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Abstract 

Representing the majority of the world’s tuna catches, tropical tuna species are of critical 

importance due to their essential role as food and economic resource. The sustainable 

management of this valuable resource depends on an accurate estimate of the abundance of the 

exploited populations and the impact of fishing pressure on them. The present thesis provides 

a new direct abundance index for tropical tuna populations that account for their free-swimming 

and associated components. Indeed, tropical tuna species are characterized by a singular 

behavioural trait that causes them to associate with floating objects drifting at sea. This 

characteristic has led to the development of a specific fishing mode widely used in tuna purse 

seine fishery, consisting in the capture of schools associated to floating objects. Recent decades 

have thus seen the massive deployment of thousands of floating objects known as fish 

aggregating devices (FADs), specifically designed to attract and concentrate tuna schools. The 

drifting FADs are equipped with satellite-linked echosounder buoys, which ensure their 

continuous monitoring, providing fishers with near-real time information on their location and 

associated tuna biomasses. This thesis presents a standard methodological framework for 

processing the information from echosounder buoys for scientific use, including a new 

approach based on supervised learning for processing the acoustic data they provide. The 

analysis of these data has allowed improving the general knowledge on the associative 

dynamics of tuna aggregations. Ocean-specific differences were evidenced, with notably longer 

periods of absence of tuna under FADs in the Indian Ocean than in the Atlantic Ocean. The 

novel index for estimating tuna abundance proposed by this thesis also exploit this associative 

behaviour. It relies on a modelling approach combining data on the dynamics of the occupancy 

of floating objects from echosounder buoys with data on the associative dynamics of tuna 

individuals. An initial application to the western Indian skipjack tuna population has made it 

possible to provide time series of absolute and relative abundances, used for stock assessments 

of this species. This new abundance index addresses the current critical need for complementary 

methods for estimating tropical tuna stocks expressed by all regional fisheries management 

organizations. 

 

Keywords: Direct abundance index, Associative behaviour, Tropical tunas, Echosounder buoys, 

Fish Aggregating Devices. 
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Résumé substantiel (French extended abstract) 

Introduction 

Les thons, animaux emblématiques de nos océans, font partie des espèces de poissons les plus 

lucratives au monde. D’une importance socio-économique cruciale à la fois pour les pays 

développés et en développement, les thons fournissent une grande variété de services 

écosystémiques directs, notamment à travers leur rôle en tant que ressource alimentaire et 

économique. Ces superprédateurs occupent en outre, une place fondamentale dans les réseaux 

trophiques marins; et une déplétion de leurs populations pourrait se traduire par de dramatiques 

effets délétères sur le fonctionnement et la stabilité des écosystèmes (Sund et al., 1981; Baum 

and Worm, 2009; Young et al., 2010; Duffy et al., 2017). Parmi les 7 principales espèces de 

thon exploitées, trois espèces tropicales, à savoir le thon à nageoire jaune ou albacore (Thunnus 

albacares), le thon obèse ou patudo (T. obesus) et la bonite à ventre rayé ou listao (Katsuwonus 

pelamis), représentent à elles seules, la majorité des captures mondiales, principalement 

pêchées par les flottilles industrielles de thoniers senneurs. On estime que plus de la moitié des 

prises de thons de ces engins de pêches, proviennent de captures associées à des dispositifs de 

concentration de poissons ou DCP (Fonteneau et al., 2013). Les DCP sont des objets flottants 

spécifiquement conçus et déployés par les pêcheurs pour faciliter leurs prises de thons 

tropicaux, en exploitant leur comportement associatif avec les objets flottants en mer (Fréon 

and Dagorn, 2000; Castro et al., 2002). Les DCP sont généralement équipés de bouées-satellite 

échosondeurs qui fournissent en continu aux pêcheurs diverses informations, notamment sur 

leur géolocalisation et les biomasses de poissons qui leurs sont associées (Lopez et al., 2014; 

Moreno et al., 2019). L’essor massif de la pêche sous DCP au cours de ces dernières décennies, 

suscite toutefois des préoccupations majeures quant à leurs impacts, tant d’un point de vue 

écologique que sur la durabilité des pêcheries thonières elles-mêmes (Dagorn et al., 2013). 

En vertu de leurs caractéristiques hautement migratoires et de leurs vastes répartitions, la 

gestion des ressources thonières est sous la responsabilité d’organisations régionales de gestion 

de la pêche (ORGP) qui sont des organismes intergouvernementaux composés de pays 

possédant des intérêts en matière de pêche thonière dans une zone géographique spécifique. De 

manière générale, la gestion des ressources thonières repose sur un ensemble de processus 

regroupés sous le nom « d’évaluation de stocks », qui vise en substance à définir les niveaux 

d'exploitation optimale des thons, notamment à partir de l’évaluation de l’abondance de leurs 
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populations et de l'impact de la pression de pêche sur celles-ci. La performance d’un tel 

mécanisme de gestion est intimement lié à la disponibilité d’indicateurs d’abondances robustes 

capable de décrire fidèlement les changements survenant au sein de ces populations. Cependant, 

la plupart des méthodes d’évaluation d’abondance développées pour les populations de 

poissons reste relativement difficile à mettre en œuvre pour les espèces tropicales de thons en 

raison de leurs caractéristiques migratoires et de leur vaste distribution spatiale. En 

conséquence, actuellement les estimations de l'abondance de leurs populations reposent presque 

essentiellement sur les données de capture et d’effort associées à la pêche commerciale. 

 

Objectifs de la thèse 

Le présent travail a pour principal objet de développer une nouvelle méthodologie pour 

l'estimation des populations d'espèces de thon tropical, en exploitant leur comportement 

associatif autour d'objets flottants. Cet objectif implique une nécessaire amélioration des 

connaissances sur le comportement des thons et plus particulièrement une meilleure 

compréhension de leur dynamique associative. À cet égard, les informations sur les agrégations 

de poissons sous DCP, collectées par les bouées échosondeurs utilisées par les thoniers 

senneurs, constituent un atout majeur. La réalisation de l’objectif de cette thèse a ainsi été 

définie selon une stratégie de recherche articulée autour de trois axes majeurs : 

(i). développer un cadre méthodologique pour l’exploitation scientifique des données 

enregistrées par les bouées échosondeurs équipant les DCP; 

(ii). analyser les dynamiques associatives des agrégations de thons autour des DCP à partir de 

ces nouvelles sources de données ; 

(iii). dériver un nouvel indice d'abondance des thons tropicaux sur la base de leur 

comportement associatif avec les objets flottants et des données des bouées échosondeurs. 
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Résumés des chapitres 

Chapitre 1 : Développement d’un protocole standard de traitement pour 

l’exploitation scientifique des données des bouées satellites utilisées par les 

thoniers senneurs tropicaux. 

Ce chapitre est lié au premier des objectifs spécifiques définis. Il propose un protocole standard 

de collecte de données dédié aux bouées satellites utilisées dans les pêcheries thonières 

tropicales. Ces bouées qui équipent les dispositifs de concentration de poissons à la dérive 

(DCP), fournissent aux pêcheurs un flux continu d'informations tant sur certaines 

caractéristiques de l'océan (e.g. température de surface, vitesse des courants), que sur les 

communautés pélagiques de poissons associées aux DCP. Cette quantité sans précédent de 

données se caractérise par une large distribution à l'échelle de l'océan, une haute résolution 

spatiale et temporelle, mais aussi par une très forte hétérogénéité entre les natures et formats de 

données collectées par les différents modèles et marques de bouées. L’exploitation de ces 

données dans un but scientifique reste donc résolument tributaire de la disponibilité de 

méthodes de traitement permettant leur contrôle, leur validation et leur standardisation. Ce 

premier chapitre décrit les données fournies par les principaux modèles de bouées utilisés par 

la flotte européenne de thoniers senneurs, et propose un protocole standard de traitement visant 

à en améliorer leur cohérence, leur fiabilité et leur valeur. Ce protocole aborde les trois points 

majeurs affectant ces données : (i) les erreurs structurelles, (ii) les données collectées à terre 

(iii) et à bord des navires. Il fournit cinq critères de filtrage spécifiques dont trois dédiés à la 

résolution des erreurs structurelles, et compare différentes procédures de filtrage pour les 

données enregistrées sur le continent et à bord des navires. 

Ces comparaisons ont révélé que l’utilisation de cartes à haute résolution de traits de côtes pour 

la détection des données de bouées émises sur le continent se traduisait par des performances 

de filtrage relativement similaires à celles à basse résolution de traits de côtes. Ce qui présente 

un intérêt notable en terme de coûts de calcul compte tenu des très grands volumes que 

représentent ces données. Deux algorithmes ont également été comparés pour la discrimination 

des positions enregistrées par des bouées dérivant en mer et celles émettant à bord de navires. 

Le premier était basé sur un moteur de règles établies à partir de l’analyse du comportement 

des thoniers senneurs et des patterns généraux de vitesses associés aux objets dérivant en mer. 

Le second reposait sur une classification automatique utilisant l’apprentissage supervisée par 



xii 

 

forêts aléatoires. Les deux approches se sont révélées de performances très similaires, avec 

toutefois des spécificités liées à la résolution temporelle des données traitées. 

Le protocole proposé par ce premier chapitre n’offre cependant, pas de méthodologie standard 

pour le traitement des données acoustiques collectées par les différentes marques de bouées 

échosondeurs. En effet, la grande variabilité au sein des formats des données acoustiques, et 

des caractéristiques matérielles et techniques des échosondeurs intégrés aux bouées constitue 

une limite majeure au développement d’un cadre général permettant le traitement des données 

acoustiques collectées en mesure d’abondance. Néanmoins, du fait de la grande quantité de 

données concernées, la contribution des techniques d’apprentissage automatique pourrait 

s’avérer être une option valable à envisager pour la mise au point d’un tel cadre 

méthodologique, visant à la caractérisation des agrégations de poissons sous objets flottants et 

la fourniture d’estimations fiables de leur abondance à partir des bouées échosondeurs 

 

 

Chapitre 2 : Caractérisation des agrégations de thons tropicaux sous dispositifs 

de concentration de poissons par classification automatique des données des 

bouées échosondeurs. 

Découlant également de l’objectif spécifique liminaire de ce travail de thèse, ce second chapitre 

présente une nouvelle méthodologie reposant sur l’utilisation de techniques d’apprentissage 

automatique pour traduire les données acoustiques collectées par les bouées échosondeurs en 

mesures de présence et d’abondance des thons.  

L’approche couple des procédures d’agrégation spatiale et temporelle des données acoustiques 

collectées, à une classification supervisée utilisant l’algorithme des forêts aléatoires. Elle vise 

à caractériser les agrégations associées aux DCP en y déterminant la présence ou l’absence de 

thons, ainsi que les classes de tailles d’agrégation auxquelles elles correspondent. 

L’entrainement des modèles de classification s’est appuyé sur un jeu de données 

d’apprentissage construit par croisement des données acoustiques avec les données d’activités 

sur DCP issues des journaux de bord et des rapports des observateurs embarqués à bord des 

thoniers senneurs français dans les océans Atlantique et Indien, de 2013 à 2018. Les données 

acoustiques collectées la veille d’opérations de pêches sous DCP, ainsi que les captures 



xiii 

 

réalisées ont respectivement été associées à la présence de thons et aux classes de taille 

d’agrégation; tandis que l’absence de thons a été reliée aux données de visites sans pêche et de 

déploiement de DCP.  

L'analyse des performances des classifications réalisées a montré des précisions satisfaisantes 

de l’ordre de 75 % et 85 % pour la discrimination de la présence ou de l’absence d'agrégations 

de thons sous DCP, respectivement dans les océans Atlantique et Indien. A l’inverse, la 

classification des données acoustiques en catégories de taille des agrégations de thon (à savoir, 

inférieure à 10 tonnes, entre 10 et 25 tonnes et supérieure à 25 tonnes) s’est traduite par une 

précision globale plus faible de l’ordre de 50 %, dans les deux océans. Par ailleurs, les données 

acoustiques enregistrées à des profondeurs (6 à 45 m dans l'Atlantique et 30 à 150 m dans 

l'océan Indien) et à des périodes spécifiques à l'océan (de 4 h à 16 h généralement) ont été 

identifiées par l'algorithme comme les variables explicatives les plus importantes dans les 

différentes classifications effectuées.  

En fournissant, un nouvel outil permettant d’exploiter les données acoustiques des bouées 

échosondeurs pour la caractérisation des agrégations de thons associées aux DCP, ce travail a 

constitué l’une des étapes cruciales vers l'utilisation de ces nouvelles sources de données pour 

l’étude de l’écologie et du comportement des thons tropicaux, et le développement de nouveaux 

indices d’abondance pour leurs populations. 

 

 

Chapitre 3 : Analyse de la dynamique associative des agrégations de thons 

tropicaux autour des dispositifs de concentration des poissons à partir des bouées 

échosondeurs. 

L'amélioration des connaissances sur le comportement associatif des thons tropicaux avec les 

objets flottants est une priorité de recherche essentielle pour assurer l'exploitation durable de 

leurs populations. En lien avec le second objectif spécifique défini pour ce travail de thèse, le 

second chapitre a abordé de nouvelles questions relatives à la dynamique associative des 

agrégations de thons associées aux objets flottants, à partir des données collectées par les bouées 

échosondeurs le long de plus de 9000 trajectoires de DCP nouvellement déployés dans les océan 

Atlantique et Indien, entre 2016 et 2018. 
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Des séries chronologiques de présence/absence d’agrégations de thons obtenues grâce à la 

procédure de classification supervisée des données acoustiques présentée au chapitre précédent, 

ont servi à l’évaluation de métriques clés permettant de décrire ces dynamiques associatives. 

Les résultats ont montré qu’en moyenne les durées de séjour à l’eau des DCP ne différaient pas 

significativement entre océans (de l’ordre de 60 jours). Toutefois, comparativement à l’océan 

Atlantique, une proportion plus élevée de DCP dans l'océan Indien n’a montré aucun signe de 

colonisation par les thons tout au long de leurs trajectoires (respectivement 22 et 34%). 

Le temps moyen de colonisation d’un DCP nouvellement déployé par une agrégation de thons 

a été estimé à partir d’une nouvelle approche permettant d’éviter les biais découlant de la grande 

variabilité des temps de séjour à l’eau des DCP dans le jeu de données. On a ainsi déterminé 

qu’en moyenne la colonisation d’un DCP par une agrégation de thons survenait en moyenne au 

bout de 16 jours dans l'océan Atlantique, contre 40 jours dans l'océan Indien.  

En moyenne, les DCP colonisés sont restés continuellement occupés par des agrégations de 

thon pendant 6 et 9 jours, respectivement dans les océans Indien et Atlantique. La durée 

moyenne entre deux agrégations consécutives autour d’un même DCP (temps d’absence 

d’agrégation autour du DCP) variait entre 9 jours dans l'océan Indien et 5 jours dans l'océan 

Atlantique. Globalement, tout au long de leur période de séjour à l’eau, les DCP colonisés sont 

restés occupés par les thons pendant une plus large proportion de temps dans l'océan Atlantique 

(63%) que dans l'océan Indien (45%).  

En outre, des analyses basées sur les approches de courbes de survie ont permis de montrer que 

l’occupation des DCP par les agrégations de thons était déterminée par un processus 

indépendant du temps avec des modes de résidence à long terme de l’ordre de 2 à 3 semaines 

respectivement dans les océans Atlantique et Indien, et à court terme (de 4 à 5 jours), 

relativement proches en durée des temps continus de présence estimés au niveau des individus 

de thons (CRT). Cela suggère que la composition des espèces et/ou les conditions locales (par 

exemple les proies, les congénères ou la densité des objets flottants) pourraient jouer un rôle 

clé dans la dynamique d'agrégation. Des analyses évaluant ces mesures comportementales à des 

échelles spatio-temporelles plus restreintes pourraient aider à comprendre la dynamique des 

agrégations à une échelle locale, ainsi que le rôle joué par ces divers facteurs environnementaux. 

Ces résultats illustrent la contribution notable que les données issues des bouées échosondeurs 

peuvent apporter à l’amélioration des connaissances sur le comportement et l’écologie des 
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thons. Ils revêtent également une importance particulière pour le développement de nouvelles 

méthodes d’estimations des populations. En effet, la taille des populations et les densités de 

DCP entre les deux océans sont présumées représenter les principaux facteurs causatifs à la 

base de la variabilité des périodes d’absence de thons sous DCP. De fait, l'intégration de ces 

nouvelles métriques au sein de modèles d'évaluation des populations pourrait se révéler être 

une voie prometteuse vers le développement de nouveaux indices d'abondance pour les thonidés 

tropicaux. 

 

 

Chapitre 4 : Indice d’abondance basés sur le comportement associatif : une 

nouvelle méthode d’estimation directe des populations de thons tropicaux. 

Le quatrième chapitre de cette thèse décrit une approche de modélisation permettant de fournir 

des estimations directes de l'abondance des populations de thons tropicaux à partir de leur 

comportement associatif avec les objets flottants. Cette approche utilise cinq variables 

principales en entrée correspondant aux métriques reliées aux dynamiques d’occupation des 

objets flottants par les agrégations de thons (i.e. la proportion d’objets flottants occupés, 

l’abondance locale sous les objets flottants et le nombre total d’objets flottants), et à celles 

décrivant les dynamiques associatives individuelles des thons, à savoir les temps continus de 

résidence (CRT) et d'absence (CAT). 

L’étude du cas du listao (Katsuwonnus pelamis) dans l’océan Indien occidental a permis de 

fournir des séries temporelles d’abondance absolues et relatives de la population de cette espèce 

pour la période 2013-2018. Cette méthode a adoptée par la Commission des Thons de l'Océan 

Indien (CTOI), pour les évaluations de stocks de cette espèce pour l’année 2020. L’étude s’est 

principalement appuyée sur les données issues des bouées échosondeurs équipant les DCP de 

la flottille française de thoniers senneurs. Ces données ont servi de base pour l’estimation de la 

densité d’objets flottants dans la zone d'étude et l’évaluation de la proportion de ceux occupés 

par les thons. L’abondance locale associée aux objets flottants a été déterminée à partir de la 

moyenne des captures de listao réalisées sous objets flottants par les thoniers senneurs. La 

valeur de CRT des listaos dans la zone d’étude était basée sur les travaux antérieurs de 

marquage électronique réalisés dans la zone par Govinden et al., (2010). L’absence de mesure 
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expérimentale des CAT dans la région a été contournée en estimant cette valeur à partir d’une 

conjecture établie sur la relation de proportionnalité inverse entre cette métrique et le nombre 

total d’objets flottants dans la zone d’étude. La sensibilité des estimations d’abondance à 

différentes valeurs de coefficient de proportionnalité a ensuite été évaluée. Puis, les gammes 

plausibles de valeurs de ce coefficient ont été empiriquement déterminées par la comparaison 

des valeurs absolues d’abondance estimées avec les biomasses totales de listao pêchées dans la 

zone.  

Les résultats montrent que les tendances d’abondance fournies demeurent peu sensibles aux 

variations des valeurs plausibles du coefficient de proportionnalité. Ils suggèrent en outre un 

net déclin de la population totale de listao dans l'océan Indien occidental au cours des années 

2013 à 2015, parallèle à l'augmentation soutenue du nombre de DCP observée au cours de la 

même période ; suivie d’une relative stabilisation de l’abondance des populations à partir de 

l’année 2016. L’adoption à partir de l’année 2015 de mesures limitant le nombre de DCP par 

les senneurs dans l’océan Indien, couplée aux conditions environnementales et aux 

caractéristiques biologiques propres à cette espèce (productivité forte et variable), pourraient 

constituer des possibles facteurs causatifs de cette stabilisation. 

Ce chapitre a ainsi montré qu’à partir d’un nombre limité d’observables décrivant les 

dynamiques associatives aux échelles individuelles et collectives des agrégations, il était 

possible de produire des estimations relativement fiables des populations de thons, capables de 

soutenir les évaluations de stocks. Il souligne aussi la nécessité d’une disponibilité accrue des 

données des bouées échosondeurs, ainsi que le développement à grande échelle de programmes 

de collectes de données visant à améliorer les actuelles connaissances sur les CRT et CAT des 

espèces thonières tropicales. 

 

Discussion générale 

Ce travail de thèse fournit un cadre méthodologique permettant d’utiliser les données issues des 

bouées échosondeurs dans une approche de modélisation permettant l’estimation directe de 

l’abondance des populations de thons tropicaux à partir de leurs dynamiques associatives avec 

les objets flottants. Malgré des incertitudes liées à l’absence de certaines données 

expérimentales (i.e. CAT) ou à leur disponibilité relativement limitée (i.e. nombre total de DCP 

utilisés), les estimations d’abondance réalisées au cours de cette étude se sont révélées 
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cohérentes avec celles traditionnellement utilisées pour les évaluations de stocks du listao dans 

l’océan Indien.  

L’importance des données des bouées échosondeurs pour une gestion opérationnelle des 

pêcheries a constitué l’un des points de discussion abordé par ce travail de thèse. En effet, les 

bouées offrent une source inédite d’information permettant d’évaluer en temps réel la 

distribution spatio-temporelle des espèces de thon tropical, et ouvrent un vaste champ 

d’applications possibles. Ces informations pourraient par exemple être intégrées dans une 

gestion opérationnelle des pêcheries et fournir des arguments scientifiques susceptibles 

d’appuyer en temps-réel, les prises de mesures de gestion et de conservation par les ORGP (e.g. 

identification des périodes et zones appropriées de fermeture spatio-temporelle de la pêche, 

nombre limite de DCP, etc.). Des modèles de distribution d’espèces (SDM) reliant ces nouvelles 

données aux conditions océaniques, pourraient offrir une compréhension accrue de l'influence 

de l'environnement sur la répartition des thons, aussi bien que la possibilité de prévoir les 

réactions des populations de thons, à divers facteurs de changement. Par ailleurs, cette nouvelle 

source d’informations est susceptible d'apporter un soutien intéressant à la pêche artisanale et 

de petite échelle. L'intégration dans les accords de pêche de mécanismes de partage des 

informations sur la distribution des thons et autres espèces associées, collectées par les bouées 

des thoniers senneurs industriels, dans les ZEE des états côtiers, pourrait très certainement 

contribuer à une meilleure structuration de l'accès aux ressources côtières pélagiques entre les 

acteurs industriels et artisanaux. En outre, le suivi quasi-constant de la circulation océanique 

réalisé par les bouées échosondeurs pourrait servir de base au développement ou à 

l’amélioration de systèmes de surveillance et d’alerte visant à réduire les impacts liés aux 

échouages des DCP (notamment sur les écosystèmes côtiers et récifaux), et à plus grande 

échelle de contrôler les mouvements des débris marins qui constituent actuellement une 

préoccupation environnementale majeure. Ces nouvelles données sont également susceptibles 

d’apporter de nouvelles connaissances sur l’écologie et le comportement des thons tropicaux. 

Par exemple, les estimations de populations issus de cette étude semblent être de nature à 

indiquer une atténuation du phénomène de fragmentation des bancs, se manifestant à travers 

une réduction globale du nombre de bancs dans l’océan Indien, parallèle à une augmentation 

de leur taille, et de celle des agrégations associées aux objets flottants. 

Toutefois, les données des bouées revêtent un caractère commercial et hautement stratégique 

pour les compagnies de pêches qui en sont propriétaires. En conséquence, malgré l’amélioration 

constante de la collaboration entre le secteur industriel de la pêche thonière et les scientifiques ; 
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leur accessibilité reste encore soumise à des processus longs et complexes limitant leur 

disponibilité à une communauté plus large de chercheurs. Le développement d'études 

soulignant leur importance et la pertinence de l’amélioration de leur accessibilité est susceptible 

de donner l’impulsion décisive aux ORGP et leurs parties prenantes vers un accès plus ouvert 

et une gestion opérationnelle et en temps réel des pêches intégrant ces nouvelles sources de 

données. 

 

Conclusion 

La conclusion de ce travail de thèse s’articule autour des nouvelles potentialités offertes par la 

nouvelle méthodologie proposée pour l’estimation des abondances des populations de thons. 

Elle insiste sur la pertinence de ce nouvel indice d’abondance, pour répondre aux besoins des 

Organismes Régionaux de Gestion de la Pêche au thon (ORGP), en matière de méthodologies 

complémentaires aux données de captures et d’effort pour l’estimation des stocks des thons 

tropicaux. Elle relève aussi que bien qu'initialement destinés aux espèces thonières tropicales, 

cette méthodologie pourrait potentiellement être appliquée à toute population d'espèce animale 

présentant un comportement associatif autour de points d'agrégation, qu'il s'agisse d’objets ou 

d'autres animaux vivants. La nécessité d’études complémentaires évaluant ce potentiel et 

permettant d’ouvrir de nouvelles perspectives pour leur application à un plus large éventail 

d'espèces animale, est également soulignée. 
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Introduction 

“Vous arrivez devant la nature avec des théories, la nature flanque tout par terre. 

You come to the nature with theories, the nature blows them away”. 

Pierre-Auguste Renoir 
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1. Introduction 

It is said that the word “calculus” (from the Latin word for “stone”) comes from an ancient 

pastoral practice of counting sheep leaving the pens, using stones placed in a basket whose 

count was later checked when the animals returned from the meadows. For these ancient 

shepherds, as for any wildlife manager nowadays, knowing the precise size of populations is a 

crucial issue for the optimal control, conservation or exploitation of resources. Unfortunately, 

estimating the size of a natural population is much more complex than the ancient shepherd 

method of counting stones. Exhaustive census is rarely possible for natural populations, since 

very often, there is no practical way to access all individuals or the entire distribution area of 

the population. As a result, mathematical models supported by a set of assumptions are rather 

used to link the population size with indicative metrics of its status, called indices of abundance. 

The core underlying assumption is based on the expected relationship between the overall 

population and measurements made on samples of that population. The whole art of population 

assessment therefore lies in identifying the nature of the relationships between abundance 

indices (A) measured on given spatial and temporal units, and the overall population (N). 

Fundamentally, these two quantities can be related by a proportionality parameter (p), according 

to the following equation: 

!" = "#$ (I. 1) 
In practice, numerous models going from a simple constant parameter to much more complex 

formulas can be used to describe this proportionality relationship. Similarly, abundance indices 

can be expressed in different forms, depending on the characteristics of the species (Skalski et 

al., 2005). For species that are easily accessible (e.g. noisy, visible or not very mobile), the 

abundance estimates can be made by direct observation and census of the number of individuals 

(e.g. large mammal herbivores: (Varman and Sukumar, 1995; Jachmann, 2002); birds: (Gregory 

et al., 1992); insects: (Yoo et al., 2003); etc.). A review of direct wildlife census methods can 

be found in Lewis (1970). Abundance may also be assessed indirectly by means of signs or 

evidences left by the animals, which provide relative indices whose variations over a defined 

period, reflect changes in the same direction in the overall population (Schwarz and Seber, 

1999; Wilson and Delahay, 2001). When the species are difficult to observe directly because 

they are fast-moving, highly migratory, or distributed over large areas, an accurate 

measurement of their population size is difficult to implement. Providing reliable indices of 
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abundance can quickly become more difficult, and very often the latter alternative (relative 

indices) may turn out to be the privileged or sometimes the only one available.  

With their extensive oceanic distribution and their highly migratory behaviour, tuna species are 

particularly illustrative of this situation. However, the health and sustainability of these iconic 

species strongly depend on the availability of reliable methods to estimate the status of their 

populations and their vulnerability to overfishing. Tuna are among the world’s most lucrative 

fish species, with an estimated global market value of more than $42 billion per year (Galland 

et al., 2016); and belong to species of crucial socio-economic importance to both developed 

and developing countries. They provide a wide variety of direct ecosystem services by 

supporting food security for many countries, generating employment in tuna fisheries and 

creating vital coastal livelihoods and economies (Bell et al., 2009, 2015; Gilman et al., 2014). 

As apex predators, tunas also have an ecological role recognized as key in the health and 

functioning of the ecosystem; and their depletion could lead to dramatic cascading ecological 

effects (Sund et al., 1981; Baum and Worm, 2009; Young et al., 2010; Duffy et al., 2017). Of 

the 15 species of tuna, seven species commonly referred to as “principal market tunas”, occupy 

a major economic importance in the global market (Majkowski, 2007). These principal market 

tunas include albacore (Thunnus alalunga), Atlantic bluefin tuna (T. thynnus), bigeye tuna (T. 

obesus), Pacific bluefin tuna (T. orientalis), southern bluefin tuna (T. maccoyii), yellowfin tuna 

(T. albacares), and skipjack tuna (Katsuwonus pelamis). They represented an estimated catch 

volume of 4.9 million tonnes in 2017, heavily dominated by catches of the three tropical tuna 

species (i.e. skipjack, yellowfin and bigeye tuna, representing 56%, 30%, and 8% of the total 

tuna catches respectively) (ISSF, 2019). Industrial tuna fishing began in the 1940s and 1950s 

due to a growing demand for canned tuna, with longline and pole and line as the main fishing 

gears (Figure I.1). Currently, purse seine represents the major gear capturing tropical tunas 

worldwide (65 % of the global tuna catches), followed by longline (11%), pole-and-line (8%), 

gillnets (4%) and miscellaneous gears (12%). This shift occurred during the 1980s as a result 

of the rapid development and global expansion of the tropical tuna purse seine fishery.  

Management of tuna species and other large species such as swordfish and marlin is under the 

responsibility of intergovernmental arrangements known as Regional Fishery Management 

Organizations (RFMOs). The five main tuna RFMOs in the world, from the oldest to the most 

recent, are: (1) the Inter-American Tropical Tuna Commission (IATTC) for the Pacific Ocean, 

(2) the International Commission for the Conservation of Atlantic Tunas (ICCAT) for the 

Atlantic Ocean, (3) the Indian Ocean Tuna Commission (IOTC) for the Indian Ocean, (4) the 
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Commission for the Conservation of Southern Bluefin Tuna (CCSBT) and the Western and 

Central Pacific Fisheries Commission (WCPFC). 

 

 

Figure I.1 Global trends in catch (tonnes) of major commercial tunas, by species (top) and gear 
(bottom), 1950-2017. Source: ISSF, (2019). 

 

These organizations face the ongoing challenge of sustainable management of tuna resources 

through specific processes called “stock assessment”. A fish stock is defined as a unit of a fish 

population considered in fisheries management. It may be all or a part of the population defined 

on the basis of spatial distribution or other biological or ecological coherences. Stock 

assessment is the part of fisheries science that aims to provide support for decision making by 

(1) evaluating the abundance of the stock and the impact of fishing on it, (2) identifying the 

potential effects of alternative harvest scenarios, and (3) defining the level of exploitation that 

would ensure an optimal exploitation of the fish stock (Sparre and Venema, 1998; Hilborn, 

2003). Fishery stock assessment primarily relies on data relating to total removal, age and length 

structure, and abundance indices of the population (Hilborn, 2012). However, a critical issue in 
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tuna fisheries management lies in the availability of abundance indices capable of reliably 

depict changes in tuna populations. Indeed, in spite of the significant progress made throughout 

history of marine fisheries science, a wide range of methods developed for assessing abundance 

of fish populations remain unfortunately difficult to implement for tuna species, or limited to a 

few species, or certain stages of development (early life stages or spawning stages with a more 

limited spatial distribution). The following paragraphs review the main population assessment 

techniques and abundance indices used in tuna management, and discuss their relevance, 

strengths and limitations particularly in relation to the three major tropical tuna species (namely 

skipjack tuna (Katsuwonnus pelamis), bigeye tuna (Thunnus obsesus) and yellowfin tuna 

(Thunnus albacares) as they account for most of the world’s commercial tuna catches (ISSF, 

2019). 

 

2. Abundance indices in tuna fisheries management 

Abundance indices used for the assessment of fish populations, including tunas, are mainly 

based on two types of data sources: fisheries-dependent and fisheries-independent data. 

Fisheries-dependent data are related to the fishing process itself, and mainly consist of usually 

mandatory information on catches and fishing activities (e.g. fishing effort) provided by the 

fishers themselves. On the other hand, fishery-independent data are mostly based on scientific 

surveys and involve a wide variety of techniques whose relevance for collecting data on the 

abundance and composition of fish stocks is largely dependent on species characteristics (e.g. 

acoustic or aerial surveys, etc.). 

 

2.1. Fisheries-independent indices 

Fishery-independent indices are constructed from data collected during periodic or episodic 

surveys conducted by scientists or fisheries management agencies. Although high quality data 

can be obtained through scientifically designed and standardized sampling and data collection 

carried out in independent surveys (National Research Council, 2000); fisheries-independent 

data may be affected by deficiencies related to their expensive cost and limited spatial and 

temporal coverage (Hilborn and Walters, 1992). 
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Fishery-independent assessments of tuna population are typically based on direct observations 

through visual or acoustic surveys, or indirectly through larval censuses. Mark and recapture 

methods are also commonly used in tuna population assessments. However, they deserve a 

special status as “semi-independent” surveys, since in the case of tuna population studies they 

are partly dependent on fishing activities, especially for information retrieval. These different 

survey techniques and the derived abundance indices are presented in the following sections. 

 

2.1.1. Aerial surveys 

The very first series of scientific aerial surveys to assess tuna populations were conducted from 

the 1990s onwards in the North-Western Atlantic (Lutcavage, 1995; Lutcavage et al., 1997), 

and along the Southern Australian coasts (Cowling and O’Reilly, 1999; Eveson et al., 2016). 

Before, spotting tuna schools from aircrafts was primarily used by the commercial tuna fishery 

as a fishing-assistance operation with the aim to improve their efficiency although some surveys 

were conducted for scientific purposes (Stéquert and Marsac, 1989; Petit, 1991; Basson and 

Farley, 2014). Aerial surveys consist of transects carried out in an aircraft at a constant speed 

and altitude, during which schools or aggregations of tuna (several schools) are visually 

detected, geolocated and roughly estimated in size by human observers (Figure I.2). Detection 

is made possible by the surface activity of tunas (jumping, fast swimming) related to their 

feeding or foraging activity (Bauer et al., 2020). The estimation of an abundance index from 

aerial surveys data is typically based on the distance sampling theory (Buckland et al., 2015). 

The transect is defined in a given area within which the estimate of the density of tuna schools 

(D) is usually calculated using the following formula:  

% = & 1
2'*+, (I. 2) 

where n denotes the number of detected tuna schools, L the transect length and w the width of 

the detection from the line of the transect. Aerial survey data also offer substantial information 

on the spatial distribution of the species concerned, and their ecology, especially when related 

to environmental data (Royer et al., 2004). 

Despite the relative simplicity of its methodological framework, the use of aerial surveys for 

tuna population assessment has limitations in terms of the spatial coverage that can be achieved 

by the method. Indeed, aerial surveys on the scale of large oceanic regions remain hardly 
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conceivable, both technically and economically. The method is therefore suitable for tuna 

species with a geographically limited distribution at one or another life stage. Nearly all its 

applications have been carried out on juvenile bluefin tuna, a temperate species known to 

assemble during this life stage at specific locations and periods (Eveson et al., 2016, 2018a; 

Bauer et al., 2020; Rouyer et al., 2020). 

 

 

Figure I.2: Schematic drawing illustrating Atlantic bluefin tuna (Thunnus thynnus) aerial surveys under 
perfect (left side) and impaired (right side) survey conditions. (1) aircraft on transect line; (2) tuna school 
feeding with multiple jumpers; (3) small tuna school feeding with single tuna jumping; (4) large tuna 
school aggregation zones extending over several miles; (5) perpendicular distance; (6) tuna schools 
chasing in deeper waters; (7) waves with whitecaps; (8) blind spot for lateral detection. Source: Bauer 
et al., (2015). 

 

The reliability of abundance indices constructed from aerial surveys is related to a good 

knowledge of the surface and vertical behaviour of the species of interest. Variability over time 

in the vertical behaviour of the species in response to the prevailing environmental conditions, 

is likely to induce significant biases in the interpretation of the aerial survey time-series (Bauer 

et al., 2015, 2020). The detectability of animals can also be strongly impeded by both 

environmental conditions and the sighting prowess of human observers (Eveson et al., 2018b). 

In practice, aerial surveys are generally limited to favourable weather conditions. For instance, 

aerial surveys of juvenile bluefin tuna in the Western Mediterranean Sea are conducted only 

during the summer season (Fromentin et al., 2003; Rouyer et al., 2020). On the other hand, 

observer rotation and assistance with video camera or unmanned aerial vehicles (UAVs) could 
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potentially help to reduce the perception bias in tuna spotting (Colefax et al., 2018; Žydelis et 

al., 2019; Jech et al., 2020). 

Finally, despite attempts to infer the number of fish from the size of the detected school (Bauer 

et al., 2015), aerial surveys still only provide a qualitative or semi-quantitative index of 

abundance, since they only give information on the density of schools and not on the biomass 

or density of individuals. The contribution of remote sensing techniques with LIDAR (Light 

Detection and Ranging) systems for the detection of tuna (Oliver et al., 1994; Churnside et al., 

1998; Larese, 2005), as well as acoustic surveys coupled with underwater observations are seen 

as promising prospects for improving this approach (Weber et al., 2013; Rouyer et al., 2018). 

 

2.1.2. Acoustic surveys 

The Allied fleet's need for a detection system against German submarines during the First World 

War constituted the first significant impetus to the progress in underwater acoustics, resulting 

in the development and first effective use of passive acoustic detection systems. Since then, 

there have been substantial advances in underwater acoustics techniques that have greatly 

benefited fisheries research. The use of acoustic techniques for observing fish and estimating 

fish abundance, described in detail by many authors (e.g. Maclennan, 1990; Simmonds and 

MacLennan, 2005), has become increasingly important over time.  

Estimating abundance of marine species through acoustic techniques relies on the use of active 

acoustic detection systems, specifically scientific echosounders that emit a sound pulse and 

measure the backscattered echoes from targets. Acoustic abundance estimation is then carried 

out following two approaches depending on whether the targets are dense schools or scattered 

individuals (Fernandes et al., 2002). When targets are sufficiently dispersed to allow their 

individual detection, absolute estimates of their abundance can then be made simply by 

counting their individual echoes (e.g. marine mammals: (Barlow and Taylor, 2005; Lewis et 

al., 2007)). For fish schools or shoals, the so-called “echo-integration” approach is used (Foote, 

1983). It consists of a quantitative estimation of the biomass based on the linearity relationship 

between the specific acoustic energy backscattered by a single fish and the total acoustic 

backscatter of the group of fish. Echo-integration thus implies an appropriate knowledge on the 

acoustic characteristic of fish species studied, namely their target strength value (acoustic 

reflection coefficient of the fish).  
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Currently, the use of acoustics to assess the abundance of marine species is a common method 

applied to a wide range of fish such as small pelagic species (e.g. Brandt, 1991; Hampton, 1992, 

1996; Porteiro et al., 1996; Gjøsæter et al., 1998; Toresen et al., 1998). However, the spatial 

distribution of tuna, particularly tropical species, represents a significant limitation to the 

application of this method given the size of the areas to be sampled. In addition, the relative 

paucity of data on the acoustic properties of tropical tuna species strongly compromises the 

processing of the acoustic signal into biomass estimates. As a result, there are still few 

applications of acoustics to assess their population abundance (Bertrand, 2000; Moreno et al., 

2019; Uranga et al., 2020), with nevertheless, the exception of Atlantic bluefin tuna for which 

a relative index based on the counting of echoes from single targets outside schools, is used 

since 2016 in stock assessments (Melvin et al., 2018; Minch, 2020). 

 

2.1.3. Larval surveys 

Abundance indices based on larval surveys have been widely used to infer information on the 

spawning biomass of bluefin tuna (Ingram et al., 2007, 2010, 2013, 2015; Lamkin et al., 2015). 

Scott et al. (1993) were the first to derive an abundance index for the Western bluefin tuna stock 

using larval abundances from annual ichthyoplankton surveys conducted since 1977 by the 

NOAA Fisheries in the Gulf of Mexico (for details on the sampling procedures refer to Richards 

and Potthoff, 1980 and McGowan and Richards, 1986).  

Being the species with the most extreme spatiotemporally restricted spawning behaviour with 

relatively well-identified spawning grounds (Richards, 1976; Scott et al., 1993; García et al., 

2005; Alemany et al., 2010; Muhling et al., 2010), bluefin tuna represents the most suitable 

candidate among tuna species for the use of larval surveys to study the abundance of its 

populations. This is mainly linked to the fact that unlike bluefin tuna, tropical tunas species 

have generally a significant overlap between spawning and feeding grounds, and longer 

spawning seasons of several months (Muhling et al., 2017). In addition, the visual identification 

of tropical tuna species in their larval stage is particularly challenging and may require the 

contribution of genetic analyses (Viñas and Tudela, 2009). 
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2.1.4. Mark-recapture techniques 

Mark-recapture is a common technique used to estimate the size of animal populations, to study 

movements and migration of individuals, to provide information on death and growth rates of 

wild species, as well as on fishing pressure (Katsanevakis et al., 2012). Widely used in 

terrestrial ecology for population assessment, mark-recapture techniques have been thoroughly 

addressed and reviewed by numerous authors (e.g. Seber 1986, 1992; Krebs 1999; Schwarz and 

Seber 1999; Seber and Schwarz 2002; Southwood and Henderson 2009; Katsanevakis et al. 

2012). Mark-recapture methods basically consist of capturing, marking (tagging) and releasing 

a number of individuals from a population and then re-sampling the same population to assess 

the number of marked individuals within the recaptures. The ratio of marked recaptures (R) to 

initially marked individuals (M) provides a detection probability (comparable to the 

proportionality parameter used in Equation I.1) which thus makes it possible to estimate the 

size of the entire population (N). For single episodes of capture and recapture, the simplest way 

to estimate abundance is given by the Lincoln-Peterson estimator for a closed population 

(Schwarz and Seber, 1999):  

!- = &/0+3 (I. 4) 
where C is the total number of recaptures. Mark-recapture experiments also provide valuable 

data on species biology, such as growth rates (Lehodey et al., 1999; Hearn and Polacheck, 2003) 

and migration patterns (Sibert et al., 1999; Shiham and Sibert, 2002; Ichinokawa et al., 2008). 

Nevertheless, the validity of the mark-recapture approach for abundance estimates depends on 

certain restrictive assumptions:  

- no effect of marking on individual fitness; 

- a constant ratio of marked to unmarked animals during the sampling interval; 

- a uniform probability of individuals being captured (or recaptured); 

- and a homogeneous distribution of individuals in the population after capture and tagging. 

In large-scale tuna-tagging projects, data may be significantly affected by the post-release 

mortality associated with tagging  (potentially as a result of an increased predation on released 

fish due to stress, physiological impairment or injuries resulting from the tagging operation),  

and by tag shedding (Hoyle et al., 2015; Katara et al., 2017; Gaertner et al., 2019).  

In addition, in tuna tagging programs, recaptures of tuna are primarily provided by the 

commercial fishery. As a consequence, conventional tagging techniques cannot be considered 
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fully independent of the fishery and rather deserve a status of “partially” or “semi-independent”. 

Depending on the nature of the fisheries, recapture rates can be substantially biased by a poor 

tagging reporting (Fromentin, 2010). Problems may also arise from the way in which tagged 

tunas disperse within the population to be estimated (Langley and Million, 2012; Kolody and 

Hoyle, 2015). On the other hand, the implementation of large-scale tuna tagging programs is 

expensive, logistically difficult and requires considerable effort and planning (Leroy et al., 

2015). Tuna tagging data are therefore provided on an episodic basis. 

Finally, although data from mark-recapture experiments have been an integral part of 

monitoring tuna stocks since the late 1970s (Leroy et al., 2015), they are rarely used alone to 

estimate tuna abundance, but are rather generally combined with annually collected fishery-

dependent data in integrated assessment models to obtain abundance estimates (e.g. ICCAT, 

2014, 2018, 2019; IOTC, 2020). 

 

2.1.5. Close-Kin Mark Recapture 

Traditionally, individual fish censuses represented the most obvious form of fish population 

assessment, but recent advances in molecular genetics now offer promising tools for measuring 

a wide range of population characteristics and monitoring their evolution over time (Pope et al., 

2010). Bravington et al., (2016a) presented an original alternative for estimating the absolute 

abundance of tuna populations based on a modified mark-recapture framework where 

“recaptures” are parents rather than individuals: the Close-Kin Mark Recapture (CKMR). The 

CKMR provides a fishery independent approach to estimate the spawning stock biomass based 

on the likelihood of detecting parent-offspring pairs (POPs) in a sample of fisheries landings. 

It relies on the kinship relationships between randomly sampled numbers of adults (ma) and 

juveniles (mj) to estimate the total abundance of adults in the population (Nadult), according to a 

relatively simple concept: each juvenile represents a genetically tagged “recapture” of its two 

parents (Figure I.3). Thus, the probability of a given juvenile being the offspring of an adult in 

the total population is 2/Nadult. Pairwise comparisons of genotypes of the sampled adults and 

juveniles, then makes possible to estimate Nadult, from an equation analogous to the Equation 

I.3, the Lincoln–Petersen abundance estimator in standard mark-release recapture  (Bravington 

et al., 2016b): 

!-56789 = 2:5:;< (I. >) 
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where P denotes the actual number of parent-offspring pairs (POPs) found experimentally. The 

successful application of this approach for the assessment of the absolute abundance of southern 

bluefin tuna (Thunnus macoyii) by Bravington et al. (2016b) has highlighted its interesting 

potential for monitoring and assessing stocks of other tuna species (Kolody and Bravington, 

2019). Currently, the Indian Ocean Tuna Commission (IOTC) has prioritized in its 2019 Work 

Plan, new research surveys based on CKMR for yellowfin tuna. 

 

 

Figure I.3: Schematic of parent-offspring pairs (POPs) relationships. Juveniles are the small fish at the 
top, and lines to larger fish represent parent-offspring connections; dark and light shades correspond to 
sampled and non-sampled individuals respectively. Solid lines represent the number of matches between 
adults and juveniles. Source: Bravington et al., (2016b). 

 

2.2. Fishery-dependent index: the Catch Per Unit of Effort 

In the management of tropical tuna fisheries, the wide distribution and highly migratory nature 

of tropical tuna species make the implementation and generalisation of fishery-independent data 

collection methods particularly challenging. As a consequence, stock assessments for these 

species rely almost exclusively on indirect abundance estimators calculated from input data 

associated with commercial catches (Maunder and Punt, 2004). Catch data, when related to the 

corresponding effort deployed by fishermen, are used to provide information on relative trends 

in the evolution of stocks in a given area and period, following the conceptual relationship 

described above (Equation I.1), by relating the catch rate or Catch-Per-Unit-Effort (CPUE) to 

the abundance (N), through the catchability of tuna (q). 
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3<?@ = A! (I. B) 
However, the interpretation of CPUE as an abundance index is notoriously problematic in 

fisheries science. Indeed, several factors likely to influence catchability can be misinterpreted 

as changes in abundance (National Research Council, 2000; Harley et al., 2001; Maunder and 

Punt, 2004; Maunder et al., 2006; Ye and Dennis, 2009). The typical situation of non-

proportionality between CPUE and abundance is known as “hyperstability” and corresponds to 

CPUE that remains high while abundance declines (Hilborn and Walters, 1992; Harley et al., 

2001). A hyperstable CPUE can lead to an overestimation of abundance and underestimation 

of fish mortality. The opposite, referred to as “hyperdepletion” (CPUE declining faster than 

abundance), can result in an overestimation of mortality while stocks remain weakly exploited. 

Addressing the inappropriateness of using CPUE data to assess the status of communities, 

Maunder et al., (2006) noted that the most common causes of this non-proportionality were 

related to: 

(i) changes of efficiency of fleets leading to increased catchability as a result of 

improved fishing techniques and operations, and accumulation of knowledge and information 

on the distribution and behaviour of fish; 

(ii) changes in species targeting which result in decreased catchability of one species to 

the benefit of another, and which may be incorrectly interpreted as a decrease in the abundance 

of the first species; 

(iii) environmental variations that may differently affect the species catchability from one 

area (or period) to another; 

(iv) and time-varying spatial dynamics of fish and fishing fleet:  since commercial fishing 

activities are obviously focused on areas with high population density, they may therefore give 

a biased picture of abundance. 

To allow undistorted comparisons over time, CPUE data are usually standardized using 

statistical models, to account for these various factors unrelated to changes in population 

abundance (Maunder and Punt, 2004; Bishop, 2006). 

In tropical purse seine fisheries, the continuous evolution of fishing power and strategies has 

considerably increased the catchability of tropical tuna species over the past three decades 

(Fonteneau et al., 1999; Lopez et al., 2014; Scott and Lopez, 2014; Torres-Irineo et al., 2014a; 

Dai et al., 2020). The increasing use of drifting fish aggregating devices (FADs) by purse seine 

fleets is one of the most important factors contributing to the increase in their fishing efficiency 
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(Fonteneau et al., 2000, 2013). FADs are man-made floating objects deployed by fishermen to 

facilitate their catches, by exploiting a peculiar behavioural trait of tropical tunas that lead them 

to gather around objects floating at sea (Fréon and Dagorn, 2000; Castro et al., 2002). 

Throughout the history of the tuna purse seine fishery, FADs have been equipped with 

increasingly technologically advanced instruments, providing fishers with various information, 

especially on the geolocation of FADs and the fish biomass associated with them (Lopez et al., 

2014; Moreno et al., 2019). In the early days of tropical tuna purse-seine fishing, the purse-

seiner activities mainly consisted of active periods of searching for free-swimming schools of 

tunas and fishing, although fishing on randomly encountered natural objects (e.g. logs) occurred 

since the start of the fishery. This search time for free-swimming schools constituted a relatively 

relevant metric for measuring the fishing effort associated with a catch in a given area and 

period (Fonteneau et al., 1999). The non-random nature of FAD-based fishery (due to remote 

information on fish presence and location) has quickly made inconsistent the traditional purse-

seiner nominal effort, based on this metric. As a result, although purse seine fleets alone account 

for the majority of the total global tropical tuna catches (ISSF, 2019), serious concerns have 

been raised about the use of time series of CPUE from this fishery in tropical tuna stock 

assessment models. 

 

2.3. Towards the derivation of novel abundance indices for tropical tunas 

For important and heavily exploited species such as tunas, the appropriateness of management 

policy decisions is generally closely linked to robust estimates of the status of populations in 

order to monitor their evolution over time and to interpret the magnitude of catches. Time series 

of abundances estimates (from fishery-independent or dependent sources) constitute, with 

information on mortality (natural and fishing mortalities) and population structure 

(compositional age, size, or sex ratios), the three main types of data commonly used in fisheries 

stock assessments (Hilborn, 2012). In the case of tropical tuna species, although a few 

independent methods for estimating abundance may be appropriate (notably the CMKR), in 

most cases they remain practical for only part of the stock, are logistically difficult to maintain 

in the long term or are simply too costly. As a result, abundance estimates of tropical tunas are 

primarily based on input data associated with catches, namely standardized CPUE data from 

longline fisheries for yellowfin and bigeye tuna. Regarding skipjack tuna, it is considered by 

most tuna RFMOs as a notoriously difficult species to assess. Catches of skipjack tuna by 

longline fisheries are so low that their catch rates are not considered to be particularly reflective 
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of the abundance of skipjack, or to exert a significant fishing mortality on this species. Skipjack 

tuna, which accounts for more than half of the global tuna catches, is mainly caught by purse-

seiners under drifting FADs (Dagorn et al., 2013a; ISSF, 2019). The purse-seine CPUE with its 

inherent uncertainties discussed in previous sections (particularly those related to the 

development of the FAD-based fishery), is therefore used as abundance index this species. 

These issues have in recent years led to a growing interest among scientists and fisheries 

managers in alternative methods for assessing the abundance of tropical tunas, which could help 

to reduce uncertainty in stock assessment results. 

Since the late 2000s, FADs deployed by purse-seine fisheries have been progressively equipped 

with satellite-linked echosounder buoys that continuously collect a range of data around them, 

including their geolocation and acoustic information on their associated biomass (Lopez et al., 

2014; Moreno et al., 2019). In some ways, these devices have turned drifting FADs into 

unprecedented observers of the open ocean (Imzilen et al., 2019) and have thus offered new 

opportunities to study different aspects of the ecology and behaviour of pelagic communities 

that associate with floating objects, including tunas (Moreno et al., 2016; Brehmer et al., 2019). 

Taking advantage of these new opportunities, Santiago et al., (2016, 2019), have developed the 

Buoy-derived Abundance Index (BAI): a catch-independent index of abundance for tropical 

tuna species based on data collected by satellite-linked echosounder buoys. The BAI is a 

relative index, which relies on an assumed proportionality relationship between the FAD-

associated biomass (estimated from acoustic data provided by echosounder buoys) and the total 

abundance of tuna. This index has been incorporated as a complementary abundance index into 

the last stock assessment of Atlantic yellowfin tuna conducted in 2019. 

In addition, recent decades have seen the increasing development of passive acoustics with the 

use of acoustic tags attached to fish that allow the monitoring of their movements (e.g. Ohta 

and Kakuma, 2005; Dagorn et al., 2007a; Schaefer and Fuller, 2013; Rodriguez-Tress et al., 

2017; Tolotti et al., 2020). However, until the findings of Capello et al., (2016), this technology 

was primarily dedicated to improving knowledge of the biology and behaviour of fish species 

and did not appear to have much application in fish abundance assessments (Nielsen et al., 

2009). Capello et al., (2016) have evidenced that for species that exhibit associative behaviour 

around aggregating points, absolute abundance of total populations could be derived from a 

model based on specific metrics that describe this behavioural characteristic, and from data on 

the local population around the aggregating points. 
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These two approaches open up interesting prospects in which FADs long exploited by fishers 

across the oceans to improve their catches, could be diverted to improve the assessment of 

tropical tuna populations through the development of novel abundance indices. Such indices 

could be based on the associative behaviour of these species with floating objects and the 

unprecedented data sources offered by echosounder buoys. 

 

3. Thesis objective 

The general objective of the thesis is to derive a novel abundance index for tropical tuna 

species based on their associative behaviour around floating objects. This objective implies 

a necessary improvement of knowledge about tuna behaviour and especially a better 

understanding of their associative dynamics with floating objects. Its implementation has 

therefore been defined according to a research strategy built around a consecution of three 

specific objectives: 

(i) To develop a methodological framework to extract reliable scientific information from 

data recorded by commercial echosounder buoys that equip FADs; 

(ii) To describe the dynamics of tuna aggregations around FADs from these new data 

sources; 

(iii) To provide a new abundance index for tropical tunas based on their associative 

behaviour with floating objects and echosounder data. 

 

4. Thesis structure 

The present thesis is structured in four main chapters. The first two address the preliminary 

specific objective related to the processing of data from echosounder buoys. Indeed, 

echosounder buoys data come from devices primarily intended to provide fishers with 

information on their target tuna species. Their use in a scientific framework therefore requires 

the development of adequate and standardized procedures for their collection, processing and 

validation. The first chapter is related to this prerequisite, and proposes a data collection 

protocol specifically designed for satellite-linked buoys used in the tropical purse seine fishery. 
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The second chapter presents a new processing approach for acoustic data collected by 

echosounder buoys, which breaks with the traditional echo-integration approach, and allows 

the characterization of fish aggregations under floating objects from the implementation of 

machine learning techniques. 

Based on the methodological framework provided in the previous sections, the third chapter 

addresses new questions on the dynamics of tuna aggregations with floating objects, at the scale 

of the Atlantic and Indian Oceans. Through the analysis of occupancy of floating objects by 

tunas, obtained from echosounder buoys, this chapter measures some key parameters 

characterizing the aggregations dynamics of these species. 

Chapter 4 describes the modelling approach underlying the new abundance index proposed for 

tropical tuna species, which relate their individual behavioural traits to the dynamics of floating 

object occupancy by their aggregations determined from echosounder buoys. An application of 

the model to the case study of the abundance of the skipjack tuna (Katsuwonus pelamis) in 

Western Indian Ocean is presented. 

Finally, the general conclusions and perspectives arising from this thesis dissertation are 

discussed. 

 



1 

 

 

 

 

 

Chapter 1:  

Processing data from satellite-linked buoys used in tropical tuna 

fisheries for scientific purposes: A standard protocol 

“Le savant doit ordonner ; on fait la Science avec des faits comme une maison avec des 

pierres; mais une accumulation de faits n'est pas plus une science qu'un tas de pierres 

n'est une maison. 

The Scientist must set in order. Science is built up with facts, as a house is with stones. 
But a collection of facts is no more a science than a heap of stones is a house.” 

Henri Poincaré 
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Abstract 

Satellite-linked buoys used by tropical tuna purse seiners on drifting fish aggregating devices 

(DFADs) provide a continuous stream of information on both the ocean characteristics and the 

pelagic communities associated with DFADs. This unprecedented amount of data is 

characterized by an ocean-scale distribution with high spatial and temporal resolution, but also 

by different data formats and specifications depending on buoy models and brands. Their use 

for scientific studies is therefore critically dependent on the algorithms used for their processing 

and standardization. This paper describes the data provided by the main buoy models used by 

the European purse seine fleet and presents a standardized processing protocol for their use in 

scientific studies. Three major issues that need to be addressed prior to the scientific 

exploitation of these industry-based data are identified (structural errors, data collected on land 

and onboard vessels) and five specific filtering criteria are proposed to improve their quality. 

Different filtering procedures are also compared for some of the criteria, and their advantages 

and limitations are discussed. 

Keywords: Instrumented DFADs; Satellite-linked buoys; Purse seiners; Tropical tunas; Data 

processing. 
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1.1. Introduction 

Defined as man-made floating objects specifically designed to attract tunas and improve 

catches, Drifting Fish Aggregating Devices (DFADs) constitute one of the major fishing tools 

used in the tropical tuna purse seine fisheries (Fonteneau et al., 2013). It has been estimated 

that around 65% of the global tropical tuna purse seine landings originate from catches under 

DFADs (Scott and Lopez, 2014a). The DFAD-based fishery relies on a behavioural trait of 

several pelagic marine species including tropical tunas leading them to gather in mass around 

objects floating at sea. Since their introduction in tropical tuna purse seine fisheries, DFAD 

technology has been subject to a rapid evolution beginning with various designs of rafts and 

fishers attaching different instruments to locate them, from reflectors to radio buoys and later 

satellite-linked GPS systems  (Dagorn et al., 2013a; Lopez et al., 2014). Currently, most 

deployed DFADs are equipped with satellite-linked echosounder buoys that provide near real-

time and remote information on the presence and the size of the fish aggregation associated to 

the DFADs (Lopez et al., 2014; Moreno et al., 2019b). This remote information results in 

significant increase in the fishing efficiency of purse seiners (Fonteneau et al., 2000).  

The positive effect of DFADs on purse seine fishing efficiency and their intensive use have 

raised several questions related to their impacts on tuna stocks and ecology, as well as on marine 

ecosystems (Dagorn et al., 2013a). The major changes in fishing strategies induced by the use 

of DFADs have also introduced significant biases and limitations in the traditional methods 

used to assess tuna populations from purse-seiner commercial data (Fonteneau et al., 2013; 

Torres-Irineo et al., 2014a). As a result, one of the key concerns of Tuna Regional Management 

Organisations (TRFMOs) currently lies in the need for complementary data and methods to 

reduce the uncertainties associated with DFADs in stock assessment models and to assess their 

actual influence on the sustainability of fisheries. In such context, the huge amount of data 

collected by the instrumented buoys equipping DFADs could constitute an important asset. 

Because of their number, wide spatial distribution and constant maintenance by fishers, 

satellite-linked echosounder buoys allow effortless and cost-effective collection of various 

types of data likely to provide valuable insights on the ocean dynamics (Imzilen et al., 2019), 

as well as on the distribution and behaviour of fish (Lopez et al., 2017; Orue et al., 2019c). Due 

to these characteristics, instrumented DFADs appear to be privileged observatories of marine 

pelagic communities (Moreno et al., 2016a; Brehmer et al., 2019). At present, three major 
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manufacturers dominate the DFAD buoy industry1, and offer different models varying in terms 

of hardware and software (Moreno et al., 2019b). Data collected on DFADs therefore consist 

of complex datasets that greatly vary in nature and format depending on buoy models. Although 

some processing protocols have already been proposed (Maufroy et al., 2015; Orue et al., 

2019c), they remain relatively brand specific. In parallel, growing concerns about the impacts 

of DFAD use have led to the development of a number of specific plans for their management 

by TRFMOs, incorporating, inter alia, the strengthening of reporting requirements on DFAD 

activities (e.g. IOTC: Res. 19/08; ICCAT: Rec 19-02; IATTC: C-19-01; WCPFC: CMM 2018-

01). 

As a key priority in their use for scientific or regulatory purposes, the typical heterogeneity in 

DFAD-related data therefore requires the design of a standard framework to process this huge 

amount of industry-based data into exploitable scientific data, notably through appropriate 

standards and procedures for their collection and processing. To this end, through an extensive 

exploratory analysis and comparison of performance of different processing algorithms applied 

to data from different manufacturers and models of buoys, we present a standard protocol 

including cleaning, control and validation procedures for the processing of raw data collected 

by satellite-linked buoys used in tropical tuna purse seine fisheries. 

 

1.2. Material and Methods 

1.2.1. Data collection 

Buoys data has been gathered in the Atlantic and Indian Oceans, under specific data-exchange 

agreements signed between different research organisms (i.e. AZTI and IRD) and EU tuna 

purse seiner associations (i.e. ORTHONGEL2 for French fleet of purse-seiners, Echebastar and 

Atunsa companies in ANABAC3 and OPAGAC4 for Spanish fleets), under the frame of EU 

project RECOLAPE5. 

                                                           
1 Marine Instruments (www.marineinstruments.es), Satlink (www.satlink.es) and Zunibal 
(www.zunibal.com) 
2 Organisation française des producteurs de thons congelés et surgelés 

3 Asociación Nacional de Armadores de Buques Atuneros Congeladores 

4 Organización de Productores Asociados de Grandes Atuneros Congeladores 

5 MARE/2016/22 “Strengthening regional cooperation in the area of fisheries data collection” 
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For each ocean and fleet, a dataset was created. It consisted in information collected by a sample 

of 1,000 buoys from the three main buoy manufacturers, during a random month of the year 

2016. According to their hardware and software, a wide range of information can be provided 

by the different buoy models (see Moreno et al., 2019). Common information provided included 

the buoy identification code, hour, date, position (latitude and longitude) and buoy speed. The 

Table 1.1 provides a list of the different buoy models present in the different datasets, as well 

as a description of the raw data received by the research organisms.  

Since the objective of this work was not to compare the characteristics of the databases between 

fleets or organizations, but rather to define a common processing protocol adapted to their 

potential specificities, the datasets examined for each fleet (also corresponding to specific data 

exchange-agreements) will herein be referred to as D1 and D2. Following the same principle, 

the different buoy models included in this study were also anonymized. The D1 datasets 

consisted of 62,902 and 61,194 rows for the Atlantic and Indian oceans respectively, whereas 

the D2 datasets were composed of 25,304 rows for the Atlantic Ocean, and 22,461 rows for the 

Indian Ocean. 

 

1.2.2. Data processing protocol 

The data processing protocol consists in the definition of five specific filtering criteria, 

structured into three main processing steps (see Figure 1.1). 

 

1.2.2.1. Stage 1: Structural errors filtering 

Structural errors are here defined as duplicate or irrelevant rows in the dataset resulting from 

failures in data collection or transfer. Three types of structural errors mainly related to failures 

during satellite-communication have been identified. 

(i) Filter F1: Duplicate rows 

Duplicate data refer to rows with identical buoy codes, timestamps and positions. Generally, all 

other information in the duplicate rows remain strictly identical, however in rare cases, missing 

values may occur for some lines. Duplicates were identified based on their identical buoy codes, 

timestamps and locations. In the cases of missing data, the row considered as the original was 

the one with the most complete information.  



Chapter1: A standard processing protocol for satellite-linked buoy data 

23 

 

 
Table 1.1: Description of the raw acoustic data received depending on buoy manufacturers and the 
different data-exchange agreements (DEA1 and DEA2). 

   Marine Instruments 
Satlink Zunibal 

   DEA1 DEA2 

B
uo

y 
O

pe
ra

ti
on

 D
at

a 

Buoy identification code     

Owner vessel(s)     

Buoy activation date     

Buoy deactivation date     

Flash (notification on activation of 
the buoy flash) 

    

Buoy operating mode)     

Buoy battery level     

L
oc

at
io

n 
da

ta
 a

nd
 

ot
he

r 
da

ta
 

Timestamp of GPS position data     

GPS position data     

Buoy speed     

Buoy drift angle     

Sea water temperature     

A
co

us
ti

c 
sa

m
pl

in
g 

da
ta

 

Timestamp of acoustic data 
collection 

    

Sampling frequencies     

Echosounder detection range     

Gain of acoustic samplings     

Resolution (number of bits used in 
each layer) 

    

Number of depth layers     

Total biomass index (estimated 
tonnage from the echosounder)     

Maximum biomass estimated at 
any layer 

    

Acoustic data format 

Integers (from 0-7 
or 0-15) 

representing the 
intensity of the 
acoustic signal 

detected 

Biomass (t) 
estimated per layer 
of 11.2 m over 115 

m depth (10 
layers), based on a 

buoy-integrated 
algorithm 

Biomass in 
tons (dB for 
each layer) 

Buoys models in the dataset 
M3+, M4I, M3I, 

MSI 
DL+, DSL+, 
ISD+, ISL+ 

T7+ 
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(ii) Filter F2: Ubiquitous rows 

Ubiquitous rows correspond to cases where two rows have identical buoy codes and 

timestamps, but are associated with different locations. Rows with the above characteristics 

were identified and the distance between locations was calculated. When the two positions were 

separated by less than 1 km, a randomly selected row was retained while the other was 

considered “ubiquitous”. Otherwise, the two rows were assigned as “ubiquitous”. 

(iii) Filter F3: Isolated positions 

Positions separated from their nearest neighbours on a buoy track, by more than 48 hours or 

having an inconsistent speed (considering a threshold of 35 knots, a value far above speeds of 

tuna purse seiners currently operating), were referred to as isolated positions. By addressing the 

buoy track (ensemble of positions belonging to a single GPS buoy), this filtering step allows to 

identify distinct series of consecutive positions (segments) separated by potential GPS failures, 

buoy relocations or buoy deactivation/reactivation events on a given buoy track. 

 

1.2.2.2. Stage 2: Filtering of land positions (Filter F4) 

Buoys located on land (due to beaching events or active buoys brought back to port) were 

detected using shoreline data from the GSHHG database (Global Self-consistent, Hierarchical, 

High-resolution Geography; Wessel and Smith, 1996). The influence of different shoreline 

resolutions on the filtering procedure was assessed through the comparisons of results from low 

and high-resolution shorelines buffered with 0.05°. 

 

1.2.2.3. Stage 3: Filtering of water/board buoys (Filter F5) 

Echosounder buoys can be activated on board ships prior to their deployment. Similarly, buoys 

retrieved from water may also continue to collect data on board vessels for variable durations. 

This leads to a buoy track composed of on-board and water segments. In order to discriminate 

on-board from water positions, two different approaches were compared. The former consists 

in a rule-based algorithm using buoy speed and its variation as main variables for classifying 

buoys data referred to as “kinetic classification algorithm”. The second relies on a random forest 

model (Breiman, 2001) trained from a learning dataset built from information provided by the 

Zunibal buoys. The two algorithms allow the classification of buoys data into three classes: 

“water” (for buoys actually at water), “board” (for buoys emitting on board a vessel) and 
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“undetermined” (subset of positions that remained unclassified). Finally, comparisons of the 

classification results of the two algorithms were carried out through the calculation of simple 

matching coefficient estimated from confusion matrices derived from the outputs of the two 

approaches (Sokal, 1958). For this purpose, unclassified buoy positions were considered as 

emitting as water.  

(i) Kinetic classification algorithm (KiC) 

The kinetic classification algorithm uses deterministic rules encoded in the form of if-then-else 

statements as a representation of knowledge. The different rules derive from the knowledge of 

surface currents in tropical oceans and the behaviour of tuna purse seiners. The algorithm 

consisted of two iterative classification steps based on three main parameters (see Figure 1.2A): 

(i) the buoy speed (calculated between consecutive buoy positions separated by less than 24 

hours) (ii) the buoy speed history (maximum value of the speed recorded over a time window 

of 3 days before the current buoy position), (iii) and the change in buoy speed (absolute value 

of the speed difference between two consecutive points). The three rules governing the first 

classification step were stated as follows: 

1) A position with a buoy speed higher or equal to 6 knots correspond to an on-board position; 

2) A position with a buoy speed history of less than 6 knots corresponds to a buoy emitting at 

water; 

3) A position that does not meet either of the two rules has an undetermined status. 

The selected cut-off value of 6 knots is largely higher than the theoretical maximum drift speed 

in the Atlantic and Indian Oceans. Since the average speed of tuna seiners is well above this 

value (from 9 to more than 12 knots), buoys whose speed exceeds this threshold are very likely 

to be on board a vessel. The second rule is related to the fact that active purse seine vessels 

rarely maintain speeds below 6 knots for a long duration, therefore buoys that display low 

speeds for a continuous period can be considered as actually emitting at water. A number of 

segments (series of consecutive positions along a buoy track) can be classified from this set of 

rules. From those segments, (1) “constant sequences” defined as consecutive positions with the 

same predicted status (on-board – on-board, or water – water), and (2) “transition sequences”, 

where the buoy shifts from one status to another, were defined. 

The second classification step relied on the significant differences in the change of buoy speed 

observed between constant and transition sequences (Figure 1.2B). Remaining positions were 

classified from neighbour to neighbour by comparing their change of buoy speed with the 
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corresponding distributions found respectively for constant or transition sequences (using a 

Student t-test at confidence level of 95%). This procedure was carried out in both directions 

(forward and backward) on each buoy segment. 

 

Figure 1.1: Workflow of the standard processing protocol for satellite-linked echosounder buoys used 
in tropical purse seine fisheries. 

 

Figure 1.2: Description of the kinetic classification algorithm (panel A), and speed changes in constant 
(board: board-board, water: water-water), and transition state (board-sea, sea-board) from the D1 dataset 
in Atlantic Ocean (panel B), Values represent the number of data in each sequences. 
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(ii) Random forest approach (RF) 

The RF approach derives from the procedure proposed by Orue et al., (2019). The learning 

dataset was built from data provided by the buoys from model 9, which have the capability to 

detect the buoy immersion in seawater, thanks to an algorithm fed with data from an inbuilt 

conductivity sensor. The RF classification model was constructed using (i) distance between 

two consecutive points, (ii) buoy speed; (iii) change in speed; (iv) acceleration, (v) azimuth 

(degree), (vi) change in azimuth (degree) and (vii) time since the first and last observation of 

the corresponding buoy trajectory (days), as predictors variables. This RF model has previously 

shown good performance in discriminating water/board positions from a buoy model, (kappa 

= 0.87, further details on model construction and evaluation can be found in Orue et al., 2019) 

 

1.3. Results 

1.3.1. Dataset structure 

In each of the two oceans, large differences between the composition in buoy models available 

in the two datasets (D1 and D2) were observed (Figure 1.3). The D1 datasets consisted of two 

to four model buoys depending on the oceans, and were mostly dominated by the buoy from 

the “Model 3”. The D2 datasets were composed of about twice as many, with a majority 

proportion of “Model 6” and “Model 8” buoys in the Atlantic and Indian Oceans respectively. 

The temporal resolution of the data provided was also characterized by a significant variability 

depending on the fleet (or data exchange agreement) or buoy model. The D2 datasets were 

limited to a single data provided per day and per buoy, regardless of the ocean or buoy model. 

In contrast, the data resolution was higher in the D1 dataset, with about 3 to 9 data per day 

depending on the buoy model for both oceans (Figure 1.4). 
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Figure 1.3: Percentage of buoy model constituting the datasets in the Atlantic and Indian Oceans. 

 

 

Figure 1.4: Average and standard deviation of the temporal resolution of the data provided by the 
different buoy models in the Atlantic and Indian Ocean datasets. 
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1.3.2. Structural errors filtering outputs 

For all oceans and datasets, structural errors represented less than 1.5% of the entire data (Table 

1.2). Duplicate rows occur only in the D1 datasets, while the largest amount of isolated and 

ubiquitous rows was reported for D2 dataset in the Indian Ocean. 

 

Table 1.2: Number and percentage (in brackets) of structural errors for the different datasets in the 
Atlantic Ocean (AO) and the Indian Ocean (IO). 

Filters 
D1 D2 

AO IO AO IO 

F1. Duplicated 47 (0.07%) 94 (0.15%) 0 (0%) 0 (0%) 

F2. Ubiquitous 11 (0.02%) 11 (0.02%) 0 (0%) 149 (0.66%) 

F3. Isolated 38 (0.06%) 46 (0.07%) 91 (0.36%) 174 (0.77%) 

Total 96 (0,15%) 151 (0,24%) 91 (0,36%) 323 (1,43%) 

 

1.3.3. Land filtering outputs 

The amounts of data filtered from the use of low and high-resolution shoreline data were 

roughly similar, although with slight differences in the Indian Ocean (Table 1.3). The 

percentage of land positions ranged between 1% and 8%.  

Table 1.3: Number and percentage (in brackets) of data recorded on land for the different datasets in 
the Atlantic Ocean (AO) and Indian Ocean (IO). 

F4. Land 
D1 D2 

AO IO AO IO 

Low Res. 5,099 (8.1%) 1,708 (2.8%) 317 (1.3%) 205 (0.9%) 

High Res. 4,915 (7.8%) 2,352 (3.8 %) 325 (1.3%) 333 (1.5%) 
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1.3.4. F5 outputs: water/board classifications 

Cross-comparisons of classifications performed by random forest and kinetic algorithms 

resulted in high matching coefficients for the four datasets. The two approaches showed very 

strong agreements for D2 dataset in the Indian Ocean (99%), and D1 datasets in both oceans 

(more than 96%). The weakest agreement (94%) was observed for the D2 dataset collected in 

the Indian Ocean (Table 1.4). 

Less than 0.5% of positions from the D1 dataset remained not classified by the kinetic 

algorithm. This value was considerably higher for the D2 dataset, which showed increases from 

10 to more than 30 times the number of unclassified data compared to D1 dataset, in Indian and 

Atlantic oceans, respectively (Table 1.5). More than 87 % of the positions were classified as 

“water” by the both approaches, while “on-board” positions varied from 0.1 to 5.5% depending 

on the algorithm, ocean and dataset. 

 

Table 1.4: Simple matching coefficients (percentage of agreement) between the random forest and the 
kinetic algorithm classifications for the different datasets in Atlantic and Indian Oceans. 

 Atlantic Ocean Indian Ocean 

D1 96% 97% 

D2 99% 94% 

 

Table 1.5: Number and percentage (in brackets) of water, board and unclassified positions from kinetic 
classification (KiC) and random forest (RF) algorithm in the different datasets for Atlantic (AO) and 
Indian (IO) Oceans. 

F5. Water/Board 
D1 D2 

AO IO AO IO 

Board 
RF 2,746 (4.4%) 595 (1.0%) 122 (0.5%) 971 (4.3%) 

KiC 3,469 (5.5%) 492 (0.8%) 22 (0.1%) 170 (0.7%) 

Water 
RF 55,135 (84.5%) 56,020 (91.5%) 22,853 (90.3%) 18,976 (84.5%) 

KiC 54,136 (86.1%) 58,679 (95.9%) 22,897 (90.5%) 21,307 (94.9%) 

Unclassified 
RF 2,010 (3.2%) 2,076 (3.4%) 1,924 (7.6%) 1,941 (8.7%) 

KiC 102 (0.2%) 164 (0.3%) 1,977 (7.8%) 726 (3.2%) 
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1.4. Discussion 

This paper presents a standardized processing method and an exhaustive description of data 

from satellite-linked buoy models used by the European purse seiners. To date, there is still a 

significant lack of information on DFADs worldwide, although this information could be 

crucial to address current issues raised by their massive use in tropical tuna fisheries. As 

outlined by Dagorn et al., (2013), the route towards a sustainable use of DFADs requires an 

attentive assessment of their impacts on tuna stocks and non-target species, as well as on 

habitats and ecosystem. In such context, information provided by satellite-linked buoys, could 

be a valuable tool to ensure an adequate monitoring of the DFAD use, and thus to support the 

various DFAD management plans adopted by the TRFMOs in recent years. They could also 

play an important role in improving the catch per-unit-effort standardization (CPUE), notably 

through the development of common indicators of the number of operational buoys at sea 

(Fonteneau et al., 1999; Katara et al., 2016, 2017). Similarly, characterization of fish 

aggregations underneath DFADs based on the acoustic data collected is likely to help in the 

development of new approaches to mitigate purse seine bycatch (L. Manocci, 2020,  pers. 

comm.), or the derivation of alternative abundance indices for tropical tuna species (Capello et 

al., 2016; Santiago et al., 2016). Finally, the near real-time assessment of the spatio-temporal 

dynamics of DFAD trajectories based on buoy data, undeniably constitutes a promising tool to 

address the growing concerns related to DFAD beaching events and their impacts on sensitive 

habitats (Maufroy et al., 2015; Davies et al., 2017; Escalle et al., 2019a).  

The first step towards the achievement of each of these objectives is to ensure an adequate level 

of quality of the data provided, through an appropriate protocol to process these industry-based 

data primarily intended for use at vessel or fleet scale into standardized data that can be used at 

a more global scale. In this work, the proposed protocol relies on a set of filters defined and 

validated on different datasets greatly varying in structure and characteristic depending on the 

data-exchange agreements between national research institutes and fleets, as well as the buoy 

specificities. Mainly focused on position data and other related information provided by the 

buoys, the protocol aims to provide the basic level of quality required for the use of these data 

for scientific purposes. 

However, it does not include a standard framework for the processing of acoustic data collected 

from the different echosounder buoy brands. Although, those data may be important for 

ecological and behavior investigations based on echosondeur buoys, developing a standard 
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protocol for their processing constitutes a challenging task. Indeed, the types and formats of 

acoustic data provided are highly variable between brands and within models of the same brand. 

Due to their specific hardware and software characteristics, buoys operate over a wide range of 

frequencies, sampling rates, detection range, or resolution (depth and thickness of water column 

layers sampled). They generally provide biomass indices computed from proprietary 

algorithms, which can be associated or not with the raw acoustic backscatter values for some 

models, or with categorical scores representing the backscatter signal in each of the sampled 

layers for others (Moreno et al., 2019b). Addressing this issue, some authors have designed 

specific processing approaches in order to process the acoustic measurement from one of the 

buoy models, into tuna abundance data (Lopez et al., 2016). As an alternative, given the large 

amount of data involved, the contribution of data-driven supervised learning techniques could 

prove to be a valid option to be explored in order to develop a general methodological 

framework for characterizing fish aggregations under floating objects and providing reliable 

estimates of their abundance from echosounder buoys (Baidai et al., 2020c). The aim of the 

present protocol is to achieve standardization of the preliminary operations prior to the 

implementation of this type of studies and their subsequent application to the data collected. 

One of the major issues associated to buoys data is related to the identification of buoys actually 

at water from those emitting on-board a vessel. Although, some models have integrated sensors 

allowing the detection of buoy soaking, this information is not available for a wide majority of 

models. Maufroy et al. (2015) in their analysis of spatio-temporal patterns associated with the 

use of DFADs, were the first authors to describe a processing protocol for buoy data. They 

proposed an automatic classification of “water” and “on-board” positions, based on a random 

forest approach trained with a subset of manually pre-classified data, and followed by a post-

processing step to improve classification performance. The random forest approach from Orue 

et al., (2019), on the other hand, benefited from ground truth information provided by sensors 

embedded in some buoy models, indicating whether the buoy is in the water or not. The 

comparisons of its results with the kinetic algorithm classification proposed in this work, 

revealed very high agreement rates for the classified positions. This is not surprising, since the 

analysis of the importance of the predictors in the random forest model revealed that the most 

relevant variables to discriminate on-board from water positions (i.e. buoy speed and its 

variation, see Orue et al., 2019), are also the main parameters on which the KiC algorithm is 

based. Nevertheless, the random forest algorithm produces a higher number of unclassified 

positions than the KiC algorithm, as the first and last positions of the analysed buoy segments 
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are systematically unclassified due to the impossibility of calculating the predictive parameters 

associated with them. Unclassified positions from KiC algorithm are rather due to both the 

presence of very short trajectories and the low temporal resolution of data. Indeed, this 

algorithm uses rules that require the availability of a sufficient amount of data, measured with 

a high temporal resolution (at least 2 positions per day), to provide a correct analysis of the 

speed history along the buoy's track. Its performances are thus, significantly affected by the 

time-resolution of the datasets, as evidenced by the differences between the outputs for the D1 

and D2 datasets (resulting from the one position per day in the D2 datasets relative to the higher 

temporal resolution in the D1 datasets). As precautionary principle, it could be proposed to 

consider the unclassified positions as actual positions at water. Nevertheless, in order to 

minimize misclassification, the use of high-resolution data (all the positions recorded in a day) 

is recommended if available. A more attentive assessment should however be given to this high-

resolution datasets, as the study revealed their higher probability of containing structural errors. 

High-resolution shoreline data should also be privileged for land filtering procedures. Lower 

resolutions could potentially lead to an underestimation of echosounder data collected on land, 

due to the possible removal of small reefs and islands. However, due to the huge amount of 

data to handle (e.g. the “Marine Instruments” buoys operated by the French purse seine fleet, 

represents over the period 2010-2018, a raw data volume of around 150 million entries), and 

the subsequent computational costs required by their processing, the use of low-resolution data 

should not be excluded, especially since the study showed that the results from the both 

resolutions are roughly similar. 

 

1.5. Conclusion 

Scientists have long interacted productively with fishermen to benefit from their knowledge, or 

to gain access to the sea for sampling (Armstrong et al., 2008). Opportunistic data from fishing 

activities, such as those provided by satellite-linked echosounder buoys, could be regarded as a 

continuous industry-based survey that can provide valuable information to refine the 

understanding of the open-sea and its pelagic communities. However, not originally intended 

for scientific exploitation, these industry-based data must be subject to a careful assessment of 

their validity. In this paper, from an exhaustive analysis of the heterogeneous set of data 

provided by the main satellite-linked buoys used by the tropical tuna purse seine fleets, we 

described the preliminary operations to be applied in order to use these data in scientific 
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applications. Despite the lack of appropriate procedures for acoustic data strictly speaking, this 

approach offers a standardized framework for the necessary processing of satellite-linked buoy 

data for scientific research. 
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Chapter 2:  

Machine learning for characterizing tropical tuna aggregations 

under Drifting Fish Aggregating Devices (DFADs) from 

commercial echosounder buoys data 

“J'essaie toujours de faire ce que je ne sais pas faire, c'est ainsi que j'espère apprendre 

à le faire. 

I'm always trying to do what I can't do, that's how I hope to learn to do it.” 

Pablo Ruiz Picasso 
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Abstract 

The use of echosounder buoys deployed in conjunction with Drifting Fish Aggregating Devices 

(DFADs) has progressively increased in the tropical tuna purse seine fishery since 2010 as a 

means of improving fishing efficiency. Given the large spatial coverage of DFADs, the acoustic 

signal provided by echosounder buoys can provide an alternate source of information to the 

conventional CPUE index for deriving trends on tropical tuna stocks. This work aims to derive 

reliable indices of presence of tunas (and abundance) using echosounder buoy data. A novel 

methodology is presented which utilizes random forest classification to translate the acoustic 

data from the buoys into metrics of tuna presence and abundance. The training datasets were 

constructed by cross-referencing acoustic data with logbook and observer data which reported 

activities on DFADs (tuna catches, new deployments and visits of DFADs) in the Atlantic and 

Indian Oceans from 2013 to 2018. The analysis showed accuracies of 75 and 85 % for the 

recognition of the presence/absence of tuna aggregations under DFADs in the Atlantic and 

Indian Oceans, respectively. The acoustic data recorded at ocean-specific depths (6 – 45 m in 

the Atlantic and 30 – 150 m in the Indian Ocean) and periods (4 am – 4 pm) were identified by 

the algorithm as the most important explanatory variables for detecting the presence of tuna. 

The classification of size categories of tuna aggregations showed a global accuracy of nearly 

50% for both oceans. This study constitutes a milestone towards the use of echosounder buoys 

data for scientific purposes, including the development of promising fisheries-independent 

indices of abundance for tropical tunas. 

Keywords: Tropical tunas; Direct abundance indicator; Echosounder buoys; Fish Aggregating 

Devices; Purse seiner.  



Chapter 2: Machine learning for characterizing tropical tuna aggregations 

37 

 

2.1. Introduction 

Many marine species are known to naturally aggregate under floating objects. Although still 

poorly understood, this behaviour is widely exploited by fishermen, who deploy man-made 

floating objects (hereafter referred to as Fish Aggregating Devices or FADs) worldwide to 

improve their catches (Kakuma, 2001; Fonteneau et al., 2013; Albert et al., 2014). The use of 

drifting FADs (DFADs) in tropical tuna fisheries was first introduced in the late 1980s in the 

Eastern Pacific Ocean by the US purse seine fleet (Lennert-Cody and Hall, 2001) and was later 

extended to all oceans and fleets from the 1990s. The instrumentation of DFADs with GPS 

beacons and echosounder buoys, in the mid and late 2000s respectively (Lopez et al., 2014), 

led to major changes in fishing strategies and behaviour of purse-seine fleets (Torres-Irineo et 

al., 2014a). By providing skippers with almost real-time remote information on the precise 

location of DFADs, and on the potential presence and size of the tuna aggregation, echosounder 

buoys reduced the search time between two successful DFAD sets (Lopez et al., 2014). As a 

result, modern DFADs have significantly increase fishing efficiency (Fonteneau et al., 2013). 

Consequently, their use has increased considerably in the past few decades. Recent studies 

indicate that in less than a decade, the number of DFADs deployed in the Atlantic and Indian 

Oceans have increased at least fourfold (Fonteneau et al., 2015; Maufroy et al., 2017). It is 

estimated that over half of the annual tropical tuna purse seine catch originate from fishing sets 

on DFADs (Dagorn et al., 2013; Fonteneau et al., 2013). 

Aside from being highly efficient fishing tools, the large number and vast spatial distribution 

of DFADs, coupled with their constantly evolving technology (Lopez et al., 2014), mean that 

they can also potentially provide unprecedented scientific insights into pelagic communities 

(Moreno et al., 2016; Brehmer et al., 2018). The echosounder buoys attached to DFADs 

regularly produce and transmit biomass estimation data. This dataset potentially holds a major 

opportunity for improving the management of tropical tuna stocks through the development of 

fishery-independent abundance indices (Capello et al., 2016; Santiago et al., 2016). Currently, 

the main abundance indicators used in stock assessment for tropical tunas are derived through 

the standardization of Catch per Unit of Effort (CPUE) from commercial data (Fonteneau et al., 

1998; Maunder et al., 2006). However, owing to the constant technological advances occurring 

in the purse seine fishery, it is extremely difficult to accurately standardize the CPUE time-

series (Fonteneau et al., 1999). Traditionally, search time was used to quantify normal fishing 

effort in this fishery, however, owing to its non-random nature, the DFAD-based fishery has 
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made this metric inconsistent, thus introducing major biases and uncertainties in the relationship 

between tuna catches and abundance (Fonteneau et al., 1999; Gaertner et al., 2015). 

The need for the consideration of non-traditional data sources to provide alternate abundance 

indices for stock assessment of tunas is becoming increasingly apparent. In this regard, the large 

amount of acoustic data autonomously collected by commercial echosounder buoys on DFADs 

is of undeniable value. However, the direct exploitation of this data remains challenging. The 

biomass estimate that a buoy produces is limited by the reliability and variability of the 

information provided, which depends on the hardware and software characteristics of the buoy, 

and varies between manufacturers (Lopez et al., 2014; Santiago et al., 2016). As a result, the 

data provided by echosounder buoys are heterogeneous in types and formats, with limited 

studies having provided an assessment of their accuracy for use in scientific investigations. 

(Lopez et al., 2016; Baidai et al., 2017; Orue et al., 2019a). 

In recent years, fisheries scientists have shown a growing interest in machine learning methods 

for the processing of both passive acoustic data (Roch et al., 2008; Zaugg et al., 2010; Noda et 

al., 2016; Malfante et al., 2018) and acoustic data collected by scientific echosounders 

(Fernandes, 2009; Robotham et al., 2010; Bosch et al., 2013). Despite this trend, very few 

studies have been conducted on the implementation of automated classification methods for 

analysing the extensive datasets collected by commercial vessels (Uranga et al., 2017).  

This paper presents a new methodology, based on machine learning, for processing the 

echosounder data collected from one of the main models of echosounder buoy used to equip 

DFADs worldwide (Moreno et al., 2019). 

 

2.2. Material and Methods 

2.2.1. Database description 

2.1.1.1. Echosounder buoy data 

We used data from the Marine Instruments M3I buoy (https://www.marineinstruments.es), 

collected on DFADs deployed by the French purse seine vessels operating in the Western Indian 

and Eastern Atlantic oceans from 2013 to 2018. The dataset consists of more than 60 million 

data points collected by approximately 35 000 M3I buoys (see Supplementary information S1). 
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This model of buoy includes a solar powered echosounder operating at a frequency of 50 kHz, 

with a power output of 500 W, a beam angle of 36°, and a sampling frequency of 5 minutes 

(Figure 2.1A). The acoustic data are processed by an internal module that automatically 

converts the acoustic energy into two acoustic indices; (i) a total biomass index and (ii) 50 

integer acoustic scores (ranging from 0 to 7) indicating the acoustic energy recorded within 3 

m depth layers, over a total detection range of 150 meters (Figure 2.1B). In the default-operating 

mode, the internal module stores the 50 acoustic scores that correspond to the highest total 

biomass index recorded every 2 hours. From here on these 50 acoustic scores will be referred 

to as an “acoustic sample”. The assessment of the accuracy of the total biomass index calculated 

directly by the buoy’s internal module can be found in Supplementary information S1. The set 

of acoustic scores which constitute the acoustic sample is transmitted via satellite to the purse 

seine vessel every 12 hours under default settings. During the satellite communication, the GPS 

position of the buoy is also recorded and transmitted. 

 

 

Figure 2.1: Technical specifications of the Marine Instruments M3I echosounder buoy. (A): beam width 
or cover angle (a), depth range (h), and diameter (D) at 150 m, (B): example of an acoustic sample. 
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2.1.1.2. Activity data on DFADs  

To ground truth the echosounder buoy dataset, catch and fishing activities were obtained from 

fishing logbooks of purse seine vessels and from on-board observers from 2013 to 2018 in the 

western Indian and eastern Atlantic oceans (further information can be found in the 

Supplementary information S1: 1. Database description). Observer data were collected under 

the EU Data Collection Framework (DCF) and the French OCUP program (Observateur 

Commun Unique et Permanent), which reached a coverage rate of 100% in the Atlantic Ocean 

in 2015 (Goujon et al., 2018), and over 80% since 2016, in the Indian Ocean (Goujon et al., 

2017). The aim of merging these two datasets was to obtain the best information available 

through different data sources (i.e. correcting potentially misreported operations on DFADs). 

From this joint dataset, the date, time, GPS location and buoy identification code associated 

with (i) fishing sets, (ii) newly deployed DFADs and (iii) visits to DFADs equipped with buoys 

owned by the vessel and which did not result in a fishing operation, were selected. For 

successful fishing sets on DFADs, catch data for the three primary target species; yellowfin 

(Thunnus albacares), bigeye (Thunnus obesus) and skipjack tuna (Katsuwonus pelamis) were 

also considered. These catch data were used to ground truth the buoy’s ability to detect the 

presence and size of tuna aggregations, assuming that the entire fish aggregation is encircled 

and captured by the fishing vessel. Conversely, newly deployed DFADs and visits to DFADs 

that did not result in any catch were used to ground truth the buoy’s ability of detecting the 

absence of a tuna aggregation. For this assessment, DFAD deployments and visits where fishing 

sets were reported within the following week, were omitted, to ensure that the data truly 

represented the absence of tuna at the DFADs. Similarly, only the deployments of new DFADs 

were considered and all other deployment operations were discarded (e.g., reinforcement of an 

existing DFAD, deployment of a buoy on a natural log). 

Skunk fishing sets (sets where the tuna school totally or partially escaped) and activities, for 

which the reported set position was inconsistent with the position reported by the buoy, were 

removed. Only data for which the buoy identification code corresponded to a buoy code present 

in the echosounder buoy database were retained in the analysis. The final database used for 

each activity and ocean is described in Table 2.1. 
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Table 2.1: Number of fishing sets (with catch ≥ 1 ton), visit and deployment data collected from 2013-
2018 and used in the presence-absence classification for the Atlantic and Indian Oceans. 

 Atlantic Ocean Indian Ocean 

 Catch Visit Deployment Catch Visit Deployment 

Logbook 817 255 405 2918 1031 6722 

Observers 151 0 228 513 0 2487 

Total 968 255 633 3431 1031 9209 

 

2.1.2. Acoustic data pre-processing 

Daily acoustic data provided by an individual buoy consists of a 50 × N matrix S, where 50 

represents the number of depth layers and N corresponds to the number of acoustic samples 

provided for that day according to the operating mode of the buoy (in the default operating 

mode, the acoustic scores are stored every 2 hours, thus N=12). Elements of the matrix S 

correspond to the daily acoustic scores Sij (i.e., integers ranging between 0 and 7) recorded at 

different depth layers i (i=1, 50) and different times of the day j (j=1, N). In a pre-processing 

step, the temporal and spatial information was aggregated to standardize the data and achieve a 

reduction in dimensions as follows: 

(1) the acoustic scores of the two shallowest layers (0 – 6 m depth), representing the 

transducer blanking zone, were removed, leading to a 48 × N matrix; 

(2) then, for each layer i, the daily acoustic scores Sij were averaged over 4-hours periods, 

resulting in a reduced matrix S’ of 48 × 6 (Figure 2.2);  

(3) a clustering method was applied on S’ along the dimension i, to identify homogeneous 

groups of depth layers. The clustering method was based on a dissimilarity matrix computed 

from Euclidean distance and Ward's method (Murtagh and Legendre, 2014). The acoustic 

scores in each identified group were compared through a Kruskal-Wallis test6;  

                                                           
6 Clustering analyses were conducted  using the R function “hclust” (R Core Team, 2019), and the 
Kruskal-Wallis test with the R function “kruskal.test” 
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(4) for each homogeneous group G, the acoustic scores recorded previously for each of the 

i depth layers constituting the group were summed and rescaled to obtain a unique score (S''Gj) 

per group G and time period j, according to Equation (2.1). 

CD;EE =" F CG;EHJGKL:MNO" × ",D (2.1) 

where j denotes the 4-hours time period, nG the number of depth layers belonging to group G 

and maxs is a constant denoting the maximum score (7 in the case of M3I buoys). The result of 

the pre-processing step leads to a NG × 6 matrix S’’ (i.e., NG groups of layers × 6 four-hour 

periods recorded during a day), summarizing the acoustic information collected on a daily scale, 

and referred to hereafter as a “daily acoustic matrix” (Figure 2.2). 

 

 

Figure 2.2: Schematic view of the acoustic data pre-processing. (1) Temporal resolution reduction, 
averaging acoustic samples over a 4-hour period. (2) Layer aggregation combining the 48 vertical layers 
into 6 layers based on cluster analysis. The final output is a 6×6 matrix summarizing the acoustic signal 
recorded over 24 hours between 6 and 150 m. Acoustic scores are integer values (ranging from 0 to 7), 
representing the intensity of the acoustic backscattered signal per 3 m depth layer. Time-aggregated 
acoustic scores represent the average value of the acoustic scores over the 4-hour interval. Group scores 
represent the sum of layer scores (scaled between 0 and 1) per homogeneous group of layers identified 
from the clustering analysis. 
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2.1.3. Supervised learning classification  

2.1.3.1. Training dataset 

The training datasets were constructed by cross-matching activity data (catch, deployments, 

visits without fishing sets) with the daily acoustic matrices, using buoy identification codes, 

dates and times for each ocean. A first binary training dataset was constructed for describing 

the presence or absence of tuna, in which catch events corresponded to tuna presence and 

deployment and visits without catch, to the absence of tuna (see Table 2.2). A second multiclass 

training dataset was created for describing the size of the tuna aggregation. The catch data were 

divided into three classes: < 10 tons, 10 – 25 tons, >25 tons, based on the total catch of the set 

(i.e., the sum of the catch of the three target tuna species: yellowfin tuna, bigeye tuna and 

skipjack tuna). The number and limits of the size classes were selected in order to retain a 

sufficient and balanced number of data points in each class for the learning process, while also 

maintaining consistency with the catch data. Class limits were based on the first quantile (10 

tons) and the average (25 tons) of catches under DFADs in the dataset (see Table 2.3). 

 

Table 2.2: Structure of the training dataset used in the presence-absence and multiclass classification 
for the Atlantic and Indian Oceans (over the period 2013-2018). 

Ocean No tuna 
Tuna 

< 10 tons [10, 25 tons] > 25 tons 

Atlantic 888 397 303 268 

Indian 10240 904 1288 1239 

 

Table 2.3: Summary statistics of major tuna catches (in tons) from DFAD fishing operations collected 
from observer and logbook databases from 2013 to 2018, in the Atlantic and Indian Oceans. (Min. and 
Max. denote for minimum and maximum catch values, respectively. SD represents standard deviation 
and Qu. stands for quantile) 

Ocean Min. 1st Qu. Median Mean 3rd Qu. Max. SD 

Atlantic 1 6 15 22.61 30 177.70 25.59 

Indian 1 10 20 26.73 34 300 26.77 
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The daily acoustic matrices of tuna presence were constructed using the acoustic data recorded 

the day before catch events. Similarly, the daily acoustic matrices corresponding to tuna 

absence were selected from the daily acoustic matrices obtained the day prior to DFAD visits 

without fishing sets, and those obtained on the fifth day after new DFAD deployments. The 

rationale for considering these 5-day periods after deployment was to account for the acoustic 

signal produced by the non-tuna species. Prior studies (Deudero et al., 1999; Castro et al., 2002; 

Nelson, 2003; Moreno et al., 2007; Macusi et al., 2017) have indicated that the colonization of 

DFADs by non-tuna species takes place during the first days after deployment. Furthermore, 

preliminary analyses conducted on 528 and 5868 newly deployed DFADs, in the Eastern 

Atlantic and Western Indian oceans respectively, indicated a rapid increase in the acoustic 

signal recorded by the buoys during the first five days following deployment (Supplementary 

information S3: Fig. S3.1 and S3.2). After considering all of these reasons, we assumed that 

acoustic data recorded at this post deployment time-scale are more likely to represent the 

presence of non-tuna species under DFADs. 

 

2.1.3.2. Random forest algorithm 

The random forest classification algorithm7 (Breiman, 2001) was applied on an ocean-specific 

basis. Predictors were represented by daily acoustic matrix values. Three thousand trees were 

grown for each classification. This high value does not negatively impact the model’s 

performance (Breiman, 2001), and helps to stabilize the importance of the variables more 

effectively (Liaw and Wiener, 2002; Probst et al., 2019). For each classification model, the 

number of variables randomly sampled as candidates at each split was assessed through a grid-

search strategy implemented with the R package “caret” (Kuhn, 2008). In order to deal with the 

imbalanced number of observations in the different size categories a stratified down-sampling 

procedure, which consisted of resampling the dominant size categories to make their 

frequencies closer to the least common size category, was also applied (Kuhn and Johnson, 

2013). 

 

                                                           
7 The random forest classification was performed by using the R package “randomForest” (Liaw and 
Wiener, 2002) 
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2.1.3.3. Model evaluation 

The overall accuracy (i.e., the proportion of correct predictions) and the kappa coefficient 

(Cohen, 1968) were used to assess the overall performance of both binary and multi-size 

category classifications. Kappa coefficient is a reliability index estimated according to Equation 

(2.2): 

PM##M = "Qr(M)" R Qr(S)1 R Qr(S) (2.2) 
where Pr(a) is the total proportion of agreement between the two classifications and Pr(e) is 

the theoretical proportion of agreement expected by chance. The closer this ratio is to 1, the 

better the classification performed. In each classification, the conventional statistical measures 

of the performance of a binary classification test: sensitivity, specificity, and precision were 

evaluated from confusion matrices, using Equations (2.3) to (2.5): 

CS,OTUTVTUW = " X<
X< Y Z! (2.4) 

C#S[T\T[TUW = " X!
Z< Y X! (2.>) 

<]S[TOT^, = " X<
X< Y Z< (2.B) 

where for presence/absence classification, TP (true positive) and TN (true negative) are the 

proportions of presence (or absence) correctly classified; FN (false negative) and FP (false 

positive) are the proportions of absence (or presence) incorrectly predicted. For multiclass 

classification, positive cases correspond to the aggregation size category considered during the 

evaluation, while all other categories correspond to negative cases. Sensitivity (also known as 

recall or true positive rate) measures the efficiency of the algorithm in correctly classifying 

positive cases, and specificity (or true negative rate) measures the efficiency of the algorithm 

in correctly classifying negative cases. Precision (or positive predictive value) is the fraction of 

correctly predicted presence among all tuna presence prediction.  

The importance of the predictors in the classification process for each ocean was assessed 

through the analysis of the mean decrease in accuracy of the random forest model (i.e., the 

increase of prediction error after permuting each variable while all others remained unchanged 

during the tree construction; Breiman, 2001). Model training and evaluation were performed 

through a hold-out validation method which was repeated ten times. In each of the ten replicates, 
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the original dataset was divided into two subsets: the training set and the validation dataset 

(representing 75% and 25% of the initial data, respectively). 

 

2.3. Results 

2.3.1. Pre-processing of sampled depth layers 

The clustering analysis carried out on the 3 m depth layers led to the formation of six groups of 

layers whose composition was relatively similar between the two oceans (Figure 2.3). In both 

oceans, the comparison of the acoustic scores between the identified groups showed highly 

significant differences (p-value at Kruskal-Wallis test < 0.001 for both Indian and Atlantic 

Oceans). Scores declined strongly with depth. The deepest group of layers (which also 

aggregated the greatest number of layers), exhibited the lowest acoustic values, with averages 

close to zero (Figure 2.4). 

 

Figure 2.3: Dendrogram from the cluster analysis of raw acoustic data for the Atlantic (A) and Indian 
(B) Oceans. The red horizontal line indicates the height at which the dendrogram was sliced to create 
the 6 groups of layers. Colors identify the different groups of depth layers used to pre-process the 
acoustic data. 
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Figure 2.4: Boxplot of acoustic score values in the aggregated-layer groups identified by the cluster 
analysis, for the Atlantic (A), and Indian (B) Oceans. Red diamonds represent mean value of scores in 
each layer group. 

 

2.3.2. Presence/absence classification 

The random forest algorithm performed well in discriminating between the presence and 

absence of tuna, with an overall accuracy of 75 and 85% in the Atlantic and Indian oceans, 

respectively (Table 2.4). In the Atlantic Ocean, the classification model was effective in 

detecting DFAD aggregations with tuna (sensitivity of 0.83), but exhibited a notable level of 

false positives (specificity of 0.67). In the Indian Ocean the opposite trend was observed with 

the classification of tuna presence performing well (sensitivity of 0.81) and the detection of 

their absence also producing reliable results (specificity of 0.90). 

Table 2.4: Summary of tuna presence/absence classification performances for the Atlantic and Indian 
Oceans: mean and standard deviation values (in brackets) of evaluation metrics. 

Evaluation Metrics Atlantic Indian 

Accuracy 0.75 (0.02) 0.85 (0.01) 

Kappa 0.51 (0.04) 0.70 (0.02) 

Sensitivity 0.83 (0.02) 0.81 (0.01) 

Specificity 0.67 (0.03) 0.90 (0.01) 

Precision 0.73 (0.03) 0.88 (0.01) 
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2.3.3. Classification of aggregation sizes  

The classification of aggregations into size classes was considerably less efficient than the 

presence-absence classification, with low overall accuracies (48 and 47 %) observed for the 

Atlantic and the Indian Oceans, respectively (Table 2.5). In the Atlantic Ocean, the highest 

proportion of misclassification was observed in the 10 – 25 tons category (precision of 0.22), 

whereas tuna schools below 10 tons and above 25 tons both performed similarly (precision of 

0.32 and 0.28 respectively). In the Indian Ocean, tuna schools over 25 tons and below 10 tons 

were also the most reliably detected aggregation size classes (precision of 0.44 and 0.42 

respectively); while intermediate aggregation sizes (10 – 25 tons) were successfully classified 

less regularly (precision of 0.35). 

 

2.3.4. Predictor importance 

For both binary and multiclass classifications, the importance of the acoustic predictors in the 

classification process showed strong ocean-specific patterns. In the Atlantic Ocean, the 

detection of tunas was principally driven by acoustic data recorded from 6 m to 45 m (Figure 

2.5A and Figure 2.6A). Conversely, in the Indian Ocean, the main predictors resulted from 

deeper layers (30 m to 150 m, Figure 2.5B and Figure 2.6B). In these depth ranges, acoustic 

data recorded during daytime (4 am – 4 pm) appeared to be the most significant for both oceans 

and across all types of classifications. It should, however, be noted that in the Atlantic Ocean, 

the binary classification produced a wider time window (0 to 4 pm) than in the Indian Ocean. 
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Table 2.5: Summary of multiclass classification performances for the Atlantic and Indian Ocean. Mean and standard deviation (in brackets) of evaluation 
metrics 

 Atlantic Ocean 

 

Indian Ocean 

 No tuna <10 tons [10 , 25 tons] > 25 tons No tuna <10 tons [10 , 25 tons] > 25 tons 

Sensitivity 0.67 (0.03) 0.36 (0.05) 0.24 (0.08) 0.34 (0.06) 0.87 (0.03) 0.19 (0.01) 0.29 (0.02) 0.54 (0.04) 

Specificity 0.82 (0.02) 0.80 (0.03) 0.84 (0.04) 0.85 (0.04) 0.80 (0.01) 0.91 (0.01) 0.82 (0.02) 0.77 (0.01) 

Precision 0.77 (0.03) 0.32 (0.04) 0.22 (0.04) 0.28 (0.05) 0.59 (0.02) 0.42 (0.04) 0.35 (0.03) 0.44 (0.02) 

Accuracy 0.48 (0.02) 0.47 (0.02) 

Kappa 0.26 (0.03) 0.30 (0.02) 
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Figure 2.5: Importance of depth layers and day period in presence/absence classification for the Atlantic 
(A) and Indian (B) Oceans. Each cell represents a combination of depth and time period. Colours 
indicates the importance of the predictor in the classification. 

 

 

Figure 2.6: Importance of depth layers and day period in multiclass classification for the Atlantic (A) 
and Indian (B) Oceans. Each cell represents a combination of depth and time period. Colours indicates 
the importance of the predictor in the classification. 
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2.4. Discussion 

This study describes a new methodology for processing data collected by a model of 

echosounder buoy commonly used in the DFAD purse seine fishery. The approach utilizes the 

acoustic scores recorded at different depths and times of the day and combines data pre-

processing procedures and machine learning algorithms to classify tropical tuna aggregations 

under DFADs. Although several models of echosounder buoys process data internally and 

generate abundance indices for tuna, previous studies have shown that such information can be 

unreliable. This could explain why most purse seine skippers pay little attention to this 

information (Lopez et al., 2014). Rather than relying solely on these processed outputs, skippers 

tend to combine the acoustic information recorded at specific depths and times with their 

empirical knowledge and the oceanographic characteristics of the region to assist their decision-

making.  

Working on a different brand of buoy, Lopez et al. (2016) developed the first approach to 

improve biomass estimations from data collected by echosounder buoys. These authors 

suggested that the acoustic signal collected during sunrise (i.e., when tuna are generally the 

most tightly concentrated under DFADs), should be considered for processing and assumed the 

structure of the aggregated biomass based on knowledge of the vertical behaviour of species 

under floating objects. Under this assumption, they suggested a vertical segregation between 

the species that make up the multispecific aggregation under DFADs (non-tuna species [3 – 25 

m], small tunas [25 – 80 m] and large tunas [80 – 115 m]), and applied an echo-integration 

procedure to convert the acoustic signal from each depth layer into biomass estimates using 

specific values of target strength and individual average weight for each group. The application 

of this approach to a larger dataset in the Indian Ocean (287 fishing sets) by Orue et al (2019) 

was found to be less effective than expected, and potentially affected by the large spatio-

temporal variability between oceanic regions which skewed the main assumptions that underlie 

the approach. 

The methodology proposed by the present study did not make any assumptions regarding the 

vertical and temporal distribution of tuna at DFADs. Using a supervised learning algorithm, 

this methodology mimics the learning process of the fishers on how they interpret the acoustic 

scores based on their experience. The training dataset used for this purpose utilizes buoy data, 

which is considered to be ground-truthed. These ground-truthed data have three underlying 

assumptions. The first assumption is that the tuna caught by a purse seine vessel around a DFAD 
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represents all the tuna aggregated under that DFAD. This is typically the case, although it is 

possible that some tuna escape during the fishing procedure, such events are considered to be 

minor (Muir et al., 2012). In exceptional situations when very large fishing sets are made (> 

200 t), the skipper may decide to retain only part of the aggregation to avoid damaging the net. 

The second assumption is that tunas do not immediately associate with newly deployed DFADs. 

Although Orue et al. (2019b) indicated that tuna may arrive first under DFADs, previous studies 

(Deudero et al., 1999; Castro et al., 2002; Nelson, 2003; Macusi et al., 2017), including 

interviews with fishers (Moreno et al., 2007) suggested otherwise. In this study, the daily 

acoustic matrix recorded five days after the deployment of a new DFAD was used to represent 

the absence of tuna. It would be useful to develop dedicated studies that would aid in the 

understanding of the aggregation process of tuna and non-tuna species around DFADs. Finally, 

the third assumption considered that a purse seine vessel visiting its own DFAD (DFAD 

equipped with the vessel’s buoy) without fishing also represents the absence of a tuna 

aggregation at the DFAD. It may be countered that a skipper could decide not to set on a DFAD 

when the vessel is already full, but this is an extremely rare event. External factors (e.g. strong 

currents) may also impede the fishing operations. However, if a vessel heads towards a DFAD 

that it owns, it is fair to assume that this would result in a fishing set (if tunas are present). 

Furthermore, in an effort to avoid any bias associated with the external factors that could 

influence the skipper’s decision, only DFAD visits that were not followed by a fishing set within 

seven days were taken into consideration. Our decision to include visits without fishing 

operations in the training database as “absence of tuna” was taken based on numerous 

discussions with skippers. According to many of them, it is not uncommon that the echosounder 

buoys report high levels of acoustic energy even if tuna are absent from the aggregation. The 

objective of including these DFAD visits in the database was to improve the ability of the 

classification model to detect such false positives.  

The results from this study highlight the effectiveness of the proposed methodology for 

discriminating between the presence and absence of tuna aggregations under DFADs equipped 

with M3I buoys in both the Indian and Atlantic oceans. To date the reliability of this model of 

buoy in estimating the presence and size of tuna aggregations had only been assessed 

anecdotally based on opinion and feedback from skippers. The development of reliable methods 

for processing data provided by commercial echosounder buoys represents a key step in the use 

of these fishing tools for scientific purposes, particularly the study of the different aspects of 

the ecology and behaviour of tuna associated with floating objects. The algorithm’s lower 
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performance in the Atlantic Ocean, where a higher proportion of false positive predictions of 

tuna presence were generated, could well be related to the size of the training dataset. In the 

Atlantic Ocean, this dataset was 5.5 times smaller than that used for the Indian Ocean. However, 

this difference may also reflect an ocean-specific vertical distribution of fish aggregations under 

DFADs. In the Indian Ocean, previous studies have described a vertical segregation between 

tuna and non-tuna species (Forget et al., 2015; Macusi et al., 2017). Such segregation would 

result in the determination of an absence of tuna to be straightforward for the classification 

algorithm. To date no studies have investigated the vertical distribution of tuna and non-tuna 

species under DFADs in the Atlantic Ocean. The depth of the thermocline in the eastern Atlantic 

Ocean is known to be shallower than in the western Indian Ocean (Schott et al., 2009; Xie and 

Carton, 2013). This difference may result in tunas occupying shallower depths and thus mixing 

more regularly with non-tuna species. Such a phenomenon could provide an explanation for the 

higher rates of false positives generated in the Atlantic Ocean (i.e., false detection of the 

presence of tuna). The analysis of the relevance of the predictive factors in the random forest 

classifications showed that, for both oceans, daytime periods were the most relevant factor for 

distinguishing the presence of tuna schools from other acoustic targets. This result is likely 

linked to the behaviour of tuna schools and their spatial and temporal distribution around 

DFADs. Sonar surveys conducted on DFADs in the Indian Ocean revealed that tuna form a 

large number of small and dispersed schools during the night, and few and larger schools during 

daytime (Trygonis et al., 2016). Another possible reason could be related to the influence of 

the diel vertical migration of the deep scattering layer (Robinson and Goómez-Gutieérrez, 

1998), which may affect the acoustic signal during night-time hours. 

In both oceans, the performance of the classification algorithm for discriminating between 

different aggregation sizes was considerably less satisfactory than the presence/absence of 

tunas. There are several possible explanations for these limitations. One potential source of bias 

may stem from the differing species composition considered in each size class. Due to skipjack 

tuna lacking a swim bladder, their acoustic response is very different from that of yellowfin or 

bigeye tuna (Josse and Bertrand 2000; Boyra et al. 2018), as such an aggregation of a given 

size would result in different acoustic signatures depending on the percentage of each species 

that make it up. Another source of bias could be linked to the position of the tuna aggregation 

in relation to the area that is sampled by the buoy (detection cone). Depending on the size of 

the aggregation and the behaviour of tuna around the DFAD, it is likely that the buoy’s acoustic 

cone only detects part of the tuna aggregation. Some environmental factors could also affect 
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both the acoustic signal detection and fish behaviour, and could thus have an effect on the 

classification of the aggregation size. Water temperature, for example, is known to have an 

effect on both the acoustic signal (Bamber and Hill, 1979; Straube and Arthur, 1994) and the 

abundance of tuna (Boyce et al., 2008). As such, the interpretation of buoy data, particularly 

concerning the accurate estimation of the aggregated biomass, may be strongly influenced by 

area and season-specific factors. In addition, close examination of the scores in the layer groups 

identified by the cluster analysis also revealed that layers deeper than 50 m were characterized 

by very low scores (Figure 2.4). Previous studies on the vertical distribution of fish species 

under DFADs found that tuna regularly occurred below this depth (Dagorn et al. 2007a; Dagorn 

et al. 2007b; Forget et al. 2015; Matsumoto et al. 2016; Lopez et al., 2017). Consequently, it 

appears fair to assume that the low values obtained for these depths are likely related to the 

limited detection capability of the device at such depths, which may also explain the poor 

estimates of the size of the tuna schools.  

The principle findings of this work showed that machine learning offers promising pathways 

for processing acoustic data provided by commercial echosounder buoys. Although this work 

has focused on a single model of buoy, it can easily be expanded to encompass other models 

and brands. The only essential requirement is access to a large training database. 

 

2.5. Conclusion 

The methodology developed in this study provides accurate results for the assessment of 

presence/absence of tuna schools at DFADs in both the Atlantic and Indian Oceans. This 

approach may be applied to other models of echosounder buoy and particularly to the recent 

M3I+ model, a novel multi-frequency buoy that has been widely adopted in recent years. 

Although more extensive analyses could improve the performance of the proposed 

methodology, specifically regarding assessment of the aggregation size, the accurate 

discrimination between the presence and absence of tuna schools around DFADs is a critical 

step towards the exploitation of echosounder buoy data for providing novel and robust 

indicators of abundance for the management of FAD fisheries in years to come. 
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Supplementary information S1 

 

Database description and reliability of buoy abundance index provided by 

the buoy 

 

1. Database description 

1.1. Echosounder database and technical characteristics of the buoys 

At the time of this study, the echosounder database consists of data recorded by buoys from the 

manufacturer “Marine Instruments” (Nigràn, Spain, https://www.marineinstruments.es), 

equipping the French fleet in the Indian and Atlantic oceans, during the period from 2010 to the 

present day. The database is hosted by Ob7/IRD8 and constitutes the totality of the Marine 

Instruments buoys deployed by the French fleet from 2010. The data were made available as 

part of an ORTHONGEL / IRD confidentiality agreement concluded in May 2016. The dataset 

corresponds to four different buoy models, which differ mainly in the presence or specifications 

of their echosounders (Table S1.1). Three of them, which represent more than 97% of all the 

buoy models in this database are equipped with an echosounder device (Figure S1.1).  

 

 

Figure S1.1 : Characteristics of the echosounder buoys database from 2010 to 2017 

 

                                                           
8 Observatoire des Écosystèmes Pélagiques Tropicaux exploités (Institut de Recherche et de 
Développement) 
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Table S1.1: Main technical specifications of Marine Instruments buoys 

 MSI M3I M4I M3I+ 

Year 2010 2010 2012 2016 

Satellite GPS : Yes Yes Yes Yes 

Echo-sounder : No Yes Yes Yes 

Frequency : - 50 kHz 50, 120, 200 KHz 50 and 200 KHz 

Power : - 500 W 500 W 500 W 

Resolution per 
layer : 

- 3 m 3 m 3 m 

Range : - 150 m 150 m 150 m 

Blind area : - 6 m 6 m 6 m 

Soundings : - 
each 5 

minutes 
each 5 minutes (in 
three frequencies) 

each minute (in two 
frequencies) 

 

1.2. Operation data on DFADs : Logbook and Observers database 

Two data sources were used to gather information on activities on DFADs: fishing logbooks 

and observers’ data, both hosted by Ob7/IRD. The logbook data covered the data collected by 

the French purse-seiners’ skippers in fishing logbooks during the period 2013 – 2017, in both 

the Atlantic and Indian oceans. It was supplemented by data from observer’s programs 

conducted in the same oceans and over the same time. Observer data were collected in the frame 

of the EU Data Collection Framework (DCF) and the French OCUP program, and have reached 

a 100% coverage rate for the French purse seine fleet since 2015 in Atlantic Ocean (Goujon et 

al., 2018), and more than 80% after 2016, in Indian ocean (Goujon et al., 2017). Catch values 

of the fishing sets from the combined logbook and observer database were characterised by a 

skewed distribution (Figure S1.2) with average values of tuna catch per set of 23 and 26 tons 

in the Atlantic and Indian, respectively (Table S1.2). 
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Figure S1.2 : Distribution of catches in FAD fishing operations collected from observer and logbook 

databases over the period 2013 to 2018, in Atlantic (panel A)  and Indian oceans (panel B). 

 

Table S1.2: .Summary statistics of major tuna catches (in tons) in FAD fishing operations collected 

from observer and logbook databases over the period 2013 to 2018, in Atlantic and Indian oceans. (Min. 

and Max. denote for minimum and maximum catch values, respectively. SD represents standard 

deviation) 

Ocean Min. Median Mean Max. SD 

Atlantic 1 15 22.61 177.70 25.59 

Indian 1 20 26.73 300 26.77 

 

2. Reliability of M3I buoy abundance index 

M3I buoys represent more than 70% of the buoy models in the database, and are equipped with 

echosounders. The raw acoustic values recorded at each sampling are lost after their processing 

by the internal modules of the buoy. Only discrete scores varying from 0 to 7, provided per 3-

meter layers, which represent the percentage of the beam occupied by fish in the corresponding 

depth layer, are provided. For each acoustic sample, the buoy also provides a biomass index 

computed through a proprietary algorithm, and supposed to be proportional to the actual 

biomass sampled by the device. We assessed the reliability of this index by comparing its values 

recorded the day before the fishing set with the actual catches made on the same aggregation. 
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These values were used based on the assumption that aggregation under the FADs remains 

relatively stable over this period, and also to avoid measurement bias due to buoy handling and 

possible disturbances that may occur during fishing operations.  

The dataset was obtained from cross-referencing catches from logbook and observers database 

with echosounders database, over the period from 2013 to 2017. Null fishing sets were removed 

from the analysis, because they represent false negative situations where buoys detect biomass 

that the fishing operation was not able to catch for any reason (too deep fish, strong currents, 

etc.). The dataset consisted in 663 and 1639 catches data respectively in Atlantic and Indian 

oceans. It was supplemented with buoy biomass index values recorded 5 days after deployment 

of a new DFAD, associated to tuna absence, to the purpose to assess the ability of index in 

estimating tuna absence underneath DFAD. The structure of the final dataset used for 

assessment of buoy biomass index can be found in the Table S1.3. 

The buoy biomass index (BBI) performance was then assessed by two type of comparisons:   

(i). a quantitative one, assessing the relation between Buoy Biomass Index (BBI) and 

actual catches; 

(ii). and a qualitative one, evaluating the index performance in detection of tuna 

presence/absence under the DFAD. 

 

Table S1.3 : Structure of dataset used in assessment of BBI reliability 

 Atlantic Indian 

Deployments 517 5183 

Fishing Sets 663 1639 

 

2.1. Quantitative performance of Buoy Biomass Index (BBI) 

As multiple values of BBI are provided over a full sampling day, comparisons were made by 

crossing actual catches with average and maximum BBI values recorded over the sampling day. 

Then, the relation between average or maximum values of BBI and actual biomass under 

DFAD, were measured through the correlation (R) and determination (R²) coefficients. 

The results indicate for both oceans and regardless of the selected BBI values (maximum or 

average values), a very low correlation between the abundance index estimated by the buoy and 
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the actual biomass under the DFAD (R² < 0.1, see Table S1.4, Figure S1.3 and Figure S1.4). 

This therefore highlighted the poor reliability of abundance index computed by buoy's internal 

modules. However, the lack of information on the manufacturer's calculation methodology did 

not make it possible to identify the source of these weaknesses. 

 

 

Figure S1.3: (A) Reliability boxplots and (B) scatterplots of maximum BBI values and actual catches 
under DFAD, in Atlantic (left) and Indian Oceans (right). 

 

 

Figure S1.4: (A) Reliability boxplots and (B) scatterplots of average BBI values and actual catches 
under DFAD, in Atlantic (left) and Indian Oceans (right) 
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Table S1.4 : Coefficients of determination (R²) between catch and buoy biomass index 

 Atlantic Indian 

Mean BBI 5.57e-5 5.85e-3 

Max BBI 1.59e-3 7.30e-2 

 

2.2. Qualitative performance of buoy biomass index (BBI) 

Assessment of qualitative performance of buoy biomass index aimed to determine its ability to 

detect tuna aggregation, under DFAD. The analysis was performed by transforming average 

and maximum BBI values recorded over a sampling day, into binary modalities (presence or 

absence), using different cut-off values (k). A given value of the BBI was considered as tuna 

presence if it was greater than k, and the opposite for absence. The presence threshold (k) can 

here be interpreted as a calibration value for the detection of the aggregation by the buoy. A 

parallel approach was also applied to the actual catch values to examine the resolution of the 

aggregation detection by the buoy. Catches values were transformed into presence or absence 

modalities, using different cut-off values (r), varying from 0 to 50 tons. 

For all cut-off combinations, the classification in the presence or absence of aggregation, 

estimated from the BBI,  was compared with actual presence/absence deriving from catches, 

using kappa coefficient (Cohen, 1968), calculated from confusion matrices. Results are 

summarised on Figure S1.5 and Figure S1.6, respectively for consideration of average and 

maximum BBI values. 

They revealed that with a null cut–off value for actual catches (r = 0), the optimal calibration 

value for presence detection by the buoy was in the range of 10 and 20 tons. BBI values below 

this range, is more likely to be assimilated to false positive (detection of tuna presence by the 

buoy, when no tuna aggregation under the DFAD). Thus, even at this level, the direct estimates 

of tuna presence or absence by the buoy remain relatively poor. Unfortunately, in this work, the 

lack of information on the computation method of the buoy biomass index did not allow us to 

identify the potential causes of its low performance. 
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Figure S1.5: Kappa sensitivity to k (buoy calibration threshold) and r (threshold for resolution of 
presence detection estimated from average values of BBI 

 

Figure S1.6: Kappa sensitivity to k (buoy calibration threshold) and r (threshold for resolution of 
presence detection estimated from maximum values of BBI 
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Supplementary information S2 

 

The “daily acoustic matrices” 

 

1. Introduction 

Generally, echosounder buoys can be used under different operating modes, remotely 

switchable by fishermen. The M3I buoys have five operation modes (for more information 

refers to Marine Instruments9, Nigràn, Spain: https://www.marineinstruments.es/) : 

- Low Consumption Mode (default mode of the buoy): 2 positions per day (with 6 acoustic 

pings by position); 

- Approach Mode: 4 positions for 12 hours, and 3 pings in every position; 

- Recovery Mode: 1 position every 15 minutes during 2 hours (1 ping in every position); 

- Flash Mode: Activates the flash and transmits one position every 15 minutes for an hour 

(1 ping in every position);  

- Poll Mode: Transmits a position and one ping some few minutes after requesting (polling). 

As a result, the amount of data collected for a full day of sampling can highly differ depending 

on the mode used by fishermen. The suggested methodology for processing the data provided 

by the buoys, into tuna occurrence or size classes of tuna aggregation, is a classification, 

performed on a daily scale, and based on a synthetic sample derived from acoustic information 

collected by the buoy over an entire day. The synthetic samples are referred to as “daily acoustic 

matrices”. Their design relies on two distinct steps: (1) a sub-sampling stage, selecting the “best 

echo” recorded by the buoy, per slice of 4 hours on a whole day, followed by (2) the aggregation 

of acoustic scores collected by 3-meters layers into values by groups of homogeneous layers.  

 

2. The sub sampling stage 

Intuitively, the “best echo” (the single acoustic sample that reflects the best aggregation of tunas 

under the DFAD, over the considered 4-hour period) could have referred to the acoustic sample 

with the highest value of sum of layer scores.  However, several interviews with fishermen, 

                                                           
9 Mention of trade names or commercial companies is for identification purpose only and does not 
imply endorsement by the authors. 
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conducted prior to this work, indicated that the definition of this “best echo” varies according 

to different considerations. The main features stated by fishermen for the characterization of 

“this echo” are related to the depth, vertical distribution and the relative intensity of the acoustic 

signal. 

We tested here the incidence of five selection methods of the “best echo”, on the tuna 

presence/absence classification performance. These methods derive an index (I), from the 

scores of the fifty layers (Si) of a single acoustic sample.  The sample with the highest value of 

index is then, selected to build the acoustic matrix. Index calculation methods are detailed in 

the sections below. 

 

2.1.  Method 1 (sum) 

The selection index results simply from the sum of layer scores of the acoustic sample.  

_ = "`CG
ab

GKL
(C2.1) 

2.2. Method 2 (depth_weighted_sum) 

The selection index is the sum of the layer scores weighted with a depth index (Equation S2.2). 

This approach aimed to integrate the depth significance into echo interpretation, and possible 

loss of backscattering signal with depth. 

_ = "`Tc
ab

GKL
CG (C2.2) 

2.3. Method 3 (layers_weigthed_sum) 

The selection index derived from the sum of layer scores, multiplied by the number of active 

layers (N) in the acoustic sample (namely the layers with non-null score). It aimed to integrate 

the vertical distribution of echoes, empirically considered by fishermen as an important factor 

in echosounder data interpretations 

_ = "!`CG
ab

GKL
(C2.4) 
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2.4. Method 4 (depth_and_layers_weighted_sum) 

This approach is a combination of the two selection methods described above (Equation S3.4). 

_ = "!`Tc.
ab

GKL
CG (C4.>) 

2.5. Method 5 (mean) 

This approach averages the scores per layer of different acoustic samples to construct a single 

synthetic echo for the considered sub-sampling period. 

 

2.6. Comparison of sub sampling method performances 

The effectiveness of the 5 sub-sampling methods was assessed by comparing the performance 

of tuna aggregation size classification models, built from training sets that differ only in the 

type of sub-sampling method used to design the acoustic matrices. Models performance was 

evaluated by cross-validation, replicated 20 times, using at each iteration 75% of the dataset as 

training data and the remaining 25% as validation data. The kappa coefficients calculated for 

each model, on the validation sets, at each iteration, were then compared with an ANOVA. The 

analysis was carried out by considering the Atlantic and Indian Oceans separately. 

 

Figure S2.1: Comparison of kappa from five different sub-sampling methods in Atlantic (left panel) 

and Indian (right panel) Oceans 
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Major differences occur between oceans (Figure S2.1). In Atlantic Ocean, the type of sub-

sampling methods does not significantly influence the accuracies of classification performed 

by the models. While in Indian, model performances significantly differ from one sub sampling 

approach to another (p < 0.001). “mean” and “depth_and_layers_weighted_sum” methods 

appears as the most effective sub sampling methods, with intermediate performances for 

“depth_weighted”_sum and “layer_weighted_sum” method. The “sum” method is the less 

effective approach in Indian Ocean. 

We hypothesized that the observed differences between oceans could be due to intrinsic 

differences in the vertical distribution of species under DFADs, between the two oceans. 

Indeed, the methods integrating weights (with depth or active layers) prioritize in matrix 

constructions, deeper echoes or echoes with regular distribution. They are based on the 

hypothesis that this type of signal is more likely to come from tuna aggregations than from 

other acoustic reflectors (especially bycatch species). Their relative effectiveness in Indian 

supports this hypothesis. Indeed, the literature indicates a relative segregation between tuna 

species and by-catch species in this ocean (Moreno et al., 2007a; Forget et al., 2015; Lopez et 

al., 2016). However, there is still a lack of information on this parameter in the Atlantic. The 

extremely similar performance of all sub-sampling methods tested in this ocean could possibly 

be linked to a more homogeneous distribution of the different acoustic reflectors, in the water 

column. Future research lines should focus on this point. 

Finally, against expectations, the use of a synthetic sample built from the average layer values 

of all acoustic samples collected over the sub-sampling period appears to be an effective 

method. We initially thought that the variability of the biomasses sampled by the buoy (related 

to vertical and horizontal migration of fish under DFAD), would result in an echo that would 

poorly reflect the school characteristics under the DFAD. However, it is likely that biomass 

variations in the water layers are relatively minor, at the scale of the considered sub-sampling 

time window. 

 

3. The layer aggregation stage 

The second step in the building process of acoustic matrices consists in the reduction of the 

vertical dimension of the data (depth layers). It aims to combine the different depth layers 

constituting the acoustic samples into a defined number of homogeneous layer groups, using 
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clustering methods. The layer scores of the different groups are then aggregated into group 

scores. This section analyses the influence of different aggregation methods on the 

classification performance of algorithms. 

 

3.1. Method 1 (agr_simple_sum) 

The score in a group (CDE ) is simply the sum of the scores of its different constituent layers. 

CDE ="`CGD
HJ

GKL
(C2.B) 

3.2. Method 2 (agr_standard) 

Group scores are the standardized sum of the scores of the different constituent layers of the 

group. 

 

3.3. Method 3 (agr_minmax_real) 

The score of a group is the normalized sum (scale between 0 and 1) of the scores of its 

constituent layers, the maximum normalization value being the highest score of the same groups 

in the training dataset. 

CDE =" F CGDHJGKLmdx(CD) (C2.e) 

3.4. Method 4 (agr_minmax_theo) 

The group scores are calculated in the same way as before, except that the maximum 

normalization value here is the highest theoretical value of the group scores. This corresponds 

to the maximum score that can be reached in a layer (maxs, which corresponds to 7 for M3I 

buoy) multiplied by the number of layers in the group (nG). 

CDE =" F CGDHJGKL,D":MNO"" (C2.f) 
 

3.5. Method 5 (no_aggregation) 

Clustering methods are not applied. The 50 layer scores are used for the classification purpose. 
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3.6. Comparison of layer aggregating method performances 

The different layer aggregation methods were compared by assessing the performance of tuna 

aggregation size classification models, built from training sets that differ only in the type of 

layer scores aggregating method. Models performance was evaluated by cross-validation, 

replicated 20 times, (with 75% of the dataset used as training data and the remaining as 

validation data). Kappa coefficients calculated for each model, at each iteration, were then 

compared with an ANOVA. The analysis was carried out by considering the Atlantic and Indian 

Oceans separately. 

Compared to sub-sampling methods, the performance of the different scoring methods does not 

vary between the two oceans (Figure S2.2). The proposed approaches offer relatively similar 

results, which remain significantly higher than those of classification models based on acoustic 

matrices on which no layer aggregation had been performed (p < 0.001 for both oceans). 

 

 

Figure S2. 2 : Comparison of kappa from five different score aggregation methods in Atlantic (left) and 
Indian (right) Oceans  
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Supplementary information S3 

 

Constructing the training dataset: Tuna presence and absence 

 

1. Introduction 

Classification models were built from a training dataset constituted from acoustic data recorded 

within a defined period before or after three main type of fishing events. We considered the 

acoustic data recorded the day before a fishing set operation as tuna presence, under the 

assumption that the occurrence of the set is a confirmation of tuna presence, and that the purse-

seiner catch is the best approximation of the actual biomass under the FAD.  

Data collected the day before a simple DFAD visit was associated with tuna absence. Indeed, 

the acoustic presence of fish, ascertained by fishermen through the interpretation of buoy data, 

facilitates routes selection and decreases search time (Lopez et al., 2014). Most of the time, the 

fishermen's choice to visit one of their DFADs results from the confirmation of the potential 

presence of tuna under the DFAD, based on the interpretation of acoustic data from the buoy. 

The absence of fishing set on the DFAD indicates that it is very likely that the aggregation 

visited is not composed of the targeted tuna species. Thus, visits without fishing sets appear like 

false positive situations of tuna presence, deriving from misinterpretation of buoy data (possibly 

skewed by environmental conditions, particular aggregation characteristics or buoy technical 

limitations, etc.). The explanation underlying this one-day delay before fishing sets or visits is 

related to the need to avoid bias related to buoy handling and/or disturbance of the aggregation 

under DFAD due to the fishing operation.  

In a similar way, acoustic data associated to new DFAD deployments, were also associated as 

tuna absence. The main issue at this level was to determine the optimal range of the time 

window to be considered, in order to associate these data with total absence of fish or exclusive 

presence of bycatch species under the DFAD. The used methodology for assessed this time 

range is described in the following section. 
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2. Determining optimal time after deployment 

The determination of the optimal time after deployment was based on the analysis of the time 

series of acoustic signals collected from the first deployment of a new DFAD to the first 

reported operation (fishing, recovery, etc.). Only DFADs with a minimum soaking time of 60 

days were included in the analysis. The dataset consists in 528 and 5868 virgin DFAD 

deployments, in the Atlantic and Indian Oceans respectively.  

Previous works have evidenced that generally tunas are more closely associated with FADs 

during the daytime period, while other species are during the night, with some specificities 

depending on the oceanographic regions (Forget et al., 2015; Lopez et al., 2017). These 

differences in the species association scheme led us to consider the acoustic signal, separating 

the daytime and night-time periods. The objective was to detect variations in the acoustic signal 

resulting from the process of early colonization of the DFAD by non-tuna species, according to 

the hypothesis supported by several studies (Deudero et al., 1999; Castro et al., 2002; Nelson, 

2003; Moreno et al., 2007b; Macusi et al., 2017), that these species constitute the first in the 

colonization sequence of DFADs. 

We were interested in the variation over time of the acoustic signal (At), estimated from the 

Equation 1, where N refers to the total number of acoustic samples collected in the period t, and 

C(Gg;)9  to the score in the layer i of the j-th acoustic sample collected. 

$9 =" 1!`
1
Bh`C(Gg;)9

ab

GKL

i

;KL
(C4.1) 

The results revealed that the acoustic signal exhibited, regardless of the considered period (but 

especially during night periods), a strong variation, immediately after the DFAD deployment, 

followed by a relative stabilization of the signal (Figures S3.1, S3.2 and S3.3). With slight 

differences in length between the two oceans, this period is most likely the minimal time 

interval to account for bycatch presence under DFADs. 

For the purpose of building classification models that can discriminate acoustic signal from 

tuna aggregation, from others acoustic targets (especially bycatch species), this time after 

deployment has been considered in the design of training data. Although it is obvious that this 

value is affected by spatial and temporal variations, we have fixed its value at 5 days in both 

oceans, for standardization and facilitation reasons. 
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Figure S3.1: Variation over time (A), and time series (B) of daily acoustic signal recorded under virgin 
DFADs in Atlantic (left panel) and Indian oceans (right panel). 

 

  

Figure S3.2: Variation over time (A), and time series (B)  of daily acoustic signal recorded during night 
–time under virgin DFADs in Atlantic (left panel) and Indian oceans (right panel). 
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Figure S3.3: Variation over time (A), and time series (B) of daily acoustic signal recorded during 
daytime under virgin DFAD in Atlantic (left panel) and Indian oceans (right panel). 
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Chapter 3:  

Tuna aggregation dynamics at Drifting Fish Aggregating Devices: 

A view through the eyes of commercial echosounder buoys 

“Pour voir le monde à l'endroit, il faut l'observer à l'envers. 

To see the world right side up, look at it upside down.” 

Remy Donnadieu 
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Tuna aggregation dynamics at Drifting Fish Aggregating Devices: A view 

through the eyes of commercial echosounder buoys 

 

Y. Baidai12, L. Dagorn1, M.J. Amande2, D. Gaertner1, M. Capello1 

 
1MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France 

2Centre de Recherches Océanologiques (CRO), Abidjan, Cote d’Ivoire 

 

Abstract 

Improving knowledge on the associative behaviour of tropical tunas with floating objects is a 

key research priority for ensuring the sustainable exploitation of their populations. First 

introduced in the early 1990s in the tropical tuna purse seine fishery, Drifting Fish Aggregating 

Devices (DFADs) are man-made floating objects that are now used on a massive scale to 

facilitate the capture of tunas. This study addresses novel questions on the dynamics of tuna 

aggregations associated with floating objects, using commercial echosounder buoys data 

collected throughout the drifts of newly deployed DFADs in the Eastern Atlantic Ocean and 

Western Indian Ocean, from 2016 to 2018. Time series of presence/absence of tunas were 

obtained using a supervised classification process of the acoustic data. To avoid bias associated 

with the large variability in individual DFAD soak times, a new approach was developed to 

estimate the average time required for tuna aggregations to colonize new DFADs. We showed 

that tunas colonize DFADs after an average of 16 days in the Atlantic Ocean, and 40 days in 

the Indian Ocean. In addition, the analysis indicated that the time span during which tuna 

aggregations occupy DFADs is driven by a time-independent process with short and long-term 

residence modes. Our analysis indicates that DFADs were continuously occupied by tuna 

aggregations for an average of 6 and 9 days in the Indian and Atlantic oceans respectively. The 

time between two consecutive aggregations at the same DFAD averaged 9 days in the Indian 

Ocean and 5 days in the Atlantic Ocean. Throughout their soak time after being colonized, 

DFADs remained occupied by tuna for a larger proportion of time in the Atlantic Ocean (63%) 

than in the Indian Ocean (45%). The implications of these new findings are discussed in view 

of the development of new fishery-independent indices of abundance for tropical tuna 

populations. 

Keywords: Echosounder buoys; Drifting Fish Aggregating Devices (DFADs); Tropical tunas; 

Associative behavior; colonization times; Residence times; Absence times.  
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3.1. Introduction 

Substantial development in the tropical tuna purse-seine fishery has occurred over recent 

decades and it now accounts for the majority of the world’s tropical tuna catch (ISSF, 2019). 

The increasing trend in catches has been accompanied by regular technological developments 

of vessels and fishing tools (Gaertner and Pallarés, 2002; Fonteneau et al., 2000; Torres-Irineo 

et al., 2014). Since the early 1990s, these developments have included the deployment of 

artificial floating objects, known as drifting Fish Aggregating Devices (DFADs) used to 

increase fishery efficiency. This fishing mode exploits the behavioural trait of the target tuna 

species, skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye 

tuna (Thunnus obesus), to naturally aggregate around floating objects (see Fréon and Dagorn, 

2000 and Castro et al., 2002). Thousands of DFADs specifically designed to attract tunas, are 

deployed by purse seine fleets in all of the world’s oceans to enhance their catches. Initial 

estimates put the number of DFADs operated annually across the three major oceans in the 

range of 50,000 and 100,000 (Baske et al., 2012; Scott and Lopez, 2014; Gershman et al., 2015). 

Furthermore,  the scale at which this fishing gear is used has quadrupled in less than a decade, 

in both the Atlantic and Indian oceans (Fonteneau et al., 2015; Maufroy et al., 2017). Over the 

past 30 years, this fishing mode has been significantly improved through the sequential 

introduction of new technologies (radio, GPS and echosounder buoys), with the latter now 

providing skippers and fleet managers with detailed information on the location and biomass 

associated with DFADs (Lopez et al., 2014). In recent years, more than half of the world’s 

purse seine catch of tropical tunas has come from DFAD fishing (Dagorn et al., 2013; 

Fonteneau et al., 2013). 

The mechanisms underlying the associative behaviour of tropical tunas with floating objects 

remain poorly understood, despite the proposal of numerous hypotheses (see Fréon and Dagorn, 

2000 and Castro et al., 2002). As a consequence of the massive increase in the use of DFADs 

in the recent years, improving knowledge on the associative behaviour of tropical tunas with 

floating objects has become a key research priority. Primary areas of concern include the 

concomitant changes in catchability of tunas at floating objects as well as the understanding of 

the impact of DFADs on their ecology and that of other associated fauna. To date, most research 

efforts have focused on describing the associative dynamics of individual fish, primarily 

through electronic tagging studies, at both coastal anchored FADs (e.g. Holland et al., 1990; 

Ohta and Kakuma, 2005; Dagorn et al., 2007a; Mitsunaga et al., 2012; Robert et al., 2013; 

Rodriguez-Tress et al., 2017), and drifting FADs (e.g. Schaefer and Fuller, 2013; Matsumoto 
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et al., 2014, 2016; Tolotti et al., 2020). In contrast, behavioural patterns of FAD-associated 

aggregations (i.e. entire tuna schools under a DFAD) have received considerably less research 

attention. When investigated, studies were primarily focused on the spatial or temporal 

characterization of aggregations at fine timescales, using acoustic equipment on board research 

vessels (Josse and Bertrand, 2000; Doray et al., 2006; Moreno et al., 2007a; Trygonis et al., 

2016). The instrumentation of DFADs with satellite-linked echosounder buoys began in the late 

2000’s. Since then, their use has become widespread in many fleets. Currently, almost all 

deployed DFADs are equipped with these devices which provide remote and near real-time 

information on the DFAD location and aggregated biomass (Lopez et al., 2014; Moreno et al., 

2019). Echosounder buoys generate a considerable stream of data that can be used to 

characterize DFAD aggregations (Lopez et al., 2016; Orue et al., 2019a; Baidai et al., 2020a). 

The availability of such data, which is continuously being collected, represents an 

unprecedented opportunity to observe fish aggregations associated with floating objects over 

long time scales. To date, only one study has provided characteristics of tuna aggregations at 

DFADs over the scale of weeks and months, using data from fisher’s echosounder buoys (Orue 

et al., 2019b). 

This work aims to characterize how tunas occupy DFADs, in order to improve the 

understanding of their aggregation dynamics around these objects. Using data from commercial 

echosounder buoys attached to DFADs deployed in the Western Indian Ocean and Eastern 

Atlantic Ocean, we assessed several parameters related to the association of tuna aggregations 

with DFADs. These include the elapsed time between deployment of a new DFAD and its 

colonization by tunas; the average duration of association of tuna aggregations with DFADs 

and the length of time that DFADs remains vacant between consecutive tuna aggregations. 

 

3.2. Material and methods 

3.2.1. Echosounder Data 

The echosounder data used in this study were collected using M3I buoys10 attached to DFADs 

from the French tropical tuna purse seiner fleet operating in the Western Indian Ocean and 

Eastern Atlantic Ocean, from 2016 to 2018. The M3I buoy is equipped with a GPS positioning 

device and an echosounder powered by solar panels, operating at a frequency of 50 kHz, with 

                                                           
10 Marine Instruments, Nigrán, Spain, www.marineinstruments.es 
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a power of 500 W, and a beam angle of 36°. The data output of the buoy is simplified acoustic 

information, designed for easy visual interpretation by fishers. The M3I buoy samples the water 

column in 3-meter layers covering a total depth of 150 m (50 layers, with the first two 

corresponding to the transducer near-field). An acoustic sample consists of 50 ordered 

categorical scores (ranging from 0 to 7), resulting from the automatic conversion of the acoustic 

backscatter signal recorded per 3-meter layer, with an inbuilt algorithm. In the default-operating 

mode, 12 samples collected at about 2 hour intervals, are transmitted daily via satellite by the 

buoy. 

 

3.2.2. Data cleaning process 

The raw data provided by the echosounder buoys were cleaned using the following protocol 

(see Baidai et al., 2017 for details on the procedure): 

(1) Duplicated rows, inconsistent positions, data recorded on land, at shallow 

positions (depth less than 150 meter), or under low voltage conditions (poor reliability of 

acoustic data collected below 11.5V) were omitted from the database. 

(2) A rule-based algorithm, which uses buoy speed and its variations as main 

classifiers, was applied to discriminate acoustic data recorded when the buoy is on board a 

vessel from those actually recorded when the buoy is deployed at sea. 

 

3.2.3. Classification of tuna presence/absence  

The presence or absence of tuna at a DFAD was assessed from acoustic data collected by 

echosounder buoys, following the methodology described in Baidai et al., (2020). This 

approach involves preliminary processing of the acoustic data, followed by a classification 

using random forest algorithms applied separately to each ocean. The learning datasets were 

constructed by cross-referencing the acoustic data with the activities of fishers at DFADs 

(namely sets with associated tuna catches, DFAD deployments and DFAD visits) recorded in 

logbooks and by on-board observers. A detailed description of the classification procedure can 

be found in Supplementary Material S4. The minimum catch value representing tuna presence 

in the learning dataset was 1 ton. Thus, in this work, the term “tuna aggregation” refers to a fish 

aggregation whose tuna biomass is at least equal to this value.  
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An additional post-processing step was applied to improve the predictions made by the 

classification algorithm during the course of DFAD trajectories. Prediction results with short 

durations (i.e. an isolated event of presence or absence lasting a single day) were considered 

unlikely, attributed rather to misclassification, and corrected using the previous or following 

day’s predicted values. This step allowed for the correction of 9 and 7% of the initial predictions 

made by the classification model, in the Atlantic Ocean (AO) and the Indian Ocean (IO) 

respectively. 

 

3.2.4. Newly deployed DFADs 

Only newly deployed DFADs (i.e. DFADs used for the very first time) equipped with 

echosounder buoys were considered. Natural floating objects (e.g. logs), reinforced old DFADs 

found at sea, relocated DFAD and buoy transfers were all excluded. Deployments of new 

DFADs were identified from fishing logbooks and observer data collected from 2016 to 2018 

in the AO and IO. The 2016-2018 period was selected to provide a relatively homogeneous 

study period, while maintaining sufficient data in both oceans. Observer data were collected by 

the IRD-Ob7 observatory under the EU Data Collection Framework (DCF) and the French 

OCUP program (Observateur Commun Unique et Permanent). Trajectories and time series of 

tuna presence/absence associated with newly deployed DFADs were then identified by cross-

referencing the logbook and observer databases with the echosounder buoy database, using the 

unique identification code of the buoy and the deployment date. To ensure that the subset 

correctly identified newly deployed DFADs (and not potentially misreported reinforcement 

activities), records for which fishing sets were reported during the week following the 

deployment were removed from the dataset. An additional cleaning step was applied to the 

dataset in order to omit data with inconsistent positions between the location of the DFAD 

deployment recorded in the logbook or observer database, and the actual position recorded by 

the buoy (0.3% and 0.8% of the dataset in Atlantic and Indian Oceans respectively). The cleaned 

dataset of newly deployed DFADs included 9118 trajectories with 498,276 presence/absence 

data points for the IO and 285 trajectories with 18,102 presence/absence data points for the AO 

(Figure 3.1). 
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Figure 3.1: Presence/absence of tuna aggregations along the course of the trajectories of newly deployed 
DFADS monitored in Western Indian Ocean and Eastern Atlantic Ocean from 2016 to 2018. Orange 
dots indicate days when tuna aggregations were present, white dots represent days with no tuna 
aggregations. 

 

3.2.5. Soak time and colonization time 

Soak time was defined as the number of days between the deployment of a DFAD equipped 

with a buoy and the first reported operation on it (i.e., either a fishing set or the retrieval of the 

buoy). Tuna colonization time refers to the number of days between the deployment of a DFAD 

and the first day when a tuna aggregation is detected by the echosounder buoy (Figure 3.2). 

 

Figure 3.2: Schematic representation of the timeline of tuna aggregation dynamics at a DFAD. The 
term “end of trajectory” denotes here the first operation carried out on FADs likely to affect the 
aggregation (e.g. either a fishing set or the retrieval of the buoy). 
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The term “colonized DFAD” thus refers to a DFAD that has aggregated tuna at least once (for 

longer than one day). 

Due to fishing and buoy retrievals, the number of buoys at sea available for the analysis declined 

for increasing soak times. This can induce bias in the estimate of tuna colonization times 

obtained from simple averages (Figure 3.3). Specifically, the lower the number of DFADs with 

long soak times, the lower the chances of observing long colonization times, which leads to an 

underestimate of colonization times from simple arithmetic averages. To overcome this bias, 

colonization times were estimated from daily colonization rates, considering the daily fraction 

ri of colonized DFADs relative to the total available DFADs, for each day i after deployment, 

as follows: 

]G =" !jk8kHGln6o!jk8kHGln6o "Y "!7Hjk8kHGln6o (4.1) 
Where, Ncolonizedi indicates the number of DFADs colonized during day i after deployment 

and Nuncolonizedi denote not-yet-colonized DFADs on day i after deployment. The denominator 

of Equation (3.1) corresponds to the total number of DFADs available for colonization on day 

i, namely, the total number of DFADs in the water that at day i-1 after deployment were not yet 

colonized. 

Mann-Whitney U tests, were used to compare daily colonization rates between the IO and the 

AO. The unbiased mean colonization time (Xjk8) (in days) was then estimated as the inverse 

value of the average of daily colonization rates (]p): 
Xjk8 = 1

]p (4.2) 
where ]p denotes the average daily colonization rate: 

]p = 1
%`]G

q

GKL
(4.4) 

where D represents the total number of days during which the daily colonization rates ri were 

calculated. When numbers of available DFADs were too low (i.e., the denominator in Equation 

(3.1)), the daily colonization rate becomes less reliable. A preliminary sensitivity analysis, 

included in the Supplementary Material S4 (Figure S4.2), showed that D corresponds to the 

number of days after deployment when at least 30 DFADs remained available for colonization. 
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Figure 3.3: Daily colonization rates (bars) and percentage of equipped DFADs available (solid lines) 
over time in the Atlantic Ocean (Panel A) and the Indian Ocean (Panel B). Red dashed lines indicate the 
number of days after deployment at which 30 DFADs were still available. 

 

3.2.6. Aggregation stability 

The continuous residence time (CRT) is commonly used to represent the amount of time spent 

by acoustically-tagged individual tunas around a FAD without a day scale (>24h) absence (Ohta 

and Kakuma, 2005; Capello et al., 2015). Alternatively, the continuous absence time (CAT) 

refers to the time interval between two consecutive associations for an individual tuna (Robert 

et al., 2012; Rodriguez-Tress et al., 2017). In this work, the concepts of CRT and CAT were 

adapted and applied to DFAD aggregations rather than to individual fish. Accordingly, the 

aggregation’s continuous residence time at a floating object (FOB-aCRT) was considered as 

the time span within which a tuna aggregation was continuously detected at a DFAD without a 

day scale (>24h) absence. Similarly, the continuous absence time of aggregation at a floating 

object (FOB-aCAT) was defined as the period between two consecutive detections of tuna 

aggregations at the same DFAD. Values occurring directly before an operation on the DFAD 

(fishing event or retrieval of the buoy) were excluded from the analysis as they were artificially 

truncated. Finally, the overall proportion of time that a tuna aggregation remained at a colonized 

DFAD (named DFAD occupancy rate), expressed as the ratio of the sum of all FOB-aCRTs 

against its soak time after the colonization period, was assessed and compared between oceans 

using Mann-Whitney U tests. 
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3.2.7. Survival analyses of FOB-aCRT and FOB-aCAT 

Survival analyses (e.g. Capello et al., 2015) were used to characterize the distribution of FOB-

aCATs and FOB-aCRTs. Survival curves were constructed using the fraction of FOB-aCATs 

and FOB-aCRTs shorter than a given time, and compared between oceans using the logrank 

statistical test (Harrington and Fleming, 1982), implemented in the “survival” package in R 

(Therneau, 2015). 

Survival curves were also fitted using three models: (i) single exponential, (ii) double 

exponential and (iii) power law (Supplementary Material S4: Table S4.3), by adapting the 

methodology of Robert et al., (2013) to the DFAD aggregation metrics. Exponential models 

assume association dynamics (presence or absence of an aggregation at a DFAD) to be 

independent of time. Double exponential models imply the existence of two distinct time-scales 

occurring within aggregation presence or absence at a DFAD. Power law models indicates a 

time-dependent probability of presence and absence of tuna aggregations, meaning the longer 

the time a DFAD is occupied or vacant, the smaller the probability that a change in state will 

occur. Models were discarded if one or more parameters were not significant (p > 0.05 based 

on the t-statistics). The best-fitting models were chosen based on the Akaike Information 

Criterion (AIC) and q-q plots. 

 

3.3. Results 

3.3.1. Daily colonization rates and colonization times  

No significant difference was found between DFAD soak times from the AO and the IO (Mann-

Whitney U tests, p = 0.76) with mean values of 63.28 days (SD 65.08 days), and 54.24 days 

(SD 45.52 days) respectively. Approximately 22% DFADs in the AO (62 DFADs) and 34% 

(3,122 DFADs) in the IO did not show any sign of colonization by tunas during their soak time. 

The soak time of vacant DFADs (averages of 18.66 and 28.52 days for AO and IO, respectively) 

was significantly lower than that of colonized DFADs (averages of 75.68 and 67.63 for AO and 

IO respectively), with a p-values (Mann-Whitney U tests) lower than 0.001 in both oceans 

(Supplementary Material S4: Figure S41.4).  

For colonized DFADs, the time before the echosounder buoy detected the first aggregation of 

tunas averaged 13.17 days (SD 12.37 days) in the AO and 20.22 days (SD 20.83 days) in the 
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IO. Stable trends in daily colonization rates were observed in both oceans (see Figure 3.3). The 

average daily colonization rates were significantly higher (Mann-Whitney U test, p < 0.001) in 

the AO (]p = 0.062, SD 0.037) than in the IO (]p = 0.025, SD 0.011). Calculating the unbiased 

average colonization times following Equations (3.1 – 3.3) resulted in colonization times that 

were 2.5 times shorter in the AO (Tcol = 16.10 days, SD 9.66 days – see Table 3.1) than in the 

IO (Tcol = 40.46 days, SD 17.31 days – see Table 3.2). 

 

Table 3.1: Summary of tuna aggregation metrics measured in the Atlantic Ocean 

 Min. Max. Median  Mean 
Standard 
deviation 

DFAD Soak time (days) 1 305 44 63.28 65.08 

Daily colonization rate (days-1) 0 0.15 0.06 0.06 0.04 

Tuna colonization time (days) - - - 16.10 9.66 

FOB-aCAT (days) 2 86 4 5.38 6.01 

FOB-aCRT (days) 2 96 4 8.96 11.52 

Occupancy rate (%) 5.13 97.59 60.49 63.27 19.86 

 

 

Table 3.2: Summary of tuna aggregations metrics measured in the Indian Ocean 

 Min. Max. Median  Mean 
Standard 
deviation 

DFAD Soak time (days) 1 363 43 54.24 45.52 

Daily colonization rate (days-1) 0 0.07 0.02 0.02 0.01 

Tuna colonization time (days) - - - 40.46 17.31 

FOB-aCAT (days) 2 119 5 8.84 10.93 

FOB-aCRT (days) 2 109 4 6.20 6.86 

Occcupancy rate (%) 2.83 98.08 46.16 45.45 21.73 
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3.3.2. Aggregation continuous residence (FOB-aCRT) and absence times 

(FOB-aCAT) 

A total of 15,415 FOB-aCRTs and 13,328 FOB-aCATs events were recorded during the course 

of the trajectories of newly deployed DFADs in the IO. In the AO, 723 FOB-aCATs and 779 

FOB-aCRTs were recorded. Distributions of FOB-aCATs and FOB-aCRTs in both oceans are 

shown in Figure 3.4. The average duration of tuna aggregations was 8.96 days (SD 11.52) around 

DFADs in the AO and 6.20 days (SD 6.86) in the IO. It should be noted that very long 

continuous residence times of tuna aggregations under the same DFAD were also observed in 

both oceans (96 and 109 days, in the AO and IO respectively). The average time that DFADs 

remained vacant between two consecutive tuna aggregations (FOB-aCAT), was 5.38 days (SD 

6.01 days), with a maximum duration of 86 days in the AO, and at 8.84 days (SD 10.93 days), 

with a maximum of 119 days in the IO (Table 3.1 and Table 3.2). 

 

 

Figure 3.4 : Distribution of FOB-aCATs (left) and FOB-aCRTs (right) in the Atlantic Ocean (top) and 
Indian Ocean (bottom). FOB-aCRT and FOB-aCAT denote the aggregation’s continuous residence time 
at a floating object and the continuous absence time of aggregation at a floating object, respectively. 
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Inter-ocean comparisons of FOB-aCAT and FOB-aCRT survival curves indicated significant 

differences in the associative dynamics of tuna aggregations (logrank test, p < 0.001 for both 

FOB-aCAT and FOB-aCRT ocean-comparisons – Figure 3.5). 

 

 

Figure 3.5: Survival curves of FOB-aCATs (Panel A) and FOB-aCRTs (Panel B) recorded on 
trajectories of newly deployed DFADs in Atlantic Ocean (black dots) and Indian Ocean (white dots).  
The y-axis is on a logarithmic scale. FOB-aCRT and FOB-aCAT denote the aggregation’s continuous 
residence time at a floating object and the continuous absence time of aggregation at a floating object, 
respectively. 

 

In the IO double exponential models were the best fitting for survival curves of both FOB-

aCATs and FOB-aCRT. Short-term residences represented 94% of the FOB-aCRTs with a 

mean duration of 4.58 days, while long-term residences represented 6% with a mean duration 

of 20.18 days. Short-term absences lasted an average of 4.43 days (representing 66% of FOB-

aCATs), while long-term absences had a mean duration of 15.45 days (34% of FOB-aCATs). 

In the AO, a double exponential model was the best fit for the survival curve of FOB-aCRTs 

with averages of 3.75 days (62% of FOB-aCRTs) and 15.70 days (38% of FOB-aCRTs) for 

short and long-term residence times, respectively. Conversely, a single exponential model was 

the best fit for absence times of tuna aggregations at DFADs with a mean duration of 4.30 days 

(see Table 3.3 and Figure 3.6). 
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Table 3.3: Summary of the model fits of the survival curves of aggregation continuous residence and absence times (FOB-aCRTs and FOB-aCATs) obtained 
in Atlantic and Indian Oceans. , Est = parameter estimate, Std. Error = standard error, t-value = value of t-statistic, Pr(> |t|) = p-value at t-tests and AIC = Akaike 
Information Criterion. AIC values of the best-fitted models are highlighted in bold. Significance codes: *** = 0; ** = 0.001; * = 0.01; .= 0.05 

Ocean Metric Fitting law Parameter Estimate Std. Error t-value Pr(>|t|) AIC 

Atlantic 
Ocean 

FOB-aCRT  

Single exponential a 0.14 3.61E-03 38.35 6.92E-42 *** -217.80 

Double exponential 
a 0.27 8.51E-03 31.29 2.75E-36 *** 

-416.09 b 0.06 2.13E-03 29.95 2.58E-35 *** 
p 0.62 1.89E-02 33.03 1.71E-37 *** 

Power law 
a 2.29 7.19E-02 31.87 3.87E-37 *** 

-389.71 
b 11.73 5.11E-01 22.94 7.76E-30 *** 

FOB-aCAT 

Single exponential a 0.23 5.03E-03 46.16 7.42E-31 *** -154.98 

Double exponential 
a 0.24 1.24E-02 19.59 1.20E-18 *** 

-155.22 b 0.03 6.18E-02 0.43 6.68E-01  

p 0.98 3.24E-02 30.26 4.86E-24 *** 

Power law 
a 22.04 2.51E+01 0.88 3.87E-01  

-153.74 
b 91.78 1.08E+02 0.85 4.03E-01  

Indian Ocean 

FOB-aCRT  

Single exponential a 0.20 2.84E-03 69.54 3.63E-69 *** -404.29 

Double exponential 
a 0.22 8.71E-03 25.04 2.85E-37 *** 

-426.38 b 0.05 1.94E-02 2.56 1.27E-02 * 
p 0.94 3.37E-02 27.90 2.42E-40 *** 

Power law 
a 8.49 2.17E+00 3.92 2.00E-04 *** 

-415.36 
b 39.48 1.10E+01 3.58 6.24E-04 * 

FOB-aCAT 

Single exponential a 0.14 2.12E-03 64.29 1.01E-80 *** -471.48 

Double exponential 
a 0.23 3.10E-03 72.73 1.98E-84 *** 

-875.29 b 0.06 1.11E-03 58.30 1.34E-75 *** 
p 0.66 1.02E-02 64.71 9.41E-80 *** 

Power law 
a 3.06 5.51E-02 55.51 3.31E-74 *** 

-806.27 
b 17.36 4.04E-01 43.01 4,41E-64 *** 
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Figure 3.6: Survival curves of FOB-aCAT (left) and FOB-aCRT (right) observed in Atlantic Ocean 
(top) and Indian Ocean (bottom) fitted with single exponential, double exponential and power law 
models. The red line indicates the best fit. FOB-aCRT and FOB-aCAT denote the aggregation’s 
continuous residence time at a floating object and the continuous absence time of aggregation at a 
floating object, respectively. 

 

3.3.3. DFAD occupancy rate  

Significant differences in the proportion of time that colonized DFADs were occupied by tuna 

were observed between the two oceans (Mann-Whitney U tests p < 0.001). After colonizing 

DFADs, in the AO tuna aggregations were detected for an average of 63.27% (SD 19.86%) of 

the soak time (Figure 3.7A), while in the IO, this figure was 45.45% (SD 21.73%) (Figure 

3.7B). 

 

Figure 3.7: Distribution of the DFAD occupancy rates in the Atlantic Ocean (Panel A) and the Indian 
Ocean (Panel B). 
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3.4. Discussion 

This work aimed at characterizing the dynamics of the tuna aggregation processes around 

DFADs, using acoustic data collected by commercial echosounder buoys on newly deployed 

DFADs in the IO and AO. To date, very few studies have designed scientific protocols to 

quantify the time that pelagic species take to colonize newly deployed DFADs. The only 

previous documented observations in the Atlantic Ocean come from Bard et al. (1985), who 

reported rapid colonization by tunas, ranging from 1 hour to 6 days, through the monitoring of 

a dozen newly deployed DFADs and detecting tuna presence by visual observations, on-board 

echosounders, or by fishing sets. Their estimates are significantly shorter than ours for the same 

ocean (average of 16 days); however, interpretation of these discrepancies is complicated by 

the large differences in methods and the time when the studies were conducted. The Bard et al. 

study was performed before the development of the FAD-fishery, when tropical tuna stocks 

were only moderately exploited. Furthermore, their observation protocol could not identify 

whether observed individuals only visited or remained associated with the DFAD. Taquet et 

al., (2007) observed that dolphinfish (Corypheana hippurus) could arrive a few hours after the 

deployment of a new floating object, but did not necessarily associate with it. In the Indian 

Ocean, using Local Ecological Knowledge (LEK), Moreno et al., (2007b) suggested that it 

typically takes one month before tunas aggregate under a newly deployed DFAD. Although 

aggregation dynamics at anchored FADs may differ from those at drifting FADs, it is worth 

noting that Macusi et al., (2017) reported that fishers typically wait approximately 22 days for 

tuna aggregations to form at anchored FADs in the Philippines, based on interview data. In a 

recent study using echosounder buoys produced by a different manufacturer, Orue et al., 

(2019b) examined acoustic data from over 900 newly deployed DFADs in the Western Indian 

Ocean and suggested that tunas begin to aggregate approximately 13 days after deployment. At 

three times longer, the findings of the current study (an average of about 40 days in the IO) 

appear to be more aligned with the knowledge of purse seine skippers (Moreno et al., 2007b). 

The discrepancy between these acoustic studies may be related to (i) differences in 

methodological approaches applied in the conversion of acoustic data into indicators of 

presence or absence of tuna, (ii) the method used in the current study to estimate colonization 

times, which avoids possible underestimation biases linked to the large variability in DFAD 

soak times, or (iii) from the differences in the specificities of the buoy models used in each 

study. Since their introduction into the fishery, echosounder buoys have evolved rapidly, 

through continuous technological innovations in both hardware and software (Lopez et al., 
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2014). Thus, the intrinsic performance of buoys for detecting tuna aggregations may differ by 

model and/or manufacturer. Hardware and software differences in the design of buoys may lead 

to variable thresholds for the detection of aggregations, which could ultimately result in biases 

in the detection of small aggregations for some models. Such disparities highlight the critical 

need for a detailed assessment of the reliability of outputs from the different models of buoys 

and the accuracy of the data processing methods they use to estimate fish abundance. This is 

especially important when considering the growing use of echosounder buoy data for scientific 

purposes (Moreno et al., 2016). 

Until now, most scientific knowledge on the behaviour of tunas around floating objects stems 

from observations of individuals, using electronic tags, with the majority of studies focused on 

anchored FADs (e.g. Holland et al., 1990; Ohta and Kakuma, 2005; Dagorn et al., 2007a; 

Mitsunaga et al., 2012; Robert et al., 2013; Rodriguez-Tress et al., 2017). By exploiting the 

potentially massive data source that echosounder buoys on DFADs represent, this work 

introduces two novel metrics (FOB-aCAT and FOB-aCRT), providing descriptive elements of 

DFAD use by entire tuna aggregations. It is particularly interesting to note that, in both oceans, 

the time taken for tunas to colonize new DFADs was significantly longer than durations 

between consecutive tuna aggregations (average FOB-aCATs: 9 and 6 days in AO and IO 

respectively). This result is consistent with previous assertions regarding the role of non-tuna 

species in the tuna colonization process. Several authors have suggested that the colonization 

of FADs is a sequential process starting with the arrival of non-tuna species, which may play a 

key role in the attraction or retention processes of tunas (Deudero et al., 1999; Castro et al., 

2002; Nelson, 2003; Moreno et al., 2007c; Taquet et al., 2007; Macusi et al., 2017). The 

duration of the settlement stage of these pioneer communities could be one of the major factors 

driving the colonization time of tunas at a new DFAD. As such, colonization time may be 

viewed as a unique type FOB-aCAT with an extended duration due to the requisite maturation 

phase of the DFAD. Further studies on interspecific relationships would be of major benefit for 

improving our understanding of the role played by non-tuna species in the aggregative 

processes of tunas with DFADs. 

A review of the main findings from electronic tagging studies on the associative behaviour of 

tunas under DFADs reveals that the continuous residence time of individual tuna (CRT) is 

subject to a degree of variability related to the species or the oceanic region under consideration 

(see Table 3.4). Off the coast of Guinea in the Atlantic Ocean, Tolotti et al., (2020) estimated 

average CRT values of 9 and 19 days, for skipjack and yellowfin tuna respectively. For bigeye 
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tuna the reported CRTs were up to 25 days, which is longer than observations from other 

oceans. Shorter CRTs (about 1 day on average) were observed for the same three species by 

Dagorn et al., (2007b) in the Western Indian Ocean. However, these results are likely to be 

underestimated due to artificial truncation of the observation experiments. Govinden et al., 

(2010) reported residence times ranging from 4 to 10 days (median values) depending on the 

tuna species, at DFADs monitored in the Mozambique Channel. In Eastern Pacific Ocean, 

studies carried out by Matsumoto et al., (2014) and Matsumoto et al. (2016), both indicated 

that individual tunas remain associated with DFADs for less than 7 days. Despite this 

variability, tuna CRTs reported by this limited number of tagging studies appear to be lower or 

equal to the average FOB-aCRTs obtained in this work (9 and 6 days in the AO and the IO, 

respectively), especially for skipjack tuna which is the dominant species in DFAD-associated 

catches (Dagorn et al., 2013a). 
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Table 3.4: Summary of main findings from previous studies on continuous residence time of individual tunas at drifting FADs. (FL: fork length, YFT: Thunnus 
albacares, SKJ: Katsuwonus pelamis, BET: Thunnus obesus). 

Study Location Species FL range (cm) CRT 

Dagorn et al., (2007b) Western Indian Ocean 

SKJ 

Not provided 

Average at 0.91 days (maximum: 7.03 days) 

BET Average at 1.43 days (maximum: 3.06 days) 

YFT Average at 1.04 days (maximum: 15.22 days) 

Govinden et al., (2010) 
Mozambique  Chanel, 
(Western Indian Ocean) 

SKJ 47 – 57 Median at 4.47 days (maximum: 18.33 days) 

BET 54 – 56 Median at 3.89 days (maximum: 6.56 days) 

YFT 29 – 60 Median at 9.98 days (maximum: 26.72 days) 

Matsumoto et al., (2014) 
Equatorial central Pacific 
Ocean 

SKJ 36 – 65 Average at 2.3 days (maximum: 6.4 days) 

Matsumoto et al., (2016) 
Equatorial central Pacific 
Ocean 

SKJ 34.5 – 65.0 Average at 1.3 days 

BET 33.5 – 85.5 Average at 3.8 days (maximum: about 11 days) 

YFT 31.6 – 93.5 Average at 4.1 days (maximum 14.5 days) 

Scutt et al., (2019) 
Western Central Pacific 
Ocean 

SKJ 46 – 60 Median at 1 day (maximum: 18 days) 

BET 37 – 90 Median at 10 days (maximum: 30 days) 

YFT 36 – 98 Median at 2 days (maximum: 50 days) 

Tolotti et al., (2020) Eastern Atlantic Ocean 

SKJ 39 – 61 Average at 9.19 days (maximum value to 15 days) 

BET 45 – 61 Average at 25.31 days (maximum value to 55 days) 

YFT 34 – 82 Average at 19.15 days (maximum value to 55 days) 
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Survival analyses of the FOB-aCRTs indicated the coexistence of two distinct modes of DFAD 

association by tuna aggregations: a dominant mode consisting of short durations, and a longer 

residence mode. Nearly all of the FOB-aCRTs measured in the IO belonged to the short-term 

residence mode, whereas the two modes occurred in more similar proportions in the AO. There 

are several possible explanations for the occurrence of these different modes and their inter-

ocean variation. Individually, bigeye and yellowfin tuna generally exhibit longer residence 

times than skipjack tuna, as indicated by the tagging studies mentioned above. Long-term 

residence modes may therefore reflect aggregations with a large proportion of the two former 

species. Furthermore, this study was conducted at a broad spatial and temporal scale. As such, 

it is possible that the observed differences in modes could be a result of behavioural patterns of 

tuna that are driven by local environmental differences (such as prey or conspecific abundance, 

or densities of floating objects) between seasons or oceanic regions. The long-term residence 

mode could also be indicative of the occurrence of turnover processes of schools at the same 

DFADs as reported by Weng et al., (2013). Further spatially constrained analyses combined 

with electronic tagging studies, conducted on DFADs equipped with echosounder buoys, will 

be crucial to relate the individual and the collective dynamics of tuna around DFADs. 

The associative behaviour of the tuna population implies that, at any given time, the overall 

abundance in an area is the sum of the abundance of two permanently interacting components: 

the associated and the free-swimming (or unassociated) populations. At present, the underlying 

reasons driving the association or departure of tunas from floating objects remain unclear. 

Nevertheless, an improved understanding of the interactions between the two population 

components can be achieved through the study of the relationships between the association 

metrics assessed at the scale of the individual (i.e. CAT and CRT) and at the scale of 

aggregations (FOB-aCAT and FOB-aCRT). Rodriguez-Tress et al., (2017) suggested that high 

FAD densities tend to reduce the time that tuna spend in an un-associated state (CAT). While 

these findings may need to be interpreted with caution as they stem from observations at 

anchored FADs, this could suggest that the underlying trend may occurs irrespective of the 

FAD type. Logically, higher FAD densities would increase the probability of an individual 

encountering and associating with a FAD, hence reducing the time individual tuna spend in a 

free-swimming state (CAT). Similarly, FAD vacancy (FOB-aCATs) should be related to the 

abundance of the un-associated tuna population. Long FOB-aCATs would result when the un-

associated population is small, either due to a low overall tuna population or a large density of 

FADs drawing them in to aggregate. Following this reasoning, the longer FOB-aCAT and 
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colonization time observed in the IO may thus be indicative of a smaller size of the tuna 

population and/or higher densities of DFADs in this ocean than in the AO. Furthermore, the 

double exponential curve for FOB-aCATs observed in the IO, could be a result of 

regions/periods where at least one of these two factors differ. Previous work by Capello et al., 

(2016) demonstrated that indicators of abundance for tropical tuna populations could be derived 

from their individual associative dynamics (CRT and CAT). Combining our current 

understanding of the individual associative behaviour of tunas with the metrics describing tuna 

aggregation dynamics provided by this work could aid in developing new methods for obtaining 

direct abundance estimates of tuna populations. Such methods will depend upon the availability 

of estimates of the total number of DFADs at sea (more specifically the total number of floating 

objects). Currently, obtaining these statistics is a challenge in all oceans despite the recent data 

reporting requirements for DFAD activities by Tuna Regional Fisheries Management 

Organisations (t-RFMOs). 

 

3.5. Conclusion 

Using data from the echosounder buoys of French purse seiner fleets, this study characterized 

key parameters of tuna aggregations at DFADs: colonization times, aggregation lifetimes and 

time span between aggregations. In both oceans, lifespan of tuna aggregations at DFAD 

followed a time-independent process with two modes. This suggests that the species 

composition and/or the local conditions (e.g. prey, conspecifics or density of floating objects) 

could play key roles in aggregation dynamics. However, opposing trends also existed between 

the two oceans, with shorter residence time of aggregations and longer periods of DFAD 

vacancy in the IO than in the AO. Further spatially restricted analyses assessing these 

behavioural metrics at smaller spatial and temporal scales could help in understanding the 

dynamics of aggregations at a local scale, as well as the role played by various environmental 

factors. The integration of these new findings into population assessment models which account 

for the associative behaviour of tunas present an opportunity for the development of alternative 

abundance indices (independent from catch and effort data) for tropical tunas and the 

construction of reliable scenarios on the impacts that DFADs have on tuna populations. 

 

 



Chapter 3: Tuna aggregation dynamics at floating objects 

94 
 

Acknowledgements 

This project was co-funded by the ANR project BLUEMED (ANR-14-ACHN-0002), leadered 

by MC and the “Observatoire des Ecosystèmes Pélagiques Tropicaux exploités” (Ob7) from 

IRD/MARBEC. The authors are grateful to ORTHONGEL and its contracting parties (CFTO, 

SAPMER, SAUPIQUET) for providing the echosounder buoys data. The authors also thank all 

the skippers who gave time to share their experience and knowledge on the echosounder buoys. 

The authors sincerely thank the contribution of the staff of the Ob7 on the databases of the 

echosounder buoys and observers’ data.  



Chapter 3: Tuna aggregation dynamics at floating objects 

95 
 

Supplementary information S4 

 

1. Presence/absence classification of tuna aggregations 

The classification of presence or absence of tuna aggregations under DFADs from acoustic data 

collected by the M3I buoy, was based on the methodology described by Baidai et al., (2020). 

The approach consists in two main steps. The first is an initial processing of acoustic data 

aiming to standardize them and reduce their dimensionality. Acoustic data recorded during a 

full day of sampling (24 hours), were clustered over six temporal 4-hour bins and six 

aggregated-depth layers, resulting in a synthetic sample of the daily acoustic information (a 6×6 

matrix) referred to as "daily acoustic matrix”. The actual classification step was then carried 

out using random forest models applied separately for each ocean. The training datasets were 

constructed by cross-matching the acoustic data with activities on DFADs (namely tuna 

catches, DFAD deployments and visits) recorded in logbooks and/or by observers on board the 

French tuna seiners, over the period 2013-2018 (Table S4.1). They consisted of daily acoustic 

matrices obtained from: (i) the day before a successful fishing set with the aim to represent the 

presence of tuna in the aggregation, (ii) the fifth day following the deployment of a new DFAD, 

and (iii) the day prior to DFAD visits (visit to a DFAD equipped with a vessel's own buoy 

which did not result in a fishing operation due to the absence of tuna) which were both assumed 

as tuna absence. Tunas catches values used to ground truth the presence of tuna aggregations 

were ranged from 1 ton to 175 tons (with an average value of 15 tons) in Atlantic Ocean, and 

from 1 ton to 311 tons (average value of 20 tons) in Indian Ocean (Table S4.2 and Figure S4.1). 

The classification algorithm showed a good performance in successfully discriminating tuna 

presence and absence, in both oceans, with an overall accuracy of 74 % and 86 % in the Atlantic 

and Indian Oceans, respectively. 
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Table S4.1. Total number of DFADs operations collected from 2013 to 2018 and used as learning 
dataset of presence/absence classification models in the Atlantic and Indian oceans. 

 Tuna absence Tuna presence 

 Deployment Visit Fishing set 

Atlantic 695 281 989 

Indian 11697 1343 4449 

 

 

Table S4.1. Summary statistics of major tuna catches used in the learning dataset of tuna 
presence/absence classification models (by random forest algorithm) in Atlantic and Indian oceans. 

Ocean Min. Max. Median Mean 

Atlantic 1 175 15 21.97 

Indian 1 311 20 28.13 

 

 

 

Figure S4.1. Distribution of major tuna catches in the learning dataset of tuna presence/absence 
classification models (by random forest algorithm) in Atlantic (Panel A) and Indian Ocean (Panel B). 
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2. Sensitivity of colonization time 

The colonization time (Up) was assessed as the inverse value of the mean colonization rate (see 

Equation S4.1). Since this rate become less reliable for too low numbers of available DFADs, 

a sensitivity analysis was performed to determine the threshold number of DFADs from which 

a stable trend of the colonization time is reached. 

 

Up = L
s
tF uotovs

 (Eq.S4.1) 

 

Where ri denotes, for a given day i, the ratio of the number of colonized DFADs relative to the 

total number of DFADs at water on the same day; and D the number of days at which the 

threshold number of DFADs (as determined by the sensitivity analysis) are still available. 

The analysis showed that colonization time estimates were stable for at least 30 available 

DFADs, corresponding to approximately 29 and 121 days of DFAD monitoring in the Atlantic 

and Indian Ocean datasets, respectively (Figure S4.2). 

 

 

Figure S4.2. Sensitivity of colonization time to different cut-off values on the minimum number of 
available DFADs applied for the calculation of daily colonization rates, in the Atlantic (Panel A) and 
Indian Oceans (Panel B). Shaded area represents the confidence interval around the colonization time. 
The colonization times were estimated as the inverse of the averages of the daily colonization rates, 
which themselves correspond to the daily ratios of the colonized DFADs relative to the total available 
DFADs. 
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3. Soak time comparison of colonized and uncolonized DFADs 

 

 

Figure S4.3. Trajectories of newly deployed DFADS monitored in Atlantic and Indian oceans. 
Colonized FADs (in blue) indicate trajectories where tuna presence has been detected for at least two 
consecutive days. Uncolonized FADs (in orange) correspond to trajectories where no tuna have been 
detected. 

 

 

 

Figure S4.4. Boxplot of the soak times of colonized (white) and uncolonized (grey) DFADs in Atlantic 
and Indian Oceans. The numeric values and diamonds represent the number of DFADs and the average 
soak time in each group, respectively. 
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4. Survival curve fits of FOB-aCAT and Fob-aCRT 

The summary of models employed to fit the survival curves of continuous residence (FOB-

aCAT) absence times (FOB-aCRT) of aggregation under the floating object as a function of 

time, is presented in Table S4.2. For all models, the analytical formula for survival curves S(t) 

was constrained by the normalization condition S(0) = 1. The corresponding q-q plots are 

presented in Figure S4.5 and Figure S4.6, for FOB-aCAT and FOB-aCART respectively. 

 

Table S4.2. Models used to fit the survival curves of aggregation continuous residence times (FOB-
aCRTs) and aggregation continuous absence times (FOB-aCATs) as a function of time, t. 

Model type Analytic formula 

Single exponential C(U) = S(w59) 
Double exponential C(U) = #S(w59) Y (1 R #)S(wy9) 

Power law C(U) = (z (z Y U){ )5 
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Figure S4.5. Q-Q plots of fits of single exponential, double exponential and power law models of the 
survival curves of continuous residence times (FOB-aCRTs) for Atlantic and Indian Oceans. AIC 
denotes for the values of Aikake Information Criterion. 
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Figure S4.6. Q-Q plots of fits of single exponential, double exponential and power law models of the 
survival curves of continuous residence times (FOB-aCATs) for Atlantic and Indian Oceans. 
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5. Summary of main variables considered by oceans 

The figure S4.7 provides a summary of the main metrics considered for the two oceans. 

 

 

Figure S4.7: Whisker plots of the main metrics assessed between Atlantic and Indian oceans. FOB-
aCRT and FOB-aCAT denote for the aggregation’s continuous residence time at a floating object and 
the continuous absence time of aggregation at a floating object, respectively. 
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Chapter 4:  

Assessing tropical tuna populations from their associative 

behaviour with floating objects: A novel abundance index for 

skipjack tuna (Katsuwonus pelamis) in the Western Indian Ocean 

“La natura preferisce le crescite vertiginose o decisamente più morbide, gli esponenti e 

i logaritmi. La natura è per sua natura non-lineare. 

Nature prefers vertiginous growth, or resolutely softer growths, exponents and 

logarithms. Nature is by nature non-linear.” 

Paolo Giordiano 
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Abstract 

We present a novel approach for providing direct abundance estimates of tropical tuna 

populations based on their associative behaviour with floating objects (FOBs) and acoustic data 

from fisher’s echosounder buoys. This approach accounts for the associated and non-associated 

components of tropical tuna populations, by combining the residence and absence times of tuna 

at FOBs with the dynamics of FOBs occupancy by tuna aggregations. We applied this 

modelling approach on the western Indian Ocean skipjack tuna (Katsuwonus pelamis) to 

provide an abundance index over the period 2013 to 2018. Our results showed that the 

population estimates made were consistent with total catches for a range of model parameters. 

This suggests that this direct approach can be considered as an alternative method to the catch-

per-unit-effort standardization traditionally used for stock assessment. 

Keywords: Tropical tunas, Direct Abundance index, Associative behaviour, Echosounder 

buoys. 
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4.1. Introduction 

Fish stock assessment is the process designed to study the status of fish stocks, which involves 

the use of various statistical and mathematical procedures to evaluate the impacts of fishing and 

to provide quantitative predictions of the potential effects of different management scenarios 

on fish stocks (Hilborn and Walters, 1992). A key objective of stock assessment is to provide 

managers with the necessary information on the changes in abundance as a response to fishing 

(and other factors, e.g. ecosystem and environmental effects) to take decisions to regulate the 

fisheries and ensure their sustainability. Stock assessment models rely on a conceptual 

framework consisting of models that describe the demographic processes of the exploited 

species, from fishery-dependent or independent data sources. One of the main approaches in 

stock assessment consists in modelling the dynamics of stock biomass, notably by means of 

abundance indices very often based on catch-per-unit-effort (CPUE) data. This indirect 

approach relies on a fundamental relationship in fisheries science, which relates CPUE to stock 

abundance by a catchability coefficient defined as the portion of the stock captured by one unit 

of effort. Thus, a change in CPUE trends would reflect a shift in the same direction occurring 

in the target stock, for a constant catchability. However, this approach may be limited by the 

typical factors associated with fisheries-dependent data, including the variability in catchability 

resulting from changes in fleet efficiency over time (Bishop, 2006). This is especially apparent 

in the context of tropical purse seine fishing, where the interpretation of abundance indices 

based on CPUE is described as notoriously problematic (Fonteneau et al., 1999; Maunder et 

al., 2006), in particular because catchability is not constant over time and requires complex 

standardization processes. 

In their primary fishing mode, purse seiners mainly targeted free-swimming tuna schools (or 

associated with dolphins in Eastern Pacific Ocean). Therefore, the time devoted to the searching 

of tuna schools was traditionally used as a relevant metric to reflect the nominal effort. Over 

the last three decades, the catchability of tropical tuna species has considerably increased with 

the continuous implementation of new technologies on board the purse seine fleets (Gaertner 

and Pallares, 2001; Fonteneau et al., 2013; Torres-Irineo et al., 2014). The development of a 

purse-seine fishery based on instrumented Drifting Fish Aggregating Devices (DFADs), since 

the 1990s (Ariz et al., 1992; Hallier and Parajua, 1992), represents one of the most important 

changes that have contributed to the increase in the efficiency of purse seiners. Drifting fish 

aggregating devices (DFADs) are man-made floating objects deployed and maintained by 



Chapter 4: Associative Behaviour-Based Abundance Index 

106 

 

industrial purse seiners to facilitate and improve their catches by taking advantage of the 

associative behaviour of tropical tuna species around floating objects. DFADs were 

immediately equipped with tracking technologies as locating these objects was key for fishers.  

Progressively, acoustic devices providing near-real time and remote information on tuna 

aggregations underneath them were incorporated to these buoys (Lopez et al., 2014). Due to its 

non-random nature, DFAD-based fishing raises major issues for traditional purse seine effort 

metrics as they cannot accurately account for its effects. Indeed, the typical search time no 

longer reflects the true fishing effort as it does not incorporate the influence of the remote 

information on DFAD positions and associated biomass. This has the potential to introduce 

biases in the relationships between the observed catch-per-unit-effort (CPUE) and the true 

abundance, thus highlighting the critical need for complementary abundance indices to improve 

stock assessments of the main exploited tropical tuna species. 

Currently, most deployed DFADs are equipped with satellite-linked echosounder buoys, which 

continuously collect data on the fish aggregations associated with the DFADs (Moreno et al., 

2019a). These instruments confer to DFADs the status of privileged observation platforms for 

the marine communities associated with them (Moreno et al., 2016b; Brehmer et al., 2019), and 

offer the opportunity to assess the abundance of tuna and other associated species from the huge 

amount of data they provide. Santiago et al., (2019, 2016), proposed a catch-independent 

abundance index for tuna populations based on acoustic data from echosounder buoys: the 

Buoy-derived Abundance Index (BAI). The BAI is an indirect abundance index using an 

assumption similar to that of the CPUE, whereby the tuna abundance is considered proportional 

to the acoustic signal provided by buoys. The index uses a standardization approach to account 

for factors that can change the link between the abundance and the acoustic signal (hardware 

and software differences between buoys models, environmental variability, etc.). Alongside this 

approach, Capello et al., (2016) have developed a new methodological framework for 

estimating the abundance of tropical tuna, focused on the analysis of their associative dynamics 

around floating objects. This approach is based on the measurement of the continuous time that 

tunas spend associated or not with floating objects, in order to estimate the size of the local 

populations from which they originate. This approach potentially allows one to estimate the 

total abundance from any type of data that could be used to monitor tuna behaviour around 

floating objects (FOB). These data usually derive from scientific experiments using archival, 

satellite or acoustic tagging techniques. Recent analyses demonstrated that echosounder buoys 

can also provide reliable information on the associative dynamics of tuna aggregations around 
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DFADs, likely to be used in this population assessment framework (Baidai et al., 2020a, 

2020b). In this work, we combine data on FOB occupancy by tunas obtained through the 

echosounder buoys with metrics related to the association dynamics of tropical tuna at FOBs, 

in order to provide a direct abundance index accounting for the associated and the free 

components of the population of the western Indian Ocean skipjack tuna (Katsuwonus pelamis), 

over the period 2013 – 2018. 

 

4.2. Materials and methods 

4.2.1. Model Definition 

The associative behaviour of tropical tuna population implies that, at any given time, the overall 

abundance (N) in a given area (S) with p floating objects (or FOBs), results from the sum of the 

abundances of its free-swimming (Xu) and associated (Xa) components. 

!(U) = |5(U)Y"|7(U)" (>. 1) 
with: 

|5(U) = "`|G(U)
}

GKL
(>.2) 

where Xi (t) is the number of fish individuals associated to the FOB i at time t. Following the 

work by Sempo et al., (2013), the differential equations describing the evolution of Xi through 

time can be written as following: 

~|G(U)~U = "�G|7(U) R"�G|G(U) (>.4) 

where, the parameters μi and θi respectively denote the transition rates (probability per unit of 

time) from one state to another. μi corresponds to the probability per unit time for an 

unassociated fish to associate with the FOB i, hereinafter referred to as the “association 

probability”. θi or the “departure probability” is the probability per unit time for an associated 

tuna to leave the FOB i and become unassociated. Given the schooling behaviour of tunas, these 

parameters can be related both to the behaviour of an individual or to that of the school to which 

it belongs. Capello et al., (2016) demonstrated that μi and θi can be inferred from the continuous 

bout of times that tunas spend unassociated or associated to a FOB, respectively the continuous 
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absence time (CAT) and continuous residence time (CRT), and that at equilibrium, the total 

population can therefore be related to its associated component, according to the following 

equation: 

! = 30X" Y "3$X
30X |5" (>.>) 

On the other hand, considering m as the local tuna abundance under an inhabited FOB (i.e., a 

FOB occupied by tunas), and f as the proportion of inhabited FOBs of the system, the associated 

population can be estimated as follows: 

|5 = :\#" (>.B) 
Substituting the associated population from (4) with its value from (5), the total population can 

be expressed as follows: 

! = 30X" Y "3$X
30X :\#" (>.e) 

Similarly, from Equation (1) the unassociated (free-swimming) population is expressed from 

the following relation: 

|7 = 3$X
30X:\#" (>.f) 

 

4.2.2. Application to skipjack tuna in the Indian Ocean 

4.2.2.1. Study area and period 

The study area extended between latitudes 20° S and 8° N and covered longitudes located 

between the African coasts and 80° E. This area concentrated all the skipjack tuna catches of 

the French purse seine fleet over the period from 2013 to 2018 (Figure 4.1). The study covers 

the years 2013-2018 where echosounder buoys data are available. Analyses were conducted on 

a quarterly basis. 
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Figure 4.1: Spatial boundaries (red dashed line) of study area zone and kernel density of skipjack tuna 
catches operated by the French purse seiners on FOBs over the period 2013-2018. 

 

4.2.2.2. Data collection 

4.2.2.2.1. FOB-associated average tuna biomass (m) 

Skipjack catches operated under FOBs in the study area, available from the French purse seine 

fishery database hosted by the Ob7/IRD (“Observatoire des Ecosystèmes Pélagiques Tropicaux 

exploités”), and processed using the T3 (“Traitement des Thons Tropicaux”) (Duparc et al., 

2018), were used to estimate the average skipjack biomass associated with an inhabited FOB 

(m). Table 4.1 resumes the number of available fishing sets on a quarterly basis. 
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Table 4.1 : Number of fishing sets on FOB per trimester used to estimate the average biomass of 
skipjack tuna at FOBs. 

Year Quarter Fishing sets 

2013 

Q1 370 
Q2 351 
Q3 418 
Q4 524 

2014 

Q1 368 
Q2 286 
Q3 574 
Q4 520 

2015 

Q1 213 
Q2 424 
Q3 492 
Q4 635 

2016 

Q1 547 
Q2 389 
Q3 643 
Q4 686 

2017 

Q1 591 
Q2 541 
Q3 720 
Q4 715 

2018 

Q1 897 
Q2 610 
Q3 683 
Q4 681 

 

4.2.2.2.2. Number of floating objects (p) 

The typology of FOBs considered in this study consists of two main categories: (i) the DFAD 

(ii) and the other objects. The DFAD category corresponds to man-made FOBs specifically 

designed to encourage fish aggregation, while the “other” category includes natural drifting 

objects (VNLOG and ANLOG) and anthropogenic debris (FALOG, and HALOG), as described 

in Gaertner et al. (2016). In terms of data collection, assessing the number of floating objects 

(p) corresponds to one of the main challenges faced by this approach. Indeed, there is still a 

limited knowledge about the precise number of FOBs at water, especially because the total 

number of DFADs operated by the tuna purse seine fleets is still considered as a sensitive 

information. In an attempt to obtain approximated time series of the total number of FOBs in 
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the study area, we considered the buoy position data available in the Marine Instruments buoys11  

database hosted by the Ob7/IRD. The dataset corresponds to all the position data collected by 

buoys equipping the DFADs operated by the French purse-seiner fleet. This information 

constitutes a reliable estimate of the number of DFADs used by the French tuna purse-seiners, 

since almost all of the DFADs deployed by this fleet were equipped with one of the buoy models 

from this brand. To provide an estimate of the total number of DFADs, the ratio between the 

number of buoys used by the Spanish and French vessels (the two main fleets in the study area) 

provided from 2010 to the end of 2017, by Katara et al., (2018) was considered. The missing 

ratio for the year 2018 was estimated using the average ratio over the year 2017. This was based 

on the assumption of a relative stabilization in the exploitation of buoys between the different 

fleets during this period (namely due to the limitation measures on the number of buoys 

operated by tuna purse seiners in the Indian Ocean: Resolutions 15/08 and 17/08). The “Other” 

category was estimated from the proportions of DFAD observed relative to the total number of 

FOBs reported by observers on board French tuna seiners during the same period. The observer 

data were collected under the EU Data Collection Framework (DCF) and the French OCUP 

program (Observateur Commun Unique et Permanent), with an overall average coverage rate 

of about 50% over the years 2013 to 2017 (Goujon et al., 2017). Finally, the time series of the 

number of FOBs over the years 2013 – 2018 were derived as the sum of the estimated number 

of French and Spanish DFADs and the amount of natural and artificial logs. 

 

4.2.2.2.3. Proportion of inhabited FOBs (f) 

Proportion of inhabited FOBs were derived from data collected by the M3I echosounder buoys 

from the Marine Instruments database. This buoy model is equipped with an echosounder 

device (frequency 50 kHz, power 500 W, beam angle of 36°), which provides acoustic 

information on the underneath biomass associated to DFADs. These data, which represent the 

largest amount of acoustic data available in the Marine Instruments database over the study 

period, were processed in presence or absence of tuna aggregation, using a machine learning 

algorithm (Baidai et al., 2020a). Proportion of inhabited FOBs were then expressed as the 

number of DFADs classified as inhabited by a tuna aggregation, divided by the total number of 

                                                           
11 Marine Instruments, Nigrán, Spain, www.marineinstruments.es 
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DFADs at a daily scale. Quarterly averages were then calculated. Table 4.2 resumes the number 

of available M3I buoys on a quarterly basis. 

 
Table 4.2: Average number of daily M3I buoys in the study region per quarter. 

Year Quarter M3I Buoy Count 

2013 

Q1 494 

Q2 518 

Q3 549 

Q4 505 

2014 

Q1 459 

Q2 581 

Q3 594 

Q4 840 

2015 

Q1 850 

Q2 1287 

Q3 1572 

Q4 1764 

2016 

Q1 2005 

Q2 2236 

Q3 2013 

Q4 2524 

2017 

Q1 2885 

Q2 2425 

Q3 2494 

Q4 2449 

2018 

Q1 2456 

Q2 2493 

Q3 2370 

Q4 2545 

 

4.2.2.2.4. Continuous Residence time of skipjack tuna (CRT) 

Continuous residence times (CRT) of skipjack tuna individuals have been documented in the 

three oceans, on both anchored and drifting FADs (see Table 4.3). The studies showed that 

skipjack tuna remained associated with a floating object for an average of 1 to 9 days. In the 

Indian Ocean, acoustic tagging experiments carried out by Govinden et al., (2010), around 

drifting FADs revealed that on average, the skipjack CRT around a DFAD is 4.6 days. This 

average value was considered in this study. 
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Table 4.3: Summary of main findings from previous studies on skipjack tuna individual CRT assessed under anchored and drifting FADs (FL: Fork length). 

FAD type Studies Study location FL (cm) Findings 

Drifting 

Dagorn et al., (2007) Western Indian Ocean 
Not 

provided 
Average at 0.91 days (maximum: 7.03 days) 

Govinden et al., (2010) 
Mozambique  Chanel,  
(Western Indian Ocean) 

47 – 57 
Between 0.09 – 18.33 days with median at 
4.47days and average at 4.58 days 

Matsumoto et al., (2014) 
Equatorial central Pacific 
Ocean 

36 – 65 
From 0.0 to 6.4 days (with average value at 2.3 
days)  

Matsumoto et al,. (2016) 
Equatorial central Pacific 
Ocean 

34 – 65 Less than 7 days 

Scutt et al., (2019) 
Western Central Pacific 
Ocean 

46 – 60 Median at 1 day (maximum: 18 days) 

Tolotti et al., (2020) Eastern Atlantic Ocean 39 – 61 
Average of 9.19 days (maximum value to 15 
days) 

Anchored 

Govinden et al., (2013) 
Maldives Islands (Indian 
Ocean) 

37 – 54 Between  0.20 – 3.75 days 

Rodriguez-Tress et al., 
(2017) 

Mauritius Islands (Indian 
Ocean) 

41 - 59  2.5 days (average value)   
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4.2.2.2.5. Continuous absence times (CAT) 

At the time of the study, no direct measurement of skipjack CATs has yet been carried out in 

the study area, mainly due to the complexity of the experimental protocol to be implemented. 

However, considering that the encounter of a FOB by a tuna is more likely for higher FOB 

densities, this implies decreasing CATs for increasing numbers of FOBs (Rodriguez-Tress et 

al., 2017). Based on these arguments, the CAT was related to the number of FOBs according 

to the following ansatz:  

3$X = 1
�# " (>.�) 

Where ϕ is a parameter that relates the number of FOBs in the system to the CAT. A detailed 

section on the significance and plausible magnitude order of ϕ is provided on Supplementary 

information S7 of this chapter. Time series of CAT were thus derived from Equation (4.8), 

considering the number of FOBs (estimated following the procedure described at section 

4.2.2.2.2), and different values for ϕ ranging between 2e-6 and 1. 

 

4.2.2.3. Abundance estimates from field data 

The associated skipjack population (Xa) was assessed using Equation (4.5), considering, for 

each quarter, the values of m, f, p and CRT obtained from field data. By substituting the 

definition of CAT from Equation (4.8) into the Equation (4.7), the free-swimming population 

(Xu) can be expressed through the following relationship: 

|7 = :\
�30X (>.�) 

The Equation (4.1) was then used to perform assessments of the abundance of the total skipjack 

tuna population (N). In addition, the sensitivity of N and Xu were tested with respect to the 

different values of ϕ considered, and the consistency of the quarterly abundances of the total 

population obtained was analysed with respect to the total nominal catches made in the same 

time period and area. Finally, the relative trends of the different abundance indices are also 

presented using the first quarter of year 2013 as a reference. 
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4.3. Results 

4.3.1. Time series of proportion of inhabited FOBs (f) and FOB-associated 

biomass (m) 

The proportion of inhabited FOBs exhibits a relative stability over time, with an average around 

0.45 (SE 0.01) over the whole study period (Figure 4.2). This stable trend, especially marked 

from mid-2015 onwards, contrasts with the gradual increase in the skipjack catches at FOBs, 

here considered as a proxy of the associated skipjack biomass observed during the same period 

(Figure 4.3). 

 

Figure 4.2: Time series of the average daily proportion of FOBs inhabited by tuna aggregations in the 
study area over 2013-2018. The red dashed line represents the average proportion of inhabited FOBs 
over 2013-2018. 

  

 

Figure 4.3: Time series of the average skipjack tuna catches at FOBs in the study area over 2013 – 
2018. 
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4.3.2. Time series of the estimated number of FOBs (p) 

The evolution of the number of FOBs revealed that DFADs constitute the main driver of FOB 

density in the study area, given the relative low percentage of “other” floating objects over time 

(Figure 4.4). Two main trends emerge: (i) the period before 2015 characterized by a steady 

increase in the number of FOBs, and (ii) the period after 2015 with a plateau about 11,000 FOBs 

(Figure 4.5). 

 
Figure 4.4: Proportions of drifting fish aggregating devices (DFADs) and other types of natural and 
artificial objects (Other) reported by observers on board French tuna seiners. 

 

Figure 4.5: Temporal evolution of the number of active French buoys (French FOBs equipped with 
buoys), the estimated numbers of drifting fish aggregating devices (DFADs) and others objects (Other), 
and the estimated total number of floating objects (FOBs) in the study area (FOBs = DFADs + Other). 



Chapter 4: Associative Behaviour-Based Abundance Index 

117 

 

4.3.3. Time series of continuous absence time (CAT) 

The CAT time series (Figure 4.6) estimated using Equation (4.8) reveal that for higher values 

of ϕ (ϕ ≥ 2e-5); skipjack individuals would spend very short durations in the non-associated 

state during the study period (between 5 days and less than 1 day on average). Lower values of 

ϕ provide larger values of CAT, characterized by temporal trends that sharply decrease over 

time as the number of FOBs increases, and stabilize after 2015 at about 17, 28 and 41 days for 

ϕ values of 5e-6, 3e-6 and 2e-6 respectively. 

 

 

Figure 4.6: Average CATs estimated for different values of ϕ. 

 

4.3.4. Abundance indices of the skipjack tuna population 

The evolution of the associated population obtained from Equation (4.5) follows a similar trend 

to that of the number of FOBs, with the typical trends observed before and after 2015 (Figure 

4.7A). However, from 2017 onwards, the increase in the associated population tends to be less 

marked and more irregular, with a relative minimum during the second quarter of 2018. 

Although the general trends in the free-swimming population obtained from Equation (4.9) do 

not really change for the ϕ values comprised between 2e-6 and 5e-6, their order of magnitude 

is nevertheless highly dependent on this parameter (Figure 4.7B). The unassociated population 

showed an initial decrease, in line with the fast increase in the number of FOBs and the 
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associated population at the beginning of the time series, followed by a relative stabilization 

since 2016. 

The sensitivity analysis of the total population abundance with respect to ϕ shows that the values 

of this parameter comprised between 2e-6 and 5e-6 provide absolute values of the total skipjack 

tuna population consistent with the total catches of this species reported in the study area 

(Figure 4.7C). Considering the lowest ϕ value used (2e-6), the total skipjack biomass in the 

western Indian Ocean ranged from the minimum value of 0.3 million tons in the second quarter 

of 2014 to 1.3 million tons in early 2018. 

The relative indices produced for values of ϕ between 2e-6 and 5e-6 reveal that during 2014 the 

abundance of the total skipjack population rapidly declined to values more than half those of 

the reference year. The year 2015 was characterized by a steady increase in the total skipjack 

population, which appears to be stabilizing around the reference threshold since 2018 (Figure 

4.8). In addition, the trends in the relative abundance of the total population appear to be 

insensitive to the ϕ values considered in the range of ϕ values between 2e-6 and 5e-6. 
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Figure 4.7: Time series of the absolute abundances of associated (panel A), unassociated (panel B) and 
total skipjack population (panel C) under different values of ϕ. The shaded area corresponds to values 
below the nominal catch data used for stock assessment of skipjack tuna12, in the western Indian Ocean 
(IOTC area delimited by African and Asian shorelines, to the south by latitude 45°, and to the east and 
west by longitudes 20°E and 80°E, respectively), during 2013-2018. 

                                                           
12 The IOTC nominal catch datasets used and related details are publicly available at the following 
address https://www.iotc.org/WPTT/22DP/Data/03-NC 
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Figure 4.8: Evolution of relative abundance of associated (panel A), unassociated (panel B) and total 
skipjack population (panel C), compared to the first quarter of 2013, under different values of ϕ. The 
low opacity curves correspond to the ϕvalues that were found to be inconsistent with the total catches 
diagnostics. 
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4.4. Discussion 

We propose a new approach, which can provide absolute abundance indices of tropical tuna 

populations, from a set of descriptive metrics of their associative behaviour around floating 

objects (namely residence and absence times) and the occupancy rate of these objects by tuna 

aggregations. Using tuna behavioural data collected through electronic tagging technologies, 

and the massive amount of DFAD monitoring data flowing from echosounder buoys of tuna 

purse seine fleets, the approach has the ability to take into account the different components of 

the tuna population (free-swimming tuna and associated tuna). 

Although based on the associative behaviour of species, this method remains relatively 

independent of the understanding of the causative factors underlying this behaviour (Capello et 

al., 2016). Indeed, an individual is here assimilated to a “computational unit” integrating 

different environmental and biological factors, and yielding as outputs the observables used as 

input data in the approach. The method also relies on the ability of monitoring the occupancy 

of floating objects by the tuna species. This is achieved by exploiting the acoustic data from 

echosounder buoys, but currently without the ability to discriminate between tuna species in 

the multi-species aggregation under the object. Besides this aspect, another major issue 

associated with the use of acoustic data from buoys to assess the occupancy of floating objects 

is related to the biomass threshold at which buoys are able to detect the presence of a tuna 

aggregation. Large detection thresholds are likely to significantly underestimate the abundance 

estimates derived from the modelling approach. Complementary simulations studies would be 

useful to properly assess the biases related to this buoy technical limitation on the abundance 

index. In the case of the buoy model used in this study, this threshold is assumed to be about 1 

ton (Baidai et al., 2020a). As fishing operations are very rarely carried out on DFADs with less 

than 1 ton of associated biomass, the presence of this detection threshold has nevertheless made 

it possible to ensure consistency between the dataset of FAD occupancy (f) and that of their 

associated biomass (m) estimated from catch data. Furthermore, since their introduction in the 

tropical purse seine fishery, buoy technology has constantly been evolving (Lopez et al., 2014). 

It can therefore be expected that current buoy models, which provide relatively poor estimates 

of associated biomass (Baidai et al., 2020a), will evolve towards models with better detection 

and estimation performances. 

Using behavioural analyses or site occupancy patterns to predict species abundance is not a new 

idea. For a wide range of species, several statistical and mathematical models have been used 
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to relate the presence/absence at occupancy sites to the abundance (He and Gaston, 2000a, 

2000b; He et al., 2002; Warren et al., 2003; MacKenzie and Nichols, 2004; Hui et al., 2009). 

On the other hand, Dell and Hobday, (2008) have developed an approach relying on the use of 

schooling behaviour metrics to infer the population size of southern bluefin tuna, following the 

hypothesis that homogeneity in school structure would reflect the status of a tuna population 

(the more individuals of similar size, the larger are populations). Our approach is nevertheless 

the first, which melds behavioural ecology data with occupancy rate to provide insights on the 

population dynamics of tropical tuna species. 

The approach is fairly generalizable to all populations of species exhibiting associative 

behaviour around aggregating points, although some of its unique characteristics may look 

limiting to some extent. Indeed, the approach requires the fulfilment of a number of key 

conditions for its application. The most important concerns the equilibrium condition which 

defines the state of the system where the state variables (namely here the proportions of 

inhabited points and associated animals) no longer vary over time. In the case of skipjack tuna 

considered in this study, fulfilment of the equilibrium condition was evaluated by analysing the 

stationarity of the time series of the proportion of inhabited FOBs on the quarterly time scale 

considered (see Supplementary information S5). This time scale was chosen in accordance with 

the usual time strata used for stock assessments in the Indian Ocean. However, for this 

approach, the correct determination of the time strata should rather have resulted from the 

analysis of the stationarity of the system, which would have identified the adequate time periods 

for the application of the model, validating the equilibrium condition. This includes that the 

length of these periods could vary over time, depending on the dynamics of the system 

observed. Although, the stock assessment time scale was fortunately found to be relatively 

suitable for the skipjack population in this case study, it is likely to be problematic for the 

implementation of this modelling approach to other species. 

In addition, the approach needs accurate estimates of the local absolute abundance around the 

aggregating points. Depending on the cases, these estimates may be potentially biased by the 

characteristics and sampling strategies used. For skipjack tuna, information on the biomass 

around the FOBs was collected from FOB-associated purse seine catches, with nevertheless the 

potential risk that purse seiners only target FOBs with “higher productivity” (FOBs with largest 

biomasses), which would have led to a biased estimator of the average population around the 

FOBs. Due to the paucity of information on this aspect of fishing strategy of purse seiners, the 

likelihood of disparities in the aggregative characteristics of FOBs was assessed by examining 



Chapter 4: Associative Behaviour-Based Abundance Index 

123 

 

the occupancy rate of FOBs by tuna aggregations (namely the overall proportion of time they 

are occupied by tunas). The analysis was based on the principle that FOBs with higher 

aggregative/attractive properties (i.e. those aggregating the highest biomasses), should 

theoretically host tuna aggregations more often and longer than others. This would result in a 

multimodal distributions of the FOB occupancy rates by tunas (with different modes for each 

type of FOBs). The analysis did not provide clear evidences of a significant heterogeneity 

between FOBs characteristics (see Supplementary information S6). Therefore, it was concluded 

that the purse seine catch data under FOBs could be considered as an unbiased estimator as it 

could not be proven that some FOBs would aggregate more fish than others would. 

The hypothesis of a single associative behavioural response of individuals raised by the 

approach is also of concern. In this work, the residence time of skipjack tuna under a FOB 

(CRT) was assumed constant. However, some authors have evidenced that the CRT may 

significantly vary depending on the individual size (Ohta and Kakuma, 2005; Robert et al., 

2012), or due to variability of the local conditions around FOBs (Robert et al., 2013a). A more 

recent study has also evidenced that increasing FOB densities could potentially result in an 

increase of CRTs (Pérez et al., 2020). In addition, the occurrence of a turn-over process of tuna 

schools under FOBs (Weng et al., 2013; Baidai et al., 2020a), or the meeting point hypothesis 

(Fréon and Dagorn, 2000) suggest that tuna individuals may switch from one school to another 

under FOBs. Thus, CRTs may also vary due to social interactions between tunas. This aspect 

should also be clearly analysed with regard to its impacts on the abundance estimates. However, 

as demonstrated by Capello et al. 2016, the modelling framework supporting our indices shows 

high robustness for a heterogeneous system with variable CRTs. In addition, from the wide 

range of studies on CRT of tuna individuals, it appears that this metric has a relatively small 

range of variation, with values from one to about ten days, the highest average value measured 

for skipjack tuna (see Table 4.3). The low variability of CRTs is also suggested by the analytical 

estimates of the average CRTs of individuals under each FOB, from FOB occupancy metrics, 

presented in Supplementary information S8. In a general way, the development of specific 

electronic tagging programs would be essential to clearly assess the influence of the various 

factors (e.g. space, time and individual-size and social interaction) on the variability of this 

metric. 

Data collection represented one of the major challenges of this approach. For example, although 

the technology exists to allow the measurement of the continuous absence time of tuna (CAT), 

this metric has so far received very little attention and there is currently a critical lack of 
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information on this essential data to understand the associative behaviour of tuna (Dagorn et 

al., 2007c; Robert et al., 2012, 2013b; Rodriguez-Tress et al., 2017). This limitation was 

overcome by a conjecture on an inverse proportionality relationship between the CAT and the 

number of FOBs through the parameter of ϕ. Although, the plausible order of magnitude of this 

parameter has been estimated both empirically and analytically (see Supplementary information 

S7), uncertainties remained on its actual value. On the other hand, the contribution of analytical 

methods could be of great interest in improving knowledge on CATs. Indeed, previous studies 

demonstrated that tunas perform a random walk between two FOB associations and show an 

oriented movement only within an average radius of 10 km from a FOB (Girard et al., 2004). 

Therefore, the encounter and association of a tuna with a drifting FOB can be roughly modelled 

as the encounter of two random walkers separated at their initial position by a distance equal to 

the average distance between FOBs (assuming that a tuna leaves one FOB for another). A 

precise knowledge of the fine-scale spatial distribution of floating objects at sea could thus 

make possible to derive the range of values of CAT and association probability.  

Unfortunately, the availability of data on FOBs represented a major limitation encountered in 

this study. DFADs actually constituted the most important category of FOBs, as indicated by 

the work from Dagorn et al., (2013b), and corroborated by the results from this study (see 

Figure 4.5). Currently almost all of them are equipped with satellite linked echosounder buoys 

(Lopez et al., 2014; Moreno et al., 2019a), whose geolocation data could allow to reconstruct 

densities of floating objects at fine spatial and temporal scales. However, availability of these 

data still remain problematic, and relatively limited depending on fleets, companies or buoy 

manufacturers (Moniz and Herrera, 2019; Grande et al., 2020). 

Nevertheless, these different issues do not detract from the potential of this new alternative for 

assessing abundance of tropical tuna species and especially skipjack tuna, whose stocks are 

notoriously difficult to assess. Due to their high and variable productivity, (i.e. annual 

recruitment is a large proportion of total biomass), detecting the effect of fishing on the skipjack 

population with standard fisheries data and stock assessment methods is particularly difficult 

(Maunder and Deriso, 2007; De Bruyn and Murua, 2011). Moreover, skipjack catches mainly 

derive from DFAD-based fishing from purse-seiners (ISSF, 2019). This raises several 

uncertainties concerning abundance indices derived from catch-per-unit of effort (CPUE) of 

purse seine fisheries, given the inherent complexity in identifying an adequate unit effort for 

the purse seine fleet (Fonteneau et al., 1999). This work provides an abundance assessment 
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method independent of effort data, and particularly adapted to skipjack populations, as this 

species constitutes the predominant tuna species associated with floating objects (Dagorn et al., 

2013a). Despite the relatively short length of the available time series, our findings indicate that 

the massive increase in the use of DFADs by tuna seiners before 2015 (see Figure 4.5 and 

Maufroy et al., 2017), may have led to a significant shift from the free-swimming state towards 

the associated one. The resulting increase in catchability is likely to constitute a consistent 

explanation for the gradual decline in total population size observed over this period. The 

abundance of skipjack increased after 2015 and then stabilized. This trend coincides with the 

first management plans for DFADs in the Indian Ocean, especially the limitations of the number 

of DFADs used per vessel from 2015 (IOTC Resolution 15/08 and 17/08). These limitations 

could be thought as one one of the factors driving the abundance trend observed from this period 

onwards. However, it is worth to note that they did not actually contribute to reduce the number 

of total DFADs in the water. Hence, the main drivers of skipjack abundance should be sought 

in terms of environmental conditions or biological and fisheries characteristics of skipjack. 

Finally, the new abundance indices presented in this work illustrate the important contribution 

that echosounder buoys and electronic tagging data can make to improving stock assessments 

of tropical tuna. To date, the collection of these data is mainly carried out either to enhance 

general knowledge on the ecology of tuna species (behavioural metrics) or for regulatory 

purposes (number of DFADs). The possibility of deriving from these data, abundance indices 

independent of catch-per-unit-effort data, could certainly be a powerful driver for tuna RFMOs 

to gather funds dedicated to the development of electronic data collection programs. 
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Supplementary information S5 
 

Validation of the equilibrium condition 

 

1. Context 

The system's equilibrium represents the core assumption for estimating abundance of tuna from 

the dynamics of their associative behaviour. At equilibrium, the amount of populations joining 

FOBs is assumed equal to the amount that leaves the FOBs (S5.1). For each FOB i, this leads: 

�G|7(U) R"�G|G(U) = h" (CB.1) 
Similarly, the amount of FOBs that become inhabited by tunas remains equal to the number of 

FOBs that are emptied as shown in the following equation: 

�(# R "#5(U)) R "�#5(U) = h (CB.2) 
where pa and p denote the number of inhabited FOBs and the total number of FOBs 

respectively; ν represents the probability per unit of time (transition rate) for an empty FOB to 

become occupied by a tuna aggregation, and η is the rate at which an occupied FOB becomes 

empty. Following a similar reasoning to that of Capello et al., (2016) on the relationship 

between association and departure probabilities and CATs and CRTs; ν and η can be inferred 

from the continuous absence time of aggregation at a floating object (FOB-aCAT or aCAT), 

and the continuous time during which a FOB hosts a tuna aggregation or aggregation’s 

continuous residence time at a floating object (FOB-aCRT or aCRT). Since, the survival curves 

of aCATs and aCRTs follows a time-independent process (Baidai et al., 2020b), we can write: 

� = 1
M3$X (CB.4) 

and  

�" = 1
M30X (CB.>) 

This implies that at equilibrium, the proportion of FOB inhabited by tunas should remain 

stationary over time and follow the below relationship: 

\ = "#5# = M30X
M3$X" Y M30X" (CB.B) 
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2. Methodology 

The quarterly averages of aCRTs and aCATs were calculated from time series of 

presence/absence of tuna obtained along the drifts of FOBs equipped with M3I buoys in the 

study area. The daily proportion of inhabited FOBs was also calculated and its time evolution 

was examined on a quarterly basis. Finally, the quarterly averages of these proportions were 

used to verify the validity of the Equation S5.5. 

 

3. Results  

Figure S5.1 shows the strong agreement between the two terms of the Equation S5.5 (Student’s 

t test : t = 0.646, p = 0.521). In addition, although upward (e.g. Q1-2013 and Q2-2013) and 

downward trends (e.g. Q3-2013) were observed in some quarters, the proportion of FOBs 

inhabited by tuna during the observation period can generally be considered stationary (Figure 

S5.2). 

 

Figure S5.1: Relation between quarterly averages of proportions of inhabited FOBs, aCATs and aCRTs. 
The black dashed line represents the isoline 1:1. 
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Figure S5.2: Time series of daily proportions of inhabited FOBs in the study area over 2013-2018. The 
red dashed lines represents the quarterly average values of the daily proportion of inhabited FOBs. 
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Supplementary information S6 
 

Homogeneity of aggregative characteristics of FOBs 

1. Context 

The average population associated (m) with one FOB is estimated from average catches of tuna 

seiners under DFADs. This estimator might potentially be biased (overestimated), if tuna 

seiners only target FOBs with high tuna biomasses. This would also imply the existence of 

heterogeneity in the aggregative/attractive characteristics between FOBs. Indeed, the most 

attractive FOBs (i.e. those which aggregate the highest biomasses), should theoretically host 

tuna aggregations more often and longer than the others. Thus, heterogeneity in attraction or 

retention characteristics of FOBs should therefore, be reflected by the occurrence of multiple 

modes in the distributions of FOB occupancy rate in the study area. 

 

2. Methodology 

In order to investigate the possibility of such heterogeneity, distributions of FOB occupancy 

rates (proportion of the total time during which a FOB hosts tuna over its soak time) were 

examined from time series of tuna presence/absence measured along the drifts of FOBs 

equipped with a M3I echosounder buoy in the study area. The analysis was done considering, 

on the one hand, all FOBs in the data set and, on the other hand, only those on which fishing 

operations were carried out. 

 

3. Results 

The results showed that despite a large variability in FOB occupancy rates, affecting FOBs in 

general (Figure S6.1) but also the subset of FOBs on which fishing operations were reported 

(Figure S6.2), no characteristic multimodality could be identified. Hence, FOBs properties 

(attraction and retention characteristics) can be considered relatively homogeneous, and the 

average DFAD-associated catches of tuna seiners should represent an unbiased estimator of the 

local tuna abundance under a FOB. 
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Figure S6.1: Proportion of DFAD occupancy time by tuna aggregations in the study area over 2013-
2018. 
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Figure S6.2: Proportion of occupancy time by tuna aggregations on fished DFADs in the study area 
over 2013-2018. 
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Supplementary information S7 
 

The ϕ significance 

Currently, there are no reliable observational data for CAT of tropical tunas, one of the main 

variables used in the proposed abundance assessment model. To overcome this limitation, the 

relation between CAT and the number of FOBs in the system has been estimated based on an 

ansatz introducing the parameter ϕ. This parameter is intended to move from the local scale at 

which associative processes take place (where the CAT are measured), to the scale of oceanic 

regions considered for the abundance estimates (where the number of FOBs is estimated). 

Indeed, following Capello et al., (2016), for a system at equilibrium, the CAT can be related to 

the number of FOBs in the system (p) and the association probability (μi), defined as the 

probability for a non-associated fish to associate with a FOB i, as follows 

3$X = 1
F �G}GKL

(Cf.1) 
However, at oceanic scales considered, the associative processes of a tuna can realistically only 

concern a limited number of FOBs (p0), corresponding to those that the tuna may encounter 

locally following its departure from another FOB. Therefore, p0 represents the number of FOBs 

likely to be locally visited by the tuna, and located in the area S0 that can be explored by the 

tuna between two consecutive associations. Herein referred to as the “local interaction zone”, 

S0 thus corresponds to the basic space-time unit within which the associative processes of a tuna 

take place (Figure S7.1). It is assumed that within it, all FOBs have the same probability of 

being visited and hosting tuna. The CAT definition can therefore be rewritten according to the 

following equation: 

3$X = 1
#b�G (Cf.2) 

Considering a homogeneous distribution of FOBs, it is possible to write: 

#
C =

#bCb (Cf.4) 

where S represents the area of the oceanic scale considered for the abundance assessment. 

Inserting the above relation into the CAT definition provided at Equation (S7.2) leads to: 

3$X = " 1
�CbC �G� #

(Cf.>) 
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By considering CAT definition from Equation (4.8) (see Chapter 4: section 4.2.2.2.5), it is 

therefore possible to express the parameter ϕ as the product of the surface ratio and the 

association probability: 

� = CbC �G (Cf.B) 

The area S0 depends on the search dynamics of the tuna (random walk) and is currently 

unknown. However, it can be assumed that S0 could be limited to the theoretical area that a tuna 

could cover during the basic unit of time considered (namely one day the time unit considered 

in this study). This would correspond to a circle with radius equal to the maximum distance 

travelled by a tuna in 24 hours (case of a “straight swim” to the FOB). Considering tunas 

moving at a constant speed of 1 BL/s (body length/s), for tunas of 50 cm, the local interaction 

area would thus extend to about 6,000 km². Considering the 13 million km² of the study area, 

the surface ratio S0/S would therefore correspond approximately to 5e-4. Considering that μi in 

Equation (S7.5) is always < 1 (since μi is a probability per unit time), the order of magnitude of 

S0/S is consistent with the low values of ϕ, which provided the most plausible estimates of tuna 

abundances (ϕ ~ 1e-6). 

 

Figure S7.1: Schematic view of the local tuna environment. The green dots represent the FOBs with 
similar probabilities to be reached by the tuna located at the center of the circle. Conversely, the orange 
dots are the least likely to be reached by the same tuna. S and S0 denotes respectively for the global zone 
and the local interaction zone of the tuna, and r represent the radius of the local interaction zone. 
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Supplementary information S8 

Stability and empirical assessment of CRTs 

1. Context 

As an alternative to the proposed modelling approach, the association of tuna schools with 

FOBs can be modelled as a Bernoulli process and the relation between the total number of 

schools and their dynamics can be solved analytically. The approach considers a system of tuna 

schools and FADs located within their local environment (or local zone of interaction, see 

Supplementary information S7). This section describes the mathematical considerations behind 

this alternative approach and their implications for the study of tuna population and behaviour. 

 

2. Model definition 

We consider Xi as a random variable representing the number of tuna schools that associate 

with a FOB i per unit time. Considering the association of tuna with a FOB as a Bernoulli trial, 

Xi can be described through a binomial law of parameters Xu0 (i.e. the number of free-swimming 

tuna schools that can locally associate with the FOB i), and μi (i.e. the association probability 

with the FOB i). 

|G"��(|7bg �G)"""""" (C�.1) 
The probability for a FOB to have K-associated tuna schools at a given time can then be 

expressed by the binomial law as follows: 

<(|T = �) ="�|�h� ��T�(1 R �T)(|�hR�) (C�.2) 

The probability to have at least one inhabited FOB per unit time thus corresponds to: 

<(|T � 1) = 1 R <(|T = h) = 1 R �1 R �T�|�h (C�.4) 
Considering the ansatz on the CAT, (see Supplementary equation S7.4) we can write: 

�T = 1
#b3$X" (C�.>) 

hence: 
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<(|G � 1) = 1 R �1 R & 1
#b3$X"+�

|�h (C�.B) 
As a FOB is occupied if at least one fish is associated with it, the probability per unit of time 

for an empty FOB to become occupied by a tuna (ν, see Supplementary information S5), thus 

equals to the probability described above (probability to have at least one inhabited FOB per 

unit time):  

<(| � 1) = � = 1
M3$X (C�.e) 

In the limit of a large free population (Xu0) and a small association probability (μi), the relation 

(S8.3) can be approximated by a Poisson law: 

1
M3$X = 1 R S� ���}����� (C�.f) 

From Capello et al., (2016), the free population Xu0"can be related to the total population N0 

through the following relation (referring here to the number of tuna schools instead of the 

biomass): 

|7b = 30X
30X Y 3$X!b" (C�.�) 

Therefore, the Equation (S8.6) can be rewritten, solving for N0 : 

!b ="R"#b(3$X Y 30X)"�^� &1 R" 1
M3$X+ (C�.�) 

The above equation relates the total population present in a given area with observables such 

as the number of FOBs (p0), the continuous absence time of aggregation at a floating object 

(FOB-aCAT or aCAT), and the individual associative dynamics of tunas (CAT and CRT). The 

equation is valid at a local scale (see Supplementary information S7). In addition, since the 

equation (S8.8) implies that: 

3$X
30X =

|7b|5b (C�.1h) 

with Xa0  representing the total associated population on the local scale considered, the equation 

(S8.7) can be rewritten as follows: 

1
M3$X = 1 R S� ���}����� (C�.11) 
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By substituting Xa0 with its definition from equation (4.5) (see Chapter 4 section 4.2.1): 

|5b = :\#b (C�.12) 
It is possible to derive the average continuous residence time (CRT) spent by tuna individuals 

at FOBs through the following relation: 

30X = " �^�(1 R \)
�^� �1 R 1M3$X�

(C�.14) 

An alternative expression of CRT can also be derived from the Equations (S8.8) and (S8.9), as 

follows: 

30X = " :\
�^� �1 R 1M3$X�

(C�.1>) 

This also allows to express m here denoting the average number of schools associated to a FOB 

according to this relation: 

: =" \
�^�(1 R \) (C�.1B) 

 

3. Application to skipjack tuna in Indian Ocean 

3.1. Methodology  

The time series of estimated CRTs and number of schools associated to a FOB (m) in the study 

region were provided on a quarterly basis from Equation (S8.13), using the proportion of 

inhabited FOBs (f) and the aggregation continuous absence time (aCAT), measured from 

echosounder buoy data. By dividing the average number of schools under a FOB estimated 

from Equation (S8.15) by the FOB associated catches, we also provided time series of the 

average size of a school unit associated with a FOB. 

Skipjack abundances were then determined over the study period in terms of number of schools 

from Equation (S8.9) on the one hand, and total biomass (using the average school unit sizes 

estimated above) on the other hand, considering the CATs calculated from equation (4.8), with 

a value of 2e-6 for ϕ. The abundances calculated from the analytically estimated CRTs 

(Equation S8.13), and the experimental CRT value of 4.58 days observed by Govinden et al., 
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(2010), were compared. Finally, the trends obtained from this alternative approach were also 

compared with those from Figure 4.7 (chapter 4: section 4.3.4) considering the ϕ value of 2e-6. 

 

3.2. Results  

3.2.1. Time series of estimated CRT 

The estimated average continuous residence time (CRT) obtained through Equation (S8.13), 

exhibits a stable trend stability over time, with an average around 4.27 days over the whole 

study period. These values and trends appears very consistent with the observational values 

from acoustic tagging experiments carried out in the study area (see Chapter 4: Table 4.3). 

 

Figure S8.1: Temporal evolution of estimated average continuous residence time (CRT) of tuna 
individuals around FOBs. The red dashed line represents the estimate average value of CRT over 2013-
2018. 

 

3.2.2. Evolution of the number and the size of skipjack tuna schools associated to a FOB  

The average number of skipjack schools associated obtained through Equation (S8.15) has 

stabilized since 2016, after a sharp decrease during 2013-2015, probably linked to the increase 

in the number of FOBs during the same period (Figure S8.2). At the same time, although subject 

to relative variability, the average size of skipjack school units has been increasing steadily 

since 2015 (Figure S8.3). 
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Figure S8.2: Evolution of the average number of skipjack tuna schools associated to a FOB 
over 2013 – 2018 

 

 

Figure S8.3: Evolution of the average biomass of a skipjack tuna school unit associated to a 
FOB over 2013 – 2018 
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3.2.3. Time series of skipjack tuna school Abundance 

Abundance trends obtained from Equations (4.4) and (S8.9), using both estimated and fixed 

experimental CRT values, were found to be relatively similar (Figure S8.4). The two models 

yield broadly similar results in terms of biomass.  However, the abundance of skipjack schools 

has been generally declining since 2017, while their total biomass has been steadily increasing. 

The hypothesis of a possible attenuation of skipjack schools fragmentation induced by the 

stabilization in the number of FOBs could be explored to explain these observations. 

 

 

Figure S8.4: Comparisons of (panel A) time series of skipjack schools abundances obtained from 
Equation (S8.9) with estimated CRTs from Equation (S8.13) and experimental CRT value of 4.58 days 
observed by Govinden et al., 2010 (respectively Ab1 and Ab2); and (panel B) time series of total skipjack 
biomass obtained from school size units and Equation (S8.9) for estimated and experimental CRTs (Bm1 
and Bm2, respectively). Bm3 represents the abundance trends obtained from Equation (4.4). CAT were 
calculated considering a ϕ value of 2e-6. 
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Supplementary information S9 

Abundance indices for tropical tunas based on their associative behaviour 

around floating objects: Stochastic simulations 

 

1. Algorithm description 

We simulated the associative dynamics of a population of N tuna in an array of p FOBs (Capello 

et al., 2016). The model assumes that each tuna is likely to reach every FOBs of the array (i.e. 

S=S0, see Supplementary information S7). Tunas can be in two states, either free-swimming 

(unassociated) or associated to one of the p FOBs of the array. At each time step, each tuna can 

change its state according to the association and the departure probability (respectively μi and 

θi). The stochastic simulations followed a standard Monte Carlo algorithm, in which the 

acceptance (or rejection) of the state change was implemented through comparisons with a 

pseudo-random number ξ sampled from a uniform distribution in the interval (0, 1]. An 

associated tuna changes its state (thus become free) if ξ ≤ θi. Conversely, if ξ ≤ μip a free-

swimming tuna will associate to a randomly sampled FOBs of the array. The model were 

considered for a homogeneous system, with all FOBs having the same arrival and departure 

probabilities μi = μ and θi = θ. 

The initial state of all tunas was assigned as unassociated and the system was let to evolve 

during 1,000 time steps, following the above procedure. The Monte Carlo simulations were run 

for 100 replica. For each replica, a set of metrics were calculated after the equilibrium was 

attained (constant numbers of fish unassociated and associated with FOBs, and constant 

numbers of inhabited and empty FOBs): 

• Tuna behavior metrics: CRT and CAT (respectively Continuous Residence Time and 

Continuous Absence Time); 

• FOB occupancy metrics: f (proportion of FOB occupied by at least one tuna), and m 

(average number of tuna associated to the FOBs that are occupied. 

The abundance index of the total population (N) were then estimated for each of the replicates 

from Equation (4.6) (see Chapter 4: section 4.2.1), and the mean and standard deviation of the 

index was estimated. 
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Sensitivity of the abundance index was also analyzed with respect to the numbers of FOBs (p), 

and the association probabilities (μi). The other parameters were fixed at constant values. The 

model parameters considered for the different case studies are shown in Table S9.1. 

 

Table S9.1: Model parameters. The cells in bold represent the model parameters that are varied in the 
sensitivity analysis. 

Parameters Description Values 

N Total number of tunas 1000 

p Total number of FOBs 500, 250, 100, 50 

μi Association probability 4e-4, 8e-4, 4e-5, 2e-5, 8e-5 

 

2. Results from stochastic simulations 

Temporal evolution of the system state variables are presented on Figure S9. 1. The 

convergence of the abundance index shows little sensitivity to the number of FOBs in the 

system and the tuna association probability (Figure S9.2). The main effects of the increase in 

the number of FOBs are observed on CAT, with the largest effects observed for the lowest 

association probabilities (Figure S9.3A). Increases in the number of FOBs or the association 

probability result in shorter CATs. Indeed, CAT is theoretically inversely proportional to the 

product between the number of FOBs and the association probability (Equation 4.8). The 

longest CATs, observed for the lowest association probabilities, correspond to the scenarios of 

least pronounced associative behaviour, with CATs in simulations around 500 steps, i.e. 100 

times longer than the durations in the associated state. In contrast, the fraction of FOBs occupied 

by fish in the system (f) and the continuous absence time of aggregation at FOBs exhibit much 

less sensitivity to the increase in the number of FOBs. Rather, fluctuations in these variables 

appear primarily driven by changes in the fish association probability (Figure S9.3B and Figure 

S9.3D respectively). Finally, an increase in the total number of FOBs results in a relative 

decrease in the average fish biomass associated with FOBs (m) and in the average continuous 

residence time of aggregation at FOBs.  
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Figure S9. 1: : Example of the evolution of the system’s properties  as a function of the simulation time: 
(Panel A) Number of associated tunas, (Panel B)  Number of free-swimming tunas, (Panel C) Number 
of  FOBs occupied by at least one tuna; (Panel D) Number of empty FOBs. Red dashed lines indicate 
the timestep=100 from which equilibrium is considered to be attained. Model parameters: p=500, μi 
=4e-4. 

 

Figure S9.2: Effect of the probability of association (μi) and the number of FOBs (p) on the total 
abundance index (N). The departure probability and the total fish population are kept fixed at 0.2 and 
1,000 respectively. The dashed black horizontal line corresponds to the asymptotic limit. 

 



Chapter 4: Associative Behaviour-Based Abundance Index 

143 

 

 

 

  
Figure S9.3: Effects of the association probability (μi) and the number of FOBs (p) on (panel A) the 
simulated continuous absence times (CAT), (panel B) the proportion of inhabited FOBs (f), (panel C) 

the average FOB-associated biomass (m), (panel D) the continuous absence time of aggregation at 
a floating object (FOB-aCAT), and (panel E) the aggregation’s continuous residence time at a 
floating object (FOB-aCRT). The departure probability and the total fish population are kept fixed at 
0.2 and 1,000 respectively. 

 

 



 

 

 

 

 

 

General Discussion 

“Perfection of means and confusion of goals seem – in my opinion – to characterize our age”. 

Albert Einstein 
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5.1. Overview and synthesis of main results 

Tropical tunas are globally distributed species that represent a significant part of the global fish 

and seafood economy (Campling, 2012; Galland et al., 2016), and also play a critical role in 

the health and functioning of the marine ecosystem (Collette et al., 2011). The availability of 

reliable tools to estimate the size of their populations is therefore a key priority to ensure their 

sustainable exploitation. This concern represented the core aim of the present thesis, driven by 

the idea of exploiting the characteristic associative behaviour of these species with objects 

floating at sea to directly derive their abundance. As a prerequisite, the idea implied to improve 

the general knowledge about this behavioural trait, notably through new sources of information 

for these species. On this aspect, the data from satellite-linked echosounder buoys equipping 

drifting fish aggregating devices (DFADs) used by tropical tuna purse seiners to increase their 

catches, has constituted a major asset. Since their introduction in the tropical tuna purse seine 

fishery in the early 2010’s, echosounder buoys represent an unprecedented source of 

information on fish aggregations associated with DFADs, which so far, were primarily intended 

for commercial and industrial use as fishing aid.  

This thesis provides a standard methodology to process this heterogeneous mass of industry-

based data for scientific applications (Chapter 1), including an alternative approach to the 

classical echo-integration for the processing of acoustic data collected by fisher’s echosounder 

buoys (Chapter 2). Based on machine learning, the approach makes possible to provide reliable 

information on the presence or absence of tunas within the multi-species aggregation of fish 

under DFADs. Obtaining accurate biomass estimates from echosounder buoys appeared to be 

more challenging. This may well be a typical limit of the current buoy models, as previous 

works based on different brands has also produced poor performance in terms of biomass 

estimates (Orue et al., 2019a). Currently, the echosounder buoy technology represents a 

powerful source of qualitative data on DFAD-associated fish aggregations. However, its 

technical constraints (limited angle, detection range, sampling frequencies, etc.), as well as the 

characteristics of DFAD aggregations (multi-species with highly variable target strengths), and 

environmental variability are all factors that seem to significantly hamper the current reliability 

of its quantitative biomass estimates. Nevertheless, this gap may very soon be closed, given the 

near-continuous improvement of the hardware and software of new buoy models, with the 

introduction of various innovative features such as multiple sampling frequencies, digital 

correction of time varied gain (TVG) and consideration of possible environmental biases (e.g. 
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built-in inclinometer for some models to ensure vertical sampling and avoid incorrect surface 

echoes). 

Despite the current usage limits, using instrumented DFADs as tools to observe the open-sea 

through echosounder buoy data has provided new clues for a better understanding of the 

associative dynamics of tuna aggregations around DFADs (Chapter 3). This thesis has indeed 

brought answer elements to some key questions for which little information existed to date, 

including: How long does it take a floating object to be colonized by tuna, and how long does 

the associated tuna aggregation remain under the object? By introducing the FOB-aCRT 

(aggregation’s continuous residence time at a floating object) and the FOB-aCAT (continuous 

absence time of aggregation at a floating object), in the study of the behaviour of tunas at 

floating objects, this work has evidenced that the associative dynamics of tuna aggregations at 

floating objects were ocean-specific and generally determined by time-independent processes. 

For instance, DFAD colonization by tuna aggregations has been shown to vary from a couple 

of weeks in the Atlantic Ocean to more than a month in the Indian Ocean. Moreover, the 

analysis of tuna occupancy patterns of DFADs revealed that floating objects remained empty 

much longer in the Indian Ocean than in the Atlantic Ocean and showed a significant difference 

in the proportion of occupancy times between the oceans. The population abundance, cited as 

one of the main causative factors of this variability, could thus be estimated through a modelling 

approach combining the DFAD occupancy by tuna aggregations with metrics describing their 

behaviour at the individual scale. New absolute abundance indices of the different components 

of tuna populations (associated and free-swimming) was presented in Chapter 4. Their 

application in the Indian Ocean since the implementation of echosounder on buoys equipping 

DFADs, has made it possible to estimate the trends in the abundance of skipjack tuna 

populations, from almost a decade.  

This general discussion is not intended to revisit the different points already covered in the 

previous chapters of the thesis, but rather to focus on the implications of these results for both 

current knowledge of tuna ecology and the management of their stocks, and to outline the main 

conclusions that emerge as well as future and possible directions of research. 
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5.2. Implications on tuna behaviour: Structure of tuna 

aggregations under floating objects 

To date, the actual ecological and evolutionary determinants underlying the associative 

behaviour of tropical tuna species with floating objects are still unclear. However, several 

hypotheses have been proposed (see review in Fréon and Dagorn, 2000; Castro et al., 2002), 

and an extensive work carried out on this question in recent decades have provided elements 

for a better understanding of these mechanisms and a rough scenario of the aggregative 

processes under floating objects (FOBs). Different free-swimming tuna schools distributed 

within a relatively large area start to aggregate around a drifting object once they have detected 

it (Girard et al., 2004; Wang et al., 2012). These multiple schools are organized around the 

FOB, probably by species and size (Josse et al., 2000; Moreno et al., 2007b; Trygonis et al., 

2016), and form around it, a single or multi-species aggregation of tunas, whose structure may 

exhibit significant day-night variations (Forget et al., 2015; Lopez et al., 2017b). The tuna 

aggregation can remain stable for up to two or three weeks depending on oceans (Baidai et al., 

2020b), presumably due to a high turnover process between schools (Weng et al., 2013). 

However, it generally remains under the FOB for only a few days (about 4 to 5 days in the 

Atlantic and Indian Oceans). This short duration corresponds approximately to the average 

residence time of a tuna individual (and hence a single school) measured under a FOB, 

especially that of skipjack tuna (see Chapter 3: Table 3.3). With around 75% of the overall 

DFAD-associated catches, skipjack tuna represents the predominant species in tuna 

aggregations under floating objects (Dagorn et al., 2013a). Although this species does not have 

a swim bladder (Boyra et al., 2018), its high representativity under FOBs suggests that it is 

most likely to be the main responsible for the patterns used by the supervised classification 

approach applied in this study, to discriminate between the presence and absence of tunas under 

a FOB (Baidai et al., 2020a). Therefore, the tuna absence situations as obtained from buoys 

could be linked either to the departure of all tuna schools or only those of skipjack from the 

FOB. At this level, the technical limitations of echosounder buoys (sampling cone, 

impossibility to discriminate between species, poor quantitative estimates, etc.), make them the 

least appropriate instruments for an accurate observation of the structure of the FOB 

aggregation and the typical dynamics of each species. Complementary studies combining 

different observation techniques (e.g. buoys or sonar with passive acoustic telemetry), in order 

to directly relate the residence times measured simultaneously at the scale of the FOB 
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aggregation and the different species and sizes of individuals that compose it, could make a 

considerable contribution to a better understanding of this process. 

Nevertheless, a possible explanation for the similarity between the residence times of the FOB 

aggregation and the individual skipjack could lie in a schooling behavior with a single school 

associated to the floating object. Although this explanation contrasts with the empirical 

observations of multiple schools structure made by fishers (Moreno et al., 2007), and more 

specifically with the findings of Wang et al. (2012) regarding the structure of skipjack schools 

associated with FOBs; it may be supported by the massive increase in the number of drifting 

fish aggregating devices (DFADs) used over the last decade. Indeed, it should be noted that the 

two studies are more than a decade old. They actually correspond to a situation when the 

densities of floating objects were very much lower than currently. According to Maufroy et al. 

(2017), the number of DFADs in the Atlantic and Indian Oceans at least quadrupled between 

2007 and 2013; and Figure 4.8 (Chapter 4) indicates that for the Indian Ocean, this increase 

continued with a multiplication factor of two until 2015, after which it stabilized.  

Analyzing the status of skipjack populations in the Indian Ocean from the 1990s to 2016, 

Fonteneau and Marsac (2016) have proposed the hypothesis of a possible school fragmentation 

by DFADs, affecting this species. The hypothesis suggests that the growing number of DFADs 

could have sucked out free schools and partitioned the available biomass into smaller schools 

(Marsac et al., 2017). It was corroborated by the overall decrease of skipjack associated biomass 

and the dominance of small schools sets at FADs over the period from 2007 to 2016. However, 

since 2016, there has been a steady increase in average catches of skipjack under FADs, 

coinciding with the adoption of FAD management plans in 2015 for this ocean. It could 

therefore be plausible that the current situation is approaching an attenuation of this 

fragmentation phenomenon, with skipjack schools decreasing in number, but increasing in 

school size (see Supplementary information S8: Figure S8.4). This could also be consistent with 

the explanatory hypothesis proposed above, which relates the predominance of short-term 

residence modes in the FOB aggregation to a schooling behavior, resulting from the 

concomitant reduction in the number of associated schools under a FOB. 

The oceanic differences in the occurrence of short-term residence modes (representing 94% and 

62% of the observed modes in the Indian and Atlantic Oceans, respectively) could therefore 

result from similar causes to those proposed for the interpretation of durations of FOB vacancy 

(FOB-aCAT) between the two oceans, i.e. a smaller number of unassociated tuna schools and/or 

higher FOB densities in the Indian Ocean than in the Atlantic Ocean. The higher proportion of 
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skipjack tuna catches in free-swimming schools in the Atlantic Ocean compared to the Indian 

Ocean, observed for the French purse seine fleet in Figure 5.1 may be consistent with this 

hypothesis. However, further studies will be necessary to account in this interpretation for the 

effect of a possible variability in the fishing strategies of this fleet (e.g. potential effect of the 

fishing zones, with tuna seiners operating in strata with larger numbers of free skipjack schools 

in the Atlantic than in the Indian). Comparative assessments of the abundance of tuna 

populations (including the number of schools) in their associated and free-swimming 

components between the two oceans should also help validate the hypotheses proposed for the 

interpretation of the differences in the dynamics of tuna aggregations around floating objects 

identified in this work. On this aspect, the novel abundance index provided by this thesis should 

therefore be of great interest. 

 

 

Figure 5.1: Evolution of the ratio between the numbers of skipjack tuna catches on free-swimming 
schools (FSC) and under floating objects (FOB) by the French fleet of tuna seiners from 1990 to 2019. 
Catches data were obtained from fishing logbooks of purse seine vessels. 

 

5.3. Associative Behaviour Based abundance Index (ABBI): 

What next? 

In accordance with its overall objective, this thesis provides a new abundance index for tropical 

tuna populations based on the combination of metrics of the associative dynamics of tunas at 

the individual and aggregation scales. The Associative Behaviour-Based abundance Index 
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(ABBI) provides absolute estimates of the abundance of the total population of tuna and its 

free-swimming and associated components. ABBI is based on a relatively simple modelling 

framework using five main inputs: (i) the total number of floating objects (natural or artificial 

logs and DFADs), (ii) the proportion of these objects that are occupied by tunas, (iii) the local 

abundance of tunas around them, (iv) the continuous residence time of tuna individuals around 

a floating object (CRT), and (v) their continuous absence time (CAT). 

The low number of input data required and the availability of technological means to collect 

them constitute both major assets offered by this novel index. On the one hand, as shown in 

Chapter 4, it is possible to derive from echosounder buoys the information related to the number 

of floating objects, the dynamics and characteristics of associated tuna aggregations, including 

their biomass if species discrimination and better quantitative estimates could be achieved from 

the acoustic data they provide. In the current state of echosounder buoy technology, DFAD 

catches from purse-seiners are nevertheless the only way for obtaining the required information 

on local tuna abundance around floating objects. Obviously, the actual nature of these data 

sources (fisher’s buoys and tuna catches) implies that ABBI cannot be considered as fully 

independent of fisheries. Independent surveys aiming at assessing through spatial sampling the 

proportion of inhabited floating objects as well as their amount of associated biomass could, to 

a certain extent, turn this index into truly fishery-independent. However, such surveys would 

have limited relevance with regard to the cost-effectiveness and the wide spatial and temporal 

coverage offered by the current data sources from the purse seine fishery. 

On the other hand, the continuous progress in electronic tagging and tracking technology now 

make it possible to collect increasingly detailed information on behaviour of marine animals 

(Nielsen et al., 2009). Recent years have seen the development of an increasing number of 

electronic tagging studies on the behaviour of tuna around floating objects, which have provided 

valuable information on the associative dynamics of tuna individuals, especially on their CRTs 

(e.g. Ohta and Kakuma, 2005; Dagorn et al., 2007b; Robert et al., 2012; Matsumoto et al., 2014, 

2016; Rodriguez-Tress et al., 2017; Scutt et al., 2019; Tolotti et al., 2020). Nevertheless, 

additional efforts for a regular and large-scale collection of these data are highly desirable, since 

the current collection of CRTs is usually related to short-term projects, and remains rather 

episodic and generally limited to certain oceanic regions. 

On the other hand, Supplementary information S5 from the Chapter 4 indicated that, under a 

number of assumptions, the CRT could also be derived from the data collected by the 

echosounder buoys, using an analytical approach. Additional studies would be of great interest 
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to assess the likelihood of these assumptions and the robustness of this approach in order to 

reduce the amount of input data required for abundance estimates based on ABBI.  

The major concern in terms of data collection is mostly related to the measurement of CAT. 

Assessing the time between two consecutive associations of a tuna fish is a rather logistically 

complex task. Given their high mobility, tracking tuna species using passive acoustic telemetry, 

for CAT measurements, would require relatively large acoustic arrays and a considerable 

monitoring effort. Moreover, an overestimation of the CAT values measured as a result of the 

association of tuna with non-instrumented aggregation points in the monitored zone (e.g. 

floating objects, whales or whale sharks), would remain difficult to exclude. The significant 

differences in the vertical behaviour of tunas between associated and free-swimming states, 

highlighted by Schaefer and Fuller, (2005, 2010), could represent a relevant asset to be 

considered for further experimental studies aiming at measuring CATs. 

In Chapter 4, assumptions on the relationship between CAT and the density of floating objects 

have introduced a proportionality parameter (ϕ), which was shown to result from two key 

parameters: the association probability and the area of the local interaction zone of the tuna (see 

Supplementary Information S7). Conceptually, the local interaction zone represents the base 

observation unit of the tuna associative process. It is assumed that within it, associations of tuna 

with objects could be considered relatively equally probable. The size of the local interaction 

zone mainly results from the search dynamics of the tuna individual, but it is also very likely to 

depend on the density of floating objects. For the purposes of this study, the plausible ranges of 

these values were determined based on empirical considerations. However, further studies using 

analytical techniques for modelling movement patterns of tunas in an array of floating objects 

would greatly help to provide accurate estimates of these parameters. They would also be useful 

to address the uncertainties on the absolute estimates of the abundance index, to assess its 

sensitivity to the assumptions about the homogeneity of the floating objects system (i.e. 

constant association probability), and the possible variability in the size of the local interaction 

zone. 

Considered in relative terms, ABBI is however, very insensitive to the two above-mentioned 

parameters. Despite its short duration, the time series of the relative abundance of the Indian 

Ocean skipjack population estimated from ABBI has proven to be relatively consistent with the 

recent assessments of skipjack abundance carried out by Medley et al., (2020) using the 

standardised CPUE derived from the Bayesian GLM model for the Maldives pole and line 

fishery (Figure 5.2). Although derived from the relatively small exclusive economic zone of the 
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Maldives, the CPUE of the Maldives pole and line (Maldives PL CPUE), is an abundance index 

traditionally used for the assessment of skipjack tuna in the Indian Ocean (Kolody et al., 2011; 

Sharma et al., 2012; IOTC, 2014, 2017). 

 

Figure 5.2: Trends in the relative abundance of skipjack tuna in the Indian Ocean derived from the 
Associative Behaviour Based Index (ABBI) under the most plausible ϕ values, and from standardised 
catch and effort data from Maldives pole and line fishing (PL-CPUE), corrected or not by expert 
opinions. 

 

Similarly to the Buoy Abundance Index (BAI) proposed by Santiago et al., (2016, 2019), the 

concept of ABBI is broadly based on the use of the associated part of the tropical tuna 

population in order to produce estimates of the total population size. Nevertheless, contrary to 

the BAI, the ABBI incorporates the associative characteristics of the species in its approach and 

has the capacity to provide estimates for both the free-swimming and the associated components 

of the tuna population. The BAI is a relative abundance index also based on data from 

echosounder buoys, and built on the assumption that trend in the abundance of the associated 

component of the tuna population, estimated through buoy acoustic data, would reflect that of 

its total abundance. However, the relationship between the total tuna population and its 

associated component could be much more complex and vary over time particularly under the 

influence of the density of floating objects. For example, abundance estimates carried out using 

ABBI in the Western Indian Ocean have shown a steady increase in the size of the associated 
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component of the skipjack population, parallel to the increase in the number of floating objects 

from 2013 to 2015, despite the general decline in the total skipjack population observed over 

the same period. This example highlights the potential biases that can occur without a good 

understanding and consideration of the associative dynamics of tropical tuna species in 

assessments of their total population based on their associated component. 

It may also be relevant to assess the consistency of the estimates made for each of the population 

components with the trends in abundance derived from the standardized CPUE calculated from 

the different fishing modes of tuna purse seiners, i.e. free schools and FAD fishing  (Guery et 

al., 2020). Similarly, linking absolute abundance estimates from ABBI with those derived from 

population assessments based on genetic approaches, i.e. Close-Kin Mark Recaptures 

(Bravington et al., 2016a), could also be of major interest. For instance, this could make it 

possible to check in an absolute manner the validity of some of the conjectures on which the 

ABBI modelling approach is based, including the orders of magnitude of the local interaction 

zone and the CATs, currently empirically estimated. 

In addition, this first application of the ABBI was implemented over a relatively large area (i.e. 

Western Indian Ocean). A better understanding of tuna dynamics, notably skipjack tuna, could 

eventually be achieved through spatially restricted analyses allowing, on the one hand, to 

explore the spatial variabilities of its abundance and the various descriptive metrics of its 

associative behavior and, on the other hand, to clearly identify the nature of the relationships 

between these variabilities and the environmental conditions. Modelling techniques could then 

be used for a predictive mapping of tuna abundance, with a direct interest in an operational 

management of tuna fisheries.  

Currently, the relative abundance estimates of the total population derived from the ABBI have 

been proposed as a complementary abundance index for the 2020 Indian Ocean skipjack stock 

assessment (IOTC, 2020b). The extension of this first example of application to other oceans 

(especially the Atlantic Ocean), tuna RFMOs, as well as to other tropical tuna species for which 

a number of stocks are estimated to be below abundance healthy levels (ISSF, 2019), would be 

worth considering in the coming years. 
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5.4. Echosounder buoy data in an operational management of fisheries 

On several aspects, the data collected by satellite echosounder buoys on DFADs has proven to 

be relevant to address some of the key questions raised by the management of tropical tuna 

fisheries. The very first aspect is related to the new source of information that echosounder 

buoys may represent for the assessment of the spatio-temporal distribution of tropical tuna 

species. As shown by Baidai et al. (2019, 2020c), echosounder buoys data make possible a near 

real-time and large-scale mapping of the presence of tunas under floating objects. Such 

information could be adequately integrated into the management of tuna fisheries, in particular 

to support decision-making on spatio-temporal conservation measures. For instance, an 

evaluation of the effects of the FAD moratorium implemented by the ICCAT (International 

Commission for the Conservation of Atlantic Tunas) since 2013 revealed that, although 

relatively well applied by the main fisheries, the initial results of this measures have been 

relatively unsatisfactory with respect to the expected objectives (Fonteneau et al., 2016). The 

FAD moratorium is part of the ICCAT multi-annual program for the conservation and 

management of tropical tunas and consists in a time/area closure of operations on floating 

objects, including fishing, intended to reduce catches of tropical tunas and improve their stock 

status, especially juvenile yellowfin and bigeye tunas. The limited amount of tuna catches under 

FADs compared to the total catches in the closure strata considered in the early years of the 

implementation of the moratorium, along with the great flexibility of modern tuna fleets were 

identified as the main causes of its poor performance. Currently, the closure area extends to the 

entire ICCAT convention area (ICCAT, 2020). The information on spatio-temporal distribution 

of tunas provided by echosounder buoys could provide a valuable and complementary scientific 

basis to support this type of management measures, by helping to identify or validate the priority 

areas and periods to be targeted. 

At the same time, a better understanding of the influence of the environment on tuna distribution 

could be obtained through Species Distribution Models (SDMs) linking these new data to 

oceanic conditions. In recent years, SDMs have emerged as an effective tool to improve 

ecological and evolutionary knowledge about species as well as to predict their responses to 

multiple drivers of change, primarily for conservation and management purposes.(Rushton et 

al., 2004; Elith and Leathwick, 2009; Araújo et al., 2019). The combination of data from 

echosounder buoys with remote sensing systems through these modelling techniques has the 

potential to provide new predictive tools relevant to the management of tropical tunas. 
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Additionally, information from fisher’s buoys are likely to provide an interesting support to 

small scale and artisanal fisheries. Tuna and tuna-like fish usually undertake large migrations 

that take them into the coastal waters of various countries. However, the access to these tuna 

resources by small-scale and artisanal fisheries appears to be limited to a large extent by the 

competition imposed on them by industrial fishing operating close inshore, particularly in West 

Africa, but also in America and throughout Asia (Pauly, 2006, 2018). In addition, in most of 

these countries, although they offer advantages such as funding for fisheries-related 

infrastructure and projects, the mechanisms of fisheries access agreements are relatively 

considered questionable in terms of their fairness and sustainability (Kaczynski and Fluharty, 

2002; Andriamahefazafy and Kull, 2019; Belhabib et al., 2019). Some of their limitations are 

for example, reflected in the low level of compensation for artisanal and small-scale fisheries, 

which receive negligible development subsidies from governments (Jacquet and Pauly, 2008; 

Pauly, 2018). The integration within fisheries agreements of mechanisms for sharing 

information on fish distribution, notably through data collected by buoys of industrial purse-

seiner fleets in the countries’ EEZs, could probably play a useful role in structuring the access 

to pelagic fish resources between these different actors. For instance, echosounder buoy data 

could be used to carry out a real-time mapping of the tuna occurrence in the countries’ EEZs, 

which could contribute to a better access to coastal tuna resources by local fishermen. The 

approach could also be extended to species not targeted by industrial fishing. Indeed, FAD 

aggregations generally consists of a variable level of species considered as bycatch by tuna 

purse seiners, but which are often critical for food security and the economy of coastal 

communities (Failler, 2014). Recent work using machine-learning techniques has shown that it 

is possible to estimate with a relative accuracy, the amount of bycatch associated with each 

FAD from buoy acoustic data (L. Mannoci, 2020, pers. comm.). The rapid progress in both 

buoy technology and data processing techniques, together with the increasing volume of data 

from buoys, make it possible to envisage future improvements in this field of research, with the 

possibility of identifying and mapping local “bycatch” hotspots which would constitute a 

significant support to improve catches and reduce fishing effort in artisanal and subsistence 

fisheries. 

At a more global scale, GPS-data from buoys provide information with high spatial and 

temporal resolution on near-surface currents around the globe (Imzilen et al., 2019). This data 

collection can be a valuable asset in addressing DFAD beaching and its impacts on sensitive 

ecosystems (Maufroy et al., 2015; Davies et al., 2017; Escalle et al., 2019b). Through the 
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continuous monitoring of ocean circulation they provide, data from instrumented DFADs could 

potentially constitute a privileged survey tool for monitoring marine debris that is currently a 

major environmental concern (Sheavly and Register, 2007; Cozar et al., 2014), and for 

identifying pollution hotspots in coastal or marine ecosystems. 

On these many aspects, the reliability and availability of the data collected by these instruments 

are decisive. In recent years, most tuna  RFMOs have strengthened the reporting requirements 

on the number of DFADs used by purse seiners (e.g. IOTC: Res. 19/08; ICCAT: Rec 19-02; 

IATTC: C-19-01; WCPFC: CMM 2018-01) in response to their increasing use and the 

uncertainties about their impacts on ecosystems, stocks and ecology of associated species 

(Dagorn et al., 2013a). However, the availability of data from echosounder buoys remains yet 

dependent on the good will of the ship-owners and fleets possessing this information. The 

commercial and high strategic nature of these data for tuna purse seiners remains by far the 

major limitation to their open-access. For instance, the data used in the present thesis has been 

acquired after long negotiations, leading to a data exchange agreement with the fishing 

companies and buoy manufacturers. This may be detrimental, as it is undeniable that under the 

traditional rules of confidentiality involving anonymization, delayed availability or gridding of 

data prior to their scientific use, the availability of buoy data to a wider community of scientists 

or decision-makers (given their transnational nature), could greatly contribute to the overall 

refinement of knowledge about the marine pelagic environment, and improve the management 

of fisheries. However, the responsibility for improving the availability of data from fishers’ 

buoys and their integration into an operational management of fisheries and marine ecosystems 

lies primarily with the tuna RFMOs and their stakeholders. The development of studies 

highlighting the importance and relevance of greater accessibility to these data is likely to give 

a decisive impetus to this concern. 
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5.5. Conclusion and Perspectives 

From the stones of ancient shepherds to today's complex mathematical models, assessing 

animal populations, whether for exploitation, control or conservation purposes, has always been 

a challenging task. In this context, the present thesis had the goal to provide new and non-

conventional abundance index for tropical tuna species, whose management is of high 

importance for both human communities and marine ecosystems. To achieve this goal, the 

thesis work has been devoted to the development of a new methodological framework that 

exploits the continuous stream of data collected by echosounder buoys and the associative 

behavioural traits of tropical tuna species with floating objects, in order to provide novel 

abundance index for their populations. In line with its objective, this thesis has produced a 

number of tools dedicated to the standard processing of the heterogeneous mass of data from 

commercial echosounder buoys, including a new approach to characterize fish aggregations 

under floating objects from the acoustic data provided. It also offered results that illustrate the 

importance of this new data source to improve the understanding of the associative behaviour 

of tuna with floating objects. Indeed, the analysis of echosounder buoy data has made it possible 

to introduce additional metrics to characterize the associative dynamics of tuna aggregations, 

and to infer the size of the populations from which they originate. 

The most important result of this work undeniably lies in the new methodology to produce a 

direct abundance index for tropical tuna species. Based on a modelling approach that combine 

occupancy of floating objects by tunas, with metrics describing their associative behaviour at 

individual scale, this index provides direct and absolute estimates of the population size of 

tropical tunas as well as of its two different components, namely the associated and free-

swimming populations. Such index is of major interest for stock estimates as it can help to 

address the need for complementary approaches beside the CPUE, which currently represents 

the main abundance index used for tropical tunas. A first concrete application of this new 

method has made it possible to produce abundance estimates for skipjack in the Western Indian 

Ocean, which have recently been adopted by the IOTC for the assessment of skipjack stocks 

for the year 2020. 

Although highly desirable, the generalisation of this method (i.e. to other oceans, tuna-RFMOs 

or species), remains closely linked to the development of dedicated data collection programmes 

for improving and updating knowledge on individual residence and absence times of tuna 

species, as well as to a change in the current paradigm regarding availability of buoys data. 



General discussion 

158 

 

However, these aspects are currently more a matter for decision-makers than actual technical 

or scientific considerations. 

Finally, although initially intended for tropical tuna species, the index from this work has 

conceptually the potential to be extended to any population of animal species that exhibit an 

associative behaviour around aggregating points, either objects (e.g. non-tuna species 

associated to floating objects see Fréon and Dagorn, (2000)) or other living animals (e.g. seabird 

and cetaceans (Evans, 1982); facultative parasites such as mites (Proctor and Owens, 2000); 

etc.). Further studies assessing this potential could open up new prospects for the application of 

this abundance index to a wider range of animal species in the future. 
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Abstract 

Representing the majority of the world’s tuna catches, tropical tuna species are of critical importance due to their 
essential role as food and economic resource. The sustainable management of this valuable resource depends on 
an accurate estimate of the abundance of the exploited populations and the impact of fishing pressure on them. 
The present thesis provides a new direct abundance index for tropical tuna populations that account for their free-
swimming and associated components. Indeed, tropical tuna species are characterized by a singular behavioral 
trait that causes them to associate with floating objects drifting at sea. This characteristic has led to the development 
of a specific fishing mode widely used in tuna purse seine fishery, consisting in the capture of schools associated 
to floating objects. Recent decades have thus seen the massive deployment of thousands of floating objects known 
as fish aggregating devices (FADs), specifically designed to attract and concentrate tuna schools. The drifting 
FADs are equipped with satellite-linked echosounder buoys, which ensure their continuous monitoring, providing 
fishers with near-real time information on their location and associated tuna biomasses. This thesis presents a 
standard methodological framework for processing the information from echosounder buoys for scientific use, 
including a new approach based on supervised learning for processing the acoustic data they provide. The analysis 
of these data has allowed improving the general knowledge on the associative dynamics of tuna aggregations. 
Ocean-specific differences were evidenced, with notably longer periods of absence of tuna under FADs in the 
Indian Ocean than in the Atlantic Ocean. The novel index for estimating tuna abundances proposed by this thesis 
also exploit this associative behavior. It relies on a modelling approach combining data on the dynamics of the 
occupancy of floating objects from echosounder buoys with data on the associative dynamics of tuna individuals 
from electronic tagging. An initial application to the western Indian skipjack tuna population has made it possible 
to provide time series of absolute and relative abundances, used for stock assessments of this species. This new 
index addresses the current critical need for complementary methods for estimating tropical tuna abundances, 
expressed by all regional fisheries management organizations. 

Keywords: Direct Abundance index; Tropical Tunas; Associative behaviour; Fish Aggregating Devices; 
Echosounder buoys. 

Résumé 

Représentant la majorité des captures mondiales de thon, les thons tropicaux sont des espèces d'une importance 
capitale du fait de leur rôle essentiel en tant que ressource alimentaire et économique. La gestion durable de cette 
précieuse ressource est tributaire d’une estimation correcte de l’abondance des populations exploitées ainsi que de 
l’impact de la pression de pêche sur celles-ci. La présente thèse fournit un nouvel indice direct d’abondance 
capable d’évaluer de manière absolue les tailles des populations de thons tropicaux ainsi que de leurs composantes 
en nage libre et associée. Les espèces tropicales thonières se caractérisent en effet par un trait comportemental 
singulier, les amenant à s’associer en masse autour d’objets flottants dérivant en mer. Cette caractéristique est à la 
base du développement d’un mode de pêche pratiquée par les thoniers senneurs, consistant en la capture des bancs 
associés aux objets flottants. Ces dernières décennies ont ainsi vu le déploiement massif de milliers de dispositifs 
de concentration de poissons (DCP) qui sont des objets flottants spécifiquement conçus pour attirer et concentrer 
les bancs de thons, et généralement équipées de bouées échosondeurs. Ces bouées fournissent en continu aux 
pêcheurs des informations sur la localisation des DCP et les biomasses de thons associées. Cette thèse propose un 
cadre méthodologique standard pour le traitement des informations issues de ces dispositifs à des fins d’utilisation 
scientifique, incluant une nouvelle approche basée sur l’apprentissage supervisé pour l’exploitation des données 
acoustiques qu’ils fournissent. L’analyse de ces données a permis d’élargir le champ de connaissances sur les 
dynamiques associatives des agrégations de thons. Il a ainsi été montré que ces dernières différaient 
significativement entre océans, avec notamment des périodes d’absence de thons sous DCP plus longues dans 
l’océan Indien que dans l’Atlantique. Le nouvel indice d’abondance proposé par cette thèse exploite également le 
comportement associatif de ces espèces. Il s’appuie sur une approche de modélisation combinant les données sur 
les dynamiques d’occupation des objets flottants issues des bouées échosondeurs, aux données de dynamiques 
associatives individuelles des thons, collectées par marquage électronique. Une première application aux 
populations de listao de l’océan Indien occidental a permis de fournir des séries temporelles d’abondance absolues 
et relatives, méthode adoptée pour les évaluations de stocks de cette espèce par la CTOI (Commission des Thons 
de l’Océan Indien). Ce nouvel indice vient répondre aux besoins critiques actuels de méthodologies 
complémentaires pour les estimations d’abondance des thons tropicaux (estimations directes), exprimés par 
l’ensemble des organisations régionales de gestion des pêcheries. 
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de poissons ; Bouées échosondeurs. 


