
HAL Id: tel-03168053
https://theses.hal.science/tel-03168053

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average consensus in anonymous dynamic networks : An
algorithmic approach

Patrick Lambein

To cite this version:
Patrick Lambein. Average consensus in anonymous dynamic networks : An algorithmic approach.
Distributed, Parallel, and Cluster Computing [cs.DC]. Institut Polytechnique de Paris, 2020. English.
�NNT : 2020IPPAX103�. �tel-03168053�

https://theses.hal.science/tel-03168053
https://hal.archives-ouvertes.fr

1

Th
ès
e
de

do
ct
or
at

Consensus de moyenne dans les réseaux
dynamiques anonymes

Une approche algorithmique

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale no626
École Doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Informatique, Données et Intelligence Artificielle

Thèse présentée et soutenue au Bois-Plage-en-Ré, le 16 décembre 2020, par

PATRICK LAMBEIN

Composition du Jury :

Éric Goubault
Professeur, École polytechnique (LIX) Président

Pierre Fraigniaud
Directeur de Recherche, CNRS (IRIF) Rapporteur

Julien Hendrickx
Professeur, Université Catholique de Louvain (ICTEAM) Rapporteur

François Baccelli
Professeur, University of Texas in Austin
(Department of Mathematics,
Department of Electrical and Computer Engineering) Examinateur

Angelia Nedić
Professeur, Arizona State University
(School of Electrical, Computer and Energy Engineering) Examinatrice

Laurent Viennot
Directeur de Recherche, INRIA (IRIF) Examinateur

Bernadette Charron-Bost
Directrice de Recherche, CNRS (LIX) Directrice de thèse

N
N

T
:2

02
0I

P
PA

X
10

3

Average Consensus in
Anonymous Dynamic Networks

An Algorithmic Approach

κολοφών
This manuscript was prepared with the LATEX document preparation
system created by Leslie Lamport, using the memoir class created by
Peter Wilson and maintained by Lars Madsen. Bibliographic facilities
were provided by the bibLATEX package created by Philipp Lehman, and
maintained by Philip Kime. Knowledge management facilities were
provided by the knowledge package created by Thomas Colcombet.
Much of the knowledge itself was facilitated by Alexandra Elbakyan.

Donald Knuth should probably also be mentioned here.
The body text is set in 11/14pt on a 27pc measure with Libertinus Serif,
which is also used to typeset mathematical formulae. Other fonts used

include Zilla Slab and Inconsolata.
Processed for (approximatly) the 1,308th time on February 25, 2021 using

the LuaTEX typesetting engine.

© mmxx Patrick Lambein� https://orcid.org/0000-0002-9401-8564

cbna This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 International” license.

https://en.wikipedia.org/wiki/leslie_lamport
https://ctan.org/author/wilson
https://www.ctan.org/author/madsen
https://www.ctan.org/author/lehman
https://orcid.org/0000-0001-6529-6963
https://jhr.pensoft.net/article/12919
https://www-cs-faculty.stanford.edu/~knuth/
https://orcid.org/0000-0002-9401-8564
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

To my number one fan.

Il nous faut regarder
Ce qu’il y a de beau
Le ciel gris ou bleuté
Les filles au bord de l’eau
L’ami qu’on sait fidèle
Le soleil de demain
Le vol d’une hirondelle
Le bateau qui revient.

Il nous faut regarder
Jacques Brel

Contents

Contents v

Acknowledgements vi

Introduction x

1 Computation in dynamic networks 1
1.1 Introduction . 1
1.2 Relations, graphs, dynamic graphs 2
1.3 Distributed model . 11
1.4 Big-step operational semantics 16
1.5 Computational tasks . 18

2 A little learning goes a long way 23
2.1 Introduction . 23
2.2 Affine update rules . 25
2.3 Euclidian geometries for update rules 28
2.4 The EqualNeighbor and Metropolis update rules . . . 32
2.5 Degree tracking for stabilizing weights 34
2.6 An affine algorithm . 39

3 Randomization and Quantization 44
3.1 Introduction . 44
3.2 Preliminaries . 46
3.3 Randomized algorithm 49
3.4 Quantization . 54
3.5 Decision . 59
3.6 Simulations . 65

Parting thoughts 69

References 75

v

Acknowledgements

A hero ventures forth from the world of common
day into a region of supernatural wonder:
fabulous forces are there encountered and a
decisive victory is won: the hero comes back
from this mysterious adventure with the power
to bestow boons on his fellow man.

The Hero with a Thousand Faces
Joseph Campbell

Boy are these some strange, strange, s t r a n g e times.
It feels like a lot of history has been going on recently – up to,
and very much including, the last few days. In the short years
since I completed my Master’s degree in late 2014, the human

collective sure had to bear the whips and scorns of time – and the rest.
And, frankly, who knows what other ills we’ll fly to next?

At the scale of my own microcosm, I, too, served as practice target
for fortune’s outrage much more than I could have imagined. Being dealt
a dismal hand makes you viscerally appreciate those few good cards that
you are holding. I have a lot to be grateful for, and many people to thank,
as this point would not have been reached without them. Let us proceed.

I owe my life, and most of my sanity, to the courage, dedication,
generosity, and kindness of countless health-care workers, public servants,
and good samaritans, some of which whose name I’ll never know, and
certainly too many to name here. For want of ever repaying my debts,
let them all be hereby acknowledged. I also thank all the friends who
supported and comforted me when it was severely needed; again, there
are just too many to name them all.

Next in line, obviously, comes Bernadette, whom I thank first for
giving me the opportunity of this mysterious adventure, and then for
relentlessly pursuing good and clear science, and for dispensing enough
rear-end-bludgeoning that I might have a shot at that same pursuit. I
learned a lot.

School and I never really agreed with one another, and it’s therefore
kind of hilarious that I would end up spending so much time there. I am
thankful for some of my high school teachers, who helped nurture my
curiosity in the midst of some dull, dull years: Didier Belin and Michèle

vi

Acknowledgements vii

Otz, who taught history and geography, and Bernadette Meyer, who
taught mathematics and who tried to teach me that you don’t get far by
being a smart-ass.

I owe a great deal to my prépa teachers; my life as a young adult
would have been very different had we not crossed paths. Thanks go
to Christophe More, who is the best educator whose classes I have had
the pleasure to attend, and to Hervé Pépin, who, more than anyone else,
opened my eyes to the supernatural wonder of mathematical thought.
They also go to Christian Lair, a fantastic educator with a wit to arm a
yak barber, with whom I first heard the call to adventure a long, long time
ago that seems far, far away.

I probably wouldn’t have started down this path without the insistant
pushing of dedicated friends, in particular Geoffroy Couteau, – who is
entirely to blame formy enrolling in the mpri in the first place – SimoneDe
Liberato, and Xavier Koegler, who really should appear in many different
places in these acknowledgements. Although less of a friend than a
friendly stranger, Paul-André Melliès played an outsized role through his
kind encouragements over a chance encounter.

I certainly could not have stayed on this path were it not for Solène’s
unwavering support, kindness, love, and hardly-ever-wavering patience.
My love, thank you for those years; here’s to many more.

I am deeply grateful to Solène’s family as well for being so welcoming
and helpful. In particular, I thank Marie-Solange for suffering a brat like
me near her daughter, and for giving us so much, especially during the
wacky ride that this last year has been, and I thank Max for guarding
the house while we were there – sorry for locking you up at night by
mistake.1 I knew Jean too briefly before his untimely exit; we all miss him 1No animals were hurt

during the writing of this
manuscript.

often, and I thank him for the beautiful marks he left behind.
I would like to thank Shlomo Moran and Jennifer Welch for enlight-

ening scientific discussions – of which I hope there will be more – and
Pierre Fraigniaud and Stéphane Gaubert for their encouraging feedback
during my entretien de mi-parcours.

The scientist’s journey is a solitary one; thanks to my colleagues
at the lix, it was not overly lonesome. Let me acknowledge and thank
Frédéric Ayrault, François Bidet, Olivier Bournez, Maria Costa, Pierre-
Yves Coursolle, Uli Fahrenberg, Quentin Guilmant, Emmanuel Haucourt,
Nan Li, Samuel Mimram, Sergio Mover, Jean-Marc Notin, and Pierre-Yves
Strub, to name a few lunch companions. I had the privilege of sharing my
office with Thibaut Benjamin and Simon Forest, whom I even managed to

Acknowledgements viii

chance upon from time to time. It was always a pleasure to be distracted
from work with either of them, and it was humbling to be thinking about
my mundane graphs while they were hacking away at their abstract
nonsense hard problems. I wish them the best for what’s coming next –
frankly, I’m not too worried.

It was also my pleasure to be teaching programming for Cécile Braun-
stein, Olivier Marchetti, and Maria Potop-Butucaru, and in particular to
be working alongside Guillaume Matheron. I never expected teaching in
pair would be so rewarding.

Few fabulous forces will pulverize your heart, smother your spirit,
desecrate your soul, and obliterate your hope as much as the banal evil
of bureaucracy. The unsung heroes of the lix are its wonderful adminis-
trative assistants, who battle daily to carve pockets of purgatory within
that ninth circle of Hell. I want to thank Jackie Gardin, Helena Kutniak,
Vanessa Molina, Evelyne Rayssac, and especially Sylvie Jabinet for all
their help, with trifles as with tragedies. For their patient councel during
my mysterious adventures in the administrative jungle, my thanks go to
Alain Couvreur and Benjamin Doerr as well.

Lastly, but by no means least, I want to thank my family; any decisive
victory of mine is really theirs. In particular, for all they ever did for me,
for their unflinching support, and for their boundless love that’s even
older than I am, I thank my parents: my mom, who’s got the biggest
of all hearts, and my dad, inexhaustibly inspiring and the wisest man I
know – wise enough that he won’t mind not sharing the dedication of
this manuscript.

On with the boons, fellow sapiens.

Le Bois-Plage-en-Ré, 2020-11-09

Post-scriptum. As I painfully came to learn while writing these words,
Prof. Christian Lair passed away weeks before I could send him this
manuscript to read. There is surely a lesson on procrastination in here.

Rest in power, fellow traveler.

Post-post-scriptum. Well, that was one of the most stressful things I was
ever given the opportunity to do. After taking a couple of months to
breathe, I would like to add a few mentions to the above ones. Thanks go
to Pierre Fraigniaud and JulienHendrickx for their careful and enthusiastic
reviews, which touched me deeply. To the rest of the jury as well, who

Acknowledgements ix

honored mewith astute questions. To Thomas Clausen for wielding magic
so that the viva could happen on-line, and to Esther for helping during
my live tests. To Whitney for proof-reading these acknowledgements,
and Wazou for helping me fix the front page. Finally, because I initially
forgot, to my little brother Xavier, for many things, starting with being in
my life.

Introduction

The work that we present in this monograph is situated at the meeting
point of the algorithmic study of distributed systems and their control
theoretic study. We look at problems originating from distributed control,
but with an algorithmic perspective, with great attention directed to
aspects such as the model assumptions and the localization of events in
space and time.

Specifically, we focus on the average consensus problem: given a
multi-agent system with each agent D ∈ + starting with some value `D ,
make all agents compute the arithmetic mean of the input, ` = 1

|+ |
∑

D `D .
The agents must do so through local interactions alone, in a communica-
tion topology that may be incomplete – that is, we do not assume that
the network permits all possible pairwise interactions – and without the
help of a centralized coordinator. Because they are intimately related, we
also consider to a lesser extent the unconstrained consensus problem,
where agents must reach a common opinion on some value l ∈ range -
which need not be the exact average `.

Looking at control problems means, in a sense, that we are interested
in the trajectory of the system as much as in its destination. In compu-
tational terms, we will be looking at systems that weakly compute an
average ` or a consensus l – in the sense that agreement need only be
reached asymptotically, with agents never definitively committing to a
result – but at the same time we will be interested in quantifying regular
progress towards that goal. This approach is motivated by numerous
practical applications in the control of autonomous networked systems,
such as coordinating mobile agents to have them regroup, adopt a com-
mon heading, or control their relative positions while moving together –
problems formally known as rendez-vous [3, 94], flocking [98, 55, 41], and
formation control [12, 90], – implement a distributed load balancing [42,
74, 11], aggregating the measures of many sensors, formally known as sen-
sor fusion [100], – or distributed optimization and machine learning [80,
77]. It is likewise of interest in the modeling of natural systems such as
flocking [98, 55, 41], or the synchronization of cardiac pacemaker cells
to produce heartbeats [71, 43], or that of fireflies to flash in unison [21,
71]; of particular interest to the topics of this thesis, the distributed imple-
mentation of sensor fusion scheme – which rely on asymptotic average
consensus as a core primitive – serves as a model of brain function in

x

Introduction xi

computational neurology [86]. Finally, it is of relevance in the social
sciences, notably in the modelization of opinion formation in groups [46,
54, 4]. Adopting a weak computational model also sheds light over the
different sources of difficulties in distributed computing: here, we will
contrast obstacles due to the networked nature of the system from those
that arise from the need to take coordinated irreversible actions while
only having a partial view of the system.

In many cases, consensus is usefully fulfilled by having the network
agents reach an answer reasonably fast without ever committing to it,
rather than wait for a long time for perfect certainty. To develop an
example, let us consider pacemaker cells, which are the heart neurons
responsible for producing coherent heartbeats. Pacemaker cells can be
modeled as frequently firing, inducing a change in the electric potential
in neighboring heart muscle cells, causing a chain reacting that produces
a global contraction – the heartbeat – provided that the pacemaker cells
fired simultaneously.

The pacemaker cells are themselves electrically networked, and the
system of pacemaker cells can then be modeled as networked coupled
oscillators, which depend on agreeing on the phase of the oscillation to
fulfill their function. In other words, distributed consensus processes
are at play behind all animal – and, as far as we know, sentient – life.
If the pacemaker cells happen to become slightly desynchronized, the
cardiovascular system will be better served2 by having them keep firing 2This ceases to be true in some

extreme cases such as ventric-
ular fibrillation, where pace-
maker cells become so desyn-
chronized that they fail to
produce any sort of coordi-
nated behavior and the heart
ceases to operate properly. In
this case, suspending cardiac
pacemaking all at once is ex-
actly the right thing to do, a
medical intervention known
as defibrillation. Note that
even then, pacemaker cell ac-
tivity re-starts right away; de-
fibrillation acts less as a call
to a blocking subroutine than
as a global signal which helps
the agents re-synchronize.

while they move back to consensus, producing weaker heartbeats in the
meantime, than if they cease all activity while they patiently wait for an
agreement subroutine to complete.

Much of the algorithmic theory of distributed systems, and especially
that of consensus, is concerned with terminating primitives, because
they underpin the fundamental tool replication, powering the resiliency
and consistency of distributed systems. Replication, and irrevocable
consensus, are hard problems in and of themselves, and the study of
agreement problems in distributed algorithms and in distributed control
tend to rely on different sets of assumptions. Here, we adopt the latter
kind, where agents are typically anonymous and their communication is
mediated by a partial graph.

Several of the applications outlined above – vehicular and mobile
ad-hoc networks, animal flocking – are only adequately described as
dynamic networks, by which we mean that the communication topology

Introduction xii

linking the agents is susceptible to change over time. In fact, considering
mobile agents motivates us to adopt a communication model based on
local broadcast, hereafter simply referred to as broadcast, by which we
mean that agents cast messages destined to potentially reach all other
agents, but without a priori knowledge of its actual recipients or their
number. In particular, an agent cannot individually address its neighbors
– there is no low-level primitive providing port numbers – and the content
of a message is independent from the set of its recipients.

We take an agnostic view as to how this set comes to be: it may be
that agents are in fact communicating via radio, but what we consider to
be “the communication topology” may as well be an overlay network built
upon some unspecified substrate. The framework of dynamic networs
will lead us, moreover, to avoid relying on structural assumptions about
the network: while we will generally suppose the network sufficiently
connected – global behaviors are generally impossible over split networks
– we will refrain from imposing, or excluding, any particular shape on
the network.

Our model shares familiar traits with the local model [88] studied
in distributed computing, but with important differences: we assume
agents to be initially indistinguishable – they are not uniquely identified
– and the communication graph is susceptible to change over time. This
makes it impossible to solve the traditional agreement problem,3 in which 3Throughout this thesis, we

will use the term “consen-
sus” to denote the problem
of asymptotically converging
within the convex hull of the
input values, which is how it
is called by the relevant litter-
ature.

all agents should eventually halt and output the same value `∗ ∈ { `D |
D ∈ + }, but for different reasons than, for example, the traditional flp
result [48] about asynchronous networks where agents may suddenly
stop working. Anonymous agents have no reliable way of learning the
size of the system if it is not provided to them by an external source,
and as such they cannot ever be certain that they can make a decision,
or that new information that could alter the decision are yet to arrive.4 4Such situations – different

networks, or different parts
of networks, looking alike to
the agents – are generally
referred to by the umbrella
term of symmetries of the
networks.

Adopting a weak model of global computation means that such concerns
are relegated to the background.

Approaching asymptotic problems with an algorithmic outlook means
that we pay a detailed attention to the model assumptions, as well as to
what “knowledge” agents can rely on at given times. In particular, in
dynamic settings, information pertaining to the local topology of the net-
work – say, the shape of the communication graph within some bounded
distance of an agent – may travel too slowly to remain relevant once it
reaches its target. As an example, the MaxMetropolis algorithm, the
main contribution of Chapter 2, is shown to possess a convergence time

Introduction xiii

in Õ(=4), compared to the Õ(=2) convergence time of the Metropolis
method to which it is compared. However, our algorithm is shown to
operate on all dynamic networks with bidirectional communication that
are connected in each round, whereas the Metropolis method cannot in
fact be implemented by local algorithms outside of very specific kinds of
networks, and even then are fragile to any deviation from these specific
conditions.

Thus we provide in the MaxMetropolis algorithm the first, to our
knowledge, local and deterministic algorithm for average consensus in
anonymous bidirectional dynamic networks, in the complete absence of
centralized coordination. The MaxWeight algorithm, also introduced in
Chapter 2, is a consensus algorithm – it computes some consensus value
l that need not be the average ` – with a proven convergence time of
Õ(=4) in the same conditions as the MaxMetropolis algorithm.

The MaxWeight and MaxMetropolis algorithms are considered
over networks with bidirectional communication links, and in Chapter 3
we drop the assumption of bidirectionality. Directed networks generally
display too many symmetries for the average to be computable, even
weakly, and so we resort to the classic tool of randomized algorithms,
which here means that we give agents access to private random oracles:
our randomized model remains local. Because randomization is such
a powerful breaker of symmetries, we take a closer look at the space
efficiency of algorithms, as well as stronger forms of computation while
relaxing the common, and highly non-trivial, assumption that agents start
executing their code simultaneously.

Table 1 summarizes the characteristics of the principal algorithms
contributed in this thesis.

Summary of the argument We place ourselves in a model of closed
communication rounds, which corresponds to the model usually described
as “synchronous”. Here, we will refrain from using this term, as a way
to emphasize that the only “synchrony” assumed is logical: at no point
will we ever assume anything about the system displaying real-time guar-
antees. Our communication model embeds no absolute bound over the
physical timing of events, delays and message losses are treated the same
way as the inherent dynamicity of the network – by the absence of the
corresponding edges in the communication graph.

We consider two cases: deterministic local algorithms operating over
bidirectional networks, and randomized local algorithms operating over
arbitrary networks.

Introduction xiv

Table 1: Characteristics of contributed algorithms

Algorithm Time Message size Limit Comments

MaxWeight Õ(=4) −∗ l ∈ range - unconstrained consensus
bidirectional networks

MaxMetropolis Õ(=4) −∗ ` bidirectional networks
R O(=) O(log log=) ̂̀ ∈ [` − A, ` + A] Monte Carlo†

D O(=) O(log# + log log=) ̂̀ ∈ [` − A, ` + A] terminating
> = externally provided
Monte Carlo†

* The MaxWeight and MaxMetropolis algorithms are studied in the idealized model where
agents manipulate real numbers.
† By Monte Carlo, we mean that the algorithm can fail to produce a correct result with probability
? , where ? is a tuneable parameter of the algorithm.

In the bidirectional case, we build on the theory of convex update
rules, following the prototype

GD (C) =
∑
E

0DE (C)GE (C − 1)

with a positive weight 0DE (C) assigned to each neighbor of D’s in round C
and the weights (0DE)E forming a convex combination. Such systems
have received a sustained interest in recent decades, and are routinely
used to model opinion dynamics, flocking, and more generally distributed
agreement in multi-agent systems. If the weights are all symmetric –
that is, if 0DE (C) = 0ED (C) in all rounds and for all pairs of neighboring
agents – then given a sufficiently connected network the estimates GD (C)
are known to jointly converge to the average `, and to jointly converge
towards some consensus value l in every case. The study of convex
update rules is intertwined with that of asymptotic consensus itself, to the
point that they are sometimes referred to as “the consensus algorithm”.

We take a close look at the kind of rule that produces symmetric
weights, particularly the Metropolis rule:

GD (C) = GD (C − 1) +
∑
E

GE (C − 1) − GD (C − 1)
max(3D (C), 3E (C))

, 5

and argue that the implementation by local algorithms over dynamic 5By 3D (C) we mean agent D’s
degree in the communication
graph at round C .

networks is difficult and fragile, as it necessarily relies on information

Introduction xv

beyond the immediate vicinity of each agent and has to be collected via
ad-hoc methods that depend on the specific communication graph and
do not generalize to large classes of networks.

We leverage the good convergence properties of convex update rules
by making the agents progressively learn weights that can be used in
place of the Metropolis weights given above; namely, each agent uses its
largest previous degree in place of 3D (C). Because the self-assigned weight
0DD (C) may then sometimes be negative, the resulting update rule is not
convex, but affine; however, it remains convergent because convexity is
only broken finitely many times, with a penalty of O(=2) when compared
to the theoretical convergence time of the Metropolis update.

When trying to design algorithms for directed networks more gener-
ally, we are confronted with the fact that the network symmetries make
it essentially impossible to keep track of the multiplicities of the input
values, and local algorithms cannot reliably compute the average under
assumptions of connectivity alone. An additional symmetry-breaking
device is thus needed in order to solve average consensus over general
directed networks, and here we resort to randomization by giving each
agent access to a private random oracle. As randomization can be ex-
tremely powerful in breaking symmetries, we take a finer look at the
memory and bandwidth requirements of our algorithms, and show that,
with high probability, our algorithm R computes a good approximation
of the average with a memory and bandwidth footprint in O(log log=).
Moreover, if we allow some global knowledge and provide each agent
with a bound # > =, the algorithm R can be turned into the algorithm
D, which computes an approximation of the average ` in a terminating
manner with messages in O(log# + log log=). As both algorithms rely
on a information propagation primitive that consists in finding a global
minimum in the network, these algorithms have a temporal complexity
that is linear in the number of agents.

Relatedworks

General books covering distributed computing as a whole notably include
Lynch [69], Tel [95], Attiya and Welch [8], and for a clear, short intro-
duction,6 we cite the recent textbook by Hirvonen and Suomela [58]. For 6Which has the good taste of

being distributed under an
open licence.

an approach grounded in locality, let us cite Peleg [88]. Bertsekas and
Tsitsiklis [13] constitutes a general reference with an approach closer to
that of the distributed control community.

Introduction xvi

Agreement problems have long been central to the study of distributed
systems. For the classic problem of terminating consensus, we note the
classic references [66, 87, 48].

The topic of distributed computation over dynamic networks has
received much interest in recent years, notably following the seminal
works of O’Dell and Wattenhofer [79], and later of Kuhn, Lynch, and
Oshman [63], which adopt models broadly similar to ours. Among many
works on the topic, we note in this vein [65, 64, 47]. This topic has much
deeper roots, let us cite for example [10, 1]; in fact, dynamicity in the form
of lost messages, of which Santoro and Widmayer [92] is of interest in
connexion with the present work, has been studied for much longer [2, 51].
Closer to this thesis, an algorithmic approach to asymptotic consensus
was undertaken by Chazelle and by Charron-Bost [28], and Charron-Bost,
Függer, and Nowak [30, 31], building on approaches developed in the
distributed control community, notably the graph composition-centric
approach of Cao, Morse, and Anderson [24, 25]. Stabilizing consensus,
situated in-between terminating and asymptotic consensus in terms of
computational strength, has been notably studied by Angluin, Fischer,
and Jiang [7], and more recently by Charron-Bost and Moran [35].

More distant to us, the algorithmic study of dynamic networks in-
cludes Kempe, Kleinberg, and Kumar [62], as well as Casteigts et al. [27,
26]. More distant still, we note the different model with broader aims
studied by Latapy et al. [67], and the model of population protocols studied
by Angluin et al. [6].

For the specific aspect of anonymous computation, we build our argu-
ments on the seminal work of Angluin [5], and extensions by Yamashita
and Kameda [101, 102, 103], Boldi et al. [15], and Boldi and Vigna [16, 17, 19,
18]; considerations centered on connectivity of the communication graphs,
but not on its shape, include Hendrickx, Olshevsky, and Tsitsiklis [56],
Hendrickx and Tsitsiklis [57].

For the distributed control approach to consensus, we note the seminal
work of DeGroot [46] on static convex update rules for complete graphs,
extended to dynamic rules by Chatterjee [38] and Chatterjee and Seneta
[39]. Of importance, we note Tsitsiklis [97], Tsitsiklis et al. [96], and much
work on flocking and consensus that followed the publication of [91, 98],
of which important milestones include [99, 72, 14, 55, 24, 83, 78, 40, 76].

Introduction xvii

Plan

This monograph is divided in three chapters: Chapter 1 introduces our
communication model, which is built on the fundamental tool of dynamic
graphs, which are sequences of directed graphs, studied with the help
of graph composition. Chapter 2 then presents the theory around the
MaxWeight and MaxMetropolis algorithms for asymptotic consensus
and average consensus. Chapter 3 considers the randomized algorithms
R, R, and D. Finally, we offer concluding thoughts and directions for
further works in Section 3.6.

Computation in dynamic networks

1.1 Introduction

In this chapter, we are mostly concerned with bringing up the tools needed
to discuss computation and consensus in dynamic networks. We recall
some of the classic concepts pertaining to binary relations and directed
graphs, and then extend these notions to our main tool for modeling
time-varying networks, called here directed graphs, which are infinite
sequences of directed graphs with a self-loop at each vertex. Using the tool
of graph composition, we obtain a compact description of how information
propagates in dynamic networks.

We then describe the communication and computational models that
we use in this thesis: we consider infinite executions in which agents com-
municate by local broadcast over discrete rounds that are communication
closed, with the pattern of communications in each round captured by
a directed graph, and the communications for the entire execution then
captured by a dynamic graph. As we are concerned with problems of an
asymptotic nature, we take executions to be infinite and do not embed an
explicit notion of termination. However, we define conditions over the
behavior of the agents that amout to varying degrees of resoluteness in
the computation, with the strongest versions being equivalent to having
the execution actually terminate, since all agents then know that nothing
else remains to be done.

Describing this hierarchy will allow us to relate the asymptotic prob-
lems that we study with agreement problems more traditional in the
theory of distributed algorithms. Moreover, as we will be mainly con-
cerned with the bottom layers of this hierarchy – that is, with weaker
notions of computability – the difficulties met will arise from symmetries
in the geometry of the network rather than on considerations of a global
nature which arise when agents are to make coordinated and irrevocabe
decisions while only ever having a partial and out-dated view of the state
of the system. We will recall results pertaining to the theory of anony-
mous computability in distributed networks, and how they contraint the
problems we seek to study. In particular, the problem of consensus can
be interpreted as one of computing a relation and is therefore much eas-
ier to solve than that of average consensus, which correponds to the
computation of a function which enough symmetries in the network can
make impossible even to approximate.

1

Chapter 1. Computation 2

In terms of communication and computational models, the closest
to the one we consider is the Heard-Of model introduced by Charron-
Bost and Schiper [37], whose precise semantics constitutes a useful basis
to study the propagation of messages in dynamic networks. Not too
dissimilar to our model are classic models of synchronous distributed
computation by message-passing like the local – where the bandwidth
is typically unrestrained – or congest – where messages are usually
taken to occupy O(log=) bits, which precludes solutions based on full
information protocols.

We note the important difference that the local and congest models
usually suppose centralized naming authority assigning unique identifiers
to the agents, whereas we take the opposite stance and suppose that the
agents start indistinguishable from one another. This distinction is central
tomatters of computability: identifiers can be used to break all symmetries
in the network – in theory, if not easily in practice. If we assume an initial
synchronization of the system, as is usually done, in a sense the only
remaining challenge is one of efficiency: getting agents to solve a given
task as fast as possible, with the smallest possible message or memory
footprint, or any other measure that the designer seeks to optimize.

1.2 Relations, graphs, dynamic graphs

Relations

Binary relations are at the basis of our model of communications in
dynamic networks.

Definition 1 (Relations). A binary relation (or simply relation) over
sets � and � is a subset ' ⊆ � × �. If ' is a relation over � ×�, we say
that it is a relation over �. ❦

As is usual, we will generally write G ' ~ instead of (G,~) ∈ '.
Although the main use that we will make of relations will be in capturing
snapshots of communication patterns in networks, they constitute a basic
building block of mathematics. Let us recall some classic terminology.

Definition 2 (Common properties of relations). We say that a relation '
is

functional if G ' ~ and G ' I implies ~ = I;

Chapter 1. Computation 3

reflexive if G ' G holds for all G ;

symmetric if G ' ~ if and only if ~ ' G ;

antisymmetric if G ≠ ~ implies that at most one of G ' ~ or ~ ' G is
true;

transitive if G ' ~ and ~ ' I implies G ' I;

a partial order is a relation that is reflexive, transitive, and antisym-
metric; an equivalence relation is one that is reflexive, transitive, and
symmetric. ❦

Given a relation ' over a set �, its reflexive, symmetric, or tran-
sitive closures, are, respectively, the smallest reflexive, symmetric, or
transitive relations over � containing '. Since � × � is an equivalence
relation, these closures always exist.

Definition 3 (Relation composition). Given sets �, �, and � , the compo-
sition of relations ' ⊆ � × � and (⊆ � ×� , denoted ' ; (, is the relation
over � ×� given by

G ' ; (I ⇔ ∃~ ∈ � : G ' ~ ∧ ~ (I . (1.1)

❦

The relation composition is associative, and its identity is the identity
relation I� B { (G, G) | G ∈ � }. For : ∈ ℕ, the :-th power of a relation
' ⊆ � ×� is then given recursively by

': =

{
I� : = 0

' ; ':−1 : > 0 .
(1.2)

Reflexive behave monotonously for the composition.

Lemma 1.2.1. Let ' and (be relations. If (is reflexive, we have

' ; (⊆ ' and (; ' ⊆ ' . (1.3)

l

Chapter 1. Computation 4

It is well known that the transitive closure '+ of a relation ', and its
transitive and reflexive closure '∗, are given by

'+ =
∞⋃
:=1

': , '∗ =
∞⋃
:=0

': . (1.4)

In the case of a reflexive relation, '+ and '∗ are equal, and since by
Lemma 1.2.1 we have '0 ⊆ '1 ⊆ '2 ⊆ · · ·, they are both given by the limit
lim:→∞ '

: . When the support of the relation ' is finite, the geometric
sequence ': stabilizes over '∗ after finitely many iterations.

Directed graphs

Throughout this monograph, we will mean by graph a simple directed
labeled graph, which is given by a relation, tagged by the set over which
this relation is considered.

Definition 4 (Directed graphs). A directed graph (or simply graph)
over a set + is a pair (+ , �), where � is a relation over + . Given a graph
� = (+ , �), the elements of + are the vertices of � , and their cardinal
|+ | is the order of � . The elements of � are the edges of � , and their
cardinal |� | is the size of � . ❦

That is, graphs in our model are directed and can have self-loops
(D,D), but may only have one edge in each direction between two vertices
– they are not multi-graphs. They are distinct from the geometric object
to which they correspond, in the sense that we do not regard isomorphic
graphs to be the same object. In other words, a graph� = (+ , �) is labeled
by the set + , which is not to be confounded with the fact that agents
were issued unique identifiers; we strive to design algorithms which are
specifically designed to cope with the absence of unique identifiers. Here,
we will be mainly concerned with graphs defined over finitely many
vertices, which will be silently assumed whenever it is required for the
discussion to make sense.

For any graph� , we denote its vertex set and its edge set respectively
by V(�) and E(�). If (D, E) is an edge of the graph � , we will generally

use the notation D
�−→ E rather than (D, E) ∈ E(�) or D E(�) E . When the

graph � is clear from the context, we simply write D −→ E .

Chapter 1. Computation 5

Definition 5 (Neighborhoods, degrees). Given a graph � the in- and
out-neighborhoods of a vertex E ∈ V(�) are the sets

InE (�) B {D ∈ V(�) | D
�−→ E }

and OutE (�) B {F ∈ V(�) | E
�−→F } .

(1.5)

The in and out-degrees of the vertex E are the count of its in- and
out-neighbors:

3−D (�) B |InE (�) | and 3+D (�) B |OutE (�) | . (1.6)

❦

The complete graph over a set + is the graph + B (+ ,+ ×+); the
identity graph is �+ B { (D,D) | D ∈ + }. The null graph [52] is the
graph (∅,∅).

We inherit for graphs the terminology of relations: we will say that
a graph � = (+ , �) is reflexive or transitive when the relation �
is. If the relation � is symmetric, the graph � is traditionally said to be
bidirectional rather than “symmetric”.

A graph � is a subgraph of a graph � when V(�) ⊆ V(�) and
E(�) ⊆ E(�). Of particular importance are induced subgraphs: given a
graph � = (+ , �) and a set (, the (sub)graph of � induced by (is the
graph � |(B (+ ∩ (, � ∩ (× ().

Given two graphs � and � , a function 5 : V(�) → V(�) is a graph

morphism for � and � if 5 (D) �−→ 5 (E) holds whenever D
�−→ E does. If 5

is a bijective map whose inverse 5 −1 is also a graph morphism, then 5 is
a graph isomorphism.

We extend the notion of relation composition to that of graphs: given
graphs � = (* , �) and � = (+ , �),1 their composition is the graph 1Most of the time, we consider

the case* = + , in which case
we simply have� ◦� = (* , � ;
�); composing graphs over
different vertex sets will mat-
ter mainly when the agents
of the network engage in the
execution at different time.

� ◦ � B (* ∪+ , � ; �) . (1.7)

The powers of a graph (+ , �) are then defined by �: = (+ , �:).

Eccentricity and connectivity

For any graph � , we will denote by − �
=⇒ − the transitive and reflexive

closure of the relation − �−→ −. We say that E is reachable by D in �

when D
�
=⇒ E .

Chapter 1. Computation 6

Reachability is intimately connected with the geodesic forward
distance (or simply distance) induced by the graph� over the set V(�):

d� (D, E) B inf{ : ∈ ℕ | D �:

−−→ E } , (1.8)

with as usual inf ∅ = ∞. Indeed, we have d� (D, E) < ∞ if and only

if D
�
=⇒ E .

We say that a vertex D is a root of a graph� is D =⇒ E for all E ∈ V(�).
The eccentricity of the root D is then given by

ecc� (D) B max
E∈V(�)

d� (D, E) ; (1.9)

if D is not a root, then we let ecc� (D) B ∞. If any vertex D of a graph �
is a root, then we say that � is rooted in D; � is rooted if it is rooted in
any of its vertices.2 The radius of a graph � is given by 2In general, it is not true that

D =⇒ E implies E =⇒ D, as is

evident from considering the
two-vertex graph ◦ → ◦. As
a consequence, rootedness is
a strictly weaker notion than
strong connectivity, defined
below.

rad� B min
D∈V(�)

ecc� (D) , (1.10)

which is finite if and only if � is rooted, in which case we have rad� <

|V(�) |.

When every vertex is reachable from every other, we say that the graph
is strongly connected. We define the diameter of a graph � by

diam� B max
D∈V(�)

ecc� (D) , (1.11)

which is finite if and only if � is strongly connected, and in that case we
have diam� < |V(�) |, and rad� 6 diam� 6 2 rad� .

This notion can be strengthened into 2-strong connectivity, with 2 ∈
ℕ>0: we say that a strongly connected graph� is 2-strongly connected
if for any set) ⊆ V(�) with cardinal |) | < 2 the induced graph � | V(�)\)
remains strongly connected. Classic combinatorial arguments related to
Menger’s theorem show that in that case diam� <

|V(�) |
2

; note that 2 = 1
corresponds to the strongly connected case.

Since we will be mostly interested in reflexive graphs, we will use the
following property of connectivity to control the temporal complexity of
our algorithms.

Lemma 1.2.2. Let�1 = (+ , �1) and�2 = (+ , �2) be reflexive graphs with
same vertex set + . If �1 is 21-strongly connected and �2 is 22-strongly
connected with 21, 22 ∈ ℕ>0, then their composition �1 ◦�2 is either the
complete graph + , or is 21 + 22-strongly connected. l

Chapter 1. Computation 7

Dynamic graphs

In our discrete time model, the communications occurring between agents
in+ in a given instant will be captured by a graph over+ . The pattern of
communication over time are then naturally captured by the following
notion.

Definition 6 (Dynamic graphs). A dynamic graph G with vertices in
a finite set V(G) = + is an infinite sequence G(1),G(2), . . . of reflexive
directed graphs over + .3 ❦ 3In some rare instances, unam-

bigously announced as such,
we will allow the sequence to
be finite or to have the vertex
set vary over time.

Notice that each graph G(C) is assumed to be reflexive and that the set
V(G) is assumed to be finite. We speak again of the order of a dynamic
graph G to denote the cardinal |V(G) |.

Instead of InD (G(C)), we write InD (C ;G), dropping the parameter
G when it is clear from the context, and similarly for other notions:
OutD (C), 3−D (C), 3−D (C), . . .

The cumulative graph of a dynamic graph G over the interger
interval { C, . . . , C ′ } is the graph

G(C : C ′) B G(C) ◦ · · · ◦ G(C ′) , (1.12)

where by convention G(C : C ′) = �+ if C ′ < C . Here as well, we will
simplify notation for the neighborhoods and degrees and let for example
InD (C : C ′;G) stand for InD (G(C : C ′)); as above, we will drop the parameter
G when it is clear from the context.

Dynamic reachability

The notions pertaining to reachability for static graphs admit several
different forms of generalizations, connected with one another. Here, we
attempt to briefly sketch these notions and the relations between them.

The simplest way to generalize, say, rooted graphs, is to consider
dynamic graphs that are term-wise rooted – that is, each individual graph
G(1),G(2), . . . is rooted. A common relaxation is to introduce a delay:
given J ∈ ℕ>0, we say that a dynamic graphG is J-delayed rooted when
each cumulative graph G(C : C + J − 1) is rooted. We find yet another,
much weaker condition when no such uniform bound J exists: we say
that G is eventually rooted if for each C ∈ ℕ>0 there exists some C ′ > C
for which the cumulative graph G(C : C ′) is rooted.

Chapter 1. Computation 8

Clearly, nothing singles out rootedness in this manner, and we simi-
larly define, for example, term-wise, delayed, or eventual 2-strong con-
nectivity. In particular, we will simply say that a dynamic graph is even-
tually connected rather than “eventually strongly connected”.

The above notions have in common that they relegate to the back-
ground the dynamic aspect of dynamic graphs: they approach the problem
of dynamic reachability by constructing fixed graphs over which we can
apply traditional notions. Another approach, which makes a first-class
citizen of the dynamic graph, starts with a spatio-temporal notion of
reachability: a vertex E is reachable from D in a dynamic graph G at

time C if D
G(C : C ′)
−−−−−−→ E holds for some C ′ > C , which we alternatively note

D
C : C ′
===⇒G E or simply D

C : C ′
===⇒ E if G is clear.

Similarly, we can define the geodesic forward distance (or, again,
simply distance) at time C by

dC (D, E ;G) B inf{ : ∈ ℕ | DC : C+:−1===⇒ E } , (1.13)

where as usual the annotation G is dropped when the context is clear.
The notion of dynamic eccentricity naturally follows:

eccC (D;G) B sup
E∈V(G)

dC (D, E ;G) . (1.14)

As opposed to the static case, we may well have dC (D, E) < ∞, but
dC ′ (D, E) = ∞ for the same verticesD and E but a later time C ′. Generalizing
the radius and diameter thus requires some care. To start with, for any
C ∈ ℕ>0 we define the minimal and maximal eccentricities at time C of
a dynamic graph G by

min eccC G B min
D∈+

eccC (D;G) ,

max eccC G B max
D∈+

eccC (D;G) .
(1.15)

It is possible for a dynamic graph G to havemax eccC G < ∞ for some
C ∈ ℕ>0, but max eccC ′ G = ∞ at a later time C ′ > C , and the same is
true of the minimal eccentricity. Although they are well defined, such
graphs inadequately model network dynamics over which to reason about
computability: clearly, whether the system is connected or not, or rooted
or not, has to impact what it can achieve. A dynamic graphwhoseminimal
eccentricity is finite for some time, then becomes infinite, may permit

Chapter 1. Computation 9

some global behaviors that cannot be achieved if the eccentricity is never
finite, but only because it starts with the right timing; running the same
algorithm on the same network at a later time could lead to different
results, and so we deem such a dynamic graph ineffective at capturing
the conditions enabling certain kinds of computation.

We shall therefore limit our considerations to the case where the
extremal eccentricities do not display such behavior. We can convince
ourselves that the dynamic graphs for whichmin eccC G < ∞ holds for all
C are exactly those that are eventually rooted; similarly, max eccC G < ∞
holds for all C if and only if G is eventually connected. When uniform
bounds are available, we obtain the classic notions of the radius and
diameter of a dynamic graph.

Definition 7 (Dynamic radius and diameter). The dynamic radius and
dynamic diameter of a dynamic graph G are given by

radG B sup
C>1

min eccC G , diamG B sup
C>1

max eccC G . (1.16)

❦

Since no confusion can arise, we simply speak of the radius and
diameter of a dynamic graph. To connect these notions with those of
static graphs, observe that for any graph� we have rad� = rad(�,�, · · ·),
and similarly diam� = diam(�,�, · · ·).

We find an important example of dynamic graphs whose radius can
be bounded in delayed connected graphs.

Proposition 1.2.3. Let G be a dynamic graph of order = ∈ ℕ>0. Suppose
that G is J-delayed 2-strongly connected, for some constants J, 2 ∈ ℕ>0

– that is, each cumulative graph G(C : C + J − 1) is 2-strongly connected.
In this case, we have

diamG 6

⌈
J (= − 1)

2

⌉
. (1.17)

In particular, diamG 6 = − 1 for a term-wise strongly connected dynamic
graph G. Y

As we have just seen, the notion of delayed strong connectivity
is in fact equivalent to having a finite diameter – a dynamic graph
G with finite diameter is by definition diamG-delayed complete, and

Chapter 1. Computation 10

thus diamG-delayed strongly connected. Dynamic graphs of finite diam-
eter thus do not constitute a new class. Why then introduce the notion?
The bounds over the diameter derived in Proposition 1.2.3 are necessarily
linear in the order of the network, which translates in linear factors in
the complexity of some algorithms, see for example our temporal bounds
in [32]. This is in fact an artefact of assuming a termwise strongly con-
nected graph: the “real” factor at play is the diameter, which turns out to
be at most = − 1 given the assumptions. By considering the diameter as a
first-class parameter, we can better distinguish a factor = that inherently
depends on the scale of the system from one that only reflects a connectiv-
ity assumption. A similar argument could be made about delayed rooted
dynamic graphs and dynamic graphs with a finite radius.

Given dynamic graphs G and ℍ, a function 5 : V(G) → V(ℍ) is a
dynamic graph morphism for G and ℍ if it is a graph morphism for
each pair G(C),ℍ(C). It is a dynamic graph isomorphism if it is a graph
isomorphism for each pairG(C),ℍ(C). Notice that for two dynamic graphs
G and ℍ to be isomorphic, it does not suffice that each pair G(C),ℍ(C) be
isomorphic; the same mapping of vertices 5 : V(G) → V(ℍ) must induce
a graph isomorphism for each C .

Network classes

Defining what is computable by anonymous agents over a given network
is made difficult by the fact that the characteristics of a specific network
might make certain things possible, but in a non-generalizable manner.
As an example, the classic example of symmetry breaking that is leader
election is trivial if the communication graph is a star graph, – with a
vertex connected to every other, and no other edge –all agents figure out
whether they are at the center, and the only agent which satisfies the
test picks up the crown. Although simple and effective, it is clear that
this approach cannot be transposed to, for example, a ring graph. Indeed,
as shown by Angluin in her seminal article [5], leader election is in fact
impossible when the communication graph is a cycle.

The aforementioned algorithm, in a sense, embeds information about
the network over which it operates. We follow the approach used by, for
example, Boldi and Vigna in [17] and other works, and capture this notion
of available information or knowledge by the means of network classes.
We will call a network class a set C of dynamic graphs that is stable
for dynamic graph isomorphisms – that is, given G ∈ C, the network

Chapter 1. Computation 11

class C contains every dynamic graph ℍ with vertices V(ℍ) = V(G) that
is isomorphic to G. A network class (or simply class) thus captures the
kind of dynamic communication topology that a network might display
– or, rather, what is known4 about this topology – without giving any a 4To cite [17]: “[…] classes spec-

ify knowledge: the larger the
class, the smaller the knowl-
edge (the class of all networks
corresponds to no knowledge
at all; a singleton to maxi-
mum knowledge)”.

priori information about individual roles in the network, as any role that
an agent may play in a given class could as well be played by all other
agents. For any class C, we will denote by C|= its restriction to dynamic
graphs of order =.

Sometimes, particularly to express impossibility results, it will be
convenient to speak of “all dynamic graphs” of a certain kind. We only
use dynamic graphs as abstractions capturing the patterns of message
exchange in the network; typically, for a system of = agents in a set+ , we
will identify the agents with the vertices of the dynamic communication
graphs of the execution – that is, we suppose V(G) = + . We could
as well arbitrarily order the agents – so that + = {D1, . . . , D= } – and
look at the isomorphic dynamic graph with vertex set [=] given by the
isomorphism D8 ↦→ 8 . As a consequence, when needed, we will default to
representing dynamic graphs with = vertices as over the vertex set [=].
When considering network classes, the specific bijection D8 ↦→ 8 does not
matter, as a dynamic graph over [=] belongs to a class C if and only if all
isomorphic dynamic graphs do as well.

1.3 Distributed model

Here, we seek to sketch our communication and computational models
with the aim of capturing the abstract behavior of distributed algorithms
running over dynamic networks. It corresponds to common models
studied in the literature on algorithms for dynamic network as well as
on distributed control. In contrast to some classic models used when
studying time-invarint networks, individual edges of the communication
graph follow delivery semantics in the spirit of the Heard-Of model [37]:
the presence of an edge (D, E) in a graph means that a message coming
from D was effectively received by E .

Because we model connexions that are fundamentally uncertain and
fleeting, we assume in particular that individual agents do not control,
or indeed know of, who receives their messages. Lacking such control
and knowledge, agents are unable to individually address their neighbors,
which will turn out to have deep implications for computability. This
characteristic, referred to as a local broadcast communication primitive,

Chapter 1. Computation 12

is commonplace when studying dynamic networks, as can be seen for
example in [63].

Adopting this view means that our model has no notion of “link
failure”: a link failing simply corresponds to a missing edge in the com-
munication graph. As a more subtle consequence, although we consider
a discrete time model in which agents act in virtual synchrony, the model
embeds no assumption that the network behaves anything like a real-
time system: agents might well be badly desynchronized, which would
translate as their being disconnected in the communication graph.

Time and communication

We thus consider a set + of |+ | = = networked agents engaged in a dis-
tributed computation. The computation is sliced into successive discrete
layers called rounds, each denoted by its round number C = 1, 2, . . .; we
mark from the onset that an agent of the system is not assumed to have
access to the current round number C .

In a round, each agent D ∈ + successively a) casts a single message
<D (C); b) receive some of the messages <E (C) sent by other agents in
the same round; c) undergoes an internal transition to a new state; and
d) produces an output value GD (C) and proceeds to round C + 1. The
rounds are communication closed, whichmeans that agents only receive
in round C messages that were sent in round C .

Notice in particular that all agents hearing from agent D in a given
round C receive the same message<D (C) – we speak of local broadcast,
and here, since no confusion can arise, of broadcast. An agent D need
not hear from the entire set + in any given round, and we allow the set
of agents it does hear from to change arbitrarily from one round to the
next; as no message loss can occur between an agent and itself, our only
a priori assumption is that an agent always receives its own message.
Apart from its own, the messages received by an agent in a given round
arrive unsorted, which we refer to as mailbox reception; this corresponds
to the fact that the messages received by agent D during round C form a
multi-set [<E1 (C), . . . ,<E: (C)], for some agents E1, . . . , E: ∈ + .

In each round, thismodel naturally defines a binary relation �C ⊆ +×+
by (D �C E) ⇔ (E receives D’s round C message), and the communications
over the entire sequence of rounds are then captured by a dynamic graph
G = (G(C) = (+ , �C))C ∈ℕ, which we call the dynamic communication
graph.

Chapter 1. Computation 13

Networked automata and algorithms

From the communicationmodel, we discern threemoments when an agent
has the opportunity to make choices: when crafting its round message,
when transitioning in each round, and when producing its round output.
In addition, the agent has latitude in determining its initial state, to be
discussed shortly. Everything else is beyond the agent’s control: the
content of other messages, which messages gets delivered to whom, the
choices made by other agents, and so forth.

Each of these choices is driven by the programming of the agent,
which, taken together, we call an algorithm. Supposing that agents
take states f ∈ O , transmit messages< ∈ " , and output values G ∈ S ,
then an agent’s possible transitions are given by a transition relation
over (" ⊕ × O) × O , its messages by a sending relation over O × " ,
and its round outputs by an output function O → S . Messages and
transitions to be relations rather than functions so as to be able to define
non-deterministic algorithms; outputs are always deterministically ob-
tained from an agent’s state at the end of the round. Round outputs are
less of an intrinsic part of the algorithm than a manner of singling out
the observable part of an agent’s behavior.

In addition to the above, we assume that each agentD starts by picking
up an input value `D ∈ M from its environment, used to set up its initial
state via an initialization relation over M × O . We will be mainly
interested in local and deterministic algorithms, where all aforementioned
relations are in fact functional.

Definition 8 (Local deterministic algorithm). A local and determinis-
tic algorithm (hereafter, simply a local algorithm) with input space
M , output space S , state space O , and message space " is a collection
(], b, g, Z) comprised of

• an initialization function] : M → O ;

• a sending function b : O → " ;

• a transition function g : " ⊕ × O → O ; and

• an output function Z : O → S .

❦

Chapter 1. Computation 14

A local algorithm is relative to an agent; the local algorithms of all
agents in the system, collected together, form a distributed algorithms.
Here, we will only consider uniform distributed algorithms, taken to
mean that all agents run the same local algorithm.

We call such algorithms local because the only mean for agents to
acquire information is through interacting with their immediate incoming
neighbors in the communication graph. Information such as their out-
degree in any round, for example, is not a priori available in this model,
as it cannot be deduced from an agent’s prior state and the collection
of its incoming messages. Under our terminology, an algorithm such
as PushSum [61, 77]5 is not “local”, because it depends on agents being 5In the PushSum algorithm,

agents make two parallel
passes of a linear iterative up-
date scheme of the sort con-
sidered in Chapter 2, but with
the weight assigned to each
value G8 (C) depending on the
out-degree 3+8 (C); the ratio of
the two values thus computed
converges towards the aver-
age `.

provided information – their out-degree – that cannot be gathered locally.
Formally, we can say that the PushSum algorithm does not have a sending
function, but a sending relation b ⊆ O × " . Alternatively, this can be
viewed as the PushSum sending function b : O × ℕ>0 → " , expecting at
each step a certificate inℕ>0. Claims over the correctness of the PushSum
algorithm can then be interpreted in the samemanner as claims made over
non-deterministic Turing machines: there exists a collection of certificates
which lead the system to behaved in the desired manner. Similarly, a
uniform distributed algorithm relying on unique identifiers will be viewed
as non-local,6 as two agents with the same input value are not initialized 6Unfortunately, this interpre-

tation conflicts with the stan-
dard terminology in the con-
temporary of distributed al-
gorithms, where the local
model roughly corresponds
to the model used here, plus
unique identifiers.

in the same state. Thus, whenever mentioning identifiers, we shall speak
of a centralized authority issuing such identifiers, to highlight the
embedded assumption of centralized control.

On the other hand, the randomized algorithms discussed in Chapter 3
will be local, in the sense that the agents use only local information and
the outcomes of private random coins.

Executions and i/o relations

We call an execution a complete run of a distributed algorithm – it is
the collection, for all rounds, of the states, messages, and outputs of all
agents. In a given execution, we denote by GD (C) agent D’s round C output,
and the infinite sequence GD (1), GD (2), . . . is agent D’s output stream in
the execution. If all agents run local algorithms and start engaging in
the execution simultaneously in round C , then an agent’s output stream
is a function of the input values, -, and of the dynamic communication
graph of the execution, and so is the output stream of the system – the
sequence x (1), x (2), . . . of the output vector in each round.

Chapter 1. Computation 15

However, achieving simultaneous starts is in itself a complex dis-
tributed task, particularly for anonymous agents – see [36] which studies
this question in our model of dynamic networks. Most often, we will
make the simplifying assumption that agents do start simultaneously, but
only when we are justified in doing so by the fact that we discuss algo-
rithms that are, in fact, resilient to asynchronous starts. Otherwise, we
will explicitly consider the possibility for agents to start asynchronously,
by adopting the model used in [36].

In this model, every agent begin the execution in an inactive state;
to each agent D corresponds an additional parameter BD ∈ ℕ, called the
start signal of agent D, which describes the last round of the execution
during which D is inactive, and which we assume here to be driven by an
external process beyond our control. At the end of round BD , the agent
sets up its initial state as described above, and, starting in round BD + 1, it
normally engages with the system according to its local algorithm. Until
round BD , however, agent D only emits null messages – messages devoid
of content with respect to the current execution. Likewise, an inactive
agent has an empty output.

A null message may be, for example, a regular message pertaining to
another execution, or it may be a heartbeat, an empty message periodi-
cally emitted by a sleeping agent to remind the network of its existence.
Although null messages have no content to be interpreted by the rest of
the system, they are picked up by neighboring agents according to the
communication graph in each round. If the graph is sufficiently connected
the system can detect the presence of inactive agents in its midst, and
refrain from moving too far along in the computation until all agents are
active. The firing squad problem, as studied in [36], consists in ensuring
that agents re-synchronize after starting in arbitrarily desynchronized
states.

To summarize, an execution of a distributed algorithm produces an
infinite stream of output vectors x (1), x (2), . . ., which is a function of the
dynamic communication graph, the input values, and of the collection of
start signals unless simultaneous starts are assumed. The communication
graph, the input values, and when applicable the start signals, are assumed
to be arbitrarily taken from some domain and are referred to as the
parameters of the execution. In other words, a distributed algorithm
induces a correspondance between a choice of parameters and the output
stream of the system, which we can interpret as a complex input/output
relationship between the input values and the output stream, mediated

Chapter 1. Computation 16

by the other parameters. In the following section, we isolate situations
in which we define simpler input/output relationships, leading to the
notion of algorithmic function computation, of consensus, and of average
consensus.

1.4 Big-step operational semantics

Computing agents

A given execution of a distributed algorithm turns an input vector - into
an infinite sequence of output vectors x (0), x (1), · · ·. We next introduce
some definitions in order to equip our model with simpler evaluation
semantics, allowing simple expressions of our problems. At the same time,
we will sketch a hierarchy of computational difficulty that is orthogonal
to the task being solved. Throughout this section, + is a finite set of
cardinal = ∈ ℕ>0, and (S,3) is a metric space.

Asymptotic computation We describe three increasingly strict ways
an agent can be said to be “computing” something in an execution. Let
D ∈ + be an agent of a distributed system, and let GD : ℕ→ S denote the
sequence of its round outputs in a given execution of an algorithm.

Definition 9 (Asymptotic computation). Let D ∈ + be an agent in a
distributed system, and let GD : ℕ→ S denote the sequence of its round
outputs in an execution. If this sequence satisfies

convergence ∃lD ∈ S : GD (C) →C lD ,

we say that agent D asymptotically computes the value lD in the exe-
cution. ❦

Stabilization and eventual computation This definition is relative to
the metric considered over the setS . If the agent asymptotically computes
a value for a given metric, it then computes the same value for coarser
metrics, but not necessarily for finer ones. We distinguish the important
case of the discrete metric 3 (G,~) = 0 if G = ~, 3 (G,~) = 1 otherwise.
Indeed, as it is the finest topology over any set, asymptotic computation
for the discrete metric implies asymptotic computation for every other. A
sequence is stabilizing when it converges with respect to the discrete
metric.

Chapter 1. Computation 17

Definition 10 (Stabilizing computation). We say that agent D engages in
a stabilizing, or eventual computation when its output satisfies

stabilization ∃C∗D,∀C, C ′ > C∗D : GD (C) = GD (C ′).

❦

Irrevocable decisions In order to relate our discussion to traditional
models, we next describe how the act of returning a value can be expressed
in our model of infinite executions. To this effect, we fix an element
⊥ ∉ S , and we suppose that agent D runs an algorithm with output set
S ′ B S ∪ { ⊥ } – that is, we either have GD (C) ∈ S or GD (C) = ⊥. We
interpret the value ⊥ as an absence of output in S .

Definition 11 (Returning computation). We say that agent D engages in
a returning computation over the set S when its output satisfies

decision ∃C∗D ∈ ℕ : GD (C∗D) ≠ ⊥, and

irrevocability ∀C, C ′ ∈ ℕ, C 6 C ′ : GD (C) = ⊥ ∨ GD (C ′) = GD (C).

❦

Remark that irrevocability implies that the agent’s output changes
finitely many times – at most once. Since decision implies that the output
will eventually take values in S , a returning computation is stabilizing in
S , and thus also asymptotic. Since these three notions are of increasing
strengths, and the topology over S is generally unambiguous, we will
simply say that an agent computes a value in an execution when it does
asymptotically. We will reserve the term asymptotic computation to
highlight the fact that the computation happens in this weaker form, but
not necessarily for stronger ones.

Adopting an outside vantage provides a simple interpretation for the
above computational notions. Suppose that a third party observer can
query agent D for its current output value, and seeks to learn the result
lD of the computation. If the computation is asymptotic, then querying
the agent at intervals should give increasingly better estimates of the
result of the computation – after a finite period where the output may
display an arbitrary behavior. For a stabilizing computation, the output
will eventually stop changing, and thus if the output remains stable for

Chapter 1. Computation 18

some time the observer may become increasingly convinced that it has
learned the true result lD . Finally, for a returning computation, the agent
itself may signal to the observer that it has reached the result lD .

Coordination

Termination We are now able to interpret, in some executions, the
behavior of an individual agent as a computation. We easily extend this
interpretation to the entire system: we will say that the system performs
a computation (asymptotic, stabilizing, returning) when each individual
agent does, and in this case the result of the computation is the vector
8 = limC x (C). Taking the view of the entire system also allows us to
express a fourth, stronger form of computation.

Definition 12 (Termination). We say that an execution is terminating
if it performs a returning computation, and if the round output of the
system satisfy

simultaneous decisions ∀D, E ∈ + ,∀C ∈ ℕ, GD (C) = ⊥ ⇔ GE (C) = ⊥.

❦

An agent engaged in a computation that is simply returning may
have to keep participating actively to help other agents finish. Thus, even
when all agents have privately irrevocably decided on a value, the system
remains active forever, because no individual agent can detect that the
computation has reached its end. A terminating execution is not subject
to this issue: an agent only decides on a value when all agents are ready
to do so. Once it decides on an output value, the agent may safely cease
to participate in the network; it need no longer send any messages or
mobilize any computational resources.

1.5 Computational tasks

Computing over semilattices

Let us now look at a concrete example of a distributed algorithm, given in
Algorithm 1, which eventually computes the infimum of the input values.
This algorithm, which here we call FloodInf, is natural to write and is
indeed commonplace: see for example the reference book [95, Section
6.1.5].

Chapter 1. Computation 19

Consider a partial order 4 over a set �. An element G ∈ � is a lower
bound of a subset (⊆ � when G 4 ~ whenever ~ ∈ (, which we denote
by G 4 (. An infimum is a maximal lower bound: I = inf (⇔ ∀G 4
(: G 4 I; the infimum of the subset (does not necessarily exist, but it is
unique when it does.

When inf { G,~ } is defined for any two elements G,~ ∈ �, we note G f
~ B inf { G,~ }7, and we say that (�, f) is a meet-semilattice (hereafter 7The operation f should be

read “meet”.“semilattice”). In this case, the operation f is associative (G f (~ f I) =
(G f ~) f I), commutative (G f ~ = ~ f I) and idempotent (G f G = G).

Semilattices provide us with an important class of computable func-
tions. Assuming that an agent may compute G f ~ for any given G and ~,
we can make agents eventually compute the infimum of initial values in
a distributed manner, using Algorithm 1

Algorithm 1: the algorithm FloodInf, code for agent D.

1 Input: `D ∈ �, a semilattice
2 Initially:
3 xD ← `D

4 In each round:
5 send mD = 〈xD〉
6 receive [<E1, . . . ,<E3] ⊲ 3 neighbors

7 xD ← GE1 f · · · f GE:
8 output xD

Proposition 1.5.1. All executions of the FloodInf algorithm are stabiliz-
ing. For an input vector -, and a dynamic communication graph G that
is eventually connected, all agents eventually compute the infimum inf -.
Once all agents are active, stabilization happens in at most diamG rounds
if the diameter is finite. Y

Proof. In any round C , we denote agent D’s round output by GD (C), and we
denote the set of its active neighbors by In∗D (C) B { E ∈ InD (C) | BE < C },
where BE denotes the last rond during which agent E is inactive. For any
round C > BD , we then have GD (C) = inf{ GE (C − 1) | E ∈ In∗D (C) }; GD (C)
is thus weakly decreasing and takes values in a finite set, and therefore
stabilizes in finite time.

Suppose then that the communication graph is eventually connected,
and let Bmax denote the last round with inactive agents. Clearly, by

Chapter 1. Computation 20

round C∗ B Bmax + max eccBmax G all agents have heard from the entire
network, and so GD (C) = inf - for all C > C∗, and in particular for all
C > diamG. �

We will consider a few important instances of semilattices.

Power sets Any set� induces a semilattice (P (�),∪), where the partial
order 4∪ is the reverse of the order given by the set inclusion:
∀G,~ ∈ P (�) : G 4∪ ~ ⇔ ~ ⊆ G .
The union semilattice can be used to compute the set -- = { `D |
D ∈ + } of the input values, and thus also any function or relation
depending on -- – that is, any function depending on the presence
or absence of input values, but not on their multiplicity.

Moreover, if a centralized authority issues an unique identifier
idD to each agent D is given an unique identifier 8D , running Algo-
rithm 1 using for input the pair (`D, idD) computes the multi-set
[`D | D ∈ +]. As a consequence, given enough connectivity and
unique identifiers, any function that is computable by a centralized
algorithm is eventually computable.

Totally ordered sets A totally ordered set (�, 6) induces a semilattice
(�, f) with G f ~ B min(G,~). In particular, the minimum of real
input values is computable.

Cartesian products. Given : semilattices (�1, f1), . . . , (�: , f:), their
cartesian product �× B �1 × · · · ×�: forms a semilattice (�×, f×)
for the operation defined by

(G1, · · · , G:) f× (~1, · · · , ~:) B (G1 f1 ~1, · · · , G: f: ~:) . (1.18)

When agents agree over : , it is possible to compute the latter example
while prioritizing the size of the messages over the computation time,
exchanging one vector entry at a time. We illustrate this approach in
Algorithm 2.

Algorithms 1 and 2 offer a clear trade-off between the bandwidth
needs and computation time for the computation of the same end result:
the former is : times as fast as the latter, and transmits : times as much
information per round – if we assume that each value ` (8)ED is represented
over O(1) bits. Intermediate designs can be used as well: sharing ℓ entries

Chapter 1. Computation 21

Algorithm 2: the algorithm FloodInf, entry-wise version, code
for agent D.

1 Input: -D = (` (1)D , · · · , ` (:)D) ∈ (�×, f×)
2 Initially:
3 XD ← -
4 8 ← 0

5 In each round:
6 send<D =

〈
G
(8)
D

〉
7 receive [<E1, . . . ,<E3] ⊲ 3 neighbors

8 G
(8)
D ← G

(8)
E1 f8 · · · f8 G

(8)
E:

9 8 ← (8 + 1) mod :

in each round, multiplies the speed of computation and bandwidth needs
by a factor of about :/ℓ .

The specific choice of how many entries to share in each round can
thus be left to the application designer. However, while this choice does
not impact the outcome of the computation under simultaneous start
signals and over a dynamic graph that is strongly connected in each
round, Algorithm 2 need not compute the correct value when we relax
those assumptions. In particular, even with simultaneous starts, the
convergence of the 8-th entry G (8) depends on the behavior of the product
G(8) ◦ G(8 + :) ◦ · · · ◦ G(8 + ? · :) as ? grows. We remark that even
for a dynamic graph with a finite radius, this product need not ever
tend to the complete graph over + , and G (8)D (C) need not ever tend to
inf x (8) . Substituting Algorithm 2 for Algorithm 1 is only permissible
under sufficient guarantees of connectivity of the network.

Computing relations

We will say that an execution of a distributed algorithm achieves asymp-
totic consensus when all agents asymptotically compute the same value.

Let M,S be sets, and ' be a relation over M ⊕ × S . We say that a
distributed algorithm computes the relation ' over a network class if
a) all of its executions over the class achieve asymptotic consensus b) over
an input vector -, the consensus value l satisfies8- ' l ; and this for 8We slightly abuse notation

here, as we denote by - the
multi-set of the input values.

arbitrary input values taken in the set M . The first example of relation of
interest to us is given by - ' l ⇔ l ∈ range -.

Chapter 1. Computation 22

Definition 13 (Consensus). An execution with input vector - solves
consensus if it achieves asymptotic consensus over some value l ∈
range -; an algorithm solves consensus over a network class C and a
domain M if it does in all of its executions over C with input values taken
in M . ❦

When the relation being considered is functional, we speak of com-
puting the function 5 : M ⊕ → S when l = 5 (-) in all executions. The
main problem studied in this thesis is one of functional computation –
namely, that of computing the average ` = 1

|+ |
∑

D∈+ `D .

Definition 14 (Average consensus). An execution with input vector -
solves average consensus if it achieves asymptotic consensus over the
average ` of the input values. An algorithm solves average consensus
over a network class C and a domain M if it does in all of its executions
over C with input values taken in M . ❦

What the FloodInf algorithm and Proposition 1.5.1 show is that functions
defined by means of infima over the input values are computable when-
ever the communication graph is eventually connected. Unfortunately,
these are about the only functions that are computable if we only make
assumptions about the connectivity. Indeed, building upon the theory of
computability in anonymous networks, Hendrickx and Tsitsiklis show
in [57, Theorem 2] the following result.

Proposition1.5.2 (Hendrickx etTsitsiklis). Let 5 : M ⊕ → S be a fonction,
computed by a uniform distributed deterministic local algorithm over the
class of strongly connected fixed communication graphs. Then, there
exists a function � : P (M) → S such that 5 (x) = � ({ G | G ∈ x }) – that is,
the function 5 is insensitive to the multiplicities of the input values. Y

As the main problem studied in this monograph, average consensus,
is one of computing a function that is sensitive to multiplicities – the
average – Proposition 1.5.2 clearly delineates boundaries to the kinds of
networks where we can hope to do so in our local model. Each of the
following chapter offers a type of answer to Hendrickx and Tsitsiklis’s
impossibility theorem: Chapter 2 shows that asymptotic average con-
sensus can be obtained in any sufficiently connected dynamic networks
where all communication links are bidirectional; Chapter 3 shows that
stabilizing and terminating approximate average consensus – where the
output is a close approximation of the average – can be done efficiently
over arbitrary strongly connected networks.

Symmetric communications:
a little learning goes a longway

The results of this chapter originally appeared in pre-
publication form in [Bernadette Charron-Bost and Patrick
Lambein-Monette. Average Consensus: A Little Learning
Goes A Long Way. Oct. 12, 2020. arXiv: 2010.05675 [cs]],
with an extended abstract submitted at stacs 2021.

2.1 Introduction

Here, we consider systems with bidirectional interactions: I interact with
you means that you interact with me, and vice versa. Many interactions
in natural settings are of this kind: conversations and handshakes,1, be- 1Although at the time of writ-

ing the practice is quickly los-
ing popularity.

ing neighbors or Facebook friends,2 working towards a common goal

2But not Twitter followers: so-
cial networks are not neces-
sarily bidirectional.

or being opponents in a game. Many digital systems suppose reciprocal
interactions as well, in some idealized form at least: such as radio com-
munications modeled with geometric graphs or peer-to-peer networks –
but notice that these interactions are truly bidirectional only as long as
no one-sided faults ever appear.

The family of affine updates that we study in this chapter is historically
motivated by both kinds of interactions. Its genealogy can be traced back
at least to DeGroot [46], who envisioned interactions over a complete
graph to model opinion dynamics within a group trying, literally, to reach
a consensus about a topic. On the other hand, Tsitsiklis [97] is considering
similar kinds of updates for the distributed control of networked digital
systems, subject to various failure modes such as transmission delays.
Modern interest in the matter, however, was essentially kick-started by
the problem of flocking – that of describing the coordinate behavior of
flocks of birds after influential papers by Reynolds [91] and Vicsek et al.
[98] that led to a sustained interest that has persisted since then.

We seek in particular to look at such update schemes with a compu-
tational angle: what schemes can be implemented by deterministic and
local algorithms over dynamic networks? This is a subtle matter: the
Metropolis update, for example, although introduced in [100] to be used
over dynamic networks, precisely because it relies only on information
present within bounded distance of each agent, involves in fact infor-
mation that is too far for distributed agents to collect locally when the
network is subject to frequent or impredictable change.

23

https://arxiv.org/abs/2010.05675
https://stacs2021.saarland-informatics-campus.de/

Chapter 2. Symmetric communications 24

Our contribution in this chapter will be to provide a pair of algo-
rithms, the MaxWeight and MaxMetropolis algorithms, implementing
eponymous affine update rules over bidirectional dynamic networks. The
MaxWeight rule is a convex update rule – the convex hull of the agents’
outputs keeps shrinking – for consensus: the common limit is generally
not the average `; in contrast, the MaxMetropolis rule does compute
the average, but it not convex, which may temporarily set back the con-
vergence of the system.

Chapter notation

If (is any non-empty finite set of real numbers, we denote its diameter
by diam (B max (−min (; no confusion can arise with the diameter of
a graph or a dynamic graph.

In this chapter, we will be essentially looking at linear updates as a
mean to achieve asymptotic agreement. As a consequence, the behavior of
the system will be better discussed in terms of vectors, matrices, and other
tools taken from the linear algebraist’s belt. For convenience, instead
of supposing the agents taken in an arbitrary finite set + , we identify
them with the integers 1, . . . , =,3 so that we write G8 (C) to denote agent 8’s 3We do not suppose the agents

to be aware of those labels;
they exist only for analysis
and discussion.

round C output.
We will consistently denote matrices and vectors in bold italic style,

using capital letters for matrices A,B, and lowercase letters for vectors
u, v, with their individual entries in regular weight: �8: , �: 9 , D8 , E9 . If
z (0), z (1), z (2), . . . is an infinite sequence of vectors ofℝ= , we will denote
the entire sequence with the doubly struck letter z. To any = ×= complex
matrix A is associated a unique graph GA = ([=], �A), whose edges are

given by 8
GA−−→ 9 ⇔ �98 ≠ 0.

Given a vector v ∈ ℝ= , we write diam v to mean the diameter of
the set { E1, · · · , E= } of its entries. The diameter constitutes a seminorm
over ℝ= ; in particular, we have diam v > 0. We call consensus vectors
those of null diameter; they form exactly the linear span of the constant
vector 1 B (1, 1, · · · , 1)Ç. The identity matrix is the diagonal matrix
I B diag(1).

A matrix or a vector with non-negative (resp. positive) entries is
itself called non-negative (resp. positive). A non-negative vector is
called stochastic if its entries sum to 1. A non-negative matrix A is
stochastic if each of its rows sums to 1 – equivalently, if A1 = 1. We
denote by AÇ the transpose of a matrix A, and by vÇ that of a vector v.

Chapter 2. Symmetric communications 25

When both A and AÇ are stochastic, we say that the matrix A is doubly
stochastic. It is in particular the case when A is symmetric – that is,
when AÇ = A.4 4Note that symmetry of a ma-

trix implies type-symmetry:
the associated graph GA is
bidirectional. However, type-
symmetry is strictly weaker
than symmetry.

We denote the mean value of a vector v ∈ ℝ= by 〈v〉 B 1
=

∑
8 E8 .

Doubly stochastic matrices play a central role in the study of average
consensus, as multiplying any vector v by a doubly stochastic matrix A
preserves its average – that is, 〈Av〉 = 〈v〉.

Recall that the characteristic polynomial of a =×= complex matrix
A is given by jA(-) B det(I- −A), and that its complex roots are the
eigenvalues of the matrix A. The set of all eigenvalues is denoted by
SpA. We can always arrange the = eigenvalues _1, . . . , _= in weakly
decreasing order of magnitude: |_1 | > · · · > |_= |. Under this convention,
the quantity dA B |_1 | is called the spectral radius of the matrix A, and
the quantity WA B |_1 | − |_2 | is called its spectral gap. An eigenvalue is
simple when it is a simple root of the characteristic polynomial; if _1 is
a simple eigenvalue and that moreover the spectral gap is positive, we
say that _1 is dominant. By definition, a stochastic matrix A has 1 for
eigenvalue; as is commonly known, it is also a largest eigenvalue – that
is, dA = 1.

TheMaxWeight andMaxMetropolis achieve asymptotic consensus
in all bidirectional networks that are eventually connected; to discuss
their convergence time – defined in the next section – we will restrict our
considerations to the classG of dynamic graphs that are bidirectional and
strongly connected in every round; recall that its restriction to a system
of = agents is denoted by G |= .

2.2 Affine update rules

An affine update rule is a condition over the output stream of an algo-
rithm, where the individual round outputs G8 (C) follow affine recurrence
relations of the general form

G8 (C) = G8 (C − 1) +
∑

9 ∈In8 (C), 9≠8
08 9 (C)G9 (C − 1) , (2.1)

where the time-varying weights 08 9 (C) may depend on the parameters
of the execution: the dynamic graph G and the vector of input values
-. By convention, we let 088 (C) = 1 − ∑

9≠8 08 9 , so that eq. (2.1) can be
alternatively written G8 (C) =

∑
9 ∈In8 (C) 08 9 (C)G9 (C − 1); We say that the

algorithm implements the rule eq. (2.1) in its execution.

Chapter 2. Symmetric communications 26

We call such a rule affine, because by design an agent’s local weights
08 9 (C) always form an affine combination – that is, we always have∑

9 ∈In8 (C) 08 9 (C) = 1. The update rule is convex if moreover all weights are
non-negative. By and large, this subset of affine update rules has received
the most attention. In particular, the convergence of convex update rules
to asymptotic consensus is well understood, and is obtained whenever the
dynamic communication graph is sufficiently connected and the weights
are non-vanishing.

Proposition 2.2.1. Let x be a vector sequence satisfying the recurrence
relation eq. (2.1) for a dynamic graph G and weights 08 9 (C) > U > 0 –
that is, the weights are positive and uniformly bounded away from 0.
If the dynamic graph G either a) has a finite radius, or b) is eventually
rooted and bidirectional in each round, then the sequence x converges to
a consensus vector. Y

We speak of uniform convexity when such a parameter U > 0 exists.
The result expressed in Proposition 2.2.1 follows a long line of works that
can be traced back at least to DeGroot [46], in the case of fixed weights 08 9
and a complete graph, and to Chatterjee [38] and Chatterjee and Seneta
[39] for time-varying weights over a partial graph. Later important works
on the matter notably include Tsitsiklis [97] and Tsitsiklis et al. [96],
then Jadbabaie et al. [60] and Cao et al. [24]. Condition b) is essentially
due to Moreau [72], but we note a similar result with a simpler proof in
Hendrickx and Blondel [55].

Traditionally, the temporal complexity of a system obeying eq. (2.1) is
measured by means of the convergence time, first defined by Olshevsky
and Tsitsiklis [81]. For a single sequence z and error A > 0, we let
T(A ; z) B inf{ C ∈ ℕ | ∀g > C : diam z (g) 6 A }. When considering
an update rule, the temporal complexity will evidently depend on the
order of the system being considered, and so we look at the worst-case
relative convergence time, defined over a class C for parameters A and
= by

T(A ;=) B sup
G∈C|=, -∈ℝ=

T(A · diam -;x(G, -)) , (2.2)

where x(G, -) denotes the sequence of estimates obtained by applying
the update rule over the pair G, -, since for a deterministic algorithm it is
uniquely defined.

What kind of convergence times can we expect when considering
the general family of convex update rules? As a general matter, a lower

Chapter 2. Symmetric communications 27

bound of T(A ;=) = Ω(=2) is known to apply [82] over the class of fixed
line graphs. Under the assumptions of Proposition 2.2.1, it is clear that
no general bound can be given for the class of networks that are merely
eventually connected, as it contains communication graphs that remain
disconnected for arbitrarily long periods. For dynamic graphs with a
finite radius, the best general bound involving no other assumption, to
our knowledge, is that given by Charron-Bost et al. [31]5 using the tool 5Non-split graphs were

previously considered by
Cao, Morse, and Anderson
[24], where they are called
neighbor-shared rather than
non-split

of non-split graphs: a graph � is non-split when any two of its vertices
D, E ∈ V(�) share an in-neighbor – that is, In8 ∩ In9 ≠ ∅ for all pairs
8, 9 ∈ V(�). Using the fact that the composition of |+ | − 1 rooted graphs
with same vertex set + is non-split, they provide the following result.

Proposition 2.2.2. Let a dynamic graph G be J-delayed non-split, for
some delay J ∈ ℕ>0, and let x be a vector sequence satifsying eq. (2.1)
over G. If the update is uniformly convex for some parameter U > 0, then
for any error A > 0 we have:

T(A ;x) 6 JU−J log
1
A
+ J − 1 . (2.3)

Y

Remark that the dynamic graphs that are delayed-non-split are in fact
those with a finite radius, and that we have J 6 radG. For a dynamic
graph with = vertices that is �-delayed rooted and a parameter U > 1

:=

for positive constants � and : , we then have the bound

T(A ;x) = O
(
== log 1

A

)
, (2.4)

showing that the best general bound available is super-exponential in
the number of agents. Moreover, as seen next, there are known exam-
ples involving the EqualNeighbor update rule – over a fixed strongly
connected graph, and over a dynamic graph that is bidirectional and
strongly connected at each step – which display a convergence time in
2Ω (=) . Polynomial bounds thus cannot be obtained from connectivity
arguments alone.

The relationship between the radius and the delay to non-splitness
is more involved than the immediate bound J 6 radG. It was shown by
Charron-Bost and Schiper [37] that the radius of a non-split graph with =
vertices is at most O(log=), and more recently by Függer et al. [49] that
it is bounded by O(log log=).

Chapter 2. Symmetric communications 28

To summarize, convex update rules are advantageous when it comes
to their convergence, but their convergence time is poor in general. As
will be made clear by the case of the EqualNeighbor rule, the directivity
of influence is hugely responsible, as the rule moves from polynomial
convergence time over fixed bidirectional graphs down to an exponen-
tial one over directed ones. In this chapter, we thus focus on networks
with bidirectional communications in the hope of retaining polynomial
convergence times. This is not sufficient by itself: as will be seen in the
second example given by the EqualNeighbor rule, dynamic communi-
cations re-introduce directionality in the patterns of influence, even if
all links are bidirectional in every round. Our contribution is to provide
distributed local algorithms producing update rules that retain a polyno-
mial convergence time under arbitrary fluctuations in the communication
graphs.

2.3 Euclidian geometries for update rules

Here, we introduce the elements that will be needed in the main proofs of
our theorems Theorems 2.5.1 and 2.6.1; their articulation towards convex
update rules mostly originates in [29], to which we refer the reader for
their detailed treatment.

Perron-Frobenius theory of ergodic matrices

Ergodic matrices are at the center of the study of the convergence of
convex update rules.

Definition 15 (Ergodic matrices). A stochastic matrix A is said to be
ergodic when the geometric sequence A: is convergent and there exists
a positive stochastic vector 0 such that

lim
:→∞

A: = 10 Ç . (2.5)

The vector 0 involved in eq. (2.5) is then unique, and called the Perron
vector of the matrix A, which we denote by 0 (A). ❦

The spectral theory of non-negative matrices is usually referred to
as Perron-Frobenius theory, after two important early investigators; see
for example [93] for a detailed reference. Let us recall some of its central
points that will be essential to our upcoming argument: a stochastic

https://en.wikipedia.org/wiki/Oskar_Perron
https://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius

Chapter 2. Symmetric communications 29

matrix A is ergodic if and only if A: > 0 for some power : , which is in
particular the case when its associated graph GA is reflexive and strongly
connected. An ergodic matrix has 1 for dominant eigenvalue – that is,
1 is a simple root of its characteristic polynomial jA(-), and the rest of
its eigenvalues are contained in the open unit disk.

Here, we will principally consider ergodic matrices that arise from
update rules: for a given round C , the matrix A, defined from eq. (2.1)
by letting �8 9 = 08 9 (C) if 8 and 9 are neighbors and �8 9 = 0 otherwise,
is ergodic whenever the affine weights 08 9 (C) are all positive and the
communication graph in round C is reflexive and strongly connected. The
effect of the update x (C − 1) ↦→ x (C) induced by an ergodic matrix is best
understood under a geometric lens, which will be foundational to the
complexity proof of the MaxWeight algorithm in Theorem 2.5.1.

Weighted geometries

For any positive stochastic vector 0 ∈ ℝ= , we define the 0-weighted
Euclidian geometry with the inner product 〈 − , − 〉0 and the norm
‖ − ‖0 :

〈u, v〉0 B
∑
8

c8D8E8 , ‖v‖0 B
√
〈v, v〉0 . (2.6)

Here, we will consider weighted geometries defined by the Perron
vectors of ergodic matrices: the action of an ergodic update matrix A over
a vector of estimates x (C) induces a reduction in the variance defined by
the geometry weighted by 0 = 0 (A):

V0 (v) B ‖v − 〈v, 1〉01‖20 = ‖v‖20 − 〈v, 1〉20 . (2.7)

The weighted variances have in common with the diameter diam
that they are semi-norms over the space ℝ= whose zeroes are exactly
the consensus vectors – that is, they both represent ways of measuring
the “distance to consensus” of the system. As the convergence time is
expressed in terms of the diameter, but the geometric approach we take
here is based on weighted variances, we will rely on the following result
given in [29] to connect the two.

Lemma 2.3.1. Let 0 ∈ ℝ= be a positive stochastic vector. For any vector
v ∈ ℝ= ,

2V0 (v) < (diam v)2 < 4
min8 c8

V0 (v) . (2.8)

l

Chapter 2. Symmetric communications 30

Reversibility Given any matrix A ∈ ℝ=×= , we easily verify that its
adjoint for the 0-weighted inner product 〈 − , − 〉0 is given by diag−1 0 ·
AÇ diag0 , where diag−1 0 and diag0 denote the diagonal matrices with
respectively c−18 and c8 as their 8-th diagonal entry. We will say that a
matrix is reversible if it is self-adjoint for any weighted inner product.
By definition, a reversible matrix is subject to the spectral theorem: it is
diagonalizable in an orthonormal (for the right weighted inner product)
basis, and its eigenvalues are real numbers. For a stochastic reversible
matrix A, we have in particular SpA ⊂ [−1, 1].

Let us denote the 0-weighted adjoint of a matrix A by A†0 . Letting
D B diag0 , we then have, for any 0-self-adjoint matrix A

AÇ0 = (D0 ·AD−10)0
= D ·A1

= 0 ,

from which we deduce that if the matrix A is ergodic, then necessarily we
have 0 = 0 (A). As a consequence, the natural geometry with which to
study an ergodic matrix A is that given by the inner product 〈− , −〉0 (A) :
if we denote its 0 (A)-adjoint by A†, then the matrix A†A is reversible
and ergodic, with the same Perron vector as A. The min-max variational
characterization of the eigenvalues of the matrix A†A known as the
Rayleigh-Ritz theorem then gives us:

sup
_∈SpA†A

_≠1

_ = sup
v∈ℝ=\{ 0 }
〈v,1〉0 (A)=0

〈A†Av, v〉0 (A)
‖v‖2

0 (A)
, (2.9)

from which we deduce the following bound over the reduction in variance
due to the multiplication by an ergodic matrix.

Lemma 2.3.2. For an ergodic matrix A,

∀v : V0 (A) (Av) 6 (1 − WA†A) V0 (A) (v) . (2.10)

If the matrix A is furthermore reversible, then we have in fact

∀v : V0 (A) (Av) 6 (1 − WA)2 V0 (A) (v) . (2.11)

l

Chapter 2. Symmetric communications 31

Proof. We let 0 B 0 (A). Fix a vector v ≠ 0, and let us show that
V0Av 6 (1 − WA†A) V0v. For any U ∈ ℝ, we have V0v + U1 = V0v
and V0A(v + U1) = V0Av + U1. Without loss of generality, we can
then assume that 〈v, 1〉0 = 0, and it suffices to show that ‖Av‖20 6
(1 − WA†A) ‖v‖20 .

We have
‖Av‖20 = 〈Av,Av〉0

= 〈A†Av, v〉0
6 sup_∈SpA†A

_≠1

_ · ‖v‖20

= (1 − WA†A)‖v‖20 ,

eq. (2.9) and 〈v, 1〉0 = 0

the latter by definition of the spectral gap, which proves the general case.
If the matrix A is moreover reversible, then we have A†A = A2, and so
1 − WA†A = (1 − WA)2, which gives eq. (2.11). �

An additional feature of interest to us is that reversible ergodic ma-
trices admit reasonable bounds over their spectral gap. We borrow the
following spectral bound from [29, Corollary 7], which generalizes a
previous bound given by Nedić et al. [78, Lemma 9].

Lemma 2.3.3. For a reversible ergodic matrix A ∈ ℝ=×= ,

WA >
U (A)
= − 1 , (2.12)

where U (A) B min { c8 (A)�8 9 | 8, 9 ∈ [=] } \ { 0 }. l

Metropolis and others In the theory of finite Markov chains, a stochas-
tic matrix A has an interpretation as a transition matrix of a Markov chain
- (C) for which ℙ[- (C + 1) = 9 | - (C) = 8] = �8 9 . If the matrix A is re-
versible and ergodic, then the Markov chain that it describes is reversible
and ergodic as well for the traditional meaning given to those terms in
the theory of Markov chain; the Perron vector 0 = 0 (A) then gives the
unique stationary distribution of the corresponding Markov chain.

In their seminal work [70], Metropolis et al. introduced the method of
Monte Carlo sampling for the fast approximation of parameters that are
hard to compute exactly. Their algorithm, later generalized by Hastings
[53], consists at the core of turning a reversible ergodic matrix A with

Chapter 2. Symmetric communications 32

arbitrary Perron vector 0 into another matrix A′ with a chosen Perron
vector 0 ′ by:

�′8 9 =

{
min(�8 9 ,

c ′9
c ′
8
�98) 9 ≠ 8

1 −∑:≠8 �
′
8:

9 = 8 ,
(2.13)

in a method now known as the Metropolis-Hastings algorithm.6 6Or, as perhaps unsur-
prisingly nobody calls
it, the Metropolis-
Rosenbluth-Rosenbluth-
Teller-Teller-Hastings
algorithm.

Here, we shall be interestedmostly in the case where 0 ′ is the constant
vector (1

=
, · · · , 1

=
)Ç, in which case the resulting matrix A′ is symmetric.

2.4 The EqualNeighbor and Metropolis update rules

EqualNeighbor

The prototypical example of an update rule is the EqualNeighbor rule,
where the next estimate of an agent is the unweighted average of those
of its incoming neighbors:

G8 (C) =
1

38 (C)
∑

9 ∈In8 (C)
G9 (C − 1) . (2.14)

This rule directly translates into an implementing local algorithm: an
agent broadcasts its latest estimate in every round, and picks for new
estimate the average of its incoming values. Since an agent’s degree is
at most =, the EqualNeighbor rule is uniformly convex with parameter
U = 1/=, and thus solves consensus over the class G.

However, the convergence time is poor over the class G, where [84,
Proposition 12] gives a lower bound of T(A ;=) > 2Ω (=) log 1/A . The conver-
gence time is improved when the network displays additional structure:
over the sub-class ofG of fixed graphs, Olshevsky and Tsitsiklis [83, Corol-
lary 5.2] use a result from Landau and Odlyzko to show a tight bound in
O(=3 log=/A). This bound extends to the sub-class G of dynamic graphs
for which each vertex has a fixed degree [40, Theorem 1.6].

Local update rules such as eq. (2.1) admit an equivalent matrix form.
For the EqualNeighbor rule, as an example, eq. (2.14) is equivalent to the
global rule x (C) = W (G(C))x (C − 1), with the EqualNeighbor matrix
W (�) given for any graph � by

[W (�)]8 9 =
{
1/38 (�) 9 ∈ In8 (�)
0 9 ∉ In8 (�) .

(2.15)

We note that this matrix is stochastic for any graph � , and has � for
associated graph.

Chapter 2. Symmetric communications 33

Metropolis

Since the Metropolis-* algorithm is not an “algorithm” in the sense we
use in this thesis, and since Metropolis and Hastings are not wanting
in fame, we shall call the Metropolis-Hastings symmetrization the
transformation A ↦→ M(A) given by

[M(A)]8 9 =
{
min(�8 9 , �98) 9 ≠ 8

1 −∑:≠8 min(�8: , �:8) 9 = 8 .
(2.16)

By construction, the matrix M(A) is symmetric and leaves consensus
vectors invariant. Outside the main diagonal, we have [M(A)]8 9 6 �8 9 ,
and thus on the main diagonal we have [M(A)]88 > �88 ; the matrixM(A)
is therefore doubly stochastic whenever the matrix A is stochastic.

Xiao et al. [100] propose to approach the average consensus problem
with the Metropolis update rule:

G8 (C) = G8 (C − 1) +
∑

9 ∈In 8 (C)

G9 (C − 1) − G8 (C − 1)
max(38 (C − 1), 3 9 (C − 1))

; (2.17)

when viewed at the scale of the system, this rule corresponds to sym-
metrizing the EqualNeighbor rule with the Metropolis-Hastings sym-
metrization round-wise, hence its name. Proposition 2.2.1 ensures asymp-
totic consensus of the Metropolis rule over the entire class G as it did
for the EqualNeighbor rule, and since the EqualNeighbor matrices
are stochastic, the Metropolis matrices are doubly stochastic, and the
Metropolis rule results in fact in average consensus, with a convergence
time in O(=2 log=/A) over the class G.

Unfortunately, no local algorithm is able to implement the Metropo-
lis rule over the class G: the rule is local only in the weak sense that an
agent’s next estimate G8 (C) depends on information present within dis-
tance 2 of agent 8 in round C , which is not local enough when the network
is subject to change.

Indeed, since agent 9 only knows its round C degree 3 9 (C) at the end
of round C , it has to wait until round C + 1 to share this information
with its neighbors. Any distributed implementation of this rule would
require the communication links to evolve at a slow and regular pace.
As an example, we may assume that the links only change at rounds C
for which C ≡ A mod : – e.g., at even rounds. Such conditions are all the
more limitative in that they additionally require all agents to be loosely

Chapter 2. Symmetric communications 34

synchronized, as they have to agree on : and on the current round number
– at least modulo : .

The situation is even worse when the network is subject to unpre-
dictable changes, as we need to warn all agents, ahead of time, about any
upcoming topology change. In effect, this amounts to having a global
synchronizing signal precede every change in the communication topol-
ogy. For a topology changing in round C0, this differs little from starting
an entirely new execution with (G1(C0 − 1), · · · , G= (C0 − 1)) for new input.

To paraphrase, provided the dynamic communication graph is suffi-
ciently stable, one “can” implement the Metropolis rule over dynamic
networks, but the execution is fully distributed only as long as no change
occurs.

2.5 Degree tracking for stabilizingweights

Consider the update rule given by

G8 (C) = G8 (C − 1) +
1
@8

∑
9 ∈N8 (C)

(G9 (C − 1) − G8 (C − 1)) , (2.18)

which we call the FixedWeight rule for the parameters @1, · · · , @= > 0.
When 38 (C) 6 @8 , it acts as a sort of sluggish version of the EqualNeigh-
bor rule, where agent 8 gives more importance to its own estimate G8 (C−1)
than to those of its neighbors. Over the sub-class C ⊂ G |= of dynamic
graphs for which 38 (C) 6 @8 holds for all vertices at all times, the Fixed-
Weight rule with parameters @1, · · · , @= is shown in [40, Theorem 1.6] to
solve consensus with a convergence time in TC (A ;=) = O(∑8 @8 ·= log=/A).
In particular, using @1 = @2 = · · · = @= = = yields a bound inO(=3 log=/A),
comparable to the EqualNeighbor rule over static networks.

Unfortunately, the uniform programming of the agents in our model
precludes the distributed implementation of this rule, whichwould require
to individually communicate its parameter @8 to each agent 8 . Moreover,
even if we have the capacity to do so, or if we batch program all agents
with the same parameter @, our ability to pick good values for these
parameters is limited by what is known, ahead of time, about the structure
of the communication graph: parameters that are too small risk breaking
the degree condition 38 (C) 6 @8 and cause the system to diverge, while
parameters that are too large make convergence unacceptably slow if the
network has a small degree.

Chapter 2. Symmetric communications 35

Instead of relying on exogenous parameters, incompatible with a
distributed approach, we propose making the agent learn by them-
selves what values of @1, · · · , @= work for the current execution. We
call MaxWeight the rule obtained by replacing the fixed parameter @8
with 3 ′8 (C) B max {38 (1), · · · , 38 (C) } at each step of eq. (2.18).

As each sequence 3 ′8 (C) stabilizes over its limit 3 ′8 B maxC 38 (C), the
MaxWeight rule eventually behaves like the FixedWeight rule with
parameters 3 ′1, · · · , 3 ′= . However, the MaxWeight rule can be imple-
mented over the class G with no additional assumption, and we can
show the following about the resulting MaxWeight algorithm, given in
Algorithm 3.

Algorithm 3: The MaxWeight algorithm, code for agent 8

1 Input: `8 ∈ ℝ
2 Initially:
3 x8 ← `8
4 q8 ← 2

5 In each round:
6 send<8 = 〈x8〉
7 receive<91, . . . ,<93 ⊲ 3 neighbors

8 q8 ← max(q8 , 3)

9 x8 ← x8 + 1
q8

3∑
:=1
(x9: − x8)

10 output x8

Theorem 2.5.1. The MaxWeight algorithm solves consensus over
the class G of dynamic graphs that are reflexive, bidirectional, and
strongly connected in each round, with a convergence time of T(A ;=) =
O(=4 log=/A) for a system of = agents. L

As the update matrices given by the MaxWeight update rule will
generally not all share the same Perron vector, we will use the following
lemma to connect the various weighted geometries along the execution.

Lemma 2.5.2. Let 0 and 0 ′ be two positive stochastic vectors of ℝ= .
For any vector v ∈ ℝ= ,

V0 ′ (v) 6 max
8

c ′8
c8
V0 (v) . (2.19)

l

Chapter 2. Symmetric communications 36

Proof. For any vector u we have by definition

‖u‖20 ′ 6 max
8

c ′8
c8
‖u‖20 , (2.20)

and in particular for the vector u B v − 〈v, 1〉01. By the definition of
the variance, we then have V0 (v) = ‖u‖20 and V0 ′ (v) = V0 ′ (u) 6 ‖u‖20 ′ ,
since adding a consensus vector does not change the variance, from which
the claim follows. �

Proof of Theorem 2.5.1. We fix a dynamic graph G ∈ G of order =, and we
let

3 ′8 (C) B max {38 (g) | 0 6 g 6 C } , 3 ′8 B max{38 (C) | C ∈ ℕ } ,

� ′(C) B
=∑
8=1

3 ′8 (C) , � ′ B
=∑
8=1

3 ′8 ,

Tℓ B { C ∈ ℕ>0 | ∃8 ∈ [=] : 3 ′8 (C) ≠ 3 ′8 (C − 1) } ,
(2.21)

using the convention 38 (0) = 2. The set Tℓ has cardinal at most |Tℓ | 6∑
8∈[=] 3

′
8 , and we let CB B max Tℓ so that 3 ′8 (C) = 3 ′8 (C − 1) for all C > CB .

We then pick arbitrary values `1, · · · , `= ∈ ℝ and consider the se-
quence of estimates x produced by the MaxWeight update rule over
these input values and the dynamic graph G:

G8 (0) = `8

G8 (C) = G8 (C − 1) +
1

3 ′
8
(C)

∑
9 ∈N8 (C)

(G9 (C − 1) − G8 (C − 1)) . (2.22)

Since for any round C ∈ ℕ>0 we have 2 6 3 ′8 (C) 6 =, the sequence x

satisfies the assumptions of Proposition 2.2.1 with uniform convexity
parameter U = 1/=, and so it achieves asymptotic consensus within the
convex hull of the set { `1, · · · , `= }. This shows that theMaxWeight rule,
and thereby its implementing algorithm, solve the consensus problem
over the class G.

It remains to control the convergence time. If we could bound the
round CB – say, by CB 6 5 (=) for some function 5 – then we could simply
reuse the result from [40] about the FixedWeight update and deduce
T(A ;=) = O(5 (=) + =3 log=/A). However, there clearly are some dynamic
graphs in the classG |= for which CB is arbitrary large, and we need to con-
trol the contraction of the estimates over the time window C ∈ [1, · · · , CB].

Chapter 2. Symmetric communications 37

We fix a disagreement threshold A > 0, and we define the set TA B
{ C ∈ ℕ | diam x (C) 6 A · diam - }. The convexity of the sequence x and
the fact that it achieves asymptotic consensus imply that the set TA is an
unbounded interval of the integers, and we let CA B inf TA denote the
earliest round at which the estimates approximately agree with a relative
error of A .

Let us denote by A(C) the round C MaxWeight update matrix:

[A(C)]8 9 =


1

3′
8
(C) 8 ≠ 9 ∈ N8 (C)

1 − 38 (C)−1
3′
8
(C) 9 = 8

0 9 ∉ N8 (C) .
(2.23)

Its associated graph is �A(C) = G(C), and by our graph assumptions,
this matrix is ergodic, with its Perron vector 0 (C) B 0 (A(C)) given by
0 (C) = (3 ′1(C)/� ′(C), · · · , 3 ′= (C)/� ′(C))Ç. We can verify that the matrix
A(C) is self-adjoint for the inner product 〈 − , − 〉0 (C) . As �8 9 (C) > 1

3′
8
(C)

holds for all positive entries of the matrix A(C), we have by Lemma 2.3.2
W B infC ∈ℕ>0 WA(C) > 1/(= − 1)� ′.

Let us then define the potential L(C) B V0 (C) (x (C)) for positive C . For
a round C ≠ 1 outside of Tℓ , the matrices A(C) and A(C − 1) share their
Perron vector, and with Lemma 2.6.3 we have

L(C) 6 (1 − W)2L(C − 1) . (2.24)

Equation (2.24) provides some control over the dispersion of the es-
timates: for any temporal interval [C, C ′] which does not intersect Tℓ ,
applying eq. (2.24) round-wise yields L(C ′) 6 (1 − W)2(C ′−C)L(C), which
implies L(C) →C 0 since Tℓ is finite. However, we cannot control the
potential L(C) across the entire execution with the help of eq. (2.24) alone.
To piece the variations of the potential over Tℓ , we use Lemma 2.5.2:

∀C > 2 : L(C) 6 max
8

c8 (C)
c8 (C − 1)

(1 − W)2L(C − 1) . (2.25)

The rounds for which 0 (C) ≠ 0 (C − 1) are exactly those of Tℓ , so
eq. (2.25) is equivalent to eq. (2.24) when C ∉ Tℓ . Applying eq. (2.25) over
Tℓ will induce a delay factor Vℓ B

∏
C ∈Tℓ max8

c8 (C)
c8 (C−1) , which we need to

control. Given C ∈ Tℓ we have

Chapter 2. Symmetric communications 38

max
8

c8 (C)
c8 (C − 1)

=
3 ′(C − 1)
3 ′(C) max

8

3 ′8 (C)
3 ′
8
(C − 1)

6
3 ′(C − 1)
3 ′(C)

∏
8

3 ′8 (C)
3 ′
8
(C − 1) ,

and with 3 ′8 (0) = 2:

Vℓ 6
2=
3 ′

∏
8

3 ′8
2
. (2.26)

Finally, Lemmas 2.3.1 and 2.3.2 give us L(1) 6 1
2 ((1 − W) diam -)2.

Together with eq. (2.25), we have for any C > 2:

L(C) 6 1
2
∏

g6C max8
c8 (g)

c8 (g−1) ·
(
(1 − W)C diam -

) 2
6

Vℓ
2

(
(1 − W)C diam -

) 2
diam x (C) 6

√
2Vℓ

min8 c8 (C) (1 − W)
C · diam -

6

√
=
∏

8
3′
8

2 (1 − W)
C diam - .

by definition of Vℓ

Lemma 2.6.2

eq. (2.26), c8 (C) > 2/=

We now let V B =
∏

8
3′8
2 . By definition of CA , we have√
V (1 − W)CA 6 A ;

equivalently,

CA >
log(1 − W)
log(A/

√
V)

,

and since log(1 − G) 6 −G for every G ∈ (0, 1),

CA 6 W
−1 log(

√
V/A) . (2.27)

Inserting in this expression our bound over W ,

CA 6
(= − 1)� ′

2

(∑
8

log3 ′8 + log= − 2 log A − = log 2
)
, (2.28)

and with 3 ′8 6 = we have both � ′ 6 =2 and
∑

8 log3 ′8 6 = log=, which
yields indeed T(A ;=) = O(=4 log=/A). �

Chapter 2. Symmetric communications 39

2.6 An affine algorithm for average consensus

Girded with our stabilizing strategy, we now return to the problem of
average consensus. Recall that we obtained the Metropolis rule by
applying the Metropolis-Hastings symmetrization in each round to the
EqualNeighbor update matrix. Any consensus update rule can be given
the same treatment; in particular, the symmetrized version of the Fixed-
Weight rule – which gives the weight 08 9 (C) = 1

max(@8 ,@9) to proper round C
neighbors 8 and 9 – achieves asymptotic average consensus whenever the
FixedWeight rule achieves asymptotic consensus.

This symmetrized FixedWeight rule is subject to the same limitations
as the FixedWeight rule, which we now set out to circumvent as we did
in the previous section. However, in doing so we must also avoid the
trappings of the Metropolis rule, where issues of information locality
prevent the distributed implementation. In particular, we observe that
the rule obtained by symmetrizing the MaxWeight rule is no easier to
implement than the Metropolis rule itself, as both rules use the same
information.

Our solution is to define the update rule in terms of an agent’s largest
degree up to the previous round, resulting in the MaxMetropolis update

G8 (C) = G8 (C − 1) +
∑

9 ∈N8 (C)

G9 (C − 1) − G8 (C − 1)
max(3 ′

8
(C − 1), 3 ′

9
(C − 1)) , (2.29)

whose implementation by a local algorithm is given in Algorithm 4.
We immediately observe the following about the MaxMetropolis

rule. First, it defines symmetric update weights, and so the initial aver-
age is the only admissible consensus value. Moreover, the weights are
clearly stabilizing, and once they stop changing the MaxMetropolis
rule behaves like the symmetrized FixedWeight rule with parameters
3 ′1, · · · , 3 ′= . From there, Proposition 2.2.1 shows that Algorithm 4 is an
average consensus algorithm for the class G.

However, we now face the additional difficulty that the right-hand
side of eq. (2.29) does not necessarily define a convex combination: the
self-weight 088 (C) may be negative at times when 3 ′8 (C) < 38 (C). In the
worst case, the next estimate G8 (C) may leave the convex hull of the
set { G1(C − 1), · · · , G= (C − 1) }, which delays the eventual convergence.
We show in Theorem 2.6.1, that this is only by at most a linear factor,
when compared to a bound ofO(=3 log=/A) available for the symmetrized
FixedWeight rule with parameters 3 ′1, · · · , 3 ′= .

Chapter 2. Symmetric communications 40

We note that the broken convexity does not fully explain the discrep-
ancy between the convergence times of theMetropolis andMaxMetropo-
lis rules, the latter admitting a bound inO(=2 log=/A). To explain the rest
of the gap, observe that the Metropolis and MaxMetropolis rules take
opposite approaches towards selecting weights: the Metropolis update
uses the exact degree of each agent and is thus perfectly tailored to the
graph in each round, whereas the MaxMetropolis update only uses an
upper bound over the degree, and this pessimistic approach results in a
slower convergence.

Algorithm 4: The MaxMetropolis algorithm, code for agent 8

1 Input: `8 ∈ ℝ
2 Initially:
3 x8 ← `8
4 q8 ← 2

5 In each round:
6 send<8 = 〈x8 , q8〉
7 receive<91, . . . ,<93 ⊲ 3 neighbors

8 x8 ← x8 +
3∑

:=1

x9:−x8
max(q8 ,q9:)

9 q8 ← max(q8 , 3)
10 outputx8

Theorem 2.6.1. The MaxMetropolis algorithm solves average con-
sensus over the class G of dynamic graphs that are reflexive, bidirec-
tional, and strongly connected in each round, with a convergence time of
T(A ;=) = O(=4 log=/A) for a system of = agents. L

In contrast with Theorem 2.5.1, the proof of Theorem 2.6.1 will only
involve the usual geometry over the space ℝ= . As a consequence, we
briefly restate Lemmas 2.6.2 to 2.6.4, specialized for the usual Euclidian
norm ‖ − ‖ =

√
〈 − , − 〉 .

Lemma 2.6.2. For a non-null vector v for which 〈v〉 = 0, we have√
2/= ‖v‖ < diam v < 2 ‖v‖ . (2.30)

l

Chapter 2. Symmetric communications 41

Lemma2.6.3. For an ergodic matrix A that is symmetric, and any vector
v for which 〈v〉 = 0,

‖Av‖ 6 (1 − WA) ‖v‖ . (2.31)

l

Lemma 2.6.4. For an ergodic matrix A ∈ ℝ=×= that is symmetric,

WA >
�−

=(= − 1) , (2.32)

where �− B min{�8 9 | 8, 9 ∈ [=] } \ { 0 }. l

Proof of Theorem 2.6.1. We fix a dynamic graph G ∈ G of order =, and
define 3 ′8 (C), 3 ′8 , Tℓ , and CB as in eq. (2.21), and recall from the proof of
Theorem 2.5.1 that |Tℓ | 6

∑
8∈[=] 3

′
8 .

Let us then fix an execution of Algorithm 4 over the dynamic com-
munication graph G, using input values `1, · · · , `= ∈ ℝ. Without losing
generality, we can assume ` = 0, since a uniform translation of the input
does not alter the relative positions of the estimates.

An immediate induction reveals that the estimate vector satisfies the
recurrence equation x (C) = A(C)x (C − 1), where the matrix A(C) is the
round C MaxMetropolis matrix for the dynamic graph G:

[A(C)]8 9 =


1

max(3′
8
(C−1),3′

9
(C−1)) 8 ≠ 9 ∈ N8 (C)

1 −∑=
:=1

1
max(3′

8
(C−1),3′

:
(C−1)) 9 = 8

0 9 ∉ N8 (C) .
(2.33)

As such, it is a symmetric matrix for which A(C)1 = 1, and in paticular
the average 〈x (C)〉 is an invariant of the execution. Asymptotic consensus,
if it happens, is necessarily over the average `.

The matrix A(C) results from a Metropolis-Hastings symmetrization,
which implies �88 (C) > 1 − 38 (C)−1

3′
8
(C−1) , and in particular for C ∉ Tℓ we have

�88 (C) > 1/=. As the set Tℓ is finite, we let CB B max Tℓ , and the above
holds in particular for all subsequent rounds C > CB .

Let us then define a sequence z and a dynamic graph G′ by z (:) B
x (: + CB + 1) and G′(:) B G(: + CB + 1), for each : ∈ ℕ. The sequence
z satisfies the assumptions of Proposition 2.2.1 for the dynamic graph
G′ ∈ G and uniform convexity parameter U = 1/=, and so it achieves
asymptotic consensus, and the sequence of estimates x does as well. Since

Chapter 2. Symmetric communications 42

the consensus value is necessarily the average `, we see that Algorithm 4
is an average consensus algorithm for the class G.

To bound the convergence time, let us first remark that the diagonal
entry �88 (C) may be negative when 3 ′8 (C) ≠ 3 ′8 (C − 1). The estimate G8 (C)
can then leave the convex hull of the set { G9 (C − 1) | 9 ∈ N8 (C) }. In fact,
they can leave the convex hull of the set { G9 (C−1) | 9 ∈ [=] }, which moves
the system away from consensus and delays the eventual convergence.

To bound the total delay accrued in this manner, we fix a disagreement
threshold A > 0, and define the set TA B { C ∈ ℕ | diam x (C) 6 A · diam - }.
Since the system achieve asymptotic consensus, this set contains an
unbounded interval, and we let CA B inf { C ∈ TA | ∀g > C : g ∈ TA }.
Remark that since the estimates can leave their convex hull, it is possible
for CA to be greater than inf TA .

We then follow the variations of the quantity # (C) B ‖x (C)‖ from
one round to the next, distinguishing on whether C ∈ Tℓ or not. When
C ∉ Tℓ , the update matrix A(C) has positive diagonal entries, and by
Lemma 2.6.4 we have W B infC∉Tℓ WA(C) > 1/=3. Using Lemma 2.6.3, we
have

∀C ∉ Tℓ : # (C) 6 (1 − W)# (C − 1) . (2.34)

For rounds C ∈ Tℓ , on the other hand, the update matrix A(C) may
have negative entries, and we cannot use Lemma 2.6.3 to control # (C).
However, since the matrix A(C) is symmetric, it is diagonalizable, and for
any vector v, we have ‖A(C)v‖ 6 dA(C) ‖v‖ , which gives us

∀C ∈ Tℓ : # (C) 6 dA(C)# (C − 1) . (2.35)

We note that eq. (2.35) holds in fact for all C ∈ ℕ, but is strictly worse than
eq. (2.34) outside of Tℓ .

To bound the spectral radius dA(C) , we define aC,8 B 1−min(0, �88 (C))
and aC B max8 a8,C . For any eigenvalue _ of the matrix A(C), the quantity
(1 + _−1

aC
) is an eigenvalue of the stochastic matrix 1

aC
(A(C) + (aC − 1)I),

and so is less than 1 in absolute value. We have 1 − 2aC 6 _ 6 1, and so
|_ | 6 2aC − 1 6 a2C , the latter since G2 − 2G + 1 > 0 always holds. This
holds for all eigenvalues of the matrix A(C), and so we have

∀C ∈ Tℓ : # (C) 6 a2C# (C − 1) . (2.36)

The delay accrued during Tℓ will then depend on some factor Vℓ B∏
C ∈Tℓ a

2
C . To bound aC for C ∈ Tℓ , we observe that

∑
9≠8 �8 9 (C) 6 38 (C)−1

3′
8
(C−1) 6

Chapter 2. Symmetric communications 43

3′8 (C)
3′
8
(C−1) for any 8 ∈ [=], which yields a8,C 6

3′8 (C)
3′
8
(C−1) since 3

′
8 (C) is weakly

increasing. Given that a8,C > 1, we have Vℓ 6
∏

C ∈Tℓ
∏

8 a
2
8,C , and since

3 ′8 (C) = 3 ′8 (C − 1) when C ∉ Tℓ , we finally have Vℓ 6
(∏

8
3′8
2

) 2
Taking eqs. (2.34) and (2.36) together, we have

(C) 6
∏

g6C :g ∈Tℓ
a2g

∏
g6C :g∉Tℓ

(1 − WA(g)) · # (0)

6 Vℓ (1 − W)C−|Tℓ | · # (0) .

Using Lemma 2.6.2, this gives us diam x (C) 6 2
√
=Vℓ (1 −

W)C−|Tℓ | diam -. By definition of CA , we have 2
√
=Vℓ (1 − W)CA−|Tℓ | 6 A ,

from which we deduce that CA 6 W−1 log(2
√
=Vℓ/A) + |Tℓ |. Using our upper

bounds for |Tℓ |, W , and Vℓ ,

CA 6 =
3
(
2
∑
8

log3 ′8 − log A − (2= − 1) log 2
)
+
∑
8

3 ′8 − 2= , (2.37)

and with 3 ′8 6 = the convergence time of the MaxMetropolis algorithm
over the class G is in T(A ;=) = O(=4 log=/A). �

Randomization and Quantization
For Directed Dynamic Networks

The results of this chapter were published as an extended
abstract in [Bernadette Charron-Bost and Patrick Lambein-
Monette. “Randomization and Quantization for Average Con-
sensus”. In: 2018 IEEE Conference on Decision and Control
(CDC). IEEE, Dec. 2018, pp. 3716–3721. doi: 10.1109/CDC.2018.
8619817] and appeared in pre-publication form in [Bernadette
Charron-Bost and Patrick Lambein-Monette. Randomization
and Quantization for Average Consensus. Apr. 29, 2018. arXiv:
1804.10919 [cs.MA]].

3.1 Introduction

In the previous chapter, we discussed an asymptotic average consensus
algorithm for bidirectional dynamic networks. Here, we look at directed
networks, where functions that depend on the multiplicities the input
cannot be computed in general.

We turn to randomized algorithms to compute the average in this ad-
versarial setting. That is, we allow the agents to make their moves depend
on the outcomes of private random oracles, which capture an external
source of randomness available only to the agent. In this sense, although
we have made agents more powerful, the model remains local, in the
sense that agents only learn new information through direct interactions.

The randomized algorithms that we discuss here are Monte Carlo:
they produce a desirable behavior – here, appoximating the average `,
– but only in some executions, under the condition that the random
oracles did not produce pathological outcomes. Specifically, in any given
execution these algorithms behave incorrectly with probability at most
? ∈]0, 1/2[, where the parameter ? can be adjusted in the code of the
algorithm.

This pivot – introducing randomness and accepting a small probabil-
ity of errors – vastly increases the set of computable functions: under
the condition that agents initially know a bound over =, they can assign
to themselves identifiers that are unique with high probability. Any-
thing that can be computed by agents with unique identities can thus be
computed by anonymous agents in a Monte Carlo manner.

44

https://doi.org/10.1109/CDC.2018.8619817
https://doi.org/10.1109/CDC.2018.8619817
https://arxiv.org/abs/1804.10919

Chapter 3. Randomization 45

We present three randomized algorithms, which are grounded in an
idea due to Mosk-Aoyama and Shah and developed in a similar context by
Kuhn, Lynch, and Oshman, and which compute an approximation of the
average in the shortest possible time while satisfying increasingly strong
constraints: the first algorithm R is stabilizing, the second algorithm R
additionally only manipulates values with an efficient space representa-
tion – with high probability. The last algorithm D not only stabilizes, but
in fact terminates – results in simultaneous decisions – even when agents
start asynchronously.

In Table 3.1, we compare our algorithms with other methods aimed at
computing the average in directed dynamic networks, of which we now
give a brief explanation. When a centralized authority assigns unique
identifiers to the agents, computing the exact average can be reduced to
the problem of all-to-all token dissemination – that of getting all agents
to learn the multi-set of input values. This problem is studied in [63], in
the case of dynamic graphs that are strongly connected in each round;
when no other assumption can be made over the network, we single out
two methods. First, a full information protocol, based on Algorithm 1 and
denoted Flooding in Table 3.1. Second, a protocol by which agents take
turns to disseminate their values, given in [63, Section 5] and denoted
Sequential in Table 3.1.

In the absence of identifiers, the PushSum algorithm achieves asymp-
totic consensus on directed dynamic networks that are strongly connected
in each round. It is not a local algorithm, as each agent needs to be sup-
plied with its exact out-degree at the onset of each round; under the same
assumptions, the issues of the Metropolis rule at the core of Chapter 2
vanish entirely. The proof of convergence of the PushSum algorithm,
given in [77, Theorem 12], gives an implicit bound over the convergence
time of =O(=) , which we reproduce in Table 3.1; we know of no better
bound.

In contrast with the previous chapter, we will measure the conver-
gence of our algorithms either in the time it takes for their output to
stabilize, or, for the D algorithm, for the time before the agents decide.

Close to our algorithms, but not directly comparable in terms of
complexity due to the use of a different communication model, we note
the randomized average consensus algorithm proposed by Lucchese and
Varagnolo [68].

If the agents start with a bound # > = ahead of the executions,
they can generate unique identifiers over O(log#) bits in a Monte Carlo

Chapter 3. Randomization 46

Algorithm Time Message size Restrictions

Flooding O(=) O(= log=) unique identifiers
Sequential O(=2) O(log=) unique identifiers
PushSum =O(=) ∞∗ 3+D (C) provided to each agent

ahead of each round
asymptotic consensus

R O(=) O(log log=) approximate consensus
Monte Carlo

D O(=) O(log# + log log=) # > = externally provided
approximate consensus
Monte Carlo

* The PushSum algorithm is generally considered over real values.

Table 3.1: Average consensus algorithms for directed networks

manner. With this approach, the Flooding and Sequential methods admit
Monte Carlo variants, with identical temporal complexities, and using
messages in O(= log#) and O(log#) respectively.

3.2 Preliminaries

A probability theory refresher

We briefly recall some classic notions from probability theory. Let * be
the universal set defining the outcomes of a random experiment. Given
a Borel space (�, O)1, any measurable function 5 : * → � is called a 1In other words, O is the Borel

σ-algebra for a given topol-
ogy over �. In practice, we
essentially consider the usual
topology over � = ℝ.

random variable valued in �, which is again interpreted as the space
of possible outcomes of a random experiment; the distribution of the
random variable 5 is given by ℙ[5 ∈ �] B ℙ[5 −1(�)]. We say that
random variables 51, . . . , 5: : * → � are independent when

∀� ⊆ [:], � ≠ ∅,∀(�8)8∈� ∈ O� :

ℙ[
⋂
8∈�
{ 58 ∈ �8 }] =

∏
8∈�

ℙ[58 ∈ �8] . (3.1)

It is customary to use end-of-alphabet capital roman letters/,., -, . . .
to denote random variables; relegating * and O to the background, we
simply say that / is a random variable over �.

Chapter 3. Randomization 47

Here, the central case will be � = ℝ; the distribution of a real-valued
random variable / is fully determined by its cumulative distribution
function �/ : I ∈ [0, 1] ↦→ �/ (I) B ℙ[/ 6 I], as then we have ℙ[/ ∈
]0,1]] = �/ (1) − �/ (0).

As an example, given _ > 0, the exponential distribution with
rate _ is characterized by the cumulative distribution function

� (I; _) B
{
1 − e−_I I > 0

0 I < 0 ;
(3.2)

we use the shorthand / ∼ Exp(_) to denote that the random variable /
 is exponentially distributed with rate _ – that is, �/ = � (−; _).

Famous places to lose money

In this chapter we will consider classes of communication topologies
where, in general, the average cannot be computed. Recall for example
that for the class of all fixed strongly connected graphs, functions that
depend on the multiplicity of the input do not admit an algorithmic
implementation. Sidestepping this issue requires bringing in additional
tools, and as is often the case we resort to randomized algorithms. Here,
we extend our computational model to integrate randomized aspects into
our discussion.

Recall that we characterized a local algorithm by the quadruplet
(], g, j, Z) defining how an agent is to initialize, transition, and gener-
ate messages and outputs. In the case of a deterministic algorithm, b , g ,
and ` are all functions, but in general we allow them to merely be relations
– generation of outputs is always assumed to be governed by a function
Z .

When considering instead randomized algorithms, we will use the no-
tion of a random oracle and specify the type of an algorithm’s constitutive
elements. For example, instead of b (`D) being an element f ∈ O , b (`D) is
now a random variable with image O ; alternatively, we can suppose that
b : M × (→ O is a fonction of two variables, assigning an initial state in
O to each pair of an input ` ∈ M and an auxiliary input B ∈ (.

Under this view, agent D obtains the auxiliary input B by querying a
private random oracle at initialization; the random oracle is merely a
black box abstraction of the true source of randomness in the execution.
Here, the random oracle is merely viewed as a random variable whose

Chapter 3. Randomization 48

image is the set of auxiliary inputs (; the fact that it is private means that
the random oracles of all agents are independent random variables. Note
in particular that under this view, from the point of view of agent D the
initialization is a deterministic process, some inputs of which are random.
We may similarly define randomized variants of the functions g and j ,
taking random auxiliary inputs in addition to their regular inputs.

Recall that in the case of a deterministic algorithm, an execution is
entirely defined by the pair (G, -) of the dynamic communication graph
of the execution and the vector of input values. With the addition of
random oracles, such a pair defines a random variable E (G, -) over the
set of executions.

Here, we will focus on the case where the communication graph re-
sults from a process that is independent of either the input values, the
start signals, or the outcomes of the random oracles – a case commonly
referred to as an oblivious adversary, alternatively described as the
dynamic communication being fixed, once and for all, ahead of the execu-
tion, before the input or the outcomes of the random oracles are known.
For a predicate % over possible executions, we will say that an algorithm
satisfies % with probability ? for an oblivious adversary if over a class C
and inputs in M

∀G ∈ C,∀- ∈ MV(G) : ℙ[% (� ∼ E (G, -))] > ? . (3.3)

Among the usual relaxations of algorithmic problems for randomized set-
tings, we will use the following two notions. If % is a correctness predicate
– for example, % (�) = “� achieves asymptotic consensus” – then an algo-
rtihm is Monte Carlo if it satisfies % with probability ? > 1/2. Typically,
there are executions of the algorithm which fail to produce the expected
result, but they are a minority. If & is a complexity predicate – for exam-
ple, & (�) = “messages exchanged over � use at most : bits of memory”
– then an algorithm is Las Vegas2 if it satisfies & with probability @ > 1/2. 2Traditionally, Las Vegas al-

gorithms offer probabilistic
guarantees over the temporal
complexity of the computa-
tion; we make the natural ex-
tension of calling Las Vegas
algorithms with probabilistic
guarantees over the use of
any resource.

Algorithms with both Monte Carlo and Las Vegas aspects are sometimes
called “Atlantic City”.

Random identifiers

To illustrate the power of random oracles, consider the fact that inde-
pendent random variables /1, . . . , /= , each uniformly distributed over the
set { 0, . . . , 2: − 1 }, are pairwise distinct with probability at least ? when
: > b2 log= − log ?c. As a consequence, if all agents agree on a bound

Chapter 3. Randomization 49

> =3, they can simulate a centralized authority issuing unique identi- 3In fact, nothing requires
agents to use the same
bound # ; it suffices that each
agent D use a bound.

fiers, by each picking a value in the set { 0, . . . , 2 b2 log#−log? c }, uniformly
at random, to be used as an identifier. With probability at least 1 − ? ,
these identifiers are pairwise distinct, and any deterministic algorithm
for identified networks can be turned into a Monte Carlo variant in this
manner.

We note that, although this method dispenses with the centralized
authority, it still requires some external information in the form of a bound
over the number of agents. Moreover, while log= bits suffice to represent
each identifier when they are assigned within the set { 0, . . . , = − 1 }, the
footprint of a random identifier generated as above depends on the target
risk ? of a Monte Carlo failure, and on the quality of the bound # . In
particular, a poor bound leads to a much less efficient representation than
is possible for a truly centralized authority.

The method of random identifiers is nonetheless useful as a baseline to
compare other Monte Carlo algorithms: as the footprint of all identifiers
is in O(=(log# − log?)) bits. As we will see, our algorithms R and D
fare substantially better.

3.3 Randomized algorithm

We begin with a randomized Monte Carlo algorithm which approximately
computes the average under the assumption that the agents in the system
may store and transmit real numbers. Specifically, all of its executions
eventually compute a value if the network is eventually connected, and
this value is close to the average with high probability; the probability of
failure ? and the tolerated margin of error A are tuneable parameters of
the algorithm.

The average is obtained by computing, in parallel, approximations of
the order of the network, =, and the sum of the input values, B B

∑
D `D ,

and use the ratio of these approximations as an approximation of the
average -. By essence, these quantities depend on multiplicities, and as
such they cannot be computed by deterministic distributed algorithms
over static directed graphs in general, let alone over dynamic ones; in
fact, we cannot even reliably approximate such values.

Randomized algorithms do not face this restriction, which is why
our approach succeeds. In particular, we follow the approach proposed
by Mosk-Aoyama and Shah in [73] for (asymptotically) computing sep-
arable functions, of which = and B are examples, based on the following
concentration inequality.

Chapter 3. Randomization 50

Lemma3.3.1. Let /1, . . . , /: be independent identically distributed expo-
nential random variables with same rate _ > 0. For any error U ∈]0, 1/2[,
we have

ℙ

[����1: (/1 + · · · + /:) −
1
_

���� > U_] 6 2 exp

(
−:U

2

3

)
. (3.4)

l

Lemma 3.3.1 results from applying the Cramér-Chernoff method to
exponential random variables, which is developed for example in [20,
Sections 2.2 and 2.4]. To apply this result towards computing = and B ,
observe that sampling, for example, the exponential distribution Exp(B)
several times over allows for computing, with high probability, a good
approximation of the inverse 1/B. The same holds for =.

This reduces the problem of approximating = and B , or rather their
multiplicative inverses 1/= and 1/B, to that of sampling the corresponding
exponential distributions in a distributed manner. Following again Mosk-
Aoyama and Shah, this is easily achieved due to the fact that exponential
distributions transform minima into sums.

Lemma 3.3.2. Given independent exponential random variables /1 ∼
Exp(_1), . . . , /: ∼ Exp(_:), the random variable / B min(/1, . . . , /:) is
itself exponential, and distributed as / ∼ Exp(_1 + · · · + _:). l

Proof. A distribution is characterized by its cumulative distribution func-
tion; for the exponential distribution Exp(_), it is given by

ℙ[(- ∼ Exp(_)) < I] = � (I; _) B
{
1 − e−_I I > 0

0 I < 0 .
(3.5)

Letting _ B _1 + · · · + _: , we need only show that ℙ[/ < I] = � (I; _) to
establish our claim.

It is immediate for negative values of I, so we suppose that I > 0, and
we have

ℙ[/ > I] = ℙ[min(/1, . . . , /:) > I]
= ℙ[⋂:

8=1 /8 > I]
=
∏:

8=1 ℙ[/8 > I]
=
∏:

8=1 exp(−_8I)
= exp(−_I) ,

/1, . . . , /: independent

by definition of � (I;−)

and as a consequence ℙ[/ < I] = 1 − e−_I = � (I; _). �

Chapter 3. Randomization 51

The plan to compute the average with Mosk-Aoyama and Shah’s sheme
should now be clear: with Lemma 3.3.2, we can implement the sampling
of exponential distributions of rates = and B in a distributed manner by
agents equipped with random oracles. The resulting values, call them
=̃ and B̃ , do not directly give an approximation of the average in their
ratios =̃/B̃, as E[1//] = +∞ for any exponential random variable / , and in
particular E[=̃] = +∞.

This technicality disappears once we duplicate this procedure and
compute each approximation =̃ and B̃ , and in fact Lemma 3.3.1 shows that
duplication allows us to tune the quality of the approximations, and so of
that of the average. The resulting algorithm takes a precision parameter
A ∈]0, 1/2[and a tolerated probability of failure ?]0, 1/2[and computes an
A -approximation of the average in a Monte Carlo manner, with probability
at least 1 − ? .

The exponential distribution Exp(_) is only defined for _ > 0. To use
the above scheme over any input interval M = [0,1], we replace each
value `D with the translated value `D−0+1 > 1, and obtain the estimation
of the actual average ` by translating back the result of the computation.
The choice of 1 in this expression is arbitrary, in the sense that we could
use any constant W > 0 instead.

To guarantee a precision of A in the computation with probability 1−? ,
sampling each distribution ℓ B

⌈
3(1 + 2/A)2(1 − 0 + 1)2(ln 4 − ln?)

⌉
times in parallel suffices. Thus this first randomized algorithm is
parametrized by the four values A, ?, 0, 1 representing the target pre-
cision, the tolerated error, and bounds over the domain of the input
values. We give the pseudocode in Algorithm 5, and establish that the
algorithm RA,?,0,1 is a Monte Carlo in Theorem 3.3.3.

Theorem3.3.3. Let ? , A , 0, and 1 be real numbers, with ?, A ∈]0, 1/2[and
0 < 1. Let G be a dynamic graph, assumed to be eventually connected,
and let - ∈ [0,1]V(G) .

When considering the executions of the randomized algorithmRA,?,0,1

over the dynamic communication graph G with input values -, the sys-
tem always achieves stabilizing consensus, and the distribution of the
consensus value l satisfies

ℙ[|l − ` | 6 A] > 1 − ? . (3.6)

Once all agents are active, the stable consensus is reached in at most
diamG rounds – provided that the diameter is finite. L

Chapter 3. Randomization 52

Algorithm 5: The algorithm RA,?,0,1 code for agent D.

1 Input: `D ∈ [0,1]
2 Initially:
3 for 8 ← 1 to ℓ B

⌈
3(1 + 2/A)2(1 − 0 + 1)2(ln 4 − ln?)

⌉
do

4 X(8)D ← f
(8)
D ∼ Exp(`D − 0 + 1)

5 Y(8)D ← a
(8)
D ∼ Exp(1)

6 In each round:
7 send<D = 〈XD, YD〉
8 receive<E1, . . . ,<E3 ⊲ 3 neighbors

9 for 8 ← 1 to ℓ do
10 X(8)D ← min(X(8)E1 , · · · , X

(8)
E:)

11 Y(8)D ← min(Y(8)E1 , · · · , Y
(8)
E:)

12 output (∑ℓ
8=1 .

(8)
D /

∑ℓ
8=1-

(8)
D + 0 − 1)

Proof. In terms of the propagation of the initial values, Algorithm 5 con-
sists in 2ℓ parallel instances of the FloodInf algorithm, one for every
entry of the sample vectors^ and _ . As a consequence of Proposition 1.5.1,
a stabilizing consensus is achieved in each individual entry ^ (8)D or _ (8)D ,
in at most radG rounds after the last start signal if the radius is finite.
The system itself then achieves stabilizing consensus under the same
conditions, as the output value GD (C) only depends on the parameter 0
and on the values taken in round C by the arrays XD and YD .

It remains to show eq. (3.6). We fix an execution of the algorithm by
agents in + , and use the notation:

f̃ (8) B min
D∈+

f
(8)
D , ã (8) B min

D∈+
a
(8)
D ,

f̃ B
1
ℓ

ℓ∑
8=1

f̃ (8) , ã B
1
ℓ

ℓ∑
8=1

ã (8) , ˜̀B ã

f̃
.

(3.7)

For all agents, the variable X(8)D eventually stabilizes over the value
f̃ (8) for all 8 ∈ [ℓ]; similarly, each variable Y(8)D stabilizes over ã (8) . By
line 12, the consensus value of the execution is given by l = 0 − 1 + ˜̀.
We can assume that 0 = 1 without loss of generality, as we can always
reduce to this case by considering the problem over the translate values
` ′D = `D − 0 + 1.

Chapter 3. Randomization 53

So we assume that 0 = 1, and in this case each execution of the
algorithm over the pair G, - produces a consensus value ˜̀. This value
depends on the input vector - and the outcomes of the random oracles,
and it remains to show that

ℙ[|˜̀− ` | 6 A] > 1 − ? . (3.8)

We define U B A
(2+A)1 , and we have

1 + U
1 − U = 1 + 2A

21 + (1 − 1)A
6 1 + A

1
,

and similarly
1 − U
1 + U > 1 − A

1
.

1 > 0 > 1
(3.9)

Suppose now that we have

|f̃ − 1
B
| 6 U

B
and |ã − 1

=
| 6 U

=
, (3.10)

and let us show that ˜̀ is admissible as a consensus value. Indeed, we have
equivalently {

1
B
(1 − U) 6 f̃ 6 1

B
(1 + U)

1
=
(1 − U) 6 ã 6 1

=
(1 + U)

=⇒
(
1 − A

1

) B
=
6
ã

f̃
6

(
1 + A

1

) B
=
,

eq. (3.9)

which is to say that |` − ˜̀| 6 A
1
` 6 A .

To conclude, it suffices to show that an execution satisfies eq. (3.10)
with good probability. Each value f (8)D is sampled from the distribution
Exp(`D) and since the random oracles produce independent outcomes,
Lemma 3.3.2 the value f̃ (8) = minD∈+ f

(8)
D behaves as if sampled from

Exp(B), and similarly ã (8) = minD∈+ a
(8)
D behaves as if sampled from

Exp(=). We then use Lemma 3.3.1: with the values

U =
A

(2 + A)1
ℓ =

⌈
3(2 + A)2(1 − 0 + 1)2(ln 4 − ln?)/A 2

⌉
,

instantiating eq. (3.4) gives

ℙ

[����1ℓ (/1 + · · · + /ℓ) −
1
_

���� > U_] 6 2
(?
4

) ((1+ 2
A

)
1U

) 2
=
?

2
, (3.11)

Chapter 3. Randomization 54

for any random variables /1, . . . , /ℓ independently following the same
exponential distribution Exp(_). In particular, ℙ

[
|f̃ − 1

B
| > U

B

]
6

?

2 and
ℙ
[
|ã − 1

=
| > U

=

]
6

?

2 , and since these are independent event the proba-
bility of their union is less than ? . That is to say, the probability of an
execution satisfying eq. (3.10) is at least 1 − ? , and so

ℙ[|˜̀− ` | 6 A] > 1 − ? . (3.12)

�

3.4 Quantization

We now factor in a key aspect of digital systems: they manipulate discrete
values and dispose of limited bandwidth and storage. As a general matter,
this means that we can no longer have agents store or transmit real values,
and that we must pay attention to the memory footprint and the size
of messages exchanged over the course of an execution. The process of
mapping a large set onto a smaller, discrete set, whose elements admit
an efficient representation is called quantization, and in this section we
propose a quantized refinement of Algorithm 5.

To this effect, we adopt a quantization method used by Kuhn, Lynch,
and Oshman in [63, Section 7], and detailed by Oshman in [85, Section
3.6]. These authors extend Mosk-Aoyama and Shah’s approach in a
manner very similar to ours, considering the counting problem – that of
algorithmically evaluating the order = of the network. In fact, they look
at the stronger problem of terminating computation under synchronous
starts under the assumption that agents initially agree on an upper bound
> =. For now, we remain focused on stabilization and make no such
assumption; the next section will be devoted to the problem of termination
under asynchronous starts.

The quantization strategy used by Kuhn et al. consists in rounding
real values down along a logarithmic scale, to the previous integer power
of some pre-defined base. We will apply a similar method here: for some
fixed parameter of the algorithm, V > 0, we approximate any value I ∈ ℝ
with its V-logarithmic rounding [I]V , defined as

[−]V : I ∈ ℝ>0 ↦→ [I]V B (1 + V)
⌊
log1+V I

⌋
. (3.13)

Since V is a fixed parameter of the algorithm, it is only necessary for

agents to store and transmit the integer exponent
⌊
log1+V I

⌋
, satisfying

the requirements of only storing and transmitting discrete values.

Chapter 3. Randomization 55

This quantization method brings two other assets. First, the outcomes
of the random oracles are all V-rounded, usually, into values with a very
efficient representation, requiring only O(log log=) bits each with high
probability. This guarantee of low resource consumption is only proba-
bilistic, in the sense that there is a positive probability, albeit small, that a

random oracle outputs a value I for which
���log1+V I��� is arbitrarily large.

In this sense, the algorithm R discussed in this section is Las Vegas in
addition to being Monte Carlo.

In addition, logarithmic rounding is compatible with the exponen-
tial nature of the random variables, in the sense that we can turn the
concentration inequalities given in Lemma 3.3.1, concerning an exponen-
tial random variable / ∼ Exp(_) into ones over the V-rounded random
variable [/]V , from which we can, in broad strokes, continue to use the
approach of the previous section.

Lemma 3.4.1. Let /1, . . . , /: be independent random variables dis-
tributed as Exp(_) for some _ ∈ ℝ>0. Given any rounding parameter
V ∈ ℝ>0 and error U ∈]0, 1/2[, we have

ℙ

[����1: ([/1]V + · · · + [/:]V
)
− 1
_

���� > U + V + UV_

]
6 2 exp

(
−:U

2

3

)
.

(3.14)

l

Proof. By eq. (3.13), we have [I]V 6 I < (1 + V) [I]V for any positive real
number I, which implies, for all 8 ∈ [:]:

0 6 /8 − [/8]V < V [/8]V 6 V/8 . (3.15)

Let us then define random variables / and / ′ by:

/ B
1
:
(/1 + · · · + /:) , / ′ B

1
:
([/1]V + · · · + [/:]V) . (3.16)

We have ����/ ′ − 1
_

���� 6 |/ ′ − / | + ����/ − 1
_

����
6 V/ +

����/ − 1
_

���� . eq. (3.15)

Chapter 3. Randomization 56

By Lemma 3.3.1, with probability ? > 1 − 2 exp
(
−:U2

3

)
we have

��/ − 1
_

�� 6
U
_
, in which case the above gives us����/ ′ − 1

_

���� 6 U + V + UV_
.

�

For a random variable . ∼ Exp(_), we will write / ∼ [Exp(_)]V for
the random variable / B [.]V .

We give the algorithm R in Algorithm 6; it differs from the algorithm
R in that the outcomes of the random oracles are logarithmically rounded
with [−] A

6(1−0+1)
and that the number ℓ of samples is larger by a constant

multiplicative factor, in order to account for the probability of a Las Vegas
failure.

Algorithm 6: The algorithm RA,?,0,1 code for agent D.

1 Input: `D ∈ [0,1]
2 Initially:
3 let ℓ B

⌈
3
[
(1 + 4

A
) (1 − 0 + 1)

] 2(ln 8 − ln?)⌉
4 let V B A

6(1−0+1)
5 for 8 ← 1 to ℓ do
6 X(8)D ←

[
f
(8)
D

]
V
, with f (8)D ∼ Exp(`D − 0 + 1)

7 Y(8)D ←
[
a
(8)
D

]
V
, with a (8)D ∼ Exp(1)

8 In each round:
9 send<D = 〈^D, _D〉

10 receive<E1, . . . ,<E3 ⊲ 3 neighbors

11 for 8 ← 1 to ℓ do
12 X(8)D ← min(X(8)E1 , · · · , X

(8)
E3)

13 Y(8)D ← min(Y(8)E1 , · · · , Y
(8)
E3)

14 output (∑ℓ
8=1 .

(8)
D /

∑ℓ
8=1-

(8)
D + 0 − 1)

We show that the algorithm R is Monte Carlo in Proposition 3.4.2,
and Las Vegas with respect to storage and bandwidth in Proposition 3.4.3,
collecting both results in Theorem 3.4.4. For the rest of this section, we

Chapter 3. Randomization 57

fix real numbers ? , A , 0, and 1, with ?, A ∈]0, 1/2[and 0 < 1, and we define
V and ℓ as in Algorithm 6.

Proposition 3.4.2. Let G be a dynamic graph, assumed to be eventually
connected, and let - ∈ [0,1]V(G) .

All executions of the randomized algorithm RA,?,0,1 over the dynamic
communication graphGwith input values - achieve stabilizing consensus.
The random variable given by the consensus value l satisfies:

ℙ[|l − ` | 6 A] > 1 − ?
2
. (3.17)

Y

Proof. Convergence to consensus follows from the study of the FloodInf
algorithm, as it did for Algorithm 5. To show eq. (3.17), we proceed as for
Algorithm 5: we can assume that 0 = 1 without loss of generality, and for
each execution we let

f̂
(8) B min

D∈+
f
(8)
D , â

(8) B min
D∈+

a
(8)
D ,

f̂ B
1
ℓ

ℓ∑
8=1

f̂
(8)

, â B
1
ℓ

ℓ∑
8=1

â
(8)

, ̂̀B â

f̂
.

(3.18)

where these values depend on the dynamic graph, the input values, and
the outcomes of the random oracles. In particular, ̂̀ is the consensus
value, and so we need to show that ℙ[|̂̀− ` | 6 A] > 1 − ?

2 .
The V-rounding operator [−]V is weakly increasing, and so we have

min([G]V , [~]V) = [min(G,~)]V ; as a consequence, we have for each
8 ∈ [ℓ]:

f̂ (8) = [/ ∼ Exp(B)]V and â (8) = [/ ∼ Exp(=)]V . (3.19)

We now define U B 1
(1+ 4

A
)1 ; using Lemma 3.4.1 with those values and

ℓ =
⌈
3
[
(1 + 4

A
) (1 − 0 + 1)

]
(ln 8 − ln?)

⌉
, we have ℙ[|f̂ − 1

B
| > U+V+UV

B
] 6

?

4 and ℙ[|â − 1
=
| > U+V+UV

=
] 6 ?

4 , which by the union bound, gives

ℙ[|̂̀− ` | 6 A] > 1 − ?
2
. (3.20)

�

Chapter 3. Randomization 58

Proposition 3.4.3. When = agents run the algorithm RA,?,0,1 over in-
put values in [0,1], with probability at least 1 − ?

2 , all outcomes of the
random oracles can be represented over & = O(1

A
(log= − log? − log A))

quantization levels after V-quantization. Y

Proof. For _ > 1, the cumulative function ℙ[/ 6 I] = 1 − e−_I of an
exponential random variable / ∼ Exp(_) gives

∀I ∈]0, 1[:
{
ℙ[/ 6 I] 6 _I

ℙ[/ > − ln I] 6 I ,
(3.21)

and as a consequence we have

∀I ∈]0, 1[: ℙ[/ ∉ [I,− ln I]] 6 I + _I . (3.22)

We let I& B
?

4ℓ= (1−0+2) ∈]0,
1
16 [, and by the above we have for all

pairs D, 8:

ℙ[f (8)D ∉ [I& ,− ln I&]] 6
?

4ℓ=

ℙ[a (8)D ∉ [I& ,− ln I&]] 6
?

4ℓ=
,

(3.23)

which gives, since the random oracles produce independent outcomes,

ℙ[∀D,∀8 : f (8)D ∈ [I& ,− ln I&] ∧ a (8)D ∈ [I& ,− ln I&]] > 1 − ?
2
. (3.24)

Let us now see that this results in a compact representation for the V-
roundings of the outcomes.

Specifically, we let & denote the cardinal of the set { [I]V | I ∈
[I& ,− ln I&] }; by eq. (3.24), all outcomes of the random oracles are
mapped onto this set with probability 1 − ?

2 , in which case & quanti-
zation levels suffice to represent them all. We can bound the quantization
levels required to represent values in an interval [2, 3] with��[[2, 3]]V �� 6 dlog1+V 3e − blog1+V 2c ; (3.25)

for the interval [I& ,− ln I&], this results in

& = O(log1+V
ℓ=

?
) . (3.26)

Using the fact that log1+V − < 2 log −
V
for V ∈]0, 1[and plugging in the

values for V and ℓ given in Algorithm 6, we finally have

& = O(1
A
(log= − log? − log A)) . (3.27)

�

Chapter 3. Randomization 59

Theorem3.4.4. Let ? , A , 0, and 1 be real numbers, with ?, A ∈]0, 1/2[and
0 < 1. Let G be a dynamic graph of order =, assumed to be eventually
connected, and let - ∈ [0,1]V(G) .

Any execution of the randomized algorithmRA,?,0,1 over the dynamic
communication graph G with input values - achieves stabilizing consen-
sus. With probability at least 1 − ? , the consensus value is in the interval
[` − A, ` + A], and the execution has a memory and bandwidth footprint
of O(− log?

A 2
(log(log= − log?) − log A)) bits. L

Proof. The convergence of the algorithmRA,?,0,1 follows exactly the same
patterns as that of the un-quantized algorithm RA,?,0,1 , discussed in The-
orem 3.3.3. For a given dynamic graph and input assignment, Propo-
sition 3.4.2 shows that the consensus value is within distance A of the
average ` with probability at least 1 − ?

2 . Likewise, Proposition 3.4.3
shows that the individual values used throughout the execution admit
a representation over & = (log= − log? − log A) quantization levels
with probability at least 1 − ?

2 ; in this case, they each have a footprint of
log& = O(log(log=−log ?−log A)) bits, and since there are 2ℓ = O(−;>6?

A 2
)

of them, their total footprint is as claimed.
With probability at least 1 − ? , both events hold at the same time,

which proves the theorem. �

Remark 3.4.5. The exact primitive used to disseminate the minimal values
f̂ (8) and â (8) is orthogonal to the result of the computation and its memory
footprint. However, it does matter for the bandwidth. In Algorithm 6,
we have used the FloodInf algorithm as the information dissemination
primitive, but we could as well have used the entry-wise version of the
FloodInf algorithm instead to drive down the bandwidth footprint even
further. Sending one entry of each array X and Y at a time results in
a bandwidth footprint of O((log(log= − log ?) − log A)) at the cost of
delaying the computation time by a factor ℓ = O(− log?

A 2
). As mention

when we discussed the entry-wise version of the FloodInf algorithm, the
connectivity requirements to reach the correct value are stronger than
when the agents simply broadcast the entire content of their memory.

3.5 Decision

Finally, we turn to the fullest version of our average consensus random-
ized algorithm. While the algorithms R and R both produce stabilizing

Chapter 3. Randomization 60

executions, the algorithm D that we now present is terminating, in a
Monte Carlo sense: all agents eventually decide on a value, and with high
probability a) all agents simultaneously decide on the same value l ; b) l
is an admissible approximation of the average `; and c) all local variables
admit an efficient representation. That is, the algorithm D is Las Vegas in
the same way that the algorithm R is.

The decision mechanism is derived from that of the randomized firing
squad algorithm introduced by Charron-Bost and Moran in [36, Section
6], which is in turn grounded in the randomized counting algorithm
developed in [63, 85] that we mentioned in the previous section. As such,
the domain of application of the algorithm D is the same as that of [36]:
its Monte Carlo guarantees apply over any system with asynchronous
starts, provided that all agents eventually become active and that the
dynamic communication graph be strongly connected in every round.

For a system of = agents, the radius of such a dynamic graph is at most
=−1. With high probability, all agents reach an admissible approximation
of the average in at most = − 1 rounds after all agents become active. It
therefore suffices to provide a mechanism by which agents can determine
that they have reached a round C∗ > Bmax + =,4 since they can then all 4Recall that Bmax ∈ ℕ>0 de-

notes the latest round with an
inactive agent.

simultaneously return their approximation in that round.
As is the case for the algorithms given in [63, 85, 36], the algorithm

D will have to take as a parameter a bound # > =. In a model of si-
multaneous starts, this suffices to ensure simultaneous decisions that are
late enough: agents can simply run the algorithm R while maintaining a
local round counter that is incremented in each round. Once this counter
reaches # , they return their estimate, which by Theorem 3.4.4 is likely to
be admissible.

This approach is insufficient in two respects. First, it strongly depends
on the assumption of simultaneous starts: without that assumption, all
agents no longer decide simultaneously, and in fact some agents may well
decide while others are inactive, leading to an incorrect result. Moreover,
although the estimates stabilizes quickly – in = − 1 rounds, as with the
algorithm RA,?,0,1 over the same dynamic graph – it only decide after #
rounds. In other words, the temporal complexity is no longer in the order
of the network, but in the bound we provide over the order; for a very
loose bound, the convergence time may be abysmal.5 5To take an extreme example,

the ipv6 communication pro-
tocol [45] implicitly embeds
a bound of the order of # =

2128; for this value, and at
the improbable rate of 1018

rounds per second, reaching
termination would take of the
order of 1013 years.

We address the latter issue by using the fact that the algorithm R
is already computing an approximation of the order =; using the value
computed in this manner, rather than the bound # , allows us to make the

Chapter 3. Randomization 61

agents simultaneously terminate within O(=) rounds of Bmax with high
probability. This is indeed the method used by Kuhn et al. in their approx-
imate counting algorithm: the value being computed is simultaneously
used by each agent to determine when to return.

For the former issue, we rely on results by Charron-Bost and Moran,
andmake the agents implement local round counters that remain bounded
by = while some agents are inactive, and synchronize in at most = rounds
once they all become active. Agents are able to detect this synchronization
by round Bmax + 3

2= with high probability, which allows them to terminate.
We give the pseudocode of the algorithm D in Algorithm 7.

Theorem 3.5.1. Let # be a positive integer, and let ? , A , 0, and 1 be real
numbers, with ?, A ∈]0, 1/2[and 0 < 1. Let G be a dynamic graph of order
=, strongly connected in each round, and let - ∈ [0,1]V(G) .

When considering the executions of the algorithmD over the dynamic
communication graph G, input values -, and arbitrary start signals, with
probability at least 1 − ?: a) all agents eventually return the same value
l ; b) l lies in the admissible interval [` − A, ` + A]; c) once all agents
are active, the execution terminates within 2= rounds – that is, all agents
return simultaneously; and d) the execution has a memory and bandwidth

footprint of O
(
log# − log?

A 2
(log(log= − log?) log A)

)
. L

Proof. We let BD denote the latest round during which agent D is inactive,
and Bmax denote the latest round during which any agent is inactive. For
any round C ∈ ℕ>0 we let

+ ∗(C) B {D ∈ + | BD < C } (3.28)

denote the set of agents that are active during round C .
Recall that we denote by 2D (C) the value taken by the counter variable

cD at the end of round C . In any round, this value depends on how recently
the agent last heard of an inactive agent:

∀C ∈ ℕ>0,∀D ∈ + ∗(C),∀g 6 C :
2D (C) > C − g ⇔ InD (g : C) ⊆ + ∗(g) ,

(3.29)

which is easily seen by a finite induction over g .
From eq. (3.29), we deduce first that, in the initial period C ∈

{ 1, . . . , Bmax }, no agent’s counter can be larger than diamG. Moreover,
for any agent D for which BD = Bmax and C > Bmax, we have 2E (C) = C − Bmax

Chapter 3. Randomization 62

Algorithm 7: The algorithm D#,A,?,0,1 code for agent D.

1 Input: `D ∈ [0,1]
2 Initially:
3 cD ← 0
4 n̂D ← 1
5 let ℓ� B d3[(1 + 4

A
) (1 − 0 + 1)]2(ln 24 − ln?)e

6 let ℓ� B d243(ln 6# 2 − ln?)e
7 let ℓ B max(ℓ� , ℓ�)
8 let V B A

6(1−0+1)
9 for 8 ← 1 to ℓ do
10 X(8)D ←

[
f
(8)
D

]
V
, with f (8)D ∼ Exp(`D − 0 + 1)

11 Y(8)D ←
[
a
(8)
D

]
V
, with a (8)D ∼ Exp(1)

12 In each round:
13 send<D = 〈cD,^D, _D〉
14 receive<E1, . . . ,<E: from neighbors E1, . . . , E:
15 if at least one of<E1, . . . ,<E: is a null message then
16 cD ← 0
17 else
18 cD ← 1 +min(2E1, . . . , 2E:)
19 for 8 ← 1 to ℓ do
20 X(8)D ← min(X(8)E1 , . . . , X

(8)
E:)

21 Y(8)D ← min(Y(8)E1 , . . . , Y
(8)
E:)

22 n̂D ← ℓ

Y(1)D +···+Y
(ℓ)
D

23 if cD > 3
2 n̂D then

24 return (∑ℓ
8=1 Y

(8)
D /

∑ℓ
8=1 X

(8)
D + 0 − 1)

Chapter 3. Randomization 63

for all agents E ∈ OutD (Bmax + 1 : C), and so starting in some round
Csync ∈ { Bmax + 1 . . . , Bmax + diamG }, all counters satisfy 2D (C) = C − Bmax

for all rounds C > Csync. Since we assume a dynamic graph that is strongly
connected in each round, we can rephrase these observations by:

∀C ∈ { 1, . . . , Bmax } : 2D (C) < =
∀C > Bmax + = : 2D (C) = C − Bmax .

(3.30)

Since the counters keep increasing while =̂(C) is obviously bounded,
each agent eventually outputs a value. Because the local counters eventu-
ally become synchronized, the local test of Line 23 can result in a global,
synchronous termination – provided that the condition of the test is never
true before the round Csync. This requires tracking the behavior of each
agent’s estimate =̂D (C) of the order =.

So we let, in any round C , G∗(C) denote the graph induced by G over
the set + ∗(C) – that is, G∗(C) is the graph of message receptions between
all active agents in round C . We let I∗D (C) B InD (G∗(BD + 1 : C))6 denote 6In contrast with the way

the notation ℍ(C : C ′) used
in most other places in this
monograph, the individual
graphs G∗ (g) need not all be
defined over the same ver-
tex set. Let us simply re-
call here that the definition of
the graph composition is per-
fectly compatible with this
use.

the set of all active agents of which agent D has heard of in round C , and
we then easily verify that

∀C > BD,∀8 ∈ { 1, . . . , ℓ } :
{
-
(8)
D (C) = minE∈I∗D (C) [f

(8)
E]V

.
(8)
D (C) = minE∈I∗D (C) [a

(8)
E]V ,

(3.31)

from which we deduce

∀C > BD : =̂D (C) =
ℓ

min
E∈I∗D (C)

[a (1)E]V + · · · + min
E∈I∗D (C)

[a (ℓ)E]V
. (3.32)

By the assumption of round-wise strong connectivity, in any round
C > BD there is an incoming edge from + \ I∗D (C) into I∗D (C), unless the
latter is the entire set + . From eq. (3.29), we then have 2D (C) < |I∗D (C) |
whenever I∗D (C) ≠ + . To ensure that the condition of line 23 is never
triggered before I∗D (C) = + , it suffices to have

=̂D (C) >
2
3
|I∗D (C) | (3.33)

in each round C until I∗D (C) = + , which happens at the latest in round
C = Bmax + diamG. As the set I∗D (C) is weakly increasing over time with
respect to inclusion, it suffices to verify eq. (3.33) for each of the :D < =

rounds C1D, . . . , C
:D
D in which this set strictly increases, since outside of

Chapter 3. Randomization 64

those rounds eqs. (3.31) and (3.32) show that both |I∗D (C) | and =̂D (C) remain
unchanged.

We denote by � 9
D the event =̂D (C 9D) > 2

3 |I
∗
D (C

9
D) | which depends on the

dynamic graph G, the start signals BD , and the outcomes of the random
oracles. If agent D only decides once I∗D (C) = + , then by eq. (3.31) it never
revokes its decision; moreover, if it is the case for all agents, then their
counters have synchronized by the time they decide, and we have the
inclusion

{ the execution terminates } ⊆ � B
⋂
D∈+

⋂
9 ∈[:D]

�
9
D , (3.34)

and the return value of the execution is in fact ̂̀, defined as for Proposi-
tion 3.4.2 in eq. (3.18).

Let us then bound the probability of an execution over G and (BD)D re-
alizing event �. We can proceed as in Proposition 3.4.2: using Lemma 3.4.1
for : > ℓ� samples and random variables /8 ∼ [Exp(=̂D (C 9))]V , we find
that

ℙ[=̂D (C 9D) <
2
3
|I∗D (C

9
D) |] 6

?

3# 2 , (3.35)

from which a union bound gives us ℙ[�] > 1 − ?

3 . Combined with
eq. (3.34), we have

ℙ[the execution terminates and returns ̂̀] > 1 − ?
3
. (3.36)

When does the execution terminate? The approximation of the order=
computed by the agents in an execution is given by

=̂ =
ℓ

minD [a (1)D]V + · · · +minD [a (ℓ)D]V
. (3.37)

With ℓ > ℓ� , Lemma 3.4.1 gives ℙ[=̂ 6 3
2=] > 1 − ?

3 ; a union bound with
eq. (3.36) gives us7 7The arguments leading to

eq. (3.38) are essentially those
of Charron-Bost and Moran
in [36, Section 6]. I would like
to thank Shlomo Moran for
insightful conversations that
helped shape the work pre-
sented in this chapter.

ℙ

[
the execution terminates, and
returns ̂̀by round Bmax + 2=

]
> 1 − 2?

3
. (3.38)

Finally, the validity of the consensus value ̂̀, as well as the variables
being well behaved in a Las Vegas sense, follow from exactly the same
arguments as for Proposition 3.4.2; with ℓ > ℓ� , these properties hold
with probability at least 1 − ?

3 , and we conclude with a union bound. �

Chapter 3. Randomization 65

3.6 Simulations

In this section, we seek to illustrate the behavior of our algorithms. For
this, we fix a set + = [=] of agents, which in our illustrations is each
given a distinct color, shown in Figure 3.1 for two different graphs over+ .

Figure 3.1: The line topology (left) and directed ring topology (right) used
in our simulations.

We furthermore fix a set of inputs { 1 + :/9, : = 0, . . . , 9 }, which we
assign once and for all to the agents in + : each agent D ∈ + has a unique
input `D = 1 + :D/9, and the average ` is equal to 1/2.

Simulating the algorithmR

Given that Section 3.4 establishes the robustness of our algorithm to
the rounding of the values in use, we run simulations for the simpler
algorithm R rather than for R. We fix parameters A = ? = 1/3. Using
standard floating-point registers of a modern computer, the simulated
computation is thus much more precise than our accepted error, ensuring
that the effects of rounding are negligible.

On any dynamic graph G, continuously strongly connected and with
all self-loops at each round, our algorithm is shown to stabilize in at
most diamG rounds. Hence, there are no specific difficulties arising from
executing the algorithm R over a dynamic communication topology. For
simplicity of exposition, we therefore illustrate our algorithm on fixed
graphs, where the dynamic diameter coincides with the classical notion
of diameter for directed graphs.

We plot in Figure 3.2 the individual estimates GD (C) for each agent
D ∈ + on the two different graphs of Figure 3.1, for the same input
assignment - and parameters A = ? = 1/3 and (0,1) = (1, 2). The average
` is marked by a dashed line. Note that the color used to draw each
individual estimate GD (C) is reflected in the color of agent D in Figure 3.1.

Chapter 3. Randomization 66

We observe that the trajectory of individual estimates and the limit
value ̂̀vary with each execution. However, stabilization of the system
always happens at round C = = − 1. Over the line graph, central agents
stabilize at earlier times than extremal agents, whereas on the directed
ring, all agents stabilize in the same round C = = − 1. This reflects the fact
that an agent stabilizes when it has received the information originating
in each other agent, which requires diamG = 9 rounds in the worst case.

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

line graph

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

0 2 4 6 8

C

1.0

1.5

2.0
G
D
(C
)

ring graph

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

0 2 4 6 8

C

1.0

1.5

2.0

G
D
(C
)

Figure 3.2: Agent estimates GD (C) for several executions of the algorithm
R over the line graph and directed ring graph. Figure realized with
Matplotlib [59].

Chapter 3. Randomization 67

Simulating the algorithmD

In Figure 3.3, we illustrate a typical execution of the algorithm D on the
line graph of Figure 3.1. As before, we use the input assignment - and
parameters A = ? = 1/3 and (0,1) = (1, 2), with the additional parameter
= 20. We fix individual wake-up times chosen in { 0, . . . , 2= − 1 }. As
earlier, the color in use for each estimate GD (C) corresponds to the color
of node D in the graph of Figure 3.1.

We observe five different phases, demarked in Figure 3.3 with dashed
vertical rules. Initially, all agents are inactive. In the second phase, agents
wake up and start computing local minima for each of their vector entries,
sometimes with long periods with no progress for lack of new information.
In the third phase, agents are all awake, information is disseminating, and
the clocks 2D are synchronizing. In the fourth phase, all clocks 2D are equal
and the estimates finish stabilizing at round C2 . Finally, in the fifth phase,
the estimates have become stable and the system awaits decision. The
final vertical rule marks the round C3 , where all agents simultaneously
write in their variable 3D .

0 10 20 30 40 50

C

1.0

1.2

1.4

1.6

1.8

2.0

G
D
(C
)

Figure 3.3: Agent estimates GD (C) for a typical execution of D over the
line graph of Figure 3.1. Figure realized with Matplotlib [59].

Chapter 3. Randomization 68

Figure 3.4: Distribution of the error ̂̀− ` over 1000 simulations of R, for
various choices of A and ? . Figure realized with Matplotlib [59].

Precision of the algorithmR

In the executions of our algorithms depicted in Figures 3.2 and 3.3, the
computed estimate ̂̀ is much closer to the average ` than what is allowed
by fixing an accepted error A = 1/3. Here, we purport to show that this is
not an accident of the specific executions we chose to depict.

Using - as the input assignment, we run many (: = 1000) executions
of the algorithm R for various sets of parameters A and ? , registering
each time the error ̂̀− `. Note that this is only a function of the in-
put assignment - and the outcomes of the random oracles, not of the
communication topology.

For each choice of parameters (A, ?), we collect all errors into a his-
togram, which approximates experimentally the probability distribution
of the error. These histograms are shown in Figure 3.4.

We observe that, while the distribution of the error is sensitive to
the choice of A and ? , the observed precision of the algorithm R is much
stronger than what Theorem 3.3.3 entails. This suggests that our target
precision can be met using fewer variables in the computations of B and
=. Indeed, in designing our algorithms, we have focused on presenting
the underlying ideas, rather than on optimizing the parameters. Whether
the asymptotic complexity of the parameter ℓ can be improved is an open
question.

Parting thoughts

Thus, from the war of nature, from famine and
death, the most exalted object which we are
capable of conceiving, namely, the production of
the higher animals, directly follows. There is
grandeur in this view of life, with its several
powers, having been originally breathed into a
few forms or into one; and that, whilst this planet
has gone cycling on according to the fixed law of
gravity, from so simple a beginning endless
forms most beautiful and most wonderful have
been, and are being, evolved.

On the Origin of Species
Charles Darwin

Let us summarize the argument that we put forth in the preceding
pages. The problems that arise in distributed computing are instrinsi-
cally hard: the field is littered with impossibility results that preclude
the most basic tasks from admitting deterministic implementations that
are truly distributed and local. Much progress in the theoretical study of
distributed systems is thus built over a bedrock of simplifying assump-
tions – a complete communication topology, messages getting delivered
under bounded delays, agents being initially synchronized, initial com-
mon knowledge in the form of the number of agents, the diameter of
the communication graph, or the graph itself, infinite memory, compu-
tational power, and bandwidth… – as well as assumed features which
may or may not correspond to the nature of specific networked systems
– unique identifiers assigned to each agent, numbered ports locally as-
signed to the communication links, bidirectional communications, static
communication topology…

We focused on two important classes of limitations. First, those that
arise from the necessity to take irreversible and coordinated actions with
each agent having only a partial, and partially outdated, view of the
system. Second, those that arise from the symmetries of the network,
which may cause some situations to look indistinguishable to the agents,
event though they call for different behaviors. Much of the theory of
distributed computing considers systemswhere symmetry is easily broken
and focuses on problems of the former class. To some extent, this has to

69

Parting thoughts 70

do with the digital nature of the object of study: given unique identifiers
(mac or ip addresses, cryptographic public keys…), all symmetries can
theoretically broken – not necessarily easily – and irreversibly committing
together to some value underpins the general principle of replication, in
turn foundational to the ability of distributed systems to reliably offer a
coherent service at scale. In addition, such problems are extremely hard
in the absence of simplifying assumptions like that of a system with real-
time guarantees8 making theoricians keen to not make their problems 8We note for example the cele-

brated flp result due to Fis-
cher, Lynch, and Paterson
[48], who established that the
agreement problem of achiev-
ing termination, agreement,
and validity is impossible to
solve if even one agent may
crash and there is no upper
bound over the delay before
messages get delivered.

harder than is needed. In the synchronous model, on the other hand,
in particular for a fixed communication graph and named agents that
start and remain globally synchronized, – what amounts to the local
model – there remains no fundamental limitation that prevents the system
from acting as a single unit, and the “only” remaining problems are of
efficiency in terms of temporal complexity, resource management, or
other parameters to be optimized.

We take the opposite tack and focus on cases where symmetries are
generally unbreakable, assuming in particular that the agents do not
come equipped with unique identifiers. This is motivated by examples
in natural systems which do not necessarily offer a way to uniquely
identify individuals, by low-powered agent systems which need not have
the capacity to store or transmit identifiers, as well as from very simple
multi-agent computational models such as cellular automata.

In these conditions, and lacking other ways of breaking symmetries,
it becomes impossible for agents to definitively commit to a coordinated
answer because information from far away in the network might yet
change what the answer should be, and there are no ways of reliably
evaluating the scale of the networks in a local manner. As a consequence,
we focus on weak computational models – where it suffices to reach
an answer without committing to it, or even to asymptotically tend to-
wards an answer – motivated by applications coming from distributed
control. Broadly speaking, some classes of applications are better served
by starting with approximate answers that get refined over time rather
than waiting for a long time before a question is definitively settled. One
example can be found in distributed load balancing, where networked
processing units assigned different amouts of work seek to distribute
evenly the total work among themselves, which amounts to computing
the average load. Clearly, the load will be processed faster if all units start
processing some of the work right away than if they wait for an exact
average consensus routine to terminate before they even begin.

Parting thoughts 71

Motivated by vehicular, mobile, and wireless networks, as well as by
natural systems, we positioned our study in the general framework of
dynamic networks, where communication links can frequently change.
The problems of consensus and average consensus can be expressed as
the system computing a relation or a function, and we recalled some
of the fundamental constraints that apply to the latter kind of problem:
in general, functions that are computable by an algorithm over a given
connected network of unknown geometry can depend only on the set of
the input values, but not on their multiplicities, even if the network is
entirely static. In other words, all anonymous local schemes for computing
specific multiplicity-sensitive functions have to exploit the geometry of
the network in some manner.

We looked at two conditions under which the average is computable:
by considering bidirectional networks – an example of geometric assump-
tion – and by making agents more powerful through the use of random
oracles. In both settings, we introduced novel algorithms which compare
favorably in their respective leagues.

For bidirectional networks, we built upon the rich theory of convex
updates for asymptotic consensus in multi-agent networks. Although
they are known to converge under relatively connectivity of the network,
and although they are often explicitly introduced in a context of dynamic
communications, we argued that their good qualities over static networks
do not readily extend to dynamic ones, for two reasons. First, their good
analytical performance under static communications is generally only
shown for bidirectional networks, but allowing the network to change
over time reintroduces directionality in the flow of information, which
can degrade the polynomial convergence time of the EqualNeighbor
rule over static bidirectional networks down to an exponential one over
static directed networks. Second, enforcing global invariants – such as
maintaining the average of all agent estimates constant in order to enforce
the average ` as the consensus value – generally requires collecting
information in the network beyond an agent’s immediate horizon in
a single round; but this information may never reach the agent if the
network changes too fast, and schemes designed to cope with slow-paced
change are fragile to a change of assumptions in the characteristics of the
network.

We provided algorithms for consensus and average consensus that
implement affine updates with a convergence time in O(=4) over dynamic
networks that are strongly connected and bidirectional in each round.

Parting thoughts 72

These leverage a classic technique of discovering a parameter in a sta-
bilizing manner, here, an agent’s historically largest degree. We note
that it was not guaranteed that the average could be obtained in this
manner, given that dynamic networks reintroduce directionality even in
bidirectional networks.

Over dynamic networks, we abandoned determinism and considered
local algorithms where agents may consult random oracles. Randomiza-
tion is a powerful method for breaking symmetries – given a bound over
the order of the network, agents can assign themselves unique identities
with high probability – so we focused in addition on space efficiency –
designing algorithms with a small memory and bandwidth footprint – and
on stronger computational semantics – getting executions to terminate
rather than simply converge – in the particularly challenging settings
of agents that are initially desynchronized. The stabilizing algorithm R,
and its terminating version D, are Monte Carlo algorithms which, with a
probability at least 1− ? for some parameter ? tuneable in the code of the
algorithm, produce a good approximation of the average ` in a number
of rounds that is linear in the number of agents.

Directions for future works We conclude by pointing at some re-
search topics related to those we touched here and whose investigation
looks potentially fruitful to us.

The line of research investigated by Boldi and Vigna in [17], which we
could summarize in one sentence by “What do given classes of directed
graphs allow for computing anonymously?”, could potentially yield much
finer results than the general considerations we make here. As classes
of dynamic graphs are much more complex objects than classes of static
graphs – the former may be of uncountable cardinality, whereas the latter
are at most countably infinite – a central question is whether there are
realistic non-trivial classes for which computable functions admit an
effective description in the manner that Boldi and Vigna obtain for static
classes. Moreover, the relevant generalizations of the graph theoretic
tools of coverings and fibrations to dynamic graphs are yet to be fully
fleshed out.

In a similar vein, it was shown by Avin, Koucky, and Lotker [9] that
a random walk over a bidirectional graph that can change after each
step – a dynamic graph in our terminology – can take an exponentially
long time to mix, – to forget about the starting position of the walker –
whereas it is well known that static bidirectional graphs produce a mixing

Parting thoughts 73

time that is at worst cubic. This idea was picked up by Olshevsky and
Tsitsiklis [84] to produce a pathological case for the convergence time
of the EqualNeighbor rule. What kinds of networks give rise to these
pathologies? For the static case, the butterfly graph gives an example
of how to produce a random walk that is poorly mixing: make a vertex
so that there are many ways to arrive to it but few ways to visit the
entire graph from it. Is there a threshold at which the polynomial mixing
time becomes exponential? How much directivity is too much? These
questions seem particularly intricate over dynamic graphs, where the
principal source of directivity may be the arrow of time rather than the
geometry of instantaneous communication patterns.

We note in particular recent results by Dinitz et al. [47] who, applying
the technique of smoothed analysis to dynamic graph problems, show that
small random perturbations in the network used by Avin, Koucky, and
Lotker make the dynamic randomwalk polynomial again. Smoothed anal-
ysis thus seems a promising avenue for exploring the performance of affine
update rules when the graph adversary is not all-powerful. Given the
aforementioned result, it seems likely that the exponential lower bound
for the EqualNeighbor update rule would be fragile to the smoothed
analysis. Under these conditions, how do the MaxWeight and Equal-
Neighbor rules compare?

It appears to us that the study of convex update rules has much to
gain9 from finer geometric approaches in the spirit of Charron-Bost’s [29]. 9The author might be bi-

ased here: it was being ex-
posed to a previous itera-
tion of this material in Prof.
Charron-Bost’s mpri course
on the computational theory
of emergent phenomena that
led him on the tortuous path
resulting in the presentmono-
graph.

One obvious trail would be to look at, for example, the bounded confidence
model of opinion dynamics investigated by Hegselmann and Krause
[54], – which is essentially an instance of the EqualNeighbor rule over
specific dynamic graphs10 – for which, among other open problems, the

10Specifically, the graph for
each round C is obtained by
building a geometric graph
with the estimates GD (C).

convergence times observed in simulations are much smaller than known
bounds. Approaches based on the finer geometric characteristics of the
influence graph might help understand better the behaviors of this class
of dynamical systems.

Finally, we think that looking at algorithmic problems with an asymp-
totic perspective may give a new light, and a renewed interest, to classic
problems of distributed computing. To take a clear example: in the nearly
twelve years since the publication of the Bitcoin whitepaper [75] by an
unknown author only known by the pseudonym “Satoshi Nakamoto”,
block chain systems have received a sustained interest from renowed schol-
ars [50], to promising young hackers [22], to clueless amateurs [89]. A
defining feature of Bitcoin is that the integrity of its central distributed

Parting thoughts 74

data structure, the bitcoin ledger, is only preserved if honest participants
keep extending the ledger. That is, the system as a whole is progress-
ing towards consensus over an infinite data structure by agreeing with
more and more certainty over larger and larger finite parts of this infinite
structure.

In other words, ledger consensus is best understood as an asymptotic
consensus whose finite-time behavior satisfies certain desirable properties,
much like convex update rules progress towards a consensus value, which
need never be reached, while displaying some guarantees of progress in
finite time as expressed by their convergence time. Given the sustained
interest that block chain systems have received due to their promise of
making it possible to solving a reasonable approximation of traditional
consensus problems over large-scale permissionless networks, we take
this as an indication that asymptotic forms of consensus open the way to
fruitful new approaches to perennial problems.

References

[1] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. “Applying Static
Network Protocols to Dynamic Networks”. In: 28th Annual Sym-
posium on Foundations of Computer Science (Sfcs 1987). Oct. 1987,
pp. 358–370. doi: 10.1109/SFCS.1987.7.

[2] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. “Some Con-
straints and Tradeoffs in the Design of Network Communications”.
In: Proceedings of the Fifth Symposium on Operating Systems Princi-
ples - SOSP ’75. ACM Press, 1975, pp. 67–74. doi: 10.1145/800213.
806523.

[3] Steve Alpern. “The Rendezvous Search Problem”. In: SIAM Journal
on Control and Optimization 33.3 (May 1995), pp. 673–683. doi:
10.1137/S0363012993249195.

[4] Claudio Altafini. “Consensus Problems on Networks With Antag-
onistic Interactions”. In: IEEE Transactions on Automatic Control
58.4 (Apr. 2013), pp. 935–946. doi: 10.1109/TAC.2012.2224251.

[5] Dana Angluin. “Local and Global Properties in Networks of Pro-
cessors”. In: Proceedings of the Twelfth Annual ACM Symposium on
Theory of Computing - STOC ’80. Ed. by R. E. Miller, S. Ginsburg,
W. A. Burkhard, and R. J. Lipton. ACM Press, 1980, pp. 82–93. doi:
10.1145/800141.804655.

[6] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer,
and René Peralta. “Computation in Networks of Passively Mobile
Finite-State Sensors”. In: Distributed Computing 18.4 (Mar. 2006),
pp. 235–253. doi: 10.1007/s00446-005-0138-3.

[7] Dana Angluin, Michael J. Fischer, and Hong Jiang. “Stabilizing
Consensus in Mobile Networks”. In: Distributed Computing in
Sensor Systems. Ed. by Phillip B. Gibbons, Tarek Abdelzaher, James
Aspnes, and Ramesh Rao. Lecture Notes in Computer Science.
Springer, 2006, pp. 37–50. doi: 10.1007/11776178_3.

[8] Hagit Attiya and Jennifer Welch. Distributed Computing. Red. by
Albert Y. Zomaya. Wiley Series on Parallel and Distributed Com-
puting. Hoboken, NJ, USA: John Wiley & Sons, Inc., Apr. 8, 2004.
isbn: 978-0-471-45324-6. doi: 10.1002/0471478210.

75

https://doi.org/10.1109/SFCS.1987.7
https://doi.org/10.1145/800213.806523
https://doi.org/10.1145/800213.806523
https://doi.org/10.1137/S0363012993249195
https://doi.org/10.1109/TAC.2012.2224251
https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/11776178_3
https://doi.org/10.1002/0471478210

References 76

[9] Chen Avin, Michal Koucky, and Zvi Lotker. “How to Explore a
Fast-Changing World”. In: (Feb. 10, 2008), p. 14.

[10] Baruch Awerbuch and Shimon Even. “Efficient and Reliable Broad-
cast Is Achievable in an Eventually Connected Network(Extended
Abstract)”. In: Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing. PODC ’84. Association for
Computing Machinery, Aug. 27, 1984, pp. 278–281. doi: 10.1145/
800222.806754.

[11] Jacques Bahi, Raphaël Couturier, and Flavien Vernier. “Syn-
chronous Distributed Load Balancing on Dynamic Networks”.
In: Journal of Parallel and Distributed Computing 65.11 (Nov. 2005),
pp. 1397–1405. doi: 10.1016/j.jpdc.2005.05.007.

[12] Tucker Balch and Ron C. Arkin. “Behavior-Based Formation Con-
trol for Multirobot Teams”. In: IEEE Transactions on Robotics and
Automation 14.6 (Dec. 1998), pp. 926–939. doi: 10.1109/70.736776.

[13] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Belmont, Mass.: Athena Scien-
tific, 2014. isbn: 978-1-886529-15-1.

[14] Vincent D. Blondel, Julien M. Hendrickx, Alexander Olshevsky,
and John N. Tsitsiklis. “Convergence in Multiagent Coordination,
Consensus, and Flocking”. In: Proceedings of the 44th IEEE Con-
ference on Decision and Control. IEEE, 2005, pp. 2996–3000. doi:
10.1109/CDC.2005.1582620.

[15] Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno Codenotti,
Peter Gemmell, Albuquerque Nm, and Janos Simon. “Symmetry
Breaking in Anonymous Networks: Characterizations”. In: (1996),
p. 11.

[16] Paolo Boldi and Sebastiano Vigna. “Computing Anonymously
with Arbitrary Knowledge”. In: Proceedings of the Eighteenth An-
nual ACM Symposium on Principles of Distributed Computing -
PODC ’99. ACM Press, 1999, pp. 181–188. doi: 10.1145/301308.
301355.

[17] Paolo Boldi and Sebastiano Vigna. “An Effective Characteriza-
tion of Computability in Anonymous Networks”. In: DISC 2001:
Distributed Computing. Ed. by Jennifer Welch. Vol. 2180. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 33–47. doi: 10.1007/3-540-45414-4_3.

https://doi.org/10.1145/800222.806754
https://doi.org/10.1145/800222.806754
https://doi.org/10.1016/j.jpdc.2005.05.007
https://doi.org/10.1109/70.736776
https://doi.org/10.1109/CDC.2005.1582620
https://doi.org/10.1145/301308.301355
https://doi.org/10.1145/301308.301355
https://doi.org/10.1007/3-540-45414-4_3

References 77

[18] Paolo Boldi and Sebastiano Vigna. “Fibrations of Graphs”. In: Dis-
crete Mathematics 243.1-3 (Jan. 2002), pp. 21–66. doi: 10.1016/
S0012-365X(00)00455-6.

[19] Paolo Boldi and Sebastiano Vigna. “Universal Dynamic Syn-
chronous Self-Stabilization”. In: Distributed Computing 15.3 (July 1,
2002), pp. 137–153. doi: 10.1007/s004460100062.

[20] Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concen-
tration Inequalities : A Non Asymptotic Theory of Independence.
First. Oxford University Press, 2013. 481 pp. isbn: 978-0-19-174710-
6. doi: 10.1093/acprof:oso/9780199535255.001.0001/acprof-
9780199535255.

[21] John Bonner Buck. “Synchronous Rhythmic Flashing of Fireflies”.
In: The Quarterly Review of Biology 13.3 (Sept. 1938), pp. 301–314.
doi: 10.1086/394562.

[22] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform. 2013. url: https : / / web .
archive . org / web / 20150328054135 / https : / / github . com /

ethereum/wiki/wiki/White-Paper.

[23] Joseph Campbell. The Hero with a Thousand Faces. 1949. isbn:
978-1-57731-593-3.

[24] Ming Cao, A. StephenMorse, and Brian D. O. Anderson. “Reaching
a Consensus in a Dynamically Changing Environment: A Graphi-
cal Approach”. In: SIAM Journal on Control and Optimization 47.2
(Jan. 2008), pp. 575–600. doi: 10.1137/060657005.

[25] Ming Cao, A. StephenMorse, and Brian D. O. Anderson. “Reaching
a Consensus in a Dynamically Changing Environment: Conver-
gence Rates, Measurement Delays, and Asynchronous Events”.
In: SIAM Journal on Control and Optimization 47.2 (Jan. 2008),
pp. 601–623. doi: 10.1137/060657029.

[26] Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola
Santoro, and Masafumi Yamashita. “On the Expressivity of Time-
Varying Graphs”. In: Theoretical Computer Science. Fundamentals
of Computation Theory 590 (July 26, 2015), pp. 27–37. doi: 10.
1016/j.tcs.2015.04.004.

https://doi.org/10.1016/S0012-365X(00)00455-6
https://doi.org/10.1016/S0012-365X(00)00455-6
https://doi.org/10.1007/s004460100062
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001/acprof-9780199535255
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001/acprof-9780199535255
https://doi.org/10.1086/394562
https://web.archive.org/web/20150328054135/https://github.com/ethereum/wiki/wiki/White-Paper
https://web.archive.org/web/20150328054135/https://github.com/ethereum/wiki/wiki/White-Paper
https://web.archive.org/web/20150328054135/https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1137/060657005
https://doi.org/10.1137/060657029
https://doi.org/10.1016/j.tcs.2015.04.004
https://doi.org/10.1016/j.tcs.2015.04.004

References 78

[27] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and
Nicola Santoro. “Time-Varying Graphs and Dynamic Networks”.
In: International Journal of Parallel, Emergent and Distributed Sys-
tems 27.5 (Oct. 1, 2012), pp. 387–408. doi: 10.1080/17445760.2012.
668546.

[28] Bernadette Charron-Bost. Orientation and Connectivity Based Cri-
teria for Asymptotic Consensus. Mar. 8, 2013. arXiv: 1303.2043
[cs].

[29] Bernadette Charron-Bost. Geometric Bounds for Convergence Rates
of Averaging Algorithms. July 9, 2020. arXiv: 2007.04837 [cs.MA].

[30] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak.
“Approximate Consensus in Highly Dynamic Networks: The Role
of Averaging Algorithms”. In: (Nov. 12, 2014). arXiv: 1408.0620
[cs].

[31] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak.
“Approximate Consensus in Highly Dynamic Networks: The Role
of Averaging Algorithms”. In: Automata, Languages, and Program-
ming. ICALP 2015. Ed. by Magnús M. Halldórsson, Kazuo Iwama,
Naoki Kobayashi, and Bettina Speckmann. Vol. 9135. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2015, pp. 528–
539. doi: 10.1007/978-3-662-47666-6_42.

[32] Bernadette Charron-Bost and Patrick Lambein-Monette. Random-
ization and Quantization for Average Consensus. Apr. 29, 2018.
arXiv: 1804.10919 [cs.MA].

[33] Bernadette Charron-Bost and Patrick Lambein-Monette. “Ran-
domization and Quantization for Average Consensus”. In: 2018
IEEE Conference on Decision and Control (CDC). IEEE, Dec. 2018,
pp. 3716–3721. doi: 10.1109/CDC.2018.8619817.

[34] Bernadette Charron-Bost and Patrick Lambein-Monette. Average
Consensus: A Little Learning Goes A LongWay. Oct. 12, 2020. arXiv:
2010.05675 [cs].

[35] Bernadette Charron-Bost and Shlomo Moran.MinMax Algorithms
for Stabilizing Consensus. June 21, 2019. arXiv: 1906.09073 [cs].

[36] Bernadette Charron-Bost and Shlomo Moran. “The Firing Squad
Problem Revisited”. In: Theoretical Computer Science 793 (Nov.
2019), pp. 100–112. doi: 10.1016/j.tcs.2019.07.023.

https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://arxiv.org/abs/1303.2043
https://arxiv.org/abs/1303.2043
https://arxiv.org/abs/2007.04837
https://arxiv.org/abs/1408.0620
https://arxiv.org/abs/1408.0620
https://doi.org/10.1007/978-3-662-47666-6_42
https://arxiv.org/abs/1804.10919
https://doi.org/10.1109/CDC.2018.8619817
https://arxiv.org/abs/2010.05675
https://arxiv.org/abs/1906.09073
https://doi.org/10.1016/j.tcs.2019.07.023

References 79

[37] Bernadette Charron-Bost and André Schiper. “The Heard-Of
Model: Computing in Distributed Systems with Benign Faults”. In:
Distributed Computing 22.1 (Apr. 2009), pp. 49–71. doi: 10.1007/
s00446-009-0084-6.

[38] Samprit Chatterjee. “Reaching a Consensus: Some Limit Theo-
rems”. In: Proceedings of the 40th Session of the International Statis-
tical Institute, Warsaw, Poland, 1975. Vol. 3. 1975, pp. 156–160.

[39] Samprit Chatterjee and Eugene Seneta. “Towards Consensus:
Some Convergence Theorems on Repeated Averaging”. In: Journal
of Applied Probability 14.1 (Mar. 1977), pp. 89–97. doi: 10.2307/
3213262. JSTOR: 3213262.

[40] Bernard Chazelle. “The Total S-Energy of a Multiagent System”.
In: SIAM Journal on Control and Optimization 49.4 (Jan. 2011),
pp. 1680–1706. doi: 10.1137/100791671.

[41] Felipe Cucker and Steve Smale. “Emergent Behavior in Flocks”. In:
IEEE Transactions on Automatic Control 52.5 (May 2007), pp. 852–
862. doi: 10.1109/TAC.2007.895842.

[42] George Cybenko. “Dynamic Load Balancing for Distributed Mem-
ory Multiprocessors”. In: Journal of Parallel and Distributed Com-
puting 7.2 (Oct. 1989), pp. 279–301. doi: 10.1016/0743-7315(89)
90021-X.

[43] Ariel Daliot, Danny Dolev, and Hanna Parnas. “Self-Stabilizing
Pulse Synchronization Inspired by Biological Pacemaker Net-
works”. In: Self-Stabilizing Systems. Ed. by Shing-Tsaan Huang
and Ted Herman. Red. by Gerhard Goos, Juris Hartmanis, and
Jan van Leeuwen. Vol. 2704. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 32–48. doi: 10.1007/3-540-
45032-7_3.

[44] Charles Darwin. On the Origin of Species By Means of Natural
Selection Or, the Preservation of Favoured Races in the Struggle
for Life. First. John Murray, 1859. 502 pp. url: https : / / www .
gutenberg.org/ebooks/1228.

[45] Steve Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. STD 86. RFC Editor, July 2017. doi: 10 . 17487 /
RFC8200.

https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.2307/3213262
https://doi.org/10.2307/3213262
http://www.jstor.org/stable/3213262
https://doi.org/10.1137/100791671
https://doi.org/10.1109/TAC.2007.895842
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1007/3-540-45032-7_3
https://doi.org/10.1007/3-540-45032-7_3
https://www.gutenberg.org/ebooks/1228
https://www.gutenberg.org/ebooks/1228
https://doi.org/10.17487/RFC8200
https://doi.org/10.17487/RFC8200

References 80

[46] Morris H. DeGroot. “Reaching a Consensus”. In: Journal of the
American Statistical Association 69.345 (Mar. 1974), pp. 118–121. doi:
10.2307/2285509. JSTOR: 2285509.

[47] Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin New-
port. “Smoothed Analysis of Dynamic Networks”. In: Distributed
Computing 31.4 (Aug. 2018), pp. 273–287. doi: 10.1007/s00446-
017-0300-8.

[48] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Im-
possibility of Distributed Consensus with One Faulty Process”. In:
Journal of the ACM 32.2 (Apr. 1, 1985), pp. 374–382. doi: 10.1145/
3149.214121.

[49] Matthias Függer, Thomas Nowak, and Kyrill Winkler. “On the
Radius of Nonsplit Graphs and Information Dissemination in
Dynamic Networks”. In: Discrete Applied Mathematics 282 (Aug. 15,
2020), pp. 257–264. doi: 10.1016/j.dam.2020.02.013.

[50] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. “Algorand: Scaling Byzantine Agreements for
Cryptocurrencies”. In: Proceedings of the 26th Symposium on Oper-
ating Systems Principles. SOSP ’17. Association for Computing Ma-
chinery, Oct. 14, 2017, pp. 51–68. doi: 10.1145/3132747.3132757.

[51] Jim N. Gray. “Notes on Data Base Operating Systems”. In: Oper-
ating Systems. Ed. by R. Bayer, R. M. Graham, and G. Seegmüller.
Red. by G. Goos, J. Hartmanis, P. Brinch Hansen, D. Gries, C. Moler,
G. Seegmüller, J. Stoer, and N. Wirth. Vol. 60. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1978, pp. 393–481.
doi: 10.1007/3-540-08755-9_9.

[52] Frank Harary and Ronald C. Read. “Is the Null-Graph a Pointless
Concept?” In: Graphs and Combinatorics. Ed. by Ruth A. Bari and
Frank Harary. Red. by A. Dold and B. Eckmann. Vol. 406. Lecture
Notes in Mathematics. Springer Berlin Heidelberg, 1974, pp. 37–44.
doi: 10.1007/BFb0066433.

[53] Wilfred Keith Hastings. “Monte Carlo Sampling Methods Using
Markov Chains and Their Applications”. In: Biometrika 57 (1 Apr. 1,
1970), pp. 97–109. doi: 10.1093/biomet/57.1.97.

https://doi.org/10.2307/2285509
http://www.jstor.org/stable/2285509
https://doi.org/10.1007/s00446-017-0300-8
https://doi.org/10.1007/s00446-017-0300-8
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1016/j.dam.2020.02.013
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/BFb0066433
https://doi.org/10.1093/biomet/57.1.97

References 81

[54] Rainer Hegselmann and Ulrich Krause. “Opinion Dynamics and
BoundedConfidenceModels, Analysis and Simulation”. In: Journal
of Artificial Societies and Social Simulation 5.3 (June 30, 2002). url:
https://econpapers.repec.org/article/jasjasssj/2002-5-

2.htm.

[55] Julien M. Hendrickx and Vincent D. Blondel. “Convergence of
Linear andNon-Linear Versions of Vicsek’sModel”. In: Proceedings
of the 17th International Symposium on Mathematical Theory of
Networks and Systems. July 2006, pp. 1229–1240. url: http://hdl.
handle.net/2078.1/91888.

[56] Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis. “Dis-
tributed Anonymous Discrete Function Computation”. In: IEEE
Transactions on Automatic Control 56.10 (Oct. 2011), pp. 2276–2289.
doi: 10.1109/TAC.2011.2163874.

[57] Julien M. Hendrickx and John N. Tsitsiklis. “Fundamental Limita-
tions for Anonymous Distributed Systems with Broadcast Com-
munications”. In: 2015 53rd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). IEEE, Sept. 2015,
pp. 9–16. doi: 10.1109/ALLERTON.2015.7446980.

[58] Juho Hirvonen and Jukka Suomela. Distributed Algorithms 2020.
2020. 221 pp. url: https://jukkasuomela.fi/da2020.

[59] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. In:
Computing in Science Engineering 9.3 (May 2007), pp. 90–95. doi:
10.1109/MCSE.2007.55.

[60] Ali Jadbabaie, Jie Lin, and A. Stephen Morse. “Coordination of
Groups of Mobile Autonomous Agents Using Nearest Neighbor
Rules”. In: IEEE Transactions on Automatic Control 48.6 (June 2003),
pp. 988–1001. doi: 10.1109/TAC.2003.812781.

[61] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-Based
Computation of Aggregate Information”. In: 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings.
IEEE Computer. Soc, 2003, pp. 482–491. doi: 10.1109/SFCS.2003.
1238221.

[62] David Kempe, Jon Kleinberg, and Amit Kumar. “Connectivity
and Inference Problems for Temporal Networks”. In: Journal of
Computer and System Sciences 64.4 (June 1, 2002), pp. 820–842.
doi: 10.1006/jcss.2002.1829.

https://econpapers.repec.org/article/jasjasssj/2002-5-2.htm
https://econpapers.repec.org/article/jasjasssj/2002-5-2.htm
http://hdl.handle.net/2078.1/91888
http://hdl.handle.net/2078.1/91888
https://doi.org/10.1109/TAC.2011.2163874
https://doi.org/10.1109/ALLERTON.2015.7446980
https://jukkasuomela.fi/da2020
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1006/jcss.2002.1829

References 82

[63] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. “Distributed
Computation in Dynamic Networks”. In: Proceedings of the Forty-
Second ACM Symposium on Theory of Computing. STOC ’10. Asso-
ciation for Computing Machinery, June 5, 2010, pp. 513–522. doi:
10.1145/1806689.1806760.

[64] Fabian Kuhn, Yoram Moses, and Rotem Oshman. “Coordinated
Consensus in Dynamic Networks”. In: Proceedings of the 30th An-
nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing. PODC ’11. Association for Computing Machinery,
June 6, 2011, pp. 1–10. doi: 10.1145/1993806.1993808.

[65] Fabian Kuhn and Rotem Oshman. “Dynamic Networks: Models
and Algorithms”. In: ACM SIGACT News 42.1 (Mar. 21, 2011), p. 82.
doi: 10.1145/1959045.1959064.

[66] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem”. In: ACM Transactions on Programming
Languages and Systems 4.3 (1982), p. 20.

[67] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. “Stream
Graphs and Link Streams for the Modeling of Interactions over
Time”. In: Social Network Analysis and Mining 8.1 (Oct. 3, 2018),
p. 61. doi: 10.1007/s13278-018-0537-7.

[68] Riccardo Lucchese and Damiano Varagnolo. “Average Consensus
via Max Consensus”. In: IFAC-PapersOnLine. 5th IFAC Workshop
on Distributed Estimation and Control in Networked Systems
NecSys 2015 48.22 (Jan. 1, 2015), pp. 58–63. doi: 10.1016/j.ifacol.
2015.10.307.

[69] Nancy A. Lynch. Distributed Algorithms. The Morgan Kaufmann
Series in Data Management Systems. San Francisco, Calif: Morgan
Kaufmann, 1997. 872 pp. isbn: 978-1-55860-348-6.

[70] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of State Cal-
culations by Fast Computing Machines. AECU-2435; LADC-1359.
Los Alamos Scientific Lab., Los Alamos, NM (United States); Univ.
of Chicago, IL (United States), Mar. 6, 1953. doi: 10.2172/4390578.

[71] Renato E. Mirollo and Steven H. Strogatz. “Synchronization of
Pulse-Coupled Biological Oscillators”. In: SIAM Journal on Ap-
plied Mathematics 50.6 (Dec. 1990), pp. 1645–1662. doi: 10.1137/
0150098.

https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1145/1993806.1993808
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1016/j.ifacol.2015.10.307
https://doi.org/10.1016/j.ifacol.2015.10.307
https://doi.org/10.2172/4390578
https://doi.org/10.1137/0150098
https://doi.org/10.1137/0150098

References 83

[72] Luc Moreau. “Stability of Multiagent Systems with Time-
Dependent Communication Links”. In: IEEE Transactions on Au-
tomatic Control 50.2 (Feb. 2005), pp. 169–182. doi: 10.1109/TAC.
2004.841888.

[73] Damon Mosk-Aoyama and Devavrat Shah. “Computing Separable
Functions via Gossip”. In: Proceedings of the Twenty-Fifth Annual
ACM Symposium on Principles of Distributed Computing. PODC
’06. Association for Computing Machinery, July 23, 2006, pp. 113–
122. doi: 10.1145/1146381.1146401.

[74] S. Muthukrishnan. “First- and Second-Order Diffusive Methods
for Rapid, Coarse, Distributed Load Balancing”. In: Theory of Com-
puting Systems 31.4 (July 1, 1998), pp. 331–354. doi: 10 . 1007 /
s002240000092.

[75] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008-12.

[76] Angelia Nedić and Ji Liu. “On Convergence Rate of Weighted-
Averaging Dynamics for Consensus Problems”. In: IEEE Trans-
actions on Automatic Control 62.2 (Feb. 2017), pp. 766–781. doi:
10.1109/TAC.2016.2572004.

[77] Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. “Network
Topology and Communication-Computation Tradeoffs in Decen-
tralized Optimization”. In: Proceedings of the IEEE 106.5 (May 2018),
pp. 953–976. doi: 10.1109/JPROC.2018.2817461.

[78] Angelia Nedić, Alexander Olshevsky, Asuman Ozdaglar, and John
N. Tsitsiklis. “On Distributed Averaging Algorithms and Quanti-
zation Effects”. In: IEEE Transactions on Automatic Control 54.11
(Nov. 2009), pp. 2506–2517. doi: 10.1109/TAC.2009.2031203.

[79] Regina O’Dell and Roger Wattenhofer. “Information Dissemina-
tion in Highly Dynamic Graphs”. In: Proceedings of the 2005 Joint
Workshop on Foundations of Mobile Computing. DIALM-POMC ’05.
Association for Computing Machinery, Sept. 2, 2005, pp. 104–110.
doi: 10.1145/1080810.1080828.

[80] Alex Olshevsky. “Linear Time Average Consensus and Distributed
Optimization on Fixed Graphs”. In: SIAM Journal on Control and
Optimization 55.6 (Jan. 2017), pp. 3990–4014. doi: 10 . 1137 /
16M1076629.

https://doi.org/10.1109/TAC.2004.841888
https://doi.org/10.1109/TAC.2004.841888
https://doi.org/10.1145/1146381.1146401
https://doi.org/10.1007/s002240000092
https://doi.org/10.1007/s002240000092
https://doi.org/10.1109/TAC.2016.2572004
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1109/TAC.2009.2031203
https://doi.org/10.1145/1080810.1080828
https://doi.org/10.1137/16M1076629
https://doi.org/10.1137/16M1076629

References 84

[81] Alex Olshevsky and John N. Tsitsiklis. “Convergence Speed in
Distributed Consensus and Averaging”. In: SIAM Journal on Con-
trol and Optimization 48.1 (Jan. 2009), pp. 33–55. doi: 10.1137/
060678324.

[82] Alex Olshevsky and John N. Tsitsiklis. “A Lower Bound for Dis-
tributed Averaging Algorithms on the Line Graph”. In: IEEE Trans-
actions on Automatic Control 56.11 (Nov. 2011), pp. 2694–2698. doi:
10.1109/TAC.2011.2159652.

[83] Alex Olshevsky and John N. Tsitsiklis. “Convergence Speed in
Distributed Consensus and Averaging”. In: SIAM Review 53.4 (Jan.
2011), pp. 747–772. doi: 10.1137/110837462.

[84] Alex Olshevsky and John N. Tsitsiklis. “Degree Fluctuations and
the Convergence Time of Consensus Algorithms”. In: IEEE Trans-
actions on Automatic Control 58.10 (Oct. 2013), pp. 2626–2631. doi:
10.1109/TAC.2013.2257969.

[85] Rotem Oshman. “Distributed Computation in Wireless and Dy-
namic Networks”. phd. Cambridge, Massachusetts, USA: Mas-
sachusetts Institute of Technology, Sept. 2012. 221 pp. url: https:
//dspace.mit.edu/handle/1721.1/78456.

[86] David Pascucci, Maria Rubega, and Gijs Plomp. “Modeling Time-
Varying Brain Networks with a Self-Tuning Optimized Kalman
Filter”. In: PLOS Computational Biology 16.8 (Aug. 17, 2020). Ed. by
Francesco P. Battaglia, e1007566. doi: 10.1371/journal.pcbi.
1007566.

[87] Marshall Pease, Robert Shostak, and Leslie Lamport. “Reaching
Agreement in the Presence of Faults”. In: Journal of the ACM
(JACM) 27.2 (Apr. 1980), pp. 228–234. doi: 10 . 1145 / 322186 .
322188.

[88] David Peleg. Distributed Computing: A Locality-Sensitive Approach.
USA: Society for Industrial and Applied Mathematics, 2000. isbn:
978-0-89871-464-7.

[89] Twitter Pundits. “Bitcoin solves the Byzantine Generals’ Problem”.
url: https://twitter.com/search?q=%22bitcoin%20solves%
20the%20byzantine%20generals%e2%80%99%20problem%22 (vis-
ited on 10/27/2020).

https://doi.org/10.1137/060678324
https://doi.org/10.1137/060678324
https://doi.org/10.1109/TAC.2011.2159652
https://doi.org/10.1137/110837462
https://doi.org/10.1109/TAC.2013.2257969
https://dspace.mit.edu/handle/1721.1/78456
https://dspace.mit.edu/handle/1721.1/78456
https://doi.org/10.1371/journal.pcbi.1007566
https://doi.org/10.1371/journal.pcbi.1007566
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://twitter.com/search?q=%22bitcoin%20solves%20the%20byzantine%20generals%e2%80%99%20problem%22
https://twitter.com/search?q=%22bitcoin%20solves%20the%20byzantine%20generals%e2%80%99%20problem%22

References 85

[90] Wei Ren. “Consensus Strategies for Cooperative Control of Vehicle
Formations”. In: IET Control Theory & Applications 1.2 (Mar. 1,
2007), pp. 505–512. doi: 10.1049/iet-cta:20050401.

[91] Craig W. Reynolds. “Flocks, Herds, and Schools: A Distributed
Behavioral Model”. In: Computer Graphics 21.4 (July 1987), p. 10.

[92] Nicola Santoro and PeterWidmayer. “Time Is Not a Healer: Prelim-
inary Version”. In: STACS 89. Ed. by B. Monien and R. Cori. Red. by
G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D.
Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, and
N. Wirth. Vol. 349. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1989, pp. 304–313. doi: 10.1007/BFb0028994.

[93] Eugene Seneta. Non-Negative Matrices and Markov Chains.
Springer Series in Statistics. New York, NY: Springer New York,
1981. isbn: 978-0-387-29765-1. doi: 10.1007/0-387-32792-4.

[94] Ichiro Suzuki and Masafumi Yamashita. “Distributed Anonymous
Mobile Robots: Formation of Geometric Patterns”. In: SIAM Jour-
nal on Computing 28.4 (Jan. 1999), pp. 1347–1363. doi: 10.1137/
S009753979628292X.

[95] Gerard Tel. Introduction to Distributed Algorithms. 2nd ed. Cam-
bridge University Press, 2000. isbn: 978-0-521-79483-1. doi: 10.
1017/CBO9781139168724.

[96] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. “Dis-
tributed Asynchronous Deterministic and Stochastic Gradient Op-
timization Algorithms”. In: IEEE Transactions on Automatic Control
31.9 (Sept. 1986), pp. 803–812. doi: 10.1109/TAC.1986.1104412.

[97] John Nikolaos Tsitsiklis. “Problems in Decentralized Decision
Making and Computation”. phd. Cambridge, Massachusetts, USA:
Massachusetts Institute of Technology, Nov. 1984. 271 pp. url:
https://dspace.mit.edu/handle/1721.1/15254.

[98] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and
Ofer Shochet. “Novel Type of Phase Transition in a System of Self-
Driven Particles”. In: Physical Review Letters 75.6 (Aug. 7, 1995),
pp. 1226–1229. doi: 10.1103/PhysRevLett.75.1226.

[99] Lin Xiao and Stephen Boyd. “Fast Linear Iterations for Distributed
Averaging”. In: Systems & Control Letters 53.5 (Sept. 2004), pp. 65–
78. doi: 10.1016/j.automatica.2013.02.015.

https://doi.org/10.1049/iet-cta:20050401
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/0-387-32792-4
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1017/CBO9781139168724
https://doi.org/10.1017/CBO9781139168724
https://doi.org/10.1109/TAC.1986.1104412
https://dspace.mit.edu/handle/1721.1/15254
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1016/j.automatica.2013.02.015

References 86

[100] Lin Xiao, Stephen Boyd, and Sanjay Lall. “A Scheme for Robust
Distributed Sensor Fusion Based on Average Consensus”. In: IPSN
2005. Fourth International Symposium on Information Processing in
Sensor Networks, 2005. IEEE, 2005, pp. 63–70. doi: 10.1109/IPSN.
2005.1440896.

[101] Masafumi Yamashita and Tsunehiko Kameda. “Computing on
Anonymous Networks”. In: (1988), p. 14.

[102] Masafumi Yamashita and Tsunehiko Kameda. “Computing on
Anonymous Networks: Part I-Characterizing the Solvable Cases”.
In: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS 7.1 (1996), p. 21.

[103] Masafumi Yamashita and Tsunehiko Kameda. “Computing on
Anonymous Networks: Part II-Decision and Membership Prob-
lems”. In: IEEE Transactions on Parallel and Distributed Systems 7
(Jan. 1996).

https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1109/IPSN.2005.1440896

Titre : Consensus de moyenne dans les réseaux dynamiques anonymes

Mots clés : algorithmes distribués; réseaux dynamiques; consensus de moyenne; consensus asymptotique

Résumé : L’avènement de composants électroniques compacts et bon
marché présage d’une diversification rapide d’applications dans les-
quelles des agents autonomes en réseau travaillent à réaliser un objectif
commun. Ces tâches complexes, en dépit de leur diversité, dépendent
de la maîtrise d’un petit nombre de primitives de coordination, dont
l’implémentation programmatique par des agents à faible puissance et
capacité calculatoire constitue l’un des enjeux majeurs du développe-
ment de telles applications réparties.
Parmi ces dernières, citons par exemple la coordination du mouvement
de réseaux mobiles et véhiculaires, l’aggrégation et le traitement distri-
bué de mesures relevées par des réseaux de capteurs, et le a répartition
de charge en temps réel au sein d’un réseau fournissant un service à
grande échelle. L’implémentation distribuée de telles primitives se doit
de répondre à différentes contraintes, qui ne résultent pas toutes de la
nature numérique des entités constitutives du réseau ; en conséquence,
l’étude théorique de ces primitives s’applique à la modélisation de com-
portements complexes de systèmes étudiés par les sciences naturelles,
tels que les mouvements collectifs animaliers ou le système nerveux.
Cette monographie traite spécifiquement d’algorithmes distribués qui
réalisent le calcul asymptotique de la moyenne de valeurs initialement
détenues par les agents d’un réseau dont les liens de communication
sont amenés à changer au cours du temps, ceci en l’absence de co-
ordination centralisée. Ces algorithmes doivent être implémentables
localement, en n’exploitant que l’information qui peut être collectée par
les agents lors de leurs interactions sur le réseau, et en l’absence de
mécanisme particulier pour marquer le départ, tel qu’un signal global
ou un agent initiateur.
Nous développons des algorithmes qui réalisent un tel consensus de

moyenne sur des réseaux dynamiques présentant certaines propriétés
locales. Ces algorithmes sont simples à décrire, légers à implémenter,
et opèrent en temps polynomial en le nombre d’agents.
Sur des réseaux présentant des interactions bidirectionnelles, nous four-
nissons un algorithme déterministe qui réalise le calcul asymptotique
de la moyenne dès lors que le réseau ne se sépare jamais de façon
permanente. Pour le cas plus général d’interactions asymétriques, nous
présentons un algorithme Monte Carlo stabilisant qui est efficace en
termes de complexité spatiale et opère en temps linéaire. Ce dernier
algorithme admet une extension dont les exécutions terminent en tolé-
rant un départ asynchrone des agents.
Nos algorithmes sont à considérer en regard de résultats et de mé-
thodes qui reposent sur une information globale fournie externalement
aux agents, sur des hypothèses de brisure initiale de symétrie, ou qui
exploitent une topologie particulière et ne se généralisent pas à des
réseaux quelconques. Dans ce contexte, nous contribuons des algo-
rithmes dont les conditions de validité sont purement locales dans le
temps et l’espace : pour le modèle d’interactions bidirectionnelles, nous
montrons que le calcul asymptotique de la moyenne est réalisable par
des agents déterministes, là où pour le modèle général nous fournis-
sons des algorithmes randomisés dont les performances asymptotiques
sont bien meilleures que celles de protocoles à information complète et
robustes aux départs asynchrones.
Par-delà l’intérêt immédiat à l’obtention d’algorithmes efficaces implé-
mentables, notre étude s’inscrit dans un effort de cartographie des
limites que la localité des interactions impose aux applications répar-
ties.

Title : Average consensus in anonymous dynamic networks

Keywords : distributed algorithms; dynamic networks; average consensus; asymptotic consensus

Abstract : Compact and cheap electronic components announce the
near-future development of applications in which networked systems of
autonomous agents are made to carry over complex tasks. These, in
turn, depend on a small number of coordination primitives, which need
to be programmatically implemented into potentially low-powered, and
computationally limited, agents.
Such applications include for example the coordination of the collective
motion of mobile and vehicular networks, the distributed aggregation
and processing of data measured locally in sensor networks, and the
on-line repartition of processing load in the computer farms powering
wide-scale services. As they address constraints that are not specific
to the digital nature of the network such primitives also serve to model
complex behavior of natural systems, such as flocks and neural net-
works.
This monograph focuses on providing distributed algorithms that asymp-
totically compute the average of initial values, initially present at each
agent of a networked system with time-varying communication links and
in the absence of centralized control. Additionally, we consider the wea-
ker problem of getting the agents to asymptotically agree on any value
within the initial bounds. We focus on locally implementable algorithms,
which leverage no information beyond what the agents can acquire by
themselves, and which need no bootstrapping mechanism like a global
start signal or a leader agent.
We provide distributed average consensus algorithms that operate over
dynamic networks given different local assumptions. These algorithms
are computationally simple and operate in polynomial time in the num-
ber of agents.
For bidirectional communications, we give a deterministic algorithm

which asymptotically computes the average as long as the network
never becomes permanently disconnected. For the general case of
asymmetric communications, we provide a stabilizing Monte Carlo algo-
rithm that is efficient in bandwidth and memory and operates in linear
time, along with an extension by which the algorithm can be made to
uniformly terminate over any connected network in which agents may
start asynchronously.
This contrasts with a plethora of results and techniques in which agents
are provided external information – the size of the system, a bound over
their degree, – helped with exogenous symmetry breaking – a leader
agent, unique identifiers, – or where the network is expected to conform
to a specific shape – a ring, a a complete network, a regular graph.
Indeed, because very different networks may look alike to the agents,
they are limited in what they can learn locally, and many functions are
impossible to compute in a fully distributed manner without assuming
some structure in the network or additional symmetry-breaking device.
Given these stringent constraints, our contribution is to offer algorithms
whose validity depends uniquely on local and instantaneous conditions.
In the bidirectional model, we show that anonymous deterministic agents
can asymptotically compute the average in polynomial time. For the ge-
neral model of directed interactions, we allow agents to consult random
oracles. Under those conditions, full information protocols are capable
of solving any problem, and so we focus on the spatial complexity and
tolerance to a lack of initial coordination in the agents, while offering
stronger termination guarantees than in the bidirectional case.
Beyond the fact that locally implementable algorithms are eminently de-
sirable, our study contributes to mapping the limits that local interactions
impose on networks.

ECOLE
DOCTORALE

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	Acknowledgements
	Introduction
	Computation in dynamic networks
	Introduction
	Relations, graphs, dynamic graphs
	Distributed model
	Big-step operational semantics
	Computational tasks

	A little learning goes a long way
	Introduction
	Affine update rules
	Euclidian geometries for update rules
	The EqualNeighbor and Metropolis update rules
	Degree tracking for stabilizing weights
	An affine algorithm

	Randomization and Quantization
	Introduction
	Preliminaries
	Randomized algorithm
	Quantization
	Decision
	Simulations

	Parting thoughts
	References

