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RÉSUMÉ

Initiée dans les années 1960 par l’économiste américain Gary Becker, le développement
de la théorie du capital humain a considérablement ouvert le champ d’investigation de la sci-
ence économique. Au cours des deux dernières décennies, de nombreux travaux de recherche en
économie de l’éducation ont cherché à identifier les caractéristiques du système ou de l’environ-
nement scolaire qui permettent aux individus d’acquérir un maximum de compétences, de
savoirs et d’informations au cours de leur scolarité. Cette thèse s’inscrit dans ce courant de
recherche et étudie plus spécifiquement deux aspects de l’environnement scolaire qui ont retenu
l’attention des économistes : la productivité des enseignants et l’influence des camarades de
classe.

Le premier chapitre de cette thèse étudie dans quelle mesure les pratiques pédagogiques
des enseignants aux États-Unis permettent d’expliquer les différences de performances de leurs
élèves en mathématiques. Dans un premier temps, nous montrons que chaque heure passée
en classe à étudier les mathématiques engendre une progression significative des élèves dans
cette discipline. Nous montrons ensuite que la productivité de l’heure d’enseignement est très
fortement corrélée avec la mise en place de pratiques pédagogiques interactives, qui requièrent
une participation active de la part des élèves. Plus spécifiquement, chaque heure passée avec un
enseignant mettant l’accent sur ce type de pratiques est 2 à 3 fois plus productive qu’une heure
passée avec un enseignant mettant l’accent sur des pratiques plus traditionnelles telles que le
cours magistral.

Le deuxième chapitre de cette thèse étudie l’impact d’une politique publique visant à amé-
liorer les pratiques des enseignants, à savoir le système d’inspection individuelle des enseignants
du second degré en France. Dans ce chapitre, nous montrons que les performances des élèves
en maths au Diplôme National du Brevet (DNB) s’améliorent significativement à la suite d’une
inspection de leur enseignant de mathématiques, non seulement pour les élèves assignés à
l’enseignant l’année de l’inspection, mais également pour les élèves assignés à cet enseignant
les années suivantes, suggérant une amélioration durable de ses compétences pédagogiques. De
surcroît, l’inspection des enseignants de maths de 3ème produit des effets bénéfiques persistants
chez les élèves, qui se traduisent par une augmentation de leur probabilité de choisir une filière
scientifique en première et d’obtenir un baccalauréat scientifique au cours des années suivantes.
Finalement, les effets bénéfiques d’une inspection sur les performances des élèves en maths et
sur leur trajectoire scolaire sont particulièrement marqués pour les enseignants de l’éducation
prioritaire, lesquels font face à des contextes d’enseignement plus difficiles.

Le troisième et dernier chapitre de cette thèse étudie les effets du genre des camarades de
classe de 3ème sur le parcours scolaire des élèves en France. Deux ensembles de résultats se
dégagent de l’analyse. D’une part, l’influence des camarades de classes est persistante au cours
du temps, puisque la proportion de filles parmi les camarades de classes en 3ème influence non
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seulement la réussite au brevet, mais également le taux de décrochage scolaire, le choix des fil-
ières après le collège et le taux d’obtention du baccalauréat. D’autre part, la proportion de filles
parmi les camarades de classes en 3ème a des effets bénéfiques sur la scolarité des filles alors
qu’elle a des effets négatifs sur celle des garçons. Plus spécifiquement, cette proportion réduit
le taux de décrochage scolaire des filles après la 3ème et augmente leur taux d’obtention d’un
baccalauréat général, particulièrement dans la filière scientifique. A l’inverse, elle augmente
la proportion de garçons choisissant une filière technique après le collège et réduit leur taux
d’obtention d’un baccalauréat général.

Mots clés: Économie de l’Éducation, Politique publique, Pratiques pédagogiques, Genre, Ef-
fets de pairs.
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SUMMARY

The Human Capital Theory developed by Gary Becker in the 60’s substantially widened the
area of investigation of economics. Over the last two decades, many studies in the economics of
education intended to identify the characteristics of an educational system which enable individ-
uals to acquire as much skills, knowledge and information as possible. This thesis contributes
to this literature by studying two aspects of the educational environment that has particularly
attracted economists’ attention over recent years: teacher productivity and peer effects in the
classroom.

The first chapter of this thesis investigates the extent to which teaching practices imple-
mented by math teachers in the US relate to their students’ math performance. First, it shows
that every single hour spent in the classroom studying mathematics generates a significant im-
provement in students’ math performance. Second, it shows that the productivity of instruc-
tional time strongly relates to the implementation of interactive teaching practices, which re-
quire student active participation in the lesson. More precisely, each hour spent with a teacher
putting a high weight on this kind of practices is 2 to 3 times more productive than an hour
spent with a teacher putting a higher weight on traditional practices, such a teacher lecture.

The second chapter of this thesis studies the impact of a public policy aimed at improv-
ing teachers’ practices, namely the individual teacher evaluation system in French secondary
education. In this chapter, we show that students’ performance at the end-of-middle school
national exam significantly improve after the evaluation of their math teacher, not only for stu-
dents taught by an evaluated teacher the year of the evaluation, but also for students taught by
the same teacher on subsequent years, suggesting a long-lasting improvement in teacher peda-
gogical skills. These positive effects persist over time for students, who not only perform better
at the end-of-middle school exam but also choose more often and graduate more often from the
science track in high school. In addition, the positive effects of teacher evaluation are partic-
ularly salient in education priority schools, in contexts where teaching is often very challenging.

The third chapter of this thesis investigates the effect of school peers’ gender on students’
performance and educational careers in French middle schools. First, it shows that the propor-
tion of female peers’ in middle school has persistent effects on students’ educational careers
as it not only affects students’ test score at the end-of-9th-grade national examination, but also
influences their track choices and high school graduation rates several years later. Second, it
shows that a larger share of girls in the classroom has positive effects for girls and negative
effects for boys. More specifically, it reduces girls’ dropout rates and increases their probability
to graduate from an academic track in high school, especially in the scientific track, while it in-
creases boys’ probability to attend a vocational school after 9th grade and decreases their high
school graduation rate.

Keywords: Economics of Education, Public policy, Teaching practices, Gender, Peer effects.
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INTRODUCTION GÉNÉRALE

L’économie de l’éducation : émergence et tendances récentes

Initiée dans les années 60 par l’économiste américain Gary Becker, la théorie du capital humain

a profondément marqué la science économique. Dans son article fondateur intitulé “Invest-

ment in Human Capital: A theoretical analysis" (1962), Becker développe un cadre conceptuel

permettant de comprendre comment les « individus et les sociétés acquièrent des savoirs, des

compétences et des informations en dépensant de l’argent et en dédiant du temps à leur scolar-

ité, aux formations professionnelles ou à d’autres formes d’investissement » (Becker (2011)).

L’investissement en capital humain peut alors être envisagé comme le fruit d’un choix ra-

tionnel, qui permet non seulement aux individus d’améliorer leur situation économique à travers

l’acquisition de compétences valorisées sur le marché du travail, mais également à l’économie

dans son ensemble d’être plus productive, à travers l’augmentation du niveau général des con-

naissances et des compétences. Dès lors, la science économique investit pleinement le champ

de l’éducation, et cherche notamment à établir de manière empirique des liens entre le niveau

moyen de capital humain dans un pays et le niveau de développement économique de ce pays

d’une part, et entre le capital humain d’un individu et sa situation sur le marché du travail

d’autre part. En particulier, les travaux fondateurs de Mincer (1970, 1974) mettent en lumière

la relation positive qui existe entre le niveau d’éducation d’un individu, mesuré par le nombre

d’années d’études qu’il a accompli, et son salaire. Néanmoins, le nombre d’années d’études se

révèle rapidement être une mesure très limitée pour appréhender la notion de capital humain.

Au cours des trois dernières décennies, le développement de tests standardisés cherchant à

mesurer directement les savoirs et les compétences cognitives des élèves de manière systéma-

tique, à l’échelle nationale ou internationale, a ouvert de nouvelles perspectives aux chercheurs

en sciences sociales et a notamment impulsé de nombreux travaux en économie de l’éducation.

Contrairement à la mesure du capital humain basée sur le nombre d’années d’études, qui sup-

pose qu’une année d’étude a un rendement identique d’un individu à un autre et d’un système

scolaire à un autre, ces tests fournissent des mesures plus fines des connaissances et des com-

pétences individuelles et permettent d’introduire des différences de capital humain entre deux

individus ayant le même niveau d’éducation. Dès lors, il devient possible d’étudier les déter-
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minants du rendement d’un système éducatif, autrement dit, d’étudier les caractéristiques du

système ou de l’environnement scolaire qui permettent aux individus d’acquérir un maximum

de capital humain au cours de leur scolarité. Au cours des deux dernières décennies, deux as-

pects de l’environnement scolaire ont particulièrement retenu l’attention des économistes : la

productivité des enseignants et l’influence des camarades de classe (peer effects). Les deux pre-

miers chapitres de cette thèse portent sur la première thématique et le troisième chapitre porte

sur la seconde thématique.

La productivité des enseignants

De récents travaux en économie de l’éducation ont permis de mettre en lumière les grandes

différences qui existent entre enseignants dans leur capacité individuelle à faire progresser leurs

élèves (Rockoff (2004); Rivkin et al. (2005)). Par contraste avec les effets plus modérés des

ressources scolaires traditionnelles telles que la taille des classes ou le temps d’instruction, le

fait de bénéficier de « bons enseignants » a une influence déterminante sur le parcours scolaire

des élèves (Hanushek & Rivkin (2010)). Plus encore, une étude publiée en 2014 montre que ces

effets persistent jusqu’à l’âge adulte, puisque le fait de bénéficier de bons enseignants améliore

la situation individuelle sur le marché du travail plusieurs années après la fin des études (Chetty

et al. (2014)). Dès lors, il est primordial de comprendre ce qui permet à un enseignant d’être

productif, c’est-à-dire de faire progresser ses élèves. Très peu de travaux ont permis de dégager

les déterminants de la productivité des enseignants à ce jour. En particulier, les études à ce sujet

montrent un lien faible, voire inexistant, entre la productivité des enseignants et leurs carac-

téristiques personnelles, telles que le genre, le diplôme ou le niveau de certification (Hanushek

& Woessmann (2011); Harris & Sass (2011)). Dans l’optique d’apporter un éclairage nouveau

sur ces questions, le premier chapitre de cette thèse examine le lien entre les pratiques péda-

gogiques des enseignants et leur productivité et le second chapitre étudie l’impact du système

d’inspection des enseignants sur leur productivité.

Le premier chapitre de cette thèse, intitulé « From teacher quality to teaching quality: in-

structional productivity and teaching practices in the US » étudie dans quelle mesure les pra-

tiques pédagogiques des enseignants aux États-Unis permettent d’expliquer les différences de

performances de leurs élèves en mathématiques. Pour éclairer ces questions, nous nous ap-
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puyons sur les performances d’élèves de 4ème en math à l’issue du test TIMSS 2011. Dans le

cadre de ce test, les élèves sont évalués dans quatre grands sujets des mathématiques : Algèbre,

Dénombrement, Géométrie et Probabilité. Par ailleurs, la multiplicité des programmes scolaires

aux États-Unis génèrent des différences importantes dans le temps d’instruction qui est dédiée

chaque année à ces 4 grands sujets. Sur cette base, il est alors possible de déterminer dans

quelle mesure une heure passée en classe à étudier l’algèbre plutôt que la géométrie génère une

amélioration des performances relatives des élèves en algèbre, par rapport à leur performance

en géométrie, tout en neutralisant leur niveau moyen en mathématiques ainsi que l’ensemble

des facteurs de l’environnement scolaire qui influencent la réussite en mathématiques. De sur-

croît, pour chacun des 4 grands sujets, les élèves sont évalués dans une myriade de sous-sujets,

dont certains n’ont pas été traités au cours de l’année. Les performances des élèves dans des

sous-sujets non traités permettent de vérifier que les enseignants ou les directeurs d’écoles ne

décident pas de l’allocation des heures de cours entre les différents sujets sur la base du niveau

initial relatif des élèves dans chacun des sujets.

Le premier résultat de ce chapitre est que chaque heure passée en classe à étudier les math-

ématiques engendre une progression significative des élèves dans cette discipline. Plus spéci-

fiquement, une heure passée en classe chaque semaine par un élève à étudier un des 4 grands

sujets va générer un surcroît de performance relatif de 0.04 écart-type dans ce sujet1. Ce résultat

étant calculé sur l’ensemble des élèves – et donc des enseignants - évalués aux États-Unis, il

nous permet également de conclure que la productivité moyenne des enseignants de mathéma-

tiques est de 0.04 écart-type de test scores par heure de cours hebdomadaire.

La deuxième partie de ce premier chapitre consiste à examiner dans quelle mesure cette

productivité horaire est reliée aux pratiques pédagogiques des enseignants. Pour ce faire, nous

nous appuyons sur une enquête menée auprès des enseignants de mathématiques en charge des

élèves évalués à la fin de l’année dans le cadre du test TIMSS. Sur la base des informations

issues de cette enquête, nous montrons que la productivité des enseignants est très fortement

corrélée avec la mise en place de pratiques pédagogiques interactives, qui requièrent une partic-

ipation active de la part des élèves pendant le cours. Plus spécifiquement, chaque heure passée

avec un enseignant mettant l’accent sur ce type de pratiques est 2 à 3 fois plus productive

qu’une heure passée avec un enseignant mettant l’accent sur des pratiques plus traditionnelles

1À titre de comparaison, réduire la taille des classes de 5 élèves engendrerait une augmentation des résultats
équivalente (Piketty et al. (2006)).
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telles que le cours magistral ou la mémorisation de concepts et de méthodes de résolution. À

notre connaissance, il s’agit du premier résultat empirique faisant état d’une relation forte en-

tre la productivité horaire des enseignants et un ensemble de pratiques clairement identifiées et

facilement reproductibles. Une exploration des mécanismes sous-jacents aux effets bénéfiques

des pratiques interactives suggère que ces dernières permettent une amélioration de l’appétence

des élèves pour les mathématiques et de leur confiance en leur capacité à réussir dans cette dis-

cipline.

Dans l’ensemble, les résultats obtenus dans le premier chapitre de cette thèse suggèrent que

les grandes disparités de productivité observées entre les enseignants pourraient s’expliquer en

grande partie par les différences d’efficacité de leurs approches pédagogiques, laissant place

à des politiques publiques de formation des enseignants et d’incitation au renouvellement de

leurs pratiques professionnelles. Dans cette optique, le deuxième chapitre de cette thèse, co-

écrit avec Eric Maurin et s’intitulant « Does evaluating teachers make a difference? », étudie

l’impact d’une politique publique visant à améliorer les pratiques des enseignants, à savoir le

système d’inspection individuelle des enseignants du second degré en France.

En France, les enseignants du secondaire sont inspectés tous les 6 à 7 ans par des inspecteurs

de l’Éducation nationale, qui sont des fonctionnaires expérimentés et hautement qualifiés. Ces

inspections consistent essentiellement en une demi-journée d’observation de l’enseignant en

classe et un entretien individuel approfondi avec l’enseignant évalué. Elles ont pour but de per-

mettre aux enseignants de prendre du recul sur leurs pratiques pédagogiques, de leur proposer

des formations professionnelles adaptées, et de s’assurer de la qualité de leur enseignement.

De plus, ces inspections ont un impact direct sur la carrière des enseignants, qui peuvent béné-

ficier d’une promotion plus rapide suite à une inspection très favorable. Par ailleurs, tous les

enseignants sont régulièrement inspectés au cours de leur carrière, indépendamment de leurs

performances.

Dans ce chapitre, nous tirons parti du timing exact de l’inspection individuelle ainsi que

de son caractère généralisé pour estimer l’effet d’une inspection sur la productivité d’un en-

seignant, mesurée par les performances de ses élèves à l’examen national de fin de collège,

le Diplôme National du Brevet (DNB). Plus spécifiquement, nous comparons les performances

des élèves assignés à un enseignant donné au cours des années précédant son inspection avec les

performances des élèves assignés à cet enseignant les années suivant son inspection, au cours de
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la période 2008-2012. Nous montrons que les performances des élèves en maths s’améliorent de

0.045 écart-type à la suite d’une inspection de leur enseignant de mathématiques, relativement

à des élèves assignés à un enseignant de mathématiques non inspecté au cours de la période

considérée. Pour s’assurer de la validité de notre analyse, nous montrons que, par contraste,

les performances des élèves d’une classe donnée en français ou en histoire-géographie ne sont

pas affectées par l’inspection de l’enseignant de mathématiques de cette classe. Plus générale-

ment, nous montrons que les caractéristiques des élèves assignés à un enseignant avant et après

inspection sont identiques en termes d’origine sociale, d’âge, ainsi que de proportion de filles

et de latinistes dans la classe. De manière intéressante, nous montrons que les performances

en maths au DNB s’améliorent non seulement pour les élèves assignés à l’enseignant l’année

de l’inspection, mais également pour les élèves assignés à cet enseignant les années suivantes,

suggérant une amélioration durable de ses compétences pédagogiques. De surcroît, l’inspection

des enseignants de maths de 3ème produit des effets bénéfiques chez les élèves qui persistent

dans le temps et se traduisent par une augmentation de leur probabilité de choisir une filière

scientifique en première et d’obtenir un baccalauréat scientifique au cours des années suivantes.

Finalement, les effets bénéfiques d’une inspection sur les performances des élèves en maths et

sur leur trajectoire scolaire sont particulièrement marqués pour les enseignants de l’éducation

prioritaire, lesquels font face à des contextes d’enseignement plus difficiles. Par contraste avec

les inspections des enseignants de mathématiques, nous observons des effets bien moindres

des inspections des enseignants de français sur les performances de leurs élèves en français au

DNB.

De manière générale, les résultats obtenus dans ce chapitre apportent un éclairage nouveau

sur la question de l’efficacité des politiques publiques visant à améliorer la productivité des en-

seignants. À notre connaissance, il s’agit de la première étude démontrant l’impact causal d’un

système d’évaluation des enseignants sur leur productivité, à l’exception de Taylor & Tyler

(2012), qui montrent que le système d’évaluation des enseignants de la ville de Cincinnati (US)

génère également une amélioration des performances de leurs élèves en mathématiques.
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L’influence des camarades de classe sur la réussite scolaire des élèves

L’idée que les camarades de classe influencent fortement la réussite scolaire des élèves a connu

un essor considérable dans les années 60 à la suite d’un rapport concluant qu’il s’agissait d’un

des principaux facteurs de réussite scolaire aux États-Unis (Coleman et al. (1966)). Par la suite,

de nombreux travaux de recherche ont cherché à établir un lien causal entre la réussite d’un élève

et les caractéristiques de ses « pairs », la difficulté méthodologique principale étant de parvenir

à démêler les effets de contexte de l’influence réelle des pairs. Un ensemble de travaux récents

a permis d’établir de manière convaincante un effet positif du niveau académique moyen des

pairs sur les performances d’un élève (Sacerdote (2011)), mais ces travaux montrent également

que, si la présence de bons élèves est très bénéfique pour d’autres bons élèves, elle a souvent

des effets négatifs sur les élèves ayant un niveau académique plus faible (Hoxby & Weingarth

(2005)). Par contraste avec l’impact du niveau académique des camarades de classe, l’impact

du genre des camarades de classe a très peu fait l’objet de travaux en économie jusqu’à ces

dernières années. Pourtant, de nombreux travaux en sciences sociales montrent que le genre

des élèves façonne grandement leurs comportements et leurs interactions, particulièrement au

cours de l’adolescence (Galambos (2004); Steinberg & Monahan (2007)).

Le troisième et dernier chapitre de cette thèse, intitulé « Are girls always good for boys?

Short and long term effects of school peers’ gender », étudie les effets du genre des camarades de

classe de 3ème sur le parcours scolaire des élèves en France, au cours de la période 2008-2012.

Pour ce faire, nous exploitons des variations dans la proportion de filles parmi les camarades de

classe induites par des chocs démographiques dans le secteur scolaire du collège d’inscription.

Le territoire français étant découpé en secteurs scolaires qui correspondent chacun à un collège

public unique, chaque enfant d’une cohorte donnée en âge d’aller au collège doit s’inscrire dans

le collège correspondant à son lieu de résidence2. Par conséquent, la proportion de filles parmi

les élèves d’un collège donné est déterminée par la proportion de filles parmi les enfants d’une

cohorte d’âge résidant dans le secteur scolaire correspondant à ce collège. Ainsi, des variations

naturelles - induites par des chocs démographiques - dans la proportion de filles résidant dans

un secteur scolaire donné vont se traduire par des variations naturelles dans la proportion de

filles inscrites dans le collège de ce secteur d’une année sur l’autre. À leur tour, ces variations

naturelles vont influencer la proportion de filles parmi les camarades de classe. Nous tirons

2À l’exception des familles inscrivant leurs enfants dans le système privé ou obtenant une dérogation.
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parti du caractère exogène de ces variations pour estimer l’effet de la proportion de filles parmi

les camarades de classe sur les performances au brevet (DNB) ainsi que sur le parcours scolaire

ultérieur des élèves. De manière générale, deux ensembles de résultats se dégagent de l’analyse.

Premièrement, l’influence des camarades de classe est persistante au cours du temps, puisque la

proportion de filles parmi les camarades de classe en 3ème influence non seulement la réussite

au brevet, mais également le taux de décrochage scolaire, le choix des filières après le collège et

le taux d’obtention du baccalauréat. Deuxièmement, la proportion de filles parmi les camarades

de classe en 3ème a des effets bénéfiques sur la scolarité des filles alors qu’elle a des effets né-

gatifs sur celle des garçons. Plus spécifiquement, cette proportion réduit le taux de décrochage

scolaire des filles après la 3ème et augmente leur taux d’obtention d’un baccalauréat général,

particulièrement dans la filière scientifique. A l’inverse, elle augmente la proportion de garçons

choisissant une filière technique après le collège et réduit leur taux d’obtention d’un baccalau-

réat général. Une exploration des mécanismes potentiels suggère que ces effets s’expliquent à la

fois par une influence directe des camarades de classe sur le comportement des élèves au collège

et par une influence indirecte de ces derniers, par le biais d’une adaptation du comportement

des enseignants.

Les résultats obtenus dans ce chapitre contribuent à la récente littérature en économie dé-

montrant l’impact causal du genre des camarades de classe sur la réussite scolaire. À notre

connaissance, il s’agit de l’une des premières études démontrant un impact significatif et per-

sistant sur le parcours scolaire des élèves, à l’exception de Black et al. (2013), qui montrent

l’existence d’effets de long terme sur la situation individuelle sur le marché du travail à l’âge

adulte en Norvège. Par ailleurs, ce chapitre constitue l’un des premiers travaux tentant de dé-

gager les mécanismes permettant d’expliquer l’influence du genre des camarades de classe sur

la réussite et le parcours scolaires.
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Chapter 1

From Teacher Quality to Teaching Quality:

Instructional Productivity and Teaching

Practices in the US

Abstract

Though teachers are consistently found to play a major role in determining student achievement,

little is known about what teachers can do to increase their instructional productivity. This paper

develops a new empirical strategy, based on within-student within math variations in student test

scores, to assess the instructional hourly productivity of math teachers in the US. Building on

these estimates, we show that teachers’ hourly productivity strongly relates to the use of teach-

ing practices emphasizing student active participation in the lesson (modern practices). One

weekly hour of math instructional time increases student test scores by 4.4% of a standard de-

viation on average, but one hour spent with a teacher above the modern practices index median

is more than twice as productive as one hour spent with a teacher under this median (+5.9% vs

+2.7% standard deviations). A further investigation suggests that the positive effects associated

to modern practices are partially mediated by an improvement in student self-confidence and

motivation to learn mathematics.

JEL classification: I20; I21; J24

Keywords: teacher quality ; teaching practices; instruction time; TIMSS; test scores; education.
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Introduction

It is well established that teachers differ a lot in their individual capacity to raise student test

scores (Rockoff (2004), Rivkin et al. (2005), Hanushek & Rivkin (2006, 2010)). Furthermore,

being taught by a good teacher matters beyond schooling as it positively affects adult outcomes

such as college attendance, earnings or fertility behaviours (Chetty et al. (2014)). Yet, very

little is known about what makes a teacher effective in raising student achievement. Since the

estimation of teacher value-added is demanding in terms of data and generally requires the use

of administrative datasets, most of the works trying to identify the determinants of teacher ef-

fectiveness has focused on teacher demographics and other observed characteristics, such as

certification or tenure. Nevertheless, the literature fails to establish consistent and powerful re-

lationships between teacher productivity measures and teacher observed characteristics (Aaron-

son et al. (2007)), with the notable exception of teacher experience, which is systematically

related to higher levels of productivity1.

This paper investigates the role of a largely unexplored and yet intuitive input of teacher

productivity, namely the teaching practices she implements in the classroom. Exploiting US

8th grade students’ data from the TIMSS 2011 assessment, we show that practices emphasiz-

ing student active participation in the lesson positively and strongly relate to math teachers’

instructional productivity.

The TIMSS assessment encompasses 4 basic math topics (Number, Algebra, Geometry and

Data & Chance) and each topic is divided into 3 to 6 subtopics (19 subtopics in total). For each

teacher, the dataset provides information on the amount of instructional time devoted to each

topic the year before the assessment as well as information on which subtopics were taught

during this pre-assessment period. This wealth of data makes it possible to develop a strategy

for identifying teachers’ hourly productivity by focusing first on the performance of students on

subtopics that were not taught the year before assessment and, second, on their performance on

subtopics that were taught over this period.

Accordingly, when we first focus on subtopics that were not taught during the pre-assessment

period, we find no relationship between the amount of instructional time devoted by teachers

to the corresponding topics and the performance of students. This result is consistent with the

1See Harris & Sass (2011) for a summary of recent findings on that topic
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assumption that the amount of instructional time devoted by teachers to a given topic is not

related to students’ initial level of ability in this specific topic.

Building on this assumption, we then provide estimates of teachers’ hourly productivity

by focusing on the subtopics that have been taught during the pre-assessment period and by

looking at the relationship between students’ performance in these subtopics and the amount

of instructional time devoted by teachers to the corresponding topics. This analysis reveals

that students’ test scores in these subtopics strongly relate to the amount of instructional time

devoted by teachers to the corresponding topic. Specifically, we find that a one hour increase in

weekly instructional time in a given topic is associated with an average increase of about 4.4%

of a SD in students’ test scores on the corresponding subtopics.

In a last step, we investigate the extent to which estimated teachers’ productivity levels relate

to the teaching practices implemented in the classroom. Specifically, we explore the relationship

between our measures of teachers’ productivity and their use of practices emphasizing student

active participation in the lessons, as opposed to teacher-centered practices and to practices

based on student memorization and basic problem solving. We explore these issues with the aid

of a “Modern Practices" index (MPI) constructed from the TIMSS survey.

Generally speaking, we find large productivity differentials across US math teachers ac-

cording to the teaching practice they implement in the classroom. The effect of one additional

weekly hour of instructional time on students’ scores varies from 2.7% of a SD for teachers

under the median of the MPI to 5.9% of a SD for teachers above the median of the MPI. Put

differently, using the continuous specification of the MPI, we find that a one SD increase in

this index relates to a 8% SD increase in test scores, which is roughly equivalent to half the

effect of a SD increase in teacher value-added estimates from previous studies (Hanushek &

Rivkin (2010)). An investigation of the potential mechanisms at play suggests that the posi-

tive effects associated to modern practices are partially mediated by an improvement in student

self-confidence and motivation to learn mathematics.

This paper contributes to the small literature that explores the role of teaching practices

in shaping teachers’ effectiveness. Some recent papers provide evidence that pedagogical skills

and the quality of student-teacher interactions strongly relate to teacher productivity (Kane et al.

(2011), Blazar (2015) and Araujo et al. (2016)). In parallel, Machin & McNally (2008) and

Lavy (2009) argue that the positive effects on student achievement generated by the Literacy

Hour in the UK and a teacher payment scheme in Israel, respectively, were primarily mediated
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by changes in teaching methods. Altogether, these findings suggest that teaching - and not

only teachers - may be a key determinant of instructional productivity, but they do not provide

precise information on the teaching practices that are likely to improve teaching quality2. On

the other hand, some recent papers have directly related between subjects or between classes

variations in student test scores to variations in teaching practices across teachers, but they

provide mixed results and do not give an insight into the magnitude of the relationship between

teacher productivity and teaching practices3. The aim of this paper is to fill the gap between

these two literatures by studying the relationship between the teaching practices implemented

in the classroom by US math teachers and their instructional hourly productivity.

This paper also contributes to the literature which aims at evaluating the causal effect of

instructional time on student math test scores. This effect is an economically meaningful one, as

student math skills have recently proven to be important predictors of both aggregate economic

growth (Hanushek & Woessmann (2008) ; Hanushek & Woessmann (2011)) and individual’s

future earnings (Rose & Betts (2004) ; Joensen & Nielsen (2009) ; Goodman (2017)). Yet, there

is only scarce evidence on this topic. Several recent papers find a positive impact on student

test scores, but most of them rely on small variations or exploit programs that are targeted at

specific students and generally accompanied with other changes in school’s input4. Two notable

exceptions are Lavy (2015a) and Rivkin & Schiman (2015), who both exploit within student

between subjects variations in instructional time across countries, and rely on the assumption

that these variations are independent from student subject specific-skills. Building on their

work, this paper intends to improve the identification of the causal effect of instructional time

through the exploitation of variations across topics of a single subject. This strategy arguably

both requires less restrictive identification assumptions and allows for the exploitation of large

variations.

The remainder of the paper is organized as follows. The next section describes the data

and the construction of the teaching practices index. The second section presents the empirical

2This notwithstanding, it is important to note that all the measures of teaching quality used by Kane et al.
(2011), Blazar (2015) and Araujo et al. (2016) emphasize the importance of student-teacher interactions.

3These recent works include Aslam & Kingdon (2011), Schwerdt & Wuppermann (2011), Van Klaveren (2011),
Bietenbeck (2014), Lavy (2015b) and Hidalgo-Cabrillana & Lopez-Mayan (2018).

4Recent papers on this topic exploit variations in the number of school days over the year due to bad weather
conditions or legal differences in the school start date (Sims (2008), Marcotte (2007) and Marcotte & Hemelt
(2008)), remediation programs (Taylor (2014), Cortes et al. (2015)), or policy changes that increased resources
allocated to schools, which result in an increased amount of instruction time (Bellei (2009), Lavy (2012) and
Fryer (2014)). Two recent papers exploit a recent reform that took place in Germany and which implied a modest
increase (+5%) in instructional time (Andrietti (2015) and Huebener et al. (2017)).
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strategy and provides some evidence on the validity of the identification assumptions. The

third section presents the estimations of instructional productivity and its relationship with the

teaching practices index. The final section concludes with a discussion of the implications of

the main results.

1.1 The data

1.1.1 The TIMSS 2011 assessment

This paper exploits US data from the TIMSS 2011 assessment, which evaluates the math and

science knowledge of eighth-grade students. The national sample is drawn from a two stage

sampling procedure, whose objective is to ensure the national representativeness of US schools

and students5. Every student in a selected class is assessed in math and science, and scores are

assigned by independent external evaluators. This paper focuses on students’ math test scores,

which are important predictors of future earnings. The TIMSS math assessment encompasses 4

basic topics (Number, Algebra, Geometry and Data and Chance), each of which is divided into

3 to 6 subtopics (19 subtopics in total). Finally, it is possible to compute a specific test score for

each of these subtopics.

Besides the student assessment, every math teacher who teaches a selected class is asked

to answer a questionnaire, which provides information on teacher demographics and teaching

practices. We restrict the sample to students whose math teacher answered the teacher question-

naire, which amounts to dropping 30% of observations. The final sample is made up with 7258

students, allocated over 387 classes in 359 schools, and taught by 376 different teachers. The

available evidence suggests that students in the final sample performed slightly better over the

year than students whose math teacher didn’t answer the questionnaire, though there doesn’t

seem to be large differences in terms of school and student characteristics according to teacher

non response to the questionnaire6.

5First, schools are randomly selected among the national sample of schools. In a second step, one class is
selected in each selected school.

6As we can see in tables A2 and A3 in the appendix, students in the final sample performed slightly better at the
TIMSS assessment and are slightly older than those dropped from the initial sample due to teacher non response.
No other difference appears to be significant between the two groups, regarding student and school characteristics.
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1.1.2 Instructional time

The math teacher questionnaire includes detailed information about the total amount of instruc-

tional time that math teachers devote every week to each of the four basic topics in their class7.

Importantly, students are taught these four topics in the same class, by the same teacher. As

we can see in table A4, students are given 4.4 hours of instructional time per week in math on

average. Half of this time is spent on Algebra, and the rest is distributed in a more balanced

fashion over the three remaining topics, though a smaller amount of time is devoted to Data

and Chance on average (' 0.45 hour/week). In addition, there are substantial variations across

teachers, both in the total amount of math instructional time per week and in the allocation

of this time over the four topics. As we argue in section 1.2, these observed variations in the

share of instructional time devoted to the four topics might be mainly driven by the absence of

a unique national curriculum in the US. Indeed, according to the TIMSS 2011 US National Re-

search Coordinator, “the United States does not have a federally mandated national curriculum.

State education agencies publish state mathematics standards and local school districts publish

curriculum based on the standards"8. Such a variety of curricula introduces a lot of exogenous

variations across schools and teachers in the allocation of instructional time across topics.

1.1.3 Teaching practices

The measures of teaching practices that we use in this paper are drawn from question 19 in the

math teacher questionnaire. For each of the 11 teaching practices listed in the questionnaire (cf.

table 1.1), teachers are asked the following question: “In teaching math to the students in this

class, how often do you usually ask them to do the following?”. There are four possible answers

to this question: “Every or almost every lesson”, “About half the lessons”, “Some lessons” or

“Never”. Table 1.1 exhibits the distribution of teachers’ answers to this question for the differ-

ent practices.

Building on these questions, it is possible to construct for each practice and each teacher a

measure of practice intensity, where intensity is set to 0 when the answer is “Never", to 1 when

7It is worth noting that the empirical strategy developed in this paper accounts for potential variations in the
length of school year across schools that could introduce some measurement error in this measure of instructional
time, as it is based on within student (and thus, within school) variations.

8Source: TIMSS Curriculum Questionnaire for Grade 8 (http://timssandpirls.bc.edu/timss2011/international-
contextual-q.html)
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Table 1.1 Definition and distribution of Teaching Practices

Teaching practice (“I ask students to...”) Never Some Half Every
lessons lessons lesson

(a) Listen to me explain how to solve problems 1 (%) 16 (%) 16 (%) 67 (%)
(b) Memorize rules, procedures, facts 4 41 32 23
(c) Work pbs (individually or with peers) with my guidance 0 7 18 75
(d) Work pbs in whole class with direct guidance from me 1 12 20 67
(e) Work pbs (individually or with peers) while I am occupied 26 37 10 27
(f) Apply facts, concepts and procedures to solve routine pbs 0 14 24 62
(g) Explain their answers 0 12 27 61
(h) Relate what they learn to their daily lives 3 34 38 25
(i) Decide on their own procedure for solving complex pbs 3 36 35 26
(j) Work pbs for which there’s no obvious method of solution 13 52 25 10
(k) Take a written test or quiz 0 58 25 17

the answer is “Every or almost every lesson", 0.5 when the answer is “About half the lessons"

and 0.1 when the answer is “Some lessons"9. To account for the fact that all teachers may not

have the same definition of the different levels of intensity mentioned in the questionnaire (i.e.,

the same definition of “Every or almost every", for example) we also center these variable at

teachers’ means10. Overall, we obtain a set of variables describing the relative intensity of each

practice for each teacher.

1.2 The evaluation of instructional productivity

1.2.1 Estimation strategy

Assessing the causal impact of instructional time on student achievement raises two identifica-

tion issues. First, schools with more fundings can both attract better teachers and students and

give the latter a higher amount of instructional time, which would introduce an upward bias in

the estimation of instructional productivity. Second, students could be assigned a better teacher

and more instructional time based on their previous math achievement. This would introduce

an upward or a downward bias, depending on the direction of this within school sorting. To

overcome these issues, we exploit within student variations in math instructional time, which

occur across math topics that are taught by the same teacher, at the same school. Formally, we

9Alternatively, we assign the score 0.25 to the answer “Some lessons” and check the robustness of our results
to this alternative score. Results are presented in the section dedicated to robustness.

10Investigating relationships among self-declared practices in our dataset, we find that all pairwise correlation
coefficients between teaching practices are positive or null (cf. table A5), which tends to support the existence of
an individual bias in the way teachers answered these questions in the TIMSS survey.
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estimate the following model:

Ait = αi + ct + β1ITit + εit (1.1)

whereAit is the TIMSS score in math topic t ∈ {1; 4} of student i, and ITit is the quantity of

instructional time devoted to topic t by student i’s math teacher. The model also includes student

fixed effects (αi), which captures student innate ability and motivation to learn mathematics.

Importantly, as all math topics are taught by the same teacher at the same school for a given

student, student fixed effects also include teacher and school fixed effects. To complete the

model, we add topic-specific constants (ct). Standard errors are systematically clustered at the

teacher level.

The only determinants of student achievement that this specification does not control for

are student math topic-specific skills. As a consequence, under the assumption that the within

student between topics variations in instructional time (ITit) are not related to student topic-

specific skills (εit), β1 identifies the causal effect of a weekly hour of instruction time on student

test scores and thus provides a valid estimate of teachers’ average hourly productivity.

The US educational system is characterized by the absence of a unique mathematics cur-

riculum for 8th grade students. Based on the “state standard" published by the state education

agency, each school district defines its own curriculum. As there are more than 14,000 school

districts in the US, this system induces a lot of variations in the allocation of math instruc-

tional time across topics that is arguably exogenous to teachers and students.The main threat to

this assumption is the possibility that, within the curriculum constraint, teachers adopt strate-

gic behaviours which would consists in marginally allocating a higher (or lower) share of their

instruction time to the topic in which their students perform relatively better (or worse).

To test the existence of teacher strategic behaviours that would bias the estimates, we take

advantage of a particular feature of the TIMSS assessment. For each math topic under consid-

eration, students are evaluated in both subtopics that are taught over the year preceding the test

and subtopics that are not taught over this period11. Consequently, the test provides us with mea-

sures of students’ topic-specific skills that are unaffected by the amount of instructional time

that is dedicated to study the related topics over the year. Indeed, the instructional time devoted

11As previously mentioned, students are evaluated in 3 to 6 subtopics per topic (19 subtopics in total). Subtopics
that have not been taught the year preceding the test may have been taught over previous years or have never been
taught to the students taking the test.
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to a given topic the year of the test should positively affect student test scores in the related

subtopics that are taught over the year, but not in the related subtopics that are not taught. Any

relationship between the amount of instructional time devoted to a given topic and students’ test

scores in the related subtopics that are not taught over the year would instead capture teachers’

strategic allocation of instructional time across math topics. Building on this argument, for all

the estimations of instructional productivity presented in this paper, we implement regression

(1.1) on the subtopics taught over the year only, and we show that there is no effect on subtopics

not taught over the year.

1.2.2 US math teachers’ instructional productivity

As we can see in the first column of table 1.2, when considering subtopics that are taught the

year of the assessment, we find that one weekly hour of instructional time increases student

math test scores by 4,4% of a standard deviation on average, which roughly amounts to a 3,3

points increase in the TIMSS test score12. Contrarily, the coefficient associated to Instruction

Time is not significant when considering student test scores in the subtopics that are not taught

the year of the assessment (cf. column (2)). As discussed in the previous section, this tends to

support the main identification assumption. This effect is quite large, compared with the effect

of other school’s input. For example, doubling the total amount of math instructional time would

increase student test scores by 19.3% of a standard deviation over the year, while a 10 students

reduction in class size would raise student test scores by 10 to 30% of a standard deviation,

as estimated from previous studies (Hanushek & Rivkin (2010)). In addition, this estimation is

consistent with previous studies investigating the effect of instruction time on student test scores

in comparable settings13.

1.3 Instructional productivity and teaching practices

Building on the estimates of math teachers’ instructional productivity computed from within

student variations in math instructional time, the second step of the empirical strategy consists

12The mean test score in math in the final sample is 507.
13In particular, studies evaluating the effect of mathematics instructional time in the US provide estimates rang-

ing from 2.5% to 5% of a standard deviation (Dobbie & Fryer Jr (2013), Taylor (2014) and Cortes et al. (2015)).
Other studies including Bellei (2009), Lavy (2012), Lavy (2015a), Rivkin & Schiman (2015) and Andrietti (2015)
find an effect ranging from 2.1% to 7% of a standard deviation.
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Table 1.2 Math teachers’ instructional productivity

(1) (2)
Subtopics taught Subtopics not taught

Instruction Time 0.044∗∗∗ -0.001
(0.010) (0.008)

Observations 18888 22263

Note: this table shows the effect of one weekly hour of instructional time on student math test scores,
separately for subtopics taught the year of the test (column (1)) and subtopics not taught the year of the test
(column (2)). All regressions include student and teacher fixed effects, as well as topic constants. Standards
errors (in parentheses) are clustered at the teacher level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

in investigating the relationship between teachers’ productivity and the teaching practices they

implement in the classroom.

In order to describe the teaching style of a teacher in fewer dimensions than the 11 practices

included in the questionnaire, we perform a Principal Component Analysis (PCA) at the teacher

level. Based on this PCA, we create the Modern Practices Index (henceforth MPI), which

equals teacher individual average score on practices (g), (h), (i), and (j). This index measures

the relative importance of practices involving strong student-teacher interactions (practices (g)

and (h)) and complex thinking (practices (i) and (j)) in the teaching style of the teacher, as

opposed to teacher lecture ((a)) and basic problem-solving ((b), (c), (d), (e) and (f)), which are

generally considered as traditional practices14. We complement this index with the frequency

of assessment (practice (k)), which poorly relates to the MPI. Finally, we estimate the following

model:

Ait = αi + ct + β1ITit + β2.ITit.MPIi + β3.ITit.Assessi + εit (1.2)

whereMPIi is the Modern Practices Index andAssessij the frequency of assessment of student

i’s math teacher. The parameter β2 indicates how teacher instructional productivity varies with

the MPI. All other variables included in equation (1.2) are similar to those described in the

previous paragraph for equation (1.1).

This strategy accounts for the potential endogeneity in the allocation of students to schools

and teachers, as well as for the potential adaptation of teachers’ teaching practices to the math

general ability of the students in their class. Nevertheless, it is possible that the coefficient

associated to the MPI reflects the effect of an unobserved teacher characteristics which is both

related to the use of modern practices and to student achievement. To mitigate this concern,

14A detailed description of the results obtained from the PCA, as well as the construction of the MPI are available
in appendix A.
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we first show that the MPI is little influenced by the school and classroom environment, and

that it is unrelated to teacher demographics (cf. table A6). By contrast, it is strongly and

positively correlated with variables that relate to teachers’ motivation and behavioral skills, such

as collaborative behaviour and self-confidence15. Consequently, we sequentially add teacher

characteristics as interacted controls in the regression:

Ait = αi + ct + β1ITit + β2.ITit.MPIi + β3.ITit.Assessi + β4.ITit.Xi + εit (1.3)

where Xi is a vector of all teacher characteristics included in table A6, including teacher demo-

graphics and teacher behavioral controls. It also includes class size and the teacher perceived

level of disruption in the classroom, which are two important determinants of instructional qual-

ity (Lazear (2001)). Results of the estimation of equation (1.3) are presented in table 1.3 and

are discussed in the next section.

1.3.1 Math teachers’ instructional productivity and Modern Practices

The use of practices emphasizing student active participation in the lesson is systematically as-

sociated to higher levels of teachers’ instructional productivity. As we can see in table 1.3, the

coefficient associated to the interaction term between instructional time and the MPI is positive

and significant in all specifications. In addition, this coefficient is remarkably stable across spec-

ifications. In particular, the inclusion of teacher behavioural controls, which strongly correlate

to the MPI, has a very little impact on the MPI’s estimated coefficient. This tends to support the

idea that the MPI captures the quality of teaching and not solely the effect of some confounding

factors such as teacher motivation16. In addition to this, the frequency of assessment is posi-

15Due to the absence of within teacher variations in teaching practices in the dataset, it is difficult to completely
rule out the possibility that the MPI includes the effect of some confounding factors. On the whole, though adding
teacher controls in the regression alleviates such a concern, one should be cautious regarding a causal interpretation
of the effect of modern practices.

16To check the consistency of our results, we further check that the use of modern practices is unrelated to
the allocation of instructional time across math topics. To do so, we regress the MPI of a given teacher on the
percentages of instructional time she devotes to the different topics, controlling for the math average score of the
students she teaches. Results are reported in table A7 in the appendix. As we can see, none of the coefficients
associated with the shares of instructional time devoted to the different topics is significant. In addition, we also
compute the pairwise correlation coefficients between the MPI and the percentages of instructional time devoted
to the topics. The only significant relationship that appears at the 10% level is a positive one between the share
of instructional time devoted to Geometry and the MPI (cf. table A8). On the whole, there doesn’t seem to be a
strong relationship between the MPI and the allocation of instructional time across topics. Nevertheless, we check
the robustness of our results to the exclusion of Geometry test scores (cf. table A17 in the appendix).
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tively correlated to teachers’ instructional productivity, though the corresponding coefficient is

no longer significant when teacher behavioural controls are included in the regression.

To give insights about the magnitude of the variability in teacher productivity associated to

the MPI, we provide two distinct interpretations. First, we examine how instructional produc-

tivity varies when moving along the MPI distribution. Assuming linearity in the effect of the

MPI17, we compute teacher instructional productivity at different points of the MPI distribution.

Moving from the teacher at the 25th to the teacher at the 75th percentile of this distribution is

equivalent to a 86% increase in instructional productivity (cf. table A9), which is substantial.

Put differently, one hour of math instruction time spent with the latter teacher is about twice as

productive as one hour spent with the former one. Second, we compute the effect of a standard

deviation increase in the MPI on student test scores. A one standard deviation increase in the

MPI increases student test scores by 0.018 of a standard deviation for each weekly hour of in-

struction time. Computing the effect for the whole year, a one standard deviation increase in the

MPI increases student test scores by 0.08 of a standard deviation18. This is almost equivalent to

doubling the total amount of instructional time, holding instructional productivity at its average

level.

In a recent review, Hanushek & Rivkin (2010) show that the teacher quality literature pro-

vides estimates of the variability in teacher value-added that are highly consistent across studies.

For mathematics teachers, a one standard deviation increase in teacher value-added is associated

to a 0.15 standard deviation increase in student test scores over the year, on average. Similarly,

moving from the teacher at the 25th percentile of the value-added distribution to the teacher

at the 75th percentile during one single year is equivalent to a 0.2 standard deviation increase

in math test scores. Using both interpretations, the MPI effect roughly equals half of the total

teacher fixed effect (i.e. a one SD increase in the MPI equals half the effect of a SD increase in

teacher value-added).

Furthermore, the magnitude of this effect is comparable to the results obtained by Kane et al.

(2011) and Araujo et al. (2016), who use two distinct measures of pedagogical skills in order to

assess the impact of teachers on US 3-8th grade and Ecuador 2-5th grade student achievement,

respectively. In the first case, a one standard deviation in the TES score, which measures the

17We investigate the extent to which the relationship between instructional productivity and the MPI is linear in
the robustness checks section.

18The effect of a SD increase in the MPI on hourly productivity is computed as follows: σ̂MPI ∗ β̂2 = 0.189 ∗
0.096 = 0.018. Over the year, the effect is 4.4*0.018=0.079.
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Table 1.3 Teaching Practices and Teachers’ Instructional Productivity

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.050*** 0.061*** 0.040 0.004 0.033
(0.010) (0.009) (0.051) (0.053) (0.062)

IT*Modern Practices Index 0.096*** 0.112*** 0.108*** 0.107*** 0.099***
(0.035) (0.032) (0.032) (0.031) (0.036)

IT*Assessment 0.050** 0.049** 0.042* 0.032
(0.021) (0.021) (0.021) (0.021)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) -0.001 -0.001 0.014 0.004 0.028
(0.009) (0.009) (0.041) (0.044) (0.053)

IT*Modern Practices Index 0.005 0.005 0.012 0.017 0.006
(0.024) (0.024) (0.024) (0.025) (0.025)

IT*Assessment -0.001 -0.000 -0.001 -0.013
(0.018) (0.019) (0.019) (0.020)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table shows the heterogeneity in the effect of math instructional time on student math performance according to the teaching practices
implemented in the classroom by the math teacher, separately on subtopics taught the year of the test (Panel A) and subtopics not taught the year of
the test (Panel B). All regressions include student and teacher fixed effects, as well as topic constants and the proportion of subtopics taught the year
of the test. Teacher demographic controls included in column (3) - (5) are teacher experience, gender and level of education and a dummy indicating
if the teacher’ major studied area was “Education-Mathematics". Controls included in column (5) include measures of teachers’ collaboration with
colleagues, self-confidence in teaching math and perceived level of disruption in the class drawn from the TIMSS teacher questionnaire and provided in
the dataset, as well as a dummy indicating that the teacher participated in a professional development over the last two years. All controls are interacted
with Instructional Time. Standards errors (in parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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quality of student-teacher relations and teacher global instructional skills through the assess-

ment of an external evaluator, increases student test scores by 0.05 standard deviation. In the

second case, a one standard deviation increase in the CLASS score, which measures the quality

of teacher behaviours in terms of emotional support, classroom organization and instructional

support through video observations, increases student test scores by 0.06-0.09 standard devia-

tion over the year, depending on the specification. Importantly, both these measures put a high

weight on the quality of student-teacher interactions, which is also the case for the MPI. This

tends to confirm the idea that these interactions are crucial in shaping teachers’ instructional

productivity.

1.3.2 Robustness checks and heterogeneity analysis

The main results outlined in this paper are robust to several alternative specifications regarding

the definition of teaching practice variables.

First, we provide evidence that the way we assign scores to the teaching practice variables

in the main specification is not driving the results. As we can see in tables A10 and A11,

respectively, considering a binary definition of teaching practice variables19 or assigning the

score 0.25 to the answer “Sometimes" leads to the same conclusion.

Second, we show that the main results are not driven by the correction applied to teaching

practice variables, which objective is to take into account individual biases in teachers’ answers.

To explore this issue, we construct one Modern Practices Index and one Traditional Practices

Index based on the non centered values of teaching practices, and we include both indexes in

the regression20. As we can see in table A13, this specification gives similar results. Indeed, the

“non centered" MPI is strongly and positively associated to instructional productivity while the

coefficient associated to the “non centered" Traditional Practices Index is negative, though it’s

not significant at conventional confidence levels.

Third, the conclusions drawn from the main specification are robust to considering more

dimensions of teaching practices than those captured by the MPI and the frequency of assess-

ment. Indeed, including the teacher total score on all practices to take into account the diversity
19In the binary model, the score 1 is assigned to the answer “At every lesson” and 0 to the three other answers.

The estimated coefficients from this regression are smaller and less significant than those obtained from the main
regressions, as considering a binary definition of teaching practice variables amounts to lose a lot of information.

20In the main specification, the centered Modern Practices Index is strongly and negatively related to the Tradi-
tional Practices index (cf. table A12). By contrast, when computed over non centered values of teaching practice
variables, these two indexes exhibit a small and positive correlation coefficient of 0.12. Consequently, both indexes
are included in the regression.
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of practices leaves the coefficient associated to the MPI roughly unchanged (cf. table A14).

Furthermore, including the two traditional practices indexes described in section 1.1 instead of

the single MPI also leads to the same conclusion, as the coefficients associated to both indexes

are strongly significant and negative (cf. table A15)21.

Fourth, the magnitude of the effect associated to the use of modern practices is unchanged

when comparing the productivity of teachers who rank in the bottom half of the MPI distribution

vs the top half, instead of using a continuous definition of the MPI. Indeed, teachers in the top

half of the MPI distribution have an average productivity of 0.059 σ-test score per weekly hour,

which is twice as large as the productivity of teachers who belong to the top bottom of this

distribution (cf. table A16)22.

In addition to these robustness checks regarding the specification of teaching practice vari-

ables, we also check that the results obtained from the main specification are not driven by

the inclusion of Geometry test scores. As we can see in table A17, these results are robust to

the exclusion of Geometry test scores from the regression, as it doesn’t affect the coefficients

associated to the MPI.

Finally, we investigate whether the MPI effect differs by student gender. Implementing

equation (1.3) separately on girls and boys, we find no significant differences in the coefficient

associated to the MPI (cf. table A18).

1.3.3 Potential mechanisms: Modern Practices and student non cognitive outcomes

This section investigates the extent to which the positive effect associated to the use of modern

practices is mediated by an improvement of student non cognitive outcomes. Three measures of

non cognitive outcomes are available in the dataset: student self-confidence in learning mathe-

matics and student intrinsic and extrinsic motivation to learn mathematics23. As these outcomes

are measured at the end of the year, they are plausibly affected by the teachers observed in the

dataset and the teaching practices they have implemented in the classroom over the year.

As there is no within student variations in non cognitive outcomes in the dataset, we estimate

the relationship between the MPI and student non cognitive outcomes through the following
21This specification better accounts for the second dimension of teaching practices highlighted in the principal

component analysis.
22Unfortunately, the sample size is too small to precisely estimate teachers’ instructional productivity at different

points of the MPI distribution when the number of categories is higher than 2.
23These measures are drawn from questions 14 and 16 in the student questionnaire, and are directly provided

in the database. A detailed description of the construction of these measures is available on the TIMSS website:
https://timssandpirls.bc.edu/methods/t-context-q-scales.html
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model:

NCOij = α + β1MPIij + β2Ai0 + β3Xij + εij (1.4)

where NCOij is the non cognitive outcome score of student i, taught by teacher j. MPIij is

the Modern Practices Index of teacher j and Ai0 is student i’s math mean score, computed over

subtopics not taught over the year, that are presumably unaffected by the teaching practices

implemented by the observed teacher. This proxy for student math ability intends to control

for the fact that initially better students, who also have better non cognitive outcomes, could

be assigned teachers who rank higher on the MPI. Finally, Xij is a vector of controls including

student gender, age, socio-economic background and language spoken at home, as well as the

amount of math instructional time per week, school size, indexes of school immediate area’s

economic affluence and urban density and all teacher characteristics included in equation (1.3).

As we can see in table A19, the use of modern practices is positively associated to the

three non cognitive outcomes under consideration, though the relationship is not significant for

student self-confidence at conventional levels. This result is consistent with the notion that the

use of modern practices leads students to engage more actively in mathematics lesson. This

attitude may, in turn, help them improve their math performance. Furthermore, this result is

consistent with Algan et al. (2013), who find that teaching practices which imply strong student-

teacher interactions and interactions among students are associated with higher levels of self-

confidence and positive attitudes toward learning mathematics.

1.4 Conclusion

The results outlined in this paper shed a new light on the determinants of teacher instruc-

tional productivity and the mechanisms lying behind the large heterogeneity observed across

US teachers. Building on a new empirical strategy to estimate teachers hourly productivity,

we show that the use of practices emphasizing student active participation in the lesson is sys-

tematically associated with higher levels of productivity. Specifically, we construct an index

measuring the relative weight that math teachers put on these practices and we show that teach-

ers above this index’s median are twice as productive as teachers under the median. In terms of

magnitude, we find that a one SD increase in this index is related to a 0.08 SD increase in stu-

dent test scores over the year, which is equivalent to half the effect of a SD increase in teacher

value-added estimates from previous studies. A further investigation of the potential mecha-
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nisms at play suggests that this effect is mediated by an increase in student self-confidence and

motivation to learn mathematics.

These results confirm that teachers are a key determinant of student achievement and sug-

gest a new way to improve teachers’ productivity through the promotion of better teaching

practices. An important area for future research is to determine the extent to which the positive

relationship between teacher instructional productivity and practices based on student active

participation truly reflects the causal effect of these practices. In particular, it is possible that

only teachers endowed with a high level of pedagogical skills are able to efficiently implement

these practices. In this case, forcing teachers (including those poorly endowed with pedagog-

ical skills) to implement them could be counterproductive. In addition, it is important to take

into account the adjustment costs incurred by a policy aiming at enhancing new practices, as

teachers are not necessarily able to instantaneously absorb and retain new teaching methods.

To our knowledge, the only paper dealing with these issues is the one by Haeck et al. (2014)

who study the effect of a universal school reform implemented in the early 2000’s in Quebec.

Their findings are consistent with the existence of adjustment costs and therefore confirm that

investigating the long term cost effectiveness of such policies in a dynamic and experimental

setting is a key area for future research.
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Chapter 2

Does evaluating teachers make a difference?

This thesis chapter is based on a joint work with Éric MAURIN.

Abstract

In France, secondary school teachers are evaluated every six or seven years by senior experts

of the Ministry of education. These external evaluations mostly involve the supervision of one

class session and a debriefing interview, but have nonetheless a direct impact on teachers’ career

advancement. In this paper, we show that these evaluations contribute to improving students’

performance, especially in math. This effect is seen not only for students taught by teachers the

year of their evaluations but also for students taught by the same teachers the subsequent years,

suggesting that evaluations improve teachers’ core pedagogical skills. These positive effects

persist over time and are particularly salient in education priority schools, in contexts where

teaching is often very challenging.

JEL classification: I20; I28; J24

Keywords: teacher quality; evaluation; feedback; teaching practices; supervision; education.
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Introduction

There is a large body of research suggesting that teachers vary a lot in their ability to improve

students’ performance (Hanushek & Rivkin (2010)). It is also generally admitted that teacher

evaluation can be a way to improve teachers’ effectiveness, either by making it possible to pro-

vide them with useful feedbacks or by creating incentives to implement better practices (Isoré

(2009); Taylor & Tyler (2012)). However, despite the recent evidence that existing evaluation

systems produce accurate measures of teacher productivity (Jacob & Lefgren (2008); Kane

et al. (2011); Bacher-Hicks et al. (2017)) there is still very little evidence on the actual impact

of teacher evaluation on student performance. Teacher evaluations take many different forms

across the world and vary a lot in terms of resources involved per teacher, but there is no con-

sensus on what a good evaluation system should be and on how intensive it should be (Isoré

(2009); OECD (2013a,b); Jackson et al. (2014)).

To shed light on this issue, this paper builds on administrative data with exhaustive infor-

mation on the exact timing of secondary school teachers’ evaluations in France, in a context

where evaluations take place every six or seven years, involve very little resources per teacher

and year, but have nonetheless a direct impact on teacher career advancement.

Evaluations are conducted by senior experts of the ministry of education, called inspecteurs

d’académie - inspecteurs pédagogiques régionaux (hereafter inspecteurs), but each one of these

inspecteurs is responsible for more than 350 teachers and has to perform on average about 40

evaluations per year, on top of many other managerial activities within the education system

(IGEN (2011); IGEN/IGAENR (2016)). Evaluations mostly encompass the supervision of one

class session and a debriefing interview with the teacher and we can estimate the cost to be

about 600 euros per evaluation, namely about 100 euros per year and teacher. The results of

these evaluations are used, however, to determine teachers’ progression in the wage scale1.

As a consequence, evaluations may not only help teachers improve their skills through the

provision of evaluators’ feedbacks, but they also give teachers strong incentives to provide effort

to improve their teaching practices in order to be as good as possible on the day of evaluation.

1In most developed countries, teachers’ evaluations are either conducted by internal evaluators only or not
related to career advancement (OECD (2013a)). Only in a few countries (including Portugal, Switzerland and
some regions of Germany) are teachers’ evaluations conducted by external evaluators and have a direct impact on
teachers’ wage and promotion, as in the French system (OECD (2013b) ; Eurydice (2018)). Another important
feature of the French system is that evaluations are conducted each year, in each subject, by the same group of
highly qualified civil servants (inspecteurs) who likely develop a specific expertise in this task.
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Each year, each teacher is assigned to a given set of classes and, consequently, teaches the

same group of students over the whole year. Our empirical strategy exploits data on the exact

timing of evaluations to compare the average performance of students assigned to a teacher be-

fore and after his/her evaluations, the basic question being whether evaluations coincide with

specific improvement in students’ average performance. Identification relies on the assumption

that external evaluations do not coincide with teachers being assigned to better classes. Empir-

ically, we checked that there is no specific change in students’ characteristics before and after

evaluations and, in particular, no changes in the proportion of students who have been held back

a grade or in the proportion who take prestigious non-compulsory courses (such as Latin or an-

cient Greek courses). We also checked that external evaluations are not followed by specific

changes in the level of teaching experience of colleagues who teach other subjects in the same

class. If teachers were systematically assigned to better classes after external evaluations, we

would observe a different pattern, namely a mechanical increase in colleagues’ level of expe-

rience after external evaluations. Eventually, we provide evidence that the timing of teacher

evaluations is unrelated to teacher mobility and that, more specifically, teachers don’t move to

better performing schools after an external evaluation. By contrast, as regards performance, we

provide clear evidence that the visit of a math teacher by an external evaluator is followed by

a significant increase (of about 4.5% of a SD) in students’ scores in math at the end of mid-

dle school (9th grade). The effect of math teachers’ evaluations is observed on performance in

math, not in other subjects, consistent with the assumption that increased performance in math

are driven by improved teaching practices of math teachers, not by an increase in students’ over-

all academic ability or in math workload (which would likely be detrimental to performance in

other subjects). Furthermore, math teachers’ increased effectiveness is observed not only at the

end of the evaluation year, but also at the end of the following years. Such persistent effects

on teachers’ effectiveness are consistent with the assumption that the visit of an evaluator is

associated with an improvement in teachers’ pedagogical skills, not just a temporary increase in

teachers’ effort. In the same spirit, the influence of math teachers’ evaluations on their students

can still be seen several years later, in high-school, as a larger proportion of their former stu-

dents keep on studying math and succeed in graduating in fields of study which involve taking

math exams. These longer term effects on students’ outcomes are further suggestive that exter-

nal evaluations do not simply help math teachers to “teach to the test”, but make them able to

improve students’ core skills as well as students’ perception of the discipline. These improve-
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ments can be seen for less experienced teachers as well as for more experienced ones. They are

even more significant for math teachers assigned to education priority schools, in context where

students’ academic level is often very weak and teaching more challenging.

Building on the same identification strategy, we show that external evaluations have smaller

effects on French language teachers than on math teachers, even though evaluations of French

language teachers are followed by significant improvement in French language test scores in

education priority schools. The smaller effects of external evaluations on French language

teachers are consistent with the existing literature on teacher effectiveness, which typically finds

that teacher effects are much weaker on language exams than on math exams, maybe because

students learn language in many settings outside schools, so that the influence of teachers is

diluted and distorted by that of many other factors (Lavy (2009); Hanushek & Rivkin (2010);

Harris & Sass (2011); Taylor & Tyler (2012); Wiswall (2013); Jackson et al. (2014); Papay &

Kraft (2015)).

Eventually, when we consider the joint sample of math and French language teachers, we

find an average effect of teacher evaluation of about 3% of a SD on test scores. Such an average

effect is about the same order of magnitude as the average effect of a 5-student reduction in

class size, as estimated by Piketty et al. (2006) for French middle schools. Our program of

teacher evaluations involves, however, much smaller cost per teacher and year.

Our paper contributes to the growing literature on the causal impact of policies aimed at

improving teachers’ effectiveness. These policies include program of peer mentoring for new

teachers (Rockoff (2008); Glazerman et al. (2008, 2010)) as well as programs of formal training

and professional development (Angrist & Lavy (2001); Harris & Sass (2011)) and policies

designed to evaluate and provide feedbacks to teachers (Weisberg et al. (2009); Allen et al.

(2011); Taylor & Tyler (2012); Murphy et al. (2018)). Generally speaking, most existing papers

focus on US programs and are suggestive that teacher-related programs can make a difference

only insofar as they are high intensity. For example, the evaluation program in Cincinnati public

schools involve the observation of four classroom sessions during the year of the evaluation,

three by an external expert and one by an internal one (Taylor & Tyler (2012)). Both external

and internal evaluators have to complete an intensive evaluation training program, so as to be

able to measure several dozens of specific skills and practices. Overall, the Cincinnati program

has a significant effect on math teacher effectiveness (about +10% of a SD on student’ scores),

but involves a total budget of about 7,500 dollars per evaluation, namely a cost per evaluation
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that we estimate to be about 10 times more important than the budget involved by the program

analyzed in our paper.

The remainder of the paper is organized as follows. Section 1 describes the teacher evalu-

ation system as well as the organization of secondary schooling and national exams in France.

Section 2 presents the databases exploited in this paper and the construction of our working

samples. Section 3 develops our empirical approach and shows the effects of external evalu-

ations on student outcomes through a graphical analysis. Section 4 implements a regression

analysis to show the robustness of our main results and to explore the potential heterogeneity in

the effects of evaluations. The final section concludes with a brief discussion on the implications

of our results.

2.1 Institutional context

In France, secondary school teachers are recruited through national competitive exams orga-

nized each year, in each field of study, by the ministry of education2. Once recruited, teachers’

progression through the wage scale depends not only on internal evaluations conducted each

year by school heads, but also on external evaluations conducted every 6 or 7 years by senior

experts of the ministry of education3. Internal evaluations focus on teachers’ behavior at school

(punctuality, absenteeism, participation in cross-class collaboration projects. . . ) whereas exter-

nal evaluations focus on teaching practices and pedagogical skills.

Teacher external evaluations

Teacher external evaluations are under the responsibility of a group of senior civil servants

of the ministry of education, called inspecteurs d’académie - inspecteurs pédagogiques ré-

gionaux (hereafter inspecteurs). The vast majority of evaluations are conducted by inspecteurs

2The vast majority (93%) are granted the basic degree required to teach secondary school students, namely the
Certificat d’Aptitude au Professorat de l’Enseignement Secondaire (hereafter CAPES). A small minority (about
7%) are recruited through an even more selective examination and hold an advanced degree, called the Agrégation.
Most Agrégation recipients teach in high school or in higher education. In the remainder, given our focus on
students’ performance at end-of-middle school exams, we will focus on CAPES recipients.

3 Teachers’ basic promotion rate on the wage scale is based on their number of years of experience. But
teachers who get good evaluations can be promoted at a faster rate. Going from the first to the last level of the
wage scale takes about 30 years with the basic promotion rate versus only 20 years for the 30% teachers with
the best evaluations. Teachers’ access to the faster promotion track is determined by the weighted sum of the
administrative grade that they get from school heads (/40) and the pedagogical grade that they get from external
evaluators (/60).
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themselves. A small fraction is conducted by senior teachers temporarily appointed to help

inspecteurs4.

Inspecteurs are recruited through national competitive exams restricted to experienced civil

servants. There is one such competitive examination per field of study each year. Most candi-

dates are experienced teachers who look for a career change. According to the staff directory of

the ministry of education, inspecteurs are on average about 52 years old and have about 6 years

of experience as inspecteur (see Table B4 in the appendix). Once recruited, each inspecteur is

assigned to a specific education region by a centralized assignment system. There are 31 edu-

cation regions in France and the average number of inspecteurs per region and field of study is

typically very small compared to the number of teachers. For instance, according to the staff di-

rectory of the ministry, there are on average only about 5 math inspecteurs per region and they

have to evaluate about 1,700 math teachers (Table B4)5. According to the same data source,

about 250 math teachers are evaluated each year, in each region. Assuming that 85% of these

evaluations are conducted by inspecteurs, it means that each inspecteur conducts on average

about 40 evaluations per year.

Each evaluation involves the supervision of one class session. It also involves a debrief-

ing interview with the evaluated teacher, during which the inspecteur provides feedbacks and

advices. Inspecteurs can also provide teachers with suggestions about the specific training

sessions that they could attend to improve their teaching practices or class management prac-

tices. On the day of the evaluation, inspecteurs also examine students’ notebooks as well as the

class book, namely the book where teachers have to report class sessions’ contents, the exams

that they give, etc. Eventually, inspecteurs have to produce a written report (so called, rap-

port d’inspection) where they provide an analysis of the class session that they supervised and

provide explanations for the overall grade that they give to the evaluated teacher. In general,

teachers are notified well in advance of the visit of the inspecteur, if only because the date of

the visit has to coincide with a day when they teach. However, there is no legal constraint on

notification delays.

Symbolically, the evaluation of teachers represents the most important task assigned to in-

specteurs. But, in practice, inspecteurs are in charge of many other aspects of the education

4According to IGEN (2011), the proportion of external evaluations who are not conducted by inspecteurs vary
across regions, but is never above 15%. Senior teachers appointed each year to help inspecteurs typically belong
to the category who intend to take the exam to become inspecteurs.

5Overall, there were 142 math inspecteurs and 165 French language inspecteurs in France in 2008.
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policy, so that the evaluation of teachers represents only a small part of their activities. As

a matter of fact, inspecteurs are also in charge of the conception of the many national exams

organized each year in France6. In each education region, inspecteurs also have to contribute

to the conception and organization of teacher training and professional development programs.

As regards human resources management, they are also expected to play a consulting role with

teachers, namely they are expected to answer queries about both career advancement and teach-

ing practices. More generally, inspecteurs are expected to supervise the actual enforcement

of education policies in each education region and each school. Overall, according to surveys

conducted by the ministry of education on the working condition of inspecteurs, the evalu-

ation of teachers represents on average only between 20% and 30% of inspecteurs’ activities

(IGEN (2011); IGEN/IGAENR (2016)). Given that the total wage cost of an inspecteur is about

100,000 euros per year and assuming that about 20-30% of this cost compensates for evaluation

tasks, we can estimate that 20,000-30,000 euros compensate for about 40 evaluations, meaning

about 500-700 euros per evaluation7. Given that there is only one evaluation every six or seven

year, the cost per teacher and year is about 100 euros.

School context and exams

In France, middle school runs from 6th to 9th grade and high school runs from 10th to 12th

grade. Students complete 9th grade the year they turn 15. The curriculum is defined by the

central government. It is the same in all middle schools and there is no streaming by ability8.

The 20% most underprivileged middle-schools benefit from education priority programs which

provide them with additional resources9.

An important feature of the French system is that students stay in the same class, in all

subjects, (with the same teacher in each subject), throughout the school year. Classes are groups

6Most notably, they are in charge of the different types of end-of high school Baccalauréat, as well as the
different types of end-of-middle school Brevet, the different Certificat d’Aptitudes Professionnelles, etc.

7More information on the duties and compensations of inspecteurs can be found at the following address:
http://www.education.gouv.fr/cid1138/inspecteur-de-l-education-nationale.html.

89th grade students get about 25 hours of compulsory courses per week: 4 hours of French language, 3.5 hours
of mathematics, 3.5 hours of History and Geography, 3 hours of Science, 1.5 hours of Technology, 5.5 hours
of foreign languages, 3 hours of sport, 1 hour of art course. They also have the possibility to take additional
(non compulsory) courses, such as Latin or ancient Greek. Principals can decide to assign students taking these
additional courses to the same classes. Given that these students are typically good students, we may observe some
segregation by ability across classes within schools.

9As shown in table B5 in appendix B, the proportion of students from low-income families is twice bigger in
education priority schools than in non-priority schools. Education priority schools also exhibit higher proportions
of repeaters and students in this type of schools get lower scores at the end-of-middle school national examination
on average.
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of about 25 students which represent, each year, very distinct entities. School principals assign

students and teachers to classes before the beginning of the school year. In the remainder of

this paper, we will mostly focus on teachers who teach 9th grade classes and our most basic

measure of their effectiveness will be defined by the average performance of their students at

the (externally set and marked) national exam taken at the end of 9th grade, which is also the

end of middle school. This exam involves three written tests (in math, French language, history-

geography) and our first question will be whether external evaluations of 9th grade teachers

improve their ability to prepare their students for these tests. Specifically, we will mostly focus

on math teachers and ask whether their external evaluations are followed by an improvement in

the math scores of their students10.

After 9th grade, students enter into high school, which runs from grade 10th to 12th grade.

At the end of their first year of high school (10th grade), French students can either pursue

general education or enter a technical or a vocational education program. Furthermore, those

who pursue general education have to specialize in a specific field of study. There are three

main fields: science (field “S”), economics and social sciences (field “ES”) or languages and

literature (field “L”). This is a key choice: each field of study corresponds to a specific curricu-

lum, specific high school examinations, and specific opportunities after high school. Another

important research question will be whether the effect of 9th grade teachers’ evaluation on their

students can still be seen one year later, at the end of 10th grade, on students’ probability to

choose S as field of specialization. The first year of high school (10th grade) is dedicated to

exploring the different subjects and to choosing a field of specialization. The two last years of

high school (11th and 12th grade) are dedicated to the preparation of the national high school

exit exam, the Baccalauréat, which is a prerequisite for entry into post-secondary education.

Students have to take one exam per subject, and they obtain their diploma if their weighted av-

erage mark across subjects is 10/20 or more, where subjects taken and weights depend strongly

on their field of specialization. Given our focus on math teachers, a last research question will

be whether the effect of 9th grade teachers’ evaluation on their students can still be seen three

years later, at the end of 12th grade, on students’ ability to graduate in science (S).

10In the last section of this paper, we also present an analysis of the effects of external evaluations on French
language teachers’ effectiveness, as measured by their students’ French language score. Generally speaking, we
find much weaker effects on French language teachers than on math teachers, except in priority education schools.
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2.2 Data and samples

In this paper, we use administrative data with detailed information on secondary school teachers

for the period between t0=2008-2009 and t1=2011-2012. For each teacher j, this dataset gives

information on whether (and when) j underwent an external evaluation between t0 and t1. It

also gives information on whether (and when) teacher j taught 9th grade students and on the

average performance of these students at exams taken at the end of 9th grade as well as at exams

taken subsequently at the end of high school. Appendix B provides further information on how

we build this database.

To construct our working sample of math teachers, we first extract from our main database

the sample of math teachers who have less than 25 years of teaching experience, who taught

9th grade students in t0, but who were not evaluated in t011. The size of this sample is about

40,000, which represents about 85% of the total number of 9th grade math teachers. About

57% of teachers in our sample are externally evaluated during the period under consideration

and our objective is to evaluate the effect of these external evaluations on their students’ math

performance12.

To explore this issue, we have to further focus on the subsample who teach 9th grade stu-

dents at least one additional time after t0, so as to be able to look at the evolution of students’

performance at the end of 9th grade. The size of the corresponding working sample is about

30,000, which represents about 80% of the main sample. Most of our empirical analysis will

be conducted on this working sample. One potential issue with this working sample, how-

ever, is that external evaluations may have an impact on teachers’ probability to teach 9th grade

students after t0, meaning the selection into the working sample may be endogenous to the

“treatment” under consideration. To test for such an endogenous selection, we considered the

main sample of 40,000 observations and we tested whether the probability to teach 9th grade

students on a year t after t0 is different for teachers who are evaluated between t0 and t and for

those who are not evaluated in this time interval. As shown in Appendix Table B6, we find no

11We drop the small fraction of 9th grade teachers who are evaluated on year t0=2008-2009 because the vast
majority (about 96%) are not (re)evaluated before t1 and cannot contribute to the identification of the effect of
external evaluations. We also drop teachers with more than 25 years of teaching experience (on t0) so as to
minimize attrition rate. As it happens, many teachers with more than 25 years of experience are near the end of
their working career and about 31% leave the education system between t0 and t1 (against only 4% for teachers
with less than 25 years of experience). We checked, however, that results remain similar when we keep teachers
with more than 25 years of teaching experience in our working sample (see appendix B14 and B15).

12The sample of French language teachers used in the last section of the paper will be constructed in a similar
way.
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significant difference between the two groups of teachers. The probability to teach 9th grade

student on a given year after t0 is on average about 78% for non-evaluated teachers and about

0.8 percentage point higher for evaluated teachers, the difference between the two groups being

non-significant at standard level. The same diagnosis holds true when we replicate this sample

selection analysis on subsamples defined by type of schools, teachers’ experience or teachers’

gender. Generally speaking, these results are consistent with the assumption that attrition is

negligible.

Overall, our working sample includes 9,451 math teachers who teach 9th grade students at

least two times between t0 and t1, which represents 30,414 observations in total. We provide

some descriptive statistics in Appendix B (see column (1) of Table B7)).

2.3 The effect of evaluations: conceptual framework and graphical evi-

dence

In the remainder of the paper, we ask whether teachers’ external evaluations are followed by an

improvement in their effectiveness, as measured by their ability to prepare 9th grade students

for national exams or for high school. We first focus on math teachers and the last section

provides results for French language teachers. The underlying educational production function

is straightforward: (a) students’ achievement is assumed to depend not only on their individual

characteristics, but also on the effectiveness of their teachers and (b) the effectiveness of teachers

is assumed to depend not simply on their level of experience, but also on the number of external

evaluations they underwent since the beginning of their career. In this framework, assuming

that teachers are assigned to the same type of classes on the years before and after the visit of an

inspecteur, the comparison of the effectiveness of evaluated and non-evaluated teachers before

and after an additional evaluation provides a means to identify the impact of such an additional

evaluation on effectiveness. Before moving on to our econometric investigations, we start by

providing simple graphical evidence on this issue.

The impact of external evaluations: graphical evidence

For each group of evaluated math teachers defined by the year te of their evaluation (with

t0 < te ≤ t1), let us consider Yed the average performance in math of their 9th grade students at

national exams taken at the end of year te+ d and Y−ed the average performance of the students
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of non-evaluated teachers at the end of the same year te+d. Denoting Yd and Y−d the average of

Yed and Y−ed across all possible evaluation year te, Figure 1(a) shows the evolution of Yd and Y−d

when d increases from d=-3 to d=+2 (i.e., the range of variation of d in our sample). The Figure

reveals a marked increase in the average performance of students of evaluated teachers just after

evaluations (i.e, for d ≥ 0). The average performance of the evaluated and non-evaluated groups

follows a similar pattern for exams taken before evaluations, but the gap widens for exams taken

after evaluations.

To take one step further, Figure 1(b) plots the difference between evaluated and non-evaluated

groups, with the last pre-evaluation year (i.e, te-1) being taken as a reference. It confirms that

the evaluation year coincides with an improvement in the relative performance of evaluated

teachers’ students. The difference between the two groups of teachers is not statistically differ-

ent from zero before the evaluation, but becomes statistically different from zero just after the

evaluation.

Overall, Figures 1(a) and 1(b) are suggestive that evaluations have an impact on math teach-

ers’ effectiveness, as measured by the math scores of their 9th grade students. The basic iden-

tifying assumption is that evaluations do not coincide with teachers being assigned to better

classes.

To further explore the credibility of our identifying assumption, Figures 2(a) and 2(b) repli-

cate Figures 1(a) and 1(b) using average standardized scores in humanities as dependent vari-

able, where scores in humanities are defined as the average of French language and history-

geography scores13. Comfortingly, Figures 2(a) and 2(b) do not reveal any improvement in

students’ performance in humanities after external evaluations of math teachers. These Fig-

ures are in line with the assumption that external evaluations do not coincide with any overall

improvement in the ability of students assigned to teachers. They are also consistent with the

assumption that increased performance in math are driven by improved teaching practices of

math teachers, not by an increase in math workload, since an increase in math workload would

likely be detrimental to performance in other subjects.

A symmetrical falsification exercise consists in testing whether students’ math performances

are affected by the evaluation of non-math teachers. Figures 3(a) and 3(b) shows that this is not

13As mentioned above, students take three written tests at the end of 9th grade, namely a test in math, a test
in French language and a test in history-geography. For each student, the score in humanities correspond to the
average of the French language score and the history-geography score. Results are similar when we use separately
the French language score and the history-geography score.
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the case, namely the Figures do not show any improvement in student math performance after

the evaluation of French language teachers, which further suggest that teachers are not assigned

to intrinsically better classes after external evaluations.

In appendix B, Figures B5 (a) to B5 (c) provide additional evidence that external evaluations

are not associated with teacher mobility (as captured by variation in teachers’ seniority level)

and do not coincide with teachers moving to better schools. In particular, these figures show

that external evaluations do not coincide with any change in teachers’ probability to teach in

education priority schools. More generally, we do not see any variation in the academic level

of the schools where they teach (as measured by the math average performance of 9th grade

students at national exams taken in 2008, pre-treatment).

2.4 The effect of teachers’ evaluations: regression analysis

The previous subsection provides us with simple graphical evidence on the effects of external

evaluations on math teachers’ effectiveness, as measured by the performance of their students

at externally set and marked examinations. In this section, we explore the robustness of this

finding - as well as the potential heterogeneity of effects across teachers and schools - using

more parsimonious regression models. Specifically, we keep on focusing on the same working

sample of math teachers as Figure 1(a) and we consider the following basic event-analysis

model:

Yjt = βTjt + θXjt + uj + γt + εjt (2.1)

where Yjt still represents the average standardized math score of teacher j’s students at ex-

ams taken at the end of year t, while Tjt is a dummy indicating that an evaluation took place

between t0 and t. Variable Xjt represents a set of controls describing the average characteris-

tics of the students taught by teacher j on year t (proportion of girls, average age, proportion

studying ancient languages, etc.). Xjt also includes dummies controlling for teachers’ number

of year of teaching experience and for teachers’ seniority level as well as a dummy indicating

whether the teacher works in an education priority school and dummies indicating the education

region. Eventually, the uj and γt parameters represent a comprehensive set of teacher and year

fixed effects while εjt represent unobserved determinants of students’ performance.

In this set-up, parameter β can be interpreted as the effect of one additional external eval-

uation between t0 and t on students’ performance at the end of t. It should be emphasized
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that this basic parameter encompasses the effect of evaluations which took place on t (the very

year of the exam) and the effect of evaluations which took place between t0 and t − 1. To

separate these two effects, we will also consider models with two basic independent variables,

namely a dummy (denoted T1jt) indicating that the evaluation took place on t and a dummy

(T2jt) indicating that the evaluation took place between t0 and t− 1.

To identify the parameters of interest in Equation (2.1), we assume that the timing of eval-

uations (as captured by changes in Tjt) is unrelated to changes in unobserved determinants of

students’ performance in math (as captured by changes in εjt), namely the same identifying

assumption as in the previous graphical analysis. It amounts assuming that the evolution of the

effectiveness of evaluated and non-evaluated teachers would have been the same across the pe-

riod under consideration, had evaluated teachers not been evaluated. Table B8 in the appendix

shows the results of regressing students’ observed characteristics (gender, age, family back-

ground as well as the study of ancient languages or the study of German language) on Tjt using

model (2.1). Consistent with our identifying assumption, the Table shows that the timing of

external evaluation does not coincide with any significant variation in students’ characteristics.

We also checked that when we regress Tjt on all student observed characteristics, a F-test does

not reject the joint nullity of the estimated coefficients14. These results hold true regardless of

whether we use the full sample of math teachers or subsamples defined by level of experience,

gender or type of schools. Eventually, Table B9 in the appendix confirms that the timing of eval-

uation does not coincide with teacher mobility (as captured by changes in teachers’ seniority

level) or with changes in the academic level of the schools where teachers work (as measured

by school pre-treatment average scores or by priority education). The Table also reveals that the

timing of evaluation does not coincide with changes in the level of experience or in the level of

seniority of colleagues teaching other subjects to the same class. This finding is consistent with

our assumption that evaluations are not followed by assignment to specific classes. If that were

the case, evaluations would also mechanically coincide with assignment to classes with more

senior and experienced colleagues.

2.4.1 Main effects on math scores

The first column of Table B1 shows the basic effect of external evaluations on math teachers’

effectiveness, as measured by their students’ performance in math at end-of-middle school na-

14Specifically, we have F(5, 20857) = 0.49 ; p-value = 0.78
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tional exams. Consistent with our graphical analysis, it confirms that external evaluations are

followed by a significant improvement in math score of about 4.5% of a SD. The second column

shows the impact of external evaluations of math teachers on students’ performance in human-

ities and, comfortingly, it shows no effect15. Column 3 shows the results of re-estimating the

effect of math teachers’ evaluations on math scores when we consider separately the effect on

exams taken at the end of the evaluation year (T1jt) and the effect on exams taken at the end of

the following years (T2jt). Both effects appear to be significant. The effect on exams taken at

the end of the following years tend to be stronger (5.3% of a SD), but the difference between

the two effects is non-significant at standard level. Eventually, column 4 confirms that math

teachers’ evaluations have no effect on performance in humanities, be they measured at the end

of the evaluation year or later.

2.4.2 Heterogeneous effects

Table B2 shows the results of replicating our basic analysis separately on subsamples of math

teachers defined by their gender, number of years of teaching experience (less than 11 years vs

11 years of more, where 11 is the median number of years of experience in our sample) or type

of school (education priority schools vs regular schools). The Table shows that the impact of

external evaluations on math scores is similar for men and women as well as for teachers with

higher and lower level of work experience. By contrast, the impact appears to be significantly

stronger for teachers in education priority schools (9.4% of a SD) than for teachers in non-

priority schools (+3.1% of a SD). This finding is suggestive that external evaluations tend to be

even more effective in school contexts where the average academic level of students is weaker

and where teaching is more challenging16.

Consistent with our identifying assumption, Table B2 also confirms that external evaluations

of math teachers have no significant effect on students’ performance in humanities, regardless of

the subsample. As mentioned above, Tables B8 and B9 in the appendix provide balancing tests

for the different subsamples which further confirm that external evaluations are not followed by

any systematic variations in class composition, teacher mobility or colleagues’ characteristics.
15As mentioned above, the score in humanities correspond to the average of the score in French language and

the score in history-geography. We have checked that math teachers’ evaluation have no effect on any of the two
scores when we consider them separately.

16A survey conducted in 2006 provides an analysis of the specific challenges faced by teachers in education
priority schools, due to students’ social environment (poor working conditions at home, fatigue, diet. . . ) as well as
to students’ disruptive behaviors and low academic ability. The survey report emphasizes that most teachers lack
the pedagogical skills that are necessary to adapt teaching to this specific context (IGEN/IGAENR (2006)).
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2.4.3 Longer term effects

Previous sections suggest that external evaluations improve the effectiveness of math teachers,

as measured by their ability to prepare their 9th grade students for exams taken at the end of 9th

grade. Table B3 shows that the influence of math teachers on their 9th grade students can still

be seen one year later at the end of 10th grade (when students have to choose their major field of

study) or even three years later, at the end of 12th grade, when they have to take their high school

exit exams. Specifically, the Table focuses on the same sample of 9th grade math teachers as

Tables B1 or B2 and looks at the probability that their students subsequently choose science as

major field of study as well as at the probability that they subsequently succeed in graduating

in science. The first column of the Table shows an increase in both probabilities. Specifically,

it suggests an increase of about 0.5 percentage points in the probability to choose science at

the end of 10th grade and to graduate in science at the end of 12th grade, which represent an

increase of about 3% in this probability. Consistent with Table B2, the following columns shows

that this increase is particularly significant for teachers in education priority schools (+10%).

These longer term effects on students’ choices and performance are suggestive that external

evaluations do not simply help teachers to “teach to the test”, but make them able to improve

students’ core skills as well as students’ perception of the discipline.

2.4.4 Effects of external evaluations on French language teachers

Until now, we have focused on math teachers. In this section, we extend our analysis to French

language teachers. The corresponding working sample is constructed along the same line as the

working sample of math teachers, meaning we focus on those who teach 9th grade students on

t0, who are not evaluated on t0 and who have less than 25 years of teaching experience on t0.

Figures 4(a) and 4(b) replicate Figures 1(a) and 1(b) using this working sample of French lan-

guage teachers. In contrast with what we find for math teachers, these Figures do not show any

significant variation in performance at French language exams after French language teachers’

evaluations. Tables B10 and B11 in appendix B replicate Tables B1 and B2 using the sam-

ple of French Language teachers and confirm that external evaluations have only a small and

marginally significant effect on their effectiveness, except when we focus on priority education

schools (where the effect is about 7.6% of a SD). To further explore this issue, we looked at the

effect of French language teachers’ evaluations separately on reading test scores and writing test
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scores17. This analysis shows that the effects of external evaluations tend to be slightly stronger

on writing test scores, but the difference across writing and reading tests is not significant at

standard level (see Table B12 in appendix B).

Generally speaking, the smaller effects of evaluations observed on French language teachers

are in line with the literature on teachers’ effects which recurrently finds that these effects are

much weaker on language exams than on math exams (see e.g. Lavy (2009); Hanushek &

Rivkin (2010); Harris & Sass (2011); Taylor & Tyler (2012); Wiswall (2013); Jackson et al.

(2014); Papay & Kraft (2015)). One possible reason is that students learn language in many

other settings outside schools, so that the influence of teachers is diluted and distorted by that

of many other factors.

Eventually, Table B13 in the Appendix shows the results of replicating our main regression

analysis on the joint sample of math and French language teachers, so as to estimate the average

effect of teacher evaluations on end-of-middle-school exams. The Table shows a significant

effect of about 3% of SD (8% of a SD in priority education). Not surprisingly, this effect is

close to the average of the effect for math teachers and the effect for French language teachers

estimated in previous sections. Building on the same type of database as those used in this

paper, Piketty and Valdenaire (2006) found that a 5-student reduction in class size improves

9th grade students’ average score in math and French language by about 4% of SD. Hence, our

estimated effect of teacher evaluation is about the same order of magnitude as the effect of a

5-student reduction in class size. The corresponding cost, however, is much smaller18.

2.5 Conclusion

Despite the general consensus that teachers represent an important determinant of student achieve-

ment, there is still little evidence on successful policies aimed at improving teacher effective-

ness. In this paper, we study the impact of teacher evaluation on students’ performance, in a

context where evaluations are conducted every six or seven years by senior experts of the Min-

istry of Education and represent a key determinant of teacher career advancement. We show

17The French language end-of-middle-school exam consists of a set of reading and a set of writing exercises.
During the exam, students are given the same amount of time to complete each one of the two sets of exercises.

18Given that class size is about 25 students on average, a 5-student reduction corresponds to a class size reduction
of about 20%. Hence, the corresponding cost per teacher and year can be estimated to be about 0.20 x 50,000 euros
where 50,000 euros is a proxy for the total labor cost of a secondary school teacher. We end up with a cost per
teacher and year of about 10,000 euros whereas the cost per teacher and year of the evaluation system is only about
100 euros (as discussed in section 2).
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that math teachers’ evaluations increase their students’ performance in math at end-of-middle

school national exams. This effect is seen not only for students taught by the teacher the year

of the evaluation but also for students taught by the same teacher the subsequent years, suggest-

ing that evaluations improve teachers’ core pedagogical skills. Math teachers’ evaluations also

generate persistent benefits for their students, who not only perform better at the end-of-middle

school exam, but also graduate more often in science at the end of high school, three years later.

The impact of evaluation appears to be much smaller for French language teacher, except in

education priority schools. For both math and French language teachers, the positive effects

of evaluations are actually particularly salient in education priority schools, in contexts where

teaching is often very challenging.

In terms of policy implications, our results suggest that a low-intensity low-cost evaluation

program can be highly cost effective provided that it is conducted by external authorities and

has a significant impact on teachers’ career advancement. Our results also show that evaluations

can generate significant benefits even after ten years of work experience. In most countries,

evaluations tend to be concentrated on beginning teachers, whereas our findings suggest that it

can be efficient to evaluate teachers all along their career, not simply at the start. Finally, our

findings show that evaluations are particularly worthwhile in contexts where teaching is very

challenging, such as education priority schools. Reinforcing teacher evaluations in this type of

schools thus appears as an appealing way to reduce educational inequalities.
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Chapter 3

Are girls always good for boys? Short and

long term effects of school peers’ gender

Abstract

This paper exploits idiosyncratic variations in school cohorts’ gender composition to investigate

the short and long-term effects of school peers’ gender. Using French administrative data over

the 2008-2012 period, it shows that the proportion of female peers’ in middle school not only

affects students’ contemporaneous performance but also influences their subsequent educational

attainment. More specifically, a larger share of girls among school peers increases girls’ test

scores, reduces their dropout rates and increases their probability to graduate from high school

several years later, especially in the scientific track. By contrast, it increases boys’ probability to

attend a vocational school and decreases their high school graduation rate. We find suggestive

evidence that these effects partially operate through a negative effect of opposite-gender peers

on students’ classroom behaviour and relationships with their teachers.

JEL classification: I20 ; I24; J16

Keywords: peer effects; gender; student performance; dropout; schooling choices; social inter-

actions.
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Introduction

Social scientists have long pointed out that peers’ influence is a key determinant of student

achievement, and recent empirical studies consistently find significant effects of school peers’

ability on student own achievement1. Nevertheless, until recent years, the effects of peers’ gen-

der has only received little attention by economic researchers. Yet, student gender is a crucial

determinant of social interactions at school, especially among 14-15 years old students2. In

turn, these interactions may not only affect students’ behaviour and performance at school but

they may also shape students’ preferences in a persistent manner. From a theoretical point of

view, the effects of being exposed to a higher proportion of female peers at school are unclear.

On the one hand, a higher proportion of girls should benefit to all students through a positive

effect on the quality of the learning environment, as girls tend to be more conscientious and

disciplined than boys on average3. On the other hand, a higher proportion of opposite-gender

peers may provide greater distraction (Coleman (1961); Hill (2015)) and/or may reduce coop-

eration among students (Lu & Anderson (2014)), resulting in a negative effect of girls on boys’

achievement and a positive effect girls’ one. As a consequence, it is key to better understand

how school peers’ gender affects girls’ and boys’ achievement and educational choices.

This paper builds on administrative data to investigate the effects of the proportion of girls

among school peers in middle school on student achievement and long-term educational choices

in France. To address causality issues, we take advantage of two key features of the French ed-

ucational system, namely compulsory schooling up to age 16 and the existence of a catchment

area system implying very little school choice in the public education system. Due to this insti-

tutional setting, demographic shocks in the gender ratio of cohorts living in a school catchment

area generate idiosyncratic variations in the gender ratio of school cohorts. Building on this

setting, our empirical strategy exploits variations in the proportion of girls which occur across

cohorts of the same middle school.
1See Sacerdote (2011) for a review of the economic literature on peer effects. Another recent paper by Monso

et al. (2019) summarizes the literature on peer effects in primary and secondary education.
2The high prevalence of gender stereotypes and the cost associated to deviation to these stereotypes during ado-

lescence are well documented by developmental psychologists, who consider puberty as a “gender intensification"
period (Galambos (2004), Lobel et al. (2004)). In particular, Steinberg & Monahan (2007) find that resistance to
peer influence is at its lowest at age 14.

3See for example Duckworth & Seligman (2006), Jacob (2002) Bertrand & Pan (2013) or Cornwell et al.
(2013).
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We first show that within school cross cohort variations in the proportion of girls are unre-

lated to other changes in peers’ socio-economic and educational backgrounds, as measured by

the proportion of students who have been held back a grade. We further show that variations

in the proportion of girls are unrelated to changes in class size or teacher quality, as measured

by teacher experience or tenure. By contrast, we provide clear evidence that the proportion of

girls among school peers not only affects student contemporaneous achievement, but also affect

their subsequent educational attainment. Generally speaking, being surrounded by more female

peers benefits to female students while it has detrimental effects on male students, both in the

short and the long run. A 20 pp increase in the proportion of girls in the classroom in 9th grade

(i.e, 5 students) increases girls’ average performance at the end-of-middle school national exam

by 2% of a SD, and decreases boys’ one by 1.5% of a SD. It also increases girls’ probability

to attend high school (+1.6%) and to graduate from a high school academic track (+2%) (es-

pecially from the scientific track (+3%)), and decreases their probability to attend a vocational

school (-2%) and their dropout rate (-3.8%). By contrast, it decreases boys’ probability to attend

high school (-1.5%) and to graduate from a high school academic track (-2%), and increases

their probability to attend a vocational school (+2.5%)..

Our results are consistent with the notion that a greater proportion of opposite-gender stu-

dents among school peers decreases cooperation in the classroom (Lu & Anderson (2014)) and

provides greater distraction to students, resulting in poorer classroom behaviour and student-

teacher relationships (Hill (2015)). We exploit teachers’ grading practices to test for the second

type of mechanism and we find suggestive evidence that the positive (negative) effects of the

proportion of girls among school peers on girls’ (boys’) achievement are partially mediated by

an improvement in girls’ classroom behaviour and relationships with their teachers relative to

boys.

This paper contributes to the growing literature on the causal effects of school peers’ gender

on students’ achievement and educational choices. Generally speaking, this literature focuses

on short-term outcomes and consistently finds that a higher proportion of girls benefits to all

students. In particular, Hoxby (2000), Whitmore (2005), Lavy & Schlosser (2011) and Hu

(2015) find that a higher proportion of girls among school peers increases both girls’ and boys’

contemporaneous test scores and provide suggestive evidence that these effects operate through

an improved learning environment. Related work further show that the proportion of girls in

middle school increases both girls’ and boys’ probability to chose STEM over language sub-
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jects in high school (Schøne et al. (2019)) and reduces girls’ and boys’ dropout rates (Anil

et al. (2016))4. One notable exception is Black et al. (2013), who exploit Norwegian registry

data and find that the proportion of girls in middle school positively affects girls’ employment

rate and wages several years later but has slightly negative effects on boys’ educational attain-

ment5. Eventually, a related literature investigates the effects of school peers’ gender in the

specific context of single-sex education. Generally speaking, this literature finds positive ef-

fects of attending a single-sex schools for both boys a girls (Jackson (2012, 2016); Park et al.

(2013, 2018); Dustmann et al. (2018)) but the evidence is more mixed as regards the effects of

being assigned to single-sex classes in mixed-gender schools (Strain (2013); Lee et al. (2014);

Eisenkopf et al. (2015); Booth et al. (2018)).

We add to the literature by providing clear evidence on both short and long term effects of

school cohort gender composition on student achievement and educational attainment, in the

broad context of mixed-gender education. Our results are suggestive of persistent effects of

school peers’ gender on students’ skills and preferences, which is a key result to understand the

long-term consequences of gender imbalances at school, especially in the context of consider-

able gender imbalances across fields of study observed in developed countries (OECD (2017)).

In addition, this paper is one of the first papers providing clear evidence of negative effects of

female peers on boys’ achievement and educational attainment in a context of mixed-gender

education, with the notable exceptions of Black et al. (2013) and Hill (2015).

The remainder of the paper is organized as follows. Section 1 describes the French institu-

tional context. Section 2 presents the datasets exploited in this paper and the outcomes under

consideration. Section 3 presents our empirical strategy. Section 4 provides evidence on the va-

lidity of the identifying assumption and presents the estimations of school peers’ gender effects

on student outcomes. Section 5 discusses potential mechanisms driving these effects. The final

section concludes with a discussion of the implications of the main results.

4A related work by Schneeweis & Zweimüller (2012) shows that a higher proportion of girls among lower
secondary school peers increases girls’ probability to chose a male-dominated vocational school for the specific
population of girls choosing a vocational school at age 14. In addition to this, Oosterbeek & Van Ewijk (2014) and
Hill (2017) find that the impact of female peers is much less pronounced in tertiary education than in secondary
education.

5Another exception is Anelli & Peri (2017), who study the impact of high school peers’ gender on college
major choice and labour market outcomes in Italy. They find no significant effect of female peers, but their results
are limited to very good students (i.e, those graduating from college-preparatory high schools).
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3.1 The French educational system

3.1.1 School system, examinations and track choices

Secondary education in France consists in four years of lower secondary education in middle

school (from 6th to 9th grade), and three years of upper secondary education in high school

(from 10th to 12th grade). Schooling is compulsory up to age 16 in France. This paper focuses

on the population of 9th grade students (14-15 years old) enrolled in public middle schools.

An important feature of French middle schools is that students stay in the same class with the

same teachers throughout the school year. Classes are groups of about 25-30 students which

represent, each year, very distinct entities6. As a consequence, classmates represent the group

of peers with whom students interact the most over the school day.

At the end of 9th grade, students take a national examination called Diplôme National du

Brevet (hereafter DNB), which is externally set and marked. Students are assessed in three

topics: mathematics, French language and history-geography. As early as the following year,

students who continue to high school have to decide to take either the academic track or one

of the vocational tracks. The academic track is a 3-year high school education preparing for

college. In contrast, vocational tracks are generally much shorter and, in most cases, do not

enable students to access tertiary education. Students enrolled in the academic track in 10th

grade have to specialize in one of the three academic tracks, namely Science, Economics and

Social sciences and Literature, or to switch to a vocational (technological) track when they move

on to 11th grade. To complete high school, students take a national examination at the end of

12th grade, namely the Baccalauréat (hereafter BAC), which is specific to each track. Students

who complete one of the three academic tracks are then eligible for college enrollment, but each

of these tracks give them access to very distinct opportunities in post-secondary education.

3.1.2 The catchment area system

The French secondary education system is characterized by a catchment area system. Every

child is assigned a single public school, depending on her place of residence. That is, ev-

ery postal address belongs to a single school area (“secteur scolaire"), which corresponds to

a single public school. Middle school areas are determined at the regional level, by the local

6School principals assign students and teachers to classes before the beginning of the school year.
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government7. There are two ways to relax the constraint imposed by the catchment area system.

The first one is to request and obtain a dispensation. Dispensations are granted by the regional

education authority based on the following criteria: special needs students, medical reasons,

need-based and merit-based grants, siblings enrolled in the same school, distance to school and

special academic tracks. Dispensations are only granted when all places were not fulfilled by

children living in the catchment area. In total, only a small amount of students obtain the dis-

pensation8. The second possibility to relax the constraint imposed by the catchment area system

is to enroll in the private sector, for which there is no legal constraint regarding school choice.

Most private schools in France are publicly-funded and must follow the same curriculum as

public schools (except for religious instruction). In France, around 20% of students are enrolled

in private middle schools, and there is no strong gender selection between the public and the

private sectors9. Given the absence of legal constraint regarding school choice for students en-

rolled in the private sector, this paper focuses on 9th grade students enrolled in public middle

schools.

3.2 The data

3.2.1 Datasets and sample restrictions

We exploit a comprehensive panel dataset of students enrolled in secondary education in France

over the 2007-2012 period10. This dataset provides detailed information on student enrollment

status every year, basic student demographics (age, gender, nationality and financial aid status)

as well as the unique identifier of the class in which the student is enrolled and student per-

formance at national examinations at the end of 9th and 12th grade. In this study, we focus

on 9th grade students enrolled in public middle schools, which are subject to the catchment

area system. We then match the student dataset with a teacher dataset11, which is available for

the 2008-2011 period. For each academic year, this second dataset provides information on

the background characteristics of all teachers from public secondary schools (gender, level of

7Namely, the “Conseil Général".
8For example, 96% of 6th grade students in a public middle school in 2006 studied enrolled in their catchment

area’s middle school (cf. graph A2). The system was slightly softened in 2007, due to a reform which increased the
possibilities for dispensation. As a results, 6 to 8% of students entering a public middle school over the 2007-2009
period obtained a dispensation.

9Over the 2007-2011 period, 49% of students enrolled in private middle schools are female students, as com-
pared to 50% in public schools.

10Namely, the Fichier Anonymisé d’Elèves pour la Recherche et les Etudes.
11Namely, the Annuaire du Personnel du Secondaire Public.
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experience, seniority, certification level, employment status), as well as the unique identifier of

classes in which they teach. Consequently, we match every 9th grade class with their math,

French language and history teachers.

Overall, the final sample includes 4 cohorts of students from 82,184 classes allocated over

5,240 public middle schools. Table C1 in the appendix presents some summary statistics regard-

ing student demographics in the sample, by student gender, averaged at the class level. Table

C2 presents sample means and standard deviations of classroom and teacher characteristics. In

addition, Figure A1 in the appendix plots the distribution of the proportion of girls in our final

sample, at the school cohort level.

3.2.2 Outcomes

This study focuses on both short-term and long-term educational outcomes. The main outcomes

under consideration are measured as follows:

1. Student test scores and school behaviour: every student in the French educational sys-

tem must take a national examination at the end of middle school (9th grade), which is

externally set and marked. Students are evaluated in three topics: mathematics, French

language and history-geography. Student average test score at this exam represents our

main measure of student performance12. In addition to this, we also exploit a measure

of student behaviour at school, namely the “Note de vie scolaire”. Every student is rated

by the school principal three times a year, on the basis of three criteria: (1) assiduity

and punctuality (2) compliance to school internal rules and (3) participation to school

life. We consider the student average grade over the year as the main measure of student

behaviour.

2. Student track choices and educational attainment: at the end of 9th grade, students

choose whether to go to high school (general track), to go to a vocational school or to

dropout. This is a key choice, which leads to very distinct labour market outcomes sev-

eral years later. In particular, dropping out after 9th grade is associated with very poor

outcomes, while vocational degrees are associated with much higher employment rates

and better wages but generally don’t allow students to enroll in higher education13. Even-

12Test scores are standardized at the topic x regional x year level.
13Among individuals who completed their education in 2013, 60% of those who dropped out after 9th grade

are unemployed 3 years later, against 25% for the rest of the population. In addition, 69% of individuals who
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tually, the academic track is a 3-year education preparing for higher education14, which

leads to better labour market outcomes than vocational degrees. Hence, we consider 3

outcomes: (1) going to high-school (academic track) (2) going to a vocational school and

(3) dropping out after middle school. For students who choose the academic track in high

school in 10th grade, we observe whether they graduated from one of the three academic

tracks or from the technological track 3, 4 or 5 years later. We define 5 outcomes related

to high school graduation within the 5 years following 9th grade: (1) graduation from one

of the three academic tracks (2) graduation from the Science track (3) graduation from the

Economics/Social Sciences track, (4) graduation from the Literature track and (5) gradu-

ation from the Technological track.

Sample means and standard deviations of all the outcomes considered in this study are pre-

sented in table C3 in the appendix, by student gender, averaged at the class level. On average,

girls tend to outperform boys at the end-of-middle school examination and to be better be-

haved. They choose more often the academic track in high school (61%) than boys (54%), and

they graduate more often from one of the academic tracks (38% vs 30%), especially in Eco-

nomics/Social Sciences (13% vs 8%) and in Literature (9% vs 2%). On the other hand, boys go

more often to a vocational school (36%) than girls (30%) and have slightly higher graduation

rates in the Science academic track (19% vs 16%).

3.3 Empirical strategy

Estimating the causal effect of school peers’ gender on student achievement and educational

career raises an identification challenge, due to both between and within school student sorting.

For instance, schools with particularly high levels of violence may also be schools in which the

proportion of female students is low, if parents decide to move their child away from a violent

school differentially for boys and girls. In addition to this, principals may sort students across

classes according to both gender and ability, resulting in classes with higher proportions of both

girls and high achieving (or low achieving) students.

completed a vocational degree are in employment 3 years later, with a median net monthly wage of 1300 euros,
against 83% and 1800 euros for individuals with any higher education degree (cf. Gaubert et al. (2017)).

1499% of students graduating from an academic track in high school in 2014 subsequently entered higher edu-
cation, against 33% of students graduating from a vocational degree (cf. Kabla-Langlois (2016)).
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To tackle this endogeneity issue, this paper takes advantage of two key features of the French

institutional context. Due to the coexistence of compulsory schooling up to age 16 and of the

school catchment area system, natural fluctuations in the gender ratio across birth cohorts living

in a given school catchment area translate into variations across cohorts of students enrolled in

this area’s public middle school15. Building on this, we exploit within school cross cohort vari-

ations in the proportion of female students among 9th grade students. This strategy consists in

comparing students who face the same school environment (school resources, teacher quality,

peers background) but are exposed to different proportions of female students for exogenous

reasons. As students in French middle schools spend the whole year with a smaller group of

peers, namely their classmates, we define the model at the class level and instrument the pro-

portion of girls in the class with the proportion of girls in the 9th grade school cohort. Formally,

we estimate the following model, defined at the class level:

Yjst = α + β1Ĝirlsjst + β2Xjst + γs + δt + εjst (3.1)

• Yjsc= mean outcome of class j from school cohort st

• Ĝirlsjst= instrumented proportion of girls in class j from school cohort st

• γs and δt = school and cohort fixed effects

• Xjst = class j’s students’ (financial aid status, foreign nationality, educational delay) and

teachers’ (experience, seniority, certification level, employment status and gender) aver-

age characteristics and class size

Model (3.1) assumes that the proportion of girls in the school cohort affects student out-

comes only through its effect on the proportion of girls in the classroom. If the proportion of

girls in other classes also affects student outcomes, this model may lead to biased estimates of

β1. To account for potential spillovers across classes, we also define a similar model in which

we replace the instrumented proportion of girls in the classroom by the proportion of girls in

15This argument has been used in previous papers studying the effect of school peers’ gender on student achieve-
ment, including Lavy & Schlosser (2011), Black et al. (2013) and Schøne et al. (2019). It is based on the combi-
nation of three features. First, compulsory schooling up to age 16 implies that, before that age, every child of a
given birth cohort must enroll in a middle school. Second, the catchment area system imposes heavy constraints
on school choice, provided that the child enrolls in a public middle school. Finally, the gender of a child is random
by nature. Consequently, the gender ratio of a birth cohort living in a particular geographical area generates natural
fluctuations around the 0.5 mean.
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the school cohort:

Yjst = α + β1Girlsst + β2Xjst + γs + δt + εjst (3.2)

Models (3.1) and (3.2) account for both between school and within school student sorting.

The main identification assumption of these models is that, conditional on the school and neigh-

bourhood time-invariant quality, there is no systematic relationship between short-term shocks

on school quality (εjst) and the proportion of girls in the school cohort (Girlsst). This assump-

tion would be violated if, for example, parents who observe a decline in teachers’ or peers’

quality were moving their daughters away from their public middle school more often than they

would do with their sons.

To tackle this issue, we first provide evidence in the next section that within school cross

cohort variations in the proportion of girls are not related to variations in teachers’ quality,

as measured by their level of experience or tenure, or in peers’ quality, as measured by the

proportion of students who have been held back a grade or who come from low-income families.

In addition, we test the robustness of our results to an alternative specification which better

accounts for short-term trends in school quality. Again, if such trends exists, they would be

problematic only insofar as they are related to the proportion of girls in the school cohort. In

that case, the proportion of girls in the two adjacent school cohorts would likely capture short

term trends in school quality. Consequently, we follow Gould et al. (2009) and we add the lead

and the lag of the proportion of girls in the school cohorts as controls in model (3.1) and (3.2).

For the remainder of the paper, we consider models (3.1) and (3.2) as our main specification,

and we provide estimations of these models augmented with the lead and the lag of the propor-

tion of girls in the school cohort in the appendix.

3.4 Results

3.4.1 Evidence on the validity of the identification assumption

The key identifying assumption to interpret the results as causal is that within school cross

cohorts variations in the gender ratio are not correlated with changes in peers’ and teachers’

quality. To provide evidence on the validity of this assumption, we thus implement balancing

tests on student and teacher characteristics, using our main specification.
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Table C4 in the appendix shows the results of this test, implemented on student characteris-

tics, separately for female and male students. Consistently with the identification assumption,

the instrumented proportion of female students in the classroom is largely unrelated to the pro-

portions of students from low-income families, foreign students and students with one year or

more of educational delay. Table C5 further shows the results of this test, implemented on class

size and teacher average characteristics. Comfortingly, this balancing test do not reveal any

significant relationship between the instrumented proportion of female students in the class and

class size, teacher experience, seniority, certification level or tenure. The only teacher char-

acteristics which appear to be significantly related to the proportion of female student is the

proportion of female teachers16. In total, these balancing tests strengthen the idea that within

school cross cohort variations in the proportion of female students are unrelated to other changes

in teachers’ or peers’ quality.

3.4.2 Short-term effects on test scores and behaviour

The first outcome that we consider is student standardized test scores at the end-of-middle-

school national exam. As we can see in table 3.1, the proportion of girls among school peers

has positive effects on girls’ test scores while it negatively affects boys’ one. More specifically,

replacing 5 boys by 5 girls in a given class (i.e., a 20 pp increase in the proportion of girls in

that class) would result in a 2% (1,5%) of a SD increase (decrease) in girls’ (boys’) average test

scores. To give a sense of the magnitude of these effects, replacing 5 boys by 5 girls in a given

class would roughly benefits girls as much as a 2-3 students reduction and harm boys as much

as a 2 students increase in class size17. These negative effects of girls on boys’ achievement

are in sharp contrast with Hoxby (2000), Lavy & Schlosser (2011) and Hu (2015), who find

strong positive effects on boys’ test scores. Contrarily, the effects on girls’ performance are

consistent with these studies, who find that a 20 pp increase in the proportion of female peers

increases girls’ test scores by 2-6% of a standard deviation in test scores. In addition to this, the

proportion of girls among school peers also has a positive and significant effect on girls’ school

discipline, as measured by their behaviour grade, while the effect is not significant for boys.

16When we implement these regressions separately by topics, it appears that this relationship is entirely driven
by history-geography teachers.

17We draw this estimation from Piketty et al. (2006), who exploit the maximum class size rule to estimate the
effect of reductions in class size on student test scores at the end-of-middle school national exam.
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Table 3.1 The effect of female peers on student outcomes

Class level (IV) School level
(1) (2) (3) (4)

Girls Boys Girls Boys

I. 9th grade outcomes

End-of-middle-school test score 0.096∗∗ -0.073∗∗ 0.093∗∗ -0.071∗∗

(0.030) (0.033) (0.030) (0.032)

Behaviour grade 0.489∗∗ 0.048 0.474∗∗ 0.047
(0.156) (0.176) (0.152) (0.170)

II. Track choices after 9th grade

High school (general track) 0.053∗∗ -0.040∗∗ 0.051∗∗ -0.039∗∗

(0.015) (0.015) (0.015) (0.015)
[0.622] [0.534] [0.622] [0.534]

Vocational school -0.030∗∗ 0.039∗∗ -0.030∗∗ 0.038∗∗

(0.014) (0.014) (0.013) (0.014)
[0.297] [0.348] [0.297] [0.348]

Dropout -0.019∗ 0.007 -0.018∗ 0.007
(0.010) (0.009) (0.010) (0.009)
[0.104] [0.095] [0.104] [0.095]

III. High school graduation

Academic tracks (S, ES, L) 0.052∗∗ -0.030∗∗ 0.050∗∗ -0.029∗∗

(0.014) (0.013) (0.013) (0.012)
[0.384] [0.295] [0.384] [0.295]

Science (S) 0.031∗∗ -0.014 0.030∗∗ -0.013
(0.010) (0.011) (0.010) (0.010)
[0.162] [0.190] [0.162] [0.190]

Economics/Social sciences (ES) 0.021∗∗ -0.012 0.020∗∗ -0.012
(0.009) (0.007) (0.009) (0.007)
[0.132] [0.081] [0.132] [0.081]

Literature (L) -0.000 -0.004 -0.000 -0.004
(0.008) (0.004) (0.008) (0.004)
[0.090] [0.024] [0.090] [0.024]

Technological track 0.004 -0.007 0.004 -0.007
(0.011) (0.010) (0.010) (0.010)
[0.152] [0.144] [0.152] [0.144]

F-stats 5253 5253 . .
Observations 82184 82184 82184 82184
Note: this table shows the effect of the proportion of girls among school peers on various student outcomes, using model (3.1)
(columns (1) and (2)), and model (3.2) (columns (3) and (4)), estimated separately for girls and boys. The upper part of the
table shows the effects of female peers on students’ standardized test scores at the end of middle school national examination
and behaviour grade. The middle part of the table shows the effects on the proportion of students who (1) attend a general
high-school (2) attend a vocational school and (3) drop out of education, within the next 3 years following 9th grade. The
lower part of the table shows the effects on the proportion of students who graduate from high school within the next 5 years
following 9th grade, separately by tracks. Outcome sample means are within square brackets. Standard errors (in parentheses)
are clustered at the school level. * p<0.10, ** p<0.05
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3.4.3 Longer-term effects on track choices and educational attainment

At the end of middle school, students basically have three options: (1) going to high school to

follow an academic track (2) going to a vocational school (3) dropping out of the educational

system. We estimate the effect of the proportion of female students among school peers on

these three outcomes, using a linear probability model with our main specification. This pro-

portion has a strong positive effect on girls’ probability to choose an academic track, and it also

decreases their probability to choose a vocational track or to drop out. The magnitude of these

effects is quite large: increasing by 20 pp the proportion of female students among school peers

raises the proportion of girls choosing the academic track by 1.6% (1 pp) and will decrease the

proportion of girls choosing a vocational track by 2% (0.6 pp) and girls dropout rate by 3.8%

(0.38 pp). These positive effects are in contrast with Black et al. (2013), who find no effect on

girls’ academic track choices and dropout status. Contrarily, the proportion of girls in a class

negatively affects boys’ probability to choose the academic track in high school, and positively

affects the probability to choose a vocational track. More specifically, a 20 pp increase in the

proportion of girls will decrease the proportion of boys who choose the academic track by 1.5%

(0.80 pp) and will increase the proportion of boys choosing a vocational track by 2.5% (0.88

pp). There is no significant effect on boys’ dropout rates.

Eventually, we estimate the effects of the proportion of girls among school peers on the

probability to graduate from high school, separately by tracks, using our main specification. We

consider five outcomes: (1) graduating from high school in one of the three academic tracks (2)

graduating from the Science track (3) the Economics and Social sciences track (4) the Literature

track (5) the Technological track.

Generally speaking, the proportion of girls among school peers in middle school (9th grade)

has long-lasting effects on student achievement, as it still influences their probability to graduate

from high school several years later, both for girls and for boys. Consistently with the previous

section, girls benefit from having more female peers in middle school, while it has a detrimental

effects on boys. Increasing the proportion of girls by 20 pp generates a 2% (1 pp) increase in

girls’ high school graduation rate and a 2% (0.60 pp) decrease in boys’ one. The positive effect

of the proportion of girls in middle school on girls’ high school graduation rate is particularly

salient for the probability to graduate from the Science (+3%) and the Economics and Social

sciences (+2.6%) tracks. This last result is particularly important as girls tend to be under-
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represented in scientific tracks in post-secondary education, which are typically associated with

better outcomes on the labour market.

3.4.4 Alternative specifications

We check the robustness of our main results to the inclusion of the lead and the lag of the

proportion of girls in the school cohort in equations (3.1) and (3.2). Generally speaking, this

alternative specification provides very similar results to those obtained from the main specifica-

tion, for all outcomes under consideration (cf. table C6 in the appendix). This further suggests

that our main results are not driven by short-term trends in school quality.

To test for potential non linearities in the effects of the proportion of girls among school

peers, we estimate separately model (3.1) in schools in which there is a minority of girls over

the period and in schools in which there is a majority of girls. It appears that the negative

effects of girls on boys are concentrated in school in which there is a minority of girls, while the

positive effects on girls are concentrated in schools where there is a majority of girls (cf. table

C7). Put differently, the higher the average proportion of students of the same gender among

school peers, the stronger the benefits of being exposed to a even higher proportion of these

students.

3.5 Potential mechanisms

There are three potential channels through which a change in the gender composition of a school

cohort may affect student achievement: the general quality of the learning environment, interac-

tions among students and student-teacher interactions. Previous studies consistently find that a

higher proportion of girls is beneficial to the general quality of the learning environment (Hoxby

(2000); Lavy & Schlosser (2011); Hu (2015)), as girls tend to be more disciplined and consci-

entious than boys on average (Duckworth & Seligman (2006); Jacob (2002); Bertrand & Pan

(2013); Cornwell et al. (2013)). On the other hand, the effects of girls on interactions among

students and between students and teachers is much more ambiguous and may sharply differ

across genders. An early work by Coleman (1961) suggests that studying in mixed-gender

schools may provides greater distraction for students and may, in turn, be detrimental to their

achievement. A recent study by Hill (2015) provides empirical evidence that a higher propor-

tion of opposite-gender school friends increases students’ probability of entering a romantic
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relationship and difficulties getting along with their teachers and paying attention in class in

US high school. These two effects translate into worse school outcomes. In a related work,

Lu & Anderson (2014) show that Chinese middle-school students tend to be more cooperative

with same-gender students than with opposite-gender ones, and that this increased cooperation

within the classroom results in improved student outcomes.

We build on the recent literature on teachers’ grading biases to investigate whether the ef-

fects of girls on student achievement are mediated by student classroom behaviour and relation-

ship with teachers in our data. More specifically, Lavy (2008) and Terrier (2015) exploit the

difference between girls and boys in the difference between blind and non-blind test scores (i.e.,

the teacher grading bias) as a measure of teacher gender-biased behaviour in favor of girls. In

this paper, we rather interpret this teacher grading bias measure as a mixed index of the quality

of girls’ classroom behaviour and relationships with their teachers relative to boys. Consistent

with our findings, when we regress this index on the proportion of girls among school peers

using our main specification, we find a positive relationship between the proportion of girls and

teacher grading bias in their favor (cf. table C8). This result supports the notion that a higher

proportion of opposite gender students among school peers is detrimental to student classroom

behaviour and student-teacher relationships (Hill (2015)).

3.6 Conclusion

This paper shows that school cohort gender composition in middle school have persistent effects

on student achievement and human capital acquisition. Being surrounded by more female peers

has a positive influence on girls’ performance at the end-of-middle school national examina-

tion, whereas it has a detrimental effect on boys’ performance. Furthermore, it decreases girls’

dropout rate after middle school and increases their probability to graduate from high school,

especially from the scientific track. By contrast, it decreases boys’ probability to graduate from

high school and increases their probability to attend a vocational school. An investigation of the

potential mechanisms at play suggests that these effects may partially operate through a neg-

ative effect of opposite-gender peers on students’ classroom behaviour and relationships with

their teachers. Altogether, these results tend to show that school peers’ gender in middle school

shape students skills and preferences in a persistent way.
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Generally speaking, our main results are consistent with a "gender" boutique model (Hoxby

& Weingarth (2005)), which states that students benefit from similar peers. Grouping girls

together would not only help them learning better but would also encourage them to make

educational choices that lead them to higher paying jobs, closing the gender gap on the labour

market. Moreover, such a policy would be highly cost-effective, as its costs may be close to

zero. However, this conclusion requires a caveat, as students may also build non cognitive

skills at school, such as tolerance or social and political attitudes, that are crucial for the well

functioning of democratic societies. Accordingly, Merlino et al. (2019) show that a higher share

of black students of the same gender among high school peers in the US has a positive effect

on racial tolerance and interracial romantic relationships in adulthood. Hence, the effects of

gender diversity at school on non cognitive outcomes deserves more attention in future works.
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CONCLUSION GÉNÉRALE

Cette thèse de doctorat présente trois essais en économie de l’éducation. Ces essais ex-

plorent les déterminants de l’efficacité pédagogique des enseignants ainsi que les moyens d’amé-

liorer cette efficacité à travers la mise en place de politiques publiques. Ils cherchent également

à mieux comprendre les effets de long terme des interactions sociales qui ont lieu au collège.

En premier lieu, le travail réalisé dans cette thèse a permis d’établir un lien empirique systé-

matique entre l’efficacité pédagogique des enseignants et les pratiques pédagogiques qu’ils met-

tent en œuvre en classe. En particulier, nous montrons dans le premier chapitre de cette thèse

que les enseignants de mathématiques aux Etats-Unis sont d’autant plus efficaces qu’ils mettent

en place des pratiques pédagogiques interactives, requérant une participation active de la part

des élèves. Si la littérature existante apporte des preuves abondantes quant aux grandes dispar-

ités d’efficacité pédagogique entre enseignants, elle fournit en revanche très peu d’éléments em-

piriques permettant de comprendre d’où proviennent ces disparités. Étant donné l’importance

des enseignants dans le processus d’apprentissage des élèves (Hanushek & Rivkin (2010)),

les résultats présentés dans ce premier chapitre apparaissent particulièrement pertinents, no-

tamment dans l’optique d’élaborer des politiques publiques de formation des enseignants et

d’amélioration de leurs pratiques pédagogiques. Néanmoins, si ce chapitre permet de conclure

que les enseignants qui mettent en place des pratiques pédagogiques interactives sont plus effi-

caces, il ne permet pas d’en conclure que chaque enseignant serait plus efficace s’il mettait en

place de telles pratiques. En particulier, l’adoption de nouvelles pratiques pédagogiques peut

comporter un coût, lié à l’apprentissage et à l’adaptation du style d’enseignement, et nécessiter

d’autres compétences préalables, telles que la capacité à mettre en place un climat de classe

propice aux interactions entre élèves et avec l’enseignant. De nouveaux travaux de recherche

basé sur un cadre méthodologique expérimental semblent fortement souhaitables pour apporter

des éléments de réponse à cette question.

Dans la continuité du premier chapitre, le deuxième chapitre de cette thèse apporte un

éclairage nouveau sur l’efficacité des politiques publiques visant à améliorer l’efficacité péda-

gogique des enseignants. En effet, nous démontrons dans ce chapitre que le système d’inspection
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individuelle des enseignants qui caractérise l’enseignement secondaire en France permet de

générer des améliorations durables et généralisées de l’efficacité pédagogique des enseignants.

Ces améliorations sont constantes au cours de la carrière des enseignants et sont particulière-

ment visibles dans les contextes d’éducation prioritaire. L’inspection apparaît alors comme un

outil pertinent de politique éducative, tant du point de vue de son efficacité que de son effet sur

les inégalités scolaires. La plupart des travaux portant sur les effets des différentes politiques

éducatives visant à augmenter l’efficacité pédagogique des enseignants montrent qu’il est très

difficile d’y parvenir, à moins d’investir des ressources considérables (Jackson et al. (2014)).

Les résultats présentés dans le cadre de ce chapitre démontrent qu’il est possible d’y parvenir

à un coût bien moindre, à travers un système d’évaluations des enseignants généralisées et

répétées tout au long de leur carrière. Néanmoins, ces résultats soulèvent également de nou-

velles questions quant aux mécanismes permettant de générer de tels effets. En particulier, il se

pourrait que ces effets proviennent des conseils prodigués aux enseignants par les inspecteurs,

du travail individuel des enseignants en préparation de leurs inspections ou encore d’une col-

laboration accrue avec les autres enseignants du collège (Jackson & Bruegmann (2009)). Une

étude approfondie des mécanismes permettant aux enseignants d’améliorer leurs compétences

pédagogiques serait particulièrement intéressante à cet égard.

Le dernier chapitre de cette thèse étudie un autre élément essentiel de l’environnement sco-

laire susceptible d’influencer la réussite des élèves : les caractéristiques de leurs camarades de

classe. Nous montrons dans ce chapitre que le genre des camarades de classe au collège a un

effet important sur l’apprentissage des élèves et sur leur trajectoire scolaire future. Pour une

fille, être entourée d’un plus grand nombre de filles parmi ses camarades de classe a des effets

bénéfiques sur ses performances au brevet et augmente ses chances d’obtenir le baccalauréat

plusieurs années plus tard, notamment dans la filière scientifique. À l’inverse, les garçons sem-

blent être négativement affectés par la présence d’un plus grand nombre de filles parmi leurs

camarades de classe au collège. Dans l’ensemble, ces résultats confirment l’importance des ca-

marades de classe comme facteur de réussite scolaire d’un élève (Sacerdote (2011)) et suggèrent

que les interactions sociales au collège influencent les compétences et les préférences des élèves

de manière durable. Par ailleurs, l’impact négatif d’une présence plus grande d’élèves du sexe

opposé est cohérente avec divers travaux montrant que cette présence est généralement associée

avec un niveau de coopération plus faible entre les élèves (Lu & Anderson (2014)) et accroît les
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possibilités de distraction qui détournent les élèves de l’instruction (Hill (2015)). Néanmoins,

il est important de souligner que l’ensemble de ces travaux ainsi que le troisième chapitre de

cette thèse ne prennent pas en compte d’autres dimensions primordiales de l’apprentissage des

élèves. En effet, le collège est également le lieu où un ensemble d’attitude nécessaire au vivre-

ensemblee et au bon fonctionnement d’une société démocratique, telle que la tolérance ou la

non-violence, et ces attitudes sont également fortement influencées par les caractéristiques des

pairs (Merlino et al. (2019)). Dans ce contexte, de nouvelles études sur les effets des caractéris-

tiques des pairs sur ce type de compétences et d’attitudes semblent particulièrement souhaita-

bles.
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Appendix A - Chapter 1

Principal Component Analysis and construction of the Modern Practices In-
dex

This section of the appendix describes the construction of the Modern Practices Index, which
is the main measure of teaching practices used in the first chapter. We first perform a Principal
Component Analysis (PCA) at the teacher level, including the 11 teaching practice variables
described in section 1.1.3. Figure A1 plots the different practices on the two first axis of the
PCA, which summarizes 37% of the between teacher total variation in these 11 variables. The
first axis clearly opposes student-centered practices, which are based on student active partici-
pation, to teacher-centered practices and practices based on memorization and routine problems
solving. These two sets of practices roughly correspond to what has been called Modern prac-

tices and Traditional practices in the economics of education literature, and this classification is
consistent with the main psychological theories of learning. In particular, these theories oppose
the transmissive approach, where the teacher delivers knowledge to a passive learner, and the
constructivist or socio-constructivist approach18, which has been promoted in the US by the
National Council of Teachers of Mathematics (1991) over the last two decades and for which
“learning is an active process in which learners are active sense makers who seek to build co-
herent and organized knowledge" (Mayer (2004)).

To sum up the opposition between the two sets of practices, we create the Modern Practices

Index (MPI), which is equal to the individual teacher’s average score over practices (g), (h), (i)
and (j). The MPI goes from -0.5 and 0.5, with a mean of -0.07 (cf. table A1), and is roughly nor-
mally distributed (cf. figure A2). In order to take into account the second axis of the PCA, the
frequency of assessment (practice (k)) is included separately in the regressions. We additionally
create two Traditional indexes corresponding to the two subsets of traditional practices, in order
to check the robustness of our results to considering more dimensions of teaching. These two
indexes equal the teacher’s average score over practices (a), (c) and (d), and practices (b), (e)
and (f), respectively.

18See Piaget (1970), Bruner (1961) and Vygotsky (2012)
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Figure A1 Principal Component Analysis - Teaching Practices

Note: Figure A1 plots the component loadings of the 11 teaching practices listed in table 1.1 on the two first axis
of the principal component analysis, which is performed at the teacher level. Teaching practices are denoted with
a letter, which refers to table 1.1.

Figure A2 Distribution of the Modern Practices Index
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Table A1 Distribution of the Modern Practices Index

Variable Mean SD Min p25 p50 p75 Max

Modern Practices Index -0.07 0.19 -0.51 -0.21 -0.08 0.06 0.49

Note: This table shows the mean and standard deviation of the Modern Practices Index (MPI). It also shows the
minimum, the maximum, and the quartiles (p25, p50 and p75) of the MPI.
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Additional Tables and Graphs

Table A2 Teacher non response and student characteristics

Variable Final sample Dropped students Mean Difference
(1) (2) (1) - (2)

Female 0.508 0.493 0.0128
(0.89)

Age 14.26 14.22 0.0361*
(1.82)

Foreign language spoken at home 1.374 1.387 -0.0122
(-0.35)

Educational aspirations 5.303 5.263 0.0434
(1.14)

Nb of books at home 2.882 2.884 0.00379
(0.06)

Parents’ education 2.033 2.016 0.0171
(0.27)

Math test score 507 496 11*
(1.95)

N 372 163

Note: This table shows the mean characteristics of students whose math teachers answered the teacher questionnaire (column (1))
and students whose math teacher didn’t answer the questionnaire (column (2)), in terms of student age, gender, language spoken at
home, educational aspirations, parental education and math performance at the TIMSS test, computed at the teacher level. Eventually,
column (3) shows the difference between these two groups of students and provides t-test of the significance of the average difference
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A3 Teacher non response and school characteristics

Variable Final sample Dropped schools Mean Difference
(1) (2) (1) - (2)

School size 727 740 -13
(-0.37)

School remoteness 3.51 3.26 0.254
(1.53)

Average income level of area 2.333 2.272 0.06
(0.89)

Total number of computers 116.28 118.46 -2.175
(-0.22)

Shortage of math teacher 1.559 1.512 0.046
(0.48)

Math resource shortages 11.02 10.96 0.051
(0.20)

N 329 125 456
Note: This table shows the mean characteristics of schools in which the math teachers answered the teacher questionnaire (column
(1)) and schools in which the math teacher didn’t answer the questionnaire (column (2)), in terms of school size, remoteness, average
income level of area, number of computers and math teachers’ and resources’ shortages, computed at the school level. Eventually,
column (3) shows the difference between these two groups of schools and provides t-test of the significance of the average difference
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A4 Distribution of math instructional time across math topics

Mean SD p25 p50 p75

Math instructional time in hours/week:

Number 0.85 0.73 0.35 0.72 1.15

Algebra 2.37 1.44 1.26 2.22 3.33

Geometry 0.75 0.79 0.21 0.58 1.00

Data & Chance 0.45 0.38 0.19 0.39 0.66

Total 4.42 1.63 3.75 4.17 5.00

Note: This table shows the mean and standard deviation of math instructional time per topics, expressed in
hours per week and computed at the teacher level. p25, p50 and p75 respectively represent the 25th, the
50th and the 75th percentile of the instructional time variable distribution.
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Table A6 Modern Practices Index and Teacher, School and Student characteristics

Correlation
coefficient

Teacher characteristics (N=372)

Experience -0.06
Female 0.03
Education level -0.01
Major area of study = mathematics 0.05
Major area of study = education - mathematics 0.11**
Professional development in math content 0.18***
Professional development in math pedagogy 0.13**
Professional development in math curriculum 0.11**
Confidence in teaching math 0.38***
Collaboration with colleagues 0.13**

School characteristics (N=355)

School size -0.01
School remoteness -0.05
Average income level of area 0.03
Total number of computers -0.05
Math resource shortages -0.03

Student and class characteristics (N=372)

Female 0.09*
Age 0.05
Foreign language spoken at home 0.06
Educational aspirations 0.04
Nb of books at home -0.06
Parents’ education level -0.08
Class size -0.03
Classroom disruption (perceived by the teacher) -0.07

Note: This table shows pairwise correlation coefficients between the Modern Practices Index
(MPI) and teacher, school and student characteristics. * p < 0.10, ** p < 0.05 *** p < 0.01.
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Table A7 Modern Practices Index and the allocation of Instructional Time across topics - regression

(1)
Modern Practices Index

Number -0.0019
(0.0012)

Algebra -0.0014
(0.0010)

Geometry -0.0003
(0.0012)

Data & chance 0.0008
(0.0018)

Observations 372

Note: This table shows the estimated coefficients from the regression of
the Modern Practices Index (MPI) on the percentages of instructional
time devoted to each of the four math topics, controlling for the class
mean score in math, computed over subtopics not taught the year of the
TIMSS assessment. The regression is implemented at the teacher level.
Standard errors are in parenthesis. * p < 0.10, ** p < 0.05, ***
p < 0.01.

Table A8 Modern Practices Index and the allocation of Instructional Time across topics - pairwise correlation
coefficients

Correlation coefficient

Number -0.06

Algebra -0.07

Geometry 0.09*

Data & chance 0.07

Observations 372

Note: This table shows the correlation coefficients between
the Modern Practices Index (MPI) and the percentage of math
instructional time dedicated to each of the four topics. * p <
0.10, ** p < 0.05, *** p < 0.01.
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Table A9 Instructional Productivity along the MPI distribution

Position of the teacher MPIpth Teacher Instructional Change in productivity relative
in the MPI distribution value Productivity (in σ-test score) to the median teacher

(1) (2) (3) (4)

10th percentile -0.30 0.021 - 50%

25th percentile -0.21 0.030 - 28%

50th percentile -0.08 0.042 0%

75th percentile 0.06 0.056 + 33%

90th percentile 0.16 0.065 + 55%

Note: This table shows the effect of one weekly hour of math instructional time on student performance in math, estimated at different points of the
Modern Practices Index (MPI) distribution, assuming a linear relationship bewteen the MPI and teachers’ instructional productivity. Point estimates
shown in column (3) are computed as follows: Productivitypth = β̂1 + β̂2MPIpth , with MPIpth the value of MPI in column (2) and β̂1 and β̂2
the coefficients associated to Instructional Time and to the interaction term between Instructional Time and MPI, respectively, estimated from our main
regression. The first line of the Table might be interpreted as follows: one weekly hour of instructional time given by the teacher at the 10th percentile
of the MPI distribution increases student test scores by 2.1% of a standard deviation, which is 50% less productive than one hour taught by the teacher
at the median of the MPI distribution.

Table A10 Robustness check - Different score for Teaching Practice variables

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time 0.050*** 0.061*** 0.040 0.004 0.033
(0.010) (0.009) (0.051) (0.053) (0.062)

IT*Modern Practices 2 0.096*** 0.112*** 0.108*** 0.107*** 0.099***
(0.035) (0.032) (0.032) (0.031) (0.036)

IT*Assessment 0.050** 0.049** 0.042* 0.032
(0.021) (0.021) (0.021) (0.021)

Panel B: subtopics not taught (N=22263)

Instructional Time -0.001 -0.001 0.014 0.004 0.028
(0.009) (0.009) (0.041) (0.044) (0.053)

IT*Modern Practices 2 0.005 0.005 0.012 0.017 0.006
(0.024) (0.024) (0.024) (0.025) (0.025)

IT*Assessment -0.001 -0.000 -0.001 -0.013
(0.018) (0.019) (0.019) (0.020)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table replicates table 1.3, using an alternative definition of the Modern Practices Index (MPI), which is based on a different way of
scoring teachers’ answers to the questions related to teaching practices. To compute this alternative MPI, we assign the score 0.25 (instead of 0.1) to
the answer “sometimes" for all teaching practices variables. All regressions include student and teacher fixed effects, as well as topic constants and
the proportion of subtopics taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table 1.3. Standards
errors (in parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A11 Robustness check - Binary Teaching Practice variables

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.052*** 0.059*** 0.029 -0.008 0.032
(0.011) (0.011) (0.054) (0.056) (0.065)

IT*Modern Practices (binary) 0.060* 0.063* 0.057* 0.056* 0.050
(0.034) (0.034) (0.033) (0.033) (0.034)

IT*Assessment (binary) 0.027 0.028 0.022 0.015
(0.018) (0.017) (0.017) (0.018)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) -0.001 -0.001 0.015 0.006 0.029
(0.009) (0.010) (0.041) (0.044) (0.054)

IT*Modern Practices (binary) 0.002 0.002 0.007 0.009 0.002
(0.020) (0.020) (0.021) (0.022) (0.021)

IT*Assessment (binary) -0.001 -0.000 -0.000 -0.004
(0.014) (0.015) (0.015) (0.015)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table replicates table 1.3, using an alternative definition of the Modern Practices Index (MPI), which is based on a categorical
definition of teaching practice variables. To compute this alternative MPI, we assign the score 1 to the answer “Every or almost every lesson"
and 0 to all other answers. All regressions include student and teacher fixed effects, as well as topic constants and the proportion of subtopics
taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table 1.3. Standards errors (in parentheses)
are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A12 Pairwise correlation coefficients among Teaching Practices Indexes

MPI TPI1 TPI2 TPI3
Modern Practices Index (MPI) 1
Traditional Practices Index 1 (TPI1 ) -0.912*** 1
Traditional Practices Index 2 (TPI2) -0.650*** 0.712*** 1
Traditional Practices Index 3 (TPI3) -0.612*** 0.672*** -0.042 1

Note: this table exhibits pairwise correlation coefficients between the Modern Practices Index and the Traditional Prac-
tices Indexes. TPI1 includes all the 6 traditional practices, whereas TPI2 only include practices (a), (c) and (d) and
TPI3 only include practices (b), (e) and (f), respectively. * p < 0.10, ** p < 0.05 *** p < 0.01.
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Table A13 Robustness check - Non centered Value of Teaching Practices

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.039 0.027 -0.001 -0.044 -0.012
(0.027) (0.026) (0.060) (0.063) (0.072)

IT*Traditional Practices Index’ -0.053* -0.035 -0.031 -0.027 -0.028
(0.030) (0.030) (0.031) (0.031) (0.031)

IT*Modern Practices Index’ 0.077** 0.101*** 0.104*** 0.107*** 0.100***
(0.035) (0.033) (0.034) (0.033) (0.035)

IT*Assessment 0.050** 0.050** 0.044** 0.035*
(0.022) (0.021) (0.021) (0.021)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) 0.001 0.001 0.022 0.011 0.046
(0.023) (0.023) (0.042) (0.047) (0.059)

IT*Traditional Practices Index’ -0.004 -0.005 -0.017 -0.017 -0.021
(0.024) (0.024) (0.026) (0.026) (0.026)

IT*Modern Practices Index’ 0.002 0.002 0.001 0.005 -0.010
(0.019) (0.019) (0.018) (0.020) (0.022)

IT*Assessment -0.002 -0.004 -0.005 -0.020
(0.019) (0.020) (0.020) (0.022)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table replicates table 1.3, using two distinct teaching practices indexes, one Traditional and one Modern, computed over the non
centered values of teaching practice variables. All regressions include student and teacher fixed effects, as well as topic constants and the proportion
of subtopics taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table 1.3. Standards errors (in
parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A14 Robustness check - Including the diversity of Teaching Practices

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.029 0.027 -0.001 -0.044 -0.012
(0.027) (0.026) (0.060) (0.063) (0.072)

IT*Modern Practices Index 0.102*** 0.124*** 0.125*** 0.125*** 0.119***
(0.037) (0.034) (0.034) (0.033) (0.037)

IT*Teaching Practices Diversity 0.004 0.006 0.007 0.007 0.007
(0.005) (0.005) (0.005) (0.005) (0.005)

IT*Assessment 0.056*** 0.055*** 0.049** 0.039*
(0.021) (0.021) (0.021) (0.021)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) 0.001 0.001 0.022 0.011 0.046
(0.022) (0.023) (0.042) (0.047) (0.059)

IT*Modern Practices Index 0.005 0.005 0.012 0.016 0.004
(0.024) (0.024) (0.024) (0.025) (0.025)

IT*Teaching Practices Diversity -0.000 -0.000 -0.001 -0.001 -0.003
(0.003) (0.003) (0.003) (0.003) (0.003)

IT*Assessment -0.001 -0.001 -0.002 -0.016
(0.018) (0.019) (0.019) (0.021)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table replicates table 1.3, using an index of teaching practice diversity in addition to the main Modern Practices Index. The index of
diversity equals the total score of the teacher on the 11 teaching practices. All regressions include student and teacher fixed effects, as well as topic
constants and the proportion of subtopics taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table
1.3. Standards errors (in parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A15 Robustness check - Two distinct Traditional Practices Indexes

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.049*** 0.052*** 0.034 0.001 0.031
(0.012) (0.012) (0.049) (0.052) (0.061)

IT*Traditional Practices Index 2 (TPI2) -0.067** -0.062** -0.060* -0.063** -0.052
(0.032) (0.031) (0.031) (0.030) (0.033)

IT*Traditional Practices Index 3 (TPI3) -0.114*** -0.109*** -0.106*** -0.102*** -0.101**
(0.038) (0.039) (0.040) (0.039) (0.041)

IT*Assessment 0.022 0.022 0.016 0.007
(0.022) (0.021) (0.022) (0.022)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) 0.004 0.004 0.020 0.009 0.035
(0.010) (0.010) (0.041) (0.043) (0.052)

IT*Traditional Practices Index 2 (TPI2) -0.023 -0.023 -0.023 -0.029 -0.017
(0.029) (0.029) (0.029) (0.032) (0.029)

IT*Traditional Practices Index 3 (TPI2) 0.020 0.020 0.008 0.007 0.010
(0.030) (0.029) (0.027) (0.027) (0.027)

IT*Assessment 0.000 -0.002 -0.003 -0.013
(0.019) (0.019) (0.019) (0.020)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table replicates table 1.3, using two distinct Traditional Practices Indexes instead of one unique Modern Index. TPI2 includes practices (a),
(c) and (d) and TPI2 includes practices (b), (e) and (f). All regressions include student and teacher fixed effects, as well as topic constants and the
proportion of subtopics taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table 1.3. Standards errors (in
parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A16 Non linearity in the MPI effect

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=18888)

Instructional Time (IT) 0.027** 0.034*** 0.017 -0.015 0.011
(0.011) (0.011) (0.048) (0.051) (0.061)

IT*MPItophalf 0.032** 0.037*** 0.035** 0.033** 0.027*
(0.014) (0.013) (0.014) (0.014) (0.015)

IT*Assessment 0.044** 0.043** 0.037* 0.026
(0.021) (0.021) (0.022) (0.021)

Panel B: subtopics not taught (N=22263)

Instructional Time (IT) 0.001 0.001 0.014 0.007 0.029
(0.010) (0.010) (0.040) (0.044) (0.053)

IT*MPItophalf -0.004 -0.004 -0.003 -0.002 -0.004
(0.011) (0.011) (0.011) (0.012) (0.011)

IT*Assessment -0.003 -0.003 -0.003 -0.015
(0.018) (0.019) (0.019) (0.020)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table shows the heterogeneity in the effect of math instructional time on student math performance according to the position of the
teacher in the Modern Practices Index (MPI) distribution, separately on subtopics taught the year of the test (Panel A) and subtopics not taught
the year of the test (Panel B). MPItophalf is a dummy indicating whether the teacher ranks above the median of the MPI. All regressions
include student and teacher fixed effects, as well as topic constants and the proportion of subtopics taught the year of the test. Controls included
in columns (3) - (5) are similar to those described in table 1.3. Standards errors (in parentheses) are clustered at the teacher level. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table A17 Robustness check - main regressions without Geometry

Score Score Score Score Score
(1) (2) (3) (4) (5)

Panel A: subtopics taught (N=13899)

Instructional Time (IT) 0.038*** 0.047*** -0.016 -0.037 -0.004
(0.010) (0.010) (0.039) (0.046) (0.078)

IT*Modern Practices Index 0.099*** 0.112*** 0.099*** 0.102*** 0.089**
(0.036) (0.036) (0.035) (0.035) (0.039)

IT*Assessment 0.036 0.032 0.029 0.020
(0.024) (0.024) (0.025) (0.025)

Panel B: subtopics not taught (N=16711)

Instructional Time (IT) 0.012 0.009 0.008 0.007 0.020
(0.008) (0.010) (0.038) (0.043) (0.055)

IT*Modern Practices Index 0.014 0.013 0.017 0.018 0.013
(0.028) (0.028) (0.027) (0.028) (0.029)

IT*Assessment -0.012 -0.012 -0.012 -0.016
(0.017) (0.018) (0.018) (0.020)

IT*Teacher demographics . .
√ √ √

IT*Class size . . .
√ √

IT*Teacher behaviour . . . .
√

Note: This table shows the heterogeneity in the effect of math instructional time on student math performance according to the teaching
practices implemented by the math teacher, separately on subtopics taught the year of the test (Panel A) and subtopics not taught the year of the
test (Panel B) and excluding Geometry subtopics. All regressions include student and teacher fixed effects, as well as topic constants and the
proportion of subtopics taught the year of the test. Controls included in columns (3) - (5) are similar to those described in table 1.3. Standards
errors (in parentheses) are clustered at the teacher level. * p < 0.10, ** p < 0.05, *** p < 0.01.

92



Ta
bl

e
A

18
In

st
ru

ct
io

na
lP

ro
du

ct
iv

ity
an

d
Te

ac
hi

ng
Pr

ac
tic

es
-H

et
er

og
en

ei
ty

ac
co

rd
in

g
to

st
ud

en
tg

en
de

r

G
ir

ls
B

oy
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

Pa
ne

lA
:t

op
ic

s
ta

ug
ht

th
is

ye
ar

(N
g
ir
ls

=
94

89
;N

bo
y
s
=

93
99

)

In
st

ru
ct

io
na

lT
im

e
(I

T
)

0.
06

5*
**

0.
07

1*
**

0.
01

4
0.

02
6

0.
03

2*
*

0.
04

9*
**

-0
.0

12
0.

02
5

(0
.0

12
)

(0
.0

13
)

(0
.0

52
)

(0
.0

73
)

(0
.0

14
)

(0
.0

15
)

(0
.0

83
)

(0
.0

96
)

IT
*M

od
er

n
Pr

ac
tic

es
In

de
x

0.
11

8*
**

0.
12

6*
**

0.
11

2*
**

0.
11

1*
*

0.
06

8
0.

09
4*

0.
09

9*
0.

08
7

(0
.0

40
)

(0
.0

40
)

(0
.0

42
)

(0
.0

48
)

(0
.0

57
)

(0
.0

55
)

(0
.0

57
)

(0
.0

62
)

IT
*A

ss
es

sm
en

t
0.

02
4

0.
02

0
0.

01
5

0.
07

7*
*

0.
06

7*
0.

05
1

(0
.0

27
)

(0
.0

27
)

(0
.0

27
)

(0
.0

35
)

(0
.0

36
)

(0
.0

35
)

Pa
ne

lB
:t

op
ic

s
no

tt
au

gh
tt

hi
s

ye
ar

(N
g
ir
ls

=
11

45
9;
N
bo
y
s
=

10
80

4)

In
st

ru
ct

io
na

lT
im

e
(I

T
)

0.
00

7
0.

00
7

0.
02

5
0.

00
2

-0
.0

09
-0

.0
10

-0
.0

24
0.

05
2

(0
.0

11
)

(0
.0

12
)

(0
.0

70
)

(0
.0

77
)

(0
.0

14
)

(0
.0

16
)

(0
.0

67
)

(0
.1

02
)

IT
*M

od
er

n
Pr

ac
tic

es
In

de
x

-0
.0

08
-0

.0
08

0.
01

5
0.

00
6

0.
02

0
0.

01
9

0.
02

3
0.

00
7

(0
.0

30
)

(0
.0

31
)

(0
.0

33
)

(0
.0

33
)

(0
.0

46
)

(0
.0

46
)

(0
.0

46
)

(0
.0

43
)

IT
*A

ss
es

sm
en

t
0.

00
3

0.
00

3
-0

.0
05

-0
.0

04
-0

.0
02

-0
.0

21
(0

.0
22

)
(0

.0
22

)
(0

.0
23

)
(0

.0
32

)
(0

.0
33

)
(0

.0
36

)

IT
*T

ea
ch

er
de

m
og

ra
ph

ic
s

.
.

√
√

.
.

√
√

IT
*C

la
ss

si
ze

.
.

√
√

.
.

√
√

IT
*T

ea
ch

er
be

ha
vi

ou
r

.
.

.
√

.
.

.
√

N
ot

e:
T

hi
s

ta
bl

e
sh

ow
s

th
e

he
te

ro
ge

ne
ity

in
th

e
ef

fe
ct

of
m

at
h

in
st

ru
ct

io
na

lt
im

e
on

st
ud

en
tm

at
h

pe
rf

or
m

an
ce

ac
co

rd
in

g
to

th
e

te
ac

hi
ng

pr
ac

tic
es

im
pl

em
en

te
d

by
th

e
m

at
h

te
ac

he
r,

se
pa

ra
te

ly
on

su
bt

op
ic

s
ta

ug
ht

th
e

ye
ar

of
th

e
te

st
(P

an
el

A
)a

nd
su

bt
op

ic
s

no
tt

au
gh

tt
he

ye
ar

of
th

e
te

st
(P

an
el

B
),

an
d

se
pa

ra
te

ly
fo

rg
ir

ls
(c

ol
um

ns
(1

)-
(4

))
an

d
bo

ys
(c

ol
um

ns
(5

)-
(8

))
.

A
ll

re
gr

es
si

on
s

in
cl

ud
e

st
ud

en
ta

nd
te

ac
he

rfi
xe

d
ef

fe
ct

s,
as

w
el

la
s

to
pi

c
co

ns
ta

nt
s

an
d

th
e

pr
op

or
tio

n
of

su
bt

op
ic

s
ta

ug
ht

th
e

ye
ar

of
th

e
te

st
.C

on
tr

ol
s

in
cl

ud
ed

in
co

lu
m

ns
(3

)-
(5

)a
re

si
m

ila
rt

o
th

os
e

de
sc

ri
be

d
in

ta
bl

e
1.

3.
St

an
da

rd
s

er
ro

rs
(i

n
pa

re
nt

he
se

s)
ar

e
cl

us
te

re
d

at
th

e
te

ac
he

rl
ev

el
.*
p
<

0
.1
0

,*
*
p
<

0
.0
5

,*
**
p
<

0
.0
1

.

93



Table A19 The Modern Practices Index and Student Non Cognitive outcomes

(1) (2) (3)
Intrisic motivation Extrinsic motivation Self-confidence

Modern Practices Index 0.415* 0.423*** 0.189
(0.213) (0.145) (0.213)

Observations 7463 7459 7470

Note: This table shows the results of the regression of student non cognitive outcomes on the Modern Practices Index, controlling
for student mean score in math subtopics not taught the year of the test, gender, age, socio-economic background, language spoken
at home, math instructional time per week, school size, indexes of school immediate area’s economic affluence and urban density
and all teacher characteristics included in equation (1.3). Standard errors (in parentheses) are clustered at the teacher level. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Appendix B - Chapter 2

Main Tables

Table B1 9th grade math teacher evaluation and student performance

End of middle school test scores
Math Humanities Math Humanities
(1) (2) (3) (4)

Evaluation 0.045∗∗ 0.004
(0.014) (0.014)

Evaluation on t 0.041∗∗ 0.006
(0.014) (0.014)

Evaluation before t 0.053∗∗ -0.003
(0.018) (0.018)

Observations 30414 30414 30414 30414

Note: The table refers to our working sample of math teachers who teach 9th grade stu-
dents between t0=2008-2009 and t1=2011-2012. Column (1) (column (2)) shows the
result of regressing their students’ average standardized score in math (humanities) at the
end of year t on a dummy indicating that they underwent an external evaluation between
t0 and t. Column (3) (column (4)) shows the result of regressing the same dependent
variable on a dummy indicating that they underwent an external evaluation on t and on a
dummy indicating that they underwent an evaluation between t0 and t−1. Models include
a full set of teachers and year fixed effects as well as controls for students’ average age,
gender, family social background, German language study and Ancient language study.
Standard errors are in parentheses. * p<0.10, ** p<0.05.
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Table B2 9th grade math teacher evaluation and student performance - by subgroups

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Math score 0.045∗∗ 0.038∗ 0.052∗∗ 0.054∗∗ 0.039∗∗ 0.094∗∗ 0.031∗∗

(0.014) (0.020) (0.020) (0.020) (0.020) (0.029) (0.016)

Humanities score 0.004 -0.000 0.008 0.007 0.004 0.008 0.006
(0.014) (0.019) (0.020) (0.020) (0.019) (0.031) (0.015)

Observations 30414 15724 14690 15072 15342 6818 23596

Note: The table refers to our working sample of math teachers who teach 9th grade students between t0=2008-2009 and t1=2011-
2012. The first (second) row shows the results of regressing their students’ average standardized score in math (humanities) at
the end of year t on a dummy indicating that they underwent an external evaluation between t0 and t. The first column refers
to the full sample, whereas columns (2) and (3) refer to the subsamples of female and male teachers, columns (4) and (5) to the
subsamples of teachers whose number of years of work experience is either above or below the median on t0 (i.e., above or below
11 years), columns (6) and (7) to the subsample of teachers who were in education priority schools on t0 and the subsample who
were in non-priority schools. Models include a full set of teachers and year fixed effects as well as controls for students’ average
age, gender, family social background, German language study and Ancient language study. Standard errors are in parentheses.
* p<0.10, ** p<0.05.

Table B3 9th grade math teacher evaluation and student high school outcomes

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Science as major field 0.005∗∗ 0.003 0.007∗∗ 0.008∗∗ 0.002 0.010∗∗ 0.003
(0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.002)

[0.176] [0.183] [0.169] [0.161] [0.191] [0.123] [0.192]

Graduation in Science 0.004∗∗ 0.002 0.007∗∗ 0.007∗∗ 0.003 0.009∗∗ 0.003
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

[0.149] [0.155] [0.142] [0.135] [0.163] [0.099] [0.163]

Observations 30414 15724 14690 15072 15342 6818 23596

Note: The table refers to the working sample of math teachers who teach 9th grade students between t0=2008-2009 and t1=2011-
2012. The first row shows the result of regressing the proportion of their 9th grade students who will choose science as major field
of study at the end of 10th grade on a dummy indicating that they underwent an external evaluation between t0 and t. The second
row shows the result of regressing the proportion of their 9th grade students who will graduate in science at the end of 12th grade on
the same independent variable. The first column refers to the full sample, whereas columns (2) to (7) refer to subsamples defined by
teachers’ gender, number of years of teaching experience on t0 (above/below 11 years) and type of school attended on t0 (priority/non
priority). Models include a full set of teachers and year fixed effects as well as controls for students’ average age, gender, family social
background, German language study and Ancient language study. Standard errors are in parentheses. Sample means of the dependent
variables are within square brackets. * p<0.10, ** p<0.05.

96



Main Graphs
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Figure B1 Math teacher evaluation and student performance in math

Note: The solid line in Figure B1 (a) shows math scores of students of evaluated math teachers before and after teachers’ evaluations.
The dotted line shows math scores of students of non-evaluated math teachers at exams taken on the same years. The solid line in
Figure B1 (b) shows the difference in math scores between students of evaluated and non-evaluated math teachers before and after
evaluations. The dotted lines show confidence intervals.
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Figure B2 Math teacher evaluation and student performance in humanities

Note: The solid line in Figure B2 (a) shows humanities scores of students of evaluated math teachers before and after teachers’
evaluations. The dotted line shows humanities scores of students of non-evaluated math teachers at exams taken on the same years. The
solid line in Figure B2 (b) shows the difference in humanities scores between students of evaluated and non-evaluated math teachers
before and after evaluations. The dotted lines show confidence intervals.
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Figure B3 French language teacher evaluation and student performance in math

Note: The solid line in Figure B3 (a) shows math scores of students of evaluated French language teachers before and after teachers’
evaluations. The dotted line shows math scores of students of non-evaluated French language teachers at exams taken on the same
years. The solid line in Figure B3 (b) shows the difference in math scores between students of evaluated and non-evaluated French
language teachers before and after evaluations. The dotted lines show confidence intervals.
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Figure B4 French language teacher evaluation and student performance in French language

Note: The solid line in Figure B4 (a) shows French language scores of students of evaluated French language teachers before and after
teachers’ evaluations. The dotted line shows French language scores of students of non-evaluated French language teachers at exams
taken on the same years. The solid line in Figure B4 (b) shows the difference in French language scores between students of evaluated
and non-evaluated French language teachers before and after evaluations. The dotted lines show confidence intervals.
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Additional Tables and Graphs

Table B4 Inspecteurs’ characteristics

(1) (2)
Math French language

Inspecteurs’ individual characteristics

Age 51.50 53.37
(7.42) (7.20)

Experience as inspecteur 6.31 7.11
(3.94) (4.36)

Female 0.33 0.58
(0.47) (0.49)

Total nb of inspecteurs 142 165

Regional characteristics

Nb of inspecteurs per region 4.7 5.5
(2.5) (3)

Nb of teachers per region 1676 2208
(1013) (1326)

Nb of evaluations per region 252 310
(143) (163)

Total nb of regions 31 31
Note: The table refers to the population of inspecteurs working for the Ministry of Ed-
ucation during academic year 2008-2009. The upper part of the table shows their av-
erage age, number of years of experience and gender, separately for math inspecteurs
(column (1)) and French language inspecteurs (column (2)). The lower part of the
table shows the average number of inspecteurs, teachers, evaluations per region (sep-
arately for math and French Language). Standard deviations are in parentheses.
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Table B5 Student characteristics - difference between priority and non priority schools

Priority schools Non priority schools Difference
(1) (2) (1) - (2)

Age 14.64 14.47 0.17∗∗

(0.24) (0.18) (0.01)

Female 0.51 0.51 -0.00
(0.10) (0.09) (0.00)

Low-income 0.45 0.22 0.23∗∗

(0.20) (0.14) (0.01)

Average standardized test scores -0.62 0.21 -0.83∗∗

(0.898) (0.767) (0.03)

Observations 1091 4144 5235

Note: The table shows the difference in students’ average age as well as in the proportion of female
students, low-income students and students’ average scores at the end-of-middle school national exam,
across priority and non-priority schools in 2008-2009. * p<0.10, ** p<0.05.

Table B6 Math teachers’ evaluations and 9th grade teaching

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

0.008 0.013 0.002 0.009 0.006 0.010 0.009
(0.006) (0.009) (0.009) (0.009) (0.009) (0.014) (0.007)

[0.78] [0.78] [0.79] [0.76] [0.80] [0.76] [0.79]

Observations 39958 20757 19201 20450 19508 9246 30712

Note: the table refers to the sample of math teachers who teach 9th grade students on year t0=2008-2009 and who are not
evaluated during t0. The table shows the result of regressing a dummy indicating that teachers teach 9th grade students
on year t on a dummy indicating that teachers underwent an external evaluation between t0 and t. Column (2) refers to
the subsample of female teachers, column (3) to male teachers, column (4) to teachers whose number of years of teaching
experience is below the median (i.e. above or below 11 years) and column (5) to teachers above this median. Eventually,
columns (6) and (7) refer to teachers who were in education priority schools in 2008 and to those who were in non-priority
schools in 2008, respectively. Standard errors are in parentheses. Sample means of the dependent variables are within
square brackets. * p<0.10, ** p<0.05.
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Table B7 Teachers’ characteristics

(1) (2)
Math French language

Experience (in 2008) 12.28 12.74
(5.11) (5.01)

Female teacher 0.52 0.83
(0.50) (0.37)

Priority schools (in 2008) 0.17 0.18
(0.37) (0.38)

Number of evaluations (Ne)

Ne = 0 0.43 0.54
(0.49) (0.50)

Ne = 1 0.56 0.45
(0.50) (0.50)

Ne > 1 0.01 0.01
(0.09) (0.08)

Observations 30414 30779

Note: The table refers to our working sample of teachers who teach 9th
grade students between t0=2008-2009 and t1=2011-2012. The table
shows the mean characteristics of teachers in terms of number of years
of teaching experience in 2008, gender and type of school in 2008, as
well as the number of external evaluations that teachers underwent over
the 4-year period under consideration. The first column refers to the
subsample of math teachers whereas the second column refers to the
subsample of French language teachers.
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Table B8 Balancing test - 9th grade math teacher evaluation and student characteristics

(1) (2) (3) (4) (5)
Age Female Low-income German Latin/Greek

All teachers (N=30414)

Evaluation 0.004 -0.001 0.002 -0.000 0.002
(0.004) (0.003) (0.003) (0.004) (0.003)

Female teachers (N=15724)

Evaluation 0.010∗ -0.004 0.005 -0.004 0.004
(0.006) (0.004) (0.004) (0.005) (0.005)

Male teachers (N=14690)

Evaluation -0.001 0.002 -0.001 0.004 0.001
(0.007) (0.004) (0.004) (0.005) (0.005)

Low-experience teachers (N=15072)

Evaluation 0.005 0.002 0.003 -0.003 0.001
(0.007) (0.004) (0.004) (0.005) (0.005)

High-experience teachers (N=15342)

Evaluation 0.002 -0.003 -0.000 0.003 0.003
(0.006) (0.004) (0.004) (0.005) (0.005)

Priority schools (N=6818)

Evaluation 0.010 -0.010∗ 0.008 -0.000 -0.005
(0.010) (0.006) (0.007) (0.008) (0.007)

Non Priority schools (N=23596)

Evaluation 0.004 0.002 -0.000 0.000 0.005
(0.005) (0.003) (0.003) (0.004) (0.004)

Note: the table shows the results of regressing 9th grade classes’ average characteristics (average age of students,
proportion of girls, proportion from low-income families, proportion studying German and proportion studying
Latin or ancient Greek) on a dummy indicating that their math teacher underwent an evaluation between t0=2008-
2009 and t. The first row refers to the full working sample, whereas rows 2 to 7 refer to subsamples defined
by teachers’ gender, by teachers’ number of years of experience (above or below 11 years) or by type of school
attended (priority vs non-priority). Standard errors are in parentheses. * p<0.10, ** p<0.05.
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Table B9 Balancing test - 9th grade math teacher evaluation, teacher mobility and colleagues’ characteristics

(1) (2) (3) (4) (5)
Teacher Priority School Colleagues’ Colleagues’
seniority schools performance experience seniority

All teachers (N=30414)

Evaluation 0.035 0.004 -0.002 -0.039 -0.004
(0.030) (0.003) (0.004) (0.093) (0.084)

Female teachers (N=15724)

Evaluation 0.058 0.003 -0.002 -0.106 -0.109
(0.042) (0.003) (0.006) (0.131) (0.118)

Male teachers (N=14690)

Evaluation -0.002 0.004 -0.000 0.042 0.120
(0.043) (0.004) (0.006) (0.133) (0.121)

Low-exp (N=15072)

Evaluation 0.071∗∗ 0.006 -0.007 -0.085 0.011
(0.035) (0.005) (0.007) (0.131) (0.119)

High-exp (N=15342)

Evaluation -0.008 0.002 0.004 -0.007 -0.024
(0.048) (0.002) (0.004) (0.133) (0.120)

Priority schools (N=6818)

Evaluation 0.107 0.007 0.000 -0.048 0.179
(0.081) (0.009) (0.014) (0.193) (0.172)

Non priority schools (N=23596)

Evaluation 0.016 0.003∗ -0.002 -0.015 -0.046
(0.031) (0.002) (0.004) (0.107) (0.097)

Note: the table shows the results of regressing teacher seniority, school characteristics (priority school, school
performance) and colleagues’ characteristics (experience, seniority) on a dummy indicating that the math teacher
underwent an evaluation between t0=2008-2009 and t. School performance in column (3) is the average math test
score in 2008 of the school in which the math teacher teaches in year t. Eventually, colleagues’ experience and
seniority in columns (4) and (5) refer to the average characteristics of the 9th grade French language and history
teachers who teach the same 9th grade students as the math teacher in year t. Standard errors are in parentheses. *
p<0.10, ** p<0.05.
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Figure B5 Math teacher evaluation and teacher mobility

Note: The solid lines in Figure B5 (a) to B5 (c) show the difference between evaluated and non-evaluated math teachers before and
after evaluations in terms of teacher seniority (a), school performance as measured by the school average math test scores in 2008 (b)
and teacher probability to teach in a priority school (c). The dotted lines show confidence intervals.
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Table B10 9th grade French language teacher evaluation and student performance

End of middle school test scores
French language Math French language Math

(1) (2) (3) (4)

Evaluation 0.016 0.015
(0.016) (0.015)

Evaluation on t 0.006 0.015
(0.016) (0.016)

Evaluation before t 0.028 0.010
(0.020) (0.020)

Observations 30779 30779 30779 30779

Note: The table refers to our working sample of French language teachers who teach 9th grade students
between t0=2008-2009 and t1=2011-2012. Column (1) (column (2)) shows the result of regressing their
students’ average score in French language (mathematics) at the end of year t on a dummy indicating
that they underwent an external evaluation between t0 and t. Column (3) (column (4)) shows the result
of regressing the same dependent variable on a dummy indicating that they underwent an external eval-
uation on t and on a dummy indicating that they underwent an evaluation between t0 and t− 1. Models
include a full set of teachers and year fixed effects as well as controls for students’ average age, gender,
family social background, German language study and Ancient language study. Standard errors are in
parentheses. * p<0.10, ** p<0.05.

Table B11 9th grade French language teacher evaluation and student performance - by subgroups

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

French language score 0.016 0.023 -0.003 0.010 0.019 0.076∗∗ -0.003
(0.016) (0.017) (0.039) (0.023) (0.021) (0.035) (0.017)

Mathematics score 0.015 0.016 0.010 0.011 0.018 0.035 0.008
(0.015) (0.017) (0.038) (0.022) (0.021) (0.032) (0.017)

Observations 30779 25601 5178 14135 16644 7027 23752

Note: The table refers to our working sample of French language teachers who teach 9th grade students between t0=2008-2009
and t1=2011-2012. The first (second) row shows the results of regressing their students’ average score in French language
(mathematics) at the end of year t on a dummy indicating that they underwent an external evaluation between t0 and t. The first
column refers to the full sample, whereas columns (2) and (3) refer to the subsamples of female and male teachers, columns (4)
and (5) to the subsamples of teachers whose number of years of work experience is either above or below the median on t0 (i.e.,
above or below 11 years), columns (6) and (7) to the subsample of teachers who were in education priority schools on t0 and the
subsample who were in non-priority schools. Models include a full set of teachers and year fixed effects as well as controls for
students’ average age, gender, family social background, German language study and Ancient language study. Standard errors
are in parentheses. * p<0.10, ** p<0.05.
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Table B12 9th grade French language teacher evaluation and student performance by French language subtopic
test scores and by subgroups

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Reading test scores 0.008 0.013 -0.009 -0.005 0.017 0.066∗ -0.010
(0.015) (0.016) (0.038) (0.023) (0.020) (0.034) (0.017)

Writing test scores 0.028 0.036∗ 0.005 0.038 0.017 0.077∗ 0.014
(0.019) (0.020) (0.047) (0.028) (0.025) (0.043) (0.020)

Observations 30778 25600 5178 14135 16643 7027 23751

Note: The table refers to our working sample of French language teachers who teach 9th grade students between t0=2008-2009 and
t1=2011-2012. The first (second) row shows the results of regressing their students’ average score in reading (writing) at the end of
year t on a dummy indicating that they underwent an external evaluation between t0 and t. The first column refers to the full sample,
whereas columns (2) and (3) refer to the subsamples of female and male teachers, columns (4) and (5) to the subsamples of teachers
whose number of years of work experience is either above or below the median on t0 (i.e., above or below 11 years), columns (6)
and (7) to the subsample of teachers who were in education priority schools on t0 and the subsample who were in non-priority
schools. Models include a full set of teachers and year fixed effects as well as controls for students’ average age, gender, family
social background, German language study and Ancient language study. Standard errors are in parentheses. * p<0.10, ** p<0.05.

Table B13 Math and French language teachers’ evaluations and student performance - by subgroups

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Score in the subject 0.030∗∗ 0.028∗∗ 0.038∗∗ 0.031∗∗ 0.029∗∗ 0.083∗∗ 0.014
(0.010) (0.013) (0.018) (0.015) (0.014) (0.023) (0.012)

Score in other subjects 0.008 0.007 0.010 0.009 0.008 0.015 0.007
(0.010) (0.013) (0.017) (0.015) (0.014) (0.022) (0.011)

Observations 61187 41321 19866 29204 31983 13842 47345

Note: The table refers to joint sample of math and French language teachers who teach 9th grade students between t0=2008-2009 and
t1=2011-2012. The first (second) row shows the results of regressing their students’ average score in the subject they teach (subjects
they don’t teach) at the end of year t on a dummy indicating that they underwent an external evaluation between t0 and t. The first
column refers to the full sample, whereas columns (2) and (3) refer to the subsamples of female and male teachers, columns (4) and
(5) to the subsamples of teachers whose number of years of work experience is either above or below the median on t0 (i.e., above or
below 11 years), columns (6) and (7) to the subsample of teachers who were in education priority schools on t0 and the subsample who
were in non-priority schools. Models include a full set of teachers and year fixed effects as well as controls for students’ average age,
gender, family social background, German language study and Ancient language study. Standard errors are in parentheses. * p<0.10,
** p<0.05.
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Table B14 Robustness checks - 9th grade math teacher evaluation and student performance - by subgroups

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Math score 0.043∗∗ 0.035∗ 0.053∗∗ 0.054∗∗ 0.036∗ 0.091∗∗ 0.030∗

(0.014) (0.019) (0.020) (0.020) (0.019) (0.029) (0.015)

Humanities score 0.005 -0.001 0.010 0.007 0.005 0.009 0.006
(0.013) (0.019) (0.020) (0.020) (0.018) (0.031) (0.015)

Observations 32379 16906 15473 15072 17307 7029 25350

Note: The table refers to the same working sample of math teachers as Table 1, augmented by teachers with more than 25
years of teaching experience. The first (second) row shows the results of regressing their students’ average score in math
(humanities) at the end of year t on a dummy indicating that they underwent an external evaluation between t0=2008-2009
and t. The first column refers to the full sample, whereas columns (2) and (3) refer to the subsamples of female and male
teachers, columns (4) and (5) to the subsamples of teachers whose number of years of work experience is either above or
below the median (i.e., above or below 11 years), columns (6) and (7) to the subsample of teachers who were in education
priority schools on t0 and the subsample who were in non-priority schools. Models include a full set of teachers and year
fixed effects as well as controls for students’ average age, gender, family social background, German language study and
Ancient language study. * p<0.10, ** p<0.05.

Table B15 Robustness check - 9th grade math teacher evaluation and student high school outcomes

(1) (2) (3) (4) (5) (6) (7)
All Female Male Low-exp High-exp Priority Non Priority

Science as major field 0.004∗∗ 0.002 0.007∗∗ 0.008∗∗ 0.001 0.009∗∗ 0.003
(0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.002)

[0.179] [0.187] [0.170] [0.161] [0.194] [0.124] [0.194]

Graduation in science 0.004∗∗ 0.001 0.008∗∗ 0.007∗∗ 0.002 0.009∗∗ 0.002
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

[0.151] [0.158] [0.143] [0.135] [0.166] [0.100] [0.165]

Observations 32379 16906 15473 15072 17307 7029 25350

Note: The table refers to the same working sample of math teachers as Table 1, augmented by teachers with more than 25
years of teaching experience. The first row shows the result of regressing the proportion of their 9th grade students who will
choose science as major field of study at the end of 10th grade on a dummy indicating that they underwent an external evaluation
between t0 and t. The second row shows the result of regressing the proportion of their 9th grade students who will graduate in
science at the end of 12th grade on the same independent variable. The first column refers to the full sample, whereas columns
(2) to (7) refer to subsamples defined by teachers’ gender, number of years of teaching experience (above/below 11 years), type
of school attended (priority/non priority). Models include a full set of teachers and year fixed effects as well as controls for
students’ average age, gender, family social background, German language study and Ancient language study. Sample means of
the dependent variables are within square brackets. * p<0.10, ** p<0.05.
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Data construction

This chapter uses an administrative database with detailed information on secondary school

teachers for the period between t0=2008-2009 to t1=2011-2012. For each teacher j, this dataset

gives information on whether (and when) j underwent an external evaluation between t0 and

t1. It also gives information on whether (and when) teacher j taught 9th grade students and on

the average performance of these students at exams taken at the end of 9th grade as well as at

exams taken subsequently at end of high school. In this appendix, we explain how we build this

database.

To construct this working file, we use three exhaustive administrative databases. The first

one is the Fichier Anonymisé d’Élèves pour la Recherche et les Études (herafter, FAERE). For

each academic year, it provides information on all secondary school students, including their

socio-demographic characteristics, their ID number, the ID number of their class, their choice

of field of study at the end of 10th grade as well as their results at the (externally set and marked)

national exams taken at the end of middle school (9th grade) or at the end of high-school (12th

grade). The exam taken at the end of middle school involves three written tests (in math, French

language and history-geography) and we know students’ scores at these different tests. We also

know whether students choose science as major field of study at the end of 10th grade and

whether they graduated in science at the end of 12th grade.

Using this individual level database, it is possible to build a class level database providing

for each 9th grade class observed between 2008-2009 and 2011-2012 (a) the ID of the class

and the academic year when the class is observed, (b) the average scores of the students of the

class in math and humanities at exams taken at the end of the academic year (i.e. at the end of

9th grade), (c) the proportion of students of the class who will subsequently choose science as

major field of study at the end of 10th grade (d) the proportion of students who subsequently

succeed in graduating in science at the end of 12th grade.

The second database is an administrative dataset - called base Relais - which provides for

each class observed between 2008-2009 and 2011-2012 the ID number of the class and the ID

number of its teachers. This dataset makes it possible to augment our class-level database with

information on the IDs of the math and French language teachers of each 9th grade class.

Eventually, we used the Annuaire du Personnel du Secondaire Public (herafter APSP). For

each academic year, it provides information on the background characteristics of all teachers

from public secondary schools (ID number, age, gender, level of experience, qualifications).

For each teacher j and each academic year t, we also know whether j is evaluated during t.
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This dataset makes it possible to augment the class level database with information on math

and French language teachers, and most notably with information on whether (and when) they

underwent an external evaluation between 2008-2009 and 2011-201219.

Overall, we get a class level database covering the period from 2008-2009 to 2011-2012

and providing for each 9th grade class observed during this 4-year period (a) the ID number of

the class and the academic year when it is observed, (b) the ID number and socio-demographic

characteristics of its math and French language teachers, (c) the date of the external evaluations

that its math and French language teachers underwent during this 4-year period and (d) the

average outcomes of its students at the end of 9th grade as well as their subsequent outcomes at

the end of 10th grade or 12th grade.

Eventually, by averaging the variables of this database at the teacher x year level, we build

a database which makes it possible to explore the extent to which teachers’ external evaluations

are followed by an improvement in their effectiveness, as measured by their ability to prepare

9th grade students for the end-of-middle school exams or by their ability to induce 9th grade

student to choose science as major field of study in high school and to graduate in science.

19For each education region r and each academic year t, the APSP also provide background information on
inspecteurs assigned to region r during t, namely information on their age, gender, level of experience as well as
on their previous position within the French administration. Note, however, that we have no information on the
specific teachers that were evaluated by each specific inspecteurs. It is not possible to match specific teacher’s
evaluations with specific inspecteurs.
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Appendix C - Chapter 3

Tables

Table C1 Student characteristics

Girls Boys
(1) (2)

Low-income family 0.28 0.25
(0.22) (0.21)

Foreign nationality 0.04 0.03
(0.08) (0.08)

Educational delay in 9th grade 0.23 0.27
(0.19) (0.20)

Observations 82184 82184

Note: this table shows the mean proportions of financial aid
recipients (low-income family), foreign students and students
with one year or more of educational delay in 9th grade in our
sample, averaged at the class level. The first column refers
to female students whereas the second column refers to male
students.
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Table C2 Classroom and teacher mean characteristics

(1)

Classroom characteristics

Class size 23.21
(4.87)

Proportion of girls 0.50
(0.11)

Teacher characteristics

Experience 12.58
(5.17)

Seniority 7.27
(4.35)

Female teacher 0.62
(0.27)

Fixed-term contract 0.02
(0.08)

Pedagogical grade 44.39
(3.26)

Observations 82184

Note: this table shows the mean characteristics of
classes and teachers in our sample, averaged at the
class level. Standard deviations are in parentheses.
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Table C3 Outcome sample means and standard deviations, by student gender

Girls Boys
(1) (2)

I. 9th grade outcomes

End-of-middle-school test score -0.05 -0.20
(0.49) (0.49)

Behaviour grade 17.2 15.98
(2) (2.3)

II. Track choices after 9th grade

High school (general tracks) 0.61 0.54
(0.24) (0.24)

Vocational school 0.30 0.36
(0.22) (0.21)

Dropout 0.09 0.10
(0.12) (0.11)

III. High school graduation

Academic tracks 0.38 0.30
(0.23) (0.21)

Science 0.16 0.19
(0.15) (0.17)

Economics/Social sciences 0.13 0.08
(0.12) (0.10)

Literature 0.09 0.02
(0.10) (0.05)

Technological track 0.15 0.14
(0.13) (0.13)

Observations 82184 82184

Note: this table shows the sample means and standard deviations of all student
outcomes under consideration in this paper, averaged at the class level. The
upper part shows the mean of student standardized test scores at the end
of middle school national examination and behaviour grades. The middle
part of the table shows the average proportions of students who (1) attend a
general track in high school (2) attend a vocational school and (3) drop out
of education, within the next 3 years following 9th grade. The lower part of
the table shows the average proportions of students who graduate from high
school within the next 5 years following 9th grade, by tracks. The first column
refers to female students whereas the second column refers to male students.
Standard deviations are in parentheses.
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Table C4 Balancing test - student characteristics

Class level (IV) School level
(1) (2) (3) (4)

Girls Boys Girls Boys

Low-income student 0.005 -0.000 0.005 -0.000
(0.014) (0.013) (0.013) (0.012)

Non-French student -0.006 -0.007 -0.006 -0.007
(0.006) (0.006) (0.006) (0.006)

Educational delay -0.015 -0.022 -0.014 -0.022
(0.013) (0.014) (0.013) (0.013)

F-stat 17848 17848 . .
Observations 82184 82184 82184 82184

Note: the table shows the results of regressing 9th grade classes’ average char-
acteristics (average proportions of students from low-income families, foreign
students and students with one year or more of educational delay) on the instru-
mented proportion of girls in the classroom (columns (1) and (2)) and on the
proportion of girls in the school cohort (columns (3) and (4)), using our main
specification. All regressions include school and cohort fixed effects. Standard
errors (in parentheses) are clustered at the school level. * p<0.10, ** p<0.05.

Table C5 Balancing test - teacher and classroom characteristics

(1) (2)
Class level (IV) School level

Experience 0.292 0.284
(0.327) (0.317)

Seniority 0.157 0.153
(0.297) (0.288)

Advanced Certification 0.009 0.008
(0.009) (0.009)

Non-permanent 0.002 0.002
(0.007) (0.007)

Female teacher -0.041∗∗ -0.040∗∗

(0.017) (0.017)

Class size 0.226 0.219
(0.585) (0.568)

F-stat 17848 .
Observations 82184 82184

Note: the table shows the results of regressing 9th grade teachers’
average characteristics (experience, seniority, a dummy indicating ad-
vanced certification level, a dummy indicating non-permanent teachers
and gender) and class size on the instrumented proportion of girls in
the classroom (column (1)) and on the proportion of girls in the school
cohort (column (2)), using our main specification. All regressions in-
clude school and cohort fixed effects. Standard errors (in parentheses)
are clustered at the school level. * p<0.10, ** p<0.05.
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Table C6 The effect of female peers on student outcomes - controlling for lead and lag

Class level (IV) School level
(1) (2) (3) (4)

Girls Boys Girls Boys

I. 9th grade outcomes

End-of-middle-school test score 0.105∗∗ -0.046 0.102∗∗ -0.045
(0.032) (0.034) (0.032) (0.033)

Behaviour grade 0.615∗∗ 0.205 0.598∗∗ 0.199
(0.166) (0.191) (0.162) (0.186)

II. Track choices after 9th grade

High school (general track) 0.054∗∗ -0.035∗∗ 0.053∗∗ -0.034∗∗

(0.016) (0.016) (0.016) (0.016)
[0.622] [0.534] [0.622] [0.534]

Vocational school -0.039∗∗ 0.036∗∗ -0.038∗∗ 0.035∗∗

(0.014) (0.015) (0.014) (0.014)
[0.297] [0.348] [0.297] [0.348]

Dropout -0.022∗∗ 0.004 -0.021∗∗ 0.004
(0.011) (0.010) (0.010) (0.010)
[0.104] [0.095] [0.104] [0.095]

III. High school graduation

Academic tracks (S, ES, L) 0.058∗∗ -0.025∗ 0.057∗∗ -0.025∗

(0.014) (0.013) (0.014) (0.013)
[0.384] [0.295] [0.384] [0.295]

Science (S) 0.035∗∗ -0.007 0.034∗∗ -0.007
(0.010) (0.011) (0.010) (0.011)
[0.162] [0.190] [0.162] [0.190]

Economics/Social sciences (ES) 0.021∗∗ -0.013∗ 0.021∗∗ -0.013∗

(0.010) (0.008) (0.009) (0.007)
[0.132] [0.081] [0.132] [0.081]

Literature (L) 0.002 -0.004 0.002 -0.004
(0.008) (0.005) (0.008) (0.004)
[0.090] [0.024] [0.090] [0.024]

Technological track 0.003 -0.006 0.002 -0.006
(0.011) (0.011) (0.011) (0.010)
[0.152] [0.144] [0.152] [0.144]

F-stats 4710 4710 . .
Observations 81643 81643 81643 81643
Note: this table shows the effect of the proportion of girls among school peers on various student outcomes, using model
(3.1) (columns (1) and (2)), and model (3.2) (columns (3) and (4)) augmented with the lead and the lag of the proportion of
girls in the school cohort, estimated separately for girls and boys. The upper part of the table shows the effects of female
peers on students’ standardized test scores at the end of middle school national examination and behaviour grade. The middle
part of the table shows the effects on the proportion of students who (1) attend a general high-school (2) attend a vocational
school and (3) drop out of education, within the next 3 years following 9th grade. The lower part of the table shows the
effects on the proportion of students who graduate from high school within the next 5 years following 9th grade, separately
by tracks. Outcome sample means are within square brackets. Standard errors (in parentheses) are clustered at the school
level. * p<0.10, ** p<0.05
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Table C7 Non linear effects of female peers on student outcomes

Girls minority Girls majority
(1) (2) (3) (4)

Girls Boys Girls Boys

I. 9th grade outcomes

End-of-middle-school test score 0.014 -0.132∗∗ 0.171∗∗ -0.020
(0.047) (0.047) (0.040) (0.046)

Behaviour grade 0.078 -0.369 0.859∗∗ 0.433∗

(0.237) (0.257) (0.206) (0.240)

II. Track choices after 9th grade

High school (general track) 0.029 -0.044∗∗ 0.074∗∗ -0.037∗

(0.023) (0.022) (0.020) (0.021)

Vocational school -0.036∗ 0.027 -0.026 0.050∗∗

(0.021) (0.021) (0.018) (0.020)

Dropout 0.007 0.007 -0.042∗∗ 0.008
(0.015) (0.013) (0.014) (0.013)

III. High school graduation

Academic tracks (S, ES, L) 0.021 -0.046∗∗ 0.080∗∗ -0.016
(0.021) (0.018) (0.018) (0.018)

Science (S) 0.010 -0.025∗ 0.051∗∗ -0.004
(0.015) (0.015) (0.013) (0.015)

Economics/Social sciences (ES) 0.021 -0.016 0.020 -0.008
(0.013) (0.010) (0.012) (0.010)

Literature (L) -0.010 -0.005 0.009 -0.004
(0.012) (0.006) (0.011) (0.007)

Technological track -0.001 0.013 0.010 -0.025∗

(0.016) (0.014) (0.014) (0.014)

F-stats 2456 2456 2838 2838
Observations 41102 41102 41082 41082
Note: this table shows the effect of the proportion of girls among school peers on various student outcomes, using model
(3.1), estimated separately for schools where there is a minority of girls over the period under study (columns (1) and (2))
and schools where there is a majority of girls (columns (3) and (4)). The upper part of the table shows the effects of female
peers on students’ standardized test scores at the end of middle school national examination and behaviour grade. The middle
part of the table shows the effects on the proportion of students who (1) attend a general high-school (2) attend a vocational
school and (3) drop out of education, within the next 3 years following 9th grade. The lower part of the table shows the
effects on the proportion of students who graduate from high school within the next 5 years following 9th grade, separately
by tracks. Outcome sample means are within square brackets. Standard errors (in parentheses) are clustered at the school
level. * p<0.10, ** p<0.05
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Table C8 Female peers and teacher grading biases

Class level (IV) School level
(1) (2)

Proportion of girls 0.044∗∗ 0.042∗∗

(0.009) (0.008)

Observations 82184 82184

Note: This table shows the relationship between the proportion of girls among
school peers and teacher grading biases in favor of girls, as measured by the class
average difference between girls and boys in the difference between (standard-
ized) non-blind and blind test scores, using model (3.1) (column (1)) and model
(3.2) (column (2)). Standard errors (in parentheses) are clustered at the school
level. * p<0.10, ** p<0.05, *** p<0.01.
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Figures
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Figure A1 Distribution of the proportion of girls in a school cohort over the 2008-2011 period

Figure A2 Proportion of students who asked for and obtained a derogation
Source: Fack & Grenet (2012)
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