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Analysis and Policy in Economics

Thomas Blanchet

Essays on the Distribution of Income and Wealth:

Methods, Estimates and Theory

Supervised by: Thomas Piketty

Defense date: Januray 21st, 2020

Referees : Frank Cowell, London School of Economics and Political Science

Emmanuel Saez, University of California, Berkeley

Jury : François Bourguignon, École des Hautes Études en Sciences Sociales

Xavier d’Haultfœuille, Centre de Recherche en Économie et Statistique

Muriel Roger, Université Panthéon–Sorbonne
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Thomas Blanchet

Essais sur la distribution
des revenus et des patrimoines:
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Roger pour avoir accepté de participer au jury. François Bourguignon a longtemps su
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2



3
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collègues — et amis — qui ont su entretenir bonne humeur et bienveillance durant

toutes ces années. Certains sont devenus mes co-auteurs — Amory Gethin, Marc

Morgan, et Ignacio Flores. Tous ont contribué à faire des ces années une expérience
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Résumé

Cette thèse couvre plusieurs sujets sur la répartition des revenus et des richesses.

Dans le premier chapitre, nous développons une nouvelle méthode pour exploiter les

tabulations de revenu et de richesse, telle que celle publiée par les autorités fiscales.

Nous y définissons les courbes de Pareto généralisées comme la courbe des coefficients

de Pareto inversés b(p), où b(p) est le rapport entre le revenu moyen ou la richesse au-

dessus du rang p et le p-ième quantile Q(p) (c’est-à-dire b(p) = E[X|X > Q(p)]/Q(p)).

Nous les utilisons pour caractériser des distributions entières, y compris les endroits

comme le sommet où la lois de Pareto est une bonne description, et les endroits plus

bas où elles ne le sont pas. Nous développons une méthode pour reconstruire de

manière flexible l’ensemble de la distribution sur la base de données tabulées sur le

revenu ou le patrimoine, qui produit courbes de Pareto généralisées lisses et réalistes.

Dans le deuxième chapitre, nous présentons une nouvelle approche pour combiner les

données d’enquête et les tabulations fiscales afin de corriger la sous-représentation des

plus riches au sommet. Elle détermine de façon endogène un “point de fusion” entre

les données avant de modifier les poids tout au long de la distribution et de remplacer

les nouvelles observations au-delà du support original de l’enquête. Nous fournissons

des simulations de la méthode et des applications aux données réelles. Les premières

démontrent que notre méthode améliore la précision et la stabilité des estimations

de la distribution, par rapport à d’autres méthodes de correction d’enquêtes utilisant

des données externes, et même en présence d’hypothèses extrêmes. Les applications

empiriques montrent que non seulement les niveaux d’inégalité des revenus peuvent

changer, mais aussi les tendances.

Dans le troisième chapitre, nous estimons la distribution du revenu national dans

38 pays européens entre 1980 et 2017 en combinant enquêtes, données fiscales et

comptes nationaux. Nous développons une méthodologie cohérente combinant des

méthodes d’apprentissage statistique, de calage non linéaire des enquêtes et la théorie

des valeurs extrêmes afin de produire des estimations de l’inégalité des revenus avant

et après impôt, comparables d’un pays à l’autre et conformes aux taux de croissance
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macroéconomiques. Nous constatons que les inégalités se sont creusées dans une

majorité de pays européens, en particulier entre 1980 et 2000. Le 1% les plus riches

en Europe a augmenté plus de deux fois plus vite que les 50% les plus pauvres et a

capturé 18% de la croissance des revenus régionaux.

Dans le quatrième chapitre, je décompose la dynamique de la distribution de la

richesse à l’aide d’un modèle stochastique dynamique simple qui sépare les effets de

la consommation, du revenu du travail, des taux de rendement, de la croissance, de

la démographie et du patrimoine. À partir de deux théorèmes de calcul stochastique,

je montre que ce modèle est identifié de manière non paramétrique et qu’il peut

être estimé à partir de données en coupes répétées. Je l’estime à l’aide des comptes

nationaux distributifs des États-Unis depuis 1962. Je trouve que, de l’augmentation

de 15 pp. de la part de la richesse détenue par les 1% les plus riches observée

depuis 1980, environ 7 pp. peut être attribuée à l’inégalité croissante des revenus du

travail, 6 pp. à la hausse des rendements sur le capital (principalement sous forme

de plus-values), et 2 pp. à la baisse de la croissance. En suivant les paramètres

actuels, la part de la richesse des 1% les plus riches atteindrait sa valeur stationnaire

d’environ 45% d’ici les années 2040, un niveau similaire à celui du début du XXe

siècle. J’utilise ensuite le modèle pour analyser l’effet d’un impôt progressif sur les

patrimoines au sommet de la distribution.

Mots Clés: inégalités; revenu; patrimoine; enquêtes; données fiscales; comptes

nationaux; loi de Pareto; modèles non-paramétriques; modèles stochastiques

Codes JEL: D31; C14; C22



Abstract

This thesis covers several topics on the distribution of income and wealth. In the

first chapter, we develop a new methodology to exploit tabulations of income and

wealth such as the one published by tax authorities. In it, we define generalized

Pareto curves as the curve of inverted Pareto coefficients b(p), where b(p) is the

ratio between average income or wealth above rank p and the p-th quantile Q(p)

(i.e. b(p) = E[X|X > Q(p)]/Q(p)). We use them to characterize entire distributions,

including places like the top where power laws are a good description, and places

further down where they are not. We develop a method to flexibly recover the entire

distribution based on tabulated income or wealth data which produces smooth and

realistic shapes of generalized Pareto curves.

In the second chapter, we present a new approach to combine survey data with

tax tabulations to correct for the underrepresentation of the rich at the top. It

endogenously determines a “merging point” between the datasets before modifying

weights along the entire distribution and replacing new observations beyond the

survey’s original support. We provide simulations of the method and applications

to real data. The former demonstrate that our method improves the accuracy

and precision of distributional estimates, even under extreme assumptions, and in

comparison to other survey correction methods using external data. The empirical

applications show that not only can income inequality levels change, but also trends.

In the third chapter, we estimate the distribution of national income in thirty-eight

European countries between 1980 and 2017 by combining surveys, tax data and

national accounts. We develop a unified methodology combining machine learning,

nonlinear survey calibration and extreme value theory in order to produce estimates

of pre-tax and post-tax income inequality, comparable across countries and consistent

with macroeconomic growth rates. We find that inequality has increased in a majority

of European countries, especially between 1980 and 2000. The European top 1%

grew more than two times faster than the bottom 50% and captured 18% of regional

income growth.
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In the fourth chapter, I decompose the dynamics of the wealth distribution using a

simple dynamic stochastic model that separates the effects of consumption, labor

income, rates of return, growth, demographics and inheritance. Based on two results

of stochastic calculus, I show that this model is nonparametrically identified and

can be estimated using only repeated cross-sections of the data. I estimate it using

distributional national accounts for the United States since 1962. I find that, out

of the 15 pp. increase in the top 1% wealth share observed since 1980, about 7 pp.

can be attributed to rising labor income inequality, 6 pp. to rising returns on wealth

(mostly in the form of capital gains), and 2 pp. to lower growth. Under current

parameters, the top 1% wealth share would reach its steady-state value of roughly

45% by the 2040s, a level similar to that of the beginning of the 20th century. I then

use the model to analyze the effect of progressive wealth taxation at the top of the

distribution.

Keywords: inequality; income; wealth; survey; tax data; national accounts; power

law; non-parametric statistics; stochastic models

JEL codes: D31; C14; C22
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General Introduction

This PhD thesis covers several topics on the distribution of income and wealth. These

topics include measurement issues (chapters 1 and 2), applied empirical work in the

case of Europe (chapter 3), and finally a quantitative modeling of the dynamics of

wealth inequality in the United States (chapter 4).

These four chapters follow an explicit logical progression. The first two chapters lay

out some basic tools to improve the measurement of inequality. In the third chapter,

these tools are put to use in the concrete case of the European income distribution.

This allows the production of harmonized inequality statistics that we consider to be

more comprehensive and more reliable than previous estimates. This type of data

opens up new opportunities for economic research to improve our understanding of

inequality: this is what the fourth chapter demonstrates, using data for the United

States.

A Better Use of Available Data

This work addresses issues at the intersection of three key challenges for contemporary

inequality research. The first one concerns the use of administrative data sources.

For a long time, surveys were the main source of knowledge for applied economists.

And they have, indeed, been an invaluable source of information. However, in

recent years, more and more people have started to rely on administrative data.

Administrative data has advantages — exhaustivity, lower measurement error —

that no survey can match. The research on inequality is no exception to that trend.

Following the revival of Kuznets’s (1953) work by Piketty (2003) and Piketty and

Saez (2003), a large number of researchers have used tax data to measure inequality

in the long run (Atkinson, 2007; Atkinson and Piketty, 2010). Their findings showed

that surveys, due to misreporting and nonresponse, have had a tendency to miss

the richest households, thus underestimating inequality and overlooking important

trends.

17
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Yet, administrative data raises its own set of challenges. Some countries — notoriously

the Nordics, but also France and the United States — have been providing tax data

to researchers in a very detailed and usable form (microdata). In many other

countries, however, all researchers have to work with are tax tabulations — a highly

censored version of the tax data that only contains income amounts by income

bracket. The statistical tools used to exploit this type of data have not evolved much

since Kuznets’s (1953) time, and often fail to properly exploit the information at

our disposal. The lack of individual observations also makes it difficult harmonize

income concepts and the statistical unit of analysis. As a result, the body of work

on inequality measurement using tax data that has been accumulated raises various

comparability issues, and renders international comparisons of inequality difficult.

Chapters 1 and 2 provide methodological improvements for using tax data tabulations,

and for combining survey and tax data so as to make inequality estimates more

precise and more comparable. Chapter 3 applies these ideas to get new estimates of

income inequality across Europe.

Filling the Gaps between Micro and Macro Data

The second challenge addressed by this thesis is the gap between macroeconomic and

microeconomic estimates of income and wealth. Over the second half of the 20th

century, economists — first in academia, then in official statistical institutes — have

been developing an impressive statistical apparatus to track the evolution of income

and wealth all over the world. This achievement, known as the national accounts,

is not perfect, and national accountants are in fact constantly trying to improve it.

But it represents the most complete attempt at defining income, wealth and their

components in a meaningful and internationally agreed way.

One of the main blind spots of national accounting as it exists concerns the distribu-

tion of income and wealth: national accounts are solely concerned with aggregates.

This did not have to be the case. In fact, the first national accounts — King’s social

tables compiled in the late 17th century — were technically distributional national

accounts, and showed how aggregates were distributed across various social classes

(see Piketty, Saez, and Zucman, 2018). Simon Kuznets, one of the fathers of national

accounting, was also known for his work on the distribution of income (Kuznets,

1953). Yet in practice, the development of national accounts strayed away from

distributional issues. Perhaps because their development took place right after a

strong compression of the income distribution in industrialized economies, so that

inequality could be viewed as a secondary issue. Or perhaps because of the tight
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link between national accounting and the emergence of the field of macroeconomics,

before the arrival of heterogeneous agents models that would have made distributional

estimates useful.

Whatever the reason, the field of inequality research developed somewhat indepen-

dently from national accounting, in spite of their major conceptual overlap. Fast

forward to the 21st century, and the statistical apparatus that tracks income and

wealth at the aggregate level is largely distinct from the one we use to track the

evolution of income and wealth at the individual level, sometimes leading to major

inconsistencies.

In recent years, actors from academia and statistical institutes have recognized the

need to address this issue. One of these initiatives is the distributional national

accounts (DINA) project (Alvaredo et al., 2017). Chapter 3 of this thesis presents

the first attempt to apply this framework to construct pan-European distributional

national accounts since 1980. These new estimates are conceptually comparable to

the work of Piketty, Saez, and Zucman (2018) in the United States, and enable better

comparison of the income distribution on both sides of the Atlantic. They provide an

interesting case study of how distributional national accounts can be applied across

a region with heterogeneous institutional frameworks and data availability.

Connecting Theoretical Models of Inequality to the Data

A third challenge in the field of inequality is the connection between the data

and theories of wealth inequality. Ultimately, estimates of the income and wealth

distribution are there to improve our understanding of what shapes inequality.

Chapter 4 of this thesis addresses this issue, using the DINA data from Piketty, Saez,

and Zucman (2018).

Several models of the wealth distribution have been developed, and they have

had many successes in replicating stylized facts about wealth inequality and its

distribution. These models are often complex, microfounded structural models that

are calibrated but not directly estimated on the data. Indeed, there is no explicit

identification strategy that would allow for a direct estimation of these models, and

a result it can be hard to understand the generality, robustness and limitations of

the various mechanisms.

In chapter 4, I show how the detailed historical data on the distribution of income

and wealth put together by Piketty, Saez, and Zucman (2018) can help us make

progress on the issue. I explain how the key drivers of wealth inequality can be
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identified in a “semi-structural” way, which allows for a clean decomposition of the

different mechanisms that have been suggested to account for inequality.

Outline and Summary

Chapter 1 was written with Juliette Fournier and Thomas Piketty, and is called

“Generalized Pareto Curves: Theory and Applications.” Its goal is to develop a new

methodology to exploit tabulations of income and wealth such as the one published

by tax authorities. In it, we define generalized Pareto curves as the curve of inverted

Pareto coefficients b(p), where b(p) is the ratio between average income or wealth

above rank p and the p-th quantile Q(p) (i.e. b(p) = E[X|X > Q(p)]/Q(p)). We

use them to characterize entire distributions, including places like the top where

power laws are a good description, and places further down where they are not. We

develop a method to flexibly recover the entire distribution based on tabulated income

or wealth data which produces smooth and realistic shapes of generalized Pareto

curves. Using detailed tabulations from quasi-exhaustive tax data, we demonstrate

the precision of our method both empirically and analytically. It gives better results

than the most commonly used interpolation techniques.

Chapter 2 was written with Marc Morgan and Ignacio Flores, and is called “The

Weight of the Rich: Improving Surveys with Tax Data.” Household surveys fail

to capture the top tail of income and wealth distributions, as evidenced by studies

based on tax data. Yet to date there is no consensus on how to best reconcile both

sources of information. This paper presents a novel method, rooted in calibration

theory, which helps to solve the problem under reasonable assumptions. It has the

advantage of endogenously determining a “merging point” between the datasets

before modifying weights along the entire distribution and replacing new observations

beyond the survey’s original support. We provide simulations of the method and

applications to real data. The former demonstrate that our method improves the

accuracy and precision of distributional estimates, even under extreme assumptions,

and in comparison to other survey correction methods using external data. The

empirical applications provide useful and coherent illustrations in a wide variety of

contexts. Results show that not only can income inequality levels change, but also

trends. Given that our method preserves the multivariate distributions of survey

variables, it provides a more representative framework for researchers to explore the

socio-economic dimensions of inequality, as well as to study other related topics, such

as fiscal incidence.

Chapter 3 was written with Lucas Chancel and Amory Gethin, and is called “How
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Unequal is Europe? Evidence from Distributional National Accounts.” It estimates

the distribution of the national income in thirty-eight European countries between

1980 and 2017 by combining surveys, tax data and national accounts. In it, we develop

a unified methodology combining machine learning, nonlinear survey calibration

and extreme value theory in order to produce estimates of pre-tax and post-tax

income inequality, comparable across countries and consistent with macroeconomic

growth rates. We find that inequality has increased in a majority of European

countries, especially between 1980 and 2000. The European top 1% grew more than

two times faster than the bottom 50% and captured 18% of regional income growth.

Inequalities, however, remain lower and have increased much less in Europe than

in the US, despite the persistence of strong income differences between European

countries.

Chapter 4 is called “Modeling the Dynamics of Wealth Inequality in the United

States, 1962–2100.” In it, I decompose the dynamics of the wealth distribution using

a simple dynamic stochastic model that separates the effects of consumption, labor

income, rates of return, growth, demographics and inheritance. Based on two results

of stochastic calculus, I show that this model is nonparametrically identified and

can be estimated using only repeated cross-sections of the data. I estimate it using

distributional national accounts for the United States since 1962. I find that, out

of the 15 pp. increase in the top 1% wealth share observed since 1980, about 7 pp.

can be attributed to rising labor income inequality, 6 pp. to rising returns on wealth

(mostly in the form of capital gains), and 2 pp. to lower growth. Under current

parameters, the top 1% wealth share would reach its steady-state value of roughly

45% by the 2040s, a level similar to that of the beginning of the 20th century. These

conclusions apply to a wide class of models of the wealth distribution, regardless of

the exact primitives they use to account for, say, consumption or the labor market. I

then use the model to analyze the effect of progressive wealth taxation at the top of

the distribution.



Chapter 1

Generalized Pareto Curves:

Theory and Applications

It has long been known that the upper tail of the distribution of income and wealth

can be approximated by a Pareto distribution, or power law (Pareto, 1896). This fact

has been widely used in the empirical literature on inequality to overcome certain

limitations of the data. In particular, Pareto interpolation methods have been used

by Kuznets (1953), Atkinson and Harrison (1978), Piketty (2001, 2003), Piketty

and Saez (2003) and the subsequent literature exploiting historical tax tabulations

to construct long-run series on income and wealth inequality. The widespread

applicability of this functional form is often justified using models where income and

wealth evolves according to random multiplicative shocks (Champernowne, 1953;

Simon, 1955; Wold and Whittle, 1957). Recent contributions have shown how such

models can account for both the levels and the changes in inequality (Nirei, 2009;

Benhabib, Bisin, and Zhu, 2011; Piketty and Zucman, 2015; Jones and Kim, 2017;

Jones, 2015; Benhabib and Bisin, 2016; Gabaix et al., 2016).

But while the Pareto approximation is acceptable for some purposes, it is not entirely

correct, not even at the top. As a result, empirical methods that strictly rely on it

can miss important features of the distribution (Jenkins, 2016; Atkinson, 2017). If

we want to better exploit the data at our disposal, and also to better understand the

economic mechanisms giving rise to the observed distributions of income and wealth,

we need to move beyond standard Pareto distributions.

In this paper, we develop the flexible notion of generalized Pareto curve in order to

characterize and estimate income and wealth distributions. A generalized Pareto

curve is defined as the curve of inverted Pareto coefficients b(p), where 0 ≤ p < 1

22
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is the rank, and b(p) is the ratio between average income or wealth above rank p

and the p-th quantile Q(p) (i.e. b(p) = E[X|X > Q(p)]/Q(p)). If the tail follows a

standard Pareto distribution, the coefficient b(p) is constant. For example, if b(p) = 2

at the top of the wealth distribution, then the average wealth of individuals above

e1 million is e2 million, the average wealth of individuals above e10 million is

e20 million, and so on. In practice, we find that b(p) does vary within the upper

tail of observed income and wealth distributions (including within the top 10% or

the top 1%), but that the curves b(p) are relatively similar (typically U-shaped).

Our contribution is twofold. First, we start by showing that these generalized Pareto

curves have direct connections to a more general theory of power laws known as

Karamata’s (1930) theory of regular variations. Therefore, they constitute a practical

tool to study power laws in a more general sense, and move away from certain

parametric assumptions that characterized earlier work. While we confirm that

distributions of income and wealth are indeed power laws in Karamata’s (1930) sense,

we also see clear deviations from the strict Pareto distribution: we find that the

distribution of income is more skewed toward the very top than what the standard

Pareto model implies, especially in the United States. We further explain how

Karamata’s (1930) power laws and the generalized Pareto curves we observe in

practice arise from straightforward generalizations of the models of income and

wealth accumulation that are used to explain the emergence of standard Pareto laws.

These generalizations are consistent with findings found elsewhere in the literature

on the nature individual income processes, which can explain why and how we should

expect Pareto coefficient to diverge from strict Paretian behavior.

Then, we exploit this framework to develop an improved methodological approach

for the estimation of income and wealth distribution using tax data, which is often

available solely in the form of tabulations with a finite number of inverted Pareto

coefficients b1, . . . , bK and thresholds q1, . . . , qK observed for ranks p1, . . . , pK . We

call it generalized Pareto interpolation. Existing methods typically rely on diverse

Paretian assumptions (or even less realistic ones) that, by construction, blur or even

erase deviations from the standard Pareto distribution. We show that taking into

account how the Pareto coefficient b(p) varies can dramatically improve the way we

produce statistics on income and wealth inequality, especially with few data points.

By using quasi-exhaustive annual micro files of income tax returns available in the

United States and France over the 1962–2014 period (a time of rapid and large

transformation of the distribution of income, particularly in the United States), we

demonstrate the precision of the method. That is, based on the information for a

small number of ranks (e.g. p1 = 10%, p2 = 50%, p3 = 90%, p4 = 99%), we can
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recover the entire distribution with remarkable precision. The method gives good

results both for the top and for the bottom of the distribution, and generates a

consistent and smooth distribution with a continuous density. In fact, we find that the

precision of the method is such that it is often preferable to use tabulations based on

exhaustive data rather than individual data from a non-exhaustive subsample of the

population, even for subsamples considered very large by statistical standards. For

example, a subsample of 100 000 observations can typically lead to a mean relative

error of about 3% on the top 5% share, while a tabulation based on exhaustive data

that includes the percentile ranks p = 10%, 50%, 90% and 99% gives a mean relative

error of less than 0.5%. For the top 0.1% share, the same error can reach 20% with

the same subsample, while the same tabulation yields an error below 4%.

We believe that the methodology developed in this paper can help researchers avoid

excessive reliance on restrictive assumptions when using tabulated data, which is

still commonplace in some areas of research.1 To that end, we developed an R

package, named gpinter, that implements the methods described in this article and

make them easily available to researchers. We also provide a web interface built

on top of this package, available at http://wid.world/gpinter, to estimate and

manipulate distributions of income and wealth on the basis of simple tabulated data

files (such as those provided by tax administrations and statistical institutes) and

generalized Pareto interpolation methods.2 These tools have successfully been used to

estimate series of the income distribution in the Middle-East (Alvaredo, Assouad, and

Piketty, 2017), Poland (Bukowski and Novokmet, 2017), Brazil (Morgan, 2017), India

(Chancel and Piketty, 2017), Russia (Novokmet, Piketty, and Zucman, 2017), Ivory

Coast (Czajka, 2017), China (Piketty, Yang, and Zucman, 2017), France (Garbinti,

Goupille-Lebret, and Piketty, 2016), and India (Chancel and Piketty, 2017). And

we plan to use them to keep expanding the World Inequality Database (wid.world).

But the method is not limited to the production of specific inequality statistics: it

outputs a complete and consistent distribution which, depending on what is most

practical, can be characterized by its density, its cumulative distribution function,

its quantile function or its Lorenz curve. As such, it offers readily available tools for

using tabulated data in a variety of contexts (see for example Bierbrauer and Boyer

(2017) in the field of optimal taxation).

1That is especially true in economic history, or when studying inequality is less developed
countries. For example, the World Bank’s PovcalNet or the World Panel Income Distribution
(Lakner and Milanovic, 2016) take this form.

2R is maintained by the R Core Team (2016). The web interface uses shiny (Chang et al.,
2017).

http://wid.world/gpinter
wid.world
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1.1 Generalized Pareto Curves

1.1.1 Definition and Properties

We characterize the distribution of income or wealth by a random variable X with

cumulative distribution function (CDF) F . We assume that X is integrable (i.e.

E[|X|] < +∞) and that F is differentiable over a domain D = [a,+∞[ or D = R.

We note f the probability density function (PDF) and Q the quantile function. Our

definition of the inverted Pareto coefficient follows the one first given by Fournier

(2015).

Definition 1 (Inverted Pareto coefficient). For any income level x > 0, the inverted

Pareto coefficient is b∗(x) = E[X|X > x], or:

b∗(x) =
1

(1− F (x))x

∫ +∞

x

zf(z) dz

We can express it as a function of the fractile p with p = F (x) and b(p) = b∗(x):

b(p) =
1

(1− p)Q(p)

∫ 1

p

Q(u) du

If X follows a Pareto distribution with coefficient α and lower bound x̄, so that

F (x) = 1− (x̄/x)α, then b(p) = α/(α− 1) is constant (a property also known as van

der Wijk’s (1939) law), and the top 100× (1−p)% share is an increasing function of b

and is equal to (1− p)1/b. Otherwise, b(p) will vary. We can view the inverted Pareto

coefficient as an indicator of the tail’s fatness, or similarly an indicator inequality

at the top. It also naturally appears in some economic contexts, such as optimal

taxation formulas (Saez, 2001). We favor looking at them as a function of the fractile

p rather than the income x, because it avoids differences due to scaling, and make

them more easily comparable over time and between countries. We call generalized

Pareto curve the function b : p 7→ b(p) defined over [p̄, 1[ with p̄ = F (x̄).3

Proposition 1. If X satisfies the properties stated above, then b is differentiable

and for all p ∈ [p̄, 1[, 1− b(p) + (1− p)b′(p) ≤ 0 and b(p) ≥ 1.

The proof of that proposition — as well as all the others in this section — are

available in appendix A.1. The definition of b(p) directly imply b(p) ≥ 1. The fact

that the quantile function is increasing implies 1− b(p) + (1−p)b′(p) ≤ 0. Conversely,

3We solely consider inverted Pareto coefficient above a strictly positive threshold x̄ > 0, because
they have a singularity at zero and a less clear meaning below that.
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for 0 ≤ p̄ < 1 and x̄ > 0, any function b : [p̄, 1[→ R that satisfies property 1 uniquely

defines the top (1− p̄) fractiles of a distribution with p̄ = F (x̄).

Proposition 2. If X is defined for x > x̄ by F (x̄) = p̄ and the generalized Pareto

curve b : [p̄, 1[→ R, then for p ≥ p̄, the p-th quantile is:

Q(p) = x̄
(1− p̄)b(p̄)
(1− p)b(p)

exp

(
−
∫ p

p̄

1

(1− u)b(u)
du

)

The coefficient defined in 1 is only one of several “local” notion Pareto coefficient

that may be defined using a similar logic. In appendix A.2, we show this definition

fits into this larger family of Pareto coefficients.

1.1.2 Pareto Curves and Power Laws

For a strict power law (i.e. a Pareto distribution), the Pareto curve is constant. But

strict power laws rarely exist in practice, so that we may want to characterize the

Pareto curve when power law behavior is only approximate. Approximate power

laws are traditionally defined based on Karamata’s (1930) theory of slowly varying

functions. In informal terms, we call a function slowly varying if, when multiplied by

power law, it behaves asymptotically like a constant under integration.4

Definition 2 (Asymptotic power law). We say that X is an asymptotic power law if

for some α > 0, 1−F (x) = L(x)x−α, where L :]0,+∞[→]0,+∞[ is a slowly varying

function, which means that for all λ > 0, limx→+∞
L(λx)
L(x)

= 1.

Definition 2 corresponds to the broadest notion of power laws. We call them

“asymptotic” power laws to distinguish them from “strict” power laws (i.e. Pareto

distributions). Strict power laws are characterized by their scale invariance, meaning

that for all λ > 0, 1 − F (λx) = λ−α(1 − F (x)). The requirement that L is slowly

varying in definition 2 means that 1 − F must be asymptotically scale invariant.

That includes in particular situations where 1 − F is equivalent to a power law

(i.e. 1 − F (x) ∼ Cx−α for some C > 0). But we could also set, for example,

L(x) ∝ (log x)β with any β ∈ R.

We will in general restrict ourselves to situations where α > 1 to ensure that the

means are finite.5 With α > 1, there is a strong link between generalized Pareto

4See Bingham, Goldie, and Teugels (1989) for a full account of this theory.
5Hence, we exclude edge cases were the inverted Pareto coefficients are finite, but converge to

+∞ as p → 1 (for example b(p) = 3 − log(1 − p)). Technically, they correspond to a power law,
with α = 1, but unlike a strict Pareto distribution with α = 1, they have a finite mean. In practice,
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curve and asymptotic power laws.

Proposition 3. Let α > 1. X is an asymptotic power law with Pareto coefficient α,

if and only if limp→1 b(p) = α
α−1

.

Proposition 3 generalizes van der Wijk’s (1939) characterization of Pareto distribu-

tions to asymptotic power laws. Because α > 1⇔ α/(α− 1) > 1, a distribution is

an asymptotic power law if and only if its asymptotic inverted Pareto coefficient is

strictly above one. It will tend toward infinity when α approaches one, and to one

when α approaches infinity. This behavior is in contrast with distributions with a

thinner tail, whose complementary CDF is said to be rapidly varying.

Proposition 4. 1 − F (x) is rapidly varying (of index −∞), meaning that for all

λ > 1, limx→+∞
1−F (λx)
1−F (x)

= 0 if and only if limp→1 b(p) = 1.

Distributions concerned by proposition 4 include the exponential, the normal or the

log-normal. More broadly, it includes any distribution that converges to zero faster

than any power law (i.e. 1−F (x) = o(x−α) for all α > 0). For all those distributions,

the generalized Pareto curve will eventually converge to one. Looking at the Pareto

curve near p = 1 can therefore help discriminate fat-tailed distributions from others.

Propositions 3 and 4 imply that probability distributions may be divided into three

categories, based on the behavior of their generalized Pareto curve. First, power

laws, for which b(p) converges to a constant strictly greater than one. Second, “thin-

tailed” distributions, for which b(p) converges to one. The third category includes

distributions with an erratic behavior in the tail, for which b(p) may oscillate at

an increasingly fast rate without converging toward anything.6 That last category

does not include any standard parametric family of distributions, and its members

can essentially be considered pathological. If we exclude it, we are left with a

straightforward dichotomy between power laws, and thin tails.

When limp→1 b(p) > 1, so that X is an asymptotic power law, the generalized Pareto

curve can further be used to observe how the distribution converges. If b(p) increases

near p = 1, the tail is getting fatter at higher income levels. But if b(p) decreases, it

is getting thinner.

With a strict power law, so that b(p) is constant, the level of inequality stays the

same as we move up through the distribution. The share of the top 10% among

the whole population is the same as the share of the top 1% among the top 10%

Pareto coefficients for the distribution of income or wealth are clearly above one, so there is no
reason to believe that such cases are empirically relevant.

6For example b(p) = 3 + sin(log(1− p)).
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or the share of the top 0.1% among the top 1%. This property is often called the

“fractal” nature of inequality. Deviations from a constant b(p) indicate deviations

from this rule: if b(p) is increasing for p > 0.9, the top 0.1% gets a larger fraction of

the income of the top 1% than the top 1% does for the top 10%, so that the top 1%

is more unequal than the top 10%.

1.1.3 Pareto Curves in Practice

We now consider a sample (X1, . . . , Xn) of n iid. copies of X. We write X(r) the r-th

order statistic (i.e. the r-th largest value). The natural estimator of the inverted

Pareto coefficient may be written:7

b̂n(p) =
1

(n− bnpc)X(bnpc+1)

n∑
k=bnpc+1

X(k)

Figure 1.1 depicts the empirical Pareto curves for the distribution of pre-tax national

income in France and in the United States in 1980 and 2010, based on quasi-exhaustive

income tax data. The curve has changed a lot more in the United States than in

France, which reflects the well-known increase in inequality that the United States

has experienced over the period. In 2010, the inverted Pareto coefficients are much

higher in the United States than in France, which means that the tail is fatter, and

the income distribution more unequal.
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Figure 1.1: Generalized Pareto curves of pre-tax national income

7Note that for (n − 1)/n ≤ p < 1, we have b̂n(p) = 1 regardless of the distribution of X.
This speaks to the impossibility of directly estimating asymptotic quantities from a finite sample.
However, with fiscal data, for which samples are extremely large, we need not be concerned by the
problem until extremely narrow top income groups.
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In both countries, b(p) does appear to converge toward a value strictly above one,

which confirms that the distribution of income is an asymptotic power law. However,

the coefficients vary significantly, even within the top decile, so that the strict Pareto

assumption will miss important patterns in the distribution. Because b(p) rises

within the top 10% of the distribution, inequality in both France and the United

States is in fact even more skewed toward the very top than what the standard

Pareto model suggests. And the amount by which inverted Pareto coefficients vary

is not negligible. For the United States, in 2010, at its lowest point (near p = 80%),

b(p) is around 2.4. If it were a strict Pareto distribution, it would correspond to the

top 1% owning 15% of the income. But the asymptotic value is closer to 3.3, which

would mean a top 1% share of 25%.

Though empirical evidence leads us to reject the strict Pareto assumption, we can

notice that the generalized Pareto curves are U-shaped. We observe that fact for all

countries and time periods for which we have sufficient data.

1.1.4 Processes Generating Nonconstant Pareto Curves

The emergence of the Pareto distribution for the distribution of income and wealth

is generally explained by models in which random multiplicative shocks accumulate

over time (Gabaix, 2009). While these models have been used to justify the use of

the standard Pareto distribution, we show below that it can be extended to justify

the type of varying b(p) that we observe in practice.

The key feature explaining the Pareto shape is scale invariance: the evolution of

individual incomes is subject to random multiplicative shocks that are the same

regardless of where people are in the distribution. We can model this in continuous

time using a stochastic differential equation:

dXt

Xt

= µ dt+ σ dWt (1.1)

where Xt is the value of income at the date t, and Wt is a Wiener process (i.e. a

Brownian motion). It means that the rate of growth of income (dXt/Xt) over a

small time period [t, t + dt] is random and independent from Xt with a constant

mean µ dt and a constant variance σ2 dt. If relation (1.1) holds exactly throughout

the entire distribution, then the process does not converge and income follows a

log-normal distribution. However, if we add some friction that prevents income from

becoming too small, then we can get a stationary distribution. To that end, Gabaix

(1999) suggested the introduction of a reflecting barrier at a positive income level.
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An alternative approach is to make the variance of relative income growth go to

infinity at low income levels, so that the variance of absolute income growth remains

well above zero (Saichev, Malevergne, and Sornette, 2010, p. 17).

While the focus of these models has been to explain standard Pareto behavior, a

natural extension can justify the shapes of the Pareto curves that we observe in

practice. Let us generalize the process (1.2) as:

dXt

Xt

= µ(Xt) dt+ σ(Xt) dWt (1.2)

That is, we allow both the mean and the variance of shocks to change with income.

Then we can state the following result:

Theorem 1. Let Xt follow the stochastic differential equation (1.2) with a stationary

distribution D. If both µ(x) and σ2(x) converge toward a constant, D is a power law

in the sense of definition 2.

Theorem 1 makes the connection between asymptotic power laws and the asymptotic

behavior of the process generating them. The Pareto distribution arises because of

scale invariance (above a certain threshold) in the stochastic process that describes

the evolution of income or wealth. But if the scale invariance doesn’t hold exactly

but only asymptotically, then instead of a Pareto distribution we get an asymptotic

power law. We can specify more precisely the shape of the stationary distribution:

Theorem 2. Assume that µ(x) and σ2(x) converge toward a constant: µ(x)→ µ,

σ2(x)→ σ2. Define:

ζ(x) = 1− 2µ(x)

σ2(x)
and ζ = lim

x→+∞
ζ(x) = 1− 2µ

σ2

Let f be the density of the stationary distribution, and F its CDF. We have:

f(x) ∝ x−ζ−1 exp

(
− log(σ2(x))−

∫ x

1

ζ(t)− ζ
t

dt

)
and:

1− F (x) = L(x)x−ζ

where L is a slowly varying function. Therefore, the stationary distribution has an

asymptotic inverted Pareto coefficient equal to 1− σ2/(2µ).

The asymptotic behavior of the process determines the asymptotic value of the Pareto

coefficient. The characteristics of the process in the lower part of the distribution
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explain the rest of the Pareto curve. To explore this issue in more details, we can

perform the following calibration exercise. Assume that average income growth is

constant but that the variance of income has the following functional form for σ(x),

with c1, c2, c3, c4 > 0:

σ(x) =

√
c1 + c2x2

x2
+

c3x2

1 + c4x2
(1.3)

The first term, (c1 + c2x
2)/x2, ensures that the variance goes to infinity as x goes

to zero. The second term, c3x
2/(1 + c4x

2), allows the variance to increase for high

income. For x→ +∞, we get σ(x)→
√

1 + c2 + c3/c4, so according to theorem 1 the

stationary distribution is a power law. This corresponds to a U-shaped variance, with

a high relative volatility of earnings at the bottom and at the top, and a lower one for

the middle of the distribution. This profile of variance is in fact strongly suggested

by empirical work on panel data using either surveys (Chauvel and Hartung, 2014;

Hardy and Ziliak, 2014; Bania and Leete, 2009) or administrative data (Guvenen

et al., 2015). Hardy and Ziliak (2014) describe it as the “wild ride” at the top and

the bottom of the distribution. We also include a reflecting barrier at zero to prevent

incomes from becoming negative, which helps makes the process stationary.
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Figure 1.2: Calibration of σ(x) on the US Distribution of Labor Income

We calibrate formula (1.3) so that the Pareto curve of the stationary distribution

matches actual data. Figure 1.2 shows the results for the United States labor income

in 2010. The volatility of earnings growth has indeed a U-shaped profile. At the very

top of the distribution, the volatility of earnings shocks is about 30% higher than at

its lowest point, which occurs around the 90% percentile. Overall, this model is able

to match most of the distribution of income, as shown by the two similar Pareto
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curves in figure 1.2. We can achieve similar results by adjusting the mean of shocks

rather than the variance, or when looking at the case of wealth, and we present those

results in appendix A.3. Modest breaks in scale invariance can therefore explain the

variation of Pareto coefficients we observe in practice. The nee to break with scale

invariance is consistent with other findings in the litterature: as Gabaix et al. (2016)

explains, such deviation from scale invariance are also necessary to explain the pace

of increase of inequality.

1.2 Generalized Pareto Interpolation

The tabulations of income or wealth such as those provided by tax authorities and

national statistical institutes typically take the form of K fractiles 0 ≤ p1 < · · · <
pK < 1 of the population, alongside their income quantiles q1 < · · · < qK and

the income share of each bracket [pk, pk+1].
8 The interpolation method that we

now present uses the way inverted Pareto coefficients vary smoothly to estimate a

complete distribution based solely on that information: we call it generalized Pareto

interpolation.

The first goal of the method is to be as flexible as we are allowed to be: that is, we

do not force the estimated distribution into a predetermined shape. We stress that

a fully nonparametric approach is not possible here due to the lack of a suitable

asymptotic framework.9 But we can still get a lot more flexibility than a strict Pareto

model by introducing a large enough number of parameters. The second goal is to

generate a solution with desirable properties. Indeed the interpolation problem is

technically ill-posed as it has an infinite number of candidate solutions. Our method

overcomes that issue by looking for a “regular” curve of Pareto coefficients.

Our method combines three components, which solve different aspects of the problem.

First, we interpolate the generalized Pareto curve in a way that maximizes its

smoothness while satisfying two sets of constraints: those related to the quantiles,

and those related to the means. Second, we enforce if necessary the constraint that

the quantile function is increasing by finding an admissible solution that is as close

as possible to the original one. Finally, we deal separately with last bracket, for

which the interpolation is not possible due to the lack of an endpoint in the interval.

8That last element may take diverse forms (top income shares, bottom income shares, average
income in the brackets, average income above the bracket, etc.), all of which are just different ways
of presenting the same information.

9The number of brackets would have to go to infinity, which is not the setting we are interested
in.
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For the exposition of the method, we will set aside sampling related issues, and treat

empirical quantities as equivalent to their theoretical counterpart. But we come back

to that issue in section 1.4.

1.2.1 Interpolation of the Pareto Coefficients

The tabulations let us compute b(p1), . . . , b(pK) directly. But interpolating the curve

b(p) based solely on those points offers no guarantee that the resulting function will

be consistent with the input data on quantiles. To that end, the interpolation needs

to be constrained. To do so in a computationally efficient and analytically tractable

way, we start from the following function:

∀x ≥ 0 ϕ(x) = − log

∫ 1

1−e−x
Q(p) dp

which is essentially a transform of the Lorenz curve:

ϕ(x) = − log((1− L(p))E[X])

with p = 1− e−x. The value of ϕ at each point xk = − log(1− pk) can therefore be

estimated directly from the data in the tabulation. Moreover:

∀x ≥ 0 ϕ′(x) = eϕ(x)−xQ(1− e−x) = 1/b(1− e−x)

which means that the generalized Pareto coefficient b(p) is equal to 1/ϕ′(x). Hence,

the value of ϕ′(xk) for k ∈ {1, . . . , K} is also given by the tabulation.

Because of the bijection between (p, b(p), Q(p)) and (x, ϕ(x), ϕ′(x)), the problem

of interpolating b(p) in a way that is consistent with Q(p) is identical to that of

interpolating the function ϕ, whose value and first derivative are known at each

point xk.

We assume that we know a set of points {(xk, yk, sk), 1 ≤ k ≤ K} that correspond

to the values of {(xk, ϕ(xk), ϕ
′(xk)), 1 ≤ k ≤ K}, and we seek a sufficiently smooth

function ϕ̂ such that:

∀k ∈ {1, . . . , K} ϕ̂(xk) = ϕ(xk) = yk ϕ̂′(xk) = ϕ′(xk) = sk (1.4)

By sufficiently smooth, we mean that ϕ should be at least twice continuously

differentiable. That requirement is necessary for the estimated Pareto curve (and

by extension the quantile function) to be once continuously differentiable, or, put
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differently, not to exhibit any asperity at the fractiles included in the tabulation.

Our interpolation method relies on splines, meaning piecewise polynomials defined

on each interval [xk, xk+1]. Although cubic splines (i.e. polynomials of degree 3)

are the most common, they do not offer enough degrees of freedom to satisfy both

the constraints given by (1.4) and the requirement that ϕ is twice continuously

differentiable. We use quintic splines (i.e. polynomials of degree 5) to get more

flexibility. To construct them, we start from the following set of polynomials for

x ∈ [0, 1]:

h00(x) = 1− 10x3 + 15x4 − 6x5 h01(x) = 10x3 − 15x4 + 6x5

h10(x) = x− 6x3 + 8x4 − 3x5 h11(x) = −4x3 + 7x4 − 3x5

h20(x) = 1
2
x2 − 3

2
x3 + 3

2
x4 − 1

2
x5 h21(x) = 1

2
x3 − x4 + 1

2
x5

which were designed so that h
(k)
ij (`) = 1 if (i, j) = (k, `), and 0 otherwise. They are

analogous to the basis of cubic Hermite splines (e.g. McLeod and Baart, 1998, p. 328),

but for the set of polynomials of degree up to five. Then, for k ∈ {1, . . . , K − 1} and

x ∈ [xk, xk+1], we set:

ϕ̂k(x) = ykh00

(
x−xk

xk+1−xk

)
+ yk+1h01

(
x−xk

xk+1−xk

)
+ sk(xk+1 − xk)h10

(
x−xk

xk+1−xk

)
+ sk+1(xk+1 − xk)h11

(
x−xk

xk+1−xk

)
+ ak(xk+1 − xk)2h20

(
x−xk

xk+1−xk

)
+ ak+1(xk+1 − xk)2h21

(
x−xk

xk+1−xk

)
for some ak, ak+1 ∈ R, and ϕ̂(x) = ϕ̂k(x) for x ∈ [xk, xk+1]. By construction, we

have ϕ̂(xk) = yk, ϕ̂(xk) = yk+1, ϕ̂
′(xk) = sk, ϕ̂

′(xk+1) = sk+1, ϕ̂
′′(xk) = ak and

ϕ̂′′(xk+1) = ak+1. Hence, ϕ̂ satisfies all the constraints and regularity requirements

of the problem.

To pick appropriate values for a1, . . . , ak, we follow the usual approach of imposing

additional regularity conditions at the jointures. We have a system of K−2 equations,

linear in a1, . . . , ak, defined by:

∀k ∈ {2, . . . , K − 1} ϕ̂′′′k−1(xk) = ϕ̂′′′k (xk)

Two additional equations are required for that system to have a unique solution.

One solution is to use predetermined values for a1 and aK (known as the “clamped

spline”). Another, known as the “natural spline”, sets:

ϕ̂′′′1 (x1) = 0 and ϕ̂′′′K−1(xK) = 0
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Both approaches are equivalent to the minimization of an irregularity criterion (e.g.

Lyche and Mørken, 2002):

min
a1,...,aK

∫ xk

x1

{ϕ̂′′′(x)}2 dx

subject to fixed values for a1 and aK (clamped spline) or not (natural spline). Hence,

both methods can be understood as a way to minimize the curvature of ϕ̂′, and

therefore find a regular b(p). That is, by construction, the method aims at finding the

most “regular” generalized Pareto curve that satisfies the constraints of the problem.

We adopt a hybrid approach, in which a1 is determined through ϕ̂′′′1 (x1) = 0, but

where aK is estimated separately using the two-points finite difference:

aK =
sK − sK−1

xK − xK−1

Because the function is close to linear near xK , it yields results that are generally sim-

ilar to traditional natural splines. But that estimation of ϕ′′(xK) is also more robust,

so we get more satisfactory results when the data exhibit potentially troublesome

features.

The vector a = [a1 · · · aK ]′ is the solution of a linear system of equation Xa = v,

whereX depends solely on the x1, . . . , xK , and b is linear in y1, . . . , yK and s1, . . . , sK .

Therefore, we find the right parameters for the spline by numerically solving a linear

system of equation. We provide the detailed expressions of X and b in appendix A.4.

1.2.2 Enforcing Admissibility Constraints

The interpolation method presented above does not guarantee that the estimated

generalized Pareto curve will satisfy property 1 — or equivalently that the quantile

will be an increasing function. In most situations, that constraint need not be

enforced, because it is not binding: the estimated function spontaneously satisfy it.

But it may occasionally not be the case, so that estimates of quantiles of averages

at different points of the distribution may be mutually inconsistent. To solve that

problem, we present an ex post adjustment procedure which constrains appropriately

the interpolated function.

We can express the quantile as a function of ϕ:

∀x ≥ 0 Q(1− e−x) = ex−ϕ(x)ϕ′(x)
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Therefore:

∀x ≥ 0 Q′(1− e−x) = e2x−ϕ(x)[ϕ′′(x) + ϕ′(x)(1− ϕ′(x))]

So the estimated quantile function is increasing if and only if:

∀x ≥ 0 Φ(x) = ϕ̂′′(x) + ϕ̂′(x)(1− ϕ̂′(x)) ≥ 0 (1.5)

The polynomial Φ (of degree 8) needs to be positive. There are no simple necessary

and sufficient conditions on the parameters of the spline that can ensure such a

constraint. However, it is possible to derive conditions that are only sufficient, but

general enough to be used in practice. We use conditions based on the Bernstein

representation of polynomials, as derived by Cargo and Shisha (1966):

Theorem 3 (Cargo and Shisha, 1966). Let P (x) = c0 + c1x1 + · · · + cnx
n be a

polynomial of degree n ≥ 0 with real coefficients. Then:

∀x ∈ [0, 1] min
0≤i≤n

bi ≤ P (x) ≤ max
0≤i≤n

bi

where:

bi =
n∑
r=0

cr

(
i

r

)/(
n

r

)

To ensure that the quantile is increasing over [xk, xk+1] (1 ≤ k < K), it is therefore

enough to enforce the constraint that bi ≥ 0 for all 0 ≤ i ≤ 8, where bi is defined

as in theorem 3 with respect to the polynomial x 7→ Φ(xk + x(xk+1 − xk)). Those 9

conditions are all explicit quadratic forms in (yk, yk+1, sk, sk+1, ak, ak+1), so we can

compute them and their derivative easily.

To proceed, we start from the unconstrained estimate from the previous section.

We set ak = −sk(1− sk) for each 1 ≤ k ≤ K if ak + sk(1− sk) < 0, which ensures

that condition (1.5) is satisfied at least at the interpolation points. Then, over

each segment [xk, xk+1], we check whether the condition Φ(x) ≥ 0 is satisfied for

x ∈ [xk, xk+1] using the theorem 3, or more directly by calculating the values of Φ

over a tight enough grid of [xk, xk+1]. If so, we move on to next segment. If not, we

consider L ≥ 1 additional points (x∗1, . . . , x
∗
L) such that xk < x∗1 < · · · < x∗L < xk+1,
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and we redefine the function ϕ̂k over [xk, xk+1] as:

ϕ̃k(x) =


ϕ∗0(x) if xk ≤ x < x∗1

ϕ∗`(x) if x∗` ≤ x < x∗`+1

ϕ∗L(x) if x∗L ≤ x < xk+1

where the ϕ∗` (0 ≤ ` ≤ L) are quintic splines such that for all 1 ≤ ` < L:

ϕ∗0(xk) = yk (ϕ∗0)′(xk) = sk (ϕ∗0)′′(xk) = ak

ϕ∗L(xk+1) = yk+1 (ϕ∗L)′(xk+1) = sk+1 (ϕ∗L)′′(xk+1) = ak+1

ϕ∗`(x
∗
`) = y∗` (ϕ∗`)

′(x∗`) = s∗` (ϕ∗`)
′′(x∗`) = a∗`

ϕ∗`(x
∗
`+1) = y∗`+1 (ϕ∗`)

′(x∗`+1) = s∗`+1 (ϕ∗`)
′′(x∗`+1) = a∗`+1

and y∗` , s
∗
` , a
∗
` (1 ≤ ` ≤ L) are parameters to be adjusted. In simpler terms, we divided

the original spline into several smaller ones, thus creating additional parameters that

can be adjusted to enforce the constraint. We set the parameters y∗` , s
∗
` , a
∗
` (1 ≤ ` ≤ L)

by minimizing the L2 norm between the constrained and the unconstrained estimate,

subject to the 9× (L+ 1) conditions that b`i ≥ 0 for all 0 ≤ i ≤ 8 and 0 ≤ ` ≤ L:

min
y∗` ,s

∗
` ,a

∗
`

1≤`≤L

∫ xk+1

xk

{ϕ̂k(x)− ϕ̃k(x)}2 dx st. b`i ≥ 0 (0 ≤ i ≤ 8 and 0 ≤ ` ≤ L)

where the b`i are defined as in theorem 3 for each spline `. The objective function and

the constraints all have explicit analytical expressions, and so does their gradients.

We solve the problem with standard numerical methods for nonlinear constrained

optimization.10,11

1.2.3 Extrapolation in the Last Bracket

The interpolation procedure only applies to fractiles between p1 and pK , but we

generally also want an estimate of the distribution outside of this range, especially

for p > pK .12 Because there is no direct estimate of the asymptotic Pareto coefficient

limp→1 b(p), it is not possible to interpolate as we did for the rest of the distribution:

10For example, standard sequential quadratic programming (Kraft, 1994) or augmented La-
grangian methods (Conn, Gould, and Toint, 1991; Birgin and Mart̀ınez, 2008). See NLopt for
details and open source implementations of such algorithms: http://ab-initio.mit.edu/wiki/
index.php/NLopt_Algorithms.

11Adding one point at the middle of the interval is usually enough to enforce the constraint, but
more points may be added if convergence fails.

12It is always possible to set p1 = 0 if the distribution has a finite lower bound.

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms


38 CHAPTER 1. GENERALIZED PARETO CURVES

we need to extrapolate it.

The extrapolation in the last bracket should satisfy the constraints imposed by the

tabulation (on the quantile and the mean). In accordance with the principle of

a regular Pareto curve, it should also ensure derivability of the quantile function

at the juncture. To do so, we use the information contained in the four values

(xK , yK , sK , aK) of the interpolation function at the last point. Hence, we need an

appropriate functional form for the last bracket with enough degrees of freedom to

satisfy all the constraints. To that end, we turn to the generalized Pareto distribution.

Definition 3 (Generalized Pareto distribution). Let µ ∈ R, σ ∈ ]0,+∞[ and ξ ∈ R.

X follows a generalized Pareto distribution if for all x ≥ µ (ξ ≥ 0) or µ ≤ x ≤ µ−σ/ξ
(ξ < 0):

P{X ≤ x} = GPDµ,σ,ξ(x) =

1−
(
1 + ξ x−µ

σ

)−1/ξ
for ξ 6= 0

1− e−(x−µ)/σ for ξ = 0

µ is called the location parameter, σ the scale parameter and ξ the shape parameter.

The generalized Pareto distribution is a fairly general family which includes as special

cases the strict Pareto distribution (ξ > 0 and µ = σ/ξ), the (shifted) exponential

distribution (ξ = 0) and the uniform distribution (ξ = −1). It was popularized as a

model of the tail of other distributions in extreme value theory by Pickands (1975)

and Balkema and Haan (1974), who showed that for a large class of distributions

(which includes all power laws in the sense of definition 2), the tail converges towards

a generalized Pareto distribution.

If X ∼ GPD(µ, σ, ξ), the generalized Pareto curve of X is:

b(p) = 1 +
ξσ

(1− ξ)[σ + (1− p)ξ(µξ − σ)]

We will focus on cases where 0 < ξ < 1, so that the distribution is a power law at

the limit (ξ > 0), but its mean remains finite (ξ < 1). When ξµ = σ, the generalized

Pareto curve is constant, and the distribution is a strict power law with Pareto

coefficient b = 1/(1− ξ). That value also corresponds in all cases to the asymptotic

coefficient limp→1 b(p) = 1/(1− ξ). But there are several ways for the distribution to

converge toward a power law, depending on the sign of µξ − σ. When µξ − σ > 0,

b(p) converges from below, increasing as p→ 1, so that the distribution gets more

unequal in higher brackets. Conversely, when µξ − σ < 0, b(p) converges from above,

and decreases as p→ 1, so that the distribution is more equal in higher brackets.
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The generalized Pareto distribution can match a wide diversity of profiles for the

behavior of b(p), while offering the right number of degrees of freedom for our purpose.

In the context of our method, the value of its parameters is not of direct interest. In

particular, the setting does not allow for a particularly accurate estimation of the

asymptotic Pareto coefficient, and we do not focus on providing such an estimate.

However, we can use it to find a reasonable functional form that makes an efficient

use of the information at our disposal on the mean, the quantile and its derivative at

the last threshold. The generalized Pareto distribution offers a way to extrapolate

the coefficients b(p) in a way that is consistent with all the input data and preserves

the regularity of the Pareto curve.

We assume that, for p > pK , the distribution follows a generalized Pareto distribution

with parameters (µ, σ, ξ), which means that for q > qK the CDF is:

F (q) = pK + (1− pK)GPDµ,σ,ξ(q)

For the CDF to remain continuous and differentiable, we need µ = qK and σ =

(1− pK)/F ′(qK), where F ′(qK) comes from the interpolation method of section 1.2.1.

Finally, for the Pareto curve to remain continuous, we need b(pK) equal to 1 +

σ/(µ(1− ξ)), which gives the value of ξ. That is, if we set the parameters (µ, σ, ξ)

equal to:

µ = sKexK−yK

σ = (1− pK)(aK + sK(1− sK))e2xK−yK

ξ = 1− (1− pK)σ

e−yK − (1− pK)µ

then the resulting distribution will have a continuously differentiable quantile function,

and will match the quantiles and the means in the tabulation.

1.3 Tests Using Income Data from the United

States and France, 1962–2014

We test the quality of our interpolation method using income tax data for the

United States (1962–2014) and France (1994–2012).13 They correspond to cases for

which we have detailed tabulations of the distribution of pre-tax national income

based on quasi-exhaustive individual tax data (Piketty, Saez, and Zucman, 2016;

13More precisely, the years 1962, 1964 and 1966–2014 for the United States.
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Garbinti, Goupille-Lebret, and Piketty, 2016), so that we can know quantiles or

shares exactly.14 We compare the size of the error in generalized Pareto interpolation

with alternatives most commonly found in the literature.

1.3.1 Overview of the Most Common Interpolation Meth-

ods

Method 1: constant Pareto coefficient That method was used by Piketty

(2001) and Piketty and Saez (2003), and relies on the property that, for a Pareto

distribution, the inverted Pareto coefficient b(p) remains constant. We set b(p) =

b = E[X|X > qk]/qk for all p ≥ pk. The p-th quantile becomes q = qk

(
1−p
1−pk

)−1/α

with α = b/(b− 1). By definition, E[X|X > q] = bq which gives the p-th top average

and top share.

Method 2: log-linear interpolation The log-linear interpolation method was

introduced by Pareto (1896), Kuznets (1953), and Feenberg and Poterba (1992). It

uses solely threshold information, and relies on the property of Pareto distributions

that log(1− F (x)) = log(c)− α log(x). We assume that this relation holds exactly

within the bracket [pk, pk+1], and set αk = − log((1−pk+1)/(1−pk))

log(qk+1/qk)
. The value of the p-th

quantile is again q = qk

(
1−p
1−pk

)−1/αk
and the top averages and top shares can be

obtained by integration of the quantile function. For p > pK , we extrapolate using

the value αK of the Pareto coefficient in the last bracket.

Method 3: mean-split histogram The mean-split histogram uses information

on both the means and the thresholds, but uses a very simple functional form, so

that the solution can be expressed analytically. Inside the bracket [qk, qk+1], the

density takes two values:

f(x) =

f−k if qk ≤ x < µk

f+
k if µk ≤ x < qk+1

14We use pre-tax national income as our income concept of reference. It was defined by Alvaredo,
Atkinson, et al. (2016) to be consistent with the internationally agreed definition of net national
income in the system of national accounts. Even though they are mostly based on individual tax
data, estimates of pre-tax national income do involves a few corrections and imputations, which
may affect the results. That is why we also report similar computations in appendix using fiscal
income, which is less comparable and less economically meaningful, but doesn’t suffer from such
problems.
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where µk is the mean inside the bracket.15 To meet the requirement on the mean

and the thresholds, we set:

f−k =
(pk+1 − pk)(qk+1 − µk)
(qk+1 − qk)(µk − qk)

and f+
k =

(pk+1 − pk)(µk − qk)
(qk+1 − qk)(qk+1 − µk)

The means-split histogram does not apply beyond the last threshold of the tabulation.

Comparison Methods 1 and 2 make a fairly inefficient use of the information

included in the original tabulation: method 1 discards the data on quantiles and

averages at the higher end of the bracket, while method 2 discards the information

on averages. As a consequence, none of these methods can guarantee that the output

will be consistent with the input. The method 3 does offer such a guarantee, but

with a very simple — and quite unrealistic — functional form.

Our generalized Pareto interpolation method makes use of all the information in the

tabulation, so that its output is guaranteed to be consistent with its input. Moreover,

contrary to all other methods, it leads a continuous density, hence a smooth quantile

and a smooth Pareto curve. None of the other methods can satisfy this requirement,

and their output exhibit stark irregularities at the beginning and the end of the

brackets in the tabulation in input.

Application to France and the United States Using the individual income

tax data, we compute our own tabulations in each year. We include four percentiles

in the tabulation: p1 = 0.1, p2 = 0.5, p3 = 0.9 and p4 = 0.99.

We interpolate each of those tabulations with the three methods above, labelled

“M1”, “M2” and “M3” in what follows.16 We also interpolate them with our new

generalized Pareto interpolation approach (labeled “M0”). We compare the values

that we get with each method for the top shares and the quantiles at percentiles

30%, 75% and 95% with the value that we get directly from the individual data.

(We divide all quantiles by the average to get rid of scaling effects due to inflation

15The breakpoint of the interval [qk, qk+1] could be different from µk, but not all values between
qk and qk+1 will work if we want to make sure that f−k > 0 and f+

k > 0. The breakpoint q∗ must
be between qk and 2µk − qk if µk < (qk + qk+1)/2, and between 2µk − qk+1 and qk+1 otherwise.
Choosing q∗ = µk ensures that the condition is always satisfied.

16We also provide extended tables in appendix with a fourth method, which is much more rarely
used.
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Table 1.1: Mean relative error for different interpolation methods

mean percentage gap between estimated and
observed values

M0 M1 M2 M3

United States
(1962–2014)

Top 70% share
0.059% 2.3% 6.4% 0.054%

(ref.) (×38) (×109) (×0.92)

Top 25% share
0.093% 3% 3.8% 0.54%

(ref.) (×32) (×41) (×5.8)

Top 5% share
0.058% 0.84% 4.4% 0.83%

(ref.) (×14) (×76) (×14)

P30/average
0.43% 55% 29% 1.4%
(ref.) (×125) (×67) (×3.3)

P75/average
0.32% 11% 9.9% 5.8%
(ref.) (×35) (×31) (×18)

P95/average
0.3% 4.4% 3.6% 1.3%
(ref.) (×15) (×12) (×4.5)

France
(1994–2012)

Top 70% share
0.55% 4.2% 7.3% 0.14%
(ref.) (×7.7) (×13) (×0.25)

Top 25% share
0.75% 1.8% 4.9% 0.37%
(ref.) (×2.4) (×6.5) (×0.49)

Top 5% share
0.29% 1.1% 8.9% 0.49%
(ref.) (×3.9) (×31) (×1.7)

P30/average
1.5% 59% 38% 2.6%
(ref.) (×40) (×26) (×1.8)

P75/average
1% 5.2% 5.4% 4.7%

(ref.) (×5.1) (×5.3) (×4.6)

P95/average
0.58% 5.6% 3.2% 1.8%
(ref.) (×9.6) (×5.5) (×3.2)

Pre-tax national income. Sources: author’s calculation from Piketty, Saez, and Zucman (2016)
(United States) and Garbinti, Goupille-Lebret, and Piketty (2016) (France). The different interpo-
lation methods are labeled as follows. M0: generalized Pareto interpolation. M1: constant Pareto
coefficient. M2: log-linear interpolation. M3: mean-split histogram. We applied them to a tab-
ulation which includes the percentiles p = 10%, p = 50%, p = 90%, and p = 99%. We included
the relative increase in the error compared to generalized Pareto interpolation in parentheses. We
report the mean relative error, namely:

1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its estimate using one
of the interpolation methods. We calculated the results over the years 1962, 1964 and 1966–2014
in the United States, and years 1994–2012 in France.
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Figure 1.3: P75 threshold and top 25% share in the United States (1962–2014),
estimated using all interpolation methods and a tabulation with

p = 10%, 50%, 90%, 99%
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Figure 1.4: P75 threshold and top 25% share in the United States (2000-2014),
estimated using interpolation methods M0 and M3, and a tabulation with

p = 10%, 50%, 90%, 99%



44 CHAPTER 1. GENERALIZED PARETO CURVES

and average income growth.) We report the mean relative error in table 1.1:

MRE =
1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its

estimate using one of the interpolation methods.
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Figure 1.5: Generalized Pareto curves implied by the different interpolation methods
for the United States distribution of income in 2010

The two standard Pareto interpolation methods (M1 and M2) are the ones that

perform worst. M1 is better at estimating shares, while M2 is somewhat better at

estimating quantiles. That shows the importance not to dismiss any information

included in the tabulation, as exhibited by the good performance of the mean-split

histogram (M3), particularly at the bottom of the distribution.

Our generalized Pareto interpolation method vastly outperforms the standard Pareto

interpolation methods (M1 and M2). It is also better than the mean-split histogram

(M3), except in the bottom of the distribution where both methods work well (but

standard Pareto methods M1 and M2 fail badly).

Figure 1.3 shows how the use of different interpolation methods affects the estimation
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of the top 25% share and associated income threshold. Although all methods roughly

respect the overall trend, they can miss the level by a significant margin. The

generalized Pareto interpolation estimates the threshold much better than either M1,

M2, or M3.

For the estimation of the top 25% share, M3 performs fairly well, unlike M1 and M2.

To get a more detailed view, we therefore focus on a more recent period (2000–2014)

and display only M0 and M3, as in figure 1.4. We can see that M3 has, in that

case, a tendency to overestimate the top 25% by a small yet persistent amount. In

comparison, M4 produces a curve almost identical to the real one.

We can also directly compare the generalized Pareto curves generated by each method,

as in figure 1.5. Our method, M0, reproduces the inverted Pareto coefficients b(p)

very faithfully, including above the last threshold (see section 1.3.2). All the other

methods give much worse results. Method M1 leads to discontinuous curve, which

in fact may not even define a consistent probability distribution. The M2 method

fails to account for the rise of b(p) at the top. Finally, the M3 leads to an extremely

irregular shape due to the use a piecewise uniform distribution to approximate power

law behavior.

Overall, the generalized Pareto interpolation method performs well. In most cases,

it gives results that are several times better than methods commonly used in the

literature. And it does so while ensuring a smoothness of the resulting estimate that

no other method can provide. Moreover, it works well for the whole distribution, not

just the top (like M1 and M2) or the bottom (like M3).

1.3.2 Extrapolation methods

Of the interpolation methods previously described, only M1 and M2 can be used

to extrapolate the tabulation beyond the last threshold. Both assume a standard

Pareto distribution. Method M1 estimates b(p) at the last fractile pK , and assumes

a Pareto law with α = b(pK)/(b(pK)− 1) after that. Method M2 estimates a Pareto

coefficient based on the last two thresholds, so in effect it assumes a standard Pareto

distribution immediately after the second to last threshold.

The assumption that b(p) becomes approximately constant for p close to 1, however,

is not confirmed by the data. Figure 1.6 demonstrate this for France and the United

States in 2010. The profile of b(p) is not constant for p ≈ 1. On the contrary, it

increases faster than for the rest of the distribution.

In section 1.2.3 we presented an extrapolation method based on the generalized
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Figure 1.6: Extrapolation with generalized Pareto distribution

Pareto distribution that had the advantage of preserving the smoothness of the Pareto

curve, use all the information from the tabulation, and allow for a nonconstant profile

of generalized Pareto coefficients near the top. As figure 1.6 shows, this method

leads to a more realistic shape of the Pareto curve.

Table 1.2 compares the performance of the new method with the other ones, as we

did in the previous section. Here, the tabulation in input includes p = 90% but

stops at p = 95%, and we seek estimates for p = 99%.17,18 Method M2 is the most

imprecise. Method M1 works quite well in comparison. But our new method M0

gives even more precise results. This because it can correctly capture the tendency

of b(p) to keep on rising at the top of the distribution.

Figure 1.7 compares the extrapolation methods over time in the United States. We

can see M1 overestimates the threshold by about as much as M2 underestimates it,

while M0 is much closer to reality and makes no systematic error. For the top share,

M1 is much better than M2. But it slightly underestimates the top share because it

fails to account for the rising profile of inverted Pareto coefficients at the top, which

is why our method M0 works even better.

17Here, we use fiscal income instead of pre-tax national income to avoid disturbances created at
the top by the imputation of some sources of income in pre-tax national income.

18We provide in appendix an alternative tabulation which stops at the top 1% and where we seek
the top 0.1%. The performances of M0 and M1 are closer but M0 remains preferable.
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Table 1.2: Mean relative error on the top 1% for different
extrapolation methods, knowing the top 10% and the top 5%

mean percentage gap between
estimated and observed values

M0 M1 M2

United States
(1962–2014)

Top 1% share
0.78% 5.2% 40%
(ref.) (×6.7) (×52)

P99/average
1.8% 8.4% 13%
(ref.) (×4.7) (×7.2)

France
(1994–2012)

Top 1% share
0.44% 2% 11%
(ref.) (×4.6) (×25)

P99/average
0.98% 2.5% 2.4%
(ref.) (×2.5) (×2.4)

Fiscal income. Sources: author’s calculation from Piketty, Saez, and Zucman (2016)
(United States) and Garbinti, Goupille-Lebret, and Piketty (2016) (France). The
different extrapolation methods are labeled as follows. M0: generalized Pareto dis-
tribution. M1: constant Pareto coefficient. M2: log-linear interpolation. We applied
them to a tabulation which includes the percentiles p = 90%, and p = 95%. We in-
cluded the relative increase in the error compared to generalized Pareto interpolation
in parentheses. We report the mean relative error, namely:

1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its es-
timate using one of the interpolation methods. We calculated the results over the
years 1962, 1964 and 1966–2014 in the United States, and years 1994–2012 in France.

1.4 Estimation Error

The previous section calculated empirically the precision of our new interpolation

method. We did so by systematically comparing estimated values with real ones

coming from individual tax data. But whenever we have access to individual data,

we do not in fact need to perform any interpolation. So the main concern about the

previous section is its general validity. To what extent can its results be extended to

different tabulations, with different brackets, corresponding to a different distribution?

Is it possible to get estimates of the error in the general case? How many brackets

do we need to reach a given precision level, and how should they be distributed?

To the best of our knowledge, none of these issues have been tackled directly in the

previous literature. The main difficulty is that most of the error is not due to mere

sampling variability (although part of it is), which we can assess using standard
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Figure 1.7: Comparison of extrapolation methods in the United States for the top
1%, knowing the top 10% and the top 5%

methods. It comes mostly from the discrepancy between the functional forms used in

the interpolation, and the true form of the distribution. Put differently, it corresponds

to a “model misspecification” error, which is harder to evaluate. But the generalized

Pareto interpolation method does offer some solutions to that problem. We can

isolate the features of the distribution that determine the error, and based on that

provide approximations of it.

In this section, we remain concerned with the same definition of the error as in the

previous one. Namely, we consider the difference between the estimate of a quantity

by interpolation (e.g. shares or thresholds) and the same quantity defined over

the true population of interest. This is in contrast with a different notion of error

common in statistics: the difference between an empirical estimate and the value

of an underlying statistical model. If sample size were infinite — so that sampling

variability would vanish — both errors would be identical. But despite the large

samples that characterize tax data, sampling issues cannot be entirely discarded.

Indeed, because income and wealth distributions are fat-tailed, the law of large

numbers may operate very slowly, so that both types of errors remain different even

with millions of observations (Taleb and Douady, 2015).

We consider our notion of the error to be more appropriate in the context of the

methods we are studying. Indeed, concerns for the distribution of income and wealth

only arise to the extent that it affects actual the actual population, not a model

of it. Moreover, this allows us to remain agnostic as to the “true” model for the

distribution of income.
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In order to get tractable analytical results, we also focus on the unconstrained

interpolation procedure of section 1.2.1, and thus leave aside the monotonicity

constraint of the quantile. That has very little impact on the results in practice since

the constraint is rarely binding, and when it is the adjustments are small.19

1.4.1 Theoretical results

Let n be the size of the population (from which the tabulated data come). Recall

that x = − log(1−p). Let en(x) be the estimation error on ϕn(x), and similarly e′n(x)

the estimation error on ϕ′n(x). If we know both those errors then we can retrieve the

error on any quantity of interest (quantiles, top shares, Pareto coefficients, etc.) by

applying the appropriate transforms. Our first result decompose the error between

two components. Like all the theorems of this section, we give only the main results.

Details and proofs are in appendix.

Theorem 4. We can write en(x) = u(x) + vn(x) and e′n(x) = u′(x) + v′n(x) where

u(x), u′(x) are deterministic, and vn(x), v′n(x) are random variables that converge

almost surely to zero when n→ +∞.

We call the first terms u(x) and u′(x) the “misspecification” error. They correspond

to the difference between the functional forms that we use in the interpolation, and

the true functional forms of the underlying distribution. Even if the population size

was infinite, so that sampling variability was absent, they would still remain nonzero.

We can give the following representation for that error.

Theorem 5. u(x) and u′(x) can be written as a scalar product between two functions

ε and ϕ′′′:

u(x) =

∫ xK

x1

ε(x, t)ϕ′′′(t) dt and u′(x) =

∫ xK

x1

∂ε

∂x
(x, t)ϕ′′′(t) dt

where ε(x, t) is entirely determined by x1, . . . , xK.

The function ε(x, t) is entirely determined by the known values x1, . . . , xK , so we can

calculate it directly. Its precise definition is given in appendix. The other function,

ϕ′′′, depends on the quantity we are trying to estimate, so we do not know it exactly.

The issue is common in nonparametric statistics, and complicates the application of

the formula.20 But if we look at the value of ϕ′′′ in situations where we have enough

19For example, the monotonicity constraint is not binding in any of the tabulations interpolated
in the previous section.

20For example, the asymptotic mean integrated squared error of a kernel estimator depends on
the second derivative of the density (Scott, 1992, p. 131).
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data to estimate it directly, we can still derive good approximations and rules of

thumb that apply more generally.

We call vn(x) and v′n(x) the “sampling error”. Even if the true underlying distri-

bution matched the functional used for the interpolation, so that there would be

no misspecification error, they would remain nonzero. We can give asymptotic

approximation of their distribution for large n. We do not only cover the finite

variance case (E[X2] < +∞), but also the infinite variance case (E[X2] = +∞),

which leads to results that are less standard. Infinite variance is very common when

dealing with distributions of income and wealth.

Theorem 6. vn(x) and v′n(x) converge jointly in distribution at speed 1/rn:

rn

[
vn(x)

v′n(x)

]
D→ J

If E[X2] < +∞, then rn =
√
n and J is a bivariate normal distribution. If E[X2] =

+∞ and 1 − F (x) ∼ Cx−2, then rn = (n/ log n)1/2 and J is a bivariate normal

distribution. If E[X2] = +∞ and 1− F (x) ∼ Cx−α (1 < α < 2), then rn = n1−1/α

and J D
= (γ1Y, γ2Y ) where Y follows a maximally skewed stable distribution with

stability parameter α.

Again, we provide more detailed expressions of the asymptotic distributions in

appendix alongside the proof of the result. More importantly, we also show that in

practice, we always have vn(x)� u(x) and v′n(x)� u′(x), regardless of the precise

characteristics of the underlying distribution. This means that sampling variability

is negligible compared to the misspecification error. Therefore, we will apply the

result of this section assuming en(x) ≈ u(x) and e′n(x) ≈ u′(x).

1.4.2 Applications

1.4.2.1 Estimation of Error Bounds

Given that thee sampling error is negligible, theorem 5 may be used to get bounds

on the error in the general case. As an example, imagine that in both France and the

United States, we have access to individual data for the most recent ten years, but

that we only have access to tabulated data for the years before that. This, in fact,

is what happens in the United States (before 1962) and France (before 1970). We

can use the envelope of |ϕ′′′| over the ten years with individual data as a reasonable

upper bound of it for the rest of the period. We write |ϕ′′′(x)| ≤ M(x) for all x.

Using the triangular inequality, we get en(x) ≤
∫ xK
x1
|ε(x, t)|M(t) dt.
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Table 1.3: Observed maximum error and theoretical upper bound

maximum absolute
error on ϕ

maximum absolute
error on ϕ′

maximum relative
error on top shares

actual bound actual bound actual bound

United States
(1962–2004)

p = 30% 0.0014 0.0030 0.0074 0.0100 0.14% 0.30%
p = 75% 0.0023 0.0137 0.0048 0.0088 0.23% 1.37%
p = 95% 0.0020 0.0059 0.0044 0.0077 0.20% 0.59%

France
(1994–2002)

p = 30% 0.0054 0.0097 0.0038 0.0231 0.54% 0.97%
p = 75% 0.0080 0.0208 0.0033 0.0076 0.80% 2.08%
p = 95% 0.0040 0.0088 0.0060 0.0109 0.40% 0.88%

Table 1.3 compares the bound on the error calculated as such with reality. The

estimates are conservative by construction due to the use of an upper bound for ϕ′′′

and the triangular inequality in the integral. We indeed observe that the theoretical

bound is always higher than the actual maximum observed error. Yet in general, the

bound that we calculate gives an approximate idea of the error we may expect in

each case.

1.4.2.2 Optimal Choice of Brackets

We now consider the inverse problem: namely, how many brackets do we need to

achieve a given precision level, and how should they be placed? Based on theorem 5,

we can answer that question for any given ϕ′′′ by solving an optimization program.

Hence, if we pick a functional form for ϕ′′′ which is typical of what we observe, we

get the solution of the problem for the typical income distribution.

Table 1.4: Optimal bracket choice for a typical distribution of income

3 brackets 4 brackets 5 brackets 6 brackets 7 brackets

optimal placement
of thresholds

10.0% 10.0% 10.0% 10.0% 10.0%
68.7% 53.4% 43.0% 36.8% 32.6%
95.2% 83.4% 70.4% 60.7% 53.3%
99.9% 97.1% 89.3% 80.2% 71.8%

99.9% 98.0% 93.1% 86.2%
99.9% 98.6% 95.4%

99.9% 98.9%
99.9%

maximum relative
error on top shares

0.91% 0.32% 0.14% 0.08% 0.05%
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We assume that we want our tabulation to span from the 10% to the 99.9% percentiles,

so we set p1 = 0.1 and pK = 0.999. We pick the median profile of ϕ′′′ estimated

over all available years for France and the United States. For a given number K of

thresholds, we solve the optimization problem:21

min
p2,...,pK−1

{
max

t∈[x1,xK ]

∫ xK

x1

ε(x, t)ϕ′′′(t) dt

}
st. p1 < p2 < · · · < pK−1 < pK

where as usual xk = − log(1− pk) for 1 ≤ k ≤ K.

Table 1.4 shows that a important concentration of brackets near the top is desirable,

but that we also need quite a few to cover the bottom. Half of the brackets should

cover the top 20%, most of which should be within just the top 10%. The rest should

be used to cover the bottom 80% of the distribution. We can also see that a relatively

small number of well-placed brackets can achieve remarkable precision: only six are

necessary to achieve a maximal relative error of less than 0.1%.

1.4.2.3 Comparison with Partial Samples

We have seen that generalized Pareto interpolation can be quite precise, but how

does it compare to the use of a subsample of individual data? The question may

be of practical interest when researchers have access to both exhaustive data in

tabulated form, or a partial sample of individual data. Such a sample could either

be a survey, or a subsample of administrative data.

We may address that question using an example and Monte-Carlo simulations. Take

the 2010 distribution of pre-tax national income in the United States. We can

estimate that distribution and use it to simulate a sample of size N = 108 (the same

order of magnitude as the population of the United States).

Then, we create subsamples of size n ≤ N by drawing without replacement from the

large population previously generated.22 In the case of surveys, we ignore nonresponse

and no misreporting, a simplification which favors the survey in the comparison. For

each of those subsamples, we estimate the quantiles and top shares at different points

of the distribution, and compare it to the same values in the original sample of size

N . Table 1.5 shows the results for different values of n. We see that even for large

samples (n = 105, n = 106, n = 107), the case for using tabulations of exhaustive

data rather than subsamples to estimates quantities such as the top 1% or 0.1%

share remains strong. Indeed, even with n = 106 observations, the typical error on

21We solve the problem using the derivative-free Nelder-Mead algorithm.
22This survey design is called simple random sampling.
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Table 1.5: Mean relative error using subsamples of the full population

mean percentage gap between estimated and observed values for a
survey with simple random sampling and sample size n

n = 103 n = 104 n = 105 n = 106 n = 107 n = 108

Top 70% share 0.42% 0.20% 0.10% 0.04% 0.01% 0.00%
Top 50% share 1.26% 0.63% 0.32% 0.13% 0.04% 0.00%
Top 25% share 4.00% 2.04% 1.05% 0.44% 0.15% 0.00%
Top 10% share 9.29% 4.80% 2.50% 1.05% 0.35% 0.00%
Top 5% share 14.32% 7.48% 3.94% 1.65% 0.55% 0.00%
Top 1% share 29.13% 16.01% 8.57% 3.61% 1.21% 0.00%

Top 0.1% share 52.94% 35.23% 19.91% 8.57% 2.89% 0.00%

P30 threshold 4.67% 1.44% 0.45% 0.15% 0.04% 0.00%
P50 threshold 3.29% 1.03% 0.33% 0.10% 0.03% 0.00%
P75 threshold 2.92% 0.91% 0.31% 0.10% 0.03% 0.00%
P90 threshold 3.91% 1.21% 0.39% 0.12% 0.04% 0.00%
P95 threshold 5.86% 1.76% 0.59% 0.18% 0.06% 0.00%
P99 threshold 14.39% 4.79% 1.42% 0.46% 0.14% 0.00%

P99.9 threshold 44.31% 16.29% 5.47% 1.70% 0.49% 0.00%

Original sample of size N = 108 simulated using the distribution of 2010 pre-tax national income in the
United States. Source: author’s computations from Piketty, Saez, and Zucman (2016).

the top 1% share is larger than what we get in table 1.4, even with few thresholds.

In practice, the thresholds may not be positioned in an optimal way as in table 1.4,

so may also want to compare the results with table 1.1. The differences in the orders

of magnitude are large enough so that the implications of that comparison hold.

Concluding comments

In this paper, we introduce the concept of generalized Pareto curve to characterize,

visualize and estimate distributions of income or wealth. We show strong connections

between those curves and the theory of asymptotic power laws, which makes them a

natural tool for analyzing them.

Based on quasi-exhaustive individual tax data, we reveal some stylized facts about

the distribution of income that lets us move beyond the standard Pareto assumption.

We find that although generalized Pareto curves can vary a lot over time and between

countries, they tend to stay U-shaped.

Then we develop a method to interpolate tabulated data on income or wealth — as is

typically available from tax authorities and statistical institutes — that can correctly

reproduce the subtleties of generalized Pareto curves. In particular, the method
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guarantees the smoothness of the estimated distribution, and work well over most of

the distribution, not just the very top. We show that method to be several times

more precise than the alternatives most commonly used in the literature. In fact,

it can often be more precise than using non-exhaustive individual data. Moreover,

we can derive formulas for the error term that let us approximately bound the error

of our estimates, and determine the number of optimally placed brackets that is

necessary to achieve a given precision.

Finally, we show how our finding can be connected to the existing literature on

the income and wealth distribution that emphasizes the role of random growth in

explaining power law behavior. The typical shape of Pareto curves that we observe

may be explained by a simple and natural deviation from standard random growth

models, which is also backed by theoretical models and empirical studies on panel

data. Namely, the very top experience higher growth and/or more risk, meaning the

processes that generate income and wealth are not fully scale invariant.

We believe that more empirical work — especially a careful use of administrative data

sources — is necessary to study those dynamics in a fully satisfying way. We hope

that the interpolation method presented in this paper will allow future researchers

make progress in that direction. To that end, we made the methods presented in this

paper available as a R package named gpinter, and also in the form of an online

interface that can be used without any installation or knowledge of any programming

language. Both are available at http://wid.world/gpinter.

http://wid.world/gpinter
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Chapter 2

The Weight of the Rich:

Improving Surveys with Tax Data

For a long time, most of what we knew about the distribution of income, wealth

and their covariates came from surveys, in which randomly chosen households are

asked to fill a questionnaire. Household surveys have been an invaluable tool for

tracking the evolution of society. But in recent years, the research community has

grown increasingly concerned with their limitations. In particular, surveys have

struggled to keep track of the evolution of the top tail of the distribution, due mainly

to heterogeneous response rates, misreporting and small sample bias, which distort

all sorts of distributional estimates. These biases end up affecting the way public

policy is designed and evaluated.

For this reason, researchers have increasingly been turning to a different source to

study inequality: tax data. The idea is not new; we can trace it back to the seminal

work of Kuznets (1953), or even Pareto (1896). More recently, Piketty and Saez (2003)

and Piketty (2003) applied their method to more recent data for France and the

United States. This work was extended to more countries by many researchers whose

contributions were collected in two volumes by Atkinson and Piketty (2007, 2010)

and served as the basis for the World Inequality Database (http://wid.world).

But tax data have their own limitations. They usually only cover the top of the

distribution and include at best a limited set of covariates. They do not capture well

informal and tax-exempt income. They are often not available as microdata but rather

as tabulations summarizing the distribution, which limits their use. The statistical

unit that they use (individuals or households) depends on the local legislation and

may not be comparable from one country to the next. This is why many indicators,
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such as poverty rates or gender gaps, have to be calculated from surveys. The use of

different — and sometimes contradictory — sources to compute statistics can make

it hard to build consistent and accurate narratives on distributional matters. This

explains the ongoing effort to combine the different data sources at our disposal in a

way that exploits their strengths and corrects their weaknesses.

The Distributional National Accounts (DINA) project is a prominent example of this

effort. Its guidelines (Alvaredo et al., 2017) emphasize the need to look at the entire

distribution, harmonize concepts, and where possible decompose the distribution

according to socio-demographic characteristics. Piketty, Saez, and Zucman (2018)

for the United States, and Garbinti, Goupille-Lebret, and Piketty (2018) for France

have used both survey and tax data to construct distributional statistics that account

for all of the income recorded in national accounts. The resulting dataset not only

allowed them to reassess the evolution of income concentration statistics, but also

to study subjects such as: gender gaps, growth incidence curves or the distributive

impact of fiscal policy. But these examples depend in large part on the existence

of reliable administrative microdata accessible to researchers, to which information

from surveys can be added to account for the limited sources of income not covered

in the tax data.

In many countries, both developed and less developed, such direct access is quite

rare. Instead, tabulations of fiscal income, containing information on the number

and declared income of individuals by income bracket, are more commonly available.

The population coverage in the tabulations is often substantially less than the total

adult population, and the difference varies with the country studied. Furthermore,

in contexts of high informality, which is the case for many developing countries, even

if tax declarations had full population coverage, they could not be assumed to be

reliable across the whole distribution. In such cases it is better to proceed the other

way round: rather than incorporating survey information into the tax data, we need

to incorporate tax information into the survey data.

There has been a number of suggested approaches to deal with the problem of

merging tax and survey data, yet the literature has largely failed to converge towards

a standard. Crucially, most of the existing approaches directly adjust the income or

wealth distributions, overlooking the goal of preserving the survey’s representativeness

in terms of covariates, while relying on arbitrary assumptions in the process. In this

paper, we develop a methodology that has significant advantages over previous ones,

and which should cover most practical cases within a single, united framework. Our

method avoids relying, to the extent possible, on ad hoc assumptions and parameters.
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We present a data-driven way to determine the point in the survey data where

the under-coverage of income starts. This is our “merging point” — the point in

the distribution were survey data and tax data are merged. We perform necessary

adjustments in a way that minimize distortions from the original survey, and preserve

desirable properties, such as the continuity of the density function. Rather than

directly making assumptions on complex summary statistics such as quantiles or

bracket averages, our method makes assumptions that are easily interpretable at the

level of observations. The algorithm acknowledges the presence of covariates, so that

we ensure the representativeness of the survey in terms of income while maintaining

— and possibly improving — its representativeness in terms of age, gender, or any

other dimension along the distribution. As a result, we can preserve the richness of

information in surveys, both in terms of covariates and household structure.

Our method proceeds in three steps, the first aimed at selecting the merging point

between the datasets, and the other two aimed at correcting for the two main types of

error in surveys: non-sampling error and sampling error. Non-sampling error refers to

issues that cannot easily be solved with a larger sample size, and typically arise from

unobserved heterogeneous response rates. In the second step, we correct for these

issues using a reweighting procedure rooted in survey calibration theory (Deville

and Särndal, 1992). In doing so, we address a longstanding inconsistency between

the empirical literature on top incomes in surveys, and the established practice of

most survey producers. Indeed, since Deming and Stephan (1940) introduced their

raking algorithm, statistical institutes have regularly reweighted their surveys to

match known demographic totals from census data. Yet the literature on income

has mostly relied on adjusting the value of observations, rather than their weight,

to enforce consistency between tax and survey data. We argue that the theoretical

foundations of such approaches are less explicit and harder to justify.

This initial correction step addresses non-sampling error, but it is limited in its ability

to correct for sampling error, meaning a lack of precision due to limited sample size.1

A clear example is the maximum income, which is almost always lower in surveys

than in tax data, something no amount of reweighting can do anything about. Top

income shares of small income groups are also strongly downward biased in small

samples (Taleb and Douady, 2015), so inequality will be underestimated even if all

the non-sampling error has been corrected. To overcome this problem, we supplement

the survey calibration with a further step, in which we replace observations at the top

1Calibration methods can, to some extent, correct for sampling error. But their ability to do
so only holds asymptotically (Deville and Särndal, 1992), so it does not apply to narrow income
groups at the top of the distribution.
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by a distribution generated from the tax data, and match the survey covariates to it.

The algorithm for doing so preserves the distribution of covariates in the original

survey, their correlation with income, and the household structure, regardless of the

statistical unit in the tax data. The result is a dataset where sampling variability of

income at the top has been mostly eliminated, and whose covariates have the same

statistical properties as the reweighted survey. Because we preserve the nature of the

original microdata, we can use the output to experiment with different statistical

units, equivalence scales, calculate complex indicators, and perform decompositions

along any dimension included in the survey.

In order to illustrate how the method operates in practice, we run two different

types of applications. First, since the true distribution of income and wealth is

always unknown, we simulate artificial populations that are drawn from parametric

distributions. These include behavioral assumptions that define two main sources of

bias, namely heterogeneous response rates and misreporting. Using these biases, we

simulate a large number of consecutive surveys and then apply our correction method

using synthetic tax tabulations. We use these experiments to assess the accuracy

and precision of the resulting estimates and to compare them to those derived from

both the raw sample and the most common alternative methods using external data

— namely methods that directly replace survey incomes with tax incomes for the

same quantiles in the distribution. We demonstrate that our method is superior to

available options, not only because it relies on reasonable assumptions that enable

the use of resulting micro-datasets — unlike the “replacing” alternative — but also

because it produces estimates that are consistently closer to true values with lower

variance.

In our second application, we apply our method to real data from five countries:

France, U.K., Norway, Brazil and Chile. Our case studies are chosen to showcase

the wide applicability of the method to both developed countries and less-developed

countries. The method makes upward revisions to inequality estimates in all cases,

with varying degrees of magnitude, depending on the quality of the underlying data

and the level of inequality in each country. It can also produce differing inequality

trends. Moreover, our empirical results support the findings of our simulations

concerning the difference between our method and the replacing alternative.

For practical use, we have developed a Stata command that applies our method.

The program works with several input types, income concepts and statistical units,

ensuring flexibility for users. Our method may therefore easily be used by researchers
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interested in analyzing the different dimensions of inequality.2 The main goal of this

paper is to describe the theoretical and practical details behind this readily usable

method, as well as its advantages with respect to existing approaches.

The remainder of the paper is structured as follows. In section 2.1 we relate our

paper to the existing literature. In section 2.2 we lay out the theoretical framework of

our method. This is followed by applications to simulated distributions and practical

applications to specific countries in section 3, before concluding.

2.1 Literature on Survey Correction Methods

Numerous studies have sought to adjust survey data primarily to improve the

latter’s representativeness and/or produce a more accurate distribution of income. In

some instances this has been achieved with the aid of external administrative data.

We identify three distinguishable methodological strands present in this literature.

The first strand opts to reweight survey observations. The second strand replaces

the income value of observations with a value typically drawn from a parametric

distribution or an external data source. Finally, a third strand identifies the need to

employ a hybrid procedure by combining reweighting and replacing.

2.1.1 Reweighting Observations

The studies that focus on reweighting usually formalize the bias as nonresponse.

Many papers in this literature estimate a parametric model of nonresponse to adjust

survey weights, but do not use direct data on the distribution of income. Korinek,

Mistiaen, and Ravallion (2006) make this type of adjustment using nonresponse

rates across geographic areas and the characteristics of respondents within regions.

This type of approach can be sensitive to the degree of geographic aggregation

used calculating response rates. This is an issue explored in more detail by Hlasny

and Verme (2017; 2018) for the US and European case respectively, using similar

probabilistic models. Depending on the nature of the survey data, greater or less

geographic dis-aggregation on nonresponse rates can be more appropriate to the

adjustment at hand.

Crucially, these models do not use direct information on the income distribution —

often due to lack of availability. Instead, they have to infer relationships between

2The package to download is bfmcorr for the correction method, which includes two sub-
commands: postbfm for the post-estimation output and bfmtoy for parametric simulations. The
command and its sub-commands come with a full set of user instructions.
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individual nonresponse and individual characteristics based on aggregate relationships

between average nonresponse and an average of certain characteristics. This make

these methods susceptible to the pitfalls of ecological inference. In particular, to

the extent that nonresponse bias is a strongly nonlinear function of income (which

we observe in practice), the relationship between income and nonresponse will look

very different at the aggregate and the individual level. Our proposal instead makes

use of direct administrative data to determine the relationship between income and

nonresponse.

There are a few studies in this literature that combine surveys with external sources

to measure inequality. An example of this is the case study of Argentina in Alvaredo

(2011), in which the corrected Gini coefficient is estimated by assuming that the

top of the survey distribution (top 1% or top 0.1%) completely misses the richest

individuals that are represented in tax data. This accounts for the bias of nonresponse

and corrects the distribution via an implicit reweighting procedure. The specific form

of the nonresponse bias that is assumed tacitly is, nonetheless, a rather restrictive

one. Indeed, the correction implies a deterministic nonresponse rate equal to 1 above

a previously selected quantile and 0 under it. Furthermore, in both of the empirical

applications (the US and Argentina) the threshold beyond which the tax data is

used is chosen arbitrarily.3 Our method on the other hand tries at best to avoid

arbitrary choices on the portion of the survey distribution to be corrected or on the

form of the bias implied by the correction.

To our knowledge the paper that comes closest to proposing an approach that

resembles the one we propose here, in terms of criteria and methodology, is Medeiros,

Castro Galvão, and Azevedo Nazareno (2018) applied to Brazilian data. That is,

it is the only study that combines tabulated tax data with survey micro-data by

explicitly reweighting survey observations. More specifically, the authors apply a

Pareto distribution to incomes from the tax tabulation to correct the top of the

income distribution calculated from the census. Their method involves re-weighting

the census population by income intervals above a specified merging point, which

is determined from the comparison of the median total income reported in each

quantile of the tax data and in the Census (0.5% of the adult population sorted by

income).

However, important differences remain. Contrary to our method, the choice of the

merging point is not endogenous, but chosen by the authors as the most relevant point

3In any case, the goal of the paper is not to tackle the nonresponse or misreporting biases
directly, but to provide a simple estimation of a corrected Gini coefficient.
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beyond which the tax data presents a more concentrated distribution. Thus, multiple

points can be used, and indeed the authors test two. Our method endogenously

determines a single merging point based on a more comprehensive treatment of the

form of the non-response bias. Importantly, our approach preserves the continuity of

the density of income — something that only a specific choice of the merging point

can ensure. To guide their choice of the merging point, Medeiros, Castro Galvão,

and Azevedo Nazareno (2018) look at the rank at which income in the tax data

exceed that of the survey. Yet from the perspective of correcting for non-response,

such a point does not have any well-defined interpretation.

Moreover, while they increase the weight of observations above the merging point,

they do not reduce the weight of individuals below this point, such that the corrected

population ends up being larger than the original official population. The authors

do not provide a way to ensure the representativeness of characteristics other than

income after the adjustment either — their purpose is to remedy the underestimation

of top incomes in surveys, without a unified calibration framework. Moreover, their

method does not remedy the lack of precision at the top of the distribution arising

from sampling limitations, resulting in downward biased income shares of small

income groups, especially in small samples. In contrast, our method addresses all of

these issues.

2.1.2 Replacing Incomes

The general feature of the “replacing” approach is that it involves the direct replacing

of survey incomes with incomes from tax data. Although there is no unified theory

or explicit justification behind the applications of this adjustment procedure, most of

these methods share some defining characteristics. In practice, they generally adjust

distributions by replacing cell-means in the survey distribution of income with those

from the tax distribution for the same sized cells (i.e. fractiles) of equivalent rank in

the population. The size of the cells varies by study (Burkhauser, Hérault, et al.,

2016; Piketty, Yang, and Zucman, 2017; Chancel and Piketty, 2017; Czajka, 2017).

Furthermore, the overall size of the population group whose income is to be adjusted

is sometimes chosen arbitrarily, such as the top 20% in the distribution (Piketty,

Yang, and Zucman, 2017), the top 10% (Burkhauser, Hérault, et al., 2016; Chancel

and Piketty, 2017), the top 1% (Burkhauser, Hahn, and Wilkins, 2016; Alvaredo,

2011), or the top 0.5% of survey observations (DWP, 2015).

This decision can be made less arbitrary using the comparison of threshold or

average incomes by fractile in the two distributions. The size of the group is then
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chosen as the point in the distribution where the two quantile functions cross (e.g.

Czajka (2017)). As we have noted earlier, this point is not really meaningful from

a statistical viewpoint. In fact, under the most natural assumption (increasing

nonresponse profile) it should not even exist, because the quantile functions do not

intersect.

Other non-arbitrary choices take the minimum income level that requires mandatory

tax filing (Diaz-Bazan, 2015). While these try to keep the use of survey data to

measure the top of the income distribution to a strict minimum, they assume that

the entire tax distribution is reliable. We argue however that not all the income in

tax data should be considered reliable given the difference between declarable income

thresholds and taxable income thresholds. The quality of tax data generally increases

with income in a manner that is often not well defined, and given this uncertainty it

makes sense to limit their use to the portion that is absolutely necessary.

In certain cases, the survey distribution stops being reliable before the tax data can

be trusted. This happens in particular in countries where only a small part of the

population file a tax return. The fact that quantiles from both sources do not cross

is often viewed as evidence of this problem. In such cases, from the point at which

we stop trusting the survey to the point at which we start trusting the tax data, one

option is to rescale upwards the income values from the survey distribution. This can

be done using various profiles of rescaling coefficients (usually linear) (Chancel and

Piketty, 2017; Piketty, Yang, and Zucman, 2017; Novokmet, Piketty, and Zucman,

2018). This procedure ensures at least that the quantile function is continuous. These

rescaling methods can be seen as an extension of the general replacing methods.

Replacing survey-respondents’ declared income has been viewed as adjusting for the

misreporting bias in surveys (Burkhauser, Hérault, et al., 2018; Jenkins, 2017). In

Appendix B.1 we formalise the existence of this bias both when it operates alone and

when it operates in the presence of non-response. We compare existing replacing

methods to our own method, and we explain why they only correct for misreporting

under very strong and unrealistic assumptions — namely that the income rank in

the survey distribution and in the benchmark distribution are the same, and that

underreporting is a deterministic function of this rank.

2.1.3 Combined Reweighting and Replacing

Some voices stress the need to combine the aforementioned correction approaches.

Bourguignon (2018), while reviewing the typical adjustment methods employed,

correctly highlights that any method must dwell on three important parameters:



2.2. THEORY AND METHODOLOGY 67

the amount of income to be assigned to the top, the size of this top group, and

the share of the population added to the top in the survey. The definition of these

three parameters implies a correction procedure combining reweighting and replacing

methods. His analysis goes on to study the ways in which these choices impact

the adjustments made to the original distribution. However, this analysis does not

shed light on how to make these choices. Moreover, in reviewing multiple correction

methods and applying them to Mexican survey data (including the combined case,

where all three parameters mentioned take non-zero values), he only considers the

situation “where nothing is known about the distribution of the missing income,

unlike when tax records or tabulations are available” (Bourguignon, 2018). This is

in contrast to our approach for correcting survey microdata, which combines the

two previous methods, but which explicitly merges tax data with surveys to produce

more realistic distributions of income.

In summary, contrary to existing methods, our method uses external tax data,

endogenously finds a non-arbitrary merging point, and preserves the multivariate

distribution of covariates and population totals. Moreover, it is grounded on a more

solid theoretical framework, which we now turn to explain in the following section.

2.2 Theory and Methodology

To describe our method and the theory behind it, we part from the simple univariate

setting, where we adjust the weight of observations in the survey at different income

levels. The second section explains how to use the theory of survey calibration to

handle more complex multivariate settings. Finally, the third section explains how

we address the problem of sampling error, which reweighting has only a limited

ability to address.

2.2.1 Univariate Setting

In this section we first explain the intuition behind the correction before presenting

how we choose the merging point between the two distributions.

2.2.1.1 Intuition

Let X and Y be two real random variables. We will use Y to represent the true

income distribution, part of which we assume is recorded in the tax data.4 And

4In reality, part of the true income may also be missing from the tax data due to non-taxable
income not reported on the declaration and tax evasion. The extent of these omissions vary by
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we will use X to represent the income distribution recorded in the survey. Each

random variable has a probability density function (PDF) fY and fX , a cumulative

probability function (CDF) FY and FX , and a quantile function QY and QX .

Let θ(y) = fX(y)/fY (y) be the ratio of the survey density to the true density at the

income level y. This represents the number of people within an infinitesimal bracket

[y, y + dy] according to the the survey, relative to the actual number of people in the

bracket. If θ(y) < 1, then people with income y are underrepresented in the survey.

Conversely, if θ > 1, then they are overrepresented.

The value of θ(y) may be interpreted as a relative probability. Indeed, let D be a

binary random variable that denotes participation to the survey: if an observation is

included in the sample, then D = 1, otherwise D = 0. Then Bayes’ formula implies:

θ(y) =
fX(y)

fY (y)
=

1

fY (y)
× fY (y)

P{D = 1|Y = y}
P{D = 1}

=
P{D = 1|Y = y}
P{D = 1}

(2.1)

If everyone has the same probability of response, then P{D = 1|Y = y} = P{D = 1},
and θ(y) = 1. Hence fX(y) = fY (y) and the survey is unbiased. What matters

for the bias is the probability of response at a given income level relative to the

average response rate, which is why we have the constraint E[θ(Y )] = 1. Intuitively,

if some people are underrepresented in the survey, then mechanically others have to

be overrepresented, since the sum of weights must ultimately sum to the population

size.

This basic constraint has important consequences for how we think about the

adjustment of distributions. Any modification of one part of the distribution is

bound to have repercussions on the rest. In particular, it makes little sense to assume

that the survey is not representative of the rich, and at the same time that it is

representative of the non-rich.

Figure 2.1 represents the situation graphically, in the more common case where θ(y)

is lower for top incomes. We show a truncated version of fY since tax data often

only cover a limited part of the whole distribution. The fact that the dashed red line

fY (y) is above the solid blue line fX(y) mean that top incomes are underrepresented.

Therefore, lower incomes must be overrepresented, which is what we see below the

point y∗. This pivotal value is unique assuming that θ is monotone. The appropriate

correction procedure here would be to increase the value of the density above it,

and decrease its value below it. The intuition behind reweighting is that we have

to multiply the survey density fX by a factor 1/θ(y) to make it equal to the true

country, and their treatment are beyond the scope of this paper.
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Figure 2.1: A “True” and Biased Income Distribution

fY (y), fX(y)

income y
0

fX(y)

fY (y)•

y∗

The solid blue line represents the survey density fX . The dashed red line
represents the tax data density fY , which is only observed at the top. For high
incomes, the survey density is lower than the tax data density, which means that
high incomes are underrepresented. If some individuals are underrepresented,
then other have to be overrepresented: they correspond to people below the
point y∗.

density fY . In practice, this means multiplying the weight of any observation Yi by

1/θ(Yi).

When we observe both fY and fX , we can directly estimate θ nonparametrically.

But because we do not observe the true density over the entire support, we have to

make an assumption on the shape of θ for values not covered by the tax data. We

will assume a constant value. Behind this assumption, there are both theoretical

motivations that we develop in section 2.2.2, and empirical evidence that we present

in section 2.3. Intuitively, it means that there is no problem of representativeness

within the bottom of the distribution, so that the overrepresentation of the non-rich

is only the counterpart of the underrepresentation of the rich. We can therefore write

the complete profile of θ as:

θ(y) =

θ̄ if y < ȳ

fX(y)/fY (y) if y ≥ ȳ
(2.2)

We call ȳ the merging point. It is the value at which we merge observations from the

tax data into the survey. A naive choice would be to use the tax data as soon as they

become available, but this will often lead to poor results. This is because the point

from which the tax data become reliable is not necessarily sharp and well-defined, so

in practice it will be better to start using the tax data only when it becomes clearly
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Figure 2.2: The Intuition Behind Reweighting

fY (y), fX(y)

income y
0

fX(y)

fY (y)•

y∗

•

ȳ

The solid blue line represents the survey density fX . The dashed red line
represents the tax data density fY . Above the merging point ȳ, the reweighted
survey data have the same distribution as the tax data (dashed red line). Below
the merging point, the density has been uniformly lowered so that it still
integrates to one, creating the dotted blue line.

necessary. The proper choice of that point is an important aspect of the method

on which we return to in section 2.2.1.2. For now we will take it as given, and only

assume that it is below the pivotal point y∗ of figure 2.1. Figure 2.2 shows how the

reweighting using (2.2) operates.

Let f̃X be the reweighted survey, i.e. f̃X(y) = fX(y)/θ(y). By construction, we have

f̃X(y) = fY (y) for y ≥ ȳ. As indicated by upward arrows on the right of figure 2.2,

the density has been increased for y > y∗. Since densities must integrate to one,

values for y < y∗ have to be lowered. The uniform reweighting below ȳ creates the

dotted blue line.

2.2.1.2 Choice of the Merging Point

For many countries, tax data only covers the top of the distribution. We use the

term trustable span to name the interval over which the tax data may be considered

reliable. It takes the form [ytrust,+∞[. This interval is determined by country

specific tax legislation. It relies on the portion of the distribution covered in the

data (declarations) or just on the portion of the tax population that pays income

tax (taxpayers).

We do not usually wish to use the tax data over the entire trustable span. First,

because the beginning of the trustable span is not always sharp — the reliability
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of the tax data increases with income in a way that is not well-defined, therefore

it is more prudent to restrict their use to the minimum that is necessary. Second,

once we are past the point where there is clear evidence of a bias, we prefer to avoid

distorting the survey in unnecessary ways.

We suggest a simple, data-driven way for choosing the merging point point with

desirable properties. In particular, we seek to approximately preserve the continuity

of the underlying density function after reweighting. We start from the typical

case where ȳ is inside the trustable span [ytrust,+∞[. In Appendix B.2 we consider

cases where the trustable span may be too small to observe an overlap between the

densities.

Assume that the bias function θ(y) follows the form in (2.2). We introduce a second

function, the cumulative bias, defined as:

Θ(y) =
FX(y)

FY (y)
(2.3)

In figure 2.3, we examine the shape of θ(y) and Θ(y) in relation to the density functions

presented in figure 2.2. We have the relationship Θ(y)FY (y) =
∫ y
−∞ θ(t)fY (t) dt.

Given (2.2), for y < ȳ, Θ(y) = θ̄. As figure 2.3 shows, we should expect the merging

point ȳ to be the highest value y such that Θ(y) = θ(y).

We can contrast this choice of merging point with the one implicitly chosen in at

least some replacing approaches: the point at which the quantile functions of the

survey and the tax data cross.5 This is equivalent to setting equal densities (i.e.

θ(y) = 1) until this merging point, which will in general be lower than ours. At that

point, there is a discontinuity in θ(y) which jumps above one, and then progressively

decreases toward zero. As a result, the people just above the merging point are

implicitly assumed to be overrepresented compared to those below, even though they

are richer. This discontinuity and lack of monotonicity of θ is hard to justify, and

our choice of merging point avoids it.

We can estimate both θ(y) and Θ(y) over the trustable span of the tax data. To

determine the merging point in practice, we look for the moment when the empirical

curves for Θ(y) and θ(y) cross, and discard the tax data below this point. This

choice is the only one that can ensure that the profile of θ(y), and by extension the

income density function, remains continuous.

The estimation of Θ(y) poses no difficulty as it suffices to replace the CDFs by their

5Appendix B.1.2 presents a theoretical comparison of both procedures.
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Figure 2.3: Choice of Merging Point when ȳ ≥ ytrust
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empirical counterpart in (2.3) to get the estimate Θ̂k. For θ(y), however, we have to

estimate densities. We define m bins using fractiles of the distribution (from 0% to

99%, then 99.1% to 99.9%, then 99.91% to 99.99% and 99.991% to 99.999%). We

approximate the densities using histogram functions over these bins. This gives a first

estimate for each bin that we call (θ̃k)1≤k≤m. The resulting estimate is fairly noisy, so

we get a second, more stable one named (θ̂k)1≤k≤m using an antitonic (monotonically

decreasing) regression (Brunk, 1955; Ayer et al., 1955; Eeden, 1958). That is, we

solve:

min
θ̂1,...,θ̂m

m∑
k=1

(θ̂k − θ̃k)2 s.t. ∀k ∈ {2, . . . ,m} θ̂k−1 ≥ θ̂k

We solve the problem above using the Pool Adjacent Violators Algorithm (Ayer

et al., 1955). The main feature of this approach is that we force (θ̂k)1≤k≤m to be

decreasing. This turns out to be enough to smooth the estimate so that we can work

with it, without the need introduce additional regularity requirements. We use as

the merging point bracket the lowest value of k such that θ̂k < Θ̂k.
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2.2.2 Multivariate Setting

The previous subsection presented the main idea of the method. But while this

intuition works well in the univariate case, the introduction of other dimensions

from the survey (gender, age, income composition, etc.) complicates the problem

significantly. Indeed, it is not enough for the survey to be solely representative in terms

of total income, we also need to preserve (or possibly enforce) representativeness

in terms of these other variables. This subsection thus explains how we adapt

our method to the survey-calibration framework, mainly to address two types of

representational issues.6 First, if the survey is already assumed to be representative

at the aggregate level in terms of age or gender (i.e., because it has already been

adjusted to fit census data), then we should aim to preserve such features. Second,

when the adjustment is made using income alone (i.e. the univariate case), it corrects

weights based on the observed probability of response conditional on income, ignoring

interactions between total income and other characteristics, which are sometimes

reported in tax data.7 We start by presenting the theory in its general setting below,

before explaining how to apply it to the problems at hand.

2.2.2.1 Calibration

Problem Survey calibration considers the following problem. We have a survey

sample of size n. Each observation is a k-dimensional vector xi = (x1i, . . . , xki)
′.

The sample can be written (x1, . . . ,xn), and the corresponding survey weights are

(d1, . . . , dn). We know from a higher-quality external source the true population totals

of the variables x1i, . . . , xki as the vector t. We seek a new set of weights, (w1, . . . , wn),

such that the totals in the survey match their true value, i.e.
∑n

i=1wixi = t.

This problem will in general have an infinity of solutions, therefore survey calibration

introduces a regularization criterion to select the preferred solution out of all the

different possibilities. The idea is to minimize distortions from the original survey

data, so we consider:

min
w1,...,wn

n∑
i=1

(wi − di)2

di
s.t.

n∑
i=1

wixi = t (2.4)

6Survey calibration was introduced with the raking procedure of Deming and Stephan (1940).
Deville and Särndal (1992) provided major improvements. While statistical institutes routinely use
calibration methods with respect to age and gender variables, they are not yet traditionally used
for income variables.

7For instance, if rich elderly persons are more likely to respond to surveys (say, because they
have more free time) than younger rich people, then the univariate adjustment will produce an
accurate income distribution without solving the over-representation of older people. A similar
rationale can be applied to the issue of income composition.
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That is, we minimize the χ2 distance between the original and the calibrated weights,

under the constraint on population totals: this is called linear calibration. While

alternative distances are sometimes used, linear calibration is advantageous in terms

of analytical and computational tractability.

Solution Solving the problem (2.4) leads to:

wi
di

= 1 + βxi (2.5)

where β is a vector of Lagrange multipliers determined from the constraints as:

β = T−1

t− n∑
i=1

dixi

 with T =
n∑
i=1

dixix
′
i

where the matrix T is invertible as long as there are no collinear variables in the

xi (meaning neither redundancy nor incompatibility of the constraints).8 One

undesirable feature of linear calibration is that it may lead to weights below one or

even negative, which prevents their interpretation as an inverse probability and is

incompatible with several statistical procedures. Therefore, in practice, we enforce

the constraints wi ≥ 1 for all i using an standard iterative method described in Singh

and Mohl (1996, method 5). This is known as truncated linear calibration.

Interpretation This procedure can be interpreted in terms of a nonresponse

model.9 In this context, the survey weights are the inverse of the probability of

inclusion in the survey sample. This probability of inclusion is the product of two

components. The first one depends on whether a unit is selected for the survey,

regardless of whether that unit accepts to answer or not. We note Di = 1 if unit i

is selected, and Di = 0 otherwise. The value δi = 1/P{Di = 1} is called the design

weight. The design weight in constructed by the survey producer and therefore

known exactly. The second component depends on whether a unit contacted for the

survey accepts to answer or not. We note Ri = 1 if unit i accepts to participate in

the survey, and Ri = 0 otherwise. The value ρi = 1/P{Ri = 1} is called the response

weight. Since both Di and Ri must be equal to 1 for a unit to be observed, the final

weight is the product of these two components δiρi.

Nonresponse is unknown so it has to be estimated using certain assumptions. The

simplest one is that ρi is the same for all units, therefore all weights are up-scaled by

8In practice, we use the Moore–Penrose generalized inverse to circumvent the collinearity problem.
9For a geometric interpretation of linear calibration see Appendix B.3.
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the same factor so that their sum matches the population of interest. More complex

models use information usually available to the survey producer, that is, basic

socio-demographic variables which we will write Ui. The survey producer models

nonresponse as a function of these variables: ρi = φ(Ui). The survey producer

provides weights equal to δiφ(Ui). If nonresponse is also a function of income, which

is not observed by the survey producer, then the estimated nonresponse will fail

to accurately reflect true nonresponse, leading to biased estimates of the income

distribution. Using the tax data Yi, we can estimate a new model that takes income

into account: ψ(Ui,Yi). The final weight becomes:

wi =
1

P{Di = 1}
1

P{Ri = 1}

=
1

P{Di = 1}
ψ(Ui,Yi)

= δiφ(Ui)×
ψ(Ui,Yi)

φ(Ui)

= di ×
ψ(Ui,Yi)

φ(Ui)
(2.6)

Comparing equation (2.5) with (2.6), we see that the calibration problem suggests

both a functional form and an estimation method for ψ(Ui,Yi)/φ(Ui). This functional

form assumes nonresponse profiles that are as uniform (thus non-distortive) as

possible, and only modify the underlying distribution if it is necessary to do so.

The preference for non-distortive functional forms can also help justify the use of a

constant reweighting profile below the merging point in section 2.2.1.1.

Application to Income Data The calibration problem is presented so as to

enforce the aggregate value of variables. In order to use it to enforce the distribution

of a variable, we have to discretize this distribution. In the case of income tax data,

the income distribution may be presented in various tabulated forms, and we use the

generalized Pareto interpolation method of Blanchet, Fournier, and Piketty (2017) to

turn it into a continuous distribution.10 We output the distribution discretized over

a narrow grid made up of all percentiles from 0% to 99%, 99.1% to 99.9%, 99.91% to

99.99% and 99.991% to 99.999%. We discard tax brackets below the merging point,

whose choice is described in section 2.2.1.2. We then match the survey data to their

corresponding tax bracket. In general, it is necessary to regroup certain tax brackets

to make sure that we have at least one (and preferably more) observations in each

bracket. Otherwise the calibration will not be possible. We automatically regroup

10See wid.world/gpinter for an online interface and a R package to apply the method.

wid.world/gpinter
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brackets to have a partition of the income distribution at the top such that each

bracket has at least 5 survey observations.

Our correction procedure also tries to constrains the number of times the weights are

expanded or reduced to avoid disproportionate adjustments to single observations

already in the dataset. Consequently we introduce the condition that brackets with

a θ(y) outside the boundary defined by 1/a ≤ θ(y) ≤ a are automatically grouped

into larger brackets. The default limit we choose is a = 5. Thus, in this case, no

observation would have their weight multiplied by more than 5 times or less than 0.2

times.11

Assume that we eventually get m brackets, with the k-th bracket covering a fraction

pk of the population. We create dummy variables b1, . . . , bm for each income bracket.

If the total population is N and the sample-size is n, then the calibrated weights

should satisfy:

∀k ∈ {1, . . . ,m}
n∑
i=1

wibik = Npk

Since these equations are expressed as totals of variables, they can directly enter

the calibration problem (2.4). In practice, we are enforcing the income distribution

through a histogram approximation of it.

The flexibility of the calibration procedure lets us put additional constraints in the

calibration problem. In particular, if the survey is already assumed to be repre-

sentative in terms of age or gender, then their distribution can be kept constant

during the procedure. Hence we correct for the income distribution while main-

taining the representativeness of the survey along the other dimensions. Additional

constraints are also possible, if external information on other variables is available

(see section 2.2.2.2).

For all the observations below the merging point, the dummy variables b1, . . . , bm are

all equal to zero, so the weight adjustment only depends on a constant and possibly

other calibration variables such as age and gender, but not income. This matches the

uniform adjustment profile (2.2) at the bottom of the distribution that we present in

section 2.2.1.1. The calibration, by construction, avoids distorting the bottom of the

distribution because it is not necessary to enforce the constraints of the calibration

problem.

11Some observations may still fall outside of these constraints if covariates are present, but in
practice only to a limited extent.
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2.2.2.2 Extensions

The calibration framework is generic enough to incorporate information into the

survey in different forms. While the most standard problem is to directly correct

the income distribution using the income concept of interest, more complicated

settings can sometimes occur. The flexibility of the calibration framework makes it

generally possible to deal with these settings without resorting to additional ad hoc

assumptions. We discuss below three common cases.

Using Population Characteristics by Income Tax data sometimes provides

information on the population characteristics by income level, typically, the gender

composition. This can tell us how the interaction between income and other char-

acteristics impacts the bias, so it can be useful to include this information in the

survey.

Assume that we have m income tax brackets that contain a share p1, . . . , pm of the

overall population N . For each of them, we know the share s = (s1, . . . , sm) of

people with a given characteristic, such as belonging to a certain gender or age group.

Let vi be the variable equal to 1 if unit i belongs to that group in the survey, and

0 otherwise. Let bik be the variable equal to 1 if unit i in the survey is in income

bracket k, and 0 otherwise.

To make sure that the survey reproduces the information in the tax data, we add

the following constraints to the calibration problem (2.4):

∀k ∈ {1, . . . ,m}
n∑
i=1

wibikvi = Nskpk

Using Income Composition Another source of information that is commonly

available in tax data is the composition of income within brackets. Using that

information is useful if we assume that the bias may be different for people that

derive their income from, say, capital rather than labor.

Assume that we have m income brackets. For each of them, we know the share

s = (s1, . . . , sm) of capital income. In the survey, total income is recorded as yi

and capital income as ci. Let bik be a variable equal to 1 if unit i in the survey is

in income bracket k. In order to enforce the constraint that the share of capital

income within each bracket is the same as in the tax data, it suffice to enforce the
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constraints:

∀k ∈ {1, . . . ,m}
n∑
i=1

wibik(ci − skyi) = 0

Indeed, the first part of the sum is
∑n

i=1wibikci, which is the total capital income of

the bracket. In the second part we have the total income of the bracket
∑n

i=1 wibikyi,

multiplied by the capital share sk. This constraint can be expressed as a total of

the variable bik(ci − skyi). We can see that units will see their weight decrease or

increase depending on whether their capital share is below or above the average of

the bracket they belong to.

Using several income concepts Until now we have considered the case where

the income recorded in tax data more or less matches the income concept of interest,

which is the income likely to drive the bias. Yet sometimes only part of this income

is recorded in the tax data. For example, in developing countries, only income from

the formal sector may be recorded in the tax data, and there is a sizable informal

sector only present in the survey data, which is widely spread across the distribution

(as in Czajka (2017)).

In such cases, it would be problematic to directly apply the calibration method

described previously. Indeed, since the adjustment factor of the weights would only

depend on formal sector income, two people with the same income, one working

in the formal sector and the other in the informal sector, would see their weight

adjusted very differently. As a result, there would be almost no correction for the

income distribution of the informal sector.

The solution to that problem is to use Deville’s (2000) generalized calibration

approach. The standard calibration approach formulated in (2.4) does not specify

on what variable the weight adjustment factors should depend. In the solution of

the problem, they depend directly on the variables used in the constraint. This is

because the method always favors the least distorting adjustments, so it only uses

the variables most directly related to the constraints.

If we have some prior knowledge of what the bias should depend on, then we can use

generalized calibration to specify these variables ex ante. We still use xi to denote

the k calibration variables for which we know the true population totals t. In the

example, it would include formal sector income in addition to basic socio-demographic

characteristics. We also define zi, a vector of instrumental calibration variables with

the same size as xi. They may include variables in xi (e.g. socio-demographic

variables) but more importantly also some variables imperfectly correlated with the
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xi, in the example the sum of formal and informal sector income. We write the

calibration problem as finding w1, . . . , wn such that:

n∑
i=1

wixi = t and ∀i ∈ {1, . . . , n} wi
di

= 1 + βzi (2.7)

When xi = zi, the problem (2.7) is equivalent to (2.4). The solution of (2.7) given

by Deville (2000) is similar to that of (2.5):

β = T−1

t− n∑
i=1

dixi

 with T =
n∑
i=1

dizix
′
i

While we may view the standard calibration as performing a projection of the

variable of interest yi onto the calibration variables xi using an OLS regression, the

generalized calibration performs that same projection using an IV regression with

zi as a vector of instruments for xi. For this to work properly, we need zi to be

sufficiently correlated with xi, otherwise we face a weak instrument problem similar

to that of traditional IV regressions (Lesage, Haziza, and D’Haultfoeuille, 2018).

This is not a major concern in the example since the sum of formal and informal

income is strongly correlated with formal income by construction.

2.2.3 Expanding the Support

After applying the methods of the previous sections, the survey should be statistically

indistinguishable from the tax data. However, the precision that we get at the top of

the income distribution may still be insufficient for some purposes. Indeed, the number

of observations in the survey is still significantly lower than what we would get in

theory from administrative microdata. The extent to which this represents a problem

varies. If we use survey weights to, say, run regressions and get better estimates of

average partial effects in presence of unmodeled heterogeneity of treatment effects

(Solon, Haider, and Wooldridge, 2015), then the reweighting step is enough. But

problems may arise if we wish to produce indicators of inequality, especially the ones

that focus on the top of the distribution, like top income shares. The combination of

a low number of observations with fat-tailed distributions can create small sample

biases for the quantiles and top shares (Okolewski and Rychlik, 2001; Taleb and

Douady, 2015), and skewed distributions of the sample mean (Fleming, 2007). In

most cases, we would underestimate levels of inequality.

Unlike problems caused by, say, heterogeneous response rates, these biases are part of
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sampling error. They do not reflect fundamental issues with the validity of the survey,

but arise purely out of its limited sample size. The calibration method (section 2.2.2)

does, to some extent, reduce sampling error. Yet it only does so under asymptotic

conditions (Deville and Särndal, 1992) that cannot hold for narrow groups at the

top of the income distribution. For this reason, we prefer to consider that the role of

survey calibration in our methodology is to deal with non-sampling error. We use a

different approach to deal with sampling error.

In particular, we aim to solve the case where tax statistics include a positive number

of income-declarations beyond the survey’s support. That is, we need to account for

individuals declaring higher income than the richest persons in the surveys, which

cannot be solved by re-weighting observations. To do so, we start from the original

tax tabulations, which were created from the entire population of taxpayers and

should therefore be free of sampling error. We use it alongside a generalized Pareto

interpolation to estimate a continuous income distribution (Blanchet, Fournier, and

Piketty, 2017) that reproduces the features of the tax data with high precision. We

then statistically match the information in the calibrated survey data with the tax

data by preserving the rank of each observation.

More precisely: we inflate the number of data points in the survey by making ki

duplicates of each observation i. We attribute to each new observation the weight

qi = wi/ki, where wi is the calibrated weight from the previous step. We choose

ki = [π × wi] where [x] is x rounded to the nearest integer. Therefore all new

observations have an approximately equal weight close to 1/π. The size of the new

dataset, made out of the duplicated observations, can be made arbitrarily high by

adjusting π, yet any linear weighted statistic will be the same over both datasets.

Let M be the number of observations in the new dataset. The weights are assumed

to sum to the population size N . We will associate to each of them a small share

[0, qj1/N ], [qj1/N, (qj1 + qj2)/N ], . . . , [
∑M

k=1 qjk/N, 1] of the true population. If we

attribute to each observation the average income of their population share in the tax

data, then by construction the income distribution of the newly created survey will

be the same as in the tax data. We rank observations in increasing order by income

to preserve the joint distribution between income and the covariates in the survey.

From an intuitive perspective, this process can be described as replacing the income

of observations beyond the merging point with the income of observations with

equivalent weight and rank in the tax distribution. This step ensures that the

we reproduce exactly the income distribution from tax data, preserve the survey’s

covariate distribution (including the household structure), and limit distortions in
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the relationship between income and covariates from survey data.

2.3 Applications

In section 2.3.1, we run controlled experiments with parametric distributions, using

the Monte-Carlo approach, in order to assess the accuracy of estimates produced

after applying both our adjustment method and the common replacing alternative

found in the literature.12 In section 2.3.2, we illustrate how the method operates with

actual household surveys and tax statistics, applying it to data from five countries

(France, U.K., Norway, Brazil and Chile). Our chosen case studies showcase the wide

applicability of the method to both developed countries and less-developed ones —

the latter’s data tending to be more challenging.

2.3.1 Simulations

Our experiments start with the simulation of a ‘true’ distribution with several

million individuals, which follow a parametric distribution. We emulate a typical

tax-tabulation, which summarizes information on the richest fractiles of that same

distribution in different intervals. We then draw a number of pseudo-random samples

from the original distribution, simulating surveys to a given share of the population

each time, which we adjust following both our method and the replacing method

common in the literature.

All samples are biased by definition, including both the misreporting and non-response

biases. The former is defined by a probability of misreporting that is assumed to be

flat for most of the distribution and assumed to increase linearly with rank only at

the top. The distribution of misreported income is also defined parametrically, in

such a way to ensure a prevalence of under-reporting over over-reporting, and we

misreported incomes are drawn randomly from that distribution. Response rates are

also assumed to be flat for most of the distribution and they only fall — linearly

with rank — at the top. In what follows, we comment on what we consider to be

our benchmark experiment. Yet, other experiments were conducted, using different

sets of parameters and assumptions (Appendix B.4). These include alternative

assumptions for each bias, variations in the replacing procedure, the size of the

replaced population and the coverage of the simulated tax data. However, despite

different — and sometimes extreme — assumptions, these experiments consistently

12We choose the replacing alternative as it is the most prevalent one which utilises external data
to correct surveys.



82 CHAPTER 2. THE WEIGHT OF THE RICH

demonstrate that our algorithm is adaptive and capable of implementing adjustments

that push surveys closer to the true distribution when its right tail is biased.13

In our benchmark experiment, we study a population of 9 million individuals that

are randomly drawn from a standard normal distribution. We use the exponential

function of sampled values so that the distribution fits a lognormal distribution. We

select a thousand random subsamples from it, whose size correspond to 1% of the

total population. The expected response rate, conditional of being sampled, is 50%

for most of the population; it then decreases from percentile 90 (P90) onward and

tends to 0 for the richest individual, resulting in a general response rate of 47.5%.

The probability of misreporting is 20% until percentile 95 (P95); it then increases,

approaching 100% at the very top. The probability of misreporting is close to 22%

on average and the distribution of misreported income is also a standard lognormal.

In practice, all individuals in the simulated distribution have the same probability of

being ‘surveyed’ (1 in 100), yet individuals have their own likelihood of answering the

survey and if they do answer, their response can be either accurate or misreported.

Hence, in such context, although the surveyed sample is 1% of the population, only

close to 0.5% of the population effectively reports income. Figure 2.4 graphically

depicts the set-up of our benchmark experiment, for one of the random samples.

We apply both our adjustment method, described in the previous section, and the

alternative replacing procedure. The latter corresponds to the most common form

that is found in the literature, which consists in replacing the top 1% of the survey

distribution with that from tax data.

Figure 2.5 compares the accuracy of distributional estimates that result from the

raw simulated survey to those resulting from the application of both our method

and replacing. It displays errors with respect to true values for a series of estimates.

Kernel densities provide a visual appreciation of the set of measurements that are

found for all the 1000 iterations. The true values are: an average close to 1.6, a Gini

coefficient close to 0.52, a top 1% share close to 9.3% and a top 10% share close to

39%. It appears quite clearly that our method’s estimates tend to be more accurate

than others in all cases, as they are systematically closer to the true estimates and

they are visibly less variant. Although both adjustment methods operate differently,

in purely distributional terms they both reproduce the information of the top 1%

that is found in tax data. That is, after applying the adjustment, the average income

13All our experiments were conducted using the bfmtoy command that comes with the bfmcorr

Stata package. Not only was it coded to be able to reproduce our experiments, but it also provides a
tool for researchers to simulate artificial distributions and easily change all the parameters involved
to test survey-adjustment methods.
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Figure 2.4: Benchmark Experiment Set-Up
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of the top percentile should be equivalent in both cases. However, the same is not

necessarily true for the rest of the distribution, and thus not for average income

either. Indeed, figure 2.5a shows that even if the average income gets closer to

the true value with replacing, it still remains underestimated by a tenth of the

true value on average, instead of 15% in the raw survey. The lower total income is

thus what explains that in figure 2.5b, the top 1% shares seem to be systematically

overestimated with replacing because the numerator of the top share is the same

in both, but the denominator is underestimated in replacing. In the case of the

top 10%, the error goes on the opposite direction (figure 2.5c). This is because an

arbitrary correction of the top 1% is not enough to adjust for a distribution where

the top decile is affected both by higher non-response and misreporting. When we

focus on a synthetic indicator of inequality, such as the Gini coefficient, we find a

similar hierarchy of estimates (figure 2.5d). It is also worth noticing that the raw

sample estimate of the top 1% share is considerably less precise than any of the other

estimates. This is due to a large extent to the small sample bias referred to by Taleb

and Douady (2015), which is amplified by both nonresponse and misreporting.

2.3.2 Real Data

Our method can be replicated for all countries with the requisite data, namely, survey

micro-data covering the entire population and tax data covering at least a fraction of
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Figure 2.5: Benchmark Experiment Results
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(b) Top 1% Share
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(c) Top 10% Share
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it.14 We experiment with five real distributions, three European countries — making

use of the common survey framework applied to them — and two less-developed

Latin American countries, which can be imagined to present more of a challenge

regarding data quality and scope.

2.3.2.1 Definitions and Data

A crucial preliminary step in the analysis is to reconcile both the definition of income

and the unit of observation in national surveys with the ones that are used in tax

declarations. Our algorithm functions under the supposition that these definitions

have been made consistent in the two datasets by researchers. For France, Norway

and the U.K., our analysis broadly covers the years 2004-2014. For Brazil, we

cover 2007-2015 and for Chile we include the years 2009, 2011, 2013 and 2015.

Consistent with the calibration procedure explained in section 2.2.2 we preserve the

representativeness — not only of income — but also of other variables for which the

14In the case where users only avail of tabulated survey data our method will still perform the
correction, using percentile bracket-information from the synthetic micro-files produced by the
gpinter program (see wid.world/gpinter).

wid.world/gpinter
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survey is assumed to be already representative, namely gender and age variables.15

Income Concept Given that we seek to approximate the benchmark distribu-

tion, our method is by definition anchored to the income concept that is used in

the tax tabulations, which in all of our case studies is pre-tax income. However,

countries differ in the income concept included in their respective surveys. Brazil’s

PNAD reports individuals’ pre-tax income, while Chile’s CASEN gives after-tax

income. Thus, for Chile we require to impute taxes paid to arrive at gross income.

Appendix B.5.1 explains how this imputation is done, as well as the construction of

income units in surveys and their approximation with tax data in all countries. For

European countries we work with gross incomes (pre-tax and employee contributions

deducted at source) from the SILC database.16 France is the exception since incomes

reported in the tax files are net of employee contributions deducted at source. For

this reason we use the concept of net income in SILC for France that deducts social

contributions levied at source.

The tax data we use is presented in tabulated form, containing at the very least,

the number of income recipients by given income intervals and the total or average

income declared within each interval. For France, we use the tabulated tax statistics

produced by Garbinti, Goupille-Lebret, and Piketty (2016) from the ministry of

finance’s tax microdata. The data cover all tax units (foyers fiscaux – singles or

married couples), with about 50% of these subject to positive income tax. For the

U.K. we use tax tabulations from the Survey of Personal Incomes (SPI) available

from the Office of National Statistics. The underlying data covers about 80-90%

of tax units (individuals) aged 15+, with about 60% subject to positive income

tax. For Norway, we use tax data from Statistics Norway, which covers 100% of tax

units (individuals) aged 17 and over, of which roughly 90% have positive income tax

payments. For Brazil we use tax data from the personal income tax declarations

(DIPRF tables), which covers about 20% of the adult population, with about 14%

subject to the personal income tax on taxable income. For Chile we exploit income

tax data from the Global Complementario and Impesto Único de Segunda Categoŕıa

(IGC and IUSC tabulations), which covers 70% of the adult population, with about

15-20% subject to the personal income tax on taxable income. For all cases, we take

the proportion of population with positive tax payments as the “trustable span” of

the tax data. The intuition for this choice is that individuals subject to income tax

are less likely to misreport their income compared individuals who declare but are

15We do so using the command holdmargins. See the instructions to bfmcorr in Stata.
16In all countries, gross income is after employer social contributions.
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under the tax-paying threshold.

Observational Unit Concerning the observational units, we anchor the definition

to the official tax unit in each country. In all of our country cases declarations are

made at the individual level, except in France and Brazil, where declarations are

jointly filed by married couples (in the case of the latter, at their own discretion).

However, for France we make use of the individually-declared fiscal income files

produced by Garbinti, Goupille-Lebret, and Piketty (2016) from the administratice

microdata. Therefore for all countries, we define the unit of analysis across datasets

as individual income, including for Brazil, where the joint income of couples is equally

split between the component members (see Appendix B.5.1 and Morgan (2018) for

further details).

2.3.2.2 Empirical Bias and Corrected Population

The Shape of the Bias Our method finds the merging point between surveys

and tax data by comparing the population densities at specified income levels, as

explained in section 2.2.1.2. To do so we first interpolate the fiscal incomes in the

tabulation using the generalized Pareto interpolation (https://wid.world/gpinter)

developed by Blanchet, Fournier, and Piketty (2017), which allows for the expansion

of the tabulated income values into 127 intervals.17 Using the thresholds of these

intervals we can construct our key statistics: the frequency (θ(y)) and cumulative

frequency (Θ(y)) of individuals along the income distribution.

Figure 2.6 presents depictions of the shape of the empirical bias within the tax data’s

“trustable span” for all countries for the latest available year. First of all, the shape

of the bias we measure from the data is very similar to the one we present in the

theoretical formalization, depicted in figures 2.3 and B.3. In particular, we always

observe a convex shape in the top tail, to the right of the merging point. It thus

appears that surveys tend to increasingly underestimate the frequency of incomes

beyond a certain point in the distribution.

For the more developed countries (Norway, France and the United Kingdom), the

17These comprise of 100 percentiles from P0 to P100, where the top percentile (P99–100) is split
into 10 deciles (P99.0, P99.1, . . . , P99.9-100), the top decile of the top percentile (P99.9–100) being
split into ten deciles itself (P99.90, P99.91, . . . , P99.99-100), and so forth until P99.999. This
interpolation technique, contrary to the standard Pareto interpolation, allows us to recover the
income distribution without the need for parametric approximations. It estimates a full set of
Pareto coefficients by using a given number of empirical thresholds provided by tabulated data. As
such the Pareto distribution is given a flexible form, which overcomes the constancy condition of
standard power laws, and produces smoother and more precise estimates of the distribution.

https://wid.world/gpinter
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Figure 2.6: Merging Point in Five Countries, Latest year
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(a) Norway 2014
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(b) France 2014
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(c) United Kingdom 2014
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(d) Brazil 2015
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(e) Chile 2015
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Notes: the figures depict the estimated bias in the survey relative to the tax data. Grey dots
are, for each quantile of the fiscal income distribution, the ratio of income density in the survey
over that of tax data. The green line is the centered average of θ(y) at each quantile and eight
neighboring estimates. The blue line is the result of an antitonic regression applied to θ(y). It
is constrained to be decreasing as it is used to find a single merging point. The blue dotted line,
which only appears in figure 2.6e,is an extrapolation of the trend described by θ(y) based on a ridge
regression (see Appendix B.2). The red line is the ratio of the cumulative densities. For details
refer to section 2.2.1.2.
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shape of the empirical bias θ(y) can be observed for a more comprehensive share of

the population, due to the greater population coverage in tax data. This enables us

to empirically test our theoretical expectations on the specific behavior of the bias

to the left of the merging point. We indeed observe on the left side of figures 2.6a,

2.6b and 2.6c, a general stability in the relative rate of response, with averages

trending above 1. The extent and quality of tax data below the merging point in

less-developed countries is such that we cannot observe the same trends.18

The merging points found by our algorithm vary by country and by year, again

revealing differences in data quality and coverage between them. The Chilean case

(figure 2.6e) provides an example of our program needing to extrapolate the shape

of the bias to find the merging point (see Appendix B.2 for more details of this

procedure). For this case we rely on parameters observed for Brazil (specifically,

values for the elasticity of response to income) above its trustable span as inputs for

the Chilean extrapolation.19 The fit with the existing data seems to work quite well.

The empirical bias that is observed in previous years for all countries is presented in

Appendix B.5.2.1.

Corrected Population Our program then adjusts the individual weights of survey

respondents in line with information from tax data, as described in section 2.1. We

provide some summary statistics of the population we correct in table 2.1, again

using the last available year for each country as illustrations (see Appendix B.5.2.2

for other years). According to the comparison of surveys with tax records, a varying

proportion of the total population is adjusted at the top of the survey distribution

in each country (column [4] of table 2.1), ranging from 5.9% in Chile to 0.05%

in France for their most recent years.20 This is derived from the comparison of

the share of the population above the merging point in the two datasets. Since

we use incomes in tax data as the benchmark for the top of the distribution, the

share of the population above the merging point in tax data is directly related

to the merging point. The share of the population above this point in surveys is

always lower, indicating under-coverage of top incomes. But in both cases, the

18Tax enforcement issues affecting this portion of the distribution could be at play here, as well
as the sharp difference in incomes between the top and the rest in these countries leading to higher
inequality levels than developed countries.

19The value of the baseline elasticity of response to income, γ∗1 , extracted from the Brazilian data
is -0.99.

20Across years there is less variation in this share, with Norway and particularly France being
relative exceptions. In the French case, we believe the significant break in the series is due to the
use of register data in SILC alongside the household survey from 2008. Despite the SILC survey
making use of register data, the goal is not to over-sample the top of the distribution, but rather to
improve the precision of responses.
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Table 2.1: Structure of Corrected Population: Latest Year

Country

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

Chile 17.0% 11.1% 5.9% 99.99% 0.01%
Brazil 8.0% 5.3% 2.7% 99.0% 1.0%
UK 3.0% 2.5% 0.5% 93.6% 6.4%

Norway 5.0% 4.6% 0.4% 96.0% 4.0%
France 0.1% 0.05% 0.05% 99.0% 1.0%

Notes: The table orders countries by the size of the corrected population. Column [2] shows the
proportion of the population that is above this merging point in the tax data. Column [3] shows
the proportion that is above the merging point in survey data. The difference between the two is
the proportion of the survey population that is corrected (Column [4]). As explained in the text, we
adjust survey weights below the merging point by the same proportion. The corrected proportion
above the merging point can be decomposed into the share of the corrected population that is
inside the survey support (up to the survey’s maximum income) and the share that is outside the
support (observations with income above the survey’s maximum). Brazil and Chile refer to 2015,
while all the European countries refer to 2014.

overwhelming majority of the adjustment (over 90%) can be seen to come from inside

the survey support, rather than outside the survey’s original support, suggesting

that non-sampling issues related to heterogeneous response rates matter more than

problems related to under-sampling for the size of the corrected population.

In general, this step of the algorithm is a useful guide to assess the income coverage

of surveys across countries. For instance, it appears on the basis of our analysis that

the Brazilian surveys do a better job at capturing gross income, given the lower share

of the underrepresented population, than the Chilean household surveys. Moreover,

comparing France and the UK, it seems that sampling error is greater in the UK

surveys, given the higher share of the population beyond the survey’s maximum

income that needs to be added. Non-sampling error itself is greatest in Chile, derived

from the share of the corrected population found inside the survey’s support.

2.3.2.3 Results

We now turn to unveil how different our merged distributions are with respect to

the raw survey distributions and other corrected distributions based on the most

common replacing method found in the literature that utilises external data. The

latter corresponds to the procedure reproduced in the simulation in section 2.3.1,

whereby the top 1% of the survey distribution is directly replaced by the top 1% of

the tax distribution. We present results on top 1% income shares, Gini coefficients
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and average incomes.21

Top Income Shares In line with the improved income coverage that are method

produces — by more accurately including upper incomes — estimates of the income

concentrated at the top of the distribution are revised upwards in all countries. The

size of the adjustment, however, varies by country. Figure 2.7 depicts this for the

Top 1% share.22 Brazil has the most extensive correction, with a top 1% share

that increases by about 10 percentage points every year (figure 2.7d). Conversely,

France and Norway experience relatively smaller adjustments, starting from relatively

lower levels of inequality. In addition, Brazil offers the clearest illustration of the

distinct trends in inequality that can emerge after making a correction to the survey’s

representation of income. While the raw survey depicts falling top income shares, the

corrected survey distribution shows slightly increasing top shares. Distinct trends

are also visible, albeit for shorter periods of time, in the other countries.

The quality of both surveys and tax statistics may have a substantial impact on the

size of the adjustment. For instance, in the case of France, several improvements

were made to the survey’s methodology starting in 2008. In particular, the matching

of individuals across survey and register data allowed for the use of tax data as an

external source to assess individual income without recourse to self-reporting. This

testifies to the more accurate reporting of income in subsequent years, even though

the gap in shares does not fully disappear in all years. Although this incorporation

of register data remedies problems of misreporting and item non-response (failure

to answer certain income questions), it cannot itself get around unit non-response

(failure to answer the entire survey), or issues of under-sampling.

Moreover, when we compare the size of the adjustment in Chile and Brazil (figures 2.7d

and 2.7e respectively), two highly unequal Latin American countries, the latter has

a considerably higher adjustment. One of the reasons that could be behind this

phenomenon is the fact that capital income, especially dividends, is better recorded

in Brazilian tax statistics. Indeed, the Brazilian tax agency has relatively good

means to verify the accuracy of capital income declarations (Morgan, 2018), while

Chilean tax authorities are generally constrained by bank secrecy (Fairfield and

Jorratt De Luis, 2016). In this case, the limited quality of Chilean tax statistics

explains the smaller correction.23

21Appendix B.5.3 presents results for other income groups in the distribution.
22The one exception to this upward correction is Norway in 2006 (see figure 2.7b). However, this

is likely due to a change in the local tax legislation affecting the distribution of business profits
(Alstadsæter et al., 2016), as we explain in the text.

23There is also a considerable difference between these countries’ tax systems and their respective
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Figure 2.7: Top 1% Shares Before and After Correction
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(b) Norway
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(c) United Kingdom
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Notes: the corrected survey using the replacing method directly replaces the survey distribution
above P99 with the distribution above P99 from the tax distribution.
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Following the same rationale, the inclusion or exclusion of some types of income

in a given dataset can also affect the size of the correction. In the case of Norway,

tax incentives started favoring the retention of corporate profits inside corporations

after 2005, with the creation of a permanent dividends tax in 2006. This resulted in

less dividend payments, and thus less income to be registered as personal income in

tax data. The reform also gave strong incentives for higher-than-normal dividend

payouts in 2005, which contributed to the sharp increase in top shares observed for

this year (Aaberge and Atkinson, 2010; Alstadsæter et al., 2016). In figure 2.7b, it

can be clearly perceived that the size of the adjustment appears to drop durably after

this year. Additionally, it should be noticed that the Norwegian survey appears to

be rather insensitive to this change, implying that dividends where badly represented

before 2005. Other potential explanations for the difference in the size of adjustments

could have to do with behavioural differences between populations across countries

related to response rates and reporting accuracy.

The extent of the adjustment, by definition, depends directly on the shape of the

bias that is observed in figure 2.6. Both the steepness of θ(y), when it is to the right

side of the merging point, and the size of the corrected population (column 4 in

table 2.1) are decisive factors for the size of such an increase. Another way to think

about the size of the corrected population is to look at the size of the area between

θ(y) and 1, to the right side of the merging point.

Finally, comparing between correction methods, we can observe — in line with our

simulations — that the top 1% share is generally higher in the replacing scenario

than in our method due to the fact that while the level of numerator incomes is

equivalent in both settings, average incomes (the denominator) is underestimated in

the former scenario, as we show further below.

Gini Coefficients Figure 2.8 shows the time series of the Gini coefficients before

and after the correction for all available years. Overall, we find a similar hierarchy of

estimates, mirroring our simulations in the previous section — inequality is corrected

upwards, more so in countries whose raw survey is not already matched with any

administrative source, and to different degrees depending on the year, thus producing

distinct trends. This is further evidence that surveys need to be adjusted if they are

to better represent the income distribution, in the same manner as they are currently

incentives. In Chile most dividends received by individuals are taxed, while in Brazil they are
not. This, in addition to the fact that Chilean realized capital gains are mostly un-taxed, provokes
incentives towards the artificial retention of profits that are not as present in Brazil. This is why, in
Chile, the imputation of undistributed profits to the distribution of personal income appears to be
necessary when making international comparisons (Flores et al., n.d.).
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Figure 2.8: Gini Coefficients, Before and After Correction
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Notes: the corrected survey using the replacing method directly replaces the survey distribution
above P99 with the distribution above P99 from the tax distribution.
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calibrated to better represent the distribution of various demographic variables.

Again consistent with our simulations, the replacing procedure seems to undershoot

inequality levels compared to our method, which more accurately accounts for higher

non-response and misreporting at the top. An arbitrary correction of the top 1% is

not enough to adjust the under-coverage of income coming from these errors. This

is especially the case where the corrected population is larger than the arbitrarily

chosen fractile, such as in Brazil and Chile (see figure 2.6 and table 2.1).

Average Incomes As alluded to before, the average income of the top percentile

using both correction methods is the same, which is higher than the level observed in

the raw surveys. However, the crucial difference between the two methods is that the

average incomes for the other groups in the population are not equal. In our method,

the weight of persons with lower incomes are reduced, while the replacing method

keeps the same average income for the bottom income groups. This subsequently

produces differences in the overall average income of the population in both cases.

Figure 2.9 depicts that our method increases the average income in the surveys in all

countries, although with highly varying degrees of magnitude. In the lower-income

countries, which have the highest corrections — Brazil and Chile — average incomes

increase broadly by 30-50%, with the gap increasing over time. The higher income

countries in Europe experience lower corrections to their average incomes, with

the orders of magnitude between them reproducing the rank of countries by size of

correction in table 2.1 — the U.K. experiences a larger correction than Norway, which

experiences a larger correction than France. Visibly, in figure 2.9a the gap between

the average in the raw data and corrected data is reduced from 2008 on-wards on

account of the reduction in the size of the survey bias coming from the methodological

novelties (see table B.4 for further details).

The result for the replacing method goes in line with expectations. It is higher than

the raw survey result, as more income is given to the top of the distribution, but it

is also consistently lower than the average our method produces, since it does not

reduce the weight of individuals with lower incomes. This is an inconsistency coming

from its own rationale, as explained in Appendix B.1.2, which our method explicitly

overcomes.

The relative underestimation of incomes is further evident in figure B.13, which

shows income coverage across datasets in the two countries with the largest corrected

populations. The corrected survey income total from our method, which is already

higher than the total from replacing as figure 2.9 testifies, is closer to a broadly
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Figure 2.9: Average Incomes Before and After Correction
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Notes: the corrected survey using the replacing method directly replaces the survey distribution
above P99 with the distribution above P99 from the tax distribution. Average incomes are rescaled
accordingly.
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equivalent income total from national accounts in both Brazil and Chile.

Conclusion

The main objective of this paper is to provide a more rigorous methodological tool

that enables researchers to combine income or wealth surveys with administrative

data in a simple and consistent manner. We present a new methodology on the

combination of such sources, which incorporates a clearer formal understanding

of the potential biases at play and a solution to remedy them. The result of our

calibration-inspired approach, we argue, should be a more representative dataset

that can serve as a basis to study the different dimensions of social inequality. Our

algorithm is built in such way that it automatically generates, from raw surveys

and tax data, an adjusted micro-dataset including new modified weights and new

observations, while preserving the consistency of other pre-existing socio-demographic

variables, at both the individual and aggregate level.

Our paper can thus be viewed as an attempt to improve survey representativeness by

taking the income (or wealth) distribution into account. While it is common to adjust

survey weights in accordance to external information on the distribution of basic

socio-demographic variables, our paper motivates the use of auxiliary administrative

data sources on the distribution of income to further improve the representativeness

of the population.

Our procedure has several advantages compared to available options to correct

surveys. First, it is based on a solid and intuitive theoretical framework. Second, our

method avoids a priori assumptions on the size of the population to be corrected.

Instead, it offers a clear procedure to find the merging point between datasets

non-arbitrarily. Third, the algorithm can be applied to a wide variety of countries,

both developed and less developed, since it accounts for different levels of data

coverage. Fourth, our method respects original individual self-reported profiles and

socio-demographic totals for variables other than income. We thus preserve the

internal consistency of surveys, while better approximating the external consistency of

its income distribution. Although we preserve socio-demographic totals for variables

other than income, our method allows for their conditional distribution to vary upon

the addition of new income information. However, our method also accommodates

the input of distributional information of other variables (age, sex, income type, etc.)

if they are available in the tax data. As such, one may also calibrate and correct the

survey on covariates of income, in addition to income itself, if reliable statistics exist
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on their interaction. Finally, it should be clear that this method can serve multiple

research objectives — from single-country and cross-country empirical analyses using

income statistics as well as their covariates, to fiscal incidence analysis.

To the extent of harmonizing our correction procedure among different countries, we

stress the importance of analyzing the underlying data in each case. For this, our

method provides useful tools to researchers wishing to assess the population coverage

of surveys conditional on income. Figure 2.6 and table 2.1 are examples of the type

of information directly computed by our algorithm, which is made available to users

as a program on Stata. With standard survey and tax data at hand, researchers can

perform our correction procedure with relative ease, as long as the income concepts

are/can be made comparable across the datasets.

Our practical applications show the accuracy and scope of the method. The Monte

Carlo simulations reveal that our method produces results — on average incomes and

inequality indicators — that are closer to values from the true distribution with lower

variance, compared to the drawn sample and the common “replacing” alternative

employed in the literature. This is because the structure of our method’s correction

takes seriously the nature of the potential biases at play. Finally, when applied to

real data, our approach is shown to be robust to different contexts, with the size of

adjustments depending on data quality and inequality levels by country. The wider

the gap between survey and administrative data and higher the level of inequality

in the country, the greater the correction is likely to be. Our empirical results are

consistent with experiments we run with simulated data. Overall, we claim that

our method is accurate, robust and pragmatic in unifying the strengths of separate

datasets on the distribution of income/wealth and their covariates into one source of

information.
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Chapter 3

How Unequal is Europe? Evidence

from Distributional National

Accounts

Despite the relevance of Europe as an economic and political entity, it is remarkably

hard to know how growth has been shared over the past few decades across its

population. This difficulty is not the result of a lack of data per se. In fact, there is

a fair amount of data available, at least since the 1980s. The problem is that these

data are scattered across a variety of sources, taking several forms, using diverse

concepts and different methodologies. So we find ourselves with a disparate set of

indicators that are not always comparable, are hard to aggregate, provide uneven

coverage, and can tell conflicting stories.

As a result, the literature has struggled to answer simple questions such as: which

income groups in which countries have benefited the most from European growth?

How is European inequality affected by taxes and transfers? Is Europe as a whole

more or less equal than the United States? This paper addresses these problems by

constructing distributional national accounts for 38 European countries since 1980.

While we still face considerable challenges in the construction of good estimates of

the income distribution in some countries, we believe that our new series present

major improvements over existing ones.

First, our estimates combine virtually all the existing data on the income distribution

of European countries in a consistent way. That includes, first and foremost, surveys,

national accounts, and tax data. It also includes additional databases on social

contribution schedules, social benefits by function, and government spending on health
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that have been compiled by several institutions over the years (OECD, Eurostat,

WHO). Our methodology exploits the strengths of each data source to correct for

the weaknesses of the others. It avoids the kind of systematic errors that would

arise from the comparison of different income concepts, different statistical units and

different methodologies. As such, our estimates are meant to reflect the best of our

current knowledge on what has been the evolution of inequality in Europe.

Second, in line with the logic of distributional national accounts (DINA), we distribute

the entirety of national income. This includes money that never explicitly shows up

on anyone’s bank account, such as imputed rents, production taxes or the retained

earnings of corporations, yet can account for a significant share of the income recorded

in national accounts and official publications of macroeconomic growth. Therefore,

our results are consistent with macroeconomic totals, and provide a comprehensive

picture of how income accrues to individuals, both before and after government

redistribution. Using a broad definition of income makes our results less sensitive

to various legislative changes, and therefore more comparable both over time and

between countries.

Third, rather than focusing on a handful of indicators, we cover the entire distribution

from the bottom to the top 0.001% — which we can capture thanks to tax data.

Therefore, we can aggregate our distributions at different regional levels, and analyze

the structure of inequality in great details. We can, furthermore, use our estimates to

compute any set of synthetic indicators in a consistent way, such as top and bottom

income shares, poverty rates or Gini coefficients.

Our results are as follows. In terms of inequalities between countries, we do not

observe a clear pattern of convergence in average income levels since the early 1980s.

Per adult income in Eastern Europe was about 35% lower than the European average

in 2017. This was the same value as in the early 1980s, before the fall of the USSR.

In Southern European countries, per adult average incomes have been declining

relatively to the continental average since the 1990s and were 10% below the average

in 2017. Northern European countries were 25% richer than the average in the

mid-1990s and ended up 50% richer.

Inequalities have been increasing in nearly all European countries, both at the bottom

and at the top of the distribution. Nearly all European countries failed to reach the

United Nations Sustainable Development Goals inequality target over the 1980-2017

period, which seeks to ensure that the bottom 40% of the population grows faster

than the average. Since the 2000s, European countries have been relatively more

successful at ensuring that bottom income groups secure a fair share of growth, but
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the majority of countries still failed to achieve the UN objective.

As a result of a limited convergence process and rising inequality within countries,

Europeans are more unequal today than they were four decades ago. Between 1980

and 2017, the top 1% grew more than two times faster and captured as much growth

as the bottom 50%. The share of national income captured by the richest 10%

Europeans increased from 30% to 36% between 1980 and 2017.

Despite rising inequality in Europe and in the European Union, European countries

have been much more successful at promoting inclusive growth than the United

States. This is largely because European countries succeeded in generating much

higher growth rates for low-income groups. The average pre-tax income of the poorest

half of the European adult population was 35% higher in 2017 than in 1980, while it

was essentially the same as in 1980 for the poorest 50% of US citizens. Consequently,

Europe was much less unequal than the US, despite higher inequalities between

European countries than between US states.

In the online appendix (https://wid.world/europe2019), we provide detailed

information on data sources, methodological steps and key results for all the countries

and European regions covered in this paper. Detailed inequality series covering the

distributions of pre-tax and post-tax incomes can be downloaded from the website

of the World Inequality Database (https://wid.world).

3.1 Related Literature

This paper contributes to the growing literature combining distributional data with

national accounts to measure income and wealth inequalities. Following the seminal

contributions of Piketty (2003) and Piketty and Saez (2003), who used income tax

tabulations to study the evolution of top incomes in France and the United States in

the course of the twentieth century, a new body of research has combined income

tax returns and Pareto interpolation techniques to compute estimates of top income

shares in a number of countries (see Atkinson and Piketty, 2007; Atkinson and

Piketty, 2010 for a global perspective). This area of study has provided a number of

insights into the long-run evolution of inequality. However, top income shares tend

to rely on country-specific definitions of taxable income and tax units, and only cover

a small fraction of the population (generally the top 10% or top 1%). Fiscal income

also diverges from the national income, due to the existence of tax exempt income

components, and is therefore inconsistent with macroeconomic growth figures.

The increasing availability of tax data has also shed light on the limitations of house-

https://wid.world/europe2019
https://wid.world
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hold surveys, which are traditionally used by statistical institutes and researchers

to measure the distribution of income. Surveys remain an invaluable source of

information to measure income inequality. However, they tend to underestimate the

incomes of top earners, because of small sample sizes (Taleb and Douady, 2015), and

because the rich are less likely to answer surveys (Korinek, Mistiaen, and Ravallion,

2006) and more likely to underreport their income (e.g. Cristia and Schwabish,

2009; Paulus, 2015; Angel, Heuberger, and Lamei, 2017). These issues can have

serious consequences on estimates of income inequality, both in terms of comparisons

between countries and comparisons over time. This is particularly problematic in

Europe and the United States, where the rise of income inequality in past decades

has been concentrated at the very top of the distribution (Atkinson and Piketty,

2010; Alvaredo, Chancel, et al., 2018).

Recent studies have attempted to overcome these issues by combining surveys or tax

data with national accounts to produce more reliable measures of the distribution

of income. Statistical institutes and international organizations have increasingly

recognized the need to bridge the micro-macro gap. Since 2011, an expert group on

the Distribution of National Accounts mandated by the OECD has been working on

methods to allocate gross disposable household income to income quintiles (Fesseau

and Mattonetti, 2013; Zwijnenburg, Bournot, and Giovannelli, 2019). In a similar

fashion, experimental statistics on the distribution of personal income and wealth

have been recently published by Eurostat (2018), Statistics Netherlands (2014),

Statistics Canada (2019) and the Australian Bureau of Statistics (2019). These

exercises have improved upon traditional survey-based estimates, but do not make

systematic use of tax data and are restricted to the household sector. This can make

estimates of inequality sensitive to the tax base in ways that are not economically

meaningful, since firms can have differential incentives to distribute dividends or

accumulate retained earnings depending on local tax legislation. Piketty, Saez, and

Zucman (2018) were among the first to allocate all components of the US national

income to individuals based on tax microdata and explicit assumptions about the

distribution of tax exempt income. Several research works have since then followed a

similar methodology to extend the distributional national accounts (DINA) approach

to other countries.1 This is the framework that we adopt in this paper: that is, we

combine data from surveys, income tax returns and national accounts to estimate

the distribution of the national income in thirty-eight European countries between

1A comprehensive discussion of the DINA methodology is presented in Alvaredo, Atkinson, et al.
(2016). Recent studies following the DINA approach include Morgan (2017) for Brazil and Jenmana
(2018) for Thailand.
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1980 and 2017. With the exception of France, where extensive work has now been

conducted on the distributions of both pre-tax income (Garbinti, Goupille-Lebret,

and Piketty, 2018) and post-tax income (Bozio et al., 2018), our study is to the best

of our knowledge the first to estimate DINA series for European countries.

This paper directly contributes to the existing literature on the evolution of income

inequality in European economies and in Europe as a whole. It has generally been

acknowledged that Europe has not been spared by the rise in income disparities visible

in the developed world since the beginning of the 1980s (OECD, 2008; Atkinson and

Piketty, 2010). However, because a variety of sources and methodologies have been

used to measure inequality in Europe, it remains remarkably difficult to study how

growth has been shared across its population. Given the relevance of Europe as an

increasingly integrated world region, there is a need to go beyond country-specific

studies and study the European-wide distribution of income. Recent contributions

such as Filauro (2018) and Brandolini and Rosolia (2019) have made advances in

tackling this question by using harmonised data from the European Statistics on

Income and Living Conditions (EU-SILC) to study income inequality in the European

Union as a whole, but they do not address the potential under-representation of

top incomes in surveys and only cover the 2004-2016 period. The comparison of

the long-run distribution of economic growth across European countries is another

area of study where much remains to be done. The effort made by the Luxembourg

Income Study to harmonize surveys for a number of Western European countries has

been hugely helpful in improving the comparability of pre-2000 inequality statistics

in Europe, but surveys (because of sampling issues and misreporting at the top of

the distribution) can reveal inequality trajectories which are inconsistent with those

suggested by top income shares. The same limitations apply to Eastern Europe: the

historical survey tabulations studied by Milanovic (1998), the EU-SILC surveys now

conducted in new EU member countries and the top income shares recently estimated

from income tax data (e.g. Novokmet, Piketty, and Zucman, 2018; Bukowski and

Novokmet, 2019) are based on different income concepts and are therefore hard to

compare.

Another question which has received much attention in recent years is that of the

comparison between Europe and the United States. While it is acknowledged that

post-tax income inequality is greater in the US than in most European countries

today, it remains unclear whether this was also the case in past decades and whether

this gap is due to differences in pre-tax inequality or to differences in the fiscal

incidence of government redistribution. By following the distributional national

accounts methodology, Bozio et al. (2018) find that government redistribution reduces
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inequality less in France than in the United States. This result contrasts with other

existing studies (e.g. Jesuit and Mahler, 2010; Immervoll and Richardson, 2011;

Guillaud, Olckers, and Zemmour, 2019) which rely on household surveys and restrict

their analysis to direct taxes and transfers. Whether the US are more unequal than

Europe as a whole also remains an open question. Seminal work on the distribution

of income in the EU-15 (Atkinson, 1996) or the Eurozone (Beblo and Knaus, 2001)

suggested that income inequality was higher in the US, but recent studies extending

the analysis to new, poorer Eastern European member states have found mixed

results (e.g. Brandolini, 2006; Dauderstädt and Keltek, 2011; Salverda, 2017; Filauro

and Parolin, 2018). One of the limits of existing studies is that they are based

on surveys. This may bias comparisons of income inequality between European

countries and between Europe and the US if surveys capture more accurately top

incomes in some countries than in others. The top-coding of incomes in the public-use

samples of the US Current Population Survey, for instance, contrasts with the use

of administrative data to fill in survey income components in several European

countries, leading to important differences in the quality of survey-based inequality

estimates.2

This article differs from existing studies on the distribution of income in Europe in a

number of ways. First, we go beyond the available survey microdata by collecting

and harmonizing a rich dataset of historical survey tabulations. This allows us to go

back in time and consistently study the long-run evolution of income inequality in the

large majority of European countries from the 1980s until today. Secondly, we use all

available studies on the evolution of top income shares, as well as previously unused

tax data sources, to correct for the under-representation of high-income earners.

Thirdly, we allocate all components of the national income to individuals, including

tax exempt income, production taxes and collective government expenditure. This

allows us to analyse the distribution of macroeconomic growth in Europe and the

effects of different forms of redistribution on inequality.

Methodologically, our approach also departs from existing distributional national

accounts studies in the way we combine different available data sources. Piketty,

Saez, and Zucman (2018) and Garbinti, Goupille-Lebret, and Piketty (2018) start

2Atkinson, Piketty, and Saez (2011) show for example that the CPS top 1 percent share effectively
misses 10.4 points of the surge of the top 1 percent income share relative to income tax data in
the United States between 1976 and 2006. In the Luxembourg Income Study — one of the most
widely used source for comparative work on inequality — the top 1% share of household disposable
income is 7% for the US in 2016. Using tax data, Piketty, Saez, and Zucman (2018) find a share of
more than 15% for a comparable income concept. By contrast, as we show in the online appendix,
the evolution of top incomes is relatively well approximated by EU-SILC data in Nordic countries.
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with tax data, to which they progressively add information from surveys and national

accounts. This “top-down” approach exploits all the richness of the tax microdata

and yields extremely detailed and precise estimates. However, while this type of work

can be and should be extended to as many European countries as possible, there are

many countries and time periods for which tax microdata are simply not available.

This justifies our “bottom-up” approach, which starts from surveys and gradually

incorporates information from top income shares and unreported national income

components. As such, we view our methodology as well-suited to estimating the

distribution of the national income in countries gathering a mix of survey microdata,

tabulated tax returns and a variety of heterogeneous historical data sources.3

3.2 Conceptual Framework

We study the distribution of the national incomes of thirty-eight European countries,

spanning from Portugal to Cyprus and from Iceland to Malta, between 1980 and

2017. Our geographical area of interest includes the twenty-eight members of

the European Union, five candidate countries (Bosnia and Herzegovina, Serbia,

Montenegro, Macedonia, Albania), and five countries which are not part of the

EU but have maintained tight relationships with it (Iceland, Norway, Switzerland,

Kosovo and Moldova).

We follows as closely as possible the principles of the DINA guidelines (Alvaredo,

Atkinson, et al., 2016), which we briefly outline below. This allows us to be com-

parable with existing studies, including Piketty, Saez, and Zucman (2018) for the

United States.

3.2.1 Macroeconomic Concepts

Net National Income Our preferred measure to compare income levels between

countries and over time is the net national income. It is equal to gross domestic

product (GDP) net of capital depreciation, plus net foreign income received from

abroad. While GDP figures are most often discussed by academics and the general

3In a similar fashion, Piketty, Saez, and Zucman (2019) have recently proposed a simplified
method for recovering estimates of top pre-tax national income shares based on the fiscal income
shares of Piketty and Saez (2003) and very basic assumptions on the distribution of untaxed labour
and capital income components. Our methodology can also be viewed as a “simplified” approach to
produce DINA estimates, but we stress that the type of data at our diposal differs, and therefore so
does our methodology. As we show in section 3.3, we are able to reproduce very closely the results
of Garbinti, Goupille-Lebret, and Piketty (2018) for France by combining their top fiscal income
shares with available surveys and national accounts data.
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public, we believe national income to be more meaningful, since capital depreciation

is not earned by anyone, while foreign incomes are, on the contrary, received or paid

by residents of a given country. While GDP and national income usually follow

each other, there are countries where they can diverge. In particular, GDP can be

sensitive to assumptions about the localization of production — a notion that can

become murky in our globalized age. In countries such as Ireland or Luxembourg,

GDP growth in recent years has been coupled with large outflows capital income,

a phenomenon usually attributed to tax avoidance by multinational corporations.4

Because it is an indicator of income rather than production, national income is less

sensitive to such issues.5

From Survey and Taxable Income to National Income The national income

is the sum of the primary incomes of households, corporations, non-profit institutions

serving households and the general government. Household income includes the

compensation of employees, mixed income and property income, which are generally

— though imperfectly — covered by household surveys and tax data. It also includes

the imputed rents of owner-occupied dwellings, which are much less often available

from traditional sources but nonetheless represent a substantial share of the capital

income of households. The primary incomes of other institutional sectors can amount

to a fifth of the national income, but do not appear in either surveys or tax data

(see figure 3.1a). These mainly consist in the taxes on production received by the

general government (net of subsidies) and the retained earnings of financial and

non-financial corporations. Taxes on production are a separate component of national

income and their distribution can follow several conventions, which we address below.

Retained earnings correspond to profits that are kept within the company rather

than distributed to shareholders as dividends. This income ultimately increases the

wealth of shareholders and therefore represents a source of income to them.6

4For example, Ireland officially estimated its real GDP growth in 2015 to be +26%. This number
stirred controversy, as it is believed to be the sole result of a few large multinational corporations
relocating their intangible assets in Ireland for tax purposes.

5Net foreign incomes compensate any change in GDP caused by different assumptions about the
localization of production.

6Several papers have documented the impact of including retained earnings in the United
States (Piketty, Saez, and Zucman, 2018), Canada (Wolfson, Veall, and Brooks, 2016), and
Chile (Fairfield and Jorratt De Luis, 2016; Atria et al., 2018). In Norway, Alstadsæter et al. (2017)
showed that the choice to keep profits within a company or to distribute them is highly dependent
on tax incentives, and therefore that failing to include them in estimates of inequality makes top
income shares and their composition artificially volatile. Previous work would sometimes include
capital gains in their income definition, which indirectly accounts for this type of income. Yet this
constitutes a poor proxy, because capital gains are recorded upon realization, rather than when they
accrue to individuals. And whether capital gains are realized or not depends on their value and
on tax incentives. Therefore, attributing retained earnings to individuals directly is more reliable,



110 CHAPTER 3. HOW UNEQUAL IS EUROPE?

3.2.2 Income Distribution Concepts

The DINA framework acknowledges three levels of distribution, called factor income,

pre-tax income and post-tax income. Factor income is the income that accrues to

individuals as a result of their labor or their capital, before any type of redistribu-

tion, be it through social insurance or social assistance schemes. Pre-tax income

corresponds to income after the operation of the social insurance system (pension

and unemployment), but before other types of redistribution. It is closest — though

better harmonized and conceptually broader — to the “taxable income” in most

countries. Finally, post-tax income accounts for all the redistribution of income

operated by the government.

In this paper, we will mostly focus on pre-tax and post-tax income. Factor income is

harder to compute given the type of data at our disposal, and also less meaningful.

Indeed, many retirees have near zero factor income by construction, so that measures

of factor income inequality are highly sensitive to the population structure of the

countries.

Factor Income On the labor side, factor income includes the entire compensation

that firms pay to their employees, including social contributions paid by employee

or employers, and mixed income. On the capital side, it includes the property

income distributed to households, the imputed rents for owner-occupiers, and the

primary income of the corporate sector (i.e. undistributed profits). We attribute

undistributed profits belong to the owners of the corresponding corporations, since

it increases the value of their shares, and therefore their wealth.7 Factor income also

includes the primary income of the government, which essentially corresponds to

taxes on products and production, minus the interests that the government pays

on its debt. Following the DINA standard, we assume that these taxes are paid

proportionally to income, but we also experiment with alternative assumptions. And

we distribute interest payments of the government proportionally to income.8

From Factor to Pre-tax Income Pre-tax income correspond to factor income,

to which we add social insurance benefits in the form of unemployment and pension,

more meaningful, more consistent with macroeconomic measures of income, and more comparable
across countries.

7Their inclusion can be viewed as a way to some capture capital gains as they accrue to
individuals rather than upon realization.

8Interest payments on government debt have no aggregate effect on national income because
it represents a transfer from the government to households, but it does have a second-order
distributional effect because ownership of government bonds is usually more concentrated than
income.
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and from which we remove the social contributions that pay for them. Note that for

pre-tax income to sum up to national income, it is important to remove the same

amount of social contributions as the amount of social benefits that we distribute.

This way, we both avoid double counting and ensure that we look at the redistribution

from social insurance in a way that is budget-balanced. In doing so, we observe

significant heterogeneity between countries. In most countries, social contributions

exceed pension and unemployment benefits, because social contributions also pay for

health or family-related benefits that we classify as non insurance-based redistribution.

Therefore, we only deduct a fraction of social contributions from pre-tax income.

But in some countries, like Denmark, social contributions are virtually non-existent.

In these cases, we have to assume that social insurance is financed by the income

tax, and therefore deduct a fraction of the income tax from factor income to get to

pre-tax income.

From Pre-tax to Post-tax income To move from pre-tax to post tax income, we

first remove all taxes and social contributions that remain to be paid by individuals.

This includes the taxes on products and production that we previously added, and

also the corporate tax that was added through undistributed profits. Then we add

all types of government transfers, and government consumption. We distribute all of

government consumption proportionally to income, with the exception of public health

expenditures. We use the proportionality assumption for simplicity, transparency

and comparability with earlier work on distributional national accounts, in particular

in the United States (Piketty, Saez, and Zucman, 2018). But we consider that it is

important to make an exception for health spending. Indeed, while many European

countries have public health insurance systems, the United States have a mostly

private one, with some public programs such as Medicaid and Medicare, which are

explicitly distributed to their recipients in the United States distributional national

accounts. Therefore, distributing health spending proportionally to income could

understate the amount of redistribution that European countries engage in. For other

types of spending (education, military, police, etc.), we experiment with alternative

assumptions, but we still use the proportionality assumption as our benchmark.

We distribute the net saving of the government (the discrepancy between what the

government collects in taxes and what its pays as transfer, consumption or interest)

proportionaly to the income of individuals so that post-tax national income matches

national income.

Unit of Analysis In our benchmark series, the statistical unit is the adult individ-

ual (defined as being 20 or older) and income is split equally among spouses, in line
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with other existing DINA studies (e.g. Piketty, Saez, and Zucman, 2018; Garbinti,

Goupille-Lebret, and Piketty, 2018).9

3.3 Sources and Methodology

This section describes the main steps followed to estimate the distribution of the

national incomes of European countries. We refer to the appendix C.1 for technical

details on the methodology, and to the online appendix for a more detailed account

of data sources, methodological steps and robustness checks. In broad strokes, our

methodology starts from a variety of household surveys. We harmonized them and

correct them using tax data. Finally, we account for the various parts of national of

income that are absent from the usual sources. Add the European level, figure C.1

in appendix show the role that the various steps play in the final series. Most of the

difference between raw survey estimates and our series come from the inclusion of

tax data.

3.3.1 National Accounts

Main Aggregates For total national national income, we use series compiled by

the World Inequality Database based on data from national statistical institutes,

macroeconomic tables from the United Nations System of National Accounts and

other historical sources (see Blanchet and Chancel, 2016). For the various components

of national income, we collect national accounts data from the Eurostat, the OECD,

and the UN. We use Eurostat and the OECD in priority, as they tend to have the

most most reliable data, but their coverage is less extensive than the UN.10 We

provide a detailed view of the coverage that these data provide in our extended

appendix.11

9We also compute additional series in which income is split between all adult household members,
not just members of a couple (i.e. a “broad” rather than a “narrow” equal-split). The difference
is not entirely negligible in certain Southern and Eastern European countries. Until now DINA
studies have has a tendency to use the narrow equal-split developed countries (e.g. Piketty, Saez,
and Zucman, 2018; Garbinti, Goupille-Lebret, and Piketty, 2018) and the broad equal-split in less
developed ones (e.g. Novokmet, Piketty, and Zucman, 2018; Piketty, Yang, and Zucman, 2019).
We focus on the narrow equal-split in our benchmark for comparability with the United States, but
also shed some light on the issue by providing both concepts. See figure C.4 in appendix.

10We link together the various series, rescaling older and lower-quality series to match the newer
and higher-quality ones in their latest year of overlap to avoid any structural break.

11Using these sources, we have a sufficiently detailed decomposition of national income that
covers nearly 100% of the continent national income up until 1995. Before that, coverage becomes
increasingly sparser: we have the full decomposition for about 50% of national income in 1990,
decreasing to 20% at the very beginning of our series. We impute missing series by retropolating
them using exponential smoothing with a coefficient of 0.9. As a last resort, we rely of regional
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Additional Sources In a few cases, we need to rely on additional sources to

perform decomposition of national income that are needed for our series and more

precise than what is available through standard data portals. First, when we

distribute the retained earnings of the corporate sector, we have to separate the share

that is owned by private citizens from the share that belong to the governments.

To do so, we use the fractions of equities owned by the households sector in the

financial balance sheets available from the OECD. We also need to separate the

social benefits that correspond to pension and unemployment from the other types

of social benefits in order to calculate pre-tax income.12 To do so, we rely on the

OECD social expenditure database, which breaks down social benefits by function in

great details since 1980. Finally, we need to separate health expenditures from the

rest in the individual consumption of the government. For that, we extract health

government spending from the System of Health Accounts, a database that emerged

from a joint work between the OECD, Eurostat and the WHO.

3.3.2 Survey Microdata

Sources We collect and harmonize household survey data from several international

and country-specific datasets. Our most important source of survey data is the

European Union Statistics on Income and Living Conditions (EU-SILC), which have

been conducted on a yearly basis since 2004 in thirty-two countries. We complement

EU-SILC by its predecessor, the European Community Household Panel (ECHP),

which covers the 1994-2001 period for thirteen countries in Western Europe. Our

second most important source of survey data is the Luxembourg Income Study (LIS)

provides access to harmonized survey microdata covering twenty-six countries over

the 1975–2014 period. Most Western European countries are covered from 1985

until today, and several countries from Eastern Europe have been surveyed since the

1990s.

Imputations When we have access to survey microdata, we can usually estimate

income concepts that are close to our concepts of interest (pre-tax and post-tax

income) with only a few components of income that remain to be added separately (see

section 3.3.5). A significant exception concerns social contributions in EU-SILC: while

both employer and employee social contributions are recorded, employee contributions

averages.
12The DINA guidelines (Alvaredo, Atkinson, et al., 2016) recommend using the distinction

between social insurance benefits (D621 + D622) and social assistance benefits in cash (D622).
Unfortunately that level of details is not commonly available in the national accounts of most
countries, which only report the aggregate item D62. This is why we rely on alternative sources.
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are combined with income and wealth taxes. We use the social contribution schedules

published in the OECD Tax Database to impute employee social contributions

separately. Before 2007, employer contributions may also not be recorded despite

having information on income before taxes and employee contributions. In such

cases, we also impute employer contributions based on schedules from the OECD

Tax Database. Beside that, measures of income before and after taxes and transfers

have been recorded consistently as part of EU-SILC. The Luxembourg Income Study

also produces some historical data on pre-tax income, in many cases by imputing

direct taxes and social contributions as part of their harmonization effort. As a

result, we have survey microdata on both pre-tax income and post-tax income in

almost all countries since 2007, and for over a longer time period for a number

of Western European countries (Germany, the United Kingdom, Switzerland, and

Nordic countries).

3.3.3 Survey Tabulations

Sources We complement the survey microdata with a number of tabulations

available from the World Bank’s PovcalNet portal, the World Income Inequality

Database (WIID) and other sources. PovcalNet provides pre-calculated survey

distributions by percentile of post-tax income or consumption per capita. The WIID

gathers inequality estimates obtained from various studies, and gives information on

the share of income received by each decile or quintile of the population. Finally,

we collect historical survey data on post-tax income inequality in former communist

Eastern European countries provided by Milanovic (1998), as well as formerly unused

tabulations covering Yugoslav republics from the 1970s to 1989.13 In all cases, we use

generalized Pareto interpolation (Blanchet, Fournier, and Piketty, 2017) to recover

complete distributions from the tabulations. A detailed breakdown of available

survey data sources by country is available in the online appendix.

Harmonization Contrary to microdata, tabulations only provide distributions

covering specific welfare concepts and equivalence scales. The majority of tabulations

recorded in PovcalNet and WIID correspond to post-tax income, while cases in which

we only observe consumption are limited to a handful of Eastern European countries

(Moldova, Kosovo, Montenegro).14 The equivalence scales available are more diverse,

13We are grateful to Branko Milanovic for providing us with these tables.
14The only exceptions correspond to a handful of Eastern European countries at the beginning

of the period (Bosnia and Herzegovina, Moldova, Montenegro) for which we have no other source
available. In these cases we use the survey distribution of pre-tax income as a proxy for the “true”
pre-tax income.
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including households, adults, individuals, the OECD modified equivalence scale or

the square root scale.15 For these data sources, as well as for survey microdata where

information on taxes and transfers is incomplete, we have to develop a strategy to

transform the distribution of the observed “source concept” (e.g. consumption per

capita or post-tax income among households) into an imputed distribution measured

in a “target concept” (pre-tax or post-tax income per adult).

The key idea behind our harmonization procedure is that, while the different income

or consumption concepts that we observe are different, they are also related. Using all

the cases where the income distribution is simultaneously observed for two different

concepts, we can map the way they tend to relate to one another, and use that to

convert any source concept to our concept of interest. In practice, we formalize this

idea by writing the average income of each percentile for the distribution of interest as

a function of all the percentiles of the distribution from which we wish to impute, and

also as a function of various auxiliary variables that may potentially account for that

relationship (average income, population and household structure, marginal tax rates,

social expenditures). Finding that function amounts to a regression problem, albeit

a high-dimensional, non-parametric one. To avoid making ad hoc restrictions, we

rely on a recent advances in non-parametric high dimensional statistics, also known

as machine learning. We use XGBoost (Chen and Guestrin, 2016), a state-of-the-art

implementation of a standard, robust and high performing algorithm called boosted

regression trees. We provide a detailed view of the method and the results in the

extended appendix.

We stress that this approach is not perfect: the relationships between the different

concepts are not deterministic, so that these imputations involve their share of

uncertainty. However, the existing literature has often chosen to ignore these issue

altogether, and directly combined, say, income and consumption data (e.g. Lakner

and Milanovic, 2016). We feel that our approach is preferable, because it corrects at

least for what can be corrected. We further provide in our online appendix prediction

intervals to give some idea of the amount of precision that the method achieves. Note

that in practice, the output of the harmonization procedure is straightforward and

intuitive: it mostly adjust the levels of the different series, but does note introduce

any trend that was not already in the data.16

15When computing inequality estimates with the OECD modified equivalence scale, the first
adult in the household is given a weight of 1, other adults are given a weight of 0.5, and children
are given a weight of 0.3 each. The square root scale divides total income by the square root of the
size of the household.

16Before the 2000s, only post-tax inequality estimates are available for many countries. In these
countries, the trends for post-tax and pre-tax inequality estimates are thus implicitly assumed to
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3.3.4 Survey Corrections

Survey data are known to often miss the very rich. For our purpose it is important to

distinguish two reasons for that: non-sampling and sampling error. Sampling error

refers to problems that arise purely out of the limited sample size of survey data.

Low sample sizes affect the variance of estimates, but they may also create biases,

especially when measuring inequality at the top of the distribution. Non-sampling

error refers to the systematic biases that affect survey estimates in a way that is not

directly affected by the sample size. These mostly include people refusing to answer

surveys and misreporting their income in ways that are not observed, and therefore

not corrected, by the survey producers. Estimates based on raw survey data do not

account for any of these biases and therefore tend to underestimate incomes at the

top end.

Non-sampling Error We correct survey data for non-sampling error using known

top income shares estimated from administrative data. Following contributions by

Piketty (2001) for France and Piketty and Saez (2003) for the United States, several

authors have been using tax data to study top income inequality in the long run.

Most of these studies have been published in two collective volumes (Atkinson and

Piketty, 2007; Atkinson and Piketty, 2010), and their results have been compiled in

the World Inequality Database.17 In general, tax data is only reliable for the top of

the distribution, and this is why these series do not cover anything below the top

10%. Researchers estimate the share of top income groups by dividing their income

in the tax data by a corresponding measure of total income in the national accounts.

At the time of writing, data series were available for nineteen European countries,

providing information on the share of income received by various groups within the

top 10%.

We complete this database by gathering and harmonizing a collection of formerly

unused tabulated tax returns covering Austria (2008–2015), East Germany (1970–

1988), Estonia (2002–2017), Iceland (1990–2016), Italy (2009–2016), Luxembourg

(2010, 2012), Portugal (2005–2016), Romania (2013) and Serbia (2017). We use these

tabulations to directly add new top income shares to our database. We provide a

be similar. We view this a reasonable approximation given that the main determinant of post-tax
inequality is pre-tax inequality, both between countries and over time (e.g. Guillaud, Olckers, and
Zemmour, 2019). This is all the more true that our “pre-tax” income concept includes pension and
unemployment, which are the most important forms of government redistribution. In the United
States, trends for post-tax and pre-tax income inequality are very similar, with the minor exception
of the role played by government health spending (Medicare and Medicaid) (see Piketty, Saez, and
Zucman, 2018) which are separately taken into account in our methodology.

17See http://wid.world.

http://wid.world
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detailed account of the computations for each country in the online appendix. In

most cases, we directly correct the surveys with the tax data using the method of

Blanchet, Flores, and Morgan (2018) rather than using a total income estimate from

the national accounts. Direct correction of survey data is a more flexible and practical

approach, at least for the recent period, and is now being preferred in the latest work

on inequality (e.g. Piketty, Yang, and Zucman, 2019; Morgan, 2017; Bukowski and

Novokmet, 2017). When extending existing series using that method, as in Italy or

Portugal, our results are consistent with the work that was done previously, thus

confirming the consistency and reliability of both approaches. Our results also reveal

that the underestimation of top incomes varies a lot across surveys and is typically

higher in Eastern European countries. This points to the importance of correcting

surveys with tax data to make comparisons between countries more reliable.

We correct the survey data using standard survey calibration methods. The principle

of survey calibration is to reweight observations in the survey in the least distortive

way so as to match some external information. Statistical institutes already routinely

apply these methods to ensure survey representativity in terms of age or gender.

We directly extend them to also ensure representativity in terms of income. The

applicability of these methods to correct for the underrepresentation of the rich in

surveys has been discussed at length by Blanchet, Flores, and Morgan (2018).

One difficulty is that our external source of information consist in top income shares.

Because top income shares are a non-linear statistic, they cannot directly be used

in standard calibration procedures. We tackle that issue using suggestions from

Lesage (2009). They involve linearizing top income shares statistics by calculating

their influence function, and introducing a nuisance parameter. We discuss that

methodology in details in our extended appendix. In concrete terms, we increase

weight at the top of the distribution so that survey top incomes match their value

observed in the tax data.

One advantage of calibration procedures is that they allow to perform survey cor-

rection with a income tax data concept that may differ from the income concept of

interest — either in terms of income definition or statistical unit. We always match

concepts to the best of our ability between the tax data and the survey data to

perform the correction. Then we use income concepts that are better defined and

more economically meaningful to produce our inequality series. Confronting tax data

and survey data as such is a very powerful way to harmonized income tax statistics

between countries.18

18For older time periods from which we cannot perform that exercise directly due to lack of
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When we do not directly observe tax data in a country, we still perform a correction

based on the profile of nonresponse that we observe in other countries. This is only

the case for a few small countries — Albania, Bosnia and Herzegovina, Bulgaria,

Cyprus, Kosovo, Latvia, Lithuania, Macedonia, Malta, Moldova, Montenegro and

Slovakia. To capture statistical regularities, we estimate the nonresponse profile as

a function of the distribution of income in the uncorrected survey using the same

machine learning algorithm as in the previous section. We stress that this remains

a rough approximation and that in our view the proper estimation of top income

inequality requires access to tax data. Fortunately, our tax data covers the majority

of European countries and of the European population, so that the impact of these

corrections on our results is very limited.

Sampling Error The sample size of surveys varies a lot and can sometimes be

quite low: this, in itself, can seriously affect estimates of inequality at the top and,

in general, will underestimate it (Taleb and Douady, 2015). Correcting sampling

error requires some sort of statistical modeling. We use methods coming from

extreme value theory, which is routinely used in actuarial sciences to estimate the

probability of occurrence of very rare events, but can similarly be used to estimate

the distribution of income at the very top.

The main tenet of extreme value theory can be understood in analogy to the central

limit theorem. According to the central limit theorem, under some regularity

assumptions, but regardless of the exact distribution of iid. variables X1, . . . , Xn,

the distribution of the sum
∑n

i=1Xi as n goes to infinity will belong to a tightly

parametrized family of distributions (a Gaussian one). Similarly, under mild regularity

assumptions, the distribution of the largest value of the sample max(X1, . . . , Xn) as

n goes to infinity will belong to a certain parametric family. The same holds for the

second-largest value, the third-largest value, and so on. As a result, the top k largest

values will approximately follow a distribution known as the generalized Pareto

distribution. That result is known as the Pickands–Balkema–de Haan theorem (e.g.

Ferreira and Haan, 2006).

The generalized Pareto distribution therefore more or less provides a universal

approximation of the distribution of the tails of distributions. It includes the Pareto

or the exponential distribution as a special case. We use it to model the top 10%

of income distributions. Because the likelihood surface of the generalized Pareto

distribution is very flat, maximum likelihood estimation often gives poor results

proper survey microdata, we retropolate the correction on the income tax series that is done over
the more recent period.



3.3. SOURCES AND METHODOLOGY 119

unless the sample size is very large. The standard method of moments also fails if the

distribution has infinite variance, which can often occur with income distributions.

We use a simple and robust alternative known as probability-weighted moments

(Hosking and Wallis, 1987). We provide technical details for the method in appendix.

Note that by construction, this adjustment has absolutely no impact on the top 10%

income share, it only refines the income distribution within the top 10%.

3.3.5 Missing Incomes

Once we have harmonized and corrected our survey data using tax data, we find

ourselves with more precise and comparable inequality series. But those series do

yet account for all of national income because they lack some components from the

household sector (imputed rents), the corporate sector (undistributed profits) and

the government sector (taxes on products and government spending).19

Imputed Rents We extract the total value of imputed rents from the national

accounts. To distribute them, we rely on (calibrated) EU-SILC data that does record

imputed rents (although they are not included in the headline inequality figures).

We perform a simple statistical matching procedure using income as a continuous

variable to add imputed rents, which we describe in the appendix. The imputed

rents total is rescaled to match national accounts. The method preserves the joint

distribution of income and imputed rents in EU-SILC, the distribution of imputed

rents in EU-SILC, the distribution of income in the original data, and the imputed

rents total in the national accounts.

Undistributed Profits We distribute the private share of undistributed profits

to individuals proportionally the ownership of corporate stock. This includes both

private and public stocks that are held directly or indirectly through mutual funds

and private pension plans. However, we exclude sole proprietorship, since in the

national accounts they are not an entity separate from the household to which they

belong.

The distribution of stock ownership comes from the Household Finance and Consump-

tion Survey (HFCS), the pan-European wealth survey of the European Central Bank.

We calibrate that survey on the top income shares as we do for other surveys to

make it representative in terms of income and get consistent results. The HFCS only

started around 2013, so before that year we keep the distribution of retained earnings

19Other missing items (taxes on production, government surplus, etc.) are smaller and less
important because we distribute them proportionally.
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constant and only change the amount of retained earnings to be distributed: this

constitutes a reasonable approximation because stock ownership is always already

highly concentrated, so that the main impact of retained earnings on inequality

comes from changes in their average amount rather than changes in the inequality

of stock ownership. After 2013, we use the wave that is closest to the year under

consideration.

By distributing retained earnings proportionally to stock ownership, we assume

that profits are similar in every company. To the extent can this assumption bias

our results? If richer people keep more money in their companies, then we will

underestimate inequality. A good point of reference if the study of Alstadsæter et al.

(2017) in Norway. To our knowledge, this is the only study that analyzed the role of

undistributed business income on inequality while being to match exactly businesses

to their owners. Our approach yields similar results, which give us confidence in its

validity.

Taxes on Products In our baseline estimates, we follow the standard DINA

guidelines and distributes taxes on products and production proportionally to pre-tax

income. We also experiment with an alternative assumption, namely that people

pay taxes on products proportionally to their consumption. To that end, we rely

on the Household Budget Surveys (HBS) from Eurostat to get the distribution of

consumption and its dependency to income. We use the same statistical matching

procedure as before to attribute a consumption to people alongside the income

distribution, and attribute the taxes on products proportionally to it. As we show in

appendix (table C.3), this lowers pre-tax income inequality somewhat, but does not

change the trend. (Post-tax income inequality is not affected by production taxes.)

Government Expenditures In post-tax income, we directly distribute health

expenditures lump-sum and other expenditures proportionally.20 In appendix (see

table C.5), we experiment with alternative assumption (full proportional allocation

and full lump-sum). This changes levels of post-tax inequality, but the trends are

similar.
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(a) Composition of European national income, 1980-2017
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(b) Top 10% income shares in France: validation of our methodology
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The figure compares the evolution of income inequality as measured by raw surveys, by our

methodology, and by complete DINA studies in France.

Figure 3.1: DINA methodology
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3.3.6 External validation

Many existing DINA studies (Piketty, Saez, and Zucman, 2018; Garbinti, Goupille-

Lebret, and Piketty, 2018; Bozio et al., 2018) rely on detailed tax microdata and

microsimulation models. In comparison, our methodology relies on much sparser data.

To what extent do we get comparable results despite having less data? Figure 3.1b

compares our results with those of Garbinti, Goupille-Lebret, and Piketty (2018) and

Bozio et al. (2018) for pre-tax and post-tax income inequality in France. As we can

see, there is a strong agreement between both methods (results for the bottom 50%

are along the same lines, see table C.2 in appendix.) Both find a overall tendency that

is quite at odds with what the raw data (in grey) suggest. This gives us confidence

that our method gives estimates that are comparable to more detailed DINA studies.

Note that we obtain these results in spite of the fact that our data for France are

not of an especially high quality. The SILC statistics for France are a transcription

of a survey (called SRCV) which is used for its extensive set of questions on material

poverty, but is not considered the best survey for income inequality. For that purpose,

the French statistical institute relies on another survey, called ERFS. But that survey

is not part of any international scheme, such as EU-SILC, nor is it available through

portals such as the Luxembourg Income Study. Therefore, we do not include it in

our estimations. Before SILC is available, we rely on France’s Household Budget

Survey, which has been made available through LIS. While France’s HBS is a key

source for consumption data, it is not viewed a the best source for income data either.

Therefore, there is no reason to think that our methodology would work better for

France than other countries just because of the quality of the data in input.

3.4 Results

3.4.1 Inequality between European Countries

Before looking at inequalities within European countries and within wider regional

entities (such as the European Union), it is worth having in mind how differences in

countries’ average national incomes have evolved between 1980 and 2017. As new

countries joined the EU and further political integration was enhanced by policy

makers in the 1990s and 2000s, convergence in standards of living gradually became

part of the European Union agenda, along with the harmonization of economic

20To extent that the health risk profile is the same for everyone, and that health spending is
actuarially fair, distributing health expenditures lump-sum properly captures the insurance value
of government spending on health.
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(a) Average National Income of European Countries
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(b) Evolution of the Average Income of European Regions
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Figure 3.2: Inequality Between Countries in Europe
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policies. One of the explicit objectives of European integration, in particular, was to

reduce average income gaps between EU Member States. The Lisbon Treaty, one of

the legal basis of the EU, states that “the EU shall promote economic, social and

territorial cohesion, and solidarity among Member States.”21

In 2017, we can see important differences in standards of living between European

countries were visible, but relatively homogeneous levels among the largest member

states of the European Union (figure 3.2a). In most of the Balkan countries, per adult

national incomes were below e15,000, while Southern and other Eastern European

countries earned between e15,000 and e30,000. In most other EU countries, incomes

ranged between e30,000 and e45,000. Luxembourg and Norway, finally, stood out

with average national incomes higher than e60,000. Based on these differences

as well as geographical proximity, we propose to divide Europe into three broad

regions in the rest of this paper: Northern Europe, Western Europe, and Eastern

Europe. Northern Europe includes Nordic countries spanning from Denmark to

Iceland. Eastern Europe includes other countries located east from Austria, and

Western Europe encompasses the remaining countries (see table C.3 for a full list of

these countries and the evolution of their national incomes per adult).

Regional growth trajectories in the past forty years do not show a rapid equalization

of absolute income levels (figure 3.2b). In Eastern Europe, sustained economic growth

since the early 2000s has succeeded in bringing back the income levels that existed

during the communist era and which dramatically fell after the dislocation of the

USSR, but Eastern European citizens still earn about 40% less than the average

European. Meanwhile, Western European nations have steadily been characterized

by national incomes higher by 15–20% on average, Scandinavian countries have

consolidated their positions at the top of the European distribution, experiencing

high growth rates since the mid-1990s.

Looking more precisely at country-specific trajectories reveals a relatively complex

picture, with no sign of long-run monotonic convergence. Between 1980 and 1989,

national income growth was slightly higher in countries with standards of living closer

to the European average — such as Finland, the United Kingdom, Slovenia and

Sweden — while the rest of Europe saw annual growth rates of about 1% throughout

the decade. Following the disintegration of the Soviet Union, former communist

countries characterized by lower standards of living than Western European nations

21Article 3 of the Lisbon Treaty. Inequality reduction between Member States is also made clear
in the Treaty on the Functioning of the European Union. Article 174, for instance, states that “the
Union shall aim at reducing disparities between the levels of development of the various regions
and the backwardness of the least favored regions.”
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experienced strong recessions, mirrored by negative growth rates (−1.7% per year

on average) for the poorest 10% countries of the old continent. The 2000–2007

period, on the other hand, came with restored stability and revived economic growth

for Central and Eastern European countries, which led to a moderate reduction in

between-country inequalities. Finally, the fact that Spain, Italy, Portugal and Greece

were strongly affected by the 2007–2008 crisis translated into negative growth rates

at the middle of the European distribution during this period.

The analysis of income inequalities between countries therefore points to the impor-

tance of both macro-historical events and country-specific trajectories. The economic

downturns in Eastern Europe which followed the collapse of the USSR, as well as

macroeconomic imbalances exacerbated in Western Europe since 2008 have strongly

affected national and regional growth trajectories. Yet, because European countries

have been affected very differently by these crises, their overall effect on income

differences between nations has remained unclear.

Did European integration contribute to decreasing inequality between member

States? Unsurprisingly, European integration in itself has been associated with a

gradual widening of income differences between EU members. This is the mechanical

consequence of an integration process in which new member States have increasingly

more diverse income levels. The integration of Spain and Portugal in 1986, both

slightly poorer than EU-10 members, as well as the inclusion of Sweden and Finland

in 1995 led to a slight increase in between-country inequalities at the EU level. As

former communist countries joined the European community in 2004, 2007 and 2013,

these differences became even wider. Thanks to new access to the common market,

technological catch-up, economic reforms and EU cohesion policies, however, it is

expected that new Member States catch up with the rest of the EU. Income growth

rates of Eastern European countries which joined the EU after 2004 grew at a much

faster rate than EU-15 countries.

This picture should, however, be interpreted cautiously. First, despite significantly

higher growth rates, income levels in Eastern European countries remain significantly

below that of EU-15 countries and at a relatively similar level to that of the early

1980s, before the collapse of Eastern European economies.22 Second, since 2008,

the growth differential between EU-15 and Eastern European Union countries is

partly due to sluggish post-crisis growth in the EU-15. A large part of the high

Eastern European growth is also related to economic recovery after the collapse

22In 2017, the average income of Eastern European Union countries was equal to 62% of EU-15
average income. This value was 54% in 1980.
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of Eastern European economies in the early 1990s (up to the late 2000s, non-EU

Eastern countries also caught up rapidly with EU-15 members).

3.4.2 Inequality within European Countries

We now turn to the analysis of income inequalities within European countries. How

did European countries perform in curbing inequality and promoting inclusive growth

over the past decades? Beyond country-specific trajectories and short-run dynamics,

it is possible to identify a set of stylized facts.

First, in a large majority countries where data is available since 1980, top earners

have captured an increasing share of national income. If one looks precisely at

average inequality levels among European regions, differences in trajectories between

our three regions of interest are identifiable (figures 3.3a and 3.3b). In Northern

Europe, inequality has increased during the 1990s. In Western Europe, the increase

has been more linear. But Eastern Europe is the area where inequalities have risen

the most, especially at the top of the distribution during the 1990s and the early

2000s, as Eastern European countries transitioned from communism to capitalism.23

Today, pre-tax income inequality remains, on average, slightly lower in Northern

Europe than in other regions of the continent, even if these differences should not be

exaggerated.

While common trends are visible in broad European regions, there are also country-

specific trajectories (figure 3.4). Germany, France and the United Kingdom, who

together represent 80% of the adult population of Western Europe in 2017, all

witnessed increasing inequalities at the top of the distribution. In the United

Kingdom, the top 10% share increased from 1980 to the 2007-2008 crisis, while it

mainly rose in Germany in the 2000s and remained more stable in France over the

period. In Northern Europe, income inequality increased mainly during the 1990s.

Eastern Europe, finally, is clearly the region where inequalities within countries have

risen most. Poland, the Czech Republic, Hungary, Romania and Bulgaria all went

through important political and structural economic changes in the 1990s as they

transitioned to market economies. At the beginning of the 1980s, Eastern European

countries were among the least unequal of the continent; by 2000, they had caught

up with Southern European inequality levels. Poland is the country where income

23It is important to stress here that we focus solely on monetary income inequality, which was
unusually low in Russia and Eastern Europe under communism. Other forms of inequality prevalent
at the time, in terms of access to public services or consumption of other forms of in-kind benefits,
may have enabled local elites to enjoy much higher standards of living than what their income
levels suggest.
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(a) Average Top 10% Pre-tax National Income Shares Within Regions
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(b) Average Bottom 50% Pre-tax National Income Shares Within Regions
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Figure 3.3: Inequality Within Countries in European Regions
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(a) Top 10% Pre-tax National Income Shares:
Western European Countries
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(b) Top 10% Pre-tax National Income Shares:
Northern European Countries
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(c) Top 10% Pre-tax National Income Shares:
Eastern European Countries
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Figure 3.4: Inequality Within Selected European Countries
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disparities rose most, in part because they continued to rise in the 2000s and 2010s

while they more or less stabilized in the rest of the region. In 2017, top 10% Polish

earners received nearly 40% of national income, more than any of their counterparts

in other European countries.

3.4.3 Inequality between European Citizens

Having discussed the evolution of income inequality between and within European

countries, we now look at income inequality in Europe as a whole. The level

and evolution of inequality between European citizens depend upon three factors:

the evolution of income inequalities between European countries, the evolution of

inequalities within countries, and the relative weights of countries’ populations. In this

section, we measure European-wide income inequalities at purchasing power parities

to account for differences in average costs of living between European countries.

When comparing Europe to the US, however, we will adopt market exchange rates

estimates to make results between the two regions more comparable — since PPP

conversion factors exist for European countries but not for US states.

Income differences between European residents have increased in the past forty years

(figure 3.5a). Top 10% earners in Europe received 30% of total regional income

in 1980, while the bottom 50% received 22%. In 2017, by contrast, the top 10%

share had risen to 35%, while 18% total income accrued to the poorest half of

the population. In line with our previous findings, it appears that changes in the

income distribution mostly occurred during the last two decades of the twentieth

century. As top income inequality increased in most countries of Western Europe and

Scandinavia between 1980 and 2000, the richest decile captured an increasing share

of the continent’s growth, before more of less stagnating since then. By contrast, the

bottom 50% share decreased more suddenly in the early 1990s due to the combination

of strong recessions and rising inequalities at the top in Eastern Europe. These two

movements have driven most of variations in income inequality in Europe.

Long-run trends in Europe reveal that inequalities have mainly increased at the very

top of the income distribution. Figure 3.5b plots the annualized growth rates of

different income groups over the 1980–2017 period. In the past thirty-seven years,

the poorest half of European residents saw their incomes increase by less than 1%

annually. The “European middle class” only benefited slightly more from growth

than these poorer groups: income earners between percentiles 50 and 90 saw their

incomes increase by about 1% per year. As soon as one looks at groups within the

top 10%, however, total growth rates are markedly higher. All income groups among
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(a) Income inequality in Europe, 1980–2017:
Top 10% vs. bottom 50% income shares
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Figure 3.5: Evolution of Inequality among European Citizens
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top 0.1% earners saw their earnings grow by more than 2% per year during our

period of interest, and even more for the top 0.001% of European.

How important are between-country inequalities compared to within-country income

differences in explaining these trends? Figure 3.6 shows the potential levels and

dynamics of top 10% and bottom 50% income shares under different scenarios. Solid

lines represent the true series, dotted lines correspond to the income disparities that

would exist if there was no inequality between countries, and dashed lines correspond

to those that would prevail if there were no inequalities within countries. Eradicating

differences in countries’ average national incomes would have a moderate effect on

European inequalities: both the top 10% and the bottom 50% shares would change

by a few percentage points in all years considered. If all Europeans were to earn

the average national income of their country of residence, by contrast, differences in

standards of living would be dramatically reduced. The top 10% share would have

stagnated at about 15%, while bottom 50% earners would receive more than one

third of total income in all years considered.

3.4.4 Redistribution in Europe

Until now, we have focused exclusively on the distribution of pre-tax income, that is

the sum of all pre-tax personal income flows accruing to the owners of the production

factors, before taking into account the operation of the tax and transfer system, but

after taking into account the operation of the pension system. We will now look

more precisely at the evolution of post-tax disposable income inequality in Europe

and the extent of redistribution across European regions.

To that end, we will distinguish two concept of income after taxes and transfers.

The first one is post-tax national income. Post-tax national income subtracts all

taxes and contributions, and adds all transfers, including both cash transfers and

government consumption, so that the total sums to national income. All explained

is the methodological section, public health expenditures are distributed lump-

sum, and other government consumption proportionally. Because the distribution

of government expenditure raises more conceptual and methodological questions,

we will also consider a narrower concept: post-tax disposable income. Post-tax

disposable income only redistribute cash transfers, so that is does not sum up to

national income.

In order to synthesize redistribution with a simple indicator, we propose to follow

Bozio et al. (2018) and look at the percent reduction in the ratio of the top 10% to

bottom 50% average incomes. This ratio is a simple and straightforward measure of
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(a) Top 10% income share
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Figure 3.6: Between- versus within-country inequality in Europe, 1980–2017
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(a) Ratio of Top 10% to Bottom 50% Average Income
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Figure 3.7: Redistribution in Europe
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inequality, as it summarizes in a single number the gap between the earnings of the

two sides of the income distribution. Looking at the extent to which fiscal systems

reduce this gap can therefore inform directly on their redistributive effect.24 Figure

3.7a compares average redistribution across European regions with this indicator.

Most of the redistribution happens when moving from pre-tax to post-tax disposable

income. Yet government expenditures also plays a sizable role, which is entirely

driven by health expenditures. Western and Northern Europe have, according to that

indicator, virtually identical levels of redistribution. But Eastern Europe redistributes

significantly less.

In figure 3.7b, we can see the average income of the bottom 50%, both before and

after taxes. Note that the post-tax disposable income of the bottom 50% is actually

slightly lower than its pre-tax income: that is because some of the taxes paid by

the bottom 50% finance government expenditures, which are not accounted for in

disposable income. To properly capture the absolute increase in standard of livings

when moving from pre-tax to post-tax income, we must look at post-tax national

income, that incorporates all government spending.

3.4.5 Inequality in Europe vs. the United States

Income inequality in the US has increased dramatically in the past forty years,

especially at the top of the distribution (Piketty, Saez, and Zucman, 2018). In this

section, we seek to compare these dynamics to those observed in Europe. Europe and

the United States are two large, integrated world regions, which share relatively high

degrees of similarities in terms of levels of development, exposure to global markets

or penetration of new technologies. Comparing the evolution of income inequality

in these regions can thus provide insights into their different policy and economic

trajectories since the 1980s. In particular, we will refine and expand on the recent

work done in the World Inequality Report 2018 (Alvaredo, Chancel, et al., 2018)

by focusing on two questions. Are income disparities in Europe larger than in the

US? And what are the roles of between-country (between-states) and within-country

(within-states) inequalities in explaining these differences? We explore these issues

by comparing estimates from this paper with the US DINA estimates from Piketty,

Saez, and Zucman (2018). We also explore the geography of inequality in Europe

and the US by combining these estimates with state-specific top taxable income

shares from Frank et al. (2015), survey distributions from the current population

population survey (CPS), and state-level GDPs (see appendix C.1.4 for the detailed

24The results of this section are robust to the use of different groups for the top and the bottom
of the distribution (e.g. top 1%/bottom 50%)
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methodology). In what follows, when looking at inequality in Europe as a whole, we

use market exchange rates estimates to measure differences in average income levels

between European countries. This is to make the comparison between US states and

European countries more meaningful. While purchasing power parity figures could

be computed for European countries, there exist no conversion factor which would

allow us to account for differences in average costs of living between US States.

Spatial inequalities have always been much smaller in the US than in Europe, at least

since the mid-twentieth century.25 In Europe, inequalities between countries have

decreased slightly from 1950 to the beginning of the 1980s and have remained broadly

stable since then: in 2017, the national income of top 10% European countries was

2.8 times higher than that of the bottom 50%. Spatial heterogeneity has never

reached such levels in the US, where the top 10% to bottom 50% ratio has decreased

from 2.5 at the beginning of the 1930s to 1.5 in 2017.26

These differences are apparent when comparing individual countries and states in

recent years. The poorest European countries had national incomes per adult lower

than the continental average by more than 50%, both in 1980 and in 2017. There was

no such equivalent in the US, neither today nor thirty years ago. In 1980, poorest US

states were characterized by standards of living lower than the national average by no

more than 25%, and this figure did not exceed 40% in 2017. Similarly, the wealthiest

countries of Europe have steadily remained richer than the average European by

about 75%, compared to only 25% in the US. There were, both in 1980 and 2017,

small US states who were significantly richer than the rest of the country: in 1980,

residents of Alaska and Washington D.C. earned more than 300% of US national

income. Beyond these exceptions, however, a vast majority of states have always

had standards of living located between 70% and 120% of the national average.

There are at least two potential explanations for these differences. First, the United

States has reached a significantly higher degree of economic integration than Europe,

and have remained politically and institutionally stable for a much longer time. In this

context, US states rapidly converged in their levels of development, especially at the

beginning of the twentieth century (Barro and Sala-i-Martin, 1991; Barro and Sala-i-

25State domestic products provided by the Bureau of Economic Analysis go back as far as 1967.
We extrapolate these series back to 1929 by using the growth rates in personal income per capita
available from Barro and Sala-i-Martin (1992).

26The ratios of the top 10% to bottom 50% European states or US states adjust for population
differences. That is, we split proportionally the population of states which are at the frontier
between the top 10% and the bottom 90% of the continental population. This indicator is a simple
measure of spatial inequality: it compares the average income of the “core” territories to that of
the poorest states or countries gathering half of the total population.
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Martin, 1992). Accordingly, the persistence of high between-country inequalities in

Europe can partially be explained by the multiplication of strong asymmetric shocks

since the 1980s which have delayed potential convergence processes. The 1990s crises

in Eastern Europe badly affected the poorest economies of the continent, just as the

2008 crisis hit only moderately richer European nations but led to stronger recessions

in Southern and Baltic countries. That heterogeneity also has to do with a lack of

political integration and coordinated policy responses among European countries and

within the European Union. While the EU has decided to encourage the adhesion of

future members with financial aid funds, it has only dedicated moderate sums to

these programs.27

While geographical disparities are higher in Europe than in the US, inequalities

within territories are higher and have grown much faster in the US. In 1980, US

states were, on average, only slightly more unequal than Western European countries.

Between 1980 and 2017, however, this gap grew significantly: while inequalities

within European countries increased only moderately, they skyrocketed in most

US states, with income shares for the top 10% reaching up to 60% in New York

and Florida. The fact that inequalities increased only moderately in Europe, and

mainly in Eastern European countries who “caught up” with their Western neighbors,

announced a clear disconnection between the US and Europe. In 2017, top 10%

shares in the most equal states of the US were close to those observed in the most

unequal countries of Europe.

Spatial inequalities are therefore lower in the US than in Europe, while inequalities

within European countries are lower than inequalities within US states. Adding

up these two effects, are overall income differences wider in the US than in Europe

as a whole? The answer is unequivocal: income inequality is substantially higher

in the US than in Europe. In 2017, the top 1% in the US captured a share of

national income twice as large as the poorest half of the population. In Europe,

by contrast, the bottom 50% share was significantly larger than that of top 1%

earners (figure 3.8). This was not always the case: in 1980, bottom 50% shares were

27Between 1991 and 2003, for instance, average transfers from West Germany to East Ger-
many had amounted to some 4.5% of western GDP and 30% of eastern GDP, leading to rapid
and significant regional convergence after reunification (see for example http://ec.europa.eu/

economy_finance/publications/pages/publication1437_en.pdf). By contrast, the 2019 finan-
cial programming of the European Regional Development Fund, the main program for correcting
imbalances between EU regions, is expected to amount to 31 billion euros, or less than 0.2% of total
EU GDP (see https://ec.europa.eu/budget/library/biblio/documents/2019/Programmes_

performance_overview.pdf). And when looking at net contributions to the EU budget, countries
benefiting most from EU transfers (such as Bulgaria, Hungary of Lithuania) do not receive net
income flows higher than 3% of their GDP, while the most important contributors (such as Germany
or Sweden) give up less than 0.4% of their total annual production.

http://ec.europa.eu/economy_finance/publications/pages/publication1437_en.pdf
http://ec.europa.eu/economy_finance/publications/pages/publication1437_en.pdf
https://ec.europa.eu/budget/library/biblio/documents/2019/Programmes_performance_overview.pdf
https://ec.europa.eu/budget/library/biblio/documents/2019/Programmes_performance_overview.pdf
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(a) Top 1% and Bottom 50% Income Shares in Europe
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(b) Top 1% and Bottom 50% Income Shares in the United States
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Source: Europe: authors’ computations combining surveys, tax data and national accounts;
United States: Piketty, Saez, and Zucman (2018)

Figure 3.8: Inequality in Europe and in the United States
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Table 3.1: Theil index decomposition of between-region and within-region
inequalities in Europe and the US

Theil index Within-group Between-group

Value % of total Value % of total

Europe
1980 0.37 0.24 65.0 % 0.13 35.0 %
1990 0.43 0.29 67.4 % 0.14 32.6 %
2000 0.49 0.34 69.6 % 0.15 30.4 %
2007 0.52 0.39 74.8 % 0.13 25.2 %
2017 0.50 0.38 76.6 % 0.12 23.4 %

United States
1980 0.45 0.44 96.7 % 0.01 3.3 %
1990 0.63 0.61 98.0 % 0.01 2.0 %
2000 0.85 0.84 98.5 % 0.01 1.5 %
2007 0.94 0.93 98.5 % 0.01 1.5 %
2017 1.00 0.98 98.3 % 0.02 1.7 %

Source: authors’ computations combining surveys tax data and national accounts.

actually very similar between the two regions, amounting to about a fifth of national

income. While income inequalities have increased in both Europe and the US, the

trend has therefore been much steeper in the latter. In Europe, economic crises and

rising income disparities in Eastern Europe contributed to moderately compressing

the bottom 50% share at the beginning of the 1990s, while top income inequality

increased slightly from the 1980s to the 2000s. Inequality dynamics in the US have

been much more linear: in the past forty years, the top 1% share steadily surged

from 11% to 20% and the bottom 50% share was nearly divided by two.

These differences appear even more striking if one compares the growth trajectories

of the bottom 50% of the two regions (figure 3.9). Our estimates reveal that despite

the fact that the average national income grew faster in the US than in Europe by

40% during this period, the poorest 50% experienced faster growth in Europe, both

on a pre-tax and a post-tax basis. The pre-tax income of the bottom 50% stagnated

in the US while it increased by 34% in Europe. The picture is not significantly

different for post-tax incomes, which increase by 16% in the US compared to 48% in

Europe.

Table 3.1 provides Theil decomposition of income inequality in Europe and the

US between 1980 and 2017. In 1980, inequalities were slightly higher in the US

than in Europe, if one considers the Theil index to be a broad measure of income

concentration. This gap had widened considerably in 2017: the Theil index reached 1
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(a) Pre-tax Income Growth of the Bottom 50%

Europe bottom 50% growth: +34%

US bottom 50% growth: -3%
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(b) Post-tax Income Growth of the Bottom 50%

Europe bottom 50% growth: +48%

US bottom 50% growth: +16%
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Source: Europe: authors’ computations combining surveys, tax data and national accounts;
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Figure 3.9: Growth of the Bottom 50%
in Europe and in the United States
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in the US, compared to only 0.5 in Europe. Furthermore, decomposition reveals that

inequalities between countries explain a much larger share of income disparities in

Europe than inequalities between states do in the US. At the beginning of our period

of interest, about two thirds of income inequalities in Europe were explained by

inequalities within countries. Due to rising income disparities in European nations,

the share of income concentration explained by within-group inequalities increased to

more than 75% in 2017. In the US, on the other hand, higher geographical integration

and larger differences in standards of living within States have led between-group

inequalities to remain of minor importance. Between 1980 and 2017, the share of

overall US inequalities explained by within-state income differences remained above

95%.

Conclusion

We have developed a novel methodology combining surveys, tax data and national

accounts in a consistent manner to produce pre-tax and post-tax income inequality

statistics for all European countries covering the 1980-2017 period. Based on this

methodology, we have documented the following results.

First, we do not observe a clear pattern of convergence in average income levels

between countries since the early 1980s. Per adult income in Eastern Europe is

about 35% lower than European average today. This is the same value as in the

early 1980s, before the fall of the USSR. In Southern European countries, per adult

average incomes have been declining relatively to the continental average since the

1990s and are now 10% below the average. Northern European countries were 25%

richer than the average in the mid-1990s and are now 50% richer.

Personal income inequalities have been increasing in nearly all countries. Nearly

all European countries failed to reach the United Nations Sustainable Development

Goals inequality target over the 1980-2017 period, which seeks to ensure that the

bottom 40% of the population grows faster than the average. Since the 2000s,

European countries have been relatively more successful at ensuring that bottom

income groups secure a fair share of growth, but the majority of countries still failed

to achieve the UN objective.

As a result of a limited convergence process and rising inequality within countries,

Europeans are more unequal today than four decades ago. Between 1980 and 2017,

per adult average annual pre-tax income growth was below 1% for bottom 50%

earners, while the top 0.1% grew at a rate higher than 2% per year. The top 1%



3.4. RESULTS 141

captured about as much growth as the bottom 50% of the population. The share of

national income captured by the top 1% Europeans increased from less than 8% of

national income to nearly 11% between 1980 and 2017.

Despite a rise of inequality in Europe and within the EU, European countries have

been much more successful at containing rising inequalities than the US. This is

largely because European countries succeeded in generating higher income growth

rates for bottom earners than did the US. Average income of the poorest half of

Europeans was 40% higher in 2017 than in 1980, while it was essentially the same as

in 1980 (+3%) for the poorest 50% Americans. Consequently, Europe is much less

unequal than the US, despite higher spatial inequalities in Europe than between US

states.

To what extent did observed and perceived inequality dynamics in Europe contribute

to current levels of resentment against national and European institutions? Which

structural changes and set of policies enabled European countries to contain the

surge of inequalities observed in the USA since 1980? This paper opens up many

questions to which our inequality series will hopefully contribute to answering in

future comparative research.
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Chapter 4

Modeling the Dynamics of Wealth

Inequality in the United States,

1962–2100

This paper develops a new approach to address a basic question: what drives the

evolution of the wealth distribution, and how does it react to economic, demographic

or policy changes?

The economic literature has already made many contributions to our understanding

of the wealth distribution (e.g. Wold and Whittle, 1957; Laitner, 1979; Vaughan,

1979; Benhabib, Bisin, and Zhu, 2011). It has been able to explain key stylized facts,

in particular its Pareto-shaped tails. It has uncovered several plausible mechanisms

that could explain the levels and changes in wealth inequality. It has emphasized,

among others, the role of labor income inequality, unequal rates of return, taxation,

demographics through children and the sharing of inheritance, and the spread between

the rate of return on capital and the rate of economic growth (Stiglitz, 1969; Cowell,

1998; Favilukis, 2013; Piketty and Zucman, 2014; Böhl and Fischer, 2017; Hubmer

and Smith, 2018).

But it remains difficult to untangle these effects and assess their respective importance.

Theoretical models tend to focus on a limited set of mechanisms and make simplifying

assumptions for the sake of tractability. While understandable, this limits our ability

to connect these models to the data beyond the replication of the main stylized facts,

and use them for policy purposes.

On the empirical side, most of the literature has been concerned with pure measure-

ment issues (e.g. Saez and Zucman, 2016; Kopczuk, 2015; Bricker, Henriques, and

147
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Hansen, 2018). Still, a few papers have tried to test certain mechanisms directly

using reduced-form specifications. Acemoglu and Robinson (2015) and Góes (2016)

have tested the impact of the difference between the rate of return on capital and the

growth rate (r− g) that was popularized by Piketty (2014), and found no supporting

evidence. But these approaches face certain difficulties. Wealth inequality statistics

are still in their infancy, with limited time and geographical coverage, and varying

quality. This paucity of wealth inequality data makes it hard to get meaningful

variation — let alone exogenous variation — that could be used to capture the

effects at hand. This is all the more limiting that theory suggests such effects may

be slow and take decades to materialize clearly (Gabaix et al., 2016). The studies

have avoided the issue by relying on more widely available but fairly noisy proxies

such as income inequality, which complicates the interpretation of the results. In

a world with a widespread, cross-country dataset on wealth inequality spanning

several centuries, it might be easy to just “let the data speak.” But until then, pure

reduced-form approaches face considerable challenges.

Another method involves the construction of “synthetic saving rates” (Saez and

Zucman, 2016; Garbinti, Goupille-Lebret, and Piketty, 2016; Berman, Ben-Jacob,

and Shapira, 2016). These synthetic saving rates are calculated so as to reconcile

the wealth changes of the different parts of the distribution with the income of the

corresponding groups. They are meant to capture many different effects including

mobility, the inequality of savings, and their correlation with wealth. In essence,

this is an accounting exercise that looks separately at the different parts of the

distribution. That approach constitutes a practical middle ground between the

theory and the data. Strictly speaking, however, synthetic saving rates can only

be interpreted as structural parameters if we assume no mobility between groups,

and homogeneous behavior within groups, which affects the domain of applicability

ofthe method and the generality of its conclusions. In fact, Gomez (2016) shows

that these synthetic saving rates can be decomposed into a “within” term and a

“displacement” term which captures mobility. He shows that the displacement terms

plays an important role in the dynamic of wealth inequality. This decomposition,

however, requires access to panel data on wealth, which is quite rare.

Overall, the answer to many questions remains unclear because the empirical literature

has been working with synthetic indicators that are hard to tie explicitly to the

individual behavior of people. And, as a consequence, it has had difficulties connecting

itself to the theory. This state of affairs is at least partly the result of data limitations.

Ideally, to directly integrate theoretical models with the data, we would use a long-

run, high-quality panel dataset of both income and wealth. Unfortunately, no such
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thing exists in most countries, including the United States.

In this paper, I suggest a way to resolve this divide between data and theory. Using

only repeated cross-sections, and based on two results of stochastic calculus, I am

able to nonparametrically identify and structurally estimate the key parameters that

determine the dynamics of the wealth distribution. These parameters directly relate

to the individual saving behavior of people, so they do not merely capture reduced

form relationships between synthetic indicators of wealth inequality. But they remain

very general and mostly agnostic as to the exact reason why people save, making the

approach compatible with a wide class of models.

This framework is flexible enough to incorporate a realistic model of income, the tax

system, inheritance and demographics. Yet it remains simple enough to allow for a

transparent identification of the parameters. The model can reproduce the data, and

be used run conditional forecasts and counterfactuals in which we change various

economic parameters, such as the growth rate, labor income inequality, or rates of

return. The model captures both the steady state and the transitional effects of the

different shocks — an important feature given that some shocks can take a lot of

time to noticeably affect the wealth distribution.

Models of the wealth distribution that can accurately reproduce its Pareto-shaped fat

tails virtually all share the same core idea: that people accumulate wealth through a

succession of random multiplicative shocks. These may be preference shocks, shocks

to rates of return, to the number of children, and so on. What matters is that, as

long as the mean and the variance of these shocks falls into the right range, the

steady-state distribution will have a power-law tail (Kesten, 1973; Gabaix, 2009).

That leads us to the key insight of the paper: although this process of multiplicative

random shocks is very general, it actually makes some sharp predictions regarding

the evolution of the wealth distribution. And we can exploit these predictions as

a source of identification. To that end, it is important not to solely focus on the

steady state. Indeed, there is an infinite number of ways in which we could calibrate

the mean and variance of the aforementioned multiplicative shocks so as to reach

any given steady-state level of inequality, making the model underidentified. But

under these various calibrations, the distribution of wealth would change at widely

different speeds. Therefore, as long as we observe the wealth distribution outside of

its steady state — which is clearly the case in the United States since the 1960s — we

can unambiguously identify the parameters of the underlying wealth accumulation

process.

In practice, the approach of the paper is made tractable by the use of the continuous
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time formalism advocated for instance by Gabaix et al. (2016). This formalism

provides access to two highly useful results. First, there is the Fokker-Planck

equation, which explicitly relates the evolution of the wealth distribution to the

parameters of the underlying accumulation process. Then, there is Gyöngy’s (1986)

theorem. The process of wealth accumulation is itself a function of stochastic

processes for income and consumption that are potentially hard to model accurately.

Gyöngy’s (1986) theorem shows that, in order to properly model the marginal

distribution of wealth, it is not necessary to fully model these processes: all we need

to know is their mean and variance conditional on wealth. In essence, the mean and

variance of savings conditional on wealth turn out to be “sufficient statistics” which

entirely define the evolution of the wealth distribution. This considerably reduces

the dimensionality of the problem, and makes the analysis much simpler. In the end,

and despite the richness of the model, the estimation reduces to the estimation of a

linear relationship between observable quantities: therefore, it provides a clear-cut

and visual interpretation that can be used to discuss the quality of the fit, or the

presence of structural changes.

I apply the method using the Distributional National Accounts (DINA) data from

Piketty, Saez, and Zucman (2018), which I complement using the Survey of Consumer

Finances (SCF) and various additional sources to account for demography and

inheritance. Piketty, Saez, and Zucman (2018) provide public use samples of their

data, available yearly since 1962. This data distributes all of national income and

wealth to individuals, making it possible to track their distribution in a way that

is consistent with macroeconomic totals, and over a long period that include some

major economic changes. I find that, out of the 15 pp. increase in the top 1% wealth

share observed since 1980, about 7 pp. can be attributed to rising labor income

inequality, 6 pp. to rising returns on wealth (mostly in the form of capital gains),

and 2 pp. to lower growth. Over the entire period, rich households appear to have

been consuming, on average, a constant fraction of their wealth. At the same time

they have seen their income rising, due to both higher labor income inequality and

capital gains. Hence, they have been saving a higher fraction of their income, leading

to an important accumulation of wealth at the top. Under current parameters, the

top 1% wealth share would reach its steady-state value of roughly 45% by the 2040s,

a level similar to that of the beginning of the 20th century.

This model of the wealth distribution has some practical applications, in particular

for the theory of wealth taxation. Recent contributions have emphasized that the

long-run elasticity of the capital stock is a sufficient statistic for optimal capital

taxation (Saez and Stantcheva, 2018), yet little is known about its value. I use this
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paper’s model to investigate the issue. It allows me to approach the problem in a

way that combines insights from several recent contributions, in particular the role

of mobility (Saez and Zucman, 2019), tax avoidance, and saving responses (Jakobsen

et al., 2019). I develop a simple formula to estimate how the tax base would react to

a wealth tax at the top at the steady-state. This formula suggests that the elasticity

can be sizeable, but also that it is higher for small tax rates than for larger ones. As

a result, revenue-maximizing tax rates may still be quite high.

The rest of the paper is organized as follows: in section 4.1, I review the main stylized

facts about wealth inequality in the United States, and discuss the mechanisms

that account for it. In section 4.2, I explain how I model the three components

that shape the distribution of wealth: income and consumption, inheritance, and

demography. In section 4.3, I explain what data I use and how I estimate demography

and inheritance in the model. In section 4.4, I explain how to identify and estimate

the main model. Section 4.5 discusses the results of the model with an application

to wealth taxation, and section 4.5.3 concludes.

4.1 The Distribution of Wealth

Over the past few years, there has been a widespread regain of interest in the

topic of wealth and its distribution. In the United States, we know the aggregate

level of wealth from the official balance sheets compiled by the Federal Reserve.

The distribution of that wealth, on the other hand, is a more complicated issue.

Historically, there is no official source for the distribution of household wealth, nor

is there any direct administrative data sources that we could use the calculate it.

Economists, therefore, have had to devise several indirect methods to estimate wealth

inequality.

There is the SCF, a triennial survey of household assets conducted by the Federal

Reserve. It exists since 1949 (Schularick, Kuhn, and Steins, 2018), with publicly

available data since 1962. The SCF serves as the basis for the recently published

Distributional Financial Accounts (DFA) of the United States (Batty et al., 2019).

However, it has only been conducted regularly and with a consistent methodology

since 1989. While the SCF strongly oversamples the richest households, like all surveys

it may suffer from some nonresponse and misreporting — and in fact it explicitly

excludes extremely wealthy households from its sampling frame for confidentiality

reasons. An alternative approach is the capitalization method (Saez and Zucman,
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2016), which estimates wealth from administrative capital income tax data.1 In this

paper, I will primarily rely on estimates from the capitalization method as applied

by Saez and Zucman (2016), but also use the SCF for some purposes. I will address

divergences between the two sources when necessary.

4.1.1 Empirical Facts about Wealth in the United States

Since the 1980s, household wealth in the United States has grown larger and more

concentrated. From 1980 to 2015, the ratio private of private wealth to national

income grew from 310% to 450% (figure 4.1a), reaching a level not seen since before

the Second World War (Piketty and Zucman, 2014). Over the same period wealth

inequality has also increased (figure 4.1b). Using the capitalization method, Saez and

Zucman (2016) find that the top 1% owns 37% of private wealth in 2014, compared

to 23% in 1980. Data from the SCF shows similar trends.

This rise in wealth inequality has been entirely driven by the top tail of the distribution.

While there have been some changes for the bottom, notably a rise in the number

of indebted households (Wolff, 2010), in practice these dynamics are not central

to the topic of increasing inequality. As shown in figure 4.2a, the top 1% used to

hold on average an amount of wealth equal to 70 times average national income in

1980. That amount now exceeds 150 times average national income. During the

same period, the bottom 99% owned about 2.5 times the average national income in

wealth, a value that remained relatively constant. As a result, if we were to hold

constant the wealth/income ratio of the bottom 99% as in figure 4.1b, the evolution

of the top 1% share would be very similar to what we observe in reality. Conversely,

if we were to fix the wealth/income ratio of the top 1% at its 1980 level, inequality

would not have risen at all.

The rise in wealth inequality has had consequences not only for wealth, but also

for income. As shown in figure 4.3, the share of pre-tax national income owned by

the top 1% nearly doubled since 1980, going from 11% to 20%. That increase can

only be partially explained by the rise in labor income inequality. Since the early

2000s, the top 1% share of labor income has been mostly flat while the top 1% share

of total income has kept on increasing. Similarly, up until 1980, income inequality

1A third approach is the estate multiplier method (Kopczuk and Saez, 2004), which estimates
wealth from inheritance tax data. The estate multiplier stands out from other methods in that it
does not find any increase in wealth inequality over the past decades. However, these estimates are
usually considered unreliable for the recent period due to differential mortality and tax avoidance
(Saez and Zucman, 2016; Kopczuk, 2015), and by now the estate tax has become too narrow to
keep on applying the method.
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Figure 4.1: Private Wealth in the United States
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Figure 4.2: Wealth Inequality: The Role of the Top 1% vs. the Bottom 99%
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Figure 4.3: Income Inequality: Labor and Total Income

was slightly decreasing even though labor income inequality was on the rise. These

divergences can only be explained by changes in the distribution of capital income,

which is directly related to the distribution of wealth.

4.1.2 Mechanisms That Account for Wealth Inequality

The standard models of savings that explain behavior for the bulk of the distribution

do not, in general, account well for the shape of the distribution in the tail, which as

we have seen in section 4.1.1 is what explains the increase in inequality. This is true

of life-cycle models (Atkinson, 1971) and precautionary saving models (Carroll, 1998).

The models that can realistically reproduce the distribution usually incorporate a

taste for wealth, either directly (Carroll, 1998; Piketty and Zucman, 2014) or as a

bequest motive (Benhabib, Bisin, and Zhu, 2011), and random shocks to preferences

(Piketty and Zucman, 2014), number of children (Cowell, 1998), or rates of return

(Benhabib, Bisin, and Zhu, 2011). The key feature of all these models is that wealth

follows a transition equation of the form wt+1 = atwt + bt, where at and bt are

random. This type of multiplicative process with random shocks was studied by

Kesten (1973), who showed that regardless of the exact distribution of at and bt, wt

converges towards a distribution with a power-law tail.
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The Kesten (1973) process justifies why, broadly speaking, power laws arise from

multiplicative random shocks with frictions. However, the discrete time formalism of

Kesten (1973) quickly gets intractable, so for more elaborate applications it is better

to move to continuous time. In continuous time, we can model wealth accumulation

as a stochastic differential equation (SDE). Like a deterministic differential equation,

a SDE relates the current value of a variable to its immediate evolution (i.e. its

derivative). But it is stochastic because it assumes that this relationship involves

some randomness. Concretely, while a first-order ordinary differential equation for wt

may be written ∂
∂t
wt = µt(wt), a SDE formalizes the idea that ∂

∂t
wt = µt(wt)+“noise”.

The proper formalization of “noise” in continuous time is called a Wiener process.

Traditionally, we write:

dwt = µt(wt) dt+ σt(wt) dBt (4.1)

to say the variance of the “noise” over a small amount of time dt is σ2
t (wt) dt, so that

the derivative of wt is random with mean µt(wt) and standard deviation σt(wt). The

value µt(wt) is called the drift, and σt(wt) the diffusion. Using µt(wt) = a+ bwt and

σ2
t (wt) = c+ dw2

t , we get a continuous-time analog to the Kesten (1973) process and,

assuming proper parameter values, we converge to a power law. More generally, if we

assume µt(wt) ∝ wt and σt(wt) ∝ wt for high wt, and that some friction prevents wt

from becoming too small, then we converge towards a power law (Gabaix, 2009). The

continuous time framework allows us to abstract ourselves from short-term effects

that are not relevant in practice but can seriously complicate the analysis.

While the evolution of wt in equation (4.1) is random at the individual level, we can

characterize the distribution of wt at the aggregate level using the Fokker-Planck

equation:
∂

∂t
ft(x) = − ∂

∂x
[µt(x)ft(x)] +

1

2

∂2

∂x2
[σ2
t (x)ft(x)] (4.2)

This is a deterministic partial differential equation that characterizes the evolution

of the density ft of wt at time t, and which will be central the methodology of this

paper because it lets us connect the way the wealth distribution evolves with the

underlying parameters of the wealth accumulation process.

4.2 Theoretical Framework

Time is continuous, indexed by t. The distribution of wealth is driven by three

factors: income and consumption, birth and death, and inheritance. We treat each

of them in turn.
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4.2.1 Income and Consumption

At each time t, the individual i holds Wit in wealth, consumes Cit, earns Zit in labor

income, and gets a rate of return rit on their wealth (including capital gains, if any).

At the individual level, wealth follows the differential equation:

∂

∂t
Wit = Zit + ritWit − Cit

Let Ȳt be the average income (labor and capital), and gt ≡ ∂
∂t
Ȳt/Ȳt is the growth rate

of average income. Define wit ≡ Wit/Ȳt, zit ≡ Zit/Ȳt and cit ≡ Cit/Ȳt. To stationarize

the dynamics of wealth, I will be working with these normalized quantities. The

evolution of wealth becomes:

∂

∂t
wit = zit + (rit − gt)wit − cit

Define yit ≡ zit + (rit − gt)wit, so that ∂
∂t
wit = yit − cit. I now introduce stochasticity

to the income process and the consumption process. Assume, without much loss of

generality, that over a small interval of time [t, t+ dt], income (yit) and consumption

(cit) are random with mean νit dt and µit dt, and variance τ 2
it dt and σ2

it dt respectively

(νit, µit, τ
2
it and σ2

it being themselves random processes). Then wealth evolves

according to the SDE:

dwit = [νit − µit] dt+ [τ 2
it + σ2

it]
1/2 dBit

where Bit is a Wiener process.2 That SDE has stochastic coefficients, which prevents

us from directly applying the Fokker-Planck equation (4.2). To avoid the need to

explicitly model the income and consumption processes separately, I apply a result of

stochastic calculus known as Gyöngy’s (1986) theorem, which allows us to drastically

reduce the dimensionality of the problem to solely focus on wealth.

Theorem 7 (Gyöngy, 1986). Let Xt be a n-dimensional stochastic process satisfying:

dXt = αt dt+ βt dBt

where αt and βt are bounded and nonanticipative n×1 and n×m stochastic processes,

respectively, βtβ
′
t is uniformly positive definite, and Bt is a m-dimensional Wiener

2This formulation implicitly assumes that income and consumption are uncorrelated conditional
on wealth. But the analysis still holds if they are. Define ρit ≡ Cov(yit, cit). Then the equation
holds if we redefine σ2

it to include covariance as σ2
it + 2ρit.
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process. Then there is a Markov process Yt satisfying:

dYt = at(Yt) dt+ bt(Yt) dBt

where Xt and Yt have the same marginal distributions for each t. We can construct

Yt by setting:

at(y) = E[αt|Xt = y] bt(y) = E[βtβ
′
t|Xt = y]1/2

Gyöngy’s (1986) theorem implies that we can write:

dwit = [νt(wit)− µt(wit)] dt+ [τ 2
t (wit) + σ2

t (wit)]
1/2 dBit (4.3)

where νt(w), µt(w) are the means of income and consumption conditional on wealth,

and τ 2
t (w), σ2

t (w) are the variances of income and consumption conditional on

wealth.3

The Fokker-Planck equation associated to (4.3) and which describes the density of

wealth ft is:

∂

∂t
ft(w) = − ∂

∂w

[
(νt(w)− µt(w))ft(w)

]
+

1

2

∂2

∂w2

[
(τ 2
t (w) + σ2

t (w))ft(w)
]

(4.4)

4.2.2 Birth and Death

I extend the model above with a birth and death process. People die randomly

according to year, age and sex-specific fertility rates. Let gt be the density of

wealth weighted by these mortality rates. Other people appear with a random initial

endowment drawn from a distribution with density h.

Let βt and δt be the overall birth and death rate. The total population Nt grows at

a rate nt = Ṅt/Nt = βt − δt. Adding this process turns equation (4.4) into:

∂

∂t
ft(w) = − ∂

∂w

[
(νt(w)− µt(w))ft(w)

]
+

1

2

∂2

∂w2

[
(τ 2
t (w) + σ2

t (w))ft(w)
]︸ ︷︷ ︸

income and consumption

+ βth(w)− δtgt(w)− ntft(w)︸ ︷︷ ︸
birth and death

3See appendix D.2.1 for details on how to arrive at that result.
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4.2.3 Inheritance

The wealth of people who die gets redistributed to their spouse or children, after

payment of the estate tax, if any. Contrary to income that can be viewed as

a continuous flow, inheritance is punctual and introduces a discontinuity in the

evolution of wealth. So I model it as a jump process.

The inheritance process is partially connected to the demographic process: it redis-

tributes the wealth of people who die in a given year to their next of kin. The way

that inheritance is redistributed depends on the estate tax and additional parameters

that capture intergenerational mobility (i.e. do wealthier people inherit more?) I

explain how I fully model the process in section 4.3.2. For now I take the joint

distribution of inheritance and wealth as given.

With a probability πt(w), people see their wealth jump from w to w + λ where λ

is the amount of inheritance received, net of taxes. Let st(λ|w) be the density of

the value of the inheritance, conditional on the value of wealth, and conditional on

receiving inheritance. We can model the jump process as a death with rate πt(w)

and as an injection with rate
∫
πt(w − λ)ft(w − λ)st(λ|w − λ) dλ:

∂

∂t
ft(w) = − ∂

∂w

[
(νt(w)− µt(w))ft(w)

]
+

1

2

∂2

∂w2

[
(τ 2
t (w) + σ2

t (w))ft(w)
]︸ ︷︷ ︸

income and consumption

+ βth(w)− δtgt(w)− ntft(w)︸ ︷︷ ︸
birth and death

+

∫
πt(w − λ)ft(w − λ)st(λ|w − λ) dλ− πt(w)ft(w)︸ ︷︷ ︸

inheritance

(4.5)

4.3 Data, Demography and Inheritance

4.3.1 Demography

I compute the entire demography of the United States from 1850 to 2100. Although

the income and wealth data does not start until 1962, the model requires demographic

data that starts much earlier. Indeed, I need to simulate how wealth gets transmitted

from one generation to the next. Therefore, if a supercentenarian dies in the 1960s, I

have to be able to simulate their entire life history to know how many live children

they have, and how old they are. For all years and all ages, I estimate data on the

population structure by age and sex, mortality (i.e. life tables), fertility (for both

sexes) and intergenerational ties (age and sex of children). Sometimes, data is only
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available by age groups (e.g. of five years) or a subset of years (e.g. every ten years).

Whenever necessary, I interpolate estimates with a monotonic cubic spline (Fritsch

and Carlson, 1980) to get data for every single year and age.

Population by Age and Sex Before 1900, I directly estimate the population

pyramid using decennial census microdata from the IPUMS USA database (Ruggles

et al., 2019). From 1900 to 1932, I use the National Intercensal Tables from the

United States Census Bureau. From 1933 to 2016, I use population estimates from

the Human Mortality Database.4 After 2016, I use the projections from the World

Population Prospects (United Nations, 2017).

Life Tables Before 1900, I use the historical life tables from Haines (1998). From

1900 to 1932, I use the Human Life Table Database, and from 1933 to 2016, life

tables from the Human Mortality Database. After 2016, I rely on projections from

the World Population Prospects (United Nations, 2017). All the tables are broken

down by sex.

Age-Specific Fertility Rates by Birth Order I estimate age-specific fertility

rates by birth order, for both sexes. For women, they are directly available from

1933 to 2016 from the Human Fertility Database. From 1917 to 1932, I use data

from the Human Fertility Collection. That same source provides fertility rates until

going back to 1895–1899, but without the breakdown by birth order. Therefore,

before 1917, I assume that the birth order composition remains constant. Before

1895, there is no age-specific data available, so I use the data on total fertility rate

and rescale the age profile from 1895–1899 to that value.5

Unlike female fertility rates, male fertility rates are not a standard demographic

indicator, so they are not directly available from any source. To estimate them, I

combine the age-specific female fertility rates with the joint distribution of the age

of opposite-sex couples since 1850 calculated using the decennial census microdata

from the IPUMS USA database (Ruggles et al., 2019).

Age and Sex of Children I simulate the distribution of the number, age and sex

of living children for in each year after 1962 (when income and wealth data starts),

every age and both sexes, which allows me to realistically model how wealth gets

transmitted from one generation to the next. To that end, I combine all of the data

4See https://www.mortality.org/hmd/USA/DOCS/ref.pdf for detailed primary sources.
5See Gapminder: https://www.gapminder.org/news/children-per-women-since-1800-in-

gapminder-world/

https://www.mortality.org/hmd/USA/DOCS/ref.pdf
https://www.gapminder.org/news/children-per-women-since-1800-in-gapminder-world/
https://www.gapminder.org/news/children-per-women-since-1800-in-gapminder-world/
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above. I make every person have children randomly over their past lifetime according

to year, age and sex-specific fertility rate. Because I have the breakdown by birth

order, I can take into account how the decision to have another child depends on the

number of children that one already has. Then, I make each child go through life

and die at random according to their year, age and sex-specific mortality rate. As

result, I can tie every individual in the database to fictitious descendants that are,

on average, representative the true composition of descendants.

4.3.2 Inheritance and the Estate Tax

Part of the inheritance process is determined by the demographics and the distribution

of wealth, while other parts have to be modeled separately. I assume that people die

at random, conditional on their age and sex, so that the distribution of inheritances

correspond to the distribution of wealth, weighted by mortality rates. I then assume

that the wealth of decedents is either redistributed to their spouse (if any) or to their

descendants (if they have no living spouse), after payment of the estate tax. The age

and sex of decedents are given by the demography (see section 4.3.1). I assume that

inheritance is split equally between children, as is the norm in the United States

(Menchik, 1980).

While the demographic aspect of inheritance is endogenously determined by demog-

raphy, I still need to model separately how wealth gets distributed for a given age

and sex. This captures intergenerational wealth mobility in the sense that wealthier

people might also have wealthier parents and thus inherit more. There are two aspects

to this question: the extensive margin (how likely are you to receive inheritance in a

given year?) and the intensive margin (how much inheritance do you receive?) To

address this question, I use data from the SCF, which has been recording inheritance

consistently since 1989. Note that because the probability of receiving inheritance in

a given year is very low overall (about half a percent, see figure 4.4a), I have to pool

all the 1989–2016 waves in order to get sufficient sample sizes.

Extensive Margin Let Di = 1 if individual i receives inheritance, and Di = 0

otherwise. Let Ai be their age, and Wi their wealth. Assume that:

P{Di = 1|Ai = a,Wi = w} = P{Di = 1|Ai = a}φ(FAi=a(w)) (4.6)

where FAi=a is the cumulative distribution function (CDF) of wealth conditional

on age, and
∫ 1

0
φ(r) dr = 1. By construction, the expected value of the right-

hand side of (4.6) conditional on age is equal to P{Di = 1|Ai = a} so that the
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(d) Joint Ranks in the Wealth and the
Inheritance Distribution, Conditional on

Age

Source: Author’s computation using the SCF (1989–2016). Gray ribbons correspond to the 95%
confidence intervals. In figure 4.4d, opacity is proportional to the weight of observations.

Figure 4.4: Modeling of Inheritance
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specification makes probabilistic sense.6 Note that FAi=a(w) is the rank of w in the

wealth distribution (conditional on age), which is how we can make the formula (4.6)

consistent regardless of the shape of the wealth distribution.

The value of P{Di = 1|Ai = a} is determined by demography, so we only need to

estimate φ. I start by calculating a rank in the wealth distribution conditional on age

by running nonparametric quantile regression of wealth on age for every percentile

(see figure 4.4b). I then regress the dummy Di for having received inheritance on

that rank, multiplied by P{Di = 1|Ai = a}. I use ordinary least squares (OLS)

and a cubic polynomial with coefficients constrained so that its integral over [0, 1]

equals one (see figure 4.4c). As we can see, even after partialling out the effect of

age, wealthier people still experience a higher probability of receiving inheritance. I

use that polynomial as my estimate of φ.

Intensive Margin I account for the intensive margin by modeling the joint dis-

tribution of the ranks in the wealth distribution and the inheritance distribution

(i.e. the copula), conditional on age and on having received inheritance. I take the

subsample of inheritance receivers and calculate their rank in the wealth and the

inheritance distribution using nonparametric quantile regression as I did for the

extensive margin.

The dependence between the two ranks is weak, but significant (see figure 4.4d):

their Kendall’s tau is equal to 7.2%. I represent this dependency parametrically using

a bivariate copula. I select the most appropriate model out of a large family of 15

single-parameter copulas by finding the best fit according to the Akaike information

criterion (AIC), which is the Joe copula.78 I estimate its parameter so as to match

the empirical value for Kendall’s tau.

Estate Tax I account for the federal estate tax using the complete estate tax

schedule and exemption amount for each year. The top marginal estate tax rate

has followed a clear inverted U-shaped pattern over the 20th century (figure 4.5a),

having been reduced by half since its mid-century peak. However, the changes to

the overall progressivity of the estate tax are more ambiguous (figure 4.5b). While

the top marginal tax rate was very high in the 1950s, the top bracket did not kick in

6It is the direct result of a change of variable r = FAi=a(w) and using the fact that ∂
∂wFAi=a(w) =

fAi=a(w), so that
∫ +∞
−∞ φ(FAi=a(w))fAi=a(w) dw =

∫ 1

0
φ(r) dr = 1.

7The list of copulas includes the Gaussian copula, Student’s t copula, the Clayton copula, the
Gumbel copula, the Frank copula, the Joe copula, and rotated versions of these copulas.

8The Joe copula has the parametric form Cθ(u, v) =

1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
.
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Figure 4.5: Estate Tax
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until extremely high levels of wealth. The 1980s reforms significantly reduced the

top tax rate and increased the exemption amount, so that by 1990, the very top and

the upper middle of the wealth distribution were facing lower average tax rates. But

individual owning about $10M of wealth were actually facing slightly higher average

tax rates. By now, however, the estate has been lowered so much that its profile is

unambiguously less progressive than in the 1950s.

4.3.3 Income and Wealth

For the income and wealth data, I primarily rely on the DINA public microdata

from Piketty, Saez, and Zucman (2018). These files are annual (except for 1963 and

1965) since 1962. Each observation corresponds to an adult individual (20 or older),

and each variable correspond to an item of the national accounts, that is distributed

to the whole adult population. These files distribute the entirety of the income and

wealth of the United States. The public version regroups observations for anonymity,

so it has smaller sample sizes than the one they use internally, and does not exactly

reproduce results from their more complete internal files (Saez and Zucman, 2018).

The discrepancies, however, are small.

This data has several advantages. It provides distributional estimates that are

consistent with macroeconomic aggregates. It has rather large samples (from about

35 000 in the 1960s to about 65 000 today), with oversampling of the richest. And

because it is based on tax data, it captures the top tail of the distribution well. It does

have some drawbacks, though. First, it has limited socio-demographic information:

in particular, age information is only available in the form of very broad age groups.

Second, it estimates wealth using the capitalization method: that is, it assumes

that everyone gets the same rate of return from the same type of asset. Under

the right assumptions (Saez and Zucman, 2016), that method provides accurate

estimates of the distribution of wealth, and of average income conditional on wealth.

But it almost certainly underestimate the variance of capital income conditional on

wealth. Third, the data does not include capital gains, because they are not part of

national income as defined by the national accounts. For these reasons, I make some

adjustments and imputations to these data, using the SCF and national accounts.

I use post-tax national income as my income concept of reference. It corresponds to

income after all taxes and transfers. It also distributes government expenditures and

the income of the corporate sector to individuals, so as to sum up to net national

income.
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Capital Gains We can measure capital gains when they accrue to individuals,

or when they are realized. For our purpose, accrued capital gains are more useful

than realized ones, because they are the one that reconcile changes in the value

of the balance sheet with national income and savings. Whether a capital gain is

realized now or later, on the other hand, is the result of various tax and economic

incentives that not relevant here and does not correspond to any meaningful economic

aggregate.

The DINA data only records taxable capital gains, which is essentially a measure of

realized capital gains. These are a poor proxy for accrued capital gains (Alstadsæter

et al., 2017). Instead, I estimate them individually using the capitalization approach

of Robbins (2018). I retrieve the rate of capital gains by year and asset type from

the national accounts (Piketty, Saez, and Zucman, 2018, table TSD1 in appendix).

Then, I assume for a given asset type, everyone gets the same rate of capital gains.

By construction, these micro-level estimates of capital gains are consistent with

macro totals. Their distribution follows the logic of the Saez and Zucman (2016)

capitalization method.9 Robbins (2018) provides a thorough discussion of why that

measure is more appropriate to analyze the role of asset prices changes to inequality

and the economy.

National income including capital gains can be quite volatile (figure 4.6a), but on

average their inclusion matters on several fronts. Robbins (2018) shows that their

inclusion overturns certain stylized facts about the United States economy (such as

the long run decline of saving rates) and strengthen others (such as the rising capital

share and increase of income inequality). As shown in figure 4.6b, capital gains were

dampening the top 1% share of post-tax national income during most of the 1970s,

but since then they have consistently increased it.

Wealth by Age The age information in the DINA data is very limited so I

cannot use it. Instead, I import it from the SCF and demographic estimates using

constrained statistical matching. I calculate the rank in the wealth distribution

in both the DINA and the SCF data, and the rank in the age distribution by sex

and household type (single or couple) in the SCF data. Then, I match the DINA

observations one by one to SCF observations based on their wealth rank to give them

9Although the income measure in the DINA data does not include capital gains, it does distribute
income from the corporate sector to the owners of capital, with may partly account for changes in
asset prices. My measure of capital gains is net of retained earnings, so that there is no double
counting.



4.3. DATA, DEMOGRAPHY AND INHERITANCE 167

●
●

●●●●●●
●

●●
●

●
●

●●
●●

●●
●●●

●
●●●●●●

●●
●

●
●

●
●●●●

●
●

●●
●

●
●●

●●
●

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

$90,000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
year

ne
t n

at
io

na
l i

nc
om

e
 p

er
 a

du
lt 

(2
01

4 
$)

● excluding capital gains

including capital gains

(a) Net National Income, with and without Capital Gains

●
● ●

●
●

●
●

● ● ●
● ● ●

● ● ●
●

● ● ●

● ●

●

●

●
● ●

●

●

● ●
●

●
● ●

●
● ● ●

●
●

●
●

● ●
●

● ●

●

●
●

5.0%

10.0%

15.0%

20.0%

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
year

to
p 

1%
 s

ha
re

 o
f

 p
os

t−
ta

x 
na

tio
na

l i
nc

om
e

● excluding capital gains

including capital gains

(b) Post-tax National Income Share, with and without Capital Gains

Source: Author’s computations using the public DINA microdata and table TSD1 (online appendix)
from Piketty, Saez, and Zucman (2018). Note: The unit of analysis is the adult individual (20 or
older). Income is split equally between members of couples. Capital gains are estimated assuming
a constant rate of capital gains by asset type. Rates of capital gains by asset types smoothed using
a 5-year moving average.

Figure 4.6: The Impact of Capital Gains on National Income and Inequality
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a rank in the age distribution.10 Finally, I use the population structure from the

demographic data to attribute an age to every DINA observation. By construction,

the method preserve the wealth distribution in DINA, the population by age and sex

from demographic sources, and the copula between wealth and age from the SCF.

Variance of Income by Wealth Because the capitalization approach in the

DINA data assumes a fixed rate of return by asset type, it is likely to understate the

variance of capital income conditional on wealth. Indeed, it will only account for the

“between assets” component of total variance, not the “within assets” component.

Given that the variance of income conditional on wealth is one of the drivers of the

dynamic of wealth, I make an adjustment the DINA estimates using the SCF.

Since 1989 (previous waves provide insufficient data due to lack of oversampling),

the standard deviation of the income/wealth ratio at the very top of the distribution

is equal to 10.7%, compared to 5.2% in DINA. I use this difference to compute a

“within assets” variance component by wealth that I add to the DINA estimates of

the income variance conditional on wealth. Note that the survey estimate of this

variance is by no means perfect, and is in fact likely to be inflated for two reasons.

First, measurement error for either income and wealth might increase the spread of

the income/wealth ratio in the survey for spurious reasons. Second, the income in the

SCF refers to the previous year, while the wealth refers to the time of the interview:

this disconnect introduces additional noise that will have a tendency to also increase

the variance of the income/wealth ratio. However, I stress that by construction this

adjustment can only affect the interpretation of some parameters of the model, not

the overall dynamics of wealth. Indeed, the evolution of wealth ultimately depends

on σ2
t (w) + τ 2

t (w), the sum of the variance of consumption and income. Therefore,

as will be explained in section 4.4, in effect the model will directly estimate the

overall variance σ2
t (w) + τ 2

t (w), and then estimate σ2
t (w) by subtracting τ 2

t (w). To

the extent that we overestimate the variance of income, we will underestimate the

variance of consumption, and vice versa. In any case, the results of section 4.5 will

be unaffected.

10Note that both datasets are weighted, so that observations end up being duplicated and
partially matched to one another. When the samples contain M and N observations respectively,
the resulting dataset contains at most M +N − 1 observations.
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4.4 Identification and Estimation

For concision, define in equation (4.5):

φt(w) ≡ βth(w)− δtgt(w)− ntft(w) (the birth/death effect)

ψt(w) ≡
∫
πt(w − λ)ft(w − λ)st(λ|w − λ) dλ− πt(w)ft(w) (the inheritance effect)

So that the Fokker-Planck equation (4.5) becomes:

∂

∂t
ft(w) = − ∂

∂w

[
(νt(w)− µt(w))ft(w)

]
+

1

2

∂2

∂w2

[
(τ 2(w) + σ2(w))ft(w)

]
+ φt(w) + ψt(w)

I will use uppercase letters to denote integrated quantities, in particular:

Ft(w) =

∫ w

−∞
ft(s) ds Φt(w) =

∫ w

−∞
φt(s) ds Ψt(w) =

∫ w

−∞
ψt(s) ds

4.4.1 Identification

General Result I integrate the Fokker-Planck equation with respect to w, borrow-

ing a suggestion from Lund, Hubbard, and Halter (2014) in the context of physical

chemistry.11 After reordering terms, I get:

∂
∂t
Ft(w)

ft(w)
− Φt(w)

ft(w)
− Ψt(w)

ft(w)
+ νt(w)− 1

2

∂

∂w
τ 2
t (w)− 1

2
τ 2
t (w)

∂
∂w
ft(w)

ft(w)
=

µt(w) +
1

2

∂

∂w
σ2
t (w) +

1

2
σ2
t (w)

∂
∂w
ft(w)

ft(w)
(4.7)

The left-hand side of the equation only contains estimable quantities, while the

right-hand side is a linear function of ∂
∂w
ft(w)/ft(w) whose slope and intercept relate

to the unknown parameters µt(w) and σ2
t (w).

Therefore, if these quantities are stable over time, then for a level of wealth w, we

should expect ∂
∂w
ft(w)/ft(w) and the left side of the equation to fall alongside a

straight line. Assuming that there is some variability of both sides of the equation,

we are able to estimate the parameters of interest simply by fitting a line. This leads

to the following result.

11To integrate the equation, we must be able to invert the time derivative with the integral sign,
which is allowed either it we assume that the support of wealth is bounded from below, or if the
density of wealth is Lipschitz-continuous (i.e. has a bounded derivative).
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Theorem 8 (Identifiability of the Model). Assume that there is at least two dates,

t1 and t2, for which:

(i) For all w, we observe all the quantities in (4.7), except µt(w), σ2
t (w) and

∂
∂w
σ2
t (w).

(ii) The parameters µt(w) and σ2
t (w) are the same in t1 and t2: for all w, µt1(w) =

µt2(w) = µ(w) and σ2
t1

(w) = σ2
t2

(w) = σ2(w).

(iii) The distribution is different between t1 and t2, such that ∂
∂w
ft1(w)/ft1(w) 6=

∂
∂w
ft2(w)/ft2(w) almost surely.

Then the functions µ(w) and σ2(w) that satisfy (4.7) are unique, i.e. the model is

identified.

The assumptions required to estimate the model are relatively innocuous. Assumption

(i) states that we can observe, or at least separately estimate, all the relevant quantities

except consumption, which we seek to identify. Assumption (ii) states that we need

some stability in the consumption process over time to be able to estimate it. And

assumption (iii) states that we need some variability in the distribution of wealth,

so that we cannot already be at the steady state. This is clearly the for the United

States since the 1960s. In theory only two observations are needed to estimate

the model. In practice it is better to have many more. First, because we need to

estimate the time derivative of the CDF of wealth in (4.7), which requires several

data points. Second, because there will always be some measurement error for the

different quantities, which can be averaged out when using many data points.

Interpretation in a Simplified Case To better understand the dynamics implied

by the estimating equation, consider the following simplified case, which nonetheless

capture all the main intuitions of the more complete setting. Ignore the role of

demographics (Φt(w) = 0), inheritance (Ψt(w) = 0) and the conditional variance

of income (τ 2
t (w) = 0). Consider a high level of wealth w, and assume that at

these levels the mean and the standard deviation of consumption are proportional

to wealth (µt(w) ≡ µw and σt(w) ≡ σw). Define the conditional income-to-wealth

ratio γ(w) ≡ νt(w)/w + g (note the apparition of the economy’s growth rate that

was previously included in νt(w) because wealth was normalized by average income).

After dividing both sides by w, the estimating equation (4.7) simplifies to:

∂
∂t
Ft(w)

wft(w)
+ γ(w)− g = µ− σ2

(
−1

2

w ∂
∂w
ft(w)

ft(w)
− 1

)
(4.8)



4.4. IDENTIFICATION AND ESTIMATION 171

Under these circumstances, the top tail converges towards a power law (Gabaix,

2009). Thus, assume that wealth is Pareto-distributed with Pareto coefficient α > 1,

i.e. ft(w) ∝ x−α−1. Then −1
2
w ∂
∂w
ft(w)/ft(w) − 1 = (α − 1)/2 > 0 can serve as a

proxy for inequality: the higher it is, the lower inequality.12 On the left-hand side,

inequality increases when ∂
∂t
Ft(w)/(wft(w)) is negative, and decreases otherwise. We

can write equation (4.8) as Yt(w) = µ− σ2Xt(w).

0
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Figure 4.7: Simplified Dynamics of Wealth Inequality in the Top Tail

Figure 4.7 describes the situation. The Pareto coefficient is on the x-axis: the right

side of the figure corresponds to low inequality, and the left side to high inequality.

The y-axis relates to changes in inequality. We can separate the plane into two

regions: the gray one where ∂
∂t
Ft(w)/(wft(w)) < 0 and therefore inequality increases,

and the white one where it decreases. The system moves alongside the (a) line, either

up or down depending on whether we are in the gray area or the white area. We keep

moving up or down until we meet the (b) line that delimits both these areas: thus,

the intersection between (a) and (b) indicates the steady-state level of inequality.

The slope of (a) is determined by the diffusion coefficient σ2, which captures mobility,

while the intercept µ corresponds to the average consumption/wealth ratio.

This diagram helps perform some comparative statics. An increase in mean con-

sumption at the top implies that the line (a) shifts upwards, leading to a steady

state with lower inequality. A higher mobility (that is, an increase in σ2) increases

the slope of (a) while keeping its intercept constant: so it meets the line (b) at a

lower value of Xt(w), which implies higher steady-state inequality. If labor income

12We can assume in general that α > 1, otherwise mean is infinite.
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is negligible at the top, then γ(w) ≈ r, so that the line (b) is positioned at r − g.
Therefore, inequality is an increasing function of r − g (see Piketty, 2014; Piketty

and Zucman, 2015).

We can also use the figure to explain what makes the model identifiable. If we solely

focus on the steady state, there is an infinity of values of (µ, σ2) that can reach a

given level of inequality, making the model impossible to estimate. Yet these different

parameter values would yield very different dynamics of inequality. Having both low

consumption and low mobility means that (a) is very flat, therefore ∂
∂t
Ft(w)/(wft(w))

is very small, and we converge very slowly to the steady state. Reaching the same

steady state by having both high consumption and high mobility happens a lot faster.

That line of reasoning breaks down if we are already at the steady state, however,

which explains why assumption (ii) is required to identify the model.

4.4.2 Estimation

In essence, the estimation of the model involves fitting the line (a) from figure 4.7.

This section covers how to do so in practice.

Transformation of Wealth Because of its fat tail, it can be difficult to estimate

the density of wealth. To overcome the problem, I will be working with wealth

transformed using the inverse hyperbolic sine function: x 7→ asinh(x). This practice

is common is the literature on wealth inequality (e.g. Thompson and Suarez, 2015;

Kakar, Daniels, and Petrovska, 2019; Steinbaum, 2019). The transformation is

bijective, strictly increasing, behaves linearly from low values and logarithmically

for high values. Hence, it acts as a logarithmic transform for the top tail without

creating problems for zero or negative wealth. I use Itō’s lemma to move from the

dynamics of wealth to that of its transform:

d asinh(wt) =

[
νt(wt)− µt(wt)√

1 + w2
t

− 1

2

τ 2
t (wt) + σ2

t (wt)

1 + w2
t

wt√
1 + w2

t

]
dt

+
(τ 2
t (wt) + σ2

t (wt))
1/2√

1 + w2
t

dBt

There are two changes compared to the dynamics of untransformed wealth. First, all

quantities are divided by
√

1 + w2
t , meaning that we use ratio quantities for high

values of wealth, and absolute quantities for low values. Second, the drift term

is adjusted by a factor that depends on the diffusion. I use tildes to designate to

quantities that pertain to transformed wealth: that is, I will write ν̃t, µ̃t, etc. to
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denote the variables νt, µt, etc. divided by
√

1 + w2
t , and use F̃t and f̃t for the CDF

and density of transformed wealth.

Estimating Equation Assume that µt and σ2
t are the same for all t. To simplify

analysis and limit the number of parameters, assume that σ(w) = σ̃
√

1 + w2. This

assumption meets the usual requirements of the literature for models of the wealth

distribution. Because the standard deviation of consumption is scale invariant at

the top, it can produce Pareto-shaped tails (Gabaix, 2009). At the same time, by

breaking the scale invariance at the bottom, it makes it possible to get a stationary

process. This is similar in spirit to what was done by Gabaix (1999) with a strictly

positive reflecting barrier, but smoother (see Saichev, Malevergne, and Sornette

(2010, p. 16), for more details on that approach).

With that assumption, the estimating equation (4.7) for transformed wealth becomes:

∂
∂t
F̃t(w)

f̃t(w)
− Φ̃t(w)

f̃t(w)
− Ψ̃t(w)

f̃t(w)
+ ν̃t(w)− 1

2

∂

∂w
τ̃ 2
t (w)

+
1

2
τ̃ 2
t (w)

[
−

∂
∂w
f̃t(w)

f̃t(w)
− w√

1 + w2

]
= µ̃t(w)− 1

2
σ̃2
t

[
−

∂
∂w
f̃t(w)

f̃t(w)
− w√

1 + w2

]
(4.9)

For concision, write this equation as Ỹt(w) = µ̃(w) − σ̃2X̃t(w). To see the link

with the simplified estimating equation (4.8), note that the logarithm of a Pareto

distributed variable follows an exponential distribution. Consider that for the

top of the distribution, f(w) ∝ w−α−1. Then, transformed wealth approximately

follows an exponential distribution with coefficient α, so that − ∂
∂w
f̃t(w)/f̃t(w) ≈ α.

Furthermore, w/
√

1 + w2 ≈ 1. Therefore, we have X̃t(w) ≈ (α − 1)/2, as in

equation (4.8). Matters are somewhat more complicated for the left-hand side,

though the intuition is similar. The time derivative ∂
∂t
F̃t(w)/f̃t(w) is equal to zero

when the rest of the left-hand side equals the right hand side, which determines

the steady state. However, it is not possible anymore to separate the plane neatly

into two fixed regions because the effects of demographics (Φ̃t(w)) and inheritance

(Ψ̃t(w)) are endogenous to the distribution of wealth, so the steady-state can only

be determined through simulations.

Fitting the Model Assume that we observe the system over at a series of dates

(t1, . . . , tk). Define a grid of wealth values (w1, . . . , wn). Using equation (4.9), the

estimation of the model reduces to the estimation of a fixed-effect regression with
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Figure 4.8: Estimation of the Main Model



4.4. IDENTIFICATION AND ESTIMATION 175

the specification:

∀t ∈ {t1, . . . , tk} ∀i ∈ {1, . . . , n} Ỹt(wi) = µ̃(wi)− σ̃2X̃t(wi) + εit

where µ̃(wi) is a wealth-specific fixed effect, σ̃2 is the opposite of the slope, and εit

captures measurement error.13 I estimate the CDF and density for the distribution

of transformed wealth using kernel density estimators. I simulate the demographic

and inheritance effects (see section 4.3.2 and 4.3.1), and also estimate resulting

distributions using kernel density. For derivatives, both with respect to time and

wealth, I run a local polynomial estimator of degree one.14 For income conditional

of wealth, I separate the sample into two periods (1962–1980, and 1981–2014) that

constitute the two branches of the U-shaped pattern of wealth. I average income over

these two periods so that the model focuses on the long-run mechanisms, rather than

short-run dynamics that would introduce noise. I perform the estimation for levels

of wealth greater than 50 times average national income, which roughly correspond

to the top 1% wealth threshold today. This follows from the fact that the evolution

of the top 1% has determined the trajectory of wealth inequality in the United

States (see section 4.1.1) and that the model requires meaningful variation in the

distribution to properly identify the effects at hand (cf. assumption (ii)).

Figure 4.8 graphically shows the results from the estimation. Panel 4.8a shows a

diagram somewhat similar to figure 4.7, but with actual data, for a level of wealth

corresponding to 100 times average national income. As we see, the data points for

the periods 1962–1980 and 1981–2014 are more or less spread alongside the same

line, despite the sharp change in the wealth/income ratio between both periods that

impacts the left-hand side of the equation. This suggests that there hasn’t been any

strong structural changes since 1962 in terms of consumption/wealth profiles. There

is a handful of points that stand out: these all correspond to the 1981–1989 period.

That can be attributed to the reversal of many dynamics, so that several derivatives

change sign at the same, making it harder to estimate them properly. In practice,

removing or including these points does not change the results.

The slope is the same for all levels of wealth, and correspond to the variance of

consumption/wealth. It is equal to σ2 = 0.077. The fixed effects capture the

13In fact, measurement error should affect both the dependent and the independent variable, so
the standard within estimator for fixed effect regression may give biased results. That being said, I
have tested alternative estimators such as orthogonal least squares that account for error on both
terms of the equation, and results were virtually identical.

14For the term ∂
∂w f̃t(w)/f̃t(w), note that it is equal to ∂

∂w log f̃t(w), so that I directly estimate
the derivative of the logarithm of density. Because the logarithm of the density of an exponential
distribution is linear, this yields more robust results.
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average consumption/wealth ratio: they correspond to the intercept in panel 4.8a.

In panel 4.8b, I plot that consumption/wealth ratio for all levels of wealth. That

profile is a decreasing function of wealth. During the 1962–1980 period, that ratio

was consistently higher than income, so that the decrease in wealth inequality was

driven by dissavings at the top. Since 1981, however, income has increased, allowing

people at the top to maintain the same relative levels of consumption while still

accumulating wealth.

Bottom of the Distribution To fit the model, I restricted myself to wealth below

50 times average national income. To account for the distribution of wealth below

that level in simulations (see section 4.5), I assume that the diffusion parameter

σ̃ is the same for the whole distribution. Under that assumption, we can directly

estimate µ̃(w) for all levels of wealth by taking the average of Yt(wi) + σ̃2X̃t(wi) over

all time periods.

That approach is an approximation, because it assumes that we can infer wealth

mobility throughout the entire distribution based on mobility in the top tail. But

in practice it is the simplest and most robust way to match the actual dynamics

of wealth at all wealth levels. In particular, it is preferable to the inclusion of low

and medium wealth when fitting the model, or to the fitting of a separate complete

model for these levels of wealth. Indeed, some quantities for the bottom and middle

are harder to estimate (especially the derivative of the density), and the amount

of meaningful variation is lower (because the largest changes have happened to the

top tail, see section 4.1.1). In addition, there may be some other, time-varying

phenomenons that we doe not properly capture. All of this makes the signal-to-noise

ratio less favorable. As a result, if we tried to include that part of the data with the

top when fitting the model, we would lower the quality of the fit for the top — which

has been driving most of the increase in inequality — and therefore diminish our

ability to reproduce the main facts about wealth inequality. If we tried to estimate

both the diffusion and the drift by fitting a complete model separately, we would get

unstable and problematic results (including negative variances in some cases).

However, this approximation has a very limited impact on the overall results. First,

because what matters to the shape of the wealth distribution is not the value of

diffusion itself, but the joint effect of both drift and diffusion. By taking the average

of Yt(wi) + σ̃2
t X̃t(wi) to estimate average consumption, I ensure that, taken together,

the estimate of drift and diffusion reproduce observed patterns. Second, because

what matters the most is to faithfully reproduce the top of the distribution, which has

driving the dynamics of inequality (see section 4.1.1). In practice, the assumptions
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for the bottom and the middle are here to ensure a roughly stable wealth distribution

the bottom.

4.5 Results

Having estimated the model of wealth accumulation for the United Sates economy, I

can now reproduce the observed trajectory of wealth inequality. More importantly,

I can also change certain parameters and observe how these changes would affect

wealth inequality. I can also make projections of how high wealth inequality is likely

to go under current circumstances, and see what could affect that level. I start by

studying the past evolution of the wealth distribution in section 4.5.1, and then the

future in section 4.5.2.

4.5.1 Past Evolution (1962–2014)

For the past evolution of wealth, we may first check that if we feed the model the

actual parameters of the economy, we can reproduce the observed evolution of the

wealth distribution. That is, I assume that simulated observations get the same

labor income as people with the same rank in the true wealth distribution, and that

they the rate of return on their capital income. I also use observed demographic

parameters, and the actual estate tax schedule.

As shown in panel 4.9a, I match the U-shaped pattern of wealth inequality since

1962. Because the model focuses on long-run dynamics, it does not reproduce the

small variations that are primarily driven by short-run changes in asset prices. In

the long run, however, the model matches the data well.

Panel 4.9b further compares the simulated data with the whole distribution for all

levels of wealth by looking at the density. The tail is getting increasingly fatter, as

expected given the rise in inequality: the model matches that rise, but also reproduces

the overall shape of the distribution for lower levels of wealth.

4.5.1.1 Labor and Capital Income

In figure 4.10, I estimate what the distribution of wealth would look like today if the

distribution of labor income or returns on capital had stayed the same after 1980

as it was over the 1962–1980 period. That is, in panel 4.10a, I give people with a

given rank in the wealth distribution after 1980 the average mean and variance of

labor income from people with the same rank over 1962–1980. By construction, this
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implies that the distribution of labor income is held fixed after 1980. In panel 4.10b,

I do the same for the rates of return on capital (including capital gains).

Both labor income and capital returns have been significant drivers of wealth in-

equality: taken together, they account for most of the 15 pp. increase in the top 1%

wealth share observed since 1980. Most of it can be attributed to increases in mean

income conditional on wealth, as the conditional variance of income has not changed

much. The role of labor income inequality is somewhat larger, but both factors are

major contributors.

4.5.1.2 Deciphering the Role of r – g : Capital Gains and the Growth

Rate

The role played by capital rates if return in figure 4.10b is directly connected to

the impact of the spread between the rate of return on capital and the growth rate

(r − g) that was popularized by Piketty (2014) (see also Piketty and Zucman, 2015).

In figure 4.10b, I fixed r but not g. In figure 4.11a, I do the opposite exercise and fix

g but not r. We can see that lower economic growth since 1980 has played some role

in increasing wealth inequality, but that this role remains more limited than that of

capital returns. Still it implies that the overall impact of increasing r − g has been

an important contributor to wealth inequality, on par with the rise of labor income

inequality.

Though there is a twist. The usual story behind r − g emphasizes normal capital

returns (i.e. excluding capital gains), but these cannot explain rising wealth inequality.

In fact, according to the DINA data, the average rate of return at the top has been

somewhat lower since 1980 than before 1962. It is capital gains that explain most of

the increase: as figure 4.11b shows, the rise of wealth inequality assuming no capital

gains after 1980 is essentially the same as that assuming the overall rate of return as

the 1962–1980 period.

The crucial role of capital gains is somewhat at odds with many models of wealth

accumulation in the long run that tend to focus on normal capital returns: capital

gains tend to be treated as short-run phenomenons that can be ignored when it

comes to long-term trends. One of the reasons behind this view is that capital

gains represent a change in relative prices. And, almost by definition, relative prices

should not be changing when the economy is at its steady state, so there cannot be

capital gains in the long run. That view is challenged by the fact that capital gains

have been a persistent and economically meaningful phenomenon for the United
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States economy, especially since the 1980. It remains possible that the role of capital

gains will eventually disappear, and the period from 1980 to today will become a

historical anomaly. But there is an alternative view put forward by Robbins (2018),

who shows that in a neoclassical model with imperfect competition, it is possible

for capital gains to represent a meaningful fraction of national income at the steady

state. Which of these view holds true would have a significant impact on the future

evolution of the wealth distribution.

Panel 4.11a further shows how lower growth can increase wealth inequality. Assuming,

at the extreme, that the growth rate fell to zero after 1980, top 1% wealth share

would be about 5 pp. higher than it is today.

4.5.2 Future Evolution (2015–2100)

We can run the model to get projections of future inequality levels under various

scenarios, and determine the steady state of wealth inequality, if any. I stress that

these forecasts are always conditional on various parameters (regarding consumption,

income, etc.) I do not attempt to endogenize these parameters: the point is to get

some idea of how the wealth distribution reacts to them in the long run, and how

high inequality can go under their current value.

The first result is presented in figure 4.12a. Under current parameters, the wealth

distribution in the United States would reach its steady state by the 2040s, with a

top 1% share around 45%. This would put it at a level similar to that of the early

20th century — or even slightly higher.

The steady state would correspond to a much lower level of inequality, had the

distribution of labor or the distribution of capital rates of return stayed at its 1962–

1980 level. The level of inequality in the long run would correspond to a top 1%

wealth share of 33% and 35%, respectively.

4.5.3 The Taxation of Wealth

In this section, I use the model of this paper to assess the long run effect of wealth

taxes at the top of the distribution. The literature on the topic has grown significantly

over the past few years. Recent theoretical contributions have stressed that the

long-run elasticity of wealth with respect to the net-of-tax rate is a sufficient statistic

for optimal capital taxation (Saez and Stantcheva, 2018; Piketty and Saez, 2013).15

15The famous result of Chamley (1986) and Judd (1985) — tax the optimal tax rate on capital
is zero in the long-run — can be interpreted as the result of an implicit assumption that wealth
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(b) Top 1% Wealth Share: Impact of Capital Gains

Source: Author’s simulations. Note: The unit is the adult individual (20 or older), and wealth is
split equally between members of couples.

Figure 4.11: Past Evolution of Wealth: The Role of Growth and Capital Gains
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Figure 4.12: Future Evolution of Wealth
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Unfortunately little is known about the value of that elasticity.

Several empirical papers have used quasi-experimental settings to estimate the

short-run elasticity of wealth with respect to the net-of-tax rate: Seim (2017) in

Sweden, Londoño-Vélez and Àcila-Mahecha (2018) in Colombia, Brülhart et al.

(2016) in Switzerland, and Jakobsen et al. (2019) in Denmark. With the exception

of Switzerland, these elasticities tend to be small. This is consistent with the view

that a government trying to raise revenue with a one-off, unexpected wealth tax can

indeed choose a very high marginal rate.

But the ability to raise revenue sustainably from a wealth tax depends on the long-run

elasticity. That elasticity is likely to be larger than in the short run. The short-run

elasticity only captures tax avoidance or short-run saving responses. But over time,

wealth taxes also keep people from accumulating wealth, either through mechanical

(lower post-tax rates of return) or behavioral effects (lower savings). This leads to a

slow erosion of the tax base. Because it takes a long time to materialize, it is hard

to get a clean identification of this effect in the data. As a result, we lack a clear

understanding of how the stock of capital would react to wealth tax in the long run.

Recently, two papers have tackled that question. Jakobsen et al. (2019) use their

short-run elasticity estimates to calibrate a structural model of savings at the top.

They indeed find a higher elasticity in the long-run. Saez and Zucman (2019)

consider the problem of taxing the very top of the wealth distribution (billionaires)

using data from the Forbes rankings. These two papers provide models that shed

different lights on the problem. Jakobsen et al. (2019) model wealth accumulation

using an deterministic model of intertemporal choice. This model features standard

preferences over a consumption path and a taste for end-of-life wealth (i.e. bequests).

They use it to derive analytical expression linking the long-run elasticity of wealth to

the short-run elasticity and preference parameters. This model emphasizes the role

of behavioral responses on consumption, but it is deterministic so it does not account

for the role that mobility plays in shaping the distribution of wealth. This stands in

contrast to the model of Saez and Zucman (2019). They focus on billionaire wealth,

and therefore assume that the role of consumption is negligible. They consider a

simple model in which billionaires are subjected to a given tax rate on their total

wealth (not just above a threshold), while everything else remains the same. In

that model, the sole determinant of the elasticity of wealth in the long-run has to

do with mobility. If wealth mobility is low, then a wealth tax ends up taxing the

is infinitely elastic. Various contributions have overturned the result by introducing, for example,
uncertainty (Aiyagari, 1994), incomplete markets (Farhi, 2010) or heterogenous altruism (Farhi
and Werning, 2013).
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same people again and again: as their wealth mechanically goes down, so does the

tax base. Therefore, the elasticity of taxable wealth is high, and the ability to tax

wealth is the long-run is limited. However, if mobility is high, the tax base often gets

renewed. Individual people are subjected to the tax during shorter periods of time,

with new, previously untaxed wealth entering the tax base on a regular basis: as a

result, the elasticity is lower.

I contribute to that literature by providing a simple, practical and transparent

method to determine how the tax base reacts to a wealth tax in the steady-state. It

connects short-run elasticities with the dynamics of wealth using the dynamic model

of this paper to estimate a long-run elasticity. This allows me to incorporate insights

from Jakobsen et al. (2019) and Saez and Zucman (2019) into single formula. In

the short run, I account for behavioral response on savings and tax avoidance using

reduced-form elasticities. Then, I use the model of this paper to compute how these

effects accumulate over time to produce long-run responses of the tax base to the

wealth tax.

I show that, under very general conditions, the steady-state density of wealth with

a wealth tax is equal to the steady-state density of wealth without a wealth tax,

multiplied by an additional term that only depends on the tax schedule, wealth

mobility, and some behavioral elasticities. This makes it easy to simulate how the

tax base would eventually react to any given wealth tax.

I start by considering the pure mechanical effect of a wealth tax to present the

key result of this section. Then I show how we can account for various behavioral

response by using the same result with a modified “effective” tax schedule that is

slightly different from the statutory one.

Dynamic Mechanical Effect Absent a wealth tax, assume that the dynamic of

wealth follows the SDE:

dwit = a(wit) dt+ b(wit) dBit (4.10)

where a(wit) ≡ (νt(wit) − µt(wit)) correspond the average saving by wealth, and

b(wit) ≡ (τ 2
t (wit) + σ2

t (wit))
1/2 is the standard deviation of savings by wealth. For

the rest of this section, I neglect the impact of demographics and inheritance for the

sake of tractability. Note that these processes have a limited impact on the long-run

dynamics of wealth, so this should not significantly affect the conclusions. We can

assess their impact using simulations.
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I then introduce a wealth tax with rate α for wealth above the threshold w0. The

dynamic of wealth becomes:

dwit = (a(wit)− α(wit − w0)+) dt+ b(wit) dBit (4.11)

where (x)+ = max{x, 0}. I will further assume that, for w ≥ w0, the standard

deviation of shocks is proportional to wealth, i.e. b(w) = bw. That last assumption

is not very restrictive, since it is required at the top for Pareto-shaped tails to arise,

in line with the literature and the findings of this paper.

At this stage, I do not assume any behavioral response: yet, in the long-run, the

distribution of wealth changes in response to that wealth tax, because it lowers

post-tax returns on capital. The following result gives the steady-state distribution

of wealth with the tax as a function of the steady-state distribution of wealth without

the tax (see appendix D.2.2 for proof).

Theorem 9 (Steady-State Distribution With a Wealth Tax). Assume that, without

a wealth tax, the dynamic of wealth follows the equation (4.10). Introduce a wealth

tax with rate α on wealth above w0, so that wealth now evolves according to (4.11).

Let fα be the steady-state density of wealth with the tax, and f0 the steady-state

density without the tax. Define:

ζ(w) ≡

exp
{
−2α

b2

(
w0

w
− 1
)}(

w
w0

)−2α/b2

if w ≥ w0

1 if w < w0

and K−1 ≡
∫ +∞
−∞ ζ(w)f0(w) dw. We have fα(w) = Kf0(w)ζ(w).

That result makes it possible to estimate how the tax base would react to a wealth

tax in the long-run, effectively by reweighting the steady-state distribution of untaxed

wealth using the function ζ. I have considered the effect of a linear tax above an

exemption threshold, but the result could be extended to an arbitrary number of

brackets with different rates without difficulties. The setting mentions the introduc-

tion of a new wealth tax where there previously was none, but we could apply the

same result to an increase or a decrease of an existing wealth tax by redefining α as

a change in the rate of the wealth tax.

The result emphasizes the role of mobility, as explained by Saez and Zucman (2019).

As we can see, the impact on the tax base depends on α/b2 and not just α. Therefore,
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doubling the parameter b quadruples the parameter b2, which implies the same

change in the tax base despite a tax rate four times as high. The intuition is the

same as in Saez and Zucman (2019): high mobility means that people only gets taxed

for a short period of time and that new, previously untaxed wealth keeps entering

the tax base. As a result, the tax base does not react too much to wealth taxation.

When mobility goes to zero, however, the same wealth from the same people is taxed

repeatedly, so that the tax base eventually goes to zero.

Let B =
∫ +∞
w0

(w−w0)fα(w) dw be the steady-state tax base. We can calculate it as

follows:

B =
E[(w − w0)+ζ(w)]

E[ζ(w)]

where the expectations should be taken according to the steady-state distribution

without tax, i.e. f0. If we know f0, then this quantity is directly estimable. Finding

that true steady-state density does require some assumptions and additional mod-

elling, as was done in previously paper. The steady-state tax revenue is equal to

αB.

Behavioral Response Through Tax Reporting People can react to a wealth

tax by hiding some of their wealth, either through tax evasion or tax avoidance.

Assume that, in response to a tax α, people only report a fraction (1− α)ε of their

wealth. The parameter ε is the elasticity of declared wealth to the net-of-tax rate

1− α. For a small rate α� 1, people react by approximately hiding a fraction αε of

their wealth. When ε = 0, people truthfully report all of their wealth. As ε goes to

infinity, people start hiding all of their wealth to avoid paying the tax. With tax

avoidance, people that own w in wealth pay:

α[(1− α)εw − w0]+ = α(1− α)ε[w − w0(1− α)−ε]+

instead of α(w − w0)+. In effect, this is equivalent to having a wealth tax with a

lower rate α(1− α)ε and a higher exemption threshold w0(1− α)−ε. Therefore, the

results for the purely mechanical model hold with minimal modifications. It suffices

to replace the true tax parameters α and w0 by their effective counterparts α(1−α)ε

and w0(1− α)−ε.

Tax evasion has two effects on the dynamic of wealth. Most importantly, it directly

lowers the tax base since people under-report their assets. But as a secondary effect,

it increases the post-tax rate of return, allowing people to accumulate more, which

grows the tax base in the long-run.
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Behavioral Response Through Savings People may also react to a wealth by

actually accumulating less wealth. Changes to savings have different implications

than tax evasion. Indeed, tax evasion affects both the dynamic of wealth and the tax

base. Savings, on the other hand, affect the dynamic of wealth but do not directly

reduce the tax base.

Theory provide little constraints regarding how a wealth tax ought to affect saving

rates, given the vast number of settings and mechanisms that we could consider. The

following reduced-form specification can nonetheless account for the overall effect

in a direct and intuitive way. Assume that, in response to a tax rate α on wealth

above w0, people reduce their savings by an amount (1− (1− α)η)(w − w0)+. The

parameter η captures the elasticity of savings with respect to the net-of-tax rate

1− α. If η = 0, savings do not respond to the wealth tax. If η > 0, people start to

consume some of their wealth in excess of w0 rather than pay taxes. At the limit,

when α approaches one or η approaches infinity, people immediately consume all

wealth above w0 to avoid paying the wealth tax.16

Under those circumstances (and ignoring tax evasion for now), the drift term in the

dynamic of wealth become:

a(wit)− (α + 1− (1− α)η)(wit − w0)+

so the results from the pure mechanical model still hold, except that we need to

replace the tax rate α by α + 1 − (1 − α)η. The behavioral response on savings

amplifies the impact of the wealth tax.

Complete Model When combining the behavioral response through savings and

tax evasion, it makes sense to assume that savings respond to the effective tax

schedule (which accounts for tax evasion) rather than the statutory one. That is,

people increase their consumption by an amount (1−(1−α(1−α)ε)η)[w−w0(1−α)−ε].

Therefore, the drift term for the dynamic of wealth is:

a(wit)− [α(1− α)ε + 1− (1− α(1− α)ε)η][wit − (1− α)−εw0]+

16I will ignore the cases where η < 0, even though they are a theoretical possibility, because it
is problematic to assume in a taxation context that the tax base respond positively to the tax.
Moreover, the elasticity has to change sign at some point, otherwise a 100% wealth tax would
correspond to infinite savings. However, if true, it would imply that wealth tax rates could be
higher.
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So the results from the mechanical model still apply if we replace the statutory

exemption threshold w0 by w0(1− α)−ε, and if we replace the statutory tax rate α

by α(1− α)ε + 1− (1− α(1− α)ε)η.

Estimates for Behavioral Elasticities To calibrate ε and η, I rely on the

recent empirical literature that exploit various quasi-experimental settings to assess

behavioral reactions to a wealth tax.

Several of these papers present bunching evidence (Seim, 2017; Londoño-Vélez

and Àcila-Mahecha, 2018; Jakobsen et al., 2019). Bunching provides the cleanest

estimates of pure tax avoidance elasticity. Indeed, the true value of wealth in the

short run tend to follow unpredictable asset movements, so that it would be very

hard for a household to precisely bunch at kink points. Seim (2017) finds an elasticity

of 0.5 in Sweden, and Jakobsen et al. (2019) find elasticities that are even lower in

Denmark. Londoño-Vélez and Àcila-Mahecha (2018) find a higher estimate (2–3) in

Colombia.

As their main identification strategy, Jakobsen et al. (2019) pursue a difference-in-

difference approach that exploit various tax reforms. This allows them to compute

elasticities that incorporate dynamic and saving responses over larger time spans.

Over an 8-year time frame, they find a sizeable elasticity at the top of about 18

with respect to the net-of-tax rate. The authors argue that most (90%) of it can

be attributed to a behavioral effect (as opposed to a mechanical effect). Assuming

that the elasticities cumulates multiplicatively over time, this would correspond to a

yearly behavioral elasticity of 1.4 for both the saving and tax avoidance response.

Seim (2017) also analyze saving responses to the wealth tax, but does not find any.

Brülhart et al. (2016) find a much higher elasticity (23–34) in Switzerland using both

between canton variations of the tax rate and within variation in the Bern canton.

They also look at bunching evidence, but find much lower effects there.

Note that the tax avoidance elasticity is not a pure structural parameter, but also

results from how strongly a wealth tax is enforced. For the baseline calibration, I will

consider a limited tax avoidance response (ε = 1), which is around the values found

by Seim (2017), Londoño-Vélez and Àcila-Mahecha (2018) and Jakobsen et al. (2019).

I will also consider a medium savings response (η = 1), in line with Jakobsen et al.

(2019), but higher than zero as opposed to Seim (2017). Then I consider alternative

scenarios with a higher saving response (η = 2) and a higher tax avoidance response

(ε = 10). I could consider even higher tax avoidance responses (ε = 20 or ε = 30), as

found by Brülhart et al. (2016), but the interest would be limited. Indeed, with such
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a severe tax avoidance, the dynamic effects under study become negligible compared

to static tax avoidance.

Implications for a Wealth Tax For the different values of ε and η, I simulate

how the tax base would react to various marginal tax rates. I consider a linear tax

with rate α on wealth above $50m (in 2014 dollars). The tax applies to equal-split

wealth (meaning that the threshold for couples is actually $100m). I assume that, in

the long run, the threshold would rise in line with average income (so that there is a

stationary solution), and look at the value of the tax base as a fraction of national

income for different values of α. I use the steady-state wealth distribution under

current parameters as estimated in section 4.5.2. Note, however, that results are

very similar if we use the last year of data available (the levels would change, but the

elasticities would be the same). Therefore, the results of this section do not depend

too much on the outcome of the long-run simulations, and one can use the method

with the current distribution of wealth as a short-cut. Figure 4.13 shows the results.

The long-run response of the tax base is naturally stronger than the short-run, which

only accounts for tax avoidance. In the baseline specification, a 1% wealth tax

decreases the tax base by 50% in the long, which would imply a long-run elasticity

around 50. That number may seem high, yet is not out of line with the findings of

Jakobsen et al. (2019). At the top of the distribution, they find an elasticity of 18

when looking 8 years after the reform. Using their structural model, this translates

into an elasticity of 33 after 30 years in a low return environment, and even higher

in a high return environment (which would be closer to the present setting).

However, that elasticity is not constant: it is indeed high for low wealth taxes, but

quickly tempers off. As a result, if we were to compute it based on a high 10% wealth

tax, the elasticity would be lower (around 21). This nonlinearity results from the

dynamic mechanical effects. It implies that one should be careful when extrapolating

empirical estimates of the long-run response of the capital stock that are based on

relatively small tax changes.

The nonconstant elasticity does impact the tax rate that would maximize revenue in

the long run. Indeed, for small marginal tax rates, because we start from a baseline of

zero, the wealth tax does raise revenue even though the tax base diminishes quickly.

By the time adverse revenue effects arise, the tax base has become less elastic. As

consequence, the revenue-maximizing tax rate may in theory be quite high, in several

cases north of 10%. In these cases, we nonetheless tend to quickly reach a relatively

flat revenue plateau after 10%, so that revenue gains from a wealth tax above 10%
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(a) Baseline (η = 1, ε = 1)
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(b) Pure Mechanical Effect (η = 0, ε = 0)
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(c) High Tax Avoidance (η = 1, ε = 10)
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(d) High Saving Response (η = 2, ε = 1)

Source: Author’s computation. Note: Results correspond to the steady-state tax base for a linear
wealth tax above $50m in 2014 US dollars. I assume that the tax threshold rises in line with average
national income. I assume that the tax applies to equal-split wealth (each members of a couple pay
tax on half the wealth of the couple). The parameter ε is the elasticity of tax reporting, and η is
the elasticity of the saving response. The short-run response only accounts for tax reporting, while
the long-run response also incoporates dynamic mechanical effects et saving effects.

Figure 4.13: Impact on the Tax Base of a Linear Wealth Tax over $50m
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are limited.

The pure dynamic mechanical model (figure 4.13b) is closest to the model Saez and

Zucman (2019). Using data from the Forbes 400 rankings and a simplified model,

they find an elasticity of 16 (their elasticity is constant by construction). For a 1%

wealth tax, I find a somewhat higher elasticity of 27, but for higher wealth tax of

10%, I get a similar value of 15. Note that their estimates are concerned with the

extreme top of the distribution (billionaires), whose dynamic of wealth may arguably

differ from the rest of the very rich.

I stress that is still significant uncertainty regarding these values. In particular,

behavioral elasticities are extrapolated from quasi-experiments based on rather small

tax rates, and it is difficult to know what the true reactions would be with more

radical policies such as a 10% wealth tax. Note also that I focused on the steady-state.

In practice that steady-state may take a very long time to materialize, so it is not

necessarily the relevant time horizon. The model nonetheless carries useful insights

on the underlying dynamics of the wealth distribution and wealth taxes. Finally,

note that I only consider partial equilibrium effects. I do not consider how rates of

return or the labor market may react to changes in the capital stock. The estimated

elasticities are still useful to calibrate more complex general equilibrium models.

Conclusion

In this paper, I have presented a simple model of the wealth distribution that can

decompose the impact of labor income, rates of return, growth, savings, demography

and inheritance on the wealth distribution. In spite its simplicity, that model can

incorporate a realistic modeling of these various factors. I show that this model can

be estimated solely using repeated cross-sectional data, and I estimate it using DINA

data on income and wealth for the United States since 1962.

I find that, out of the 15 pp. increase in the top 1% wealth share observed since

1980, about 7 pp. can be attributed to rising labor income inequality, 6 pp. to rising

returns on wealth, and 2 pp. to lower growth. Importantly, the role played by rising

rates of return on wealth can entirely be attributed to capital gains. In the future,

and holding constant the present parameters of the economy, the United States

economy would reach a steady state with a top 1% wealth share about 45%. I use the

model to investigate the impact of progressive wealth taxes on the capital stock and

the wealth distribution. I develop a simple a simple formula to characterize how the

tax base would react to a wealth tax in the long-run in terms of observable quantities
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and key behavioral elasticities. I find that the elasticity of wealth with respect to

the net-of-tax rate is sizeable, but also nonconstant, so that revenue-maximizing tax

rates may be quite high.

These findings are very general in the sense that they apply to any model of the

wealth distribution that generates Pareto-shaped fat tails using an accumulation

of multiplicative random shocks (to income, consumption, etc.), as is usually the

case. Note that all of the counterfactuals coming out of the model assume that

everything else remains equal in the economy, which in reality would not always

be the case. This is where more tightly specified, fully microfounded models of the

wealth distribution can be useful. Such model can endogenously account for the way

in which, say, savings might react to a change in the labor income distribution, and

include that is its predictions. Yet, it remains true that the findings of this paper

have to apply to the more microfounded model. In that sense, both approaches

are complementary, and the methodology of this paper is useful to discipline more

complex models.

The key insight of this paper — that the Fokker-Planck equation can be used as

an empirical tool to identify certain parameters — may be applied to a wide set

of problems. For wealth inequality, it could be used to analyze the dynamics of

various phenomenons, such as the racial wealth gap. But in theory it could also

be applied to any economic situation that involves stochastic growth, such as the

income distribution, or the distribution of firms and city sizes.
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General Conclusion

This PhD thesis contributes to the literature on the distribution of income and wealth

in several ways. The first two chapter tackle methodological issues in measurement.

The first one develop a new method to estimate complete distributions of income

and wealth based tabulate income data, such as the one published by tax authorities.

The second chapter shows how to properly combine surveys with tax data to correct

for the underrepresentation of the rich, while preserving the basic structure of the

microdata. The third chapter combines surveys, tax data and national accounts

to produce distributional national accounts in Europe since the 1980s. The fourth

chapter uses distributional national accounts data in the United States to decompose

the long-run drivers of wealth inequality using a simple dynamic stochastic model of

the wealth distribution.

A lot of the work presented here can be viewed in realtion to a much larger research

project, one that involves many other researchers: the production of consistent,

harmonized statistics on the distribution of income and wealth on the largest possible

scale, and their exploitation to inform policy debates. This is the goal of the

distributional national accounts (DINA) project being undertaken at the World

Inequality Lab (Alvaredo et al., 2017). The methodologies presented in this thesis are

meant to be used and extended by other researchers, as exhibited by the creation of a

R package (https://github.com/thomasblanchet/gpinter) and a Stata command

(https://github.com/thomasblanchet/bfmcorr) to implement the methods of the

first two chapters.

There is a need for such an enterprise. Despite a certain amount of progress, we

still lack an official, well-established data source for inequality statistics that uses

consistent concepts and methodologies for the entire world. This issue is well-

recognized by official institutions, as exhibited by various initiatives such as the

expert group on disparities in national accounts (EG-DNA) at the OECD. Ideally,

the goal would be for official institutions to one day start publishing their own

distributional national accounts estimates as part of the standard framework of

199

https://github.com/thomasblanchet/gpinter
https://github.com/thomasblanchet/bfmcorr


200 GENERAL CONCLUSION

national accounts. This, after all, is what happened with existing national accounts,

which were developed by academics before being taken over by official statistical

agencies.

The systematic confrontation of macro and micro sources would also force us to make

progress in improving both. This is already true of aggregate national accounts. They

combine various, disparate sources into a single consistent accounting framework.

This consistency is what gives national accounts their potency. It is also a key

driver of better data quality, as national accountants cannot afford to provide widely

disparate estimates for the same concepts.

A lot has been said about the oversized importance of GDP in economic discourse.

This importance has sometimes been exaggerated: “does it increase GDP?” has

never been the only question on policymakers’ mind. But there is some truth to it.

GDP has shaped economic discourse in remarkable ways. We talk about how “the

economy” is doing while implicitly referring to it. Policymaker track its quarterly

variations with great attention. Yet if most of that growth accrues to small share of

the population, it can creates wide discrepancies between economic statistics and the

reality perceived by economic actors. In the future, the introduction of distributional

estimates would be a powerful and palatable way to move “beyond GDP.”



Appendix A

Appendix to “Generalized Pareto

Curves: Theory and Applications”

A.1 Generalized Pareto curves: Omitted Proofs

A.1.1 Proof of proposition 1

That b(p) > 1 follows directly from the definition. For the rest of the proposition,

we have for p ≥ p̄:

(1− p)Q(p)b(p) =

∫ 1

p

Q(u) du

We differentiate that equality with respect to p:

(1− p)Q(p)b′(p) + (1− p)b(p)Q′(p)− b(p)Q(p) = −Q(p)

We assumed that Q(p) > 0 for p ≥ p̄, so we can divide both sides by Q(p):

(1− p)b′(p) + (1− p)b(p)Q
′(p)

Q(p)
− b(p) = −1

Hence:

(1− p)b(p)Q
′(p)

Q(p)
= b(p)− 1− (1− p)b′(p)

Because the quantile function is increasing, the left hand side is nonnegative, which

concludes the proof.
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A.1.2 Proof of proposition 2

From the proof of proposition 1, we have:

Q′(p)

Q(p)
=

1

1− p
− 1

(1− p)b(p)
− b′(p)

b(p)

After integration:

Q(p) = Q(p̄) exp

(∫ p

p̄

1

1− u
du−

∫ p

p̄

1

(1− u)b(u)
du−

∫ p

p̄

b′(u)

b(u)
du

)

= Q(p̄)
(1− p̄)b(p̄)
(1− p)b(p)

exp

(
−
∫ p

p̄

1

(1− u)b(u)
du

)

with Q(p̄) = x̄ by definition.

A.1.3 Proof of proposition 3

The following representation of b∗(x) will useful throughout the proofs.

Lemma 1.

b∗(x) = 1 +
1

x(1− F (x))

∫ +∞

x

1− F (z) dz

Proof. Using integration by parts:∫ +∞

x

zf(z) dz =

∫ +∞

x

(−z)(−f(z)) dz

= [−z(1− F (z))]+∞z=x +

∫ +∞

x

1− F (z) dz

Because E[|X|] < +∞, Markov’s inequality implies 1 − F (x) = o(1/x), so the

bracketed term vanishes for x→ +∞. Hence:∫ +∞

x

zf(z) dz = x(1− F (x)) +

∫ +∞

x

1− F (z) dz

replacing in the expression of b∗(x) yields the result.

First, note that since limp→1Q(p) = +∞, limp→1 b(p) = limx→+∞ b
∗(x). The assump-

tion that L is slowly varying is equivalent to the assumption that 1− F is regularly

varying of index −α < −1.
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Direct half Applying the direct half of Karamata’s theorem (Bingham, Goldie,

and Teugels, 1989, 1.5.11, p. 28) to the representation of lemma 1, we have:

lim
x→+∞

1

b∗(x)
= 1 +

1

α− 1
=

α

α− 1

Converse half We assume that limp→1 b(p) = α/(α− 1). Hence:

lim
x→+∞

1

b∗(x)− 1
= α− 1

Then, we apply the converse half of Karamata’s theorem (Bingham, Goldie, and

Teugels, 1989, 1.6.1, p. 30) (with σ = 0) to the representation of lemma 1, proving

that 1− F is regularly varying of index −α.

A.1.4 Proof of proposition 4

Direct half According to lemma 1, we have:

b∗(x) = 1 +
1

x(1− F (x))

∫ +∞

x

1− F (z) dz

After a change of variable z = tx:

b∗(x) = 1 +

∫ +∞

1

1− F (tx)

1− F (x)
dt

= 1 +

∫ K

1

1− F (tx)

1− F (x)
dt+

∫ +∞

K

1− F (tx)

1− F (x)
dt

for some K > 1. The function t 7→ (1 − F (xt))/(1 − F (x)) is continuous over

the compact interval [1, K], so it is bounded. Therefore, Lebesgue’s dominated

convergence theorem implies:

lim
x→+∞

∫ K

1

[
1− F (tx)

1− F (x)

]
dt =

∫ K

1

[
lim

x→+∞

1− F (tx)

1− F (x)

]
dt = 0

Moreover, we assumed that 1−F is regularly varying. Therefore, using corollary 2.4.2

in Bingham, Goldie, and Teugels (1989, p. 85), the limit:

lim
x→+∞

1− F (xt)

1− F (t)
= 0
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holds uniformly for t over [K,+∞[. The uniform convergence theorem implies:

lim
x→+∞

∫ +∞

K

[
1− F (tx)

1− F (x)

]
dt =

∫ +∞

K

[
lim

x→+∞

1− F (tx)

1− F (x)

]
dt = 0

Therefore, we have limx→+∞ b
∗(x) = 1.

Converse half We assume that limx→+∞ b
∗(x) = 1. Therefore:

lim
x→+∞

∫ +∞

1

1− F (tx)

1− F (x)
dt = 0

Let λ > 1 and x ≥ x̄. Because t 7→ (1− F (xt))/(1− F (x)) is decreasing, we have

for all t < λ:
1− F (λx)

1− F (x)
<

1− F (tx)

1− F (x)

After integration with respect to t between 1 and λ:

1− F (λx)

1− F (x)
<

1

λ− 1

∫ λ

1

1− F (tx)

1− F (x)
dt

<
1

λ− 1

∫ +∞

1

1− F (tx)

1− F (x)
dt

because (1−F (tx))/(1−F (x)) ≥ 0 for all t. Since the inequality holds for all x > x̄,

and the left hand side is nonnegative, we have for all λ > 1:

lim
x→+∞

1− F (λx)

1− F (x)
= 0

Therefore, 1− F is rapidly varying.

A.2 Other Concepts of Local Pareto Coefficients

The inverted Pareto coefficient b(p) is not the only local concept of Pareto coefficient

that can be used to nonparametrically describe power law behavior. Using a simple

principle, we can in fact define an infinite number of such coefficients, some of which

have already been introduced in the literature (eg. Gabaix, 1999). First, notice that

if G(x) = 1− F (x) = Cx−α is a strict power law, then for n > 0:

− xG(n)(x)

G(n−1)(x)
− n+ 1 = α (A.1)
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which does not depend on x or n. But when the distribution isn’t strictly Paretian,

we can always define αn(x) equal to the left-hand side of (A.1), which may now

depend on x and n. For example α2(x) correspond to the “local Zipf coefficient” as

defined by Gabaix (1999).1 For n = 1, we get α1(x) = xf(x)/(1− F (x)). As long as

α > −n + 1, we can also extend formula (A.1) to zero or negative n, substituting

integrals for negative orders of differentiation. More precisely, we set:

∀n < 0 G(n)(x) = (−1)n
∫ +∞

x

· · ·
∫ +∞

t2︸ ︷︷ ︸
|n| times

G(t1) dt1 . . . dt|n|

The definition above ensures that G(n1)(n2) = G(n1+n2) for all n1, n2 ∈ Z. We call

αn(x), n ∈ Z, the local Pareto coefficient of order n. We have for n = 0:

α0(x) = 1 +
x(1− F (x))∫ +∞
x

1− F (t) dt

which implies:2

b(p) =
α0(x)

α0(x)− 1

That formula corresponds to the inverted Pareto coefficient for a strict Pareto

distribution b = α/(α − 1). In fact, b(p) is an alternative way of writing α0(x),

with a clearer interpretation in terms of economic inequality. We could similarly

define inverted Pareto coefficients bn(p) = αn(x)/(αn(x)− 1) for any order n, and

b(p) = b0(p). But b0(p) has the advantage of being the most simple to estimate,

because it only involves quantiles and averages. Other estimators require estimating

the density or one of its successive derivatives, which is much harder, especially when

we have limited access to data.3

The most natural members of the family of local Pareto coefficients are α0, α1 and

α2 (other involve many orders of differentiation or integration). Figure A.1 shows

how these different coefficients compare for the 2010 distribution of pre-tax national

income in the United States. There are some differences regarding the range of values

taken by the different coefficients. The inverted U-shape is less pronounced for α1

and α2 than α0. But we reach similar conclusions regardless of the one we pick: the

1Which we can write more simply as α2(x) = −xf ′(x)/f(x)− 1.
2See lemma 1 in appendix A.3.
3We can move from one coefficient to the next using the following recurrence relation:

αn+1(x) = αn(x)− xα′n(x)

αn(x) + n− 1
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Distribution of pre-tax national income in the United States, 2010. α0 estimated fitting a polynomial

of degree 5 on empirical data. Source: authors’ calculations using Piketty, Saez, and Zucman (2016)

Figure A.1: Different concepts of local Pareto exponent

coefficient is not constant (including at the very top) and there is an inversion of

the slope near the top of the distribution. All these coefficients have fairly regular

shapes, and looking at them conveys more information about the tail than solely

looking at the quantile or the Lorenz curve. This is why it is better to work directly

with them rather than with quantiles or shares.

A.3 Dynamic Model of Income Growth an Wealth

Accumulation

A.3.1 Proofs omitted from the main text

We prove simultaneously the theorems 1 and 2. We assume that µ(x)→ µ, σ2(x)→
σ2. Recall that the process Xt follows the stochastic differential equation:

dXt

Xt

= µ(Xt) dt+ σ(Xt) dWt

which means that the evolution of its density f(x, t) is described by the Fokker-Planck

equation:
∂

∂t
f(x, t) = − ∂

∂x
[xµ(x)f(x, t)] +

1

2

∂2

∂x2
[x2σ2(x)f(x, t)] (A.2)

We also write:

ζ(x) = 1− 2µ(x)

σ2(x)
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and ζ = limx→+∞ ζ(x) = 1− 2µ/σ2. For the stationary distribution f(x), we have
∂
∂t
f(x) = 0, so equation (A.2) implies:

0 = − ∂

∂x
[xµ(x)f(x)] +

1

2

∂2

∂x2
[x2σ2(x)f(x)]

We can integrate that equation into:

xµ(x)f(x) =
1

2

∂

∂x
[x2σ2(x)f(x)]

= [xσ2(x) + x2σ(x)σ′(x)]f(x) +
1

2
x2σ2(x)f ′(x)

Reordering terms, we get:

f ′(x)

f(x)
= −ζ + 1

x
− 2σ′(x)

σ(x)
− ζ(x)− ζ

x

And after integration:

f(x) ∝ x−ζ−1 exp

(
− log(σ2(x))−

∫ x

1

ζ(t)− ζ
t

dt

)
Rewrite that expression as f(x) = L(x)x−ζ−1. Because x 7→ ζ(x)−ζ converges to zero

and x 7→ σ2(x) converges to a positive constant, Karamata’s (1930) representation

theorem (Bingham, Goldie, and Teugels, 1989, p. 12) implies that L is slowly varying.

Then, we can use the following property of slowly varying functions:

1− F (x) =

∫ +∞

x

L(t)t−ζ−1 dt ∼ L(x)
x−ζ

−ζ

to see that the stationary distribution is in fact an asymptotic power law.

A.3.2 Alternative Calibrations

Income Distribution: Calibration of the mean Here we match the increase

of b(p) at the top by adjusting the mean of income shocks. We set:

µ(x) = −c1 +
c2x

2

1 + c3x2
(A.3)

with c1, c2, c3 > 0. The baseline income growth of non-reflected units is −c1, which

is negative because we have normalized income by the overall income growth: since

reflected units have positive growth, non-reflected units must have negative growth

to compensate (Gabaix, 2009). The other part of the formula, c2x
2/(1 + c3x

2), is
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here to make µ(x) increase at the top of the distribution. It also ensures that µ

converges to a constant, so that we get a power law in the end. For the variance, we

set:

σ(x) =

√
c4 + x2

x2

which ensures a stationary process, and normalizes σ(x) to 1 at infinity. (This

normalization is necessary because µ and σ can only be identified up to a scaling

constant.)
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0.034, c4 = 2.574). µ(x) corresponds to the difference between the growth of non-reflected units

and average income growth, expressed as a multiple of σ(x) at infinity.

Figure A.2: Calibration of µ(x) on the US distribution of labor income

Figure A.2 shows the increase in the average of income shocks that is necessary

to match the increase of b(p) at the top.4 We can see that the final rise in b(p) is

consistent with an increase of µ(x) of about one standard deviation between the

middle and the very top of the distribution. The model with varying mean income

growth is also able to precisely match almost the entire income distribution.

Gabaix et al. (2016) suggested that scale dependence in µ(x) is necessary to ac-

count for the speed of the increase in inequality in the United States. Our finding

corroborates theirs, showing that scale dependence is can explain the shape of the

distribution in a static framework, not just in a dynamic one.

Wealth Distribution: Calibration of the variance We can do a similar exer-

cise for the distribution of wealth. The generalized Pareto curves for wealth and

income are similar (U-shaped with a smaller increase at the top end). However, for

4The value of µ(x) only concerns the non-reflected units, but units at the top are unlikely to hit
the reflecting barrier, so µ(x) constitute a good indicator of effective average income growth at the
top.
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wealth, b(p) is higher overall, and the final increase happens later. What does this

mean for the underlying process generating wealth? To answer that question, we

consider a wealth generating process similar to that of income. We drop the reflective

barrier because wealth can go below zero, but focus on the top 20%.5

We calibrate the profile of variance using the same formula as for income (1.3). We

see in figure A.3 that we also get a U-shaped profile: wealth is more volatile at the

very top of the distribution than at the middle. However, the increase starts much

later, around ten times average wealth, which correspond roughly to the top 1%. For

income, the increase started to happen around the top 10%. The difference between

the lowest point and the top of the distribution is also more modest, at about 8%

instead of 30%.
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Model calibrated to match the US distribution of personal wealth in 2010 (c1 = 5.84, c2 = 4.90, c3 =

0.000809, c4 = 0.000804). The coefficient of variation correspond to the standard deviation divided

by the absolute value of the mean growth.

Figure A.3: Calibration of σ(x) on the US distribution of personal wealth

Wealth Distribution: Calibration of the mean We use again the formula (A.3)

to model mean wealth growth. Figure A.4 shows the result. Again, we do observe an

increasing mean of wealth growth (wealthier people experience higher returns, saving

rates and/or higher incomes as a fraction of their wealth). But the increase is much

more modest than for income (around 6% of a standard deviation). It also happens

much later, starting at 10 times the average wealth (which roughly correspond to

the top 1%).

5We focus on the top because we view these processes primarily as a model of the top of the
distribution, even though it can sometimes fit well the bottom of the distribution too, as we saw
for income. Wealth goes to zero fast once we leave top of the distribution, so providing a good
fit for the bottom presents more difficulties. We do not explicitly model the negative part of the
distribution because it is not necessary for our calibration.
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Figure A.4: Calibration of µ(x) on the US distribution of personal wealth

This type of scale dependence is consistent with available microdata. Fagereng

et al. (2016) document using administrative Norwegian data that returns are posi-

tively correlated with wealth. Because these higher returns partly reflect the fact

that wealthier people hold riskier assets, it also implies higher variance at the top.

Therefore, we have scale dependence for both the variance and the mean. This

is also consistent with the work of Bach, Calvet, and Sodini (2017) on Swedish

administrative data. The model of Kacperczyk, Nosal, and Stevens (2014), in which

investors have different levels of sophistication, can account for these findings. Scale

dependence can also arise if the very wealthy have higher saving rates (Saez and

Zucman, 2016). Benhabib, Bisin, and Luo (2015) study a model where saving rates

increase in wealth because the bequest function is more elastic than the utility of

consumption.

A.4 Detailed interpolation method

Recall that ϕ̂k correspond to the quintic spline over the interval [xk, xk+1] (1 ≤
k < K). We parametrized the spline (ie. the polynomial of degree 5) with

(yk, yk+1, sk, sk+1, ak, ak+1) so that:

ϕ̂k(xk) = yk ϕ̂′k(xk) = sk ϕ̂′′k(xk) = ak

ϕ̂k(xk+1) = yk+1 ϕ̂′k+1(xk+1) = sk+1 ϕ̂′′k+1(xk+1) = ak+1

The parameters y1, . . . , yK and s1, . . . , sK are directly given by the interpolation
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problem. But we still need to determine ak, ak+1. We first have K − 2 equations to

ensure C3 continuity at the junctures:

∀k ∈ {2, . . . , K − 1} ϕ̂′′′k−1(xk) = ϕ̂′′′k (xk)

Then, we impose the natural spline constraint at the first knot:

ϕ̂′′′1 (x1) = 0

And we use a two points finite difference for the value of ϕ̂′′K−1(xK):

ϕ̂′′K−1(xK) =
sK − sK−1

xK − xK−1

That leads to a linear system of K equations for the K unknowns a1, . . . , aK . We

can put that system in matrix form to solve it numerically using standard methods.

Define ∆k = xk+1 − xk. Then a = [a1 · · · aK ]′ is given by a = A−1Bz, where:

z = [y2 − y1 · · · yK − yK−1 s1 · · · sK ]′

B = [B1|B2]

B1 =



60/∆3
1 0 0 · · · 0 0

−60/∆3
1 60/∆3

2 0 · · · 0 0

0 −60/∆3
2 60/∆3

3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 60/∆3
K−1 0

0 0 0 · · · −60/∆3
K−1 60/∆3

K−1

0 0 0 · · · 0 0



B2 =



−36/∆2
1 −24/∆2

1 0 · · · 0 0

24/∆2
1 36/∆2

1 − 36/∆2
2 −24/∆2

2 · · · 0 0

0 24/∆2
2 36/∆2

2 − 36/∆2
3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 36/∆2
K−1 − 36/∆2

K−1 −24/∆2
K−1

0 0 0 · · · −1/∆K−1 1/∆K−1



A =



9/∆1 −3/∆1 0 · · · 0 0

−3/∆1 9/∆1 + 9/∆2 −3/∆2 · · · 0 0

0 −3/∆2 9/∆2 + 9/∆3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 9/∆K−2 + 9/∆K−1 −3/∆K−1

0 0 0 · · · 0 1


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A.5 Other comparisons of interpolation methods

We present here extended tables for the comparison of our new interpolation method

with others. Those tables include a fourth interpolation method, described below,

which was suggested by Cowell (2000, p. 158), yet virtually unused in the empirical

literature. This method has a good pointwise performance, in many cases comparable

to the generalized Pareto interpolation. However, it does not lead to a smooth quantile

function or a continuous density.

We also include fiscal income in addition to pre-tax national income, as in the main

text. Fiscal income tend to include a large fraction of individual with zero income,

hence an important singularity near zero. To avoid that problem, we use a different

tabulation in input, namely p = 40%, 70%, 90%, 99%.

Finally, we provide in table 1.2 the extrapolation results when the tabulation includes

the top 10% and top 1%, and we seek the top 0.1%.

Method 4: piecewise Pareto distribution The method uses the Pareto distri-

bution with information on both the thresholds and the means. It works by adjusting

both the constant µ and the Pareto coefficient α of a Pareto distribution inside each

bracket. The density over [qk, qk+1] is:

f(x) = ckx
−αk−1

so that we get a nonlinear system of two equation with two unknowns (αk and ck),

and two knowns ξk =
∫ qk+1

qk
f(x) dx and ζk =

∫ qk+1

qk
xf(x) dx. αk is the solution of:

αk
αk − 1

q1−αk
k+1 − q

1−αk
k

q−αkk+1 − q
−αk
k

= ζk

which has no explicit solution but can be solved numerically. Then:

ck =
αkξk

q−αkk+1 − q
−αk
k

For k = K, so that pK+1 = 1 and qK+1 = +∞, it becomes equivalent to method 1.



A.5. OTHER COMPARISONS OF INTERPOLATION METHODS 213

Table A.1: Mean relative error for different interpolation methods
(fiscal income)

mean percentage gap between estimated and observed
values

M0 M1 M2 M3 M4

United States
(1962–2014)

Top 50% share
0.042% 0.59% 5.4% 0.035% 0.019%

(ref.) (×14) (×129) (×0.83) (×0.46)

Top 20% share
0.037% 0.34% 5.7% 0.021% 0.072%

(ref.) (×9.3) (×156) (×0.56) (×2)

Top 5% share
0.11% 1.3% 11% 0.54% 0.11%
(ref.) (×11) (×96) (×4.8) (×1)

P50/average
0.57% 14% 7.7% 0.39% 0.34%
(ref.) (×25) (×14) (×0.68) (×0.6)

P80/average
0.13% 2% 2.8% 1.2% 0.19%
(ref.) (×16) (×21) (×9.2) (×1.5)

P95/average
0.42% 6.9% 4.2% 1.6% 0.6%
(ref.) (×16) (×9.9) (×3.7) (×1.4)

France
(1994–2012)

Top 50% share
0.055% 0.42% 1.8% 0.019% 0.043%

(ref.) (×7.6) (×32) (×0.34) (×0.78)

Top 20% share
0.032% 0.35% 1.4% 0.02% 0.056%

(ref.) (×11) (×42) (×0.63) (×1.7)

Top 5% share
0.05% 0.35% 2.5% 0.43% 0.039%
(ref.) (×6.8) (×49) (×8.5) (×0.78)

P50/average
0.48% 7.3% 4.1% 0.31% 0.41%
(ref.) (×15) (×8.5) (×0.65) (×0.86)

P80/average
0.058% 2% 1.6% 1.1% 0.12%

(ref.) (×35) (×27) (×18) (×2)

P95/average
0.11% 1.4% 0.74% 2.1% 0.12%
(ref.) (×13) (×6.9) (×20) (×1.1)

Pre-tax national income. Sources: author’s calculation from Piketty, Saez, and Zucman (2016) (United States)
and Garbinti, Goupille-Lebret, and Piketty (2016) (France). The different interpolation methods are labeled as
follows. M0: generalized Pareto interpolation. M1: constant Pareto coefficient. M2: log-linear interpolation. M3:
mean-split histogram. M4: piecewise Pareto distribution. We applied them to a tabulation which includes the
percentiles p = 40%, p = 70%, p = 90%, and p = 99%. We included the relative increase in the error compared
to generalized Pareto interpolation in parentheses. We report the mean relative error, namely:

1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its estimate using one of the inter-
polation methods. We calculated the results over the years 1962, 1964 and 1966–2014 in the United States, and
years 1994–2012 in France.
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Table A.2: Mean relative error for different interpolation methods
(pre-tax national income)

mean percentage gap between estimated and observed
values

M0 M1 M2 M3 M4

United States
(1962–2014)

Top 70% share
0.059% 2.3% 6.4% 0.054% 0.055%

(ref.) (×38) (×109) (×0.92) (×0.94)

Top 25% share
0.093% 3% 3.8% 0.54% 0.55%

(ref.) (×32) (×41) (×5.8) (×5.9)

Top 5% share
0.058% 0.84% 4.4% 0.83% 0.22%

(ref.) (×14) (×76) (×14) (×3.8)

P30/average
0.43% 55% 29% 1.4% 0.48%
(ref.) (×125) (×67) (×3.3) (×1.1)

P75/average
0.32% 11% 9.9% 5.8% 0.31%
(ref.) (×35) (×31) (×18) (×0.99)

P95/average
0.3% 4.4% 3.6% 1.3% 0.88%
(ref.) (×15) (×12) (×4.5) (×3)

France
(1994–2012)

Top 70% share
0.55% 4.2% 7.3% 0.14% 0.082%
(ref.) (×7.7) (×13) (×0.25) (×0.15)

Top 25% share
0.75% 1.8% 4.9% 0.37% 0.34%
(ref.) (×2.4) (×6.5) (×0.49) (×0.46)

Top 5% share
0.29% 1.1% 8.9% 0.49% 0.095%
(ref.) (×3.9) (×31) (×1.7) (×0.33)

P30/average
1.5% 59% 38% 2.6% 0.26%
(ref.) (×40) (×26) (×1.8) (×0.18)

P75/average
1% 5.2% 5.4% 4.7% 0.28%

(ref.) (×5.1) (×5.3) (×4.6) (×0.27)

P95/average
0.58% 5.6% 3.2% 1.8% 0.48%
(ref.) (×9.6) (×5.5) (×3.2) (×0.82)

Pre-tax national income. Sources: author’s calculation from Piketty, Saez, and Zucman (2016) (United States)
and Garbinti, Goupille-Lebret, and Piketty (2016) (France). The different interpolation methods are labeled as
follows. M0: generalized Pareto interpolation. M1: constant Pareto coefficient. M2: log-linear interpolation. M3:
mean-split histogram. M4: piecewise Pareto distribution. We applied them to a tabulation which includes the
percentiles p = 10%, p = 50%, p = 90%, and p = 99%. We included the relative increase in the error compared
to generalized Pareto interpolation in parentheses. We report the mean relative error, namely:

1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its estimate using one of the inter-
polation methods. We calculated the results over the years 1962, 1964 and 1966–2014 in the United States, and
years 1994–2012 in France.
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Table A.3: Mean relative error on the top 0.1% for different
extrapolation methods, knowing the top 10% and the top 1%

mean percentage gap between
estimated and observed values

M0 M1 M2

United States
(1962–2014)

Top 0.1% share
3.4% 4.2% 46%
(ref.) (×1.2) (×13)

P99.9/average
5.5% 4% 23%
(ref.) (×0.72) (×4.2)

France
(1994–2012)

Top 0.1% share
1.4% 4.5% 20%
(ref.) (×3.2) (×15)

P99.9/average
1% 2.1% 8.2%

(ref.) (×2) (×7.9)

Fiscal income. Sources: author’s calculation from Piketty, Saez, and Zucman (2016)
(United States) and Garbinti, Goupille-Lebret, and Piketty (2016) (France). The differ-
ent extrapolation methods are labeled as follows. M0: generalized Pareto distribution.
M1: constant Pareto coefficient. M2: log-linear interpolation. We applied them to a
tabulation which includes the percentiles p = 90%, and p = 99%. We included the rel-
ative increase in the error compared to generalized Pareto interpolation in parentheses.
We report the mean relative error, namely:

1

number of years

last year∑
t=first year

∣∣∣∣ ŷt − ytyt

∣∣∣∣
where y is the quantity of interest (income threshold or top share), and ŷ is its estimate
using one of the interpolation methods. We calculated the results over the years 1962,
1964 and 1966–2014 in the United States, and years 1994–2012 in France.
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A.6 Error estimation

A.6.1 Decomposition of the error

Recall that the tabulation is based on K ≥ 3 fractiles of the population p1, . . . , pK

such that 0 ≤ p1 < · · · < pK < 1. Let k ∈ {1, . . . , K − 1} and p ∈ [0, 1] a fractile

such that pk ≤ p ≤ pk+1. We also define x = − log(1− p).

Let n be the size of the population covered by the tabulation. Income or wealth are

represented as a iid. copies (X1, . . . , Xn) of the random variable X. The empirical

quantile is Q̂n(p) = X(bnpc) where X(r) is the r-th order statistic (i.e. the r-th largest

value of the sample). We note Xn empirical average, and the empirical Lorenz curve

is:

L̂n(p) =

∑bnpc
i=1 X(i)

nXn

Formally, we define the tabulation as the (2K + 1)-tuple:

Tn = [Xn XnL̂n(p1) · · · XnL̂n(pK) Q̂n(p1) · · · Q̂n(pK)]

And its theoretical counterpart is:

T∞ = [E[X] E[X]L(p1) · · · E[X]L(pK) Q(p1) · · · Q(pK)]

We define ϕ̂n the function that we obtain through the procedure of section 3.1 on the

tabulation Tn. We also define ϕ̂∞ the function that would be obtained with the same

method on the tabulation T∞. Then, we define ϕn(x) = − log((1− L̂n(p))Xn) the

plug-in estimator of ϕ (hence, we may write ϕ∞ = ϕ). We use analogous notations

for ϕ′. The error at point x is:

en(x) = ϕ̂n(x)− ϕn(x)

= ϕ̂∞(x)− ϕ∞(x)︸ ︷︷ ︸
misspecification error

+ ϕ̂n(x)− ϕ̂∞(x) + ϕ∞(x)− ϕn(x)︸ ︷︷ ︸
sampling error

We can set u(x) = ϕ̂∞(x) − ϕ∞(x) and vn(x) = ϕ̂n(x) − ϕ̂∞(x) + ϕ∞(x) − ϕn(x),

which proves the first part of theorem 7.

A.6.2 Misspecification error

The magnitude of the misspecification error depends on two features. First, the

tightness of the tabulation in input: we can better estimate the true shape of the
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distribution if we have access to many percentiles of the data. Second, the “regularity”

of the function we seek to approximate: in loose terms, for the interpolation to work

well, the function ϕ should not stray too far away from a polynomial of sufficiently

low degree.

It is possible to express the misspecification error in a way that disentangle both

effects. To that end, define an operator E which, to a function g over [x1, xK ],

associates the interpolation error ĝ − g. It satisfies the three following properties:6

• linearity: E(f + λg) = E(f) + λE(g)

• inversion with integral sign: E
{∫ xK

x1
f( · , t) dt

}
=
∫ xK
x1
E{f( · , t)} dt

• exact for polynomials of degree up to 2: if f ∈ R[X], deg(f) ≤ 2, then

E(f) = 0

Under those conditions, the Peano kernel theorem gives a simple formula for the error

term. Consider the Taylor expansion of the true function ϕ with integral remainder:

ϕ(x) = ϕ(x1) + (x− x1)ϕ′(x1) +
1

2
(x− x1)2ϕ′′(x1) +

1

2

∫ xK

x1

(x− t)2
+ϕ
′′′(t) dt

where (x− t)+ = max{x− t, 0}. Using the properties of E , we have:

ϕ̂∞(x)− ϕ∞(x) =
1

2

∫ xK

x1

E(Kt)(x)ϕ′′′(t) dt (A.4)

where Kt : x 7→ (x − t)2
+, so that E(Kt)(x) is independent from ϕ. That last

expression corresponds to the Peano kernel theorem. We get a similar expression for

the first derivative ϕ′(x). Therefore, setting ε(x, t) = E(Kt)(x)/2 proves theorem 8.

The interpolation error at t can therefore be written as a scalar product between two

functions. The first one, t 7→ E(Kt)(x), depends only on the position of the brackets

in terms the percentiles of the distribution. If the fractiles p1, . . . , pK included in the

tabulation get more numerous and closer to each other, its value will get closer to zero.

The other term, t 7→ ϕ′′′(t), characterizes the regularity of the distribution. When

ϕ′′′ = 0, the interpolated function is a polynomial of degree 2, so the interpolation

error is zero. That is the case, in particular, of strict Pareto distributions, which the

method can interpolate exactly. ϕ′′′ is best viewed as a “residual”: it summarizes all

the properties of the underlying distribution that are not properly captured by the

6Many other interpolation methods would satisfy those three properties (possibly with different
degrees for the polynomial), so that the results of this section could be extended to them with
minimal changes.
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functional form used in the interpolation.

We can obtain a first inequality on the absolute value of the error using the triangular

inequality:

|ϕ̂∞(x)− ϕ∞(x)| ≤ ||ϕ
′′′||∞
2

∫ xK

x1

|E(Kt)(x)| dt

where ||ϕ′′′||∞ = sup{|ϕ′′′(t)| : x1 ≤ t ≤ xK}. That last formula is a conservative

bound on the error, which would only be attained in the worst-case scenario where ϕ′′′

would frequently switch signs so as to systematically amplify the value of E(Kt)(x).

Still, it remains interesting because we can evaluate it (using numerical integration),

independently of ϕ, up to a multiplicative constant, and it gives insights on the

shape of the error that will remain valid even after refinements. Figure A.5 show

this bound for a tabulation with fractiles 10%, 50%, 90% and 99%.
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Figure A.5: Bounds on the misspecification error term for ϕ and ϕ′

As expected, the error term is equal to zero for both ϕ and ϕ′ at all the fractiles

included in the tabulation. The error is also larger when the log-transformed bracket

[− log(1 − pk),− log(1 − pk+1)] is wider. The overall shape of the error is quite

different for ϕ and ϕ′. For ϕ, the error bound is bell-shaped within brackets, and

its maximal value is attained near the middle of it. The error bound on ϕ′ admits

two peaks within each bracket, with the maximal error occuring somewhere near the

1/4th and the 3/4th of it. Estimates at the middle of each bracket are actually more

precise than at those two values. That somewhat atypical profile is explained by the

fact that the integral of ϕ′ over [xk, xk+1] is known and equal to ϕ(xk+1) − ϕ(xk).

Therefore, if we overestimate ϕ′ in the first half of the bracket, we will have to

underestimate it in the second half to compensate. By continuity, the error will have

to equal to zero at some point, and that will happen somewhere near the middle of

the interval.
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Going back to the quantities that are ultimately of interest: the error on top shares

follows the shape of the error for ϕ, while the error on quantiles follows the shape of

the error for ϕ′. In fact, for top shares, the error can be written as:∣∣∣∣∣e−ϕ̂(x) − e−ϕ(x)

E[X]

∣∣∣∣∣ =

∣∣∣∣∣e−ϕ(x)−ε(x) − e−ϕ(x)

E[X]

∣∣∣∣∣
=

∣∣∣∣∣e−ϕ(x)

E[X]
(e−ε(x) − 1)

∣∣∣∣∣
≈ e−ϕ(x)

E[X]

∣∣ε(x)
∣∣

where ε(x) is the interpolation on ϕ. If it is small, then at the first order, the absolute

error on ϕ corresponds to the relative error on top shares.

E(Kt)(x) only depends on known parameters, but we still need ϕ′′′ to use (A.4) in

practice comes from . With sufficiently detailed tabulations, we can estimate it

nonparametrically via local polynomial fitting on the empirical values of φ and φ′.

Figure A.6 shows the results, performed separately on the United States and France

over all available years.
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(for the United States) and Garbinti, Goupille-Lebret, and Piketty (2016) (for France). Median

value over all years in black, first and tenth deciles in gray. Estimation by local polynomial fitting of

degree 3 on both ϕ and ϕ′ with Gaussian kernel and adaptive bandwidth so that 5% of observations

are within one standard deviation of the Gaussian kernel.

Figure A.6: Estimations of ϕ′′′(x)

There is some similarity between both countries. The function ϕ′′′ can take relatively

high values in the bottom half of the distribution, but then quickly converges to zero.

Although it takes fairly different shapes in the bottom half, the shapes are actually

very similar above p = 50%. Within each country, there is also a certain stability
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over time (especially for France), as exhibited by the gray lines showing the first and

the tenth decile of estimated values over all years.

A.6.3 Sampling error

We first prove that the sampling error converges to zero as the sample size increases

(second part of theorem 4). This result is a natural consequence of the fact that

the tabulation of the data used in input eventually converges to the theoretical

values implied by the underlying distribution, so that the sampling error eventually

vanishes.

Proof. Consider the function Θ:

Θ :

R2K+3 → R2 Tn

XnL̂n(p∗)

Q̂n(p∗)

 7→

[
ϕ̂n(x∗)− ϕn(x∗)

ϕ̂′n(x∗)− ϕ′n(x∗)

]

which is continuously differentiable since it is a combination of continuously differen-

tiable functions. This function takes as input the tabulation Tn, and the value of the

Lorenz curve and the quantile at p∗. It returns the difference the estimated value of

ϕn(x∗) and its actual value. The sampling error, as we defined it, correspond to:

Θ[Tn, XnL̂n(p∗), Q̂n(p∗)]−Θ[T∞,E[X]L(p∗), Q(p∗)]

The strong law of large number — alongside analogous results for the sample quantile

— implies:

Tn
a.s.−−→ T∞

XnL̂n(p∗)
a.s.−−→ E[X]L(p∗)

Q̂n(p∗)
a.s.−−→ Q(p∗)

Therefore, the continuous mapping theorem implies:

Θ[Tn, XnL̂n(p∗), Q̂n(p∗)]−Θ[T∞,E[X]L(p∗), Q(p∗)]
a.s.−−→ 0

To prove theorem 6 on the speed of convergence of the error, we need to make



A.6. ERROR ESTIMATION 221

additional regularity assumptions on the distribution.

Assumption 1. f > 0 and f ′ is bounded in a neighborhood of [Q(p1), Q(pK)].

Assumption 1 covers most relevant cases.7 It allows the Bahadur (1966) representation

of the sample quantile to hold, so that it has a regular asymptotic behavior. It also

implies asymptotic normality of the trimmed mean (Stigler, 1973), and, by extension,

of the Lorenz curve.

Next, we distinguish two cases, depending on the tail behavior of the distribution. If

it has a sufficiently thin upper tail, then the distribution will have finite variance.

But it is common for the distribution of income (and a fortiori wealth) to have

much fatter upper tails, leading to infinite variance. This distinction has important

consequences for the asymptotic behavior of the sample mean, and by extension of

our estimator.

A.6.3.1 The finite variance case

For a strict power law, finite variance corresponds to b(p) > 2. More generally, we

can state the finite variance assumption using the second-order moment.

Assumption 2. X has a finite second-order moment, i.e. E[X2] < +∞.

When variance is finite, the central limit theorem applies. Hence, we get the standard

result of asymptotic normality and convergence rate n−1/2 using the delta method.

Proof. We start by deriving the asymptotic joint distribution of all the quantiles

and the means in the tabulation, which is multivariate normal. Then, theorem 9 for

finite variance follows from the delta method applied to Θ.

For k, k1, k2 ∈ {1, . . . , K + 1}, define:

Uk
i = Xi1Q(pk) < Xi ≤ Q(pk+1)

Vk = X ≤ Q(k)µk = E[Uk
i ]

σ2
k = Var(Uk

i )

σk1,k2 = Cov(Uk1
i , U

k2
i )

7There is one situation where that assumption may seem problematic, namely if p1 = 0 and
the distribution has a finite lower bound. However, in such cases, the value of Q(p1) is generally
known a priori (typically, because we assumed income is nonnegative) and is therefore not subject
to sampling variability. Hence, it will not affect the results.



222 APPENDIX A. APPENDIX TO “GENERALIZED PARETO CURVES”

We will also use the following matrix notations:

Ui = [U1
i U2

i · · · UK+1
i ]′

Vi = [V 1
i V 2

i · · · V K+1
i ]′

µ = [µ1 µ2 · · · µK+1]′

We start with a lemma that gives the joint asymptotic distribution of Un and V n.

Lemma 2.

√
n

[
Un − µ
V n − p

]
D→ N

0,

[
A C

C ′ B

]
where:

A =


σ2

1 σ1,2 · · · σ1,K+1

σ2,1 σ2
2 · · · σ2,K+1

...
...

. . .
...

σK+1,1 σK+1,2 · · · σ2
K+1



B =


p̃1(1− p̃1) p̃1(1− p̃2) · · · p̃1(1− p̃K+1)

p̃1(1− p̃2) p̃2(1− p̃2) · · · p̃2(1− p̃K+1)
...

...
. . .

...

p̃1(1− p̃K+1) p̃2(1− p̃K+1) · · · p̃K+1(1− p̃K+1)



C =



−p̃1µ1 µ1(1− p̃2) · · · µ1(1− p̃K) µ1(1− p̃K+1)

−p̃1µ2 −p̃2µ2 · · · µ2(1− p̃K) µ2(1− p̃K+1)
...

...
. . .

...
...

−p̃1µK −p̃2µK · · · −p̃KµK µK(1− p̃K+1)

−p̃1µK+1 −p̃2µK+1 · · · −p̃K+1µK+1 −p̃K+1µK+1


Proof. We have, for i ∈ {1, . . . , n} and k1, k2 ∈ {1, . . . , K + 1} with k1 < k2:

E[V k1
i ] = pk1

Var(V k1
i ) = pk1(1− pk1)

Cov(V k1
i , V k2

i ) = pk1(1− pk2)
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and for k1, k2 ∈ {1, . . . , K + 1}:

Cov(Uk1
i , V

k2
i ) =

−pk2µk1 if k2 ≤ k1

µk1(1− pk2) if k2 > k1

Therefore, by the central limit theorem:

√
n

[
Un − µ
V n − p

]
D→ N

0,

[
A C

C ′ B

]
with A, B and C defined as in lemma 2.

We know define for all i ∈ {1, . . . , n} and k ∈ {1, . . . , K}:

W k
i = Xi1{Q̂n(pk) < Xi ≤ Q̂n(pk+1)}

and for k = K + 1:

WK+1
i = Xi1{Q̂n(pK+1) < Xi}

and in matrix form:

Wi = [W 1
i · · · WK+1

i ]

The definition of Wi is similar to that of Ui, except that the quantile function was

replaced by its empirical counterpart. We may now prove a second lemma, which

correspond to the joint asymptotic distribution of W n and Q̂n.

Lemma 3.

√
n

[
W n − µ
Q̂n − q

]
D→ N

0,

[
A+MC ′ +CM ′ +MBM ′ −CN −MBN

−NC ′ −NBM ′ NBN

]
where A, B and C are defined as in lemma 2, N = diag(1/f(q̃1), . . . , 1/f(q̃K+1)),

and:

M =



q̃1 −q̃2 0 · · · 0 0

0 q̃2 −q̃3 · · · 0 0

0 0 q̃3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · q̃K −q̃K+1

0 0 0 · · · 0 q̃K+1


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Proof. Note that for k ∈ {1, . . . , K}:

W
k

n =
1

n

bnpk+1c∑
i=bnpkc+1

X(i)

=
1

n

 nV
k
n∑

i=bnpkc+1

X(i) +

nV
k+1
n∑

i=nV
k
n+1

X(i) +

bnpk+1c∑
i=nV

k+1
n +1

X(i)


= U

k

n +
1

n

 nV
k
n∑

i=bnpkc+1

X(i) +

bnpk+1c∑
i=nV

k+1
n +1

X(i)


Where

∑b
i=a x should be understood as −

∑a
i=b x if a > b. Therefore:

√
n(W

k

n − µk) =
√
n(U

k

n − µk) +
1√
n

 nV
k
n∑

i=bnpkc+1

X(i) +

bnpk+1c∑
i=nV

k+1
n +1

X(i)


We have:

1√
n

nV
k
n∑

i=bnpkc+1

X(i) =
1√
n

nV
k
n∑

i=bnpkc+1

(X(i) − qk + qk)

=
1√
n

nV
k
n∑

i=bnpkc+1

(X(i) − qk) + qk
√
n

(
V
k

n −
bnpkc
n

)

The first term converges in probability to zero because:∣∣∣∣∣∣∣
1√
n

nV
k
n∑

i=bnpkc+1

(X(i) − qk)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣nV

k

n − bnpkc√
n

∣∣∣∣∣∣max{|X(bnpkc+1) − qk|, |X(nV
k
n)
− qk|}

where the first term is bounded in probability, |X(bnpkc+1) − qk|
P→ 0 and |X

(nV
k
n)
−

qk|
P→ 0. Hence:

1√
n

nV
k
n∑

i=bnpkc+1

X(i) = qk
√
n(V

k

n − pk) +
√
n

(
pk −

bnpkc
n

)
+ o(1)

= qk
√
n(V

k

n − pk) + o(1)
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Similarly:

1√
n

bnpk+1c∑
i=nV

k+1
n +1

X(i) = −qk+1

√
n(V

k+1

n − pk+1) + o(1)

Therefore:

√
n(W

k

n − µk) =
√
n(U

k

n − µk) + qk
√
n(V

k

n − pk)− qk+1

√
n(V

k+1

n − pk+1) + o(1)

By similar arguments:

√
n(W

K+1

n − µK+1) =
√
n(U

K+1

n − µK+1) + qK+1

√
n(V

K+1

n − pK+1) + o(1)

Hence, in matrix notation:

√
n(W n − µ) =

√
n(Un − µ) +M

√
n(V n − p) + o(1)

The Bahadur (1966) representation of the quantile implies:

Q̂n − q = −N (V n − p) + o(n−1/2)

Therefore, we have:

√
n

[
W n − µ
Q̂n − q

]
=
√
n

[
I M

0 −N

][
Un − µ
V n − p

]
+ o(1)

Using lemma 2, we get:

√
n

[
W n − µ
Q̂n − q

]
D→ N

0,

[
A+MC ′ +CM ′ +MBM ′ −CN −MBN

−NC ′ −NBM ′ NBN

]
with A, B and C defined as in lemma 2.

Notice that:

∀k ∈ {1, . . . , K + 1} XnL̂n(p̃k) =
K+1∑
`=k

W
`

n and E[X]L(p̃k) =
K+1∑
`=k

µ`

Therefore, we can write in matrix form that L̂n = PW n where:

L̂n = [XnL̂n(p̃1) · · · XnL̂n(p̃K)]
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and P is the upper triangular matrix with only ones. Define ∇Θ the gradient of Θ

expressed at [T∞,E[X]L(p∗), Q(p∗)], and:

R =

[
P 0

0 I

]

Denote S the covariance matrix of lemma 3, and Σ = (∇Θ)′R′SR(∇Θ). The delta

method (van der Vaart, 2000, p. 25) then implies:

√
n(Θ[Tn, XnL̂n(p∗), Q̂n(p∗)]−Θ[T∞,E[X]L(p∗), Q(p∗)])

D→ N (0,Σ)

A.6.3.2 The infinite variance case

When E[X2] = +∞, the standard central limit theorem does not apply anymore.

There is, however, a generalization due to Gnedenko and Kolmogorov (1968) that

works with infinite variance. There are two main differences with the standard

central limit theorem. The first one is that convergence operates more slowly than

n−1/2, the speed being determined by the asymptotic power law behavior of the

distribution (the fatter the tail, the slower the convergence). The second one is that

the limiting distribution belongs to a larger family than just the Gaussian, called

stable distributions. With the exception of the Gaussian — which is an atypical

member of the family of stable distributions — stable distributions exhibit fat tails

and power law behavior. In most cases, their probability density function cannot be

expressed analytically: only their characteristic function can. Although we designed

our interpolation method with power laws in mind, we did not actually restrict the

asymptotic behavior of the distribution, until now. But to apply the generalized

central limit theorem, we need to make such an assumption explicitly (Uchaikin and

Zolotarev, 1999, p. 62).

Assumption 3. 1− F (x) ∼ Cx−α as x→ +∞ for 1 < α ≤ 2 and C > 0.

Assumption 3 implies that X is an asymptotic power law, but it is a little more

restrictive than definition 2: instead of assuming that x 7→ L(x) in definition 2 is

slowly varying, we make the stronger assumption that it converges to a constant. It

still covers a vast majority of cases. We limit ourselves to situations where 1 < α ≤ 2,

since when α > 2 we are back to the finite variance case, and when α ≤ 1 the mean

is infinite.
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Proof. We use the generalized central limit theorem of Gnedenko and Kolmogorov

(1968), which gives the asymptotic distribution of the sample mean when E[X2] =

+∞. Once we apply this theorem, the rest of the proof becomes simpler than

with finite variance. Indeed, with infinite variance, the sample mean in the last

bracket converges slower than 1/
√
n, while quantiles and means in other brackets

still converge at the same speed. Therefore, asymptotically, there is only one source

of statistical variability that eventually dominates all the other. Hence, we need not

be concerned by, say, the joint distribution of the quantiles, because at the first order

that distribution will be identically zero. This insight leads to the following lemma.

Lemma 4.

rn

[
Un − µ
V n − p

]
D→ S

where:

rn =

n1−1/α if 1 < α < 2

(n/ log n)1/2 if α = 2

Si =

γY if i = K + 1

0 otherwise

and Y is a stable distribution with the characteristic function:

g(t) = exp(−|t|α[1− i tan(απ/2)sign(t)])

and:

γ =


(

πC
2Γ(α) sin(απ/2)

)1/α

if 1 < α < 2
√
C if α = 2

Proof. Standard results on quantiles (David and Nagaraja, 2005) and the trimmed

mean (Stigler, 1973) imply that quantiles and means in middle bracket converge in

distribution at speed 1/
√
n. Because rn = o(

√
n), they converge to zero in probability

when multiplied by rn. Hence, the only nonzero term in S correspond to U
K+1

n ,

which converges to γY according to the generalized central limit theorem (Uchaikin

and Zolotarev, 1999, p. 62).

We now move from the asymptotic distribution of Un and V n to the asymptotic

distribution of W n and Q̂n, as we did in the previous section. Except that now both
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distributions are the same, because the disturbances introduced by quantiles and

middle bracket averages are asymptotically negligible.

Lemma 5.

rn

[
W n − µ
Q̂n − q

]
D→ S

with the same notations as in lemma 4.

Proof. Using the same method as in the proof of lemma 3, we get:

rn(W n − µ) = rn(Un − µ) + o(1)

Moreover, the Bahadur (1966) representation of the quantile implies:

rn(Q̂n − q) = o(1)

Using lemma 4 give the result.

We may now apply the delta method as we did in the previous section. We are in

a somewhat non standard case because the convergence operates more slowly than
√
n, and the asymptotic distribution is not Gaussian, but the basic idea of the delta

method applies nonetheless. We get:

rn(Θ[Tn, XnL̂n(p∗), Q̂n(p∗)]−Θ[T∞,E[X]L(p∗), Q(p∗)])
D→ (∇Θ)RS

which proves the result of theorem 6 for infinite variance.

The precise parameters of the stable distribution and the constants γ1, γ2 are given

in appendix alongside the proof. For practical purposes, that theorem requires in

particular the estimation of α and C. Using the generalized Pareto distribution

model with parameters ξ, σ, µ as in section 3.3, we have:

α = 1/ξ

C = (1− p)(ξ/σ)−1/ξ

for ξ ≥ 1/2 (if ξ < 1/2, variance is finite). If we have access to individual data, at

the very top of the distribution, it is possible to use better estimates of α and C,

using the large literature on the subject in extreme value theory (Haan and Ferreira,
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2006, pp. 65–126).8

The infinite variance approximation is a rougher than the finite variance approxima-

tion for two reasons. First, because it relies on parameters, such as the asymptotic

Pareto coefficient, which are harder to estimate than variances or covariances. Second,

because it makes a first-order approximation which is less precise. That is, it assumes

that all of the error comes from mean of the top bracket (which converges at speed

1/rn), and none from the quantiles or the mean of the lower brackets (which converge

at speed n−1/2). Although that is asymptotically true, because rn grows more slowly

than n1/2, it is possible that the second-order term is not entirely negligible for finite

n. Still, it gives a good idea of the magnitude of the error.

A.6.3.3 Comparison
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Figure A.7: Asymptotic mean absolute value of the sampling error with finite
variance

To observe theorem 6 in practice, we turn to the distribution of labor and capital

income in the United States in 1970. Back then, labor income inequality was

low enough so that the asymptotic inverted Pareto coefficient was comfortably

below 2 (somewhere between 1.4 and 1.6), which means that the distribution has

finite variance. Capital income, on the other hand, was as always more unequally

distributed, so that its asymptotic inverted Pareto coefficient appeared to be above

2.3, which implies infinite variance.

Figures A.7 and A.8 apply theorem 6 to the distribution of labor and capital income

in the United States. The patterns are reminiscent of what we observed for the

misspecification error: a bell-shaped, single-peaked error in each bracket for ϕ, and

8For example, wealth rankings such as the Forbes 400 can give the wealth of a country’s richest
individuals. See Blanchet (2016).
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Figure A.8: Asymptotic mean absolute value of the sampling error with infinite
variance

a double-peaked error for ϕ′.

A.6.4 Comparing Misspecification with Sampling Error
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Pre-tax national income. Sources: author’s computations from Piketty, Saez, and Zucman (2016).

The solid blue line correspond to the misspecification error estimated with formula (A.4) and a

nonparametric estimate of ϕ′′′. The dashed red line correspond to the actual, observed error. We

smoothed the observed error for ϕ′ using the Nadaraya-Watson kernel estimator to remove excessive

variability due to rounding.

Figure A.9: Actual error and estimated misspecification error

The misspecification error largely dominates the sampling error given the sample

sizes that are typical of tax tabulations. To see this, we may go back to the previous

example of the US distribution of labor income in 1970. Figure A.9 shows the

misspecification error is this case estimated using formula (A.4) and a nonparametric

estimate of ϕ′′′, alongside the actual, observed error. There is some discrepancy

between both figures, largely due to the fact that ϕ′′′ cannot be estimated perfectly.
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Yet the estimated misspecification error appear to be a fairly good estimate of the

actual error overall.

We may then look at figure A.7 to see how the sampling error compares. At its

highest, it reaches to 3.5× 10−5 for ϕ and 7.5× 10−5 for ϕ′. The misspecification

error is several orders of magnitude higher, around 10−3. Even if the population was

100 times smaller, the magnitude of the mean absolute deviation of the error would

be multiplied by
√

100 = 10, so it would remain an order of magnitude lower. The

figures would be similar for other years, countries or income concept. In practice, we

can confidently neglect the sampling error.
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Appendix B

Appendix to “The Weight of the

Rich: Improving Surveys with Tax

Data”

B.1 Formal Biases and Adjustments

Our adjustment procedure is based on the interpretation of the whole difference

between tax and survey densities as being due solely to nonresponse. However,

the misreporting of income by survey respondents may also produce discrepancies.

Misreporting tends to be negatively correlated with income.1 That is, on average,

the poor are more likely to overreport their true income while the rich tend to

underreport. It is thus fair to ask: what would be the consequences of such behavior

in our analytical framework? And how do replacing methods — which aim to adjust

for underreporting at the top — compare to reweighting?

B.1.1 Double-Biased Density Functions

To define the misreporting bias, let fY (y) be the true income distribution, fM (y) the

distribution of misreported income, p(y) the probability of misreporting for a given

level of income, conditional on response, and p̄ its average. Then we define fZ as

the income distribution of a sample that is drawn from fY (y), including both the

1See Bound and Krueger (1991), Bollinger (1998), Pedace and Bates (2000), Cristia and
Schwabish (2009), and Abowd and Stinson (2013) for studies on the United States and Angel,
Heuberger, and Lamei (2017) and Paulus (2015) for studies on Austria and Estonia respectively.

234
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nonresponse and misreporting biases (the former is defined in equation (2.1)) :

fZ(y) = fY (y)θ(y)(1− p(y)) + fM(y)p̄ (B.1)

The left side of the sum stands for those who report income correctly with a given

(relative) probability of response that is defined in equation (2.1), i.e. θ(y). The right

side of the sum accounts for those declaring misreported income equal to y, given

that they respond. In this situation, the over- or under-estimation of fZ with respect

to the true distribution fY can be formulated as the ratio of the two distributions:

fZ(y)

fY (y)
= θ(y)(1− p(y)) +

fM(y)

fY (y)
p̄ (B.2)

If the ratio is higher than 1, the density is overestimated. If it is lower than 1, it is

underestimated. Naturally, the shape of such bias depends on the characteristics of

each of the variables at play. Following the empirical literature, it is reasonable to

define the probability of misreporting as being higher in both ends of the distribution

and relatively stable in the middle. However, explicit information on the shape of the

misreported-income distribution is rare, since it relies on having individually-linked

survey and register micro-data. In order to better understand the potential impact

of assumptions on its shape, it can be useful to analyze a simplified situation where

misreporting operates in isolation. In that case we have:

fZ(y)

fY (y)
= 1− p(y) +

fM(y)

fY (y)
p̄ (B.3)

If misreported income follows the same distribution as true income, that is fM(y) =

fY (y), then densities are underestimated where the probability of misreporting is

higher than its average (p(y) > p̄). Symetrically, densities are overestimated where

the same probability is lower than its average (p(y) < p̄). Of course, it may seem odd

to assume that misreported income is distributed exactly as true income. However,

we consider this to be a useful simplification which helps to convey that both the

nonresponse and misreporting biases can have a similar impact and that we are

unable to tell them apart ex-post. Indeed, both biases, either working alone or

together, can perfectly describe a profile as the one in figure 2.3. If fM 6= fY , we can

still get a similar result under some circumstances. For instance, if both densities

are of the same type but defined by different parameters (e.g. if both are log-normal

with a different mean and standard error) — which does not seem to be a strong

assumption — the ratio of the sample to true distribution would likely have a form
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similar to Figure 2.3 but with strong or slight perturbations near the mode of each

distribution (assuming the true and misreported income-densities are unimodal).

When we study the ratio of income distributions from actual tax and survey data —

in section 2.3.2.2 — the empirical estimate of the θ coefficient should be capturing

the effect of both these biases. Figure 2.6 shows that estimates for countries with

comprehensive tax coverage (e.g. Norway, France and the UK) depict rather flat

shapes through most of the distribution and only fall closer to the right tail. Such a

shape implies that, if the misreporting bias is present in the survey, the differences

between fM and fY are not big enough to cause perturbations that are easily

distiguishable from noise in the θ coefficient. In any case, to our knowledge, it is not

possible to measure the relative size of both the nonresponse and misreporting biases

without access to individually-matched micro datasets.

B.1.2 Adjustment Methods: Reweighting vs. Replacing

In practice, researchers face the following problem while combining survey and tax

data: on one side, survey data supposedly covers the whole population but fails to

properly capture the top tail of the income distribution. On the other side, they

have a tax data distribution which is assumed to be accurate, at least at the top.2

Figure B.1: Correcting for Nonresponse by Reweighting
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ū

•

ȳ

2The issues of tax avoidance and evasion are issues of underreporting, but are more difficult to
remedy without access to third-party/offshore data. Therefore it is useful to think of tax data, at
least above a certain top threshold, as being an accurate lower bound for incomes.
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Reweighting The reweighting solution in this scenario can be represented as in

figure B.1, which displays the Cumulative Distribution Functions (CDF) of the

survey, tax data and “reweighted” distributions. The tax data start at the value ȳ,

which correspond to the population fractile ū. If nonresponse is higher at the top,

the corresponding fractile in the survey (FZ(ȳ)) will be higher as shown. We can

also define a low income level
¯
y with corresponding fractile

¯
u below which we do not

want to alter the survey (e.g. the national poverty line). If there is no such concern,

then we can set
¯
u = 0 and

¯
y = −∞.

Replacing While the reweighting method adjusts the weight of survey observations,

replacing methods adjust their value. The usual rationale behind replacing methods

is different. It accounts for the discrepancy between the survey and the tax data by

assuming that people misreport their income, rather than by assuming that people

refuse to answer the survey or its income-related questions.

Either problem may happen in reality, and mathematically it is not possible to

disentangle them without linking tax and survey data directly (see Appendix B.1.1).

But the case for reweighting relies in part on the fact that even if misreporting is

the problem, it is unclear that pure replacing does a better job of solving it than

reweighting. To convey this, let us start with a formulation of the misreporting

problem. We have the following relationship between two random variables Y and

Z, which represent true income and misreported income respectively:

Z = Y Λ

where Λ is a random variable that may depend on Y . We call 1 − Λ the rate of

underreporting. In this setting, the PDF of Z will depend on the joint PDF of Y

and Λ:

fZ(z) =

∫ +∞

−∞

1

|λ|
fY Λ[z/λ, λ] dλ

The expression above raises some major tractability issues. In particular, it is not

possible to recover fY Λ from the knowledge of fY and fZ separately, so Λ may only be

estimated when we can link misreported income and its covariates (i.e. Z and X) at

the individual level, which is not common in practice. Otherwise, there will infinitely

many Λ that satisfy the problem. For these reasons, previous researchers working

with replacing methods have made some very strong (even if implicit) assumptions,

which we make explicit below.

Assumption 1. The rate of underreporting is a deterministic function of the rank
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in Y : Λ = λ(FY (Y )).

Assumption 2. The rank is the same in the true income distribution and in the

survey income distribution: FY (Y ) = FZ(Z) = U .

These assumptions on λ are very strong and unavoidable. Otherwise, it is not

possible to interpret λ(u) as an average underreporting given rank u (i.e. λ(u) =

E[Λ|FY (Y ) = u])), because fZ depends on the entire joint distribution of (Y,Λ).

Using these assumptions, estimating the underreporting function λ is very simple.

Indeed, since misreporting leaves the rank unchanged, we have:

λ(u) =
QZ(u)

QY (u)
(B.4)

where QY and QZ are the quantile functions of Y and Z. The replacing approach to

correcting survey data proceeds as follows.3 We assume a rank
¯
u below which we

do not alter the survey data, assuming it is already accurate, so λ(
¯
u) = 1. The tax

data start at the rank ū, at which the rate of underreporting is observed directly:

λ(ū) = QZ(ū)/QY (ū). The situation is pictured in figure B.2. Between
¯
u and ū, we

must assume a certain shape of the function λ. A simple and common choice is the

linear rescaling profile λ(u) = 1 + (λ(ū)− 1)
u−

¯
u

ū−
¯
u
.

Figure B.2: Correcting for Misreporting by Replacing
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This procedure may make sense if we view it as a manipulation of the distribution in

3Here we present the most extreme class of replacing methods, which we label ‘rescaling’. In
this case there is a part of the survey distribution that is adjusted (rescaled) for which there are no
tax data values to replace it. See section 2.1.2.
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itself. But given the extremely strong and unrealistic assumptions stated above, any

interpretation in terms of individual behaviour is slippery. And if we only understand

the replacing approach as a manipulation of distribution at the aggregate level, then

we should expect reweighting to perform similarly well. Indeed, reweighting simply

involves adjusting the survey distribution in figure B.2 horizontally rather than

vertically. Therefore, we have the following equivalence between reweighting and

replacing coefficients for income y and rank u, so that reweighting may be interpreted

as a specific case of replacing with:

Θ(y) =
FZ [QZ(u)/λ(u)]

u

In the end, unlike reweighting, it is unclear what problem exactly replacing methods

end up solving. In any case, reweighting does, at least, an equally good job at solving

it. Furthermore, reweighting has a clear interpretation, it is consistent with widely

accepted calibration methods, it is easier to generalize to more complex settings and

it always preserves the continuity of density functions, which is highly desirable and

not the case in the replacing procedures, especially those adjusting arbitrary portions

of the distribution (e.g. the top 1%).

B.2 Merging Point Below the Trustable Span

Sometimes the part of the distribution covered by the tax data is too limited to

observe a merging point such that Θ(y) = θ(y). This situation is represented in

figure B.3. Below ytrust, the value of θ(y) and Θ(y) have to be extrapolated until

both curves cross, which is where we define the merging point.

Figure B.3: Choice of Merging Point when ȳ < ytrust
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We need to define a functional form for θ(y) in order perform the extrapolation (the
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value of Θ(y) follows from that of θ(y)). We will assume the following:

log θ(y) = γ0 − γ1 log y (B.5)

which may also be written θ(y) = eγ0y−γ1 . In addition to fitting the shape of the bias

observed in practice, this form has the property of preserving Pareto distributions.

Indeed, if fY (y) ∝ x−α−1, then fX(y) = θ(y)fY (y) ∝ x−γ1−α−1, which is also a Pareto

density. The parameter γ1 may be interpreted as an elasticity of nonresponse: when

the income of people increases by 1%, how much less likely are they to be represented

in the survey.

While the equation (B.5) can be estimated by OLS, we need to take into account

situations where tax data covers such a small share of the distribution that the

number of data points is insufficient to estimate the regression reliably. Since the

frontier between having and not having enough data is blurry, our preferred approach

is to deal with the two cases at once using a ridge regression. The idea is that we

can know from experience a typical value for γ1 called γ∗1 . In the absence of data, it

represents our baseline estimate.4 As we observe new data, we may be willing to

deviate from that value, but only to the extent that there is enough evidence for

doing so. The ridge regression formalizes this problem as:

min
γ0,γ1

m∑
i=1

(log θ̃k − γ0 − γ1 log yk)
2 + λ(γ1 − γ∗1)2

The first term is the same sum of squares as the one minimized by standard OLS.

The second term is a Tikhonov regularization parameter that penalizes deviations

from γ∗1 . If m = 1, then γ1 = γ∗1 and the sum of squares only determines the intercept.

As we get more data points, the sum of squares gets more weight and results get

closer to OLS. The parameter λ determines the strength of the penalization. The

problem has an explicit solution expressible in matrix form (e.g. Hoerl and Kennard,

2000). We can have a Bayesian interpretation of the method where our prior for

γ1 is a normal distribution centered around γ∗1 and λ determines its variance. The

solution of the ridge regression gives the mean value of the posterior. Once we have

the estimation of γ0, γ1 we can simulate a tax data distribution by reweighting the

survey data: the point at which θ(y) crosses Θ(y) becomes the merging point ȳ, and

the reweighted survey from ȳ to ytrust can be used to complete the tax data.

4In practice, γ∗1 can be drawn from other “similar countries” that have sufficient data. For
example, in our applications, we use the Brazilian γ∗1 to extrapolate the Chilean merging point (see
section 2.3.2.2).
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B.3 Geometrical Interpretation of Calibration

A further interpretation of the linear calibration presented in section 2.2.2 is geomet-

rical. It comes from the relationship between (2.4) and the generalized regression

estimator (GREG). Assume that we seek to estimate the total of a survey variable y.

We can directly use the survey total, which we will write ỹ. But if we wish to exploit

the information on the true population totals of the auxiliary variables x1, . . . , xk,

we can use the GREG estimator, whose logic is represented in figure B.4. The idea

is to first use the survey to project the variable of interest y onto the auxiliary

variables x1, . . . , xk using an ordinary least squares regression. Hence we get a linear

prediction ŷi = βxi of yi, which corresponds to the part of y that can be explained

by the auxiliary variables x1, . . . , xk. We can then substitute the survey totals by

their true population counterpart in the linear prediction to get a new, corrected

prediction of y. Adding back the unexplained part of y leads to the GREG estimator

ỹ∗ = ỹ + β(t− x̃).

Figure B.4: Geometrical Interpretation of Linear Calibration
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The survey totals ỹ, x̃1 and x̃2 are shown in purple. The GREG estimator,
which is equivalent to linear calibration, first projects ỹ onto x̃1 and x̃2 (dashed
blue line). This projection is equal to β1x̃1 + β2x̃2. The true population totals
tx1 and tx2 are in orange. We substitute them for x̃1 and x̃2 in the projection,
which gives the value β1tx1

+ β2tx2
. We add back the unexplained part of ỹ

(dashed blue line) to get the calibrated total ỹ∗.
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It can be shown algebraically that linear calibration is identical to the GREG proce-

dure (Deville and Särndal, 1992). By using the calibrated weights, we systematically

project the variable of interest on the calibration variables and perform the correction

described above, without having to explicitly calculate the GREG estimator every

time.

B.4 Further Monte Carlo Simulations

This section presents three supplementary experiments to those presented in sec-

tion 2.3.1. Each one of them includes punctual changes in the parameters underlying

the benchmark experiment, which is a useful way to isolate possible effects and thus

to anticipate the method’s performance in different scenarios.

Figure B.5: Experiment with more Misreporting
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Figure B.5 displays results of an experiment which only differs from the benchmark

in that the misreporting bias is stronger. That is, the probability of misreporting

starts increasing from percentile 85 (P85) instead of 95 (P95). This mechanically

affects the accuracy of estimates produced using the raw survey, which is expected

given that more people are actually misreporting their income. Indeed, the variance
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of each of the estimates from the raw sample increases substantially, which is visible

by comparing the width of their kernel densities to the corresponding ones in the

benchmark setting. Although replaced surveys still appear to get somewhat closer

than raw estimates to true values after correction, they are also substantially affected

by the increased variability. However, this setting only affects the performance of our

method marginally, as the resulting densities of estimates are almost indistinguishable

from those displayed in figure 2.5, which is a good proof of adaptability. Other

experiments were conducted, where we assumed stronger non-response biases. But

we do not display results because they are almost identical to those presented in

figure B.5. This can be explained by the fact that both biases have a similar effect —

only in distributive terms, as opposed to individual representativeness — on resulting

distributions (see Appendix B.1.1).

Figure B.6: Experiment with Replacing the Top 5%
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Figure B.6 depicts another setting, where the only difference with the benchmark

experiment is that the replacing procedure uses the top 5% instead of only the top

1%. The estimates produced by our adjustment method are virtually the same than

the benchmark. Since, by definition, biases are active in the top decile, the increase in

the replaced population results in estimates that are more accurate, especially in the
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case of the top 10% share and the Gini coefficient (see figures B.6c and B.6d), which

appear to be substantially closer to our estimates and thus to true values. However,

the same is not true for both the estimated average income and the top 1% share,

which still tend to be substantially underestimated and overestimated, respectively

(figures B.6a and B.6b). Although we could go further and try to find the exact

portion of the population that has to be replaced to get a similar result to that

obtained with our method, we judge this to be an unnecessary exercise. As we argue

in section B.1.2, the equivalence between our method and replacing can be found in

some cases, yet it would only would be valid in a purely distributional perspective

because replacing implies extremely unrealistic assumptions at the individual level

and, thus, does not preserve the consistency of the resulting observations.

Figure B.7: Experiment with Poor Tax Data
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Figure B.7 represents a somewhat extreme case where we limit access to tax

declarations to only the top 5% of respondents, thus forcing our method to extrapolate

adjustment factors in a large majority of cases. Our estimates appear to be less precise

than in the benchmark, where a larger part of the information was used, yet they still

perform better than both the raw survey and the replacing alternative. The resulting
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distribution of estimates is to our judgement rather satisfactory, since estimates

remain closely centered around true values. This experiment shows that under

extreme circumstances, where tax data covers a very small part of the population,

estimates resulting from our correction method are still accurate, yet reasonably less

precise.

B.5 Data Details and Supplementary Results

B.5.1 Country Specific Income Concepts and Observational

Units

B.5.1.1 Brazil

To reconcile incomes in surveys with those in tax data, we use the latter as the

benchmark for the top of the distribution. We thus require that the survey definition

of income, from the micro-data, be consistent with the definition of income in the tax

tabulations in order for the comparison to make sense. The total income assessed in

tax data is pre-tax-and-transfer income, but including pensions and unemployment

insurance. It is the sum of three broad fiscal categories: taxable income, exclusively

taxed income and tax-exempt income (reported in table 9 of the tax report Grandes

Números DIRPF ). We describe each of these in turn before describing how we

construct the survey definition of income.

Taxable income comprises of wages, salaries, pensions and property rent. These are

incomes that are subject to assessment for the personal income tax. Exclusively-taxed

income is income that has been already been taxed at source according to a separate

tax schedule. It also contains capital income and labour income components. The

labour component is the sum of the 13th monthly salary received by the contributor

and their dependents, wages received cumulatively by contributors or dependents,

and worker participation in company profits. The capital component comprises of

the sum of fixed income investment income, interests on own capital (“juros sobre

capital próprio”), variable income investment income, capital gains and other capital

income. Non-taxable incomes are the last fiscal category, whose decomposition is

presented in table 20 of the tax reports. These are incomes that are declared but

which are not subject to any personal taxation when received. Close to one-fifth

of these exempt incomes can be classified as labour income. These comprise of

compensation for laid-off workers, the exempt portion of pension income for over 65s,

withdrawals from employment security fund, scholarships, and other labour incomes.
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The remaining items can be classified as capital income (distributed company profits,

dividends, interests from savings accounts/mortgage notes) or mixed income (the

exempt portion of agricultural income).

We construct survey income to be as close to the tax definition as possible. The

total income we analyse from the PNAD surveys is the sum of labour income, mixed

income and capital income. Labour income is the sum of all reported income from

primary, secondary or all other jobs (variables V9532, V9982, V1022) for all employed

individuals who do not classify themselves as own-account (self-employed) workers

or employers. For employers, we assume that labour income is the portion of their

work income that is below the annual exemption limit for the DIRPF, as set by

the Receita Federal. Thus, values above the first tax paying threshold are taken to

be capital withdrawals. Also in labour income are pensions (V1252, V1255, V1258,

V1261), work allowances (V1264), abono salarial and unemployment insurance. Of

the latter two, the first is imputed as one minimum wage for eligible formal private

sector employees, while the second is imputed for respondents who claimed to have

received unemployment benefits at some point in the 12 months before the PNAD

interview. Benefit levels were imputed as yearly averages of shares of the minimum

wage from current legislation. Values of V1273 equal to or below 1 monthly minimum

wage are interpreted as social benefits, which are excluded from the analysis.

Mixed income is the reported income of own-account workers. Capital income is

estimated as the sum of rent (V1267), financial income, and the capital portion of

employer work income (i.e. reported amounts exceeding the annual exemption limit

for DIRPF). Financial income (interests and dividends) is taken from other income

sources declared (V1273) and estimated as any income from this source that exceeds

1 monthly minimum wage. Finally, we add a 13th monthly salary to the annual

calculation of the incomes of formal employees and retirees. In total, the income we

calculate from the surveys represents close to 80% of the equivalent (fiscal income)

total from the household sector in the national accounts, on average between 2007

and 2015. The total income we use from tax statistics accounts for about 63% of the

same fiscal income total from the national accounts over the same period.

Given that the unit of assessment in the tax data can either be the individual

or the couple, in cases where the latter opt to declare jointly, we cannot strictly

restrict ourselves to the analysis of individual income as it is received by each

person. Therefore, we decide follow the tax legislation by identifying the number of

married couples appearing jointly on the declaration and splitting their total declared

income equally between them when carrying out the generalized Pareto interpolation
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(Blanchet, Fournier, and Piketty, 2017) from the tabulation. This allows us to bring

the analysis to the individual level by assuming that all spouses equally share their

income. We use the information available in the tax statistics to estimate the share

of joint declarations, which overall represent about 30% of all filed declarations (see

(Morgan, 2018)). To be consistent in the comparison, we also use individual income

in the surveys, with the income of married couples being split equally between the

composite adults. We consider all adults aged 20 or over in our analysis.

B.5.1.2 Chile

Following the same logic as that applied to the Brazilian case, we construct from the

Chilean survey an income definition that is as close as possible to the one used in tax

data. The resulting definition is the one we use when merging datasets. However,

in Chile, unlike Brazil, the survey reports post-tax incomes. In broad terms, we

estimate pre-tax income retrospectively from declared post-tax income. In order

to do so, we make a priori assumptions on whether certain types of income pay

income taxes or not. Additionally, some self-reported characteristics are used to

determine if the income of certain individuals should be treated as taxable or not.

For instance, dependent workers that do not have a contract (and will not sign any

soon) are considered to be informal, thus they are assumed to not pay the income

tax. A similar mechanism is used for independent workers – depending on if they

emit invoices (both commercial or for services) we define them as formal or informal.

Table B.1 gives a comprehensive view on what types of income are assumed to pay

taxes or not. For further comments on the definition of income corresponding to tax

data, please refer to Flores et al. (n.d.).

B.5.1.3 European Countries

Tax Data For the three European countries we use tabulated tax data from

official sources. In the case of Norway and the United Kingdom, the data come

directly from institutional sources: “Tax Statistics for Personal Taxpayers” from

Statistics Norway (https://www.ssb.no/en/statbank/list/selvangivelse) for

the former, and the “Survey of Personal Incomes” (SPI) from HM Revenue & Cus-

toms (https://www.gov.uk/government/statistics/income-tax-liabilities-

by-income-range), for the latter. The tax unit for both countries is the individual.

As explained in Section 2.3.2.2, we interpolate the tabulations using a generalized

Parteo interpolation Blanchet, Fournier, and Piketty (2017). For France, we use

detailed tabulations produced by Garbinti, Goupille-Lebret, and Piketty (2016) from

the micro-files of French taxpayers. These are available in the Appendix C Tables

https://www.ssb.no/en/statbank/list/selvangivelse
https://www.gov.uk/government/statistics/income-tax-liabilities-by-income-range
https://www.gov.uk/government/statistics/income-tax-liabilities-by-income-range
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Table B.1: From Post-Tax to Pre-Tax Income in Chilean Surveys

Type of
income

Taxable Income Tax Exempt Income

Variable name Code Variable name Code

Labor
Income

Wage (1ry occup.). y1a Occasional work. y16a
Wage (2ry occup.). y6, y10 Unemp. insurance. y14c
Inc. from previous
months (if dependent).

y14b Tips, travel expenses. y3c, y3e

Extra hours, commis-
sions & allowances.

y3a, y3b,
y3d y3f

Christmas bonus. y4a

Rewards & additional
salary.

y4b, y4c,
y4d

Inc. of the inactive. y11a

Wage of informals. o17, o14

Pensions

Old age pension. y27am
Disability pension. y27bm
Widow’s pension. y27cm
Orphan’s pension. y27dm

Mixed
Income

Inc. of indep. (1ry oc-
cup.)

y7a Inc. of indep. (2ry oc-
cup.).

y6,y10

Inc. from previous
months (if indep.).

y14b Inc. of non-qualified,
informal, small minery
& craftsmen.

oficio1,
oficio4,
o14

Capital
Income

Rent (agricultural). y12b Rent (urban). y12a
Interest. y15a Rent (seasonal). y16b
Dividends. y15b
Withdrawals. y15c
Rent (equipment). y16a

Notes: Codes correspond to those of CASEN 2011-2013. Formality is defined as conditional to
having a contract and/or emitting ”boletas de honorarios” (invoices by independents). Information
on formality is only available for primary occupation. Formality is assumed to be the same for 1ry
and 2ry occupations. In the survey, income is post-tax. Pre-tax formal income of contract-workers
is calculated using tables of IUSC (Impuesto Único de Segunda Categoŕıa) retrospectively. Pre-tax
income of formals emitting invoices is added of mandatory provisional deductions (e.g. 10%) and
standard presumptive expenses (e.g. 30%). Pre-tax capital income is calculated using the IPC
(Impuesto de Primera Categoŕıa) single tax-rate (e.g. 20%). Rent of urban properties is assumed
to be untaxed because of law D.F.L.2 (1959)
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of their Data (see http://piketty.pse.ens.fr/en/publications). We use the

individual-level tabulations that present the distribution of gross total fiscal income

for 127 percentiles.

EU-SILC Data The advantage of using EU-SILC data is that it is a harmonized

household survey dataset for European countries. However, given that we anchor

our estimation method to the tax data, the definition of income used from surveys

must match that accounted for in tax statistics. To do so we take the sum for each

observation of employee cash or near cash income (variable PY010), self-employment

cash income (PY050), Pensions received from private plans (PY080), a host of

benefits related to unemployment, old-age, suvivors, sickness and disability (PY090,

PY100, PY110, PY120, PY130), and capital income components (rent from property

or land (HY040) and interests, dividends, profit from capital investments (HY090)).

These capital incomes are reported at the household level. We individualise them

by equally splitting the income among spouses and civil partners. For Norway and

the UK, consistent with the fiscal income in tax data, we take gross incomes (before

income taxes and individual social contributions levied at source). Since fiscal income

in the French tax data is before income tax but after social contributions levied

at source, we take net income values from the French SILC dataset. Income taxes

are not levied at source in France for the period we analyse so the definition of net

income in SILC is apt to be used for this case. We also select the reference population

to be kept in accordance with the tax statistics. In Norway, the tax tabulations refer

to individuals aged 17 and over, so we discard individuals under the age of 17 in the

survey. For the UK, the tax data does not provide comparable information, so we

follow the practice by Atkinson (2007) in taking a reference population of individuals

aged 15 and over. In France, consistent with the use of the population aged 20 and

over in Garbinti, Goupille-Lebret, and Piketty (2016), we keep persons aged 20 and

over in the survey.

B.5.2 Further Tables and Figures

B.5.2.1 Shape of the Bias

Figures B.8–B.12 show the shape of the bias we estimate for the other years among

our sampled countries. Each coverage of the data points are determined by the

trustable span of the tax data in each country, which is defined as the portion of the

population that are subject to positive income tax payments.

http://piketty.pse.ens.fr/en/publications
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Figure B.8: Merging Points in Norway, 2004–2013
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(a) Norway 2004
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(b) Norway 2005
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(c) Norway 2006
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(d) Norway 2007
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(e) Norway 2008
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(f) Norway 2009
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(g) Norway 2010
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(h) Norway 2011
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(i) Norway 2012
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(j) Norway 2013
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Figure B.9: Merging Points in France, 2004–2013
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(a) France 2004
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(b) France 2005
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(c) France 2006
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(d) France 2007
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(e) France 2008
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(f) France 2009
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(g) France 2010
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(h) France 2011
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(i) France 2012
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(j) France 2013
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Figure B.10: Merging Points in United Kingdom, 2005–2013
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(a) United Kingdom 2005
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(b) United Kingdom 2006
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(c) United Kingdom 2007
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(d) United Kingdom 2009
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(e) United Kingdom 2010
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(f) United Kingdom 2011
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(g) United Kingdom 2012
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(h) United Kingdom 2013
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Figure B.11: Merging Points in Brazil, 2007–2014
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(a) Brazil 2007
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(b) Brazil 2008
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(c) Brazil 2009
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(d) Brazil 2011
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(e) Brazil 2012
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(f) Brazil 2013
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(g) Brazil 2014
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Figure B.12: Merging Points in Chile, 2009–2013
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(a) Chile 2009
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(b) Chile 2011
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(c) Chile 2013
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B.5.2.2 Structure of the Corrected Population

Tables B.2-B.6 show the structure of the corrected population for all years in all

sampled countries.

Table B.2: Structure of Corrected Population in Brazil, 2007-2015

Year

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

2007 1.0% 0.7% 0.33% 98.2% 1.8%
2008 1.0% 0.6% 0.44% 97.2% 2.8%
2009 1.0% 0.5% 0.51% 99.3% 0.7%
2011 2.0% 1.4% 0.57% 95.9% 4.1%
2012 3.0% 2.3% 0.70% 98.3% 1.7%
2013 2.0% 1.4% 0.62% 97.1% 2.9%
2014 2.0% 1.2% 0.76% 98.8% 1.2%
2015 2.0% 1.3% 0.70% 97.2% 2.8%

Notes: Column [2] shows the proportion of the population that is above this merging point in the
tax data. Column [3] shows the proportion that is above the merging point in survey data. The
difference between the two is the proportion of the survey population that is corrected (Column
[4]). As explained in the text, we adjust survey weights below the merging point by the same
proportion. The corrected proportion above the merging point can be decomposed into the share of
the corrected population that is inside the survey support (up to the survey’s maximum income)
and the share that is outside the support (observations with income above the survey’s maximum).



B.5. DATA DETAILS AND SUPPLEMENTARY RESULTS 259

Table B.3: Structure of Corrected Population in Chile, 2009-2015

Year

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

2009 11.0% 7.2% 3.8% 99.6% 0.4%
2011 14.0% 8.5% 5.5% 99.9% 0.1%
2013 17.0% 10.6% 6.4% 99.9% 0.1%
2015 17.0% 11.1% 5.7% 99.99% 0.01%

Notes: Column [2] shows the proportion of the population that is above this merging point in the
tax data. Column [3] shows the proportion that is above the merging point in survey data. The
difference between the two is the proportion of the survey population that is corrected (Column
[4]). As explained in the text, we adjust survey weights below the merging point by the same
proportion. The corrected proportion above the merging point can be decomposed into the share of
the corrected population that is inside the survey support (up to the survey’s maximum income)
and the share that is outside the support (observations with income above the survey’s maximum).

Table B.4: Structure of Corrected Population in France, 2004-2014

Year

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

2004 29.0% 26.8% 2.17% 99.9% 0.1%
2005 25.0% 23.1% 1.95% 98.5% 1.5%
2006 36.0% 32.5% 3.50% 99.5% 0.5%
2007 37.0% 32.0% 4.99% 99.96% 0.04%
2008 0.4% 0.3% 0.11% 97.6% 2.4%
2009 0.1% 0.1% 0.02% 89.8% 10.2%
2010 0.2% 0.1% 0.11% 94.5% 5.5%
2011 0.2% 0.1% 0.06% 94.3% 5.7%
2012 0.2% 0.2% 0.03% 96.5% 3.5%
2013 0.3% 0.3% 0.03% 72.3% 27.7%
2014 0.1% 0.0% 0.05% 99.0% 1.0%

Notes: From 2008, the French survey was supplemented with register data for increased precision
in the responses. Column [2] shows the proportion of the population that is above this merging
point in the tax data. Column [3] shows the proportion that is above the merging point in survey
data. The difference between the two is the proportion of the survey population that is corrected
(Column [4]). As explained in the text, we adjust survey weights below the merging point by the
same proportion. The corrected proportion above the merging point can be decomposed into the
share of the corrected population that is inside the survey support (up to the survey’s maximum
income) and the share that is outside the support (observations with income above the survey’s
maximum).
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Table B.5: Structure of Corrected Population in Norway, 2004-2014

Year

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

2004 24.0% 22.5% 1.49% 99.3% 0.7%
2005 22.0% 19.7% 2.27% 99.8% 0.2%
2006 31.0% 28.8% 2.16% 99.9% 0.1%
2007 39.0% 34.2% 4.75% 99.5% 0.5%
2008 38.0% 33.4% 4.59% 99.95% 0.05%
2009 4.0% 3.5% 0.54% 99.4% 0.6%
2010 8.0% 7.1% 0.88% 99.0% 1.0%
2011 23.0% 21.1% 1.93% 99.0% 1.0%
2012 10.0% 8.9% 1.13% 98.6% 1.4%
2013 22.0% 20.5% 1.49% 99.1% 0.9%
2014 5.0% 4.6% 0.39% 96.0% 4.0%

Notes: Column [2] shows the proportion of the population that is above this merging point in the
tax data. Column [3] shows the proportion that is above the merging point in survey data. The
difference between the two is the proportion of the survey population that is corrected (Column
[4]). As explained in the text, we adjust survey weights below the merging point by the same
proportion. The corrected proportion above the merging point can be decomposed into the share of
the corrected population that is inside the survey support (up to the survey’s maximum income)
and the share that is outside the support (observations with income above the survey’s maximum).

Table B.6: Structure of Corrected Population in United Kingdom, 2005-2014

Year

Population over Merging Point
(% total population)

Corrected population

Tax data Survey Total
Share inside

survey support
Share outside

survey support
[2] [3] [4] = [2]− [3] [5] [6]

2005 12.0% 11.7% 0.26% 99.5% 0.5%
2006 8.0% 7.3% 0.72% 96.9% 3.1%
2007 7.0% 6.5% 0.53% 95.5% 4.5%
2009 0.8% 0.5% 0.33% 85.5% 14.5%
2010 0.4% 0.3% 0.14% 84.9% 15.1%
2011 11.0% 10.8% 0.18% 93.0% 7.0%
2012 3.0% 2.6% 0.37% 92.2% 7.8%
2013 4.0% 3.6% 0.45% 86.1% 13.9%
2014 3.0% 2.5% 0.54% 93.6% 6.4%

Notes: Column [2] shows the proportion of the population that is above this merging point in the
tax data. Column [3] shows the proportion that is above the merging point in survey data. The
difference between the two is the proportion of the survey population that is corrected (Column
[4]). As explained in the text, we adjust survey weights below the merging point by the same
proportion. The corrected proportion above the merging point can be decomposed into the share of
the corrected population that is inside the survey support (up to the survey’s maximum income)
and the share that is outside the support (observations with income above the survey’s maximum).
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B.5.3 Detailed Distribution

Table B.7 depicts a more detailed picture of the impact of our adjustment method on

the income distribution of our 5 countries, compared to the raw survey results and

those from the replacing alternative. We take the last available year as an illustration.

With respect to income shares across the distribution, the main conclusions drawn

from the analysis of top shares in Section 2.3 can be generally extended, more or

less, to other top shares, from the top 10% to the top 0.001% shares. As is to be

expected, both the middle 40% and Bottom 50% shares are reduced in all countries

after our adjustment. This is consistent with the mechanics of our method, where

higher aggregate weight for top fractile incomes must be compensated by a lowering

of the amount of middle and lower incomes observed in the population. Replacing

produces results in the same direction, except that, by not decreasing the weight of

lower incomes, it results in higher shares for the Bottom 50% than those from our

method in all countries. The same is true for the Middle 40% for Brazil and Chile,

but not for the three European countries. Overall, replacing produces inconsistent

results across the distribution, which are difficult to explain.

Figure B.13 presents in more detail the impact of our method on total income. For

our two country case studies with the largest corrections to total income, we are

able to show that the total income in the corrected surveys is closer to the reference

total of “fiscal income” from national accounts. For the cases of Chile and Brazil

respectively, our correction bridges about 80% and 60% of the gap between survey

income and the reference total from national accounts.
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Table B.7: Income Shares: Raw Survey and Corrected Survey

Raw Survey

Income groups Brazil Chile France Norway UK

Bottom 50% 16.9% 8.0% 23.4% 25.2% 14.8%
Middle 40% 45.3% 45.2% 47.0% 48.6% 49.6%
Top 10% 37.7% 46.9% 29.6% 26.2% 35.5%
Incl. Top 1% 10.2% 14.3% 7.2% 5.8% 9.4%
Incl. Top 0.1% 2.2% 3.4% 1.5% 1.4% 2.5%
Incl. Top 0.01% 0.5% 0.7% 0.4% 0.3% 0.4%
Incl. Top 0.001% 0.09% 0.2% 0.1% 0.03% 0.04%

Average income e8,691 e8,101 e23,367 e37,431 e22,389
Gini 0.505 0.64 0.40 0.37 0.52

Corrected Survey (Our Method)

Income groups Brazil Chile France Norway UK

Bottom 50% 12.7% 6.7% 23.2% 24.6% 13.9%
Middle 40% 35.1% 40.1% 46.5% 47.7% 46.6%
Top 10% 52.3% 53.2% 30.3% 27.6% 39.6%
Incl. Top 1% 23.7% 16.7% 8.2% 7.1% 13.7%
Incl. Top 0.1% 11.2% 4.5% 2.2% 2.2% 5.4%
Incl. Top 0.01% 5.6% 1.3% 0.6% 0.7% 2.1%
Incl. Top 0.001% 2.8% 0.4% 0.2% 0.26% 0.89%

Average income e11,935 e11,097 e23,621 e38,320 e24,081
Gini 0.619 0.69 0.41 0.38 0.55

Corrected Survey (Replacing)

Income groups Brazil Chile France Norway UK

Bottom 50% 14.4% 7.9% 24.0% 25.7% 14.8%
Middle 40% 36.4% 41.0% 45.9% 47.1% 46.4%
Top 10% 49.2% 51.2% 30.0% 27.2% 38.8%
Incl. Top 1% 26.7% 21.1% 7.9% 7.1% 14.0%
Incl. Top 0.1% 12.6% 5.7% 2.2% 2.2% 5.5%
Incl. Top 0.01% 6.3% 1.6% 0.6% 0.7% 2.1%
Incl. Top 0.001% 3.1% 0.5% 0.2% 0.26% 0.90%

Average income e10,647 e8,792 e23,439 e37,956 e23,578
Gini 0.624 0.70 0.44 0.40 0.57

Notes: The table presents the distribution of pre-tax fiscal income per adult, in the survey before
the correction and after the correction using our method and the replacing alternative used in
Section 2.3. Average incomes are expressed in French Euros PPP. Brazil and Chile refer to 2015,
while all the European countries refer to 2014.
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Figure B.13: Discrepancy of income across datasets
in Chile and Brazil: 2015
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Reading: in 2015 the total income declared in tax data in Brazil, which covers
20% of the population represents 49% of national income. The total income
in the raw survey represents 58% of national income and 74% in the corrected
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income calculated from national accounts represents 85% of national income.
Authors’ calculations using data from surveys, income tax declarations and
national accounts.
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Appendix C

Appendix to “How Unequal is

Europe? Evidence from

Distributional National Accounts”

This is the main appendix of our paper. For the detailed data appendix, including

country-specific discussions, see https://wid.world/europe2019.

C.1 Detailed Methodology

The issues that affect the validity and the comparability of existing income inequality

estimates may be divided into three categories: conceptual discrepancies, nonsampling

error, and sampling error.

Conceptual discrepancies are not errors in themselves but refer to differences as to

what, precisely, is being measured. Existing estimates of income inequality may be

concerned with different types of income and different populations units. While there

may be a case for measuring inequality using any of these concepts and units, the

existence of such a wide range of definitions makes it hard to compare inequality

estimates both over time and between countries. As we have seen, both survey

tabulations and fiscal data suffer from important conceptual discrepancies, as they

are measured on different groups of individuals and using different income concepts.

One of the contributions of this paper is to provide a new method to harmonize

these different distributions.1

1Previous studies on European or global income distributions typically relied on a combination
of non-harmonized income and consumption sources, see for instance Lakner and Milanovic (2016).

266
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Sampling and non-sampling errors apply to surveys. Sampling error refers to problems

that arise purely out of the limited sample size of survey data. Low sample sizes affect

the variance of estimates, which means they may vary a lot around their expected

value. But low sample sizes may also create biases, especially when measuring

inequality at the top of the distribution (Taleb and Douady, 2015). Estimates based

on raw survey data do not account for any of these biases and therefore tend to

underestimate incomes at the top end. Non-sampling error refers to the systematic

biases that affect survey estimates in a way that is not directly affected by the sample

size. These mostly include people refusing to answer surveys and misreporting their

income in ways that are not observed, and therefore not corrected, by the survey

producers.

The general methodology we introduce in this paper aims at correcting all three biases.

We correct conceptual discrepancies by training a machine learning algorithm (Chen

and Guestrin, 2016) that systematically analyzes how they affect estimates of the

income distribution. We correct for non-sampling error in survey data by combining

them with harmonized top income shares using a nonlinear survey calibration

method (Deville and Särndal, 1992; Lesage, 2009). And we correct for sampling

error by modeling the top tail of the income distribution based on extreme value

theory (Ferreira and Haan, 2006). We view this methodology as a consistent and

straightforward framework to exploit all published survey and tax information, while

correcting for the weaknesses of these different sources. We feed to our methodology

virtually all the data available and obtain estimates of inequality in Europe that

reflect latest data and methodological developments.

C.1.1 Machine Learning Algorithm to Harmonize the Sur-

vey Data

The first step of our methodology consists in harmonizing surveys for which we are

unable to recover directly the distribution of pre-tax and post-tax incomes among

equal-split adults. This is the case of all survey tabulations, as well as some surveys

for which we have microdata but for which pre-tax income or post-tax income was

not measured. For these data sources, we have to develop a strategy to transform

the distribution of the observed ”source concept” (such as consumption per capita

or pre-tax income among households, for instance) into an imputed distribution

measured in a ”target concept” (pre-tax or post-tax income per adult).

The distributions for the different income concepts across country-years are corre-

lated: therefore, we can use the distribution for one income concept to impute the
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distribution for another whenever the former is observed but not the latter. To do

so, we use all the cases where the income distribution is simultaneously observed for

two different concepts to learn how one tends to relate to another. In practice, we

use survey microdata (EU-SILC, LIS and ECHP) to compute distributions for all

equivalence scales and all income concepts available in a given country-year. We then

use these estimates — as well as survey tabulations observed in similar country-years

but measured using different concepts — to model how different income concepts

and population units relate to one another at different points of the distribution.

To clarify this idea, we can first consider a straightforward, but naive approach. We

can observe the p-th quantile of both the source and the target distributions for a

variety of countries i and a variety of years t: write them Qtarget
it (p) and Qsource

it (p).

Therefore, we can estimate the average ratio between the two distributions for each

percentile as α(p) = E[Qtarget
it (p)/Qsource

it (p)]. Say that for a country j in year s, we

only observe the source concept Qsource
js (p). Then we can approximate the target

concept as Qtarget
js (p) = α(p)Qsource

js (p). While this remains an approximation, it at

least corrects for some systematic discrepancies that we can observe in the data.

That approach has the merit of simplicity. When we tried it with our data, it gave

passable results. But there are several problems with it, both in theory and in

practice. The main issue is that it makes a very restrictive assumption about the

way different income concepts may relate to one another: it considers that the sole

predictor of, say, the 25th percentile of income for equal-split adults is the 25th

percentile of income for households. Furthermore, it assumes that the relationship

is entirely linear. There is no good theoretical reason for any of that to be true: a

better, more general model would allow that 25th percentile of the target distribution

to depend on any percentile of the source distribution, including but not limited to

the 25th. It would also allow these relationships to be nonlinear and potentially with

interactions. That relationship could also depend on auxiliary variables Zit capturing

demographic, political and institutional factors. The simple approach also cannot

ensure that the estimated distribution for the target concept will be increasing, which

creates problems that have to be dealt with in an ad hoc way (e.g. by re-ranking

percentiles) and imply inefficient use of information. This in particularly true for the

bottom of the distribution for which incomes can be close to zero and the ratios may

therefore be very unstable.

Therefore, to construct the best mappings between the different concepts, we consider

a much more general model. In that model, each percentile of the target distribution

is an arbitrary function of every percentile of the source distribution, and of additional
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covariates. We write:

E[Qtarget
it (p)] = ϕ(Qsource

it (p1), . . . , Qsource
it (pm), p, t, Zit)

for a grid 0 ≤ p1 < · · · < pm < 1 of fractiles. Estimating such a model raises

some challenges. Linear regression will not be flexible enough due to its parametric

assumptions and will tend to overfit the data if m is large due to the number of

covariates.

To estimate this model, we therefore rely on more recent advances in high-dimensional,

nonparametric regression, also known as machine learning methods. The algorithm

we use is known as boosted regression trees, a powerful and commonly used method

introduced by Friedman (2001). We rely on an implementation known as XGBoost

(Chen and Guestrin, 2016), which has enjoyed great success due to its speed and

performance, to the point that is has earned a reputation for “winning every ma-

chine learning competition” (Nielsen, 2016). On top of their performance, boosted

regression makes it easy to deal with missing values, or to impose certain constraints,

such as the fact that the quantile function Q(p) must be increasing with p.

The algorithm starts from regression trees, a fast and simple nonlinear prediction

method that successively cuts the space of predictors into two subspaces in which

the predicted variable has lower variance. This leads to a “tree” of simple decision

rules based on the value of the predictors. Following these rules the algorithm places

any observation into a subspace where the predictor should have a relatively low

variance, and the predicted value for that observation is the average of the predictor

within that subspace.

Regression trees provide predictions that are simple, but rough. “Boosting” is a

method that combines many of these simple but low accuracy prediction methods

into a high-accuracy one. It starts by estimating a regression tree. It then runs

a second regression tree to predict the residual from the previous regression: this

is called a “boosting round.” The process is repeated several times: each round

of boosting forces the algorithm to concentrate on the part of the data where the

previous predictions failed. In the end, all the regression trees are combined into a

single prediction.

The appropriate number of boosting rounds is determined by cross-validation: the

sample is divided into K subsamples. For each subsample, we train the algorithm

on the data excluding the subsample, and we test the prediction on the excluded

subsample: we use the number of boosting rounds for which the cross-validation
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prediction error is lowest. By excluding the sample on which we perform the

prediction, we make sure to avoid overfitting to the data on which we estimate the

model.

Since our dataset is made up of countries that we follow over the years, it has a

panel dimension, which we take into account as follows. We assume that the country-

specific prediction error is independent conditional on all observed variables (i.e. that

it is a random rather than a fixed effect.) Under that assumption, the imputation

method remains valid because the error term remains exogenous. However, there is

a risk of over-fitting if we do not make sure that the different subsamples used in

the cross-validation are not independent, because then we would force the algorithm

to try to predict the country random effect. To avoid that problem, we perform

the cross-validation by making sure that all the observations for one country are in

the same cross-validation subsample, which is known as leave-one-cluster-out cross

validation (Fang, 2011). When possible, we also estimate and include the country

random effect into our imputation. The random effect is estimated as a function of

the percentile using the mean prediction error by country and percentile.

In the end, for any target concept of interest, we get as many predictions as there

are sources available. Let y = (Q̂target,1
it , . . . , Q̂target,n

it )′ the n different predictions.

Using the cross-validation estimation of the prediction error, we can estimate the

variance-covariance matrix Σ between the different predictions. Following the logic

of generalized least squares, the optimal way of combining the n predictions into one

is to average them, weighted by the row or column sums of the symmetric matrix Σ.

This yields our harmonized estimate of the distribution, taking into account observed

regularities across concepts and percentile groups.

As table C.1 shows, the mean (cross-validation) prediction error for the value of the

average of a percentile is between 2% and 11% depending on the concept that was

used for the prediction.2 Adjusting for the statistical unit while keeping the income

concept identical creates the least difficulties. Consumption, on the other hand, is

a rather poor predictor of income. Moving from post-tax to pre-tax income is a

somewhat intermediary situation. The auxiliary variables that we use to improve

the performance of the prediction are the average national income, the share of

2Before training the model, we transform the data using the transform y 7→ asinh(y) for the
value of the quantiles and x 7→ − log(1− x) for the corresponding rank. This stabilizes the mode
without changing the nature of the data. The use of asinh rather than the logarithm avoid issues
with having zero or near-zero incomes at the bottom of the distribution. All distributions are
normalized by their average since we are only concerned with the distribution of income. When we
report prediction errors, these are computed for distributions that have been properly transformed
back to their original value.
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Table C.1: Mean relative error on the average by percentile when imputing pre-tax and post-tax
income by adults from a different concept using the machine learning algorithm

mean relative prediction error

income/consumption concept statistical unit pre-tax income post-tax income

consumption equal-split per adults 10.1% 10.6%
consumption equal-split per capita 10.6% 10.7%
consumption households 11.0% 9.4%
consumption OECD equivalence scale 9.8% 10.4%
consumption square root equivalence scale 9.8% 9.8%

pre-tax income equal-split per adults n/a 5.7%
pre-tax income equal-split per capita 4.2% 6.1%
pre-tax income households 3.9% 6.8%
pre-tax income OECD equivalence scale 2.6% 6.1%
pre-tax income square root equivalence scale 2.8% 6.2%

post-tax equal-split per adults 5.8% n/a
post-tax equal-split per capita 7.0% 3.8%
post-tax households 7.1% 4.1%
post-tax OECD equivalence scale 6.1% 2.2%
post-tax square root equivalence scale 6.0% 2.7%

Source: authors’ computations. Note: Error calculated only for the top 90% of the distributions to avoid problems
of denominator equal to zero. Interpretation: When trying to impute pre-tax income per equal-split adult from
consumption per household, the mean relative error for the average income of a given percentile is 11%.

households with different sizes, the population structure by age and gender, the top

tax rates and social expenditures. While the inclusion of these variables has only

second-order effects on our harmonized series, they do improve the prediction error

by about 15–20%.

C.1.2 Calibration on Top Income Shares to Correct for Non-

sampling Error

We correct survey data for non-sampling error using known top income shares

estimated from administrative tax data. We do so by adjusting the survey weights

using survey calibration methods (Deville and Särndal, 1992). Statistical institutes

already routinely use these methods to ensure that their surveys are representative,

typically in terms of age and gender. Our approach is a natural extension of theirs,

in the sense that we enforce representativity in terms of taxable income in addition

to age and gender.

Let d1, . . . , dn be the original survey weights, and let w1, . . . , wn be the corrected

survey weights. The objective of survey calibration is to minimize the distortion
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between the original survey weights and the corrected survey weights:

min
w1,...,wn

n∑
i=1

(di − wi)2

di

under the constraint that the top shares in the corrected survey are equal to their

value in the tax data. However, traditional survey calibration methods only work

with constraints that can be written as a linear function of the data (such as a mean

or a frequency), which is not the case with top shares.

Lesage (2009) suggested two methods to solve such problems. The first one involves

linearizing the top shares using their influence function. Informally, the influence

measures the marginal contribution of the weight of each observation to the overall

statistic. For the case of the top (1 − α) × 100% share, we show in the technical

appendix that it is equal to:

zi = yiH

(
αN −Wi−1

wi

)
+ (α− 1yi<Q̂α)Q̂α

where yi is the income of observation i, wi is the weight of observation i, Q̂α is

the α-quantile of income in the survey, and H is a function such that H(x) = 0 if

x < 0, H(x) = x if 0 ≤ x < 1 and H(x) = 1 if x ≥ 1. As Lesage (2009) explains, it

then suffices to impose the linear constraint
∑n

i=1 wizi = 0 in standard calibration

methods to approximately enforce, up to a first order approximation, the value of the

top income share. Intuitively, the survey calibration performs a trade-off between

spreading the adjustment of the weights over as many observations as possible (hence

minimizing overall distortion) and concentrating the adjustment on the observations

with the largest impact on the top share (hence satisfying the constraint with fewer

distortions). The optimum is attained when the marginal penalty of adjusting each

observation is equal to their marginal contribution to the constraint, which is given

by the influence function. The first-order approximation comes from the fact that

the influence of each observation is assumed to be constant.

The second solution of Lesage (2009) involves the introduction of a nuisance parameter.

For the top (1− α)× 100% share, the nuisance parameter is the true value of the

α-quantile of income. Given that value, one can apply standard calibration methods

to impose the proper number of people and their proper amount of income on both

sides of the quantile. The advantage is that this leads to the constraint being exactly

satisfied. But for that method to give acceptable results, we need a good guess for

the value of the nuisance parameter. Lesage (2009) suggests using its value in the
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original survey.

We obtained the best results by combining both methods. In the first step, we use the

influence function method. This performs the majority of the required adjustment,

but still leaves a small discrepancy between the survey and the tax data. In the

second step, we get rid of the remaining discrepancy by applying the second approach,

with the nuisance parameter estimated in the survey corrected through the first step.

Statistically, survey calibration can be interpreted as the estimation of a non-response

function, in which non-response depends on the variables introduced in the constraints.

In that interpretation, we are assuming that nonresponse has the same shape as

the influence function for top shares. This shape is that of a continuous, piecewise

linear function with a kink at the threshold corresponding to the top share. It is

almost flat below that threshold, meaning that the bottom 90% of the distribution

is virtually unchanged. Above the threshold, nonresponse increases linearly with

income — though we can capture non-linearity of nonresponse at the top by including

several top income groups in the calibration, for example top 10%, 5% and 1%. That

shape is what we expect if the richest households refuse to answer surveys at a higher

rate, and also corresponds to the share of the nonresponse that we observe with

access to richer data (Blanchet, Flores, and Morgan, 2018). Because the nonresponse

function is continuous, our correction method preserves the continuity of the density

function of income.

The average estimated nonresponse profile over all the survey and tax data is mostly

flat for most of the distribution, meaning that survey distribution is mostly preserved.

But observations in the top 0.1% are underrepresented by a factor of 3 on average.

We may also notice certain regularities: nonresponse is higher at the top when

there is more inequality in the survey. This is the result of having more wealthy

households that are less likely to answer surveys, a fact partially captured by the level

of inequality before correction. Given that high-inequality countries have experienced

more nonresponse, surveys have a tendency not just to underestimate inequality, but

to compress them in cross-country comparisons.

When we do not directly observe tax data in a country, we still perform a correction

based on the profile of nonresponse that we observe in other countries. To capture

statistical regularities such as the one describe above, we estimate the nonresponse

profile as a function of the distribution of income in the uncorrected survey using the

same machine learning algorithm as in section C.1.1. We stress that this remains

a rough approximation and that in our view the proper estimation of top income

inequality requires access to tax data. Fortunately, our tax data covers a large
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majority of the European population and an even larger majority of European

income, so that the impact of these corrections on our results remain limited.

C.1.3 Extreme Value Theory to Correct for Sampling Error

The sample size of surveys varies a lot and can sometimes be quite low: this, in

itself, can seriously affect estimates of inequality at the top and, in general, will

underestimate it (Taleb and Douady, 2015). Correcting sampling error requires some

sort of statistical modeling. We chose to use methods coming from extreme value

theory, which is routinely used in actuarial sciences to estimate the probability of

occurrence of very rare events, but can similarly be used to estimate the distribution

of income at the very top.

The main tenet of extreme value theory can be understood in analogy to the central

limit theorem. According to the central limit theorem, under some regularity

assumptions, but regardless of the exact distribution of iid. variables X1, . . . , Xn,

the distribution of the sum
∑n

i=1Xi as n goes to infinity will belong to a tightly

parametrized family of distributions (a Gaussian one). Similarly, under mild regularity

assumptions, the distribution of the largest value of the sample max(X1, . . . , Xn) as

n goes to infinity will belong to a certain parametric family. The same holds for

the second-largest value, the third-largest value, and so on. As a result, the top

k largest values will approximately follow a distribution known as the generalized

Pareto distribution, which has the cumulative distribution function:

F (x) = 1−

{
1 + ξ

(
x− µ
σ

)}−1/ξ

That result is known as the Pickands–Balkema–de Haan theorem (e.g. Ferreira and

Haan, 2006). The generalized Pareto distribution therefore more or less provides a

universal approximation of the distribution of the tails of distributions. It includes the

Pareto or the exponential distribution as a special case. We use it to model the top

10% of income distributions. Because the likelihood surface of the generalized Pareto

distribution is very flat, maximum likelihood estimation often gives poor results

unless the sample size is very large. The standard method of moments also fails if the

distribution has infinite variance, which can often occur with income distributions.

We use a simple and robust alternative known as probability-weighted moments

(Hosking and Wallis, 1987). For X following a generalized Pareto distribution, define

a = E[X] and b = E[X(1 − F (x))]. Then we have ξ = (a − 4b)/(a − 2b) and

σ = 2ab/(a − 2b), while µ is determined a priori from the threshold from which
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we start to use the model. We obtain the complete distribution by combining the

empirical distribution for the bottom 90% with the generalized Pareto model for the

top 10%.

C.1.4 Income Distribution by State in the US

To compare the geography of inequality in Europe with that of the United States,

we compute estimates of the income distribution by state in the United States since

1980 by combining survey, tax data and national accounts.

Frank et al. (2015) provide estimates of top taxable income shares by US state.

These estimates use an income concept and a unit of analysis which is different from

DINA studies such as Piketty, Saez, and Zucman (2018). There are in fact more

comparable with the older estimates from Piketty and Saez (2003). The data for

producing proper DINA estimates by state in the US is still lacking at this point, so

we proceed using the following methodology.

We attribute national income to each state based on their share of GDP (the only

national account aggregate available at the state level). To that end, we use data

on total state domestic products from the Bureau of Economic Analysis, along with

state adult populations series from the United States Census Bureau. (State domestic

products provided by the Bureau of Economic Analysis go back as far as 1967. For

the historical part, we extrapolate these series back to 1929 by using the growth

rates in personal income per capita available from Barro and Sala-i-Martin (1992).)

For the distribution of national income, we proceed as follows. For every g-percenile

within the top 10% of the distribution (every percentile from 90% to 99%, and

narrower brackets above until the top 99.999%), we compute a correction coefficient

between average taxable income by tax unit and the average pre-tax national income

per equal-split adult at the national level, using the data of Piketty, Saez, and

Zucman (2018). We then apply those coeffcients to the distributions of Frank et al.

(2015) to get top income shares of pre-tax national income by state. We then combine

these top income shares (for the top 10%) with the distribution of pre-tax income

by state that we obtain from the CPS. We do so by stitching together the tax data

Lorenz curve at the top with the survey Lorenz curve at the bottom.

We stress that this methodology is approximate. The income concept from the CPS

that we use is somewhat different from pre-tax income in the DINA sense. The

correction that we apply to top fiscal income shares by Frank et al. (2015) is the

same even though in reality it would be different from state to state. The production
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of actual DINA estimates by state is outside the scope of this paper. For the purpose

of this paper — a simple decomposition of within vs. between state inequality — we

view them as sufficient, at least to get proper orders of magnitude. We aggregating

our state-level estimates, we reproduce the national trends well. We exaggerate the

national top 1% income share, by 3.5 pp. on average and also exagerate the bottom

50% income share by 3.8 pp.
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C.2 Methodology and Alternative Assumptions
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Figure C.2: Bottom 50% Income Shares in France: Comparison



278 APPENDIX C. APPENDIX TO “HOW UNEQUAL IS EUROPE?”

15

20

25

30

35

40
sh

ar
e 

of
 n

at
io

na
l i

nc
om

e 
(%

)

1980 1985 1990 1995 2000 2005 2010 2015

Taxes on products
proportional to income

Taxes on products
proportional to consumption

Top 10% Top 10%
Bottom 50% Bottom 50%

Figure C.3: Distribution of Production Taxes

15

20

25

30

35

40

sh
ar

e 
of

 n
at

io
na

l i
nc

om
e 

(%
)

1980 1985 1990 1995 2000 2005 2010 2015

Broad equal-split Narrow equal-split
Top 10% Top 10%
Bottom 50% Bottom 50%

Narrow equals-split (our benchmark) only split income within couples. Broad equals-
split split incomes within entire households.

Figure C.4: Narrow vs. Broad Equal-split



C.2. METHODOLOGY AND ALTERNATIVE ASSUMPTIONS 279

(a) Top 10%

20

25

30

35

to
p 

10
%

 s
ha

re
 o

f i
nc

om
e 

(%
)

1980 1985 1990 1995 2000 2005 2010 2015

excluding government
consumption

including government
consumption

post-tax
disposable income

government expenditures
distributed lump-sum

 government expenditures
distributed proportionally except health

(b) Bottom 50%

15

20

25

30

35

bo
tto

m
 5

0%
 s

ha
re

 o
f i

nc
om

e 
(%

)

1980 1985 1990 1995 2000 2005 2010 2015

excluding government
consumption

including government
consumption

disposable
post-tax income

government expenditures
distributed lump-sum

 government expenditures
distributed proportionally except health

Figure C.5: Distribution of Government Expenditures



280 APPENDIX C. APPENDIX TO “HOW UNEQUAL IS EUROPE?”

C.3 Coverage of Data Sources

Table C.2: Coverage of data sources

Country Surveys Tax data Undistrib. prof. Imp. rents Tax data source Quality score

Western Europe
Austria 1987-2016 1995-2017 1995-2017 Authors Medium
Belgium 1985-2016 1990-2016 1994-2017 1985-2017 Decoster, Dobbeleer, and Maes (2017) High
France 1989-2015 1980-2014 1995-2017 1980-2017 Garbinti, Goupille-Lebret, and Piketty (2018) Very high
Germany 1981-2016 1980-2013 1991-2017 1991-2017 Bartels (2017) High
Ireland 1980-2016 1980-2015 2001-2017 1995-2017 Jäntti et al. (2007) High
Luxembourg 1985-2016 2011 1999-2016 1995-2017 Authors High
Netherlands 1983-2016 1981-2012 1990-2017 Salverda and A. B. Atkinson (2007) High
Switzerland 1982-2016 1981-2014 Foellmi and Mart́ınez (2017) High
United Kingdom 1986-2016 1981-2014 1990-2017 1990-2017 A. B. Atkinson (2007) High

Northern Europe
Denmark 1981-2016 1980-2010 1994-2017 1990-2017 A. Atkinson and Søgaard (2013) High
Finland 1981-2016 1980-2009 1995-2017 1980-2017 Jäntti et al. (2010) High
Iceland 2004-2015 1990-2016 2005-2014 Authors High
Norway 1986-2016 1981-2011 1995-2017 1980-2017 Aaberge and A. B. Atkinson (2010) High
Sweden 1981-2016 1980-2013 1995-2017 1980-2017 Roine and Waldenström (2010) High

Southern Europe
Cyprus 1990-2016 1995-2017 Medium Low
Greece 1995-2016 2004-2011 1995-2016 1995-2016 Chrissis and Koutentakis (2017) High
Italy 1981-2016 1980-2009 1995-2017 1980-2017 Alvaredo and Pisano (2010) High
Malta 2007-2016 2000-2017 Medium Low
Portugal 1980-2016 1980-2005 1995-2017 1995-2017 Alvaredo (2009) High
Spain 1980-2016 1981-2012 1995-2017 1995-2017 Alvaredo and Saez (2010) High

Eastern Europe
Albania 1996-2012 Low
Bosn. & Herz. 1983-2011 Medium Low
Bulgaria 1980-2016 Medium
Croatia 1983-2016 1983-2013 2002-2012 Kump and Novokmet (2018) High
Czech Republic 1980-2016 1980-2015 1993-2017 1993-2017 Novokmet, Piketty, and Zucman (2018) High
East Germany 1980-1988 Authors Medium High
Estonia 1988-2016 1994-2017 High
Hungary 1982-2016 1980-2008 1995-2017 1995-2017 Mavridis and Mosberger (2017) High
Kosovo 2003-2013 Medium Low
Latvia 1988-2016 1994-2017 1995-2017 Medium
Lithuania 1988-2016 1995-2017 1995-2017 Medium
Macedonia 1983-2014 Medium Low
Moldova 1993-2015 Low
Montenegro 1983-2014 Medium Low
Poland 1983-2016 1983-2015 1995-2016 1995-2016 Bukowski and Novokmet (2017) High
Romania 1989-2016 2004-2013 Medium
Serbia 1983-2016 1997-2011 Medium
Slovakia 1980-2016 1995-2017 1995-2017 Medium
Slovenia 1987-2016 1991-2012 1995-2017 1995-2017 Kump and Novokmet (2018) High
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C.4 Average Incomes in Europe

Table C.3: Average national incomes in Europe, 1980-2017

Average national income per adult % of European average income

1980 1990 2000 2007 2017 1980 1990 2000 2007 2017

European regions
Europe 21160 24120 27600 30910 32130 100 100 100 100 100
EU-15 (West) 24010 27810 31930 34950 35250 113 116 116 113 110
EU-13 (East) 12940 13230 13440 17720 21690 61 55 49 57 68
Other West 35050 40960 48610 51900 51700 165 170 177 168 161
Other East 9100 8110 6460 8700 10080 43 34 23 28 31

Eastern Europe
Albania 6630 5720 6670 9340 11000 31 24 24 30 34
Bosnia and Herzegovina 2540 2070 7750 9110 10630 12 9 28 30 33
Bulgaria 8450 10440 8760 12500 17080 40 43 32 41 53
Croatia 18370 16190 13680 18910 19070 87 67 50 61 59
Czech Republic 17660 20280 17100 21980 24260 83 84 62 71 76
Estonia 13130 15120 14320 23010 24700 62 63 52 75 77
Hungary 14200 15070 14710 18690 20890 67 63 53 61 65
Latvia 13180 15280 8920 17350 19510 62 64 32 56 61
Lithuania 14760 15560 11380 20390 24620 70 65 41 66 77
Macedonia 11160 9630 8680 9110 11140 53 40 32 30 35
Moldova 6010 6530 2350 3570 4880 28 27 9 12 15
Montenegro 19710 15160 10720 13560 15750 93 63 39 44 49
Poland 11550 10480 14630 17200 22510 55 44 53 56 70
Romania 11400 11920 10120 14830 19370 54 50 37 48 60
Serbia 12690 11520 6520 9950 11290 60 48 24 32 35
Slovakia 14180 15260 13710 20140 23980 67 63 50 65 75
Slovenia 22150 18020 19840 25170 24910 105 75 72 82 78

Western Europe
Austria 25400 29640 34700 38960 38930 120 123 126 126 121
Belgium 24850 29130 34380 37010 37610 117 121 125 120 117
France 24690 28480 32980 34930 35130 117 118 120 113 110
Germany 26740 29820 32520 35920 39420 126 124 118 116 123
Ireland 15590 20730 37870 42740 43960 74 86 138 139 137
Luxembourg 31040 54900 75660 89090 60010 146 228 275 289 187
Netherlands 32030 31590 39890 43840 43580 151 131 145 142 136
Switzerland 36070 42640 44940 45220 45530 170 177 163 147 142
United Kingdom 21070 25850 32300 37010 37490 99 108 117 120 117
Cyprus 16950 26320 30890 37000 31270 80 110 112 120 98
Greece 21690 22180 24610 30110 20670 102 92 89 98 64
Italy 25280 28660 31820 32950 29450 119 119 116 107 92
Malta 14300 18310 23680 25660 33050 67 76 86 83 103
Portugal 14370 18670 22670 23070 23010 68 78 82 75 72
Spain 18770 23300 27230 29340 30230 89 97 99 95 94

Northern Europe
Denmark 25740 29010 36040 41430 42410 121 121 131 134 132
Finland 20970 25420 31410 37760 35240 99 106 114 122 110
Iceland 27510 30430 35330 42800 45740 130 127 128 139 143
Norway 33810 38800 55480 63880 62510 160 161 202 207 195
Sweden 23470 27670 33860 41530 45880 111 115 123 135 143

Source: authors’ computations. Serbia includes Kosovo. Interpretation: in 1980, Albania’s average national income per
adult was 31% of the European average (69% lower).
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Appendix D

Appendix to “Modeling the

Dynamics of Wealth Inequality in

the United States, 1962–2100”

D.1 Comparison to Synthetic Saving Rates

Saez and Zucman (2016) introduced a different method to decompose the dynamics

of inequality. Their approach was extended and used by several authors (Garbinti,

Goupille-Lebret, and Piketty, 2017; Berman, Ben-Jacob, and Shapira, 2016) to

perform decomposition and simulations similar to section 4.5 of this paper.

The setting is more or less the same, in that they observe cross-sections of the joint

distribution of income and wealth at different points in time, and use this information

to analyze the dynamics of wealth. The difference of their approach is that they

do not seek to estimate structural parameters that relate to individual behavior.

Instead, they construct “synthetic saving rates” that relate the amount of income

that accrue to the various percentiles of the wealth distribution to their evolution

over time.

Assume zero growth (gt = 0) for simplicity. Synthetic saving rates are defined as

follows. Take n brackets of the wealth distribution. Describe the evolution of wealth

285
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for each bracket as:
W

(1)
t+1 = W

(1)
t + r

(1)
t W

(1)
t + Z

(1)
t − C

(1)
t

...

W
(n)
t+1 = W

(n)
t + r

(n)
t W

(n)
t + Z

(n)
t − C

(n)
t

where Z
(i)
t , r

(i)
t and C

(i)
t refers to labor income, rate of return and consumption

for bracket (i). Define income Y
(i)
t ≡ Z

(i)
t + r

(i)
t W

(i)
t . All variables but C

(i)
t can be

observed in the data, so C
(i)
t is estimated as a residual. The ratio s

(i)
t = 1−C(i)

t /Y
(i)
t

is the synthetic saving rate of bracket (i).

Using various assumptions on how s
(i)
t relates to the average income or wealth of

the bracket (i), we can perform forecasts and counterfactuals on the evolution of

the wealth distribution. Note, however, that the synthetic saving rate is not the

average saving rate of the corresponding bracket: it can only be interpreted as

such under stringent assumptions (no mobility between brackets and homogeneous

behavior within brackets). The synthetic saving rate is a reduced-form parameter

that captures mobility, the inequality of savings, their correlation with wealth,

demography, intergenerational wealth mobility, etc.

The framework of this paper can shed some light on the underlying mechanics of

the synthetic saving rates method. We can use it to explicitly show what synthetic

savings rates capture, and how they are capturing it. In doing so I will clarify how it

compres the work in this paper.

Consider the following continuous time formulation of the synthetic saving rates.

For all t, and for all 0 ≤ p < 1, define the p-th wealth fractile Wt(p). Also write

Zt(p) = E[Zt|Wt = Wt(p)] and rt(p) = E[rt|Wt = Wt(p)]. I will write:

∂

∂t
Wt(p) = rt(p)Wt(p) + Zt(p)− Ct(p) = Yt(p)− Ct(p) (D.1)

which defines “synthetic consumption” Ct(p). That specification differs from that of

this paper in two respects (if we set aside the role of inheritance and demographics).

The first issue is the lack of explicit randomness — and, therefore, mobility. If

we differentiate equation (D.1) with respect to p and use the change of variable

p = Ft(w), we end up with a special case of the Fokker-Planck equation in which

the diffusion term (σ2(w)) is equal to zero. Therefore, the synthetic saving rates

approach is analogous to a stochastic differential equation with only the drift term:

we can view it as a specific, somewhat degenerate case of the more general model



D.1. COMPARISON TO SYNTHETIC SAVING RATES 287

used in this paper.

The second issue is the formulation of the saving rate: do we consider savings out of

income or out of wealth? Are they a function of the level of wealth, or a function of

the rank in the wealth distribution?

Formulation of the Saving Rate There are several justifiable ways of expressing

saving rates. Traditionally, the literature writes Ct(p) = (1 − s(p))Yt(p), so that

saving out of income is a function of the rank in the wealth distribution. We could

also write Ct(p) = (1 − s[Wt(p)])Yt(p) to make savings a function of the wealth

level rather than the wealth rank. We could also consider savings out of wealth

instead of income: Ct(p) = (1 − s(p))Wt(p) or Ct(p) = (1 − s[Wt(p)])Wt(p). That

last specification is closest to the one adopted in this paper.

Which formulation to choose depends in part on the intention behind the model.

For descriptive purposes, it does not matter. All of them describe the same reality

in a different way. Things are different when it comes to running forecasts or

counterfactuals. Such an exercise requires setting certain parameters constant, so

that the way we parameterize the problem has an impact on the outcome. Utimately,

the dynamic of wealth depends entirely on the difference between income and

consumption at various points of the wealth distribution: nothing would change if

we were to increase everybody’s income and consumption by the same amount.

To fix ideas, assume that people at the top of the wealth distribution earn a return of

10% on their wealth, and save 50% of their income. This is identical to saying that

they consume 5% of their wealth. Now, increase their income by $100. Assuming

a constant saving rate out of income means that saving increase by $50. However,

assuming a constant saving rate out of wealth means that saving increases by the

total amount, i.e. $100. Therefore, an increase in income has a higher impact with

the second specification.

Which specification is better? The first concern is that Ct should accurately describe

the behavior of agents. All functional forms for Ct considered here are simplified

rule of thumbs that only approximate the true saving behavior, yet it remains

important to know which is closest to reality. The macroeconomics and household

finance literature would suggest a saving rate out wealth that depends on wealth,

i.e. Ct(p) = s[Wt(p)]Wt(p). While there is still considerable disagreement regarding

the proper model of household saving (e.g. Browning and Lusardi, 1996), models

in which consumption depends on “cash-on-hand” (i.e. wealth plus current income)

are commonplace. Such a rule can be microfounded using models of precautionary
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savings (e.g. Weil, 1993) — especially for the top of the distribution — or models

with a preference for wealth (e.g. Piketty and Zucman, 2014). Models in which

agents always consume a given fraction of their current income is harder are harder

to justify theoretically, and rarely seen in the literature (with the atypical exception

of “hand-to-mouth” households, that have in effect a saving rate of zero). It is also

much more common to assume that behavior depends on the absolute level of wealth,

rather than the rank in the wealth distribution.

The second concern is that the choosen parameters remain constant over time, which

makes it more likely that they will remain so in the future. As we’ve seen in this

paper, we can reproduce the evolution of the wealth distribution since 1962 by

assuming constant parameters for consumption out of wealth. However, the average

income/wealth ratio at the top has changed between 1962–1980 and 1981–2014.

Therefore, the saving rate out of income has changed, even though the saving rate

out of wealth has remained stable. This also renders the latter specification preferable.

Mobility The synthetic saving rate parameter is meant to capture both average

savings and mobility. We can use the stochastic model of this paper to clarify what

that entails. Assume that the dynamic of wealth at the top follows:

dwit = [z(wit) + r(wit)wit − µ(w)wit] dt+ σwit dBit (D.2)

using the notations of the paper (in particular, µ(w) is the average consumption

out of wealth, σ2 is its variance, and we ignore income-induced diffusion τ 2(w)

for simplicity.) Assume that, at time t and for high w, wealth follows a Pareto

distribution with coefficient α (i.e. ft(w) ∝ w−α−1). The Fokker-Planck equation

combine the effect of the drift and the diffusion:

∂

∂t
ft(w) = − ∂

∂w
[(z(w) + w(r(w)− µ(w)))w−α−1]︸ ︷︷ ︸

drift

+
1

2

∂2

∂w2
[σ2w2w−α−1]︸ ︷︷ ︸
diffusion

Imagine that, following the synthetic saving rates approach, we estimate a “synthetic”

value of consumption µ(w), noted µ∗(w), by only taking the drift into account. When

observing the evolution of wealth, we still see the role that mobility plays, but we

will attribute it to the drift. Thus, rewrite the diffusion term as:

1

2

∂2

∂w2
[σ2w2w−α−1] = −1

2
σ2(α− 1)

∂

∂w
[ww−α−1]
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That way, we can include the diffusion term into the drift term such that:

∂

∂t
ft(w) = − ∂

∂w

[(
y(w) + w

(
r(w)− µ(w) +

1

2
σ2(α− 1)

))
ft(w)

]
Hence, the synthetic consumption µ(w) that we estimate is µ∗(w) = µ(w)− σ2(α−
1)/2. It differs from the true parameter µ(w) in two respects. First, mobility makes

synthetic consumption lower (and therefore makes savings higher) than true average

consumption. Second, and perhaps more problematically, this difference depends on

the shape of the wealth distribution itself. For example, assume, as found in this

paper, that σ2 ≈ 0.08. Assume that we move from the level of wealth inequality of

the 1970s ((α − 1)/2 ≈ 0.5) to today’s level ((α − 1)/2 ≈ 0.2). In the 1970s, the

synthetic consumption out of wealth µ∗(w) will be 0.08× 0.5 = 4% lower than true

consumption, while today it would be only 0.08× 0.2 = 1.6% lower. That correspond

to a 2.4% increase in synthetic consumption out of wealth, despite no change in the

underlying wealth accumulation process. Assuming an income/wealth ratio of 10%

at the top, that represents a spurious change of 24 pp. to the synthetic saving rate

out of income.

Steady-State The lack of an explicit diffusion mechanism (i.e. mobility) in the

synthetic saving rates approach also has an impact on whether, why and how a

steady-state distribution can emerge.

In the stochastic model used in this paper, a steady-state power-law distribution

arises naturally from scale invariance at the top. That mechanism does not apply in

the absence of diffusion. To fix ideas, assume:

∂

∂t
Wt(p) = r(p)Wt(p) + Z(p)− (1− s(p))Wt(p)

The steady state, if any, is given by setting ∂
∂t
W∞(p) = 0, so that W∞(p) =

Z(p)/(1− s(p)− r(p)). Assuming scale invariance (i.e. s(p) ≡ s and r(p) ≡ r) and

constant labor income (Z(p) ≡ Z), the distribution of wealth can either diverge

or collapse onto the single value Z/(1− s− r). To retrieve a smooth steady-state

distribution, it is crucial that at least of one of s, r or Z be a smooth function of the

rank in the wealth distribution, and not just the level of wealth. Even then, whether

a power-law emerges from this type of model will be a direct consequence of the

shape of s(p), r(p) or Z(p), not something that the approach explains on its own.

The existence of a non-degenerate steady state requires 1 − s − r > 0 and Z > 0.

So it is not possible in this model to have a stationary state in which people at
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the top of the wealth distribution have no labor income (i.e. a strict separation

between workers and capitalists). Wealth at the top is directly proportional to the

labor income earned by the same group. This stands in contrast to the steady-state

requirements of the stochastic model, which are more general (especially once we

introduce demographics as an additional stabilizing force, see Gabaix (2009)). In

particular, with a stochastic model it is possible to sustain a stationary steady-state

even if labor income plays no role at the top.

D.2 Omitted proofs

D.2.1 Application of Gyöngy’s (1986) Theorem

Recall that wealth at the individual level follows the SDE:

dwit = [yit − cit] dt+ [τ 2
it + σ2

it]
1/2 dBit

Consider a small time interval [t, t+ dt]. Over that interval, the income process yit

has mean νit dt and variance τ 2
it dt, while the consumption process cit has mean µit dt

and variance σ2
it dt. Following Gyöngy’s (1986) theorem, we can write:

dwit = [νt(wit)− µt(wit)] dt+ [τ 2
t (wit) + σ2

t (wit)]
1/2 dBit

where:

νt(w) = E[νit|wit = w] τ 2
t (w) = E[τ 2

it|wit = w]

µt(w) = E[µit|wit = w] σ2
t (w) = E[σ2

it|wit = w]

To simplify notations, consider all expectations conditional on wit = w. We can write,

somewhat informally, cit = µit dt + σit dBit. For the drift term, we have directly

E[cit] = E[µit] dt = µt(w) dt. For the diffusion term:

Var(cit) = E[(cit − µt(w) dt)2]

= E[(µit dt− µt(w) dt+ σit dBit)
2]

= E[(µit dt− µt(w) dt)2]︸ ︷︷ ︸
= 0 because (dt)2 = 0

+ E[σ2
it dB2

it]︸ ︷︷ ︸
= E[σ2

it] dt

because dB2
it = dt

+ 2E[σit(µit − µt(w)) dBit dt]︸ ︷︷ ︸
= 0 because dBit dt = 0

Therefore, µt(w) dt = E[cit] and σ2
t (w) dt = Var(cit). Similarly, νt(w) dt = E[yit] and

τ 2
t (w) dt = Var(yit).
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D.2.2 Steady-State Wealth Distribution With a Wealth Tax

Let fα be the steady-state density of wealth with a tax rate α (assuming it exists).

It has to obey the Fokker-Planck equation with the time derivative terms set to zero,

i.e.:

0 = − ∂

∂w
[(a(wit)− α(wit − w0)+)fα(w)] +

1

2

∂2

∂w2
[b2(w)fα(w)]

After solving this differential equation, we can write:

fα(w) = Cα exp

{
−2

∫ w

w0

b(s)b′(s)− a(s)

b2(s)
ds

}
exp

{
−2α

b2

∫ w

w0

(s− w0)+

s2
ds

}

where the constant Cα is defined so that the density integrates to one. Note that:

fα(w) =
Cα
C0

f0(w) exp

{
−2α

b2

∫ w

w0

(s− w0)+

s2
ds

}

where f0 corresponds to the steady-state density of wealth without any wealth tax.

For w < w0, this just amounts to fα(w) = (Cα/C0)f0(w). For w ≥ w0, we have:

fα(w) =
Cα
C0

f0(w) exp

{
−2α

b2

∫ w

w0

(s− w0)

s2
ds

}

=
Cα
C0

f0(w) exp

{
−2α

b2

(
w0

w
− 1

)}(
w

w0

)−2α/b2

Define the function:

ζα(w) ≡ exp

{
−2α

b2

(
w0

w
− 1

)}(
w

w0

)−2α/b2

The steady-state tax base is T (α) =
∫ +∞
w0

(w − w0)fα(w) dw, hence:

T (α) =
Cα
C0

∫ +∞

w0

(w − w0)ζα(w)f0(w) dw

For the constant term, notice that:(
Cα
C0

)−1

= F0(w0) +

∫ +∞

w0

ζα(w)f0(w) dw
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