 370 (8.96%) 32 (11.59%) 72 (6.68%)

twice-

month
24 (2.76%) 168 (3.18%) 82 (2.58%) 81 (1.96%) 8 (2.90%) 23 (2.13%)

twice-week 14 (1.61%) 80 (1.51%) 67 (2.11%) 29 (0.70%) 6 (2.17%) 3 (0.28%)

O
th

er
P

T
S

everyday 3 (0.34%) 46 (0.87%) 175 (5.51%) 34 (0.82%) 5 (1.81%) 17 (1.58%)

never 797 (91.61%) 4757 (89.92%) 2669 (83.98%) 3806 (92.18%) 235 (85.14%) 996 (92.39%)

rarely 46 (5.29%) 322 (6.09%) 202 (6.36%) 223 (5.40%) 18 (6.52%) 49 (4.55%)

twice-

month
11 (1.26%) 74 (1.40%) 49 (1.54%) 33 (0.80%) 6 (2.17%) 12 (1.11%)

twice-week 11 (1.26%) 82 (1.55%) 50 (1.57%) 32 (0.78%) 5 (1.81%) 3 (0.28%)

i The Société d’économie mixte des transports publics de l’agglomération grenobloise (SÉMITAG) operates its services, which includes
bus services and tramway (i.e. the tram system), under the TAG brand (https://www.tag.fr/).
ii The Transport Express Régional (TER) denote the rail service run by the regional council of France (https://www.sncf.com/fr/
offres-voyageurs/voyager-en-train/ter).
iii The Réseau interurbain de l’Isère (TRANSISERE) is the interurban transport network of the Isère department, in the Auvergne-
Rhône-Alpes region (https://www.transisere.fr/).

Table A.3: Usage frequency of public transportation system (PTS) of

the surveyed individuals of the urban area of Grenoble per group in the

typology of activity programs.

https://www.tag.fr/
https://www.sncf.com/fr/offres-voyageurs/voyager-en-train/ter
https://www.sncf.com/fr/offres-voyageurs/voyager-en-train/ter
https://www.transisere.fr/
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Lyon: Socio-demographic aspects of individuals.

Categories Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A
g

e

05-17 210 (2.21%) 5 (0.07%) 4335 (78.08%) 47 (19.26%) 3 (0.20%) 36 (3.24%)

18-24 657 (6.92%) 396 (5.45%) 1105 (19.90%) 87 (35.66%) 77 (5.02%) 76 (6.85%)

25-34 935 (9.85%) 1549 (21.32%) 99 (1.78%) 36 (14.75%) 254 (16.55%) 118 (10.63%)

35-49 1511 (15.91%) 3142 (43.25%) 10 (0.18%) 15 (6.15%) 652 (42.48%) 208 (18.74%)

50-64 2275 (23.95%) 2113 (29.09%) 2 (0.04%) 33 (13.52%) 530 (34.53%) 303 (27.30%)

65+ 3909 (41.16%) 59 (0.81%) 1 (0.02%) 26 (10.66%) 19 (1.24%) 369 (33.24%)

G
en

d
er female 5442 (57.30%) 3489 (48.03%) 2734 (49.24%) 130 (53.28%) 733 (47.75%) 554 (49.91%)

male 4055 (42.70%) 3775 (51.97%) 2818 (50.76%) 114 (46.72%) 802 (52.25%) 556 (50.09%)

W
o

rk
in

g
S

ta
tu

s

full-time em-

ployment
1693 (17.83%) 6339 (87.27%) 5 (0.09%) 61 (25.00%) 1238 (80.65%) 288 (25.95%)

internship 25 (0.26%) 33 (0.45%) 95 (1.71%) 4 (1.64%) 8 (0.52%) 1 (0.09%)

other 214 (2.25%) - - 1 (0.41%) - 26 (2.34%)

part-time em-

ployment
578 (6.09%) 820 (11.29%) - 12 (4.92%) 264 (17.20%) 64 (5.77%)

retired 4825 (50.81%) 33 (0.45%) 1 (0.02%) 35 (14.34%) 15 (0.98%) 487 (43.87%)

school student 201 (2.12%) 1 (0.01%) 4424 (79.68%) 49 (20.08%) - 34 (3.06%)

stay at home 644 (6.78%) - - 3 (1.23%) - 49 (4.41%)

unemployed 924 (9.73%) 7 (0.10%) 3 (0.05%) 22 (9.02%) 3 (0.20%) 129 (11.62%)

university stu-

dent
393 (4.14%) 31 (0.43%) 1024 (18.44%) 57 (23.36%) 7 (0.46%) 32 (2.88%)

S
o

ci
o

-p
ro

fe
ss

io
n

a
l

C
a

te
g

o
ry blue collar

workers
1131 (11.91%) 576 (7.93%) 1 (0.02%) 19 (7.79%) 279 (18.18%) 138 (12.43%)

business own-

ers and shop

keepers

263 (2.77%) 226 (3.11%) - 2 (0.82%) 32 (2.08%) 40 (3.60%)

employees 1757 (18.50%) 1102 (15.17%) - 20 (8.20%) 316 (20.59%) 174 (15.68%)

executives and

professionals
1049 (11.05%) 1711 (23.55%) 6 (0.11%) 17 (6.97%) 129 (8.40%) 166 (14.95%)

farmers 23 (0.24%) 6 (0.08%) - - 2 (0.13%) 1 (0.09%)

no professional

activity
960 (10.11%) 43 (0.59%) 4067 (73.25%) 93 (38.11%) 10 (0.65%) 103 (9.28%)

technicians and

associate pro-

fessionals

1187 (12.50%) 1409 (19.40%) 2 (0.04%) 22 (9.02%) 231 (15.05%) 149 (13.42%)

Table A.4: Socio-demographic aspects of surveyed individuals in the urban

area of Lyon per group of the typology of activity programs.
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Individuals

Lyon: Usage frequency of private transportation modes.

Frequency Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

B
u

s

everyday 36 (0.38%) 25 (0.34%) 491 (8.84%) 6 (2.46%) 9 (0.59%) 9 (0.81%)

never 3295 (34.70%) 2546 (35.05%) 1080 (19.45%) 62 (25.41%) 611 (39.80%) 357 (32.16%)

rarely 446 (4.70%) 232 (3.19%) 310 (5.58%) 11 (4.51%) 58 (3.78%) 53 (4.77%)

twice-

month
103 (1.08%) 20 (0.28%) 45 (0.81%) 2 (0.82%) 5 (0.33%) 10 (0.90%)

twice-week 42 (0.44%) 8 (0.11%) 52 (0.94%) 4 (1.64%) 4 (0.26%) 5 (0.45%)

C
ar

/
V

a
n

a
s

d
ri

ve
r everyday 4042 (42.56%) 5094 (70.13%) 184 (3.31%) 81 (33.20%) 1130 (73.62%) 544 (49.01%)

never 2471 (26.02%) 796 (10.96%) 5008 (90.20%) 116 (47.54%) 197 (12.83%) 250 (22.52%)

rarely 428 (4.51%) 374 (5.15%) 127 (2.29%) 10 (4.10%) 37 (2.41%) 43 (3.87%)

twice-

month
488 (5.14%) 311 (4.28%) 81 (1.46%) 10 (4.10%) 44 (2.87%) 60 (5.41%)

twice-week 2060 (21.69%) 685 (9.43%) 141 (2.54%) 27 (11.07%) 125 (8.14%) 212 (19.10%)

C
ar

/
V

a
n

a
s

p
a

ss
en

g
er everyday 606 (6.38%) 269 (3.70%) 1921 (34.60%) 33 (13.52%) 85 (5.54%) 84 (7.57%)

never 2582 (27.19%) 2800 (38.55%) 713 (12.84%) 41 (16.80%) 558 (36.35%) 314 (28.29%)

rarely 2748 (28.94%) 2265 (31.18%) 786 (14.16%) 69 (28.28%) 455 (29.64%) 311 (28.02%)

twice-

month
1383 (14.56%) 893 (12.29%) 683 (12.30%) 38 (15.57%) 196 (12.77%) 157 (14.14%)

twice-week 2170 (22.85%) 1033 (14.22%) 1438 (25.90%) 63 (25.82%) 239 (15.57%) 243 (21.89%)

B
ic

yc
le

everyday 264 (2.78%) 315 (4.34%) 196 (3.53%) 11 (4.51%) 47 (3.06%) 37 (3.33%)

never 6846 (72.09%) 4666 (64.23%) 3174 (57.17%) 147 (60.25%) 1039 (67.69%) 761 (68.56%)

rarely 1288 (13.56%) 1291 (17.77%) 1160 (20.89%) 42 (17.21%) 271 (17.65%) 162 (14.59%)

twice-

month
531 (5.59%) 537 (7.39%) 527 (9.49%) 16 (6.56%) 98 (6.38%) 85 (7.66%)

twice-week 560 (5.90%) 451 (6.21%) 484 (8.72%) 28 (11.48%) 78 (5.08%) 64 (5.77%)

T
w

o
-w

h
ee

le
d

m
o

to
rc

yc
le

everyday 74 (0.78%) 107 (1.47%) 19 (0.34%) 7 (2.87%) 18 (1.17%) 10 (0.90%)

never 9130 (96.14%) 6740 (92.79%) 5409 (97.42%) 219 (89.75%) 1431 (93.22%) 1037 (93.42%)

rarely 147 (1.55%) 195 (2.68%) 53 (0.95%) 6 (2.46%) 35 (2.28%) 24 (2.16%)

twice-

month
61 (0.64%) 126 (1.73%) 24 (0.43%) 3 (1.23%) 22 (1.43%) 17 (1.53%)

twice-week 77 (0.81%) 92 (1.27%) 36 (0.65%) 9 (3.69%) 27 (1.76%) 21 (1.89%)

Table A.5: Usage frequency of private transportation modes of the sur-

veyed individuals of the urban area of Lyon per group in the typology.
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Lyon: Frequency of walking and usage of the public transportation system.

Frequency Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

W
a

lk
in

g

everyday 5655 (59.55%) 3383 (46.57%) 3888 (70.03%) 143 (58.61%) 689 (44.89%) 620 (55.86%)

never 634 (6.68%) 1026 (14.12%) 424 (7.64%) 19 (7.79%) 204 (13.29%) 102 (9.19%)

rarely 846 (8.91%) 941 (12.95%) 402 (7.24%) 17 (6.97%) 208 (13.55%) 125 (11.26%)

twice-

month
475 (5.00%) 498 (6.86%) 191 (3.44%) 10 (4.10%) 93 (6.06%) 46 (4.14%)

twice-week 1879 (19.79%) 1412 (19.44%) 636 (11.46%) 55 (22.54%) 339 (22.08%) 216 (19.46%)

T
ra

in

everyday 78 (0.82%) 324 (4.46%) 185 (3.33%) 8 (3.28%) 27 (1.76%) 15 (1.35%)

never 6619 (69.70%) 5019 (69.09%) 3959 (71.31%) 136 (55.74%) 1129 (73.55%) 724 (65.23%)

rarely 2230 (23.48%) 1547 (21.30%) 1073 (19.33%) 67 (27.46%) 320 (20.85%) 276 (24.86%)

twice-

month
441 (4.64%) 266 (3.66%) 221 (3.98%) 23 (9.43%) 47 (3.06%) 71 (6.40%)

twice-week 121 (1.27%) 104 (1.43%) 103 (1.86%) 10 (4.10%) 10 (0.65%) 23 (2.07%)

O
th

er
P

T
S

everyday 1202 (12.66%) 1383 (19.04%) 2130 (38.36%) 81 (33.20%) 250 (16.29%) 162 (14.59%)

never 3910 (41.17%) 3181 (43.79%) 1623 (29.23%) 68 (27.87%) 766 (49.90%) 428 (38.56%)

rarely 1898 (19.99%) 1460 (20.10%) 857 (15.44%) 34 (13.93%) 306 (19.93%) 223 (20.09%)

twice-

month
1221 (12.86%) 708 (9.75%) 400 (7.20%) 26 (10.66%) 122 (7.95%) 149 (13.42%)

twice-week 1258 (13.25%) 528 (7.27%) 531 (9.56%) 35 (14.34%) 89 (5.80%) 147 (13.24%)

Table A.6: Frequency of walking and usage of public transportation sys-

tem (PTS) of the surveyed individuals of the urban area of Lyon per group

in the typology of activity programs.
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Individuals

Rennes: Socio-demographic aspects of individuals.

Categories Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A
g

e

05-17 82 (2.13%) 8 (0.27%) 1758 (85.71%) 2 (0.37%) 11 (5.82%) 17 (3.66%)

18-24 130 (3.38%) 138 (4.58%) 277 (13.51%) 35 (6.49%) 24 (12.70%) 27 (5.82%)

25-34 323 (8.41%) 605 (20.09%) 15 (0.73%) 96 (17.81%) 44 (23.28%) 39 (8.41%)

35-49 541 (14.08%) 1321 (43.86%) 1 (0.05%) 236 (43.78%) 48 (25.40%) 74 (15.95%)

50-64 1006 (26.19%) 927 (30.78%) - 165 (30.61%) 47 (24.87%) 135 (29.09%)

65+ 1759 (45.80%) 13 (0.43%) - 5 (0.93%) 15 (7.94%) 172 (37.07%)

G
en

d
er female 2280 (59.36%) 1470 (48.80%) 1049 (51.15%) 278 (51.58%) 78 (41.27%) 244 (52.59%)

male 1561 (40.64%) 1542 (51.20%) 1002 (48.85%) 261 (48.42%) 111 (58.73%) 220 (47.41%)

W
o

rk
in

g
S

ta
tu

s

full-time

employment
655 (17.05%) 2585 (85.82%) 2 (0.10%) 418 (77.55%) 113 (59.79%) 100 (21.55%)

internship 11 (0.29%) 42 (1.39%) 4 (0.20%) 5 (0.93%) 1 (0.53%) 2 (0.43%)

other 46 (1.20%) 1 (0.03%) - - - 5 (1.08%)

part-time em-

ployment
252 (6.56%) 351 (11.65%) - 108 (20.04%) 22 (11.64%) 29 (6.25%)

retired 2209 (57.51%) 7 (0.23%) - 5 (0.93%) 19 (10.05%) 238 (51.29%)

school student 80 (2.08%) 2 (0.07%) 1814 (88.44%) - 10 (5.29%) 17 (3.66%)

stay at home 177 (4.61%) 2 (0.07%) - - - 18 (3.88%)

unemployed 358 (9.32%) 8 (0.27%) - - 10 (5.29%) 41 (8.84%)

university stu-

dent
53 (1.38%) 14 (0.46%) 231 (11.26%) 3 (0.56%) 14 (7.41%) 14 (3.02%)

S
o

ci
o

-p
ro

fe
ss

io
n

a
l

C
a

te
g

o
ry blue collar

workers
593 (15.44%) 378 (12.55%) 1 (0.05%) 146 (27.09%) 48 (25.40%) 53 (11.42%)

business own-

ers and shop

keepers

204 (5.31%) 84 (2.79%) - 16 (2.97%) 4 (2.12%) 23 (4.96%)

employees 1245 (32.41%) 875 (29.05%) 1 (0.05%) 190 (35.25%) 54 (28.57%) 129 (27.80%)

executive and

professionals
559 (14.55%) 766 (25.43%) - 46 (8.53%) 19 (10.05%) 70 (15.09%)

farmers 152 (3.96%) 20 (0.66%) - 4 (0.74%) 3 (1.59%) 10 (2.16%)

no professional

activity
248 (6.46%) 60 (1.99%) 2049 (99.90%) 8 (1.48%) 27 (14.29%) 46 (9.91%)

technicians

and associate

professionals

840 (21.87%) 829 (27.52%) - 129 (23.93%) 34 (17.99%) 133 (28.66%)

Table A.7: Socio-demographic aspects of surveyed individuals in the urban

area of Rennes per group of the typology of activity programs.
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Rennes: Usage frequency of different transportation modes.

Frequency Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

C
ar

/
V

a
n

a
s

d
ri

ve
r multi-days-

month
375 (9.76%) 142 (4.71%) 58 (2.83%) 19 (3.53%) 18 (9.52%) 35 (7.54%)

multi-days-

week
2630 (68.47%) 2581 (85.69%) 145 (7.07%) 462 (85.71%) 137 (72.49%) 343 (73.92%)

never 641 (16.69%) 163 (5.41%) 1820 (88.74%) 46 (8.53%) 24 (12.70%) 67 (14.44%)

rarely 193 (5.02%) 125 (4.15%) 27 (1.32%) 12 (2.23%) 9 (4.76%) 18 (3.88%)

B
ic

yc
le

multi-days-

month
284 (7.39%) 226 (7.50%) 253 (12.34%) 34 (6.31%) 16 (8.47%) 32 (6.90%)

multi-days-

week
406 (10.57%) 252 (8.37%) 214 (10.43%) 52 (9.65%) 24 (12.70%) 69 (14.87%)

never 2244 (58.42%) 1653 (54.88%) 862 (42.03%) 291 (53.99%) 96 (50.79%) 226 (48.71%)

rarely 905 (23.56%) 880 (29.22%) 721 (35.15%) 162 (30.06%) 52 (27.51%) 136 (29.31%)

P
T

S

multi-days-

month
404 (10.52%) 210 (6.97%) 137 (6.68%) 36 (6.68%) 21 (11.11%) 52 (11.21%)

multi-days-

week
492 (12.81%) 347 (11.52%) 871 (42.47%) 63 (11.69%) 36 (19.05%) 76 (16.38%)

never 1662 (43.27%) 1432 (47.54%) 663 (32.33%) 268 (49.72%) 72 (38.10%) 192 (41.38%)

rarely 1281 (33.35%) 1022 (33.93%) 379 (18.48%) 172 (31.91%) 59 (31.22%) 143 (30.82%)

T
E

R

multi-days-

month
65 (1.69%) 33 (1.10%) 29 (1.41%) 9 (1.67%) 2 (1.06%) 9 (1.94%)

multi-days-

week
27 (0.70%) 94 (3.12%) 27 (1.32%) 6 (1.11%) 2 (1.06%) 5 (1.08%)

never 2938 (76.49%) 2401 (79.71%) 1670 (81.42%) 423 (78.48%) 145 (76.72%) 344 (74.14%)

rarely 809 (21.06%) 483 (16.04%) 324 (15.80%) 101 (18.74%) 39 (20.63%) 105 (22.63%)

T
w

o
-w

h
ee

le
d multi-days-

month
40 (1.04%) 48 (1.59%) 4 (0.20%) 8 (1.48%) 5 (2.65%) 6 (1.29%)

multi-days-

week
47 (1.22%) 66 (2.19%) 15 (0.73%) 17 (3.15%) 7 (3.70%) 6 (1.29%)

never 3674 (95.65%) 2766 (91.83%) 2018 (98.39%) 493 (91.47%) 168 (88.89%) 430 (92.67%)

rarely 78 (2.03%) 131 (4.35%) 13 (0.63%) 21 (3.90%) 8 (4.23%) 21 (4.53%)

W
a

lk
in

g

multi-days-

month
346 (9.01%) 401 (13.31%) 234 (11.41%) 69 (12.80%) 15 (7.94%) 46 (9.91%)

multi-days-

week
2753 (71.67%) 1554 (51.59%) 1377 (67.14%) 296 (54.92%) 117 (61.90%) 321 (69.18%)

never 221 (5.75%) 399 (13.25%) 141 (6.87%) 56 (10.39%) 17 (8.99%) 34 (7.33%)

rarely 519 (13.51%) 657 (21.81%) 298 (14.53%) 118 (21.89%) 39 (20.63%) 62 (13.36%)

Table A.8: Usage frequency of different transportation modes of the sur-

veyed individuals of the urban area of Rennes per group in the typology

of activity programs.





Appendix B

Territorial Partitions of Studied

Regions

Rennes, France

20 km

N

Small Areas (570 locations)

20 km

N

Polling Districts (68 locations)



274 Appendix B. Territorial Partitions of Studied Regions

Grenoble, France

30 km

N

Small Areas (526 locations)

30 km

N

Polling Districts (97 locations)

30 km

N

Intermediate Areas (39 locations)

30 km

N

Large Areas (12 locations)

Urban Core
(Grenoble)

Sud Grenoblois

Sud Grésivaudan

Metropolis

Voiron

University
Campus

Grenoble
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Lyon, France

30 km

N

Small Areas (1191 locations)

30 km

N

Polling Districts (169 locations)

30 km

N

Intermediate Areas (58 locations)

30 km

N

Large Areas (12 locations)

Urban Core (Lyon)

Airport Area

Chanopost

Metropolis





Appendix C

Mutual Materials and Methods of

Experiments

C.1 NASA TLX Questionnaire

The evaluation you are about to perform is a technique that has been devel-

oped by NASA to assess the relative importance of six factors in determining

how much workload you experienced:

• MENTAL DEMAND – How much mental and perceptual activity was

required (e.g., thinking, deciding, calculating, remembering, looking,

searching)? Was the task easy or demanding, simple or complex, ex-

acting or forgiving?

• PHYSICAL DEMAND – How much physical activity was required (e.g.,

pushing, pulling, turning, controlling, activating)? Was the task easy or

demanding, slow or brisk, slack or strenuous, restful or laborious?

• TEMPORAL DEMAND – How much time pressure did you feel due to

the rate or pace at which the tasks or task elements occurred? Was the

pace slow and leisurely or rapid and frantic?

• EFFORT – How hard did you have to work (mentally and physically)

to accomplish your level of performance?

• PERFORMANCE – How successful do you think you were in accom-

plishing the goals of the task set by the experimenter? How satisfied

were you with your performance in accomplishing these goals?

• FRUSTRATION LEVEL – How insecure, discouraged, irritated, stressed

and annoyed versus secure, gratified, content, relaxed and complacent

did you feel during the task?
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NASA TLX Questionnaire Part 1 (Sources of Load)

1 (A) Mental Demand or Effort (B) � A � B

2 (A) Frustration or Effort (B) � A � B

3 (A) Temporal Demand or Mental Demand (B) � A � B

4 (A) Performance or Frustration (B) � A � B

5 (A) Effort or Physical Demand (B) � A � B

6 (A) Temporal Demand or Effort (B) � A � B

7 (A) Physical Demand or Temporal Demand (B) � A � B

8 (A) Performance or Temporal Demand (B) � A � B

9 (A) Effort or Performance (B) � A � B

10 (A) Performance or Mental Demand (B) � A � B

11 (A) Physical Demand or Frustration (B) � A � B

12 (A) Frustration or Mental Demand (B) � A � B

13 (A) Temporal Demand or Frustration(B) � A � B

14 (A) Physical Demand or Performance (B) � A � B

15 (A) Mental Demand or Physical Demand (B) � A � B

NASA TLX Questionnaire Part 2 (Magnitude of Load)

1 How mentally demanding was the task?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

2 How physically demanding was the task?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

3 How hurried or rushed was the pace of the task?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

4
How successful were you in accomplishing what

you were asked to do?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

5
How hard did you have to work to accomplish

your level of performance?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

6
How insecure, discouraged, irritated, stressed,

and annoyed were you?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

Source: Hart and Staveland (1988).
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C.2 Raw NASA TLX Questionnaire

Raw TLX Questionnairei

Cette évaluation prend en compte six dimensions indépendants (expliqués ci-dessous) que vous devez évaluer en

fonction de votre ressenti.

EXIGENCE MENTALE : Quelle a été l’importance de l’activité mentale et intellectuelle requise (ex. réflexion,

décision, calcul, mémorisation, observation, recherche, etc) ? La tâche vous a-t-elle paru simple, nécessitant peu

d’attention (faible) ou complexe, nécessitant beaucoup d’attention (élevée) ?

EXIGENCE PHYSIQUE : Quelle a été l’importance de l’activité physique requise (ex. pousser, porter, tourner,

marcher, activer, etc) ? La tâche vous a-t-elle paru facile, peu fatigante, calme (faible) ou pénible, fatigante,

active (élevée) ?

EXIGENCE TEMPORELLE : Quelle a été l’importance de la pression temporelle causée par la rapidité nécessitée

pour l’accomplissement de la tâche ? Etait-ce un rythme lent et tranquille (faible) ou rapide et précipité (élevé) ?

PERFORMANCE : Quelle niveau de réussite pensez-vous avoir eu dans l’accomplissement de votre tâche ?

Comment pensez-vous avoir atteint les objectifs déterminés par la tâche ?

EFFORT : Quel degré d’effort avez-vous dû fournir pour exécuter la tâche demandée (mentalement et physique-

ment) ?

FRUSTRATION : Pendant l’exécution du travail êtes-vous senti satisfait, relaxé, sûr de vous (niveau de frustration

faible), ou plutôt découragé, irrité, stressé, sans assurance (niveau de frustration élevé) ?

1
Quel degré d’activité mentale était exigé pour réaliser la

tâche ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

2
Quel degré d’activité physique était exigé pour réaliser

la tâche ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

3
Quelle pression temporelle avec-vous ressentie pour

réaliser la tâche ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

4 Avec quel succès pensez-vous avoir réalisé la tâche ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

5 Quel effort deviez-vous fournir pour accomplir la tâche ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �

6

Avez-vous ressenti, durant votre tâche, de l’insecurité,

du découragement, de l’irritation, du stress ou de

l’agacement ?

Low High

1 2 3 4 5 6 7 8 9 10

� � � � � � � � � �
i French translation recovered from https://theses.univ-lyon2.fr/documents/getpart.php?id=lyon2.2010.mai

ncent_a&part=365749

https://theses.univ-lyon2.fr/documents/getpart.php?id=lyon2.2010.maincent_a&part=365749
https://theses.univ-lyon2.fr/documents/getpart.php?id=lyon2.2010.maincent_a&part=365749
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C.3 SUS Questionnaire

SUS Questionnaire

Please rate the following statements from 1 to 5 according to how much you agree with it

1
I think that I would like to use this system

frequently

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

2 I found the system unnecessarily complex

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

3 I thought the system was easy to use

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

4

I think I would need the support of a

technical person to be able to use this

system

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

5
I found the various functions in this system

were well integrated

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

6
I thought there was to much inconsistency

in this system

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

7
I would imagine that most people would

learn to use this system very quickly

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

8 I found the system very cumbersome to use

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

9 I felt very confident using the system

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

10
I needed to learn a lot of things before I

could get going with this system

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

Source: Brooke (1996).
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Le Questionnaire SUSi

Pour chaque affirmation ci-dessous, merci de cocher la case qui correspond le mieux à votre niveau

d’appréciation.

1
Je pense que j’aimerais utiliser

fréquemment ce système

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

2
J’ai trouvé ce système inutilement

complexe

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

3 J’ai trouvé ce système facile à utiliser.

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

4
Je pense que j’aurais besoin du support

d’un spécialiste pour utiliser ce système

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

5
J’ai trouvé que les différentes fonctions de

ce système étaient bien intégrées

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

6 J’ai trouvé ce système trop incohérent

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

7
Je pense que ce système sera facile à

apprendre pour beaucoup de personnes

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

8
J’ai trouvé ce système très contraignant à

utiliser

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

9
Je me suis senti(e) en confiance lorsque j’ai

utilisé ce système

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �

10

J’ai dû apprendre beaucoup de choses

avant de me sentir familiarisé(e) avec ce

système

Pas du tout d’accord Tout à fait d’accord

1 2 3 4 5

� � � � �
i French translation recovered from https://fr.ryte.com/wiki/System_Usability_Scale#Le_que

stionnaire

https://fr.ryte.com/wiki/System_Usability_Scale#Le_questionnaire
https://fr.ryte.com/wiki/System_Usability_Scale#Le_questionnaire




Appendix D

Experiment I: Questionnaires and

Tasks

D.1 Tasks Description

Preliminary information:

• The tasks focus on the following time intervals: morning (between 7am

and 8am), noon (from 12pm to 1pm), and evening (from 6pm to 7pm).

• The movement required for animating time through the TM technique

depends on the experiment condition, which is counterbalanced with

the tasks sets. It may be a rotational movement in a clock- and coun-

terclockwise manner or from left to right and contrariwise. The users

learned the required movement just before solving the tasks.

• EXPLORE and NEXT are control buttons of the slide-like presentation

of tasks on the Control Unit interface. The former allows to begin the

exploration of indicators to complete the task at hand, while the latter

allows to record the time elapsed since the user clicked on EXPLORE,

i.e. the task’s completion time.

• At the time of this experiment, the analytical dashboards were called

Visualization Spaces.

The tasks of Set 1:

Task 1. Give the presence density of location 5 during the morning period.

Click on EXPLORE to start the task. Then follow the instructions

below:
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• Open the presence density indicator by using the main menu.

• Explore the indicator’s variation over time by tilting the tablet

as you did on the training phase

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on the Control Unit in-

terface.

Reply:

Task 2. Give the mobility rate for the whole region during the morning and

evening periods.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Open the mobility rate indicator by using the main menu.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 3. Give the transportation modes share for the whole region during the

morning, noon and evening periods.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Display the following indicators:

– Mobility rate by using the main menu.

– Histograms for the transportation modes share of every re-

quired time periods.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 4. Identify where the majors incoming travel flows to the three most

attractive locations over 24 hours come from. Click on EXPLORE

to start the task. Then follow the instructions below:
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• Display the following indicators using the main menu:

– Attractiveness.

– Flows.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 5. Classify locations 1, 6, 61 and 51 according to the transportation

modes share during the morning, noon and evening periods. Click

on EXPLORE to start the task. Then follow the instructions below:

• Display the following:

– Mobility rate indicator for every required location. Re-

minder: use the menu available in each location on the

map.

– Histograms with the transportation modes share of every

required time periods.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 6. For each time period (i.e. morning, noon, evening), choose a loca-

tion that presents a positive fluctuation rate. Then, for each chosen

location, give the transportation modes share during the morning,

noon, and evening periods. Click on EXPLORE to start the task.

Then follow the instructions below:

• Display the following indicators:

– Fluctuation rate. Reminder: use the main menu.

– Mobility rate for every chosen location. Reminder: use the

menu available in each location.

– Histograms for the transportation modes share of every re-

quired time period.
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• Explore the variation of fluctuation rate indicator over time by

tilting the tablet.

• Use it to complete the task.

• Write your answer below. List the chosen locations in your

answer.

• Open the task description on the tablet, and click on NEXT.

Obs.: Display the fluctuation rate on the Control Unit interface and

the remaining indicators in a Visualization Space.

Reply:

The tasks of Set 2:

Task 1. Give the fluctuation rate of location 6 during the morning period.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Open the fluctuation rate indicator by using the main menu.

• Explore this indicator’s variation over time by tilting the tablet.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on the Control Unit in-

terface.

Reply:

Task 2. List the five most attractive locations in descending order of attrac-

tiveness.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Open the attractiveness indicator by using the main menu.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on the Control Unit in-

terface.

Reply:



D.1. Tasks Description 287

Task 3. Identify the time period when the two most attractive locations have

the highest mobility rate.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Display the following indicators using the main menu:

– Attractiveness.

– Fluctuation rate.

• Explore the fluctuation rate indicator’s variation over time by

tilting the tablet.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: Display the fluctuation rate on the Control Unit interface and

the remaining indicators in a Visualization Space.

Reply:

Task 4. Identify where the major outgoing travel flows from the two less

attractive locations over 24 hours are going to.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Display the following indicators using the main menu:

– Attractiveness.

– Flows.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 5. Identify the two locations with the higher overall mobility rate among

locations 2, 6, 61, and 51.

Click on EXPLORE to start the task. Then follow the instructions

below:

• Display the following indicators using the menu available on

each location:
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– Mobility rate for every required location.

• Use it to complete the task.

• Write your answer below.

• Open the task description on the tablet, and click on NEXT.

Obs.: You must display this representation on a Visualization Space.

Reply:

Task 6. For each time period (i.e. morning, noon, evening), choose a location

that presents a negative fluctuation rate. Then, for each chosen

location, give the transportation modes share during the morning,

noon, and evening periods. Click on EXPLORE to start the task.

Then follow the instructions below:

• Display the following indicators:

– Fluctuation rate. Reminder: use the main menu.

– Mobility rate for every chosen location. Reminder: use the

menu available in each location.

– Histograms for the transportation modes share of every re-

quired time period.

• Explore the variation of fluctuation rate indicator over time by

tilting the tablet.

• Use it to complete the task.

• Write your answer below. List the chosen locations in your

answer.

• Open the task description on the tablet, and click on NEXT.

Obs.: Display the fluctuation rate on the Control Unit interface and

the remaining indicators in a Visualization Space.

Reply:
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D.2 Terms and Conditions Agreement

You are invited to take part in an experiment to evaluate the usability and effectiveness

of a visualization interface for exploring daily mobility data. The present document

aims to explain the experiment objective, procedures, risks, and protocol. Please read

carefully this document and clarify your doubts before consenting your participation in

this study.

Procedure: the participant will be required to complete two sets of tasks using the

visualization interface and two interaction styles for exploring data over time. The whole

process will last around one hour (1:00) and consists of five (5) steps, as follows:

1. Socio-demographic questionnaire.

2. Learning how to use the visual and interaction tools under evaluation.

3. For each experimental condition (there are 2), the participant will complete a set

of six (6) tasks regarding the population mobility patterns within the region of Grenoble

metropolitan area, and answer a questionnaire to assess their perceived workload.

4. Post-test questionnaire, in which the participant will be requested to answer

questions that subjectively evaluate the usability, perceived task workload and preference

over the two experimental conditions, and to voluntarily give their opinion regarding the

visual and interaction tools, and the experiment itself.

Risks: the present study does not represent any risks for the participant.

Benefits: the participant could contribute for the refinement of a visualization tool

designed to assist the analysis of urban mobility data, which outcomes are used for

decision-making on transportation offers, urban planning, and so on.

All the data collected in this experiment will be only used in this study and in a com-

pletely anonymous way.

The participant is free to abandon the test, without any prejudice, if they wish to do

so.

Please check the field below if you agree with the termsi

� I agree to participate in this experiment. I have been properly informed about the

procedures, risks, and benefits of this study, and the confidentiality of my information

and the removal of my consent at any moment have been granted.

i The agreement was applied via an online form. No signature was required.
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D.3 Socio-demographic Questionnaire

User ID

Socio-demographic Profile

1 Age

2 Gender
� Female

� Male

3 Primary Language

4 Profession

5
Do you have any medical condition

involving your wrists?

� Yes

� No

� I don’t know

6
If you marked“yes”in the previous ques-

tion, please specify the issue.

7 Do you live in the Rhône-Alpes Region? � Yes � No

8
If you said “yes”, how long do you live

there?

Experience

9

How do you classify your knowledge

about human mobility patterns within

the Rhône-Alpes region?

Beginner Advanced

1 2 3 4 5

� � � � �

10
How do you classify your experience

on GIS?

Beginner Advanced

1 2 3 4 5

� � � � �
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Experiment II: Questionnaires

E.1 UMUX-Lite Questionnaire

User ID

Experimental Condition

� TM Circular

� TM Linear

� TA Mouse

� TA Linear

Please rate the following statements from 1 to 5 according to how much you

agree with it

1
Using this interaction interface is a

frustrating experience

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

2 This interface is easy to use

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

The questionnaire was adapted from Lewis et al. (2013)
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E.2 Preference Questionnaire

User ID

Please rate the following statements from 1 to 5 according to how much you

agree with it

1
I enjoyed tilting the tablet for

controlling the clock.

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

2
I enjoyed tilting the tablet for

controlling the timeline.

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

3
I enjoyed controlling the animation by

touching the screen.

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �

4
I enjoyed controlling the animation by

using the mouse cursor.

Strongly Disagree Strongly Agree

1 2 3 4 5

� � � � �
For each pair, please choose the interaction technique you enjoyed better

1 (A) TM Circular or (B) TM Linear � A � B

2 (A) TA Touch or (B) TM Circular � A � B

3 (A) TM Circular or (B) TA Mouse � A � B

4 (A) TM Linear or (B) TA Touch � A � B

5 (A) TA Mouse or (B) TA Touch � A � B

6 (A) TA Mouse or (B) TM Linear � A � B

Source: the author.



E.3. Terms and Conditions Agreement 293

E.3 Terms and Conditions Agreement

You are invited to take part in an experiment to evaluate the usability and effectiveness of a

movement-based cartographic interface for exploring the temporal dynamics of urban mobility

data. Please read carefully this document and clarify your questions before consenting your

participation in this study.

Procedure: the participant will be required to answer simple questions regarding the popu-

lation mobility patterns within the region of Grenoble metropolitan area via the exploration

of presence density and fluctuation maps, and using the following interaction techniques:

1. TM Circular, which requires the participant to perform a rotational tilting movement

of a tablet in order to select time periods on a virtual circular time picker.

2. TM Linear, which requires the participant to perform a tilting movement with a tablet

from left to right and vice versa in order to select time periods on a virtual linear time picker.

3. TA Touch, which changes the time periods automatically and the participant can

control (start, stop, resume) by direct touching the buttons on tablet screen.

4. TA Mouse, which changes the time periods automatically and the participant can

control (start, stop, resume) by using the mouse to click on the buttons displayed on the

computer screen.

The experiment take up to 30 minutes and consists of four (4) steps, as follows:

1. Socio-demographic questionnaire.

2. Learning how to use the interaction techniques under evaluation. A time of about 10

minutes (which can be variable) will be given to the participant for handling the interactive

interface.

3. For each interaction technique, the participant will complete a set of three (3) simple

tasks regarding the variation of presence density or fluctuation over time within the region

of Grenoble metropolitan area, and answer a short usability questionnaire.

4. Post-test questionnaire, in which the participant is requested to answer questions that

subjectively evaluate perceived task workload and preference regarding the tried interaction

techniques, and to voluntarily give their opinion regarding the visual and interaction tools,

and the experiment itself.

Risks: the present study does not represent any risks for the participant.

Benefits: the participant could contribute for improving the development of a interaction

technique for exploring data over time.

All the data collected in this experiment will be only used in this study and in a completely

anonymous way.

The participant is free to abandon the test, without any prejudice, if they wish to do so.

Please check the field below if you agree with the termsi

� I agree to participate in this experiment. I have been properly informed about the

procedures, risks, and benefits of this study, and the confidentiality of my information and

the removal of my consent at any moment have been granted.

i The agreement was applied via an online form. No signature was required.
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E.4 Socio-demographic Questionnaire

User ID

Socio-demographic Profile

1 Age

2 Gender
� Female

� Male

� Prefer not to say

3 Profession

4 Are you color-blind? � Yes � No

5 Are you right- or left-handed?
� Right-handed

� Left-handed

6
Do you have any medical condition on

your wrists?

� Yes

� No

� I don’t know

7
If you marked“yes”in the previous ques-

tion, please specify the issue.

Experience

8

How do you classify your knowledge

about human mobility patterns within

the region of Grenoble metropolitan

area?

Beginner Advanced

1 2 3 4 5

� � � � �

9

How often do you use

non-conventional devices (e.g., mobile

devices, gesture sensors, game

controllers) for interacting with your

computer?

� Never

� Rarely (once or twice a year)

� Occasionally (5 or 6 times a year)

� Often (once a month)

� Always

10

If you answered “Often” or “Always” on

the previous question, please specify

which interaction devices you use.
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Experiment III: Questionnaires and

Tasks

F.1 Tasks Description (Learning Phase)

Preliminary information1:

• The tasks should be answered using the territorial partition into inter-

mediate areas of the great region of Grenoble metropolitan area (selected

by default).

• The time intervals of interest are: morning (from 7am to 10am), noon

(from 10am to 14pm), and evening (from 5pm to 8pm).

• The spatial locations of interest are 1 (Grenoble city center), 2 (Greno-

ble without city center), from 3 to 10 (remaining locations of Grenoble

metropolitan area), 40 (Sud Grenoblois), from 50 to 53 (Voironnais).

Use these spatial locations to complete tasks that do not specify a loca-

tion.

Set 1. Spatial distribution of people along the day

Task 1. Identify the spatial locations where people are predominantly present

during the morning, noon and evening periods.

Task 2. Identify the most attractive spatial locations over 24 hours.

Task 3. Identify the time intervals when people visit the attractive locations.

1The tasks were originally prepared and applied in French
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Task 4. Identify the time intervals when the attractive locations are visited

by a number of people smaller than their population size.

Task 5. Identify the spatial locations that have less people present than their

population size in the morning, noon and evening periods.

Set 2. Variation of travel flows and trips along the day.

Task 1. Describe the variation of mobility rate in the whole region along the

day.

Task 2. Identify the three most important incoming flows of locations 1, 5,

40, and 50 over 24 hours.

Task 3. Identify the transportation modes share of locations 1, 5, 40, and 50

during the morning, noon, and evening periods.

Task 4. Describe whether and how these locations are similar regarding their

share of transportation modes.

Set 3. Combined analysis of variation of spatial distribution of people, travel

flows, and trips along the day.

Task 1. Identify where the main incoming flows of the most attractive loca-

tions are coming from during the morning, noon, and evening peri-

ods.

Task 2. Identify where the main incoming flows of the two or three spatial

locations which number of people visiting is higher than the pop-

ulation size are coming from and their transportation modes share

during the morning, noon, and evening periods.

Task 3. Identify where the main outgoing flows from the two or three spatial

locations which number of people visiting is lower than the popula-

tion size are directed to and their transportation modes share during

the morning, noon, and evening periods.
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F.2 Terms and Conditions Agreement

Vous êtes invités à participer à une expérience visant à évaluer l’utilisabilité et l’efficacité

d’une interface mobile multi-fenêtres interactive pour explorer les dynamiques spatio-

temporelles à partir de l’analyse visuelle de données de mobilités urbaines. Veuillez lire

attentivement les termes de l’expérimentation présentés ci-après et posez des questions si

besoin (aux expérimentateurs/enseignants) avant de consentir à participer à cette étude.

Procédure: le participant doit répondre à des questions simples sur les mobilités ur-

baines caractérisant la région grenobloise au moyen de la visualisation de cartes et

d’indicateurs graphiques en interrogeant les données selon des critères temporels et spati-

aux. L’expérience dure environ 45 minutes et se décline en quatre étapes :

1. Un questionnaire socio-démographique.

2. Une formation préalable sur les modalités d’utilisation de l’interface. Cette formation

sera réalisée en suivant une liste de tâches disponible sur l’application qui permettra au

participant d’apprendre à manipuler l’interface.

3. L’expérimentation en tant que telle, contenant 14 questions sur la mobilité grenobloise

auxquelles le participant doit répondre à l’aide des visualisations disponibles sur l’outil. Ce

sont des indicateurs de densité de présence, de taux de migration et d’attractivité présenté

au moyens de cartes choroplèthes ; ce sont aussi des indicateurs décrivant les déplacements

des individus, représentés par une “roue de déplacements” et des diagrammes de flux.

4. Un questionnaire de retour d’expérience, qui vise à évaluer la charge de travail demandée

par l’expérience et l’utilisabilité de l’outil pour l’analyse géovisuelle de la mobilité urbaine.

De plus, le participant est invité à donner librement des commentaires sur son expérience

et/ou sur l’interface.

Risques: la présente étude ne représente aucun risque pour le participant.

Toutes les données recueillies lors de cette expérience seront utilisées uniquement dans le

cadre de cette étude et de manière totalement anonyme.

Cochez les cases suivantes si vous acceptez les termes suivants (ne pas cocher vaut pour

désaccord) :

� J’autorise l’utilisation de mes données dans le cadre de cette recherche.

� J’autorise l’utilisation des images, prise pendant l’expérimentation, dans le cadre de

cette recherche.

Le participant est libre d’abandonner le test, sans aucun préjudice, s’il le souhaite.

Cochez la case suivante si vous acceptez de participer à cette recherche :

� J’accepte de participer à cette expérimentation. J’ai été correctement informé des

procédures, des risques et des avantages de cette étude. De plus, la confidentialité de mes

informations et le retrait de mon consentement me sont accordés à tout moment.

Fait à Grenoble, le 19/12/2018.

Nom Prénom

Identifiant

Signature du participant
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F.3 Socio-Demographic Questionnaire

Identifiant du participant

Profil socio-demographique

1 Âge

2 Sexe
� Féminin

� Masculin

� Je ne souhaite pas le préciser

3 Êtes-vous daltonien ? � Yes � No

4 Portez-vous des lunettes ? � Yes � No

5
Avez-vous ou avez-vous déjà eu des

douleurs aux poignets ?
� Yes � No

Experience

6

Quel est votre niveau de connaissance

sur la thématique des mobilités

quotidiennes dans la région grenobloise

?

Débutant Expert

1 2 3 4 5

� � � � �

7

A quelle fréquence utilisez-vous des

dispositifs autre que la souris et le

clavier pour interagir avec votre

ordinateur ?

� Jamais

� Rarement (une ou deux fois par an)

� Parfois (5 ou 6 fois par an)

� Souvent (au moins une fois par

mois)

� Toujours

8

Si vous avez répondu ’souvent’ ou ’tou-

jours’ à la question précédente, merci

de préciser le type de dispositif utilisé.
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G.1 Terms and Conditions Agreement

Vous êtes invités à participer à une expérience visant à évaluer l’utilisabilité et l’efficacité d’une

interface multi-fenêtres interactive pour explorer les dynamiques spatio-temporelles à partir d’une

analyse visuelle de données de mobilités urbaines. Veuillez lire attentivement les termes de

l’expérimentation présentés ci-après et posez des questions si besoin (aux expérimentateurs/en-

seignants) avant de consentir à participer à cette étude.

Procédure : e participant doit s’approprier des indicateurs de mobilité disponibles sur l’application

pour répondre à des questions sur trois points de vues complémentaires décrivant les patterns de

mobilité urbaine : les flux et déplacements, la dynamique de peuplement du territoire et l’emplois

du temps des individus. Cette analyse est basée sur la visualisation de cartes et de graphiques

interconnectés entre eux et représentant des indicateurs de mobilité, interrogeables selon des

critères temporels et spatiaux. L’expérience dure 3 heures et se déroule en quatre étapes :

1. Une présentation sur l’outil, les indicateurs de mobilité et les représentations disponibles.

2. Un questionnaire socio-démographique.

3. L’exploration de l’outil par le participant pour répondre aux trois questions ouvertes sur la

mobilité de la population de Grenoble, Lyon ou Rennes.

4. Un questionnaire de retour d’expérience, qui vise à évaluer la charge de travail demandée par la

réalisation de l’analyse et l’utilisabilité de l’outil pour l’analyse géovisuelle de la mobilité urbaine.

De plus, le participant est invité à donner librement des commentaires sur son expérience et/ou

sur l’interface.

Risques: la présente étude ne représente aucun risque pour le participant.

Toutes les données recueillies lors de cette expérience seront utilisées uniquement dans le cadre

de cette étude et de manière totalement anonyme.

Le participant est libre d’abandonner le test, sans aucun préjudice, s’il le souhaite.

Cochez les cases suivantes si vous acceptez les termes suivants (ne pas cocher vaut pour désaccord)

:

� J’autorise l’utilisation de mes données dans le cadre de cette recherche.

� J’autorise l’utilisation des images, prise pendant l’expérimentation, dans le cadre de cette

recherche.

Cochez la case suivante si vous acceptez de participer à cette recherche :

� J’accepte de participer à cette expérimentation. J’ai été correctement informé des procédures,

des risques et des avantages de cette étude. De plus, la confidentialité de mes informations et le

retrait de mon consentement me sont accordés à tout moment.

Fait à Grenoble, le /01/2020.

Nom Prénom

Identifiant

Signature du participant
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