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Abstract

With the rising impact of the memory wall, selecting the adequate data-structure
implementation for a given kernel has become a performance-critical issue. The
complexity of solving efficiently this Data-Layout-Decision (DLD) problem is dra-
matically increased by the concurrence of complex, heterogeneous and application-
specific hardware memories. Slightly modifying an optimized application or porting
it to a new hardware architecture requires an important time and engineering effort.
It also requires a deep knowledge of the host hardware platform.

In this thesis, we plot a first step toward automatic software-adaptation to hard-
ware. We present an iterative data-mining-related software-optimization approach
based on the detection and the exploration of the most influential parameters linked
to the hardware, operating system and software. We also propose a custom data-
cache-miss modeling algorithm designed to be used as fully-parameterized perfor-
mance evaluation. The proposed approach is designed to be embedded within a
general-purpose compiler.

In order to explore the parameters related to the data-layout implementation,
we propose HARDSI, a custom patented method to solve the DLD problem. We
also propose to apply our method using a custom domain-specific language and
computation framework. The HARDSI method allows to choose, from a custom
base of knowledge, an optimized data-layout implementation with regards to the
memory-pattern followed to access the considered data-structure. The generated
solutions are also specifically adapted to the properties of the host hardware-memory.

Meanwhile, we consider the singular resolution of the DLD problem on memories
that are explicitly addressed by the programmer (such as embedded scratchpad
memories or GPUs). The problem that we address is to find an optimized memory-
placement in order to maximize the amount of frequently-accessed data to be stored
within this fast yet narrow memory. In this context, we propose DDLGS, a custom
patented method designed to generate a dynamic data-layout with regards to the
followed memory-access pattern. The generated implementations encompass the
specific load and store routines as well as the granularity attributed to each data
transferred. These implementations are also able to adapt, at run time, to the input
of the considered source-code.

Aiming to evaluate our implementations on different hardware environments, we
have considered two different processor and memory architectures: (i) An x86 pro-
cessor implementing an Intel Xeon with three levels of data-caches utilizing the least
recently used replacement policy and a (ii) Massively Parallel Processor Array im-
plementing a Kalray Coolidge-80-30 with a 16KBytes on-chip scratchpad memory.
Experiments on linear algebra, artificial intelligence and image processing bench-
marks show that our method accurately determines an optimized data-structure
implementation. These implementations allow reaching an execution-time speed-up
up to 48.9x on the Xeon processor and 54.2x on the Coolidge processor.
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Resumé

La sélection d’une implémentation adéquate de structure de données pour un noyau
de calcul donné est un problème critique pour les performances logicielles. La com-
plexité de la résolution efficace de ce problème est exacerbée par la concurrence de
mémoires matérielles complexes, hétérogènes et dédiées à une application specifique.
Modifier légèrement une application optimisée ou la porter sur une nouvelle archi-
tecture matérielle nécessite un temps et un effort d’ingénierie considérable. Cela
nécessite également une connaissance approfondie de la plateforme matérielle hôte.

Au cours de cette thèse, nous franchissons une première étape vers l’optimisation
par l’adaptation automatique du logiciel au matériel. Nous présentons une approche
itérative d’optimisation basée sur la détection et l’exploration des paramètres les
plus influents liés au matériel, au système d’exploitation et au logiciel. La méthode
proposée est conçue pour être intégrée dans un compilateur à usage général. Dans
ce contexte, nous proposons un algorithme de génération de modèles (entièrement
paramétrées) de mémoires caches. Les modèles de performance générés sont conçus
pour être utilisé dans le cadre d’évaluations de performances et d’optimisation.

Afin d’explorer les paramètres liés à aux structures de données, nous pro-
posons HARDSI, une méthode brevetée permettant la résolution du problème de
l’agencement des données pour logiciel donné. Dans le but d’appliquer notre méth-
ode, nous proposons également un langage dédié (basé sur le langage C/C++) ainsi
que son environnement logiciel de compilation et d’exécution. La méthode HARDSI
permet de choisir, à partir d’une base de connaissances spécialisée, une implémen-
tation optimisée de l’agencement des données en fonction de la géométrie d’accès
à la structure de données. Les solutions générées sont également spécifiquement
adaptées aux caractéristiques matérielles de la mémoire hôte considérée.

De même, nous considérons la résolution du problème de l’agencement des don-
nées sur les mémoires singulières qui sont explicitement adressés par le program-
meur (tel que les mémoires de type "scratchpad" ou GPU). Le problème que nous
abordons est de trouver un emplacement mémoire optimisé afin de maximiser la
quantité de données fréquemment accédées et à stocker dans ce type de mémoires
rapides bien qu’étroites. Dans ce contexte, nous proposons DDLGS, une méthode
brevetée conçue pour générer une implémentation dynamique des données sur mé-
moires scratchpad. Ces implémentations sont conçus par DDLGS en considérant le
schéma d’accès à la mémoire spécifiquement suivi par le code a optimiser.

Dans le but d’évaluer nos implémentations sur différents environnements
matériels, nous considérons deux processeurs et mémoires différents: (i) un pro-
cesseur x86 implémentant un Intel Xeon à trois niveaux de caches de données et (ii)
un processeur massivement parallel implémentant un Kalray Coolidge-80-30 à mé-
moire scratchpad sur puce de 16K octets. Les expériences menées sur des noyeaux
d’algèbre linéaire, d’intelligence artificielle et de traitement d’images montrent que
notre méthode détermine avec précision une implémentation optimisée des struc-
tures de données. Ces implémentations permettent d’atteindre une accélération du
temps d’exécution jusqu’à 48,9x sur le processeur Xeon et 54,2x sur le Coolidge.
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C-SRAM Computational SRAM is a an in-memory computing architecture. It
consists in a static RAM memory that embeds computing abilities. It
is designed to reduce the time and energy cost of the transfers between
the main memory hierarchies and the computational blocks (CPUs and
accelerators)..

DMA Direct Memory Access, referring to a device that can transfer data in and
out of the memory (main memory or on-chip scratch memory) without
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pletion of the transfer.

LLC Last Level Cache refers to the highest-level of data cache within the
hardware-memory hierarchy. Unlike the first-level of cache, the LLC
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units. In the example of the x86 Intel Xeon E3-1270 processor, the LLC
corresponds to the L3 data cache..

LRU Least-Recently Used cache-replacement policy consists in evicting,
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cessing. In such a hardware architecture, the memory-access time de-
pends on the position of the data within the memory architecture across
the different CPUs..

RAM Random-Access Memory is a form of non-persistent (flushed when
powered-off) computer memory, typically used to store running processes
data and instruction. In modern DDR4 technologies, a RAM memory is
roughly ten to a thousand times faster than flash (persistent) memories..



2 List of Acronyms

List of Acronyms

ALU Arithmetic Logic Unit.
API Application Programming Interface.

BLAC Basic Linear Algebra Computation.
BLAS Basic Linear Algebra Subprograms.

CPU Core (or central) processing unit.

DDLGS Dynamic Data-Layout Generation for Scratchpad.
DLD Data-Layout Decision problem.
DSL Domain-Specific Language.

GPU Graphics Processing Unit.

HARDSI Hardware-Adapted Refactoring of Data Structure Implementation.
HPC High-Performance Computing.
HW Hardware.

ISA Instruction Set Architecture.

LL Linear Language.
LLIA Last-Level Indirection Array.
LTO Link Time Optimization.

MMU Memory-Management Unit.
MPI Message Passing Interface.
MSR Model-Specific Register.

OS Operating System.

PMU Performance Monitoring Unit.

SIMD Single Instruction Multiple Data.
SW Software.

TLB Translation Lookaside Buffer.
TPU Tensor Processing Unit.

VLIW Very Large Instruction Word.
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Mathematical Notations for Cache-Miss Modeling

@(x,y) Virtual adress of the cell (x, y) of a matrix.
B Size of a dynamic memory allocator basic block (as defined by the Linux

GLIBC implementation [39]).
C Size in Bytes of a line of an LLC cache.
Ctotal Total number of lines within an LLC cache.
D Memory-size (in Bytes) of a cell of a matrix.
L Number of contiguous and lower addresses to a given @(x,y) that are

already preloaded in the LLC cache when accessing @(x,y).
N Width and length of a square matrix.
X Width of a non square matrix.
Y Height of a non square matrix.
x Abscissa of a given cell of a matrix.
y Ordinate of a given cell of a matrix.

Mathematical Notations for DLD Resolution

Hf,v
Matrix Histogram (memory signature) of the values in T fv .

Tv List of all the cell accesses (address or index) to a matrix varable v
during an input-code execution.

T fv Transformation of the list of access Tv based on the transformation func-
tion f .
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1.1 Historical Overview

Hardware processor and memory performance evolution has always been driven by
technology evolution. The first influential technological parameter is the size of
a transistor. Reducing the size of a transistor allowed to produce faster circuits
(shorter data-transfer paths) with a lower energy consumption. This tendency led,
following Moore’s law [74], to ship a huge amount of transistors on a single ship.
Today’s embedded processors use a technology-design as small as 5nm. However,
this size-reduction seems to have reached a limit [75].
A second parameter that shapes computer-performance is the hardware architec-
ture. Since the first monolithic processor (Intel 4004 ), successive inventions have
each brought an order of magnitude in terms of computational power and efficiency.
All these architectures and improvements demonstrated a significant increase in
the peak and the best-case computational performance. The instruction-pipeline
operators allowed to improve the computing operators throughput with the draw-
back of augmenting the latency. Multi-level data and instruction caches allowed to
improve the data-access latency with the drawback of complicating the data-access
time predictability. Hyperthreading, branch prediction and multiprocessing allowed
to increase the computational throughput while dramatically complicating the
performance prediction and evaluation.

In parallel, the design of the compilers had to painfully integrate the support to
all the hardware evolution. This pushed compiler’s back-end to integrate processor
models. Pipelined architectures are supported by a precise instruction scheduling.
Distributed data caches and multiprocessors are supported by complex program
representations such as the polyhedral model. However, the question that remains
is: is the software generated by modern compilers and programming models able to
largely take advantage of all the proposed hardware capacities.
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Figure 1.1: Custom evaluation of performance and code-complexity for a simple
matrix multiplication application (100*100 integers) using different software imple-
mentations. The potential properties of each implementation are (P) Portable to
new hardware/software (H) uses hardware-specific instructions (R) requires run-time
code-refactoring

1.2 Context and Objectives

Modern High-Performance Computing (HPC) architectures encompass a large and
varied set of heterogeneous accelerators. Some of them allow to accelerate computa-
tional operations (e.g. Single Instruction Multiple Data (SIMD) vector processors,
Graphics Processing Units (GPUs), Tensor Processing Units (TPUs)). Others soften
the data-fetch latency (e.g. caches, scratchpads and TLBs). A last category opti-
mizes the scheduling and the interaction between memory and compute operations
(e.g. Intel’s Hyper-Threaded CPUs, C-SRAM). These hardware accelerators may
bring a very interesting time and energy-efficiency improvement to a software code.
Consequently, software-optimization literature has mainly focused on adapting an
input source-code to a given accelerator. In Figure 1.1, we show through the exam-
ple of a matrix-multiplication algorithm that such an approach has accelerated the
code’s execution by roughly 100X for an input matrix of size 100. However, this
execution-time improvement has been reached at the expense of the code simplicity.
The size of the code has increased by over 20X (regardless of the system libraries
and Application Programming Interfaces (APIs) used to access each accelerator).
Within an industrial ecosystem, such a size increase makes it complicated to debug,
maintain and improve the code.
Moreover, a code deployed on a hardware accelerator is usually specifically devel-
oped for the considered hardware environment. The specific API of the environment
is used. The data is specifically tiled and split across the considered memories, and



1.3. Global Approach 7

the data fetch is scheduled according to the hardware specificity (size of the memory
and its subsystems, size of the transfer-buses, policy of access and replacements).
Consequently, all this engineering time and efforts has to be spent again whenever
the code is ported to a new family of hardware. Similarly, slightly modifying the
code that has been optimized requires the same amount of work.

1.3 Global Approach

Source	code	(C/C++)
`

Model Execution-time ?:
T(H,	OS,	I,	D)

Optimized	source	code
(C/C++)

(a) Steps of the proposed software-
optimization process.

H: Hardware
RAM:

Frequency
SIze
Family
#Strip
...

Processor
Frequency
Word size
# cores
Bus size
cache size
cache access policy
...

OS: operating System
Page replacement policy
Page access policy (first touch,
worst touch, ...)
Page size
Cache replacement policy
Library implementation (malloc,
synchronization, ...)
...

I: Implementation
Loop unroaling depth
Instruction ordering
Loop ordering
...

D: Data 
Data structure choice
Data structure implementation
...

(b) Parameters of the
execution-time function T .

Figure 1.2: Global view of the proposed software-optimization process.

From a mathematical point of view, a source code may be mapped to its
specific execution-time function T . As shown in Figure 1.2a, this multidimensional
function expresses the execution time of the corresponding code with respect
to the value of different external parameters. In Figure 1.2b, we summarize
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the different families of adjustable-parameters that are known to influence the
execution-time of a kernel: hardware, operating system, implementation, and
data-placement. In this context, optimizing a software is equivalent to finding the
input parameters that would minimize the corresponding execution-time function T .

The optimization process introduced in Figure 1.2a is in no mean implemented
nor evaluated in this thesis. However, this thesis identifies different requirements
linked to this new family of optimization approach. The different contributions
of this thesis are build in order to be eventually integrated within a future tool
implementing the optimization approach in Figure 1.2a.

As shown in Figure 1.2a, the considered optimization approach consists in first
removing the parameters that are known not to be of any interest regarding the
considered software/hardware environment. Then, the process consists different
iterations aiming at converging toward an optimized value of these parameters.
The parameters are split into two groups: the discrete and the non-discrete ones.
For the discrete parameters, the approach is based on the simplex algorithm [26].
This algorithm is primarily used due to its robustness. It may be applied to analyze
parameters with large or small set of potential values. It may also be used with
non-ordered parameters (e.g. cache-allocation policy, page-replacement policy,
library choice). This algorithm may only be used under the assumption that all the
considered parameters are either integer or may be mapped to a finite integer set.
Meanwhile, the non-discrete parameters1 (such as the processor or the memory
frequency) are determined using the gradient-descent algorithm [91]. This approach
is primarily picked as it allows slight changes in the target function (T ) between
two consecutive iterations of the algorithm (Haskell Curry adaptation of the
gradient-descent for convergence with non-linear optimization [111]). This property
is used in order to consider several parameters in parallel: one or several simplex
executions (corresponding to one or several discrete parameters) may be run along
with a gradient-descent execution (corresponding to a non-discrete parameter).

Showing the optimality of the optimization found by the proposed approach
is out of the scope of this study. However, this numerical approach for software
optimization ensures that most important parameters for software-performance are
explored. It also allows to use prior optimization-knowledge by favoring some pa-
rameters over others or by reducing the research-space. Finally, by introducing
hardware and OS-related parameters, our approach sets the basis for a new way of
software optimization: adaptation to the host hardware.

1These parameters are all continue and differentiable.
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1.4 Requirements and Issues to Overcome

In order to implement our software-optimization approach, different problems need
to be treated.
On the one hand, the execution-time function T may hardly be accurately evalu-
ated for any given input source code. To the best of our knowledge, no solution
has been proposed to evaluate this function T with regards to all the parameters
that we identified. Even though mathematical modelings of T exist for some specific
input codes [112, 44, 79, 64, 31], the corresponding models are either constant with
respect to the considered parameters [112, 44, 79] or non derivable with respect to
some non-discrete parameters [64, 31].
On the other hand, in order to run the optimization approaches described in sec-
tion 1.3, we need to either have sufficient evaluation of the considered function T

or be able to evaluate a stochastic function related to T . In both cases, we need to
measure or predict the execution time of the given code2 within the considered hard-
ware/software environment. In section 2.1 we show that modern hardware-software
simulator or executors have non negligible time constraints. Consequently, it would
be impossible to implement our method using such simulators or executors at the
execution-time scale of a compiler.
In this context, our approach consists in replacing the execution-time function T

with a similar but easiest-to-evaluate one. For instance, if we consider that the
number of data-cache misses has a direct impact on the execution-time, we may
substitute the function T with a model of the number of cache misses.

1.5 Contributions

This thesis aims at proposing the ground basis to the automatic adaptation of
software-code across high-performance hardware architectures. This consists in
proposing different solutions and tools aiming to be eventually integrated within
the proposed optimization process (Figure 1.2b). In this context, the main contri-
butions of this thesis are:

(i). HARDSI, a patented and custom framework for automatic exploration of
data-layout implementations. The corresponding source-to-source compiler
is a standalone tool designed to replace each data-structure’s instance with
an optimized implementation. This optimization for general-purpose C/C++
code is based on memory-pattern detection.

(ii). DDLGS, a method designed to automatically and dynamically generate data-
layout-implementations for programmable (fast and explicitly-addressed)
memories. The generated code allows to adapt at run-time to the dimen-
sion of the problem as well as the pattern followed to access the data.

2Through simulation or execution.
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(iii). An evaluation of the performance-improvement brought by our source-to-
source compiler method.

1.6 Experimental Setup

In this thesis, we deployed and evaluated our solutions on two different hardware
platforms. The first one is an x86 architecture implementing an Intel Xeon E3-1270
v4 processor with an L3 LLC containing a total of 8M Bytes made of 128 Bytes per
cache line and implementing the LRU cache-replacement policy. A Debian (4.9.2)
operating system is used based on the Linux (3.16.0-4) kernel. The g++ (4.9.2)
compiler (with the -03 optimization option) is used to compile the considered
computation-kernels. This includes the native C/C++ code and the one generated
by our HARDSI source-code generator (chapter 4). The Perfmon2 (libpfm-4.11.0)
library [32] allong with our custom patch (subsection 2.3.2) is used to access the
Performance Monitoring Unit (PMU) of the x86 processor in order to measure
different cache misses and CPU cycles. The cpupower toolkit is used to disable the
automatic CPU-frequency scaling of our processor.

The second hardware platform that we considered is a MPPA Kalray Coolidge-
80-30. This Coolidge processor implements five clusters, where each one contains
sixteen in-order K1c Very Large Instruction Word (VLIW) cores. Each core shares
a 4M Bytes DDR main memory with all the cores on the same cluster and communi-
cates with the other clusters through a NoC. Each core has also a 4-way associative
L1 cache LLC containing a total of 16K Bytes made of 64 Bytes per cache-line
and implementing the LRU cache-replacement policy. Even though a larger data
cache (L2) is present on this platform, we do not consider it. Indeed, unlike the
L2 and L3 caches of our x86 processor, the L2 cache of the Coolidge processor is
primarily used as a fast communication buffer between concurrent cores. It is not
an extra caching level in between the main memory and the CPU. Thus, we assume
that the L2 cache of the Coolidge processor has a fairly-negligible impact on the
performance of our single-threaded target applications (as we bind each thread on
a unique core). Additionally, the considered Coolidge processor implements a 16K
Bytes scratchpad memory per core. This fast on-chip memory is explicitly accessed
by the programmer through the builtin library embedded to the Kalray-1 (4.0.0)
tool-chain. In this thesis, we simulate the whole HW/SW stack using the Kalray-1
(4.0.0) simulation platform. The –cycle-based option of the simulator is used to
ensure a quasi cycle-accurate execution. The k1-cos-g++ (4.0.1) based on the g++
(7.4.1) compiler (with the -03 optimization option) is used to compile all the consid-
ered computation-kernels. The builtin library of the simulator is used to access the
performance registers and the Memory-Management Unit (MMU) of the Coolidge
processor in order to measure different cache misses and CPU cycles. As far as
we know, no automatic CPU-frequency scaling is implemented in the used simulator.
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All the presented performance results are obtained following the same procedu-
ral method (on both considered processors). Each point is assessed (experimental
run) 10 times, and the presented results are the average of these runs. Given its
relatively small value (smaller than 1% for all the experiments) no variation is
presented. The performance gain that we show in this section are obtained without
re-ordering the instructions of the original algorithm. We make sure to flush all
the data-caches between two consecutive experiments using a CFLUSH assembly
instruction of both considered processors.

Finally, all the results presented in this thesis are obtained using float matrices.
Similar results might be observed using other basic types of data such as integers
or doubles.

1.7 Thesis Structure

The rest of this thesis is organized as follows.
Part I presents the state of the art in terms of software optimizations. Chapter
2 discusses existing tools and methodologies for software-performance evaluation,
measurement, modeling and estimation. Chapter 3 evaluates the existing solutions
for software optimization. A particular attention is given to the optimizations by
adaptation to the hardware and the software optimizations for scratchpad usage.
It then focuses on what we consider as a major problem to solve for software
adaptation: the Data-Layout Decision problem (DLD).

Part II presents our contributions toward an automatic software adaptation
to hardware. Chapter 4 introduces HARDSI a custom patented methodology to
solve the data-layout decision problem by adapting an input implementation to
the host hardware-memory hierarchy. It also presents the principles and the usage
of the proposed DSL and compilation framework. Chapter 5 uses the instance
of programmable memories to show how to extend the proposed methodology to
hardware memories with no dedicated data-layout implementations. The chapter
also presents DDLGS a custom patented method designed to dynamically generate
scratchpad-dedicated dynamic data-layout implementations.

Part III presents through chapter6 an experimental evaluation of our method to
select an adequate data-layout implementation across different hardware platforms.
It also evaluates the performance gain brought by our automatically-generated code.

Chapter 7 concludes the thesis and discusses different improvements and appli-
cations for the software-optimization approach that we propose.





Part I

State of the Art and Scientific
Methodology





Chapter 2

Scientific Methodology:
Performance Exploration

2.1 Simulation and Emulation Tools . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Trace Injection Simulators . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Cache, RAM and Register Simulators . . . . . . . . . . . . . . . . . 17

2.1.3 Instruction-Interpretation Simulators . . . . . . . . . . . . . . . . . . 18

2.1.4 Trade-off Between Accuracy and Execution time . . . . . . . . . . . 19

2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Hardware and Software Performance Modeling: The Roofline
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Hardware Boundaries (Roof) . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Fitting the Model to the Memory/Computational Optimizations
(Ceiling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Interest of the Roofline Model . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Conclusion: Limitation of the Roofline Model for our Approach . . . 23

2.3 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Hardware Performance Counters . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Performance Measurement Libraries . . . . . . . . . . . . . . . . . . 26

2.3.3 Conclusion: Choosing a Hardware-Software Performance Tracker . . 29

2.4 Conclusion: Adopted method and implementation choices . . . . . 31

The software optimization approach that we propose is highly data-dependent.
In order to efficiently run its heuristic, our method needs to have, at each iteration,
an accurate evaluation of the function that it minimizes (whether it is the execution
time function or any related performance function). In this chapter, we first make in
section 2.1 a state of the art in terms of simulation and execution-tools designed for
hardware-exploration. Second, we explore in section 2.2 the existing performance-
modeling methods. The objective being to determine whether or not these models
may represent an alternative to the time-consuming code-execution or simulation for
performance evaluation. Third, we investigate and compare in section 2.3 the dif-
ferent software and hardware approaches to reliably measure different performance
indicators (such as execution-time, memory latency, cache misses). Finally we con-
clude by choosing the adequate tools for our software optimization implementations
with the expected time, reliability and accuracy constraints.
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2.1 Simulation and Emulation Tools

We refer to hardware-simulation or emulation any tool designed to replicate by the
means of software the functional behavior of a hardware. The difference between
simulation and emulation lays in the system hosting the replication. A simulation
is based on a software implementation of a model where the internal functions of
the original systems are not taken into consideration. Meanwhile an emulation is a
replica of the internal system functions on a different host hardware. In the rest of
this thesis, we refer to both simulation and emulation tools as simulation regardless
to the host hardware. We also refer to the hardware platform where the simulator
is run as the host hardware. Finally, we refer to the hardware platform that is
simulated as the target hardware

2.1.1 Trace Injection Simulators

One of the main distinctive aspect of a hardware simulation is its time-overhead
compared to a simple execution. Indeed, simulating an instruction from the target
hardware at software level is equivalent to recognizing, translating and interpreting
it in the host-hardware instruction-set. Given that each one of these steps is
equivalent to several instructions from the host hardware, a simulation-time maybe
prohibitively long for many applications.
One way to reduce the simulation-time, is to reduce the level of accuracy in
the formal description of the target architecture. This is often achieved using
trace-based (or trace-driven) simulators [106, 90, 101, 8]. These simulators take as
input a fixed sequence of trace-records relative to the execution of the corresponding
software on the target hardware. Then the simulator only evaluates the instructions
which results are not in the trace file. This trace may record memory references,
branch outcomes or computational instructions. In order to cover a large set of
potential uses, the traces fed to a simulator are usually produced by an automatic
trace generator.

In an attempt to reduce the simulation time, some random-traffic generators
have been proposed. Even though generating random traces is easy, it usually re-
sults in traces that diverge from effective executions. In addition to the obvious
functional default of the resulting execution, this divergence forbids the deduction
of any performance-evaluation from such a simulation [101, 8].
In order to understand the inaccuracy of performance-evaluation derived from trace-
injection-simulators, let us consider how the memories hierarchies ar simulated. In-
deed, the layered memory-systems are known to be a root cause for performance;
and this high incidence is mainly related to the cache-hierarchy. Data, instruction
and address caches are mainly maintained through coherency-messages. These mes-
sage follow a non-deterministic and non uniform distribution. Thus, the random
traffic-generators are very-likely to produce a trace that follows a different distribu-
tion [101, 8]. In order to tackle this challenge of cache-simulation accuracy, different
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attempts have been made to propose a trace-generator that dynamically adapts the
cache-coherency message-distribution to the observed memory-accesses [66, 67, 118].
However, as shown in [8], the cache-coherency message distribution is significantly
influenced by other parameters than the memory access pattern (such as the burden
on the machine [8] and the hardware message passing protocols [81]). Thus, it re-
mains difficult to generate a traffic that accurately simulate the performance-critical
memory-hierarchy behavior.

2.1.2 Cache, RAM and Register Simulators

Given the difficulty stated in subsection 2.1.1 to accurately simulate the whole
memory hierarchy, different families of hardware simulators have been pro-
posed to answer different functional requirements. In this section, we focus on
the hardware simulators designed for hardware-fault evaluation on a single machine.

Reliability is a major objective for cyber-physical systems. Indeed, computing
systems are inclined to create a faulty behavior due to manufacturing defects,
electromagnetic interference or any other environmental perturbation. Some faulty
behaviors are easy to spot as they correspond to a clearly-damaged hardware.
However, some other faults such as the Byzantine faults may inject computational
errors that are much harder to spot, leading to potentially catastrophic failures.
In order to evaluate the effect of faulty behaviors on a simulated hardware, it is
mandatory to first accurately simulate the fault-injection.
In [52], the authors propose a fast and flexible hardware-emulator framework
designed to evaluate the reliability of a cyber-physical system. The main interest
of this framework, compared to existing emulators such as Gem5 [12] and Sim-
pleScalar [15], resides in its memory-subsystem emulator. In order to accurately
locate the hardware component responsible for a given fault, the author proposes
to subdivide the memory simulator in different components: RAM, cache and regis-
ters. Each one of these parts is simulated based on its functional algorithm. These
parts are also parameterized based on their functional properties (size, associative
property, access policy). Similarly to Gem5 [12] and SimpleScalar [15], the simula-
tion time in [52] is dramatically reduced by simplifying the model of the components.

Evaluating the occurrence-frequency of faulty behaviors is important for
hardware-performance evaluation. Indeed, such behaviors are known to be ex-
tremely time consuming [85, 52, 8, 2, 33]. Let us consider Byzantine faults1. In [85],
the authors evaluate the average time overhead of intermittent hardware-errors 2

on general-purpose computing benchmarks. Using the Microsoft Windows error
reporting system, this time overhead is evaluated to up to 39% of the execution

1Faults that generate erroneous results without crashing nor stopping the functioning of the
hardware.

2Intermittent hardware errors represents about 40% of the total hardware failures within the
considered benchmark.
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time related to memory accesses. Similarly, the different countermeasures that have
been deployed to track and correct hardware faults have a non-negligible effect on
hardware-performance. Given the relative complexity of modern architectures, these
countermeasures are largely deployed on high-performance and embedded platforms.
Even optimized approaches such as [49, 33] have a minimal time overhead of roughly
6% on memory access within general purpose architectures and benchmarks.

2.1.3 Instruction-Interpretation Simulators

The simulation tools presented in subsection 2.1.1 and subsection 2.1.2 are widely
used in hardware design. However, to the best of our knowledge, no attempt has
succeeded in using such hardware-simulation tools for performance evaluation. The
reason for that is the granularity at which the hardware is simulated.
Indeed, one of the most time-accurate families of hardware simulators are the
instruction-interpretation simulators. These simulators interpret at software-level
each low-level instruction of a given execution flow. Since 1990, instruction-
interpretation simulators have been used for hardware exploration [77, 17, 69, 12, 15].
Given the relatively important simulation time, most studies have only focused on
a specific part of the hardware at a time. In [77], the authors use the Wisconsin
Wind Tunnel simulator to evaluate some cache-coherency protocols on a manycore
architecture. Similarly, other studies have used platforms based on SystemC for
architecture evaluation [105, 69, 17]. Different levels of description have been
proposed from signal accurate in [105, 69] to message-accurate in [17]. However,
all of the SystemC -based solutions have a well known time-efficiency drawback.
This excessive overhead is mainly linked to the exponential complexity of these
simulator: the modeling implemented in SystemC encompasses all the transient
state.

Simulators that interpret low-level instruction are often known as instruction or
quasi cycle-accurate. However, in order to have an accurate performance-evaluation
of a hardware/software couple, an accurate estimation is required for most instruc-
tions and micro-instructions. To the best of our knowledge, one of the most promis-
ing work in terms of timing model is proposed by Rosa et al [90]. In this paper,
the authors show that the accuracy of the proposed CPU model varies from 0.06%

up to 10.56 depending on the used benchmark. Even though other models have
shown a lower average accuracy, the model proposed in [90] is the first one to be
non-constant (or composed of constant steps in chunks) with regards to CPU pa-
rameters (such as the frequency, or the number of cores used). Consequently, this
model is the first to be adequate to spot the variable parameters that might bring a
significant performance gain and evaluate this potential gain. However, this model
only focuses on CPU timing. Thus, it does not consider a performance-critical as-
pect which is memory accesses. This model is also designed exclusively for real-time
environment running on embedded systems (with hard timing constraints).



2.1. Simulation and Emulation Tools 19

2.1.4 Trade-off Between Accuracy and Execution time

Processor Memory System

CPU Model Classic Ruby

Simple Garnet

Atomic 
Simple

Speed

Timing
Simple

InOrder

03 Accuracy

Figure 2.1: Trade-off between simulation-time and hardware-model accuracy (ex-
tract from [16]).

In this section, we focus on Gem5 [12], one of the most widespread hardware
simulator. The Gem5 is used in several domains, from hardware-design up to
computational-language validation. Various researches [86, 3, 65, 30] have been
conducted to adapt the simulator to the different hardware-simulation paradigms
described in subsection 2.1.1, 2.1.2 and 2.1.3. These researches have also covered
different parts and combinations of the described hardware (processor, memories,
network and peripherals). Consequently, a study of the Gem5 simulator gives an
insight about the advantages, drawbacks and trade-offs to expect from a modern
hardware simulator.

The different variants and simulation mode of the Gem5 simulator have been
compared within [16]. This comparison is summarized in Figure 2.1. We may
notice the different CPU models of the simulator as well as the simulation modes
and the memory models. If we consider the example of the memory hierarchy,
these different parameters allow to simulate the cache coherency protocols at
different scale. The classic mode emulates the cache-coherency messages using a
constant-cost unsafe function. The Ruby mode and its Garnet variant allows a
more precise simulation of the on-chip network.
It is noteworthy that the main limit to reach an accurate simulation, the main limit
is the simulation-time.

2.1.5 Conclusion

The outrageous simulation time of modern hardware platform makes it impossible
to use a simulator within the optimization methodology introduced in section 1.3.
Indeed, the amount of data required by our method can not be simulated within
less than months for very simple peace of codes that would run in few seconds on
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(a) (b)

Figure 2.2: Roofline Model for (a) AMD Opteron X2 and (b) Opteron X2 vs.
Opteron X4 (extract from [112]).

the physical platform.
Meanwhile, our initial experiments with Gem5 show that lowering the simulation-
model accuracy is not an acceptable workaround. Even if we only slightly go up
within the speed-accuracy curve in Figure 2.1, the performance results become un-
exploitable. Indeed, the performance function looses its dependency from most
considered hardware parameters, while the physical execution shows a clear depen-
dency to the same parameters. Loosing such functional dependencies is crippling
for our analytical approach.
Finally, following the same experimentation, we concluded that using a trace-based
version of Gem5 does not solve our simulation-time issue. Indeed, even though
this simulation mode may reduce the number of instructions simulated, the corre-
sponding timing model requires a high number of instructions in order to reach an
accurate-enough estimation of the execution time.

2.2 Hardware and Software Performance Modeling: The
Roofline model

The emergence of multi-core hardware architectures has significantly increased the
difficulty to assess the performance of software and kernels. A simple and yet ac-
curate approximation of the performance of these architectures is thus mandatory
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to help software developers evaluate their programs and decide which optimization
strategy to implement.

2.2.1 Hardware Boundaries (Roof)

The Roofline model [112] is an intuitive visual performance model used to asses
a hardware/kernel couple. It allows, as a first approximation, to bound the com-
putation performance (expressed in terms of floating-point) of a given multi-core
processor according to its memory-bandwidth performance. An instance of this
model for two AMD processors is presented in Figure 2.2. The main concept that
the Roofline model lays on is the operational intensity : operation per byte of DRAM
traffic. This allows the model to relate to a highly-constraining resource: the off-chip
memory bandwidth. As shown in Figure 2.2b, the Roofline model indicates for a
given kernel (defined by its operational intensity) whether the potential performance
bottleneck is the computations or the memory accesses. This upper bound of the
considered hardware architecture is built using:

• The hardware peak floating-point (delivered by the manufacturer), which gives
the compute-bound section (constant) of the model.

• The hardware peak memory-bandwidth (delivered by the manufacturer or
through micro-benchmarks) and the operational intensity (specific to a kernel
or a program). These two measures give the memory-bound section (linearly
increasing) of the model.

2.2.2 Fitting the Model to the Memory/Computational Optimiza-
tions (Ceiling)

In order to model more accurately the performance of a kernel running on the
considered hardware, the Roofline model allows to enhance the estimation accuracy
by reducing the previously defined boundary. This reduction is processed according
to the optimizations implemented by the software: each optimization is mapped
to the threshold curve that it potentially allows to surpass. The model allows to
distinguish between two types of optimizations. The first type is the memory-linked
optimizations instantiated in Figure 2.3a. Its impact on the performance is assessed
by evaluating the reduction brought by the considered optimization on the memory
transfers (hence the repercussion on the operational intensity). The second type of
improvement is the compute optimizations instantiated in Figure 2.3b. Its impact
is assessed through the evaluation of the gain in terms of computed operations in
Flops. The objective of this model refinement is to rank the potential optimizations
based on the corresponding gain. It also aims at determining the ones that would
have no impact.
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(a) (b)

(c)

Figure 2.3: Refining the Roofline model depending on the used (a) memory opti-
mization and (b) compute optimization. Data corresponding to an AMD Opteron
X2 and (c) Opteron X2 processor (extract from [112]).
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2.2.3 Interest of the Roofline Model

The main interest of the Roofline model is its user-friendliness. The developer may
simply generate a performance approximation of his software and host hardware;
this brings a precious help to identify the software optimizations that worth being
implemented. The Roofline model also allows a relatively accurate evaluation of
the impact of memory on the considered performance. The model considers the
exchanges between the DRAM and the caches to measure the memory impact.
Indeed, the model considers the exchanges between the DRAM and the caches as a
measure of the memory impact. Such an access is most often longer than an access
between the processor and the caches (excluding DMA processors). Thus, it is more
likely to represent a bottleneck resource.

2.2.4 Conclusion: Limitation of the Roofline Model for our Ap-
proach

In the Roofline model, the upper-bound linked to each memory optimization (ceil-
ing) is said to have no impact on the performance of a computation optimization.
Indeed, memory optimizations might very likely be done through extra computations
(trade-off between computation and memory). Consequently, these optimizations
might compete with the payload computations. Hence, the reduction in the peak
floating-point performance.
However, the impact of the considered memory optimizations is reflected on the
increase of the computations required to reach the peak floating-point performance
(steady-state). This increase might be observed through different variants in the
definition of the operational intensity [112, 44, 79].
Similarly, even though the Roofline model is a very handy tool for guiding program-
mer optimization, it is harder to integrated to an automated software optimizer.
The main reason is that the model shows no impact of memory optimizations on
the operation intensity of the kernel.

2.3 Performance Measurement

Optimizing an application for a given hardware platform has been increasingly dif-
ficult through the last decades. The challenge of such a task comes mainly from
the increasing complexity of modern microarchitectures, the diversity of workloads
and the huge amount of data produced by performance tools. Meanwhile, the con-
stantly growing distance between compute and memory-access time creates a new
yet acknowledged challenge for hardware performance counters [13]: The differ-
ent attributes (such as the frequency, access time and operation rate) of these two
hardware parts lay at different orders of magnitude. This difference makes it dif-
ficult to evaluate within the same hardware parts (PMU, performance registers or
performance monitoring software tools) the impact of memory or computation on
performance.
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In this section, we give an insight about the challenges and solutions proposed to
accurately measure performance within a HPC ecosystem. The objective of the
presented tools and methods is to identify and evaluate the impact of performance
bottleneck. For the sake of clarity, we use the terminology and example used by
the Intel processor and performance tools. However, similar principles are used by
other hardware platforms with potentially a different terminology.

2.3.1 Hardware Performance Counters

Performance monitoring is a predominant issue among hardware designer. In
modern hardware platforms, different devices are shipped and used for software-
performance measurement. Initially, these hardware-performance counters were
designed for other purposes than software monitoring (e.g. tension, frequency or
derived physical quantities) [76]. Consequently, different accuracy and correctness
issues have to be considered when using these hardware counters for software-
performance measurement.

Nowadays, hardware performance monitoring has become intrinsically linked
to the hosted software. It refers to any hardware mechanism that enables (not
necessarily by design) insight into how software performs on a microprocessor.
This definition includes features as simple as timer-based interrupts, but also a
broad range of things like event counters, last branch buffers, instruction-based
samples, and many more [76]. For most hardware manufacturers, the performance
monitoring devices are gathered within the PMU. This hardware block is usually
made of different special registers called performance registers. An example of
such a register is represented in Figure 2.4. At a given time, a single register may
be in charge of storing different physical quantities. The sampling, multiplexing
and ordering of these registers is usually managed by user libraries (subsection 2.3.2).

Figure 2.4: Layout of the IA32-PERFEVTSEL MSR (extract from [23]).

The main principle used for hardware performance-performance monitoring is
the event. It defines the physical quantity that is measured. In the Intel hierarchy,
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each event is encoded within the two first logical gaps of MSR (see bits zero to fifteen
in Figure 2.4). These events are divided within five categories, namely (i) program
characterization, (ii) memory accesses, (iii) pipeline stalls, (iv) branch prediction,
and (v) resource utilization. When the event detector of a PMU receives a given
event, the MSR that has initially been mapped to the considered event is updated
depending on the type of event, the MSR configuration and the type of performance
measurement. The first type of performance measurement is known as counting
performance measurement. It consists of measuring the total number of events that
arises in a given time slot. The second type is known as event-based sampling. It
consists of triggering an interruption (overflow) to the processor whenever a config-
ured number of the considered event has been triggered. Then the interruption is
handled by instructing the PMU to save the status flags of the used MSR in order
to be latter reported to the user.

(i). Program characterization events allow to monitor low-level instructions
independently from the processor’s implementation or the Instruction Set
Architecture (ISA). This gathers all the metrics that are only relative to the
software layers (from the operating system up to the end-user program) such
as the number of load, store, branch of floating point instructions.

(ii). Memory accesses events are probably the most relevant to detect perfor-
mance bottlenecks in the context of the memory wall. A use-case of such
events is the enumerating of hit/misses relative to the different data, instruc-
tion and TLB caches.

(iii). Pipeline stalls indicate how filled is the instruction pipeline of the processor.
Even though such an information would be very useful to determine the
operational intensity of a kernel, it is hardly usable in the context of multicore
or a manycore processors. The pipeline-filling rate observed through this
pipeline-stall events gathers instructions belonging to all the processes sharing
the same pipeline (hence the same CPU). Thus, the information regarding a
given process is drowned by the instructions of the concurrent processors.

(iv). Branch prediction events allow to monitor predictive-branching instruc-
tions generated by the compiler, the prefetcher or the hardware branch pre-
dictor.

(v). Resource utilization encompasses all the events triggered when the pro-
cessor access some specific ressource (e.g floating point accelerator, data,
instruction or TLB caches).

The performance counters have proven to be very useful in hardware and
software co-development. They have allowed for instance to fix FDIV, a major
performance bug on the Intel Pentium III Pro [84]. However, the design of MSRs
and more generally of PMUs is also known for its different and complex performance
bugs.
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First, overflows are a very recurrent and hard-to-spot issue for PMU registers.
Indeed, the number of bits reserved to store a given physical quantity within an
MSR is fixed. Given that the encoding method used is also fixed, an overflow on a
performance register may not be treated3. Meanwhile, given that the register keeps
only minimal information regarding the user-process that is tracked, an overflow
is only stored on a register until the next trigger of the same event. Once the
new event is triggered, the performance register does not show that the stored
information is not relevant anymore.

Second, the accuracy of a performance measurement based on a PMU register
may significantly and inexorably suffer from the MSR design choice. The number
of MSRs is usually much lower than the number of handled performance-events
(roughly ten physical registers for about two hundred events). Similarly, for the
same hardware limitations, different events may be measured by the same digital
logic (such as the number of misses for different caches within the same CPU
core). The implemented solution for these hardware issues is time multiplexing (for
both registers and digital logic). The events are measured in small and disjointed
periods. The total measurement is then deduced through polynomial interpolation.
Given that the sampling period is constant and not calibrated to the measured
event, important variations may happen out of the sampling duration. In this case,
the interpolated functions would significantly vary from the real one making the
end-user result unreliable.

Finally, other accuracy issues may downgrade performance-evaluation accuracy
in a parallel and multi/manycore environment. Indeed, we represent in Figure 2.5
the C/C++ code used to access a CPU-cycle count on two state-of-the-art proces-
sors implementing an event-based PMU. We notice from these code snippets that
accessing performance register requires multiple low-level instructions. Even though
the time stamp of these instructions may be soften by the instruction-pipeline of
the processor, accessing the register is not an atomic operation. Consequently, in
the context of concurrent processes, register-time multiplexing or simply important
workload, this operation requires additional synchronization. In addition to the well
known time constraint [81], such a synchronization may significantly influence the
the execution-time of the overall code that is assessed.

2.3.2 Performance Measurement Libraries

In subsection 2.3.1 we showed the limitations of the hardware blocks designed for
performance monitoring. In order to lighten these accuracy and time-overhead
issues, it is mandatory to have an adequate software to manage the PMU. In this
section, we present different software and libraries designed to access at user-level
the different features of the hardware PMUs. The objective is to explain how and

3An example of such a treatment would be to change the encoding method and potentially
reduce the data accuracy.
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1 void __inline
2 getCycleCount ( uint64_t ∗ r e s )
3 {
4 uint64_t hi , l o ;
5 __asm v o l a t i l e ( " rd t s c " :
6 "=a" ( l o ) ,
7 "=d" ( h i ) ) ;
8 /∗ Requires the assembly i n s t r :
9 db $0F ; db $31 ;

10 mov [ TimeStamp . Lo ] , eax
11 mov [ TimeStamp . Hi ] , edx
12 ∗/
13

14

15

16 ∗ r e s = ( uint64_t ) l o ;
17 ∗ r e s |=(( uint64_t ) h i )<<32;
18

19 }

Listing (2.1) Code for Intel x86_64 processor

1 void __inline
2 getCycleCount ( uint64_t ∗ r e s )
3 {
4 unsigned i n t t , t0 , t1 ;
5

6 do
7 {
8 __asm v o l a t i l e ( "mftbu %0" :
9 "=r " ( t0 ) ) ;

10 __asm v o l a t i l e ( "mftb %0" :
11 "=r " ( t ) ) ;
12 __asm v o l a t i l e ( "mftbu %0" :
13 "=r " ( t1 ) ) ;
14 } whi l e ( t0 != t1 ) ;
15

16 ∗ r e s = ( unsigned long long ) t0 ;
17 ∗ r e s = r e s << 32 ;
18 ∗ r e s |= t ;
19 }

Listing (2.2) Code for IBM Power8 processor

Figure 2.5: Code snippet to access an MSR looking for a CPU cycle counts on an
(2.1) Intel and (2.2) IBM processor

under which adaptations can we ship these software-tracking and monitoring tools
within our software optimization approach.

The first issue of hardware PMU that we consider is the time-overhead intro-
duced to the assessed code. In this context, a first approach is to extract as much
work as possible from the performance measurement routines. This computational
and memory tasks are then executed by a distant process, or by the same pro-
cess out of (before or after) the performance-critical code section. This approach is
largely considered by the Scalasca project [36]. This project encompasses different
software tool-sets providing a highly scalable performance tracking and analyzing
frameworks for HPC platforms. One of the main interests of the Scalasca tool-set
is the interesting distribution of the different tasks of performance tracking among
a process execution. This task sharing is managed thanks to the different Scalasca
tools.

(i). Score-P [50] a compiler framework based on the gcc [37] compiler tool
chain. This framework allows, thanks to a user-level API to compile the con-
sidered source code while injecting dedicated performance tracking instruc-
tions. These tracking instructions are optimized by minimizing the number
of instructions run during the performance-critical section. Only raw data
are extracted from the PMU. Building the observed performance function
from these data is performed once the user-code has been entirely executed.
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Thanks to this approach, Score-P is able to increase the sampling rate of the
hardware events with a minimal time-overhead impact.

(ii). Cube [92] a software allowing to analyze the performance results of a given
software during or after its execution. In its main functioning mode, Cube
takes as input a static file generated after the execution of a code (tracked)
compiled using Score-P. Then, Cube allows to do a performance analysis of the
code that has been executed (see Figure 2.6). Different metrics are considered
such as the execution time and access to hardware/software resources. This
allows to find the different performance bottlenecks and their locations in
code.

Figure 2.6: Scalasca analysis report explorer presentation of Sweep3D execution per-
formance with 294,912 MPI processes on the IBM Blue Gene/P platform. Interface
of the Cube tool (extract from [114]).

The Scalasca tools are highly optimized for massively parallel executions (e.g.
multithread, multi-process, Message Passing Interface (MPI)). This optimization
is mainly achieved by the concept of resource multiplexing. This allows through
the virtualization of the physical MSR to sample different registers atomically (at
user-level scale). However, this kind of optimization is barely efficient on a single
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thread application. Indeed, the cost of MSR virtualization is only negligible when
it is split among the execution-time of a high number of threads/processes.
Consequently, in the context of our optimization process, tools using the Scalasca
approach may not be used for software optimization. The time overhead within
our mono-threaded target applications is significant. Moreover, to the best of
our knowledge, no evaluation nor modeling has been proposed to bound this
overhead. However, given the user-friendliness of the framework, we still use it as
an improvement-validation tool.

If we consider the Linux ecosystem, the problem is not to find a performance
monitoring tool. The problem is rather to find, among all the possibilities, the
adequate tool for the considered application and workload. In [32], the author splits
the Linux profiling tools within three categories represented by their respective
flagship implementation: (i)OProfile [21], (ii)perfctr [82], and (iii)VTune [87]. Each
one of these tools is designed while targeting a specific design or metric.

(i). OProfile is made for system-wide (from Operating System (OS) to the end-
user code).

(ii). perfctr targets sytem monitoring at the scale of a thread.

(iii). VTune focuses on Intel architectures with a fined-grain evaluation of the
driver impact on performance (using kernel privileges).

One of the main attempts in literature to conciliate all these concerns is proposed
by perfmon2 [32]. This library is conceived as a generic performance monitoring
framework for different hardware platforms. This goal is mainly achieved by allowing
the user to easily build interfaces with hardware specific tools (such as VTune for
Intel platforms).

2.3.3 Conclusion: Choosing a Hardware-Software Performance
Tracker

Our experimental experiences along with literature [57, 9, 54, 76] have thought us
the potential problem of using an inadequate performance tracker. For instance,
in Figure 2.7, we measure the execution time of two different implementations of
a basic matrix multiplication algorithm. Both algorithms are performed on an
Intel Xeon x86_64 architecture with three levels of data caches implementing the
LRU cache-replacement policy. We use two different performance trackers: the
Score-P performance tracker (see Figure 2.7a) and our custom performance tracker
(see Figure 2.7b). For each input-matrix size, we evaluate each code with each
tracker ten times. In Figure 2.7 we first notice that the experimental evaluation of
each implementation is different from one tracker to another. Moreover, we may
notice that the bias applied to each implementation is not constant nor regular.
Using the Score-P tracker the memAlign implementation successively faster then
slower than transposedM0 implementation while using the custom tracker the
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(a) Score-P performance tracker
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(b) Custom performance tracker

Figure 2.7: Performance benchmark of two implementations of a basic matrix multi-
plication algorithm [57]. The performance tracker used is (a) Score-P versus (b) our
custom MSR-based code (inspired from Listing 2.1). The dots are the average value
of ten consecutive measurements. The shaded curves denote the distance between
the minimal and maximal values of the ten measurement. The experiments follow
the experimental setup described in section 1.6.

memAlign implementation is always similar or slower. Finally, each tracker seems
more compatible with one implementation but not the other. Indeed, the score-P
produces significant outliers (shaded curves) on the memAlign implementation
while the custom tracker produces outliers on the transposedM0 implementation4.

Our approach to deal with the limitations of the state-of-the-art performance
trackers is to adapt the used tracker to both host hardware and target application.
We perform the adaptation to the different hardware platforms using our custom
extension of the perfmon2 library. The basic implementation of this open source
library allows an easy and native adaptation to different hardware platforms (assum-
ing the presence of a UNIX kernel OS). In our implementation, we have extended this
library by allowing to choose among different tracking algorithm for a given hard-
ware (such as the one partially presented in Figure 2.5). However, it is noteworthy
that all the hardware platforms that we consider on this thesis have no software sup-
port for the perfmon2 library (such the Kalray Coolidge MPPA processor). In this
context, our extension allows to easily replace the OS and system-related functions
of the library with our calls to the API of the PMU of the considered hardware.
Meanwhile, for a given target kernel, we choose the performance-tracking algorithm
to use based on the approach of Heiko Koziolek [54]. In this work, the author pro-
pose a classification of software kernels based on different parameters (e.g. memory
footprint, pattern to access memory, family of PMU). In our implementation of the
perfmon2 library, we use these parameters to select the proper tracking algorithm
within the classification of Heiko Koziolek. Most of the parameters used for our

4 We assume that this points are outliers given that our experimental protocol on the considered
hardware/software environment. All the data caches are flushed between successive execution and
the processor frequency is kept constant. Thus, the execution time should not significantly vary
for different executions of the same code with the same input.
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selection (such as the memory footprint and the pattern followed to access memory)
are automatically found by running a first execution of the target code at compile
time.

2.4 Conclusion: Adopted method and implementation
choices

In this thesis, we have adopted a scientific methodology based on our exploration of
the state-of-the-art simulation tools, hardware-performance models and performance
tracker utilities.

• We consider the three families of hardware platforms presented in section 1.6.
These platforms allow to evaluate our contributions on an HPC, general-
purpose and embedded hardware. We have also chosen to only consider UNIX
operating systems.

• The main optimization phase that we perform is executed at compile time.
This might necessitate to run the targeted application. Given the important
time limitations of modern hardware simulators (at compile time), we have
restricted our compile-time evaluations to native execution. Even though this
limitation forbids us to have more exhaustive exploration (such as large fre-
quency scaling, or page-replacement policy) we consider it as a fairly interest-
ing trade-off.

• All the performance evaluations are withdrawn from our extension of the Perf-
mon2 library. We design it as a unified API with different back-ends for each
targeted hardware.

• Our optimization process results in generating a transformed source code. This
code contains static transformation. It also contains dynamic user-level trans-
formations (such as the choice of data-layout implementation) to be executed
based on run-time parameters. Our optimization process also generates a pre-
execution binary. This binary sets the hardware and OS parameters using the
UNIX LD_PRELOAD environment variable and the cpufreq-set API of the
stdlib standard library.
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In this chapter, we first sketch in section 3.1 the state of the art of software
optimization approaches. We use this bird-eye-view of the domain in order to mo-
tivate the need for a new approach. Then in section 3.2 we focus on the software
optimizations that adapt a given source code to the specificity and the strength
of the host hardware. The objective beeing to highlight the hardware and soft-
ware portability issue of this particular approach. Finally, we present in section 3.3
what we consider to be a major leverage-point for software-optimization based on
hardware-adaptation: the data-layout implementation.

3.1 Overview in Software Optimization

In computer science, a particular thought has for long been given to improve the
performance of the produced code. Consequently, today’s literature gathers huge
amount of divers, advanced researches and attempts for software optimization. The
most accomplished solutions range from just-in-time compilation [70] to polyhedral
compilation [11] and source-to-source transformation [24]. In Table 3.1, we represent
some of these solutions based on their flagship implementation. We note from this
table that the ecosystem of software optimization is highly detached from hardware
consideration. No particular attention is given to the automatic adaptation to the
specificity of the host hardware. Given that modern hardware are often specifically
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designed for performance purpose, we consider this lack of hardware-awareness in
software optimization as a major limitation.

Algorithm Source
Code

Compilation
(static)

Compilation
(dynamic)

Post
mortem

FFTW [35] X X X

JIT [70] X X X

Magma [104] X X

deGoal [18] X X X

LGen [102] X X X

BOAST [24] X X X

Scalasca [36] X X X

Perfmon2 [32] X X X

MAQAO [27] X X

Polyhedral
compila-
tion [11]

X X

Table 3.1: Classification of existing code-optimization solution according to their
leverage-point on source code

3.2 Source-Code Adaptation to Hardware

3.2.1 Methodologies for Code Adaptation

Code adaptation (or specialization) to a specific host hardware is a branch of soft-
ware optimization. In consists in detecting the properties of a given hardware that
suit the requirements of a given source code in terms of computation, memory or
synchronization. We classify the existing approaches for code adaptation within
two categories. First category is by rewriting the code using the specific API and
framework of the host hardware. This probably the most explored and accomplished
one [110, 6, 20, 104, 29, 34, 68] and is often implemented for most important and
performance critical algorithms.

This consists in optimizing a given source code to a specific processor, memory
and accelerators. It usually involve modification in the initial algorithm in order
to reorganize the data (e.g. SIMD processors, GPU accelerators adapting the data
to the number and size of data caches). Moreover, it is often achieved manually
through libraries that maximize the use of fast and low-overhead instructions.
One of the most known examples are the MKL [110] 1 for the Intel architectures.
Other libraries have been proposed for different architectures: MAGMA [104] for
hybrid CPUs-Nvidia GPUs, PLASMA [29] for multinode (OpenMP) IBM Power8

1Based on the LAPACK [6] and ScaLAPACK [20] projects.
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architectures and Julia-TensorFlow [34] (with the XLA compiler) for Google TPUs.
All these researches have shown very interesting performance-improvement results
for different algorithms and implementations. However, the main issue is their
lack of portability to new hardware and software platforms. Given that such codes
have been manually optimized2 for a specific hardware/software platform, it may
hardly be ported to any different one. Similarly, any modification of the algorithm
or the implementation requires an important time and engineering effort to reach
sufficient optimization level.

The second family of techniques for code-adaptation to the hardware is based on
a performance-evaluation of the host hardware. This approach has been mainly stud-
ied for energy efficiency purposes [51, 25, 42]. However, it has been barely-explored
for execution-time improvement. This lack of consideration maybe deduced for a
survey of a crucial tool for such an approach: the hardware-performance models.
Most existing models, are hardly exploitable in automatic software optimization.
The example of the Roofline model [112] (section 2.2) is representative of this case.
Indeed, this model consists in a couple of constant threshold values that the perfor-
mance of a kernel may not exceed. Thus, it cannot be used to spot the hardware
parameters (such as the cache sizes, associativity or replacement policy) that have
the most influence on the kernel’s performance.

3.2.2 The LGen Code Generator for Basic Linear Algebra Com-
putation

The computation (linear algebra) of matrices is a compulsory service for numerous
scientific problems. Hence the need to have an efficient framework for such
operations. In this context, optimizing a matrices-computation comes to reducing
the number of idle/redundant computations (scalar). It also comes to adapt the
corresponding code to the host hardware (ex: group the scalar computation for
SIMD architectures or use matrix-related ISA instructions).

To the best of our knowledge, the LGen [102] code generator is the closest
work to the optimization approach that we propose. It consists of a compiler
that generates an optimized C/C++ code corresponding to an input Basic Linear
Algebra Computation (BLAC). For a given BLAC, the LGen first splits the input
matrices into blocks (tiles) with respect to a fixed granularity. The resultant
Linear Language (LL) expression is transformed into a Σ−LL expression (made of
sums and products of tiles) using the custom-defined gather and scatter matrix-
operators. Thanks to the associative, commutative and distributive properties of
these operators, the resultant expression is simplified in terms of number of accesses
and indexes on the matrices. A C code is then generated by mapping each element3

2This optimization also encompasses the corresponding compiler in the case of the XLA for
Google TPUs

3Sum, BLAC, gather and scatter operators
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of the Σ−LL expression to a predefined code pattern.
This whole process is repeated and the performances of each generated code are
assessed to pick the best variant.

On one hand, the interest of the generated C code is its efficiency on dense
matrices (matrices with few zero-blocks and no particular geometrical property).
This efficiency-goal targets both small and large scale matrices. Moreover, the code
generated by LGen might be adapted to vectorized hardware architectures (by
adapting the granularity of the initially-generated tiles to the hardware-vector size).
On the other hand, LGen might lead to process redundant/idle computations when
the matrix has spares regions (zero-blocks) or has some symmetry/geometrical
properties.

In order to tackle the previous limitations, [102] proposes to first identify a
set of structured input-matrices to be split into regions according to their specific
properties (e.g. zero-block, or symmetric block). The previously-defined Σ−LL
expression is then generated using Σ−CLooG. This loop generator transforms
the input BLAC (once tilled) into a set of CLooG statements. Each statement
specifies the indexes (domain) used to scan a region of a matrix and the order
(schedule) to use these indexes. Σ−CLooG associates each statement to a specific
Σ−LL expression. Finally, thanks to set-theory operations, this statements are
processed to generate a single statement (or a linear combination of statements).
The associated Σ−LL expression represents an optimized C code of the input
BLAC. It might might then be generated using LGen.

The generated Σ−LL expression (and the corresponding C code) has now
no redundant computations4. Furthermore, unlike other structured-matrices
library (such as MKL or MAGMA), the LGen may easily handle new user-defined
structured matrices.

One of the main limitation of the LGen compiler is its lack of scalability to
new implementations of a given structured5 matrix. Indeed, LGen allows to define
new structured matrices. Our claim through this thesis, is that the implementation
of a given structured matrix must be adapted to the pattern followed to access
it. However unlike for the code generated with our proposed compiler (chapter 4),
the implementation of LGen structured matrices is unique regardless of the pattern
followed to access them. It is also unchanged with regards to the host hardware
memory.
Meanwhile, the method proposed in LGen focuses on computation restructuring.
Such a code-modification is known to have a deep impact on cache behavior and
eventually on performance [57]. No thought is given to the impact of the proposed

4Computation on zero-blocks or multiple computations on symmetrical blocks
5Such as symmetric, triangular or o-spared-filled [98]
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reconstructions on the data layout.

3.3 Data-Layout-Based Software Optimization

In the software-optimization approach that we propose, one of the most relevant pa-
rameters for performance are the one related to the implementation of the given algo-
rithm. In literature, the impact of code-implementation refactoring on performance
has for long been proven. This has lead to numerous computational paradigms
ranging from computational parallelism up to instruction re-ordering and software-
level branch prediction. This has also led to the numerous optimizations options
embedded within most general purpose compilers. In this section, we focus on gen-
erating optimized implementation of the data structure instantiated by the different
variables of the considered code. The objective is to be able to integrate a tool
that allows to automatically propose an optimized data-layout implementation for
a given input kernel. The found implementation needs also to fit the underlaying
hardware constraints.

3.3.1 Background: Data-Cache-Miss and Performance

When a memory-access triggers a cache miss, the time for accessing the data my be
multiplied by an order of magnitude up to 103 times on modern L3 caches [61]. Such
an access may thus be even slower than a direct access to the main memory. The
number of cache-misses relative to a code’s execution is fundamentally conditioned
by the memory-access pattern of the application. In Figure 3.1, we show that the
access to an address a within the heap of a process leads to populate a line of the
cache with the data located at addresses ranging from a − a[L] to a + L − (a[L] +

1). This memory access is relatively costly as it triggers an access to the slow
main memory. However, this cost may be hidden if an important amount of close
consecutive accesses are realized in the range of addresses between a − a[L] and
a + L − (a[L] + 1). Maximizing the usage of this prefetched memory is the corner
stone of most data-layout-based software optimizations.

Load/store a

a - a[L] a+L-(a[L]+1)a

CPU

Data cache
  (L: line size)

Main memory
0 232

Figure 3.1: Cache-fetch behavior while accessing a data at an address a. a[L]

represents the rest of the euclidean division of a by L.

At the scale of a memory accesses, the impact of cache misses may be soften by
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some hardware components. The memory prefetcher may for instance detect the
memory-access pattern that is currently realized and fetch the data to cache before
they are required by the processor. This is mainly used when the memory-access
pattern includes data that are not in the range of addresses fetched to cache at
each access. However, when the whole pattern does not fit the previously-described
cache-behavior, the prefetcher’s pipeline may be full with pending requests. The
significant time to process these requests makes the prefetcher unable to reduce the
impact of cache misses on the performance. Then, the number of LLC data-cache-
misses becomes predominant with regards to the overall code-performance.
In this thesis, we identify such kernels where a high correlation may be observed
between the data-cache misses and the execution time. In this case, we use the
total number of data-cache-misses as a guidance and validation function for the
optimizations that we propose. This function relatively easy to model and estimate
compared to the execution time.

3.3.2 Data Layout: Definition and terminology

Define int *matrix;
Allocate matrix = malloc (N*N * sizeof(int));
Set matrix[x + N*y] = value;
Get int v = matrix[x + N*y];
Free free(matrix);

Table 3.2: Example of C/C++ routines defining a uni-dimensional implementation
of a 2D matrix of size N*N

In this thesis, we refer to data layout (or data structure) a family of potential
geometrical organizations of the user data within virtual-memory space. We refer to
data-layout implementation (or data-structure implementation) the set of routines
used to define, allocate, access (read, write and compute one or a set of elements) and
free the data-layout. In Table 3.2, we present an example of such an implementation
for a 2D matrix. It is noteworthy that an optimized data-layout implementation may
bring significant time and energy improvement. Indeed, an adequate data-locality
(with regards to caches, prefetchers or any memory accelerator) is a well known
solution for many performance bottlenecks [57, 68, 5, 113, 71, 38, 107]. However, as
shown in Figure 3.2, the research space of these implementations is relatively large.
Moreover, the performance of each one of the corresponding code may dramatically
vary from one implementation to an other [57]. Consequently, finding an adequate
implementation for a given kernel within the constraints of the host hardware is a
complex yet essential task.
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Figure 3.2: Set of O(N !) potential implementations for a two dimensional matrix.
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Figure 3.3: Example of four memory-access patterns to a matrix data structure.

3.3.3 Dynamic-Memory Access Pattern

The memory-access pattern is the smallest set of consecutive accesses (read and
write) to a given data structure that can be repeated in order to represent the total
accesses to the data structure. In Figure 3.3, we have represented four examples
of memory-access pattern to a matrix data-layout. Many works have evaluated
the link between a memory-access pattern and the performance regarding modern
hardware-memory hierarchies (at least one level of fast memory between CPU
and main memory) [57, 72, 19, 45, 78, 95]. To the best of our knowledge, no
approach has been proposed to automatically link, for different data structures, a
memory-access pattern with an optimal implementation of the data structure. This
limitation represents one of the basic contributions of our approach.

The memory-access detection is intensively used by hardware prefetchers. The
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algorithms used are usually kept confidential to the manufacturers. Nevertheless,
one of the most intensively studied prefetching methods for general-purpose
processors is the "one block lookahead" [99]. This method is based on the principle
of the stream buffer, a frame of memory-addresses accessed consecutively and
assumed to slide with a fixed time or access rate. Thus, this pattern-detection
method works at the scale of few addresses. It may hardly be used to build an
access scheme for a whole data structure.

Cache-prefetchers maybe significantly affected by dynamic-allocator behavior.
Unlike other CPU prefetchers, cache prefetchers deal with virtual addresses. Most
general-purpose allocators (such as ptmalloc, the default Linux GLIBC imple-
mentation [39]) introduce non-payload addresses at random locations in between
blocks of the same data structure for dynamic-memory-management purpose (to
reduce internal fragmentation caused by the variable basic-block size). This ad-
ditional addresses introduce randomness in the pattern, making its detection harder.

To the best of our knowledge, the closest method for memory-pattern detection
similar to our work is proposed in [115]. This method is used to build the memory
signature (subsection 4.2.2) of an application in order to detect malware-injection.
Unlike the signatures that our method generates, the ones generated in [115] are not
fully reproducible. Indeed, the considered framework uses non-transformed virtual
addresses. It is thus subject to the variability of virtual addresses for two similar
executions of the same kernel. This signature-variability prevents the method in
[115] to be used for software optimization.

3.3.4 The Data-Layout Decision Problem

The compiler-driven software optimization has for long consisted in determining an
optimal set and order of instructions within an input source code [60, 73, 35, 102, 11].
Since the hardware-memory hierarchies are getting complex, different studies rather
focused on optimizing the data-placement across different levels of memory (e.g.
RAM, caches or scratchpad memories) and at different scales (e.g. scalar variables,
memory blocks or pages). Our approach for software optimization is thus related to
solving this DLD. As most solutions for the DLD at compiler scale, we assume that
all possible loop-transformations and instructions-shuffling are already performed.

Two families of strategy have been proposed to tackle the DLD. Based on
a previously observed memory-footprint, the authors in [97, 63, 72] propose
to statically determine an optimized memory-placement at compile-time. Li et
al. [63] introduce a general purpose compiler approach which adapts the array
allocation problem to graph coloring for register-allocation. The main issue with
static approaches arises when the set of input data, used during the optimization
(compilation), leads to a different behavior than the one at run-time. The optimal
memory placement may then be computed based on irrelevant observations. In



3.3. Data-Layout-Based Software Optimization 41

order to tackle such an over-fitting issue, Shoushtari et al. [78] propose to divide
the considered memory (scratchpad) in clusters. The problem of populating
each cluster is then reformulate as an integer-linear programming problem. Such
greedy strategy scales well with programmable memories (such as scratchpads).
Indeed, these types of memories require the programmer to decide which data
to fetch in which memory. However, the overhead of forcing the selected data in
non-programmable fast memories (such as caches) might significantly downgrade
the performance. It might also create a performance-pitfall due to potential
concurrences with data prefetchers.
Meanwhile, the authors in [46, 19] propose a dynamic approach. It consists in
finding, at run-time, the proper placement of memory with regard to the previous
memory-accesses of the current execution. Kandemir et al. [46] considers dynamic
loop-transformations to inject data-fetch instructions for scratchpad memories.
Cho et all. [19] propose a heuristic function to decide which data-copy to process
after each fixed number of memory accesses.

A major limitation of the existing solutions for solving the DLD is their lack of
portability to new hardware or software platforms. Indeed, one part of these solu-
tions focus explicitly on a specific access type (the approaches presented in [97, 22]
consider only regular accesses to memory while those presented in [63, 108] consider
irregular accesses). An other part focus explicitly on a specific hardware-memory
hierarchy (the approach presented in [19] consider only scratchpad memories while
those presented in [47, 45, 72] consider only multiprocessor system on chips with
some specific direct memory access). To the best of our knowledge, our approach
is the first one to port data-structure implementations, optimized for a specific
hardware or kernel, on a broad spectrum of applications and memory hierarchies.

A second limitation of the solutions described above is their granularity. All
of these approaches allow to optimize the placement of data that are restricted to
simple scalar variables or contiguous blocks of memory. Unlike these approaches,
our work considers the whole data layout (potentially multi-dimensional blocks of
memory). This avoids prioritizing memory blocks that are performance-critical
during the optimization process but not at run-time.

An optimized solution to the DLD is likely to downgrade the efficiency of the op-
timization found using instruction-reordering (e.g. -01, -02 and -03 options of the gcc
compiler). Indeed, each one of the instruction and data-layout-based families of opti-
mization alters the ground assertion of the other family. The instruction-reordering
optimizations assume a fixed data-layout organization while an optimization based
on data-layout reordering assumes a fixed instruction ordering. Given the algorith-
mic complexity of both families of solutions, introducing this dependency within
any one of this solution would be time consuming. In this context, we believe that
our analytical approach is an interesting alternative to deal with this complexity.
It allows to simultaneously perform a research-space exploration while considering
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both instruction and data-layout-based optimizations.

3.4 Scratchpad memories

3.4.1 Memory Overview

CPU 0

Scratchpad

I/D cache

DMA

D @

Data bus

On-chip

CPU 1 ...

CPU N ...

...

DRAM

D @

External bus

Figure 3.4: Hardware view of a memory hierarchy including an on-chip scratchpad
memory.

A scratchpad memory is a fast memory designed as a programmable alternative
or complement to the caches [10]. It is often considered similar to the L1 data
cache in that it is usually the closest one (on-chip) to the Arithmetic Logic Unit
(ALU) after the processor registers. It is also exclusively accessed through explicit
instructions to move data to and from main memory. As shown in Figure 3.4,
these data-transfers are often achieved using DMA systems. In this paper, we do
not consider scratchpad registers which are successfully addressed by programmers
using regular register-placement algorithms.

The scratchpad memories are mostly dedicated to storing temporary results
that would otherwise be set in the process stack with a higher latency. Scratch-
pad are usually preferred to caches in real-time applications due to their higher
time-predictability. However, with the increasing size of scratchpads6, larger and
more complex data layouts may be hosted within this memory. Consequently, many

6From few kilo bytes in the early twenties up to few mega bytes nowadays.
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studies have focused on solving the DLD problem, as well as its different sub prob-
lems, on scratchpad memories. Similarly, the different access-granularities proposed
by modern DMAs (e.g. rectangular or strided) has allowed considering scratch-
pad memories for a wider spectrum of applications with a higher memory space
requirement.

3.4.2 High-Performance-Computing-Code Optimization

As they are fed by the DMA, the scratchpad memories may be used in place
of a cache for mirroring the state of data or instruction sections in slower main
memory. Such an application of scratchpad memories is particularly interesting for
super-calculators [93, 121, 96, 80]. In [93], the authors propose a dynamic approach
based on a compile-time observation of static variables in order to determine the
bits that are absolutely necessary for a given computation. The selected bits are
then the only one to be transfered through the costly memory hierarchy. The others
being stored within the more energy-efficient scratchpad memory. In addition to its
usage for energy-reduction, scratchpads are also used by super-calculators for pure
time-efficiency purpose. In [121], the authors propose a custom coherency protocol
to use MP-SoC scratchpads as a fast and low-latency message-passing interface
between cores. This memory is designed to reduce the number of memory-request
misses for Single Instruction Multiple Data programming. It is also shown to scale
well with the number of concurrent cores. A similar approach is developed by [96]
and integrated to the OpenMP language.

To the best of our knowledge, the closest scratchpad-memory-placement ap-
proach to our work is developed by Peña et al. [80]. Unlike other approaches, the
data-oriented profiler developed in this work identifies the followed memory-access
pattern in order to decide the corresponding optimized memory in a heterogeneous
set (including but not limited to scratchpads). Such a solution allows to find an
interesting data-placement within the secondary memory. However, no taught is
given to the resulting extra requests on the main memory nor how this may change
the previously optimized data-locality in the main memory. Indeed, despite the us-
age of a secondary memory (such as a scratchpad) the main memory is still widely
solicited. Thus, we believe that an ideal data-layout is the one that optimizes data
placement within both main and secondary memories.

3.4.3 Embedded-Code Optimization

Scratchpad memories may be useful for real-time applications, where predictable
timing is hindered by cache behavior. Despite a relatively lower time and energy
efficiency, regular caches continue to be preferred to scratchpad memories in
software industry [94]. This is mainly due to the relatively complex programability
of scratchpads. To tackle this issue, different studies have focused on automatizing
the placement and management of data-layout within scratchpads. In [94],
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the authors split the corresponding solutions in static, automatic and dynamic
solutions. The static approaches [19, 7] consider storing static variables and other
data and instructions section of a given process that are fully known at compile
time. Even though static solutions may be run with a polynomial complexity and
low overhead (at execution time), they may create a significant contention on the
memories (both caches and scratchpads). Such contention has been tackled in [109]
at the expense of complexity. Similarly, automatic approaches [100, 117, 48] extend
the previous solutions to the whole process address-space. A particular attention
is given in [48] to the function frames for recursive or deeply-interleaved function
calls (known to create an important memory-footprint). Meanwhile, dynamic
approaches [28, 80, 43, 103, 4] focus on storing and managing the heap section of a
process within scratchpad.

In the context of the hierarchy defined in [94], our approach is the only hybrid
one. Indeed, our approach is the only one that defines the data-layout structure
at compile time and inject the code to re-scale the structure at run-time. Thus,
given that the main part of the work is done at compile time, the overhead of
our optimization is consequently reduced compared to other run-time approaches.
However, unlike other works, we make the assumption that the considered code keeps
the same execution flow regardless of the input values (conditional branches do not
depend on the input of the program). This soft assumption allows us to identify
at compile time the memory-access pattern followed at run-time. In addition, our
work does not consider storing instructions in scratchpad. This allows us to perform
a locality-based analysis regardless of the instruction dependencies. Consequently,
our analysis is performed in a polynomial time while the one proposed by the state
of the art are exponential (in the worst case).
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In a computation kernel, the total idle-time where the processor is stalled,
waiting for the end of a memory-fetch, is usually significant compared to the total
execution time. We thus believe that reducing the memory-fetch time by improving
data and cache locality may bring an important gain. However, finding an efficient
data-layout placement among all the possible implementations is known to be an
NP-complete problem [55]. Moreover, a given solution to this problem is only
efficient on a specific set of hardware memories. Porting such solutions across
several hardware platforms requires important time and engineering effort.

In this chapter, we introduce HARDSI a custom patented source-to-source trans-
formation method for software optimization by adaptation to the specificity of the
host hardware. Our compiler is designed as the part of our optimization approach
(see section 1.3) in charge of exploring and choosing an optimized data-layout im-
plementation for each variable of a given kernel running on a given host hardware.
We also show how HARDSI might be used as a lightweight and standalone code
optimizer and code adapter to different families of hardware memory-hierarchies.
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4.1 HARDSI Overview

4.1.1 Objectives

HARDSI stands for Hardware-Adapted Refactoring of Data Structure Implemen-
tation. We design it as a custom method allowing to detect, for each supported
data-structure, an optimized implementation with regards to

(i). The access to the data-structure on each variable of the code.

(ii). The family of hardware memory hosting the data-structure.

Thanks to the HARDSI framework, we are able to adapt the implementation of a
given data structure to the functional requirements of each host hardware. We are
also able to easily, efficiently and without any human intervention to port a source
code to a new family of hardware memory. Finally, our HARDSI method is designed
to take advantage of data-placement optimizations realized within a given software
context and port it to a new and unrelated input code.

4.1.2 The HARDSI DSL

In order to ease the usage of the HARDSI method, we introduce a custom HARDSI
DSL. An instance of this DSL is shown in Figure 4.1. The proposed language allows
the programmer to write a C/C++ code while sparing him the performance-critical
choice of an adequate implementation for the data-structures implementation. If we
consider the example in Listing 4.1, the code includes three variables referring to
three different matrices. Using our DSL, the programmer may replace all the code
routines referring to each matrix variable with our custom primitive-keywords.

• MATRIX_DEFINE: declares a matrix with given name m and type. For
instance, for a matrix storing integers, our compiler may choose to replace this
keyword with "int *m" for a unidimensional implementation, "int **m" for a
two dimensional implementation, "int ***m" or "int ****m" for a tilled two
dimensional implementation (with tiles of dimension one or two).

• MATRIX_ALLOCATE: dynamically allocates all the required memory
space.

• MATRIX_GET: reads value at the given position of the matrix.

• MATRIX_SET: sets the given input value to the given position of the
matrix.

• MATRIX_ADD: adds the given input value to the one at the given position
of the matrix.

• MATRIX_FREE: frees all the dynamic memory of the matrix.
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More generally, for each considered data structure d, we define the same set of
primitives D_DEFINE, D_ALLOCATE, D_GET, D_SET and D_FREE. The
developed source-to-source compiler replaces these primitives for each variable with
the specific code corresponding to an optimized implementation of the data structure
d. The choice of this implementation is processed at compile time through the
HARDSI method.

1 void matrixMult ( ) {
2 MATRIX_DEFINE( int , a ) ;
3 MATRIX_DEFINE( int , b ) ;
4 MATRIX_DEFINE( int , r e s ) ;
5

6

7 i n t i , j , k , a0 , b0 ;
8 MATRIX_ALLOCATE( int , N0 ,N1 , a ) ;
9

10

11 MATRIX_ALLOCATE( int , N2 ,N0 , b) ;
12

13

14 MATRIX_ALLOCATE( int , N2 ,N1 , r e s ) ;
15

16

17 f o r ( j =0; j<N1 ; j++)
18 f o r ( i =0; i<N2 ; i++)
19 f o r ( k=0; k<N0 ; k++)
20 {
21 a0=MATRIX_GET(a , k , j ) ;
22 b0=MATRIX_GET(b , i , k ) ;
23 MATRIX_ADD( res , i , j , a0∗b0 ) ;
24 }
25 MATRIX_FREE(a ,N0 ,N1 , i n t ) ;
26

27

28 MATRIX_FREE(b ,N2 ,N0 , i n t ) ;
29

30

31 MATRIX_FREE( res ,N2 ,N1 , i n t ) ;
32

33

34 }

Listing (4.1) Input code implemented using
our custom HARDSI DSL.

1 void matrixMult ( ) {
2 i n t ∗∗a ;
3 i n t ∗∗b ;
4 i n t ∗∗ r e s ;
5 i n t s =s i z e o f ( i n t ) ;
6 i n t sp=s i z e o f ( i n t ∗) ;
7 i n t i , j , k , a0 , b0 ;
8 a = ( i n t ∗∗) mal loc (N1∗ sp ) ;
9 f o r ( i =0; i<N1 ; i++)

10 a [ i ]=( i n t ∗) mal loc (N0∗ s ) ;
11 b = ( i n t ∗∗) mal loc (N2∗ sp ) ;
12 f o r ( i =0; i<N2 ; i++)
13 b [ i ]=( i n t ∗) mal loc (N0∗ s ) ;
14 r e s = ( i n t ∗∗) mal loc (N1∗ sp ) ;
15 f o r ( i =0; i<N1 ; i++)
16 r e s [ i ]=( i n t ∗) mal loc (N2∗ s )
17 f o r ( j =0; j<N1 ; j++)
18 f o r ( i =0; i<N2 ; i++)
19 f o r ( k=0; k<N0 ; k++)
20 {
21 a0=a [ j ] [ k ] ;
22 b0=b [ i ] [ k ] ;
23 r e s [ j ] [ i ]+=a0∗b0 ;
24 }
25 f o r ( i =0; i<N0 ; i++)
26 f r e e ( a [ i ] ) ;
27 f r e e ( a ) ;
28 f o r ( i =0; i<N2 ; i++)
29 f r e e (b [ i ] ) ;
30 f r e e (b) ;
31 f o r ( i =0; i<N2 ; i++)
32 f r e e ( r e s [ i ] ) ;
33 f r e e ( r e s ) ;
34 }

Listing (4.2) Corresponding C/C++ code
generated by our compiler for a 3-level cache.

Figure 4.1: Matrix multiplication test case.
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4.2 Global Optimization Process

In this section, we introduce the proposed optimization approach designed to
automatically converge toward an optimized data-layout implementation for each
variable in a given code. This implementation-selection is realized without altering
the input algorithm (i.e., control flow). The objective of the proposed HARDSI
code is to select, for the considered data structures, an optimized implementation
that fits the followed access pattern. Our claim through this thesis is that the
specific memory-pattern followed to access a given data-layout is an identifier of
the optimized implementation to use. In this context, we do not allow changing
the memory-access pattern even though the adaptation of the algorithm could
bring an additional gain (combining memory and instruction-related optimizations).

In Figure 4.2, we summarize the steps of our method. We also illustrate each
step of the method by referring to a case-study of a matrix multiplication (see input
and HARDSI-generated C/C++ code in Figure 4.1). The objective of the proposed
optimization process is to find the optimized implementation of each one of the three
matrices given the respective memory-pattern followed to access them.
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(b)

(d)

(c)

Figure 4.2: Steps of the proposed optimization-process.
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4.2.1 Memory-Access Tracking

The first step of the proposed method is to observe the memory-addresses followed to
access each considered variable (Figure 4.2.a). We propose to run the targeted exe-
cution of the input kernel. In Table 4.1, we present an example of an execution-trace
using the considered matrix multiplication. The memory-accesses of this execution
are tracked by injecting a custom logging-function for each memory-access (read or
write) to the considered variable. The resulting trace, instantiated in Table 4.1,
consists, for each variable v, in a set of identifiers Tv[i] of the matrix cells that are
accessed. These cells are sorted according to their access rank i. For the sake of
clarity, in this thesis, the cells of the matrix are identified in Tv[i] using their spacial
indexes (x, y). However, different identifiers may be used such as the virtual or
the physical addresses. For this first step, executing the considered code using the
targeted hardware memory is only mandatory if we do not use matrix indexes.

Data
structure

Variable
Name

memory
@

Access
Type

Size x y

MATRIX res - ALLOCATE 4x4 - -
MATRIX a - ALLOCATE 4x4 - -
MATRIX b - ALLOCATE 4x4 - -
...
MATRIX a 0x2e010 READ 4x4 0 0
MATRIX b 0x2e0c0 READ 4x4 0 0
MATRIX a 0x2e014 READ 4x4 1 0
MATRIX b 0x2e0c4 READ 4x4 0 1
MATRIX a 0x2e018 READ 4x4 2 0
MATRIX b 0x2e0c8 READ 4x4 0 2
MATRIX a 0x2e01c READ 4x4 3 0
MATRIX b 0x2e0cc READ 4x4 0 3
MATRIX res 0x2e170 WRITE 4x4 0 0
...

Table 4.1: Example of an execution-trace (partial) of three matrix-variables a, b
and res for a (4 ∗ 4) matrix multiplication test case.

4.2.2 Generating a Memory-Signature

Once we traced the memory-accesses, the second step is to filter this trace through
a transformation function f (Figure 4.2.b). The objective of the transformation
is to remove the randomness introduced by the kernel’s execution. Indeed, most
general-purpose OSs store data-structures at different virtual addresses from one
execution to an other. In this context, a transformation function must be designed
to make the result of this second step (T fv [i]) totally predictable and reproducible
from one run to an other (assuming that the same kernel’s control-flow is observed).
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As an example, for the x86 Intel Xeon processor with three levels of data-caches,
the corresponding transformation used to generate all the optimized code is a δ

function
T δv [i] = Tv[i]− Tv[i− 1],∀i ∈ [1, Naccess]

where Naccess is the number of access to the considered variable. This function
is a lightweight computation that encompasses the performance-requirements
of the memory hierarchy and its LRU cache-replacement policy. It makes the
absolute-distance between consecutively-accessed addresses the prominent pa-
rameter for classifying data-structures and their relative access-pattern. This
parameter is known to be highly correlated with the data-reuse in the considered
data-caches [57].
Adapting our method to different hardware-memories corresponds to finding the
adequate transformation function. In chapter 5, we introduce an example of such
a function for scratchpad memories. However, automatically generating such a
function for each hardware platform is one of the perspectives of this study, and is
out of the scope of this thesis.

Finally, we build the memory-signature S of each variable v by generating the
occurrence-histogram of each set Tv (Figure 4.3.a). We normalize each histogram
by dividing by the total number of occurrences. This makes the generated signa-
tures independent from the kernel’s execution-inputs, and representing the absolute
memory-behavior of the kernel.

4.2.3 Access-Pattern Data-Base

A survey of data-structure literature [57] shows the abundance of optimized
implementations for most standard data structures. These solutions are often
designed by programmers to address a specific issue within a given hardware and
software context. But the problem is how to extend this knowledge in order to
identify the adequate state-of-the-art implementation of a data structure to use
within any given code.

The memory signature s, generated in subsection 4.2.2, for a given variable v
of a given data structure d, identifies the specific memory access-pattern to v in
the considered kernel (Figure 4.3.a). In this section, we assume the existence of a
relational data base1 for each data structure d (such as an N-dimensional matrix
or a hash-map). This relation, schemed in the relation (a) of Figure 4.4, links each
known pattern of access to d with the best known implementation of d. Such an
implementation depends also on the underlying hardware-memory hierarchy; this
dependence is identified by the used transformation-function and stored in the
relation (b) of Figure 4.4.

1The usage of a data base indicates that the stored values are static and computed once. Any
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Figure 4.3: (a) Generated memory signatures of the 4x4 matrices a, b and res in
the matrix-multiplication test-case; (b) Respective closest signatures in the HARDSI
data base.

The relation linking a memory-signature S with the corresponding optimal im-
plementation is a key step for the proposed method (Figure 4.2.c). Thus, we propose
a data base built as a survey of the most efficient existing implementations of d on
the considered memory hierarchies [11, 46, 62, 116]. Each memory hierarchy is
identified by the corresponding transformation function. The data base relative to
each data-layout d is integrated within the HARDSI framework. In this context,
updating the most efficient state-of-the-art implementation regarding a given access
pattern may be realized by simply updating an entry of the data-base.

other map-based data layout may be used as.
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(a) DATA_STRUCTURE_d (Transformation, Signature, Optimal implem )

(b) TRANSFORMATION (HW memory, Cache policy, Transformation )

Figure 4.4: Relational data base of knowledge: Stores the required relations to re-
trieve the best known implementation of a given data structure knowing its memory
signature. The key attributes (line identifiers) are underlined.

4.2.4 Software Optimization

The generated memory signature S for the variable v of a given data structure d,
identifies the specific memory-pattern followed to access v in the considered kernel.
Thanks to the relational data base in Figure 4.4, an access pattern (signature s) to
a data structure d is an identifier of an optimal implementation of d (along with
the used transformation function). Thus, finding an optimal implementation of a
variable is equivalent to finding the closest signature to s in the data base relative
to d (as shown in Figure 4.3). Then, the final step of our HARDSI method consists
in injecting the optimal implementation of each variable in the source code of the
application kernel (Figure 4.2.d).

In order to compare the generated signature S with each signature S′ in the data
base, we use the Pearson coefficient [40] as a correlation function. This coefficient
is defined as

ρ(S, S′) =
cov(S, S′)

σSσS′
=

1
N

∑N−1
i=0 (S[i]− ES)(S′[i]− ES′)

σSσS′

where ES , σS andN are the expectation, standard deviation and number of elements
(including some elements with a null-occurrence) of the histogram. The choice of
this particular correlation-function is motivated by our three functional needs:

1. Assume that the first signature s is fixed while the second s′ is variable. The
Pearson coefficient converges linearly to zero (no correlation between s and s′)
when expanding or translating the histogram s′ (regarding an horizontal axis).
This linear convergence is faster than the one of other correlation coefficients
such as the Kendall tau rank or the Spearman’s rank correlation coefficient.
This convergence is due to the inverse-dependence of the correlation with the
standard deviation σs′ of s′. From a computational point of view, this reflects
the fact that translating a bin of a histogram is equivalent to changing the
set of addresses represented. Hence significantly changing the represented
memory-access pattern.

2. The Pearson coefficient is relatively tolerant to expansions of s′ following the
vertical axis [1]. This property is a real asset for our method. Indeed, mod-
ifying the number of occurrences of a histogram’s bar without shifting it is
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equivalent to keeping the same memory-access pattern while amplifying or di-
minishing a part of it. Thus, the resulting pattern must be relatively similar
to the original one.

3. As a consequence of the two previous properties, the Pearson coefficient is
relatively robust to external noise on s′. In our context, a noise is a set of
additional memory access that are legitimate for our code but which do not
belong to the pattern represented by s.

It is noteworthy that depending on the considered architecture2, the Pearson
coefficient may potentially be adapted. This is for instance the the case in chapter 5
where the memory signatures are 3D histograms. It may even be necessary to replace
this coefficient with a more adapted one. However, in the context of the architectures
considered in this thesis, such a case has never been matched. Moreover, even if a
different correlation coefficient is used, the foundations (Figure 4.2) of the HARDSI
method remain unchanged.

4.3 HARDSI Framework Implementation

We implemented the proposed method within a framework that permits to automat-
ically generate the optimized source code of a given kernel. In fact, the user of our
framework is required first, to implement the considered kernel in the HARDSI DSL,
as shown in the example Listing 4.1. Then, our source-to-source compiler generates
the corresponding optimized C/C++ code, as shown in Listing 4.2. The proposed
compiler first computes the memory signatures of each considered variable as shown
in Figure 4.3.a. These signatures are then compared to the data base signatures
in order to select the most correlated one. The chosen implementation for a given
variable is then the code associated with this closest signature. A narrow subset of
the codes associated to each histogram in our data base is presented in Listing 4.3.
For the sake of space, we do not show the code relative to the tilled, stencil nor
line-permuted (respectively column-permuted) versions of these matrices. A more
exhaustive instance of these routines may be found in [56].

4.3.1 Accelerating the HARDSI Process

The optimization process presented in section 4.2 is designed to work with
different hardware memories. Each one of these memories having its own set of
data-layout implementations. However, if we consider the most popular hard-
ware memories (caches, GPUs, TPUs), the HARDSI optimized solution may be
found at the expense of a large research-space exploration (up to O(N !) potential
implementation). The complexity of our algorithm may then skyrocket up to O(N !).

2Hence, depending on the used transformation function.
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1 //Matrix per l i n e s : each array c e l l i s a po in t e r to a l i n e
2 #de f i n e LM_DEFINE( type , name) type ∗∗name
3 #de f i n e LM_ALLOCATE( type , X, Y, name) ALLOC2D( type , Y, X, name)
4 #de f i n e LM_GET(m, x , y ) m[ y ] [ x ]
5 #de f i n e LM_SET(m, x , y , va l ) m[ y ] [ x ] = va l
6 #de f i n e LM_FREE(m, X, Y, type ) FREE_2D(m, X, Y, type )
7

8 //Matrix per columns : each array c e l l i s a po in t e r to a column
9 #de f i n e CM_DEFINE( type , name) type ∗∗name

10 #de f i n e CM_ALLOCATE( type , X, Y, name) ALLOC2D( type , X, Y, name)
11 #de f i n e CM_GET(m, x , y ) m[ x ] [ y ]
12 #de f i n e CM_SET(m, x , y , va l ) m[ x ] [ y ] = va l
13 #de f i n e CM_FREE(m, X, Y, type ) FREE_2D(m, X, Y, type )
14

15 //Matrix per d i agona l s : each array c e l l i s a po in t e r to a d iagona l
16 #de f i n e DM_DEFINE( type , name) type ∗∗name
17 #de f i n e DM_ALLOCATE( type , X, Y, name) ALLOC2D( type ,1+X+Y,1+X+Y, name)
18 #de f i n e DM_GET(m, x , y ) m[DIAG_X(x , y ) ] [DIAG_Y(x , y ) ]
19 #de f i n e DM_SET(m, x , y , va l ) m[DIAG_X(x , y ) ] [DIAG_Y(x , y ) ]= va l
20 #de f i n e DM_FREE(m, X, Y, type ) FREE_2D(m, 1+X+Y, 1+X+Y, type )
21 #de f i n e DIAG_X(x , y ) ( x==y) ? x : \
22 (x>y) ? y : \
23 x
24 #de f i n e DIAG_Y(x , y ) ( x==y) ? 0 : \
25 (x>y) ? 1+x+x−y−y : \
26 y+y−x−x
27

28 // A l l o ca t i on rou t ine
29 #de f i n e ALLOC2D( type , X, Y, name) \
30 name = ( type ∗∗) mal loc (X ∗ s i z e o f ( type ∗) ) ; \
31 f o r ( i n t i =0; i <( i n t )X; i++){ \
32 name [ i ] = ( type ∗) mal loc (Y∗ s i z e o f ( type ) ) ; \
33 }
34

35 //Free rou t in e
36 #de f i n e FREE_2D(name , D0 , D1 , type ) \
37 f o r ( i n t i =0; i<D0 ; i++){ \
38 f r e e (name [ i ] ) ; \
39 } \
40 f r e e (name) ;

Listing 4.3: Code representing three different implementation of the 2D matrix data
structure (line, column and diagonal-major) with the corresponding primitives for
definition, allocation, access and free.
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Using the statistical properties of the generated memory signatures, we are able
to reduce the HARDSI complexity to roughly O(Nlog(N)). Indeed, the data-base
relation that gathers all the known implementation (for a given data-layout and
within a given hardware architecture) may be seen as a tree-based organization (see
Figure 3.2). Optimizing a given data-layout instance is equivalent to exploring all
the possible implementations that are presented in Figure 3.2. The algorithm that
performs this exploration does not build the tree of potential implementation. It
rather explores the potential architectures (line, column, diagonal, 1D, strided) of
a matrix. Then the algorithm recursively performs the same exploration on the
potential sub-blocks (tiles) of each architecture. However, at each node of this tree-
like exploration, a decision may be taken about whether to explore the sub tree
or not. This decision is taken with regards to an initial analyze of the memory
signature of the considered variable. For instance, in Figure 4.5 we have represented
four arbitrarily-picked memory-access patterns along with their signatures. If we
consider the Figures 4.5a and 4.5b we may notice that a line-based 3 pattern has a
signature with:

(i). A prominent deltaX bar at the value 1.

(ii). A prominent deltaY bar at the value 0

This corresponds to the fact that a matrix cell is most often accessed immediately
after its left neighbor. Consequently, an input signature that would not respect such
a proportion may not correspond to a line-based pattern. The same principles are
applied for each one of the four families of patterns and for each one of their stride
versions.

4.3.2 Conventional Three Cache-Levels Architectures

From a programmer perspective, the hardware cache-hierarchy and replacement
policy can hardly be changed. Similarly, the access pattern to a given data
structure is imposed by the algorithm. The objective of our approach is to find the
data-structure’s implementation that fits best with both the access pattern and the
hardware memory. Consequently, in the context of conventional three-cache-levels
architectures, for each address a which is accessed and fetched to the cache, the
surrounding addresses4 should be the one that are the most likely to be referenced
again before their eviction.

In order to reach the data-locality required by the conventional memory archi-
tectures, we believe that our HARDSI method is a powerful tool. By detecting
the memory-access pattern to a given data structure d, our method may find an
implementation of d that gathers user-data accordingly. Indeed, let us consider

3This encompasses the line-major patterns as well as the stencil and the tilled patterns where
each block is accessed in a line major way.

4Which are fetched in cache along with a.
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Figure 4.5: Memory-access signatures of a (10 ∗ 10) matrix accessed following four
different patterns. The tilled patterns ((a) and (b)) have tiles of size (2 ∗ 2).

the case of the three matrices presented in Listing 4.1. In this example, the first
operand matrix a and the result matrix res are both explored following a line-major
way while the second operand matrix b is explored following a column major way.
These two different types of explorations have been spotted by our method. There-
fore, our compiler injects a line-major-based implementation for a and res and a
column-major-based implementation for b.

4.3.3 Pluri-architectural Software Optimization

Software-guided memory-access detection is particularly useful for large and com-
plex code sets (high number of nested loops with conditional branches decided at
run-time). In this case detecting the followed access pattern to a given data-layout
is highly complicated for a human programmer. Hence, the need to our software-
guided tool. Moreover our statistical approach suits well with conditional branches
that may change the control-flow. These branches may change the memory-access
pattern depending on the user inputs. By running our HARDSI method with
learning input that cover these different control-flows, our compiler may propose
two families of solutions. The first one is to find a data-layout implementation
that performs well with all the considered cases (even though a better solution
could be found exclusively for a particular case). The second one is to spot the
conditional branch(es) responsible of this issue. The programmer may then decide
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1 void jpegCompression ( rgbColor ∗∗ imageMatrix )
2 {
3 rgb_to_YVbCr ( imageMatrix ) ;
4 preDCT ( imageMatrix ) ;
5 DCT ( imageMatrix ) ;
6 quant i za t i on ( imageMatrix ) ;
7 encoding ( imageMatrix ) ;
8 }

2

1

(a) Optimized implementa-
tion for the rgb_to_YVbCr
section.

2

1

2

2

1 1

(b) Optimized implementa-
tion for the preDCT section.

(c) Optimized implemen-
tation for the DCT sec-
tion.

Figure 4.6: Optimized matrix implementation relative to each part of a JPEG-
compression algorithm

to split his code accordingly. By using the HARDSI compiler on this new code,
an optimized solution is proposed for each created section. Each one of these
optimized data-layout implementations may then be easily loaded at run-time by
the generated code.

Our method makes it simple to handle a well-known performance critical issue:
the case where different patterns are followed to access the same data layout (at
different locations of the same code). An example of such a use-case is schemed in
Figure 4.6 for the JPEG-compression algorithm [62]. In this code, a same matrix
(storing the picture to compress) is successively accessed following different patterns
represented in Figure 4.6a, Figure 4.6b and Figure 4.6c. Therefore, each one of these
code section is associated with a unique optimized implementation. Moreover, the
optimized implementation of one section downgrades significantly the performance
of each other section. Thanks to our approach, we are able to first detect the
antagonism between these different sections. Then, using our custom performance
models [57] we are able to compute the performance gain brought by each optimized
implementation of each section. We are also able to evaluate the cost of refactoring
the matrix from one implementation to an other. By balancing these two costs, we
may decide at the beginning of each section whether to refactor the matrix or not.
This decision is taken at run-time as it depends on the size of the matrix (which is
not known at compile time).
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4.4 Contemplated Future Implementations

4.4.1 Multicore architecture

In the HPC ecosystem, multicore architectures represent an undeniable asset
for performance. However, such architectures leave the programmer with an
important problem to deal with: the memory placement between concurrent
cores. The complexity of this problem increases significantly with the increase of
hardware-memory levels (L1, L2, L3 data caches, buffers and scratchpads [10]) due
to their different access times and paradigms. Despite the relatively high cost of
accessing remote-memory data, these transfers are mandatory for an efficient use
of massively multicore platforms.

The HARDSI method can be used to optimize the data placement on a single
node’s memory. The cost of transferring data may thus be (partially) hidden by the
gain brought by an optimized placement of data during its access.
Meanwhile, the HARDSI method includes the different times used to access each
considered memory as a parameter of its optimization process (by adapting the
transformation function). Thus, it can be used to generate an optimized memory-
placement among the different CPU-local memories, which reduces the total amount
of transferred data.

4.4.2 In-memory Computing

Figure 4.7: Overview of a tiled version of C-SRAM memory architecture (extract
from [53]).

The computational SRAM (C-SRAM) [53] (or in-memory computing SRAM) is
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an example of heterogeneous memories considered in embedded (low power) HPC.
It permits to perform computations directly in or next to the SRAM memory array.
This allows to soften the impact of the memory wall by reducing the number of
costly data-transfers between the CPU and the main memory.
An inherent problem to the C-SRAM memory is the inner-placement of data.
Indeed, as shown in Figure 4.7, the C-SRAM is usually organized in tiles (or
blocks) of memory where each tile is split in rows (or vectors). An ALU is
shipped within each tile in order to perform computations between two input-rows
of the same tile. The computations being processed between aligned-data (in
columns) that belong to the same memory tile. In order to take advantage of
the C-SRAM, it is mandatory to properly place the data to be computed in
order to minimize the number of costly transfers (i) between the main and the
C-SRAM memory (ii) within the C-SRAM to align the input data of a computation.

We believe that the HARDSI method can be used to efficiently balance data
between the C-SRAM and the main memory. Indeed, this method is able to
detect the memory pattern followed by the considered source code. Using the
statistical approach presented in section 4.2, the HARDSI method is able to link
the considered data-layout with a known implementation that would (i) fit the
inputs and order of the computations (ii) maximize the usage of the C-SRAM
memory-space. Such a usage of the HARDSI method would be realized in the
case where different efficient implementations would exist for C-SRAM usage.
Otherwise, we show in chapter 5 how to dynamically generate such data-layout
implementations for memories similar to C-SRAM.

In order to identify a C-SRAM-adapted code, the HARDSI method needs to
integrate a new constraint during its optimization process. The data fetched to C-
SRAM must be aligned according to the computations that will be realized. Unlike
the example introduced in subsection 4.2.4, the objective must not be the reduction
of data-cache misses.The new objective must be the reduction of the number of
memory alignments required before running a computation. In this context the
transformation function that we propose is

T csv [i] = abs f c(i)− f c(i− 1)

where:

• f c(i) = @0
i [L]−@1

i [L]

• (@0
i ,@

1
i ) are the addresses of the operands in the ith computation.

• L is the size of a line of the C-SRAM and @0
i [L] is the rest of the euclidean

division of @0
i over L.

This function allows to model (in the generated signature) the number of shifts in the
C-SRAM memory (realized to align the data in order to perform each computation).
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Such a parameter is, to the best of our knowledge, the most influent on the execution-
time of the kernel.

4.4.3 Detecting Malicious-Code Injection

The HARDSI transformation function may be adapted to reach other matters than
hardware fitting. If we consider three-cache-level architecture, the used delta func-
tion ensures that the resulting memory-signature (histogram) is fully-reproducible
across successive code-executions. Indeed, this function considers the distance be-
tween the accessed addresses. Unlike raw virtual addresses, the distance between
virtual addresses remains constant at each execution (assuming the same control-
flow is followed by the code). Consequently, detecting a variation of a variable’s
signature between two executions is equivalent to detecting a non legitimate set of
memory accesses5. Thus, it is possible to use the HARDSI method for malicious and
faulty code detection. Our method may for instance replace the learning function
introduced by Zhixing Xu et al. for machine-learning-based malware detection [115].
Unlike the function proposed by Zhixing Xu et al., the generated memory-signatures
do not depend on the dimensions of the considered data structure.

5Memory access that has not been intended by the programmer.
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In this thesis, we refer to programmable memory any memory that requires
to be explicitly addressed by the programmer (or any user-level software). This
encompasses scratchpads, GPUs, TPUs and C-SRAM memories. An instance of
non-programmable memories are the data-caches as they are implicitly populated
by the prefetcher, the DMA or other hardware and system-level mechanisms.

In this chapter, we present our method to extend the HARDSI framework in
order to support programmable memories. This extension is entirely presented
through the instance of scratchpad memories. We present in section 5.1 the dif-
ferent steps and requirements of this extension of the HARDSI method. Then,
in section 5.2, we introduce DDLGS, a custom and patented method designed to
generate dynamic and pattern-adapted data-layout implementations for scratchpad
usage. The implementations generated by this method embed the load and store
functions to be used at each access to an address of the considered structure. These
implementations also allow to compute an optimized granularity for each transfer
from (respectively to) the scratchpad memory.
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5.1 Extending the HARDSI Framework to Scratchpad
Memories

5.1.1 Background and Process Overview

From a programmer perspective, a scratchpad memory is a high-speed and low-
latency extension of the main memory. As shown in Figure 5.1, accessing a scratch-
pad may be done through the DMA. A simple way to process such an access at
high-level code (e.g. C/C++) is by considering the scratchpad as a pre-allocated
dynamic-memory chunk (virtual address-space). This chunk may then be used to
store data for rapid retrieval using regular pointers or static variables. Even though
accessing a scratchpad memory through the DMA bypasses data-caches, such an
access has a non-uniform memory-latency. In order to efficiently run a code on
scratchpad memory, the objective is to optimize the usage of the relatively narrow
scratchpad space. The objective is also to find the ideal granularity for each transfer.

Virtual address 0

Virtual address 264

1- Copy processing data to
scratchpad: ~ 10-100 cycles

2- Process data in
scratchpad: ~ 1 cycle

3- Copy processed data
from scratchpad: ~ 100
cycles.

Figure 5.1: Application view of a software-process (UNIX) hosted on memory-
hierarchy including a scratchpad memory.

Extending the HARDSI framework to support scratchpad (or any pro-
grammable) memory requires to define an adequate transformation function. As
explained in subsection 4.2.2, this mathematical operator allows to construct the
unique memory-signature that is followed to accessed the considered data-layout
within an input code. This function needs to be adapted to the requirements of
the used memory. If we consider the instance of scratchpads, an optimized imple-
mentation is the one that maximizes the number of useful addresses1 stored within
scratchpad while minimizing the number of accesses and transfers from (respectively
to) the main memory. This needs to be done while prioritizing the addresses that are
the most likely to be reused within a close time and then benefit from a scratchpad
usage.

1Set of addresses that are relatively frequently accessed within a relatively short period of time.
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5.1.2 HARDSI Transformation-Function for Scratchpad Memories

The transformation function that we propose for a variable v on a platform with a
scratchpad memory is defined in Equation 5.1. This function associates the value
TSPMv [i] to the ith memory-access to the variable v (Tv[i]). We assume that when
the number of accesses to a given address Tv[i] is equal to one, then TSPMv [i] is equal
to zero2.

TSPMv [i] =
1

Occ(i)
∗Av(i)

=
1∑N−1

j=0 si(j)
∗
∑Occ(i)−1

j=0

∑N−1
k=0 Dirac(

∑N−1
l=0 si(l)− j)∑N−1

j=0 si(j)− 1

(5.1)

where:

• Occ(i) is the number of accesses to the address Tv[i] in Tv

• Av(i) is the average distance between two consecutive accesses to the address
Tv[i] in Tv

• N is the total number of accesses to the variable v (cardinal of the array Tv)

• si is the similitude function described in Figure 5.2a. si[j] = 1 if the ith

address accessed is the same as the jth access to the considered data layout.

∀i ∈ [0, N − 1], si :


[[0, N − 1]] →{0, 1}

j �

{
1 if Tv[i] = Tv[j]

0 otherwise

• Dirac is the discrete Dirac function:
Z →{0, 1}

j �

{
1 if j = 0

0 otherwise

The transformation function proposed in Equation 5.1 is designed to classify
the access-patterns to a data layout d following two properties. First, in order
to decide whether or not to store a given data (ith address α[i] accessed in d)
in scratchpad memory, we need to classify the addresses of d according to their
accesses-frequency (hence the first term 1

Occ(i)). Second, we assume that the size
of a scratchpad is smaller than the total size of manipulated data. Thus, in order
to maximize the amount of data that might benefit from the scratchpad, it is
primordial to evaluate the number of accesses to d between two consecutive accesses
to α[i]. A light-weight computation of this value is the average distance between
two consecutive accesses to the address α[i] (hence the second term Av(i)). Finally,

2This reflects the fact that it is not worthy to store in scratchpad memory an address that is
not reused. It also avoids division by zero in Equation 5.1
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(b) Transformation designed for a light-weight
computation of the average distance between
two consecutive accesses to the same address.

Figure 5.2: Notations used by the transformation function of the HARDSI method
for scratchpad usage.

we build our transformation function based on a greedy approach: The further
are two consecutive accesses to α[i], the more this address needs to be accessed in
order to benefit from storing it in the scratchpad (hence the multiplication of the
two previous terms).

The Occ and Av terms are built using the similitude arrays si instantiated in
Figure 5.2a. For the ith address of d that is accessed (Tv[i]), si[j] indicates whether
or not the address accessed at Tv[j] is the same as Tv[i]. Thus, the number Occ(i)
of accesses to the address Tv[i] is Occ(i) =

∑N−1
j=0 si(j). Meanwhile, to compute the

average distance between two consecutive accesses to an address of d, we use the
transformation of each similitude array si in Figure 5.2b.

5.1.3 Implementation and Multiple-Memories Issue

In order to adapt our HARDSI method to scratchpad memories, the process de-
scribed in chapter 4 is implemented using the transformation-function in Equa-
tion 5.1. The considered kernel needs to be run in order to observe the memory-
access pattern to each variable regardless of the target host-memory. However, when
we are dealing with secondary programmable memories 3, two main problems need to
be considered. First, the data transfers from and to the secondary memory generate
a ratio from one to roughly ten accesses per legitimate access in the main memory.
Even-though our method is shown to be resistant to noisy memory-accesses (sec-
tion 6.6), these data transfers may change the most relevant access-pattern that was
previously detected by our method (regardless to the used memory). Consequently,

3Such as scratchpad memories, GPUs, or C-SRAMs
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the optimized data layout implementation that was previously selected for the main
memory may not be ideal anymore for the part of d which remains in the main
memory.
Second, in order to optimize an input code on scratchpad using the HARDSI
method, we need to have at our disposal a set of data-layout that are specifically
optimized for each considered access-pattern. Moreover, these data layouts need to
be designed for scratchpad usage. However, as shown in section 3.4, the state of the
art in terms of matrix data-layout for scratchpad usage does not propose enough
implementations for all the patterns that we have identified. Moreover, we consider
that existing solutions do not use the full memory-space of modern (i.e. relatively
large) scratchpads. Consequently, we propose in the following section a custom
approach to overcome the issue of in-adapted or under-performing data-layouts im-
plementations.

5.2 DDLGS: Generating Matrix Data-Layout Dedicated
to Scratchpad

In this section, we describe DDLGS, a custom method proposed to dynamically
generate data-layout implementations for scratchpad usage. The different steps
of our method are illustrated in Figure 5.3. DDLGS stands for Dynamic Data-
Layout Generation for Scratchpad. It consists in generating, for a given matrix,
an optimized implementation, with regards to its specific access-pattern on both
scratchpad and main memory. In order to improve the data-layout efficiency, the
generated implementations are intended to dynamically (at run-time) adapt to the
size of the considered matrix. Unlike the state-of-the-art approaches for data-layout
implementation, we consider that modern scratchpads are large enough to host parts
of a data-layout (such as a matrix). There is no need anymore to limit scratchpad
usage to intermediate scalar variable or results.

5.2.1 Custom Generation Process

Let Hp,v
Matrix be the histogram corresponding to a given pattern p followed to access a

matrix data-layout within the considered source code. As stated in subsection 5.1.3,
porting a given source code to a platform with a secondary memory changes the pat-
tern observed in the main memory. However, we believe that defining an optimized
implementation I0pMatrix of a matrix while considering no scratchpad, is a manda-
tory step when optimizing a code for scratchpad usage. Indeed, this first step allows
to generate a matrix implementation with a high level of data-locality while only
considering the followed access-pattern p. The implementation I0pMatrix is gener-
ated as described in section 4.24. As shown in Figure 5.3d, the optimized matrix
implementation IpMatrix that we generate keeps the same structure as I0pMatrix. Our

4Using the HARDSI method and based on the transformation function used for regular cache
memories.
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Figure 5.3: Illustration of the four steps of the generation of a scratchpad-dedicated
data-layout (with a fixed dimension).

approach is similar to the principle of a data-cache with a dynamic line-size scal-
ing [41]. It consists in determining, for each newly-accessed address α[i] of I0pMatrix,
the number wα[i] of contiguous addresses that must be loaded along with α[i] when-
ever it is accessed while not present in scratchpad. This number wα[i], referred-to as
the weight of a matrix cell, is computed at compile time. As shown in Figure 5.3d,
this weight is shared by all the matrix cells on the same payload-array5. It is com-
puted as the barycenter of the weights of all the cells on the same payload-array.
For performance purpose, the number wα[i] of bytes that are transferred from and to
the scratchpad is a multiple of a constant size S. In order to speedup the transfers
from and to the scratchpad, we also ensure that the payload arrays are allocated
aligned with the value of S. In the context of this thesis, the value of S is arbitrarily
fixed. Finally, as shown in Figure 5.3d, each weight wα[i] is stored along with a
status byte and a set of load and store routines. The load and store routines are
used to specifically read and write the corresponding payload-array from and to the
main memory. An example algorithm that we design as a write routine is presented

5 All the implementations that we generate for a 2D matrix are multidimensional arrays with
a dimension potentially higher than two. The payload array is the one that contains the data
stored by the matrix (as opposed to the indirection array which contains pointers to a subset of
the considered data layout).



5.2. DDLGS: Generating Matrix Data-Layout Dedicated to Scratchpad69

in algorithm 1. Meanwhile, the status byte indicates the current state of the corre-
sponding payload array (e.g. dirty bit, address in main memory and parameters of
the load and store routines).

Algorithm 1: Write the value input at the cell (x, y) of an input matrix
potentially hosted on both scratchpad and main memory
(w, status) = readMetaData(matrix, x, y);

if (isDataBelongScratchpad(w, x, y)) then
@InScratchpad = getInScratchpad(status, x, y);
if (@InScratchpad 6= None) then

updateInScratchpad(@InScratchpad, value);
updateStatus(status, "inScratchpad", "dirty", x, y, 0);

else
(@MainMem, nbCell) = getDataToLoad(matrix, x, y, w);
writeInMainMem(@MainMem, x, y, value);
(statusEvicted, dataEvicted) = evictDataInScratchpad(w);
if (statusEvicted 6= None) then

updateStatus(statusEvicted, "notInScratchpad", dataEvicted);
transfertToScratchpad(@MainMem, nbCell);
updateStatus(status, "inScratchpad", "dirty", x, y, nbCell);

end
else

writeDataInMainMemory(matrix, x, y);
end

5.2.2 Determining the Weight of Each Matrix Cell

The weight attributed to each payload array of the generated data-layout is
probably the most critical parameter for performance [41]. In order to compute
it for each variable v accessed following a pattern p, we use the corresponding
histogram (memory-access signature). This histogram Hp,v

Matrix is computed using
the transformation function in Equation 5.1 and following the HARDSI method
as shown in Figure 5.3: We track the accessed matrix-cells (Figure 5.3a) and build
the signature as a histogram of the transformed row data (Figure 5.3b). Then,
as shown in Figure 5.3c, the bins (cells of the matrix) of Hp,v

Matrix are sorted from
the less likely cell to benefit from scratchpad (lowest value for TSPMv ) up to the
most likely one (highest value for TSPMv ). The bins with a zero value are not
considered as it corresponds to cells that are used at most once. Thus, it would be
counterproductive to load them to scratchpad memory.

As shown in Figure 5.3c, the weight of each matrix-cell is computed by clustering
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Figure 5.4: Interpolation used to extend the dimension of an optimized matrix
data-layout generated by the HARDSI method for scratchpad usage.

the values of the bins in the sorted histogram. The median value of each cluster is
mapped to a predefined weight-value scale. Thanks to this mapping, we attribute to
each cell within a given cluster the same weight as the median. The proposed scale is
defined as a linear progression. It starts at an arbitrarily-fixed threshold base-value
and increases following a stair with an arbitrarily fixed step-size. The maximum
value of the scale is empirically fixed to M

X + M
X [S] where M is the size in bytes of

the scratchpad memory and X is a strictly positive integer. This corresponds to the
fact that a transfer from or to the scratchpad may fetch at most one over X of the
size of the memory (for the cells of the matrix that are the most likely to be reused
in the considered code execution).
The used clustering method is the Agglomerative Mean-Shift Clustering (AMSC )
algorithm [119]. On the one hand, this algorithm is used as it does not require
to know the number of clusters beforehand (even though the maximum number of
potential clusters might be set). This allows not to bias the result by forcing it to
fit within an arbitrarily-fixed number of clusters. On the other hand, the AMSC
algorithm might be parameterized in order to limit the maximum cardinal of a
given cluster. These two properties allow to limit the usage of the scratchpad to the
matrix-cells that are the most likely to benefit from the fast memory. Consequently,
this greedy approach will limit the contention on the scratchpad in order to increase
the overall performance.

5.2.3 Generalizing the Resulting Implementation to New Input
Data

Through the presented method, we instantiate a data-layout designed to be used
on a host hardware with a scratchpad memory. However, this implementation is
only valid for the dimension of the data-layout provided during the optimization
process. In this section, we show how to port the generated instance of optimized-
implementation to any new input data dimension. It is noteworthy that this part
of the optimization process is the only one that is computed at run-time (by the
routine used for the allocation).
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The optimized matrx-implementation that we propose for a given code has the
same structure regardless of the input parameters. Indeed, we know from [88] that
changing the input-values of a code6 does not change the structure of the optimized
matrix selected by the HARDSI method (as long as the memory-pattern followed
to access the considered data-layout is the same). The only difference is the size of
each Last-Level Indirection Array (LLIA)7.

Let us consider an optimized matrix-implementation generated following
subsection 5.2.2 for a given code and input value (Figure 5.4). Let us also consider
a LLIA of this matrix that we represent with its size N0 and its set of weights
w
{i}
N0

. Our objective is to compute the set of weight w{i}N1
of the corresponding LLIA

(where N1 is the size of the new LLIA) for an optimized matrix used in the same
code with different input values. In order to attribute the weight-values w{i}N1

for

the new matrix, we use a custom transformation of the weight values w{i}N0
of the

previously generated matrix.

First, the set of weights w{i}N0
is modeled using a custom approach of the natu-

ral cubic spline with continuity C2. We propose this custom interpolation in order
to model the weight function using a piece-wise polynomial. A third-degree poly-
nomial (or spline) is built within each interval [wiN0

, wi+1
N0

]). This method allows

to interpolate the points in w{i}N0
without shifting nor significantly emphasizing the

local-extremums in this set and while avoiding Runge’s (or edge-oscillation) phe-
nomenon [14]. Hence the transfer of the different properties previously decided for
the initial matrix-implementation to the new one. This property is ensured through
the usage of our custom conditions:

• C0: Each one of the N0 − 1 polynomials crosses two contiguous nodes from
w
{i}
N0

.

• C1: Each two polynomials on each neighbor intervals have an equal derivative
(slope) on their shared junction point.

• C2: Each two polynomials on each neighbor intervals have an equal second-
degree derivative (shape) on their shared junction point.

• Ccustom: Each polynomial crossing a local extremum weN0
from the set w{i}N0

has a null first derivative.

The N0 − 1 splines (4N0 − 4 real unknown coefficients) are then computed using
the equations deduced from the previous conditions. The condition Ccustom allows
to generate twice as many equations as the number of local extremums in w

{i}
N0

.

6Hence changing the dimension of the considered matrix
7As shown in Figure 5.4, this array is the closest one to the payload array in the list of indirection

arrays. It is the one that stores the weights of the payload arrays.
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Indeed, for each extremum point weN0
, the derivative of the upper and lower

polynomials must be null in weN0
. Given that the number of local extremums

is between 0 and N0, then the number of equations deduced from Ccustom is
in [0, 2N0]. Following the same reasoning, the conditions C0, C1 and C2 allow
to generate respectively 2N0 − 2, N0 − 2 and N0 − 2 equations. However, the
equations generated by condition Ccustom are not always compatible with the
one generated by C1 as Ccustom is a stronger condition on the derivatives than
C1. Thus, for each equation in Ccustom, we reject the corresponding equation
in C1. Consequently, the resulting system is made of 4N0 − 6 equations with
4N0 − 4 variables. By adding a second-derivative condition on the edges (nat-
ural cubic splines), we have as many equations as variables. Given that these
linear equations are linearly-independent (by construction), the corresponding
matrix is reversible and the system admits a solution. The set of splines mod-
eling the weight function is determined using a Gaussian elimination on this system.

Once we have interpolated the weights w{i}N0
of the previous matrix, we determine

the wights w{i}N1
of the new matrix through the equation:

∀i ∈ [0, N1 − 1]

wiN1
= sbiN0−2

N1−1
c(i
N0 − 2

N1 − 1
)

where sx is the interpolation polynomial between wxN0
and wx+1

N0
(for x ∈ [0, N0−2]).

5.2.4 Potential Improvements

In this section, many parameters of our method have been fixed based on experi-
mentation:

• Size S of a basic-block to be transferred from and to the scratchpad.

• Scale to be applied to the weight clusters.

• Minimum, maximum and step of the linear progression for the cluster mapping.

• Maximum fraction X of the scratchpad to be atomically fetched.

We acknowledge that finding these values and tuning them to the specificity of a
given kernel is not straightforward. Changing such parameters may have a deep
impact on the performance of the implementations that we generate. However,
optimizing the value of these parameters is out of the scope of this thesis.
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In this chapter, we assess experimentally the impact of the HARDSI approach
on a data-intensive computation kernel. We present in section 6.1 the developed
experimental setup to compare the HARDSI-generated code with the preexisting
implementations. The objective being to present process used to build learn and
compile the HARDSI with no biases related to the algorithms to implement. Then,
we present in section 6.2 a first and full experimental evaluation using a matrix-
multiply algorithm. In section 6.3 we introduce an experimental benchmark de-
signed to evaluate the HARDSI code based a large set of memory-access patterns
and data-layout architectures. Using this custom benchmark, we propose in sec-
tion 6.4 and section 6.5 an experimental benchmarking of the HARDSI framework
on both a regular three-data-caches and en embedded scratchpad-memory architec-
tures. Finally, we present in section 6.6 a custom experimentation designed to show
the strength of the HARDSI method toward external and internal memory noise.

6.1 Experimental Setup: HARDSI Code Compilation

The HARDSI code is transformed into native C/C++ (using our source-to-source
compiler) once and assessed using different inputs. No recompilation is made be-
tween two executions. We use input matrices with the following sizes as a learning in-
put: {(4, 4)(4, 4)}, {(4, 7)(13, 4)}, {(128, 128)(128, 128)}. The statistical properties
of the HARDSI method spare the need to use larger inputs during this optimization
phase (the considered kernels exhibit the same memory-access pattern regardless of
the input values). The list of matrix implementations embedded within our HARDSI
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data-base for both considered hardware platforms is shown in Figure 3.2. The ma-
trix implementations in this base regarding the x86 processor are extracted from
literature. These implementations are used to populate the data-base corresponding
to the Coolidge processor. Generating these matrix-implementations for scratchpad
memories is done using the method in section 5.2.

6.2 Matrix Multiplication Kernel
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Figure 6.1: Experimental comparison, based on the number of L3 (a), CPU cycles
(b) and TLB (c, d) cache miss of a matrix-multiplication implemented in both
C/C++ and our custom HARDSI DSL.

In this section, we evaluate the impact of the data-structure-implementation
generated by our method on the performance of a matrix-multiplication kernel. This
experimental evaluation is processed on the considered x86 processor. We compare
two different implementations:

(i). A native C/C++ code where the three matrices are defined and allocated
using column-major 2D arrays (the cell at column x and line y of such matrices
m being accessed using m[x][y]).

(ii). The HARDSI code shown in Listing 4.1 where the matrices are defined
and accessed through the primitives of the HARDSI language relative to the
matrix-data-structure.
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Figure 6.1b shows that our HARDSI implementation allows to reduce the
execution time of this kernel by up to 10x. In order to explain this performance
gain, we first assess the behavior of data-caches during the experimentation.
We show in Figure 6.1a, that the same gain factor is observed in the number
of data-cache misses. However, we notice when comparing the Figure 6.1a with
Figure 6.1b that the two set of graphs are barely correlated. This allows to state
some factors, other than data-cache enhancement, may have caused the observed
performance gain.

Figure 6.1c and Figure 6.1d indicate that TLB -miss enhancement is another
major improvement-factor brought by the HARDSI method. Indeed, these figures
show that our custom implementation allows to reduce the number of TLB misses
up to 9x and 11x during the execution of load and store instructions respectively.

Our experimental results show a significant asset of our optimization approach.
When a data structure increases the locality of data consecutively-accessed, it does
not simply reduce the number of data-cache misses but it also reduces the con-
tention on all the hardware memory hierarchy. Indeed, Figure 6.1d shows that for
matrices with a size around 50, the number of TLB misses for the native C/C++
code increases brutally (10 times) compared to our custom HARDSI version. Such
matrices have a memory size of 10KBytes (50 lines * 50 columns * 4 Bytes per
cell). Unlike our implementations of these matrices, the C/C++ version of the
code leads to continuously have a majority of this whole memory in cache, which
represents most of our L1 space (32KBytes). Each cache miss resulting from this
cache-flood forces the operating system to realize many memory accesses for oper-
ations such as the virtual-page replacement. Each one of these operations being
done at virtual-address level, an important contention is applied on the TLB (which
stores translations between virtual and physical addresses). Hence the phenomenon
observed in Figure 6.1d.

6.3 Experimented Benchmark

The results presented in section 6.2 assess the interest of our method when gener-
ating matrices accessed following a single family of memory pattern (line/column
major with no stride nor sub-block). In order to enhance the set of evaluated
patterns, we use the PolybenchC-4.2.1 [83] benchmark suite. It is designed for
polyhedral-compilation evaluation, and encompasses kernels with a large specter
of matrix-access-types ranging from block up to stencil-walks. For each one of
the access-types in the benchmark, we select one kernel. Additionally, in order to
evaluate the interest of our method on a combination of basic access-patterns, we
use kernels implementing a jpeg-compression (JPEG-C) [62], recursive-bilateral-filter
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(RBF) [116] and a matrix-fast-exponentiation1 (PMFEA) [120]. The list of memory-
access patterns evaluated through all these kernels is presented in Table 6.1.
On the x86 processor, we consider five different input-matrix sizes: 50, 100, 600,
1000, 2048. This allows to represent different cases where the data fit one of the
DL1, L2 or L3 caches (i.e., fitting one cache line or the whole cache).
Similarly, we consider five matrix sizes on the Coolidge processor: 30, 60, 100, 300,
900. This allows to assess cases where the data fits completely, partially or barely
within the considered scratchpad (without exceeding the main-memory size and
causing virtual-page swapping).

Line-major Column-major Stencil Line-major
block-line

Line-major
block-diag

covariance X

correlation X

adi X X

gesummv X X

floyd-warshall X

lu X X X

JPEG-C X X

RBF X X X

PMFEA X X

Table 6.1: Memory-access pattern followed by considered kernels.

6.4 Evaluation on a Three Data-cache Levels

6.4.1 Experimental Results Overview

The metric used in the experimental evaluation of this section is the speed up be-
tween a baseline (native C/C++) and the corresponding HARDSI implementation.
This speed up is defined by the performance-ratio of the baseline to the HARDSI
implementation.

Table 6.2 shows that our HARDSI method is able to select the most efficient (in
terms of CPU cycles) data-structure implementation for each kernel and with respect
to each input size. Indeed, the first line of the table (speed up of the implementation
automatically generated by our HARDSI method) is always equal to the second line
(speed up of the kernel using the best known implementation of the data structure
in the considered context). The best speed up of a kernel is the highest speed up
reached while evaluating the kernel using each known implementation of the matrix
data-structure in the data-base.

In Table 6.2, we show that our HARDSI method allows bring an execution-time
speed up ranging from 1 to 48.9x. Our method is able to keep, in the worst
case, the default implementation of a matrix (column-major with no stride nor
sub-block) when no implementation fits better with the realized access pattern.

1This algorithm, designed for parallel MPI usage, has been adapted to a single-node single-
thread implementation.
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Matrix size 50 100 600 1000 2048 50 100 600 1000 2048 50 100 600 1000 2048

covariance correlation adi
Speed up HARDSI 1.0 1.1 3.2 8.3 12.2 1.0 1.0 3.1 7.7 12.1 1.4 1.6 1.6 1.4 2.3
Speed up Best SoA = = = = = = = = = = 1.0 1.0 1.0 1.0 1.3
Reference Best SoA [11] [46] [46]

gesummv floyd-warshall lu
Speed up HARDSI 1.4 1.3 7.1 12.2 12.5 3.9 5.4 28.9 48.9 29.4 1.0 1.0 1.5 4.0 6.3
Speed up Best SoA = = = = = = = = = = = = = = =
Reference Best SoA [11] [46] [11]

JPEG-C RBF PMFEA
Speed up HARDSI 1.0 3.0 7.9 10.4 12 2.1 10.9 34.5 42.5 45.9 5.4 17.0 30.1 47.1 40.7
Speed up Best SoA = = = = = = = = = = = = = = =
Reference Best SoA [62] [116] [120]

Table 6.2: Performance speed up, in terms of CPU-cycles, between a HARDSI and
baseline implementation. The value "=" (respectively "<") means that the highest
speed up reached using a state of the art (SoA) implementation is equal (respectively
smaller) to the one observed using the HARDSI implementation.
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Figure 6.2: Performance speed up, in terms of LLC cache-misses (load and store),
between a HARDSI and baseline implementation.

This case is primarily observed on the stencil kernel adi. Thanks to our method,
we reache up a 2.3X speed up using a custom matrix implementation. This
implementation [56] duplicates column-data within each line in a configuration that
allows using single-instruction-multiple-data operations to update each cell. To
the best of our knowledge, no optimized matrix-implementation has been proposed
(for the considered memory-hierarchy and stride-size). The complexity of this
case comes from the simultaneous realization of two antagonistic access-patterns
(line and block-column major). Thus even though one pattern fits properly the
cache-behavior, the second one does not.

6.4.2 Impact of HARDSI on the Different Cache-Levels

For matrix-sizes higher than the total L3 size (1000 and 2048), Table 6.2 shows that
the observed execution-time improvement for all the kernels other than adi ranges
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Figure 6.3: Performance speed up, in terms of data L1 cache-misses (load), between
a HARDSI and baseline implementation (logarithmic scale).
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Figure 6.4: Performance speed up, in terms of data L1 cache-misses (store), between
a HARDSI and baseline implementation (logarithmic scale).

from 4x up to 48.9x. We show in Figure 6.2 that this time improvement is mainly
explained by the reduction of L3-cache-misses (from 2.23 up to 98.09x).

For matrices smaller than the size of the used L3 cache (50, 100 and 600),
Figure 6.2 shows a cache-miss speed up as small as 0.20x. The HARDSI implemen-
tation has thus led to an increased number of L3 cache misses by up to 5x while
an execution-time improvement is still observed (CPU cycles speed up ≥ 1). Our
interpretation is that the results observed at the L3 level are not relevant. For these
matrix sizes, the L3 cache is not much solicited due to the sufficient space in the DL1
and L2 caches in order to store all the considered data. Meanwhile, the DL1 and L2
are intensively solicited. Thus, the speed up observed on DL1 and L2 (Figure 6.3
and Figure 6.4) is the one that explains the execution-time speed up. This also
explains the relatively modest speed up observed for these small matrices (50, 100

and 600) compared to the one observed for bigger matrices (1000 and 2048). Given
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that an L3-miss latency is about 3 to 10 times bigger than a DL1 or L2 latency,
then reducing the number of DL1 or L2 misses brings less time improvement than
reducing the number of L3 misses.

6.5 Enhancing the HARDSI Method to scratchpad
memories

In this section, we evaluate experimentally the impact of the HARDSI method on
applications hosted on a platform with an on-chip scratchpad memory (Coolidge
platform). All the scratchpad implementations considered by our HARDSI method
are dynamically generated using the custom DDLGS algorithm introduced in chap-
ter 5.

6.5.1 Regular Data Caches VS HARDSI Scratchpad implementa-
tion

The metric used in this section is the speed up (performance-ratio) between a
scratchpad and a non-scratchpad implementation of each kernel. The non scratch-
pad implementation is the best known implementation of each kernel on the Coolidge
processor while only considering its data-cache (L1-LLC) and no scratchpad mem-
ory. It is obtained thanks to the HARDSI method using the data-base relative to
cache memories. Meanwhile, we consider two versions of the scratchpad implemen-
tation. In the first line of Table 6.3, this implementation is the one automatically
selected by the HARDSI method as described in chapter 5. In the second line,
it is the best known scratchpad implementation. This implementation if found by
testing for each kernel all the known implementations in the data base.

Matrix size 30 60 100 300 900 30 60 100 300 900 30 60 100 300 900

covariance correlation adi
Speed up HARDSI 4.8 6.2 7.9 2.1 2.0 3.3 4.7 5.6 1.1 1.1 7.8 9.3 12.1 2.0 1.1
Speed up Best DB = = = = = = = = = = = = = = =

gesummv floyd-warshall lu
Speed up HARDSI 8.5 10.2 9.1 4.2 2.5 3.0 4.9 4.2 1.3 1.9 5.2 5.7 7.7 1.8 1.0
Speed up Best DB = = = = = = = = = = = = = = =

JPEG-C RBF PMFEA
Speed up HARDSI 10.0 15.0 20.8 7.1 5.3 12.9 20.5 30.1 6.4 5.9 10.1 20.6 54.2 7.8 1.9
Speed up Best DB = = = = = = = = = = = = = = =

Table 6.3: Performance speed up, in terms of CPU-cycles, between a scratchpad
implementation and the best implementation (optimized for L1 data cache) known
for each kernel. The scratchpad implementation is either the one automatically
selected by the HARDSI method (first line) or the best found by testing all the
matrix implementations in the HARDSI data base (second line). The value "="
means that the highest speed up reached using a HARDSI-selected implementation
is equal to the one observed using the best tested implementation.
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Similarly to the observations made for data-caches, Table 6.3 shows that our
HARDSI method is able to select the best presented matrix-implementation for
scratchpad usage. Indeed, the first line of Table 6.3 (speed up of the HARDSI
implementation) is always equal to the second line (speed up of the best known
implementation). Meanwhile, our result show that all the memory-access patterns
do not take evenly-advantage of scratchpad memory. We notice that the tilled
and stencil algorithms (JPEG-C, RBF and PMFEA) are the one that reach the
higher speed up (up to 54.2x). This adequate behavior is due to the optimized
and atomic usage of each block (tile) loaded into scratchpad before considering
a next one. Meanwhile, kernels following a linear and non-tiled access-pattern
(covariance, correlation and gesummv) benefit less from using a scratchpad memory
(up to 7.9x). For these memory-access, the only optimization brought by our
custom implementations is the ability to properly identify the data to prefetch in
scratchpad before their usage.

The speed up of the scratchpad implementation compared to the non-scratchpad
one may be explained in two contexts. On the one hand, when the the matrix fits in
scratchpad (matrix sizes lower than 100), the highest speed ups are observed. This
shows that our implementation benefits from the existing space in scratchpad and
manages to lighten the cost of back-and-forth transfers between main and scratchpad
memory. Our implementation identifies properly the matrix cells that would benefit
from scratchpad usage. On the other hand, when the the matrix size is larger than
the scratchpad size (matrix sizes higher than 100), the contention on the scratchpad
increases dramatically the number of costly transfers from and to the main memory.
Hence the relatively lower performance. In this work, we were not able to reach
a matrix size where the scratchpad usage downgrade the performance. This is
primarily due to the relatively limited main-memory size of our Coolidge platform
(4M Bytes).

6.5.2 Baseline scratchpad VS HARDSI Scratchpad implementa-
tion

In this section, we compare our HARDSI scratchpad-adapted code with the corre-
sponding state-of-the-art code proposed by Kalray the manufacturer of the consid-
ered processor. The results are presented in terms of CPU-cycles speed up: ratio
of the Kalray to the HARDSI code execution time. It is noteworthy that Kalray
did not disclose the implementation of all the algorithms that we consider in our
benchmarks. In this cases (floyd-warshall, JPEG-C, RBF and PMFEA), we have
proposed a custom C/C++ implementation of these kernels. These implementa-
tions is based on same approach as the one followed by Kalray for the other kernels:
storing the temporal data as well as the intermediate results that reused more than
twice. The results that we present have been implemented using the best known
implementation of the matrix data-structure for each kernel (without loading any
part of it in the scratchpad memory).
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Figure 6.5: Performance speed up, in terms of CPU cycles between a HARDSI and
a Kalray implementation designed for scratchpad usage.

In Figure 6.5, we show that the HARDSI code brings the higher improvement on
the larger matrices (300 and 900). This gain, even though mostly higher than 1X, is
relatively limited on smaller matrices (30, 60, 100). This size-related improvement
is mainly due to the method followed by the two set of implementations. The
implementations proposed by Kalray are prety comonly used in litterature. It con-
sists in only loading in scratchpad intermadiary results and highly-used temporary
variables. Meanwhile, the implementation generated by our HARDSI compiler
loads different intensively-used parts of the matrix in scratchpad. Consequently,
the cost of our approach is harder to soften when the total number of operations
is too low (small matrix-size or simple kernels). This leads in the worst case to a
speed up of 0.8 (PMFEA kernel with an input-matrix-size of 30). However, this
speed up lower than one is only observed once. In all the other unfavourable case,
the speed from 1X up to roughly 4, 5X. This time-improvement is mainly due
to the dynamical adaptation of our approach to the input of the considered code.
Indeed, the code generated by the HARDSI compiler refactors the data-layout
implementation at run time. At that time, the number of matrix-cells that are
loaded at each accessed cell may be ideally set given that all the attributes of the
problem are known: (i) ration between the matrix and memory size (ii) temporal
distance between two accesses to the same cell and (iii) memory pattern followed
to access each data-layout.

Such speed ups are particularly frequent for complex kernels (JPEG-C, RBF,
PMFEA) with different successive patterns and a large number of interleaved/suc-
cessive loops. In this context, the code iterates on single memory-access patterns
and takes advantage of the optimization proposed at each iteration.
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Figure 6.6: Percentage of variables (vertical axis) in the gesummv kernel that was
positively identified by the HARDSI method for a given percentage of random mem-
ory accesses (horizontal axis) introduced at random moment of the kernel’s execu-
tion. This figures is obtained on both the Intel Xeon and the Kalray processors.

6.6 Impact of Noise on the HARDSI Method

In a computation kernel accessing a given data-structure, we consider as noise a
set of arbitrary accesses interleaved at arbitrary positions within a known memory-
access pattern and that does not belong to the pattern. These are legitimate
memory-accesses (not injected by malicious code) designed to store temporary in-
formation or to run functions of the algorithm. If we consider the kernels described
in section 6.3, the number of noisy memory accesses is ranging from 2 up to 16%

of the total number of memory-accesses made on the considered data structures.
Noisy-memory accesses make it harder to detect the main memory-access pattern,
which is the most interesting one to detect (as it is the most likely to trigger the
most cache-misses and prefetcher-misses).

In Figure 6.6, we evaluate the resistance to noise of our HARDSI method. For
this purpose, we inject different amount of random memory-accesses (from 0 up
to 100% of the total number of memory-accesses) at random times during the
execution of the gesummv kernel2. We show that for noise rate up to 20%, all
the variables of the kernel are successfully identified by the HARDSI method: the
initial pattern (excluding noise) is identified. Then for noise rate between 20 and
50%, the pattern of two over the three-considered variables is positively identified.

It is noteworthy that for noise rate higher than 50%, the initial pattern is not
the most relevant one to identify. Indeed, for such cases, the noisy memory-accesses
represent the majority of accesses. Thus, the noisy accesses become the one that

2Similar results are observed using the other kernels.
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potentially influence most the performance.
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Figure 7.1: Global view of the proposed software-optimization process and the dif-
ferent contributions.

In this thesis, we considered tackling the portability issue that trickles down
from modern heterogeneous and application-specific hardware accelerators. In this
context, we considered a software-optimization approach aiming at automatically
adapting an input source-code to its hardware environment. In Figure 7.1 we
identified the time and mathematical issues to solve for implementing the considered
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optimization approach. We also show the current implementation status of our cus-
tom optimization tool. The first problem considered in this thesis is the complexity
of accurately measuring and modeling computational performances. This led us to
identify the proper performance measuring tools. Given the specialization of each
consider performance tracker, we proposed a custom patch allowing to select the
proper implementation for each hardware, OS and software environment.

This thesis presents a custom contribution to solving the Data-Layout Decision
problem. Indeed, choosing a proper data-layout implementation is critical for
performance. Using the developed and patented HARDSI method and framework,
we showed how to pick an adequate implementation with regards to the host
hardware memory and access pattern. Our approach also showed an interest in
using known and highly engineered data-layout implementations for optimizing
new or unrelated code. The picked optimized implementations allowed reaching an
execution-time speed-up up to 48.9x1 and an L3-miss reduction up to 98.1x on a
three levels of data-caches architecture.

This thesis also focused on optimizing software code executed using embedded
scratchpad memories. We acknowledged the fact that modern scratchpad memories
are getting constantly larger. Existing approaches of storing only temporal and in-
termediate results, do not take full advantage of these fast memories. Consequently,
we proposed DDLGS a patented method for dynamically generating scratchpad-
dedicated implementations at run-time for matrix data-layouts. Given that these
implementations are dynamic, the proposed solution may be adequately refactored
depending on the followed memory-access pattern. Similarly, the run-time execu-
tion of this method allows to adapt to parameters that ignored at compile time
(e.g. matrix and tiles size). The optimized implementations allowed reaching an
execution-time speed-up up to 54.2x2 compared to a non-scratchpad-adapted op-
timization. Within the same hardware environment, the code generated using our
DDLGS method outperformed the state-of-the-art one by up to 80X in terms of
CPU-cycles.

7.2 Perspectives and Future Works

7.2.1 Short Term Perspectives

As a short term perspective, we propose to introduce a software-guided pre-
processing of the code to optimize. The objective being to split the input code
within sections to be optimized independently. Each section accessing the consid-
ered data layout following a different access pattern. Indeed we show in this thesis
that splitting an input code into such sections allowed to improve the efficiency of
the data layout generated by our HARDSI framework. However, this splitting task

1On the benchmark and input set presented in section 6.1
2On the benchmark and input set presented in section 6.1
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has always been done by the programmer, which is only possible when the code
is simple (relatively low number of interleaved loops and conditional branches).
Indeed, splitting a code according to its different memory-access patterns is an
NP-complete problem. A simple algorithm to solve this problem would be to
compare for each line of code3 the current memory signature with all the known
signatures. Given the large number of potential access-pattern signatures (O(N !)

for a matrix of size N), a much more efficient algorithm needs to be proposed.
Nevertheless, we believe that solving this tuning problem is an essential step toward
porting the HARDSI approach to a general purpose compiler.

7.2.2 Long Term Perspectives

As a long term perspective, we propose to investigate the usage of the HARDSI
method on a variety of high-performance architectures. In this thesis, we developed
and deployed our HARDSI framework on single cores. However, we introduced
different mathematical tools aiming to eventually guide a deployment on multicore
machines. We also investigated the potential usage of the HARDSI method on
emerging technologies such as the in-memory computing C-SRAM. One of the main
limitation to such a wide-range deployment is linked to finding an adequate split of
the code relative to each new architecture. We believe that this code-split needs to
be realized automatically (e.g by the compiler). We also believe that solving this
problem would allow to use the memory-signatures that we build for the detection
of malicious-code injection. By accurately partitioning a source code, the HARDSI
framework could be used to extract the memory-signature of some partition. By
detecting changes in the signature of security-critical code partitions, we could spot
the injection of malicious code. Given the statistical properties of the HARDSI
signatures (consistence in between similar executions), this detection would potential
improve the accuracy of current malware detectors.

3Or following a dichotomy exploration of the lines
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