Résumé

Ce e thèse est motivée par le progrès constant de la technologie des réseaux de capteurs sans l et par la tendance croissante à connecter tout appareil à l'internet. D'une part, la quantité de données ainsi obtenues crée de nombreuses possibilités pour de nouveaux types d'applications, mais d'autre part ce e connectivité accrue induit une complexité telle que les méthodes centralisées classiques de contrôle ou d'estimation ne sont plus réalisables. C'est pourquoi des solutions distribuées, qui sont des algorithmes locaux pour a eindre un objectif global, s'avèrent nécessaires.

Ce e thèse porte plus particulièrement sur le problème de l'estimation de l'état distribué d'un système linéaire. Dans ce cadre, un réseau de noeuds observateurs estime collectivement l'état du système dynamique avec pour objectif que chaque noeud reconstruise l'état complet. Cependant, aucun des noeuds observateurs ne peut le faire individuellement puisque le système n'est pas observable à partir d'une seule sortie. Les noeuds doivent donc échanger des informations via un réseau. La seule hypothèse retenue est que le graphe de communication, qui décrit les noeuds pouvant échanger directement des informations, est connecté pour un ensemble de noeuds à partir desquels le système est observable si les sorties respectives sont combinées. Une telle propriété est appelée observabilité distribuée pour la première fois dans ce e thèse, et c'est une condition nécessaire et su sante pour l'existence d'une solution au problème de l'estimation de l'état distribué (similaire à la notion classique d'observabilité).

Pour surmonter ce e observabilité limitée, les noeuds utilisent le couplage di us sur les noeuds voisins. Une telle solution a été proposée il y a plus de 10 ans, mais aucune méthode de conception réalisable n'existait jusqu'à récemment, avant le début de ce e thèse. À partir de ce point de départ, la thèse examine trois directions conformes. Premièrement, les résultats actuels et récemment publiés sur la conception d'observateurs distribués pour les systèmes à temps discret et à temps continu sont résumés et comparés, et de nouvelles méthodes sont introduites. Deuxièmement, de nouveaux observateurs en temps ni sont présentés pour le cas distribué. En n, la communication entre les noeuds d'observateurs est prise en compte.

iii La première partie, traitée dans le chapitre 2, prépare le terrain pour les autres chapitres. Le concept d'observateur et les notions théoriques sur les graphiques sont introduits, et de nouveaux résultats sur les observateurs distribués, essentiels pour les parties suivantes, sont présentés. Dans le cas du temps continu, les méthodes de conception basées sur le consensus, la décomposition du sous-espace à sauts multiples et une conception utilisant une inégalité matricielle linéaire (LMI) sont présentées, ainsi qu'une conception basée sur le contrôleur. Une décomposition d'observabilité globale et une conception basée sur le consensus sont décrites plus en détail pour le cas du temps discret, tandis que d'autres approches sont brièvement discutées.

La conception basée sur le consensus est due à l'échange d'informations et n'est nécessaire que pour le sous-espace non observable, alors que le sous-espace observable peut être estimé par un output-feedback classique. En examinant l'observabilité décomposée, il s'avère qu'un gain de consensus scalaire su samment élevé peut être utilisé pour amener les erreurs locales à un consensus et donc à zéro, grâce à la régularité de la matrice Laplacienne comprimée, qui est prouvée si la condition d'observabilité distribuée se maintient. Ensuite, la décomposition de l'observabilité en sous-espaces à sauts multiples permet de placer les pôles de la dynamique des erreurs. Cependant, de par leur conception, ces deux méthodes présentent l'inconvénient de n'utiliser que des informations locales pour le sous-espace observable.

La conception plus générale basée sur les LMI n'a pas cet inconvénient, puisque le gain de couplage est considéré comme une matrice à rang plein. Pour prouver que cela fonctionne, il est démontré que l'équation de Lyapunov résultante a une solution bloc-diagonale sous l'observabilité distribuée. La question de l'échange d'informations complètes est résolue par l'échange de sorties arti cielles. La conception basée sur le consensus donne la faisabilité, dans le cas où une projection sur le sous-espace non observable est échangée. Cependant, les choix a priori possibles pour la sortie arti cielle a n de réduire davantage la quantité d'informations échangées sont laissés en suspens, et cela conduit également à la question de l'optimalité de la topologie du réseau.

La deuxième contribution du chapitre 3 est la conception d'observateurs distribués, où les estimations a eignent l'état du système précisément dans un temps ni, par opposition à la convergence asymptotique des conceptions linéaires initiales. Elle est fondée sur la notion d'homogénéité. Les propriétés essentielles des systèmes homogènes sont que la stabilité globale peut être déduite localement ; le temps de convergence qualitative (asymptotique, temps ni ou temps xe) peut être déterminé à partir du degré d'homogénéité et la robus-v tesse en termes de la stabilité input-to-state est également préservée. Ce e thèse présente une première étape de conception d'un observateur en temps ni dans le cadre distribué en utilisant l'homogénéité.

Une contribution préliminaire est la dérivation d'une borne su sante sur le degré d'homogénéité dans le cas centralisé. Ensuite, le même concept est appliqué au cadre distribué pour le cas particulier d'un système composé d'une chaîne multiple d'intégrateurs où une borne su sante est également trouvée. En ce qui concerne les systèmes linéaires généraux, la décomposition de l'observabilité mentionnée auparavant est exploitée. En se basant sur l'idée intuitive qu'une rétroaction de type racine carrée dans le terme de couplage di us conduira les observateurs à un consensus dans un temps ni, une preuve utilisant le concept de domination homogène est donnée. Elle conduit à une condition su sante pour la conception en termes de faisabilité d'une LMI, qui est garantie d'avoir une solution sous observabilité distribuée.

La dernière partie du chapitre 4 montre pourquoi les concepts d'observabilité distribuée sont nécessaires en premier lieu. Il s'agit de souligner que la solution simple consistant à utiliser des observateurs centralisés à chaque noeud et à échanger les mesures n'est peut-être pas une option. La raison réside dans la communication, qui dans le cas centralisé est globale alors que le couplage di usif dans le cas distribué est seulement local. L'observation intéressante est que les observateurs distribués ont plus de degrés de liberté pour les gains, ce qui peut être un avantage supplémentaire pour faire face aux retards.

Pour modéliser la communication, on utilise l'approche des retards variables dans le temps.

Cela signi e que les noeuds des observateurs sont modélisés en temps continu, tout en tenant compte de la nature des données d'échantillon de la communication numérique. C'est logique, car les processeurs modernes sont rapides par rapport à la dynamique du système, alors que la communication en temps réel est encore très exigeante. En utilisant un fonctionnel de Lyapunov-Krasovskii, une condition LMI pour la conception est dérivée, ce qui garantit la stabilité de la dynamique d'erreur pour tout retard variable dans le temps jusqu'à une borne supérieure. Ces méthodes de conception sont présentées à la fois pour le cas centralisé et le cas distribué.

La comparaison des résultats sur un exemple académique montre que les observateurs répartis peuvent mieux faire face aux retards. Cela est vrai pour les estimations des bornes basées sur la faisabilité de l'LMI et une simulation avec un retard en dents de scie. Bien que la comparaison ne soit faite que pour un seul exemple et que les estimations soient prudentes, une conclusion générale peut encore être obtenue. Toutefois, un inconvénient du cas distribué est que les estimations de tous les états doivent être échangées, ce qui nécessite une plus grande largeur de bande. Par conséquent, une comparaison supplémentaire montre que même pour l'échange de sorties arti cielles, l'avantage est conservé. Cela ouvre la voie à des recherches futures, où le compromis entre la quantité d'informations échangées et le taux de communication est pris en compte. En n, une approche vectorielle de la méthode de Lyapunov qui pourrait faciliter les méthodes de conception distribuée est présentée. 

Introduction

Recent decades have witnessed an unprecedented progress in information technology and its in uence on every aspect of life. ings we used to do in a certain way have changed drastically, since vast amounts of real-time information and the necessary computing power to process it is readily available. However, how to exploit these new possibilities and how to cope with the associated challenges is still an outstanding and urgent research question. We can witness this by the ever-increasing prominence of topics like Industry 4.0, Internet of ings and the challenges of Big Data.

A manifestation of the technological advancement is the presence of low-cost radio connected sensors (Chong and Kumar, 2003), forming wireless sensor networks.

ese small embedded devices with computational power and communication capability can be deployed virtually everywhere: in homes, buildings, streets and factories, constantly exchanging information with each other. Moreover, they can be mounted on mobile robots or drones to enhance further their operative range. e aim is to e ciently apply this infrastructure in applications like intelligent transportation, environmental monitoring or health care, while copping with the associated challenges as limited bandwidth and energy.

ere is another side of the coin. From the connectivity more complexity arises by having systems which are distributed over large areas and are increasingly heterogeneous, consisting of many subcomponents working on di erent time-scales (e.g. tra c, the power-grid, the banking network). Each agent in these networks is operating autonomously, but at the same time they are also interdependent.

ere is huge potential in this so-called hyperconnectivity, but it carries along an increased risk of cascading failures, congestion collapses and cyber-threats, to name a few.

For control systems, this means that existing centralized approaches are doomed to fail, since they do not provide the necessary scalability, exibility and adaptivity. Moreover, while global security and performance remain crucial objectives, centralizing the corresponding algorithms on one or few nodes is not a solution anymore in this large-scale, heterogeneous and networked environment.

e key is to have distributed solutions, that is to say, local algorithms for each agent which in cooperation are able to a ain a global goal [START_REF] Lamnabhi-Lagarrigue | Systems & Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges[END_REF].

Distributed state estimation

e above solution also applies to the fundamental task of state estimation.

e state of a dynamical system represents important information, since it describes not only its current situation but says how the system will behave in response to a future input (e.g. the position and velocity of a robot, the temperature distribution in a room, the voltages and currents in the power grid). us, having an approximate knowledge of the state is at the root of many control algorithms. In most instances, the full state is not directly accessible to measurements but reveals itself through the system's output. e goal of a state estimator, or observer, is to reconstruct the state from the measured output using a model description of the system. e design of observers for estimating a dynamical system's state is an engineering problem with long history and has been addressed by many centralized solutions (most notable is the Kalman lter).

In this thesis we are interested in estimating the state of a large scale system in the context of a network of nodes, or agents, acting as sensors. In particular, each node obtains just a partial output. e centralized approach of state estimation would be to collect all the outputs at one or more central entities and to use a classical estimation technique. ough it might be the preferred approach in some cases, it puts very high demands on the network and the fusion centers, especially in a situation where the complete output is necessary to reconstruct the state. e situation is even more so exacerbated, if the goal is to provide every node with an estimate of the full state (e.g. to decide on its action as suggested by [START_REF] Zhao | Information-driven dynamic sensor collaboration[END_REF]. e preferred approach in this case is to have local estimators at each node which through local information exchange are able to accomplish the estimation task. Speci cally, we do not want to rely on some nodes to receive the complete output, nor that a partial output is su cient to reconstruct the state. A distributed estimator should therefore be as capable as a centralized one by utilizing the complete information, but require communication solely over a sparse network. In the present thesis such a solution is investigated.

Distributed Kalman-filtering

e search for distributed versions of the Kalman lter has a racted a wide interest on the onset of the deployment of multi-sensor systems. A native approach is only suited to the case when the sensors are all directly connected to each other (Grime and Durrant-Whyte, 1994), but with rise of wireless sensor networks the demand for solutions which require only local interactions grew. Simultaneously, there has been an ever-increasing interest in autonomous cooperative mobile robots, leading to a surge in tasks which require distributed algorithms. A prominent example is the tracking of targets (Hu and Hu, 2010). Notably, average consensus methods, which are useful for the coordination of agents, can also be applied to fuse the estimates of a sensor network (Blondel et al., 2005).

Inspired by the use of consensus algorithms, Olfati-Saber (2007) proposed to use di usive coupling of local state-estimates to design estimation lters for dynamical systems in the distributed se ing. e motivation lies mainly in overcoming the need of all-to-all communication in previous methods. On the side it addresses the di culty that partial outputs are not su cient to estimate the state completely (i.e. the reason why communications is indispensable in the rst place; similar ideas were expressed earlier by Julier and Uhlmann, 1997).

e work sparked an interest in distributed Kalman-ltering [START_REF] Zampieri | Trends in networked control systems[END_REF], such that it is impossible to give a complete overview of the topic.1 However, most early proposals and also many later ones rely on partial outputs that are su cient to reconstruct the state, assume decoupled systems or look at static problems (e.g. Carli et al., 2008;Khan and Moura, 2008;Ca ivelli and Sayed, 2010), among other limitations. erefore, they suggest a consequent need for more general techniques of distributed estimation, as the ones laid out in this thesis. In fact, a solution without such restrictive conditions was already presented by Ba istelli et al. (2011;see also Casbeer and Beard, 2009;Arambel et al., 2001). e proposed distributed Kalman-ltering approach uses an additional step between local measurement updates, where two convex combinations of local information are taken over the neighboring nodes. One is of the state estimates weighted by information matrices, the other one is of the matrices themselves, whose inverse gives an upper bound on the covari-ance matrix of the respective estimation error.

e applicability of the design to general connected communication networks was proven by noticing the analogy with consensus problems (Ba istelli and Chisci, 2014). Subsequently, considerable e ort has been undertaken to improve this approach by looking for optimal consensus weights, additionally exchanging measurements or doing multiple consensus steps in between updates (see Wang and Ren (2018) for an overview).

Kalman ltering works in the stochastic se ing where the performance of an estimator is assessed by the convergence of the estimation error variance. However, since for the distributed Kalman-lter local information matrices are obtained which provide only bounds on the actual covariances, their performance is hard to quantify, especially since the optimality in the sense of classical Kalman-ltering is not clear (Cacace, 2019). In this thesis we focus on distributed estimators for linear systems in the deterministic se ing and design each networked estimator as stationary observer.

e convergence properties can then be simply investigated on the resulting dynamics of the estimation error. is line of research has gained popularity only in recent years.

Challenges

In summary, the main challenge of distributed state estimation lies in the local reconstruction of the state at a node which requires global information, yet the communication is constrained to neighboring nodes. Furthermore, any estimation algorithm, centralized or distributed alike, should be fast in producing accurate results, have low design complexity and robustness with respect to various sorts of perturbations. Various pioneering solutions have been proposed to distributed state estimation that employ di usive coupling and thereby succeeded in addressing the rst challenge. However, since they have been published shortly before or in parallel with the current thesis a more general perspective has been lacking. In establishing such a uni ed framework we will gain important insights on the design criteria of such distributed observers. e interest in distributed solutions is additionally driven by the appropriation of networked control systems. In this context, point to point links are replaced in favor of packet switched networks. is facilities remote as well as large-scale operations with advantages for example in reduced costs and added exibility. However, the accompanying delays and limited rates in the communication pose severe constraints on the estimation performance. e intriguing question is whether distributed state estimation provides a means to tackle this issue. We aim to answer this by including the e ects of communication in our analysis.

Lately in the research on distributed estimation also topics are considered, which go beyond typical problems of networked control systems, like time-varying network topologies (Mitra et al., 2019) and cybersecurity (Mitra and Sundaram, 2019;Ugrinovskii, 2020;[START_REF] Lee | Fully Distributed Resilient State Estimation Based on Distributed Median Solver[END_REF]. Ultimately, the distributed estimation context raises issues which have not been on the horizon of centralized approaches and in turn may be not adequately addressed by classical estimation algorithms. In this sense, a design grouned in the notion of homogeneity is an interessting extension to conventional approaches as it permits to impose convergence in a nite time (in contrast to asymptotic convergence in linear designs; see the recent monograph of Polyakov, 2020). Both practical and theoretical results which have been obtained so far have motivated the extension of the nite-time estimation paradigm to the distributed scenario in this thesis.

Outline of the thesis

e thesis is structured into three main chapters. In the following we summarize the scope of the main chapters and list the publications they have put forth. Figure 1.1 depicts their relation.

Chapter 2 We introduce the necessary background in observer and graph theory and formally de ne the distributed estimation problem. e distributed observer is presented as a solution and designs are given which can impose any exponential convergence rate in the delay-free case. Both continuous-time and discrete-time perspectives are taken and the designs are put into a uni ed framework. e insights gained in this chapter will form the basis for the remaining thesis.

H. Silm, D. E mov, W. Michiels, R. Ushirobira, J.-P. Richard (2020a Chapter 3 is chapter deals with nite-time observers for distributed estimation which are based on the homogeneity concept. A centralized nite-time observer forms the basis of a distributed nite-time observer for a system of integrator chains and subsequently for general linear systems. For the general case we exploit a certain diagonal stability property established before in Chapter 2.

H. Silm, R. Ushirobira, D. E mov, J.-P. Richard, W. Michiels (2019a Chapter 4 e e ects of communication between the observer nodes are introduced and a design to handle these is derived using the time-varying delay approach.

e feasibility of the design hinges on the block-diagonal stability property established in Chapter 2. e design allows for a comparison of the centralized and the distributed case on an example in terms of achievable performance. Further the exchange of arti cial outputs and the vector Lyapunov approach are explored. (2018). Comparison of the time-delay margin of a distributed and centralized observer. 2018 European Control Conference (ECC). Limassol, Cyprus, pp. 1963Cyprus, pp. -1968. : . : 10.23919/ECC.2018.8550324.

In the concluding chapter the results of the thesis and directions for future research are discussed. e above design, works if all links in the network are bidirectional and has been extended to directional connectivity (e.g. a directed cycle). Nevertheless, it does not cover more general cases; for example, if there is a node which can receive from other nodes, but its partial output is redundant and therefore it does not need to transmit to any other node. e most universal situation was formulated by Park and Martins (2017; we will call it later distributed observability). ere also a method was proposed which does not use multiple interactions between the time steps, however one node in the network has to house a coordinator. e method of [START_REF] Mitra | Distributed observers for LTI systems[END_REF] does not require intermediate steps nor a central coordinator, but divides the estimation of the state vector into non-overlapping parts among the nodes. Consequently, complete information has to travel over the whole network and thus for both designs essentially global interactions are necessary. Kim et al. (2016b) made a major contribution by pointing to the intuitive idea that each node can already estimate a part of the state from its partial output; therefore, it has to a reach a consensus with its neighbors only on the part of the state which it cannot recover on its own (see also del Nozal et al., 2017). Exploiting the well known observability decomposition they presented a simple design for continuous-time systems which was also the starting point of the present thesis. An analogous approach applied to the discrete-time se ing was presented by Wang et al. (2019b). Despite having the focus on continuous-time systems, in this chapter there will be a short discussion on the di erence of the two se ings for distributed estimation.

By passing from local observability decompositions to the networked case del Nozal et al. ( 2019) establish the possibility of placing the poles of the estimation error dynamics. However, what are favorable locations of the poles in the distributed se ing is hard to tell, as is open the question of nding Kalman-like designs for continuous-time systems (for a start see Wu et al., 2016;Kim et al., 2016a). e design criteria of classical approaches might be not well suited, for example due to the inevitable delays in the communication (one main driver behind the search for distributed solutions in the rst place). Note an early work of Ugrinovskii (2011) for continuous-time systems which pays a ention to the robustness of the agreement between the nodes with respect to perturbations.

We begin this chapter by very brie y revising the general de nitions and notions of classical state observers as they will serve for the distributed estimation problem. In particular, we highlight the role of the observability matrix in the solvability of the estimation problem, the role of output feedback in the construction of an observer, and how the convergence of an observer can be recast to the stability of the error dynamics. We continue with the formal introduction of the problem of state estimation in the se ing of multiple observer nodes for linear systems, where the observer nodes aim at reconstructing the full state, but having only access to a part of the output, they compensate the possible lack of observability from their partial output by exchanging information with neighboring nodes.

In this context, preceded by some graph theoretic terms, we de ne distributed observability with respect to a graph as a useful extension of the notion of observability to the distributed state estimation se ing. en we introduce the class of di usively coupled observers nodes as a solution to the distributed state estimation problem and present di erent design methods in the continuous-time and the discrete-time se ing that have been established so far since 2016. To facilitate their comparison, we strive for a uni ed framework. We close the chapter with an outlook on the possibility of reducing the amount of information exchange between observer nodes.

State observers for linear systems

e task of state estimation is concerned with dynamical system models in state-space representation, especially linear time-invariant systems of the form

x = Ax + Bu = Cx + Du (2.1)
where x ∈ R n is the state, u ∈ R p is the input, ∈ R m is the output, and A, B, C and D are the system matrices. e question is whether the (initial) state of the system can be determined from the input u(t) and output (t). For a su ciently smooth input, the ith derivative of the output can be expressed as

(i) = CA i x + i k=1 CA k-1 Bu (i-k) + Du (i) .
erefore, it is apparent that the system (2.1) is observable if the observability matrix of the pair (A, C)

O(A, C)              C CA CA 2 . . . CA n-1            
 has full rank. Due to the Cayley-Hamilton theorem the condition is also necessary and we can directly call the pair (A, C) observable.

Full-order Luenberger observer

A constructive way to obtain the state from the inputs and outputs is by a Luenberger observer which employs a copy of the system model together with an output feedback to correct the estimate x(t) such that it converges towards the true state x(t) with a desired rate. It is described by the equation

x = A x -L(C x -+ Du) + Bu
where L is the observer gain to be designed.

Introducing the error e = xx we arrive to the error dynamics e = (A -LC) e.

If system (2.1) is observable then the spectrum of the matrix A -LC can be freely assigned by an appropriate choice of L.

erefore the observer can be designed such that the error converges to zero with any desired decay rate. Otherwise there are eigenvalues of A that are invariant with respect to LC, so-called xed modes.

For an observable system with a scalar output, the observer gain L can be obtained from the desired location of the spectrum of the error dynamics using Ackermann's formula. In the multiple-output case the choice of L for a given spectrum is generally not unique and rather than a closed-form expression, iterative methods have been proposed, for example to use the additional degrees of freedom to reduce to the sensitivity of the poles with respect to perturbations (Kautsky et al., 1985).

Observability decomposition

Even if the pair (A, C) is not observable, it might still be possible to select L such that the resulting error dynamics is asymptotically stable. is is the case if all the xed-modes are located in the open le half of the complex plane. However, there will be a limit on the obtainable decay rate. Systems with pairs (A, C) for which this is the case are called detectable and can be determined by looking at the system dynamics in some special coordinate system, the observability decomposition.

Let the columns of the matrix T u be an orthonormal basis of the largest A-invariant subspace that is in the kernel of C. By the Cayley-Hamilton theorem this subspace is equal to the kernel of O(A, C), the unobservable subspace. Let the columns of T o be an orthonormal basis of the orthogonal complement of the kernel of O(A, C). e orthogonal complement is o en called the observable subspace (although generally it is not A-invariant).

Matrix T = T o T u is then an orthogonal transformation matrix, such that in new coordi-nates the dynamics matrix is block-triangular

T T AT = A o 0 A r A u and CT = C o 0 .
It can be checked that the pair (A o , C o ) is observable, therefore there exists an

L = T L o 0 such that A o -L o C o is stable. Consequently, detectability of the pair (A, C) is equivalent to A u being a Hurwitz matrix.
Pole placement is one way of design. In practical applications we deal with disturbances and placing the poles for fast convergence might be not a good idea if robustness is important, since there is generally a trade o . Various other methods e.g. the stationary Kalman-lter or H ∞ -lter provide optimal gains while taking disturbances into account.

Distributed state estimation problem

e theory on state estimation for linear systems is mature and its extension to nonlinear problems has been very useful to tackle real-world applications. Nonetheless, as was exposed in Chapter 1, a fundamentally new outlook is necessary to be able to cope with the challenges of modern use-cases dealing with large-scale heterogeneous networked systems (and for the understanding of complex phenomena in nature and society). In this respect, it is reasonable to look rst at the foundational framework of distributed state estimation for general linear systems.

In the distributed state estimation scenario we consider linear time-invariant systems described by

x = Ax, 1 = C 1 x . . . N = C N x, (2.2)
with state x ∈ R n and system dynamics matrix A, but instead of a single observer, the output is partitioned and divided among several observer nodes. Each of the N nodes obtains one of the possible vector-valued partial outputs i ∈ R m i , i ∈ {1, . . . , N }. e only assumption we make on the system matrices in (2.2) is that the pair (A,

C T 1 • • • C T N T
) is observable, meaning that the state can be reconstructed from the complete output. In relevant applications the system matrices might have some sparsity pa ern (moreover controlled inputs and perturbations might have to to be accounted for); however, as a starting point we look at this basic general case. e goal is that for every observer node the local estimate xi of the state of the system (2.2) converges to x with any desired rate. Generally we are interested in the situation where this is not possible with the partial output of a single node (i.e. none of the pairs (A, C i ) are observable), so the nodes have to exchange information. is is depicted in the gure by a graph G, which describes the communication topology of the network. e straightforward solution would be to let the observer nodes exchange their partial outputs and implement each node as a Luenberger observer. However, this would require an all-to-all communication network if the system is observable from the complete output only. A er a brief revision of graph theoretic terms, we will explain that it is actually enough when the network is minimally connected. In the following section we will then present designs which allow to estimate the state at each node in a distributed way.

Some graph theory

It is practical to describe the communication network by an unweighted directed graph G = (V, E) of order |V | = N . Each vertex represents an observer node and is labeled by the index from V = {1, . . . , N } which corresponds to the subscript of the partial output i it obtains. An edge (j, i) ∈ E is directed from j to i if the observer node corresponding to vertex i can receive information from j. e set of neighbors N i = {j : (j, i) ∈ E} of an observer node i consists of the vertices of the observer nodes from which it can receive information. A graph G is also fully characterized by its Laplacian matrix L = D -A, where

D = diag(|N 1 |, . . . , |N N |)
is the in-degree matrix and the (i, j)-entry of the adjacency matrix A is 1 if there is a directed edge from j to i, otherwise it is zero. A graph is strongly connected if there exists a path (a sequence of edges, such that the starting vertex of an edge is the end vertex of the preceding one) from each node to every other node. A strongly connected component is a subgraph formed by a set of vertices and the edges connecting them, such that no additionally vertex of G can be added to the set without violating strong connectedness.

We present a lemma which was exploited in the context of distributed state estimation by Han et al. (2019).

Lemma 2.1 [START_REF] Yu | Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics[END_REF]). For a strongly connected graph with Laplacian matrix L, there exists a vector r with strictly positive entries such that L T r = 0. Furthermore,

L L T diag(r ) + diag(r )L
is the Laplacian matrix of an undirected weighted graph.

For any directed graph an acyclic graph can be derived, by collapsing the set vertices of a strongly connected component into a single representative (its condensation), see Figure 2.2. Strongly connected components are called source components in Park and Martins (2017) if there is no edge from any vertex outside of the graph to a vertex of the component (in analogy that in the condensation they will be source nodes, i.e. nodes with no incoming edges).

A useful permutation of the numeration of the vertices of a directed graph with k strongly connected components of which k are source components is such that the resulting Laplcian matrix has the form

L =           L 1 0 • • • 0 0 . . . . . . 0 • • • L k 0 × . . . × M           (2.3)
where L 1 , . . . , L k are the Laplacian matrices of the source components, with a block-triangular matrix

M =         L k+1 + D 1 • • • 0 . . . . . . . . . × • • • L k + D k-k        
where L k+1 , . . . , L k are Laplacian matrices of strongly connected graphs and D 1 , . . . , D k-k are non-negative diagonal matrices with at least one non-zero entry (stemming from an incoming edge).

A necessary and su icient condition

To summarize, the underlying constituents of the distributed estimation problem are a dynamical system (modelling the plant), a directed simple graph G = (V, E) (describing the observer node network) and their interplay by having each vertex i of the graph assigned to a partial output i of the system (the locally available information). is brings us to the question: Given a system model (2.2), what are the minimum requirements on the topology of the communication network such that the state can be reconstructed at every node? e question leads us to the following extension of the notion of observability to the distributed case by considering also the graph (cf. Kar and Moura, 2011;Doostmohammadian and Khan, 2014).

De nition 2.2. System (2.2) is called distributively observable with respect to the graph G if for every source component of G the pair (A, [C T i ] T i∈V k ), where V k is the vertex set of the source component, is observable.
It is clear that this notion of observability is a necessary condition to the existence of a solution to the distributed state estimation problem. By nding a feasible design for the observer nodes in the next section which relies solely on the condition posed in the de nition, we can show that this is also a su cient condition.

Distributed observer design

e challenge of the distributed state estimation problem is two-fold: local observability and limited communication. e former as each observer node usually has only access to a part of the output from which the system is not completely observable; the la er since only neighboring nodes can directly exchange information (whereas in applications the graph of the observer network is usually not complete).

To solve it, Olfati-Saber (2007) proposed to use consensus seeking between neighboring observer nodes.

e observer algorithm for each node then takes the form of a Luenberger observer with a di usive coupling term over the set of neighbours N i of an observer node

xi = A xi -L i (C i xi -i ) - j∈N i H i,j xi -xj (2.4)
where xi is the local estimate of state x, computed at the ithe observer node. We will call (2.4) for all i ∈ {1, . . . , N } as a whole a distributed (Luenberger) observer. For each node we can introduce the local error e i = xix which is dynamically coupled with the errors of the neighboring nodes

e i = Ae i -L i C i e i - j∈N i H i,j e i -e j .
In order to solve the distributed state estimation problem, it is necessary to nd the outputfeedback gains L i and coupling gains H i,j such that the error of the observer network

E T = e T 1 • • • e T
N converges to zero. Equivalently, we look at the stability of the error dynamics

E = (I N ⊗ A)E -blkdiag(L 1 C 1 , . . . , L N C N )E -HE, (2.5)
with the algebraically constrained matrix

H =         j∈N 1 H 1,j -H 1,2 . . . -H 1,N . . . -H N ,1 . . . -H N ,N -1 j∈N N H N ,j         where H i,j = 0 if j N i .
ree basic questions arise when proposing (2.4): 1. Under what conditions can stability of (2.5) be achieved, given the algebraically constrained (i.e. the entries are subject to equalities) gain matrices? 2. How to design the gains L i and H i,j of the output feedback and coupling, respectively? 3. What are the bene ts of such a design?

Consensus-based design

e initial idea of Kim et al. (2016b) is that the consensus dynamics, induced by the last term in the right-hand side of (2.4), should only act on the unobservable subspace of the node, since it the subspace that cannot be reconstructed from the partial output. Conversely, the dynamics of the complementary subspace can be assigned with the output-feedback gain.

is brings us to the following choice of gains

L i = T io L io , H i,j = T iu G i,j T T iu (2.6)
where T i = [T io T iu ] is the transformation matrix described in section 2.1.2 for the observability decomposition of the pair (A, C i ).

With this choice, the observer algorithm (2.4) can be expressed in local coordinates xio and xiu for the observable part

xio = A io xio -L io (C io xio -i ) (2.7)
and unobservable part

xiu = A ir xio + A iu xiu - j∈N i G i,j T iu T (T io xio + T iu xiu -T jo xjo -T ju xju ), (2.8)
respectively, where xi = T io xio + T iu xiu .

In the following we will analyze the resulting error dynamics to show that under the distributed observability condition, there exists gains G i,j and L io such that the system is asymptotically stable with any prescribed decay rate. Namely, we will choose the consensus gain G i,j = γ I for some su ciently large γ > 0.

Looking at the error of observer network (2.2), (2.4) with (2.6), G i,j = γ I in local coordinates with a rearranged order

E = blkdiag(T o1 , . . . ,T oN ) blkdiag(T u1 , . . . ,T uN ) E o E u
(note that for the most general case some matrices have to be interpreted as empty n-by-0 matrices), we obtain the error dynamics in block-triangular form

E o E u = A o -L o C o 0 A r + γT T u (L ⊗ I )T o A u -γT T u (L ⊗ I )T u E o E u (2.9)
where bold typeset is used to denote block-diagonal matrix concatenations over the sequence of observer nodes (e.g.

A o := blkdiag(A 1o , . . . , A N o )).
Due to the block-triangular structure, the error of the observable parts E o and unobservable parts E u of the network can be treated separately such their internal dynamics is exponentially stable. It is evident that the block-diagonal matrix A o -L o C o can be made stable with an appropriate choice of the observer gains L io since each pair (A io , C io ) is observable. For the unobservable part it would be su cient if -T T u (L ⊗ I )T u is stable, since then there exists a su ciently large γ > 0 to compensate the possibly unstable matrix A u .

The compressed Laplacian matrix

In the following we will show that under the necessary condition of distributed observability, the matrix -T T u (L ⊗ I )T u is indeed Hurwitz (thus it is also a su cient condition). We will take multiple steps, starting from a connected undirected graph, for which we know that its Laplacian matrix has a unique zero eigenvalue with corresponding eigenvector 1 N and all the other eigenvalues are larger.

Lemma 2.2. If system (2.2) is observable and the graph of the observer network is undirected and connected, then matrix T T u (L ⊗ I )T u in (2.9) is positive de nite.

Proof. Clearly, the matrix is positive semi-de nite. Assume that there exists a vector

T = T 1 . . . T N 0, i ∈ R n for all i ∈ {1, . . . , N }, with T T T u (L ⊗ I )T u = 0. en T u must be in ker(L ⊗ I ) = {1 N ⊗ w |w ∈ R n }. Due to Im(T iu ) ∩ Im(T 2u ) • • • ∩ Im(T N u ) = {0} (i.e.
observability of the system from the complete output) there does not exist w 0 and for which T iu i = w for all i ∈ {1, . . . , N }. erefore, T u ker(L ⊗ I ) for 0, which implies

T T u (L ⊗ I )T u 0.
We extend the result to directed graphs which are strongly connected using Lemma 2.1, but also introduce diagonal stability, since it will be important later in section 2.3.4 (as well as for the proof regarding distributed nite-time observers in Chapter 3).

De nition 2.3. A matrix A is called diagonally stable if there exists a positive de nite diagonal matrix D such that A T D + DA is negative de nite.

e following result can also be inferred from the proof of a proposition presented by Wang et al. (2019a).

Lemma 2.3. If system (2.2) is observable and the graph of the observer network is strongly connected, then the matrix -T T u (L T ⊗ I )T u in (2.9) is diagonally stable.

Proof. Due to Lemma 2.1 there exists a null vector r of L T with strictly positive elements such that L = L T diag(r ) + diag(r )L is the Laplacian matrix of a connected undirected weighted graph. erefore, by Lemma 2.2 we have T T u ( L ⊗ I )T u 0, or

T T u (L T ⊗ I )(diag(r ) ⊗ I )T u + T T u (diag(r ) ⊗ I )(L ⊗ I )T u 0. From (diag(r ) ⊗ I )T u = T u blkdiag(r 1 I n 1u , . . . , r N I n N u ) (2.10)
with n iu being the dimension of the unobservable subspace of node i, we can conclude that there exits a positive de nite diagonal matrix

D = blkdiag(r 1 I n 1u , . . . , r N I n N u ).
Turning to a general directed graph we will apply the reordering (2.3) and see that indeed the observability a ribute of the components which are not sources does not play a role for the (diagonal) stability of the matrix -T T u (L ⊗ I )T u .

Proposition 2.1. If system (2.2) is distributively observable, then the matrix -T T u (L ⊗ I )T u in (2.9) is diagonally stable.

Proof. Looking at an ordering of the nodes such that the Laplacian matrix L of the graph of the network is block-triangular as in (2.3), we can treat every diagonal block in -T T u (L ⊗ I )T u separetly. e diagonal stability of the diagonal blocks corresponding to the k source components follows from Lemma 2.3, since the system is observable from the nodes belonging to a source component. For each of the remaining diagonal blocks corresponding to the k -k connected components which are not sources we rst examine a single diagonal block of M. For example applying Lemma 2.1 with some r to the (k + 1)th strongly connected component we note that Lk+1 + 2 diag(r )D 1 0, since both terms in the sum are positive semi-de nite, but ker( Lk+1 ) ∩ ker(D 1 ) = {0}. Using (2.10) reveals then that the corresponding diagonal block in -T T u (L ⊗I )T u is diagonally stable.

We end this section with a theorem concluding the above discussion. A proof of the design was also derived by Kim et al. (2019) (where directly the fact was used that M in (2.3) is a nonsingular M-matrix, since its diagonal blocks are irreducibly diagonally dominant (Horn and Johnson, 2013)). ey establish a lower bound for γ to guarantee a certain decay rate of the error which depends on the graph topology and all the local unobservable subspaces (of a strongly connected component). Moreover, a decentralized design scheme is obtained (without guaranteeing a decay rate) by choosing an adaptive G i,j (t) = γ i (t). Essentially, the adaption corresponds to a proportional-integral feedback of the disagreement on the state estimate between the neighboring nodes and it might be a way to o er exibility with respect to a sudden change of nodes in the distributed observer network. eorem 2.1. Consider a system (2.2) which is distributively observable with respect to the graph of the communication network of the distributed observer (2.4), where using local observability decompositions the gains are of the form (2.6). By selecting the L io (e.g. with pole placement) and G i,j = γ > 0 su ciently high, the observer nodes can be designed such that their local state estimate converges towards the state of the system with any desired rate.

Pole placement

e idea of using the observability decomposition can be taken a step further, as was done by del Nozal et al. ( 2019). e key is to look at the p-hop neighborhood of a vertex, which is the set consisting not only of the direct neighbors, but also the vertices which are connected by a path of length less or equal then p (the direct neighbors are the 1-hop neighbors). In addition to dividing the state space for each node into the observable and unobservable subspace, the unobservable subspace is further recursively divided into mutually orthogonal complements for each p-hop neighborhood. e pth subspace is the subspace which is in the observable subspace if the partial outputs of the p-hop neighbours are included. Such a decomposition is called the multi-hop subspace decomposition.

To be formal, let for every i ∈ {1, . . . , N } and ρ ∈ {1, . . . , i }

C i,p = [C T j ] T j∈N i,p
where N i,p is the set of vertices in a subgraph of G centered around i of radius p, N i,0 = {i} and i is the smallest number such that O(A, C i ,i ) has full rank. Such an i exists for every i if the system is distributively observable with respect to G. e coordinate transformation T i = T i,0 . . . T i, i is then set up of mutually orthogonal columns such that the columns of T i,0 = T io are a basis of the observable subspace of node i and

Im(T i,p ) = ker O(A, C i,p ) ⊥ ∩ ker O(A, C i,p-1
where ⊥ means orthogonal complement.

e gains in (2.4) are chosen as

L i = T i,0 L io , H i,j = i p=1 T i,p G i,j,p T T j,p-1
which is for the output feedback the same as in the consensus-based design, but in the di usive coupling term there is a gain matrix G i,j,p for each p-hop observable subspace and there is rst a projection to the senders own (p -1)-hop observable subspace.

By de nition the spaces Im(T i,p ) are A-invariant subspaces so that the dynamics matrix in transformed coordinates is block-triangular

T T i AT i =         T T i,0 AT i,0 • • • 0 . . . . . . . . . × • • • T T i, i AT i, i        
.

e transformation

E = blkdiag(T 1,0 , . . . ,T 1, i ) • • • blkdiag(T N ,0 , . . . ,T N , N )         E 0 . . . E max i i        
, makes the dynamics of the error of the network (2.5) block-triangular with diagonal entries

A io -L io C io and T T i,p AT i,p -j∈N i G i,j,p T T j,p-1 T i,p for p > 0.
It is apparent that it is possible to assign the spectrum of the error dynamics of the observer network with appropriate entries of

[G i,j,p ] j∈N i , since the rank of [T j,p-1 ] T j∈N i T i,p is equal to the dimension of T T iρ T iρ (hence the pair (T T i,p AT i,p , [T j,p-1 ] T j∈N i T i,p
) is trivially observable).

Controller-based design

Park and Martins (2012) recognized that the design of the observers gains in (2.5) can also be cast into a particular cooperative stabilization problem with static control of a network of N systems with identical dynamics matrix. Inspired by this, Wang and Morse (2018) selected the observer nodes of the form (2.4), except the dynamics of one arbitrary observer node (in every source component), say the ith as

xi = A xi -(L i + D)(C i xi -i ) - j∈N i H i,j xi -xj + Cz
where z ∈ R nN is an addtional state with dynamics and output feedback

z = Āz -B(C i xi -i ).
(2.11)

It is proven that if system (2.2) is observable and the graph strongly connected, then for almost any choice of the output-feedback and coupling gains of the observer nodes (2.4) the resulting error system of the observer network is controllable with respect to the input ma-

trix 0 • • • I ith • • • 0 T and observable from the partial output 0 • • • C i • • • 0 E = C i e i .
is means that if the observer state of one node is augmented by z ∈ R nN , then (2.11) can be implemented as an Luenberger observer to estimate E and following the separation principle the poles of the closed-loop can be freely assigned with B and C. Furthermore, it was established that the controllability index is (whenever it is non-zero) always N . erefore, it is pointed out that the spectrum can (in theory) be selected with Ā, B, C and D by implementing (2.11) as a dynamic controller with order N -1.

Design using linear matrix inequality

Ugrinovskii (2011) proposed a linear matrix inequality (LMI) for the design using a vector Lyapunov function approach. However, in the paper it is not clari ed under which conditions a solution to the LMI problem exists. It presumes that there exists a block-diagonal Lyapunov-matrix for the error dynamics of the network. We will show that under the distributed observability condition this is the case and derive a straightforward method to design the gains with an LMI (formulated later in section 2.5). is LMI approach is also at the basis for designing distributed observers for systems with delay in the information exchange in Chapter 4. e stability of the error dynamics (2.5) can be analyzed with a quadratic Lyapunov function

V (E) = E T PE leading to the LMI (I N ⊗ A) T P + P(I N ⊗ A) -C T L T P -PLC -H T P -PH ≺ -Q,
with positive de nite matrices P and Q. To design the gains L i and H i,j we prescribe a blockdiagonal structure to the Lyapunov-matrix P = blkdiag(P 1 , . . . , P N ). e substitution Z i,j = P i H i,j and Y i = P i L i then leads to an LMI for the design of the gains while preserving the structural and algebraic constraint on the matrices L and H , respectively. Such a block-diagonal stability property is dependent on the coordinate system (Carlson et al., 1992). We show that indeed there exist gains such that (2.5) is block-diagonally stable in its original coordinates. For the proof we use the diagonal stability property established in Proposition 2.1 (the multi-hop subspace decomposition of section 2.3.2 could also be used instead). eorem 2.2. If system (2.2) is distributively observable, then there exist output-feedback and coupling gains such that the error dynamics (2.5) of the observer network (2.4) admits a blockdiagonal Lyapunov-matrix in its original coordinates.

Proof. Consider the gains (2.6) and the corresponding error dynamics in transformed coordinates (2.9). For the internal dynamics of E o and E u there exist Lyapunov-matrices blkdiag(P 1o , . . . , P N o ) 0 and blkdiag(P 1u , . . . , P N u ) 0, respectively (the former is clear, the later is due to Proposition 2.1). Consequenly, system (2.9) has a Lyapunov matrix of the form P o 0 0 γ P u with some γ > 0. Returning to original coordinates, the Lyapunov-matrix is transformed to

P = T o T u P o 0 0 γ P u T T o T T u = blkdiag(T 1o P 1o T T 1o , . . . ,T N o P N o T T N o ) 0 0 blkdiag(T 1u P 1u T T 1u , . . . ,T N u P N u T T N u )
.

Discrete-time se ing

e discrete-time se ing, where a linear time-invariant system is described by

x k+1 = Ax k , 1,k = C 1 x k . . . N ,k = C N x k (2.12)
has received more a ention in the literature, especially to nd a Kalman-lter like optimal solution to the distributed state estimation problem. It comes naturally from the fact that controllers are digital in applications. Moreover, the delays caused by communicating over a network are explicitly included, since in one time step the information can reach only a neighboring node.

To illustrate this, we contrast the exchange of state estimates with the exchange of partial outputs in the situation where the observer nodes are connected in a directed cycle. For simpli cation, we examine the special case of a system dynamics matrix in observer form

A =              a 1 1 • • • 0 0 . . . . . . . . . . . . . . . a n-2 0 • • • 1 0 a n-1 0 • • • 0 1 a n a 0 • • • 0 0             
with a 0 and that the rst observer node can estimate the state independently

C 1 = 1 . . . 0 ,
while the other nodes cannot access the system at all (C i = 0 for i > 1), thus fully rely on communication. For the rst observer we can select a dead-beat observer with outputfeedback gain L 1 = a, such that it will reconstruct the state of system (2.12) exactly a er n steps at most. For the other nodes the outcome will depend on what information it receives, see Figure 2.3.

If the output is forwarded, it will take N -1 steps to pass it from the rst node to the farthest node and the reconstructed state will therefore be also delayed by the same amount of time steps. However, if instead the local state estimates are forwarded and the rst node has reconstructed the state, it takes additional N -1 steps for the nodes to synchronize end there will be no delay in the estimate.

x k +1 = Ax k x1,k+1 = (A -L 1 C 1 ) x1,k + L 1 1,k xN,k+1 = (A -L 1 C 1 ) xN,k + L 1 1,k -N -1 1 1 (a) Static output coupling x k +1 = Ax k x1,k+1 = (A -L 1 C 1 ) x1,k + L 1 1,k x2,k+1 = A x1,k xN,k+1 = A xN -1,k 1 x1 xN -1 (b) Dynamic state coupling
In the continuous-time se ing, where communication is instantaneous if delays are not considered, there is no such di erence in output or state coupling. In Chapter 4 we will argue that in the context of distributed state estimation it is nonetheless more suitable to keep a continuous-time framework while modeling the (real-world) e ects of the network. e simple example with a dead-beat observer does not have a continuous-time analogue, instead we will show the di erence in static and dynamic coupling by comparing the minimal transmission rate to guarantee a certain performance in terms of convergence rate.

Returning to the general case, the di usively coupled observer nodes in discrete-time are selected as xi,k+1

= A xi,k -L i (C i xi,k -i,k ) - j∈N i H i,j xi,k -xj,k .
(2.13)

Information di usion

It is immediately clear that the pole-placement method of section 2.3.2 is also directly applicable to the discrete-time se ing. By placing all the eigenvalues at zero a distributed dead-beat observer is obtained. e error dynamics is then a nilpotent matrix with a maximal index n + N -1 ≤ nN occurring in the worst-case described above. In general cases, the distributed dead-beat observer will be faster then n by taking advantage of the multiple outputs of the system (provided that the network is not needlessly large). Note however, that in a situation where the system is completely observable from a partial output the distributed dead-beat observer designed using the multi-hop subspace decomposition will not make use of this advantage. Due to the particular choice of the coupling gains no incoming communication will take place. is highlights that a more general choice of the coupling gains and a be er design criteria are necessary. [START_REF] Mitra | Distributed observers for LTI systems[END_REF] propose a single global decomposition where the same issue arises. For each source component of the graph of the observer network pair-wise essentially disjoint subspaces (intersection is only {0}) are assigned to the observer nodes. Using an arbitrary ordering of the nodes and starting from the last, its subspace is the unobservable subspace which arises if its partial output is removed from the output (this can be the zero space). A next node's subspace is such that the direct sum with the subspaces of the previous nodes is the enlarged unobservable subspace formed by removing the partial output of the node as well (if orthogonality is imposed the decomposition equals the multi-hop subspace decomposition of a single node on a graph where each p-hop neighborhood increases by one vertex).

Let T = T 1 . . . T N , where the columns of T 1 ∈ R n×n 1 , . . . ,T N ∈ R n×n N form basis vectors of the respective subspaces described above, then

T -1 AT = A 1 + A 2 , where A 1 is block- diagonal with diagonal block dimensions n 1 × n 1 , . . . , n N × n N and
A 2 is stricly lower blocktriangular. e observers gains in (2.13) using a global decomposition are then

L i = T              0 . . . Li . . . 0              , H i,j = T A 1 blkdiag(w i,j,1 I n 1 , . . . , w i,j,N I n N )T -1 .
To choose the weights w i,j,k we consider for each subspace k, spanning-trees (an acyclic subgraph such that there is a path to every other vertex) from the vertex of the designated node for this subspace. A weight w i,j,k is non-zero only if there is a path from the node for the subspace k to j in such a spanning-tree and moreover j∈V i w i,j,k = 1. It can be shown that in this case the eigenvalues of the resulting error dynamics can be positioned with the feedback gains Li into the inner unit circle, and therefore the distributed observer (2.13) converges towards the state of system (2.12). In extension, a distributed dead-beat observer can be obtained in which case the estimates reach exactly the state in at most n + 2N (N -1) steps (Mitra et al., 2019).

Some tentative observations

Recall the presence of matrix A 1 in the coupling gain. For the continuous-time version of this design the matrix is replaced with the identity matrix. e di erence can be explained when comparing the synchronization of identical linear systems via (state) di usive coupling (Scardovi and Sepulchre, 2009). Looking at the conditions for synchronization in discretetime explains also the normalization of the sum of the weights to 1 (di usive coupling equals then to a convex combination, as in average consensus algorithms).

In the continuous-time algorithm the weighting in the transformed coordinates can be omitted (i.e. w i,j,k = 1 for all k) if a su ciently high scalar coupling gain is selected instead. However, compared to the local observability decomposed design (section 2.3.1), the gains Li of the output feedback of the observable space cannot be tuned independently in this case2 . e situation is di erent in the discrete-time se ing, if instead of the ordered weights (in the transformed space) a weighted average of the estimates of the neighbours is taken in original coordinates. It is not possible to obtain faster synchronization with a high gain (the sum of the weights has to be smaller then 1), but instead more steps of averaging are necessary. is leads to designs with multiple consensus iterations in between the time steps of the system. Ac ¸ıkmes ¸e et al. (2014) show for a connected graph, that if the output-feedback gains L i are selected such that the eigenvalues of A + 1 N N i=1 L i C i are in the inner unit circle, then for a uniform selection of consensus weights, the numbers of consensus iterations for stability of the error dynamics is nite. Following Rego et al. ( 2016), the same gains can be used for strongly connected graphs by considering non-uniform scalar weights (which are independent of the system matrices provided that the consensus matrix is doubly stochastic and irreducible with positive diagonal entries). In the next section, we look more in detail at a method with multiple iterations which employs matrix-valued weights, since it can be regarded as the discrete-time equivalent to section 2.3.1.

Finally, an interessting design for discrete-time systems without operations between time steps and constant weights was presented by Rego et al. (2017) relating to stationary Kalmanltering. Like other distributed Kalman lters, the tuning or optimality of the gains are not obvious and it does not rely on the di usive coupling structure (2.13). In fact, stable error dynamics can even be obtained if solely one node uses its own estimate in its recurrence relation (the consensus matrix has to be row stochastic and primitive).

Consensus-based design

e design in section 2.3.1 can be regarded as a high-gain approach, in the sense that suciently high gain matrices G i,j are used to force the errors of the estimate of the unobservable parts into consensus (Wang et al., 2019a). In the discrete-time se ing faster convergence is not achieved by high-gain, since a stability matrix in discrete-time is a Schur matrix not a Hurtwitz matrix. Instead, the discrete-time counterpart has to use multiple inner iterations for the consensus between time steps and a higher number of inner iterations corresponds to an increased continuous-time consensus gain.

e design with a multiple consensus iteration approach using local observability decompositions was presented by Wang et al. (2019b). e observer nodes for the system (2.12) are selected as xi,k+1

= Ax i,k,q -T io L io C i xi,k -i,k (2.14) 
where the averaged estimate xi,k,q is obtained from an inner iteration with q steps of the form

xi,k,0 = xi,k xi,k,l+1 = (I -P i ) xi,k,l + 1 |N i | P i j∈N i xj,k,l (2.15)
with the orthogonal projection matrix P i = T iu T T iu onto the unobservable subspace Im(T iu ) of the node i. e iteration (2.15) is similar to a method for solving distributively algebraic equations [START_REF] Mou | A distributed algorithm for solving a linear algebraic equation[END_REF]. It is interessting to note that (2.15) is a convex combination and for q = 1 the observer is in the form of (2.4) with

L i = T io L io H i,j = T iu A iu |N i | T T iu ,
but it will be apparent that generally more inner iterations are required.

Expressing the average a er q steps (with P 2 i = P i for a projection matrix)

xi,k,q = (I -P i ) q xi,k + 1

|N i | q-1 l=0 (I -P i ) q-l-1 P i j∈N i xj,k,l = (I -P i ) xi,k + 1 |N i | P i j∈N i xj,k,q-1 the observer dynamics (2.14) can be decomposed in local coordinates into xio,k+1 = A o xio,k -L io C io xio,k -i,k
for the observable part and

xiu,k+1 = A r xio,k + A u T T iu 1 |N i | j∈N i xj,k,q-1
for the unobservable part, where xi,k = T io xio,k + T iu xiu,k .

Analysis of the error dynamics

Using (I -

P(I -(F ⊗ I )) (1 N ⊗ x k ) = 1 N ⊗
x k and (I -P(I -(F ⊗ I )) q = I -P -(P(F ⊗ I )) q (or more directly that x k = (I -P i )x k -P i x k ) the error of the inner loop is described by

Ēk,q =         x1,k,q -x k . . . xN,k,q -x k         = T o E o,k -(P(F ⊗ I )) q T o E o,k -(P(F ⊗ I )) q T u E u,k
where the ocking matrix F = D -1 A of a graph appears (here without self-loops). e error dynamics in transformed coordinates can then be compactly wri en as Lemma 2.4. If system (2.12) is observable and the graph of the observer network strongly connected, then there exists an induced matrix norm such that

E o,k+1 E u,k+1 = A o -L o C o 0 A r -A u (T T u (F ⊗ I )T u ) q-1 T T u (F ⊗ I )T o -A u (T T u (F ⊗ I )T u ) q E o,k E u,k . (2 
(T T u (F ⊗ I )T u ) < 1 in (2.16).
As a consequence it is possible to select the number of inner iterations q such that the spectral

radius ρ A u (T T u (F ⊗ I )T u ) q ≤ A u (T T u (F ⊗ I )T u ) q < 1.
e local state estimates will therefore converge towards the state of the system (2.12) and to increase the convergence rate more inner iterations are necessary.

Exchange of artificial outputs

A shortcoming of the di usive coupling term in (2.4) is that for large-scale systems it might not be viable to transmit the complete state estimate. However, in case of the consensus based design presented in section 2.3.1, if a node j knows the value of T iu of its neighbor i, it can just transmit the projection T iu T xj instead of xj to reduce the size of the vector. Note that in Proposition 2.1 we established that the compressed Laplacian matrix is Hurwitz so that a high consensus-gain can be applied to make the error dynamics stable, but in theory matrix A u can be made Hurwitz with a low-rank correction matrix instead. is motives us to consider a design of the coupling gain

H i,j = G i,j F i,j
such that H i,j is low-rank and the neighboring node j only sends F i,j xj . Following section 2.3.4, for given values of F i,j for the connected nodes, the design of the gains G i,j can be stated in terms of an LMI feasibility problem. eorem 2.3. Let there exist positive de nite matrices P 1 , . . . , P N , matrices Z 1,j for all j ∈ N 1 , . . . , Z N ,j for all j ∈ N N and Y 1 , . . . , Y N that satisfy the LMI Φ 0 with diagonal blocks

Φ ii = A T P i + P i A -C T i Y T i -Y i C i - j∈N i F T i,j Z T i,j - j∈N i Z i,j F i,j + 2γ P i and o -diagonal blocks Φ ij = Φ T ij = Z i,j F i,j + F T i,j Z T i,j ,
then the distributed observer (2.4) with gains L i = P -1 i Y i and H i,j = P -1 i Z i,j F i,j converges to the state of system (2.2) with decay rate γ .

From eorem 2.2 we know that for F i,j = I , j ∈ N i the LMI is feasible under distributed observability, as well as for F i,j = T T

iu . An heuristic approach to nd an F i,j with even lower dimension would be to select its rows as a subset of the rows of T T iu . We will use this approach in Chapter 4 to design a distributed observer on an academic example. 3If the F i,j are treated as variables, then Φ 0 is not an LMI but a bilinear matrix inequality (BMI). Generally, BMIs are di cult to solve. However, what are feasible apriori choices of F i,j is an open problem (for example the conditions given by Ugrinovskii (2013) are neither necessary nor su cient). Choosing the F i,j will also inevitably lead to questions of optimality, for example on the selection of the topology of the graph, that is, when to choose non-zero F i,j under some criteria.

Chapter 3 Distributed Finite-Time Observers

Besides successfully estimating the state, depending on the application context, observers can be selected with various other criteria in mind. e distributed estimation problem by its very novelty is especially susceptible to non-conventional approaches. One of such is the design of observers with non-asymptotic time characteristics which have previously been investigated for the centralized case by [START_REF] Levant | Higher-order sliding modes, di erentiation and output-feedback control[END_REF] 2018), to name a few. Such a design can be useful for networked systems, where time constraints have to be met due to time-dependent interconnections.

Finite-time observers have been derived with the help of homogeneity (Bhat and Bernstein, 2005). Homogeneous systems can exhibit either exponential, nite-time or xed-time convergence depending whether the degree is zero, negative or positive, respectively. is can be contrasted to linear systems, which can a ain only exponential convergence of the estimation error. e design of homogeneity based nite-time observers in the centralized case relies on the fact that the dynamics of the system can be eliminated with a preliminary linear feedback transformation. In the distributed estimation problem the system is not observable from the partial output of an observer node alone; therefore, a design for distributed nitetime observers does not follow immediately.

e re ned selection of coupling gains using the multi-hop subspace decomposition derived by del Nozal et al. ( 2019) allows to assign the poles of the error dynamics. It might open up the possibility to design (next to distributed dead-beat observers for discrete-time systems) distributed nite-time observers for continuous-time systems with the generalized homogeneity concept used for multi-output systems (see Zimenko et al., 2020a and[START_REF] Zimenko | Robust feedback stabilization of linear MIMO systems using generalized homogenization[END_REF]. In this case the structural and algebraic constraints on the gains have to be considered. By comparison, the approach derived in the present thesis using just standard observability decompositions o ers a design which is rather simple.

First, we recapitulate some of the de nitions and seminal results on (weighted) homogeneous systems. en a summary of the centralized nite-time observer design is given for the case of a single output system. In extension to previous works we arrive to a bound on the degree of homogeneity which is obtained by solving a standard Lyapunov equation. is design will be useful in the distributed case to estimate locally the observable part of the state at each node in nite-time. As an intermediate step we show a design which is applicable to the special case of a system consisting of disconnected subsystems. Finally, turning to general linear systems, we design a distributed nite-time observer by combining the consensus-based linear design of the previous chapter with homogeneity concepts. e proofs are collected in the end of the chapter for the sake of clarity.

Preliminaries

Consider a nonlinear system

x(t) = f (x(t), d(t)) , t ≥ 0, (3.1) 
where x(t) ∈ R n is the state, d(t) ∈ R m is the input, f : R n × R m → R n ensures forward existence and uniqueness of the system's solutions (at least locally) for d ∈ L ∞ and f (0, 0) = 0. For an initial condition x 0 ∈ R n and an input d, the corresponding solution is called X (t, x 0 , d), for all t ≥ 0 for which the solution exists.

Stability properties

Following Roxin (1966), Khalil (2002), and Polyakov (2012), let Ω be an open neighborhood of the origin in R n .

De nition 3.1. At the steady state x = 0 the system (3.1) with d = 0 is said to be • stable on Ω if for any x 0 ∈ Ω, X (t, x 0 , 0) is de ned for all t ≥ 0, and for any ϵ > 0 there is δ > 0 such that for any x 0 ∈ Ω, if x 0 ≤ δ then X (t, x 0 , 0) ≤ ϵ, for all t ≥ 0;

• asymptotically stable on Ω if it is stable and for any κ > 0 and ϵ > 0 there exists T (κ, ϵ) ≥ 0 such that for any x 0 ∈ Ω, if x 0 ≤ κ then X (t, x 0 , 0) ≤ ϵ for all t ≥ T (κ, ϵ);

• nite-time stable on Ω if it is stable and nite-time converging from Ω, i.e. for any x 0 ∈ Ω there exists 0 ≤ T < +∞ such that X (t, x 0 , 0) = 0 for all t ≥ T . e function T 0 (x 0 ) = inf {T ≥ 0 : X (t, x 0 , 0) = 0, ∀t ≥ T } is called the se ling time of the system (3.1);

• xed-time stable on Ω if it is nite-time stable and sup x 0 ∈Ω T 0 (x 0 ) < +∞.

e set Ω is called the domain of stability/a raction.

If Ω = R n , then the corresponding properties are called global stability / asymptotic stability / nite-time / xed-time stability of (3.1) at x = 0. Similarly, these stability notions can be de ned with respect to a compact invariant set, by replacing the distance to the origin in De nition 3.1 with the distance to the invariant set. In the case of an input d 0 we are interested in the following stability property (see Dashkovskiy et al. (2011):

De nition 3.2. System (3.1) is called input-to-state stable (ISS), if there are some functions

β ∈ KL, ∈ K such that for any input d ∈ L ∞ and any x 0 ∈ R n X (t, x 0 , d) ≤ β( x 0 , t) + ( d [0,t) )
for all t ≥ 0.

Weighted homogeneity

Following [START_REF] Zubov | On systems of ordinary di erential equations with generalized homogenous right-hand sides[END_REF] and Baccio i and Rosier (2001), for strictly positive numbers r 1 , . . . , r n called weights and λ > 0, de ne:

• the vector of weights r = r 1 • • • r n T , r max = max 1≤i≤n r i and r min = min 1≤i≤n r i ;

• the dilation matrix function Λ r (λ) = diag λ r 1 . . . λ r n T . Note that for all x ∈ R n and for all λ > 0 we have Λ r (λ

)x = λ r 1 x 1 • • • λ r n x n T ; • the r-homogeneous norm x r = n i=1 |x i | ρ r i 1 ρ
for any x ∈ R n and ρ ≥ r max . is is not a norm in the standard sense, since the triangle inequality is not satis ed for • r , however there exist σ , σ ∈ K ∞ such that σ ( x r ) ≤ x ≤ σ ( x r ) for all x ∈ R n ;

• for ρ ≥ 0, the sphere and the ball in the homogeneous norm S r (ρ) = {x ∈ R n : x r = ρ} and B r (ρ) = {x ∈ R n : x r ≤ ρ}.

De nition 3.3. A function : R n → R is r-homogeneous with degree µ ∈ R if for all

x ∈ R n and for all λ > 0 we have λ -µ (Λ r (λ)x) = (x). A vector eld f : R n → R n is r-homogeneous with degree ν ∈ R, with ν ≥ -r min if for all x ∈ R n and for all λ > 0 we have λ -ν Λ -1 r (λ)f (Λ r (λ)x) = f (x) (this means that the ith component of f is a r-homogeneous function of degree r i + ν).

System (3.1) with d = 0 is r-homogeneous of degree ν if the vector eld f is r-homogeneous of the degree ν. eorem 3.1 [START_REF] Zubov | On systems of ordinary di erential equations with generalized homogenous right-hand sides[END_REF]Rosier, 1992;Bhat and Bernstein, 2000). For the system (3.1) with d = 0 and r-homogeneous and continuous function f the following properties are equivalent:

• the system (3.1) is locally asymptotically stable;

• there exists a continuously di erentiable r-homogeneous Lyapunov function V :

R n → R + such that α 1 ( x ) ≤ V (x) ≤ α 2 ( x ), ∂V ∂x (x)f (x) ≤ -α( x ), λ -µ V (Λ r (λ)x) = V (x), µ > r max ,
for all x ∈ R n and for all λ > 0, for some α 1 , α 2 ∈ K ∞ and α ∈ K;

• there is a compact strictly positively invariant set S containing the origin (i.e. X (t, x 0 , 0) ∈ S \ ∂S for all t > 0 and all x 0 ∈ ∂S).

eorem 3.2 [START_REF] Nakamura | Smooth Lyapunov functions for homogeneous di erential inclusions[END_REF]. If (3.1) with d = 0 is r-homogeneous of degree ν and asymptotically stable at the origin, then it is

• globally nite-time stable at the origin if ν < 0;

• globally exponentially stable at the origin if ν = 0;

• globally xed-time stable with respect to a ball, if ν > 0.

Centralized design

Consider a linear time-variant system

x = Ax, = c T x, (3.2)
where x ∈ R n is the state, ∈ R is the output of the system, A ∈ R n×n is the dynamics matrix and c ∈ R n is the output vector such that the system is observable from (i.e. the observability matrix O(A, c T ) is invertible).

A way to construct a nite-time observer for a linear system with scalar output (3.2) is by adding a nonlinear output feedback term to a Luenberger observer

x = A x -k(c T x -) -T diag( ) 1 n (c T x -) (3.3)
where 1 n ∈ R n is the vector with all entries equal to 1 and the operation

a b sign(a 1 )|a 1 | b 1 • • • sign(a n )|a n | b n T
with vectors a ∈ R n and b ∈ R n denotes the sign preserving element-wise exponentiation.

e gain of the linear term

k = A n O(A, c T ) -1 0 • • • 1 T is obtained through Ackermann's
formula such that all the eigenvalues of Akc T are zero. e matrix T = O(Akc T , c T ) is a coordinate transformation such that T (Akc T )T -1 is a chain of integrators and

c T T -1 = 1 • • • 0 .
In the following we will discuss the selection of the gains ∈ R n + and ∈ R n + such that for any initial conditions of (3.2) and (3.3) the state estimate x reaches x in a nite-time. To this end, we investigate the dynamics of the error e = T ( xx) in transformed coordinates

e =           0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1 0 0 • • • 0           e -diag( ) 1 n e 1 . (3.4)
It can be veri ed that for a proper selection of the entries of the right-hand side of (3.4) is homogeneous with any desired degree:

Lemma 3.1. e error dynamics (3.4) is weighted homogeneous if = 1 + α . . . 1 + nα T and the sign of the degree of homogeneity is equal to the sign of α ∈ R.

To establish stability of (3.4), we rst observe that with the entries of = 1 • • • n T selected as the coe cients of a monic Hurwitz polynomial (i.e. the real-parts of the roots are all negative), the dynamics of the system for α = 0 e | α=0 = Ω( )e, Ω( )

             -1 1 • • • 0 0 . . . . . . . . . . . . . . . -n-2 0 • • • 1 0 -n-1 0 • • • 0 1 -n 0 • • • 0 0            
 are globally asymptotically stable at the origin. In particular for any Q 0 there exists P 0 such that Ω( ) T P + P Ω( ) + Q = 0.

(3.5)

To design the nite-time observer it remains to obtain a lower bound on α < 0 which guarantees that that asymptotic stability of (3.4) at the origin is preserved. Since it is additionally homogeneous with negative degree (Lemma 3.1), it is globally nite-time stable according to eorem 3.2.

eorem 3.3. System (3.4) is globally nite-time stable at the origin, if is the coe cient vector of a monic Hurwitz polynomial of degree n + 1 and = 1 + α . . .

1 + nα T , with - η n( √ n + η) < α < 0, η = e 2 λ min (Q) λ max (P) 1 P diag( )
where P I and Q 0 satisfying the Lyapunov equation (3.5).

Distributed finite-time observer for integrator chains

In this section we look for a distributed nite-time observer applied to a system of a speci c form, that allows to use the same homogeneity concept as in the previous section. In this scenario the state of a set of agents with integrator dynamics is estimated by a strongly connected network of N observer nodes. e problem has similarities to the nite-time leader-following and consensus problems studied in literature (e.g. Du et al., 2017).

For simplicity, we assume that each agent is measured by exactly one observer node. e system is then described by

x =         A 1 • • • 0 . . . . . . . . . 0 • • • A N         x, i = c T i x (3.6)
where

A i =           0 1 • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • 0 1 0 0 • • • 0 0           , c T i = 0 . . . 1 p i th . . . 0 , with A i ∈ R n i ×n i , c i ∈ R n , n = N i=1 n i and p i = 1 + i-1 k=1 n k for every i ∈ {1, . . . , N }.
To obtain a distributed nite-time observer, we combine the principles of section 3.2 with the ideas of Chapter 2. is leads to an observer node with nonlinear output feedback complemented by a nonlinear consensus term over the neighboring nodes

xi = A xi -diag( i ) 1 n (c T i xi -i ) -γ j∈N i xi -xj h (3.7)
with gains i ∈ R n + , γ > 0 and exponents ∈ R n + and h ∈ R n + . Introducing e i = xix, the local errors are governed by

e i = Ae i -diag( i ) 1 n e i -γ j∈N i e i -e j h .
We are now interested in the nite-time stability of the error of the observer network

E T = e T 1 • • • e T N .
Again, we have to rst ensure stability in the linear case where = 1 n and h = 1 n . e error dynamics can be expressed then as

E = (I N ⊗ A -blkdiag( 1 c T 1 , . . . , N c T N ) -γ L ⊗ I n )E,
where L is the Laplacian matrix of the graph of the network.

Assumption 1. e gains i and γ are such that there exists a solution P 0 and Q 0 for the Lyapunov equation

(I ⊗ A -blkdiag( 1 c T 1 , . . . , N c T N ) -γ L ⊗ I ) T P + P(I ⊗ A -blkdiag( 1 c T 1 , . . . , N c T N ) -γ L ⊗ I ) = -Q. (3.8)
Having established stability in the linear case (i.e. for zero degree of homogeneity), we have to nd a choice of the exponents and h such that the error dynamics is homogeneous with negative degree.

Lemma 3.2. e dynamics of the error

E T = e T 1 • • • e T N is weighted homogeneous with negative degree if i = α i α 1 + α i α i α 1 + 2α i • • • α i α 1 + n 1 α i • • • α i α N + α i α i α N + 2α i • • • α i α N + n N α i T h = 1 + α 1 1+2α 1 1+α 1 • • • 1+n 1 α 1 1+(n 1 -1)α 1 • • • 1 + α N 1+2α N 1+α N • • • 1+n N α N 1+(n N -1)α N T
where α 1 < 0, . . . , α N < 0.

To obtain an estimate on the bounds of the exponents such that the error dynamics will be homogeneous with a negative degree but retains asymptotic stability, we select α i = α (Previously, Silm et al. (2019a) selected α i = α 1+(p i -1)α . Considering that for the estimate the smallest entry of is used, the present choice is more favorable).

is gives the following result: eorem 3.4. Consider a system (3.6) and a strongly connected network of observer nodes (3.7) with |E | edges. e error dynamics is globally nite-time stable provided that Assumption 1 is ful lled and

= 1 + α • • • 1 + n 1 α • • • 1 + α • • • 1 + n N α T h = 1 + α • • • 1+n 1 α 1+(n 1 -1)α • • • 1 + α • • • 1+n N α 1+(n N -1)α T , with - (2 n -1)z + a + b -(z + a + b) 2 -4bz 2 ((a + nz)( n -1) + b n) < α < 0 (3.9) where n = max i n i a = P blkdiag(diag( 1 ), . . . , diag( N )) √ Nn n b = 2γ P blkdiag(1 |N 1 | , . . . , 1 |N N | ) T ln(2) |E |n, z = λ min (Q) 2λ max (P)
and P I and Q 0 satisfy the Lyapunov equation (3.8).

Distributed finite-time observer for linear systems

We now turn to the distributed state estimation of a general linear system which multiple outputs

x = Ax, 1 = C 1 x, . . . N = C N x . (3.10)
As in Chapter 2, we consider the observability decomposition

x i = T io T iu x io x iu
, where the columns of T iu are T io are orthogonal bases for the locally unobservable subspace and its orthogonal complement, respectively.

A nite-time observer for the estimate xio of the observable part can be designed independently of xiu and in practice any centralized method of nite-time estimation could be employed. In the case that each partial output i is scalar, the application of the results in section 3.2 is straightforward. is nite-time observer structure relies on a preliminary feedback which eliminates the dynamics of the system from the local error.

e same approach for the whole state estimate is therefore not directly viable, since for none of the observer nodes the pair (A, C i ) is observable.

Instead, we exploit the fact the consensus-based di usive coupling term as introduced in Chapter 2 ensures stability with arbitrary fast but asymptotic rates. As we will see, adding a second consensus term embedded in a fractional power

xiu = A ir xio + A iu xiu -γ j∈N i xiu -T iu T xj -       j∈N i xiu -T iu T xj       1 n iu β (3.11)
with 0 < β < 1, will lead to a nite-time observer for the unobservable part on the grounds of homogeneity arguments.

e intuitive idea is that, while the linear term drives the observer nodes into consensus and thus asymptotically to the correct estimate (if each one estimates its observable part correctly), the increasing gain of the nonlinear term ensures that this happens in a nite time. We will show the e cacy of this approach by analyzing the resulting error dynamics for the unobservable part

E u = A u -γT T u (L ⊗ I )T u E u + A r + γT T u AT o E o -T T u (L ⊗ I )T u E u -T T u AT o E o 1 n iu β . (3.12)
e right-hand side of (3.12) for the case when E o = 0 (all the nodes have estimated their observable subspace correctly) can be wri en as a sum of vector-elds

E u E o =0 = f 1 (E u ) + f 2 (E u ), where f 1 (E u ) = A u -γT T u (L ⊗ I )T u E u f 2 (E u ) = -T T u (L ⊗ I )T u E u 1 n iu β
are homogeneous with degree 0 and β -1 with respect to the dilation matrix Λ r (λ) = I , respectively. We can now exploit the fact that as in Lyapunov's indirect method, local stability at the origin can be inferred from the vector eld with the lowest degree (Hermes, 1990).

With the choice of 0 < β < 1 we have that f 2 (E u ) has lower degree than f 1 (E u ), thus it dominates at the origin. Moreover, the degree is negative, which following eorem 3.2 means that E u = f 2 (E u ) is nite-time stable if it is asymptotically stable at the origin. We can conclude that in this case if (3.12) is globally asymptotically stable, it is also globally nitetime stable. Andrieu et al. (2008, Corollary 2.24) derive a detailed proof of this assertion using the notion of homogeneous approximation (for a sum of homogeneous vector-elds the one with the lowest degree ν is the homogeneous approximation at the origin, since lim λ→0 λ -ν-1 (f

1 (λx) + f 2 (λx)) = f 2 (x)).
So far we looked at the case where the observable part E o of the observer network has attained zero. is will happen eventually in a nite time, if for each node the observer for the observable subspaces has been designed for example according to section 3.2. However, until then it has to be ensured that the transient E o does not destabilize (3.12). For this we can consider E o as an external input (since its dynamics is independent of E u ) and verify that (3.12) is ISS.

To establish ISS, which conveniently also directly implies global asymptotic stability for the case when E o = 0, we will take advantage of two speci c properties of (3.12): e diagonal stability of the compressed Laplacian matrix (Proposition 2.1) and that the nonlinearity f 2 is con ned into the 1st and 3rd quadrant. Both of these properties together will allow us to use the following lemma adapted from E mov and Aleksandrov (2019) to prove our main result a erwards. Lemma 3.3. Consider the system

x = M 1 x + M 2 f (x) + d (3.13) where f (x) = f 1 (x 1 ) • • • f n (x n )
T ∈ R n , f i are strictly increasing and satisfy the quad-

rant condition x i f i (x i ) ≥ 0, lim t→±∞ f i (t) = ±∞ and d ∈ L n ∞ . Let there exist P 0, Λ = diag(λ 1 , . . . , λ n ) 0 and ϒ = diag(υ 1 , . . . , υ n ) 0 such that Φ = M T 1 P + PM 1 M T 1 Λ + PM 2 + ϒ * M T 2 Λ + ΛM 2 0.
(3.14)

en system (3.13) is ISS.

To bring (3.12) into the form of (3.13) we use the a ne coordinate transformation

x = T T u (L ⊗ I )T u E u -T T u AT o E o , (3.15)
whose regularity is guaranteed if (3.10) is distributively observable (see De nition 2.2) with respect to the graph of the communication network.

eorem 3.5. Consider a system (3.10) which is distributively observable with respect to the graph of the communication network of the distributed observer consisting of (3.3) and (3.11) for each locally observable and unobservable subspace, respectively. Let the observers for the locally observable subspace be designed according to eorem 3.3 and 0 < β < 1. en there exists a su ciently large γ > 0 such that the LMI (3.14) with

M 1 = T T u (L ⊗ I )T u A u (T T u (L ⊗ I )T u ) -1 -γT T u (L ⊗ I )T u M 2 = -T T u (L ⊗ I )T u
is feasible, guaranteeing that the local state estimates reach the state of the system in nite-time for any initial condition. 

A =                -1 0 0 0 0 0 -1 1 1 0 0 0 1 -2 -1 -1 1 1 0 0 0 1 0 0 -8 1 1 -1 -2 0 4 -0.5 0.5 0 0 -4                with output matrices C 1 = 1 0 0 2 0 0 , C 2 = 2 0 0 1 0 0 , C 3 = 0 0 1 0 0 0 , C 4 = 2 0 5 0 0 0 .
e observer network is given as in Figure 3.1. e observer gains for the observable subspace were selected such that the eigenvalues of the error systems are all -3 for α i = 0 and then α i = -0.1 was chosen. e consensus gains were selected to be γ = 10 and the exponent β = 0.7. To check if γ is high enough any standard LMI solver can be used to check the feasibility of (3.14). Figure 3.2 shows the simulation result in semi-logarithmic scaling to high-light the nite-time convergence. e result of a second simulation is shown in linear scaling in, where band-limited white noise of power 10 -2 was added to each output. It demonstrates the robustness of the distributed nite-time observer with respect to measurement noise. Moreover, the e ect of measurement noise is more smooth in the unobservable part since it is ltered by the dynamics of the observable part of the network. 

f s (Λ r (λ)e) =        λ r s+1 e s+1 + λ r 1 s s e 1 s if s ∈ {1, . . . n -1} λ r 1 s s e 1 s if s = n. with λ r s +ν f s (e) =        λ r s +ν e s+1 + λ r s +ν s e 1 s if s ∈ {1, . . . n -1} λ r s +ν s e 1 s if s = n.
shows that for any selection of weights which satisfy r s+1 = r s + ν = r 1 + sν , the system is homogenous if

s = r s + ν r 1 = 1 + sα,
where α = ν /r 1 . In particular, the sign of the degree of homogeneity is determined by α, because r 1 > 0.

Proof of eorem 3.3. We show that (3.4) has a strictly positively invariant set according to eorem 3.1. To this end we rewrite the dynamics by adding and substracing 1 . . . 0 as follows: e = Ω( )e -diag( ) ( e 1 -1 n e 1 ) .

Taking the Lyapunov function V (e) = e T Pe we can estimate with the Euclidean norm • its time-derivatives along the solutions

V = -e T Qe + 2e T P diag( ) ( 1e 1 -1e 1 ) ≤ - λ min (Q) λ max (P) V + 2 e P diag( ) 1e 1 -1e 1
where Q satis es (3.5). Let us consider the set ∂S = {e ∈ R n : V (e) = 1} and select Q such that P I , which ensures e 2 ≤ V (e)/λ min (P) ≤ 1 for all e ∈ ∂S, then

V ≤ - λ min (Q) λ max (P) + 2 P diag( ) n s=1 (|e 1 | s -|e 1 |) 2 , e ∈ ∂S.
(3.16) For α = 0 (i.e. s = 1) the above expression is reduced to

V ≤ - λ min (Q) λ max (P) , e ∈ ∂S
and by continuity V < 0 is satis ed for α close to zero. By obtaining a limit of the additional term in (3.16) with respect to -1 ≤ α < 0, we can nd a lower bound on α, which guarantees that V is negative de nite on ∂S.

We Additionally, using sα 1+sα ≤ nα 1+nα for s ∈ {1, . . . , n} in (3.16) leads to

V ≤ - λ min (Q) λ max (P) + 2 e P diag( ) √ n n|α | 1 -n|α | .
Now a bound for α can be selected as

|α | < η n( √ n + η) , η = e 2 λ min (Q) λ max (P) 1 P diag( ) ,
which ensures that V (e) < 0 for e ∈ ∂S and that the set S = {e ∈ R n |V (e) ≤ 1} is strictly positively invariant for (3.4).

Hence, according to eorem 3.1 the origin of (3.4) is asymptotically stable and since it is rhomogeneous with negative degree for α < 0, it is globally nite-time stable by eorem 3.2.

Proof of Lemma 3.2. Let us rst check the relation for homogeneity for some general i and

β i . Clearly r 1 = r n+1 = • • • = r (N -1)n+1 , . . . , r n = r 2n = • • • = r nN .
en we note from λ r s +ν µ s e i,s+1 + i,s e i,n i i,s + γ j∈N i e i,se j,s h s = µ s λ r s+1 e i,s+1 + λ r p i i,s i,s e i,n i i,s + λ r s h s γ j∈N i e i,se j,s h s (3.17)

where µ s = 0 if s ∈ {p 1 , . . . , p N } and µ s = 1 otherwise. We obtain the relations

r s+1 = r s + ν for s {p 1 , . . . , p N } i,s = r s + ν r p i h s = r s + ν r s
and substitute the unspeci ed α i = ν r p i .

Proof of eorem 3.4. e error dynamics can be wri en as

E = (I N ⊗ A)E -diag T 1 • • • T N T e 1,p 1 . . . e N ,p N ⊗ 1 n 1 N ⊗ -γ blkdiag(1 T |N 1 | ⊗ I n , . . . , 1 T |N N | ⊗ I n ) (I ⊗ I n ) T E 1 | E | ⊗h .
where

I = 0 • • • 1 ith • • • -1 jth • • • 0 T j∈N i i∈V
is the incidence matrix.

Taking the Lyapunov function V (E) = E T PE, we repeat the steps as in the proof of eorem 3.3, and for

E ∈ ∂S = {E ∈ R N n : V (E) = 1} we obtain V ≤ - λ min (Q) λ max (P) + 2 P blkdiag(diag( 1 ), . . . , diag( N )) N i=1 n s=1 |e i,p i | s -|e i,p i | 2 + γ P blkdiag(1 T |N i | ⊗ I n , . . . , 1 T |N N | ⊗ I n ) N i=1 j∈N i n s=1 |e i,s -e j,s | h s -|e i,s -e j,s | 2 . (3.18)
e rst square root can be bound similarly to the proof of eorem 3.3,

N i=1 n s=1 |e i,p i | s -|e i,p i | 2 ≤ √ Nn e n|α | 1 -n|α | ; (3.19)
however, for the second square root we have to take into account that if E ≤ 1, then

|e i,s -e j,s | ≤ 2. erefore we consider for ξ ∈ [0, 1) the function κ(x) = |x ξ -x | for x ∈ [0, 2].
It is easy to check that κ(0) = κ(1) = 0, then κ(x) = x ξx for x ∈ [0, 1] and the maximal value of κ on this interval is reached for xopt = ξ

1 1-ξ with sup 0≤x ≤1 κ(x) = ξ ξ 1-ξ -ξ 1 1-ξ . For x ∈ [1, 2]
, a simple analysis of dκ(x) dx shows that κ is a strictly increasing function, then 0 0.2 0.4 0.6 0.8 1 0 0.5 1

ξ ξ / ( 1 -ξ ) -ξ 1 / ( 1 -ξ ) 2 - 2 ξ ξ Figure 3.4: Comparison of the maximum value of κ(x) on [0, 1] (do ed) and [2, 1] (solid) with respect to ξ ∈ [0, 1] sup 1≤x ≤2 κ(x) = 2 -2 ξ . For ξ ∈ [0, 1), the second derivatives with respect to ξ of ξ ξ 1-ξ -ξ 1 1-ξ and 2 -2 ξ are d 2 dξ 2 ξ 1 1-ξ (ξ -1 -1) = - ξ -1/(ξ -1)-2 ((1-ξ)(ξ-1) 2 +ξ (ln(ξ )-(ξ -1)) 2 ) (ξ -1) 3 > 0,
which means it is convex, and d 2 dξ 2 (2 -2 ξ ) = -2 ξ ln 2 (2) < 0, which means it is concave, respectively. Since both functions meet at ξ = 0 and ξ = 1, we obtain ξ 

ξ 1-ξ -ξ 1 1-ξ ≤ 2 -2 ξ for ξ ∈ [0, 1), see
|e j,s -e i,s | h s -|e j,s -e i,s | ≤ 2 -2 h s ≤ 2 θ ln(2)(1 -h s ) ≤ 2 ln(2)(1 -h s ) ≤ 2 ln(2) -α 1 + ( n -1)α
for all s ∈ {1, . . . , n}, where the mean value theorem with θ ∈ [h s , 1] and h s ≤ 1+ nα 1+( n-1)α has been used, and in total we get Proof of Lemma 3.3. A su cient condition for a system to be ISS is that there exist a pos-itive de nite and radially unbounded ISS Lyapunov function V : R n → R + for which V ≤ -γ ( x ) + σ ( d ) holds for all x and d with some γ ∈ K ∞ and σ ∈ K (Dashkovskiy et al., 2011). Consider a Lyapunov function

N i=1 j∈N i n s=1 |e i,s -e j,s | h s -|e i,s -e j,s | 2 ≤ 2 ln(2) |E |n |α | 1 -( n -1)|α | . ( 3 
V (x) = V 1 (x) + V 2 (x) where V 1 (x) = x T Px and V 2 (x) = 2 n i=1 λ i ∫ x i 0 f i (s) ds,
which is positive de nite and radially unbounded due to the conditions of the lemma. Taking the derivative

V 1 = x T (M T 1 P + PM 1 )x + 2f (x) T M T 2 Px + 2d T Px V 2 = f (x) T (M T 2 Λ + ΛM 2 )f (x) + 2x T M T 1 Λf (x) + 2d T Λf (x)
and adding and subtracting 2x T ϒ f (x) + d T Γd with some positive de nite matrix Γ leads to

V =        x f (x) d        T Φ P Λ P Λ -Γ        x f (x) d        -2x T ϒ f (x) + d T Γd.
If Φ 0, then there exists a Γ 0 such that V ≤ -2x T ϒ f (x)+d T Γd, where the rst term a er the inequality is negative de nite and radially unbounded due to the imposed restrictions of the lemma, which implies that the system is ISS.

Proof of eorem 3.5. According to eorem 3.3 the error E o of the observable part will be zero in nite-time. It remains to show that the error dynamics of the unobservable part (3.12) is ISS and that its homogeneous approximation at the origin for E o = 0 is nite-time stable. To this end we use the coordinate transformation (3.15) to arrive to at system of the form (3.13) where in addition

d = T T u (L ⊗ I )T u A u -αT T u (L ⊗ I )T u T T u AT o E o +T T u (L ⊗ I )T u A r + αT T u AT o E o -T T u AT o E o
is composed by all terms which are dependent only on the error of the observable part.

e nonlinear functions are all f i (t) = sign(t)|t | β and therefore ful ll the conditions of Lemma 3.3 for β > 0. Due to diagonal stability (Proposition 2.1) there exists Q 0 and a diagonal matrix Λ 0 such that M T 2 Λ + ΛM 2 = -Q. It follows that V 2 (x) is a Lyapunov-function of the homogeneous approximation x = -M 2 x 1 n iu β with degree β -1 and is therefore nite-time stable for 0 < β < 1.

To prove the ISS of the approximated system we show that for su ciently high γ > 0 the LMI (3.14) is ful lled. We take P = γ Λ and note that

M 1 = S + γ M 2 , where S = T T u (L ⊗ I )T u A u (T T u (L ⊗ I )T u ) -1 . e LMI is equivalent to √ γ γ I 0 0 √ γ I γ (S + γ M 2 ) T Λ + γ Λ(S + γ M 2 ) (S + γ M 2 ) T Λ + γ ΛM 2 + ϒ * M T 2 Λ + ΛM 2 √ γ γ I 0 0 √ γ I 0
and a er some rearrangement

S + S T S T S 0 - ϒ 0 0 ϒ - 1 1 1 1 ⊗ (γQ -ϒ ) 0, can be shown to be ful lled if ϒ 0 0 ϒ S+S T S T S 0
and γQ ϒ . Such a diagonal matrix ϒ always exists if γ can be arbitrary large.

Chapter 4 Distributed Observers with Delays

Communication is neither instantaneous nor totally reliable and disregarding this can have severe e ects on the performance. In the preceding chapters, the continuous-time observer nodes were designed without considering any delays, but when applied in a control system, the e ects of the network do not only hamper the performance but they can actually destabilize it [START_REF] Zhang | Stability of networked control systems[END_REF]. To make such a design work closely to the speci cations, requires an amount of bandwidth and quality of service which is currently not foreseen in wireless senor technology.

One way to go about it is to adopt discrete-time modelling and use bu ered communication to accommodate the network e ects (Hespanha et al., 2007). However, such an approach will introduce conservatism and not o er the exibility expected in a distributed estimation scenario. Instead, in this chapter we will keep a continuous-time model while still taking the digital nature of communication into account. is approach is especially well suited for networked sensors. It is possible to equip the observer nodes with enough processing power and measurements to keep up with the dynamics of the plant, while the communication capacities are more limited as argued before by Dör er et al. ( 2013). e main a ributes which characterize packet-switched communication include delays, variable rates, packet-dropouts and scheduling (Richard and Divoux, 2007). Together with noise and quanitzation they pose a trade-o in the selection of a communication channel. Various approaches exists to model their e ects when analyzing a networked control system with continuous-time dynamics (Hetel et al., 2017). e main ones are the hybrid systems framework and time-varying delay approach of Fridman et al. ( 2004) and [START_REF] Kruszewski | A switched system approach to exponential stabilization through communication network[END_REF]. In this work we adopt the la er one to guarantee stability for the whole spectrum of e ects and together with the Lyapunov-Krasovskii functional approach (Richard, 2003) it leads to e ective design methods. e literature is very rich in what concerns the design of observers in networked control systems. As an early example, Dačić and Nešić (2008) have considered the performance of observer-protocols for a fully connected network where each node sends it output to every other node. For the distributed estimation problem a rst work is by [START_REF] Millán | Distributed consensus-based estimation considering network induced delays and dropouts[END_REF] in discrete-time where delays and dropouts were included. Ugrinovskii and Fridman (2014) designed continuous-time distributed observers under a scheduling protocol. More recently, [START_REF] Li | Robust distributed estimation for linear systems under intermi ent information[END_REF] investigate the case of asynchronous communication with a hybrid systems approach. Basu and Yoon (2019) follow the Lyapunov-Krasovskii functional approach for the constant-delay case. e objective of this chapter is twofold. First, we provide a method for designing distributed observers which will function as speci ed in presence of a digital communication channel with synchronized clocks and time stamps. e performance is derived using the Lyapunov-Krasovskii functional method for systems with time-varying delays which leads to design based on a linear matrix inequality (LMI). e performance of the distributed observer is guaranteed under the obtained bounds for the time-varying delay.

A second goal is to make an assessment of the claim that the distributed observer concept can outperform centralized ones when delays are present.

is goes further then the fact that local communication is less demanding then interacting over the whole network. When exchanging estimates of states or of arti cial outputs instead of the actual partial outputs, the in uence of the communication network is shi ed from the output feedback to the di usive coupling term. e gain in exibility allows to nd designs which can tolerate higher delays. Admi edly, this is a preliminary step, as no general statement can be done based on a single academic example.

We start o this chapter by describing the di erences in what we will call the centralized and the distributed case and how they are di erently a ected by the communication network. en we will elaborate how time-varying delays serve to take into account the network effects and present the Lyapunov-Krasovskii method to analyze the convergence. Next we formulate the error dynamics for both cases to which we formulate LMI conditions for the design of the gains which ensure exponential convergence with a given rate, up to a guaranteed bound on the delay.

e design serves as a method to make a comparison of the centralized observer and distributed observer approach on an example. We will discuss the result and make a brief extension, by allowing the observer nodes to exchange only a projection of the complete state estimate. A nal section considers the adaption of the vector Collecting all measurements i at a centralized entity and returning the state estimate x is possibly impacted by large delays. Moreover, for an increasing number of sensors there is a potential bottleneck at the observer. In the distributed structure the delays are most likely smaller and the bo leneck is avoided. However, exchanging full state-estimates xi requires more bandwidth.

Lyapunov approach to the time-varying delay case. Proofs can be found in the end of the chapter.

Centralized and distributed estimation structures

In this section, we examine a centralized observer and a distributed observer for the estimation of a large-scale continuous-time plant measured by a (wireless) sensor network. e underlying goal is to have an estimate of the full state, which is further processed at sensor level by a decentralized control system for example.

In the centralized case, all the measurements from the sensors are collected at a central entity to obtain the state estimate which is sent back to the sensors (Figure 4.1a). In the distributed case, each sensor carries an observer node with its own state estimate; however, to reconstruct the state all measurements are needed, so the nodes have to communicate with each other. Contrarily to the straightforward approach of exchanging measurements (which is essentially the same as a centralized structure), the observer nodes communicate only locally (subject to a connected graph) by exchanging their state estimate with neighbouring nodes (Figure 4.1a). Passed the holder, it is as if the signal was delayed by a time-varying delay τ .

Sender Sample Communication Hold Receiver (t) (s k ) (t k ) (t -τ (t))
A rst comparison of both concepts shows as an advantage of the distributed case that the communication is only local, while the transmission of the measurements to a remote centralized observer and the return of the state estimate is possibly impacted by large delays.

Of course, there are other factors to consider, for example that the centralized observer suffers form a bo leneck in the communication (so a scheduling approach might be necessary), while the distributed case requires computational capacities at every sensor and exchanging the full state-estimates takes up more bandwidth.

We assume that in both cases the estimation algorithms are implemented on fast processors (compared to the plant's dynamics) and therefore the dynamics of the observers can be described as continuous-time systems. At the same time, communication resources in sensor networks are typically limited, such that signi cant delays and data rate constraints are inevitable. We pose ourselves now the question, weather the relative performance of the two structures may additionally di er due to what is communicated.

To answer this question, we will compare the designs of a centralized observer and of a distributed observer on an example. To this end, we describe in the next section how the e ects of transmi ing the signal from the source to the destination over a digital communication channel (between the sensor and centralized observer in the centralized case; between two observer nodes in the distributed case) can be modeled using a time-varying delay.

Time-varying delay approach

We consider an abstraction of transmi ing a continuous signal from a sender to a receiver over a digital communication channel, see Figure 4.2. It consists of a sampler, communication network and holder. With this description, we focus on the e ects on sampling and delay, but do not include for example channel coding. As the result the signal at the receiver is shi ed by a time-varying delay τ .
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s k+1 = s k + h k , k ∈ Z ≤0
, where h k > 0 is the transmission interval. Its nominal value is selected according to the available channel capacity, but it can also vary, for example, causes by sampling ji er or an event-triggered scheme. Failed transmissions due to dropouts can also be accounted for.

A er the data has traversed through the communication network, it arrives at the holder at updating time instant t k . Due to the communication network they do not coincide with the sampling instances, but su er from a network induced delay

η k = t k -s k .
e delay of the communication network can have various sources, for example it can be caused by the routing or processing of the communication protocol.

During the updating instances, the holder keeps its output constant at the received value (Figure 4.3). e resulting piecewise constant signal can be expressed with a sawtooth-like shaped delay τ as shown in Figure 4.4 where in between updating instances

τ (t) = t -t k + η k for t k ≤ t < t k+1 (4.1)
with τ = 1 for t t k . Its peak value right before an update can be expressed as 

t k+1 -t k + η k = t k+1 -s k = η k+1 + h k . t τ (t)

Performance criteria for estimation

Clearly the aberration shown in Figure 4.3 caused by the communication channel in the form of a time-varying delay (even when not so extreme) can seriously hamper the estimation performance of an observer. at means there is a maximum allowable transmission interval (MATI) and a maximum allowable delay (MAD) to satisfy some performance criteria (Heemels et al., 2010). Our goal in the next sections is to estimate their sum for a given converge rate of the observer and to compare them in the centralized and the distributed case.

To employ the time-delay approach, we consider time-delay systems of the form

x(t) = f (x t ) (4.2)
where x(t) ∈ R n is the state, x t ∈ C [-τ ,0] is the state trajectory from t -τ until t (i.e. x t (θ ) =

x(t + θ ) with θ ∈ [-τ , 0]), C [-τ ,0]
is the space of continuous functions from the interval [-τ , 0] to R n and τ is the maximum delay. e functional f : C [-τ ,0] → R n is assumed to be locally Lipschitz continuous, f (0) = 0, and we let W [-τ ,0] be the subspace of absolutely continuous functions with square integrable derivative equipped with the norm ϕ W = max t ∈[t-τ ,t] ϕ(t) + ∫ t t-τ ϕ(s) 2 ds. De nition 4.1 (Fridman, 2014). System (4.2) is said to be globally exponentially stable with a decay rate α > 0, if for any initial condition x 0 ∈ W [-τ ,0] there exits a constant k such that x(t) ≤ ke -αt x 0 W for all t ≥ 0.

With the above de nition a su cient condition for exponential stability using a Lyapunov-Krasovskii functional follows from the comparison lemma (Khalil, 2002). eorem 4.1. System (4.2) is globally exponentially stable with decay rate α, if there exists a continuously di erentiable functional V :

W [-τ ,0] → R + such that k 1 ϕ(0) 2 ≤ V (ϕ) ≤ k 2 ϕ 2 W for some positive k 1 , k 2 and V lim sup h→0 + 1 h (V (x h ) -V (ϕ)) ≤ -2αV
for all initial conditions x 0 = ϕ ∈ W [-τ ,0] .

Observer design

We consider a linear time-invariant plant with multiple outputs

x(t) = Ax(t), 1 (t) = C 1 x(t), . . . N (t) = C N x(t) (4.3)
where each output i (t) ∈ R m i corresponds to one of the N sensors nodes. We assume that the sensors, as well as the sensors with the centralized observer, respectively, have synchronized clocks and know the delay (e.g. using a network time protocol and including the sampling instances in the transmission).

We are interested in nding a design of a centralized and a distributed Luenberger observer as introduced in Chapter 2 while taking into account the digital communication network.

Henceforth, we derive new methods to obtain the gains such that a preselected convergence rate of the observers is preserved in face of a time-varying delay.

Centralized observer

For simplicity, the sampling instances and the delays from the sensor nodes to the centralized observer are taken to be identical for all sensors. It allows to combine the individual measurement outputs of the N sensors to

=         1 . . . N         = Cx where C T = C T 1 • • • C T N .
Following section 4.2, the observer receives the samples (s k ) at time-instances t k = s k + η k with delays η k > 0.

e observer is then implemented as a continuous-time Luenberger observer with gain L ∈ R n to obtain the estimate x of the plant's state

x(t) = A x(t) -L (C x(t k -η k ) -(t k -η k )) for t k ≤ t < t k+1 . (4.4)
e output feedback is kept constant with corresponding estimate x(s k ) in between the receptions.

Introducing the error e = xx leads to dynamics e(t) = Ae(t) -LCe(t kη k ) for t k ≤ t < t k+1 .

As described in section 4.2, it can be rewri en using (4.1) as a time-delay system e(t) = Ae(t) -LCe(tτ (t)) (4.5)

with a piecewise linear time-varying delay τ where τ (t k ) = η k and τ (t) = 1 for t t k . Now, we wish to nd an observer gain L which makes the error system (4.5) exponentially stable with a preselected decay rate up to the highest possible value of the bound τ on τ (t).

By applying the Lyapunov-Krasovskii approach for linear systems with time-varying delays, we can then derive an LMI based design.

Proposition 4.1. Given τ > 0, α > 0 and a tuning parameter ε, if there exist positive de nite matrices P, S, R, a nonsingular matrix P 2 as well as matrices Y and S 12 that satisfy the LMI

          Φ 11 P -P T 2 + εA T P 2 e -2α τ S 12 -YC + e -2α τ (R -S 12 ) * -ε(P 2 + P T 2 ) + τ 2 R 0 -εYC * * -e -2α τ (S + R) e -2α τ (R -S 12 ) * * * e -2α τ (-2R + S 12 + S T 12 )           0 (4.6a) R S 12 * R 0 (4.6b)
where Φ 11 = A T P 2 + P T 2 A + 2αP + S -e -2α τ R, then the observer error dynamics (4.5) for system (4.3) with gain L = (P T

2 ) -1 Y is guaranteed to be globally exponentially stable with decay rate α for any time-varying delay τ subject to 0 ≤ τ (t) ≤ τ .

is proposition is a combination of results from Fridman (2014), for completeness we repeat the proof at the end of the chapter.

Since the observer design relies on su cient conditions, the actual convergence rate might be preserved also for time-varying delays which exceed the guaranteed bound (i.e. even when the LMI with Y = P 2 L is not feasible). To obtain a less conservative estimate on the bound of the time-varying delay a di erent analysis method can be used a posteriori. Moreover, the obtained L is suboptimal in the sense that there might be a gain which allows to preserve the decay rate for even higher delays. is is the gain we are actually interested in for the comparison of the centralized and the distributed case; however, nding it is not within reach of current design methods in general.

Distributed observer

For the distributed observer structure in Figure 4.1b, we consider neither sampling nor delays in the measurement inputs. For one thing, this can be assumed since each observer node is implemented on the corresponding sensor and hence no transmission network is involved. Even if sensor delays arise in some applications, for example due to the processing of sensory data, the distributed and the centralized structure are equally a ected. erefore, for the purpose of the comparison they can be disregarded. In contrast, since the sensors are distributed over a large-scale plant, the communication lag between the sensors can be signi cant and, in addition, constrained in the transmission rate.

Again, for the sake of the comparison we assume that all observer nodes receive the information at the same time instance t k and su er from the same delay η k . An observer node i is then selected as a Luenberger observer with an additional di usively coupled term over the neighboring nodes N i as explained in Chapter 2

xi (t) = A xi (t) -L i (C i xi (t) -i (t)) - j∈N i H i,j xi (t k -η k ) -xj (t k -η k ) for t k ≤ t < t k+1 .
e state estimate xi of the node in the di usive coupling term is shi ed to be in synchrony with the received delayed estimates.

Introducing the error of each observer node e i = xix, their dynamics can be wri en with a time-varying delay

e i (t) = (A -L i C i )e i (t) - j∈N i H i,j e i (t -τ (t)) -e j (t -τ (t))
and for the error of the observer network E T = e T 1 • • • e T N , we obtain the dynamics with a point-wise delay of the form

E(t) = (I ⊗ A -blkdiag(L 1 C 1 , . . . , L N C N )) E(t) -HE(t -τ (t)) (4.7) with H =         j∈N 1 H 1,j -H 1,2 . . . -H 1,N . . . -H N ,1 . . . -H N ,N -1 j∈N N H N ,j         where H i,j = 0 if j N i .
As in the section before we formulate an LMI for the design of the output-feedback and coupling gains.

Proposition 4.2. Given τ > 0, α > 0 and a tuning parameter ϵ = diag(ε 1 , . . . , ε N ) ⊗ I , let there exist positive de nite matrices P, S, R, nonsingular matrices P 2,1 , . . . , P 2,N , matrices Z 1,j for all j ∈ N 1 , . . . , Z N ,j for all j ∈ N N , Y 1 , . . . , Y N and S 12 that satisfy the LMI

          Φ 11 P -blkdiag(P T 2,i ) i∈V + ϵ blkdiag(A T P 2,i -C T i Y T i ) i∈V e -2α τ S 12 -Z + e -2α τ (R -S 12 ) * -ϵ blkdiag(P 2,i + P T 2,i ) i∈V + τ 2 R 0 -ϵZ * * -e -2α τ (S + R) e -2α τ (R -S 12 ) * * * e -2α τ (-2R + S 12 + S T 12 )           0 (4.8a) R S 12 * R 0 (4.8b)
where

Φ 11 = blkdiag(A T P 2,i + P T 2,i A -C T i Y T i -Y i C i ) i∈V + 2αP + S -e -2α τ R and Z =         j∈N 1 Z 1,j -Z 1,2 . . . -Z 1,N . . . -Z N ,1 . . . -Z N ,N -1 j∈N N Z N ,j        
, then the error of the distributed observer network (4.7) for the system (4.3) with gains L i = (P T 2,i ) -1 Y i and H i,j = (P T 2,i ) -1 Z i,j is guaranteed to be globally exponentially stable with decay rate α for any time-varying delay τ subject to 0 ≤ τ (t) ≤ τ .

e LMI (4.8) is derived the same way as the centralized counterpart with di erence that, to take into account the structural constraint on blkdiag(L 1 . . . , L N ) and the algebraic constraint on H , the auxiliary matrix P 2 is taken block-diagonal.

As a side note, without compensating for the delay in the output feedback the centralized observer would be practically stable (in the sense of a bounded error) for any delay. Nonetheless, when the observer is used for control purposes there would be a feedback which could indeed cause instability. In the distributed case there is already a feedback between the observer nodes, therefore in any case it is reasonable to compensate the delays if they are known.

Example

To verify the presented methods, the design of a centralized observer and a distributed observer is carried out on a numerical example and tested in a simulation with a sawtooth shaped delay (i.e. η k = 0 for all k). Moreover, the two designs are compared in three di erent ways. e feasibility of the LMIs used for the design gives a su cient bound, which might be more conservative than the bounds obtained by the LMIs for analysis (i.e. without variable substitution). Lastly, the bounds obtained with the simulations are compared. is is done for the same convergence rate to ensure that the designs are comparable. e example for system (4.3) was adapted from Han et al. ( 2019)

A =                -1 0 0 0 0 0 -1 1 1 0 0 0 1 -2 -1 -1 1 1 0 0 0 1 0 0 -8 1 1 -1 -2 0 4 -0.5 0.5 0 0 -4                , C 1 = 1 0 0 2 0 0 2 0 0 1 0 0 C 2 = 2 0 1 0 0 0 C 3 = 0 0 0 2 0 0 C 4 = 1 0 2 0 0 0 2 0 4 0 0 0
with a slight change to ensure that the system dynamics is unstable and no single pair (A, C i ) is therefore detectable. e communication graph for the distributed observer is shown in Figure 4.5.

Centralized observer e observer gain L was designed according to Proposition 4.1 with YALMIP (Lo erg, 2004) as solver for the LMI. e convergence rate was rst xed to α = 1, then τ was maximized while consecutively adapting ε. e maximal possible τ was found to be 0.204 with ε = 0.5.

en the LMI for analysis (see (4.11) below) was found feasible with τ = 0.204 for α = 1 and with τ = 0.287 for α = 0. e design was veri ed in a simulation where the measurement input was sampled with a rate of τ -1 , showing that the desired rate of convergence is a ained (Figure 4.6).

Next the sampling rate was gradually decreased, showing that from τ = 0.430 the convergence rate is less than 1 (Figure 4.7). Lastly, from τ = 0.494 on, the error will start to diverge; 

Distributed observer

For the distributed observer, Proposition 4.2 is applied. e LMI was found feasible with τ = 0.257 for α = 1 with ε 1 = 0.499 and ε i = 0.5 for i ∈ {2, . . . , 4}. With the designed L i , H i,j the analysis LMI (i.e. without imposing structure on P 2 ) was found feasible with τ = 0.257 for α = 1 (τ = 0.394 for α = 0).

In the simulation with the same sawtooth shaped time-varying delay for all communications (i.e. modeling sampled communication with equal rate), the convergence rate is breached with τ = 0.577 and the estimates diverge for τ = 0.69. Table 4.1 summarizes the comparison of the centralized and the distributed observer. 

Discussion of the results

e comparison shows that for the selected example the sum of MATI and MAD is higher for the distributed observer design (the results based on the feasibility of the LMIs and the simulations are consistent). Additionally, the centralized observer is less robust than the distributed one, as it can be seen from the decline in convergence rate for decreasing communication rate. Of course we have to be aware that there exists gains for which these values are higher. Nevertheless, since the same method was used for the design and there is no reason for the centralized case to be more conservative, there is li le doubt that the result will be the same for the optimal gains too. Notice the considerable gap in the result of the simulation and the bound obtained with the LMI. e fact that the LMI is based on a su cient condition is an important reason for it, but also that the bound has to hold for fast-varying delays of any shape. A remedy for this is to use an LMI which takes the sawtooth shape into account or generally is more tailored for analysis than design (here the analysis LMI was not less conservative). Silm et al. ( 2018) assumed constant delays and carried out the design as well as the analysis for a bound of the achievable delay margin directly on the approximate eigenvalues of the linear operator of the error dynamics.

Even though this is only a single example, it still suggests that in the distributed case it is indeed bene cial for the observer nodes to be di usively coupled. A plain explanation of this is that there are more degrees of freedom in the coupling gains then in the output feedback gain (due to the fact that the outputs are lower-dimensional maps of the state). However the transmission of full state-estimates between the nodes requires more bandwidth and might not be feasible for a high-dimensional plant.

Transmission of reduced data

Already in the delay-free case in Chapter 2 it was shown that it is not necessary for the observer nodes to actually exchange the full state estimate. Instead, it su ces to send the projection to the unobservable subspace of dimension n ju of a neighboring node j. However, this means that there are less degrees of freedom to design the coupling gains. To get an idea how it might impact the achievable convergence rate, we carry out a design also for this case.

As in the previous chapters the observer design can be separated for the observable and unobservable subspace of an observer node (see section 2.3.1) by selecting

L i = T io L io , H i,j = T iu Ḡi,j T T iu
such that only T T iu xj , a vector of smaller dimension, needs to be sent from node j to node i. In particular the observable subspace can be estimated solely from the measurements, which we consider delay-free. erefore, if the observers for the observable subspace are tuned to be su ciently fast, we can ignore their contribution to the error dynamics for the unobservable part

E u (t)| E o =0 = blkdiag(A 1u , . . . , A N u )E u (t) -G blkdiag(T 1u , . . . ,T N u )E u (t -τ (t)) where G =         j∈N 1 G 1,j T T 1u -G 1,2 T T 1u . . . -G 1,N T T 1u . . . -G N ,1 T T N u . . . -G N ,N -1 T T N u j∈N N G N ,j T T N u        
.

Deriving an LMI similarly to (4.2) and following the design procedure we get the same bound as for the considered numerical example. is demonstrates that the even when full stateestimates are exchanged, they do not contribute to the observable subspace of a node in the LMI based design.

Moreover, we can consider the case where we do not even transmit the projection onto the whole subspace, but only to a subspace of the unobservable subspace. e observer nodes are then designed as

xi (t) = A xi (t) -T io L io (C i xi (t) -i (t)) -T iu j∈N i G i,j F i xi (t k -η k ) -xj (t k -η k )
with G i,j ∈ R n iu ×n if where F i ∈ R n if ×n is obtained by selecting a subset of the rows of T T iu , therefore a node receives only vectors of dimension n if < n iu . For the considered example, we can select

n 1f = n 1u -2 = 2, n 2f = n 2u = 1, n 3f = n 3u -2 = 3, n 4f = n 4u = 1
and still nd a design without decreasing τ . In a situation where all observer nodes exchange only scalars, n 4f = n 3f = 1, the guaranteed bound decreased to τ = 0.203, which is comparable with the centralized case. Nonetheless, with the added freedom in designing the topology, the idea that di usive coupling with arti cial overtrumps direct exchange of outputs is further supported.

Vector Lyapunov approach

e feasibility of the Lyapunov equation with a block-diagonal Lyapunov matrix in the delayfree case as shown in section 2.3.4 implies the existence of a Lyapunov function of the form V = p T , where = V 1 . . . V N T with V i = e T i P i e i , P i 0 and p ∈ R N + . is allows to formulate an exponential stability criterion for coupled systems using individual Lyapunov functions [START_REF] Lakshmikantham | Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems[END_REF].

Considering element-wise < M with a Hurwitz-Metzler matrix M, there exists a p ∈ R N + , such that element-wise p T M < -αp T , where α is the spectral abscissa of M. erefore V = p T < -αp T < -α V , which due to the comparison lemma is a su cient condition for exponential stability with decay rate α/2.

Bases on this result, Ugrinovskii and Fridman (2014) derived an LMI method for the design of a distributed observer under a round-robin communication protocol using Wirtinger's inequality. In the presence of time-varying delays in the coupling of systems a similar approach can be applied by considering Halanay's inequality instead (Fridman and Blighovsky, 2012).

Lemma 4.1. Consider a system E = f (E t ), where E T = e T 1 . . . e T N , f is locally Lipschitz continuous and f (0) = 0. If for all i ∈ {1, . . . , N } there exists Lyapunov-Krasovskii functionals V i satisfying k i e i (t) 2 ≤ V i (t, e i , e i ) ≤ k i e t,i 2 W with k i > 0 and k i > 0, m ii > 0 and m ij > 0 with j ∈ N i ⊆ {1, . . . , N } for which the inequalities

V i ≤ -m ii V i + j∈N i m ij V j (t -τ (t)) (4.9)
hold with δ 0 > δ 1 > 0 where δ 0 = min i m ii and δ 1 = max i j:i∈N j m ji , then the system is exponentially stable with convergence rate bounded by the solution α of 2αδ 0 + δ 1 e 2α τ = 0.

Taking V i as Lyapunov-Krasovskii functionals for exponential convergence with time-varying delays as used for (4.5), the conditions of Lemma 4.1 will lead to an alternative to Proposition 4.2 for the design of the distributed observer gains in face of delayed coupling, namely using a system of coupled LMIs.

Proposition 4.3. For all i ∈ {1, . . . , N }, given τ > 0, m ii > 0, m ij > 0 with j ∈ N i , with δ 0 = min i m ii > δ 1 = max i j:i∈N j m ji and tuning parameters ε i , let there exist matrices P i 0, R i 0, S i 0 and P 2,i , Y i , Z i,j with j ∈ N i , S 12,i , which satisfy the system of coupled LMIs Φ 1 0, . . . ,Φ N 0, with

Φ i =             Ξ i,11 + Ψ i,11 Ξ i,12 + P i Ψ i,12 Ξ i,13 + Ψ i,13 Ξ i,14 * Ξ i,22 + τ 2 R i 0 Ξ i,23 Ξ i,24 * * Ψ i,22 Ψ i,23 0 * * * Ψ i,33 0 * * * * -blkdiag(m ij P j ) j∈N i             where Ξ i,11 = A T P 2,i + P T 2,i A -C T i Y T i -Y i C i Ξ i,12 = -P T 2,i + ε i A T P 2,i -ε i C T i Y T i Ξ i,13 = - j∈N i Z i,j Ξ i,14 = [Z i,j ] j∈N i Ξ i,22 = -ε i (P 2,i + P T 2,i ) Ξ i,23 = -ε i j∈N i Z i,j Ξ i,24 = ε i [Z i,j ] j∈N i Ψ i =        Ψ i,11 Ψ i,12 Ψ i,13 Ψ i,21 Ψ i,22 Ψ i,23 Ψ i,31 Ψ i,32 Ψ i,33        =        m ii P i + S i -e -2α i τ R i e -2α i τ S 12,i e -2α i τ (R i -S 12,i ) * -e -2α i τ (S i + R i ) e -2α i τ (R i -S 12,i ) * * e -2α i τ (-2R i + S 12,i + S T 12,i )        and R i S 12,i * R i 0,
then the error of the distributed observer network (4.7) for system (4.3) with L i = (P T 2,i ) -1 Y i and H i,j = (P T 2,i ) -1 Z i,j converges exponentially with decay rate α obtained as a solutions of 2αδ 0 + δ 1 e 2α τ = 0 for any time-varying delay τ subject to 0 ≤ τ (t) ≤ τ .

One possible bene t of the above stability criterion compared to (4.8) is that, since the coupling involves just the neighbours of an observer node, it be might useful for a distributed design procedure, similar to Wu et al. (2015) for the delay-free case. A distributed design procedure o ers scalability by allowing to calculate the gains in parallel, but also exibility with respect to a change of the observer nodes or transmission rates, by allowing the observer nodes to calculate the gains in an adaptive manner solely with local interactions.

Proofs

Proof of Proposition 4.1. Take as a Lyapunov-Krasovskii functional for systems with fast-varying delays and exponential convergence e -2α(t-s) e T (s)R e(s)ds. (4.10)

V (t,
A er using e -2α(t-s) ≥ e -2α τ for s ∈ [t -τ , t] the following result is applied to the remaining integral:

Lemma. Under assumption (4.6b) for some matrix S 12 the following inequality holds:

-τ ∫ t t-τ e T (s)R e(s)ds ≤        e(t) e(t -τ ) e(t -τ (t))        T        -R S 12 R -S 12 * -R R -S 12 * * -R + S 12 + S T 12               e(t) e(t -τ ) e(t -τ (t))        .
Proof. Using Jensen's inequality together with the reciprocally convex approach Park et al. (2011).

In line with Fridman's (2014) descriptor method the system dynamics (4.5) is incorporated by adding (P 2 e(t) + P 3 e(t)) T (Ae(t) -LCe(tτ (t))e(t)) = 0 to (4.10) where P 2 and P 3 are auxiliary matrices. en

V + 2αV ≤ η T (t)Φη(t), with η(t) T = e(t) T e(t) T e(t -τ ) T e(t -τ (t)) T and Φ =           Φ 11 P -P T 2 + A T P 3 e -2α τ S 12 -P T 2 LC + e -2α τ (R -S 12 ) * -P 3 -P T 3 + τ 2 R 0 -P T 3 LC * * -e -2α τ (S + R) e -2α τ (R -S 12 ) * * * e -2α τ (-2R + S 12 + S T 12 )           (4.11)
where Φ 11 = A T P 2 + P T 2 A + 2αP + S -e -2α τ R. erefore, the feasibility of the LMI Φ 0 implies exponential stability with decay rate α according to eorem 4.1. To design the gain L, we make the substitution P 3 = εP 2 with some ε > 0 and Y = P T 2 L.

Proof of Lemma 4.1. e inequality (4.9) also implies

V i ≤ -m ii V i + j∈N i m ij sup -τ ≤θ ≤0 V j (t + θ ) ≤ 0.
Taking the Lyapunov function V = N i=1 V i (t, e i , e i ) gives ( j:i∈N j denotes the sum over the nodes which use the estimate of node i)

V ≤ - N i=1 m ii V i + N i=1 j:i∈N j m ij sup -τ ≤θ ≤0 V i (t + θ ) ≤ -δ 0 V + δ 1 sup -τ ≤θ ≤0 V (t + θ ).
erefore, according to Halanay's inequality (1966, p. 378)

V (t) ≤ sup -τ ≤θ ≤0 V (θ )e -2αt .
Proof of Proposition 4.3. Adding to the inequality (4.9) the error dynamics of the observer node i via the descriptor method 2 P 2,i e i (t) + P 3,i e i (t) T × (A -L i C i )e i (t) -j∈N i H i,j e i (tτ (t)) + [H i,j ] j∈N i [e i (tτ (t)) T ] T j∈N ie i = 0, it follows similarly to the proof of Proposition 4.1 that

V i + m ii V i - j∈N i m ij V j (t -τ (t)) ≤ η i (t) T Φ i η i (t),
with η i (t) T = e i (t) T e i (t) T e i (t -τ ) T e i (tτ (t)) T [e i (tτ (t)) T ] j∈N i and Ξ i,24 = P T 3,i [H i,j ] j∈N i , which leads with Lemma 4.1 to an LMI for the design a er substituting P 3,i = ε i P 2,i , Y i = P T 2,i L i and Z i,j = P T 2,i H i,j .

Φ i =             Ξ i,
Chapter 5

Conclusion

Taking some distance, the thesis can be summarized in yielding the design of distributed observers for three successive cases in each chapter: the case of convergence with arbitrary exponential rate, the case of convergence in a nite time and the case of convergence with limited rates due to delays. In this respect, the general view and results which were gathered in Chapter 2 for the linear time-variant systems laid the foundation. However, it has to be considered that almost all of these results were obtained in parallel or in conjunction with the thesis; in consequence thereof, the di erent contributions are strongly interrelated. We will discuss them in the following section and provide directions for further research.

Discussion

In bringing the various solutions for distributed state estimation together in Chapter 2, we showed how they are particular designs relying on di usively coupled observer nodes. Notably, the notion of distributed observability with respect to a graph as introduced here provides a necessary and su cient condition under which the designs are feasible. By pointing out the di erence in the proposed discrete-time and continuous-time solutions we highlighted the relation to synchronization problems (e.g. Su et al., 2020), which can be helpful for further developments. In particular, the network of the individual error systems can be interpreted in terms of dynamic consensus of heterogeneous agents in the sense of Panteley and Loría (2017).

e discrete-time perspective provided two additional insights by turning to distributed dead-beat observers. First, depending how stringent the gains are chosen, less of the global information is utilized leading to a loss in performance.

is showed that a more general choice, like with the LMI and possible in combination with a selection of article outputs, is imperative. Next, we showed how resorting to static coupling with partial outputs will incur a steady delay. ese e ects are readily visible for the simple example where a single node has all the information, but general systems are not exempt from them. In the continuoustime case the e ects manifest themselves in higher bounds on the time-varying delay when choosing general coupling gains over the exchange of actual outputs.

Demonstrating the advantage of distributed observers in a networked se ing is an important achievement. It constitutes a primary reason why distributed observers should be considered over centralized ones in the rst place. us, if delays cannot be neglected, design methods which take them into account are of paramount importance. Nevertheless, this would be a preliminary step. Allowing for a lower transmission rate is not enough to reduce the required bandwidth, if it is gained by increasing the size of the exchanged information. An optimal design would have to solve this trade-o , in line with the continuous e orts of taking the limited information capacity of communication channels into account (see e.g. Andrievsky et al., 2010;Voortman et al., 2019).

e LMI for the design of the gains in Chapter 4 was derived using the Lyapunov-Krasovskii functional approach. To this end, various overestimations are used with the consequence that the LMI might not be feasible even if in reality there exits a gain for a higher bound on the time-varying delay. However, by convexity and showing that the error dynamics in the delay-free case is block-diagonally stable in original coordinates, we can give an important guarantee. Namely, the distributed observability condition guarantees to nd at least some non-zero bound with this method. In other words, imposing the structure does not render the LMI useless for the selection of gains, even if it is conservative. Recent results by Sootla et al. (2019) show that block-stability can be further exploited in the numerical solution of LMIs, perhaps to address the demand (as voiced throughout recent literature) for a distributed design procedure. Furthermore, a nonlinear distributed observer was presented in Chapter 3 such that the estimates reach the state in nite-time, based on the unique properties of homogeneous systems. e design is warranted by a Lyapunov function which relies on the diagonal stability property of the compressed Laplacian matrix of the consensus-based linear design. Sucient bounds for the gain parameters were obtained for both the centralized observer used for the observable substate and consensus-based one used for the unobservable substate. Note that assuming the partial outputs to be scalar is not restrictive, since each entry in the output vector can be treated as belonging to a virtual node of a distributed observer. is means also, that the proposed solution can be regarded as a comparatively simple (albeit high-dimensional) design of a centralized nite-time observer for multi-output systems.

Future work

So far the analysis of proposed distributed nite-time observer focused on its qualitative convergence properties, while additional advantages of the nonlinear gain, which locally corresponds to an in nite gain on the synchronization manifold, were not examined. Homogeneous systems have by themselves enhanced robustness with respect to delays [START_REF] Zimenko | Independent of delay stabilization using implicit Lyapunov function method[END_REF] and it remains to be explored how this property can be exploited for networked control systems. Figuratively speaking, such a link would place the three main chapters in a triangle. Finite-time convergence is not only useful for state observers but also for a range of problems linked to estimation such as identi cation (estimate of the parameters), di erentiation (estimate the derivatives), le -inversion (estimate unknown inputs) and ltering (estimate a signal hidden by noise) which ought to be distributed as well.

Admi edly, the distributed state estimation problem was treated only in theory. In particular, disturbances as well as noise were not considered and the inputs were excluded. Turning to applications they play an important role in choosing a design. In this sense, the experimental veri cation should be a priority and a proof of concept may also boost further developments. Ultimately, such an application would entail strict performance requirements for example due to time-varying networks and the available energy. Moreover, communication would not be considered anymore in an abstract se ing, but will be given by the speci cations of the used communication protocol (e.g. Wang et al. (2017) considered FlexRay in an observer design).

In simulations, distributed observers have been designed for a range of applications (see Rinaldi et al., 2020;[START_REF] Zhang | Distributed observer and controller design for spatially interconnected systems[END_REF]Tian et al., 2019;[START_REF] Kyriacou | Distributed contaminant detection and isolation for intelligent buildings[END_REF]. As assumptions they require that the subsystems are locally detectable with only weak interconnections. e di usively coupled distributed observer investigated in this thesis might allow to relax these assumptions for a gain in performance and enlarge the spectrum of applications. Other ideal candidates are distributed parameters systems (Ba istelli et al., 2017) as well as general decentralized control schemes (e.g. Dileep et al., 2020). e deployment of mobile sensors for environmental monitoring is another prominent example of a task requiring exible networks and local interactions to achieve a common goal.

e above applications are technological and can provide means to continuously improve our living standards. But the ongoing quest for understanding networks and pa erns in society and nature (e.g. Rogov et al., 2019) might also bene t from a general theory of distributed estimation. For example, according to Hayek (1945) each individual is an observer with limited knowledge of the economic complexity, with prices being a communicated signal.

Distributed and finite-time estimation in networked systems is thesis is a broad treatment of the distributed state estimation problem for linear systems. In this se ing, a network of observer nodes collectively estimates the state of a dynamical system, since individually they are not able to do so.

e proposed solution consists of a distributed observer which uses di usive coupling and leads to three complementary contributions.

e rst one considers exponential convergence with arbitrary rates. Various design approaches are put into a uni ed framework to facilitate their comparison. To characterize the feasibility of the designs, the notion of distributed observability with respect to the graph of the network is introduced, which is akin to observability in centralized state estimation. It is concluded that a more general design procedure is desirable to reduce the size of exchanged information and to account for delays. e second contribution is the design of distributed observers where the estimates reach the state of the system exactly in a nite time, in contrast to the asymptotic convergence of the preceding linear designs. Su cient bounds on the gain parameters are obtained using the concept of homogeneity. As a third contribution, an advantage of distributed observers is demonstrated by taking into account the speci c e ects of communications. In a numerical example, di usively coupled observer nodes achieve a be er performance compared to the direct transmission of partial outputs.
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 21 Figure 2.1: Framework of distributed state estimation consisting of a system, the observer nodes and the graph of the communication network
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 2 Figure 2.2: A directed graph with a single source component and its condensation in light gray (Wikipedia)
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 23 Figure 2.3: Illustration of an observer network connected in a chain with di erent kind of information exchange. In case (a), unlike in (b), the estimate at the last node will have a steady delay.

  .16) Similarly to the continuous-time se ing we can nd L io such that the eigenvalues of A o -L o C o are in the inner unit circle. e next lemma summarizing the results of Wang et al. (2019b) is an analog to Lemma 2.3 for a ocking matrix.
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  Figure 3.1: Communication graph of the distributed nite-time observer
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 3 Figure 3.2: local errors of the observer network in transformed coordinates without (le ) and with measurement noise (right)

  calculate an upper bound for the |e 1 | s -|e 1 | taking in mind that |e 1 | ≤ 1 for e ∈ ∂S. e idea is to consider the function κ(x) = |x ξx | and its maximum for x ∈ [0, 1] (an example of κ is given in Figure 3.3 for ξ = 0.8). Inspired by the graph of κ, we apply the mean value theorem κ(a) -κ(b) = (θ )(ab), θ ∈ [a, b] to the function κ : ξ → x ξ , considering x as a parameter and ξ as the argument. For ξ ∈ [0, 1), we obtain κ(ξ ) -κ(1) = χ (x, θ )(ξ -1) with χ (x, θ ) = x θ ln(x) for some θ ∈ [ξ , 1]. For any such xed θ, χ (0, θ ) = χ (1, θ ) = 0 and χ (x, θ ) ≤ 0 for any x ∈ [0, 1]. e minimal value of χ with respect to x ∈ [0, 1] is therefore reached at x opt = e -1/θ and χ (x opt , θ ) = -e -1 θ -1 . us, we can use the bound |e 1 | s -|e 1 | ≤ e -1 1s s = e -1 -sα 1 + sα .
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 33 Figure 3.3: Example of κ(x) with ξ = 0.8. To estimate the bound, the maximum for x ∈ [0, 1] is relevant.

  Figure 3.4. Consequently, returning to the second square root in (3.18)

  19), (3.20) into (3.18) gives with V < 0 a quadratic equation in |α |, whose solution is provided in the formulation (3.9) of eorem 3.4.

  Figure 4.1: Comparison of the observer structures. Collecting all measurements i at a cen-tralized entity and returning the state estimate x is possibly impacted by large delays. Moreover, for an increasing number of sensors there is a potential bottleneck at the observer. In the distributed structure the delays are most likely smaller and the bo leneck is avoided. However, exchanging full state-estimates xi requires more bandwidth.
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 42 Figure 4.2: Model for the transmission of a continuous signal over a digital communication channel. A signal sample (s k ) at time instant s k arrives a er a delay η k = t ks k .Passed the holder, it is as if the signal was delayed by a time-varying delay τ .
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 43 Figure 4.3: Comparison of the senders output (t) and the sampled and delayed input (tτ (t)) at the receiver. e sampling instances s k are s 0 = 0 and

  Figure 4.5: Communication graph of the distributed observer
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  Figure 4.6: Error norm of the distributed (solid) and the centralized (dashed) observer in logarithmic scaling for τ = 0.25
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  Figure 4.8: Error of the centralized observer for τ = 0.25
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  Graph of a time-varying delay induced by the communication channel. It illustrates a scenario where the delay in the communication channel increases (e.g. due to congestion in the communication network) until a package dropout incurs to the message with (s x ). In response the sampling interval is increased.
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	Figure 4.4: e maximum of the time-varying delay over all transmission instances is denoted as
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k (η k+1 + h k ).

Table 4 .

 4 1: Summary of maximal obtained τ and simulation result with sawtooth shaped delay for the centralized and the distributed observer. It shows that for this example the distributed observer design outperforms the centralized one.

	centralized distributed
	for convergence rate 1 design 0.204 analysis 0.204 simulation 0.430 without prescribed rate (i.e. α = 0) 0.257 0.257 0.577 analysis 0.287 0.394 simulation 0.494 0.690

  e t , e t ) = e T (t)Pe(t)+ ≤ V ≤ (λ max (P) + τ (λ max (S) + λ max (R))) e t Wthe rst condition of eorem 4.1 is ful lled for all t ≥ 0 and e t ∈ W[-τ ,0] . Taking the derivative leads to

	∫ t t-τ	e -2α(t-s) e T (s)Se(s)ds +	τ ∫ t t-τ	e -2α(t-s) (τ + s -t) e T (s)R e(s)ds.
	With			
	λ min (P) e(t)			

V + 2αV = 2 e T (t)Pe(t) + e T (t)(2αP + S)e(t) -e -2α τ e T (t -τ )Se(t -τ ) + τ 2 e T (t)R e(t) -τ ∫ t t-τ

  11 + Ψ i,11 Ξ i,12 + P i Ψ i,12 Ξ i,13 + Ψ i,13 (A -L i C i ) T P 2,i + P T 2,i (A -L i C i ) Ξ i,12 = -P T 2,i + (A -L i C i ) T P 3,i Ξ i,13 = -P T i,14 = P T 2,i [H i,j ] j∈N i Ξ i,22 = -P 3,i -P T

	* * * *	Ξ i,22 + τ 2 R i * * *	0 Ψ i,22 * *	Ξ i,23 Ψ i,23 Ψ i,33 *	Ξ i,14 Ξ i,24 0 0 -blkdiag(β i,j P j ) j∈N i	           
	where					
	Ξ i,11 = 2,i	H i,j			Ξ i,23 = -P T 3,i	j∈N i	3,i H i,j
	j∈N i					

Ξ

A Zotero Group for related literature is available at https://www.zotero.org/groups/distributed state estimation

In numerical tests an inverse relationship has been observed between how high the synchronization gain is and how "fast" the output feedback has to be.

A MATLAB script for this and other design methods mentioned in this chapter is available at http://twr.cs.kuleuven.be/research/software/delay-control/distributed observers.m
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