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Résumé

Cette thèse étudie l’affectation centralisée des enseignants aux écoles et un nouveau modèle

d’appariement inspirée par cette dernière.

Dans le premier chapitre, nous développons un modèle théorique de réaffectation afin d’étudier le

problème de réaffecter des enseignants titulaires enseignant au sein d’un établissement et demandant

une mutation. Le problème est similaire à celui d’affecter des élèves dans des écoles. Dans ce cas,

l’algorithme à Acceptation Différée a été identifié comme étant le seul algorithme qui: i) est stable, ii)

efficace et qui iii) incite les élèves à soumettre sincèrement leurs préférences. La différence principale

avec le problème d’affecter des élèves aux écoles est que les enseignants ont déjà une position

initiale au sein d’un établissement. On doit donc prendre en compte une contrainte additionnelle,

la Rationalité Individuelle (RI): un enseignant doit être affecté dans un établissement qu’il préfère

faiblement à son établissement d’origine. Pour prendre en compte cette contrainte, une modification

de l’algorithme à Acceptation Différée a été identifiée dans la littérature académique et utilisé en

pratique pour affecter les enseignants aux écoles en France. Nous montrons que cet algorithme

modifié souffre d’un important défaut: il n’est pas efficace au sens fort. Il est en effet possible de

réaffecter les enseignants aux écoles de telle sorte que: i) les enseignants obtiennent une école qu’ils

préfèrent et ii) les écoles obtiennent des enseignants mieux classés. Partant de ce constat, nous

identifions la classe de tous les algorithmes, les algorithmes Block-Exchange (BE), qui ne souffrent

pas de ce défaut. Parmi eux, nous montrons qu’il en existe un unique qui incite les enseignants à

soumettre leurs préférences sincèrement: le Teacher Optimal Block-Exchange algorithm (TO-BE).

En utilisant un modèle de marché large, nous montrons théoriquement que ces algorithmes ont de

meilleures performances en termes de mouvement et de bien-être des enseignants que l’algorithme

actuel. Nous utilisons ensuite une base de données sur l’affectation des enseignants aux écoles du

secondaire en France en 2013 pour quantifier les gains possibles que nos algorithmes peuvent apporter.
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Dans un cadre de réaffectation pur sans enseignant néotitulaire et places vacantes, nous montrons

qu’il est possible de plus que double le nombre d’enseignants obtenant une nouvelle affectation.

Dans le second chapitre, nous concevons un algorithme pratique, inspiré de nos résultats du

chapitre précédent, pour la procédure française d’affectation des enseignants du secondaire. Plus

globalement, cette conception a également pour but de fournir un outil face à deux problèmes

importants communs aux pays de l’OCDE: i) le manque d’attractivité de la profession enseignants

et ii) les importantes inégalités de réussites des élèves issus de milieux sociaux différents. Nous

considérons l’ensemble du marché français composé des enseignants titulaires demandant une

réaffectation, les enseignants sans affectation initiale et des places vacantes. Améliorer la mobilité des

enseignants permet de leur donner de meilleures perspectives de carrière ce qui peut potentiellement

attirer plus d’entrants dans la profession. Mais cette mobilité accrue peut entrainer l’affectation de

plus d’enseignants peu expérimentés au sein d’académies déjà très défavorisées, affectant in fine la

réussite des élèves au sein de celles-ci. Nous proposons un algorithme flexible qui permet de mieux

contrôler le mouvement et la distribution des enseignants au sein de régions, notamment celles très

désavantagées. En utilisant les données françaises d’affectation de 2013, nous simulons plusieurs

scénarios contre factuels et montrons que notre algorithme peut prendre en compte plusieurs objectifs

de politique publique.

Dans un troisième chapitre, nous proposons un nouveau modèle d’appariement inspiré par

l’affectation des enseignants et des élèves aux écoles. Deux types d’agents doivent être affectés

ensemble à des objets. Une application possible est l’affectation de managers et travailleurs à des

projets. Ce modèle est un hybride entre le modèle classique d’affectation avec deux types où des

hommes (ou élèves) et femmes (ou écoles) ont des préférences sur l’un et l’autre et doivent être

appariées ensemble et un modèle d’allocation de logements ou des logements sans préférences doivent

être affectés à des agents ayant des préférences sur ces logements. Nous explorons théoriquement

les questions classiques de la littérature d’appariement en définissant un concept de stabilité: par

exemple il ne doit pas exister de manager (ou travailleur) qui préfèrerait renvoyer son partenaire et

demander à un autre travailleur (ou manager) de le rejoindre au sein du projet qui lui a été affecté.

Nous montrons que ce concept de stabilité peut ne pas exister. Cependant, cette impossibilité dépend

fortement de la possibilité pour un manager et pour un travailleur de pouvoir renvoyer son partenaire

assigné et garder son projet. Cela pose la question suivante: qui possède, entre un manager et un



travailleur, le projet ? Nous introduisons donc une notion de structure de propriété qui définit,

pour chaque triplet de manager-travailleur-projet possible, le propriétaire du projet au sein de ce

triplet. On peut donc ensuite considérer une notion de stabilité où uniquement les propriétaires

peuvent renvoyer leur partenaire et demander à un autre de les rejoindre au sein de leur projet. Nous

montrons que si l’on donne toujours la propriété au même type d’agent, par exemple les managers

possèdent toujours les projets, alors l’existence d’appariements stables est rétablie. Ce résultat peut

fournir une explication sur la raison pour laquelle on tend à n’observer que ce type de structure en

pratique. Il souligne également une structure similaire avec celle des appariements stables dans le

modèle standard d’affectation avec deux types. Nous explorons ce lien en définissant des concepts

de coeur et montrons que, contrairement au cadre classique, ils peuvent être vides.

Mots clés: Appariement, Conception de marchés, Affectation des enseignants.





Summary

This thesis studies the centralized assignment of teachers to schools and a new matching framework

inspired by it.

In the first chapter, we develop a theoretical model of reassignment to study the problem of

reassigning tenured teachers who already have a position and are willing to move to another school.

The problem is similar to the one of assigning students to schools. In this case, the well known

Deferred Acceptance algorithm has been identified as the only algorithm that: i) is stable ii) efficient

and iii) gives incentives to students to report their true preferences. The main difference with the

problem of assigning students to schools is that teachers have an initial assignment. One has to

consider an additional constraint, Individual Rationality (IR): a teacher must receive a school that

he weakly prefers to his initial one. To incorporate this constraint, a modification of the Deferred

Acceptance algorithm has been identified in the academic literature and used in practice to assign

teachers to schools in France. We show that this modified algorithm has a serious drawback: it is

not efficient in a strong sense. Indeed, it is possible to reassign teachers to schools such that both: i)

teachers obtain a school that they prefer and ii) schools are assigned teachers that they rank higher.

Thus, we identify the class of all algorithms, the Block-Exchange (BE) algorithms, that do not suffer

from this drawback. Among them, we show that there is a unique one that gives good incentives to

teachers to report their true preferences, the Teacher Optimal Block-Exchange algorithm (TO-BE).

In using a large market setting, we theoretically show that these algorithms perform better in terms

of movement and welfare for teachers than the currently used one. We then use a dataset on the

assignment of teachers to schools in France in 2013 to quantify the possible gains that can bring our

algorithms. In a reassignment setting with no newly tenured teachers or empty seats, we show that

we can more than double the number of teachers obtaining a new assignment.

In the second chapter, we aim to design a practical algorithm, inspired by our findings in the

xv



previous chapter, for the French assignment system of teachers to schools. More generally, this

design also aims to provide a tool about two important issues common to OECD countries: i) the

lack of attractiveness of the teaching profession and ii) the high achievement inequality between

students from different social backgrounds. We consider the complete French market composed of

tenured teachers looking for a reassignment, newly tenured teachers with no initial assignment and

empty positions. In improving the mobility of teachers, one can give them better career perspectives

and so potentially attract more teachers into the profession. But in doing so, it can also hurt

deprived regions in assigning more teachers with low experience to them and ultimately the students

from these regions. We propose a flexible algorithm that allows to better control the movement

and distribution of teachers across regions, especially deprived ones. Using the data of the French

assignment of teachers in 2013, we simulate several counter factuals and show that our algorithm

can accommodate a wide range of policy objectives.

In the third chapter, we propose a new matching setting inspired by the assignment of teachers

and students to schools. Two types of agents have to be assigned together to objects. One possible

application is the assignment of managers and workers to projects. This model is a hybrid between

the classical two-sided matching market where men (or students) and women (or schools) have

preferences over each others and have to be matched together; and the allocation problem about

assigning houses with no preferences to agents having preferences over them. We theoretically

explore the classical questions of the matching literature in defining a concept of stability: for

instance no manager (or worker) can prefer to dismiss his partner and ask another worker (or

manager) to join his assigned project. We show that such concept may fail to exist. However, this

impossibility strongly relies on the ability for both managers and workers to dismiss their assigned

partner and keep their project. It asks the question: who owns, between a manager and a worker,

their assigned project ? Thus, we introduce the notion of ownership structure that defines, for

each manager-worker-object triplet, who owns the object. Then one can define a stability notion

where only owners can dismiss their partner and ask another one to join their project. We show

that if one always gives the ownership to the same type of agents, e.g. managers are always the

owners of the projects, then one can restore the existence of stable matchings. This result can give

an explanation about why we tend to always observe such type of ownerships in practice. It also

highlights a similar structure than the one of stable matchings in the standard two-sided matching



framework. We additionally explore this link in defining core notions and show that, contrary to the

standard setting, they can all be empty.

Keywords: Matching, Market Design, Teacher Assignment
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Introduction

Introduction Générale

L’étude des problèmes d’appariement2 a pris une place croissante en Sciences Economiques au

cours des 20 dernières années, aboutissant en 2012 à l’attribution du Prix de la Banque de Suède

en l’honneur d’Alfred Nobel en Sciences Economiques à Alvin Roth et Lloyd Shapley. Une part

importante de ce succès vient surement du lien étroit qu’il existe entre la théorie et les applications

pratiques qui ont menées à nombre de recommandations politiques réussies. Cette thèse essaie de

suivre cette tradition en motivant son analyse par le problème d’affectation des enseignants avec une

application au cas français. Dans le premier chapitre, notre but est de développer un cadre théorique

afin d’étudier des problèmes de réaffectation, une classe de problèmes d’appariement à laquelle

appartient l’affectation des enseignants. Ce cadre nous permet d’identifier une classe importante

de mécanismes à utiliser dans ces problèmes tout en fournissant des prédictions théoriques et de

premières évaluations empiriques des améliorations possibles. Dans un second chapitre, appuyés

par nos prédictions théoriques précédentes, nous tentons de proposer la conception pratique d’une

procédure3 alternative à celle utilisée actuellement en France; en prenant en compte les spécificités

concernant les inégalités entre académies et les différents objectifs de politiques publiques. Dans le

dernier chapitre, inspirés par le lien qu’il existe entre l’affectation des enseignants et des élèves au

sein des écoles, nous explorons théoriquement un nouveau modèle d’appariement intermédiaire où

deux types d’agents doivent être affectés à un ensemble d’objets.

Dans cette introduction, nous commençons par rappeler la littérature sur les problèmes d’appariement.

Nous nous concentrons sur les deux grands types de modèles qui sont pertinents pour les travaux
2Dans ce qui suit nous utiliserons indifféremment: apparier, affecter et allouer ainsi que les noms correspondants.

Le verbe apparier sera utilisé dans un sens plus général que juste “mettre par paires”et se référera à l’action d’affecter
des agents entre eux.

3Dans ce qui suit, procédure, mécanisme ou algorithme seront utilisés indifféremment.
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de cette thèse tout en illustrant quelques exemples de réformes politiques au fil des années. Nous

introduisons ensuite les travaux réalisés dans le cadre de cette thèse en soulignant leurs connections

avec la littérature exposée.

Problèmes d’appariement: présentation

Pourquoi étudier les problèmes d’appariement ?

Il existe un nombre important de définitions de ce qu’est la Science Économique. L’économiste

français Edmond Malinvaud fournit la suivante4:

L’économie est la science qui étudie comment des ressources rares sont employées

pour la satisfaction des besoins des hommes vivant en société. Elle s’intéresse d’une part

aux opérations essentielles que sont la production, la distribution et la consommation

des biens, d’autre part aux institutions et aux activités ayant pour objet de faciliter ces

opérations.

Cette dernière met en lumière deux points importants. Une partie de la Science Économique

s’intéresse à la distribution des ressources rares. La question est dès lors de décider de la façon

dont quelqu’un peut allouer, par exemple, un bien à une multitude de personnes (agents) qui le

désireraient sachant qu’à la fin, un seul d’entre eux peut l’obtenir. Comment résoudre ce conflit

de préférences ? Comment résoudre ce problème basique de congestion ? Une autre partie de la

Science Économique s’intéresse quant à elle aux institutions aux travers desquelles la distribution est

réalisée. Au cours de l’Histoire, une institution particulière a émergé: le marché, où les personnes

peuvent échanger des biens et services afin de satisfaire leurs besoins. Ces marchés peuvent prendre

une multitude de formes. Par exemple, l’échange peut se faire via un système de troc. Cependant,

la plupart des marchés actuels étudiés par les économistes prennent la forme d’un échange de biens

et services contre de la monnaie via un système de prix. Afin de résoudre le problème de congestion

susnommé, les prix s’ajustent. Si plus d’agents demandent un bien qu’il y en a de disponible, alors le

prix augmente et vice-versa. Les économistes ont rapidement commencé à se concentrer sur l’étude

de ce type de marchés avec un système de prix en étudiant leurs propriétés. En effet, Malinvaud, au

sein du même écrit, reporta:

4Tirée de: Leçons de théorie microéconomique, Dunod, 4th edition, 1982.
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Dans sa double recherche explicative et normative, notre science a été amenée à

attribuer un rôle central aux prix qui président aux échanges de biens entre agents. Ces

prix reflètent pour les individus, de manière plus ou moins exacte, la rareté sociale des

produits qu’il achète et qu’il vend.

Les économistes ont identifié le rôle central joué par les prix dans la gestion des échanges sans que ces

derniers soient les seules solutions possibles. Revenons en effet en arrière et demandons nous: pour

certains types de ressources, peut-on ou veut-on utiliser la monnaie et un système de prix comme

moyen d’allocation de cette ressource ? Par exemple, de nombreux patients avec un défaillance rénale

ont besoin d’une transplantation et il y a généralement plus de patients que de reins disponibles.

C’est donc un problème de congestion: comment peut-on allouer un nombre limité de ressources, ici

des reins, à des agents qui en ont besoin sachant qu’il y a plus d’agents que de reins disponibles ?

Une réponse naturelle suite aux écrits ci-dessus serait de définir un système de prix pour des reins et

d’utiliser de la monnaie. C’est ce qu’a choisit l’Iran depuis 1988: les donneurs sont payés afin de

donner leurs reins. Par exemple, Becker and Elias (2007) discutent de la possibilité d’introduire aux

Etats-Unis ce système de prix en évaluant le potentiel prix d’équilibre pour les reins en prenant en

compte plusieurs facteurs tels que la valeur monétaire statistique d’une vie, le risque de mortalité ou

encore la qualité de vie et la valeur du temps pour les individus5. Cependant, la plupart des pays

interdisent par la loi l’usage de transferts monétaires afin d’allouer des organes. Comme mentionné

par Roth (2007), l’Article 21 du Protocole Additionnel à la Convention des Droits de l’Homme et de

la Biomedecine datant de 2002 sur la Transplantation d’Organes et de Tissus d’Origine Humaine

stipule que6

Le corps humain et ses parties ne doivent pas, en tant que tels, amener à des gains

monétaires.

La loi Nationale de Transplantation d’Organes7 de 1984 aux Etats-Unis contient un texte similaire. Il

existe un sentiment général et répandu que la monnaie n’est pas un instrument approprié pour traiter

des échanges d’organes. Roth (2007) appela ce sentiment répugnance8. Ce concept de répugnance
5Des articles plus anciens discutent également de cette possibilité pour les dons d’organes depuis des donneurs

décédés, le lecteur intéressé est invité à se référer à l’article mentionné pour plus de détails sur cette littérature.
6“The human body and its parts shall not, as such, give rise to financial gain”, (Article 21 of the Council of

Europe’s (2002) Additional Protocol to the Convention on Human Rights and Biomedicine, on Transplantation of
Organs and Tissues of Human Origin)

7National Organ Transplant Act
8Repugnance en anglais qui renvoie à la notion de dégout moral.
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est bien entendu différent et changeant entre localisations géographiques et au fil du temps. Il peut

être influencé par une multitude de facteurs culturels, psychologiques, religieux...etc. Par exemple,

en mettant de côté le marché noir, les pays diffèrent dans leur législation sur la consommation de

certains stupéfiants ou encore sur la prostitution. Roth (2007) mentionna également la consommation

de viande de cheval qui est interdite par exemple en Californie à l’encontre d’autres régions du globe.

Au fil du temps, des transactions considérées comme répugnantes peuvent ne plus l’être à présent. Il

mentionna notamment, p.3, l’exemple bien connu suivant9:

Le prêt d’argent avec intérêts était considéré à une époque comme répugnant mais

ne l’est plus (à l’exception importante de la loi islamique qui est vastement interprétée

comme l’interdisant).

L’utilisation des ajustement de prix pour résoudre le problème de congestion de certains problèmes

d’allocation peut également être considérée en tant que telle comme opposée à l’objectif de politique

publique fixé. L’éducation publique et généralisée est considérée dans beaucoup de pays comme

un droit fondamental et comme objectif important de politique publique grâce aux externalités

positives qu’elle génère pour la société. Si plusieurs candidats souhaitent être affectés à une école,

l’augmentation des frais de scolarité, c.a.d. le prix de l’école, n’est pas considérée comme un outil

politique utile afin de résoudre la congestion. En effet, cela pourrait exclure certains candidats issus

de familles à revenus plus modestes qui ne pourraient pas payer ces frais. Un autre exemple important

est celui de l’allocation des logements sociaux. L’objectif politique de fournir des logements sociaux

est de permettre à des familles relativement plus pauvres d’accéder à un logement dans des localités

où le marché immobilier, au travers des ajustement des prix, les exclue de facto. La motivation

étant que la diversité sociale crée des externalités positives pour la société dans son ensemble. La

motivation des politiques de logements sociaux exclue par nature l’utilisation du loyer, c.a.d. du

prix, comme un moyen d’ajustement afin de résoudre ce problème d’allocation des logements aux

familles10.

Il est important de débattre sur la qualité répugnante ou non de certaines transactions monétaires.
9“Lending money for interest was once widely repugnant, and no longer is, (with the important exception that

Islamic law is commonly interpreted as prohibiting it).”
10Il est important ici de mentionner que des courants économiques, dans une tradition de l’école de Chicago,

mentionneraient que la distortion ou la non utilisation du prix serait une erreur et entacherait l’allocation optimale. Ils
préconiseraient plutôt un système de bourses directement aux familles concernées. Bien entendu, il se pose le problème
du coût d’un tel financement. Comme nous le verrons, nous allons vite mettre de côté le débat sur l’utilisation ou non
d’un système d’ajustement des prix.

4



Introduction

Par exemple, Leider and Roth (2010) menèrent une enquête auprès d’un échantillon représentatif

d’américains afin d’identifier les opinions sur l’utilisation d’un marché de reins avec prix. Comme

nous le mentionnerons plus tard, décider ou non d’utiliser les salaires afin de résoudre le problème de

congestion dans l’allocation des enseignants est un débat important de politique publique. Cependant,

certains économistes ont choisi, comme mentionné dans Roth (2007), de s’abstraire des raisons

poussant telles ou telles transactions à être considérées comme répugnantes et ont considéré la notion

de répugnance des transactions monétaires sur certains marchés comme une contrainte. Une fois que

l’on accepte cette contrainte, le but est de trouver d’autres méthodes afin de résoudre le problème

fondamental de congestion, c.a.d. de concevoir le marché11. Cette considération fondamentale est la

motivation de base des économistes s’intéressant aux problèmes d’appariement et à la conception de

marchés: ils souhaitent développer des théories et solutions pratiques pour résoudre ces problèmes de

congestion tout en prenant en compte les objectifs de politiques publiques des marchés pour lesquels

les transactions monétaires ne sont pas possibles ou souhaitées. Les théories et solutions proposées

sont intrinsèquement liées aux marchés concrets que l’on souhaite concevoir. Plusieurs problèmes

pratiques peuvent appartenir à la même classe de problèmes d’allocation et peuvent utiliser les

mêmes solutions que celles qui ont été développées pour cette classe. Les objectifs pour l’allocation

des élèves au sein des écoles vont être fondamentalement différents de ceux utilisés pour allouer des

reins à des patients qui vont être à leur tour différents de ceux de l’allocation des logements sociaux.

Tout ces problèmes ont vu leurs propres solutions émerger. Cette thèse va s’atteler à montrer que le

problème de réallouer des enseignants à des écoles est conceptuellement différent de celui d’allouer

des élèves à des écoles. Ce problème va partager des similarités avec ce dernier tout comme avec celui

de réallouer des logements sociaux entre des occupants. Dans la suite de cette introduction, nous

allons exposer les résultats de la littérature en se concentrant sur ces deux types de problèmes12.

11Le terme anglais utilisé dans la littérature est market design.
12De par la nature de cette thèse, nous choisissons volontairement de ne pas traiter les résultats concernant une

autre application de la littérature d’appariement: celle de l’allocation des reins, qui a également eu des impacts
politiques importants. Une différence notable est que la prise en compte des incitations des patients à transmettre leurs
caractéristiques est de moindre importance. Le lecteur intéressé peut facilement trouver des références sur le sujet.
Une excellente introduction à ce type de problèmes est faite dans Sonmez and Unver (2013). Pour une présentation
brève des problématiques récentes, le lecteur peut également se référer à Ashlagi and Roth (2012).
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Marchés d’appariement avec deux types

Le problème d’allouer des élèves au sein d’écoles, connu comme le college admission problem, a

été introduit dans l’article fondateur de Gale and Shapley (1962). Ce problème est simple: des élèves

doivent être affectés dans des écoles, chaque école ayant un nombre limité de places. Chaque élève a

un ordre de préférences sur les écoles et chaque école a également un ordre de préférences sur les

élèves. Il est supposé que ces préférences sont strictes de telle façon que les élèves et écoles ne peuvent

être indifférentes. De façon plus abstraite, nous faisons face à un problème où deux types d’agents, ici

élèves et écoles, ont des préférences les uns sur les autres. Ils commencent par ne pas être affectés et

voudraient l’être ensemble. Pour un décideur politique, la question est de décider comment utiliser

l’information des listes de préférences de chacun des types d’agents afin de décider d’un appariement.

Une première étape est de décider des bonnes propriétés qu’un appariement doit satisfaire vis à vis

de ces informations que sont les préférences. Une première propriété intuitive, que les économistes

appellent rationalité individuelle (RI) ou contrainte de participation, est que si un élève (resp. une

école), préfère rester seul que d’être affecté à une certaine école (resp. élève) alors il ne faut pas les

affecter ensemble. Pour les économistes, une autre propriété largement utilisée est celle d’optimalité

de Pareto. Dans ce contexte, les deux types d’agents ont des préférences que l’on devrait utiliser

pour décider d’une allocation. Une allocation est dite Pareto-optimale (ou Pareto-efficace ou des fois

juste efficace) si on ne peut pas réaffecter les élèves aux écoles de sorte que tous les élèves et écoles

sont soient indifférents ou préfèrent strictement leur nouvelle allocation et certains strictement13.

Bien que la Pareto-efficacité soit une propriété attrayante, il existe une multitude d’allocations

différentes qui sont Pareto-efficaces et certaines d’entre elles peuvent ne pas être très attractives

par rapport à d’autres critères. Dans ce contexte, Gale et Shapley ont proposé un concept naturel

additionnel: celui de stabilité. Une allocation est dite stable si elle est individuellement rationnelle

et qu’il n’existe pas un élève et une école qui ne sont pas affectés ensemble mais préfèreraient l’être.

Si une telle paire existe, elle est appelée une paire bloquante. Un appariement est donc stable s’il est

individuellement rationnel et qu’il n’y a pas de paire bloquante14. Cette propriété intuitive peut

s’interpréter de deux façons:

• D’un point de vue normatif, elle peut être vue comme un critère de justice, de justesse. En

13Dans ce contexte avec préférences strictes, être indifférent est équivalent à garder la même allocation.
14On peut prouver que tout matching stable doit être Pareto-efficace au sens dans lequel nous l’avons défini.
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effet, une allocation non stable verrait un élève se faire refuser l’entrée au sein d’une école

qu’il préfère et cette école le préfèrerait en retour à l’un des élèves qui lui aura été accepté au

sein de celle-ci. Le premier élève pourrait donc “envier”ce dernier au sein de cette école qu’il

préfère et cette envie serait justifiée puisque l’école le préfère également. Cela pourrait donc

créer ce qui est appelé une envie justifiée pour le premier élève envers le second.

• D’un point de vue positif, une allocation non stable ne pourrait pas perdurer très longtemps.

En effet, si un élève et une école préfèreraient être affectés ensemble alors l’école renverrait son

élève le moins préféré et demanderait au premier élève de la rejoindre. Roth (1991) a en effet

étudié différents marchés d’appariement de jeunes docteurs et chirurgiens au Royaume-Uni et

nota que les procédures menant à un appariement stable étaient toujours utilisées alors que la

plupart de celles menant à des appariement non stables ont été abandonnées.

Ayant défini ce qu’est un appariement stable, la prochaine question naturelle est de se demander si

un tel appariement peut toujours être obtenu peu importe les préférences des élèves et des écoles.

Et si oui, comment peut-on en trouver un ? Gale et Shapley donnèrent, avec une preuve élégante,

une réponse affirmative à la première question et une procédure pratique pour la deuxième. Ils

proposèrent un algorithme, appelé l’algorithme de Gale et Shapley ou également l’algorithme à

Acceptation Différée (AD) qui, pour toutes préférences fournies, retourne un appariement stable. Ce

dernier fonctionne comme suit:

Etape Préliminaire. Le décideur politique choisit les élèves ou les écoles comme étant les

proposants pour la suite de l’algorithme. Dans ce qui suit, nous supposons que les élèves seront

les proposants15.

Etape 1. Chaque élève postule à son école qu’il a classée première. Les écoles acceptent

temporairement tous les élèves qui postulent. Si une école reçoit plus de postulants qu’elle a

de places disponibles, elle n’accepte que ceux qui sont les mieux classés dans ses préférences

jusqu’à remplir son nombre de places et rejette les autres.

Etape k. Tous élèves rejetés à l’étape k− 1 postulent à leur école préférée parmi celles qui ne

les ont pas encore rejetés aux étapes précédentes. Une école considère tous les élèves qu’elle a
15Il suffit d’intervertir élèves et écoles dans ce qui suit pour obtenir l’autre version où les écoles proposent. Si les

écoles proposent, alors on considère les élèves comme ayant une “capacité de 1”dans la suite, puisqu’ils ne peuvent être
affectés qu’à une seule école. Une école ayant q places doit proposer à ses q meilleurs élèves classés.
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temporairement acceptés à l’étape précédente ainsi que les nouveaux postulants: s’il y en a

plus que son nombre de places disponibles, elle sélectionne encore une fois les mieux classés au

sein de ses préférences et rejette les autres16.

Ce processus continue jusqu’à ce qu’il n’y ait plus aucun rejet. L’allocation définie à cette dernière

étape sera la définitive. Comme il y a un nombre fini d’écoles et d’élèves et, qu’à chaque étape,

au moins un élève descend au sein de sa liste de préférences en postulant à une nouvelle école, cet

algorithme s’arrête après un nombre fini d’étapes. Comme à chaque étape, un élève n’est rejeté d’une

école que si un autre préféré par l’école est accepté, on peut facilement montrer que l’allocation

finale est stable. Une autre propriété intéressante de cet algorithme est qu’il est “rapide”. En

effet, s’il y a n élèves et m écoles, il faut au plus n×m étapes pour que l’algorithme s’arrête. En

Science de l’Informatique, plus précisément en théorie de la complexité, ce type d’algorithmes est

appelé polynomial c.a.d. que son temps d’exécution est une fonction polynomiale de la taille de ses

entrées, ici la taille des listes de préférences des élèves et écoles. Puisque les problèmes d’appariement

s’intéressent à des problématiques d’allocation concrètes, avoir des algorithmes pratiques et efficaces

est une condition importante17. Dans leur article, Gale et Shapley prouvèrent également la propriété

importante suivante: si les élèves sont les proposants, alors l’allocation stable obtenue est celle

préférée par tous les élèves et la moins préférée par toutes les écoles de toutes les allocations stables

possibles. Cette allocation est appelée l’Allocation Stable Optimale pour les Eleves. On ne peut donc

pas trouver un autre appariement stable que tous les élèves préfèreraient faiblement (et certains

strictement) à celui obtenu par l’algorithme AD où les élèves sont les proposants. Le résultat est

évidemment symétrique si les écoles proposent, l’appariement obtenu étant appelé l’Allocation Stable

Optimale pour les Ecoles, de telle sorte qu’il existe un arbitrage entre favoriser les élèves ou les écoles.

Dans les années 80, une importante littérature s’est développée afin d’étudier les allocations

stables, l’algorithme AD et leurs propriétés. Notre objectif n’est pas de fournir une liste exhaustive

de l’ensemble de ces résultats, le lecteur intéressé est invité à se référer à l’excellent manuel de Roth

and Sotomayor (1990) qui expose formellement l’ensemble de ces résultats. Cependant, nous allons

16On peut noter qu’un étudiant accepté à l’étape précédente peut être rejeté à cette étape. C’est pourquoi on parle
de décision d’acceptation temporaire et qui ne sera définitive qu’à la dernière étape de l’algorithme.

17La littérature d’appariement est également importante en Science de l’Informatique, initiée par Donald Knuth.
Il y a par exemple nombre de résultats dans la branche de la théorie de la complexité reliés aux problématiques
d’appariement. Un nombre croissant de travaux sont à l’intersection de la Science Economique et la Science de
l’Informatique. Le Chapitre 2 présentera un résultat lié à la théorie de la complexité.
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en mentionner un essentiel: les incitations. Inspiré par une solide tradition de théorie des jeux en

Science Economique, Roth (1982) a étudié les propriétés incitatives de l’algorithme AD: est ce qu’un

élève ou une école pourrait fournir une fausse liste de préférences afin d’obtenir une allocation qu’il

ou elle préfère à celui qu’il/elle obtiendrait en étant sincère dans sa liste ? Son premier résultat n’est

pas très encourageant:

Roth (1982), Théorème 3. Il n’existe aucune procédure retournant systématiquement une

allocation stable et pour laquelle fournir ses vraies préférences est une stratégie dominante.

Cela implique que l’algorithme AD peut être manipulé. Le concept de stratégie dominante est

standard en théorie des jeux: il requiert que peu importe ce que les autres agents (élèves et écoles)

fournissent comme préférences, un élève ou une école ne peut obtenir une allocation qu’il/elle préfère

strictement en soumettant une fausse liste de préférences. Une procédure qui ne souffre pas de ce

type de manipulation est appelée non manipulable. Cependant, le résultat suivant est plus positif:

Roth (1982), Théorème 5. Si les élèves sont les proposants sous l’algorithme AD, alors ce

dernier est non manipulable par les élèves18.

En utilisant le premier théorème, nous savons que sous l’algorithme AD où les élèves proposent,

les écoles peuvent éventuellement manipuler les préférences qu’elles fournissent. Cependant, le

deuxième théorème montre qu’aucun élève ne pourra le faire. Une version plus forte du deuxième

théorème a également été prouvée indépendamment par Dubins and Freedman (1981): aucun groupe

d’élèves ne peut conjointement soumettre de fausses préférences et tous obtenir une allocations

qu’ils préfèrent strictement19. Ce résultat est encourageant. En effet, généralement en pratique,

les écoles ne sont pas stratégiques. Leurs préférences au sein de la procédure d’affectation sont

souvent déterminées par la loi (dans ce cas, nous parlons de priorités) et ne sont pas stratégiquement

fournies à l’algorithme contrairement aux listes de préférences des élèves. La non-manipulabilité

est une propriété importante pour un mécanisme. C’est probablement celle que les économistes,
18La version symétrique pour les écoles est plus subtile. Dans le cas où chaque école n’a qu’une seule place, appelé

environnement un-pour-un, le résultat symétrique est trivialement vrai puisqu’il n’y a plus de différence conceptuelle
entre élèves et écoles. Cependant, Roth (1985) montra que dans un environnement plusieurs-pour-un où les écoles
peuvent avoir plusieurs places, la proposition symétrique pour AD ne tient plus. La principale différence est que dans
ce cadre, une école se doit maintenant de comparer des ensembles d’élèves à partir de sa liste de préférences qui elle ne
classe que les élèves individuels entre eux.

19Dans la littérature, cette notion est appelée non manipulabilité par groupe.
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et les théoriciens des jeux, ont introduite comme étant une propriété importante, voir essentielle,

contrairement à la littérature de Science de l’Informatique ou de Recherche Opérationnelle.

Roth (1984) fût le premier à étudier un marché concret d’appariement: celui affectant les internes

et résidents de médecine aux hôpitaux aux Etats-Unis. Ce type d’affectation fait parti de la classe

de problèmes analysée par Gale et Shapley. Il y a en effet deux types d’agents, médecins et hôpitaux,

qui ont des préférences les uns sur les autres et qui ne sont pas initialement affectés les uns aux autres

mais souhaiteraient l’être. Il commença par fournir une description institutionnelle et historique

de ce marché d’appariement, en soulignant les objectifs, critiques et problèmes rencontrés au cours

de son histoire, notamment le passage d’un processus décentralisé très critiqué à un algorithme

centralisé. Il fournit une description de l’algorithme adopté en 1953, l’algorithme National Intern

Matching Program (NIMP) et il en analysa ses propriétés. Ce dernier s’avéra être équivalent à

l’algorithme AD où les hopitaux proposent. En utilisant les propriétés déjà étudiées, il nota plusieurs

conséquences de cette équivalence:

• L’appariement obtenu, avec des préférences sincères, est l’appariement stable le moins préféré

pour les médecins. Cela pourrait expliquer pourquoi de multiples plaintes ont émergé au fil

des années par ces derniers, arguant que l’algorithme “favorise injustement les hôpitaux au

détriment des étudiants en médecine”.

• L’algorithme NIMP n’est pas non manipulable par les médecins: cela peut créer des problèmes

stratégiques dans la soumission des préférences par ces derniers.

Une première recommandation naturelle, en utilisant les résultats déjà mentionnés, a été de conseiller

le passage à l’algorithme AD où les docteurs proposent. Roth mentionna qu’une inquiétude des

institutionnels concernait la distribution des médecins au sein des différents hôpitaux. Certains

hôpitaux, principalement en région rurale, étaient fortement sous demandés par les médecins et

la crainte fût que le passage à un algorithme alternatif favorisant ces derniers aurait pu aggraver

la situation. Motivé par cette préoccupation pratique, Roth prouva le résultat important suivant,

appelé le Théorème de l’Hôpital Rural:

Roth (1984a), Théorème 9. Quand les préférences sont strictes, l’ensemble des positions

d’un hôpital assignées à des médecins est le même sous n’importe quel appariement stable,
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tout comme l’ensemble des médecins qui reçoivent une affectation.

Ce théorème a une conséquence importante: si la stabilité est considérée comme une propriété

essentielle, alors les inégalités d’affectation régionales entre hôpitaux en termes de nombre de

docteurs affectés ne peuvent être résolues en utilisant simplement une procédure d’appariement

stable différente20. Une autre préoccupation d’ordre pratique qu’il mentionna fût la présence de

couples de docteurs, tout deux demandant une affectation. Cela introduit une nouveauté: les

préférences des membres du couple sont liées. En effet, ils ne veulent pas se retrouver affectés loin

l’un de l’autre. Conceptuellement, le problème était nouveau: un couple peut être vu comme une

entité unique ayant des préférences sur les paires d’affectations possibles qui représentent l’affectation

des deux membres du couple. En introduisant cela, on peut redéfinir la notion de stabilité: un

couple peut bloquer si ses membres peuvent être affectés à deux positions que le couple préfère

conjointement et les hôpitaux recevant les membres du couple les préfèrent à leur affectation. Avec

cette nouvelle considération pratique, il prouva le résultat fondateur suivant:

Roth (1984a), Théorème 10. Dans un marché d’appariement où certains agents sont des

couples, l’ensemble des appariement stables peut être vide.

Ce théorème a eu un impact important au sein de la littérature. Une multitude de travaux futurs, en

Science Economique ou en Science de l’Informatique, s’intéressèrent aux propriétés et possibilités des

marchés d’appariement avec la présence de couples. Puisque le Chapitre 2 de cette thèse introduit

la littérature d’appariement en présence de couples, nous ne le ferons pas ici. Cependant, nous

recommandons au lecteur intéressé l’excellente revue interdisciplinaire de Biró and Klijn (2013).

Deux résultats importants ont été montrés: le problème de décider de l’existence d’un appariement

stable en présence de couples devient, en termes d’algorithmie, “difficile”comme montré par Ronn

(1990)21 et il n’y a pas de mécanisme qui peut trouver un appariement stable s’il existe tout en étant

non manipulable comme montré par Biró and Klijn (2013). A la lumière de l’analyse précédente

de Roth, le Board of Directors of the National Resident Matching Program (NRMP)22 decida en
20Plus tard, Roth (1986) prouva un résultat plus fort: les hôpitaux ne voyant pas toutes leurs positions affectées

au sein d’un appariement stable seront affectés aux mêmes docteurs sous n’importe quel appariement stable. On ne
peut donc pas changer le nombre ou l’identité des docteurs affectés à des hôpitaux sous demandés, on peut seulement
influencer l’identité des docteurs affectés à des hôpitaux dont toutes les positions sont affectées.

21En vocabulaire de théorie de la complexité, ce problème appartient à la classe des problèmes dits NP-difficiles
(NP-hard).

22Le nouvel acronyme donné plus tard au système précédent mentionné comme NIMP.
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1995 de réformer le programme d’allocation des docteurs. Roth and Peranson (1999) décrivirent

l’algorithme final adopté, qui fût élaboré sur les bases des travaux théoriques évoqués ainsi qu’avec

une approche d’ingénierie afin de prendre en compte des contraintes pratiques spécifiques à ce marché.

Une citation importante de l’article, p.749, est la suivante23

Le présent papier, en plus de présenter quelques résultats nouveaux, a également pour

objectif de passer une étape supplémentaire dans la direction d’une littérature d’ingénierie,

en décrivant comment les faits furent appris et comment ils ont impactés les décisions de

conception.

Une contrainte pratique importante fût, comme mentionné, la présence de couples. L’algorithme

final, inspiré de la théorie de l’appariement et élaboré empiriquement, eu de bonnes performances

pratiques. Par exemple, l’existence d’appariement stable même avec la présence de couples n’était

pas un problème en pratique. Plus tard, cette observation empirique, et une autre également faite sur

le programme d’affectation des psychologues, motiva une recherche théorique sur la question. Kojima,

Pathak and Roth (2013) développèrent un modèle d’analyse de grand marché (ou marché large), c.a.d.

avec beaucoup d’agents, pour montrer que l’existence d’un appariement stable sous l’algorithme

NMRP, même en présence de couples, est très probable quand le marché est suffisamment grand.

Ashlagi, Braverman and Hassidim (2011), avec un modèle de marché large différent, montrèrent

également qu’une notion de stabilité moins restrictive que la précédente existe également avec une

forte probabilité dans un marché large. De plus, ils montrèrent que le nouvel algorithme qu’ils

proposent donne de bonnes incitations aux agents, dans un marché large, à être sincères en fournissant

leurs listes de préférences24.

Une autre réforme concrète dans la classe des problèmes d’appariement avec deux types fût celle

des procédures de choix d’école pour affecter des élèves à des écoles. Abdulkadiroglu and Sonmez
23“The present paper then, in addition to presenting some new results, is intended to take a step in the direction of

an engineering literature as well, by describing how those facts were learned and how they impacted design decisions.”
24L’utilisation d’une approche en marchés larges a une importance croissante au sein de la littérature des problèmes

d’appariement. Elle fût utilisée dans les travaux fondateurs de Immorlica and Mahdian (2005) et Kojima and Pathak
(2008) qui montrèrent qu’avec une structure particulière de marché large, les écoles n’ont pas d’incitations à mentir
sur leurs listes de préférences même sous l’algorithme AD où les élèves proposent. Plus tard, des modèles alternatifs
de marchés larges ont été développés. Abdulkadiroglu, Che and Yasuda (2015a) et Azevedo and Leshno (2016)
développèrent un modèle de continuum d’agents afin de prouver qu’il n’existe qu’un seul appariement stable dans un
marché large. Lee (2014) utilisa une approche en termes de graphes aléatoires pour montrer que les élèves et les écoles
peuvent obtenir un appariement au sein de leur liste de préférences dans le plus haut quantile si les préférences sont
indépendantes et distribuées uniformément. Récemment, Che and Tercieux (2015b,a) utilisèrent les mêmes techniques
de graphes aléatoire pour comparer les propriétés d’efficacité et de stabilité dans des marchés larges.
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(2003) décrivirent un algorithme répandu dans ce domaine, qui fût plus tard appelé le mécanisme de

Boston, et utilisé à Boston, Columbus, Minneapolis et Seattle. Ils montrèrent que cet algorithme

a un défaut important: il est manipulable par les élèves, leur créant ainsi des incitations à être

stratégiques en fournissant leurs listes de voeux. Ils recommandèrent naturellement le passage à

l’algorithme AD élèves-proposant pour remédier à ce problème. Comme mentionné précédemment,

il y a une différence conceptuelle avec le problème standard de college admission: les écoles ne

sont pas stratégiques et leurs préférences sont plutôt considérées comme des priorités fixées par la

loi. Afin d’évaluer les performances en termes d’efficacité, elles peuvent donc être omises, le rang

de l’affectation que les écoles reçoivent en soit importe peu en dehors du seul critère de stabilité.

En considérant la Pareto-efficacité comme un critère important d’un appariement, seuls les élèves

peuvent être considérés comme importants. Un appariement est donc considéré comme efficace si on

ne peut pas réaffecter les élèves aux écoles de telle sorte que les élèves obtiennent une école qu’ils

préfèrent25. Cette modification de la définition de Pareto-efficacité a une conséquence importante:

les appariements stables peuvent ne plus être Pareto-efficaces avec cette nouvelle définition. En

démarrant d’un appariement stable, il peut être possible de réaffecter les élèves afin qu’ils obtiennent

une école qu’ils préfèrent, mais ce changement créerait des paires bloquantes. En construisant une

procédure de choix d’école, on fait face à un premier arbitrage: veut-on respecter la Pareto-efficacité

ou la stabilité ? Abdulkadiroglu and Sonmez (2003) proposèrent un algorithme efficace et non

manipulable, inspiré des problèmes d’allocation de logements que nous décrirons en présentant les

modèles d’allocation de logements, et appelé l’algorithme Top Trading Cycles (TTC). Ce dernier

s’exécute ainsi:

Etape 1. Tous les élèves pointent vers l’école qu’ils classent en première (si un élève trouve

les écoles inacceptables, alors il est non affecté et retiré de la procédure). Chaque école pointe

vers l’élève classé en premier au sein de ses priorités. En utilisant les pointages ainsi définis, il

existera un cycle26, affecter les élèves au sein de ce cycle à l’école vers laquelle ils pointent.

Supprimer ces élèves et diminuer d’un la capacité des écoles impliquées dans le cycle. Si une
25La différence avec la notion précédente est que l’on requiert uniquement que les élèves soient mieux et non les

élèves et écoles. Dans ce nouveau cadre, il est donc possible qu’une école reçoive un élèves qu’elle classe plus bas suite
à la réaffectation.

26Nous sommes sûr qu’il y en aura un. C’est une propriété classique en théorie des graphes: un graphe pour lequel
chaque noeud possède une unique flèche de sortie a au moins un cycle. De plus, s’il y a plusieurs cycles, ces derniers
sont disjoints et ne comportent pas les mêmes noeuds, l’ordre dans lequel l’algorithme les choisit n’affectera donc pas
l’appariement final obtenu.
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école finit avec une capacité nulle, elle est supprimée définitivement du processus. Passer à

l’étape suivante.

Etape k. Tous les élèves restants à cette étape pointent vers l’école qu’ils classent la plus

haute dans leur liste de préférences parmi celles restantes à cette étape, c.a.d qui ont encore

une capacité positive. Chaque école restante pointe vers l’étudiant classé le plus élevé dans

sa liste de priorité parmi ceux restants. Il y aura un cycle en utilisant ces comportements de

pointage. L’implémenter en affectant les élèves au sein de ce dernier à l’école vers laquelle ils

pointent. Diminuer d’un les capacités des écoles impliquées dans ce cycle. Supprimer les écoles

qui finissent avec une capacité nulle et passer à l’étape suivante.

Ces étapes continuent jusqu’à ce que tous les élèves soient affectés. Ils prouvèrent que cet algorithme

est non manipulable par les élèves et Pareto-efficace. Un décideur politique, en décidant de la

procédure d’affectation de choix d’école se retrouve donc face à deux candidats potentiels: l’algorithme

AD s’il privilégie la stabilité ou l’algorithme TTC s’il privilégie la Pareto-efficacité. Abdulkadiroglu

et al. (2005) conseillèrent ces deux possibilités à la ville de Boston afin de remplacer leur algorithme

qui était manipulable. Abdulkadirouglu et al. (2006) étudièrent plus précisément ce mécanisme

de Boston avec une approche empirique. Ils soulignèrent que les parents comprenaient bien les

potentielles manipulations de listes de préférences. Dans le guide 2004 du Boston Public School, il

était notamment donné une recommandation claire en ce sens27

Pour une meilleure chance pour votre “premier choix”: considérez une école moins

populaire. Demandez au Centre de Ressources des Familles pour des informations sur

les école sous demandées.

Ils montrèrent qu’au sein des listes fournies par les familles, on observait une chute claire d’écoles,

considérées comme populaires, classées secondes dans les listes de préférences. Cette discontinuité

dans les listes était révélatrice de la non sincérité des parents: classer second une école populaire

sous la procédure de Boston n’était pas une bonne stratégie car ils prenaient le risque de perdre

des opportunités dans d’autres écoles et donc préfèreraient ne pas classer en deuxième une école

populaire. Cela a une implication importante en termes d’évaluation des politiques publiques: il n’est

27“For a better chance of your “first choice”school: consider choosing less popular schools. Ask Family Resource
Center staff for information on “underchosen”schools.”
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pas possible d’utiliser les listes de préférences fournies par les familles afin d’évaluer la performance

de la procédure. En effet, le comité de Boston mentionnait que l’algorithme affectait 90% des familles

à l’école qu’elles classaient en première mais cette analyse est fausse car l’école classée en première

n’était, à cause des manipulations, probablement pas leur vrai premier choix. Le dernier argument

qui convaincu les décideurs politiques d’initier une réforme de la procédure fût que les familles qui ne

réussissaient pas à être stratégiques et fournissaient leurs vraies préférences étaient pénalisées et la

plupart finissaient sans aucune affectation. De plus, ces dernières étaient majoritairement des familles

issus de milieux sociaux défavorisés et à faibles revenus. L’adoption d’un mécanisme non manipulable,

comme les décideurs politiques ont mentionné à l’époque, permettrait d’aplanir le champs stratégique

(level the playing field) entre les familles et donc d’être moins inégalitaire. Cette première analyse et

réforme de politique publique réussie mena à nombre important de recommandations et un grand

nombre de recherches que nous ne détaillerons pas ici. Plusieurs villes comme Boston, New York

City, Chicago, Denver, Washington DC parmi d’autres adoptèrent l’algorithme AD élèves-proposant.

La Nouvelle-Orléans choisit l’algorithme TTC mais changea récemment pour AD. En France, Hiller

and Tercieux (2014) montrèrent que l’algorithme Affelnet actuellement utilisé pour affecter les élèves

aux lycées est équivalent à l’algorithme AD écoles-proposant.

Problèmes d’allocation de logements

Une autre classe importante de problèmes d’appariement concerne l’allocation d’objets. Con-

trairement au cas précédent avec deux types, seulement un type d’agents a des préférences et l’autre

est juste considéré comme des objets qu’il faut allouer, sans préférences ou priorités particulières.

La principale application de cette classe de problèmes est celle des logements sociaux. Trois types de

problèmes ont été identifiés au sein de la littérature:

1. L’allocation de logements sans occupants.

2. L’allocation de logements avec uniquement des occupants.

3. L’allocation de logements avec des occupants existants.28

Le premier cas, introduit par Hylland and Zeckhauser (1979) étudie le plus basique des problèmes

d’allocation: un nombre fini d’objets doit être alloué à des agents ayant un ordre de préférences
28Cette dernière est aussi appelée marché de logement (housing market).
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sur chacun des types d’objets présents. Il peut y avoir plusieurs copies d’un même type d’objets

mais toujours en nombre limité afin de faire face à un problème de congestion. La Pareto-efficacité

est une propriété naturelle pour une allocation: il ne faudrait pas pouvoir réallouer les objets de

telle sorte que tous des agents préfèreraient la nouvelle allocation. Un mécanisme standard dans la

littérature est celui du Dictateur en Série (DS)29. Il est simple et intuitif:

Etape Préliminaire. On fixe un classement des agents.

Etape 1. Le premier agent classé choisit son objet favori et l’obtient. Ils sont tous deux

supprimés du marché (s’il y a plusieurs copies de cet objet, on ne supprime qu’une seule copie).

Etape k. Le k-ième agent classé choisit son objet préféré parmi ceux restants à cette étape et

l’obtient. Ils sont tous deux supprimés du marché30.

Le processus continue jusqu’à ce que tous les agents ont pu choisir. Ce mécanisme est non manipulable

donc les agents n’ont aucune incitation à mentir sur leurs listes de préférences. Bien entendu, le

choix de l’ordre de classement à l’étape préliminaire est crucial et le premier agent classé à un

avantage certain31. Dans l’allocation des logements sociaux, le délai d’attente est un critère naturel:

l’agent ayant attendu le plus longtemps choisit en premier et ainsi de suite. S’il n’existe aucun

critère pour sélectionner ce classement, afin d’assurer une certaine équité du processus, on peut

choisir aléatoirement le classement, le mécanisme est alors appelé Dictateur en Série Aléatoire

(DSA)32. Avec cette approche aléatoire, on peut étudier les propriétés probabilistes d’un algorithme,

le problème devient alors un problème d’allocation aléatoire33 où il faut choisir des distributions

de probabilités sur les allocations possibles. Si les agents ont des préférences cardinales, en plus de

leurs ordres de préférences, c.a.d. attachent une valeur numérique aux objets qu’ils peuvent obtenir,

il est alors possible d’évaluer différentes allocations aléatoires avec le critère d’utilité espérée. Une

importante littérature s’est concentrée sur les allocations aléatoires. Par exemple, Abdulkadiroglu

and Sonmez (1998) montrèrent que les mécanismes DSA et TTC, où les occupants sont tirés

aléatoirement, sont stochastiquement équivalents. Bogomolnaia and Moulin (2001) proposèrent
29Serial Dictatorship.
30Dans le cas où il n’y aurait plus d’objets disponibles, ou que ceux restants ne sont pas acceptables pour l’agent,

ce dernier n’en reçoit aucun.
31Il est important que ce choix de classement se fasse en amont ou independement des listes de préférences fournies,

sinon la procédure risque d’être manipulable.
32Random Serial Dictatorship.
33Probabilistic assignment.
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une notion d’efficacité ex ante, l’efficacité ordinale, et proposèrent un mécanisme, le Probabilistic

Serial pour caractériser l’ensemble des mécanismes probabilistes menant à une allocation aléatoire

ordinalement efficace34. Le mécanisme DS est simple et facile à mettre en place. Il a été répertorié

dans plusieurs marchés d’appariement concrets. Les universités l’utilisent beaucoup pour l’allocation

de leurs étudiants aux logements de leur campus. Abdulkadirouglu and Sonmez (1999) citèrent par

exemple Carnegie-Mellon, Duke, Harvard, Northwestern et Pennyslvania.

Shapley and Scarf (1974) introduisirent le second type de problèmes d’allocation de logements où

un groupe d’occupants aimerait échanger leurs logements actuels35. Ici, les occupants ont un droit

sur leur logement initial et peuvent le garder dans le cas où ils ne seraient pas satisfaits de la nouvelle

allocation. Cette contrainte est, comme avant, appelée Rationalité Individuelle (RI): si un occupant

obtient un nouveau logement, il doit le préférer à son logement initial36. Cette contrainte pour un

appariement peut s’ajouter au critère de Pareto-efficacité mentionné précédemment. Avec l’existence

d’une allocation initiale, on peut également se référer à une propriété plus forte que la simple

Pareto-efficacité: la notion de coeur (core). Dans ce contexte avec des occupants initiaux pour les

logements, un appariement est dans le coeur s’il n’y a pas de groupe d’occupants tel que ces derniers

pourraient échanger leurs logements initiaux et préférer cet échange à l’appariement considéré37.

L’interprétation est que si l’on utilise un mécanisme qui ne donne pas un appariement dans le coeur,

alors un groupe d’agents préférerait ne pas participer à ce dernier et organiser eux-mêmes leur

échange. On dit alors qu’un tel groupe bloque l’allocation ou encore qu’il dévie. Shapley and Scarf

34Nous n’avons pas pour but ici de donner une revue complète de la littérature sur les allocations aléatoires. Hylland
and Zeckhauser (1979) proposèrent par exemple une approche similaire à un marché monétaire, l’Equilibre Compétitif
avec Revenus Egaux (Competitive Equilibrium with Equal Income), où chaque agent est doté d’un faux revenu et les
prix permettent d’acheter des parts de probabilités. Budish et al. (2013) étendirent cette approche pour construire des
allocations aléatoires plus complexes sous contraintes où des groupes d’objets peuvent avoir des quotas supérieurs et
inférieurs d’allocation.

35Cet échange se fait sans transferts monétaires. On peut penser à des réallocations de logements publics ou de
chambres universitaires.

36Il y a un parallèle conceptuel clair entre le cadre précédent et celui-ci. Dans les deux cas, la rationalité individuelle
impose qu’on doit donner à chaque agent une meilleure allocation que celle qu’il obtiendrait dans le cas du statu quo.
Dans le cadre d’appariement avec deux types, les agents commençaient sans aucune allocation, leur statu quo était
donc de rester seuls. Dans ce nouveau cadre, le statu quo est décidé par l’allocation initiale. C’est également pour cela
que l’on parle parfois de contrainte de participation: si un agent était sûr d’obtenir une allocation moins bonne qu’à sa
situation de statu quo et qu’il serait libre de participer ou non, il choisirait de ne pas participer et rester dans son
logement initial.

37Dans le cadre des problèmes d’appariement avec deux types mentionné dans la section précédente, il est également
possible de définir une notion de coeur. Dans ce cas, sans allocation initiale, les agents du groupe échangent leurs
affectations obtenues sous l’appariement considéré et non, comme ici, leur logement initial. On peut voir cette notion
comme une généralisation du concept de paire bloquante définie dans le concept de stabilité. Roth (1982) prouva que
l’ensemble des appariements stables est exactement égale à l’ensemble des allocations du coeur, donc il n’y a pas de
perte de généralité à se concentrer sur les déviations par paires plutôt que par groupe.
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(1974) prouvèrent l’existence d’appariements dans le coeur. Gale proposa également un algorithme

qui trouve systématiquement un appariement dans le coeur, l’algorithme Top Trading Cycles:

Etape 1. Tous les agents pointent vers l’agent occupant initialement leur logement favori. Si

un agent n’a aucun logement favori à l’exception du sien, il pointe vers lui même, formant un

cycle avec lui même. Puisqu’il y aura au moins un cycle, affecter chaque agent de ce cycle au

logement de l’agent vers lequel il pointe. Supprimer l’agent et les logements du cycle de la

procédure.

Etape k. Les agents restants à cette étape pointent vers celui qui occupe leur logement favori

restant. Si un agent n’a pas de logement favori en dehors du sien, il pointe vers lui même.

Puisqu’il y aura au moins un cycle, les agents de celui-ci sont affectés au logement de l’agent

vers lequel ils pointent. Supprimer ces agents et les logements présents dans ce cycle.

Ce processus continue jusqu’à ce que tous les agents sont affectés par un cycle. Roth and Postlewaite

(1977) prouvèrent que l’appariement trouvé par l’algorithme TTC est l’unique allocation du coeur.

On peut également montrer que cet algorithme est non manipulable. En fait, Ma (1995) montra que

c’est le seul algorithme qui retourne un appariement RI, Pareto-efficace et qui est non manipulable

donc si ces trois propriétés sont essentielles, on est forcé d’utiliser un algorithme qui sera équivalent

à TTC38.

En ce qui concerne la dernière classe de problèmes, introduite par Abdulkadirouglu and Sonmez

(1999), elle considère un environnement où des logements doivent être affectés. Certains d’entre eux

ont un occupant initial qui souhaite obtenir un nouveau logement, d’autres logements sont vides et

certains agents n’ont pas de logement initial mais souhaiteraient en obtenir un. Ils définirent un

mécanisme non manipulable, RI et Pareto-efficace appelé You-Request-My-House-I-Get-Your-Turn

(YRMH-IGYT)39:

Etape préliminaire. On définit un classement des agents.
38Dans le premier contexte d’allocation d’objets, on aimerait obtenir un résultat similaire déclarant DS comme

étant le seul mécanisme Pareto-efficace et non manipulable. Malheureusement, des hypothèses supplémentaires sont
nécessaires. Svensson (1999) prouva qu’il était le seul algorithme non manipulable, Pareto-efficace et neutre. Papai
(2000) prouva qu’une généralisation de l’algorithme TTC dans ce contexte sans occupants initiaux est le seul mécanisme
non manipulable par groupe, Pareto-efficace et autre axiome appelé reallocation-proof. Le lecteur intéressé est invité à
se référer aux articles mentionnés pour les définitions formelles des axiomes supplémentaires.

39Qu’on peut traduire par “Vous demandez mon logement j’obtiens votre tour”.
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Etape 1. L’agent classé en premier pointe vers son logement favori. Si ce dernier est vide,

alors il y est affecté, est supprimé de la procédure et on passe à l’étape suivante. Si le logement

est occupé par un occupant initial alors ce dernier pointe également vers son logement favori.

Encore une fois, s’il est vide, alors toute cette chaine est implémentée en affectant les agents

au logement vers lequel ils pointent. S’il est occupé, ce processus de pointage continu jusqu’à:

i) qu’il atteigne un logement vide ou ii) qu’il cycle. Dans les deux cas, la chaine, ou le cycle,

formée est implémentée en affectant les agents au logement vers lequel ils pointent, ces derniers

sont supprimés et on passe à l’étape suivante.

Etape k. Elle est similaire à l’Etape 1 mais en utilisant uniquement les agents et logements

restants à cette étape.

Ce processus continue jusqu’à ce que tous les agents reçoivent une affectation. On peut le voir comme

une généralisation des algorithmes TTC et de DS. En effet, s’il n’y a que des logements occupés

et aucun agent sans logement initial, on revient à l’algorithme TTC. S’il n’y a que des logements

vides et des agents sans logement initial, on revient à DS. Sonmez and Unver (2010) ont caractérisé

l’algorithme YRMH-IGYT comme étant le seul mécanisme Pareto-efficace, RI, non manipulable

ainsi que deux axiomes supplémentaires: neutralité faible et consistance. Dans ce contexte avec

des occupants initiaux et des logements vides, un autre algorithme, identifié pour la première fois

par Guillen and Kesten (2012) pour l’allocation des étudiants aux logements de campus au MIT

peut être utilisé: c’est une modification de l’algorithme AD. Des priorités sont définies pour chaque

logement avec la seule contrainte étant que son occupant initial, s’il y en a un, doit être classé

premier. L’algorithme AD où les agents proposent est ensuite utilisé pour affecter ces derniers aux

logements. Par construction, comme chaque occupant initial est classé premier dans son logement, il

est assuré d’obtenir une affectation qu’il préfère faiblement à son logement initial: ce mécanisme

est donc RI. Comme il s’agit de l’algorithme AD où les agents proposent, on sait qu’il est non

manipulable par ces derniers. Il ne sera en revanche pas Pareto-efficace si on utilise uniquement les

préférences des agents pour évaluer ce critère, comme mentionné dans la section précédente.
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Cette thèse: étude du problème d’affectation des enseignants en France et d’un

nouveau problème d’appariement.

Cette thèse est inspirée par un marché concret d’appariement: celui qui consiste à affecter des

enseignants dans des écoles. De nombreux pays utilisent une procédure centralisée pour affecter leurs

enseignants. La France est l’une d’entre eux tout comme par exemple l’Italie, le Mexique, le Pérou,

la Turquie, l’Uruguay ou encore le Portugal. La question de savoir si oui ou non nous devons utiliser

un système centralisé d’affectation contre un système décentralisé comme pour un marché du travail

classique est importante. Plusieurs pays, comme le Royaume-Uni ou les Etats-Unis, ont choisi par

exemple le deuxième choix. Les syndicats d’enseignants français sont par exemple très attachés au

concept d’école républicaine et au concept de traitement égal. Chaque enseignant doit être traité

identiquement et personne ne doit être discriminé en termes de salaires en dehors des critères de base

comme l’ancienneté par exemple. On pourrait donc voir cette contrainte comme une contrainte de

répugnance mentionnée plus haut. Notre but ici est donc de prendre cette contrainte comme donnée

et non de discuter de la pertinence ou non de celle-ci et du cas d’un système décentralisé. Ce dernier,

même dans la littérature académique, est encore sous un débat important en termes de comparaisons

avec un système centralisé40. Notre analyse peut cependant être vue comme prenant part à ce débat.

En effet, nous montrons que dans un contexte de réallocation, l’algorithme actuellement identifié

dans la littérature académique et utilisé en pratique peut être grandement amélioré. Dans un sens,

nous montrons que les résultats possibles d’un système centralisé, dans ce cadre, sont grandement

sous évalués.

L’affectation des enseignants aux écoles peut être vue comme étant à l’intersection des envi-

ronnements que nous avons décrits dans les sections précédentes. Elle partage des similarités avec

les modèles d’appariement avec deux types: même si les écoles ne sont pas stratégiques, nous

argumentons qu’il y a un sens dans lequel les priorités incorporent des objectifs politiques importants

40Par exemple pour le problème NRMP d’allocation des docteurs, certains avancent qu’un système décentralisé
permettrait de mieux répartir les médecins tout en fournissant des salaires plus élevés. Cette critique est importante et
récurrente. Agarwal (2015) traita cette question en estimant l’impact potentiel d’un passage à un système décentralisé
avec des ajustements de salaires. Il estima que: “A cause de la volonté des résidents en médecine de payer pour
des programmes désirables et des contraintes de capacité de ces derniers, les salaires dans n’importe quel équilibre
compétitif demeureraient, en moyenne, au moins 23 000$ en dessous du produit marginal du travail”, concluant ainsi
que le système centralisé ne causait pas de salaires trop bas. L’utilisation des variations de salaire dans le cadre
de l’affectation des enseignants est encore sous débat au sein de la littérature académique. Les travaux empiriques
existants peuvent même avoir des conclusions opposées. Nous invitons le lecteur à se référer aux discussions et citations
des Chapitres 1 et 2 sur la question.
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et qu’elles ne peuvent être complètement ignorées pour évaluer l’efficacité des affectations obtenues.

Dans un problème de college admission de Gale et Shapley, la prise en compte des préférences des

deux types d’agents en évaluant les propriétés d’efficacité est plus pertinente dans notre contexte.

Afin de la différencier de l’autre notion de Pareto-efficacité introduite dans le problème d’allocation

de logements où les problèmes de choix d’école par exemple, nous l’appellerons 2-Pareto efficacité

(au contraire de la deuxième qui est mentionnée comme 1-Pareto efficacité). Une fois cela défini,

on pourrait penser que, dans ce contexte, utiliser l’algorithme AD où les enseignants proposent

produirait un appariement stable, 2-Pareto efficace et que ce dernier serait non manipulable par

les enseignants. Cette approche serait valide si l’on se concentrait uniquement sur l’affectation

des enseignants néotitulaires qui entrent tout juste dans la profession et recherchent leur toute

première affectation. Cependant, il existe un second type d’enseignants: les titulaires. Ces derniers

enseignent déjà au sein d’un établissement et souhaiteraient une mutation au sein d’un autre. Sur

les données 2013 du mouvement inter-académique utilisées dans cette thèse, ils représentent 63% des

enseignants. Dans ce cas, tout comme dans le cas du problème d’allocation de logements avec des

occupants initiaux, une contrainte importante doit être prise en compte: la rationalité individuelle

(RI). En effet, pour ces enseignants titulaires, nous aimerions leur assurer le droit à rester dans leur

établissement d’origine de sorte que, s’ils obtiennent une nouvelle affectation, elle doit être dans

une école qu’ils préfèrent. Le but est donc d’assurer la contrainte RI tout en prenant en compte

les préférences des enseignants et des écoles. Un premier résultat théorique important est qu’il

est impossible d’assurer en même temps une affectation RI et stable. Si la rationalité individuelle

est une propriété obligatoire alors on peut facilement construire des exemples où il est obligatoire

d’avoir des paires bloquantes ou, dans le sens inverse, où tout appariement stable n’est pas RI.

L’algorithme TTC proposé par Shapley et Scarf dans le cadre de l’allocation de logements avec

occupants initiaux n’est pas très adapté: même s’il assure RI, il ne prend pas du tout en compte le

côté des écoles. Comme évoqué dans la section précédente, une variation de l’algorithme AD a été

identifiée par Guillen and Kesten (2012). Si les enseignants sont classés en haut des priorités de leur

école initiale, la contrainte RI est assurée tout en respectant une certaine notion de stabilité, qui

permet de relativement mieux prendre en compte les classements des écoles. Dans ce contexte, il y a

une différence fondamentale avec la version précédemment décrite dans le problème d’allocation de

logements. Les priorités des écoles sont initialement fixées et données par la loi. Il se peut donc qu’un
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enseignant titulaire initialement affecté à une école n’ait pas la plus haute priorité au sein de celle-ci.

Dans ce cas, la procédure consiste à modifier artificiellement la priorité de l’école en question afin de

classer ce dernier en premier. Une fois cette étape faite, l’algorithme AD enseignants-proposant est

utilisé sur ces priorités modifiées. Nous appelons cette procédure AD∗. C’est celle qui est utilisée

en France actuellement pour affecter les enseignants du second degré néotitulaires et titulaires.

Ses propriétés peuvent être déduites de la première étude de Guillen and Kesten (2012) qui ont

décrit l’affectation des logements de campus au MIT et de Pereyra (2013) qui étudia la version

présentée ici également dans le cas de l’affectation des enseignants. Ce dernier se concentra sur une

définition plus faible de la stabilité où un enseignant ne peut avoir qu’un seul type d’envie envers

un autre: les enseignants préférant une école à leur affectation et qui ont une priorité supérieure

à un enseignant de cette école qui y était initialement affecté et qui n’en a pas bougé. Il appela

ce type d’envie une envie inappropriée41. L’autre type, l’envie justifiée42, est qui celle qui voit

un enseignant préférer une école en ayant une plus haute priorité au sein de celle ci qu’un autre

enseignant qui n’était pas initialement au sein de cette école mais y a été affecté par l’algorithme.

Comme mentionné, il est impossible d’assurer en même temps une allocation RI et stable où les

deux types d’envies mentionnés ne se produisent pas. Pereyra imposa donc que seul le premier

type, les envies inappropriées, peut se produire mais que le deuxième type ne doit pas. Il montra

que l’algorithme AD∗ permet d’obtenir un appariement de ce type et qu’en plus, il minimise le

nombre d’envies inappropriées. Compte and Jehiel (2008), en étudiant également un problème de

réaffectation, montrèrent que si l’on veut interdire les envies justifiées, alors AD∗ mène au plus grand

mouvement possible parmi les algorithmes qui n’ont également pas d’envies justifiées.

En France, le mécanisme AD∗ est celui qui est utilisé pour affecter en même temps les enseignants

titulaires et néotitulaires aux écoles. Dans le Chapitre 2, nous donnons une description précise du

contexte institutionnel et la description formelle de l’algorithme utilisé. Le point important est qu’en

France, cette affectation est faite en deux étapes. La première concerne l’affectation inter-académique

où les enseignants souhaitant changer d’affectation vers une autre académie soumettent une liste de

voeux sur potentiellement les 31 académies françaises. Une fois que cette affectation est décidée en

utilisant l’algorithme AD∗, les enseignants soumettent une liste de voeux sur les écoles cette fois à

41Inappropriate claim.
42justified claim.

22



Introduction

l’intérieur de la région où ils ont été affectés à la première étape43.

La plupart des systèmes éducatifs des pays de l’OCDE font face à deux problèmes majeurs:

1. un manque d’attractivité de la profession enseignante.

2. de fortes inégalités de réussite entre étudiants issus de milieux sociaux différents.

La France ne fait pas exception. Concernant le premier problème, la Direction de l’Evaluation

de la Prospective et de la Performance (2015) fait part, qu’en 2014, 24% des postes ouverts au

concours par le gouvernement sont restés vacants à cause d’un manque de candidats ou à la pauvre

qualité de ceux postulant. De plus, en 2014, seulement 43.9% des enseignants du second degré

demandant une mutation l’ont obtenu via la procédure d’affectation actuelle. En ce qui concerne le

deuxième problème, le rapport Organisation for Economic Co-operation and Development (2014)

mentionna que la France est l’un des pays des l’OCDE où l’origine sociale des élèves a le plus

haut pouvoir prédictif sur leur performance à l’école. L’affectation des enseignants aux écoles

est à l’intersection de ces deux problématiques.44 Tout d’abord, cette affectation détermine la

possibilité des enseignants de pouvoir gérer leur mobilité géographique au sein de leur carrière,

influençant de potentiels candidats dans leur choix de devenir enseignants. Ensuite, elle détermine

également la distribution géographique des enseignants dans les différentes écoles, influençant in fine

les performances des étudiants. En effet, il est par exemple connu (Chetty, Friedman and Rockoff,

2014; Rockoff, 2004) que les enseignants dans leur première année d’expérience ont une capacité

moindre à faire progresser leurs élèves comparé aux enseignants plus expérimentés. La distribution

des enseignants néotitulaires et des titulaires avec uniquement une ou deux années d’expérience

peut donc devenir une variable importante de politique éducative. En France, selon la Direction

de l’Evaluation de la Prospective et de la Performance (2014), les deux académies de Créteil et

Versailles sont celles qui combinent la plus grande part d’élèves affectés à des écoles d’éducation

prioritaire et le plus petit ratio d’enseignants de plus de 50 ans sur ceux de moins de 30 ans. La

procédure utilisée afin de (re)affecter les enseignants est donc un outil clé. Un arbitrage simple

émerge. Afin de satisfaire au mieux les enseignants faisant une demande de mobilité, on pourrait

tenter de construire une procédure d’affectation cherchant à maximiser le nombre de demandes
43Pour une description détaillée, le lecteur intéressé peut se référer au Chapitre 2 de cette thèse.
44Pour des exemples au seins d’autres pays, quelque soit leur procédure d’affectation, le lecteur peut se référer à

l’introduction du Chapitre 2.
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satisfaites. Cependant, en faisant cela, on pourrait créer d’importants départs au sein des académies

défavorisées et, in fine, être forcé d’affecter des enseignants ayant relativement moins d’expérience à

ces académies, impactant négativement la réussite des élèves au sein de celles-ci. En France, chaque

année, environ 50% des demandes de mobilité enseignantes proviennent d’enseignants affectés au

sein des académies de Créteil et Versailles qui sont, comme mentionné, des académies avec des taux

de réussite des élèves relativement plus faibles. Cette thèse, en utilisant la longue tradition d’analyse

et de conception de marchés mentionnée dans les sections précédentes, va montrer que l’algorithme

utilisé pour affecter les enseignants peut être un outil puissant de gestion des problèmes mentionnés.

Chapitre 1: Fondations théoriques et premières évaluations empiriques

Dans un contexte standard d’appariement avec deux types, nous savons que l’algorithme AD

élèves-proposant est l’unique mécanisme stable, 2-Pareto efficace et non manipulable par les élèves.

Dans ce chapitre, nous montrons que dans le contexte de réaffectation des enseignants, l’algorithme

AD∗, identifié dans la littérature et utilisé en France pour l’affectation des enseignants, souffre d’un

point négatif important: il n’est pas 2-Pareto efficace. On peut donc réallouer les enseignants aux

écoles de telle sorte que ces derniers obtiennent une école qu’ils préfèrent et les écoles un enseignant

plus haut classé. Le point marquant est qu’en faisant cela, on peut améliorer l’appariement en

termes d’efficacité mais également en termes de justice puisque l’ensemble des paires bloquantes se

réduit. L’exemple stylisé illustrant cela est simple: un enseignant initialement affecté à une école

très impopulaire mais qui a une priorité très élevée dans toutes les écoles peut, sous AD∗, empêcher

d’autres enseignants d’échanger leurs positions même si cet échange peut être bénéfique pour les

enseignants et les écoles. Ce point a une implication importante pour le cas du marché français: il

peut expliquer les plaintes de la part des enseignants mentionnées ci-dessus concernant le faible taux

de satisfaction des requêtes de mutation. Cette mobilité faible n’est donc pas uniquement due à

une congestion structurelle du marché due à la combinaison de préférences corrélées des enseignants

et du faible nombre de voeux effectués au sein des listes de préférences. Similaire à l’analyse de

Roth (1984) concernant les plaintes des docteurs, notre analyse de ce marché d’appariement nous

permet d’identifier le problème pour le cas des enseignants français comme étant intrinsèque aux

règles d’allocation utilisées via l’algorithme. Le désavantage de AD∗ est qu’il ne permet pas de gérer

correctement les échanges de positions possibles entre enseignants titulaires. En pratique, la situation
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de l’exemple stylisé mentionné est courante. En effet, les enseignants affectés au sein d’établissements

d’éducation prioritaire reçoivent un important bonus de priorités après 5 ans d’enseignement dans ces

établissements. Cela crée effectivement la situation évoquée: des enseignants avec priorités élevées

dans des écoles très peu populaires.

Partant de ce constat, nous nous restreignons à l’analyse d’un modèle simple de réaffectation

pure dit un-pour-un, où il n’y a qu’une seule place par école, ces places sont toutes occupées par des

enseignants titulaires et il n’y a pas d’enseignants néotitulaires ni de places vacantes. Nous identifions

une classe de procédures, les algorithmes Block Exchange (BE), qui, contrairement à AD∗, sont

2-Pareto efficaces et ne peuvent être améliorés en termes d’efficacité et justice. Cependant, parmi

ces algorithmes, un unique est non manipulable par les enseignants: nous l’appelons l’algorithme

Teacher Optimal Block Exchange (TO-BE). Comme pour un cadre de choix d’école, si les écoles

ne sont pas considérées comme des entités importantes dans l’évaluation de l’efficacité et qu’on ne

considère que le rang de l’affectation obtenue par les enseignants; on peut identifier une deuxième

classe d’algorithmes, les algorithmes 1-Sided Block Exchange. Ces derniers améliorent uniquement le

rang obtenu par les enseignants sous la seule contrainte de réduire l’ensemble des paires bloquantes.

Cependant, nous montrons que bien que ces algorithmes tendent à favoriser les enseignants, il n’en

existe aucun qui soit non manipulable par ces derniers. Pour une évaluation théorique plus poussée

des différences entre AD∗ et les algorithmes BE, nous adoptons une approche de marchés larges avec

graphes aléatoires similaire à celle utilisée par Che and Tercieux (2015b). Nous pouvons montrer

que quand il y a beaucoup d’enseignants et d’écoles45:

• Pour tous les algorithmes BE, le pourcentage d’enseignants bougeant de leur école initiale peut

être rendu arbitrairement proche de 100% alors que ce n’est pas le cas sous AD∗.

• Il existe un algorithme BE qui donne à tous les enseignants (resp. écoles) une école (resp.

enseignant) qu’ils classent arbitrairement haut(e).

• L’algorithme TO-BE donne à tous les enseignants une école qu’ils classent arbitrairement

haute mais la proposition inverse pour les écoles n’est pas vraie46.

45Nous renvoyons le lecteur aux résultats correspondants au sein du Chapitre 1 pour les énoncés formels.
46Formellement, pour les deux dernières propriétés, le rang obtenu est de l’ordre o(n) c.a.d. que le ratio du rang sur

la taille du marché tend vers zéro quand la taille du marché tend vers l’infini. Avec un vocabulaire plus statistique,
cela veut dire que le rang obtenu se trouve dans un quantile arbitrairement haut si la taille du marché est suffisante.
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Afin de quantifier les améliorations de ces algorithmes par rapport à AD∗, nous utilisons les données

françaises de l’affectation inter-académique en 2013. Afin de rester proche de notre modèle théorique,

nous nous restreignons uniquement au sous échantillon des enseignants titulaires en supprimant

l’ensemble des néotitulaires, c.a.d. sans affectation initiale, et nous supprimons tous les postes

inoccupées au sein des académies. Les résultats sont frappant. Premièrement, sur 10 579 enseignants

dans notre échantillon, seuls 564 obtiennent une nouvelle affectation sous AD∗. Parmi l’ensemble

des enseignants, 75% d’entre eux ne classent qu’une seule académie en dehors de leur académie

d’affectation. Combiné à la forte corrélation existant dans les préférences, par exemple les académies

du sud ou de l’ouest sont très demandées, on pourrait s’attendre à une faible marge d’amélioration.

Cependant, sous l’algorithme TO-BE, 1573 enseignants obtiennent une nouvelle affectation, plus du

double donc47. Même si ces résultats sont importants pour quantifier les effets théoriques mis en

avant, ils ne fournissent pas, en soi, une analyse contre factuelle du marché français puisque nous

nous sommes restreints à un sous échantillon en supprimant les néotitulaires et les positions vacantes

au sein des académies.

Chapitre 2: Conception pratique et contre factuels

Dans ce chapitre, notre but est de fournir un algorithme pratique et utilisable pour le marché

français en prenant en compte ses spécificités et afin de fournir de vrais résultats contre factuels.

Comme pour Roth and Peranson (1999) quand ils ont conçu la nouvelle procédure NMRP, nous

prenons ici une approche plus d’ingénierie soutenue par nos résultats théoriques du premier chapitre.

Dans une première partie, nous étendons l’algorithme TO-BE à un cadre avec places vacantes

au sein des académies et enseignants néotitulaires, sans affectation initiale. Cette extension a un

parallèle clair avec l’algorithme YRMH-IGYT proposé par Abdulkadirouglu and Sonmez (1999) dans

le contexte d’allocation de logements avec occupants initiaux, agents sans logements et logements

vides. Notre généralisation de TO-BE peut être vue comme une généralisation de l’algorithme

YRMH-IGYT. Nous montrons théoriquement que l’algorithme garde ses bonnes propriétés d’efficacité

et de non manipulabilité.

En utilisant les données françaises complètes sur l’affectation inter-académique de 2013, 3991

47Nous avons calculé le mouvement maximal structurellement possible en imposant uniquement la contrainte de RI.
Il est de l’ordre de 2000 enseignants. Bien entendu, cet algorithme serait manipulable mais nous donne un ordre de
grandeur sur l’amélioration maximale possible.
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enseignants titulaires obtiennent une nouvelle affectation sous AD∗ contre environ 3880 sous notre

généralisation de TO-BE. Pour comprendre cette performance moindre sur ces données complètes, il

faut analyser en détails le marché français. Comme évoqué, Créteil et Versailles sont deux académies

très peu attractives et, dans une moindre mesure, une troisième peut être ajoutée: Amiens. Les deux

premières concentrent 48.4% des enseignants titulaires demandant une réaffectation et la dernière,

Amiens, 6.2%. Donc ces trois académies concentrent à elles trois plus de la moitié des demandes de

mobilité. Ces académies attirent peu d’enseignants, notamment titulaires et tendent à concentrer

une grande proportion d’élèves en difficulté. Dans un contexte sans aucune place vacante, comme

dans le Chapitre 1, une très grande proportion d’enseignants au sein de ces trois académies restaient

à leur allocation initiale sous AD∗ ou TO-BE car peut d’enseignants titulaires sont prêts à échanger

leurs postes avec eux. Avec des places vides, ces enseignants ont la possibilité de bouger. Cependant,

l’algorithme TO-BE, qui prend en compte le rang obtenu par les écoles, ne les autorise pas à partir

sans être remplacés par un enseignant avec une priorité plus élevée. En particulier, on ne peut

affecter un néotitulaire pour les remplacer alors que AD∗ autorise ce genre de remplacements. De

par la taille de ces trois académies, cet effet négatif en termes de mouvement pour TO-BE compense

le fait qu’il permet plus d’échanges d’enseignants entre des académies plus populaires que AD∗,

amenant in fine à moins de mouvement total. En retenant plus d’enseignants titulaires dans ces trois

académies désavantagées, l’effet mécanique de TO-BE est d’y augmenter l’expérience des enseignants

affectés comparé à AD∗ puisque ce dernier les remplace principalement par des néotitulaires. Cet

effet peut être vu comme bénéfique pour les élèves au sein de ces régions. Comme mentionné, il

existe un arbitrage entre satisfaire les requêtes de mobilité des enseignants et diminuer les inégalités

d’affectation des enseignants expérimentés. Cependant, retenir trop d’enseignants au sein de ces

académies peut ne pas être un objectif désirable du point de vue du décideur politique. Motivés par

cette idée, nous proposons de relâcher la contrainte de l’algorithme TO-BE en imposant seulement

que certains enseignants dans certaines académies (appelées académies cibles) doivent être remplacés

par des enseignants à priorité plus élevée. Cela permet plus de flexibilité dans la conception de

l’algorithme afin d’avoir une meilleure adéquation avec les différents objectifs politiques. En variant

le nombre d’enseignants et d’académies cibles, on peut aller de l’algorithme TO-BE originel à celui

YRMH-IGYT.

En testant différents scénarios de contre factuels avec nos données, nous montrons par exemple
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qu’on peut augmenter la mobilité des enseignants titulaires de 44.9% comparé à AD∗ tout en

maintenant la même sortie dans les trois académies désavantagées de Créteil, Versailles et Amiens48.

L’augmentation de mobilité dans les autres académies est de 79.2%. Cela permet d’améliorer

la proportion d’enseignants relativement plus expérimentés pour les trois régions désavantagées,

réduisant les inégalités d’affectation. Nous fournissons plusieurs résultats selon les scénarios adoptés

pour montrer la flexibilité de notre approche qui peut amener à une augmentation, stagnation ou

diminution des sorties au sein des trois académies désavantagées.

De la même façon que Roth (1984), nous explorons les effets de la présence de couples d’enseignants

dans un problème de réaffectation. Tout comme dans le cadre standard d’appariement avec deux

types, un certain nombre de résultats d’impossibilité émergent. Si les couples sont initialement

affectés au sein de la même académie, veulent uniquement finir affectés dans une académie identique

et qu’il n’y a pas d’enseignants seuls (ne faisant pas parti d’un couple), alors on peut définir un

algorithme 2-Pareto efficace, RI et non manipulable qui s’exécute en temps polynomial. Cependant,

si l’une des hypothèses est relâchée, on perd l’existence d’un mécanisme non manipulable. Nous

montrons également que dans le cadre d’un marché avec couples et enseignants seuls, le problème de

trouver un appariement RI différent de l’allocation initiale est NP-difficile.

Enfin, nous explorons un modèle alternatif de réaffectation des enseignants afin de mieux contrôler

le taux de mobilité au sein des académies. Plutôt que de s’appuyer sur un classement complet

des enseignants pour ses priorités, chaque académie à un objectif plus simple, comme par exemple

décroitre le nombre de “jeunes”enseignants qui y sont affectés. Dans un premier modèle très

simple avec uniquement des enseignants “jeunes”et “vieux”, nous exhibons une classe d’algorithmes,

les algorithmes Type Exchange (TE), qui permettent de trouver les appariements qui respectent

les objectifs des académies et qui ne peuvent pas être améliorés en termes de préférences des

enseignants par un autre appariement respectant également les objectifs des académies. Cette

approche alternative offre des pistes intéressantes pour de futures recherches.

48Pour les néotitulaires, des différences existent. N’ayant pas d’affectation initiale, il se peut qu’il finissent non
affectés. Pour empêcher cela, leurs listes de préférences sont complétées pour contenir (presque) toutes les académies.
On peut dès lors compter le nombre de ces enseignants affectées à un voeu qui leur a été ajouté ou encore regarder la
distribution des rangs des voeux obtenus. Le lecteur est invité à se référer au Chapitre 2 pour les résultats obtenus.
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Chapitre 3: un nouveau cadre d’appariement

Ce chapitre explore une nouvelle classe de problèmes d’appariement. Il a été inspiré par

l’interdépendance qui peut exister entre l’allocation des enseignants aux écoles et celle des élèves

aux écoles. Enseignants et élèves vont tout deux être affectés au même ensemble d’écoles. Pour

qu’un enseignant puisse définir ses préférences sur les écoles, leurs caractéristiques comme la position

géographique, leur budget ou leur infrastructures sont prises en compte mais ces préférences peuvent

aussi être influencées par les types d’élèves qui seront affectés à ces écoles. L’idée inverse pour les

étudiants est également vraie: ils peuvent également prendre en compte la qualité des enseignants

affectés à leur école potentielle. En prenant une approche plus abstraite que la seule application

des enseignants et élèves, on définit un modèle d’appariement où deux types d’individus doivent

être affectés à un ensemble commun d’objets. Chaque individu d’un type a des préférences sur

les paires d’objets et d’individus de l’autre type auxquelles il peut être affecté. Ce modèle est à

l’intersection d’un modèle classique d’appariement avec deux types où deux ensembles d’agents, par

exemple hommes et femmes, doivent être appariés ensemble; et un modèle d’allocation de logement

où ces paires d’agents doivent également être affectées à des objets, par exemple des logements.

Dans ce chapitre, nous utilisons les terminologies hommes, femmes et logements pour souligner cette

intersection. En effet, dans leur article fondateur, Gale and Shapley (1962) utilisèrent la terminologie

hommes et femmes pour les appariements avec deux types. Shapley and Scarf (1974) utilisèrent la

terminologie logements pour les objets dans leur problème de réallocation de logements. Le problème

est donc d’affecter au sein de chaque logement, un homme et une femme. Une application possible est

l’affectation de managers et travailleurs à des projets au sein d’une organisation, une administration

publique par exemple.

En suivant les questions traditionnelles de la littérature sur les problèmes d’appariement, on

peut se demander si une généralisation du concept d’appariement stable existe dans ce contexte ?

La stabilité requiert qu’une fois les couples d’hommes et de femmes sont affectés à leur logement, il

n’existe aucun homme (resp. femme) qui préfèrerait inviter une autre femme (resp. homme) dans

son logement actuel de façon à ce que les deux préfèrent strictement cette situation à leurs paires

logement-partenaire qui leurs ont été affectées. Sans surprise, nous fournissons un contre exemple où

un tel matching stable peut ne pas exister. Cependant, en réfléchissant au problème, la notion de

stabilité mentionnée permet à n’importe quel agent de “prendre à son partenaire”le logement qui lui
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est affecté tout en demandant à un autre partenaire de le rejoindre. Dans beaucoup d’applications,

cela n’est pas toujours possible pour tout type d’agent. Dans le cas des managers, travailleurs et

projets, il n’est pas possible pour un travailleur de renvoyer son manager, seul ce dernier peut le faire

avec un travailleur. Il y a donc un sens dans lequel il existe une structure de propriété sur les projets.

Dans notre cadre plus abstrait, nous nous referons aux projets en utilisant le terme “logements”.

Nous introduisons donc une structure de propriété qui donne pour chaque affectation d’un homme

et d’une femme à un logement, le “propriétaire”du logement. Nous pouvons ensuite définir une

notion de stabilité par rapport à une structure de propriété qui impose que seuls les propriétaires

peuvent demander à un autre agent de les rejoindre dans le logement qui leur est affecté. Pour une

structure de propriété arbitraire, on peut facilement montrer qu’un appariement stable par rapport

à cette structure peut ne pas exister. Cependant, nous montrons qu’ils peuvent exister pour des

structures naturelles: celles qui donnent toujours la propriété d’un logement à un agent du même

type, c.a.d. toujours une femme ou toujours un homme. Nous les appelons les structures de propriété

pour un type49. La preuve se base sur l’existence d’appariements stables dans un contexte standard

d’appariement avec deux types comme montré par Gale and Shapley (1962). Cependant, nous

montrons que la structure de nos appariements stables diffère. En effet, on peut définir une notion

de coeur par rapport à une structure de propriété: un groupe d’agents peut essayer de réallouer leurs

affectations entre eux pour tous préférer cette réaffection mais ils doivent inclure les propriétaires des

logements qu’ils utilisent pour cette réaffectation. Dans un cadre standard d’appariement avec deux

types, les appariements stables sont équivalents aux appariements du coeur. Dans notre contexte

avec des structures de propriété à un type, les appariements Pareto-efficaces et stables peuvent être

disjoints, impliquant que le coeur peut être vide.

Afin d’explorer les liens de cette nouvelle classe de problèmes d’appariement avec la classe des

problèmes d’allocation de logements définie auparavant, nous introduisons une affectation initiale des

agents aux logements. On peut alors définir une notion de coeur dans ce contexte similaire à celle,

déjà mentionnée ci-dessus, par Roth and Postlewaite (1977). La principale différence réside dans le

fait que les groupes d’agents tentant de dévier ne peuvent pas échanger les logements qui leurs sont

affectés mais uniquement utiliser leurs logements initiaux. Pour une allocation initiale qui affecte

les logements aux agents du même type, c.a.d. toujours femmes ou toujours hommes, alors nous

49One sided ownership structures.
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pouvons également montrer que cette notion de coeur peut être vide. Cependant, de façon similaire

au résultat précédent, on peut montrer qu’on peut toujours trouver un appariement qui n’est pas

bloqué par des groupes de deux agents, composés d’un homme et d’une femme. Contrairement à la

notion de coeur précédente, on peut trouver un appariement Pareto-efficace qui ne peut pas être

bloqué par une coalition formée d’un homme et d’une femme.

Ce qui ressort de cette analyse est que malgré de nombreux résultats d’impossibilité, les structures

de propriétés pour un type semblent être celles qui permettent toujours l’existence minimale de

l’absence de paires bloquantes, que cela soit dans un contexte similaire à l’appariement avec deux

types, où dans un contexte plus proche du marché de logements avec une allocation initiale. Si

l’absence de blocage par paires est la condition minimale pour un système pour perdurer, alors ce

résultat peut justifier pourquoi, en pratique, nous observons principalement de telles structures de

propriétés. Les notions de coeur, contrairement au cadre standard, peuvent être vides. Cependant,

le contexte de marché de logement avec une allocation initiale permet, contrairement au premier

contexte plus proche de l’appariement avec deux types, de concilier l’absence de bloquage par des

paires d’agents avec la Pareto-efficacité.
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General Introduction

Over the past 20 years, matching has been a growing field in economics, culminating with the

award of the 2012 Nobel Memorial Prize in Economic Sciences to Alvin Roth and Lloyd Shapley.

An important determinant of its success is the existence of a strong link between the theory and its

applications, which led to the adoption of several successful policies. This thesis aims at following

this tradition in motivating its market design analysis with the assignment of teachers to schools

with an emphasis on the French system. In the first chapter, our goal is to develop a theoretical

framework to study the class of problems related to reassignment, to which teacher assignment

belongs. This framework allows us to identify an important class of mechanisms that can be used

in such setting, and to make theoretical predictions and preliminary empirical assessments of their

possible improvements. In the second chapter, we rely on the theoretical findings from the previous

analysis to practically redesign the French assignment procedure,50 taking into account its specificities

such as the problem of regional inequality and its established policy objectives. We provide a set of

possible designs depending on different policy goals, and we validate them through the simulation of

counterfactual scenarios. Finally, given the interdependence between the problem of teachers’ and

students’ assignment to schools, in the last chapter we theoretically explore a new hybrid matching

model where two sets of agents have to be matched to a common set of objects.

In this introduction, we start with a review of the matching literature where we focus on the two

types of matching models that are relevant for this thesis, and we illustrate them with some policy

designs that have been practically implemented over the years. Finally, we introduce the analysis

done in the three chapters of this thesis while highlighting its connections to the literature.

Matching: an overview

Why do we need matching ?

There are many different definitions of what economics is about. The French economist Edmond

Malinvaud gave the following one:51

50In what follows, we will indifferently use mechanisn, procedure or algorithm.
51“L’économie est la science qui étudie comment des ressources rares sont employées pour la satisfaction des

besoins des hommes vivant en société. Elle s’intéresse d’une part aux opérations essentielles que sont la production, la
distribution et la consommation des biens, d’autre part aux institutions et aux activités ayant pour objet de faciliter ces
opérations.”(Leçons de théorie microéconomique, Dunod, 4th edition, 1982)
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Economics is the science that studies how scarce resources are employed to satisfy

th e need s of human beings living in society. It is interested, on the one hand, in the

essential operations, which are production, distribution and consumption of goods and,

on the other hand, in the institutions and activities, which goal it is to facilitate such

operations.

This definition highlights two crucial points. First, that an important part of economics is interested

in the distribution of scarce resources. The question is to decide how to allocate a good when there

are several agents who want it, knowing that in the end only one of them will be able to use it.

Economics thus studies the way to solve such conflict of preferences and the congestion that arises

from them. The second point is the focus on the institutions that are in charge of the distribution

of resources. In the course of History, an important one emerged: the market. The latter allows

individuals to exchange goods and services to match their needs. Markets can take many forms.

For instance, people can exchange their scarce resources through barter. However, most markets

extensively studied by economists take the form of exchanges of goods against money through a

system of prices. To solve the congestion problem, prices adjust: if there are more agents demanding

a good than copies available, then the price increases and vice versa. Economists started to focus on

markets regulated by prices, and evaluated their properties. Malinvaud, wrote in the same text: 52

In its double explanatory and normative research, our science attributed a central

role to prices that govern exchanges of goods between agents. Such prices reflect for

individuals, more or less precisely, the social scarcity of the goods that one buys or sells.

Economists have thus identified the central role of prices in governing exchanges, but it is important

to recall that there are other ways to regulate markets. Let us take a step back and ask for some

specific kind of resources: can we and do we want to use prices as a mean to allocate them? For

example, many patients with a kidney disease need a transplant and there are more patients than

available kidneys. This is a typical congestion problem, raising the question of how to allocate a

limited amount of resources, here kidneys, to agents who need it, knowing that there are more agents

than available kidneys. One possible answer is to define a price for kidneys. This is what Iran chose

52“Dans sa double recherche explicative et normative, notre science a été amenée à attribuer un rôle central aux
prix qui président aux échanges de biens entre agents. Ces prix reflètent pour les individus, de manière plus ou moins
exacte, la rareté sociale des produits qu’il achète et qu’il vend.”, (Leçons de théorie microéconomique, Dunod, 4th
edition, 1982)
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in 1988, by having donors paid to give their kidneys. This possibility was also discussed for the US

context by Becker and Elias (2007) ), who estimated a potential equilibrium price for kidneys taking

into account the statistical value of life, the risk of death, the quality of life and the value of time.53

Most countries however prohibit the use of monetary transfers to allocate organs. As mentioned in

Roth (2007), Article 21 of the Council of Europe’s (2002) Additional Protocol to the Convention on

Human Rights and Biomedicine, on Transplantation of Organs and Tissues of Human Origin states:

The human body and its parts shall not, as such, give rise to financial gain

In the U.S, the National Organ Transplant Act of 1984 contains a similar statement. There is a

widespread feeling that money is not appropriate to deal with the exchange of organs. Roth (2007)

called this feeling repugnance. The concept of repugnance is, of course, different across regions

and across time. It can be influenced by many factors such as culture, psychology, religion and so

on. For instance, black market aside, countries differ in their legislation over drug consumption

or prostitution. Another example presented by Roth (2007) is the one of horsemeat consumption,

which is forbidden in California but is commercialized without concerns in many other places. Over

time, transactions that used to be considered repugnant might also cease to be seen as such. Roth

(2007), p.3, mentioned the following well known example:

Lending money for interest was once widely repugnant, and no longer is, (with the

important exception that Islamic law is commonly interpreted as prohibiting it).

The use of prices to solve congestion problems may also be directly at odds with the policy objective

that drives the allocation motive. For example, free public education is considered in many countries

as a fundamental right and an important policy objective, given the externalities it can bring.

Therefore, in a case where many applicants would like to be assigned to a popular school, increasing

tuition fees is rarely considered as a potential policy tool to solve the congestion, since it would

exclude applicants from lower income families who cannot afford to pay more. Another common

example is the one of social housing. Since the goal of social housing is to allow poorer families to

live in places where the market price de facto excludes them, an adjustment through prices would

be directly in contradiction with the policy objective. The motivation behind such goal is that social

53Earlier papers discussed this possibility for organs from cadavers, the interested reader may refer to the cited
papers for more details.
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diversity creates positive externalities that benefit the society as a whole, and should therefore be

encouraged. 54

It is important to debate whether some transactions should or not be considered as repugnant.

For instance, Leider and Roth (2010) ) surveyed a representative sample of Americans to identify

opinions about the potential introduction of a market with prices for kidneys. In our teacher

assignment application, as we describe later, deciding whether to use wages to solve for congestion

in the regional assignment is an important policy debate. However, as mentioned in Roth (2007),

some economists have taken the repugnance of monetary transactions in some markets as a given

constraint, abstracting from the reasons motivating it. Once one accepts the existence of such

constraint, one has to find alternative means of solving the congestion problem i.e. to design the

market. This fundamental consideration constitutes the main motivation of matching economists:

developing theories and practical solutions to solve congestion problems and to achieve policy goals

for markets where the use of monetary transfers is not allowed. The theories and solutions developed

are intrinsically linked to the specific markets they aim to design. However, the practical problems

encountered in several markets can belong to the same class, and thus the solutions developed for

this class can all be applied. The goal of allocating students to schools is fundamentally different

from the one of assigning kidneys to patients, which is in turn different from assigning social housing.

All of these problems have therefore seen their own solutions emerge. As this thesis will show,

the problem of (re)assigning teachers to schools is conceptually different from the one of assigning

students to schools. It will share similarities between the latter problem and the one of reassigning

social housing between tenants. In the following section, we review important results in the literature

focusing on the two classes of the assignment of students and the one of social housing.55

Two-sided matching markets

The problem of assigning students to colleges, known as the college adminission problem, has

been introduced by the seminal article of Gale and Shapley (1962). The problem is simple: students

54It is important to highlight that some economic schools of thought, in the tradition of the Chicago School, would
argue that the distortion or the no-use of prices would be a mistake that would distort economic efficiency. According
to this thinking, a more relevant policy would be to allocate grants to the families. As we will mention, we will put
aside and not enter into this debate on the use or not of price adjustments.

55Because of this thesis focus, we voluntarily omit an important literature concerning kidney exchange problems
that has important policy implications. A key difference is that incentives are relatively less of a concern concerning
reports of patient characteristics. The interested reader can easily find references. An excellent handbook overview is
Sonmez and Unver (2013). For a short presentation, one can also refer to Ashlagi and Roth (2012).
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have to be assigned to colleges, each college having a limited number of seats. Each student has

a preference order over the colleges and each college has a preference order over the students.

The authors assume that the preferences are strict so that a student (resp. a college) cannot be

indifferent between two colleges (resp. students). Let us look at the abstract class of problems we

are facing: there are two sides, students and colleges, which have preferences over each other. They

start unassigned and would like to be matched together. For a policy maker, the question is to

decide how to use the information contained in the preferences of each side to decide an appropriate

matching. To do so, one has to establish what desirable properties a matching should have. A

first very intuitive requirement, that economists refer to as individual rationality or participation

constraint, is that if a student (resp. a college) prefers to stay unmatched than being matched to

a certain college (resp. student), then one should not match them together. Among economists,

another widely used requirement is the one of Pareto- optimality. A matching is Pareto-optimal

(or Pareto-efficient, or sometimes efficient for short) if one cannot reassign students to colleges

such that all students and colleges are at least indifferent and some of them strictly prefer their

new assignment.56 While Pareto-efficiency is an appealing requirement, there exist many different

matchings that are Pareto-efficient and some of them might not be very desirable. Given the latter,

Gale and Shapley proposed an additional requirement, which they called stability. A matching is

stable if it is individually rational and if there is no pair of student and college which is not matched

together where it would prefer to be. If such pair exists, it is called a blocking pair. Therefore,

a stable matching is an individually rational matching with no blocking pairs.57 This intuitive

requirement can be interpreted in two ways:

• From a normative point of view, it can be seen as a criterion of justice, or fairness.58 Indeed, a

non-stable matching will have a student who has been denied entry at a college that he prefers

and where he is preferred over one of the students accepted. The former student will thus have

a justified-envy towards the one that took a spot for which he was less preferred than him.

• From a positive point of view, a non-stable matching cannot be sustainable on the long term.

Indeed, if a student and a school prefer to be matched together rather than their current

56In this setting with strict preferences, being indifferent means that one keeps the same assignment.
57One can actually prove that any stable matching must be Pareto-efficient according to the aforementioned

definition.
58Stable matchings are also referred to as fair matchings.
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situation, then the college will find a way to expel one of its least preferred students to create

a free spot for his preferred one. Roth (1991) studied seven different assignment markets for

new physicians and surgeons in the United Kingdom, and showed that stable matches were

still in use while most of the unstable ones were quickly abandoned.

Having defined what a stable matching is, the question that naturally arises is whether it is always

possible to find one, no matter the form of preferences expressed by students and colleges. Gale and

Shapley provided an elegant proof of its existence, and introduced a practical procedure for finding

it. They proposed an algorithm, now called the Gale-Shapley algorithm or the Deferred-Acceptance

(DA) algorithm, which returns a stable matching for each possible set of preferences reported. It can

be described as follows:

Preliminary step. The policy maker chooses which side, students or colleges, is the proposing

side. In what follows, we will assume that students propose.59

Step 1. Each student applies to his first ranked college and colleges tentatively accept all the

students applying to them. If a college receives more applicants than its available seats, it only

accepts the best ranked ones up to its capacity and rejects the others.

Step k. All the students rejected at Step k − 1 apply to their next favorite college in the

preference list. Colleges consider all the students tentatively accepted in the previous steps

and the new applicants, and if a college has more applicants than its capacity, it again selects

the top ranked ones and rejects the others.60

The process continues until there are no rejections anymore. The matching defined in the last step

becomes the final one. Since there are a finite number of colleges and students and at each step at

least one student applies to his next ranked college, this algorithm stops after a finite number of steps.

Since at each step, a student is rejected only if a preferred one applies to the college, the resulting

matching can easily be proved to be stable. Another remarkable property is that this algorithm is

“fast”: if there are n students and m colleges, it requires at most n×m steps. In computer science,

and more precisely in complexity theory, this type of algorithms is referred to as polynomial, since
59One just has to change students into schools in the following to obtain the other version. If colleges propose, we

consider, in what follows, that students have a “capacity of one ”since they can only be matched with one college. At
each step, a college with q seats will propose to its q best ranked students who have not rejected it yet.

60Note that student accepted at a previous step can still be rejected at this step. That is why the acceptance
decision is tentative and will only be definitive at the final step of the algorithm.
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its execution time is a polynomial function of the size of its inputs, i.e. the length of the preferences

of students and colleges. Given that we are dealing with the design of real markets, having practical

and efficient algorithms is an important requirement for their policy applications.61 In their article,

Gale and Shapley also proved the following important property: if students are the proposing side,

then the obtained stable matching is, among all the possible stable matchings, the most preferred

one for students and the least preferred one for colleges. It is therefore called the Student Optimal

Stable Matching. This means that one cannot find a stable matching that all the students weakly

prefer (and some strictly) to the one found by the algorithm under which they propose. The result

is symmetric if colleges are the proposing side, so that the resulting matching is the College Optimal

Stable Matching. This property creates a trade-off in choosing which side to favor.

In the eighties, an important literature developed to study stable matchings, the DA algorithm

and their properties. Our goal here is not to give an exhaustive list of all the results, for which we

refer the reader to the excellent textbook of Roth and Sotomayor (1990) that formally exposes them.

Rather, we will focus on one important aspect: incentives. Inspired by a solid tradition of game

theory in economics, Roth (1982) focused on the incentive properties of the DA algorithm, asking

whether it is possible for any student or college to misreport his preferences in order to obtain a

better match than the one he would get while being truthful. He finds the following result:

Roth (1982), Theorem 3. There exists no procedure leading to a stable matching for which

truth telling is a dominant strategy.

The concept of dominant strategy is standard in game theory and in this case it requires that, no

matter what the other agents report, one cannot have a strictly better match by misreporting his

preferences. This result thus implies that the DA algorithm can be manipulated. A procedure that

does not suffer from incentives to manipulate is called strategy-proof. However, Roth (1982) also

finds a more encouraging result:

Roth (1982), Theorem 5. If students propose, the Deferred-Acceptance mechanism is

strategy-proof for the students.62

61The matching literature is also important in computer science and was initiated by Donald Knuth. There are, for
instance, numerous results in complexity theory related to matching. An increasing amount of works intersects both
fields. Chapter 2 will have a result related to complexity theory.

62The symmetric version for colleges is trickier. In the case where each college only has one seat, called the
one-to-one setting, the symmetric result trivially holds since there is no conceptual difference between students and
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Since the first Theorem states that the algorithm is not strategy-proof overall and the second one

states that it is for students, then in a DA where students propose, colleges will have an incentive to

manipulate. A stronger version of Theorem 5 was independently proved by Dubins and Freedman

(1981): no group of students can jointly misreport their preferences such that they all obtain a

strictly better match.63 This result is encouraging since, in practice, secondary education colleges

are mostly non-strategic entities: their “preferences”are determined by law in the form of a list

of criteria. Consequently, strategy-proofness is a relevant concept only from the student side. To

make this distinction, the literature referred to them as schools rather than colleges and called

their preferences priorities. Strategy-proofness has become an important property for mechanism

design among economists and game theorists, opposing them to the literature in computer science

or operation research, where this feature is not considered as central.

Roth (1984) provided the first analysis of a practical matching market: the one that allocates

medical interns and residents to hospitals in the U.S. This market falls in the same class of matching

problems analyzed by Gale and Shapley. Here there are also two-sides, interns and hospitals, that

have preferences over each other, are initially unassigned and who need to be matched together.

After describing the institutional and historical characteristics of the market, including its issues

and the criticism it faced, he provided a description of the algorithm adopted in 1953, the National

Intern Matching Program (NIMP) algorithm, and analyzed its properties. The latter turned out to

be equivalent to a DA hospital-proposing algorithm. Given the aforementioned results, he noted

several implications:

• The resulting matching is the least preferred stable matching for interns. This could explain

why over the years there have been some complaints from the latter, which claimed that the

algorithm “unfairly favors hospitals at the expense of students ”.

• The NIMP algorithm is not strategy-proof for interns, creating possible manipulation issues.

Based on these results, the natural policy recommendation that arises is to switch towards a DA

doctor-proposing algorithm. However, Roth (1982) reported the existence of a practical concern

about the distribution of interns and residents within hospitals. Some hospitals, mostly in rural

schools. However, Roth (1985) showed that in a many-to-one setting where colleges have more than one seat, the
symmetric result for the college-proposing DA does not hold. The main technical difference lies in the fact that now, a
college has to compare sets of assigned students using its preferences that rank only individual students.

63In the literature, this notion is referred to as group strategy-proofness.
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areas, are under-demanded by doctors, and switching to an alternative algorithm favoring the doctor

side may contribute to worsen the problem. Motivated by this concern, he studied the issue under

the two possible DA mechanisms, and proved the following important result, usually referred to as

the Rural Hospital Theorem:

Roth (1984a), Theorem 9. When all preferences are strict, the set of hospital positions

filled is the same at every stable outcome, as is the set of doctors who are assigned positions.

This has an important implication: the problem of regional inequality in the number of doctors

assigned to hospitals cannot be overcome by switching to a different stable matching, and if one

believes that stability is an essential property of the assignment algorithm, then the solution to

this problem needs to be found elsewhere.64 More importantly, it implies that switching to the DA

doctor-proposing algorithm will not worsen the inequality in the distribution of doctors across rural

and urban hospitals.

Another important practical concern that he mentioned is the presence of couples of doctors

requesting an assignment. This introduces the novelty of correlated preferences among individuals,

who wish to be matched close to each other. Conceptually, this problem was new, since a couple can

be considered as a unique entity having preferences over pairs of possible assignments, representing

the assignment of the two members. Having introduced this, one can redefine the concept of stability

as follows: a couple blocks if its members can be re-matched to two positions that they jointly prefer

and if the hospitals receiving them prefer this outcome over their current match. Concerned with

this practical consideration, he proved the following seminal theorem:

Roth (1984a), Theorem 10. In a market in which some agents are couples, the set of stable

outcomes may be empty.

This theorem had an important impact on the literature. Many future works, both in economics and

computer science, studied the properties and possibilities of matching markets in the presence of

couples. Since the Chapter 2 of this thesis already introduces the literature on couples, we will not go

into the details here. However, we recommend to the interested reader the excellent interdisciplinary

64Later on, Roth (1986) proved a stronger version: hospitals that do not fill all their seats under some stable
matching will be matched to the exact same candidates under all stable matchings. So one cannot change the number
or identity of doctors matched to underdemanded hospitals but can only influence the identity of matched doctors in
hospitals filling all their positions.

40



Introduction

survey of Biró and Klijn (2013), which describes two important results in this context: First, proving

the existence of a stable matching becomes computationally “hard”(Ronn, 1990).65 Second, whenever

a stable matching exists, there is no strategy-proof mechanism that can generate it (Biró and Klijn,

2013).

In the light of Roth’s analysis on the couple’s problem, the Board of Directors of the National

Resident Matching Program (NRMP)66 decided in 1995 to redesign the allocation program. Roth

and Peranson (1999) described the final algorithm, designed using the previously existing theories

and some engineering approach to deal with practical concerns and constraints of this specific market.

An important quote from the paper, p.749, is the following:

The present paper then, in addition to presenting some new results, is intended to

take a step in the direction of an engineering literature as well, by describing how those

facts were learned and how they impacted design decisions.

One of the important practical constraints was, as mentioned, the existence of couples. However,

the final algorithm, inspired by matching theory, seemed to perform well in practice, despite the

theoretical concerns. For instance, the existence of a stable matching with couples seemed not to be

an issue in practice. This empirical observation, together with other similar examples, motivated

the development of new theoretical research. Kojima, Pathak and Roth (2013) built a large market

model to show that the existence of a stable matching under the NMRP algorithm, even with couples,

is highly probable in large markets. Ashlagi, Braverman and Hassidim (2011), in a different large

market setting, also showed that a weaker version of stability exists with high probability, even with

couples. Moreover, they showed that the new algorithm they proposed gives agents good incentives,

in the large, to report truthfully their preferences.67

Another important application of the two-sided market class of problems is the one of school

choice procedures to assign students to schools. Abdulkadiroglu and Sonmez (2003) described
65In terms of complexity theory, the problem belongs to the class of NP-hard problems.
66The new name given to the previously called NIMP.
67The use of large markets has become more and more important in the matching literature. Starting with the

seminal work of Immorlica and Mahdian (2005) and Kojima and Pathak (2008) who showed that, with a specific large
market structure, the colleges do not have any incentive to misreport their rankings, even under the student-proposing
DA algorithm. Later on, additional models of large markets have been developed. Abdulkadiroglu, Che and Yasuda
(2015b) and Azevedo and Leshno (2016) provided a continuum model to prove that there is a unique stable matching
in the large. Lee (2014) used a random graph approach to show that both students and schools can obtain their top
quantile partners if preferences are independant and uniformly distributed. Recently, Che and Tercieux (2015b) or Che
and Tercieux (2015a) used the same random graph approach to prove important results related to the comparison of
Pareto-efficient and stable mechanisms.
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a widely used algorithm in this context, called the Boston mechanism, that was used in Boston,

Columbus, Minneapolis and Seattle. They showed that this mechanism had a serious drawback: it

was not strategy-proof for students, creating incentives for them to misreport their preferences. The

authors recommended the use of the student proposing DA mechanism to solve this issue. As we

mentioned above, there is one conceptual difference between this problem and the standard college

admission setting: schools are not strategic entities and their preferences are rather considered

as a priority system. Consequently, when one considers Pareto-efficiency as a requirement for a

matching, only students are considered welfare-relevant agents, and a matching is efficient if one

cannot reassign students such that they would obtain schools that they weakly prefer, and some

strictly.68 This relaxation of the Pareto-efficiency definition has an important implication: stable

matchings are not always Pareto-efficient anymore. In some cases of stable matchings, one could

reassign students to make them better-off while, at the same time, creating blocking pairs. Therefore,

in designing school choice procedures one may have to choose between Pareto-efficiency and stability.

Abdulkadiroglu and Sonmez (2003) proposed a Pareto-efficient strategy-proof mechanism, inspired

by the house allocation problem that we will describe below, and called the Top Trading Cycles

(TTC) algorithm. It works as follows:

Step 1. Let all the students point to their first ranked school (if a student finds them all

unacceptable then leave her unmatched and remove her from the process). Let all the schools

point to their first ranked student. Using the pointing previously defined, there will be a

cycle,69 i.e. a student pointing to a school that points to another students until the pointing

comes back to the first students. Assign the students in this cycle to the school they are

pointing to. Remove these students and decrease the capacity of the schools involved in the

exchange by one. If a school ends up with a null capacity, then remove it from the process.

Step k. Let all the remaining students point to their favorite school among those that still

have positive capacity. Let each school point to its highest ranked student among the ones

remaining. A new cycle will be generated. Assign the students in this cycle to the school they

are pointing to and decrease by one the capacity of the schools concerned. Remove the schools
68Note the difference with the previous definition: now we only require students to be better-off and not students

and schools.
69It is a standard graph property: every graph with nodes all having a unique outgoing edge admits at least one

cycle. There might be several cycles but those will be disjoints, i.e. they will include different nodes, so that the order
in which one will implement them will not affect the final outcome of the algorithm.
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reaching null capacity and move to the next step.

The process continues until all the students are assigned. The authors proved that this algorithm is

strategy-proof for the students and Pareto-efficient, but it is not stable. Policy makers designing

school choice procedures are thus left with two candidate algorithms: the DA algorithm if one cares

about stability, and the TTC algorithm if one cares about Pareto-efficiency. Abdulkadiroglu et al.

(2005) advocated for implementing one of these two propositions to replace the Boston mechanism

that was not strategy-proof. In addition, Abdulkadirouglu et al. (2006) extensively studied the

Boston mechanism from an empirical perspective, and highlighted that parents were well aware of

the potential gains from manipulating the procedure by misreporting their true preferences. The

Boston Public School guide of 2004 was for instance giving clear recommendations in this direction:

For a better chance of your “first choice”school: consider choosing less popular schools.

Ask Family Resource Center staff for information on “underchosen”schools.

The authors showed that in the reported preferences of families there was indeed a clear discontinuous

drop in popular schools ranked second in the list. This discontinuity revealed the existence of

manipulations, since ranking a popular school second under the used mechanism was not a good

strategy, given that it will probably be full after the first step thus creating the risk to miss

opportunities in other schools. Family understood this and strategically preferred not to rank

popular schools in second place. This has an important implication for the evaluation of this

mechanism: one cannot use family reported preferences to evaluate the performance of the procedure,

since stated preferences are unlikely to be the true ones. The board claimed that the algorithm

was successful since it was assignig 90% of families to their first ranked school, but this statement

was flawed since for many families the first ranked school was probably not the truly preferred

one but rather the best strategically. The final argument that convinced policy makers to redesign

the procedure was that most of the families who were not strategic and reported their preferences

truthfully were hurt by the algorithm and risked not to be assigned to any school. Moreover, these

families were likely to be low income ones with less access to information on how to “game”the

system. Adopting a strategy-proof mechanism was therefore presented by policy makers as a way to

level the playing field between families, helping to decrease inequality. This first impactful analysis

done by matching economists fostered numerous policy recommendations and a tremendous amount

of additional research, which we will not detail here. Many cities such as Boston, New York City,
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Chicago, Denver and Washington DC, among others, adopted the DA students proposing algorithm.

New Orleans initially adopted the TTC algorithm but recently moved to DA. In France, Hiller and

Tercieux (2014) showed that the currently used Affelnet procedure to assign students to high schools

is in fact a school-proposing DA algorithm.

House allocation problems

A second important class of problems deals with the allocation of objects. Contrary to the

two-sided market setting, here only one side has preferences while the other is considered as an

object to be allocated that does not possess any priorities or preferences. The most widely used

application of this class is public housing assignment. Three types of problems arise:

1. House allocation with no tenants.

2. House allocation with tenants.

3. House allocation with existing tenants.70

The first one, introduced by Hylland and Zeckhauser (1979), studies the most basic allocation

problem: how to assign a finite number of goods to agents having preferences over them. There can

be several copies of the same good but the number has to be finite. Pareto-efficiency is a natural

requirement for this kind of allocation, implying that one cannot reassign objects such that all the

agents (weakly) prefer the new allocation. A standard mechanism used in this literature is the Serial

Dictatorship (SD) mechanism, which is very intuitive and simple:

Preliminary Step. Fix an ordering of the agents.

Step 1. The first ranked agent chooses his favorite object and obtains it. They are both

removed from the market (if there are several copies of the object, only one copy is deleted).

Step k. The k-th ordered agent chooses his favorite object among those remaining and obtains

it. They are both removed from the market.71

The process continues until all the agents picked an object. This mechanism is strategy-proof so

the agents do not have an incentive to lie on their reported preferences. Obviously, the choice of
70Also referred to as housing market.
71In the case there is no remaining object, or those remaining are not acceptable for the agent, just do not allocate

any object to this agent.
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the order is crucial and higher ranked agents have a clear advantage. In the case of public housing

assignment, seniority could be a suitable criterion to determine the priority order: the agent who

has been waiting the longest picks first, and so on. If there is no defined criterion to discriminate,

one can randomly pick the ordering of the agents to ensure a relative “fairness ”of the process.

The mechanism is then called Random Serial Dictatorship (RSD). In doing so, one can then study

probabilistic properties of the algorithm, the problem becomes a probabilistic assignment where one

has to set probability lotteries over the possible allocations. If agents have cardinal utility values on

top of their ordinal rankings, i.e. they attach a numerical value to each object, they can evaluate

probabilistic assignments using the expected utility criterion. Many research focused on probabilistic

assignments. For instance, Abdulkadiroglu and Sonmez (1998) showed that that the RSD and the

TTC are equivalent when owners are picked randomly. Bogomolnaia and Moulin (2001) introduced

an ex ante notion of efficiency, ordinal efficiency and proposed an algorithm, the Probabilistic

Serial, , to characterize all the probabilistic mechanisms leading to ordinally efficient probabilistic

assignments.72 The SD mechanism is simple and easy to implement, and it has been reported in

many practical allocation designs. For example, many universities use it for undergraduate housing

allocation as is the case for Carnegie-Mellon, Duke, Harvard, Northwestern, and Pennsylvania

(Abdulkadirouglu and Sonmez, 1999).

Shapley and Scarf (1974) introduced the second type of models where a group of tenants would

like to exchange their current house.73 Here, tenants have an initial right over their house and can

keep it in the case they are not satisfied with the new assignment. This constraint is again called

Individual Rationality (IR)): if a tenant obtains a new house, he must prefer it to his initial one for

the movement to take place.74 This requirement is therefore added to the one of Pareto-efficiency.

Furthermore, given the presence of an initial allocation of tenants to houses, one may also require a

72Our goal is not to survey the complete and rich literature of probabilistic assignments. Hylland and Zeckhauser
(1979) proposed a market approach, the Competitive Equilibrium with Equal Income where each agent is endowed with
a fake budget and where prices allow to buy probability shares. Budish et al. (2013) extended this approach to design
more complex constrained probabilistic assignments where, for instance, group of objects can have upper and lower
assignment quotas.

73Since we are in a matching setting, this is done without any monetary transfer. One can consider the reallocation
of public housing or dorms at universities for instance.

74There is a clear conceptual link between this IR notion and the one in the former two-sided matching context. In
both cases, IR imposes that one must give to each agent, an assignment that he prefers to the one he would get under
the statu quo matching. In two-sided matching, as highlighted, agents start being unassigned so that the statu quo
matching is, for each agent, to stay unassigned. In this new setting, the statu quo matching is defined by the initial
allocation of the houses. That is also why IR can also be referred to as participation constraint: if one gives an agent a
worse assignment than his initial one, the latter will initially choose not to participate in the process.
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stronger property than Pareto-efficiency called the Core. A matching is a core matching if no group

of agents can exchange with each other their initial housing assignment and be better-off than under

the algorithm proposed matching.75 If instead one uses a mechanism returning non-core matchings,

then some group of agents would prefer not to join it and organize their own exchanges. We say that

such a group is blocking the matching or also that he deviates. Shapley and Scarf (1974) proved the

existence of core matchings and Gale proposed an algorithm that always returns a core matching,

the Top Trading Cycles algorithm:

Step 1. All agents point to the agent owning their favorite house. If an agent does not prefer

any house over his own, he points to himself forming a (self) cycle. Since there will be at least

one cycle, implement it in assigning agents to the house of the agent they are pointing to.

Remove the agents and houses involved in the exchange.

Step k. The remaining agents point to the one owning their favorite remaining house. If an

agent does not prefer any house over his own, he points to himself. Since there will be at least

one cycle, implement it in assigning agents to the house of the agent they are pointing to.

Remove the agents and houses involved in the exchange.

The process continues until every agent is matched in a cycle. Roth and Postlewaite (1977) proved

that the matching found by the TTC algorithm is the unique core matching. Additionally, the

TTC algorithm is strategy-proof and Ma (1995) proved that it is the only algorithm that is IR,

Pareto-efficient and strategy-proof at the same time. Therefore, if one cares about these three

properties above all, he must use an algorithm equivalent to TTC. 76

Finally, the last model was introduced by Abdulkadirouglu and Sonmez (1999). They considered

a setting where houses need to be assigned. Some of them are initially owned by a tenant while

others are empty, and there are some initially unassigned agents looking for a house. They defined

75One can also define a core definition in the previous setting of two-sided market. In that case, the deviating group
of agents exchanges their assigned houses rather than, as here, their initial ones since they do not have any. In this
context, one has to view this notion as the generalization of the notion of blocking pairs to group of agents. Roth
(1982) proved that stable matchings coincide exactly with core matchings.

76In the context of the allocation of objects without tenants, one can hope to obtain a similar result with the SD
mechanism as being the only Pareto-efficient and strategy-proof mechanism. Svensson (1999) proved that SD was the
only strategy-proof, Pareto-efficient and neutral algorithm if the number of objects and agents is the same. Papai
(2000) proved that a generalization of the TTC algorithm, to which SD belongs to, in the general setting, is the only
group-strategy-proof, Pareto-efficient and reallocation-proof mechanism. The interested reader may refer to the papers
for the definitions.
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a strategy-proof and Pareto-efficient mechanism called You-Request-My-House-I-Get-Your-Turn

(YRMH-IGYT):

Preliminary Step. Fix an ordering of all the agents.

Step 1. The first ranked agent points to his favorite house. If it is empty then he is assigned

to it, they are removed and the algorithm moves to the next step. If it is occupied by an initial

tenant, then the latter also points to his favorite house. Once again, if it is empty, then the

chain is implemented; if it is occupied, the process continues until either: i) reaching an empty

house or ii) cycling. In both cases the chain or cycle is implemented and the agents and houses

are removed.

Step k. Same process as in Step 1 but only with the remaining agents and houses.

The process stops once all the agents are assigned. This algorithm can be seen as a generalization of

the TTC and DS algorithms. Indeed, if there are only occupied houses and no agents without initial

allocation, then it is equivalent to TTC. If there are only empty houses and agents without initial

allocation, then it is equivalent to SD. Sonmez and Unver (2010) characterized the YRMH-IGYT

algorithm as the only one being Pareto-efficient, IR, strategy-proof and respecting two additional

axioms: weak neutrality and consistency. In the setting with tenants and possible empty houses,

another algorithm can be used, which was first identified by Guillen and Kesten (2012) for the

assignment of students to campus housing at MIT. One has first to define priorities for each house

over the agents. If a house has an initial tenant, then it should rank him first in its priority list.

Once the priorities are established, one can just use the standard agent proposing DA algorithm

with this priority system. Since every tenant is ranked first in his initial house, he is ensured by

construction to get a weakly better assignment, so that the mechanism is IR. Since it is a DA where

agents propose, it is strategy-proof for the agents. However, as mentioned in the previous section, it

is not going to be Pareto-efficient if one considers only agents as welfare relevant entities.

This thesis: the redesign of the French teacher assignment and a new matching

problem

This thesis is inspired by a practical market: assigning teachers to schools. Many countries chose

to use centralized assignment procedures to assign their teachers. France is one of them but it is also
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the case in Italy, Mexico, Peru, Turkey, Uruguay and Portugal, among others. An important question

to address is whether one should prefer a centralized system of assignment or rather a decentralized

one, as in a standard labor market. Many countries, like the U.K or the U.S for instance, chose the

latter. On the other hand, French teacher unions are very attached to the concept of Republican

School and to the value of equal treatment. They believe that every teacher should be treated the

same way and that one should not discriminate in terms of wages. One could see this concern as

the aforementioned repugnance constraint. Our goal is to take this constraint as given and not to

discuss the relative performance of centralized versus decentralized systems, even though this debate

is still very present in the literature.77 Our analysis can however contribute to the discussion since

we show that, in the reassignment context, the algorithm currently identified in the literature can be

greatly improved. So, in a sense, we show that the potential outcomes of centralized assignment

procedures were so far underestimated.

The assignment of teachers to schools can be seen as the intersection of the two standard

frameworks that we described above: the two-sided market models and the housing allocation models.

It shares similarities with the two-sided market models since, even though schools are not strategic

agents, we show that their priorities reflect important policy goals that cannot be completely ignored.

In our context, the college admission problem is thus the most relevant since it takes into account

the preferences of both sides when performing welfare evaluations. To highlight the difference with

the Pareto-efficiency concept in the house allocation setting, we call this notion 2-Pareto efficiency,

which allows us to say that the DA teacher proposing algorithm produces a stable, 2-Pareto efficient

matching and is strategy-proof for the teachers. This algorithm can be directly applied to newly

tenured teachers who are just entering the profession and are looking for a first assignment. However,

in the case of tenured teachers that are currently located in a school and would like to be reassigned,

the additional constraint of individual rationality (IR) emerges, similarly to the house allocation

problem with tenants. Indeed, one would like to grant these teachers the right to stay at their initial

school, so that if they are reassigned it must be to a school they prefer. Our goal is thus to ensure

77For instance, for the NRMP allocation, one could argue that a decentralized system would better allocate doctors
while leading to potential higher wages. It has indeed been an important debate and criticism. Agarwal (2015) treated
this question and estimated the impact of a potential decentralized system on wages. He estimated that “Due to
residents’ willingness to pay for desirable programs and capacity constraints, salaries in any competitive equilibrium
would remain, on average, at least $23,000 below the marginal product of labor.”concluding that the centralized system
was not causing a lowering of wages. There is still an ongoing debate on whether the use of salary changes is a better
tool to incentivize teachers. The existing empirical results can even be contradictory. The reader can refer to the
discussions and citations of the Chapters 1 and 2.
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IR while also taking into account both sides of the market. In our 2013 French dataset used in this

thesis, tenured teachers represent about 63% of the teachers.

A first important change with respect to the previous theoretical literature is that it is impossible

to always ensure both IR and stability. If individual rationality is a compulsory requirement, then

one has to accept the possibility of blocking pairs. In this setting the standard Shapley-Scarf TTC

proposed in the house allocation problem is not very convenient: even if it ensures IR, it completely

omits the schools’ side. As mentioned above, Guillen and Kesten (2012) identified DA as a suitable

mechanism for these types of problems. If teachers are initially ranked at the top of their initial

school, then the algorithm ensures IR and some notion of stability while taking into account schools’

rankings. In our context, there is however a slight difference with respect to the house allocation

version: as in the school choice problem, priorities of schools are initially fixed and usually given

by the law such that a tenured teacher may not have the highest priority in his current school.

In this case, one has to artificially modify the priority of schools in order to rank their currently

assigned teachers first. Once this process is done for all schools, the DA algorithm is run over

the modified priorities. This procedure, which we call the DA∗ mechanism, corresponds to the

mechanism currently used in France to assign teachers. Its properties have been studied in the

literature: Guillen and Kesten (2012) described it in the context of student housing assignment at

MIT and Pereyra (2013) studied the specific case of teacher assignment that interests us. He focused

on a relaxed definition of stability where one can only allow one form of justified envy: the one

directly conflicting with the IR requirement. He allows the existence of teachers that would prefer

to be assigned to a different school where they have higher priority, only if the teacher with lower

priority in that school was initially assigned there and has not moved from it. Such envy is called

an inappropriate claim, in the sense that they are not valid and are disregarded. Conversely, the

justified claims are those consisting of a teacher preferring a school in which he has higher priority

and where the assigned lower priority teacher was not there before. As mentioned above, if we want

to ensure the IR constraint, then we have to accept some blocking pairs. Pereyra required that only

the first type, the ones coming from inappropriate claims, should be allowed. He showed that the

DA∗ algorithm achieves IR with the minimum number of them. Compte and Jehiel (2008) also

studied the reassignment problem and showed that, if one wants to forbid justified claims, then

DA∗ achieves the highest possible movement among the algorithms forbidding justified claims. In
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France, the DA∗ algorithm assigns both newly tenured and tenured teachers at the same time. In

Chapter 2, we give a precise description of the institutional context and of the detailed French

procedure. The important aspect is that this procedure is done in two steps. The first one is the

between-regions assignment, where teachers willing to move to another region in France are asked

to submit a preference list over the 31 administrative areas. Once this assignment is done using

the DA∗ algorithm, teachers are asked to submit a list of schools in the region they were assigned

during the first step.78

France’s education system, as in most OECD countries, faces two problems:

1. a lack of attractiveness of the teaching profession.

2. high inequalities in achievement between students from different social background.

Concerning the first issue, the Direction de l’Evaluation de la Prospective et de la Performance

(2015) mentioned that, in 2014, 24% of the positions opened by the government remained vacant

because of a lack of applicants and the poor quality of those applying. Moreover, in 2014, only 43.9%

of the secondary school teachers asking for a reassignment obtained one under the current procedure.

Concerning the second point, the Organisation for Economic Co-operation and Development (2014)

reports that France is the one of the OECD countries where students’ social background has the

highest predictive power on their performance at school. The assignment of teachers to schools is

at the intersection of these two problems. First, it determines the ability of teachers to manage

their geographic mobility over their career, influencing the attractiveness of the teaching profession.

Second, it determines how teachers are distributed across the different schools, influencing in fine

the achievement of students.79 For instance, it is well known (Chetty, Friedman and Rockoff, 2014;

Rockoff, 2004) that teachers in their first year of experience have lower ability to make their students

progress compared to more experienced ones. Hence, the distribution of newly tenured teachers

and tenured teachers with only one or two years of experience is an important policy question. In

France, according to the Direction de l’Evaluation de la Prospective et de la Performance (2014),

the two regions of Créteil and Versailles have among the highest shares of students enrolled in

deprived schools and the smallest ratio of teachers aged more than 50 over teachers aged less than

30. Here a basic trade-off emerges: one can choose to maximize the number of satisfied teacher
78For precise details, we refer the reader to the Chapter 2 of this thesis.
79For examples in other countries than France, the reader can refer to the introduction of the Chapter 2.
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reassignment requests. However, in doing so, there is a risk of generating important movements of

teachers away from the deprived regions and, in fine, be forced to match less experienced teachers

to these regions, negatively impacting the achievement of students that are already disadvantaged

across many other dimensions. In France, around 50% of the reassignment requests every year

come from teachers assigned to the two regions of Créteil and Versailles, which also have the lowest

performing students. This thesis will show that the algorithm assigning teachers to schools can be a

powerful tool to address these issues, and that the long tradition of market design analysis described

in this introduction can provide insightful solutions to these problems.

Chapter 1: theoretical foundations and first empirical assessments

In the standard two-sided matching setting, we know that the student-proposing DA algorithm

is the unique stable, 2-Pareto-efficient and strategy-proof (for students) mechanism. In this Chapter

we show that, in the context of teacher reassignment, the aforementioned DA∗ mechanism has a

serious drawback: it is not 2-Pareto efficient. One can reassign teachers to schools such that teachers

obtain a school that they prefer and schools obtain teachers that they rank higher. The striking

point is that, in doing so, one can improve the assignment in terms of welfare but also in terms of

fairness since the set of blocking pairs shrinks. It is simple to describe a stylized example: a teacher

initially matched to a very unpopular school who has a high priority in all schools can, under DA∗,

prevent other teachers from exchanging their initial positions, even if such exchange would make

everyone better off. This has a clear practical implication for the French market: it can explain the

recurrent complaints from teachers about the low number of mobility requests satisfied. This low

mobility is not only due to a structural congestion arising from correlated preferences concentrated

in very few highly demanded regions. As in Roth (1984) on the doctors’ complaints, our market

design analysis allows us to identify that part of the low movement problem comes in fact from the

design of the algorithm itself. The drawback of DA∗ is that it does not correctly manages possible

exchanges of positions between tenured teachers. In practice, the situation presented in the stylized

example arises frequently: since teachers assigned to disadvantaged schools receive an important

priority bonus after 5 years of teaching in such schools, this precisely results in highly ranked teachers

located in unpopular schools that was previously described.

Starting from this observation, we restrict ourselves to a simple one-to-one pure reassignment
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problem, where there are only tenured teachers with an initial assignment, and each school has only

one position initially occupied by a teacher. We identify a class of mechanisms, the Block-Exchange

(BE) algorithms that, contrary to DA∗, are 2-Pareto efficient and maximize welfare and fairness.

However, among all these mechanisms, we show that there is a unique one that is strategy-proof

for the teachers: we called it the Teacher Optimal Block Exchange (TO-BE) algorithm. Similarly

to the school choice approach, if one considers that schools are not welfare relevant entities and

only cares about blocking pairs and the ranking that teachers obtain, we identify a second class

of mechanisms, the 1-Sided Block Exchange (1S-BE) algorithms, that only improve the teachers’

rankings under the constraint of shrinking the set of blocking pairs. However, we show that even if

these algorithms tend to favor the teachers, there is no strategy-proof one among them. To better

assess the theoretical differences between DA∗ and BE algorithms, we take a large market approach

similar to Che and Tercieux (2015b) and we show that in presence of many teachers and schools:80

• In all the BE algorithms, the percentage of teachers moving from their initial school is close to

100% while it is not the case under DA∗.

• There is a BE algorithm that gives all teachers and schools a matching that they rank arbitrarily

high.

• The TO-BE algorithm gives all teachers a school that they rank arbitrarily high but the reverse

for the schools is not true.81

To assess the improvements of the identified algorithms over DA∗, we use French data from the

between-regions assignment of 2013. To stay close to our theoretical framework, we restrict the

data to the subsample of the tenured teachers by deleting all newly tenured teachers who do not

have any initial assignment and all the available empty positions in the regions. The results are

striking. First, over the 10 579 teachers in our sample, only 564 move from their initial assignment

under DA∗ and among all the teachers, 75% of them rank only one region in addition to their initial

one. If we combine this fact with the high correlation among preferences, showing for instance

that the regions in the south and in the west are very demanded; one can expect little scope for

80We refer the reader to the corresponding results in Chapter 1 for the formal statements.
81Formally, in the two last claims, the rank obtained is of order o(n) i.e. the ratio of their rank over the size of the

market tends to zero when the size of the market tends to infinity. With a statistical terminology, it means that they
obtain a rank of arbitrarily high quantile if the market is sufficiently large.
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improvement. However, under TO-BE, 1573 teachers would move from their initial region, which is

more than the double.82 Finally, while these numbers are important to highlight the relevance of

our theoretical results, it is important to caveat that they do not provide a counterfactual analysis

for the entire French market, since we omitted newly tenured teachers and empty positions. A more

careful consideration of these aspects is studied in Chapter 2.

Chapter 2: practical design and counter factuals

In this chapter, our goal is to provide a practical algorithm for the French market, taking into

account its specificities and running proper counterfactual scenarios for alternative policies. Similarly

to Roth and Peranson (1999) design of the new NMRP procedure, we take a more engineering

approach backed by our theoretical findings of Chapter 1. In a first part, we extend the TO-BE

algorithm to a setting with empty seats and newly tenured teachers. This extension has a clear

parallel with the YRMH-IGYT algorithm proposed by Abdulkadirouglu and Sonmez (1999) for the

case of tenants, since they also had initially unassigned agents and empty houses. Our generalized

TO-BE can be seen as a generalization of the YRMH-IGYT algorithm, and we show theoretically

that it keeps the desirable properties of efficiency and strategy-proofness.

From the complete French dataset of between-regions assignment of teachers in 2013, we see that

3991 tenured teachers move from their initial region under DA∗, while only around 3880 would move

under the generalized TO-BE. To understand the lower performance of TO-BE in the complete

market, one has to analyze the market specificities in further detail. As previously mentioned,

Créteil, Versailles and to a lesser extent Amiens are three very unattractive regions. The first two

concentrate 48.4% of the tenured teachers asking for a reassignment while the last one counts 6.2%

of them, so that the three regions account for more than half of the total mobility requests. In

addition of not being attractive for teachers, they also tend to concentrate a high proportion of low

achieving students. In the absence of empty seats, as in the framework of the Chapter 1, a very

high proportion of teachers from these three regions would stay at their initial assignment under

both DA∗ and TO-BE, since very few teachers would prefer to exchange their position with them.

With the availability of empty positions instead, these teachers have more possibilities to leave from

these three regions. However, the TO-BE algorithm, by taking into account the regions’ welfare in
82We calculated that the maximal structural possible movement using only the IR constraint is around 2000 teachers.

Obviously, in practice, such an algorithm would not be strategy-proof.
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addition to the teachers’ one, does not allow one to leave without being replaced by a teacher having

a higher priority. In particular, one cannot assign newly tenured teachers to replace them under

TO-BE, while this is possible under DA∗. Due to the large size of these three regions, this negative

effect of TO-BE compensates for the fact that it allows more exchanges of teachers between more

popular regions, leading to a lower global movement of teachers. By retaining more teachers in these

disadvantaged regions, it also has the mechanical effect of increasing the experience of the teachers

in these regions compared to DA∗, since the latter replace most teachers by newly tenured ones.

This effect is likely to be beneficial for the students of these regions. As mentioned above, there

is a trade-off between satisfying the mobility requests of teachers and decreasing the inequality in

number of experienced teachers between regions. However, retaining too many teachers might not be

a desirable objective for the policy maker. Motivated by this idea, we propose to relax the constraint

of the TO-BE algorithm to allow some teachers in some regions (called targeted regions) to be

replaced by teachers with higher priority. This allows more flexibility in the design of the algorithm

to better match the different objectives of the policy maker. In varying the number of teachers and

targeted regions, one can go from the generalized TO-BE algorithm to the YRMH-IGYT algorithm.

Testing different counterfactual scenarios using our data, we show that one can, for instance,

increase the mobility of tenured teachers by 44.9% compared to DA∗ while keeping the same turnover

in the three deprived regions of Amiens, Créteil and Versailles.83 The increase of mobility in other

regions is 79.2%. It also allows to slightly improve the proportion of experienced teachers in the

three unpopular regions, reducing the assignment inequality. We provide a range of results across

different scenarios to show the flexibility of the approach, which can lead to higher, same or lower

mobility in the three disadvantaged regions.

Following Roth (1984), we further explore the effect of introducing couples of teachers in the

reassignment problem. As in the standard two-sided matching setting, a lot of impossibility results

arise. If couples are initially assigned to the same region, they want to move together to the same

new regions, and there are no single teachers, then one can find a 2-Pareto efficient, individually

rational and strategy-proof mechanism that runs in polynomial time. However, as soon as one of the

hypotheses is relaxed, a strategy-proof mechanism does not anymore exist. We also show that in a

83Since newly tenured teachers do not have any initial allocation, they can end up being unassigned. To avoid it,
the ministry completes the preference lists of these teachers for them to rank (almost) all the regions. One can then
count the number of newly tenured teachers assigned to a region that he did not initially rank or also compare their
rank distribution under each algorithm. For the results, the reader can refer to the dedicated section in Chapter 2.
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context with both couples and singles, the problem of finding an IR matching different from the

initial allocation is NP-hard.

Last, we explore an alternative model of teacher reassignment to better control the turnover rate

in some regions. Rather than relying on a complete priority ranking over the teachers, each region

has a simple objective like, for instance, to decrease the number of “young”teachers. In a first toy

model with only “young”and “old”teachers, we provide an algorithm characterizing the matchings

that respect the regions’ goals and that cannot be improved in terms of teachers’ welfare by another

matching respecting such goals. This alternative approach offers interesting lines for future research.

Chapter 3: a new matching setting

This chapter explores a new matching setting inspired by the interdependence that can exist

between the assignment of teachers to schools and the one of students to schools. Both teachers

and students are matched to the same set of schools. When teachers evaluate their preferences

over schools they consider characteristics such as geographic position, budget, and quality of the

infrastructure, but they are also influenced by the type of students that will be assigned to the

school. The reverse is true for students : they also care, among other things, about the quality of

the teachers that will be assigned to their potential school. We build a matching model abstracting

from the teachers and students’ motivations, where two sets of individuals are assigned to a common

set of objects. An individual has preferences over the objects and over the other individuals he may

be matched to. This model is at the intersection between a standard two-sided matching setting,

where two sets of individuals are matched together, and the housing allocation setting, since the

pairs have also to be assigned to an object. In this chapter, we use the terminology of men, women

and houses to highlight this intersection. Indeed, Gale and Shapley (1962) used the terminology of

men and women to introduce their two-sided matching framework. Later, Shapley and Scarf (1974)

used the term houses to refer to the objects in their housing market problem. The problem is then

to assign to each house a man and a women. One of the possible applications that we have in mind

is to assigned managers and workers together to projects.

Following the traditional questions in the matching literature, one may ask whether a generaliza-

tion of stable matchings always exists in this setting. Stability would require that once couples of

men and women are assigned to houses, there is no man (resp. woman) who would prefer to invite
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another woman (resp. man) in his (resp. her) assigned house and the two would strictly prefer it

to their assigned house-partner pair. Unsurprisingly, we can provide a counter example where no

such stable matching exists. However, when thinking about the problem, this stability notion allows

any agent to take his assigned house from his partner and ask another one to join. However, in

some settings not everyone can do it. In the case of managers, workers and projects, for example,

it is not possible for a worker to dismiss his manager, while the opposite can happen. In a sense,

there is a specific ownership over the projects, which in our abstract case are called houses. We

therefore introduce the notion of ownership structure, which defines a house owner for each matching

of a woman, a man and a house. We then define a notion of stability with respect to the ownership

structure that requires that only owners can ask another agent to join them in their assigned house.

For an arbitrary ownership structure, it can be easily seen that a stable matching can fail to exist.

However, we show that they exist for a type of structure that is commonly observed in practice:

the one that always assign ownership of houses to the same type of agents, i.e. only women or only

men. We call them one-sided ownerships. The proof relies on the existence of stable matchings

in a standard two-sided market setting as proved by Gale and Shapley (1962). However, we show

that the structure of those matchings is different. Indeed, one can also define a core notion with

respect to a given ownership: no group of agents can rematch among each others in houses and

be strictly better-off but they have to include the owners of the houses they exchange. While in

the standard two-sided settings stable matchings are equivalent to core matchings, here we show

that with one-sided ownerships, Pareto-efficient and stable matchings can be disjoints, leading to an

empty core.

To further explore the intersection with the housing market setting, we define an initial allocation

of agents to houses. In this setting, one can define a core similar to the one in Roth and Postlewaite

(1977). The main difference is that agents do not block using their newly assigned houses but rather

with their initial ones. For an initial allocation of houses to agents of the same type, i.e. only women

or only men, we also show that this notion of core can be empty. However, similarly to the result

with one-sided ownerships, we show that one can find an allocation that is not blocked by coalitions

of size two i.e. formed by one man and one woman. However, contrary to the previous notion, one

can find, in this housing market setting, a Pareto-efficient matching not blocked by any coalition of

size two.

56



Introduction

This analysis highlights that, even with several impossibility results, structures of a specific type

(one sided) seem to be a requirement for the existence of a matching that is not blocked by a pair of

agents. If pairwise blocking is a minimal requirement for a system to be sustainable, this result can

provide an explanation about why we rarely observe ownership structures that are not one sided.

Contrary to the standard framework, core notions can be empty. However, in the setting of housing

market with an initial allocation, contrary to the setting closer to the two-sided market one, the

existence of Pareto-efficient matching not blocked by a pair of agents is guaranteed.
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Chapter 1

The Design of Teacher Assignment:

Theory and Evidence 1

1This Chapter is based on a joint work with Olivier Tercieux and Camille Terrier. We are grateful to Francis
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Abstract

The reassignment of teachers to schools is a central issue in education policies. In several countries,

this assignment is managed by a central administration that faces a key constraint: ensuring that

teachers obtain an assignment that they weakly prefer to their current position. The deferred

acceptance mechanism (DA) proposed by Gale and Shapley (1962) fails to satisfy this constraint. As

a solution, a variation on this mechanism has been proposed in the literature and used in practice—for

example, in the assignment of French teachers to schools. We show that this mechanism fails to

be efficient in a strong sense: after such an assignment, it remains possible to reassign teachers in

a way that makes both teachers and schools better-off. In addition, this reassignment increases

fairness by reducing the set of blocking pairs. To address this weakness, we characterize a class

of mechanisms that cannot be improved upon in terms of both efficiency and fairness. Our main

theoretical finding shows that this class contains an essentially unique strategy-proof mechanism.

We refine these results in two ways. First, we consider a random environment in which preferences

and schools’ rankings are drawn randomly from a rich class of distributions and show that when the

market becomes large, our mechanism performs quantitatively better than the modified DA in terms

of utilitarian efficiency and the number of blocking pairs. Second, we use a rich dataset on teachers’

applications for transfers in France to empirically assess the extent of potential gains associated with

the adoption of our mechanisms. These empirical results confirm both the poor performance of the

modified DA mechanism and the significant improvement that our alternative mechanisms deliver in

terms of both efficiency and fairness.

JEL Classification Numbers: C70, D47, D61, D63.

Keywords: Two-sided matching markets, Teacher Assignment, Fairness, Efficiency.
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1.1 Introduction

The reassignment of teachers to schools is a central problem in education policies. The literature

shows that teachers are a key determinant of student achievement (Chetty, Friedman and Rockoff,

2014; Rockoff, 2004). The distribution of teachers across schools can therefore have a major impact

on achievement gaps between students from different ethnic or social backgrounds. Growing concerns

that disadvantaged students may have less access to effective teachers have given rise to policies

intended to better distribute effective teachers across schools.2 However, such policies must be

implemented with caution, as they might have unexpected effects on teachers’ satisfaction and,

ultimately, on the attractiveness of the teaching profession.3 This leaves us with a central question:

how can we design an assignment procedure for teachers that would take into account both sides of

the market: teachers’ preferences and schools’ demands?

In many countries, the labor market for teachers is highly regulated by a central administration,

and the assignment of teachers to schools is often managed centrally.4 This is the case, for example,

in France, Italy (Barbieri, Cipollone and Sestito, 2007), Mexico (Pereyra, 2013), Turkey (Dur and

Kesten, 2014), Uruguay (Vegas, Urquiola and Cerdàn-Infantes, 2006) and Portugal. In such systems,

teachers submit ranked lists of preferences over schools, and each school has a ranking over teachers.

The criteria used to rank teachers are diverse, ranging from teachers’ performance to standardized

tests, teachers’ experience and geographical distance from a partner.5 The teacher assignment

problem is similar to the college admission problem, as defined in Gale and Shapley (1962). In the

latter problem, students have to be assigned to colleges and a matching mechanism is a mapping from

both students’ preferences and schools’ rankings over students6 into possible assignments of students.

Typically, one requires three simple desirable properties of this mechanism. First, the assignment

2Recent initiatives in the U.S. are intended to measure teacher effectiveness and ensure that disadvantaged students
have equal access to effective teachers. These policies (for instance, Race to the Top, the Teacher Incentive Fund, and
the flexibility policy of the Elementary and Secondary Education Act) allow states to waive a number of provisions
in exchange for a commitment to key reform principles. One could also cite “Teach for America,” which recruits
and trains teachers to teach for at least two years in a low-income community. In the U.K., “Teach First” provides
outstanding training for new teachers.

3Two of the most important issues facing the teaching profession are the increasing shortage of qualified teachers
(Corcoran, Evans and Schwab, 1994) and the difficulty of retaining new teachers in the profession (Boyd et al., 2005).

4We take a standard matching without transfers approach. For a discussion on the use of monetary transfers, the
reader can refer to the dedicated part at the end of the introduction.

5Standardized tests are used, for instance, in Turkey and Mexico, whereas teachers’ experience and geographical
distance for partners are used, for instance, in France.

6Criteria used to rank students can also be quite diverse. Typically, they can depend on student characteristics
such as geographic distance from the school, academic performance, and socioeconomic status
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produced should be efficient in the sense that one cannot find alternative assignments whereby all

students and schools would be weakly, and some strictly, better-off.7 Second, the assignment should

be fair ; i.e., there should be no student who is refused by a school while other students with lower

rankings at that school are accepted (otherwise, we use standard terminology and say that this

student and school form a blocking pair). Finally, one requires strategy-proofness on the student

side, i.e., that students have incentives to report their preferences truthfully.8 One of the main

results in the literature is that these three properties, taken together, specify a unique solution: the

deferred acceptance mechanism in which students are proposing (Gale and Shapley, 1962) – DA, for

short. Thus, any other mechanism will violate one of these three properties, and this is certainly an

important reason that this mechanism is extensively used to assign students.9 A first objective of

this paper is to demonstrate that this mechanism – or variations of it – will not perform well at

assigning teachers to schools. In a second step, we identify a unique (new) mechanism that satisfies

a very similar set of desirable properties.

To understand why one cannot simply use the DA mechanism, we note that there is an important

difference between the teacher assignment and college admission problems: when one wants to assign

teachers to schools, many teachers already have a position and are willing to be reassigned. In

practice, tenured teachers have the right to keep their initial position if they wish, and thus, the

administration has to offer them a position that they weakly prefer to the school to which they

are currently assigned. In other words, the assignment of teachers must be individually rational.

While fairness has emerged as an important normative criterion in the matching literature, in (the

realistic) context in which there are tenured teachers willing to be reassigned, all fair matchings

may violate the individual rationality constraint.10 Thus, the prominent mechanism in the college

admission problem (DA) fails to be individually rational. While no mechanism satisfies the three

aforementioned properties together with individual rationality, one can hope to construct mechanisms

that accommodate these properties in the best possible way. To achieve this goal, one approach

7Note that, here, one has to adopt an “as if” approach and assume that schools’ ranking over teachers can be
interpreted as schools’ preferences. The basic idea is that these rankings reflect normative criteria that this “as if”
approach can take into account. A precise discussion of this approach is deferred to the end of the introduction (see
“Two-sided efficiency with priorities”).

8Indeed, generally, students are the only strategic entities, and schools’ orderings are given by law.
9It is used in many real assignment problems, for instance, for the assignment of students to high schools in Boston,

Hong Kong, New Orleans, and New York City.
10For cases with only first-year teachers (without an initially assigned position), the problem is formally equivalent

to a two-sided matching problem as studied extensively since the seminal contribution by Gale and Shapley (1962).
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is to use a variation on the DA mechanism to make it individually rational. Such mechanism has

been identified in the literature and used in practice, for example, in the assignment of teachers

to schools in France or the assignment of on-campus housing at MIT (Guillen and Kesten, 2012).

This mechanism consists of, first, artificially modifying the school’s ordering over teachers, such

that all teachers initially assigned to a school are moved to the top of that school’s ranking. In

a second step, we run the DA mechanism using the modified priorities. While, by construction,

this modified version of DA is individually rational, we show that one loses an important property

of DA: it fails to be efficient, i.e., one can reassign teachers in such a way that both teachers and

schools are better-off (according to the school’s true ranking over teachers).11 In addition, this

Pareto improvement can be achieved while simultaneously improving fairness (i.e., ensuring that

the set of blocking pairs shrinks). Our first goal is therefore to design mechanisms that do not

suffer from the same limitations as this modified version of DA: we say that a matching is two-sided

maximal if (1) it Pareto dominates the initial assignment and (2) cannot be improved upon in terms

of (2i) efficiency and (2ii) fairness. This requirement is actually quite weak, and it is easily shown

that two-sided maximal matchings correspond to assignments that are both Pareto efficient and

individually rational on both sides of the market.12

To characterize two-sided maximal matchings, we provide an algorithm called the block exchange

(BE) algorithm. The idea is simple: if two teachers block one another’s schools, we allow these

teachers to exchange their schools. Obviously, larger exchanges involving many teachers are possible.

We can identify these exchanges by finding cycles in an appropriately defined directed graph. The

outcome of the BE algorithm depends on the order in which we select the cycles. However, irrespective

of how one selects cycles, one obtains a two-sided maximal matching, and conversely, starting from

a two-sided maximal matching, one can find a way to select cycles in the BE algorithm that will

eventually yield this matching. While this result is a useful first step, we obtain a plethora of different

possible mechanisms depending on how we select cycles. However, we show that imposing incentive

properties dramatically shrinks the set of possible mechanisms. Our main theoretical result states

that there is a unique way to select cycles that makes this algorithm strategy-proof. We provide a

11Under (standard) DA, it is well known that one can reassign teachers and make all of them better-off, some
strictly. However, this will be done at the expense of schools given that (standard) DA is in the Core and, hence,
efficient. Here, in stark contrast to standard DA, we show that, under the modified DA, both teachers and schools can
be made better-off.

12In particular, we can dispense with (2ii) in the definition of two-sided maximality.
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mechanism, called the teacher-optimal BE algorithm, which produces two-sided maximal matchings

and is the unique strategy-proof mechanism with this property. Interestingly, this mechanism can be

characterized using a simple modification of the standard top trading cycle (Shapley and Scarf, 1974)

– TTC, for short: in a first step, one modifies teachers’ preferences such that no teacher ranks as

acceptable a school that considers him unacceptable. Once teachers’ preferences have been modified,

we run TTC.

Our characterization of the teacher assignment problem is related to the college admission

problem in two ways. First, we see the above result as the counterpart of the characterization result

of the college admission problem. While DA is the unique mechanism that is efficient, fair and

strategy-proof in the college admission problem, the teacher-optimal BE algorithm is the unique

strategy-proof mechanism that is two-sided maximal (and thus cannot be improved upon in terms

of efficiency or fairness). Second, while, a priori, we did not wish to favor one side of the market –

the BE algorithm treats schools and teachers symmetrically – once we impose incentive constraints,

we ultimately favor the teacher side.13 Thus, imposing strategy-proofness for teachers has an

important cost on the school side. This also shows that the teacher assignment problem has a

similar “structure” to the college admission problem, in which, among the set of all fair mechanisms,

only the student-optimal mechanism is strategy-proof. We show that, among the set of two-sided

maximal mechanisms, only the teacher-optimal mechanism is strategy-proof.

We also provide additional theoretical results in two respects. First, we consider a case in which

only teachers are welfare-relevant entities. In this context, we provide a similar characterization to

that obtained with the BE algorithm. Here again, we identify a large class of mechanisms. However,

while this approach obviously favors teachers, we show – contrary to our main theoretical result

– that no mechanism in this class is strategy-proof.14 Second, we simulate matchings in a large

market approach in which preferences and schools’ rankings are drawn randomly from a rich class

of distributions.15 In this context, we show that when the market becomes large, our mechanisms

13Schools’ preferences are only taken into account by ensuring that schools are not assigned an unacceptable teacher.
14Dur, Gitmez and Yilmaz (2015) independently characterize the same class of mechanisms as we obtain, in which

only teachers are welfare-relevant entities. They consider the allocation given by DA in a school choice environment.
For each school, the authors define a set of teachers who are allowed to form a blocking pair with that school. They
characterize the allocations that are (one-sided) efficient under this constraint and Pareto dominate the DA assignment.
Our class of mechanisms starts from an arbitrary initial assignment, while given their motivation, they are interested
only in the class improving on DA, and thus, they begin from the DA allocation. Our main message concerns the
non-existence of a strategy-proof selection in our class of mechanisms. When starting from an arbitrary exogenous
initial assignment (which excludes starting from the DA allocation), this result is non-trivial.

15These markets can involve a large number of agents. For instance, in France, each year, approximately 65,000
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“perform quantitatively better” than the modified DA in terms of utilitarian efficiency and the

number of blocking pairs. We also identify the cost that the adoption of the unique strategy-proof

mechanism could have in terms of utilitarian outcomes and number of blocking pairs compared to a

first-best approach whereby one could select any two-sided maximal mechanism. Our arguments

build on techniques from random graph theory as in Lee (2014), Che and Tercieux (2015a) and Che

and Tercieux (2015b).

Finally, we use a nationwide labor market to empirically estimate the magnitude of gains and

trade-offs in a real teacher assignment problem. France, like several other countries, has a highly

centralized labor market; the 400,000 teachers in the public sector are civil servants, and hence,

their recruitment, assignment to schools, and salary scale are entirely managed by the central

administration. We use data on the assignment of 10,500 teachers to regions in 2013. Exploiting

the straightforward incentives of the modified version of DA currently employed, we use preferences

reported by teachers to run counterfactuals and quantify the performance of our mechanisms. We

confirm that the modified version of DA (DA∗ for short) can be improved upon in terms of both

welfare (on both sides of the market) and blocking pairs. Of the 49 markets (i.e., disciplines) for

which we ran DA∗, 30 could be simultaneously improved in these two dimensions. Importantly, these

30 fields represent nearly the entire market we are analyzing, as they contain 94.2% of the teachers.

In addition, the gains obtained by our alternative mechanisms are significant in the two dimensions.

Compared to DA∗, the number of teachers moving from their initial assignment is more than doubled

under our mechanisms. Additionally, under our mechanisms, the distribution of ranks of teachers

(over schools they obtain) stochastically dominates that of DA∗. Regarding fairness, the number of

teachers who are not blocking with any school increases by 36%. Finally, the percentage of schools

having all of their positions improved in terms of the priority of the assigned teachers (compared to

the initial assignment) doubles, from 12.7% under DA∗ to 25.6% under our proposed mechanisms.

These figures are essentially the same for the unique strategy-proof mechanism mentioned above,

which makes it particularly appealing and a natural candidate for practical implementation.

Two-sided efficiency. Our notion of efficiency treats both teachers and schools as welfare-

relevant entities (two-sided efficiency). At first glance, this might be surprising, as schools’ rankings

over teachers (hereafter, priorities) are given by law. However, there are clear social objectives

tenured teachers ask for an assignment. In Turkey, 8,850 positions were filled by new teachers in 2009 (Dur and Kesten,
2014).
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motivating the criteria used to define teacher priorities. This makes it relevant to adopt an approach

“as if” schools’ priority rankings were schools’ preferences. For instance, teacher priorities at schools

are primarily determined by their experience, notably in disadvantaged schools, which reflects the

administration’s efforts to assign more-experienced teachers to disadvantaged students.16 If we were

to consider only teachers as welfare-relevant entities, teachers could exchange their positions while

decreasing the number of experienced teachers in disadvantaged schools. From an administrative

perspective, it would be difficult to consider this a Pareto improvement, as disadvantaged students

would be harmed by such a reassignment. Hence, a meaningful requirement is to allow for exchanges

of positions across teachers only when they are not done at the expense of the experience of teachers

in disadvantaged schools. This is exactly what the “as if” approach gives us when we require a

Pareto improvement over the initial assignment. In practice, several other criteria are used to

determine teacher priorities. Again, these may reflect broader social objectives. For instance,

“spousal reunification ” and “children reunification” give a priority bonus to teachers at schools close

to where their partner or children live. Again, one can easily see the social objective motivating these

priorities. In this context, a meaningful requirement is to allow for exchanges of positions across

teachers that are not done at the expense of the experience of teachers in (possibly disadvantaged)

schools except potentially when it can allow a teacher to join his/her family. Here again, this is what

the “as if” approach provides.

Monetary transfers. Our analysis focuses on a centralized reassignment procedure that does

not use any monetary tranfer. A first reason is practical: as mentioned, many countries use such

system. In many of them, including France, the salary scale is publicly fixed and its modification

is limited.17 Second, there is an increasing debate in the literature on the comparison between

centralized systems with no monetary transfers and decentralized ones. Both seem to have pros

and cons and there is still no definitive answer about which one would be more appropriate in

this context. For instance, Agarwal and Somaini (2014) reported that switching to a decentralized,

16It is well known that early career teachers benefit from additional years of experience (Rockoff, 2004). However, it
is important to emphasize that it is not the only factor of students’ achievements and that there is an important debate
on the literature about the value-added of teachers and which characteristics are important for students’ success. We
refer the reader to the survey of Jackson, Rockoff and Staiger (2014) for a discussion about these issues. Here, we
chose a more pragmatic approach in taken as given the priority score system that has been chosen by the ministry.
Any additional characteristic that may be of interests can be accommodated in the design of such scores. The main
message of our paper would remain the same.

17In France, there is also a strong reluctance from teachers’ unions to differentiate salaries based on other criteria
than experience. One can see this constraint as a repugnance constraint on the use of monetary transfers as defined by
Roth (2007).
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market based, system of allocation of interns to hospitals in the U.S would result in a decrease of

the average wage. Concerning the attrition of teachers, Stinebrickner (1998) showed, using U.S

longitudinal surveys, that the first spell in teaching is more responsive to wages than working

conditions. However, Imazeki (2005) and Ondrich, Pas and Yinger (2008) found that large salary

increases are needed to reduce the attrition of teachers. Salaries of public teachers being already an

important part of public expenditures, budget balance is an important constraint so that the use of

salary changes might not be feasible. Conversely, Hanushek, Kain and Rivkin (1999) found, using

panel data in Texas, that teachers’ mobility is more affected by characteristics of the students than

by salaries. In the 2007 report on the Follow-Up Survey in the U.S (Marvel et al., 2007), 38% of

public school teachers who moved from their position rated the opportunity for a better teaching

assignment as very important or extremely important as opposed to only 16.5% rating better salary

or benefits. In France, Prost (2013) found that teachers tend to move from a school with a higher

proportion of less able students, students from minority groups and/or students from economically

disadvantaged backgrounds. Those not working in the region were they were born are also more

likely to move. She found that the salary bonus policy implemented in France to attract teachers

in disadvantaged schools was not enough to retain teachers in these schools. Overall, there is still

an important need for further evidences for both decentralized and centralized systems. Our work

contributes to this debate in showing that the mobility in centralized systems of assignment was

underestimated. Indeed, the main mechanism that has been identified in the literature and used in

practice can be greatly improved.

Related literature. Our theoretical setup in this paper covers two standard models in matching

theory. The first is the college admission problem as defined by Gale and Shapley (1962). In this

context, schools have preferences that are taken into account regarding both efficiency considerations

and fairness issues. Second, our model also embeds the house allocation problem as developed by

Shapley and Scarf (1974). In this framework, individuals own a house and are willing to exchange

their initial assignments. Hence, in this problem, only one side of the market has preferences. Among

the goals in the case is to ensure that all individuals eventually obtain an assignment that they

weakly prefer to their initial assignment. This problem is very similar to ours, but in our context,

we wish to take into account the school side in a way that is similar to the approach in the college

admission problem. While covering important applications, this “mixed ”model has only been
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studied by a small number of authors. Guillen and Kesten (2012) is one of the exceptions and notes

that the modified version of the DA mechanism is used for the allocation of on-campus housing

at MIT. Compte and Jehiel (2008) and Pereyra (2013) provide results on the properties of this

mechanism. They note that fairness and individual rationality are not compatible. They propose a

weakening of the notion of blocking pairs and show that the modified version of DA “maximizes

fairness” under their weakening. By contrast, our work retains the standard definition of blocking

pairs and addresses notions of maximal fairness using the usual definition. More important, our

theoretical and empirical results highlight the high cost that maximizing their notion of fairness can

have in terms of efficiency and the traditional notion of fairness.

Our work is also related to Dur and Unver (2015). They introduce a matching model to study the

“tuition-exchange market” (which includes applications such as tuition exchanges or temporary worker

exchanges). In their environment, agents initially attached to an institution are allowed to spend

some time at another institution. They require that the flow of exports from an institution be equal

to the flow of imports to it (a mechanism satisfying this assumption is said to be balanced). They

show that, in this environment, a unique mechanism is balanced efficient (i.e., Pareto efficient within

mechanisms that are balanced), student group–strategy-proof, acceptable, individually rational, and

respects internal priorities. Their notion of efficiency is, like ours, two-sided, and the mechanism

they characterize is a version of TTC, similar to our teacher-optimal BE. However, our applications

and theirs are quite different. In general, we do not wish to impose any balancedness condition. For

instance, returning to one of our motivations, if a position becomes available in a disadvantaged

school, the designer is likely to be willing to allow an effective teacher to go there, despite that this

may create an imbalance for both the disadvantaged school and the school to which he is initially

matched. More generally, many mechanisms used in practice (including that used in France) allow

teachers to join a school when a position becomes available which suggests that the balancedness

condition is not well suited to our environment.18 More important, the main focus of our paper is

on the conflict between efficiency and fairness. We show that DA∗ can be improved upon in these

two dimensions while our alternative mechanism cannot. This is orthogonal to their main points.

18Dur and Unver (2015) report that some tuition-exchange programs care about balancedness only over a moving
time window (they extend some of their results to this richer environment). So under tuition-exchange programs, some
imbalancedness can be allowed for a short period of time provided that balancedness is (approximately) satisfied over
a longer time span.

68



The Design of Teacher Assignment: Theory and Evidence

1.2 Teacher Assignment to Schools in France

France, like several other countries, has a highly centralized labor market for teachers.19 Since

the 400,000 public school teachers are civil servants, the French Ministry of Education is responsible

for their recruitment, assignment to schools, and salary scale and collects extensive data on these

activities.20 This gives us the opportunity to use a nationwide labor market to compare the

performance of different assignment algorithms.

Prior to assignment, the central administration defines priorities over teachers using a point

system, which takes into account three legal priorities: spousal reunification, disability, and having a

position in a disadvantaged or violent school. Additional teacher characteristics are also accounted

for to compute the score including total seniority in teaching, seniority in the current school, time

away from the spouse and/or children. This score determines schools’ rankings or preferences. In

this section, we will use the terms “priorities” and “preferences” interchangeably (for the motivation

on this terminology, see the end of the introduction). The point system is defined by the central

administration and well known by all teachers wishing to change schools.21

The French Ministry of Education divides French territory into 31 administrative regions, which

are called académies (see the map in Appendix 1.8.1). We will refer to them as regions hereafter.

Since 1999, the matching process has taken place in two successive phases. First, during a region

assignment phase, newly tenured teachers and teachers who wish to move to another region submit

an ordered list of them. A matching mechanism (described in the next section) is used to match

teachers to regions, using priorities defined by the point system. This phase is managed by the

central administration. Then, during the second phase, each region proceeds to the school assignment.

In each region, teachers matched to it after the first phase and teachers who already have a position

in it but wish to change schools within this region report their preferences over the schools in the

region. The same mechanism as in Phase 1 is used to complete the matching using priorities defined

19Italy (Barbieri, Cipollone and Sestito, 2007), Portugal, Mexico (Pereyra, 2013), Turkey (Dur and Kesten, 2014),
and Uruguay (Vegas, Urquiola and Cerdàn-Infantes, 2006)

20Anyone who wishes to become a teacher has to pass a competitive examination, organized once per year by
the Ministry of Education. Those who pass the public-sector exam will become civil servants, and thus, their salary
is completely regulated by a detailed pay scale. Neither schools nor teachers can influence salary or promotions.
All teachers having the same number of years of experience and having passed the same exam earn the same
salary. Further details on the recruitment and assignment process are available on the Matching in Practice website:
http://www.matching-in-practice.eu/matching-practices-of-teachers-to-schools-france/

21An official list of criteria used to compute the point system is available on the government website http:
//cache.media.education.gouv.fr/file/42/84/6/annexeI-493_365846.pdf
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by a similar point system as in Phase 1. The only difference is that teachers are limited in the

number of schools that they can rank during this phase, as discussed in the empirical section (Section

1.5). If a teacher is assigned to new region during Phase 1, then he is considered as not having any

initial position during the Phase 2. So it is possible that he ends up being unassigned at the end of

this phase. In that case, he becomes a substitute teacher affected to a geographical area inside the

region that tries, whenever possible, to cover the area of his first ranked school. During the year,

the teacher will replace some absent colleagues in the area whenever it is necessary. After this year,

he is forced to participate again at least to the school assignment phase inside this region.

In 2013, just over 25,000 teachers applied in Phase 1, and approximately 65,000 submitted a

list to be assigned a new school within a region (i.e., in Phase 2). These figures include all newly

tenured teachers, who have never been assigned a position, and tenured teachers who request a

transfer. In practice, the assignment process is decomposed into as many markets as subjects

taught. There are 107 different subjects taught, which have different numbers of teachers. Some are

large such as Sport (approximately 2,500 teachers), Contemporary Literature (approximately 2,000

teachers), Mathematics (approximately 2,000 teachers), while others are smaller such as Thermal

Engineering (approximately 60 teachers) or Beauticians (approximately 15 teachers), with a wide

range of subjects in between. As a teacher teaches only one subject, and positions are specific to a

subject, the markets can be considered independent from one subject to another.22

A lack of mobility has emerged as a concern for the Ministry. In 2013, of the 17,000 tenured

teachers requesting a new assignment, only 40.9% were satisfied. Similarly, 29% of the teachers

asking to move closer to their family did not obtain a new assignment, many of them for several

consecutive years. Due to the important lack of mobility, the Mediator of the French Ministry of

Education (2015), responsible for resolving conflicts between the Ministry and teachers, receives

approximately 700 complaints from primary and secondary school teachers every year related to

assignment issues. He states that “the assignment algorithm opens doors to difficult personal

situations that can, eventually, tarnish the quality and the investment of human resources". An

additional concern has been raised by the Mediator: every year, many teachers who do not obtain

their desired region decide to resign or request a year off. This leaves some students without teachers

and regularly requires regions to hire last-minute replacement staff who are not trained to teach. In

22In practice, couples from different fields can submit joint applications, which connects the fields. However, we
eliminated all couples from our sample. Details are provided in Appendix 1.8.8.
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the least attractive schools, labeled “priority education", 30% of the teachers do not have a teaching

certification, versus 7.6% in other schools. From that perspective, one of the objectives of this paper

is to show that using an alternative mechanism can significantly reduce the current lack of mobility.

1.3 Basic Definitions and Motivation

Consider a problem in which a finite set of teachers T has to be assigned to a finite set S of

schools. For now, we restrict our attention to a one-to-one setting, i.e., an environment in which

each school has a single seat (see Appendix 1.8.7 for the treatment of the many-to-one case). Each

teacher t has a strict preference relation �t over the set of schools and being unmatched (being

unmatched is denoted by ∅). Similarly, each school s has a strict preference relation �s over teachers

and being unmatched.23 For any teacher t, we write s �t s′ if and only if s �t s′ or s = s′. For

any school s, we define �s in a similar way. For simplicity, we assume that all teachers and schools

prefer to be matched rather than being unmatched. A matching µ is a mapping from T ∪ S into

T ∪ S ∪ {∅} such that (i) for each t ∈ T , µ(t) ∈ S ∪ {∅} and for each s ∈ S, µ(s) ∈ T ∪ {∅} and

(ii) µ(t) = s iff µ(s) = t. That is, a matching simply specifies the school to which each teacher is

assigned or that a teacher is unmatched. It also specifies the teachers assigned to each school, if any.

We will also sometimes use the term assignment instead of matching. Thus far, our environment is

not different from the college admission problem (Gale and Shapley, 1962). However, in a teacher

assignment problem, there is an additional component: teachers have an initial assignment. Let us

denote the corresponding matching by µ0. For now, we assume that µ0(t) 6= ∅ for each teacher t

and µ0(s) 6= ∅ for each school s.24 Hence, initially, all teachers are assigned a school (there is no

incoming flow of teachers) and there is no available seat at schools (there is no outgoing flow of

teachers). We define a teacher allocation problem as a triplet [T, S,�] where �:= (�a)a∈S∪T .

We will be interested in different efficiency and fairness criteria, depending on whether we

regard both teachers and schools or only teachers as welfare-relevant entities. First, we say that a

matching µ is two-sided individually rational (2-IR) if for each teacher t, µ(t) is acceptable to

t, i.e., µ(t) �t µ0(t) and, in addition, for each school s, µ(s) is acceptable to s, i.e., µ(s) �s µ0(s).

Similarly, a matching is one-sided individually rational (1-IR) if each teacher finds his assignment

23Our results easily extend to the case of weak preferences for schools.
24This implies that µ0 defines a bijection from T to S and thus |T | = |S|.
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acceptable. We say that a matching µ 2-Pareto dominates (resp. 1-Pareto dominates) another

matching µ′ if all teachers and schools (resp. teachers) are weakly better-off – and some strictly

better off – under µ than under µ′. A matching is two-sided Pareto-efficient (2-PE) if there is

no other matching that 2-Pareto dominates it. Similarly, we define one-sided Pareto-efficient

(1-PE) matchings as assignments for which no alternative matching exists that 1-Pareto dominates it.

We say that under matching µ, a teacher t has justified envy for teacher t′ if t prefers the assignment

of t′, i.e., µ(t′) =: s, to his own assignment µ(t) and s prefers t to its assignment. Using the standard

terminology from the literature, we say that (t, s) blocks matching µ. A matching µ is stable

if there is no pair (t, s) blocking µ. We will sometimes say that a matching µ dominates another

matching µ′ in terms of stability if the set of blocking pairs of µ is included in that of µ′.

Finally, a matching mechanism is a function ϕ that maps problems into matchings. We abuse

notation and write ϕ(�) for the matching obtained in problem [T, S,�]. We also write ϕt(�) for

the school that teacher t obtains under matching ϕ(�). It is 2-IR/1-IR/1-PE/2-PE/stable if for

each problem, it systematically selects a matching that is 2-IR/1-IR/1-PE/2-PE/stable.25

One of the standard matching mechanisms is deferred acceptance (DA for short), proposed

by Gale and Shapley (1962). Because we discuss a closely related mechanism, we first recall the

definition of DA.

- Step 1. Each teacher t applies to his most preferred school. Each school tentatively accepts

its most preferred teacher among the offers it receives and rejects all other offers.

In general,

- Step k ≥ 1. Each teacher t who was rejected at step k− 1 applies to his most preferred school

among those to which he has not yet applied. Each school tentatively accepts its most favorite

teacher among the new offers in the current step and the applicant tentatively selected from

the previous step (if any), and it rejects all other offers.

The following proposition is well known.

Proposition 1.3.1 (Gale and Shapley, 1962). DA is a stable and 2-PE mechanism.

25We focus on the 2-IR condition since it simply requires that a 2-IR matching must 2-Pareto dominates the initial
allocation. Moreover, we will see in the empirical analysis that such notion better fulfills the policy maker objectives.
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While DA is stable and 2-PE, it fails to be 1-IR (and thus 2-IR). This is unavoidable: in general,

there is a conflict between individual rationality and stability. The basic intuition is that imposing

1-IR on a mechanism yields situations in which some teacher t may be able to keep his initial

assignment µ0(t) =: s while school s may perfectly prefer other teachers to t. These other teachers

may rank s at the top of their preference relation and hence block with school s. We summarize this

discussion in the following observation.26

Proposition 1.3.2. There is no mechanism that is both 1-IR and stable. Hence, DA is not 1-IR.

Thus, there is a fundamental trade-off between 1-IR and stability, and one may wish to find

a mechanism that restores individual rationality while retaining “to the greatest extent possible”

the other desirable properties of DA, such as its stability and its 2-Pareto efficiency. To do so,

one approach – followed by the literature (see, for instance, Pereyra, 2013 or Compte and Jehiel,

2008) and used in practice – consists in modifying artificially the schools’ preferences such that each

teacher t is ranked at the top of the (modified) ranking of the school he is initially assigned to,

namely, µ0(t). Other than this modification, the schools’ preference relations remain unchanged.27

Once this is done, one runs DA as defined above using schools’ modified preferences. We denote the

corresponding mechanism DA∗. By construction, this is a 1-IR mechanism. This mechanism is used

in practice in several situations. For instance, it is used for the assignment of on-campus housing at

MIT (Guillen and Kesten, 2012). It is also used in France for the assignment of teachers to schools.

Specifically, a school-proposing deferred acceptance mechanism is run using the modified priorities

and the reported preferences. Then, Stable Improvement Cycles are executed as defined in Erdil

and Ergin (2008). Using Theorem 1 in Erdil and Ergin (2008), we know that this process yields

to the outcome of the teacher-proposing deferred acceptance mechanism according to the modified

priorities.28 Hence, the mechanism used to assign French teachers to public schools is equivalent to

DA∗.

By construction, this mechanism is 1-IR, hence, by Proposition 1.3.2, we know that it is not
26This is highlighted in Compte and Jehiel (2008) and Pereyra (2013).
27Formally, for each school s, a new preference relation �′s is defined such that µ0(s) �′s t′ for each t′ 6= µ0(s), and

for each t, t′ distinct from the school’s initial assignment µ0(s), we have t �′s t′ if and only if t �s t′.
28In the French system, teachers’ priorities at schools can be coarse. Hence, in practice, the algorithm starts by

breaking ties (using teachers’ birth dates). Once ties are broken, school-proposing deferred acceptance is run using
the modified priorities with no ties and the reported preferences. From this outcome, stable improvement cycles are
run, again using the modified (strict) priorities. Thus, the outcome is equivalent to the teacher-proposing deferred
acceptance with the same tie-breaking rule, which in turn may be Pareto dominated by a teacher-optimal stable
mechanism. Our mechanisms and results can be easily extended to an environment with coarse priorities.
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stable. However, is there a sense in which the violation of stability is minimal? What about efficiency:

Is DA∗ 2-PE? Furthermore, if the answers to those questions are negative, can we find ways to

improve upon this? The following example will illustrate one important disadvantage of DA∗ to

which we will return both in our theoretical analysis and in our empirical assessment.

Example 1. We consider a simple environment with n teachers and n schools with a 1-IR initial

assignment µ0. Let us assume that some teacher t∗ is initially assigned to school s∗ (i.e., µ0(t∗) = s∗)

and is ranked first by all schools. In addition, school s∗ is ranked at the bottom of each teacher’s

preference relation – including t∗; hence t∗ is willing to move. We claim that under these assumptions,

no teacher will move from his initial assignment if we use DA∗ to assign teachers. To see this,

note first that t∗ does not move from his initial assignment. Indeed, because DA∗ is 1-IR, if t∗

were to move, then some teacher t would have to take the seat at school s∗ (or be unmatched), but

since s∗ is the worst school for every teacher (and µ0 is 1-IR), this assignment would violate the

individual rationality condition for teacher t, a contradiction. Note that this implies that under

the DA∗ algorithm, t∗ applies to every school s (but is eventually rejected). Now, to see that no

teacher other than t∗ moves, assume on the contrary that t 6= t∗ is assigned a school s 6= µ0(t). As

mentioned above, at some step of the DA∗ algorithm, t∗ applies to s. Since t∗ is ranked above t in

the preference relation of school s (recall that s 6= µ0(t)), t cannot eventually be matched to school s,

a contradiction.

To recap, under our assumptions, no teacher moves from his initial assignment. Since the initial

assignment can perform very poorly in terms of basic criteria such as stability or 2-Pareto efficiency,

we can easily imagine the existence of alternative matchings that would make both teachers and

schools better-off and hence also shrink the set of blocking pairs.

The driving force in this example is the existence of a teacher ranked at the top of each school’s

ranking and who is initially assigned the worst school. This is, of course, a stylized example, and one

can easily imagine less extreme examples in which a similar phenomenon would occur. The basic

idea is that for DA∗ to perform poorly, it is enough to have one teacher (a single one is enough)

being assigned an unpopular school and who himself has a fairly high ranking for a relatively large

fraction of the schools. Our theoretical analysis and our empirical assessment will give a sense in

which the described phenomenon is far from being a peculiarity.

Remark 1. Contrary to what we have in the example, in practice, there are open seats at schools.
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One may argue that high-priority teachers like t∗ will succeed in obtaining available seats at schools

they desire and, hence, that the above phenomenon would be considerably weakened. However, in

an environment in which teachers’ preferences tend to be similar (i.e., are positively correlated),

there will be competition to access good schools. These good schools have a limited number of seats

available, and one may easily imagine that once these open seats are filled by some of the high-priority

teachers, a similar phenomenon as in the example could occur among the remaining teachers. We

ran simulations in a rich environment (allowing for correlation in teachers’ and schools’ preferences,

available seats, new comers and positive assortment in the initial assignment) that confirm this

intuition. The results are reported in Appendix 1.8.2.

The above example identifies a weakness of DA∗: it can be improved upon in terms of both

efficiency (on both sides) as well as in terms of the set of blocking pairs (i.e., we can shrink its set

of blocking pairs). Thus, we are interested in mechanisms/matchings that do not have this type

of disadvantage. We also wish to retain the elementary property that our mechanism/matching

improves on the initial assignment. This suggests the following definitions.

Definition 1. A matching µ is two-sided maximal if µ is 2-IR29 and there is no other matching

µ′ such that (1) all teachers and schools are weakly better-off and some strictly better-off and (2) the

set of blocking pairs under µ′ is a subset of that under µ.

This notion treats both schools and teachers as welfare-relevant entities. As we argued above,

one may also ignore the school side. In such a case, we obtain the following natural counterpart.

Definition 2. A matching is one-sided maximal if µ is 1-IR and there is no other matching µ′

such that (1) all teachers are weakly better-off and some strictly better-off and (2) the set of blocking

pairs under µ′ is a subset of that under µ.

Consistent with our previous notions, we say that a mechanism is two-sided (resp. one-sided)

maximal if it systematically selects a two-sided (resp. one-sided) maximal matching.

Let us note that if there is a matching µ′ under which all teachers and schools are weakly

better-off and some strictly better-off than under a matching µ, then the set of blocking pairs under

µ′ is a subset of that under µ. Thus, in the definition of two-sided maximality, requirement (2) can

be dropped.30 This yields the following straightforward equivalent definition.
29Recall that the motivation for imposing 2-IR is to ensure that our assignments Pareto-dominate the initial

assignment.
30However, one can easily check that (2) in the definition of one-sided maximality cannot be dropped.
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Proposition 1.3.3. A matching µ is two-sided maximal if and only if µ is 2-IR and 2-PE.

Given Example 1 above, we have the following straightforward proposition.

Proposition 1.3.4. DA∗ is not two-sided maximal and hence not one-sided maximal. (Thus, DA∗

is not 2-PE.)

Given the above weaknesses of DA∗, the obvious goal henceforth is to identify the class of

mechanisms characterizing two-sided and one-sided maximality and to study the properties of those

mechanisms. The aim of the next section is to do so.

1.4 Theoretical Analysis

For each notion of maximality defined above (Definitions 1 and 2), the following two sections

identify a class of mechanisms that characterizes it. Once the characterization results are proved,

we analyze the properties of the mechanisms in that class. While the class of mechanisms can be

very large (as illustrated by Proposition 1.3.3), imposing standard additional conditions reduces

drastically the set of candidate mechanisms. In particular, a striking outcome of this analysis is that,

once the standard strategy-proofness notion is imposed, a unique two-sided maximal mechanism

is shown to survive. In addition, while one may expect that giving more weight to teachers (as

opposed to schools) as in one-sided maximal mechanisms may help in terms of incentive properties,

another conceptually interesting outcome of our analysis is that no one-sided maximal mechanism is

strategy-proof.

1.4.1 Two-sided maximality

In the next section, we define a class of mechanisms that characterizes the set of two-sided

maximal mechanisms. The mechanism will sequentially “clear” cycles of an appropriately constructed

directed graph in the spirit of Gale’s top trading cycle, originally introduced in Shapley and Scarf

(1974) and later studied by Abdulkadiroglu and Sonmez (2003).

1.4.1.1 The Block Exchange Algorithm

The basic idea behind the mechanisms we define is the following: starting from the initial

assignment, if a teacher t blocks with the school initially assigned to t′ and t′ also blocks with the
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school initially assigned to t, then we allow t and t′ to “trade” their initial assignments. This is a

pairwise exchange between t and t′, but one may of course imagine three-way exchanges or even

larger exchanges. Once such an exchange has been made, we obtain a new matching, and we can

again search for possible trades. More precisely, our class of mechanisms is induced by the following

algorithm, named the Block Exchange (BE, for short):

- Step 0 : set µ(0) := µ0.

- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a

directed graph, where for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)

if and only if teacher t blocks µ(k− 1) with school s′. If there is no cycle, then return µ(k− 1)

as the outcome of the algorithm. Otherwise, select a cycle in this directed graph. For each

edge (t, s) −→ (t′, s′) in the cycle, assign teacher t to school s′. Let µ(k) be the matching so

obtained. Go to step k + 1.

It is easy to verify that this algorithm converges in (finite and) polynomial time.31 In the

above description, we do not specify how the algorithm should select the cycle of the directed

graph. Therefore, one may think of the above description as defining a class of mechanisms, where

a mechanism is determined only after we fully specify how to act when confronted with multiple

cycles. One can imagine these selections to be random or dependent on earlier selections. In general,

for each profile of preferences for teachers and schools �, a possible outcome of BE is a matching

that can be obtained by using an appropriate selection of cycles in the above procedure. Hence, we

consider the following correspondence BE : �⇒ µ where BE(�) stands for the set of all possible

outcomes of BE. A selection of the BE algorithm is a mapping ϕ : �7→ µ s.t. ϕ(�) ∈ BE(�).

Obviously, each selection ϕ of BE defines a mechanism.

As mentioned above, our class of mechanisms shares some similarities with Gale’s TTC. However,

there are two important differences. The first, and the most minor, is that a teacher in a node can

point to several nodes and thus, implicitly, to several schools. This is why, contrary to TTC, we have

an issue regarding selection of cycles and why our algorithm does not define a unique mechanism.
31To see that this algorithm converges in a finite number of steps, observe that whenever we carry out a cycle, at

least one teacher is strictly better-off. Hence, in the worst case, one needs (n− 1)n steps for this algorithm to end.
Because finding a cycle in a directed graph can be solved in polynomial time, the algorithm converges in polynomial
time.
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However, as we will see in the next result, this is necessary for our characterization. Second, and

certainly more important, our algorithm takes into account the welfare on both sides of the market.

Indeed, a teacher in a node (t, s) can point to a school in (t′, s′) only if s′ agrees (i.e., s′ prefers t to

its assignment t′). This is what ensures, contrary to TTC, that each time we carry out a cycle, both

teachers and schools become better-off. This has the desirable implication that each time a cycle is

cleared, the set of blocking pairs is shrinked.

The BE algorithm starts from the initial assignment and then improves on it in terms of the

welfare of teachers and schools. More generally, one could start from any matching, obtained by

running another mechanism ϕ. Doing so will guarantee that the (modified) BE algorithm will select

a matching that dominates that of ϕ in terms of the welfare of both teachers and schools. This

modification of the BE algorithm that takes the “composition” of BE and ϕ will be denoted BE◦ϕ.

Given our starting point that DA∗ performs poorly in terms of welfare of teachers and schools, we

will be particularly interested in BE◦DA∗.

The next example illustrates how the BE algorithm works.

Example 2. There are 4 teachers t1, . . . , t4 and 4 schools s1, . . . , s4 with one seat each. The initial

matching µ0 is such that for k = 1, . . . , 4, µ0(tk) = sk. Preferences are the following:

�t1 : s2 s3 s1 s4 �s1 : t4 t2 t1 t3

�t2 : s3 s1 s2 s4 �s2 : t4 t3 t1 t2

�t3 : s1 s2 s3 s4 �s3 : t4 t3 t2 t1

�t4 : s1 s2 s3 s4 �s4 : t4 t1 t2 t3

This example has a similar feature to Example 1: t4 is the best teacher and is matched to the

worst school. Thus, we know that in that case, DA∗ coincides with the initial assignment. We have

six blocking pairs: (t1, s2), (t2, s1), (t3, s2) and (t4, sk) for k = 1, 2, 3. The graph of BE is then the

following:
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• •

• •

(t1, s1) (t2, s2)

(t3, s3) (t4, s4)

The only cycle in this graph is (t1, s1)� (t2, s2), and it can be verified that once implemented,

there are no cycles left in the new matching, and thus, the matching of BE is given by

BE =

 t1 t2 t3 t4

s2 s1 s3 s4


There are now 4 blocking pairs: (t3, s2) and (t4, sk) for k = 1, 2, 3, and teachers t1 and t2 as well as

schools s1 and s2 are better-off.

We now turn to our characterization result.

Theorem 1. Fix a preference profile. The set of possible outcomes of the BE algorithm coincides

with the set of two-sided maximal matchings.

Before proving the above statement, we prove the following simple lemma.

Lemma 1. Assume that µ′ 2-Pareto dominates µ. Starting from µ(0) = µ, there is a collection of

disjoint cycles in the directed graph associated with the BE algorithm that, once carried out, yields

matching µ′.

Proof. Consider the directed graph where teachers and their assignments under µ stand for the

vertices and for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′) if and only

if teacher t is assigned to s′ under µ′. By the definition of matchings, this directed graph has at

least one cycle and cycles are disjoint. Note that because µ′ 2-Pareto dominates µ, in this graph,

(t, s) −→ (t′, s′) if and only if teacher t blocks µ with school s′. Hence, the graph we built is a
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subgraph of the directed graph associated with the BE algorithm starting from µ. By construction,

we have a collection of disjoint cycles in this directed graph that, once carried out, yields matching

µ′, as was to be shown.

We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. If µ is an outcome of BE, then it must be two-sided maximal. Indeed, if

this were not the case, then by the above lemma, there would exist a cycle in the directed graph

associated with the BE algorithm starting from µ, which contradicts our assumption that µ is an

outcome of the BE algorithm. Now, if µ is two-sided maximal, it 2-Pareto dominates the initial

assignment µ0. Hence, appealing again to the above lemma, there is a collection of disjoint cycles in

the directed graph associated with the BE algorithm starting from µ0 that, once carried out, yields

the assignment µ. Clearly, once µ is achieved by the BE algorithm, there are no more cycles in the

associated graph.

While this result provides a simple and computationally easy procedure to find two-sided

maximal matchings, the class of mechanisms defined by this algorithm is huge. Indeed, appealing to

Proposition 1.3.3, this corresponds to the whole class of mechanisms that are both 2-PE and 2-IR.

As we will see, by imposing the standard requirement of strategy-proofness, a unique mechanism

will remain. The next section will state and prove this result and identify this mechanism.

1.4.1.2 Incentives under Block Exchanges

First, recall that a mechanism ϕ is strategy-proof if, for each profile of preferences � and

teacher t, ϕt(�) �t ϕt(�′t,�−t) for any possible report �′t of teacher t.32 The following example

shows that some selections of the BE algorithm are not strategy-proof.

Example 3. Consider an environment with three teachers {t1, t2, t3} and three schools {s1, s2, s3}.

For each i = 1, 2, 3, we assume that teacher ti is initially assigned to school si. Teacher t1’s most

preferred school is s2, and he ranks his initial school s1 second. Teacher t2 ranks s1 first, followed

by s3. Teacher t3 ranks s2 first and his initial assignment s3 second. Finally, we assume that each

teacher is ranked in last position by the school to which he is initially assigned. We obtain the

following graph for the BE algorithm.

32Using standard notation, �−t denotes the vector of preference relations (�t′ )t′ 6=t.
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•

•

•(t1, s1)

(t2, s2)

(t3, s3)

There are two possible cycles that overlap at (t2, s2). Consider a selection of the BE algorithm

that picks cycle (t2, s2)� (t3, s3). In that case, the algorithm ends at the end of step 1, and teacher

t2 is eventually matched to school s3, his second most preferred school. However, if teacher t2 lies

and claims that he ranks s3 below his initial assignment, the directed graph associated with the BE

algorithm has a single cycle (t1, s1)� (t2, s2). In that case, the unique selection of the BE algorithm

assigns t2 to his most preferred school s1. Hence, t2 has a profitable deviation under the selection of

the BE algorithm considered here.

While this example is simple, one important objection for practical market design purposes is that

the manipulation requires that teachers have fairly precise information regarding the preferences in

the market (i.e., of the other teachers and of schools). While this is true for many mechanisms, there

is a sense in which – in some realistic instances – some selections of the BE (or associated) algorithm

can be manipulated without requiring a considerable amount of information on both preferences

in the market and the details of the mechanism. A simple instance of this phenomenon can be

illustrated for BE◦DA∗. Indeed, under this mechanism, a teacher who would initially be assigned to

a popular school that dislikes him can use the following strategy: report his most preferred school

sincerely and then rank the school to which he is initially assigned in second place (even though

this may not match his true preferences). If the teacher does not receive his first choice under DA∗,

he will certainly receive his initial assignment under DA∗. Given that this school is popular and

dislikes him, the teacher is likely to be part of a cycle involving his most preferred school under the

BE algorithm. Hence, at an intuitive level, this mechanism can be manipulated by teachers who

may only have coarse information on preferences in the market.

In the following, we define a mechanism that is a selection of the BE algorithm and is strategy-

proof. More surprisingly, we will prove further in the text that this is the unique selection satisfying

this property. Before providing the definition of the mechanism, we need an additional piece of

notation. Given a matching µ and a set of schools S′ ⊆ S, we let Opp(t, µ, S′) := {s ∈ S′ |t �s µ(s)}
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be the opportunity set of teacher t among schools in S′. Note that for each teacher t, if µ0(t) ∈ S′,

then Opp(t, µ0, S
′) 6= ∅ since µ0(t) ∈ Opp(t, µ0, S

′).

- Step 0 : Set µ(0) = µ0, T (0) := T and S(0) := S.

- Step k ≥ 1 : Given T (k − 1) and S(k − 1), let the teachers in T (k − 1) and their assignments

stand for the vertices of a directed graph, where for each pair of nodes (t, s) and (t′, s′), there

is an edge (t, s) −→ (t′, s′) if and only if teacher t ranks school s′ first in his opportunity

set Opp(t, µ(k − 1), S(k − 1)) = Opp(t, µ0, S(k − 1)). The directed graph so obtained is a

directed graph with out-degree one33 and, as such, has at least one cycle and cycles are pairwise

disjoint. For each edge (t, s) −→ (t′, s′) in a cycle, assign teacher t to school s′. Let µ(k) be

the assignment obtained and T (k) (resp., S(k)) be the set of teachers (resp., schools) who are

not part of any cycle at the current step. If T (k) is empty, then return µ(k) as the outcome of

the algorithm. Otherwise, go to step k + 1.

As will become clear, our mechanism has a tight relationship with the TTC mechanism. Recall

that TTC operates in the same manner as the above mechanism except that the pointing behavior

does not refer to the opportunity set: an edge (t, s) −→ (t′, s′) is added if and only if teacher t ranks

school s′ first within the set of all remaining schools (i.e., at step k, those are the schools in S(k−1)).

We will make use of the following straightforward equivalence result.

Lemma 2. Fix a preference profile �. TO-BE(�) is equal to TTC(�′) where for each teacher t,

the preference relation �′t ranks schools outside his opportunity set Opp(t, µ0, S) below his initial

assignment.

From this simple lemma, we obtain the following proposition.

Theorem 2. TO-BE is strategy-proof and is a selection of the BE algorithm.

Proof. Given that an agent’s report has no impact on his opportunity sets, Lemma 2 above (together

with the well-known fact that TTC is strategy-proof) implies that TO-BE is strategy-proof. Now,

33Since, by construction, if t is not yet eliminated from the algorithm (i.e., he is in T (k − 1)), the school to which
t is initially assigned is also not eliminated. Hence, µ0(t) ∈ S(k − 1). As we have already noted, this implies that
Opp(t, µ0, S(k − 1)) is non-empty. Now, because teachers have strict preferences, there is a unique most preferred
school for t in Opp(t, µ0, S(k − 1)).
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we show that TO-BE is a selection of BE. Appealing to Theorem 1, it is enough to show that

TO-BE is a two-sided maximal mechanism. If this were not to be the case, it would mean that for

some preference profile �, starting from TO-BE(�), there would be a cycle in the directed graph

associated with the BE algorithm. It is easily verified that this cycle would still be present if the

preferences of teachers were to be modified such that any school outside the opportunity set of a

teacher t (i.e., outside Opp(t, µ0, S)) is ranked below his initial assignment. In this modified problem,

by Lemma 2, TO-BE is equivalent to TTC. However, if we carry out the cycle starting from TO-BE,

we obtain a matching that, for teachers, Pareto dominates TO-BE and hence TTC. This contradicts

the well-know fact that TTC is 1-PE.

Say that a selection ϕ of the BE algorithm is teacher-optimal if there is no selection of BE that

1-Pareto dominates ϕ. The following result justifies the terminology used thus far: TO-BE is indeed

teacher-optimal.

Proposition 1.4.1. Take any mechanism ϕ that is 2-IR. TO-BE is not 1-Pareto dominated by ϕ.

Proof. Proceed by contradiction and assume that TO-BE is 1-Pareto dominated by ϕ at preference

profile �. Since ϕ is 2-IR, ϕ(t) ∈ Opp(t, µ0, S). Hence, TO-BE is still 1-Pareto dominated by ϕ

at the modified preference profile where each teacher t ranks schools outside his opportunity set

Opp(t, µ0, S) below his initial assignment. By Lemma 2, this implies that at the modified preference

profile, TTC is 1-Pareto dominated by ϕ, which is not possible given that TTC is 1-PE.

Corollary 1. TO-BE is a teacher-optimal selection of BE.

We now turn to the most striking result of this section. Apart from TO-BE, no selection of the

BE algorithm is strategy-proof.

Theorem 3. TO-BE is the unique selection of the BE algorithm that is strategy-proof.

Proof. The proof is relegated to Appendix 1.8.3.

While the formal details of the argument are provided in the appendix, let us give a sketch of

the proof for this result.

As is well-known, in a Shapley-Scarf economy (in which schools are replaced by objects with no

preferences but are initially owned by the other side of the market), TTC is the unique element of
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the core Shapley and Scarf, 1974 and Roth and Postlewaite, 1977). Because TO-BE is related to

TTC, there is a sense in which it can be related to some notion of the core. This notion is used

in the course of the argument for Theorem 3. Define the two-sided notion of the core as the set of

matchings µ s.t. there is no (two-sided blocking) coalition B ⊆ T for which there is a matching

ν s.t. for each t ∈ B, ν(t) is a school to which a teacher in B is initially matched and for all

t ∈ B : ν(t) �t µ(t) and, for s := ν(t), t �s µ0(s) with a strict equality for some teacher (or school).

Given a profile of preferences, it is easily verified that a matching is in the two-sided core if and

only if it is in the (standard) core when preferences are modified in such a way that each teacher t

ranks schools outside his opportunity set Opp(t, µ0, S) below his initial assignment. Thus, appealing

to the results mentioned above (i.e., Shapley and Scarf, 1974 and Roth and Postlewaite, 1977), we

conclude that the two-sided core is a singleton and – given Lemma 2 – coincides with TO-BE.

Now, to provide intuition for Theorem 3, let us consider a selection ϕ of BE that is strategy-proof.

Toward a contradiction, assume that ϕ and TO-BE differ at �. We first prove a useful technical

result: there exists a teacher t s.t. TO-BEt(�) �t ϕt(�) �t µ0(t). That there is a teacher who

strictly prefers the assignment of TO-BE to that of ϕ is straightforward given that TO-BE is

teacher-optimal (Proposition 1). The non-trivial part consists in showing that this same teacher also

strictly prefers the assignment of ϕ to that of µ0. If this were not the case, then among all teachers

who strictly prefer TO-BE to ϕ, the assignment they would obtain with ϕ would coincide with the

initial assignment. Hence, if we denote by B the complement set of teachers, namely, those who

weakly prefer the assignment given by ϕ to that given by TO-BE, we know that the assignment

they obtain under ϕ corresponds to the initial assignment of some other teacher in B. Given that ϕ

is 2-IR, this is very close to showing that B is a two-sided blocking coalition. To show that B is

indeed a two-sided blocking coalition, we need to find a teacher in B who actually strictly prefers ϕ

to TO-BE. Our argument shows that if this were not the case, then this would contradict that ϕ is

2-PE (and thus a selection of BE).

Now, given the above technical point, the proof proceeds as follows. Given the profile �, we

consider modified preferences �′t for teachers who only rank as acceptable their school under TO-

BE(�). Given that this is the unique acceptable assignment for each teacher, the technical lemma

implies that TO-BE(�′) must be equal to ϕ(�′). We consider a sequence of unilateral deviations of

teachers reporting �t instead of �′t, which ultimately returns us to � and along which the equality
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between TO-BE and ϕ is maintained. To give an idea of why the equality is maintained along the

sequence of unilateral deviations, let us assume that, starting from �′, t reports �t instead of �′t. If

under (�t,�′−t), ϕ and TO-BE select different outcomes, then again by the technical lemma , we

know that TO-BEt(�t,�′−t) �t ϕt(�t,�′−t) �t µ0(t).34 By definition, TO-BE is not affected by t’s

deviation, but then because TO-BE and ϕ coincide at �′, we have TO-BE(�t,�′−t) = ϕ(�′), which,

by the previous argument, is strictly preferred to ϕt(�t,�′−t) at �t. Thus, at (�t,�′−t), t can claim

that his preferences are �′t and be made better-off, which contradicts the strategy-proofness of ϕ.

Hence, for a unilateral deviation by teacher t, ϕ and TO-BE must remain equal. Proceeding

inductively in this way, we can show that after a sequence of unilateral deviations from �′t to �t by

each teacher, the equality between TO-BE and ϕ is maintained, and hence, TO-BE and ϕ coincide

at �.

Before closing this section, we discuss our approach relative to that of Ma (1994). Ma shows

that in the Shapley-Scarf economy, the unique mechanism that is 1-IR, 1-PE and strategy-proof

is TTC. Intuitively, our result applies to richer environments in which schools have non-trivial

preferences that are taken into account when determining welfare. This suggests that our result is a

generalization of Ma’s. Indeed, to see this, note that in the specific situation in which each school

ranks its initial assignment at the bottom of its ranking, TO-BE and TTC coincide. In this context,

1-IR and 2-IR are obviously equivalent. In addition, since 1-PE implies 2-PE, we obtain that the

class of mechanisms considered by Ma is a subset of the selections of the BE algorithm. Applying

Theorem 3 to these selections yields Ma’s result. While our argument builds upon that of Ma, there

are a number of crucial differences. As mentioned above, even in the very specific environment

in which each school ranks its initial assignment at the bottom of its preference relation, the BE

algorithm contains many other mechanisms that include, in particular, all those that are 2-PE but

not 1-PE and all 1-PE mechanisms that are “sensitive”to schools’ preferences.35 In addition, our

result applies in general to settings in which schools’ preferences are arbitrary and thus to many

other types of mechanisms that are not even well defined in Ma’s environment.

34Obviously, this condition cannot hold for teachers other than t′ by construction of �′.
35That is, 1-PE mechanisms that select two different matchings for two different profiles of preferences where

teachers’ preferences remain unchanged.
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1.4.2 One-sided maximality

We now turn to the characterization of one-sided maximality. As for two-sided maximality, we

introduce a class of mechanisms with possible outcomes spanning the whole set of one-sided maximal

matchings. With two-sided maximality, the underlying criteria targeted by the designer are the

welfare of teachers and schools, as well as the set of blocking pairs. In contrast, with one-sided

maximality, the designer only targets the welfare of teachers and the set of blocking pairs. The basic

idea behind the mechanism of this section is as follows: under the BE algorithm, two teachers can

exchange their assignments iff they both block with the school initially assigned to the other teacher.

However, one can imagine a pair of teachers t and t′ who each desire the school of the other teacher –

say s and s′, respectively – and, while school s does not necessarily rank t′ above t, it does rank

first t′ among the individuals who desire s.36 If, similarly, s′ ranks t first among the individuals

who desire s′, then it is easily shown that an exchange between t and t′ increases the welfare of

teachers and shrinks the set of blocking pairs. Hence, based on a similar idea, we will weaken the

definition of the pointing behavior in the directed graph defined in BE in such a way that – although

schools may become worse-off – both teachers’ welfare increases and the set of blocking pairs is

shrinked each time we carry out a cycle. The following algorithm – named one-sided BE (1S-BE for

short) – accomplishes this weakening, and Theorem 4 below provides a sense in which this is the

best weakening one can hope to achieve.

- Step 0 : set µ(0) := µ0.

- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a

directed graph, where for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)

if and only if either (1) teacher t blocks with school s′ or (2) t desires s′ and t is ranked first

by s′ among teachers who both desire s′ and do not block with s′. If there is no cycle, then

return µ(k − 1) as the outcome of the algorithm. Otherwise, select a cycle in this directed

graph. For each edge (t, s) −→ (t′, s′) in the cycle, assign teacher t to school s′. Let µ(k) be

the matching so obtained. Go to step k + 1.

Here, again, it is easy to verify that this algorithm converges in (finite and) polynomial time. As

for the BE algorithm, we do not specify how the algorithm should select the cycle of the directed
36Henceforth, given a matching µ, we say that t desires s if s �t µ(t).
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graph, and thus, this algorithm defines a class of mechanisms. Each mechanism in this class is a

selection of the correspondence from preference profiles to matchings corresponding to the whole set

of possible outcomes that can be achieved by the 1S-BE algorithm.

By construction, starting from µ(k − 1), the directed graph defined above is a supergraph of the

directed graph that would have been built under the BE algorithm. Hence, there will be more cycles

in our graph and more possibilities to improve teachers’ welfare and to shrink the set of blocking

pairs. This reflects the fact that we dropped the constraint that schools’ welfare must increase along

the algorithm, and thus, more can be achieved in terms of teachers’ welfare and the set of blocking

pairs. This is illustrated in the following example.

Example 4. Consider the same market as in Example 2. The graph of 1S-BE contains the edges of

the graph of BE, but it also has two new additional edges. Indeed, t1 and t2 both desire s3 but do

not block with it under µ0, and t2 is preferred to t1 at s3, and thus, the node (t2, s2) can now point

to (t3, s3). Concerning t3, he is the only one who desires s1 and does not block with it, and thus,

(t3, s3) can point to (t1, s1). Therefore the graph of 1S-BE is as follows:

• •

• •

(t1, s1) (t2, s2)

(t3, s3) (t4, s4)

Note that now there are two additional cycles: (t1, s1) → (t2, s2) → (t3, s3) → (t1, s1) and

(t1, s1)� (t2, s2). Having implemented the first cycle, it can be verified that there are no cycles left,

and thus, the matching given by 1S-BE is37

 t1 t2 t3 t4

s2 s3 s1 s4


37Note that even if one wished to select one of the two other cycles, another cycle would lead to the same matching.
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Note that now there are only three blocking pairs: (t4, sk) for k = 1, 2, 3.

Following the notions introduced for the BE algorithm, we will note 1S-BE◦ϕ for the “composition”

of BE and of a mechanism ϕ. An outcome of such a (modified) 1S-BE algorithm selects matchings

that dominate that of ϕ both in terms of teacher welfare and set of blocking pairs (but not necessarily

in terms of school welfare); i.e., all teachers are weakly better off, and the set of blocking pairs is a

subset of that of ϕ. Again, in the sequel, we we will be particularly interested in starting the 1S-BE

algorithm from the matching given by DA∗, i.e., 1S-BE◦DA∗.

We now turn to our characterization result. We note that while the argument in the proof of

Theorem 1 is simple, the proof of the characterization result below is non-trivial.

Theorem 4. Fix a preference profile. The set of possible outcomes of the 1S-BE algorithm coincides

with the set of one-sided maximal matchings.

Proof. The proof is relegated to Appendix 1.8.4.

Assume that matching µ′ dominates µ in terms of teachers’ welfare and stability and consider

the directed “exchange graph,” where teachers and their assignments under µ stand for the vertices

and for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′) if and only if teacher t

is assigned to s′ under µ′. If µ′ were to dominate µ in terms of teachers’ and schools’ welfare, as

well as in terms of stability, then, as argued in the proof of Lemma 1, each “cycle of exchange” in

this graph is actually a cycle of the graph associated with the BE algorithm. This is central to

the characterization result in Theorem 1. In the present case, in which µ′ dominates µ in terms of

teachers’ welfare and blocking pairs (but not necessarily in terms of schools’ welfare), one may expect

that these cycles of exchange would be cycles of the graph associated with the 1S-BE algorithm.

This turns out not to be the case, and this is an important source of difficulty in the argument to

prove Theorem 4. However, although cycles of exchange are not necessarily cycles of 1S-BE, we

show that whenever there is a µ′ that dominates µ in terms of teachers’ welfare and stability, there

must exist a cycle in the graph (which may not be a cycle of exchange) of 1S-BE starting from µ.

With this existence, one direction of Theorem 4 can easily be proved. Indeed, given a matching µ

obtained with the 1S-BE algorithm, if, toward a contradiction, it is not one-sided maximal, then, by

definition, there must exist a matching µ′ that 1-Pareto dominates µ, such that its set of blocking

pairs is a subset of that of µ. However, in that case, we know that there must exist a cycle in the
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graph associated with 1S-BE starting at µ, which contradicts the fact that µ is a matching obtained

with the 1S-BE algorithm.

Here also, this result provides a computationally easy procedure to find one-sided maximal

matchings. As for the BE algorithm, it is easy to construct selections of the 1S-BE algorithm that

are not strategy-proof. In light of Theorem 3, an outstanding question naturally arises: is there any

selection of the 1S-BE algorithm that is strategy-proof? While there is a unique selection of the BE

algorithm that is strategy-proof, the next result provides a negative answer for the 1S-BE algorithm.

Theorem 5. There is no selection of the 1S-BE algorithm that is strategy-proof.

Proof. The proof is relegated to Appendix 1.8.5.

This result highlights an important difference between the classes of two-sided and one-sided

maximal mechanisms. One can understand the difference as follows. In contrast to the graph of BE,

1S-BE can have an edge (t, s) −→ (t′, s′) if t desires s′ and t is ranked first by s′ among teachers

who both desire s′ and do not block with s′. Because of this condition, a teacher can modify the

pointing behavior of others: indeed, if t is ranked first by s′ among teachers who both desire s′

and do not block with s′, then teacher t can change the set of outgoing edges of other teachers

depending on whether he claims that he desires s′. In the course of the argument for Theorem 5, we

rely on this additional feature. Indeed, we present an instance in which, for each possible selection

of cycles under the 1S-BE algorithm, one teacher can profitably misreport his preferences. Two

types of manipulations are used in that case: one is basic and consists in ranking as acceptable an

unacceptable school to be able, once matched with it, to exchange it for a better one. However, for

some selection of cycles, another manipulation is needed whereby a teacher ranks as unacceptable

an acceptable school to expand the set of outgoing edges of other teachers. Again, this new type of

manipulation is central to the argument in Theorem 5 and is not available under the BE algorithm.

Before closing this section, we note that the 1S-BE algorithm shares some similarities with the

stable improvement cycle (SIC) algorithm defined by Erdil and Ergin (2008). Indeed, the 1S-BE

could be seen as a generalization of the SIC algorithm. To further discuss this relationship, let us

recall the definition of the SIC algorithm.

- Step 0 : set µ(0) := µ0.
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- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a

directed graph, where for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)

if and only if t desires s′ and t is ranked first by s′ among teachers who desire s′. If there is no

cycle, then return µ(k − 1) as the outcome of the algorithm. Otherwise, select a cycle in this

directed graph. For each edge (t, s) −→ (t′, s′) in the cycle, assign teacher t to school s′. Let

µ(k) be the matching so obtained. Go to step k + 1.

The SIC algorithm has been constructed to improve on stable outcomes whenever an outcome is

not teacher-optimal as is the case, for instance, with the outcome of teacher-proposing DA when

schools have weak preferences. Now, note that when we start from a stable outcome, SIC and 1S-BE

are the same. Obviously, in our environment, in which schools have strict preferences, if we start from

the outcome of DA – which here is the teacher-optimal stable assignment – the SIC and the 1S-BE

do not have any cycles in their associated directed graphs. More generally, if we were to weaken

the assumption of strict preferences on the school side, the 1S-BE and the SIC algorithm – starting

from DA – would yield the same set of possible outcomes. However, our mechanism goes much

further in extending the properties of the SIC algorithm to cases in which the starting assignment is

arbitrary. To illustrate why this is true and why we cannot make use of the SIC algorithm for our

purposes, consider one of our initial motivations, which is to find ways to improve on the outcome of

DA∗. Both BE◦DA∗ and 1S-BE◦DA∗ succeed in doing so. However, the SIC algorithm (starting

from the outcome of DA∗) is of no help for this purpose. To see this, recall that under the SIC

algorithm, (t, s) −→ (t′, s′) iff t desires s′ and t is ranked first by s′ among teachers who desire s′.

Since, given the individual rationality of DA∗, no teacher desires his initial assignment under the

matching achieved by DA∗, the pointing behavior – and hence the directed graph – associated with

SIC (starting from DA∗) remains unchanged if we use the modified schools’ preferences used to

run DA∗ as opposed to the true schools’ preferences. However, under the modified preferences, by

definition, DA∗ yields the teacher-optimal stable matching. Hence, there cannot be any cycle in the

graph associated with SIC (again, starting from DA∗).

1.4.3 Large Markets

Let us summarize our findings thus far. We provided a stylized example in which DA∗ performs

poorly in terms of the set of teachers moving from their initial position. Due to this lack of movement,
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we show that one can improve on this algorithm in terms of the welfare of both teachers and schools,

as well as set of blocking pairs. We provide a whole class of mechanisms – characterized by the

BE algorithm – that does not suffer from such flaws. While this seems to be an improvement over

DA∗, this is still quite weak. As mentioned above, these results essentially show that DA∗ is not

on the Pareto frontier while our mechanisms are. These theoretical findings raise a new set of

questions concerning both the magnitude of the under-performance of DA∗ and the performance of

the different selections of the BE algorithm. To answer these questions, we adopt a large-market

approach in this section that allows us to quantify some aspects of the mechanisms’ performance

when the market grows.

Specifically the aim of this section is to answer three questions. First, since lack of movement is

an important weakness of DA∗, we may naturally wonder the following: Is there more movement

under all selections of the BE algorithm compared to DA∗? Second, while all selections of the BE

algorithm are two-sided maximal, as noted in Proposition 1.3.3, how do the different selections

of the BE algorithm compare in terms of the welfare of teachers and schools. In particular, we

ask the following: Based on standard welfare criteria, is there a best selection of BE? As we will

show, there is a meaningful sense in which a best selection of BE exists in terms of welfare on both

sides of the market. From our analysis of incentives, we identified a natural candidate mechanism –

the teacher-optimal BE – and one may wonder how it compares with the best selection of BE. In

other words we wish to answer the following: Is there a cost of strategy-proofness? The following

large-market analysis helps to answer these questions.

We assume that there are K tiers for the schools. More precisely, there is a partition {Sk}Kk=1 of

S such that the utility of teacher t for school s ∈ Sk (k = 1, ...,K) is given by

Ut(s) = uk + ξts

where ξts ∼ U[0,1]. We assume that u1 > u2 > ... > uK . For each k = 1, ..,K, we denote by xk the

fraction of schools having common value uk and further assume that xk > 0.

This distribution of preferences in terms of tiers allows for some type of positive correlation in

teachers’ preferences. Prior literature has highlighted positive correlation in preferences. Indeed, by

studying teachers’ preferences for schools in the US, Boyd et al. (2013) find that teachers demonstrate
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preferences for schools that are suburban and have a smaller proportion of students in poverty.38 In

addition, although this structure is special, we believe that the basic insights obtained under these

distributions extend far beyond this class of distributions.

For schools’ preferences, we assume that

Vs(t) = ηts

where ηts ∼ U[0,1]. The additive separability structure of our utilities and the specific uniform

distribution employed are not essential to our argument.39 In addition, we could assume that

school’s preferences are drawn in a similar way as students’ preferences (allowing tiers); in that

case our results would remain essentially the same. That schools’ preferences are only based on an

idiosyncratic shock is only to simplify the exposition.40

Finally, the initial assignment µ0 is selected at random among all possible n! matchings, where

n := |T | = |S|. A random environment is hence characterized by the number of tiers, their size and

common values [K, {xk}Kk=1 , {uk}
K
k=1]. The maximum normalized sum of teachers’ payoffs that can

be achieved in this society is ŪT :=
K∑
k=1

xk (uk + 1), which is attained if all teachers are matched to

schools with which they enjoy the highest possible idiosyncratic payoff. The maximum normalized

sum of schools’ payoffs that can be achieved in this society is V̄S := 1, which is attained if all

schools are matched to teachers with which they enjoy the highest possible idiosyncratic payoff.

Clearly, in our environment, in which preferences are drawn randomly, a mechanism can be seen as

a random variable. In the sequel, we let ϕ(t) be the random assignment that teacher t obtains under

mechanism ϕ.

In general, our mechanisms will fail to achieve the maximum sum of utilities on either side.

However, a meaningful question is how often this phenomenon occurs when the market becomes

large. The following concepts will help to answer this question. We say that a mechanism ϕ

38In France, in our data set, we also observe that some school regions are systematically preferred to others, as
measured by the number of teachers ranking these regions first. Performing this exercise shows a clear pattern of tiers:
whereas 43 and 57 teachers (out of 10,579) rank the regions of Amiens and Créteil first, respectively, more than 1,000
teachers rank the attractive regions of Paris, Bordeaux or Rennes as their first choice. The differences observed are
likely related to differences across regions in the proportion of students from lower social backgrounds or minority
students.

39We essentially need utilities to be continuous and increasing in both components and the distribution of the
idiosyncratic shocks to have full support in a compact interval in R.

40More precisely, the only issue when introducing a richer class of schools’ preferences is that asymptotic stability
and individual rationality become incompatible. However, if we ignore asymptotic stability, all of our results can be
extended when allowing the richer class of preferences.
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asymptotically maximizes movement if, for any random environment,

|{t ∈ T |ϕ(t) 6= µ0(t)}|
|T |

p−→ 1.

A mechanism ϕ is asymptotically teacher-efficient if, for any random environment,

1
|T |

∑
t∈T

Ut(ϕ(t)) p−→ ŪT .

Similarly, ϕ is asymptotically school-efficient if, for any random environment,

1
|S|

∑
s∈S

Vs(ϕ(s)) p−→ V̄S .

Finally, ϕ is asymptotically stable if, for any random environment and any ε > 0,

|{(t, s) ∈ T × S |Ut(s) > U(ϕ(t)) + ε and Vs(t) > V (ϕ(t)) + ε}|
|T × S|

p−→ 0.

The next three results provide some answers to the three questions posed at the beginning of this

section. The proofs of these results are relegated to Appendix 1.8.6 (except for Theorem 6).

Theorem 6. DA∗ does not maximize movement, and hence, it is not asymptotically teacher-efficient,

asymptotically school-efficient, or asymptotically stable.

The basic idea behind the above theorem is very similar to the underlying argument in Example

1. Indeed, consider a random environment with two tiers of schools (i.e., K = 2) and where the

second tier corresponds to “bad” schools (while the first corresponds to “good” schools). Formally,

we assume that u1 > u2 + 1, and thus, irrespective of the idiosyncratic shocks, a school in tier 1

is always preferred to a school in tier 2. The intuition for the result is as follows. Fix any teacher

t initially assigned to a school in the first tier. With non-vanishing probability, if t applies to a

school in tier 1 other than his initial assignment, some teacher in the second tier will be preferred by

that school. Hence, teacher t will be replaced by that teacher. This simple argument implies that –

among teachers initially assigned to schools in tier 1 – the expected fraction of teachers staying at

their initial assignment is bounded away from 0.

Specifically, for each k = 1, 2, let Tk denote the set of teachers who are initially assigned to
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a school in Sk. Consider any teacher t ∈ T1. Let Et be the event that for each school s ∈ S1,

there is a teacher r ∈ T2 s.t. r is ranked above t (according to s’s preferences). Note that for

a school s, the probability that t is ranked above each individual in T2 is the probability that

{t} = arg max{ηts, {ηrs}r∈T2}. Since {ηts, {ηrs}r∈T2} is a collection of iid random variables, for each

r ∈ T2, by symmetry, the probability that the maximum is achieved by t must be the same as the

probability that it is achieved by any r ∈ T2. Hence, the probability of {t} = arg max{ηts, {ηrs}r∈T2}

must be 1
1+|T2| . We can now easily compute the probability of Et:

Pr(Et) =
(

1− 1
|T2|+ 1

)|S1|
=
((

1− 1
|T2|+ 1

)|T2|
)|S1|/|T2|

→
(1
e

)x1/x2

as n→∞.

Note that, using the same logic as in Example 1, whenever Et realizes, t cannot move from his

initial assignment. Indeed, if t applies to some school s, this must be to a school in S1. However, by

construction, each teacher t ∈ T2 applies to each school in S1. In particular, the teacher in T2 being

ranked above t by school s applies to s, showing that, eventually, t cannot be matched to s under

DA∗. Thus, the expected fraction of individuals in T1 who do not move must be

1
|T1|

E

∑
t∈T1

1{t does not move}

 = 1
|T1|
|T1|E

[
1{t does not move}

]
= Pr{t does not move}

≥ Pr(Et).

Thus, the lim inf of the expected fraction of teachers not moving is bounded away from 0. Note

that the lower bound computed here can be improved. Indeed, for t not to move, one only needs

that for each school s ∈ S1 that t finds acceptable, there is a teacher r ∈ T2 s.t. r is ranked above t

(according to s’s true preferences). In general, simulations suggest that a much larger fraction of

teachers are not moving. In addition, these simulations show that the assumption we made above

that u1 > u2 + 1 is not necessary and that the result seems to hold in much broader contexts.41 Let

us now think of the best possible outcome of the BE algorithm. While the way to implement this

outcome may not be practical, we consider this a benchmark and want to compare this to what can

41Available upon request.
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typically be achieved by mechanisms that can be implemented easily such as TO-BE.

Theorem 7. Each selection of BE asymptotically maximizes movement. There is a selection of BE

that is asymptotically teacher-efficient, asymptotically school-efficient and asymptotically stable.

The intuition for the first part of the result is basic. Indeed, assume, toward a contradiction, that

the set of teachers not moving under some selection of BE is “large”. For each pair of teachers t and

t′ in that set, the probability that t blocks with the initial assignment (and hence the assignment

under the given selection) of t′ and that, vice versa, t′ blocks with the initial assignment of t (and

thus gains from the assignment under the given selection) is bounded away from 0. Hence, given our

assumption that the set of teachers not moving is large, with high probability, there will be such a

pair of teachers. In other words, there will be a cycle in the graph associated with BE when starting

from the assignment given by the selection, which contradicts the definition of a selection.

As for the other part of the theorem, the intuition can be seen as follows: for a given tier k, for

any school in Sk and any agent initially matched to such a school in Sk, the probability that they

both enjoy high idiosyncratic payoffs when matched with one another is bounded away from 0. Thus,

as the market grows, with probability approaching one, one can appeal to Erdös-Rényi’s result on

the existence of a (perfect) matching within the set of individuals and schools. However, there are

two difficulties here. First, one has to ensure the individual rationality of the matching so obtained,

which we do by restricting the set of teachers and schools to those having idiosyncratic payoffs for

their initial match bounded away from the upper bound. Second, in the sketch we just provided, we

are implicitly assuming that the designer has access to an agent’s cardinal utilities. However, in

this paper, we assume—as is usually the case in practice—that matching mechanisms map ordinal

preferences into matchings, and a large part of the proof is devoted to addressing this issue.

Now, as we have already noted, while the BE algorithm treats teachers and schools symmetrically,

TO-BE favors teachers at the expense of schools. Thus, it is natural to expect that TO-BE is

asymptotically teacher-efficient. In addition, TO-BE only ensures that schools are assigned a teacher

that they weakly prefer to their initial assignment. Hence, for each school, its assignment under

TO-BE is a random draw within the set of teachers that it finds acceptable. Thus, given its

idiosyncratic payoff for its initial assignment ηµ0(s)s, the expected payoff of a school s under TO-BE

(s) is E
[
ηst
∣∣∣ηst ≥ ηµ0(s)s

]
= 1

2

(
1 + ηµ0(s)s

)
. Thus, the (unconditional) expected payoff of school s

under TO-BE (s) is E
[

1
2

(
1 + ηµ0(s)s

)]
= 3

4 . Thus, TO-BE cannot be asymptotically school-efficient.
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Theorem 8. TO-BE is asymptotically teacher-efficient. Under TO-BE, the expected payoff of a

school is 3
4 , and thus, TO-BE is neither asymptotically school-efficient nor asymptotically stable.

To understand why TO-BE is asymptotically teacher-efficient, a heuristic is as follows: assume

it is not. This implies that for some tier, there is a “large set” of teachers who are obtaining an

idiosyncratic payoff bounded away from the upper bound. Now, for each pair of teachers t and t′

in that set, intuitively, the probability that t blocks with the assignment of t′ and that, vice versa,

that t′ blocks with the assignment of t is bounded away from 0. Hence, given our assumption that

the set of teachers not moving is large, intuitively, with high probability, there will be such a pair

of teachers. Thus, here again, there will be a cycle in the graph associated with BE when starting

from the assignment given by the selection, which contradicts the definition of a selection. While

this is an intuitive way of describing the result, there is a difficulty here. Indeed, if we fix the set

of teachers who are obtaining an idiosyncratic payoff bounded away from the upper bound, this

has some implications for the distribution of preferences. Hence, there is a conditioning issue, and

the intuition provided above does not take this into account. This raises an important technical

difficulty that we circumvent using random graph arguments in the spirit of those developed by Lee

(2014) and, more particularly, Che and Tercieux (2015b).

From the above, we should expect several results from our data analysis. First, DA∗ should

rarely be two-sided maximal, particularly in markets with a large number of teachers. In addition,

the BE algorithm and TO-BE should ensure more movement than DA∗ and perform better in terms

of teachers’ welfare. We will see that our data analysis largely confirms these findings. We should

also expect TO-BE to perform less well than the BE algorithm: TO-BE may exhibit a loss in terms

of schools’ welfare and blocking pairs relative to the BE algorithm. In terms of schools’ welfare

and the set of blocking pairs, it is not clear a priori how to compare TO-BE and DA∗. Our data

analysis will help further discriminate between these mechanisms. It is important to mention an

important difference between our empirical analysis and our large market framework: in the latter

we let both the number of schools and the number of teachers tend to infinity. In the following

empirical analysis, we focus on the assignment of teachers to the 31 French administrative regions.

This small number of regions is closer to a second type of large market analysis using continuum

models like in Abdulkadiroglu, Che and Yasuda (2015b) or Azevedo and Leshno (2016); where the

number of schools is fixed and where the number of agents is large. First, it is not clear how to
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handle algorithms based on exchange graphs like TO-BE under a continuum model. Second, our

empirical analysis can be seen as a complement to our large market framework. Which large market

model is the best depends on the application that one considers. For instance, our large market

analysis is closer to the second assignment phase of teachers to schools inside each region, which we

chose to discard due to possible misreports of preferences during this phase as explained in the next

section.

1.5 Empirical Analysis

The aim of this section is to assess our theoretical findings using a data set on the assignment of

all public school teachers in France. We provide a brief presentation of the data set we use. Then,

we run counterfactual scenarios for our mechanisms and measure the extent of the improvements

they may yield, in terms of both school and teacher welfare, as well as in terms of fairness.

1.5.1 Data

We use several data sets related to teacher assignment in 2013. For both the first and the

second phase of the assignment, these data sets contain four pieces of information: (1) teachers’

reported preferences, (2) regions/schools’ priorities, (3) each teacher’s initial assignment (if any)

and (4) regions/schools’ vacant positions. This empirical study focuses on the first phase of the

assignment, primarily because teachers have incentives to report their preferences42 sincerely and the

preferences we observe are more straightforward to interpret.43 Several features of the assignment

process support this position. First, since the mechanism at use is DA∗ with no limit on the number

of regions teachers can rank, it is a dominant strategy for all agents to be truthful. The fact that

strategy-proof mechanisms generate reliable preference data for guiding policy is a common argument

in their favor (see, e.g., Abdulkadiroglu, Pathak and Roth, 2009, Abdulkadiroglu, Agarwal and

Pathak, 2015).44 Second, since the ministry manages the assignment process in partnership with

teachers’ trade unions, teachers are very well informed about the entire process, and trade unions

42Given the agents’ assessments over schools they may obtain in the second phase, agents have well-defined
preferences over regions.

43As discussed in Appendix 1.8.8, preferences reported during the second phase of the assignment are more difficult
to interpret because of both a binding constraint on the number of schools teachers can rank and the ability to rank
larger geographic areas than a school (cities, for instance).

44This assumption is sometimes challenged, however. See, for instance, Fack, Grenet and He (2015).
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have never advised teachers to strategically rank the school regions.45 We therefore take for granted

that agents’ reported preferences in Phase 1 are the true preferences to run our counterfactuals.

The sample of teachers used for the analysis takes into account two restrictions. First, the sample

is restricted to the 49 subjects that contain more than 10 teachers. Second, to match our theoretical

framework, all initially non-matched teachers (newly tenured) and all empty seats in regions are

suppressed. Hence, the initial assignment corresponds to a market in which each teacher is initially

assigned to a region and each seat in each region is initially assigned a teacher. The final sample

contains 10,579 teachers corresponding to 49 subjects ranging from 6 to 1,753 teachers. We end this

section by providing two pieces of information on this market. It is important to keep in mind that,

due to our above restrictions, the analysis presented will not be a counter factual for the complete

French assignment market. To do so, one would have to incorporate newly tenured teachers and

empty seats and define a new version of TO-BE accordingly. We discuss this point in the conclusion.

One can see the following results more as “data calibrated simulations”. Yet, this exercise offers

interesting results to support our theoretical findings.

Fact 0 (i) Under the regular DA mechanism, there are at least 1,325 teachers for whom individual

rationality is violated; i.e., they are assigned to a region that they consider worse than their initial

region.46 (ii) The individually rational mechanism that maximizes movement allows 2,257 teachers

to move from their initial assignment.47

This fact shows that the regular DA mechanism is indeed not individually rational in this market,

and the violation of individual rationality is quite strong. The second point gives us a sense in which

there is congestion on this market: if we focus only on individually rational matchings and attempt

to ensure as much movement as possible, 21% of teachers will be able to move. We should bear in
45The mobility process is the main source of teacher unionization in France. As a competition exists between

trade unions, they have high incentives to provide detailed information and tailored help for teachers throughout the
process. In practice, trade unions help teachers in identifying the criteria they can use to compute their priorities,
they negotiate the number of positions offered in each region with the ministry, and they validate the mobility project
submitted by the ministry.

46In our data set, for each teacher, we have the reported preferences only up to his initial region. Hence, we do not
know how teachers rank regions below their initial assignment. However, one can show that when running DA on
these truncated preferences, the number of unassigned teachers is a lower bound on the number of teachers for whom
individual rationality is violated when running DA on the full preference lists.

47To find such an assignment, we build a bipartite graph with teachers on one side and schools on the other side.
We consider the complete bipartite graph, where each edge will be associated with a weight. We assign weight ∞
to edges (t, s), where s is unacceptable to t (i.e., worse than his initial assignment). We assign weight 1 to the edge
if t is initially matched to s. Finally, we assign weight 0 to all other edges (i.e., if t finds s strictly better than his
initial assignment). The weight of a matching is defined as the sum of weights over all its edges. We use a standard
algorithm to find a matching with minimal weight (see Kuhn, 1955 and Munkres, 1957). It is easily verified that such
a matching maximizes movement among all individually rational matchings.
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mind this upper bound when considering the performance of our algorithms and the scope for their

improvement.48

1.5.2 Results

1.5.2.1 Preliminaries: many-to-one

Before turning to the description of the results, we need to briefly discuss the generalization

of our mechanisms to the many-to-one framework. A school/region can now be assigned several

teachers, and starting with preferences over single teachers, we need to define schools’ preferences

over a bundle of teachers. We adopt a very conservative approach here that will only strengthen our

main empirical findings. Consider a school/region with q positions to fill and two vectors of size q,

say x := (t1, . . . , tq) and y := (t1, . . . , tq). Let us assume that each of these vectors is ordered in such

a way that for each k = 1, . . . q − 1, the kth element of vector x is preferred to its k + 1th element;

we make analogous assumptions for vector y. We say that x is preferred by the school/region to y if

for each k = 1, . . . q, the kth element of vector x is (weakly) preferred to the kth element of vector y.

With this definition in mind, all of our concepts (two-sided maximality or one-sided maximality)

can be naturally extended. Mechanisms characterizing these notions can also be easily extended.

Because these are the mechanisms we use to run our counterfactuals, we state them precisely in

Appendix 1.8.7.

The aim of the following empirical analysis is to test our theoretical results. Therefore, we will

focus on three main dimensions: teachers’ welfare, regions’ welfare and number of blocking pairs.

Since BE and 1S-BE define a class of mechanisms, we randomly select outcomes within this class.

For the TO-BE mechanisms parametrized by an ordering over teachers. We randomly select an

ordering and hence randomly select an outcome in this class. We randomly draw selections for each

mechanism ten times. In addition, there are indifferences in priorities of regions over teachers.49 We

use a single tie-breaking rule to break ties in regions’ priorities. We draw randomly the tie-breaking

rule ten times. The results reported in Tables 1 to 3 for BE, TO-BE and 1S-BE correspond to

48The relatively small fraction of teachers able to move is explained primarily by the high proportion of teachers
reporting short lists. Indeed, teachers rank on average 1.64 regions, and 75 % of teachers only ask for one region
(beyond their initial region). Combined with correlation in preferences, this structurally restricts the possibility of
movement in the market.

49Many young teachers use only one criterion – the number of years of experience – to compute their priorities, and
thus, they have the same priority in a given region.
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average outcomes over one hundred draws – ten random selections of tie-breaking rules times ten

random selections of outcomes. The results for DA* correspond to an average over ten iterations of

tie-break only. The results for the BE algorithm and the 1S-BE are successively presented in the

next section.50

1.5.2.2 Two-sided maximality: BE and TO-BE

How far is DA∗ from being two-sided maximal?

In the theoretical analysis, we noted an important flaw of DA∗: it can be improved in three main

dimensions, namely, teachers’ welfare, regions’ welfare and fairness. In practice, a first simple way

to test whether DA∗ is two-sided maximal is to run the BE algorithm starting from the matching

obtained by DA∗ and then to observe whether the two matchings obtained with DA∗ and BE◦DA∗

differ. If they differ, this means that some cycles exist in the graph associated with the BE algorithm

starting from DA∗, and thus, DA∗ is not two-sided efficient, which is a necessary condition for

two-sided maximality. Fact 1 below illustrates that point in our data:

Fact 1. DA∗ is not two-sided maximal in 33 out of 49 subjects. These subjects represent 95.9% of

the teachers.51

This first fact suggests that the theoretical phenomenon we highlight is not rare. Based on

this observation, we now estimate how far DA∗ is from maximality in terms of the three criteria in

which we are interested. Regarding teachers’ welfare, two results reported in Table 1.1 are worthy of

comment. First, on average, BE◦DA∗ more than doubles the number of teachers who are assigned

to a new region relative to DA∗: 565 teachers move from their initial allocation under DA∗ versus

1,488 under BE◦DA∗. Second, the same table reports the cumulative distribution of the number

of teachers who obtain school rank k. While we know from the theory that the distribution of the

50As explained in Section 1.2, regions use multiple criteria to rank teachers (spousal reunification, disability, having
a position in a disadvantaged or violent school, total seniority in teaching, seniority in the current school, time away
from the spouse and/or children, etc). However, when running our alternative algorithms, we use only the seniority
criteria (both total seniority in teaching and seniority in the current school) to determine a teacher’s priority in his
initial region. Indeed, the other criteria are supposed to help a teacher to leave his current region, so it would not
make sense to use these criteria for the region to which he is currently assigned.

51 Even if BE◦DA∗ = DA∗, it could be the case that DA∗ is not two-sided maximal. Indeed, in our definition of
two-sided maximality, we require that schools must not be harmed relative to the initial allocation. Since DA∗ may
harm schools, it can be two-sided Pareto efficient but still violate two-sided maximality. In 30 subjects, BE◦DA∗ 6= DA∗,
and in 3 subjects, BE◦DA∗ = DA∗, but DA∗ harms the welfare of at least one region relative to the initial assignment.
Finally, we note that, if we restrict our attention to the 19 subjects with more than 100 teachers, in only one subject is
DA∗ two-sided maximal.
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rank obtained by teachers under BE◦DA∗ first-order stochastically dominates this same distribution

under DA∗, the dominance is indeed significant.

There are several possible measures of regions’ welfare. We focus below on one natural approach;

however, we test the robustness of our results to the use of alternative approaches, which yield no

significant differences in the results. Given a mechanism, we examine the improvement a region

obtains (from the initial assignment) in terms of the number of positions improved. More precisely,

given a region, we first take the initial assignment and sort it by decreasing order of priorities. We

obtain a vector in which the first element/position is the teacher with the highest priority in that

region at the initial assignment, the second element/position is the teacher with the second highest,

and so forth. Call this vector x. We perform the same operation for the assignment of this region

with the mechanism under study. Let us call this vector y. Finally, we say that a position k is

assigned a teacher with higher (resp., lower) priority if the kth element of vector y has a higher

(resp., lower) priority than the kth element of vector y. Based on this, we compute the percentage

of net improvement in positions, i.e., the percentage of positions receiving a teacher with a higher

priority minus the percentage of positions being assigned a teacher with a lower priority.

Table 1.3 reports, for the different mechanisms we run, the cumulative distribution of the

percentage of net improvement in positions, i.e., for each percentage x, the proportion of regions

having less than x percent of net improvement in positions. Again, we observe that the distribution

under BE◦DA∗ first-order stochastically dominates this same distribution under DA∗.

Finally, we compare the performance of DA∗ and BE◦DA∗ in terms of fairness. The first row of

Table 1.2 reports that, on average, 2,496.5 teachers are not blocking under DA∗ and 3,799.4 are not

blocking under BE◦DA∗, which represents a 52.1% increase in the number of teachers who are not

blocking with any region. More generally, we observe that fairness is significantly increased.52

Overall, these results show that DA∗ fails to be two-sided maximal in a large number of cases,

and the scope of improvement seems to be very large. To address this issue, a first natural candidate

would be to run the BE algorithm from the assignment achieved by DA∗. However, as mentioned in

our theoretical analysis, this mechanism is prone to easy manipulations. Alternatively, we focus our

attention on both the BE algorithm that is run directly from the initial assignment (this is referred

52The number of teachers who are part of a blocking pair is quite high. This is intuitive since the number of teachers
moving is low and many teachers stay at their initial allocation, thus possibly creating envy. This can be seen as the
cost of imposing the individual rationality constraint.
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to as BE(Init) in our tables and graphs) and its strategy-proof selection: the TO-BE mechanism. In

the next section, we evaluate the performance of these two mechanisms in terms of teachers’ welfare,

regions’ welfare and the number of blocking pairs.

Performance of BE and TO-BE

Before commenting on the results, it is worth briefly discussing the relevance of comparing BE

and TO-BE to DA∗. We should bear in mind that, for an arbitrary outcome of the BE mechanism,

its set of blocking pairs may differ from that of DA∗, and similarly, the outcome may not 2-Pareto

dominate DA∗. However the comparison remains interesting for two reasons. First, we know from

the above results that DA∗ is far from being two-sided maximal, and thus, BE and TO-BE – which

are two-sided maximal – can be expected to perform much better. Second, our theoretical results

(Theorems 6, 7 and 8) suggest that BE and TO-BE perform better in large markets than DA∗.

We first focus our attention on the performance of BE and TO-BE in terms of teachers’ welfare.

Both mechanisms significantly improve the number of teachers moving relative to DA∗: on average,

565 teachers obtain a new assignment under DA∗, versus 1,461.5 under BE and 1,373 under TO-BE.

Fact 2. The distribution of ranks obtained by teachers under TO-BE first-order stochastically

dominates the distribution of BE, which dominates that of DA∗.

Note, however, that there is no 2-Pareto domination between the matchings: some teachers may

prefer their assignment under DA∗ to the one that they obtain under BE or TO-BE.53

Regarding stability, BE and TO-BE also perform significantly better than DA∗. Table 1.2 shows

that the average number of teachers not being part of a blocking pair increases from 2,496.5 under

DA∗ to 3,731.3 and 3,742.7 under BE and TO-BE, respectively.

Fact 3. The distributions of the number of regions teachers can block with under DA∗, BE and

TO-BE can be ranked stochastically: DA∗ is dominated by BE, which is dominated by TO-BE.54

Pereyra (2013) distinguished two types of envies:

53On average, 258.5 teachers obtain a region they rank strictly higher under DA∗ than under BE (254.5 under TO-
BE). Conversely, 1,152.7 teachers strictly prefer their assignment under BE to that under DA∗, and the corresponding
number is 1,096.7 under TO-BE.

54As discussed for teachers’ welfare, it is worth noting that the set of blocking pairs of each matching may differ.
Some teachers may block with a region under BE or TO-BE but not under DA∗.
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• Inappropriate envies: a teacher prefers a region to his assignment and all the teachers less

preferred to him by this region and assigned to it are teachers initially matched to it and who

stayed at their position.

• Justified envies: a teacher who prefers a region and is preferred by this region to a teacher not

initially assigned to it but who is matched to it under the given matching.

He imposed that one should not allow justified envies and showed that among all mechanisms having

no justified envies, DA∗ minimizes the set of inappropriate envies (in the setwise inclusion sense).

Here, we do not distinguish between these two types of envies and we consider the standard definition

of justified envies common in the literature. However, it is important to mention that the matching

returned by TO-BE can create justified envies. The argument is similar to the one proving that the

TTC algorithm is not stable: if one allows two teachers to exchange their positions, it can lead to

an appropriate envy from a third teacher. TO-BE decreases the number of inappropriate envies

but creates justified ones. Overall, as seen in the previous fact, the total number of blocking pairs

decreases compared to DA∗. For further discussions about this trade-off, we refer the reader to the

end of the Chapter 2.

Finally, comparing regions’ welfare across mechanisms is of particular interest, as we know that

DA∗ can harm some regions, in contrast to BE and TO-BE. This is confirmed by Table 1.3. Under

DA∗, 1.04% of the regions have at least 1% of their positions assigned a teacher with a lower priority

than under the initial assignment. On the contrary, under BE and TO-BE, no region has a position

for which the teacher assigned to it has a lower priority than the teacher initially assigned to that

position.

Fact 4. The distributions of the percentage of net improvement in positions can be stochastically

ordered: the distribution of DA∗ is dominated by that of TO-BE, which is dominated by that of BE.

The lower performance of TO-BE compared to BE in terms of regions’ welfare is in line with our

theoretical predictions regarding the cost of the strategy-proofness imposed by TO-BE (Theorem 7

and 8).

As mentioned earlier, accounting for regions’ preferences – through two-sided maximality – is

a way to better consider policy maker’s objectives because priorities incorporate several welfare

relevant criteria. As described in Section 1.2, priorities are defined by a point system. Three main
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criteria are used to rank a teacher: total seniority in teaching (experience), spousal reunification and

whether the teacher has been teaching for several years in a disadvantaged school.55 The analysis

of regions’ welfare presented above pools together all criteria, but we are also interested in the

performance of the mechanisms for each criteria taken separately. In a sense, the points given for

each criterion reflect the policy maker’s trade-offs between the three criteria. For instance, we know

that one of the main objective is to allocate more experienced teachers to disadvantaged regions.

But policy makers would accept a slightly less experienced teacher in such region if he/she ends up

being closer to his spouse. This is exactly what the ranking reflects. The lower priority in terms of

experience is compensated by a higher priority in terms of spousal reunification. In Section 1.5.2.4,

we decompose the welfare analysis for each criteria, and we take a finer look at the distribution of

teachers across regions under each of the mechanisms.

Overall, these results suggest that BE and TO-BE perform much better than DA∗ in terms of

teachers’ welfare, regions’ welfare and fairness. The good performance of TO-BE is of particular

interest due to its incentive properties. These results provide evidence that, although two-sided max-

imality is a strong requirement, our mechanisms can generate large improvements and distributions

dominating those of DA∗.56 The next section tests whether we can further improve upon DA∗ by

relaxing the constraint that no region should be harmed (relative to the initial assignment). To do

so, we provide empirical evidence on the performance of 1S-BE, the one-sided maximal algorithm

we defined in Section 1.4.2.

1.5.2.3 One-sided maximality: 1S-BE

As done previously for BE and TO-BE, we first aim to estimate how far DA∗ is from being

one-sided maximal. To do so, we compare the matching under DA∗ to that under 1S-BE that we run

from DA∗. For a large number of subjects, we have seen that DA∗ is not two-sided maximal; thus, it

is not one-sided maximal. Because the constraint on regions’ welfare is relaxed under 1S-BE relative

to BE, the improvements we have found for BE◦DA∗ in terms of teachers’ welfare and blocking

55Additional criteria are used such as disability, being a replacement teacher, or applying for a position after some
years off teaching. Fewer teachers use these criteria, so we chose to focus on the three main ones. Time away from the
spouse and/or children is used to determine the points attributed for the spousal reunification criterion. Disadvantaged
schools are classified as such by the administration. After having taught 5 years in a disadvantaged school, teachers
get additional points to move anywhere else.

56These results are all the more encouraging because they are obtained in a restrictive environment in which teachers
rank a very limited number of regions. Even better results could be expected in environments in which agents have
longer ranked lists.
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pairs can be seen as a lower bound on the potential improvements under 1S-BE◦DA∗. Indeed, Table

1.1 reports that 1S-BE◦DA∗ yields a threefold increase in the number of teachers moving relative

to DA∗ and increases this figure by 15% compared to BE◦DA∗. This suggests that there is still

significant potential for improvement with respect to considering one-sided maximality.

Fact 5. DA∗ is not one-sided maximal in 31 subjects, and 95.3% of the teachers belong to these

subjects. In one subject, DA∗ is two-sided maximal but not one-sided maximal.

We now turn to the results on 1S-BE starting from the initial allocation (referred to as 1S-BE(Init)

in our tables and graphs) to compare its performance with that of the other mechanisms. Regarding

teachers’ welfare and fairness, the distributions of both the ranks obtained by teachers (Table 1.1)

and the number of teachers blocking (Table 1.2) under 1S-BE stochastically dominate the distribution

of all other algorithms mentioned previously: BE, TO-BE and DA∗.57 Finally, regions’ welfare is the

key difference between two- and one-sided maximality. Even if improvements in teachers’ welfare

and fairness are large with 1S-BE, we know that this comes at the expense of the regions’ welfare.

Fact 6. Under 1S-BE, in 4.9 % of the regions, the percentage of positions filled by a teacher with a

lower priority is higher than the percentage of positions filled by a teacher with a higher priority. This

is in contrast with BE or TO-BE, under which, by definition, regions cannot be assigned teachers

with a lower priority relative to the initial assignment.

1.5.2.4 Administration’s objective

We motivated the two-sided efficiency notion by its better ability to fulfill the administration’s

objectives, as reflected by the three main criteria defining the priority system: i) experience in

teaching, ii) spousal reunification and iii) years of teaching in a disadvantaged school. For instance,

under the two-sided efficiency notion, a reassignment of teachers that, ceteris paribus, decreases

the number of experienced teachers in disadvantaged schools would not meet the administration’s

objective to better distribute experienced teachers across schools. We end this empirical section by

looking more closely at these three criteria.

The first criterion gives more points to more experienced teachers. Obviously, it is not possible to

increase the experience of teachers in all regions. However, as some regions are more disadvantaged

57As explained above, some teachers may prefer their match under DA∗; 195 teachers do so under 1S-BE, which is
less than the corresponding figure under BE or TO-BE.
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than others, one objective is to control the share of inexperienced teachers in these regions. To

define disadvantaged regions, we follow a classification used by the French ministry of education.

The regions of Créteil and Versailles are classified as disadvantaged regions as they have a high

share of students enrolled in priority education, and a high share of students whose parents have

no diploma. In addition, every year, around 50% of the teachers who ask for a re-assignment come

from one of these two regions. The upper part of Table 1.4 reports, for both disadvantaged and

non-disadvantaged regions, the percentage of teachers having only one or two years of experience

under the current algorithm, and the difference under the alternative mechanisms we suggest.58

Under the current algorithm, 26.9% of the teachers have only one or two years of experience in

non-disadvantaged regions. This rate goes up to 45.6% in disadvantaged regions. A first interesting

result is that, under the TO-BE mechanism, this percentage of inexperienced teachers goes down

by 0.67 percentage points in disadvantaged regions, while it goes up by 0.62 percentage points in

non-disadvantaged regions. This shows that one of the objective of policy makers, which is to not

increase the share of inexperienced teachers in deprived regions, is respected. It is also interesting

to notice the difference between the TO-BE mechanism and 1S-BE. Given that 1S-BE does not

require an exiting teacher to be replaced by a teacher whose priority is higher, we could expect

this mechanism not to fulfill as well the administration’s aim to not assign relatively inexperienced

teachers in disadvantaged regions. This is what we see in Table 1.4. The reduction of the share of

inexperienced teachers assigned to disadvantaged regions is smaller under 1S-BE than under TO-BE.

It is worth keeping in mind that most of the mobility gain happens in non-disadvantaged regions,59

while mobility tends to remain constant or decrease in disadvantaged regions.60 In order to cancel

out these important differences in mobility, we look at two additional statistics: the percentage of

inexperienced teachers among the ones entering each region, and the percentage of inexperienced

teachers among the ones leaving each region. As expected, differences are much starker. Among

teachers who leave disadvantaged regions, the share of inexperienced teachers is significantly higher

58We distinguish between teachers having only one or two years of experience and more experienced teachers based
on evidence that teachers in their first year of experience tend to perform less well than more experienced teachers
(Chetty, Friedman and Rockoff, 2014; Rockoff, 2004).

59In Example 1, the disadvantaged school s∗ is initially assigned to teacher t∗. Since t∗ has the highest priority in
all schools, he prevents all other teachers from moving from their initial school under DA∗, and stays himself in s∗.
Under TO-BE, teacher t∗ still stays in s∗, but the other teachers can exchange their positions.

60Mobility decreases in disadvantaged regions under the BE mechanism, and to a lesser extent under TO-BE,
because of the requirement that any teacher leaving the region has to be replaced by a teacher with a higher priority.
This requirement does not exist with DA∗, and can prevent some teachers from leaving their region if no teacher with
a higher priority can replace them.
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under TO-BE than under DA∗. This is consistent with the fact that, under TO-BE, any teacher

leaving a region has to be replaced by a teacher with a higher priority. This makes it more difficult

for experienced teachers to move, but not for inexperienced ones, so that the share of inexperienced

teachers among exiting teachers increases. This higher priority rule under TO-BE also justifies why

the share of inexperienced teachers among those who enter disadvantaged regions does not go up

under TO-BE.

Finally, we look at performance for two additional criteria, which are spousal reunification and

experience in disadvantaged schools. For these criteria, the objective is to help teachers to get closer

to their spouse or leave a disadvantaged school. The lower part of Table 1.4 shows that the BE,

TO-BE, and 1S-BE mechanisms significantly improve the number of teachers moving closer to their

spouse. TO-BE performs sligthly better than 1S-BE.61 On the other hand, fewer teachers from

disadvantaged schools move under TO-BE and 1S-BE than under DA∗.62 This lower mobility is

mainly due to the fact that TO-BE slightly reduces mobility for teachers in disadvantaged regions,

and 48% of the teachers who wish to leave a disadvantaged school are located in the disadvantaged

regions of Créteil and Versailles.

1.6 Concluding Remarks

Efficiency vs. Fairness. In the design of school choice allocation mechanisms, the notions of

efficiency and fairness have received considerable attention. In this school choice context, it is

known that these two goals are incompatible (see Roth, 1982, Abdulkadiroglu and Sonmez, 2003

and Abdulkadiroglu, Pathak and Roth, 2009). Efficient matching mechanisms, such as the top

trading cycle, attain efficiency but fail to be fair. Fair mechanisms such as the DA algorithm do not

guarantee efficiency. This trade-off between efficiency and stability is well studied. In particular,

it is well understood how to attain one objective with the minimum possible sacrifice of the other

goal. For instance, DA selects a fair matching that Pareto dominates all other fair mechanisms for

the proposing side (Gale and Shapley, 1962). Similarly, there is a sense in which the top trading

cycle mechanism (Abdulkadiroglu and Sonmez, 2003), which allows agents to sequentially trade

their priorities, satisfies efficiency with a minimal amount of unfairness (Abdulkadiroglu et al., 2015).

61The number of teachers who move closer to their spouse increases from 251.8 under the current algorithm to
513.5 under TO-BE, 547.6 under BE, and 482.5 under 1S-BE.

62110.3 teachers obtain a new assignment under DA∗ compared to 83.4 under TO-BE and 106.8 under 1S-BE.
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Hence, the choice for the designer often boils down to a choice between two mechanisms: the DA

mechanism in which students propose or the top trading cycle mechanism.63

In contrast, our work shows that, in the teacher assignment problem, the individually rational

version of DA identified in the literature can be improved in terms of both efficiency and fairness. In

addition, a mechanism closely related to the top trading cycle mechanism (TO-BE) is identified as the

right choice for a designer concerned about these two core notions. This contrast with the previous

literature is striking and makes clear that the teacher assignment problem is a new environment

with important differences from environments previously studied.

Many-to-one environment. In the theoretical part of this paper, we assumed a one-to-one

environment. All our results extend to the many-to-one environment except for Theorem 3.64

Indeed, as shown in our Appendix 1.8.7, there are several natural ways to extend the teacher-optimal

BE to a many-to-one environment. Hence, the uniqueness result in Theorem 3 does not hold in

this environment. However, in the many-to-one setting, we obtain a class of two-sided maximal

mechanisms that are strategy-proof, which includes all versions of TO-BE defined in our appendix.

As we mentioned in the data analysis, 75% of the participants rank only one additional region in

addition to their initial one. In Section 1.8.9 of the Appendix, we show that in a many-to-one

framework where teachers rank only one additional school above their initial one, TO-BE is the unique

strategy-proof, IR and Two-sided maximal mechanism. In addition, the theoretical performance of

TO-BE and BE (compared to DA∗) identified in the one-to-one environment can be observed in our

empirical results where school regions have several available seats, confirming that the main message

of our paper extends to the many-to-one environment.

Vacant positions and newly recruited teachers. To focus on improving the reallocation of

teachers who initially have an assignment, we assumed away teachers who just graduated (new

comers) and available seats at schools. In the Chapter 2, we complement the current approach by

incorporating vacant positions and newly recruited teachers who do not have an initial assignment.

Under current practice in France, one of the most important issues is the large outgoing flow of

teachers faced by the least attractive regions (with, as a consequence, a large incoming flow of

63See also Che and Tercieux (2015a) for additional perspectives on this topic.
64Theorem 1, 2 and 5 extend in a straightforward way. All results in the large market section (Section 1.4.3) are

also fairly easy to extend to a many-to-one environment. The extension of Theorem 4 is non-trivial, and the proof is
provided in the supplementary material section 1.8.10.
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inexperienced teachers). Importantly, in our ongoing work, we observe that, under TO-BE, this flow

is dramatically reduced. The reason is simple: to leave these regions, one has to be replaced by a

teacher with higher priority/experience. As one would naturally expect, demand from experienced

teachers for these regions is relatively low, making it more difficult for teachers to leave these regions.

While a decrease in the outgoing flow mechanically increases the number of experienced teachers in

these regions, this phenomenon may have several negative features. For instance, in the first place,

this may discourage experienced teachers from applying to these regions. Moreover, if newcomers

are eventually trapped in such regions, this may also make the teaching profession less attractive

and decrease the overall quality of teachers. Overall, we sought to remain agnostic on how much the

ongoing flow has to be reduced in these regions. Hence, in this ongoing work, we tailor the current

mechanism to ensure that the outgoing flow can be targeted by the decision maker. In particular,

one option is to leave this flow unchanged compared to the current flow (achieved by DA∗).65 Even

under such a conservative approach, the overall mobility of initially assigned teachers can still be

significantly increased, by 44.9%.

Centralized vs. decentralized systems. This study has clear policy implications for countries

using a centralized assignment system. However, we would like to stress that it also helps to envision

what would be the impact of a transition from a decentralized to a centralized assignment system

in other countries. In particular, we show that adopting the modified version of DA, rather than

one of the alternative mechanisms we suggest, would largely under-estimate the performance of a

centralized system (for instance, in terms of teacher mobility).

Dynamics and Strategy-Proofness. One can be concerned about the dynamic incentives that

teachers may have under DA∗ and TO-BE. Indeed, Pereyra (2013) defined a dynamic overlapping

generation model where newly tenured teachers arrive without any initial assignment, are assigned

to a school and then ask for a reassignment during a certain number of periods before exiting

the market.66 In this environment, if all newly tenured teachers entering at a given date are less

preferred by all schools to the tenured teachers who already have an assignment, then he showed

that DA∗ is dynamically strategy-proof. So no teacher can ever misreport his preferences and obtain

65Our conversation with agents from the Ministry of Education suggests that this is one of their most desired
options.

66Their preferences are fixed over time and are assumed to be a linear order over the schools. Preferences of the
schools can evolve over time.
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a better-school at the current or some later date.67 If the TO-BE algorithm is properly extended to

account for newly tenured teachers and empty seats, then it is possible to show that, in the same

setting as in Pereyra (2013), it is also dynamically strategy-proof. In our reassignment setting with

no empty seats or newly tenured teachers, if one let initially assigned teachers arrive over time,

neither DA∗ nor TO-BE are dynamically strategy-proof.

67In his setting, a teacher reports a preference list only once when entering the market.
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1.7 Tables
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Table 1.1 – Welfare of teachers under different mechanisms

Choice Init DA∗ TO-BE BE(Init) BE(DA∗) 1S-BE(Init) 1S-BE(DA∗)
1 0 422.5 (2.4) 1163.0 (14.5) 1153.5 (17.9) 1169.9 (12.9) 1355.9 (13.5) 1347.8 (11.5)
2 7935 8084.2 (2.2) 8318.8 (9.1) 8287.2 (10.2) 8290.1 (6.8) 8386.1 (11.3) 8370.9 (7.8)
3 9125 9220.5 (0.5) 9361.5 (7.1) 9336.1 (9.9) 9341.7 (7.0) 9399.1 (8.4) 9390.8 (7.1)
4 9743 9796.1 (0.7) 9901.9 (6.2) 9882.7 (6.5) 9884.8 (5.8) 9929.0 (7.9) 9917.7 (6.2)
5 10038 10077.7 (0.5) 10150.3 (5.7) 10137.1 (5.3) 10140.1 (4.3) 10170.5 (5.6) 10162.7 (4.5)
6 10271 10297.0 (0.0) 10341.0 (4.7) 10328.7 (5.0) 10331.0 (3.7) 10354.8 (4.3) 10351.3 (3.7)
7 10366 10383.5 (0.5) 10418.8 (3.6) 10409.5 (3.9) 10408.7 (3.0) 10426.4 (3.5) 10422.7 (3.1)
8 10420 10432.5 (0.5) 10459.3 (3.7) 10450.6 (3.7) 10450.7 (2.7) 10463.5 (3.3) 10461.0 (2.9)
9 10461 10474.5 (0.5) 10493.7 (3.0) 10485.9 (3.4) 10487.5 (2.2) 10495.5 (2.9) 10494.6 (2.4)
>= 10 10579 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0)
Nb teachers moving 0 564.7 1373.0 1461.5 1488.2 1732.5 1709.7
Min 0 560.0 1333.0 1416.0 1456.0 1696.0 1677.0
Max 0 568.0 1408.0 1517.0 1513.0 1768.0 1739.0
SD 0 2.7 14.9 17.4 12.5 15.4 12.4
† Notes: This table presents the cumulative distribution of the number of teachers who obtain school rank k under their initial
assignment in column 1, under DA∗ in column 2, TO-BE in column 3, BE(Init) in column 4, BE(DA∗) in column 5, 1S-BE(Init) in
column 6 and 1S-BE(DA∗) in column 7. The data come from the assignment process of French teachers to regions in 2013. Simulation
standard errors are reported in parenthesis.
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Table 1.2 – Stability of the matchings obtained with different mechanisms

Nb regions Init DA∗ TO-BE BE(Init) BE(DA∗) 1S-BE(Init) 1S-BE(DA∗)
0 1980 2496.5 (2.4) 3742.7 (56.8) 3731.3 (55.4) 3799.4 (49.9) 3940.5 (56.9) 4001.2 (54.9)
1 8722 8880.9 (2.0) 9246.9 (16.5) 9215.5 (17.7) 9234.8 (17.7) 9294.2 (17.9) 9306.1 (17.7)
2 9694 9787.8 (0.4) 10004.9 (13.2) 9983.4 (14.4) 9991.9 (12.0) 10026.4 (13.3) 10035.3 (13.3)
3 10096 10149.5 (0.5) 10299.1 (8.2) 10287.5 (9.3) 10292.7 (8.0) 10309.6 (7.9) 10312.3 (7.5)
4 10323 10360.2 (0.6) 10447.0 (5.4) 10438.9 (5.8) 10444.5 (5.3) 10457.6 (5.9) 10459.3 (4.8)
>= 5 10579 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0) 10579 (0.0)
Nb of teachers blocking with at least one region
Mean . 8082.5 6836.3 6847.7 6779.6 6638.5 6577.8
Min . 8078.0 6675.0 6703.0 6665.0 6527.0 6453.0
Max . 8087.0 7003.0 6985.0 6917.0 6809.0 6701.0
SD . 2.4 56.8 55.4 49.9 56.9 54.9
† Notes: The upper part of this table presents the cumulative distribution of the number of regions with which teachers are
blocking. The data are from the assignment process of French teachers to regions in 2013. Column 1 reports the cumulative
distribution of the number of regions with which teachers block under their initial assignment. The following columns report the
cumulative distribution of the number of regions with which teachers block under DA∗, TO-BE, BE(Init), BE(DA∗), 1S-BE(Init)
and 1S-BE(DA∗). Simulation standard errors are reported in parenthesis.113
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Table 1.3 – Welfare of regions under different mechanisms

Net percentage of positions DA∗ TO-BE BE(Init) BE(DA∗) 1S-BE(Init) 1S-BE(DA∗)
-100/-91% 0.18 (0.03) 0 (0) 0 (0) 0.18 (0.03) 0.80 (0.15) 0.71 (0.13)
-90/-71% 0.18 (0.0) 0 (0) 0 (0) 0.18 (0.0) 1.06 (0.21) 0.93 (0.15)
-70/-51% 0.31 (0.03) 0 (0) 0 (0) 0.31 (0.03) 1.74 (0.26) 1.41 (0.21)
-50/-31% 0.57 (0.03) 0 (0) 0 (0) 0.50 (0.04) 3.19 (0.33) 2.57 (0.25)
-30/-1% 1.03 (0.03) 0 (0) 0 (0) 0.93 (0.05) 4.86 (0.39) 4 (0.32)
0% 84.32 (0.06) 72.01 (0.40) 71.18 (0.42) 70.90 (0.31) 72.67 (0.47) 71.81 (0.40)
1/29% 87.95 (0.02) 75.62 (0.44) 74.59 (0.50) 74.73 (0.37) 76.56 (0.52) 76.02 (0.40)
30/49% 91.05 (0.04) 79.11 (0.43) 78.02 (0.55) 77.66 (0.38) 80.01 (0.45) 79.14 (0.46)
50/69% 94.84 (0.03) 85.20 (0.38) 84.31 (0.40) 84.03 (0.38) 85.76 (0.48) 84.94 (0.43)
70/89% 97.40 (0.03) 90.32 (0.36) 89.70 (0.41) 89.04 (0.33) 89.63 (0.43) 88.82 (0.37)
90/100% 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
% of regions with
no priority change 83.22 72.01 71.18 69.83 67.05 67.12
SD 0.08 0.40 0.42 0.32 0.41 0.33
† Note: this table presents the cumulative percentage of regions having a net welfare improvement (relative to their initial
assignment). For each of the 49 subjects*31 regions, we compute the number of positions being assigned a teacher with a
higher priority, from which we subtract the number of positions being assigned a teacher with a lower priority. Then, for
each subject*region, the net total is divided by the total number of positions to obtain the percentage of positions being
improved in net terms. Finally, the total number of regions considered is divided by 49× 31 to obtain the average percentages
of regions. For instance, on average, under the DA∗, 0.18% of the regions have between 91% and 100% of their seats assigned
a teacher with a lower priority (in net terms). Simulation standard errors are reported in parenthesis.
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Table 1.4 – Fulfillment of the administration’s objectives

DA∗ TO-BE BE(Init) 1S-BE(Init)

Share of inexperienced teachers
Non-disadvantaged regions 26.88 (0.0) 27.50 (0.08) 27.66 (0.09) 27.42 (0.11)
Disadvantaged regions 45.66 (0.0) 44.99 (0.08) 44.82 (0.10) 45.07(0.11)

Share of inexperienced teachers (among incoming teachers)
Non-disadvantaged regions 17.57 (0.07) 24.40 (0.65) 26.05 (0.74) 21.14 (0.61)
Disadvantaged regions 28.56 (0.08) 29.00 (1.34) 30.09 (1.19) 30.98 (0.98)

Share of inexperienced teachers (among exiting teachers)
Non-disadvantaged regions 18.36 (0.07) 21.87 (0.56) 22.94 (0.63) 19.36 (0.51)
Disadvantaged regions 26.94 (0.07) 48.35 (2.78) 50.73 (2.61) 42.89 (2.68)

Nb spousal reunification 251.8 (1.48) 513.5 (10.11) 547.6 (12.01) 482.5 (10.55)
Nb teacher from disadvantaged school 110.3 (0.78) 83.4 (4.85) 90.4 (5.36) 106.8 (5.08)
† Note: The upper part of this table presents the share of teachers who have only one or two years of experience
under the current algorithm (in column 1), TO-BE, BE, and 1S-BE. We successively reports statistics for
all teachers, for incoming teachers only, and for exiting teachers. The last two rows of the table present
statistics on the number of teachers who move closer to their spouse, and who leave a disadvantaged school.
Simulation standard errors are reported in parenthesis.
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1.8 Appendix

1.8.1 Map of French administrative regions

1.8.2 Simulations

In this section, we report a certain number of simulations. Our goal here is to argue that, in a

realistic setting where a significant fraction of teachers are newcomers and where each school has a

significant fraction of available seats, the effect identified in Example 1 can occur quite often. In

order to do so, we consider the following environment. We have 600 teachers and 30 schools with 20

seats each; 300 teachers are newcomers, while the other half of teachers initially have an assignment.

We assume that the total number of seats equals the total number of teachers so that half of the

seats of each school are occupied and the other half are open seats.
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We randomly draw the utility of teacher t for school s as follows:

Ut(s) = us + ξst

where us is the common value of school s drawn uniformly over the interval [0, a] and ξst is the

idiosyncratic shock drawn uniformly over the interval [0, 1]. Parameter a measures the degree of

correlation in teachers’ preferences. For schools’ preferences, we have a similar specification:

Vs(t) = vt + ηst.

We assume that both common values (vt) and idiosyncratic shocks (ηst) are drawn uniformly in

[0, 1].

Finally, given the dynamic nature of the teacher assignment process, teachers initially assigned

good schools have a higher priority on average than teachers assigned poorer schools. In order to

take this into account, we assume that the initial assignment is assortative: teachers with high

common values are initially matched to schools with high common values. Formally, we assume that

the 10 teachers t having a common value vt within the 10 highest are matched to the school s with

the highest common value us. Similarly, the next 10 teachers having a common value within the

next 10 highest are matched to the school with the second highest common value, and so on.

We draw teachers’ and schools’ preferences 150 times. For each draw, we compute the outcome

of DA∗ and an outcome on the Pareto frontier, which Pareto-dominates DA∗.68 The following

table reports the number (averaged across iterations) of teachers staying at their initial assignment

for both DA∗ and the Pareto-dominating matching for several possible values of the correlation

parameter a.69

In many instances, DA∗ can be improved both in terms of efficiency and stability, as in Example 1.

The intuition is essentially the same: within top schools (i.e., for instance, the schools corresponding

to the ten highest common values), open seats are filled very quickly by teachers initially matched

to these top schools and partly by teachers initially matched to poorer schools. Hence, at some

68More precisely, in order to find the Pareto-dominating outcome, we run TO-BE starting from the allocation given
by DA∗. See Section 1.4.1 for the definition of TO-BE.

69In our environment, teachers always prefer being matched to being unmatched. Given that the total number of
seats equals the number of teachers, all teachers who are initially unmatched will end up being matched under DA∗
and therefore under the Pareto-dominating matching.

117



The Design of Teacher Assignment: Theory and Evidence

Table 1.5 – Number of teachers staying at their initial assignment: mean and
standard deviation over 150 iterations.

DA* SD TOBE(DA*) SD
[0, 0.1] 22.49 4.76 22.22 4.64
[0, 0.5] 53.94 7.60 42.58 6.17
[0, 15] 185.22 7.29 147.73 11.26
[0, 30] 188.63 6.03 167.84 8.95
[0, 60] 188.37 6.70 177.58 8.73
[0, 100] 189.72 6.11 182.32 7.99
[0, 1000] 188.81 6.58 188.11 6.79

point, we return to the context of the example where teachers initially matched to good schools

are willing to move to other good schools but cannot do so because of the large set of remaining

tenured teachers – initially matched to poorer schools – among whom some teachers may have a

higher priority at the schools they are targeting.

The simulations reveal that the scope of the improvement can potentially be large depending

on the precise value of the correlation parameter a (it is maximized for intermediate values of the

parameter).

1.8.3 Proof of Theorem 3

We want to prove the following proposition.

Proposition 1.8.1. Let ϕ be any selection of BE. If ϕ 6= TO-BE then ϕ is not strategy-proof.

Lemma 3. Let ϕ be any selection of BE. Fix any profile of preferences � and assume that ϕ(�) 6=

TO-BE(�). Let x be the outcome of TO-BE(�) and let y be that of ϕ(�). There exists t s.t.

x(t) �t y(t) �t µ0(t).

Proof. Let T (x, y) be the set of teachers for which x(t) �t y(t) �t µ0(t). We know that x is not

1-Pareto-dominated by y (by Proposition 1.4.1) and since y is individually rational and x 6= y, we

must have T (x, y) 6= ∅. Proceed by contradiction and assume that for all t ∈ T (x, y), we have

y(t) = µ0(t). Let B := T\T (x, y). Note that for any t ∈ B, y(t) is a school initially assigned

to some teacher in B. In addition, by definition, for all t ∈ B, y(t) �t x(t). If there was no

teacher t ∈ B for which y(t) �t x(t), then we would have the following situation: y would select

the initial allocation for all t ∈ T (x, y) and would be identical to x for all t /∈ T (x, y). Given that

x 6= y, we must have x(t) 6= y(t) = µ0(t) for some t ∈ T (x, y). Since x is individually rational, we
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have x(t) �t y(t) = µ0(t) for those t ∈ T (x, y). Hence x 1-Pareto-dominates y. But all schools

are also better-off under x rather than under y. Indeed, for each school s s.t. y(s) /∈ T (x, y),

y(s) = x(s) and for each school s s.t. y(s) ∈ T (x, y), because x is individually rational on both sides,

x(s) �s y(s) = µ0(s) with a strict inequality for s satisfying x(s) 6= y(s) (and such a s must exist

since x 6= y). Thus, x is individually rational on both sides and 2-Pareto-dominates y, which is not

possible given that y is an outcome of BE.

To recap, we have that for any t ∈ B, y(t) is a school initially assigned to some teacher in B

and for all t ∈ B, y(t) �t x(t) with a strict inequality for some t ∈ B. In addition, since y is the

outcome of ϕ(�) and ϕ 2-Pareto-dominates the initial allocation µ0, we must have that for all school

s, y(s) �s µ0(s). Hence, B is a two-sided blocking coalition for x, which is a contradiction since x

must be a point in the two–sided Core.

Proof of Proposition 1.8.1. We start from a profile of preferences � under which ϕ(�) 6=

TO-BE(�) which must exist by our assumption that ϕ 6= TO-BE. Given our profile of preferences

�, we let the profile of preferences �′ be defined as follows. For any t, any school s other than

TO-BE(�)[t] are ranked as unacceptable for t under �′. We must have TO-BE(�) = TO-BE(�′).

Now, we are in a position to prove the following lemma.

Lemma 4. TO-BE(�′) = ϕ(�′).

Proof. Suppose x := TO-BE(�′) 6= ϕ(�′) =: y. By the above lemma, there exists t s.t. x(t) �′t

y(t) �′t µ0(t) which yields a contradiction, by construction of �′t.

Note that TO-BE satisfies also the following property: for any profile of preferences �, for any

teacher t, TO-BE(�)(t) = TO-BE(�−t,�′t)(t). This will be used in the following lemma.

Lemma 5. If ϕ is strategy-proof then TO-BE(�Z ,�′−Z) = ϕ(�Z ,�′−Z) for any Z ⊆ T .

Proof. Assume ϕ is strategy-proof. The proof is by induction on the size of Z. For |Z| = 0, the result is

given by the previous lemma. Now, the induction hypothesis is that TO-BE(�Z ,�′−Z) = ϕ(�Z ,�′−Z)

for any subset Z with |Z| = k. Proceed by contradiction and suppose that there is Z s.t. |Z| = k+ 1

for which x := TO-BE(�Z ,�′−Z) 6= ϕ(�Z ,�′−Z) =: y. By the first lemma above, there exists t

s.t. TO-BE(�Z ,�′−Z)(t) Bt ϕ(�Z ,�′−Z)(t) Bt µ0(t) where Bt=�′t if t /∈ Z while Bt=�t otherwise.

If t /∈ Z, then there is a straightforward contradiction since under �′t there is a single school
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which is ranked above µ0(t) for teacher t. Now, assume that t ∈ Z. By the property noticed just

before the statement of the lemma, we must have TO-BE(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z ,�′−Z)(t)

and, by our induction hypothesis, ϕ(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z\{t},�′−Z ,�′t)(t). Thus, we

obtain ϕ(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z ,�′−Z)(t) �t ϕ(�Z ,�′−Z

)(t) which is a contradiction with the assumption that ϕ is strategy-proof (indeed, at (�Z ,�′−Z),

teacher t ∈ Z has an incentive to report �′t instead of �t).

Taking Z = T in the above lemma, given that ϕ(�) 6= TO-BE(�), we obtain the following

corollary which completes the proof of our proposition.

Corollary 2. ϕ is not strategy-proof.

�

1.8.4 Proof of Theorem 4

In the sequel, we prove our characterization result of one-sided maximal matchings given in

Theorem 4. Our proof is divided into two parts. We start by showing that any outcome of the

1S-BE algorithm is a one-sided maximal matching (Section 1.8.4.1):

Proposition 1.8.2. If µ is an outcome of the 1S-BE algorithm then µ is one-sided maximal.

Then, we move to the proof that any one-sided maximal matching corresponds to a possible

outcome of the 1S-BE algorithm (Section 1.8.4.2):

Proposition 1.8.3. If µ is one-sided maximal then µ is an outcome of the 1S-BE algorithm.

1.8.4.1 Proof of Proposition 1.8.2

Before moving to the proof we introduce a new notation. Given matching µ, we denote Bµ for

the set of blocking pairs of µ.

In the sequel, we fix two matchings µ and µ′ such that µ′ Pareto-dominates µ for teachers and

Bµ′ ⊆ Bµ. We show below that starting from µ, the graph associated to the 1S-BE algorithm must

have a cycle. Hence, any outcome of 1S-BE must be one-sided maximal, as claimed in Proposition

1.8.2.
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To give the intuition of each step of the proof, which uses a lot of graphical arguments, we will

use an example to illustrate each part. This example involves 6 teachers, t1, t2, t3, t4, t5, t6 and 6

schools s1, s2, s3, s4, s5, s6. In the example, matchings µ and µ′ are as follows:

µ =

 t1 t2 t3 t4 t5 t6

s1 s2 s3 s4 s5 s6



µ′ =

 t1 t2 t3 t4 t5 t6

s2 s3 s4 s5 s6 s1



As in Lemma 1, we can exhibit “cycles of exchanges”which can be used to go from µ to µ′ in the

proposition.

In Lemma 1, these cycles of exchanges were actual cycles in the graph associated with BE.

However, when considering the graph associated with 1S-BE, this is not the case anymore: the

cycles of exchanges are not necessarily cycles of the graph associated with 1S-BE. Before moving to

the first lemma, we note that all the nodes that are not part of cycles of exchanges are those where

the teacher of that node has the same allocation between µ and µ′. In the following the “nodes of

the cycles of exchanges”will be all the nodes (t, s) s.t µ(t) 6= µ′(t). We will say that a node (t, s)

1S-BE-points to another node (t′, s′) if (t, s) points toward (t′, s′) in the graph associated with the

1S-BE algorithm (starting from µ).

Lemma 6. Fix a node (t, s) of the cycles of exchanges. Then:

1. either its predecessor according to the cycles of exchanges 1S-BE-points toward (t, s);

2. or there is a node (t′, s′) in the cycles of exchanges such that t′ does not block with s under µ,

s �t′ s′ and t′ has the highest priority among those who desire s but do not block with it under

µ. And so (t′, s′) 1S-BE-points toward (t, s).

Before moving to the proof, let us illustrate this lemma in the example. Assume that all the

nodes except (t3, s3) are 1S-BE-pointed by their predecessors in the cycle of exchanges. According

to Lemma 6 there must be a node (t′, s′) in the cycle of exchanges which 1S-BE-points toward

(t3, s3). In the graph of Figure 1.1, this node is assumed to be (t5, s5). The dashed edge from
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(t2, s2) to (t3, s3) is here to show that this is not an edge of the 1S-BE graph but it is only an edge

corresponding to the cycle of exchanges.

Proof. Call (t′′, s′′) the predecessor of node (t, s) in the cycles of exchanges so that s′′ := µ(t′′) and

s := µ′(t′′). Because µ′ Pareto-dominates µ for teachers, we know that s �t′′ s′′ so that t′′ desires s

under µ. Assume that (t′′, s′′) does not 1S-BE-point to (t, s). This means that t′′ does not block

with s under µ and that there is another teacher t′ who does not block with s and has the highest

priority among those who desire s and do not block with it. Thus, (t′, s′) (where s′ := µ(t′)) 1S-BE

points toward (t, s). It remains to show that (t′, s′) is part of the cycles of exchanges. If it was

not the case, it would mean that µ(t′) = µ′(t′) = s′. Let us recap. We have that t′ does not block

with s under µ. In addition, by definition of t′, we must have that t′ �s t′′ (since t′′ does not block

with s under µ and desires s). In addition, t′ desires s under µ and so µ(t′) = µ′(t′) implies that t′

also desires s under µ′. Hence, because t′′ ∈ µ′(s), we obtain that t′ blocks with s under µ′. This

contradicts our assumption that Bµ′ = Bµ.

Lemma 6 allows us to identify a subgraph (N ′, E′) of the 1S-BE graph starting from µ such that

N ′ are the nodes of the cycles of exchanges and the set of edges E′ is built as follows. We start

from E′ = ∅ and we add the following edges: for each node (t, s) in the cycles of exchange, if its

predecessor (t̃, s̃) under the cycles of exchanges 1S-BE-points to (t, s) then ((t̃, s̃), (t, s)) is added to

E′. If on the contrary, (t̃, s̃) does no not 1S-BE-points to (t, s), then we pick the node (t′, s′) in the

cycles of exchanges identified in the second condition of Lemma 6 which 1S-BE-points toward (t, s)

and we add ((t′, s′), (t, s)) to E′. Note that, by construction, each node in N ′ has a unique in-going

edge in (N ′, E′). In the example, this subgraph (N ′, E′) is given by the right graph of Figure 1.1

(the solid arrows). Note that this graph admits a cycle: (t3, s3)→ (t4, s4)→ (t5, s5)→ (t3, s3). This

is a simple property of digraphs with in-degree one:

Lemma 7. Fix a finite digraph (N,E) such that each node has in-degree one. There exists a cycle

in this graph.

Proof. Fix a node n1 in the graph (N,E). Because it has in-degree one, we can let n2 be the unique

node pointing to n1. Again from n2 we can let n3 be the unique node pointing to n2. Because there

is a finite number of nodes in the graph, this process must cycle at some point.
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As the example illustrates, applying this lemma to (N ′, E′) leads to the following corollary:

Corollary 3. There is a cycle in the subgraph (N ′, E′).

We are now in a position to prove Proposition 1.8.2.

Completion of the proof of Proposition 1.8.2. Let µ be an outcome of the 1S-BE algorithm. Proceed

by contradiction and assume that µ is not one-sided maximal. Thus, there must exist a matching µ′

such that µ′ Pareto-dominates µ for teachers and Bµ′ ⊆ Bµ. Corollary 3 implies that there must

be a cycle in the graph associated with 1S-BE starting from µ, contradicting the fact that µ is an

outcome of 1S-BE.

Figure 1.1 – Cycles of exchanges and (N ′, E′).

•

•

•

•

•

•

a) Cycle of exhanges

(t1, s1)

(t2, s2)

(t3, s3)

(t4, s4)

(t5, s5)

(t6, s6)

•

•

•

•

•

•

b) (N ′, E′)

(t1, s1)

(t2, s2)

(t3, s3)

(t4, s4)

(t5, s5)

(t6, s6)

1.8.4.2 Proof of Proposition 1.8.3

In the sequel, we fix a one sided maximal matching µ′. We let µ be a matching such that µ′

Pareto-dominates for teachers µ and satisfies Bµ′ ⊆ Bµ. We claim that there is a cycle in the graph

associated with 1S-BE starting from µ which, once implemented, leads to a matching µ̃ such that µ′

Pareto-dominates µ̃ for teachers and satisfies Bµ′ ⊆ Bµ̃. Note that this implies Proposition 1.8.3.

Indeed, because, by definition, µ′ Pareto-dominates µ0 and Bµ′ ⊆ Bµ0 , we must have a cycle in the

graph associated with 1S-BE starting from µ0, which once implemented, yields to a matching say

µ̃1 such that µ′ Pareto-dominates µ̃1 for teachers and satisfies Bµ′ ⊆ Bµ̃1 . Now, we can iterate the
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reasoning and we get again that there is a cycle in the graph associated with 1S-BE starting from µ̃1,

which, once implemented, yields to a matching say µ̃2 such that µ′ Pareto-dominates µ̃2 for teachers

and satisfies Bµ′ ⊆ Bµ̃2 . We can pursue this reasoning. At some point, because the environment is

finite, we must reach matching µ′, as was to be shown.

In the sequel, as in the proof of Proposition 1.8.2, we consider the digraph (N ′, E′) as built in Section

1.8.4 after Lemma 6. Consider a cycle C̃ in this graph (which exists by Lemma 7). Let µ̃ be the

matching obtained once the cycle C̃ is implemented. In the example introduced in Section 1.8.4,

this matching would be:

µ1 =

 t1 t2 t3 t4 t5 t6

s1 s2 s4 s5 s3 s6


We first show the following lemma:

Lemma 8. µ′ Pareto-dominates µ̃ for teachers.

Proof. Fix a teacher t. If the node (t, s) to which t belongs is not part of the cycles of exchanges, we

know t does not move from µ to µ′ and so (t, s) is not in the cycle C̃. Hence, µ(t) = µ̃(t) = µ′(t).

So assume that (t, s) is part of the cycles of exchanges and let s := µ(t) and s′ := µ′(t) with s 6= s′.

There are three possible cases:

• Case 1: s = µ̃(t) 6= s′. Because µ′ Pareto-dominates µ for teachers, we have that µ′(t) = s′ �t

µ̃(t) = µ(t) = s.

• Case 2: s 6= µ̃(t) = s′. In such a case, we trivially have µ′(t) �t µ̃(t).

• Case 3: s 6= µ̃(t) := s1 6= s′. By construction of the graph (N ′, E′) when we implement cycle C̃,

we know that there is a unique edge
(
(t, s), (t1, s1)

)
in C̃ and that (t, s) is not the predecessor

of (t1, s1) under the cycles of exchanges, since otherwise, t would be matched to s′ under µ̃

which is not the case by assumption. Hence, by construction of (N ′, E′), the predecessor of

(t1, s1) under the cycles of exchanges, say (t′′, s′′), does not 1S-BE point to (t1, s1) and, in

addition, t does not block with s1 under µ, s1 �t s and t has the highest priority among those

who desire s1 but do not block with it under µ and 1S-BE-points to (t1, s1). Because (t′′, s′′)

does not 1S-BE point to (t1, s1), we know that t′′ does not block with s1. While because

(t′′, s′′) points to (t1, s1) under the cycles of exchange, we must have that t′′ desires s1. Thus,

we conclude that t �s1 t
′′.

124



The Design of Teacher Assignment: Theory and Evidence

Now, proceed by contradiction and assume that (µ̃(t) =)s1 �t s′(= µ′(t)). Because t′′ ∈ µ′(s1)

(recall that (t′′, s′′) is the predecessor of (t1, s1) under the cycles of exchange) and t �s1 t
′′, we

have that t blocks with s1 under µ′ i.e. (t, s1) ∈ Bµ′ . But, as already claimed, (t, s1) /∈ Bµ.

This contradicts that Bµ′ ⊆ Bµ. Thus, we must have µ′(t) �t µ̃(t).70

So we have shown that ∀t, µ′(t) �t µ̃(t).

The following lemma completes the argument.71

Lemma 9. We have that Bµ′ ⊆ Bµ̃

Proof. The proof proceeds by contradiction. Assume that there is a teacher t and a school s s.t

(t, s) ∈ Bµ′ but (t, s) /∈ Bµ̃. Note first that teacher t desires s under µ̃ because s �t µ′(t) (by

(t, s) ∈ Bµ′) and µ′(t) �t µ̃(t) (by Lemma 8). So because (t, s) /∈ Bµ̃ we must have that t̃ �s t for

t̃ := µ̃(s). Since (t, s) ∈ Bµ′ ⊆ Bµ, we know that t blocks with s under µ and so, since we are in a

one-to-one setting, µ(t̃) 6= s. This implies that (t̃, µ(t̃)) is part of cycle C̃. Since (t, s) ∈ Bµ′ , we also

know that µ′(t̃) 6= s. So to recap, we have that µ(t̃) 6= µ̃(t̃) 6= µ′(t̃). But, this means that in the

graph (N ′, E′), (t̃, µ(t̃)) points to (s, µ(s)) while (t̃, µ(t̃)) is not the predecessor of (s, µ(s)) in the

graph of exchanges. By construction of (N ′, E′) this means that t̃ does not block with s under µ

and has the highest priority among teachers who desire s under µ and do not block with it under

µ. In particular, because t̃ does not block with s under µ (but desires it under µ) we must have

µ(s) �s t̃. In addition, since (t, s) ∈ Bµ, we must have t �s µ(s) �s t̃, contradicting that t̃ �s t.

1.8.5 Proof of Theorem 5

In order to prove this result, we exhibit an instance where, irrespective of which (sequence of)

cycle(s) one selects in the graphs associated with 1S-BE , one teacher will gain by misreporting his

preferences. Assume that there are five teachers t1, . . . , t5 and five schools s1, . . . , s5. Teachers’ and

70Case 3 in Lemma 8 can be illustrated in the example. The node (t, s) would be (t5, s5) in the right graph of Figure
1.1. t5 is matched to s3 under µ̃ but is matched to s6 under µ′. Under C̃ (i.e., (t3, s3)→ (t4, s4)→ (t5, s5)→ (t3, s3)),
node (t5, s5) points to (t3, s3) while (t2, s2) does not 1S-BE-point to (t3, s3). Because (t2, s2) points to (t3, s3) in the
cycle of exchanges, it means that t2 ∈ µ′(s3) so that if t5 preferred s3 to his match under µ′, s2, it would imply that t5
blocks with s3 under µ′ while he does not under µ and so this would yield the contradiction.

71Note that up to here, all the arguments we provided can be applied to the many-to-one environment. However,
the following Lemma explicitly uses the one-to-one environment and is not true anymore in many-to-one. However, we
can use additional arguments to show that Proposition 1.8.3 goes through in the many-to-one setting. This is provided
in Section 1.8.10 of the supplementary material.
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schools’ preferences are given as follows:

�t1 : s5 s1 �s1 : t5 t2 t1

�t2 : s1 s3 s2 �s2 : t5 t2

�t3 : s4 s5 s3 �s3 : t3 t2 t4

�t4 : s5 s3 s4 �s4 : t3 t4

�t5 : s2 s1 s5 �s5 : t4 t2 t5 t3 t1

We let �:= (�t1 , . . . ,�t5). The initial assignment is given by:

µ0 =

 t1 t2 t3 t4 t5

s1 s2 s3 s4 s5


Starting from the initial assignment, the solid arrows in the graph below correspond to the graph

associated with 1S-BE.

•

• •

•

•

(t1, s1)

(t2, s2) (t3, s3)

(t4, s4)

(t5, s5)

We added dashed arrows from one node to another if the teacher in the origin of the arrow

prefers the school in the pointed node. Theses arrows are not actual arrows of the graph associated

with 1S-BE and so cannot be used to select a cycle. These arrows are just here to facilitate the

understanding of the argument.

When � is submitted, there are two possible choices of cycles in the graph:

• A “large”cycle given by: (t2, s2)→ (t3, s3)→ (t4, s4)→ (t5, s5)→ (t2, s2). Denote this cycle

by C̄.

• A “small”cycle given by: (t2, s2)→ (t3, s3)→ (t5, s5)→ (t2, s2). Denote this cycle by C.
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So we decompose the analysis for these two cases.

Case A: Under �, C̄ is selected:

Once this cycle is cleared, there are no cycles left in the graph associated with 1S-BE and the final

matching of 1S-BE is given by:

µ̄ =

 t1 t2 t3 t4 t5

s1 s3 s4 s5 s2


Now, assume that teacher t2 reports the following preference relation: �′t2 : s1, s5, s2 while others

report according to �. Under this profile, starting from the initial assignment, the graph associated

with 1S-BE is:

•

• •

•

•

(t1, s1)

(t2, s2) (t3, s3)

(t4, s4)

(t5, s5)

Now, there are two possible choices of cycles.

Case A.1: The cycle chosen is (t2, s2)� (t5, s5). Once carried out, the graph associated with 1S-BE

starting from the new matching is:

•

• •

•

•

(t1, s1)

(t5, s2) (t3, s3)

(t4, s4)

(t2, s5)

Clearly, there is a unique cycle (t4, s4) � (t3, s3). Consider the new matching once this cycle

is implemented. Teacher t3 obtains his most favorite school. Hence, in the graph associated with
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1S-BE starting from the new matching, node (t1, s1) will now point to node (t2, s5). In this graph,

the only cycle is (t2, s5)� (t1, s1) and so t2 is eventually matched to school s1. Hence, t2 obtains

his most preferred school under �t2 and so we exhibited a profitable misreport.

Case A.2: The cycle chosen is (t4, s4)� (t3, s3). Once carried out, the graph associated with 1S-BE

starting from the new matching is:

•

• •

•

•

(t1, s1)

(t2, s2) (t4, s3)

(t3, s4)

(t5, s5)

In this graph, there are three possible choices of cycles:

1. (t2, s2) → (t1, s1) → (t5, s5) → (t2, s2): in that case t2 is matched to s1 and so, again, we

identified a profitable misreport.

2. (t2, s2)� (t5, s5): Once cleared, the only cycle that is left is (t1, s1)� (t2, s5) and so t2 will

be matched to s1 leading to a successful manipulation.

3. (t1, s1)� (t5, s5): Once cleared, since t5 prefers s2 to s1 there is a unique cycle left which is

(t5, s1)� (t2, s2). Once again the manipulation of t2 is successful.

Thus, we have shown that when cycle C is selected under the profile �, teacher t2 has a profitable

misreport irrespective of the possible selections of cycles performed after t2’s deviation. Let us now

move to the other case.

Case B: Under �, C is selected:

Once this cycle is carried out, the graph associated with 1S-BE starting from the new matching is:
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•

• •

•

•

(t1, s1)

(t5, s2) (t2, s3)

(t4, s4)

(t3, s5)

There are two possible choices of cycles.

Case B.1: (t3, s5)� (t4, s4) is chosen. Then the matching obtained is the same as the one obtained

when we selected cycle C̄. So we can come back to Case A and we know that t2 has a successful

misreport.

Case B.2: (t1, s1) → (t3, s5) → (t4, s4) → (t2, s3) → (t1, s1) is chosen. In that case, each teacher

but teacher t4 gets his most preferred school. Hence, there is no more cycles in the new graph

associated with 1S-BE. In particular, teacher t4 gets matched to school s3. Now, assume that t4

submits the following preferences: �′t4 : s5, s4. The graph associated with 1S-BE starting from the

initial assignment is the same as the one under truthful reports (note that, although these are not

the arrows of the graph of 1S-BE, the dashed arrow from (t4, s4) disappears). So, again, we are left

with a choice between cycle C̄ and C.

1. If we carry out C, the graph starting from the new matching will be given by the graph just

above except that now (t4, s4) does not point to (t2, s3) anymore. Hence, we can only pick cycle

(t3, s5)� (t4, s4) and so t4 obtains his best school and we identified a profitable misreport for

teacher t4.

2. If we select C̄, we already know that we end up with matching µ̄ as defined above. So, here

again, t4 obtains his best school s5 and the manipulation is also a success.

To sum up, we have shown that for each possible selection of cycles under 1S-BE, there is a teacher

who has a profitable misreport. Thus, no selection of the 1S-BE algorithm is strategy-proof, as was

to be shown.
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1.8.6 Proof of Theorem 7 and 8

1.8.6.1 Preliminaries in random graph

In the sequel, we will exploit two standard results in random graph theory that are stated in this

section. It is thus worth introducing the relevant model of random graph. A graph G(n) consists in

n vertices, V , and edges E ⊆ V × V across V . A bipartite graph Gb(n) consists of 2n vertices

V1 ∪ V2 (each of equal size) and edges E ⊂ V1 × V2 across V1 and V2 (with no possible edges within

vertices in each side). Random (bipartite) graphs can be seen as random variables over the space

of (bipartite) graphs. We will see two asymptotic properties of random graphs: one based on the

notion of perfect matchings, the other on that of independent sets.

A perfect matching of Gb(n) is a subset E′ of E such that each node in V1 ∪ V2 is contained

in a single edge of E′.

Lemma 10 (Erdös-Rényi). Fix p ∈ (0, 1). Consider a “random graph” which selects a graph Gb(n)

with the following procedure. Each pair (v1, v2) ∈ V1 × V2 is linked by an edge with probability p

independently (of edges created for all other pairs). The probability that there is a perfect matching

in a realization of this random graph tends to 1 as n→∞.

The second important technical result is about so called independent sets. An independent

set of G(n) is V̄ ⊆ V such that for any (v1, v2) ∈ V̄ × V̄ , (v1, v2) is not in E.

Lemma 11 (Grimmett and McDiarmid, 1975). Fix p ∈ (0, 1). Consider a “random graph” which

selects a graph G(n) with the following procedure. Each pair (v1, v2) ∈ V × V is linked by an edge

with probability p independently (of edges created for all other pairs). Then,

Pr
{
∃ an independent set V̄ such that |V̄ | ≥ 2 logn

log 1
1−p

}
→ 0 as n→∞.

1.8.6.2 Proof of Theorem 7

In the sequel, we fix µ0 and let Tk be µ0(Sk) where µ0 is the initial allocation. We will prove the

following result which implies the first part of Theorem 7.

Proposition 1.8.4. Consider any selection ϕ of the BE-algorithm. Fix any k. Let T̄k := {t ∈

Tk |ϕ(t) 6= µ0(t)}. We have
|T̄k|
|Tk|

p−→ 1.
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Proof of Proposition 1.8.4. Fix an arbitrary k and fix ε > 0. We define a random graph with

{(t, µ0(t))}t∈Tk as the set of vertices. An edge between (t, µ0(t)) and (t′, µ0(t′)) is added if and only

if ξtµ0(t′) > 1− ε and ξt′µ0(t) > 1− ε and ηt′µ0(t) > 1− ε and ηtµ0(t′) > 1− ε. Then, in the random

graph, each edge between (t, µ0(t)) and (t′, µ0(t′)) is added independently with probability ε4 ∈ (0, 1).

Then, let T̂k := {t ∈ Tk
∣∣∣ϕ(t) = µ0(t) and Ut(µ0(t)) ≤ uk + 1− ε and Vµ0(t)(t) ≤ 1− ε}. It must be

that {(t, µ0(t))}t∈T̂k is an independent set, or else if there is an edge (t, µ0(t)), (t′, µ0(t′)) where

t, t′ ∈ T̂k for some realization of the random graph, then

Ut(µ0(t′)) > uk+1−ε ≥ Ut(µ0(t)) = Ut(ϕ(t)) and Vµ0(t′)(t) > 1−ε ≥ Vµ0(t′)(t′) = Vµ0(t′)(ϕ(µ0(t′)))

and similarly,

Ut′(µ0(t)) > uk+1−ε ≥ Ut′(µ0(t′)) = Ut′(ϕ(t′)) and Vµ0(t)(t′) > 1−ε ≥ Vµ0(t)(t) = Vµ0(t)(ϕ(µ0(t))).

Put in another way, both (t, µ0(t′)) and (t′, µ0(t)) block ϕ. Since, by definition, under ϕ, t is assigned

µ0(t) and t′ is assigned µ0(t′), this means that there are still cycles in the graph associated with BE

when starting from the assignment given by ϕ which contradicts the fact that ϕ is a selection of BE.

Now, we can use Lemma 11 to get that Pr
{
|T̂k| ≥ 2 log(|Tk|)

log 1
1−p

}
→ 0 as n→∞ and thus |T̂k||Tk|

p−→ 0

as n→∞. Setting T̃k := {t ∈ Tk
∣∣∣Ut(µ0(t)) ≤ uk + 1− ε and Vµ0(t)(t) ≤ 1− ε}, we have

|T̂k|
|Tk|

= |T̄
c
k ∩ T̃k|
|Tk|

= |T̄
c
k\T̃ ck |
|Tk|

≥ |T̄
c
k |
|Tk|
− |T̃

c
k |
|Tk|

.

We know that for the left hand-side above : |T̂k||Tk|
p−→ 0 as n → ∞. By the law of large numbers,

|T̃ ck |
|Tk|

p−→ 1− (1− ε)2 which can be made arbitrarily close to 0 given that ε > 0 is arbitrary. Hence,

we obtain that |T̄
c
k |
|Tk|

p−→ 0 as n→∞, as was to be proved.

Let us now move to the other part of Theorem 7. We have to show that there exists a selection

of BE which is asymptotically teacher-efficient, asymptotically school-efficient and asymptotically

stable. Note that in our environment asymptotic school-efficiency implies asymptotic stability. Hence,

the following proposition is enough for this purpose.
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Proposition 1.8.5. There is a mechanism ϕ which is a selection of the BE algorithm such that for

any k and any ε > 0 we have
|T̄k|
|Tk|

p−→ 1 and |S̄k|
|Sk|

p−→ 1

where T̄k := {t ∈ Tk |Ut(ϕ(t)) ≥ uk + 1− ε} and S̄k := {s ∈ Sk |Vs(ϕ(s)) ≥ 1− ε}.

Proof of Proposition 1.8.5. Fix ε > 0. We show that there exists a 2-IR mechanism ψ s.t.

for each k = 1, ...,K, it matches each teacher t ∈ Tk to a school in Sk and for each δ > 0 :

Pr


∣∣∣{t ∈ Tk ∣∣∣ξtψ(t) ≥ 1− ε

}∣∣∣
|Tk|

> 1− δ

→ 1

and

Pr


∣∣∣{s ∈ Sk ∣∣∣ηψ(s)s ≥ 1− ε

}∣∣∣
|Sk|

> 1− δ

→ 1

as n→∞ where we recall that Tk := µ0(Sk). This turns out to be enough for our purpose. Indeed,

consider the matching mechanism given by ϕ := BE◦ψ (i.e., the mechanism which runs BE on top

of the assignment found by mechanism ψ). Since ψ is 2-IR so is ϕ. Hence, by construction, this

must be a selection of BE which satisfies

|T̄k|
|Tk|

p−→ 1 and |S̄k|
|Sk|

p−→ 1

as n→∞.

Fix k = 1, ...,K. Fix ε0 ∈ (0, ε). Further assume that ε0 is small enough so that (1− ε0)2 > 1−δ.

Consider the set of pairs (t, s) ∈ Tk × Sk such that s = µ0(t) and either t ranks s within his ε0|Sk|

most favorite schools in Sk or s ranks t within his ε0|Tk| most favorite teachers in Tk. We eliminate

these pairs from Tk × Sk. Observing that the remaining set is a product set we denote it by T 0
k × S0

k .

Note that for each pair (t, s) ∈ Tk × Sk such that s = µ0(t), there is a probability (1− ε0)2 that

both t ranks s outside his ε0|Sk| most favorite schools in Sk and s ranks t outside his ε0|Tk| most

favorite teachers in Tk. Let us call Ets this event. For each such (t, s) where s = µ0(t) we denote

1ts for the indicator function which takes value 1 if the event Ets is true and 0 otherwise. Hence,

|T 0
k | =

∑
(t,s)∈Tk×Sk:s=µ0(t) 1ts. Thus, |T 0

k |(= |S0
k |) follows a Binomial distribution Bin(|Tk|,(1− ε0)2).

By the law of large numbers, |T
0
k |
|Tk|

p−→ (1− ε0)2 which by assumption is strictly greater than 1− δ.
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This proves that

Pr
{
|T 0
k |
|Tk|

≥ 1− δ
}
→ 1

and

Pr
{
|S0
k |
|Sk|

≥ 1− δ
}
→ 1.

In the sequel, we condition w.r.t. a realization of the random set T 0
k × S0

k assuming that both
|T 0
k |
|Tk| and

|S0
k|
|Sk| are greater than 1− δ. Now, fix ε′0 > 0 and note that conditional on this, each teacher

t ∈ T 0
k draws randomly72 in S0

k his ε′0|S0
k | most favorite schools in S0

k . Similarly, each school s ∈ S0
k

draws randomly in T 0
k its ε′0|T 0

k | most favorite teachers in T 0
k . We build a random bipartite graph

on T 0
k ∪ S0

k where the edge (t, s) ∈ T 0
k × S0

k is added if and only if t ranks s within his ε′0|S0
k | most

favorite schools in S0
k and, similarly, s ranks t within its ε′0

∣∣T 0
k

∣∣ most favorite teachers in T 0
k . This

random bipartite graph can be seen as a mapping from the set of ordinal preferences into the set of

bipartite graph Gb(
∣∣T 0
k

∣∣). We denote this random graph by G̃b. While Lemma 10 does not apply

directly to this type of random graph, we will claim below that this random graph has a perfect

matching, with probability approaching one as the market grows. Before stating and proving this

result, we need the following lemma

Lemma 12. With probability approaching one, for any teacher t ∈ T 0
k , any school s ∈ S0

k with

which ξts ≥ 1− ε′0
2 must be within his ε′0|S0

k | most favorite schools in S0
k. Similarly, with probability

approaching one, for any school s ∈ S0
k, any teacher t ∈ T 0

k , with whom ηts ≥ 1− ε′0
2 must be within

his ε′0|S0
k | most favorite teachers in T 0

k .

Proof. We prove the first part of the statement, the other part follows the same argument. Fix

t ∈ T 0
k and let Et be the event that any school s ∈ S0

k with which ξts ≥ 1− ε′0
2 must be within his

ε′0|S0
k | most favorite schools in S0

k . Let Xt :=
∑
s∈S0

k

1{
ξts≥1−

ε′0
2

} be the number of schools in S0
k with

which teacher t enjoys an idiosyncratic payoff greater than 1− ε′0
2 . Observe that Xt follows a Binomial

distribution B(|S0
k |,

ε′0
2 ) (recall that ξts follows a uniform distribution with support [0, 1]) and that

Xt ≤ ε′0|S0
k | implies that Et is true. Hence, we have to prove that Pr

{
∃t ∈ T 0

k : Xt > ε′0|S0
k |
}
→ 0 as

72In the following, by randomly, we mean uniformly i.i.d.
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n→∞. In the sequel, we let Yt be a Binomial distribution B(|S0
k |, 1−

ε′0
2 ), we have

Pr
{
∃t ∈ T 0

k : Xt > ε′0|S0
k |
}
≤ |T 0

k |Pr
{
Xt > ε′0|S0

k |
}

= |T 0
k |Pr

{
Yt ≤ (1− ε′0)|S0

k |
}

≤ |T 0
k | exp

{
−2|S0

k |(
ε′0
2 )2

}
→ 0

as n→∞, where the first inequality is by the union bound and the last one uses Hoeffding inequality.

The limit result uses the fact that under our conditioning event, |T 0
k | = |S0

k | ≥ (1− δ)|Sk| → ∞.

We now move to our statement on the existence of a perfect matching in G̃b.

Lemma 13. With probability going to 1 as n→∞, the realization of G̃b has a perfect matching.

Proof. In our random environment, the state space, say Ω, can be considered as the set of all possible

profiles of idiosyncratic shocks for teachers and schools, i.e., the space of all {{ξts}ts, {ηts}ts}. We

denote by ω a typical element of that set. Let E be the event under which “For each (t, s) ∈ T 0
k ×S0

k :

ξts ≥ 1− ε′0
2 and ηts ≥ 1− ε′0

2 imply that both t ranks s within his ε′0|S0
k | most favorite schools in S0

k

and s ranks t within his ε′0|T 0
k | most favorite teachers in T 0

k ”. By Lemma 12, Pr(E)→ 1. Now, let

us build the following random graph on T 0
k ∪ S0

k where this time the edge (t, s) ∈ T 0
k × S0

k is added if

and only if ξts ≥ 1− ε′0
2 et ηts ≥ 1− ε′0

2 . Let us call this graph G̃′b. So this time, G̃′b can be viewed as

a mapping from the set of cardinal preferences into the set of bipartite graph Gb(
∣∣T 0
k

∣∣). Let F be the

event that the realization of G̃′b has a perfect matching. By Lemma 10, Pr(F )→ 1. By definition,

E ∩F ⊂ Ω. Let us consider the set of all possible profiles of teachers and schools’ ordinal preferences

� induced by states E ∩ F and let us denote this set by P. Clearly, Pr(P) ≥ Pr(E ∩ F )→ 1. Now,

for each profile of preferences � in P, let G̃b(�) be the graph corresponding to G̃b when � is the

profile of realized preferences. We claim that for any � in P , G̃b(�) has a perfect matching. Indeed,

let ω ∈ E ∩ F be one state which induces � (this is well defined by construction of P). Because

ω ∈ F , the realization of G̃′b at profile ω has a perfect matching. In addition, because ω ∈ E, the

realization of G̃′b at profile ω is a subgraph of G̃b(�). We conclude that G̃b(�) has a perfect matching.

Combining this result with the observation that Pr(P)→ 1, we get

Pr
{
∃ a perfect matching in G̃b

}
→ 1
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as n→∞, as claimed.

Now, we build the mechanism ψ as follows. For each realization of ordinal preferences, (for each

k = 1, ...,K) we build a graph on T 0
k ∪ S0

k as defined above, i.e., where the edge (t, s) ∈ T 0
k × S0

k is

added if and only if t ranks s within his ε′0
∣∣S0
k

∣∣ most favorite schools in S0
k and, similarly, s ranks t

within its ε′0
∣∣T 0
k

∣∣ most favorite teachers in T 0
k . If there is a perfect matching, then under ψ, teachers

in T 0
k are matched according to this perfect matching while teachers in Tk\T 0

k remain at their initial

assignment. If there is no perfect matching then under ψ, all teachers in Tk remain at their initial

assignment. Assuming that ε′0 + δ < ε0, we get that the mechanism built in that way is 2-IR.73 To

see this, consider a teacher t who does not get matched to his initial school. This means that t is

matched to a school s given by a perfect matching of the random bipartite graph. By construction,

this means that t ranks s within his ε′0
∣∣S0
k

∣∣ most favorite schools in S0
k . Hence, this means that s is

within his ε′0
∣∣S0
k

∣∣+ δ |Sk| most favorite schools in Sk. Since ε′0
∣∣S0
k

∣∣+ δ |Sk| ≤ (ε′0 + δ) |Sk| < ε0 |Sk|

and because t ∈ T 0
k implies that µ0(t) is not within t’s ε0|Sk| most favorite schools in Sk, we obtain

that s is prefered by t to his initial assignment. Since a similar reasoning holds for schools, we obtain

that ψ is 2-IR.

As we have shown, with probability approaching one, our bipartite graph actually has a perfect

matching. Obviously, this perfect matching ensures that all teachers in T 0
k and all schools in S0

k get

matched to a partner within their ε′0
∣∣S0
k

∣∣ favorite. This holds for any realization of the random set

T 0
k × S0

k such that |T
0
k |
|Tk| and

|S0
k|
|Sk| are greater than 1− δ. Thus, it holds conditional on the random

sets |T
0
k |
|Tk| and

|S0
k|
|Sk| being greater than 1− δ. Hence, this perfect matching ensures that all teachers

in T 0
k and all schools in S0

k get matched to a partner within their (ε′0 + δ) |Sk| favorite in Sk and

Tk respectively. Hence, under our conditioning event that the random sets |T
0
k |
|Tk| and

|S0
k|
|Sk| are greater

than 1− δ,

Pr
{ |{t ∈ Tk |ψ(t) is within the (ε′0 + δ) |Sk| most favorite school in Sk }|

|Tk|
> 1− δ

}
→ 1

73This is without loss of generality because if Pr
{ |{t∈Tk|ξtψ(t)≥1−ε}|

|Tk|
> 1− δ

}
→ 1 then,

Pr
{ |{t∈Tk|ξtψ(t)≥1−ε}|

|Tk|
> 1− δ′

}
→ 1 for any δ′ > δ.
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and

Pr
{ |{s ∈ Sk |ψ(s) is within the (ε′0 + δ) |Sk| most favorite teacher in Tk }|

|Sk|
> 1− δ

}
→ 1

Given that the conditioning event has a probability approaching 1 as n → ∞, this is even true

without conditioning.

Now, without loss of generality, let us assume that δ is small enough so that ε′0 + δ < ε. It

remains to show that these (ε′0 + δ) |Sk| favorite partners in Sk (resp. Tk) yield an idiosyncratic

payoff greater than 1− ε. The following lemma completes the argument.

Lemma 14. With probability going to 1 as n→∞, the (ε′0 + δ) |Sk| most favorite schools of each

teacher in Tk yield an idiosyncratic payoff higher than 1 − ε and the (ε′0 + δ) |Tk| most favorite

teachers of each school in Sk yield an idiosyncratic payoff higher than 1− ε.

Proof. We show that with probability going to 1 as n→∞, the (ε′0 + δ) |Sk| most favorite schools

of each teacher in Tk yield an idiosyncratic payoff higher than 1− ε. The other part of the statement

is proved in the same way. For each t ∈ Tk, let Zt be the number of schools s in Sk for which

ξts ≥ 1 − ε. Note that if Zt > (ε′0 + δ) |Sk| then t′s (ε′0 + δ) |Sk| first schools in Sk must yield an

idiosyncratic payoff higher than 1− ε. Thus, it is enough to show that

Pr{∃t ∈ Tk with Zt ≤
(
ε′0 + δ

)
|Sk|} → 0

as n → ∞. Observe that Zt follows a Binomial distribution B(|Sk|, ε) (recall that ξts follows a

uniform distribution with support [0, 1]). Hence,

Pr{∃t ∈ Tk with Zt ≤
(
ε′0 + δ

)
|Sk|} ≤

∑
t∈Tk

Pr{Zt ≤
(
ε′0 + δ

)
|Sk|}

= |Tk|Pr{Zt ≤
(
ε′0 + δ

)
|Sk|}

≤ |Tk|
1
2 exp

(
−2(|Sk|ε− (ε′0 + δ) |Sk|)2

|Sk|

)

= |Tk|
2 exp

(
2 (ε− (ε′0 + δ))2 |Sk|

) → 0

where the first inequality is by the union bound while the second equality is by Hoeffding’s inequality.
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1.8.6.3 Proof of Theorem 8

Recall that Tk stands for µ0(Sk) where µ0 is the initial allocation. We will prove the following

result.

Proposition 1.8.6. Fix any k and any ε > 0. Let T̄k := {t ∈ Tk |Ut(TO-BE(t)) ≥ uk + 1− ε}. We

have
|T̄k|
|Tk|

p−→ 1.

Proof of Proposition 1.8.6. Recall that TO-BE is in the two-sided core. In particular, this

implies that there is no pair of teachers t and t′ so that µ0(t′) �t TO-BE(t), µ0(t) �t′ TO-BE(t′) (with

a strict preference for either t or t′), t′ �µ0(t) t and t �µ0(t′) t
′. Fix an arbitrary k and let E be the

event that the fraction of schools s ∈ Sk s.t. ηµ0(s)s ≤ 1− δ is greater than 1− 2δ where δ ∈ (0, 1).

By the law of large numbers, we have

1
|Sk|

∑
s∈Sk

1{ηµ0(s)s≤1−δ}
p−→ 1− δ.

Thus, Pr(E)→ 1. Let T 0
k := {t ∈ Tk

∣∣∣ηtµ0(t) ≤ 1− δ}.

In the sequel, we condition on event E and we fix a realization of
{
ηµ0(s)s

}
s∈S

compatible with

E. Observe that T 0
k is non-random once this has been fixed and note that conditional on these,

individuals’ preferences are still drawn according to the same distribution (as in the unconditional

case) and for t 6= µ0(s), ηts is also still drawn according to the same distribution. We further observe

that, because that event E holds, |T
0
k |
|Tk| ≥ 1− 2δ and hence

∣∣T 0
k

∣∣ goes to infinity as n→∞. We define

a random graph with {(t, µ0(t))}t∈T 0
k
as the set of vertices. An edge between (t, µ0(t)) and (t′, µ0(t′))

is added if and only if ξtµ0(t′) > 1− ε and ξt′µ0(t) > 1− ε and ηt′µ0(t) ≥ ηtµ0(t) and ηtµ0(t′) ≥ ηt′µ0(t′).

Then, in the random graph, each edge between (t, µ0(t)) and (t′, µ0(t′)) is added independently with

probability at least ε2δ2 ∈ (0, 1). Now, let T̄ 0
k := {t ∈ T 0

k |Ut(TO-BE(t)) ≤ uk + 1− ε}. It must be

that T̄ 0
k is an independent set, or else if there is an edge (t, t′) ∈ T̄ 0

k × T̄ 0
k for some realization of the

random graph, then

Ut(µ0(t′)) > uk + 1− ε ≥ Ut(TO-BE(t)) and Ut′(µ0(t)) > uk + 1− ε ≥ Ut′(TO-BE(t′)).

In addition, Vµ0(t)(t′) = ηt′µ0(t) ≥ ηtµ0(t) = Vµ0(t)(t) and Vµ0(t′)(t) = ηtµ0(t′) ≥ ηt′µ0(t′) = Vµ0(t′)(t′)
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and so TO-BE is blocked by a coalition of size two, a contradiction. Now, we can use Lemma

11 to get that Pr
{
|T̄ 0
k | ≥

2 log(|Tk|)
log 1

1−p

}
→ 0 as n → ∞ and thus |T̄

0
k |
|T 0
k
|

p−→ 0 as n → ∞. Now, since

T̄ ck = T̄ 0
k ∪ {t ∈ Tk\T 0

k |Ut(TO-BE(t)) ≤ uk + 1− ε} we must have

|T̄ ck |
|Tk|

≤ |T̄
0
k |+ |Tk\T 0

k |
|Tk|

≤ |T̄
0
k |
|Tk|

+ 2δ

Hence, given that |T̄
0
k |
|T 0
k
|

p−→ 0, we must have that with probability going to 1 as n goes to infinity,
|T̄ ck |
|Tk| ≤ 3δ and so |T̄k||Tk| ≥ 1− 3δ.

To recap, given event E and any realization of
{
ηµ0(s)s

}
s∈S

, we have |T̄k||Tk| ≥ 1−3δ with probability

going to 1 as n→∞. Since the realization of
{
ηµ0(s)s

}
s∈S

is arbitrary, we obtain that given event

E, |T̄k||Tk| ≥ 1 − 3δ with probability going to 1 as n → ∞. Since Pr(E) → 1 as n → ∞, we get that
|T̄k|
|Tk| ≥ 1 − 3δ with probability going to 1 as n → ∞. Since δ > 0 is arbitrary small, we obtain
|T̄k|
|Tk|

p−→ 1 as n→∞, as claimed.

Remark 2. The statement is related to that of (Che and Tercieux, 2015b, Theorem 1). However,

since TO-BE is not Pareto-efficient, their proof/argument does not apply.

Remark 3. The argument relies on the fact that TO-BE is not blocked by any coalition of size 2.

Hence, the result applies beyond the TO-BE mechanism and applies to any mechanism which cannot

be blocked by any coalition of size 2.

1.8.7 Many-to-one Extensions

We provide below the extensions of BE and 1S-BE to the many-to-one framework. So now, each

school may have multiple seats. As before, we assume that all the teachers are initially matched to a

school and that all seats are initially occupied by a teacher. As before let µ0 be the initial matching.

The Block Exchange Algorithm

The main difference is that now, blocking with a school does not necessarily means that a teacher

is preferred to a given matched one in this school. To keep the idea of not hurting any school, we

have to allow a node to point to another one only if the teacher of the former is preferred to the

teacher of the latter by the corresponding school.

- Step 0 : set µ(0) := µ0.
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- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a

directed graph where for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)

if and only if teacher t has a justified envy against teacher t′ at s′ i.e. he prefers s′ to its match

s and is preferred by s′ to t′. If there is no cycle, then return µ(k − 1) as the outcome of the

algorithm. Otherwise, select a cycle in this directed graph. For each edge (t, s) −→ (t′, s′) in

the cycle, assign teacher t to school s′. Let µ(k) be the matching so obtained. Go to step k+ 1.

The Teacher-Optimal Block Exchange Algorithm

In the following lines, we define a class of mechanisms which are all selections of the BE algorithm

and are strategy-proof. They all reduce to the TO-BE mechanism (as defined in the main text) in

the one-to-one environment.

Given a matching µ and a set of school S′ ⊆ S, we let

Opp(t, µ, S′) := {s ∈ S′ |t �s t′ for some t′ ∈ µ(s)} be the opportunity set of teacher t within schools

in S′. Note that for each teacher t, if µ0(t) ∈ S′, then Opp(t, µ0, S
′) 6= ∅ since µ0(t) ∈ Opp(t, µ0, S

′).

Now, fix an ordering over teachers f : {1, . . . , |T |} → T which will be the index for our class of

mechanisms.

- Step 0 : Set µ(0) = µ0, T (0) := T and S(0) := S.

- Step k ≥ 1 : Given T (k − 1) and S(k − 1), let the teachers in T (k − 1) and their assignments

stand for the vertices of a directed graph where for each pair of nodes (t, s) and (t′, s′), there

is an edge (t, s) −→ (t′, s′) if and only if teacher t ranks school s′ first in his opportunity set

Opp(t, µ(k− 1), S(k− 1)) = Opp(t, µ0, S(k− 1)), teacher t′ has a lower priority than teacher t

at school s′ and teacher t′ has the lowest ordering according to f among all teachers forming a

pair with school s′ and having a lower priority than t at s (i.e., f(t′) ≤ f(t′′) for all t′′ such

that µ(k − 1)(t′′) = s′ and t �s t′′). The directed graph so obtained is a directed graph with

out-degree one and, as such, has at least one cycle and cycles are pairwise disjoint. For each

edge (t, s) −→ (t′, s′) in a cycle, assign teacher t to school s′. Let µ(k) be the assignment

obtained and T (k) be the set of teachers who are not part of any cycle at the current step. If

T (k) is empty then return µ(k) as the outcome of the algorithm. Otherwise, go to step k + 1.

Remark 4. This class of mechanisms is still tightly connected to the top trading cycle mechanism.
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To see this, fix an ordering f and assume first that each teacher ranks schools outside his opportunity

set below his initial assignment. Now, for each teacher define preferences over pairs {(t, µ0(t))}t∈T in

the following way: for s 6= s′, (t, s) is strictly preferred to (t′, s′) if and only if s is strictly preferred

to s′; in addition, (t, s) is strictly preferred to (t′, s) if and only if f(t) < f(t′). We can consider

this modified environment as a one-to-one environment where agents’ preferences are strict. Top

trading cycles is well-defined in this environment and coincides with the outcome of TO-BE (with

the ordering f) defined in the previous paragraph.

The 1-Sided Block Exchange Algorithm

In order to keep the property that the graph associated with 1S-BE is a supergraph of that of

BE, we build on the previous generalization of BE to define the extension of 1S-BE.

- Step 0 : set µ(0) := µ0.

- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a

directed graph where for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)

if and only if either (1) teacher t has a justified envy toward t′ at s′; or (2) t desires s′ and t

is ranked higher by s′ than each teacher who both desires s′ and does not block with s′.74 If

there is no cycle, then return µ(k − 1) as the outcome of the algorithm. Otherwise, select a

cycle in this directed graph. For each edge (t, s) −→ (t′, s′) in the cycle, assign teacher t to

school s′. Let µ(k) be the matching so obtained. Go to step k + 1.

1.8.8 Empirical results

For the empirical part of the analysis, we decided not to focus on the second phase of the

assignment because reported preferences seem to be less reliable. First, teachers are restricted to

rank up to 20 schools and it is well known in the literature (Haeringer and Klijn, 2009) that such

constraint gives rise to strategic reports.75 Second, and perhaps more importantly, teachers can

report “wide wishes”instead of reporting a precise school. A wide wish can be a geographic area

74Note that here, teacher t may block with s′ under condition (2). Thus, it is easy to see that if (1) is satisfied then
(2) is satisfied as well. Hence, one could simplify the definition and suppress condition (1). We keep it just to have a
parallel with the definition provided in the one-to-one environment.

75Teachers can rank up to 20 or 30 schools, depending on the region. In regions where they can rank a maximum of
20 schools, 10.79 % of the teachers rank 20 schools. In regions where teachers can rank up to 30 schools, the constraint
is binding for less than 1 % of the teachers.
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such as a city, a group of cities, a department or an entire region. For instance, instead of ranking

a school within city x, a teacher can report the city x in his ranking. These wide wishes make it

possible for teachers to cover all schools within a region – if they wish to – which would not be

possible otherwise due to the limit of 20 schools that applies. Then, when a city is ranked, the

designer is free to assign the teacher to any school within that city. This is a way for teachers to

signal their strong preference to be in a city x (irrespective of where they eventually end up in that

city). While this may make sense from a design point of view, it makes it more difficult for us to

interpret the reported preferences.

As for the interpretation of the preferences reported during Phase 1, Prost (2013) provided a

preliminary analysis of teachers preferences in France using the observations of teachers movements.76

She noticed that the main determinant of the inter-regional mobility of teachers is the willingness

to get closer to the region where they were born. This suggests a first weak evidence toward the

possibility for teachers to have strong regional preferences.77 We believe that the main message of

our work, i.e. DA∗ is not 2-Pareto efficient and that the scope of improvement is important, would

remain if one refines the estimation of the preferences. As mentioned at the beginning of Section 1.5,

one can consider our analysis as simulations using reported preferences from a practical market.

25 067 teachers participate to the first phase of the assignment. We restrict the sample to the

49 subjects containing more than 10 teachers asking for a transfer : this restricts the sample to 20

808 teachers. We also remove from the sample all couples (1579 teachers) because of the specific

treatment they receive in the assignment procedure.78 Finally, only teachers who have an initial

assignment are kept in the sample. The final sample contains 10579 teachers.

76We also refer the reader to her description of the french assignment procedure in complement of ours.
77This estimation was done using data on the observed movements and not using the data of preferences during

the assignment procedure. It uses a standard logistic regression to estimate the probability for a teacher to quit his
position for a new one. A structural estimation using our data would be a natural next step. However, the dynamic
component of the problem can require us to use new techniques than the ones developed in the matching literature.
We leave it as a future research.

78Couples can jointly apply, in which case they have to submit two identical lists of regions to the central
administration. A specific treatment is applied to the couple: one of the spouses will not be assigned a region if the
other one does not get the same region. To achieve this, the central administration runs the algorithm once and checks
the region obtained by each spouse. If they don’t obtain the same region, one must have obtained a region that is
ranked lower in their common ranking (for instance rank 5). In that case, the ministry would delete all regions ranked
higher than rank 5 from their common list of preferences and run the algorithm again on the modified list. This process
is repeated until both spouses obtain the same regions. If this does not happen, they stay in their initial region.
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1.8.9 Many-to-one characterization of TO-BE when teachers rank only one

additional school.

Consider a many-to-one environment where each school s has qs ≥ 1 seat. We assume that each

teacher finds acceptable at most one school beyond his initial assignment. Let us denote by P the

restricted domain of preferences/priorities. A mechanism in this context is a mapping from P to

matchings. In the sequel, we consider the correspondence given by all possible selections of TO-BE

[to be defined].

Theorem. In the restricted domain P, the set of two-sided maximal and strategy-proof

mechanisms coincide with all selections of TO-BE.79

Proposition. Consider any two-sided maximal (and strategy-proof) mechanism ϕ. Fix any

profile � which lies in P. We must have ϕ(�) ∈ TO-BE(�).

Proof. Consider the graph in the first step of TO-BE(�). We claim that there is a cycle of

TO-BE(�) under which, any teacher who is part of the cycle gets assigned the object he points to

under ϕ(�). First, note that if there is a self-cycle in this step, i.e., a node (t, s) pointing to itself,

then, by 2-IR of ϕ, ϕ(�) must assign t to s. So let us assume that there is no self-cycle in the graph.

Pick an arbitrary cycle denoted (t1, s1), (t2, s2), ..., (tK , sK).

We claim that in this cycle, there must be a node (tk, sk) such that ϕ(�)(tk) 6= sk. Indeed, if

this was not the case, we would have that for all k = 1, ...,K, ϕ(�)(tk) = sk. But then ϕ(�) is not

two-sided maximal since we can assign each tk to sk+1. Noticing that this gives a 2-IR assignment,

the assignment we obtain 2-Pareto dominates ϕ(�).

The following simple lemma shows that there must be a cycle of TO-BE(�) under which, any

teacher who is part of the cycle gets assigned the object he points to under ϕ(�).

Lemma. If there exists t1 such that ϕ(�)(t1) 6= µ0(t1) then there exists a cycle

(t1, s1), (t2, s2), ..., (tK , sK) in the graph such that ϕ(�)(tk) = sk+1 for any k = 1, ...,K.

Proof. Assume that there exists t1 such that ϕ(�)(t1) 6= µ0(t1). Because � lies in P, ϕ(�

)(t1) =: s2 where s2 is t1’s top choice. In addition, since, under ϕ(�), one seat of school s2 is

taken by t1, there must be a teacher t2 such that µ0(t2) = s2 and ϕ(�)(t2) 6= s2. In addition,

because ϕ(�) is two-sided maximal, this teacher t2 can be chosen so that t1 �s2 t2 [il faut que je

relise la defn en many-to-one...]. By definition of the graph, (t1, s1) points to (t2, s2). Now, since

79Two-sided maximality implies 1-IR which, under domain restriction P, implies strategy-proofness.
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ϕ(�)(t2) 6= s2 = µ0(t2), we can iterate the reasoning to induce a path (t1, s1), (t2, s2), ... in the graph

such that ϕ(�)(tk) = sk+1 for any k ≥ 1. Since the graph is finite, this path will cycle at some point.

�

Now, consider the new graph obtained after we removed the teachers who are part of this cycle

and the seats they point to in the cycle. The exact same reasoning holds here. Hence, we can iterate

the reasoning until we exhaust the market. We obtain a sequence of cycles selected in the graphs

associated with TO-BE which, once implemented, yields the assignment given by ϕ(�). This shows

that ϕ(�) ∈ TO-BE(�). �

1.8.10 Many-to-one extension of Theorem 4

In the sequel, we prove our characterization result of one-sided maximal matchings given in

Theorem 4. Our proof is divided into two parts. We start by showing that any outcome of the

1S-BE algorithm is a one-sided maximal matching (Section 1.8.10.1):

Proposition 1.8.7. If µ is an outcome of the 1S-BE algorithm then µ is one-sided maximal.

Then, we move to the proof that any one-sided maximal matching corresponds to a possible

outcome of the 1S-BE algorithm (Section 1.8.10.2):

Proposition 1.8.8. If µ is one-sided maximal then µ is an outcome of the 1S-BE algorithm.

1.8.10.1 Proof of Proposition 1.8.7

Before moving to the proof we introduce a new notation. Given matching µ, we denote Bµ for

the set of blocking pairs of µ.

In the sequel, we fix two matchings µ and µ′ such that µ′ Pareto-dominates µ for teachers and

Bµ′ ⊆ Bµ. We show below that starting from µ, the graph associated to the 1S-BE algorithm must

have a cycle. Hence, any outcome of 1S-BE must be one-sided maximal, as claimed in Proposition

1.8.7.

To give the intuition of each step of the proof, which uses a lot of graphical arguments, we will

use an example to illustrate each part. This example involves 6 teachers, t1, t′1, t2, t′2, t3, t4 and 4
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schools s1, s2, s3, s4. In the example, matchings µ and µ′ are as follows:

µ =

 t1 t′1 t2 t′2 t3 t4

s1 s1 s2 s2 s3 s4



µ′ =

 t1 t′1 t2 t′2 t3 t4

s2 s4 s3 s1 s1 s2



As in Lemma 1, we can exhibit “cycles of exchanges”which can be used to go from µ to µ′ in the

proposition. It is worth noting that in the many-to-one environment, these cycles of exchanges are

not uniquely defined. Indeed, if for a given selection of cycles of exchanges, there are two nodes that

involve the same school, then this cycle can be decomposed into two cycles of exchanges. Figure

1.2 illustrates this simple fact: in the left part of the figure, there is a a cycle of exchanges starting

from µ which once implemented leads to µ′. It is easy to see that we can decompose this cycle into

two smaller cycles of exchanges, showed in the right part of the figure, that also lead to µ′ once

implemented.

Figure 1.2 – Two equivalent cycles of exchanges in many-to-one.
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•

•

•

•

a) Cycles of exhanges 1

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

•

•

•

•

•

•

b) Cycles of exhanges 2

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

So for the rest of the proof, we fix (a collection of) cycles of exchanges which takes us from µ to

µ′ once implemented. To fix ideas, in the example, we consider the one on the left part of Figure

1.2. In Lemma 1, these cycles of exchanges were actual cycles in the graph associated with BE.
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However, when considering the graph associated with 1S-BE, this is not the case anymore: the

cycles of exchanges are not necessarily cycles of the graph associated with 1S-BE. Before moving to

the first lemma, we note that all the nodes that are not part of cycles of exchanges are those where

the teacher of that node has the same allocation between µ and µ′. In the following the “nodes of

the cycles of exchanges”will be all the nodes (t, s) s.t µ(t) 6= µ′(t). We will say that a node (t, s)

1S-BE-points to another node (t′, s′) if (t, s) points toward (t′, s′) in the graph associated with the

1S-BE algorithm (starting from µ).

Lemma 15. Fix a node (t, s) of the cycles of exchanges. Then:

1. either its predecessor according to the the cycles of exchanges 1S-BE-points toward (t, s);

2. or there is a node (t′, s′) in the cycles of exchanges that such that t′ does not block with s under

µ, s �t′ s′ and t′ has the highest priority among those who desire s but do not block with it

under µ. And so (t′, s′) 1S-BE-points toward (t, s).

Before moving to the proof, let us illustrate this lemma in the example. Assume that all the

nodes except (t3, s3) are 1S-BE-pointed by their predecessors in the cycle of exchanges. According

to Lemma 15 there must be a node (t′, s′) in the cycle of exchanges which 1S-BE-points toward

(t3, s3). In the graph of Figure 1.3, this node is assumed to be (t4, s4). The dashed edge from

(t2, s2) to (t3, s3) is here to show that this is not an edge of the 1S-BE graph but it is only an edge

corresponding to the cycle of exchanges.

Proof. Call (t′′, s′′) the predecessor of node (t, s) in the cycles of exchanges so that s′′ := µ(t′′) and

s := µ′(t′′). Because µ′ Pareto-domination for teachers µ, we know that s �t′′ s′′ so that t′′ desires s

under µ. Assume that (t′′, s′′) does not 1S-BE-point to (t, s). This means that t′′ does not block

with s under µ and that there is another teacher t′ who does not block with s and has the highest

priority among those who desire s and do not block with it. Thus, (t′, s′) (where s′ := µ(t′)) 1S-BE

points toward (t, s). It remains to show that (t′, s′) is part of the cycles of exchanges. If it was

not the case, it would mean that µ(t′) = µ′(t′) = s′. Let us recap. We have that t′ does not block

with s under µ. In addition, by definition of t′, we must have that t′ �s t′′ (since t′′ does not block

with s under µ and desires s). In addition, t′ desires s under µ and so µ(t′) = µ′(t′) implies that t′

also desires s under µ′. Hence, because t′′ ∈ µ′(s), we obtain that t′ blocks with s under µ′. This

contradicts our assumption that Bµ′ ⊆ Bµ.
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Lemma 15 allows us to identify a subgraph (N ′, E1) of the 1S-BE graph starting from µ such

that N ′ are the nodes of the cycles of exchanges and the set of edges E1 is built as follows. We start

from E1 = ∅ and we add the following edges: for each node (t, s) in the cycles of exchange, if its

predecessor (t̃, s̃) under the cycles of exchanges 1S-BE-points to (t, s) then ((t̃, s̃), (t, s)) is added to

E1. If on the contrary, (t̃, s̃) does no not 1S-BE-points to (t, s), then we pick the node (t′, s′) in the

cycles of exchanges identified in the second condition of Lemma 15 which 1S-BE-points toward (t, s)

and we add ((t̃, s̃), (t, s)) to E1. Note that, by construction, each node in N ′ has a unique in-going

edge in (N ′, E1). In the example, this subgraph (N ′, E1) is given by the right graph of Figure 1.3

(the solid arrows). Note that this graph admits a cycle: (t3, s3)→ (t′1, s1)→ (t4, s4)→ (t3, s3). This

is a simple property of digraphs with in-degree one:

Lemma 16. Fix a finite digraph (N,E) such that each node has in-degree one. There exists a cycle

in this graph.

Proof. Fix a node n1 in the graph (N,E). Because it has in-degree one, we can let n2 be the unique

node pointing to n1. Again from n2 we can let n3 be the unique node pointing to n2. Because there

is a finite number of nodes in the graph, this process must cycle at some point.

As the example illustrates, applying this lemma to (N ′, E1) leads to the following corollary:

Corollary 4. There is a cycle in the graph associated with 1S-BE starting from µ.

We are now in a position to prove Proposition 1.8.7.

Completion of the proof of Proposition 1.8.7. Let µ be an outcome of the 1S-BE algorithm. Proceed

by contradiction and assume that µ is not one-sided maximal. Thus, there must exist a matching µ′

such that µ′ Pareto-dominates µ for teachers and Bµ′ ⊆ Bµ. Corollary 4 implies that there must

be a cycle in the graph associated with 1S-BE starting from µ, contradicting the fact that µ is an

outcome of 1S-BE.

1.8.10.2 Proof of Proposition 1.8.8

In the sequel, we fix a one sided maximal matching µ′. We let µ be a matching such that µ′

Pareto-dominates for teachers µ and satisfies Bµ′ ⊆ Bµ. We claim that there is a cycle in the graph

associated with 1S-BE starting from µ which, once implemented, leads to a matching µ̃ such that µ′
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Figure 1.3 – Cycles of exchanges and (N ′, E1).
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Pareto-dominates µ̃ for teachers and satisfies Bµ′ ⊆ Bµ̃. Note that this implies Proposition 1.8.8.

Indeed, because, by definition, µ′ Pareto-dominates µ0 and Bµ′ ⊆ Bµ0 , we must have a cycle in the

graph associated with 1S-BE starting from µ0, which once implemented, yields to a matching say

µ̃1 such that µ′ Pareto-dominates µ̃1 for teachers and satisfies Bµ′ ⊆ Bµ̃1 . Now, we can iterate the

reasoning and we get again that there is a cycle in the graph associated with 1S-BE starting from µ̃1,

which, once implemented, yields to a matching say µ̃2 such that µ′ Pareto-dominates µ̃2 for teachers

and satisfies Bµ′ ⊆ Bµ̃2 . We can pursue this reasoning, at some point, because the environment is

finite, we must reach matching µ′, as was to be shown.

We start by proving a lemma which will be useful in the subsequent arguments. Starting from

any matching µ, it states that – in the graph associated to the 1S-BE algorithm – if a node points

to another node involving school s then it also points to all other nodes involving school s.

Lemma 17. Let (t, s) be a node in the graph associated with the 1S-BE algorithm starting from a

matching µ. If (t, s) points to (t′, s′) then (t, s) points to (t′′, s′) for all t′′ ∈ µ(s′).

Proof. Let us assume that (t, s) points to (t′, s′) and consider any node (t′′, s′). Let us first consider

the case where t �s′ t′′. Given that (t, s) points to (t′, s′), we must have that t desires s′. Hence,

t has justified envy toward t′′ and so, by definition of 1S-BE, (t, s) must point to (t′′, s′). Now,

consider the other case in which t′′ �s′ t. We have to check that t is preferred by s′ to each teacher

who desires s′ and does not block with it. If t �s′ t′, then for any teacher t̃ who desires s′ and does
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not block with s′, we have that t′ �s′ t̃ which implies t �s′ t̃ so that t is preferred by s′ to those who

desire s′ and do not block with it. Hence, (t, s) must point to (t′′, s′). Now, if t′ �s′ t, because we

know that (t, s) points to (t′, s′), t must be preferred by s′ to those who desire s′ and do not block

with it so that (t, s) must also point to (t′′, s′).

In the sequel, as in the proof of Proposition 1.8.7, we fix (a collection of) cycles of exchanges

which takes us from µ to µ′ once implemented. We consider the digraph (N ′, E1) as built in Section

1.8.10 after Lemma 15. Consider a cycle C1 in this graph (which exists by Lemma 16). Let µ1 be

the matching obtained once the cycle C1 is implemented. In the example introduced in Section

1.8.10, this matching would be:

µ1 =

 t1 t′1 t2 t′2 t3 t4

s1 s4 s2 s2 s1 s3


We first show the following lemma.

Lemma 18. µ′ Pareto-dominates µ1 for teachers.

Proof. Fix a teacher t. If the node (t, s) to which t belongs is not part of the cycles of exchanges, we

know t does not move from µ to µ′ and so (t, s) is not in the cycle C1. Hence, µ(t) = µ1(t) = µ′(t).

So assume that (t, s) is part of the cycles of exchanges and let s := µ(t) and s′ := µ′(t) with s 6= s′.

There are three possible cases:

• Case 1: s = µ1(t) 6= s′. Because µ′ Pareto-dominates µ for teachers, we have that µ′(t) =

s′ �t µ1(t) = µ(t) = s.

• Case 2: s 6= µ1(t) = s′. In such a case, we trivially have µ′(t) �t µ1(t).

• Case 3: s 6= µ1(t) := s1 6= s′. By construction of the graph (N ′, E1) when we implement

cycle C1, we know that there is a unique edge
(
(t, s), (t1, s1)

)
in C1 and that (t, s) is not the

predecessor of (t1, s1) under the cycles of exchanges, since otherwise, t would be matched to

s′ under µ1 which is not the case by assumption. Hence, by construction of (N ′, E1), the

predecessor of (t1, s1) under the cycles of exchanges, say (t′′, s′′), does not 1S-BE point to

(t1, s1) and, in addition, t does not block with s1 under µ, s1 �t s and t has the highest priority

among those who desire s1 but do not block with it under µ and 1S-BE-points to (t1, s1).
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Because (t′′, s′′) does not 1S-BE point to (t1, s1), we know that t′′ does not block with s1.

While because (t′′, s′′) points to (t1, s1) under the cycles of exchange, we must have that t′′

desires s1. Thus, we conclude that t �s1 t
′′.

Now, proceed by contradiction and assume that (µ1(t) =)s1 �t s′(= µ′(t)). Because t′′ ∈ µ′(s1)

(recall that (t′′, s′′) is the predecessor of (t1, s1) under the cycles of exchange) and t �s1 t
′′, we

have that t blocks with s1 under µ′ i.e. (t, s1) ∈ Bµ′ . But, as already claimed, (t, s1) /∈ Bµ.

This contradicts that Bµ′ ⊆ Bµ. Thus, we must have µ′(t) �t µ1(t).80

So we have shown that ∀t, µ′(t) �t µ1(t).

If we were sure that it is always the case that Bµ′ ⊆ Bµ1 , the proof would be completed. Unfortunately,

even if this is true in the one-to-one environment, this may not be true in the many-to-one case.

To give an intuition, assume that in the example we have t1 �s1 t3 �s1 t2 �s1 t′2 �s1 t′1 and

s1 �t2 s3 �t2 s2. So t2 blocks with s1 under both µ and µ′. But after implementing cycle C1, we see

that t2 does not block with s1 anymore. Indeed, the only teacher for whom t2 feel justified envy

under µ is t′1. But t′1 is replaced by t3 once C1 is implemented and t1 has a higher priority than t2 at

s1 (while t1 stays matched to s1). So we will show that if this arises, we can find another subgraph

of the 1S-BE graph starting from µ, call it (N ′, E2), still with in-degree one for each node so that

there is a cycle C2 in this subgraph and the matching µ2 obtained with this cycle keeps the blocking

pair (t2, s1).

Lemma 19. Assume that there is (t1, s1) ∈ Bµ′ but not in Bµ1. Then there is a teacher t∗1 with

s∗1 := µ(t∗1) s.t t1 �s1 t
∗
1 and (t∗1, s∗1) is part of the cycles of exchanges and points to all nodes of the

form (t, s1) in the graph associated with 1S-BE starting from µ.

Before moving to the proof, let us illustrate the lemma in the example. As explained above, the

“problem” in the graph (N ′, E1) (which yields to (t2, s1) /∈ Bµ1) is that the node pointing to (t′1, s1) is

(t3, s3) and that t3 �s1 t2. But we have teacher t′2 who is less preferred by s1 than t2, is not matched

to s1 under µ but is under µ′. In addition, since we assumed that node (t′2, s2) is 1S-BE-pointing

80Case 3 in Lemma 18 can be illustrated in the example. The node (t, s) would be (t4, s4) in the right graph of Figure
1.3. t4 is matched to s3 under µ1 but is matched to s2 under µ′. Under C1 (i.e., (t3, s3)→ (t′1, s1)→ (t4, s4)→ (t3, s3)),
node (t4, s4) points to (t3, s3) while (t2, s2) does not 1S-BE-point to (t3, s3). Because (t2, s2) points to (t3, s3) in the
cycle of exchanges, it means that t2 ∈ µ′(s3) so that if t4 preferred s3 to his match under µ′, s2, it would imply that t4
blocks with s3 under µ′ while he does not under µ and so this would yield the contradiction.
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to (t1, s1) under µ, we can use Lemma 17 to be sure that it is also pointing to (t′1, s1) so that t∗1 in

the above lemma would be t′2 in the example. The argument in the proof below shows that this

construction can be made in general.

Proof. Note first that because t1 desires s1 under µ and µ′, t1 must also desire s1 under µ1 because,

by Lemma 18, µ′(t1) �t1 µ1(t1). Now, because t1 blocks with s1 under µ, it means that there is

t ∈ µ(s1) s.t t1 �s1 t. Fix one such teacher t. Since, by assumption, (t1, s1) /∈ Bµ1 , it means that

t is not matched to s1 under µ1 and so, when implementing C1, t has been replaced by a teacher

t′ such that t′ �s1 t1 since t1 does not block with s1 under µ1 but desires s1 under µ1. Since t1

blocks with s1 under µ′ it means that there is a teacher t′1 ∈ µ′(s1) s.t t1 �s1 t
′
1, let s′1 := µ(t′1).

Note first that (t′1, s′1) is part of the cycles of exchanges. To see this, observe that if it was not the

case then we would have that t′1 ∈ µ(s1) but because (t1, s1) does not block µ1, t′1 /∈ µ1(s1). But

because µ1(t1) �t1 µ(t1) = s1 and, by Lemma 18, µ′(t1) �t1 µ1(t1), we conclude that t1 cannot be

matched to s1 under µ′, a contradiction. Hence, if the node (t′1, s′1) 1S-BE-points to (t, s1) then we

can set t∗1 := t′1 and s∗1 := s′1 and the argument is complete using Lemma 17. So, now, consider the

case where node (t′1, s′1) does not 1S-BE-point to (t, s1). We already know that (t′1, s′1) is part of the

cycles of exchanges so let (t̃, s1) be its successor under these cycles of exchanges (s1 has to be part

of this node since t′1 ∈ µ′(s1)). If (t′1, s′1) was 1S-BE-pointing to (t̃, s1) then by Lemma 17 it would

also point to (t, s1), a contradiction. So node (t′1, s′1) does not 1S-BE-point to its successor under

the cycles of exchanges, i.e., (t̃, s1). Thus, we have that t′1 does not block with s1 under µ (if he

were to block with s1, (t′1, s′1) would be 1S-BE-pointing to some node which includes school s1 and

so toward (t̃, s1), a contradiction) and, by condition 2 of Lemma 15, there is a teacher t′′1, whose

node is part of the cycles of exchanges, who does not block with s1 under µ, desires s1 and has the

highest priority among those who do not block with s1 under µ and desire it. In particular the node

(t′′1, µ(t′′1)) 1S-BE-points to (t̃, s1) and so by Lemma 17 points also to (t, s1). Since t′′1 does not block

with s1 under µ but that t1 does, it means that t1 �s1 t
′′
1, so we can set t∗1 := t′′1 and s∗1 := µ(t′′1).

Here again, we can use Lemma 17 to make sure that (t∗1, s∗1) indeed points to all the nodes (t, s1)

under the graph of 1S-BE.

Coming back to our example, we can modify the graph (N ′, E1) in deleting the edge
(
(t3, s3), (t′1, s1)

)
and replace it by

(
(t′2, s2), (t′1, s1)

)
. In doing so, we obtain a new subgraph of 1S-BE where each
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node still has in-degree one and so still has a cycle. But, by construction of this new graph, the

matching once the new cycle is implemented keeps (t2, s1) as a blocking pair. This is illustrated in

the left graph in Figure 1.4 and the new cycle is now (t′2, s2)→ (t′1, s1)→ (t4, s4)→ (t′2, s2). The

general procedure is given below.

Let us assume that there is a node (t1, s1) such that it is in Bµ′ but not in Bµ1 . Fix a teacher

t ∈ µ(s1) such that t1 �s1 t. We know that t must leave s1 under µ1 (because (t1, s1) does not

block µ1) and is replaced by a teacher t′ such that t′ �s1 t1. Since the teacher t∗1 identified in

Lemma 19 satisfies t1 �s1 t
∗
1, we have that t′ 6= t∗1. So under the graph (N ′, E1), because t′ replaces

t when at s1 when we implement C1, we must have that
(
(t′, µ(t′)), (t, s1)

)
∈ E1 and because each

node has in-degree one,
(
(t∗1, s∗1), (t, s1)

)
/∈ E1. But that node is an edge in the graph of 1S-BE by

construction. So define a new graph (N ′, E2) where E2 corresponds to E1 where all edges of the

form
(
(t′, µ(t′)), (t, s1)

)
with t1 �s1 t have been replaced by

(
(t∗1, s∗1), (t, s1)

)
where (t∗1, s∗1) is as in

Lemma 19. So (N ′, E2) is still a subgraph of the 1S-BE graph starting from µ and all the nodes in

N ′ still have in-degree one so that using Lemma 16, we have a cycle C2. We let µ2 be the matching

obtained once C2 is implemented.

Figure 1.4 – Graphs of (N ′, E2) and (N ′, E3).
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•
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•

•

a) (N ′, E2).

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

•

•

•

•

•

•

b) (N ′, E3).

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

We obtain:

Lemma 20. We have that:

1. µ′ Pareto-dominates µ2 for teachers.
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2. (t1, s1) ∈ Bµ2.

Proof. For part 1, fix a teacher t and let s := µ(t). Without loss, assume that (t, s) is part of the

cycles of exchanges. First note that the only new edges (i.e. those in E2\E1) are those of the form(
(t∗1, s∗1), (t̃, s1)

)
for t̃ ∈ µ(s1) such that t1 �s1 t̃. So if the edge that matched t under C2 is an old one

(i.e. belongs to E1), the same argument as in Lemma 18 can be used. So assume that the edge that

matched t is of the form
(
(t∗1, s∗1), (t̃, s1)

)
, so that t = t∗1 and µ2(t) = s1. Using the same notations as

in Lemma 19, there are two cases to consider:

• Case 1: t∗1 = t′1. In that case, we know that t′1 ∈ µ′(s1) and so trivially that s1 = µ′(t∗1) �t∗1
µ2(t∗1) = s1.

• Case 2: t∗1 = t′′1. If µ′(t′′1) = s1 then trivially, µ′(t′′1) �t′′1 µ2(t′′1) = s1. So assume that

µ′(t′′1) 6= µ2(t′′1) and toward a contradiction that, µ2(t′′1) = s1 �t′′1 µ′(t′′1). By the proof of

Lemma 19, we know that t′′1 does not block with s1 under µ and since Bµ′ ⊆ Bµ, he does not

block with s1 under µ′ either. Again using the proof of Lemma 19, we know that because, by

assumption, (t′1, s′1) does not 1S-BE-point to (t, s1) and so t′1 does not block with s1 under µ.

In addition, since t′1 ∈ µ′(s1), we must have t′1 desires s1 Thus, because, by constructionof t′′1,

teacher t′′1 has the highest priority among those who do not block with s1 under µ and desire

s1, we must have t′′1 �s1 t
′
1. Because t′1 ∈ µ′(s1) and by assumption t′′1 desires s1 under µ′, we

obtain that (t′′1, s1) ∈ Bµ′ , which yields a contradiction since, again by construction of t′′1, we

must have (t′′1, s1) /∈ Bµ.

For part 2 assume that (t1, s1) /∈ Bµ2 . Since (t1, s1) ∈ Bµ′ , we have that s1 �t1 µ′(t1). In addition,

by Lemma 18, µ′(t1) �t1 µ2(t1) �t1 µ(t1) and so s1 �t1 µ2(t1). Then because (t1, s1) /∈ Bµ2 , we must

have that all teachers t s.t t ∈ µ(s1) and t1 �s1 t are not matched to s1 anymore under µ2, i.e., once

cycle C2 is implemented. But under (N ′, E2) the only incoming edge for a node (t, s1) with t1 �s1 t

is
(
(t∗1, s∗1), (t, s1)

)
and since t1 �s1 t

∗
1, it contradicts that (t1, s1) /∈ Bµ2 since t1 feels justified envy

toward t∗1 under µ2.

As for µ1, if we were sure that Bµ′ ⊆ Bµ2 , the proof would be completed. However, as for µ1, it may

not be the case. For instance, in the example, if we assume that t2 �s2 t4 �s2 t3 �s2 t1 �s2 t
′
2 and

s2 �t3 s1 �t3 s3, we have that (t3, s2) ∈ Bµ′ ⊂ Bµ. Then, when we implement the cycle C2 given in
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the left graph of Figure 1.4, we can see that we delete the blocking pair (t3, s2) and so (t3, s2) /∈ Bµ2 .

With this observation in mind, the idea now is to define a new graph, as we did when we constructed

(N ′, E2) from (N ′, E1), in order to be sure that this is a subgraph of 1S-BE and that it contains a

cycle C3 which once implemented yields a matching which keeps the desired blocking pairs.

For the general case, assume that there is a pair (t2, s2) s.t (t2, s2) ∈ Bµ′ ⊆ Bµ but (t2, s2) /∈ Bµ2 . In

that case, we can apply exactly the same argument as in Lemma 19 and exhibit a teacher t∗2 such

that t2 �s2 t
∗
2 and (t∗2, s∗2) 1S-BE-points to all the nodes of the form (t, s2) under the graph of 1S-BE

starting at µ. However, when s2 = s1 if t∗2 �s1 t
∗
1 then we reset t∗2 to be t∗1. Then, we define a new

graph (N ′, E3) with E3 where E3 corresponds to E2 where all edges of the form
(
(t′, µ(t′)), (t, s′)

)
with t2 �s2 t are replaced by

(
(t∗2, s∗2), (t, s1)

)
where (t∗2, s∗2) as in the above paragraph. Here again

(N ′, E3) is indeed a subgraph of the graph associated with 1S-BE starting from µ and each node still

has in-degree one. Applying Lemma 16, we get the existence of a cycle C3 which, once implemented,

yield to a matching µ3. In the example, t∗2 would be t1 and (N ′, E3) is shown in the right graph of

Figure 1.4.

It is easy to see that we can mimic the proof of Lemma 20 in order to obtain the following lemma.

Lemma 21. We have that:

1. µ′ Pareto-dominates µ3 for teachers.

2. {(t1, s1), (t2, s2)} ⊂ Bµ3.

In the example, the unique t∗2 is t1 and the graph of (N ′, E3) is given in the right graph of Figure

1.4. In that case, the cycle C3 is (t1, s1)� (t′2, s2). Note that, once C3 is implemented, we indeed

have {(t2, s1), (t3, s2)} ⊂ Bµ3 and Bµ′ ⊆ Bµ3 so that we have found the desired matching.

Of course, in full generality, it is possible to have a pair (t3, s3) satisfying (t3, s3) ∈ Bµ′ ⊆ Bµ while

(t3, s3) /∈ Bµ3 . In order to prove the desired result – namely that there is a cycle in the graph

associated with 1S-BE starting from µ which, once implemented, leads to a matching µ̃ such that µ′

Pareto-dominates µ̃ for teachers and satisfies Bµ′ ⊆ Bµ̃ – we would continue to apply the same logic.

Because we have a finite environment, at some point we must find a matching µ̃ with the desired

property.
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Chapter 2

A New Algorithm to Increase Teacher

Mobility without Hurting Deprived

Regions 1

1This chapter is based on a joint work with Olivier Tercieux and Camille Terrier. This work is supported by a
public grant overseen by the French National Research Agency (ANR) as part of the Investissements d’avenir program
(reference : ANR-10-EQPX-17 – Centre d’accès sécurisé aux données – CASD). Terrier acknowledges support from the
Walton Family Foundation under grant 2015-1641. Tercieux is grateful for the support from ANR grant SCHOOL_
CHOICE (ANR-12-JSH1-0004-01). Part of this work has been done while Combe was a Visiting Scholar at Columbia
University under the supervision of Yeon-Koo Che, he would like to thank them for their support and welcome and is
grateful to the Alliance Doctoral Mobility Grant and ANR grant SCHOOL CHOICE (ANR-12-JSH1-0004-01).
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Abstract

The assignment of teachers to schools incorporates many important issues in education policies:

attractiveness of the profession, geographic inequalities, achievements of students and so on. In

many countries such assignment is centralized. We propose a generalization of the TO-BE algorithm

proposed in Combe, Tercieux and Terrier (2016b) to the framework where there are newly tenured

teachers without any initial assignment, tenured teachers asking for a reassignment and possible

empty seats in schools. Such generalization keeps the good properties of efficiency and strategy-

proofness. It also extends the so called You-Request-My-House-I-Get-Your-Turn (YRMH-IGYT)

algorithm proposed by Abdulkadirouglu and Sonmez (2003) for the housing market framework with

vacant houses and new applicants to the two-sided and many-to-one matching setting. Using French

data on the assignment of teachers, we show the potential benefits in terms of movement brought by

the algorithm and the finer controls that it offers in dealing with potentially deprived regions and

geographic inequalities. Finally, we give some results on two important practical extensions: the

introduction of couples and an alternative assignment approach to control inflows and outflows of

teachers in each region in an alternative model.

JEL Classification Numbers: C70, D47, D61, D63, I24.

Keywords: Two-sided matching markets, Teacher Assignment, Fairness, Efficiency, Regional Inequal-

ities, Market Design.
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2.1 Introduction

In most countries, education systems face two issues: a lack of attractiveness of the teaching

profession and a high achievement inequality, notably between students from different social back-

grounds. The lack of attractiveness of the profession encompasses both the difficulty to recruit

enough teachers (Schleicher, 2012; Corcoran, Evans and Schwab, 1994)2 and to retain teachers in

the profession.3 The cited articles seem to support a widespread phenomenon both in Europe or

in the U.S. In France, it is easy to measure the shortage of qualified teachers as their recruitment

is managed centrally by the Ministry of Education. In 2014, 24% of the positions offered by the

government remained vacant because of both a lack of applicants and the poor quality of those

applying (Direction de l’Evaluation de la Prospective et de la Performance, 2015).

The second issue relates to achievement inequalities and is equally shared by most countries

(Organisation for Economic Co-operation and Development, 2014). A student’s socio-economic status

appears to exert a powerful influence on learning outcomes. France is one of the OECD countries

where the relationship between performance and socio-economic status is the highest. Although

several factors can explain this poor performance, one seems particularly plausible: some regions

gather both the most deprived students and the teachers with the least experience.4 Knowing that

teachers in their first year of experience tend to perform less well than more experienced teachers

(Chetty, Friedman and Rockoff, 2014; Rockoff, 2004), the higher share on young teachers in deprived

regions might contribute to France poor performance in terms of achievement inequalities.

The issue of teacher assignment to schools and regions stands at the crossroads between both

attractiveness and inequality issues. Regarding the attractiveness of the teaching profession, teachers’

geographic mobility prospect is a key factor. In the U.S, Boyd et al. (2005) showed that more

qualified teachers are more likely to leave schools with low achieving students. Boyd et al. (2008)

mentioned that almost a quarter of the entering public school teachers quit the profession within 3

2In the PISA 2009 assessment, an average of close to 20% of 15-year-olds were enrolled in schools whose leaders
reported that a lack of qualified mathematics or science teachers was hindering instruction in their schools. In Germany,
Luxembourg or Turkey, over 40% of school leaders report that this is a problem. In Sweden, the educational system
will lack teachers by 2020, around 20% of its labor force (Sweden, 2012).

3Ingersoll (2003) reported that the attrition rate of teachers is around 50-60% in the U.S. In Sweden, Lindqvist,
Nordänger and Carlsson (2014) reported that around 16% of the graduated teachers work outside the educational
system.

4Two of the most deprived regions (Créteil and Versailles) have (1) one of the highest share of students enrolled
in “priority education” (Direction de l’Evaluation de la Prospective et de la Performance, 2014) and (2) the smallest
ratio of the number of teachers aged more than 50 over the number of teachers aged less than 30. The term “priority
education” refers to the diverse programs and labels used by the government to define deprived schools.
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years and that this attrition has a negative impact on students’ achievements. In the U.K, Allen,

Mian and Sims (2016) reported that schools with lower income students are more likely to have

teachers with less experience and a high turnover rate. In a recent French report on the attractiveness

of the teaching profession, Périer and Gurgand (2016) reported that, among a sample of 423 people

deciding not to pass the teaching qualification in France, 10% report that it is due to the evolution of

careers and 2% explicitly mention the assignment process as a cause. These issues seem to be shared

across many countries whether they have a centralized assignment system: France, Italy (Barbieri,

Cipollone and Sestito, 2007), Mexico (Pereyra, 2013), Turkey (Dur and Kesten, 2014), Uruguay

(Vegas, Urquiola and Cerdàn-Infantes, 2006) and Portugal, or decentralized ones: for instance, the

United-States or the United Kingdom. Our work will focus on the systems where the assignment

of teachers to schools is managed by the central administiration.5 In these centralized systems,

teachers submit ranked lists of wishes to a public administration, each school ranks teachers, and

the central administration obtains assignments by running an algorithm. In order to increase the

attractiveness of the teaching profession, a spontaneous objective might be to satisfy as much as we

can teachers’ mobility requests. Unfortunately, these requests are currently poorly satisfied: in 2014

in France, only 43.9% of the secondary school tenured teachers asking for a new region were satisfied.

For primary school teachers, this figure is even lower as less than 25% of the mobility requests are

satisfied. A contribution of this paper is to show that a significant room for improvement exists for

teacher mobility compared to the current algorithm. We explain how a different algorithm could

significantly increase the number of teachers who obtain a new assignment.

The issue of teacher assignment to schools and regions is also highly related to students’ achieve-

ment inequalities, as highlighted by a recent French report (Inspection générale de l’administration

de l’Education nationale et de la recherche, 2015). In the U.S, Ronfeldt, Loeb and Wyckoff (2013)

showed that the teachers’ turnover has an important impact on students’ achievement. In the

5For decentralized systems, a more careful analysis is needed. First, our work can help in the comparison of both
systems since it offers some alternative possibilities and results for the centralized ones. Second, the comparison
between both systems is an important debate in the literature. For instance, Agarwal and Somaini (2014) reported
that the use of a decentralized system for the allocation of interns would lead to lower wages. There are also conflicting
evidences on the impact of wages on teachers’ mobility and willingness to join or leave the profession. Stinebrickner
(1998) showed, using U.S longitudinal surveys, that the first spell in teaching is more responsive to wages than working
conditions. However, Imazeki (2005) and Ondrich, Pas and Yinger (2008) found that large salary increases are needed
to reduce the attrition of teachers, which can be problematic since salaries of public teachers are already an important
part of public expenditures. Conversely, Hanushek, Kain and Rivkin (1999) found, using panel data in Texas, that
teachers’ mobility is more affected by characteristics of the students than by salaries. Concerning the attrition of
teachers, Cooper and Alvarado (2006) state that the U.S and the U.K have higher attrition rates (from 30 to 50%
within the first three years of teaching) than for instance France, Germany or Portugal.
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U.K, Allen, Mian and Sims (2016) reported that schools serving lower income students are more

likely to have inexperienced teachers and a high turnover. The centralized process used to assign

teachers to regions and then to schools is a powerful tool in policy makers’ hands to homogenize the

distribution of teachers across schools and regions, regulate teacher turnover, and better meet the

specific needs of different schools. Yet, this tool is far from being fully exploited. Most importantly,

the objective of better satisfying teachers’ mobility requests and better distributing teachers across

deprived schools might not be compatible. Increasing teachers’ mobility can worsen the unequal

distribution of teachers across schools. Indeed, in France, as the majority of teachers asking for

a new assignment are initially assigned one of the three most deprived regions, better satisfying

teacher mobility would significantly increase the outgoing mobility from these deprived regions. As

a result, to ensure that no position remains vacant at the end of the mobility process, new teachers,

most of them newly-tenured, would be assigned to these unattractive regions. Hence, every year,

better satisfying teacher mobility would be done at the expense of the deprived regions, whose

teaching workforce would have less experience. Based on that trade-off between teachers’ satisfaction

and regions equality, the main contribution of our paper is to suggest an algorithm which increases

teacher mobility, while ensuring that deprived regions are not hurt by the mobility process.

The teacher assignment problem is similar to the college admission problem as defined in Gale

and Shapley (1962). Yet, a key difference exists between the college admission problem and the

assignment of teachers to schools: when one wants to assign teachers to schools, many of the teachers

already have a position. Hence, an additional individual rationality constraint applies: tenured

teachers must be able to keep their initial position if they do not obtain any of the schools they

ranked. In Combe, Tercieux and Terrier (2016b), we showed that, to respect this constraint, the

algorithm currently used by the French Ministry of Education to assign teachers to regions is a

modified version of the Deferred Acceptance algorithm (Gale and Shapley, 1962). We highlight how

this algorithm limits the overall mobility and suggest an alternative algorithm – the Teacher Optimal

Block Exchange (TOBE) - which is strategy proof and two-sided maximal, meaning that (1) it

Pareto-dominates the initial assignment for both teachers and schools and (2) it cannot be improved

in terms of (2i) efficiency for both teachers and schools as well as (2ii) fairness. By using data on the

assignment of teachers to public schools in France, we empirically estimate the magnitude of gains,

and find that the number of teachers moving from their initial assignment is more than doubled
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under our mechanisms.

In the current paper we enrich the previous analysis by adding two new features. Firstly, in

Combe, Tercieux and Terrier (2016b), both the theoretical and the empirical analysis are done in a

market that incorporates only teachers with an initial assignment. To better match the theoretical

analysis of the paper6 vacant positions and newly tenured teachers with no initial assignment have

been ignored. In the current paper, we run simulations on the complete market by incorporating

unassigned teachers and vacant positions, so that we almost perfectly replicate the assignments of

the French Ministry of Education.7 These new simulations are likely to be more policy-relevant.

The second difference is perhaps the most important. While the previous paper characterizes a

new class of mechanisms, and tests their performance, it does not take into account differences

between regions in terms of attractiveness and experience of their teachers.8 Yet, there is a great

diversity in terms of attractiveness of the 31 French regions. Three regions are recognized for being

particularly unattractive to teachers (called Créteil, Versailles and Amiens) whereas some other

regions are very attractive. To illustrate this, the ratio of the number of tenured teachers asking to

enter a region over the number of tenured teachers asking to leave the region varies from 15.5 in the

most attractive region (Rennes) to 0.03 in the least attractive region of Créteil. Every year, the

three least attractive regions concentrate about 50% of the teachers asking for a new assignment.

One of the key contribution of this paper is to take into account the differences between regions in

terms of attractiveness and experience of their teachers, with the objective to design an assignment

mechanism which does not hurt the most deprived regions. This algorithm will be a modified version

of the TOBE algorithm presented in Combe, Tercieux and Terrier (2016b).

The first part of this paper is theoretical and aims to present the algorithm currently used by

6One of the contributions is to highlight the significant lack of mobility under the modified version of the Deferred-
Acceptance because this algorithm does not allow the implementation of specific cycles of exchanges, contrary to the
TOBE algorithm we suggest. TOBE allows teachers to exchange their assignments when a cycle of blocking pairs
exists. As illustrated by a leading example, by reducing the number of blocking pairs, these cycles improve the welfare
of both sides of the market (teachers and schools). A key point is that these specific cycles exist only for initially
assigned teachers as no teacher would have a justified envy for a teacher who is initially unassigned. Hence, as the
difference between the algorithm currently used by the French Ministry of Education and the TOBE algorithm stands
in identifying cycles of matched teachers, it was natural for our analysis to consider only the sample of initially assigned
teachers.

7Vacant positions mainly correspond to teachers who retire. In 2013, 9793 secondary school teachers retired in the
public sector. The same year, about 7900 newly tenured teachers required a first assignment. As would be expected,
the number of teachers retiring almost matches the number of newly tenured teachers asking for a first assignment.

8This omission makes sense in an environment where only assigned teachers are considered as one of the main
difference between regions is the difference in their share of tenured versus newly-tenured teachers. This difference
does not exist when only assigned teachers are considered.
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the French Ministry of Education. Then, we present a generalized version of the TOBE algorithm

(Combe, Tercieux and Terrier, 2016b) in a broader market where vacant positions and teachers with

no initial assignment are incorporated. We show that the “generalized TOBE” keeps good properties,

in particular the strategy-proofness and two-sided efficiency. As we will show, this generalization is

tightly linked to the generalization of the well known Top Trading Cycles (TTC) algorithm proposed

by Abdulkadirouglu and Sonmez (1999). In the case of a house allocation problem where one

wants to incorporate vacant houses and agents without any initially, they proposed an algorithm

that is efficient and strategy-proof. As we will show, our generalization of TOBE can be seen as

a generalization of their algorithm that incorporates two additional features compared to their

framework: i) a many-to-one environment where schools can have more than one position to allocate

and ii) the existence of preferences on the schools’ side.

The second part of the analysis is empirical. We use French data on the 2013 assignment

of teachers to regions to simulate different versions of the TOBE algorithm and compare their

performance to the current algorithm for both attractive and unattractive regions. Firstly, we

implement the standard version of TOBE. From the theoretical section, we know that TOBE is

individually rational for schools. This implies that, in all regions, the position left by a departing

teacher must be filled by an incoming teacher who is preferred by the school.9 This is the “higher

preference criterion”. Our simulations show that, with the standard TOBE which fully respects this

criterion, mobility slightly decreases compared to the current situation (-2.48%). This is due to two

effects that compensate each other: mobility significantly increases in attractive regions (+31.66%),

but reduces in unattractive ones (-44.08%). As retaining too many teachers in unattractive regions

might not be satisfying, we test several alternative options. A first option consists in relaxing the

higher preference criterion in all regions, so that outgoing teachers do not need to be replaced by

preferred teacher. This gives us a sense of the maximal improvement we could obtain and we find

that the overall mobility could be increased by 56.98%. Yet, it might not be satisfying to significantly

increase outgoing mobility from deprived regions since it can decrease the experience of the assigned

teachers and ultimately hurt the students. Hence, the second option we test consists in relaxing the

higher preference criterion in attractive regions only. This option increases the teacher mobility in

these regions (by 79.43%), while ensuring that relatively deprived regions are not hurt in terms of

9We will discuss later the meaning of the preferences of the schools in our setting.
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experience of their incoming teachers. But this second option still significantly retains teachers in

deprived regions. Hence, our last and most convincing option consists in relaxing the higher preference

criterion in both attractive regions and for a certain share of the teachers in unattractive regions.

Under this scenario, the number of teachers who obtain a new assignment increases by 79.47% in

attractive regions, while remaining relatively constant by construction (+3.56%) in deprived regions.

As it will be later detailed, these results depends on another specific parametrization of the TOBE

algorithm concerning an exogenous order. We also provide in the Appendix additional results using

a different ordering.

Taken together, our results show that a change in the centralized process used to assign teachers

to regions in France could result in a significant improvement in the number of teachers obtaining

a new region, without hurting the mobility in deprived regions. As different choices can be made

regarding the identification of deprived regions, the choice of teachers to target in these regions

and the parametrization of the order used, the high flexibility of our algorithm allows a fine tuning

of teacher mobility in different regions. From a broader perspective, this paper highlights how

centralized assignment processes can significantly impact education systems in two key dimensions.

(1) By improving teachers’ geographic mobility prospects, they can make the teaching profession

more attractive. (2) By influencing the distribution of teachers across territories, they can increase

teachers’ experience in the most deprived regions and help reduce the persistent achievement gaps

observed in most education systems.

2.2 Institutional context

Teacher recruitment and assignment. Teachers’ certification and recruitment is highly

centralized in France. Anyone who wishes to become a teacher has to pass a competitive examination.

Those who succeed are allocated a teaching position by the ministry for a probation period of

one year, at the end of which they get tenure or not. Once they get tenure, teachers in public

schools become civil servants. The government manages both the first assignment of newly tenured

teachers to a region, and the mobility between regions of tenured teachers who previously received

an assignment but wish to change. This centralized assignment process is used for public school
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teachers only. This research does not cover private school teachers.10

Number of teachers, inflows and outflows of the profession. In 2014, there are 700 000

secondary public school teachers in France. This number evolves every year due to both inflows and

outflows of the profession. The outflows are mainly due to teachers retiring and leaving their position,

while the inflows correspond to newly tenured teachers who have passed the recruitment exam and

validated their probation year. As a result, every year, the central administration faces (1) some

positions becoming vacant, (2) some newly tenured teachers wishing to get their first assignment and

(3) a pool of tenured teachers who already have a position but wish to change. These three elements

constitute the core of the yearly centralized mobility process managed by the French Ministry of

Education.11 In 2013, 9793 secondary school teachers retired in the public sector. The same year,

about 25 100 teachers submitted a list to be assigned or reassigned to a region. Among them 17 200

are tenured teachers and 7900 are newly tenured teachers requiring a first assignment. Finally, it is

worth noticing that the analysis done in this paper incorporates the three elements mentioned above:

vacant positions, assigned teachers, and non-assigned teachers. This is one of the key difference

compared to our previous paper where we had decided to run all simulations on assigned teachers

only, hence omitting vacant positions and newly tenured teachers.

A two-step assignment process. Since 1999, teachers’ assignment procedure takes place

in two successive phases.12 The first step consists in assigning teachers to one of the 31 French

regions. It takes place between November and March for the following school year. This step

is managed centrally by the government which runs the first algorithm that determines teachers’

regional assignment. In a second step, teachers newly assigned to a region and teachers wishing to

change schools within their region submit a list of ordered schools. This takes place between March

and July (depending on the region). Since 1999, this stage is managed directly by administrations

within the regions.13 As explained in Combe, Tercieux and Terrier (2016b), our empirical analysis
10The French education system is divided into public schools and private schools. Private schools make up 16%

of the teachers. For them, the recruitment process is similar but public and private school teachers face completely
different rules for their mobility – between regions and between schools. In private schools, teachers apply directly to
schools – as would be the case in usual labor markets. Moreover, the certification to teach in private school requires
to pass a different competitive exam than the one for public schools. The preparation of this exam being very time
consuming, the number of teachers moving between public and private schools is small.

11This mobility process is called “Mouvement National à Gestion Déconcentrée” (MNGD)
12Before 1999, teachers’ assignment to schools was managed centrally by running an algorithm once, which assigned

teachers directly to schools. This highly centralized process was argued to be at odds with the regional nature of
most demands: the majority of teachers asking for a transfer ranked schools within their current region. For them,
the assignment could be managed directly by local authorities. To give more autonomy to regions in their teachers’
assignments and reduce the workload at the level of the central administration, a two-step process has been introduced.

13Regions are in charge of running the second algorithm that determines the final assignment of teachers to schools.
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focuses on the first step of the assignment – to regions - because of potential strategic issues in the

reported preferences of teachers during the second phase of the assignment. Participation to the

assignment mechanism is compulsory for all newly tenured teachers who have never been assigned

a position. Participation is optional for any other tenured teacher wishing to change schools or

regions. Students who have just passed the exam to become teachers are also assigned to a school

for their probation year on the basis of a similar algorithm. This description does not cover this

initial assignment.

Regions’ preferences. The central administration defines a ranking over teachers using a point

system. It takes into account three legal priorities: spousal reunification, disability, and having

a position in a disadvantaged or violent school. Several individual characteristics also enter the

computed score: total seniority in teaching, seniority in the current school, time away from the

spouse and/or children. . . The criteria considered to compute teachers’ scores are numerous but,

in the end, most criteria are used by only a small number of teachers so that seniority is the main

criterion (even though it is not the one that gives the most points). The criteria are commonly

known and freely available online.14 As discussed in Combe, Tercieux and Terrier (2016b), regions

and schools are not strategic entities since the score of a teacher is fixed by law. However, the

point system incorporates clear social objectives from the policy maker. As we discussed in Combe,

Tercieux and Terrier (2016b):

This makes it relevant to adopt an approach “as if” schools’ priority rankings were

schools’ preferences. For instance, teacher priorities at schools are determined primarily

by their experience, notably in disadvantaged schools, which reflects the administration’s

efforts to assign more-experienced teachers to disadvantaged students. If we were to

consider teachers as the only welfare-relevant entities, teachers could exchange their

positions, and thereby decrease the number of experienced teachers in disadvantaged

schools. From an administrative perspective, it would be difficult to consider this a Pareto

improvement, as disadvantaged students would be harmed by these assignments. Hence, a

meaningful requirement would be to allow for exchanges of positions across teachers only

Differences in the procedures between regions are limited. They use the same algorithm as the first step but can use
different criteria to rank teachers. In practice, very few of them use different ones. In the case where a teacher has
been assigned to a different region than his initial one at the first step and that, at the second step, he ends up being
rejected by all the schools he ranked, he his temporarily assigned as a substitute teacher in this region.

14 An official list of criteria used to compute the point system is available on the government website http:
//cache.media.education.gouv.fr/file/42/84/6/annexeI-493_365846.pdf
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when they do not negatively affect the experience of teachers in disadvantaged schools.

This is exactly what the “as if” approach offers when we require a Pareto improvement

over the initial assignment. As mentioned, several other criteria are used to determine

teacher priorities that might also reflect broader social objectives. For instance, spousal

reunification and children reunification give a priority bonus to teachers at schools close

to where their spouses or children live. Again, one can easily see the social objective

motivating these priorities. In this context, a meaningful requirement is to allow for

exchanges of positions across teachers that are not at the expense of the experience of

teachers in (possibly disadvantaged) schools, except when it can allow a teacher to join

his/her family. Here again, this is what the “as if” approach provides.

Thus in the following, we will refer the the ranking of a region or a school over teachers as“preferences

of the region/school ”and if a teacher has a higher ranking than another one we will say that the

former is “preferred to”the latter.

2.3 The French Assignment Algorithm

In this section, we present the algorithm used to assign teachers to public schools in France, and

show that this algorithm is equivalent to a modified version of the Deferred-Acceptance algorithm,

where schools rank first the teachers they are initially assigned to.

2.3.1 The Model

A problem P of teacher assignment to schools could be described as follows. There is a finite

set T of teachers and a finite set S of schools. Each teacher t ∈ T has a preference order �t over

the schools and each school s ∈ S has a preference order �s over the teachers.15 Teachers could be

either initially assigned or initially unassigned. Initially assigned teachers already have an initial

assignment and would like to be reassigned to a new school. Initially unassigned teachers ask for

an assignment and so do not have any initial one. As we will detail in the empirical section, the

15Teachers are allowed to find some schools unacceptable. We will denote by ∅ the null school i.e. the possibility
to remain unmatched. However, as it is the case in practice, we assume that a initially assigned teacher ranks as
acceptable his initial school. For schools, we assume that they can rank some of their initial teacher as “unacceptable
”, meaning that this school accepts that this teacher leaves without being replaced and we will also use the notation ∅
(this distinction will be useful later). However, we assume that all schools rank as acceptable teachers who are not
initially matched to them.
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French policy makers are used to another distinction. They distinguish between tenured teachers

who got their civil servant position for at least more than a year and newly tenured teachers who are

young teachers who have been just tenured and need their very first assignment. In practice, all

initially assigned teachers are tenured ones and all newly tenured teachers are initially unassigned.

However, there exist tenured teachers who do not have an initial assignment. They are teachers

who did not teach for some years for various reasons (longer maternity leave, temporary work in

the private sector...) but come back into the profession. In our dataset, they represent 18% of the

initially unassigned teachers. The total number of positions in a school s will be denoted qs, it could

be decomposed in two types of positions: Free Positions (FP) and Potentially Free Positions (PFP).

Free positions correspond to empty positions waiting to be filled by a teacher. They may have

been created by the Ministry or may have been occupied by a former tenured teacher who retired.

Potentially Free Positions are positions currently occupied by a tenured teacher who is asking a

reassignment. If he/she obtains another position, the Potentially Free Positions will become a Free

Positon. We will denote respectively by qfs and qps the number of FP and PFP of a school s so that

qs = qfs + qps . A school cannot receive more than qs teachers among those who participate to the

assignment procedure i.e. teachers in T .

So far, we have defined schools’ preferences as being on individual teachers, i.e. over T . Yet,

as schools have multiple seats, we need to define comparisons over sets of teachers i.e. 2T . Fix a

school s with q seats and two possible assignments for this school given by µ = (t1, . . . , tq) and

µ′ = (t′1, . . . , t′q). We assume that teachers have been ordered in a decreasing order of preferences i.e.

tk �s tk+1 and t′k �s t′k+1 for respectively µ and µ′ (empty seats are ordered using ∅). We say that

a school s prefers µ to µ′, and write µ �s µ′, if ∀k = 1, . . . , q: tk �s t′k and strictly for at least one.

A matching is described by a function µ : T 7→ S ∪ {∅} where µ(t) is the school where teacher

t is assigned under µ. If he is unassigned, we let µ(t) = ∅. A matching must respect the capacity

constraints i.e. ∀s ∈ S, |µ−1(s)| ≤ qs. The initial matching of teachers will be denoted by µ0.

Note that if teacher t is initially unassigned, then µ0(t) = ∅ and for a initially assigned teacher,

µ0(t) ∈ S is the initial school of teacher t at the beginning of the assignment procedure. A matching

mechanism gives, for each possible teacher assignment problem, a given matching compatible with

this problem. Formally, a mechanism ϕ is a function ϕ : P 7→ A where A is the set of all possible

assignments.16 In the following, we fix the set of teachers, the set of schools, the capacities, the
16Formally here, A is the set of all possible assignments for all possible problems. We assume that a mechanism is
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preferences of the schools and the initial assignment. A mechanism will then be seen as a function

which gives a matching µ for each possible preference profile of the teachers �:= (�t)t∈T .

A matching µ is:

• 2-individually rational (2-IR) if teachers and schools weakly prefer their assignment under

µ to the one under µ0. Formally, ∀t ∈ T , µ(t) �t µ0(t) and ∀s ∈ S, µ(s) �s µ0(s).

• 2-Pareto efficient (2-PE) if there is no other matching µ′ that Pareto dominates µ for

the teachers and schools. Formally, there is no µ′ s.t. ∀t ∈ T , µ′(t) �t µ(t) and ∀s ∈ S,

µ′(s) �s µ′(s) and strictly for some teacher or school.

• 1-Individually Rational (1-IR) if only the teachers prefer their assignment under µ than

their one under µ0. Formally, ∀t ∈ T , µ(t) �t µ0(t)

• 1-Pareto Efficient (1-PE) if there is no other matching µ′ that Pareto dominates µ for the

teachers. Formally, there is no µ′ s.t. ∀t ∈ T , µ′(t) �t µ(t) and strictly for some.

A mechanism ϕ is 2-PE/2-IR/1-PE/1-IR if it always gives a matching that is 2-PE/2-IR/1-PE/1-IR.

A mechanism ϕ is strategy-proof if for any possible preference profile �, any teacher t and any

preferences �′t, we have that17 ϕt(�t,�−t) �t ϕt(�′t,�−t).

2.3.2 The French Assignment Mechanism

The French Assignment Mechanism (FAM) used to assign teachers to regions follows two steps.

We will designate by respectively FAM1 and FAM2 the mechanisms used at each step. The final

matching is the one given by FAM2. Let µ1 be the matching obtained at the end of FAM1. At

each step k of FAM1, each school s has a counter of Free Positions qfs (k) and we let µ1(k) be the

matching at that step. The steps of FAM1 are the following:

• Step 0. ∀s ∈ S, we let qfs (0) = qfs and µ1(0) = µ0.

• Step k ≥ 1. If no school has Free Positions or if they all have proposed to all the teachers

of their preference list, then let µ1(k − 1) be the matching of FAM1. If a school s still has

Free Positions i.e. qfs (k − 1) > 0 and has not yet proposed to all the teachers of its list of

restricted to choose a matching that is compatible with a given problem.
17ϕt(�) is the school obtained by teacher t when the reported profile is �. For a preference profile �, �−t is the

profile of all the teachers except teacher t.
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preferences then let it propose to the next teacher it prefers among those it has not proposed

yet. If a teacher receives several offers, he chooses the school he prefers between the offers he

received and his school under µ1(k − 1). If he has not been assigned yet, he chooses the school

he prefers. Let s be the school he chooses and s′ his school under µ1(k − 1). If s 6= s′, we

match this teacher to s under µ1(k) and we update the counter of free positions; i.e. if s′ 6= ∅,

qfs′(k) = qfs′(k − 1) + 1 and qfs (k) = qfs (k − 1)− 1. Then we go to step k + 1.

FAM1 is very similar to the standard school-proposing Deferred Acceptance (DA) algorithm in

how it manages offers and rejections. The only difference comes from the presence of PFP which do

not exist in the standard school-proposing DA. In the latter, no teacher is initially matched and

schools make offers for all their vacant seats. In other words, the counter of free positions qfs (k) both

counts FP and PFP in the standard schools proposing DA.

In our description of FAM1, we define the initial matching (at step 0) as being the initial

assignment of teachers µ0. Under the school-proposing DA, it is equivalent to force the schools to

first propose to their initially matched teachers. Indeed, under FAM1, a teacher is guaranteed to keep

his initial position, unless he receives, during the algorithm, an assignment that he prefers. Therefore

FAM1 is individually rational. An equivalent matching would be obtained with an alternative

solution: under the school-proposing DA, one can force schools to first offer their positions to their

initially matched teachers. One has just to artificially modify the preference list of each school and

put its initially matched teachers at the top of its list. It ensures that the school-proposing DA

becomes individually rational. We call this procedure school-proposing DA∗. We summarize our

discussion in the following proposition:

Proposition 2.3.1. FAM1 is equivalent to the school-proposing DA∗.

Similarly, one can define the teacher-proposing DA∗ where the same modification of the schools’

preferences is done but where the teacher-proposing DA is used. Once µ1 is obtained with FAM1,

the procedure FAM2 is used starting from this assignment. At each step k of FAM2, we note µ2(k)

the matching obtained at this step:

• Step 0. Let µ2(0) = µ1.

• Step k ≥ 1. Build a graph where the nodes are the teachers and the schools. For each school

s, we consider the teacher t who is preferred by s among the set of teachers who:
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– Are not matched with s under µ2(k − 1).

– Prefer s to their school under µ2(k − 1).

We let this teacher t point to s. Each school points to the teacher matched to it under µ2(k−1).

If there is no cycle in this graph, let µ2(k − 1) be the final matching. Otherwise if there is a

cycle, we implement it in matching teachers to the school they are pointing to and go to step

k + 1.

This mechanism is formally equivalent to the Stable Improvement Cycles Algorithm proposed by

Erdil and Ergin (2008). Cycles previously defined are called Stable Improvement Cycles (SIC). A

first proposition by Erdil and Ergin (2008) is that the matching obtained with this procedure is

stable18 and the next theorem is their main result:

Theorem 9 (Erdil and Ergin, 2008, Theorem 1). If µ is a stable matching and is Pareto-dominated

by another stable matching µ′, then there exists a SIC.

Using the above theorem, we can now state the following proposition:

Proposition 2.3.2. The FAM is equivalent to the teacher-proposing DA∗.

Proof. Let M be the set of stable matchings with respect to the modified preferences of the schools

i.e. where initially matched teachers at each school are moved at the top of the preference list of

that school. Let µ̄ ∈M be the matching obtained by teacher-proposing DA∗. We know by Gale and

Shapley (1962) that ∀µ ∈M s.t µ 6= µ̄, µ̄ 1-Pareto dominates µ. According to Proposition 2.3.1, we

know that the matching µ1 obtained by FAM1 is equal to the one obtained with school-proposing

DA∗ so ∀µ ∈ M , µ 1-Pareto dominates µ1. Suppose that the matching µ2 obtained with FAM2

is different from µ̄. In that case, we know by Erdil and Ergin (2008) that µ2 ∈ M so µ̄ 1-Pareto

dominates µ2. So using Theorem 1 of Erdil and Ergin (2008), we know that there exists a SIC in

the graph of FAM2 starting at µ2, which contradicts the fact that µ2 was the matching obtained by

FAM2.

In what follows, we refer to the teacher-proposing DA∗ as simply DA∗.

18In our environment, the stability concept is defined using the modified preferences of the schools under DA∗. As
seen above, the matching may not be stable with respect to the true preferences of the schools.
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2.4 Generalization of TOBE

In Combe, Tercieux and Terrier (2016b), we propose an alternative mechanism to DA∗: the

Teacher Optimal Block Exchange algorithm (TOBE) in an environment where there are only tenured

teachers and no Free Positions. This algorithm could be seen as a modified version of the Top Trading

Cycles algorithm (TTC) proposed by Shapley and Scarf (1974) for house allocation problems with

only existing tenants. Indeed, TOBE is equivalent to TTC where the preferences of the teachers are

modified before running the algorithm. For each teacher, we delete from his preference list the schools

with which he is not blocking the initial matching and then run TTC using these modified lists.19

We showed that TOBE is 2-PE and strategy-proof. When testing its performance on the French

data of teachers assignment (restricted to the initially assigned teachers), it performs significantly

better than the FAM in terms of efficiency and fairness.

2.4.1 Preliminaries: generalization of TTC

In this section, we generalize TOBE to the case where there are initially unassigned teachers and

Free Positions. Intuitively, this problem is tightly connected to the generalization of TTC where there

are available houses and agents without any initial house. Hence, in the same way as we have defined

TOBE as a TTC where the preferences of the teachers are modified before running the algorithm,

we will present the generalization of TOBE to the complete market as the generalized TTC where

the preferences of the teachers are modified before running the algorithm. The generalization of

TTC has been proposed by Abdulkadirouglu and Sonmez (1999) who introduced the distinction

between available and occupied houses in the description of the top trading cycles mechanism. Going

further, they show that the outcome of the generalized TTC mechanism can be found by using the

You-Request-My-House-I-Get-Your-Turn algorithm (YRMH-IGYT). As stated by the authors, this

equivalence is particularly useful as the generalized TTC makes it easier to prove results, while

the YRMH-IGYT can be easily coded on computers. Our generalization of TOBE can be seen

as generalization of their algorithm. In allows to incorporate to additional features compared to

their setting: i) a many-to-one environment where each school can have several positions and ii)

the existence of preferences on the schools’ side. Formally, when all the schools have only one seat

19There is a slight change to operate due to the many-to-one environment since TTC is originally defined for a
one-to-one setting.
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and rank their initially assigned teachers at the bottom of their preferences, our environment is

equivalent to theirs.

Before moving to the generalization of TOBE, it is useful to present their generalization of the

top trading cycles mechanism in a environment equivalent to theirs i.e. where each school has only

one position.20 We will also present the YRMH-IGYT algorithm that was shown to be equivalent

to their generalization of TTC. Start with a set of teachers T , a set of schools S and an initial

assignment ν0 (with possibly non matched teachers/schools). Each teacher t ∈ T has a preference

relation �t over S ∪ {∅}. A school can have a vacant position or can be matched to a teacher. Fix

an arbitrary exogenous ordering of the teachers f . For each school s, we define an order �s as f but

where its initially matched teacher under ν0 (if any) is moved at the top of the f ranking. Then the

generalized TTC corresponds to the following procedure:

• Step 0. Let T (0) = T , S(0) = S and ν(0) = ν0.

• Step k ≥ 1. Build a directed graph where nodes are the teachers of T (k − 1) and schools of

S(k − 1). Every teacher points to the school he prefers in S(k − 1). If there is no acceptable

school, we let him point to himself. Each school s ∈ S(k − 1) points to the teacher of T (k − 1)

who is the highest ranked according to �s (if ∅ is ranked before all these teachers, we let this

school point to itself21). Every node has an outdegree of 1 so there is at least one cycle. Let

ν(k) be the matching obtained after implementing all the cycles i.e. for a teacher t in a cycle

ν(k) matches him to the school he is pointing to. Let T (k) (resp. S(k)) be T (k − 1) (resp.

S(k − 1)) where we remove all the agents (resp. schools) who were part of a cycle except

schools that remain unmatched after having implemented the cycles. If one of this set of empty,

then return µ(k) as being the final matching otherwise go to step k + 1.

They showed that the above algorithm is strategy-proof and (1-)Pareto-efficient. They also showed

that the following algorithm, called You Request My House I Get Your Turn (YRMH-IGYT) is

equivalent to the former one:22

• Step 0. Let T (0) = T , S(0) = S and ν(0) = ν0.

20We will be using the terminology of schools and teachers but their original one was about houses and tenants.
21Note that, at this step, this cannot happen for schools with an initially assigned teacher since a school having an

assigned teacher ranks it first and must point to him.
22Intuitively, a cycle involving an empty school in the generalized TTC will correspond to a chain in the YRMH-IGYT

algorithm. Cycles of initially assigned teachers are mapped to cycles of initially assigned teachers below.
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• Step k ≥ 1. Pick the first ranked teacher in T (k− 1) according to f , say t1, and let him point

to his favorite school in S(k − 1), say s1, then:

– Case A. If µ(k − 1)(s1) = ∅, match t1 to s1 and define ν(k) accordingly. Note that

if t1 was initially assigned a school, then this school will be empty under ν(k). Let

T (k) = T (k − 1)\{t1} and S(k) = S(k − 1)\{s1}.

– Case B. If µ(k − 1)(s1) 6= ∅, let t2 := µ(k − 1)(s1) and let him point to his favorite school

in S(k − 1), say s2, then either:

∗ Case A happens. In that case, match t1 and t2 to the school they are pointing to,

define ν(k) accordingly and update the sets T (k) and S(k) similarly than before.

∗ Case B happens. Then let t3 be s2’s initial teacher and let him point to his favorite

school in S(k − 1). If Case A happens, do has before. Otherwise, if Case B keeps

happening, continue the chain of pointing as defined before in Case B until either: i)

Case A happens, i.e. a teacher points to an empty school. In that case, match all

the teachers of the chain to the school they are pointing to and update ν(k), T (k)

and S(k) accordingly. Or ii) the process cycles, i.e. a teacher ends up pointing to

a school that was already assigned to a teacher of the ongoing chain. In that case,

implement the cycle in matching all the teachers to the school they are pointing to

and update ν(k), T (k) and S(k) accordingly.

2.4.2 Many-to-one environment and two-sided efficiency

We will now present the generalization of TOBE. There are two key differences between the

generalization of the top trading cycles mechanism presented above and the generalization of the

TOBE algorithm we provide. Firstly, we are in a many-to one environment where schools have

multiple positions, contrary to the generalized TTC presented in Abdulkadirouglu and Sonmez (1999)

where each house can only have one tenant. Secondly and most importantly, when defining the TOBE

algorithm, our two-sided efficiency notion considers both teachers and schools as welfare-relevant

entities. In the generalized TTC, houses are not welfare-relevant entities. We explain in the two next

paragraphs how the many-to-one environment and the two-sided efficiency criterion are incorporated

in our generalization of the TOBE algorithm.
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2.4.2.1 Many-to one environment

Regarding the many-to-one environment, we proceed in two steps. The idea is to first transform

a problem where each school has several seats into a problem where they only have one seat. Based

on this transformation, we modify both the initial matching and teachers’ preferences to ensure that

the final matching is 2-Pareto efficient. Intuitively, in this many-to-one environment, since each

school might have several seats occupied by different teachers, when a teacher points to that school,

we need to decide among these occupied seats the one he will point to and so with which teacher he

is going to exchange. To do so, we introduce �p as a total order over T ∪ {∅}, where the letter p

stands for “pointing”order.

Formally, during the first step, define S̃ as being the set of schools where each school in S̃ has

only one position. For each school s ∈ S with qs positions, we create qs school-copies of s in S̃.

Each school-copie of s has the same preferences as s i.e. �̃s̃ :=�s.23 We will note s(s̃) the school in

S where s̃ is the school-copy. Once these duplications are done, we redefine the initial matching

µ̃0 : T 7→ S̃. Abusing a bit of notations, we will note µ̃0(s̃) the teacher matched to the school-copy s̃

(this is well defined since these school-copies only have one seat). For each school s, each teacher t

initially matched to that school (s.t. µ0(t) = s) is matched to a different school-copy of s in S̃ (by

construction, there are enough of them). For teachers, if µ0(t) = ∅ then µ̃0(t) = ∅, meaning that if a

teacher is initially unassigned, he remains unassigned with the transformation. For each teacher t,

we define his transformed preferences �̃t over S̃ ∪ {∅} as s̃�̃ts̃′ if: (1) s(s̃) �t s(s̃′) or (2) s(s̃) = s(s̃′)

and µ̃0(s̃) �p µ̃0(s̃′). In other words, since school-copies represent positions inside a school, for

teachers’ preferences, the ranking of two positions in two different schools remain the same and is

defined by the original preferences �t over the two schools. For two positions within the same school,

we now use the pointing order �p to rank them according to the teacher initially matched to these

positions under µ̃0. We use the generalized TTC algorithm on this modified problem to obtain the

final matching in a many-to-one environment.

2.4.2.2 Two-sided efficiency

Our two-sided efficiency notion considers both teachers and schools as welfare-relevant entities.

Two modifications are required to ensure that both teachers’ and schools’ welfare are respected.

23These objects are well defined since the set of teachers does not change.
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Consider the school-copy environment as defined above where each school has only one position.

Firstly, a teacher is prevented from ranking school-copy where he is less preferred than the initial

teacher. Indeed, implementing a cycle between a teacher and a school where he/she is less preferred

would hurt the school’s welfare. In the preliminary phase, for each school-copy, we identify the set

of acceptable teachers. A teacher is acceptable for a position if he is preferred to the teacher who

currently occupies that position. This can be defined as the “higher preference criterion”. Hence,

for each teacher t and school-copy s̃, if s̃ prefers its current teacher to t, then we declare t as

unacceptable for s̃. In practice, we delete s̃ from t’s preferences.

As we will see in the empirical part, we will adopt both the above definition of the “higher

preference criterion”and a more flexible approach. For instance, some schools could be indentified

as welfare-relevant entities – their assigned teacher must be preferred to the outgoing one – while

for other schools, the assigned teacher could be less preferred to the outgoing one (or the outgoing

teacher could not be replaced so that the position remains vacant). This flexibility allows to relax the

“higher preference criterion” for some schools and will be particularly important in our simulations.

The goal is to offer a more flexible approach to control the turnover of teachers in these targeted

schools. As an extension in Section 2.7.2, we present an alternative approach to control this turnover.

The second modification aims to ensure that no teacher who is initially assigned will be re-assigned

while leaving his initial position vacant, except if he is allowed to. Intuitively, this would violate the

2-IR criterion. To avoid this kind of situation, we define a set of matched teachers who cannot leave

their position without being replaced. �v is the pointing order of the vacant positions in schools. We

modify these preferences in a way that prevents vacant positions from pointing to these teachers in

the generalized TTC described before. In practice, in �v, all matched teachers who are not allowed

to be reassigned without being replaced are ordered below the vacant position: ∅ �v t. As a result,

vacant positions will never point to these teachers.24 More specifically, the pointing order of vacant

positions �v is defined as follows: above ∅ are ranked all the newly-tenured teachers with no initial

assignment (t s.t. µ0(t) = ∅) and the tenured teachers who are allowed to leave their positon without

being replaced (t s.t. ∅ �µ0(t) t). To order this set of teachers, we fix an exogenous total order, �d,

over T .25 We rank the remaining teachers who cannot leave their current position empty below ∅

24Intuitively, this difference might affect the 1-PE of the resulting matching but here, we would like to focus on
2-PE. Abdulkadirouglu and Sonmez (1999)’s proof regarding strategy-proofness remains the same.

25The subscript corresponds to “drawing ”order. In the YRMH-IGYT analogue of our generalization of TOBE, this
order is used to select the first teacher who will start to point to his favorite acceptable school.
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according to �d.

Again, the set of initially assigned teachers who cannot leave their position without being replaced

can be used as a tool to change teacher distribution across regions. In the simulations we run, a

more flexible approach of schools’ welfare will be adopted where some tenured teachers will have

the right to leave their initial school without being replaced by another teacher or by a preferred

teacher. In �v, these teachers will be ranked above the ∅.

2.4.2.3 Assignment Phase

Define the set of teachers t ∈ T with their respective preferences. The set of schools S is the set

of school-copies S̃. The order �v is used to let a vacant school-copy point to a teacher. After having

incorporated the modifications related to the many-to-one environment and the two-sided efficiency

criterion, we run the generalization of TTC and obtain an assignment µ̃ between teachers and

school-copies. We can easily find a matching µ of the original problem: if µ̃(t) = s̃ then µ(t) = s(s̃).

It is easy to check that this algorithm converges in a (finite and) polynomial time.26

2.4.3 From TTC to YRMH-IGYT

As mentioned by Abdulkadirouglu and Sonmez (1999), the outcome of the generalized TTC

mechanism can be found by using the You-Request-My-House-I-Get-Your-Turn algorithm (YRMH-

IGYT). To obtain the outcome of the generalization of TOBE presented above, we incorporate

into YRMH-IGYT, the change related to the many-to-one environment and 2-sided efficiency.

YRMH-IGYT is indeed easier to code than the generalized TTC.27

Running our alternative algorithms necessitates to define two orders: a drawing order �d and a

pointing order �p. For all simulations performed in the empirical section, we use the same orders for

all algorithms. In a many-to-one environment, within a school, the pointing order helps to select one

teacher among several ones. In France, some teachers have the same number of points in all regions

(that only incorporates their experience for instance), but some have points which vary depending on

26To see that it converges in a finite number of steps, note that whenever we carry out a cycle, at least one teacher
is removed from the set of available agents. Hence, in the worst case, one needs (n − 1)n steps for this algorithm
to end. Since finding a cycle in a directed graph can be solved in polynomial time, the algorithm converges in a
polynomial-time.

27The latter is useful for the proofs since it clear highlights that the order with which the teachers are selected does
not influence the existence of exchanges between initially assigned teachers. It is harder to see this property when
using only the YRMH-IGYT version.
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the region. For instance, some teachers get a higher score in the region where their partner/spouse

or child is living, but not in other regions. For these teachers, considering the highest number of

points is a means to move them up in the pointing order and encourage their mobility. The drawing

is used to select the first teacher who is pointing. We have chosen to rank teachers in the following

way: teachers initially matched to one of the attractive regions > teachers initially matched to one

of the unattractive regions > teachers initially non-matched. Within each of the three categories,

teachers are ordered according to the maximum score he has. In the hierarchy between the three

categories, we have decided to order the teachers initially matched to one of the attractive regions

higher than the teachers initially matched to one of the unattractive regions to avoid the latter to

get assigned the vacant positions too quickly. As teachers from unattractive regions represent the

majority of teachers (54.6%) and tend to have longer wish lists than other teachers, ranking them

first in the drawing order might allow them to take the majority of vacant positions. This would

impede the mobility of teachers from other regions.

In the Appendix, we provide results for alternative orders. Ranking the initially non-matched

teachers at the bottom of the above order disadvantages them, it will be confirmed in our empirical

results. It is possible to modify the order to correct this disadvantage. In Section 2.9.2, we keep the

same structure as the above order except that we move a certain number of the best ranked teachers

who are not initially matched at the top of the ordering. As expected, it leads to better results

for the initially non-matched teachers while decreasing the overall movement compared to TOBE

with the above order. We also provide alternative results in Section 2.9.3 using a more natural

order: teachers are ranked according to their experience score. The same negative results for initially

non-matched teachers will arise, we then provide results on two alternative orders ranking some of

them at the top of the ordering while keeping the experience ranking. The final choice in front of

these trade-offs will depend on the objectives of the policy maker. However it is important to keep

in mind that the choice of the ordering, in addition to the one of targeted regions as we will present

below, has an impact on the results.

2.5 Efficiency and strategy-proofness of the generalized TOBE

Before moving to the empirical simulations, let us state some theoretical results about the

generalized TOBE we have defined:
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Proposition 2.5.1. The generalized TOBE is strategy-proof.

Proof. A first point is that, in the Preliminary Phase, the matching µ̃0 does not depend on the

reported preference lists and the way to break ties between different school-copies of a same school

does not depend on the reported lists. Then, the problem with school-copies defined in this phase

can be seen as a house allocation problem as defined by Abdulkadirouglu and Sonmez (1999). So if

a teacher t can manipulate TOBE in reporting �′t instead of his true preferences �t, then we could

find a profile �̃′t instead of �̃t in the problem with school-copies where the teacher could manipulate

the problem with school-copies. But then, it would mean that the YRMH-IGYT algorithm would

be manipulable (the counter example would be the copy of this one where each school-copy would

be considered as a house), which is not possible.

Proposition 2.5.2. The generalized TOBE is 2-PE.

Proof. Fix a profile � of preferences for teachers and schools. Let µ be a matching that weakly

Pareto-dominates TOBE(�). We will show that necessarily µ = TOBE(�). We will use an induction

on k ≥ 1 to show that each teacher assignment at the step k or less of the YRMH-IGYT in the

Assignment Phase cannot obtain a strictly better assignment under µ than under TOBE(�). Since

preferences are strict and that µ weakly Pareto-dominates TOBE(�), these teachers have to obtain

the same assignment as under TOBE(�). If k is the last step then we obtain the result that

µ = TOBE(�).

k = 1. At this step, fix a teacher t. All teachers must point to their favorite school-copy (which

corresponds to their favorite school under the original problem) among those available and not

deleted from their preferences at the Preliminary Phase. The only way to give t a better school is to

assign him to a school, say s, that has been declared as unacceptable at the Preliminary Phase (i.e.

all the school-copies of s have been declared as unacceptable). But if it is the case, by definition of

the Preliminary Phase, it would mean that ∀t′ s.t. µ0(t′) = s, we have that t′ �s t. Since TOBE is

2-IR, it means that for all teacher t′′ matched to s, t′′ �s t. So it is not possible to reassign teachers

of step 1 in order to weakly improve the schools.

k − 1⇒ k: Suppose that the assumption holds for the teachers assigned up to step k − 1. All

teachers assigned at step k are assigned to their favorite school-copy (also school in the original

problem) among those left at this step or that haven’t been declared as unacceptable at the
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Preliminary Phase. To give teacher t a strictly better school we would have to (1) either give him a

school that hasn’t been deleted from his preference list at the Preliminary Phase or (2) either assign

him to a school assigned to another teacher at a previous step. The case (1) could be excluded with

the same argument as when k = 1. For case (2), there must exist a teacher assigned at a previous

step who does not obtain the same allocation under TOBE, which is not possible by the inductive

assumption.

We can then apply the inductive argument up to the last step of the procedure to obtain the

desired result.

2.6 Empirical simulations

The previous section showed that the TOBE algorithm has good properties in terms of efficiency

and strategy-proofness. This section aims to assess the performance of this alternative algorithm

by using a data set on the assignment of teachers to schools in France. We start with a short

presentation of the data set. Then, we present results on the performance of the TOBE mechanism

and detail some alternatives. The similarities and differences between this empirical analysis and

the one in Combe, Tercieux and Terrier (2016b) will be fully detailed in the next section.

2.6.1 Dataset and descriptive statistics

We use several data sets related to the assignment of teachers to regions in 2013. These data sets

contain four key information: (1) the reported preferences of teachers, (2) their score in each region

that is used to define the ranking of each region,28 (3) the initial assignment of each teacher (if any)

and (4) the number of vacant positions in each the regions. In their list of preferences, teachers can

report all regions if they wish to. Since the mechanism at use is DA*, it is a dominant strategy for

all agents to be truthful. Thus, we take for granted that agents’ reported preferences in Phase 1 are

the true preferences in order to run our counterfactuals. In addition, given the agents’ assessments

over the schools they may obtain in the second phase, agents have well defined preferences over

regions. Our final sample incorporates all teachers who are teaching in one of the 49 subjects that

contain more than 10 teachers. It is worth noticing that this sample is the same as the one used

28If there is a tie, the ministry uses the birth date to break it: they give priority to the oldest teacher. We use the
same tie break here.
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in Combe, Tercieux and Terrier (2016b) with two important exceptions: in this paper we keep all

teachers who are initially non-matched and all empty seats in regions. Hence, this sample is the

same as the one used by the French Ministry of Education in 2013 to run their algorithm. Only

one difference exists: for a matter of simplicity, we drop all couples from the sample because they

benefit from a specific treatment in the assignment process.29 In Section 2.7.1, we explore the effect

of introducing couples in a reassignment setting like ours.

The final sample contains 19 229 teachers: 12 123 tenured teachers and 7106 newly tenured

ones. Table 2.1 reports some descriptive statistics on the number of tenured teachers, newly tenured

ones and vacant positions in the ten biggest subjects. Sport is the biggest one with 2487 teachers,

followed by literature (2020 teachers) and mathematics (1948 teachers). As mentioned before, the

number of vacant positions corresponds more or less to the number of teachers retiring every year.

Finally, it is important to keep in mind that all newly tenured teachers are initially unassigned but

the opposite is not true: not all tenured teachers are assigned: some are unassigned because they

took some years off from teaching for instance. Table 2.1 reports that 12123 teaches are tenured in

our sample. Among them, 10563 have an initial assignment (87.1%).

Finally, one of the objective of the current algorithm is to ensure that none of the initially

unassigned teachers is left unassigned at the end of the process. Yet the ministry does not require

that these teachers rank all regions. Instead it completes the lists of the unassigned teachers who

have not ranked all regions. To complete the lists, the ministry uses the first region ranked by a

teacher and completes the list step by step. The first region added is the unranked region which

is geographically the closest to the first region ranked by this teacher. The second region added is

the second unranked region which is geographically the closest to the first region ranked, and so

on.30 We use the same rule to complete the lists of all the unassigned teachers. Table 2.2 reports

statistics about the length of the reported preference lists before the completion of the preferences

for the initially unassigned teachers. We can note that newly tenured teachers tend to report longer

29As explained in our previous paper, teachers can apply as a couple, in which case they have to submit the same
list of regions to the central administration. They benefit from a specific treatment in the sense that one of the spouses
will not be assigned a region if the other one does not get the same region. To achieve this, the central administration
proceeds as follows: it runs the algorithm once and checks the region obtained by each spouse. If they don’t obtain the
same region, one must have obtained a region that is ranked lower in their common ranking (for instance rank 5). In
that case, the ministry would delete all regions ranked higher than rank 5 from their common list of preferences and
run the algorithm again on the modified list. This process is repeated until both spouses obtain the same regions. If
this does not happen, they stay in their initial region.

30The following link describes the order considered to complete the list depending on the first region ordered by a
teacher: http://cache.media.education.gouv.fr/file/42/85/0/annexeIII-493_365850.pdf
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Table 2.1 – Statistics on teachers for different subjects

All teachers Newly tenured Tenured Vacant positions
Subject (1) (2) (3) (4)
All subjects 19229 7106 12123 8069
Sport 2487 623 1864 765
Literature 2020 784 1236 902
Mathematics 1948 1013 935 1112
English 1745 801 944 865
History-Geography 1489 657 832 746
Spanish 1193 324 869 364
Education 1117 361 756 416
Physics 1017 294 723 361
Pro: Literature - HG 688 215 473 233
Pro: Math - Sciences 513 206 307 231

Source: Dataset on public secondary school teacher assignment to region in 2013. The
subjects in the first column corresponds to the subject taught by the teacher. In vocational
high schools, some subjects are gathered in one course taught by one teacher (last two
raws for instance). Newly tenured teachers ask for their first assignment, while tenured
teachers are assigned a region, but wish to change.

lists than tenured ones. 50% of tenured teachers rank only two regions: their initial one and an

additional one.

Table 2.2 – Statistics on the length of the preference lists

Nb Mean Median SD Min Max
Tenured 12123 2.62 2 2.02 1 31
Newly Tenured 7106 8.09 5 7.32 1 31

Source: Dataset on public secondary school teacher assignment to
region in 2013.

An important point for our analysis is the great diversity in terms of attractiveness of the 31

regions. Three regions are recognized for being particularly unattractive to teachers: two regions

surrounding Paris – called Créteil and Versailles - and one region a bit further North – called Amiens.

In stark opposition, some regions are very attractive. The attractiveness of regions depends on

several factors. Geographic characteristics matter: regions in the South of France are usually more

attractive than regions in the North. Another key determinant is the working conditions, perceived

as more difficult in deprived regions gathering students from lower social background. Differences in

attractiveness are easy to measure by computing the ratio of the number of tenured teachers asking

to enter the region over the number of tenured teachers asking to leave the region. This statistic

is presented in the first column of Table 2.3. Table 2.3 presents descriptive statistics for six of the

thirty-one regions, presented by decreasing order of attractiveness. The ratio varies from 15.5 in

the most attractive region (Rennes) to 0.03 in the least attractive region of Créteil. In addition,
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column 2 shows that the three least attractive regions concentrate 50% of the tenured teachers

asking for a new assignment. This statistic refers to 2013 but this pattern has been relatively stable

over the past years. The outgoing mobility being high in these three regions, the positions need

to be filled by new teachers. A direct consequence is that, every year, about 50% of the newly

tenured teachers get their first assignment in one of these three regions. This high probability to

be assigned one of the relatively deprived regions in the first place is one of the mentioned reasons

for the lack of attractiveness of the teaching profession in France.31 Finally, regarding the working

conditions, columns 4 to 6 confirm that the least attractive regions gather an important share of

students enrolled in “priority education” schools.32 These students also tend to more likely have

parents with no diploma and to have a lower success rate at the baccalaureate (the French diploma

taken at the end of high school).

31A recent French report by Périer and Gurgand (2016) reported that 2% of the students in a survey who chose not
to join the teaching profession explicitly mention the assignment process as in important factor. Anyone wishing to
become a teacher has to take a national exam in France, the most common of these exams being the CAPES. Every
year, the ministry sets the number of teaching positions it opens which corresponds to the number of applicants who
will be accepted at the exam. In 2014, for the CAPES exam, 24% of the positions offered by the government remained
vacant because of both a lack of applicants and the poor quality of those applying.

32Priority education schools are schools designated by the administration as deprived schools with a low achievement
rate for students, difficult working conditions for teachers and so on. They receive for instance additional budgets.
Teachers assigned to these also receive a bonus of points used to compute the ranking of each region after some years
of teaching.
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Table 2.3 – Statistics on regions

Nb tenured % of teachers Ratio of nb % students % students % students
teachers asking asking for a new teachers aged enrolled in whose reference obtaining their
to enter / leave assignment more than 50 / "priority parent has baccalaureate

the region coming from less than 30 education" no diploma
each region

Region (1) (2) (3) (4) (5) (6)
Rennes 15.55 0.5 8.10 7.9 14.18 91.54
Bordeaux 8.95 0.8 6.56 14.6 19.22 86.25
Toulouse 6.56 1.5 5.29 8.9 17.38 88.57
Paris 3.02 2.8 6.90 25.5 21.54 85.48
Aix-Marseilles 2.54 1.9 5.08 30.1 27.20 81.77
Grenoble 1.74 2.3 3.91 16.5 19.80 88.17
Amiens 0.08 6.2 1.89 23.9 27.71 82.41
Créteil 0.03 22.7 1.14 35.5 31.62 83.94
Versailles 0.05 25.7 1.62 24.9 21.88 87.92

Source: "Géographie de l’école", Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche, Direction de
l’Evaluation de la Prospective et de la Performance (2014)182
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2.6.2 Performance of TOBE

The theoretical section shows that the TOBE algorithm has good properties in terms of efficiency,

fairness and strategy-proofness. This section aims to assess the performance of this alternative

algorithm by using the data presented in the previous section. It is important to keep in mind that,

among the 12 123 tenured teachers, 1560 do not have an initial region. These teachers are tenured

teachers who left the profession few years for various reasons (longer maternity leave, illness and so

on). We could have splitted our analysis between assigned versus non-assigned teachers rather than

tenured versus newly tenured but this distinction made more sense for the French policy makers with

whom we discussed. Our results below will explicitly mention whether they are on tenured/newly

tenured teachers or initially assigned/non-assigned ones.

The first set of results relates to the number of teachers who obtain a new assignment. Table 2.5

compares the number of assigned teachers obtaining a new assignment (region) under the current

algorithm (DA*) in column 1 and TOBE in column 2.33 Results in Table 2.5 suggest that on average

TOBE does not improve teachers’ mobility compared to DA*. The number of teachers obtaining a

new region even decreases by 2.48%. This result might be surprising if one has in mind the significant

improvement we found in Combe, Tercieux and Terrier (2016b). In this previous paper, we run all

algorithms on a restricted market where vacant positions have been dropped as well as teachers

without an initial assignment. We found that the number of teachers moving increases from 565

under DA* to 1363 under TOBE, a significant improvement which stands in contrast with the results

we obtain on the entire market.

The introduction of vacant positions easily justifies the lower performance of TOBE on the

entire market. The key difference comes from the fact that the movement of teachers coming from

deprived regions significantly increases under DA* when we introduce vacant positions, whereas

this movement does not increase under TOBE when vacant positions are introduced. The reason

is the following: without vacant positions, under DA* teachers in unattractive regions struggle to

leave their region. Their mobility is all the more limited as they are higher ranked by regions, as we

explained with a simple example in Combe, Tercieux and Terrier (2016b). The example highlights

that teachers in unattractive regions face the same lack of mobility under TOBE as under DA*, but

TOBE significantly unlocks mobility for teachers in other regions. This is the core of the positive
33Table 2.4 below also reports the mobility for tenured versus newly tenured teachers. In Table 2.11 in Section 2.9.1

of the Appendix, we provide the details of the movement in all regions under each algorithm.
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effect of TOBE in attractive regions compared to DA*.

However, when introducing vacant positions, the situation of teachers in unattractive regions

evolves differently under DA* and TOBE. Under DA*, teachers in unattractive regions face new

opportunities to take vacant positions in other regions so that their chance to quit their unattractive

region significantly increases. This is all the more true as many teachers in unattractive regions tend

to be preferred in other regions due to the points they have accumulated by teaching in a deprived

school for several years.34 This increased mobility under DA* is only possible because DA* does not

take into account the welfare of the regions. In other words, under DA*, teachers in deprived regions

can leave their position without being replaced by a preferred teacher or without being replaced at

all. This absence of consideration for regions’ welfare justifies the significant increase in the outgoing

mobility from unattractive regions. However, this is not true under TOBE which respects the 2-IR

criterion: any teacher who quits a region has to be replaced by a preferred teacher. Intuitively,

taking into account regions’ welfare significantly reduces teachers’ ability to leave unattractive

regions because they need to be replaced by an incoming preferred teacher. These incoming teachers

are very rare: few teachers ask to be assigned an unattractive region (compared to the number of

teachers asking to leave) and among them, very few have enough points to be preferred by the region

to replace an existing teacher.35 This explains why introducing vacant positions, whatever their

number, does not change much the probability that teachers in unattractive regions will be able to

leave their region under TOBE. This paragraph presents the negative effect of TOBE compared to

DA* in unattractive regions: with vacant positions, DA* allows teachers to quit deprived regions,

whereas TOBE prevents them from quitting. Since teachers in the deprived regions represent about

50% of the teachers asking for a new region, this negative effect in deprived regions almost exactly

compensates the aforementioned positive effect in attractive regions. This is why TOBE generates as

much (or slightly less) less movement than DA* when vacant positions are introduced in the market.

This explanation can be tested by comparing the mobility of teachers in attractive and unattractive

regions under DA* and TOBE. Table 2.5 presents teachers’ mobility by region of initial assignment.

3413.5% of the teachers in one of the three deprived regions benefit from points related to teaching in a deprived
school, whereas only 3.9% of the teachers in other regions benefit from these points.

35To compute the points of a teacher in his initial region, we only take into account the points related to his
experience. For instance, we do not add the points that they get for teacher in a “priority school”. Indeed, this would
reduce the number of teachers who would have a higher number of points and so that could point to them. Since this
bonus of point was introduced to give them higher chances of leaving the deprived region, it makes sense to omit it
when computing the ranking of a teacher in his initial region.
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Column 1 reports the number of teachers who obtain a new region under DA*, while column 2 reports

the variation under TOBE compared to DA*. As expected, in most attractive regions, the number

of teachers moving is significantly higher under TOBE than under DA*. The mobility increases by

31.66% in the attractive regions, but in stark contrast decreases by 44.08% in unattractive regions.

More detailed statistics are provided for the three most attractive regions (Rennes, Bordeaux and

Toulouse), and the three least attractive regions (Créteil, Versailles and Amiens), we also report in

Table 2.11 of Section 2.9.1 of the Appendix all the results of movement for each region.

Table 2.4 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no regions deprived regions a proportion of

DA∗ targeted targeted targeted teachers targeted in
(option 1) deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% -0.32% -0.59% -0.37%
Tenured 12123 5494 -2.24% 40.81% 15.07% 32.25%
Total 19229 11980 -0.98% 18.54% 6.59% 14.59%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in columns 4
and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.5 – Comparison of the number of initially assigned teachers obtaining a new
assignment (region) under the current algorithm (DA*) and the alternative

algorithm we suggest (TOBE) - by region of initial assignment -

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5)
All regions 3991 -2.48% 56.98% 21.55% 45.25%
All attractive regions 2192 31.66% 79.33% 79.43% 79.47%
ex: Rennes 30 36.67% 40.0% 40.0% 40.0%
ex: Bordeaux 47 31.91% 46.81% 46.81% 46.81%
ex: Toulouse 73 63.01% 75.34% 75.34% 75.34%

All unattractive regions 1799 -44.08% 29.74% -48.97% 3.56%
ex: Amiens 207 -17.39% 60.39% -29.47% 2.9%
ex: Créteil 813 -61.13% 22.51% -61.99% 2.58%
ex: Versailles 779 -33.38% 29.14% -40.56% 4.75%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in columns
4 and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V) and Amiens
(A).

The previous results show that TOBE can significantly improve the mobility of the teachers

whose initial assignment is not in a deprived region. By construction, we know that TOBE is 2-IR.
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This implies that, in all regions, the position left by a departing teacher must be filled by a preferred

incoming. We call this criterion the “higher preference criterion”. As a teacher’s ranking mainly

represents his/her experience, this criterion ensures that all regions are assigned incoming teachers

that are more experienced than the departing ones. Yet, we might want to partly relax a this

criterion for three reasons. Firstly, for a pragmatic one: the algorithm currently used by the French

ministry of education does not respect the higher preference criterion. Replacing some teachers by

less preferred ones does not seem to be perceived as problematic, so that by relaxing the higher

preference criterion - completely or in some regions - we might better match the objectives and

criteria of policy makers. Secondly, the previous results show that fully respecting this criterion can

significantly reduce the mobility in deprived regions. We might want to better calibrate the mobility

of teachers initially assigned in these deprived regions as reducing their overall mobility by 44.08%

might have undesired effects (increased drop out from the profession, other teachers avoiding even

more these deprived regions, being aware that it will be difficult to exit them). A fine tuning of

the mobility in each region would be easy to achieve by relaxing the higher preference criterion in

some regions but not others, or even by relaxing this criterion for some teachers in deprived regions,

but not all. Both options will be tested in the next sections. Finally, the higher preference criterion

might not be relevant in all regions, and a case-by-case approach might be more relevant. Indeed,

prior to the mobility, regions significantly differ in terms of age and experience of their teachers, so

that it might not be desirable to assign older teachers in all of them. In attractive regions, teachers

are significantly older and more experienced than in less attractive regions. To see that, for different

regions, we can compare the ratio of the number of teachers older than 50 over the number of

teachers younger than 30. This ratio is higher than 16 in the region of Montpellier, close to 8 in

Rennes, but lower than 2 in the relatively deprived regions of Créteil, Versailles or Amiens (Direction

de l’Evaluation de la Prospective et de la Performance, 2014). This important inequality in the

geographic distribution of young teachers could have an intuitive direct impact on policy makers in

charge of assigning teachers: they might not want to respect the higher preference criterion - i.e

assign more experienced teachers - in all regions, but rather use a case by case approach depending

on the individual situation of each region.

We discussed in the previous section how the higher preference criterion can reduce teachers’

mobility. We will test several options in the next sections to solve this. A first option consists
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Table 2.6 – Comparison of the number of tenured teachers obtaining a new
assignment (region) under the current algorithm (DA*) and the alternative

algorithm we suggest (TOBE) - by subject -

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5)
All subjects 5494 -2.24% 40.81% 15.07% 32.25%
Sport 705 -11.4% 29.7% 10.2% 24.3%
Literature 668 3.6% 34.3% 12.9% 25.0%
Mathematics 645 -4.8% 36.4% 2.3% 24.0%
English 512 7.4% 51.6% 19.1% 40.4%
History-Geography 437 2.1% 32.3% 13.7% 27.0%
Spanish 312 -11.9% 35.9% 9.3% 29.2%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in
columns 4 and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).

in relaxing the criterion in all regions.36 This gives us a sense of the maximal improvement we

could obtain, but it might not be satisfying to significantly increase outgoing mobility form deprived

regions. Hence, as a second test, we relax the higher preference criterion in attractive regions only.

This should intuitively increase teachers’ mobility in these regions, while ensuring that relatively

deprived regions are not hurt in terms of experience of their incoming teachers. But this second

option significantly retains teachers in deprived regions which can in turn hurt the attractiveness of

the profession. Hence, a last and convincing option consists in relaxing the higher preference criterion

in attractive regions, and for a certain share of teachers in unattractive regions. We successively

present these simulations in the next sections.

When discussing below the results for each option of TOBE, we will focus on the tenured teachers

who are those for which the scope of improvement for TOBE is the most important. Remember

that, for newly tenured teachers, their preference lists are completed in order for (most of) them to

be sure to be assigned at the end of the assignment process.37 We provide a detailed analysis for

the newly tenured teachers in Section 2.6.8. Last, remember that all the results use the order for

our generalized TOBE as defined in Section 2.4.3. As mentioned, we provide results on alternative

36This option is equivalent to using a many-to-one version of the YRMH-IGYT algorithm.
37As it will be seen, it might still be the case that there are teachers unassigned at the end of the process. This is

because the completion of the preference lists is not complete: the ministry does not incorporate the French overseas
regions for a teacher who did not rank them. In practice, if a teacher is still unassigned at the end of the process, the
ministry creates ex post additional positions depending on the regional needs.
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orders in Sections 2.9.2 and 2.9.3 of the Appendix.

2.6.3 Modification of TOBE to account for the situation of deprived regions

As explained in the previous section, it might not be relevant to assign preferred teachers –

mostly meaning with higher experience – in all regions. Based on this observation, we distinguish two

types of regions. Firstly, “targeted” regions are relatively deprived regions that would benefit from

being assigned more experienced teachers. For these regions, a first approach consists in requiring

that any teacher living the region is replaced by a teacher whose experience is at least as high.

The second type of regions corresponds to “non-targeted” regions. These are relatively attractive

regions whose teaching workforce is relatively old . Based on this simple distinction, we modify the

TOBE algorithm in the following way. For each teacher, we define the set of regions where he/she is

“eligible”. A teacher is eligible in a region in two cases:

1. If the region is not targeted, all teacher are automatically eligible for that region.

2. If the region is targeted, a teacher will be eligible for that region only if he/she is preferred

than at least one teacher initially assigned in that region who has not been reassigned yet

through the algorithm.

This description of targeted regions can be incorporated in the TOBE mechanism we described

in Section 2.3. Indeed, a non-targeted region would allow all its teachers to leave without necessarily

replacing them. This is equivalent to declaring all the teachers matched to that region as “unaccept-

able” in the preferences of that region: any potential incoming teacher will be preferred, and will

therefore be able to enter the region. It is worth noticing that if all regions are targeted, we obtain

the TOBE mechanism presented earlier, that would be applied directly on the initial preferences.

Reversely, if none of the regions are targeted, preferences of regions do not matter in the assignment

and we obtain the YRMH-IGYT algorithm (Abdulkadirouglu and Sonmez, 1999) in the many-to-one

environment we previously described. In the following, as mentioned before, we will consider four

different targeting scenarios:

1. TOBE with all regions targeted: this version is equivalent to the original TOBE, all teachers

in all regions can leave only if they are replaced by preferred teacher.
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2. TOBE with no region targeted: all teachers can freely leave their region. This version is

equivalent to the many-to-one YRMH-IGYT algorithm presented earlier.

3. TOBE with deprived regions targeted (option 1): in the three deprived regions of Amiens,

Créteil and Versailles, their teachers cannot leave without being replaced by a preferred teacher.

4. TOBE with a proportion of teachers targeted in deprived regions (option 2): in the three

deprived regions of Amiens, Créteil and Versailles we relax the higher priority criterion for

only a proportion of them. For respectively the 65%, 40% and 45% most preferred teachers in

Amiens, Créteil and Versailles, we relax the higher priority criterion i.e. they can leave their

without being replaced by a preferred teacher. This calibration was chosen to replicate the

movement of DA∗ in these regions.

Before moving to the specific results on teachers’ distribution and regional statistics under each

algorithm, Table 2.7 gives the cumulative distribution of ranks obtained by tenured teachers. The

cumulative distributions for each TOBE algorithm all assign more teachers than DA∗ up to rank

8 but the latter does better for rank 9. So they tend to perform better than DA∗ but there is no

stochastic dominance relationship between each distribution for TOBE and the one of DA∗. This

is mainly because all TOBE algorithms leave slightly more unassigned tenured teachers (with no

initial region) than DA∗. Indeed, even is not reported here, the same distributions calculated on

initially assigned teachers all stochastically dominate the one of DA∗ for the same teachers.

2.6.4 Performance of TOBE when no region is targeted

To begin with, it is interesting to see what happens in the extreme situation where none of

the regions are targeted. This is equivalent to running the YRMH-IGYT mechanism as defined

by Abdulkadirouglu and Sonmez (1999), except that we are in a many-to-one environment. This

mechanism does not take into account the welfare of the regions: when a cycle or a chain is

implemented, an incoming teacher in a region is never required to be preferred to the exiting teacher.

Intuitively, by removing all constraints on regions welfare, this allows more cycles to be implemented,

so that this algorithm should be expected to have a higher movement than the versions where some

regions are targeted. However, an intuitive drawback should be a significant increase in the exit

mobility from deprived regions and no control on the experience of the incoming teachers in the
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Table 2.7 – Cumulative distribution of the ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5)
1 4219 4223 5953 4939 5643
2 9861 10067 10326 10192 10274
3 10745 10930 10956 10949 10932
4 11234 11393 11296 11376 11314
5 11482 11611 11501 11594 11516
6 11645 11756 11616 11730 11644
7 11764 11829 11728 11808 11745
8 11883 11894 11845 11889 11852
9 11961 11946 11906 11940 11908
≥ 10 12066 12052 12047 12047 12047
Unassigned 57 71 76 76 76

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in columns 4 and 5 of this table, we have choosen to select three regions as deprived:
Créteil (C), Versailles (V) and Amiens (A). The last line gives the number of unassigned tenured
teachers among those who do not have an initial region.

deprived regions.

We run this algorithm on all subjects. The results are reported in Table 2.6, column 3. We

find that the number of tenured teachers who obtain a new assignment can be increased by 40%

compared to the number of teachers moving under the algorithm currently used by the French

Ministry of Education. This significant increase is observed in almost all subjects. For instance,

the mobility increases by 36% in maths, 34% in literature and 51% in English. In addition, the

improvement is experienced by teachers originating from all regions as can be seen on Figure 2.1

and in Table 2.5. On average, the mobility increases by 79.33% in attractive regions, and by 29.74%

in deprived regions.

At first sight, this significant improvement in teachers’ mobility might be considered as a desirable

outcome. Yet, as we mentioned earlier, increasing teachers’ mobility can trigger important exit

movements from the least attractive regions. These exits would need to be replaced by an equivalent

incoming flow of teachers to ensure that none of the positions are left empty at the end of the

mobility process. The drawback is that most of the incoming teachers in deprived regions are newly

tenured teachers with very little experience in teaching. Hence, every year, an increased mobility

would tend to increase the share of inexperienced teachers in the most deprived regions. In that
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Figure 2.1 – % mobility increase compared to DA*

perspective, any increase in teachers’ mobility that would be done to the detriment of the most

deprived regions and students might be considered as problematic. Our simulations confirm that

the number of teachers leaving the three most deprived regions would increase by 29.74%. As a

consequence, our simulations show that the share of newly-tenured teachers – among the incoming

teachers – would increase by 4.2% in Créteil and Versailles. Based on that observation, one of the

contribution of this paper is to suggest a variant of this mechanism which, contrary to what happens

here, does not hurt the deprived regions.

2.6.5 Performance of TOBE when some deprived regions are targeted (option

1)

As mentioned in Section 2.6.3, a simple modification of TOBE allows to account for the situation

of deprived regions, and to avoid that too many teachers leave these regions every year. We identify

three “targeted” regions that would benefit from being assigned more experienced teachers. In these

regions, we require that any teacher who is leaving has to be replaced by a teacher whose experience

is at least as high. The three regions we chose to target are Créteil, Versailles and Amiens. They are

the three least attractive regions based on the ratio presented in Tables 2.3, column 1: the number

of tenured teachers asking to enter over the number of tenured teachers asking to leave the region.
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It is important to keep in mind that other criteria could be used and other regions could have been

selected.38 Based on these targeted regions, we run the modified version of TOBE and present the

results in Table 2.6 and 2.5. We find that the mobility still increases significantly compared to

the mobility observed with the current algorithm (+15.07% for tenured teachers, and +21.55% for

those who were initially assigned a region). The new criterion requiring that any outgoing teacher

has to be replaced by a more experienced incoming teachers implies that, in targeted regions, the

ratio of the number of tenured teachers leaving over the number of tenured teachers entering gets

closer to one. In addition, both the average age of the incoming teachers and the share of tenured

teachers increase in these targeted regions. Based on these outcomes, the objective to ensure that our

alternative algorithm does not to hurt the deprived regions seems better satisfied. Yet a drawback

emerges: targeting regions significantly reduces the number of teachers allowed to leave the region.

As reported in Table 2.5, this number drops by 29.47% in Amiens, 61.99% in Créteil and 40.56%

in Versailles. It is worth noticing that this drop in deprived regions is of similar magnitude to the

one observed when all regions are targeted. But despite this similarity, the overall mobility is still

much higher in the current option 1 than when all regions are targeted as the improvement for

attractive regions is significantly higher (+79.43% with option 1 versus +31.66% when all regions

are targeted). This mobility reduction in deprived regions could be perceived as problematic as it

prevents teachers in these regions from moving and so can ultimately impact the attractiveness of

the profession. A solution consists in targeting a proportion of teachers in deprived regions rather

than targeting entire regions. We present this solution in the next section.

2.6.6 Performance of TOBE when some teachers in deprived regions are tar-

geted (option 2)

Based on the observation that targeting regions reduces teachers’ mobility in these regions, we

suggest an alternative which consists in identifying some “non-target teachers” in deprived regions

that would not need to be replaced by a more experienced incoming teacher. In other words, this

solution consists in relaxing the higher preference criterion for some teachers, who could be selected

based on the preferences of the region. Relaxing this criterion is a means to achieve a fine tuning

38For instance, to avoid boundary effects on some of the regions, one can think about a smoothing targeting scenario
that tries to limit the exit of the teachers in other regions that are the next less popular ones after Créteil, Versailles
and Amiens.
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of the outgoing flows in deprived regions. This is particularly interesting if we want to keep the

outgoing flows at the same level as they currently are for instance. This is obviously not the only

target we could have, but it seems a relevant one in terms of policy recommendation. It allows to

keep the mobility constant in deprived regions, while significantly improving the mobility in other

regions. Hence, for each of the three deprived regions, we measure the percentage of teachers who

need to be non-targeted to keep the outgoing number of teachers constant in deprived regions. By

relaxing the higher preference criterion for 65% of the teachers in Créteil, 45% in Versailles and

40% in Amiens, the outgoing flows remain constant – or slightly increase - in these regions. Then,

we simulate the assignment obtained with this new version of the targeting policy. The overall

number of initially assigned teachers obtaining a new assignment is still significantly higher than

under the current algorithm (+44.9% as reported in Table 2.5, column 5).39 By definition, mobility

remains close to constant in deprived regions (+2.90% in Amiens, +2.58% in Créteil and +4.75% in

Versailles), but significantly increases in all other regions). For instance, the number of assigned

teachers obtaining a new assignment increases by 40% in Rennes, 46.81% in Bordeaux and 75.34%

in Toulouse. Hence, this option significantly increases the overall mobility, while ensuring that the

regions of Créteil, Versailles and Amiens, which have been identified as deprived, do not suffer from

a rise in the number of teachers leaving. In addition, as an important share of the tenured teachers

leaving these regions are replaced by preferred incoming teachers, the age of the teachers assigned in

deprived regions increases. It goes from 30.06 to 30.53 in Créteil, from 31.08 to 31.54 in Versailles

and from 29.87 to 30.41 at Amiens.40 And, as we have previously mentioned, we know from the

literature that an additional year of experience at the beginning of a teacher’s career has a significant

impact on his/her value-added. Finally, we show that other outcomes improve or remain constant in

these three regions. The number of newly tenured teachers remains stable. The ratios between the

number of tenured teachers entering and leaving the regions tend to improve, going from 3.18 to

2.79 in Créteil for instance (from 1.53 to 1.47 in Versailles and goes from 2.7 to 3 in Amiens).

2.6.7 Performance in terms of fairness

39For all tenured teachers, including those with no initial assignment, the improvement is of 32.25%.
40In the Section 2.9.1 of the Appendix, we report the densities of the age of the assigned teachers in the three

deprived regions of Créteil, Versailles, Amiens and the three most attractive regions of Bordeaux, Rennes and Toulouse.
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Table 2.8 – Comparison of the number of teachers blocking with at least one region - decomposition by type of
violation -

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5)
All blocking pairs 6542 8621 8501 8772 8579
Tenured teachers 5094 6433 4646 5768 4965
Newly tenured teachers 1448 2188 3855 3004 3614
Acceptable blocking pairs 6542 3408 3258 3007 3111
Tenured teachers 5094 2628 1669 1993 1962
Newly tenured teachers 1448 780 1589 1014 1419
Unacceptable blocking pairs - 8178 8213 8464 8275
Tenured teachers - 6079 4387 5505 4702
Newly tenured teachers - 2099 3826 2959 3573

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in columns 4
and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V) and Amiens (A).
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So far, the outcomes we have considered are related to the welfare of both teachers and regions.

Another key criterion we haven’t discussed yet relates to the fairness of the assignments we obtain.

In other words, it is important to quantify situations where the priority of a teacher is not respected.

Such situations exist when a teacher does not obtain a region, whereas other less preferred teachers

are assigned that same region. In that case, the priority of the first teacher is not respected, and

he/she would form what is called a blocking pair with the region. In this Section, for a matter of

clarity, we distinguish two situations in which the priority of a teacher might be violated: violation

due to another teacher staying in his region or entering the region. This distinction is equivalent

to the concepts of inappropriate claims and justified claims in Pereyra (2013). Firstly, a highly

preferred teacher might be rejected from a region whereas other less preferred teachers stay in that

region because, through the algorithm, they have not obtained any of the regions they ranked. This

violation of a teacher’s priority is a direct consequence of the individual rationality constraint. The

latter states that teachers can keep their initial assignment if they do not obtain any of the regions

they ranked. The alternative algorithm we suggest, by significantly increasing the number of teachers

obtaining a new assignment, proportionally reduces this first origin of violation of teachers’ priorities.

Indeed, as reported in Table 2.8, the number of tenured teachers who experience a violation of their

priority in at least one region because of another teacher staying to his/her initial assignment drops

from 5094 to 1962 in the second option we suggest.

Secondly, a highly preferred teacher might be rejected from a region whereas other less preferred

teachers are assigned, through the algorithm, to that region. This second situation of violation

of a teacher’s priority has its origin in the implementation of the cycles we suggest in the TOBE

algorithm. By allowing some teachers to exchange their positions, a teacher part of a cycle might

obtain a region A, while other preferred teachers don’t. These other teachers might not be part

of a cycle leading them to the region A because of a lack of teachers in the region A willing to

be assigned their region. In our second option, 4702 teachers have their priority violated due to

another less preferred teacher entering a region they do not obtain. Although the algorithm we

suggest creates violations due to an entering teacher, two elements are worth noticing. Firstly, the

number of violations due to an entering teacher created is partly compensated by the drop in the

number of violations due to a staying teacher so that the increase in the overall number of blocking

pairs remains limited (it goes from 6542 to 8579). Secondly, Pereyra (2013) and Compte and Jehiel
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(2008) showed that if one does not allow any blocking pair due to entering teachers, then DA∗ is the

mechanism maximizing the movement and minimizing the number of blocking pairs due to teachers’

staying among all the mechanisms with no blocking pairs due to entering teachers. Our results show

that this requirement comes with an important cost: one has to accept a much lower mobility under

DA∗. The question is then whether the benefit of having no blocking pairs due to entering teachers

outperforms the cost of the low mobility. We hope that, at least, our empirical results will help to

quantify the potential gains and losses of adopting one requirement or the other and will shed new

lights into the debate.

Finally, we should mention that blocking pairs due to an entering teacher already exist in the

current French assignment process, although they are justified by specific situations. For instance,

the way couples are treated in the current algorithm creates such blocking pairs, which are accepted

by couples as they are the only way for them to obtain the same region. Blocking pairs due to an

entering teacher are also widespread in the assignment of primary school teachers, justified by the

important lack of mobility if the algorithm was not allowing them. Indeed, they used a similar

process as the one described for the French Assignment Mechanism in Section 2.3.2. They used to

implement Stable Improvement Cycles at the second step of the procedure. However, due to several

complaints because of an important lack of mobility, they chose to drop the stability requirement

to define the cycles and so have used standard Pareto-improving cycles that just consider teachers’

preferences. In doing so, they obviously create blocking pairs due to entering teachers.

2.6.8 Results for newly tenured teachers

Table 2.9 reports the cumulative distributions of the ranks for newly tenured teachers. A first

observation is that the TOBE algorithms do worse than DA∗ for newly tenured teachers. In our

last proposed version in column (5), we only match 2560 of them to their first choice against 4044

under DA∗. The distribution of DA∗ stochastically dominates the ones of columns (3), (4) and (5).

These three TOBE algorithms also tend to leave slightly more newly tenured teachers unassigned.

However, for the TOBE with all regions targeted in column (2), there is no stochastic dominance

relationship: DA∗ matches slightly more newly tenured teachers to their first choice but less for

higher ranks, it also leaves slightly more unassigned newly tenured teachers.

As mentioned earlier, for teachers with no initial assignment, their preference lists are completed.
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Table 2.9 – Cumulative distribution of the ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5)
1 4044 3955 2290 3224 2560
2 4804 4910 3286 4335 3628
3 5095 5231 3856 4807 4182
4 5285 5478 4315 5157 4614
5 5429 5662 4673 5419 4931
6 5560 5797 4956 5601 5187
7 5662 5892 5161 5729 5360
8 5803 6007 5434 5904 5607
9 5916 6092 5644 6011 5759
≥ 10 6491 6497 6467 6453 6465
Unassigned 615 609 639 653 641

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in columns 4 and 5 of this table, we have choosen to select three regions as deprived:
Créteil (C), Versailles (V) and Amiens (A).

In Table 2.10, we report the number of tenured and newly tenured teachers assigned to a region that

has been added on their preference list after the completion.41 The column (1) reports the total

number of teachers with no initial region, remember that there are 1560 of them among tenured

teachers and all newly tenured do not have any initial region. Once again, except the TOBE with

all regions targeted, the others tend to assign more teachers to an extended wish.

Table 2.10 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no region deprived a proportion of

DA* targeted targeted regions teachers targeted
targeted in deprived regions
(option 1) (option 2)

(1) (2) (3) (4) (5) (6)
Tenured 1560 639 554 1029 776 951
Newly Tenured 7106 603 522 1324 741 1111

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in
columns 4 and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).

It seems that, under the TOBE algorithms, there is a competition between initially non-matched

41It reports the number of teachers assigned to a region that they did not rank in their reported list. However, it
has to be interpreted with caution. Indeed, the teachers being aware of this completion can have anticipated it in their
report and can still find acceptable these added regions.
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teachers (both tenured and newly tenured) and the tenured teachers initially assigned to the three

deprived regions of Créteil, Versailles and Amiens. Indeed, in both Table 2.9 and Table 2.10,

algorithms in column (3) and (5) tend to better perform than the others.42 In both of them, Créteil,

Versailles and Amiens are targeted and, as one can see in Table 2.11 of the Appendix, the movement

in these regions is drastically reduced compared to DA∗. As mentioned earlier, initially non-assigned

teachers are disadvantaged compared to others since they are ranked at the bottom of the ordering

of TOBE as defined in Section 2.4.3. For instance, it implies that they are always the last teachers

who can take an empty seat in a region. In order to favor them, one can change the order of TOBE.

In the Section 2.9.2 of the Appendix, we define a new order as follows:

• Rank first x % of the best initially non-assigned teachers with the highest maximum score.

• Then rank all teachers initially matched to one of the attractive regions.

• Then rank all teachers initially matched to one of the unattractive regions.

• Then rank the remaining initially non-assigned teachers.

Inside each group, teachers are ranked according to the maximum score they have. This order has

the same structure as the previous one. The only difference is that it takes a proportion of the best

initially non-assigned teachers and move them to the top of the ranking. Intuitively, this will allow

these teachers to be the first to choose their assignment under TOBE. In the Appendix, we provide

the results in terms of movement, distributions of ranks for tenured and newly tenured teachers as

well as in terms of average age of the teachers in each region. We provide the results when x = 20%,

x = 40% and x = 100%. The results support that there is a trade-off between the movement of

teachers initially assigned to Créteil, Versailles and Amiens and the quality of the assignment of

initially non-assigned teachers. Moreover, in the extreme case where all the initially non-assigned

teachers are at the top of the ranking, we even match less of them in extended wishes than under

DA∗ and assign more to their first ranked region. However, this is done at the expense of the overall

movement: +1.03% compared to DA∗ with +2.15% for tenured teachers (and +3.61% for initially

assigned teachers). Some can also argue that the structure of the orders used so far is artificial,

especially when discriminating between teachers initially matched to attractive and unattractive
42TOBE with all regions targeted even outperform DA∗. Since all the regions are targeted, initially assigned

teachers cannot leave without being replaced by a preferred teacher. So initially non-matched teachers fully benefit
from it and have almost no competition from initially assigned teachers for empty seats in the regions.
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regions. In Section 2.9.3 of the Appendix, we consider another structure: teachers are only ordered

according to their experience score. The additional movement for the TOBE algorithm with a

proportion of teachers targeted in deprived regions (option 2) represents a 7% improvement compared

to DA∗ with a 14.83% improvement for tenured teachers. Once again, initially non-assigned teachers

tend to be hurt: newly tenured teachers tend to have a lower experience than tenured ones, so most

of them are still at the bottom of the order. We provide results for three additional orders that take

the best x = 20%, 40%, 100% of the initially non-assigned teachers and move them at the top of the

order defined with the experience score. The results are similar to the previous ones.

Overall, our results suggest that a wide diversity of policy objectives can be achieved in carefully

choosing the order and the targeting scenarios under TOBE. The final choice will depend on the

objectives and the choices of the ministry and teacher unions.
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2.7 Extensions

2.7.1 Reassignment of teachers in the presence of couples.

43

The presence of couples in centralized labor markets is a standard problem in the matching

literature. Roth (1984) was the first to introduce it for the assignment of medical interns in the U.S

to hospitals. Since then, an important literature has studied such problem. The interested reader

may refer to the excellent interdisciplinary survey of Biró and Klijn (2013). A couple is formally

considered as an unique entity composed of two members. They have a preference ordering over

the pairs of possible assignments that they could obtain. The literature has focused on the effect of

introducing couples in a standard two-sided matching market. Roth (1984) has shown that in the

presence of couples, stable matchings may fail to exist.44 Other specific properties such that the

existence of a one-sided optimal matching or the rural hospital theorem also fail in the presence of

couples. Another interesting result for us from Biró and Klijn (2013) is that, with couples, there is no

mechanism that is strategy-proof and finds a stable matching whenever such one exists. Finally, in

terms of computational complexity, Ronn (1990) proved the NP-hardness of the problem of finding

a stable matching in the presence of couples when each hospital has only one position. Biró and

McDermid (2014) showed that it is still NP-hard even if each couple always apply to positions

at the same hospitals. In this section, we investigate the introduction of couples in our model of

reassignment of teachers both in terms of existence results and computational complexity. In France

for instance, in the complete dataset of 2013 we used, around 7.5% of the 25 196 teachers applying

to the regional assignment phase apply for a couple assignment. In our former analysis, we chose

to omit these couples. In practice, their treatment is particular and non standard, we refer the

reader to the description done by Terrier (2014) of the French procedure on the Matching in Practice

website.45

43This section is based on an ongoing preliminary work of Biro, Combe and Tercieux.
44There are several definitions of stability in the presence of couples. The main issue is that, under responsive

preferences for hospitals, it is not clear how the latters would consider the application of both members of a couples.
For all the definitions, one can find an example such that stable matchings do not exist. Since stability cannot be
guaranteed in our reassignment setting, we refer the reader to the survey of Biró and Klijn (2013).

45http://www.matching-in-practice.eu/matching-practices-of-teachers-to-schools-france/ For a brief
description, couples are asked to report a common list over regions. They cannot rank pairs of regions that would
allow them to express their preferences for one member of the couple being in one region and the other in another one.
They then run the DA∗ algorithm in considering each member of the couple as a single teacher with the list reported
by the couple. If at the end, couple members are not matched together, they delete both regions from the common
couple list and they run again the DA∗ algorithm with the new list and iterate the procedure.
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We consider a setting where there are now K single teachers: S := {t1, . . . , tK} and L couples:

C := {c1, . . . , cL}. A couple is composed of two individual teachers: cl = (ml, fl). So in total there

are N := K + 2× L teachers in the set T := S ∪ (
L
∪
l=1
{ml, fl}). With a slight abuse of notations, we

will sometimes denote t has a generic teacher in T so that t can also be a member of a couple. To be

closer to our former French application of assigning teachers to regions we will use the terminology

“regions”rather than “schools”. So there are M regions: R = {r1, . . . , rM} and a generic region r

has qr positions for teachers. Each region r ∈ R has a strict preference order, �r over individual

teachers in T . Each single teacher t ∈ S has a strict preference order, �t, over R. Each couple

c = (m, f) ∈ C has strict preference order, �c over pairs of possible assignments i.e. over R × R

where the first coordinate is the assignment of m and the second the one of f . Let PS and PC be

the sets of all possible preferences for respectively singles and couples. We will sometimes restrict

the possible domain, especially for couples and will denote DS ⊂ PS and DC ⊂ PC the considered

domains. There is an initial assignment of teachers to regions µ0 : T 7→ R. For simplicity, we

assume that we are in a pure reassignment problem so that
∑
r∈R

qr = N and all teachers are initially

matched so that ∀t ∈ T µ0(t) 6= ∅. With again a slight abuse of notations, we will sometimes refer

to µ0(cl) := (µ0(ml), µ0(fl)) as the initial matching of couple cl. We can redefine all the notions

introduced in the paper with the presence of couples. A matching µ : T 7→ R is:

• 1-Individually Rational (1-IR) if ∀c ∈ C, µ(c) �c µ0(c) and ∀t ∈ S: µ(t) �t µ0(t).

• 2-Individually Rational if it is 1-IR and ∀r ∈ R, µ(r) �r µ0(r).46

• 1-Pareto Efficient (1-PE) if there is no other matching µ′ s.t. ∀c ∈ C, µ′(c) �c µ(c) and

∀t ∈ S, µ′(t) �t µ(t) and strictly for some c ∈ C or t ∈ S.

• 2-Pareto Efficient (2-PE) if there is no other matching µ′ s.t. ∀c ∈ C, µ′(c) �c µ(c), ∀t ∈ S,

µ′(t) �t µ(t) and ∀r ∈ R, µ′(r) �r µ(r) and strictly for at least one couple, single or region.

• Two sided maximal if it is 2-IR and 2-PE.

A mechanism ϕ maps admissible preference profiles of couples and singles to matchings. A mechanism

is 1-IR (resp. 2-IR/1-PE/2-PE/ Two sided maximal) if it always returns a 1-IR (resp. 2-IR/1-PE/2-

PE/ Two sided maximal) matching. A mechanism is strategy-proof on the domains DS and DC

if:
46For comparing sets of teachers for regions, we use the same definition as the one we used in Section 2.3.1.
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1. ∀c ∈ C, ∀ �−c with profiles for singles and couples in the domains DS and DC , ∀ �c,�′c∈ DC

: ϕ(�c,�−c)(c) �c ϕ(�′c,�−c)(c);

2. ∀t ∈ S, ∀ �−t with profiles for singles and couples in the domains DS and DC , ∀ �t,�′t∈ DS :

ϕ(�t,�−t)(t) �t ϕ(�′t,�−t)(t)

Note that here, contrary to the current French procedure, a mechanism uses the preferences of

couples over pairs of possible assignments. A mechanism is polynomial if it could be implemented

using a polynomial time algorithm i.e. the time to solve any instance is a polynomial function

of the number of teachers, couples and regions in the instance.47 For some problems, there is no

known polynomial algorithm to solve them or even check in polynomial time if a given solution is

valid but there are known to be as “hard to solve”as any polynomial problem. These problems are

called NP-hard problems.48 Before moving to some results, we will describe an important domain of

preferences for couples. In France, the distance between two regions is important. Since the main

goal of couples is to stay together, one can reasonably assume that they would like to be assigned to

the same region.49 So let DrC ⊂ PC be the domain of regional preferences for couples i.e. �c∈ DrC

if for two regions r 6= r′ and µ0(c) 6= (r, r′) then µ0(c) �c (r, r′). So couples find unacceptable to be

matched to different regions.50

Before moving to the first result, note that, contrary to the existence of stable matchings, the

existence of a two-sided maximal matching does not fail once one introduces couples. Indeed, if the

initial matching is not two-sided maximal, then there exists another one where all singles, couples

and regions are weakly better-off and some strictly. If this new matching is not two-sided maximal

then there exists another one where all singles, couples and regions are again weakly better-off and

some strictly. We can iterate the argument and, by finiteness of the environment, it will lead to a

47As we will mention later, it is also possible to fix the number of regions and to only let the number of teachers
increase.

48We refer the reader to any standard textbook of computer science for a formal definition. By “as hard to solve”, we
mean that any given instance of some polynomial problem could be reinterpreted (formally, reduced in polynomial time)
as an instance of the studied problem. Over time, the literature has identified an important list of NP-hard problems.
To prove that a problem is NP-hard, one has to show that one of the well known problems in the aforementioned list
could be reduced to the studied problem. We will show in Proposition 2.7.4 such reduction.

49Obviously, one may argue that if both of them are assigned to different regions but next to the common boundary
of the two, then they would prefer it. We rule out here this possibility.

50Since we will focus on IR mechanisms, we define acceptability of a match with respect to the initial allocation
of a couple/teacher. Formally, this domain is the equivalent in our setting of “consistent”preferences as defined by
McDermid and Manlove (2010). Remember that, in the standard two-sided setting, they proved the NP-hardness of
finding a stable matching even when couples have consistent preferences.
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two-sided maximal matching. Note that the previous argument is not constructive, being able to

find such matching is the main challenge. We start with a simple positive result:

Proposition 2.7.1. If there are no single teachers, i.e. K = 0, couples have regional preferences

and ∀c = (m, f), µ0(m) = µ0(f), then there exists a strategy-proof and two-sided maximal mechanism

that is polynomial.

Proof. Since there are no single teachers, we have N = 2× L. Since we are in a pure reassignment

problem and that all couples are initially matched to the same region, then each region has an even

number of seats so that qr = 2 × q̃r ∀r ∈ R. We will consider a “couple one to one”environment

where qr = 2 for all r so that there is only one couple per region.51 So consider a teacher assignment

problem as defined in Combe, Tercieux and Terrier (2016b) where there are M regions and where

each region r has 2 seats. Couples are interpreted as individual teachers. Since preferences are

regional, we can define, for each couple, a linear order over R, say �̃c s.t. r�̃cr′ ⇔ (r, r) �c (r′, r′).

We will use the TOBE algorithm as defined in Combe, Tercieux and Terrier (2016b) that is a

strategy-proof and two-sided maximal mechanism that runs in polynomial time. To run it, we use

the preferences of the couples over the regions as defined above. We just need to define how to use

the preferences of the regions that are initially over individual teachers to compare couples. Note

that, in the original one to one TOBE algorithm, teachers point to their favorite teacher-school pair

among the ones in which the school is in their opportunity set i.e. the set of schools that strictly

prefer them to their initial teachers. Here, say that the region r, initially matched with couple (m, f)

is in the opportunity set of couple c′ = (m′, f ′) if either i) m′ �r m and f ′ �r f or ii) m′ �r f and

f ′ �r m. This is to ensure that when couple (m′, f ′) replaces couple (m, f) then region r is not hurt

according to the definition we gave in Section 2.3.1. With this definition, one can run the TOBE

algorithm and find a matching that is two-sided maximal.

Unfortunately the next proposition shows that the positive result fails if one only drops the

assumption that all couples are initially matched to the same region.52

51The extension of the described procedure to the many to one case with several couples initially matched to a
region is similar to the one used earlier: one just needs to define a pointing order over the couples.

52However, if one assumes that all couples prefer to be assigned together in the initial regions of its members and
that it is always feasible in the region preferences to assigned the couples together in the same region. Then one can do
this exchange and then use the same algorithm as in Proposition 2.7.1, this would be a polynomial, two-sided maximal
and strategy-proof mechanism. However, if preferences of the regions can be arbitrary, it might not be feasible to
initially assign couples together and so the following impossibility result would still hold.
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Proposition 2.7.2. If there are no single teachers, i.e. K = 0, that couples have regional preferences

and that the initial matching is arbitrary, then there exists no strategy-proof and two-sided maximal

mechanism.

Proof. There are 4 couples: ck := (mk, fk) for k = 1, . . . , 4 and 3 regions rk, k = 1, 2, 3. Regions r1

and r2 have two seats each and region r3 has four seats. The initial matching is given by:

µ0 =

 m1 f1 m2 f2 m3 f3 m4 f4

r1 r2 r1 r2 r3 r3 r3 r3


Preferences of the couples are as follows:

�c1 : (r3, r3) (r1, r2)

�c2 : (r3, r3) (r1, r2)

�c3 : (r1, r1) (r2, r2) (r3, r3)

�c4 : (r1, r1) (r2, r2) (r3, r3)

Define preferences of the regions such that their initial teachers are ranked at the bottom so that

any new matching would be IR for the regions. Note that under the profile � given by the above

preferences, there are two possible two-sided matchings: either matching c3 to r1 and c4 to r2 or the

reverse. If one chooses the former, then c4 could delete (r2, r2) from its profile (note that in doing so

the resulting profile is still a regional profile) and the only possible choice is to match c4 to r1 and

c3 to r2 so that the manipulation is successful. If one chooses the latter, the same manipulation

occurs for c3 so that there is no strategy-proof and two-sided maximal mechanism.

The next proposition shows that if one keeps regional preferences and the assumption that

couples are initially matched in the same region but just adds single teachers, then the result also

fails:

Proposition 2.7.3. If K > 0, that couples have regional preferences and that ∀(m, f) ∈ C,

µ0(m) = µ0(f) then there exists no strategy-proof and two-sided maximal mechanism.

Proof. There are 2 couples: ck := (mk, fk) for k = 1, 2, two singles: t1, t2 and 3 regions rk, k = 1, 2, 3
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with 2 seats each. The initial matching is given by:

µ0 =

 m1 f1 m2 f2 t1 t2

r1 r1 r2 r2 r3 r3


Preferences are as follows:

�c1 : (r3, r3) (r1, r1)

�c2 : (r3, r3) (r2, r2)

�t1 : r1 r2 r3

�t2 : r2 r1 r3

Define preferences of the regions such that their initial teachers are ranked at the bottom so that

any new matching would be IR for the regions. Note that under the profile �, there are two possible

two-sided maximal matchings: either couple c1 exchange seats with the two singles so that teachers

t1 and t2 end up being matched to r1. Or couple c2 exchanges seats with the two singles and the

latters end up being matched to r2. In the first case, let teacher t2 report the following profile:

�′t2 : r2, r3, r1. In that case, doing the exchange with couple c1 would violate the IR constraint for

this profile and so the only possible two-sided maximal matching is to match couple c2 to r3 and the

two singles to r2: a successful manipulation for t2. In the second case, there is a similar deviation

for t1 who could force the mechanism to match him to r1 in reporting the profile: �′t1 : r1, r3, r2.

In terms of computational complexity, the next proposition shows the NP-hardness of the problem

of finding a matching Pareto-dominating the initial allocation for teachers.

Proposition 2.7.4. The problem of deciding whether there exists a matching that Pareto-dominates

the initial allocation for teachers in a problem of reassignment of teachers with couples and singles

is NP-hard. Even when couples have regional preferences and are all initially matched to the same

region.53

Proof. The reduction is from the problem of matching couples and singles to rooms (here we will

use the term regions) with no preferences. In this problem, there are n twin rooms (here, regions

with two seats) and 2n agents, some of them forming couples. For each couple or single, there is
53The following reduction cannot be used if one would like to prove a NP-hardness result with no singles but where

couples are not initially matched in the same region. However, we conjecture that the NP-hardness would still hold.
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a set of acceptable rooms. We can accommodate in a room either one couple or two singles. The

problem is to decide whether we can allocate everyone to the rooms. Biró and McDermid (2014)

showed that this problem is NP-hard.

We reduce the above problem to the problem of deciding Pareto-efficiency of an allocation of

teachers with couples and singles. So start from a problem of matching k single teachers t1, . . . , tk

and l couples c1, . . . , cl with n = k + 2l (w.l.o.g we assume n is even) to n regions with two seats

each: r1, . . . , rn. For a teacher reassignment problem, these regions represent regions where the

previous couples and singles are willing to move and so do not include their initial regions. All of

the above regions are, in the teacher reassignment problem, occupied with couples who are willing

to move, let us denote them by c′1, . . . , c′n where couple c′i is initially matched with ri. Each of these

new couples, say c′i is willing to move to exactly one other region r′i. These regions r′1, . . . , r′n are

initially occupied by singles, s′1, . . . , s′2n where s′2i−1 and s′2i are initially assigned to r′i. These singles

are also willing to move to regions r′′1 , . . . , r′′n. s′1 is willing to move to r′′1 , s′2 and s′3 are willing to

move to r′′2 and, so on, s′2i and s′2i+1 are willing to move to r′′i+1 and finally s2n is willing to move

to r′′1 . Now these regions are occupied with couples c∗1, . . . , c∗n where c∗i is living in r′′i . They are

also willing to move to regions r∗1, . . . , r∗n with r∗i being the only acceptable region for the couple c∗i .

Finally, let us distribute the original singles t1, . . . , tk and couples c1, . . . , cl among regions r∗1, . . . , r∗n

by assigning them to these regions arbitrarily so that in each region we have either two singles or

one couple.

Now, we have to show that there is a Pareto-improvement for the instance if and only if there

was a complete room allocation in the original instance.

(⇐) This direction is simple, is there is a complete room allocation, then we let the original agents

t1, . . . , tk and c1, . . . , cl move to their acceptable regions according to the room allocation

and we can complete the exchange by moving every other single and couple to their unique

acceptable region.

(⇒) We have to show that if an agent is moving in the instance, then actually everybody must

move and so there also exists a complete room allocation. Suppose now for a contradiction

that some teachers are moving but not everybody. By the cyclical construction, it follows that

the same number of agents must move from every set (the four sets of agents defined above).

206



Increasing teacher mobility without hurting deprived regions

Moreover, if s′2i−1 is moving, then s′2i must also move since they are both living in r′i that

will be occupied by a couple. Let A denote the set of regions of the form r′i and B the one of

regions of the form r′′i that are involved in the exchange. If A is not complete then B must be

larger, leading to a contradiction. Indeed, if r′i is involved in the exchange then both s′2i−1 and

s′2i are moving and thus both r′′i and r′′i+1 are involved in the exchange (modulo n).

The above results suggest that introducing couples in the problem of reassignment of teachers

leads to several negative results. In practice, one could use Integer Programming solvers to solve

the above problems for reasonable market sizes. Obviously, Propositions 2.7.2 and 2.7.3 will imply

that the resulting mechanism will not be strategy-proof. Evaluating with our data this IP-solver

method and estimating the difference with the actual treatment of couples would be an interesting

policy exercise.54 Note that the NP-hardness result of Proposition 2.7.4 is proved for 2n individuals

and n regions so that the number of regions grows with the number of individuals. In practice, the

number of regions is fixed. So the question of whether there exists a polynomial algorithm for a fixed

number of regions but a growing number of agents is still open. We focused here on the first step

of the French procedure i.e. the assignment of teachers to regions as described in the Institutional

Context in Section 2.2. For this procedure, the domain of regional preferences seems reasonable. For

the second step, that matches teachers to schools inside a given region, another domain should be

considered.55 The question of whether there exists some polynomial and strategy-proof mechanism

for some well chosen domains is still open. Last, in the standard two-sided setting with couples,

positive results have been found using large market approaches. Whether these techniques could be

applied to the context of teacher reassignment problems is also an interesting future direction.

54These techniques work well for relatively small instances. In France, the number of regions is 31 as we presented
in our dataset. In our previous analysis, we considered each subject as an independent market so that the number
of teachers involved in each market is reasonable (maximum 2500 teachers for Sport). However, if one introduces
couples, the number of teachers in an instance of the problem could be much bigger. Indeed, it is likely that a couple is
composed of two teachers from different subjects e.g. math and history so that these two subjects cannot be considered
as disjoint markets. So if one has to merge all subjects together, the number of teachers in a given instance jumps to
around 20 000 teachers.

55Informally, one may think that once a couple is assigned to the same region, they would like to be as close as
possible to a city inside this region and as soon as one of the two members is closer to this city, it is acceptable for the
couple. The idea is that the complexity of finding a feasible assignment with couples is driven by the fact that if one
member of the couple could feasibly move in an exchange, then one has to check that the other one could also feasibly
move in another exchange. The idea would be to break such interdependence in assuming that as soon as one finds a
feasible exchange for one member of a couple then one could implement it without checking an exchange for the other
member and it would be acceptable the the couple.
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2.7.2 An alternative approach to the reassignment of teachers: the case of two

types.

56

Dur and Unver (2015) (DU) studied two-sided matchings via balanced exchanged and used

tuition and worker exchanges as applications. They considered the setting where firms exchange

temporarily their workers.57 They proposed an algorithm called the Two-Sided Top Trading Cycle

(2S-TTC) that ensures that, for each firm, imports and exports of workers are balanced, and

further proved that 2S-TTC is the only mechanism that is balanced-efficient, worker strategy-proof,

acceptable, individually rational, and satisfying another axiom called respecting internal priorities.

In practice, for instance in our teacher assignment setting, as we discussed in previous sections, exact

balancedness might not be a desirable goal and some imbalance tolerance might be acceptable in

some regions. DU also defined the Two-Sided Tolerable Top-Trading Cycles mechanism (2S-TTTC)

where for each school, there are lower and upper bounds imbalance tolerance between exports and

imports of students. This mechanism is strategy-proof and produces a matching that is constrained

Pareto-efficient so that no other matching also respecting the imbalance can Pareto-dominate it. In

our setting, this approach has the advantage of controlling exactly the final imbalance of a region

which is attractive from a policy perspective.

Although our approach in Combe, Tercieux and Terrier (2016b) and here pertains to the same

two-sided environment with initial assignment, a key feature differentiates our analysis. We consider

a richer set of schools’ preferences. To capture the specificities of worker-exchange programs, Dur

and Unver (2015) make assumptions about the preferences of workers and firms. They notably

assume that firms do not have “strong”preferences over acceptable workers, i.e. they are all equally

desirable for firms.58 This assumption of coarse preferences over incoming agents might be plausible

in the environment of temporary exchange of workers. Firms might only rank temporary workers as

acceptable and unacceptable as the cost of not being matched with the best candidate is relatively

limited since they will leave later on. However, when assignments are permanent, firms or schools are

likely to have finer preferences over the set of applicants. Rather than being perceived as substitutable
56This section is based on an ongoing preliminary work of Combe, Dur, Tercieux, Terrier and Unver.
57Temporary exchanges of teachers is a possible application.
58As stated by the authors, “each firm requires a set of specific skills, e.g., a mathematics teacher to replace their

own mathematics teacher. Compatibility and ability to perform the task are the main preference criterion rather than
a strict preference ranking. E.g., finding a good teacher with a specific degree is the first-order requirement, rather
than finer details about the rankings of all good teachers.”
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applicants recruited to perform a teaching task, schools know that teachers’ characteristics can vary

widely, notably in terms of number of years of experience, number of different schools they have

been working in, experience in teaching in disadvantaged schools, family characteristics, and so on.

These characteristics are all used to define a schools’ preferences, and some evidence shows that

firms and schools do care about the characteristics of their employees. Boyd et al. (2013) find that

schools show preferences for teachers with stronger academic achievement (e.g., attended a more

selective college) and for teachers living in closer proximity to the school. Accounting for schools’

fine preferences over teachers is particularly important when the distribution of experienced teachers

differs across schools. Schools might want to maintain a balance in their teachers’ characteristics

and experience. If an experienced teacher wishes to leave, the school might want to replace her

by an equally experienced teacher. If an inexperienced teacher wishes to leave, the school might

care less about the experience of the incoming teacher. More formally, in their environment, under

2S-TTC, if a teacher t can replace another teacher t′ who is initially matched with a school s, then

teacher t could also replace any teacher t′′ who is also initially matched with s. In contrast, in our

environment, teacher t might be more experienced than teacher t′ but less experienced than teacher

t′′ (so that t′′ �s t �s t′ �s ∅). School s would therefore accept teacher t only if she is replacing

teacher t′, but it would not accept the exchange if she was replacing teacher t′′. In practice, this

type of preferences for schools arises quite frequently. In our dataset, for the ten biggest disciplines,

on average 53,2% of the applicants have an “intermediate ranking”, meaning that they are ranked

strictly higher than the least preferred internal teacher, and strictly lower than the most preferred

internal teacher. On average, 91.3% of the regions receive at least one application whose ranking is

intermediate.59 Incorporating schools’ fine preferences has two important consequences.

First, with finer preferences, 2S-TTC is not two-sided maximal. In the above example, under

2S-TTC, teacher t could replace t′′, which would violate inidividual rationality for school s since

t is less preferred to t′′ in s.60 In addition, due to the possibility to recruit teachers who are less

preferred to those leaving, 2S-TTC could create new blocking pairs compared to those existing under

59To compute this statistic, for every discipline*region, we have defined the minimum and the maximum ranking of
the internal teachers. Then, for every applicant teacher, we define her ranking as “intermediate”if it is strictly higher
than the minimum and strictly lower than the maximum.

60One may avoid to violate the IR constraint for the schools in modifying the preferences of the schools before
running 2S-TTC. In our example, one could instead use the modified preferences t′′ �s ∅ i.e. truncating the preferences
just after the first ranked initial teacher in s. But in doing so, 2S-TTC would not be 2-Pareto efficient since it could
miss a potential profitable exchange between t and t′.
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the initial matching.

Second, the characterization result in Dur and Unver (2015) relies on the axiom of the respect of

internal priorities. This axiom states that, if a teacher t is initially matched to a school s moves

from s, then adding a seat in s should not cause t to stay at his initial school, if that additional seat

is occupied by an initial teacher t′ who is less preferred by s to t.61 However, in an environment

with finer school preferences the next proposition shows that the characterization fails:

Proposition 2.7.5. There is no mechanism that is two-sided maximal, strategy-proof and respects

internal priorities.

Proof. There are 4 teachers t1, t′1, t2 and t3. And 3 schools: s1, s2 and s3. Preferences of the teachers

are given by:

�t1 : s2 s1

�t′1 : s2 s1

�t2 : s1 s3 s2

�t3 : s1 s3

Preferences of the schools are:

�s1 : t3 t1 t2 t′1

�s2 : t1 t′1 t2

�s3 : t2 t3

The BE graph of the example is given in Figure 2.2. Assume that t′1 is not on the market and that

s1 has only one seat initially occupied by t1 and that t2 and t3 are respectively initially matched

with s2 and s3. The small two-way cycle in the above graph would not exist and the only two-sided

maximal matching would match t1 in s2, t2 in s3 and t3 in s1. t1 would be moving from s1. Now,

add t′1 in the market with an additional seat in c1. According to the axiom of respecting internal

priorities, since t′1 has a lower ranking than t1 in s1, the existence of t′1 should not prevent t1 from

moving from s1. Therefore, one cannot implement the small two-way cycle in the graph. Only the

large three-way cycle is left, and the only two-sided maximal matching is obtained by executing the

same exchange as before the presence of t′1. But in doing so, t2 has an obvious manipulation: in the
61See Dur and Unver (2015) for a formal definition.
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Figure 2.2 – BE graph of the example.

•

• •

•

(t1, s1)

(t2, s2) (t3, s3)

(t′1, s1)

presence of t′1, he could claim that s3 is ranked below his initial school s2 so that the only two-sided

maximal matching with this untruthful list from t2 is to make him switch his assignment with t′1: a

successful manipulation, contradicting strategy-proofness.

Considering finer preferences of regions and controlling the exact imbalance of a given region

are important tools to better manage the quality and the turnover of the pool of assigned teachers.

However, Dur and Unver (2015) techniques to exactly control imbalance cannot be used when one

consider finer preferences. Our approach considers a complete ordering over teachers for each region

but we do not directly control the final imbalance of each region. By targeting teachers inside a given

region we can influence it but the exact imbalance will also be influenced by reported preferences of

teachers and those of schools so that one cannot predict it in only targeting teachers inside a region.

So a natural next step would be to consider an in-between model where preferences are finer than

those in Dur and Unver (2015) but coarser than ours and that one can still better control imbalance

than in our approach. We provide here a first attempt with a simple model.

As we discussed in our analysis, an important policy issue is to control the proportion of teachers

with relatively low experience in sensitive regions like Créteil and Versailles. Even if, in practice,

newly tenured teachers, i.e. those without an initial assignment, are considered as teachers with low

experience, we consider a simple pure reassignment problem with only tenured teachers i.e. with an

initial assignment and no empty seats in each region. There is a finite set of teachers T . Each teacher

t ∈ T has a type τ(t) ∈ T . In a general framework, T is finite and could be multidimensional. Each

dimension is a characteristic of a given teacher. For instance a teacher could have low experience,
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medium experience or high experience. In addition, he could currently teach in a disadvantaged

school or not. For simplicity, we assume here that there is only one dimension: a teacher t could

be “Young”or “Old”so that T = {Y,O}. With a slight abuse of notations, Y will denote the set of

young teachers and O the set of old ones. There is a finite set of schools S and an initial matching

µ0. Each teacher t has a strict preference order �t over schools in S. For preferences of the schools,

we do not assume that there is an ordering over teachers. However, the set of schools S is divided

into three categories: S−, S+ and Sr. A matching µ is said to be feasible if:

1. For s ∈ S−: |µ(s) ∩ Y | ≤ |µ0(s) ∩ Y |

2. For s ∈ S+: |µ(s) ∩ Y | ≥ |µ0(s) ∩ Y |

So for schools in S−, the designer wants to weakly decrease their proportion of young teachers and

for schools in S+, he wants to increase it. Schools in Sr, the “rest”, are indifferent and accept every

new matching. We say that a matching µ is maximal if it is feasible and there is no other feasible

matching µ′ that Pareto dominates it for the teachers. As before, a matching is Individually

Rational (IR) if it Pareto-dominates the initial matching µ0. Note that here, preferences of schools

are coarser than the approach we had before since only the number of young teachers matters for

the schools. These preferences are also finer than those considered in Dur and Unver (2015). Indeed,

fix a schools s ∈ S−. The designer would like to weakly reduce the number of young teachers in this

school. If no old teacher comes in then he does not want to realize an exchange that would increase

its number of young teachers. But if one old teacher is matched to it, then the designer would be

ready to let a young teacher leave. As in Combe, Tercieux and Terrier (2016b), we would like first to

characterize the class of IR and maximal mechanisms in properly defining a class of mechanisms.

We are in a many-to-one environment,62 so let us first redefine the problem into a one-to-one

setting using similar techniques as the ones used in Section 2.4.2.1. For each school s, create |µ0(s)|

school-copies of s. And assign each school copy s̃ a type τ s.t. the number of school copies with type

τ is exactly |µ0(s) ∩ τ |. A general school copy will be denoted by (s̃, τ). For a school-copy s̃ we will

denote s(s̃), the school in the original problem from which s̃ is a copy. Define an initial matching

of school-copies µ̃0 in assigning to a school copy (s̃, τ) a teacher t s.t. τ(t) = τ and µ0(t) = s(s̃).

62The one-to-one setting is not very interesting in this two-types environment. Indeed, one could redefine the TOBE
algorithm as defined in Combe, Tercieux and Terrier (2016b) to have a strategy-proof and maximal mechanism.
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By construction of the copies, this is well defined and one can easily transform a matching µ̃ of

school-copies to teachers into a matching µ in the original problem.

Now define the Type-Echange algorithm (TE) over the one-to-one transformation:

• Step 1. Build a directed graph (N,E) where the nodes areN :=
⋃
t∈T

({(t, τ(t))} ∪ {(µ̃0(t), τ(t))}).

For each teacher t let his corresponding school-copy under µ̃0 point to him,

i.e. [(µ̃0(t), τ(t))), (t, τ(t))] ∈ E. A node (t, τ) points to a node (s̃, τ ′) if 1) s(s̃) �t µ0(t) and

2) either:

1. s ∈ Sr

2. s ∈ S− and either i) τ = Y and τ ′ = Y or ii) τ = O

3. s ∈ S+ and either i) τ = O and τ ′ = O or ii) τ = Y

If there is no cycle in the graph, let µ̃1 := µ̃0 and stop the algorithm. Otherwise implement a

cycle and let µ̃1 be the resulting matching and go to Step 2.63

• Step k ≥ 2. Build a directed graph (N,E) where the nodes areN :=
⋃
t∈T

({(t, τ(t))} ∪ {(µ̃k−1(t), τ(t))}).

A node (t, τ) points to (s̃, τ ′) if s(s̃) �t µk−1(t) and if the same conditions as in Step 1 are

satisfied. For a node (s̃, τ):

1. If τ (µ̃k−1((s̃, τ))) = τ , then (s̃, τ) points to µ̃k−1((s̃, τ)).

2. If τ (µ̃k−1((s̃, τ))) 6= τ , then (s̃, τ) points to all nodes (t, τ ′) s.t. s(µ̃k−1((t, τ ′))) = s(s̃).

If there is no cycle in the graph, let µ̃k := µ̃k−1 and stop the algorithm. Otherwise

implement a cycle. In this cycle however, since a node (s̃, τ) matched with a different

type, say (t, τ ′), could point to any teacher matched with s(s̃), say (t′, τ ′′), one might end

up unmatching (t, τ ′) in implementing this cycle. If so, then match (t, τ ′) to the seat that

was assigned to (t′, τ ′′). Let µ̃k be the resulting matching and go to Step k + 1.64

Note that, by finiteness of the environment, the algorithm must end in finite time. We will state

a simple lemma:

63µ̃1 is defined over the one-to-one transformation so that a teacher who has been matched is now matched to a
particular school-copy that could have a different type than his. This will be important for the next steps.

64The condition on the schools’ nodes is simple: if the seat has been taken by a teacher of the same type as the
initial teacher who had that seat under µ0, then this seat points only to this teacher. If it has been taken by a teacher
of a different type, then the seat points to all teachers currently matched to the corresponding school of the seat.
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Lemma 22. Every matching obtained after implementing a cycle of TE is feasible

This lemma is simple to prove so we let the formal proof to the reader. Indeed, at each step,

any school in S− for instance can only receive weakly more old teachers since young teachers are

only allowed to be assigned to seats of type Y and the number of these seats is exactly equal to

the number of young teachers in this school under the initial matching. Before moving to the next

proposition, let us give a simple example to illustrate the steps of the algorithm:

Example 5. There are four teachers and 3 schools: t1, t′1 are initially assigned to s1, t2 to s2 and t3

to s3. We assume that s1, s2 ∈ S− and s3 ∈ Sr, t1, t2 ∈ Y and t′1, t3 ∈ O. Preferences of the teachers

are given by:

�t1 : s3 s1

�t′1 : s2 s1

�t2 : s1 s2

�t3 : s1 s3

Schools s2 and s3 have only one seat and school s1 has to be transformed into two school-copies:

(s1, Y ) and (s1, O). The first one is initially assigned to t1 and the second to t′1. The graph of TE at

the first step is given in Figure 2.3.

Figure 2.3 – Graph of the first step of TE in Example 5.

(s3, O)

(s1, Y )

(s1, O)

(s2, Y )

(t3, O)

(t1, Y )

(t′1, O)

(t2, Y )

There are two possible cycles: a long one that matches every teacher to his first choice. And a

shorter one: (t3, O)→ (s1, Y )→ (t1, Y )→ (s3, O)→ (t3, O). To better illustrate some steps of the
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algorithm, let us pick the short one and implement it. The graph of the next step of the algorithm

is given in Figure 2.4. Note that now, since the school copy (s1, Y ) is matched to (t3, O), it can

Figure 2.4 – Graph of the second step of TE in Example 5.

(s3, O)

(s1, Y )

(s1, O)

(s2, Y )

(t1, Y )

(t3, O)

(t′1, O)

(t2, Y )

also point to (t′1, O). There is one cycle: (s1, Y ) → (t′1, O) → (s2, Y ) → (t2, Y ) → (s1, Y ). Once

implemented, every teacher will be matched to his first ranked school and the algorithm will end.

However, note that in doing so, one will match the school-copy (s1, Y ) to (t2, Y ) and this school-copy

was assigned to (t3, O) who was not part of the cycle. As noted in the description of the algorithm,

one has to match (t3, O) to the school-copy corresponding to the same school than (s1, Y ) and that

was part of the cycle. Here, one has to match (t3, O) to (s1, Y ). Note that the corresponding matching

in the many-to-one setting stays the same since (s1, Y ) and (s1, O) both correspond to seats in school

s1.

As in the definition of the Block-Exchange algorithm in Combe, Tercieux and Terrier (2016b),

we leave open the way in which the algorithm selects cycles so that this algorithm defines a class of

mechanisms, each mechanism being pinned down by a rule to select cycles. So we will think of TE

as a set of matchings that could be obtained in varying the possible selection of cycles.

Proposition 2.7.6. The set of matchings that could be obtained with TE is equal to the set of

feasible, IR, and maximal matchings.

Before moving to the proof, let us prove a crucial Lemma. Let µ be any feasible IR matching.

Let µ′ by any feasible matching that Pareto dominates µ. Let µ̃ be any school-copy matching that
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represents µ in the one-to-one transformation where the school-copies are defined with the initial

matching µ0. Let G := (N,E) be the graph that is built at a step of TE where the school-copy

matching is µ̃. And let T̃ := {t : µ(t) 6= µ′(t)} be the set of teachers who have a different school

under µ′ and µ. Then we have the following result:

Lemma 23. ∀t ∈ T̃ , ∃(s̃, τ̃) ∈ N and t′ 6= t in T̃ s.t:

1. s(s̃) = µ′(t) and [(t, τ(t)), (s̃, τ̃)] ∈ E.

2. µ(t′) = s(s̃) and [(s̃, τ̃), (t′, τ(t′))] ∈ E.

Proof. Fix t ∈ T̃ and let s := µ(t) and s′ := µ′(t). Since t ∈ T̃ , we have s 6= s′ and s′ �t s. There

are three cases to consider:

Case 1: s′ ∈ Sr.

Since µ′(t) = s′ and µ(t) 6= s′, there must be a teacher t′ s.t µ(t′) = s′ and µ′(t′) 6= s′ so that

t′ ∈ T̃ . Let s̃ be the school-copy t′ is assigned to under µ̃ so that s(s̃) = s′ and let τ̃ be the type

of school-copy s̃. Since s′ ∈ Sr, and s′ = s(s̃) �t s, we have by construction of the graph G of TE

that [(t, τ(t)), (s̃, τ̃)] ∈ E. Since s̃ is assigned to t′ under µ̃, we also have by construction of G that

[(s̃, τ̃), (t′, τ(t′)] ∈ E.

Case 2: s′ ∈ S− and |µ(s′) ∩ Y | < |µ0(s′) ∩ Y |.

As in the previous case, we can find a teacher t′ s.t µ(t′) = s′ and µ′(t′) 6= s′ so that t′ ∈ T̃ . Since

|µ(s′) ∩ Y | < |µ0(s′) ∩ Y |, there must be a school-copy s̃ s.t s(s̃) = s′ with type Y that is assigned

under µ̃ to a teacher t̃ with τ(t̃) = O. So, by construction of G, since this school-copy is of type Y

and is matched to a teacher of type O, it could point to any node (t′′, τ(t′′)) s.t µ(t′′) = s(s̃) = s′. In

particular, we have that [(s̃, Y ), (t′, τ(t′))] ∈ E. Moreover, by construction of G, since s(s̃) = s′ ∈ S−,

then all teachers could point to this school-copy independently of their type. So in particular,

[(t, τ(t)), (s̃, Y )] ∈ E.

Case 3: s′ ∈ S− and |µ(s′) ∩ Y | = |µ0(s′) ∩ Y |.

There are two subcases to consider:

Case 3.1: ∃t′ ∈ T̃ s.t µ(t′) = s′ and τ(t′) = Y .

Since s′ ∈ S−, by construction of TE, teachers of type Y could only be matched to school-copies of

type Y . So take the teacher t′ aforementioned in Case 3.1. He is assigned under µ̃ to a school copy
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s̃ of type Y s.t s(s̃) = s′. As in Case 2, by construction of G, we have that [(s̃, Y ), (t′, τ(t′))] ∈ E

and [(t, τ(t)), (s̃, Y )] ∈ E.

Case 3.2: ∀t′ ∈ T̃ s.t µ(t′) = s′, τ(t′) = O.

Since |µ(s′)∩Y | = |µ0(s′)∩Y |, all the school-copies s̃ of type Y s.t s(s̃) = s′ are assigned under µ̃ to

teachers of type Y . Fix t′ ∈ T̃ s.t µ(t′) = s′. By assumption, τ(t′) = O and by the previous remark,

it must be the case that µ̃(t′) = (s̃, O) for some school-copy s̃ s.t s(s̃) = s′. If τ(t) = O, then we are

done since by construction of the graph G, (t, O) could point to (s̃, O) and so [(t, O), (s̃, O)] ∈ E

and [(s̃, O), (t′, O)] ∈ E.

Assume that τ(t) = Y . Since by assumption, all the teachers leaving s′ under µ′ are of type O and

that |µ(s′) ∩ Y | = |µ0(s′) ∩ Y |, then assigning t, who is of type Y to s′ under µ′ would mean that

|µ′(s′) ∩ Y | > |µ(s′) ∩ Y | = |µ0(s′) ∩ Y |, contradicting the feasibility of µ′.

All the cases where s′ ∈ S+ could be proved using the symmetric of our previous arguments. Having

exhausted all the cases, we have proved the lemma.

Proof of Proposition 2.7.6. First Part. Let µ be a matching obtained at the end of TE. By con-

struction of TE, it is easy to show that µ is IR. Assume that µ is not maximal. There exists a

feasible matching µ′ that is feasible and Pareto-dominates µ. Let µ̃ be the school-copy matching

that corresponds to µ obtained at the last step of TE when no cycle was found and let G := (N,E)

be the graph of TE at this last step. The set T̃ is defined as before. Start with a node n1 := (t1, τ1)

in G s.t t1 is an arbitrary teacher in T̃ . By Lemma 23, there exists two nodes of G, n′1 := (s1, τ1)

and another one n2 := (t2, τ2) s.t t2 ∈ T̃ , t2 6= t1, n1 points to n′1 and n′1 points to n2 in G. Using

again Lemma 23 with the node n2, one can find two nodes of G, n′2 := (s2, τ2) and n3 := (t3, τ3) s.t

t3 6= t2, t3 ∈ T̃ , n2 points to n′2 and n′2 points to n3 in G. Since the graph G is finite, this process

has to cycle. But this contradicts that G was the graph of the last step of TE, since there should be

no cycle left in the graph G of this step.

Second part. Fix a matching µ′ that is IR and maximal. Let T̃ = {t : µ0(t) 6= µ′(t)}. Let µ̃ be the

school-copy matching equivalent of µ0 that is defined in the one-to-one transformation preliminary

phase of TE. Let µ1 := µ̃ and T1 := T̃ and G1 := (N1, E1) be the graph of the first step of TE that

starts at matching µ1. By using Lemma 23 and the same argument as in the previous part, one can

find a cycle C1 in G1 s.t:
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• All the nodes (t, τ) in cycle C1 are s.t t ∈ T1.

• If the edge [(t, τ(t)), (s̃, τ̃)] is in cycle C1, then s(s̃) = µ′(t).

So cycle C1 matches some teachers of T̃ to the school they obtain under µ′. All the teachers who are

not part of cycle C1 stay at their initial school under µ0. So once implemented, cycle C1 leads to a

matching µ2. If µ2 6= µ′, then µ2 is feasible since it has been obtained by a cycle of TE. In addition,

µ′ still Pareto-dominates µ2. Let T2 be the set T1 where one has removed all the teachers who have

been matched with cycle C1. It corresponds to the set T2 = {t ∈ T : µ2(t) = µ0(t) 6= µ′(t)}. Let

G2 := (N2, E2) be the graph of the next step of TE once one has implemented cycle C1. In using

again Lemma 23 and the same argument as in the previous part, one can find a cycle C2 in G2 s.t:

• All the nodes (t, τ) in cycle C2 are s.t t ∈ T2.

• If the edge [(t, τ(t)), (s̃, τ̃)] is in cycle C2, then s(s̃) = µ′(t).

Once C2 is implemented, it matches teachers of T2 to their schools under µ′ and leads to a matching

µ3 that is feasible and all teachers in T2 who are not part of cycle C2 stay to their initial school under

µ0. If µ3 6= µ′ then one can iterate the same above argument. Note that each time one implements

a cycle in this procedure, it matches teachers of T̃ to their schools under µ′ and leaves the other

ones matched to their school under µ0. So by finiteness, this process will lead to the matching µ′.

Since µ′ is maximal, we know by the first step of the procedure that there will be no more cycle in

the graph of TE so that the algorithm will indeed return µ′.

The TE algorithm completely characterizes the set of feasible, IR and maximal mechanisms.

Following Combe, Tercieux and Terrier (2016b) approach, some selection of cycles can obviously lead

to non strategy-proof mechanisms. So a next natural step would be to exhibit a selection of cycles

leading to a strategy-proof mechanism. To start with, we considered a very simple setting with only

two possible types. In this setting, decreasing the number of young teachers necessarily increases

the number of old ones. In a setting with three types, say young, middle-aged and old teachers an

increase/decrease targets for each type in each school, one has to redefine the TE algorithm in a non

trivial way. The case of multidimensional types is also challenging but these offer interesting lines

for future research.
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2.8 Conclusion

Taken together, our results show that a change in the centralized process used to assign teachers

to regions in France could result in a significant improvement in the number of teachers obtaining

a new region, without hurting the mobility in deprived regions. It is important to keep in mind

that the results we present reflect some choices we have made for the simulations, in particular

our choice to select the three regions of Créteil, Versailles and Amiens as deprived our the order

of teachers chosen for TOBE. Other regions could obviously have been chosen in the option 1 we

present and different proportions of teachers could have been selected in our option 2. Depending on

the objectives and priorities of the policy makers, the high flexibility of our algorithm allows a fine

tuning of teacher mobility in different regions. Hence, our algorithm could be used as a management

tool which enables policy makers to simulate the impact of different assignment options and to test

different human resources strategies in regions. It is also important to mention that the assignment

of teachers is a dynamic problem. Hence the simulations made only highlight a gain a movement

for a given period if one is switching from the current algorithm to TOBE. However, they do not

reflect any stationary state for TOBE: a part of the gain of movement is due to the congestion

that DA∗ has created over the years due to its inefficiency. For instance, all the additional teachers

obtaining a new assignment under TOBE are likely not to apply for a reassignment the next years.

This would tend to decrease the number of teachers applying for a reassignment and decrease the

movement of TOBE. An interesting exercise for future research would be to simulate a complete

dynamic assignment for TOBE.

From a broader perspective, this paper highlights how centralized assignment processes can

significantly impact education systems in two dimensions. Firstly, it can be used to improve teacher

geographic mobility prospects. As such, it is a way to make the profession more attractive. Another

lesson is that centralized assignment processes can be used to influence the distribution of teachers

across territories. It makes it possible to increase teachers’ experience in the most deprived regions,

and to reduce it in others, notably in the most attractive ones. This could be a tool to reduce the

persistent achievement gaps observed in most education systems.
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2.9 Appendix

2.9.1 Additional results for Section 2.6

Figure 2.5 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.
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Table 2.11 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no regions deprived regions a proportion of

DA∗ targeted targeted targeted teachers targeted in
(option 1) deprived regions

(option 2)
nb nb % nb % nb % nb %

All regions 3991 3892 -2.48% 6265 56.98% 4851 21.55% 5797 45.25%
Unassigned 7976 7968 -0.10% 7933 -0.54% 7919 -0.71% 7931 -0.56%
Paris 100 150 50.00% 222 122.00% 222 122.00% 222 122.00%
Aix 106 151 42.45% 168 58.49% 168 58.49% 168 58.49%
Besancon 37 50 35.14% 64 72.97% 65 75.68% 65 75.68%
Bordeaux 47 62 31.91% 69 46.81% 69 46.81% 69 46.81%
Caen 70 87 24.29% 116 65.71% 115 64.29% 116 65.71%
Clermont 34 46 35.29% 53 55.88% 53 55.88% 53 55.88%
Dijon 105 143 36.19% 223 112.38% 223 112.38% 223 112.38%
Grenoble 111 168 51.35% 206 85.59% 206 85.59% 206 85.59%
Lille 131 170 29.77% 283 116.03% 285 117.56% 285 117.56%
Lyon 92 139 51.09% 150 63.04% 150 63.04% 150 63.04%
Montpellier 69 115 66.67% 121 75.36% 121 75.36% 121 75.36%
Nancy 67 103 53.73% 119 77.61% 119 77.61% 119 77.61%
Poitiers 53 79 49.06% 93 75.47% 92 73.58% 93 75.47%
Rennes 30 41 36.67% 42 40.00% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 95 79.25% 95 79.25% 95 79.25%
Toulouse 73 119 63.01% 128 75.34% 128 75.34% 128 75.34%
Nantes 85 124 45.88% 141 65.88% 141 65.88% 141 65.88%
Orleans 208 202 -2.88% 402 93.27% 402 93.27% 402 93.27%
Reims 98 91 -7.14% 180 83.67% 180 83.67% 180 83.67%
Amiens 207 171 -17.39% 332 60.39% 146 -29.47% 213 2.90%
Rouen 93 122 31.18% 191 105.38% 192 106.45% 191 105.38%
Limoges 39 40 2.56% 66 69.23% 66 69.23% 66 69.23%
Nice 81 138 70.37% 160 97.53% 161 98.77% 160 97.53%
Créteil 813 316 -61.13% 996 22.51% 309 -61.99% 834 2.58%
Versailles 779 519 -33.38% 1006 29.14% 463 -40.56% 816 4.75%
Corse 5 10 100.00% 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 94 49.21% 94 49.21% 94 49.21%
Martinique 33 52 57.58% 57 72.73% 57 72.73% 57 72.73%
Guadeloupe 64 82 28.13% 102 59.38% 102 59.38% 102 59.38%
Guyane 89 85 -4.49% 131 47.19% 131 47.19% 131 47.19%
Mayotte 156 146 -6.41% 245 57.05% 244 56.41% 245 57.05%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in columns 4
and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V) and Amiens (A). The
second column for each TOBE algorithm gives the percentage of improvement with respect to DA∗.

221



Increasing teacher mobility without hurting deprived regions

Table 2.12 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with TOBE with
algorithm all regions no regions deprived regions a proportion of

DA∗ targeted targeted targeted teachers targeted in
(option 1) deprived regions

(option 2)
Unassigned 29.67 28.32 28.34 28.25 28.34
Paris 37.34 36.5 36.11 35.56 36.17
Aix 35.3 34.37 35 34.66 35.12
Besancon 32.95 32.49 33.67 33.33 33.59
Bordeaux 35.64 36.63 36.68 36.96 36.82
Caen 33.79 33.9 33.93 33.73 33.81
Clermont 34.33 34.11 34.48 34.47 34.42
Dijon 32.02 30.45 31.63 30.66 31.21
Grenoble 33.61 33.11 33.98 33.67 34.07
Lille 30.65 30.43 29.44 29.14 29.37
Lyon 33.14 32.71 32.37 33.31 32.57
Montpellier 36.83 36.84 36.99 37.39 37.36
Nancy 33.37 32.49 32.23 31.89 32.47
Poitiers 35.47 34.82 35.18 35.17 35.45
Rennes 35.98 36.23 36.21 36.49 36.26
Strasbourg 33.34 32.96 32.19 32.97 32.62
Toulouse 35.62 35.77 35.42 35.72 35.85
Nantes 34.76 34.42 34.48 35.27 35.04
Orleans 32.47 32.13 32.95 31.59 32.49
Reims 31.24 31.53 31 30.25 30.68
Amiens 29.87 30.57 30.12 30.73 30.41
Rouen 32.74 32.21 31.43 30.6 31.17
Limoges 34.84 36.46 35.87 36.88 36.6
Nice 35.84 35.15 35.79 35.89 35.93
Créteil 30.06 31.06 30.69 31.13 30.53
Versailles 31.08 31.26 31.63 31.52 31.54
Corse 40.53 36.97 38.47 38.9 38.73
Reunion 37.4 37.97 43.1 43.02 43.1
Martinique 39.72 39.42 38.73 38.73 38.64
Guadeloupe 39.23 39 39.56 39.58 39.35
Guyane 41.81 42.23 41.84 42.06 41.97
Mayotte 48.18 47.81 44.45 44.88 44.57

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented in
columns 4 and 5 of this table, we have choosen to select three regions as deprived: Créteil (C), Versailles (V) and
Amiens (A). The second column for each TOBE algorithm gives the percentage of improvement with respect to
DA∗.
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Figure 2.6 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.7 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.8 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.9 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.

226



Increasing teacher mobility without hurting deprived regions

Figure 2.10 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_AllT is TOBE with all regions targeted, TOBE_NoT is TOBE with no region targeted,
TO-BE_Op1 is TOBE with the deprived regions of Créteil, Versailles and Amiens targeted and TOBE_Op2 is the

TOBE with a proportion of the teachers targeted in the deprived regions.
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2.9.2 Additional results with improvement of non initially assigned teachers in

the ordering of TOBE

In all the results, contrary to the tables in Section 2.6, we omit TOBE with deprived regions

targeted (option 1) because only the last version with a proportion of teachers targeted (option 2)

seemed to be relevant for policy makers. For the latter, we kept the same proportion of targeted

teachers in Créteil, Versailles and Amiens that are respectively 45%, 65% and 40%.

In the following results, remember that the ordering used in TOBE is the following:

• x % of the non initially assigned teachers with the highest maximum score, ordered according

to their maximum score.

• All the teachers initially assigned to non deprived regions, ordered according to their maximum

score.

• All the teachers initially assigned to a deprived region (Créteil, Versailles or Amiens), ordered

according to their maximum score.

• All the (1−x)% of the non initially assigned teachers left, ordered according to their maximum

score.

In the next three sections, we present the results for x = 20%, x = 40% and x = 100%.

2.9.2.1 Results with 20% of initially non-assigned teachers improved in the ordering

of TOBE

Table 2.13 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% -0.12% -0.12%
Tenured 12123 5494 -2.24% 25.50% 19.62%
Total 19229 11980 -0.98% 11.63% 8.93%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.14 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 5425 35.93% 5102 27.84%
Unassigned 7976 7968 -0.10% 7948 -0.35% 7948 -0.35%
Paris 100 150 50.00% 191 91.00% 191 91.00%
Aix 106 151 42.45% 157 48.11% 157 48.11%
Besancon 37 51 37.84% 65 75.68% 65 75.68%
Bordeaux 47 62 31.91% 66 40.43% 66 40.43%
Caen 70 87 24.29% 98 40.00% 97 38.57%
Clermont 34 46 35.29% 51 50.00% 51 50.00%
Dijon 105 143 36.19% 201 91.43% 201 91.43%
Grenoble 111 168 51.35% 183 64.86% 183 64.86%
Lille 131 172 31.30% 234 78.63% 234 78.63%
Lyon 92 139 51.09% 141 53.26% 141 53.26%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 112 67.16% 112 67.16%
Poitiers 53 79 49.06% 86 62.26% 86 62.26%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 87 64.15% 87 64.15%
Toulouse 73 119 63.01% 123 68.49% 123 68.49%
Nantes 85 124 45.88% 131 54.12% 132 55.29%
Orleans 208 202 -2.88% 328 57.69% 329 58.17%
Reims 98 91 -7.14% 154 57.14% 154 57.14%
Amiens 207 171 -17.39% 289 39.61% 195 -5.80%
Rouen 93 122 31.18% 164 76.34% 164 76.34%
Limoges 39 40 2.56% 61 56.41% 61 56.41%
Nice 81 138 70.37% 150 85.19% 150 85.19%
Créteil 813 316 -61.13% 790 -2.83% 677 -16.73%
Versailles 779 519 -33.38% 792 1.67% 675 -13.35%
Corse 5 10 100.00% 11 120.00% 11 120.00%
Reunion 63 89 41.27% 95 50.79% 95 50.79%
Martinique 33 52 57.58% 54 63.64% 54 63.64%
Guadeloupe 64 82 28.13% 99 54.69% 99 54.69%
Guyane 89 85 -4.49% 120 34.83% 120 34.83%
Mayotte 156 146 -6.41% 231 48.08% 231 48.08%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in columns 4 and 5 of this table, we have choosen to select three regions as deprived:
Créteil (C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives
the percentage of improvement with respect to DA∗.
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Table 2.15 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 5378 5147
2 9861 10067 10377 10307
3 10745 10930 11044 11007
4 11234 11393 11414 11410
5 11482 11611 11594 11604
6 11645 11756 11696 11721
7 11764 11829 11781 11792
8 11883 11894 11879 11879
9 11961 11946 11930 11929
≥ 10 12066 12052 12047 12046
Unassigned 57 71 76 77

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.16 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 2929 3103
2 4804 4910 3868 4086
3 5095 5231 4315 4535
4 5285 5478 4691 4906
5 5429 5662 4976 5178
6 5560 5797 5215 5375
7 5662 5892 5369 5525
8 5803 6007 5602 5731
9 5916 6092 5757 5865
≥ 10 6491 6497 6482 6483
Unassigned 615 609 624 623

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.17 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 753 716
Newly Tenured 7106 603 522 998 852

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).
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Table 2.18 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 28.36 28.35
Paris 37.34 36.50 36.25 36.23
Aix 35.30 34.37 34.77 34.81
Besancon 32.95 32.49 33.48 33.37
Bordeaux 35.64 36.63 37.30 37.30
Caen 33.79 33.90 34.56 34.41
Clermont 34.33 34.11 34.89 34.72
Dijon 32.02 30.45 30.98 30.75
Grenoble 33.61 33.11 33.51 33.62
Lille 30.65 30.43 29.87 29.80
Lyon 33.14 32.71 33.05 33.11
Montpellier 36.83 36.84 37.56 37.80
Nancy 33.37 32.49 32.52 32.60
Poitiers 35.47 34.82 34.90 35.14
Rennes 35.98 36.23 36.23 36.46
Strasbourg 33.34 32.96 32.58 32.74
Toulouse 35.62 35.77 36.26 36.22
Nantes 34.76 34.42 35.14 35.25
Orleans 32.47 32.13 31.95 32.15
Reims 31.24 31.53 30.96 30.72
Amiens 29.87 30.57 30.21 30.40
Rouen 32.74 32.21 31.73 31.54
Limoges 34.84 36.46 35.94 36.33
Nice 35.84 35.14 36.27 36.34
Créteil 30.06 31.06 30.62 30.58
Versailles 31.08 31.26 31.46 31.37
Corse 40.53 36.97 37.10 37.13
Reunion 37.40 37.97 38.94 38.95
Martinique 39.72 39.42 39.12 39.12
Guadeloupe 39.23 39.00 39.17 38.97
Guyane 41.81 42.23 42.16 42.24
Mayotte 48.18 47.81 45.32 45.37

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.11 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.12 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.13 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.

235



Increasing teacher mobility without hurting deprived regions

Figure 2.14 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.15 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.16 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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2.9.2.2 Results with 40% of initially non-assigned teachers improved in the ordering

of TOBE

Table 2.19 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09 0.02 -0.05
Tenured 12123 5494 -2.24% 11.58% 8.52%
Total 19229 11980 -0.98% 5.32% 3.88%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.20 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 4658 16.71% 4489 12.48%
Unassigned 7976 7968 -0.10% 7959 -0.21% 7956 -0.25%
Paris 100 150 50.00% 175 75.00% 175 75.00%
Aix 106 151 42.45% 157 48.11% 157 48.11%
Besancon 37 51 37.84% 62 67.57% 62 67.57%
Bordeaux 47 62 31.91% 67 42.55% 67 42.55%
Caen 70 87 24.29% 92 31.43% 91 30.00%
Clermont 34 46 35.29% 48 41.18% 48 41.18%
Dijon 105 143 36.19% 166 58.10% 166 58.10%
Grenoble 111 168 51.35% 165 48.65% 164 47.75%
Lille 131 172 31.30% 195 48.85% 194 48.09%
Lyon 92 139 51.09% 141 53.26% 141 53.26%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 105 56.72% 105 56.72%
Poitiers 53 79 49.06% 83 56.60% 83 56.60%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 86 62.26% 86 62.26%
Toulouse 73 119 63.01% 123 68.49% 123 68.49%
Nantes 85 124 45.88% 130 52.94% 131 54.12%
Orleans 208 202 -2.88% 239 14.90% 239 14.90%
Reims 98 91 -7.14% 126 28.57% 126 28.57%
Amiens 207 171 -17.39% 233 12.56% 172 -16.91%
Rouen 93 122 31.18% 136 46.24% 136 46.24%
Limoges 39 40 2.56% 50 28.21% 50 28.21%
Nice 81 138 70.37% 145 79.01% 145 79.01%
Créteil 813 316 -61.13% 565 -30.50% 512 -37.02%
Versailles 779 519 -33.38% 621 -20.28% 568 -27.09%
Corse 5 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 95 50.79% 95 50.79%
Martinique 33 52 57.58% 54 63.64% 54 63.64%
Guadeloupe 64 82 28.13% 93 45.31% 93 45.31%
Guyane 89 85 -4.49% 115 29.21% 115 29.21%
Mayotte 156 146 -6.41% 220 41.03% 220 41.03%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in columns 4 and 5 of this table, we have choosen to select three regions as deprived:
Créteil (C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives
the percentage of improvement with respect to DA∗.
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Table 2.21 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 4783 4665
2 9861 10067 10267 10214
3 10745 10930 11034 10998
4 11234 11393 11458 11434
5 11482 11611 11644 11632
6 11645 11756 11762 11759
7 11764 11829 11833 11829
8 11883 11894 11905 11907
9 11961 11946 11950 11951
≥ 10 12066 12052 12047 12048
Unassigned 57 71 76 75

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.22 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 3600 3691
2 4804 4910 4515 4624
3 5095 5231 4875 4979
4 5285 5478 5158 5252
5 5429 5662 5369 5464
6 5560 5797 5522 5610
7 5662 5892 5647 5723
8 5803 6007 5801 5863
9 5916 6092 5918 5974
≥ 10 6491 6497 6493 6489
Unassigned 615 609 613 617

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.23 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 616 607
Newly Tenured 7106 603 522 683 621

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).
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Table 2.24 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 28.44 28.39
Paris 37.34 36.50 36.67 36.74
Aix 35.30 34.37 35.05 35.10
Besancon 32.95 32.49 33.16 33.10
Bordeaux 35.64 36.63 37.18 37.18
Caen 33.79 33.90 34.16 34.15
Clermont 34.33 34.11 34.83 35.01
Dijon 32.02 30.45 30.48 30.40
Grenoble 33.61 33.11 33.83 33.71
Lille 30.65 30.43 30.08 29.95
Lyon 33.14 32.71 32.73 32.72
Montpellier 36.83 36.84 37.26 37.28
Nancy 33.37 32.49 32.43 32.38
Poitiers 35.47 34.82 35.05 35.19
Rennes 35.98 36.23 36.34 36.36
Strasbourg 33.34 32.96 32.96 32.94
Toulouse 35.62 35.77 36.06 36.05
Nantes 34.76 34.42 34.73 34.78
Orleans 32.47 32.13 32.22 32.23
Reims 31.24 31.53 30.99 30.92
Amiens 29.87 30.57 30.31 30.55
Rouen 32.74 32.21 32.06 32.09
Limoges 34.84 36.46 35.84 35.77
Nice 35.84 35.14 35.82 35.87
Créteil 30.06 31.06 30.74 30.74
Versailles 31.08 31.26 31.28 31.23
Corse 40.53 36.97 37.13 37.47
Reunion 37.40 37.97 38.94 38.91
Martinique 39.72 39.42 38.87 38.87
Guadeloupe 39.23 39.00 38.71 38.98
Guyane 41.81 42.23 42.04 42.23
Mayotte 48.18 47.81 45.70 45.68

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.17 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.18 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.19 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.20 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.21 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.

248



Increasing teacher mobility without hurting deprived regions

Figure 2.22 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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2.9.2.3 Results with 100% of initially non-assigned teachers improved in the ordering

of TOBE

Table 2.25 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% 0.09% 0.08%
Tenured 12123 5494 -2.24% 3.02% 2.15%
Total 19229 11980 -0.98% 1.44% 1.03%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.26 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 4183 4.81% 4135 3.61%
Unassigned 7976 7968 -0.10% 7969 -0.09% 7968 -0.10%
Paris 100 150 50.00% 161 61.00% 161 61.00%
Aix 106 151 42.45% 156 47.17% 156 47.17%
Besancon 37 51 37.84% 58 56.76% 58 56.76%
Bordeaux 47 62 31.91% 67 42.55% 67 42.55%
Caen 70 87 24.29% 89 27.14% 88 25.71%
Clermont 34 46 35.29% 48 41.18% 48 41.18%
Dijon 105 143 36.19% 146 39.05% 146 39.05%
Grenoble 111 168 51.35% 166 49.55% 165 48.65%
Lille 131 172 31.30% 185 41.22% 184 40.46%
Lyon 92 139 51.09% 141 53.26% 141 53.26%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 105 56.72% 105 56.72%
Poitiers 53 79 49.06% 83 56.60% 83 56.60%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 84 58.49% 84 58.49%
Toulouse 73 119 63.01% 123 68.49% 123 68.49%
Nantes 85 124 45.88% 127 49.41% 128 50.59%
Orleans 208 202 -2.88% 200 -3.85% 203 -2.40%
Reims 98 91 -7.14% 91 -7.14% 91 -7.14%
Amiens 207 171 -17.39% 190 -8.21% 176 -14.98%
Rouen 93 122 31.18% 120 29.03% 120 29.03%
Limoges 39 40 2.56% 43 10.26% 43 10.26%
Nice 81 138 70.37% 143 76.54% 143 76.54%
Créteil 813 316 -61.13% 379 -53.38% 365 -55.10%
Versailles 779 519 -33.38% 565 -27.47% 545 -30.04%
Corse 5 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 93 47.62% 93 47.62%
Martinique 33 52 57.58% 54 63.64% 54 63.64%
Guadeloupe 64 82 28.13% 87 35.94% 87 35.94%
Guyane 89 85 -4.49% 108 21.35% 108 21.35%
Mayotte 156 146 -6.41% 200 28.21% 199 27.56%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in column 4 of this table, we have choosen to select three regions as deprived: Créteil
(C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives the
percentage of improvement with respect to DA∗.
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Table 2.27 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 4454 4423
2 9861 10067 10134 10124
3 10745 10930 10979 10971
4 11234 11393 11415 11415
5 11482 11611 11619 11618
6 11645 11756 11760 11760
7 11764 11829 11826 11829
8 11883 11894 11903 11902
9 11961 11946 11953 11948
≥ 10 12066 12052 12052 12052
Unassigned 57 71 71 71

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.28 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 3889 3894
2 4804 4910 4854 4851
3 5095 5231 5178 5183
4 5285 5478 5433 5440
5 5429 5662 5616 5624
6 5560 5797 5752 5759
7 5662 5892 5854 5862
8 5803 6007 5967 5975
9 5916 6092 6066 6070
≥ 10 6491 6497 6498 6497
Unassigned 615 609 608 609

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.29 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 571 568
Newly Tenured 7106 603 522 546 538

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).

253



Increasing teacher mobility without hurting deprived regions

Table 2.30 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 38.35 28.34
Paris 37.34 36.50 36.66 36.64
Aix 35.30 34.37 34.96 34.98
Besancon 32.95 32.49 33.18 33.20
Bordeaux 35.64 36.63 37.08 37.06
Caen 33.79 33.90 33.96 34.03
Clermont 34.33 34.11 34.53 34.53
Dijon 32.02 30.45 30.63 30.61
Grenoble 33.61 33.11 33.34 33.32
Lille 30.65 30.43 30.08 30.08
Lyon 33.14 32.71 32.68 32.67
Montpellier 36.83 36.84 37.28 37.28
Nancy 33.37 32.49 32.41 32.41
Poitiers 35.47 34.82 35.18 35.16
Rennes 35.98 36.23 36.35 36.35
Strasbourg 33.34 32.96 33.10 33.08
Toulouse 35.62 35.77 35.94 35.94
Nantes 34.76 34.42 34.82 34.73
Orleans 32.47 32.13 32.21 32.14
Reims 31.24 31.53 31.49 31.52
Amiens 29.87 30.57 30.40 30.43
Rouen 32.74 32.21 32.26 32.41
Limoges 34.84 36.46 35.70 35.70
Nice 35.84 35.14 35.63 35.63
Créteil 30.06 31.06 30.80 30.80
Versailles 31.08 31.26 31.16 31.18
Corse 40.53 36.97 37.20 37.20
Reunion 37.40 37.97 39.01 39.01
Martinique 39.72 39.42 38.87 38.87
Guadeloupe 39.23 39.00 39.36 39.32
Guyane 41.81 42.23 42.43 42.28
Mayotte 48.18 47.81 45.97 45.92

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.23 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.24 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.25 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.26 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.27 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.28 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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2.9.3 Additional results using experience as the ordering of TOBE

In all the results, contrary to the tables in Section 2.6, we omit TOBE with deprived regions

targeted (option 1) because only the last version with a proportion of teachers targeted (option 2)

seemed to be relevant for policy makers. For the latter, we kept the same proportion of targeted

teachers in Créteil, Versailles and Amiens that are respectively 45%, 65% and 40%.

In the following results, remember that the ordering used in TOBE is the following:

• x % of the non initially assigned teachers with the highest experience, ordered according to

their experience points.

• All the remaining teachers ordered according to their experience points.

In the next three sections, we present the results for x = 20%, x = 40% and x = 100%.

2.9.3.1 Results with 20% of initially non-assigned teachers improved in the experience

ordering of TOBE

Table 2.31 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% 0.09% 0.08%
Tenured 12123 5494 -2.24% 13.21% 12.43%
Total 19229 11980 -0.98% 6.11% 5.74%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.32 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 4748 18.97% 4705 17.89%
Unassigned 7976 7968 -0.10% 7964 -0.15% 7963 -0.16%
Paris 100 150 50.00% 150 50.00% 150 50.00%
Aix 106 151 42.45% 155 46.23% 155 46.23%
Besancon 37 51 37.84% 62 67.57% 62 67.57%
Bordeaux 47 62 31.91% 65 38.30% 65 38.30%
Caen 70 87 24.29% 90 28.57% 89 27.14%
Clermont 34 46 35.29% 48 41.18% 48 41.18%
Dijon 105 143 36.19% 148 40.95% 149 41.90%
Grenoble 111 168 51.35% 167 50.45% 167 50.45%
Lille 131 172 31.30% 163 24.43% 164 25.19%
Lyon 92 139 51.09% 140 52.17% 140 52.17%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 102 52.24% 102 52.24%
Poitiers 53 79 49.06% 84 58.49% 84 58.49%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 82 54.72% 82 54.72%
Toulouse 73 119 63.01% 122 67.12% 122 67.12%
Nantes 85 124 45.88% 125 47.06% 126 48.24%
Orleans 208 202 -2.88% 236 13.46% 236 13.46%
Reims 98 91 -7.14% 104 6.12% 104 6.12%
Amiens 207 171 -17.39% 220 6.28% 199 -3.86%
Rouen 93 122 31.18% 113 21.51% 113 21.51%
Limoges 39 40 2.56% 54 38.46% 54 38.46%
Nice 81 138 70.37% 146 80.25% 146 80.25%
Créteil 813 316 -61.13% 703 -13.53% 694 -14.64%
Versailles 779 519 -33.38% 744 -4.49% 728 -6.55%
Corse 5 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 94 49.21% 94 49.21%
Martinique 33 52 57.58% 53 60.61% 53 60.61%
Guadeloupe 64 82 28.13% 90 40.63% 90 40.63%
Guyane 89 85 -4.49% 110 23.60% 110 23.60%
Mayotte 156 146 -6.41% 207 32.69% 208 33.33%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in column 4 of this table, we have choosen to select three regions as deprived: Créteil
(C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives the
percentage of improvement with respect to DA∗.
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Table 2.33 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 4864 4834
2 9861 10067 10187 10180
3 10745 10930 10932 10930
4 11234 11393 11363 11364
5 11482 11611 11575 11575
6 11645 11756 11706 11706
7 11764 11829 11791 11788
8 11883 11894 11885 11882
9 11961 11946 11942 11940
≥ 10 12066 12052 12049 12049
Unassigned 57 71 74 74

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.34 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 3359 3379
2 4804 4910 4346 4357
3 5095 5231 4749 4766
4 5285 5478 5076 5088
5 5429 5662 5297 5310
6 5560 5797 5473 5485
7 5662 5892 5606 5620
8 5803 6007 5760 5769
9 5916 6092 5878 5889
>= 10 6491 6497 6496 6495
Unassigned 615 609 610 611

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.35 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 679 676
Newly Tenured 7106 603 522 743 736

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).
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Table 2.36 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 28.38 28.37
Paris 37.34 36.50 36.67 36.69
Aix 35.30 34.37 34.97 34.99
Besancon 32.95 32.49 33.46 33.44
Bordeaux 35.64 36.63 36.96 36.96
Caen 33.79 33.90 34.24 34.19
Clermont 34.33 34.11 34.69 34.78
Dijon 32.02 30.45 30.95 30.98
Grenoble 33.61 33.11 33.71 33.67
Lille 30.65 30.43 30.32 30.25
Lyon 33.14 32.71 32.93 32.87
Montpellier 36.83 36.84 37.33 37.34
Nancy 33.37 32.49 32.76 32.76
Poitiers 35.47 34.82 34.73 34.71
Rennes 35.98 36.23 36.41 36.41
Strasbourg 33.34 32.96 33.05 33.07
Toulouse 35.62 35.77 35.93 35.92
Nantes 34.76 34.42 35.08 35.05
Orleans 32.47 32.13 32.67 32.69
Reims 31.24 31.53 31.34 31.33
Amiens 29.87 30.57 30.22 30.27
Rouen 32.74 32.21 32.35 32.46
Limoges 34.84 36.46 35.98 35.98
Nice 35.84 35.14 35.99 36.02
Créteil 30.06 31.06 30.45 30.47
Versailles 31.08 31.26 31.15 31.13
Corse 40.53 36.97 37.93 37.97
Reunion 37.40 37.97 38.87 38.88
Martinique 39.72 39.42 39.02 39.02
Guadeloupe 39.23 39.00 39.22 39.22
Guyane 41.81 42.23 41.78 41.74
Mayotte 48.18 47.81 45.77 45.70

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.29 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.30 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.31 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.32 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.33 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.34 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.

271



Increasing teacher mobility without hurting deprived regions

2.9.3.2 Results with 40% of initially non-assigned teachers improved in the experience

ordering of TOBE

Table 2.37 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% 0.08% 0.03%
Tenured 12123 5494 -2.24% 8.06% 7.08%
Total 19229 11980 -0.98% 3.74% 3.26%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.38 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 4464 11.85% 4410 10.50%
Unassigned 7976 7968 -0.10% 7964 -0.15% 7961 -0.19%
Paris 100 150 50.00% 150 50.00% 150 50.00%
Aix 106 151 42.45% 157 48.11% 157 48.11%
Besancon 37 51 37.84% 60 62.16% 60 62.16%
Bordeaux 47 62 31.91% 67 42.55% 67 42.55%
Caen 70 87 24.29% 91 30.00% 90 28.57%
Clermont 34 46 35.29% 48 41.18% 48 41.18%
Dijon 105 143 36.19% 143 36.19% 143 36.19%
Grenoble 111 168 51.35% 163 46.85% 162 45.95%
Lille 131 172 31.30% 167 27.48% 166 26.72%
Lyon 92 139 51.09% 140 52.17% 140 52.17%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 103 53.73% 103 53.73%
Poitiers 53 79 49.06% 83 56.60% 83 56.60%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 84 58.49% 84 58.49%
Toulouse 73 119 63.01% 123 68.49% 123 68.49%
Nantes 85 124 45.88% 128 50.59% 129 51.76%
Orleans 208 202 -2.88% 211 1.44% 211 1.44%
Reims 98 91 -7.14% 102 4.08% 102 4.08%
Amiens 207 171 -17.39% 200 -3.38% 180 -13.04%
Rouen 93 122 31.18% 120 29.03% 120 29.03%
Limoges 39 40 2.56% 45 15.38% 45 15.38%
Nice 81 138 70.37% 145 79.01% 145 79.01%
Créteil 813 316 -61.13% 589 -27.55% 571 -29.77%
Versailles 779 519 -33.38% 616 -20.92% 601 -22.85%
Corse 5 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 95 50.79% 95 50.79%
Martinique 33 52 57.58% 54 63.64% 54 63.64%
Guadeloupe 64 82 28.13% 90 40.63% 90 40.63%
Guyane 89 85 -4.49% 111 24.72% 112 25.84%
Mayotte 156 146 -6.41% 208 33.33% 208 33.33%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in column 4 of this table, we have choosen to select three regions as deprived: Créteil
(C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives the
percentage of improvement with respect to DA∗.
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Table 2.39 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 4659 4613
2 9861 10067 10194 10178
3 10745 10930 10985 10976
4 11234 11393 11420 11415
5 11482 11611 11617 11617
6 11645 11756 11753 11753
7 11764 11829 11823 11824
8 11883 11894 11902 11906
9 11961 11946 11945 11949
≥ 10 12066 12052 12047 12049
Unassigned 57 71 74 74

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.40 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 3670 3692
2 4804 4910 4602 4629
3 5095 5231 4958 4988
4 5285 5478 5232 5254
5 5429 5662 5437 5455
6 5560 5797 5590 5604
7 5662 5892 5701 5712
8 5803 6007 5839 5844
9 5916 6092 5947 5957
≥ 10 6491 6497 6496 6493
Unassigned 615 609 610 613

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.41 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 597 597
Newly Tenured 7106 603 522 639 627

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).
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Table 2.42 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 28.38 28.36
Paris 37.34 36.50 36.65 36.69
Aix 35.30 34.37 35.00 35.03
Besancon 32.95 32.49 33.24 33.24
Bordeaux 35.64 36.63 37.06 37.04
Caen 33.79 33.90 34.01 33.91
Clermont 34.33 34.11 34.59 34.60
Dijon 32.02 30.45 30.69 30.73
Grenoble 33.61 33.11 33.66 33.62
Lille 30.65 30.43 30.25 30.15
Lyon 33.14 32.71 32.77 32.69
Montpellier 36.83 36.84 37.19 37.20
Nancy 33.37 32.49 32.49 32.49
Poitiers 35.47 34.82 35.14 35.14
Rennes 35.98 36.23 36.34 36.34
Strasbourg 33.34 32.96 33.13 33.11
Toulouse 35.62 35.77 35.93 35.93
Nantes 34.76 34.42 34.81 34.81
Orleans 32.47 32.13 32.41 32.37
Reims 31.24 31.53 31.17 31.15
Amiens 29.87 30.57 30.38 30.50
Rouen 32.74 32.21 32.44 32.44
Limoges 34.84 36.46 35.87 35.87
Nice 35.84 35.14 35.71 35.69
Créteil 30.06 31.06 30.65 30.67
Versailles 31.08 31.26 31.16 31.18
Corse 40.53 36.97 37.17 37.10
Reunion 37.40 37.97 38.90 38.91
Martinique 39.72 39.42 38.87 38.87
Guadeloupe 39.23 39.00 39.41 39.41
Guyane 41.81 42.23 62.17 42.07
Mayotte 48.18 47.81 45.62 45.61

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.35 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.36 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.37 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.38 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.39 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.40 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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2.9.3.3 Results with 100% of initially non-assigned teachers improved in the experi-

ence ordering of TOBE

Table 2.43 – Number of teachers obtaining a new assignment under each algorithm

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Newly Tenured 7106 6486 0.09% 0.09% 0.08%
Tenured 12123 5494 -2.24% 3.02% 2.15%
Total 19229 11980 -0.98% 1.44% 1.03%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles (V)
and Amiens (A).
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Table 2.44 – Number of teachers moving under each algorithm - per region of initial
assignment

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
nb nb % nb % nb %

All regions 3991 3895 -2.41% 4183 4.81% 4135 3.61%
Unassigned 7976 7968 -0.10% 7969 -0.09% 7968 -0.10%
Paris 100 150 50.00% 161 61.00% 161 61.00%
Aix 106 151 42.45% 156 47.17% 156 47.17%
Besancon 37 51 37.84% 58 56.76% 58 56.76%
Bordeaux 47 62 31.91% 67 42.55% 67 42.55%
Caen 70 87 24.29% 89 27.14% 88 25.71%
Clermont 34 46 35.29% 48 41.18% 48 41.18%
Dijon 105 143 36.19% 146 39.05% 146 39.05%
Grenoble 111 168 51.35% 166 49.55% 165 48.65%
Lille 131 172 31.30% 185 41.22% 184 40.46%
Lyon 92 139 51.09% 141 53.26% 141 53.26%
Montpellier 69 115 66.67% 119 72.46% 119 72.46%
Nancy 67 103 53.73% 105 56.72% 105 56.72%
Poitiers 53 79 49.06% 83 56.60% 83 56.60%
Rennes 30 41 36.67% 42 40.00% 42 40.00%
Strasbourg 53 82 54.72% 84 58.49% 84 58.49%
Toulouse 73 119 63.01% 123 68.49% 123 68.49%
Nantes 85 124 45.88% 127 49.41% 128 50.59%
Orleans 208 202 -2.88% 200 -3.85% 203 -2.40%
Reims 98 91 -7.14% 91 -7.14% 91 -7.14%
Amiens 207 171 -17.39% 190 -8.21% 176 -14.98%
Rouen 93 122 31.18% 120 29.03% 120 29.03%
Limoges 39 40 2.56% 43 10.26% 43 10.26%
Nice 81 138 70.37% 143 76.54% 143 76.54%
Créteil 813 316 -61.13% 379 -53.38% 365 -55.10%
Versailles 779 519 -33.38% 565 -27.47% 545 -30.04%
Corse 5 10 100.00% 10 100.00% 10 100.00%
Reunion 63 89 41.27% 93 47.62% 93 47.62%
Martinique 33 52 57.58% 54 63.64% 54 63.64%
Guadeloupe 64 82 28.13% 87 35.94% 87 35.94%
Guyane 89 85 -4.49% 108 21.35% 108 21.35%
Mayotte 156 146 -6.41% 200 28.21% 199 27.56%

Source: Dataset on public secondary school teacher assignment to region in 2013. For results
presented in column 4 of this table, we have choosen to select three regions as deprived: Créteil
(C), Versailles (V) and Amiens (A). The second column for each TOBE algorithm gives the
percentage of improvement with respect to DA∗.

284



Increasing teacher mobility without hurting deprived regions

Table 2.45 – Cumulative distributions of ranks for tenured teachers under each
algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4219 4223 4454 4423
2 9861 10067 10134 10124
3 10745 10930 10973 10971
4 11234 11393 11415 11415
5 11482 11611 11619 11618
6 11645 11756 11760 11760
7 11764 11829 11826 11829
8 11883 11894 11903 11902
9 11961 11946 11953 11948
≥ 10 12066 12052 12052 12052
Unassigned 57 71 71 71

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).

Table 2.46 – Cumulative distributions of ranks for newly tenured teachers under
each algorithm

Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
1 4044 3955 3889 3894
2 4804 4910 4854 4851
3 5095 5231 5178 5183
4 5285 5478 5433 5440
5 5429 5662 5616 5624
6 5560 5797 5752 5759
7 5662 5892 5854 5862
8 5803 6007 5967 5975
9 5916 6092 6066 6070
≥ 10 6491 6497 6498 6497
Unassigned 615 609 608 609

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 5 of this table, we have chosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Table 2.47 – Number of teachers assigned to an extended wish

Nb Current TOBE with TOBE with TOBE with
Algorithm all regions no region a proportion of

DA∗ targeted targeted teachers targeted
in deprived regions

(option 2)
Tenured 1560 639 554 571 568
Newly Tenured 7106 603 522 546 538

Source: Dataset on public secondary school teacher assignment to region in 2013. For results presented
in column 5 of this table, we have chosen to select three regions as deprived: Créteil (C), Versailles
(V) and Amiens (A).

286



Increasing teacher mobility without hurting deprived regions

Table 2.48 – Average age of assigned teachers under each algorithm - per region

Current TOBE with TOBE with TOBE with
algorithm all regions no regions a proportion of

DA∗ targeted targeted teachers targeted in
deprived regions

(option 2)
Unassigned 29.67 28.32 28.35 28.34
Paris 37.34 36.50 36.66 36.64
Aix 35.30 34.37 34.96 34.98
Besancon 32.95 32.49 33.18 33.20
Bordeaux 35.64 36.63 37.08 37.06
Caen 33.79 33.90 33.96 34.03
Clermont 34.33 34.11 34.53 34.53
Dijon 32.02 30.45 30.63 30.61
Grenoble 33.61 33.11 33.34 33.32
Lille 30.65 30.43 30.08 30.08
Lyon 33.14 32.71 32.68 32.67
Montpellier 36.83 36.84 37.28 37.28
Nancy 33.37 32.49 32.41 32.41
Poitiers 35.47 34.82 35.18 35.16
Rennes 35.98 36.23 36.35 36.35
Strasbourg 33.34 32.96 33.10 33.08
Toulouse 35.62 35.77 35.94 35.94
Nantes 34.76 34.42 34.82 34.73
Orleans 32.47 32.13 32.21 32.14
Reims 31.24 31.53 31.49 31.52
Amiens 29.87 30.57 30.40 30.43
Rouen 32.74 32.21 32.26 32.41
Limoges 34.84 36.46 35.70 35.70
Nice 35.84 35.14 35.63 35.63
Créteil 30.06 31.06 30.80 30.80
Versailles 31.08 31.26 31.16 31.18
Corse 40.53 36.97 37.20 37.20
Reunion 37.40 37.97 39.01 39.01
Martinique 39.72 39.42 38.87 38.87
Guadeloupe 39.23 39.00 39.36 39.32
Guyane 41.81 42.23 42.43 42.28
Mayotte 48.18 47.81 45.97 45.92

Source: Dataset on public secondary school teacher assignment to region in 2013. For
results presented in column 4 of this table, we have choosen to select three regions as
deprived: Créteil (C), Versailles (V) and Amiens (A).
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Figure 2.41 – Distribution of the age of the assigned teachers under each algorithm -
region of Amiens

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.42 – Distribution of the age of the assigned teachers under each algorithm -
region of Cretéil

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.43 – Distribution of the age of the assigned teachers under each algorithm -
region of Versailles

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.44 – Distribution of the age of the assigned teachers under each algorithm -
region of Bordeaux

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.45 – Distribution of the age of the assigned teachers under each algorithm -
region of Rennes

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Figure 2.46 – Distribution of the age of the assigned teachers under each algorithm -
region of Toulouse

Note: DAs is DA∗, TOBE_00 is TOBE with all regions targeted, TOBE_EE is TOBE with no region targeted and
TOBE_E0 is TOBE with a proportion of the teachers targeted in the deprived regions.
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Chapter 3

Matching with Ownership 1
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Abstract

We consider a hybrid model at the intersection of the standard two-sided matching market as

proposed by Gale and Shapley (1962) and a housing market as proposed by Shapley and Scarf

(1974). Two sets of agents have to be matched in pairs to a common set of objects. Agents of one

type have preferences that depend not only on the object they are matched to but also on the agent

of the other type matched to this object. The crucial difference lies in the fact that the common

side here is interpreted as an object and has no intrinsic preferences over the agents matched to it.

In this context, stable matchings may fail to exist. However, we introduce a natural definition of

ownership of the objects that determines which agent owns the object to which he is matched. In

defining a stability notion whereby only owners can ask other agents to join them, we show that

stable matchings exist for a very natural class of ownerships: ownership is given to agents of the

same side. Even if this structure shares similarities with the classical two-sided matching framework,

we present an important difference: stable matchings and Pareto-efficient matchings may be disjoint,

thus implying that the core may be empty in this setting. To further investigate the link with the

housing market literature, we introduce an initial allocation and define a core notion with respect to

this initial allocation. We also show that, contrary to the standard setting, this core may be empty.

However, we show that, in this housing market framework, there always exists a Pareto-efficient

matching that is not blocked by any coalition of size two. In both settings, pairwise stability seems

the only minimal requirement that one can ensure.

JEL Classification Numbers: C78, D47, D63.

Keywords: Three-sided matching, Ownership, Two-sided matching, Housing market, Core.
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3.1 Introduction

Matching problems have received considerable attention over the past decade and have been

used in several practical applications such as school choice (see Abdulkadiroglu and Sonmez (2003),

for instance), kidney exchange (Roth, Sonmez and Unver, 2004) or public housing (Shapley and

Scarf, 1974). In these problems, there are two main types of frameworks. The first, as introduced

by Gale and Shapley (1962), is the two-sided market structure: two sets, men and women, have

preferences over each other and have to be matched together. In this framework, an important

question is whether there exists a stable matching, i.e., a matching such that there is no man and

woman who would prefer to be matched together rather than with their current partner. One may

also study other concepts such as Pareto-efficient matchings or core matchings, i.e., where no group

of agents would like to rematch among each other. The second setting, introduced by Shapley and

Scarf (1974), is the housing market structure where agents want to exchange their houses. It also has

two sides (agents and houses), but only one has preferences. Moreover, each agent has an ownership

right over his initial house. In this context, one may also define core matchings except that the

deviating group of agents could only trade their initial houses and not the one they were assigned

under a given matching.

However, one may think of other types of practical problems that cannot be described by a

standard two-sided structure. For instance, in many public administrations, the salary scale is fixed

by law, but one often has to match workers and managers to possible projects. Each project has

to be assigned to a manager and to a certain number of workers. Even if managers have intrinsic

preferences over the projects, the quality of and interest in working on a project also depend on

the set of workers assigned to it. Workers also have similar preferences: an interesting project may

not be valuable if a bad manager is assigned to it. This introduces complementarities into the

preferences of the agents. Generally, once a manager is assigned to a project, he is free to choose his

team of workers and to ask some to leave the project if needed. Hence, in this application, there is a

natural ownership structure over the projects: the managers always own the project to which they

are assigned. In some other contexts, ownership need not always be given to agents of the same

type. In a school choice setting, heads of schools can have an important impact on the quality of

their schools and thereby affect the school’s desirability for parents. However, the head of the school

also cares about the set of students who are assigned to her school. In some schools, the head is
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responsible for deciding whether to accept or reject students. However, in other schools, such as

charter schools in the U.S., parents are highly involved in the school’s managerial decisions, meaning

that recruitment or firing decisions concerning a badly managed school could be greatly influenced

by parental satisfaction. We could capture this feature with an ownership structure over the schools.

Once again, such applications cannot be studied using the standard models in the literature. In

this work, we introduce a new general framework: a hybrid model between a two-sided matching

market and a housing market. There are two sides of individuals, for instance workers and managers,

who have to be matched together and be assigned to objects, for instance projects. For each possible

match, we introduce an ownership structure that defines for each object which of its matched

individuals owns it. In most contexts, such ownership has an natural structure: managers are

responsible for their teams and hence can decide whether to recruit a worker or to replace him with

another. This structure corresponds to a one-sided ownership structure, where agents of one type

always own the object (e.g., the managers always own the projects). In some other problems, this

may not be the case, as in the aforementioned “heads of schools and students example”. Indeed, as we

highlighted, some schools give more decision power to the head of the school, while in others, parents

have greater influence on the managerial decisions. Our ownership structure allows for such flexibility.

We can then define a natural notion of pairwise stability with respect to the ownership structure. In

the standard notion of stability, every pair of agents who prefer to be matched together rather than

with their assigned partner could decide to break their current assignment. With the introduction of

the ownership, we impose that only owners can do so. We show that such matchings may fail to

exist for general ownership structures but that they do exist for natural ones: for instance, one-sided

ownerships. If one considers the pairwise stability as a minimum requirement for the sustainability

of a system, then our result implies that one should mostly observe one-sided structures.

In the standard two-sided problem, it is well known that pairwise stable matchings are equivalent

to core matchings. In contrast, we show that this is not the case for our notion of stable matchings,

even for one-sided ownerships. We exhibit an instance in which the set of stable matchings and the

set of Pareto-efficient matchings are disjoint.

Finally, we consider a setting closer to the housing market problem where certain agents initially

own all the houses. Shapley and Scarf (1974) and Roth and Postlewaite (1977) defined a different

core notion where a group of agents could only block a given matching by exchanging their initially
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owned houses and not the one they are assigned to ex post. We show that in our environment, this

notion of core could also be empty. However, we show that there always exists a Pareto-efficient

matching that is not blocked by any coalition of size two.

The three-sided matching structure is not new in the literature. It was first introduced by

Knuth (1976) with the matching of men, women and dogs. In such problems, all the sides have

preferences over the pairs of the two other sides, and matchings are defined by a collection of

triplets. Later, Alkan (1988) provided an example to prove the non-existence of stable matchings

in such an environment. Biró and McDermid (2010) proved non-existence in the restricted set of

cyclic preferences and proved the NP-completeness of the problem of deciding whether a stable

matching exists in such an environment.2 In the above impossibility results, all the sides need to

have preferences over the pairs of the other sides since all the counterexamples need all the sides

to be able to break their match to form a blocking triplet. In our model, however, projects cannot

“unilaterally deviate”from their managers or workers; only agents can decide to leave.3

Another related literature addresses the formation of coalitions. Our model shares some features

with the hedonic coalition literature initiated by Dreze and Greenberg (1980) and continued by

Bogomolnaia and Jackson (2002). Works on partitioning games initiated by Kaneko and Wooders

(1982) (and continued by Kaneko and Wooders (1986) or Hammond, Kaneko and Wooders (1989))

are also related to this literature. They ex ante restrict the possible admissible coalitions of an

assignment game and ask whether core assignments exist. Pápai (2004) also studies a model where

agents have hedonic preferences over coalitions but the set of admissible coalitions is restricted.

Blocking coalitions can only be admissible ones, and she identifies a necessary and sufficient condition

on the set of admissible coalitions to ensure the existence and uniqueness of core coalitions. Once

again, objects cannot unilaterally deviate and do not have preferences over agents which is an

important feature of our model and cannot be captured in her model. However, our ownership

2Danilov (2003) proved the existence of stable triplet matchings in an environment where men only care about
women and vice versa and dogs have preferences over couples of men and women. Later, Eriksson, Sjöstrand and
Strimling (2006) proved a non-existence result in an environment with lexicographic preferences. Another open question
arose in an environment with cyclic preferences where men care only about women, women only about dogs and dogs
only about men. Boros et al. (2004) proved existence in environments with fewer than three agents, and Biró and
McDermid (2010) proved general non-existence for more than three agents.

3Other works have focused on a multi-sided generalization of the Shapley and Shubik (1972) setting. In the latter
paper, buyers want to buy a house from owners. Owners do not have intrinsic preferences over the identity of who is
buying the house but care only about the monetary transfer they receive. Quint (1991) was the first to introduce an
m-sided generalization of this setting. He gave a sufficient condition on the surplus generated by m-tuples to ensure
the non-emptiness of the core in such a setting. Thereafter, several papers (Marchi and Oviedo, 1997; Stuart Jr, 1997;
Sherstyuk, 1999) proposed other sufficient conditions. In contrast to those works, our model lacks transfers.
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structure approach shares a similar idea of restricting the possible blocking coalitions.4

3.2 The Model

We consider a problem that consists of matching two finite sets M and W of individuals that

we will call men and women to a set H of objects, which we will call houses.5 For simplicity,

we assume that the sets M , W and H have the same cardinality n. Agents and objects will be

ordered by indices: mi,wj ,hk, with i, j, k ∈ {1, . . . , n}, and a generic man, woman and house will be

denoted m,w and h, respectively. For the ease of notation, we let I ∈ {M,W} and J ∈ {M,W}\I,

and a generic agent from these sets will be denoted i and j and called an I-agent and a J-agent,

respectively. For simplicity, we assume a one-to-one setting such that each house h can be matched

to at most one man and one woman. Objects are important in our model. Managers and workers

can only work together if they are assigned to a project. A head of a school and a set of students

have to interact in a school. In the following definitions, we always impose that agents have to be

matched to a house, meaning that one cannot match a man and a women together without assigning

them to a house. If we restrict ourselves to the problem of matching men to houses (we will call

it the “M -market”), we are back to a standard assignment problem (and similarly we will call the

same problem for women a “W -market”). An M -matching is an injective map µM : H 7→M ∪ {∅}

that matches houses to men or leaves them unassigned. With a slight abuse of notation, we will

write µM (m) = h if m = µM (h). If m is not matched to any house, we use the standard notation

µM (m) = ∅. A W -matching µW is defined analogously. The sets of such matchings will be denoted

MM andMW , respectively. A double matching µ is the combination of an M -matching and a

W -matching. We sometimes refer to this as simply a “matching ”. Thus, it can be seen as a function

from H to (M ∪ {∅})× (W ∪ {∅}), where the projection on M (resp. W ) is an M -matching (resp.

W -matching). Once again, to ease the notation, we sometimes see µ(h) as a set and write a ∈ µ(h) if

agent a ∈M ∪W is matched with h under µ. Thus far, if preferences over houses were independent

4One may also wonder if this could be interpreted as a many-to-many matching problem as studied in Echenique
and Oviedo (2006) or Hatfield and Kominers (2009). In a one-to-one setting of their model, if one assumes complete
indifference in the preferences of some agents (the objects in our model), then the primitives are equivalent. However,
we do not take the same approach. The ownership structure, which is natural in our environment with objects, is a
key feature of our model and does not appear in theirs. Moreover, assuming complete indifference is not neutral in
their framework since it undermines most of the positive results.

5To emphasize the intersection with Gale and Shapley (1962) and Shapley and Scarf (1974), we chose to use the
same terminology.
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of who occupied them, the formulation would be equivalent to two independent assignment markets

that could be studied separately. However, take the example of managers/workers and projects

as presented in the introduction. Preferences over projects may depend on the project itself but

also on the agents matched to it. For instance, some worker has specific skills relevant for a given

project that make any manager prefer him to the other workers only when the worker is assigned to

this specific project.6 Thus, the preferences of an I-agent, i, could be seen as a linear order over

((J ∪ {∅}) × ((H ∪ {∅}). Allowing the preferences to depend simultaneously on the partner and

the house allows us to capture some house-specific features and some possible complementarities

between the house and the agents matched to it. Note that, thus far, one can be matched to a house

h with no partner, i.e., (∅, h) or not be matched at all, i.e., (∅, ∅). To ease notation, we will refer to

this last case as simply ∅.7 In the following, we will assume that an agent prefers to be matched

alone in a house to not being assigned at all:

Assumption 1. ∀a ∈ A, ∀h ∈ H : (∅, h) �a ∅

As a first natural requirement, a double matching µ is said to be Pareto-efficient if there is no

other double matching µ′ under which all men and women are weakly better off, and some strictly

so. We also introduce a strong notion of stability to capture pairwise deviations. A double matching

µ = (µM , µW ) is said to be strongly stable if there is no man or women who would prefer to be

unmatched and there is no triplet (m,h,w) s.t. (m,w) 6= (∅, ∅) and

1. Either:

(a) µM (h) = m and m 6= ∅.

(b) µW (h) = w and w 6= ∅.

(c) µM (h) = µW (h) = ∅.

2. if m 6= ∅, (w, h) �m µ(m), if w 6= ∅, (m,h) �w µ(w).

The interpretation is intuitive: a man and woman prefer to be together either in the house that was

assigned to one of the two or in an empty house. If, for instance, woman w was assigned house h
6One may argue that in the workers/managers case, one could use transfers to correctly account for such

complementarities. However, as emphasized in the introduction, in some contexts, this is not possible. Many public
sectors, for instance, involve a standardized salary contract that does not depend on such details.

7As mentioned above, we assume that one cannot match a man and woman together without assigning them to a
house. Therefore, we assume here that agents do not consider pairs of the form (m, ∅) or (w, ∅).
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with man m′ under µ, then she could make m′ leave and ask m to join her in h. This is a quite

strong requirement since we assume that an I-agent can break his relationship with the J-agent

matched with him while keeping the house. This raises the point of the ownership of the house for a

given matching. Indeed, since both agents are matched to a given house, it is not always possible

that one could freely use it. If a manager is assigned the management of a project, one can imagine

that he could freely choose his team and could invite new workers while asking others to leave.

However, a worker cannot ask his manager to leave while asking another to join. Hence, there is a

sense in which ownership restricts the admissible blocking pairs. As emphasized in the introduction,

ownership structures do not always give ownership to agents of only one side, and one could consider

more general structures. As opposed to Shapley and Scarf (1974), the ownership structure does

not come from an initial allocation. It defines, for each house, its owners for each possible pairs

of agents assigned to it. We postpone the Shapley and Scarf (1974) approach to Section 3.4. An

ownership structure is a function θ : (M ∪ {∅})× (W ∪ {∅})×H 7→M ∪W that gives for each

triplet (m,w, h) ∈M ×W ×H the owner θ(m,w, h) ∈ {m,w} of h. We impose that if there is only

one agent, he is necessarily the owner. For instance, if the triplet is (h, ∅, w), then the owner is

necessarily w, i.e., θ(h, ∅, w) = w. Denote by Θ the set of all possible ownership structures. Fix an

ownership structure θ; we say that a double matching µ = (µM , µW ) is stable with respect to θ

if there is no man or woman who would prefer to be unmatched and there is no triplet (m,w, h) s.t.

(m,w) 6= (∅, ∅) and

1. Either:

(a) h = µM (m) and θ(m,µW (h), h) = m.

(b) h = µW (w) and θ(µM (h), w, h) = w.

(c) µM (h) = µW (h) = ∅.

2. if m 6= ∅, (w, h) �m µ(m) and if w 6= ∅, (m,h) �w µ(w).

The interpretation is simple. Conditions (a) and (b) impose that if one of the blocking agents was

assigned to house h, then he has to be the owner. Condition (c) considers the case of a couple

moving to an empty house.
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3.3 Main Results

A simple procedure could be provided to obtain a Pareto-efficient matching. Indeed, define a

generalization of the well-known Serial Dictatorship mechanism: first order men. The first-ranked

man, call him m1, chooses his most preferred match among all the pairs W × H; call this pair

(w1, h1). Then, delete all pairs of the form (w1, h) for some h and (w, h1) for some w and let the

second-ranked man m2 choose his preferred match among the remaining pairs. Continue this process

until everyone is matched, and call µSD the doubled matching induced by this procedure.8 Clearly,

this procedure leads to a Pareto-efficient matching. However, the matching proposed by the above

generalization of the Serial Dictatorship mechanism completely omits the preferences of the women,

and it is clear that the double matching µSD may not be strongly stable.

However, the next proposition shows that a strongly stable matching does not always exist:

Proposition 3.3.1. Strongly stable matchings may not exist, and there exist some ownership

structures such that there is no stable matching with respect to them.

Proof. Assume that there are two men, women and houses. Preferences are given as follows:

m1 m2 w1 w2

(w2, h2) (w1, h2) (m1, h1) (m2, h1)

(w1, h1) (w2, h1) (m2, h2) (m1, h2)

(w2, h1) (w1, h1) (m1, h2) (m2, h2)

(w1, h2) (w2, h2) (m2, h1) (m1, h1)

(∅, h1) (∅, h1) (∅, h1) (∅, h1)

(∅, h2) (∅, h2) (∅, h2) (∅, h2)

For the first part of the proposition, we will show that every possible matching is not strongly stable.

First note that under a strongly stable matching, every agent has to be matched to a house. Indeed,

assume that, for instance, w1 is unmatched. Since all agents prefer to be assigned to a house, even

with no partner, then one of the two men, say m1, has to be matched alone in a house, say h1.

However, preferences are such that he would always prefer to be in h1 with w1 than alone, and thus,

8If one cares about individual rationality for the women, then one could do the following: if man m is choosing,
then do not allow him to choose a pair (w, h) if woman w prefers to remain unmatched to being matched with (m,h).
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(m1, h1, w1) would form a blocking triplet. A similar argument can be used for all other possibilities

for unassigned agents.

Next, we will show that every possible matching of agents to the houses has a blocking triplet:

• If we match m1 to h1 with w1 and m2 to h2 with w2, then the latter would prefer to invite

m1, who prefers it to (w1, h1).

• If we match m2 to h1 with w1 and m1 to h2 with w2, then m2 would prefer to be in h1 with

w2 who also prefers it to (w1, h2).

• If we match m2 to h1 with w2 and m1 to h2 with w1, then w1 would prefer to be in h2 with

m2 who also prefers it to (w2, h1).

• Finally, if we match m1 to h1 with w2 and m2 to h2 with w1, then m1 would prefer to be in

h1 with w1 who also prefers it to (w2, h2)

For the second part of the proof, one can easily construct an ownership structure that would

allow the above deviations. For instance, always give the ownership to men in house h1 and to

women in house h2. Thus, stable matching with respect to it would not exist.

Naturally, we now face another question: does there exist a class of ownership structures under

which there always exists a stable matching with respect to it? A first natural structure arising is

the following: define a partition of the set of houses into two sets, Hw and Hm. Then, always give

the ownership of a house in Hw to women and the one of a house in Hm to men. Unfortunately, the

example given in the proof of Proposition 3.3.1 could be used to prove that this structure may not

admit any matching stable with respect to it. Indeed, in this example, as highlighted in the proof,

one can always give house h2 to women and house h1 to men and all deviations in the proof would

be allowed by such an ownership structure. For an ownership structure θ, call it a I-ownership

structure for I ∈ {H,W} if there exists a matching µI s.t. i) ∀h ∈ H,µI(h) ∈ I and ii) ∀h ∈ H and

∀µJ ∈MJ : θ(µI(h), µJ(h), h) = µI(h). For instance, a W -ownership structure will always give the

ownership of the houses to women for a certain allocation of women to houses. Among I-ownership

structures, we will distinguish an important one: call θ the strong I-ownership structure if for

all agents i ∈ I, j ∈ J ∪ {∅} and houses h ∈ H, ownership is always given to agent i. The next

proposition shows that existence is restored for I-ownerships structures:
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Proposition 3.3.2. Fix I ∈ {M,W}; if θ is an I-ownership structure, then there always exists a

stable matching with respect to θ.

Proof. W.l.o.g., assume that θ is an M -ownership structure. By definition, we know that there exists

µM such that men always obtain the ownership of their house under µM irrespective of how we match

women to the houses. First, match men to houses according to µM . By point i) of the definition of an

M -ownership, we know that all houses will be assigned to a man such that all men will be matched to

a house. Thus, without loss, assume that µM (hk) = mk for k = 1, . . . , n. Let pk be the pair (hk,mk).

Once man mk is matched to house hk, he has a well-defined preference ordering over women. Let

�pk be the ordering over women s.t. w �pk w′ ⇔ (w, hk) �mk (w′, hk). Now, each woman w has a

well-defined preference ordering over pairs of the form (hk,mk) for k = 1, . . . , n that is the restriction

of her preferences �w over H ×M to the set P := {(hk,mk) : k = 1, . . . , n} ⊂ H ×M , with a slight

abuse of notation, write �w for these preferences. Hence, one now has to match pairs of P to women

of W where a pair p has preferences �p, as defined above, over women in W , and a woman w has

preferences �w over pairs of P . We are then back to a standard two-sided matching problem as

defined by Gale and Shapley (1962). Thus, we know that in this setting, there exists a matching

µ̃ of the pairs in P to the women in W that is stable. There is no pair p and woman w who are

not matched to each other under µ̃ but would strictly prefer to be so matched. Define µ to be the

double matching where men are matched according to µM and µW is defined as follows for women:

∀hk, k = 1, . . . , n let µW (hk) = a ∈ (W ∪ {∅}) iff µ̃((hk,mk)) = a. First note that, by the definition

of a one-sided ownership structure, all houses are occupied by a man, we have the same number of

houses and men and that, by Assumption 1, all men find their matching acceptable even if they are

alone in their assigned house. Thus, under µ, there is no empty house. Now assume that µ is not

stable with respect to θM . If µ is not stable with respect to θ, then there is a triplet (m,w, h) s.t. m

and w both prefer to be matched together in h to their matching under µ. There are three possible

cases: (a) h was assigned to m under µ and he was the owner, (b) h was assigned to w under µ and

she was the owner, and (c) h was not occupied under µ. Since θ is an M -ownership, case (b) is

not possible. As mentioned above, there are no empty houses under µ, and hence, case (c) is also

ruled out. Therefore, it must be the case that µM (h) = m and m was the owner of h. However, this

would mean that, for the pair p := (h,m), w �p µ̃(p) and for woman w, p �w µ̃(w), contradicting

the stability of µ̃ for the two-sided market formed by pairs in P and women in W .
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The one-sided structure of such ownerships seems an important property to ensure stability.9

In light of the example in Proposition 3.3.1, one may wonder whether there are non one-sided

ownership structures that would always allow the existence of stable matchings. This happens to be

the case. Indeed, define θ to be the ownership such that there is a unique m∗ ∈M and h∗ ∈ H such

that ∀w ∈ W , θ(m∗, w, h∗) = m and θ always gives ownership to women otherwise. In that case,

select the highest-ranked pair of the form (w, h∗) for m∗, call it (w∗, h∗), and fix a matching µW

s.t. µW (h∗) = w∗. Then, by Proposition 3.3.2, one can find a double matching µ that is stable with

respect to the strong W -ownership structure θ′ that always gives ownership to women. However,

this matching also has to be stable with respect to θ. Indeed, we know that, by construction, it is

stable with respect to θ′. Thus, if µ was not stable with respect to θ, the only possible blocking

triplet would involve m∗ in h∗ such that m∗ is matched with h∗ under µ. However, we know that,

by the choice of w∗, for all other pairs of the form (w, h∗), we have (w∗, h∗) �m (w, h), and this

contradicts that m∗ is currently blocking.

Let us focus now on the properties of the stable double matchings with respect to one-sided

ownership structures. There is an obvious sense in which these stable double matchings share

similar features with the standard stable ones in two-sided matching problems. Indeed the proof of

Proposition 3.3.2 relies directly on the existence of stable matchings in the standard two-sided market

problem. In our framework, one can define a natural generalization of the core. Fix an ownership

structure θ; a matching µ = (µM , µW ) is in the θ-core if there exists no blocking coalition of

agents M ′ ∪W ′ ⊆M ∪W and a matching µ′ s.t.

1. if µ′(h′) = (m′, w′) ∈M ×W , then m′ ∈M ′ ⇔ w′ ∈W ′.10

2. For m′ ∈M ′ and w′ ∈W ′, if µ′(h′) = (m′, w′) then one of the following condition must hold:

(a) There is m ∈M ′ s.t. h′ = µM (m) and θ(m,µW (h), h) = m.

(b) There is w ∈W ′ s.t. h′ = µW (w) and θ(µM (h), w, h) = w.

(c) µM (h′) = µW (h′) = ∅.

9 Note that if θ is the strong I-ownership structure, then one could use the procedure in the above proof to show a
slightly stronger result: for every matching µI of the I-agents to the houses, there exists a matching µJ of J-agents s.t.
the resulting double matching µ = (µI , µJ) is stable with respect to θ.

10This condition is only for men and women who are matched to each other under µ′ and are part of the coalition.
For instance, if there is a man who was unassigned under µ and who is matched alone to a house under µ′, then this
condition is trivially satisfied.
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3. For all a ∈M ′ ∪W ′, µ′(a) �a µ(a) and strictly for at least one agent.

The interpretation is standard: some group of men and women could be better-off rematching with

one another and in possibly exchanging the houses of which some were the owners under µ. If

there is only one man and one woman, we return to the definition of a stable matching with respect

to θ. Note that two types of agents might be worse-off under µ′: owners who have not changed

houses but have seen their previous partner leave for a better match and previous partners of some

owners who are part of the coalition. As in the standard core notion in two-sided markets, a core

matching must be Pareto-efficient.11 However, a stable double matching with respect to θ need

not be Pareto-efficient and thus may not be in the core. Specifically, there are instances in which

the core could be empty while the set of stable matchings is not. This is one main difference from

the standard two-sided market setting, where it is known that the set of pairwise stable matchings

is equal to the core. In three-sided matching models as defined in Alkan (1988), it is also easy

to see that stable matchings are in the core. Our departure is twofold: first, we consider a side

composed of objects that do not have any preferences and hence cannot unilaterally break their

matches. Second, we introduce an ownership structure that restricts the potential coalitions in

forcing them to include the owners of the reassigned houses. We summarize these choices in the

following proposition. Even if the statement is for general ownership structures, the proof explicitly

uses the strong I-sided ownership.12 Thus, even if stable matchings with respect to a one-sided

ownership share similar features with stable matchings in standard two-sided matching markets, this

is an important difference:

Proposition 3.3.3. Fix an ownership structure θ; the sets of Pareto-efficient matchings and stable

matchings with respect to θ may be non-empty and disjoint. Thus, the θ-core could be empty while

stable matchings with respect to θ exist.

Proof. Assume that there are 3 men, 3 women and 3 houses. Preferences are given by the following

11Otherwise, using strict preferences, there would be a set of men and a set of women who would all change houses
and be strictly better-off. Consider that set of men and women to be the blocking coalition.

12The proof uses a 3 men, 3 women, 3 houses structure. With only 2 men, 2 women and 2 houses and a strong
I-sided ownership, one can find stable double matchings that are not Pareto-efficient. However, it can be shown that
there always exists a stable double matching that is Pareto-efficient. To prove the impossibility, the minimal example
involves a 3 agents structure.
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table:

m1 m2 m3 w1 w2 w3

(w1, h1) (w3, h3) (w2, h1) (m1, h2) (m3, h2) (m3, h2)

(w2, h2) (w2, h2) (w1, h2) (m3, h2) (m2, h2) (m2, h3)

(w1, h2) (w2, h3) (w3, h2) (m1, h1) (m1, h2) (m3, h3)

(w2, h1) (∅, h1) (w2, h2) (m3, h1) (m3, h1) (∅, h1)

(∅, h1) (∅, h2) (w3, h3) (∅, h1) (m1, h1) (∅, h2)

(∅, h2) (∅, h3) (w1, h1) (∅, h2) (m2, h3) (∅, h3)

(∅, h3) (∅, h1) (∅, h3) (∅, h1)

(∅, h2) (∅, h2)

(∅, h3) (∅, h3)

Fix the ownership θ as the strong M -ownership structure. This structure always assigns ownership

to men. It trivially belongs to one-sided ownership structures such that, by Proposition 3.3.2, the set

of stable matchings with respect to θ is non-empty. Moreover, as mentioned in Footnote 9, for each

possible assignment µM of men to houses, there is a stable matching with respect to θ. Since men

always prefer to be assigned to a house even without any partner, then all men must be assigned a

house. The intuition of the example is as follows: fix a double matching, every time one tries to

implement the matching proposed by a blocking coalition, it creates additional blocking triplets or

profitable Pareto-superior exchanges. To do so, one has to let the agents outside the coalition prefer

less their new assignment. In trying to implement the matching of such newly created blocking

coalitions, one will, at some point, come back to the initially fixed double matching. Obviously, one

has to check all the possible double matchings for the impossibility to hold, that is what we are

doing in what follows.

There are six ways to match men to houses. We will show that for each possible matching of

women for each of these six cases, the double matching is either not Pareto-efficient or not stable with

respect to θ. For each possible µM , we will present a table. The three first columns will represent

the houses. The first line will restate the assignment µM of men to houses, and each following line

will give an assignment of women to houses. Since the matching of men is fixed in each case, each

assignment of women determines a double matching. Next to each assignment of women, we will
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present a possible blocking coalition. For ease of notation, each possible blocking coalition will be

written using the relevant part of the blocking matching for the coalition. For instance, if a given

matching is blocked by a coalition formed by a man m and a woman w who would prefer to be

matched in h, we will say that the matching is “Blocked by (m,w, h)”. If the coalition is formed by

two couples (m,w) and (m′, w′) who would prefer to be assigned to houses h and h′, respectively,

then we will say that the matching is “Blocked by (m,w, h) and (m′, w′, h′)”. Obviously, each of

the stated parts of the blocking matching will respect the conditions (notably on ownership) given

in the definition of a blocking coalition. Note that a Pareto-dominated assignment also admits a

blocking coalition. In this example, all matchings blocked by a coalition of more than two agents

will be Pareto-dominated by the matching used to block it.

Case 1. µM (h1) = m1, µM (h2) = m2, µM (h3) = m3.

h1 h2 h3

µM m1 m2 m3

µW
w1 w2 w3 ⇒ Blocked by (m2, w3, h3), (m3, w2, h2)

w2 ∅ w3 ⇒ Blocked by (m2, w2, h2)

For instance, note that here, one does not have to consider an assignment of women to houses

such that only w2 is matched to h2 and the others remain unmatched. Indeed, the former could be

obtained from the first assignment of women in the above table by letting w1 and w3 be unassigned.

Thus, the matching would be blocked by exactly the same coalition using the same matching as

in the table. A similar argument could be used for all other assignments of women that could be

obtained from those above by just letting some women be unmatched. In all tables, we do not

explicitly specify these matchings since they can be inferred using those we provide.

Case 2. µM (h1) = m1, µM (h2) = m3, µM (h3) = m2.

309



Matching with Ownership

h1 h2 h3

µM m1 m3 m2

µW

w1 w2 w3 ⇒ Blocked by (m3, w3, h2)

w1 w3 w2 ⇒ Blocked by (m3, w1, h2)

w2 w1 w3 ⇒ Blocked by (m1, w1, h2), (m3, w2, h1)

w2 w3 ∅ ⇒ Blocked by (m1, w1, h1)

Case 3. µM (h1) = m2, µM (h2) = m1, µM (h3) = m3.

h1 h2 h3

µM m2 m1 m3

µW
∅ w2 w3 ⇒ Pareto-dominated by (m1, w1, h1), (m2, w2, h2), (m3, w3, h3)

∅ w1 w3 ⇒ Blocked by (m1, w2, h2)

Case 4. µM (h1) = m2, µM (h2) = m3, µM (h3) = m1.

h1 h2 h3

µM m2 m3 m1

µW

∅ w1 ∅ ⇒ Blocked by (m1, w2, h1), (m2, w3, h3), (m3, w1, h2)

∅ w3 ∅ ⇒ Blocked by (m3, w1, h2)

∅ w2 ∅ ⇒ Blocked by (m3, w1, h2)

Case 5. µM (h1) = m3, µM (h2) = m1, µM (h3) = m2.
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h1 h2 h3

µM m3 m1 m2

µW

w1 w2 w3 ⇒ Blocked by (m1, w1, h1), (m3, w2, h2)

w1 ∅ w2 ⇒ Blocked by (m3, w2, h1)

w2 w1 w3 ⇒ Blocked by (m1, w2, h2)

∅ w1 w2 ⇒ Blocked by (m1, w2, h2)

∅ w2 w3 ⇒ Blocked by (m1, w1, h1), (m2, w3, h3), (m3, w2, h2)

∅ w1 w3 ⇒ Blocked by (m1, h2, w2)

Case 6. µM (h1) = m3, µM (h2) = m2, µM (h3) = m1.

h1 h2 h3

µM m3 m2 m1

µW
w1 w2 ∅ ⇒ Blocked by (m1, w1, h1), (m2, w2, h2), (m3, w3, h3)

w2 ∅ ∅ ⇒ Blocked by (m2, w2, h2)

Having exhausted all the cases, we conclude that the set of stable double matchings with respect to

θ and the set of Pareto-efficient matchings are disjoint. Since, as emphasized above, a matching

in the θ-core has to be stable with respect to θ and Pareto-efficient, we conclude that the θ-core is

empty.

The complementarities of the preferences over the possible agent-house pairs play an important

role in this separation.13 Indeed, it can easily be proved that the existence of a Pareto-efficient

and stable double matching is restored for the strong I-ownership structure if we assume that

I-agents have lexicographic preferences: they first value the house and then the women matched to

it. Formally, for each I-agent i and his preference order �i over (J ∪ {∅})× (H ∪ {∅}), there exists

an order �̃i over H s.t. ∀h, h′ ∈ H, h�̃ih′ ⇔ (h, j) �i (h′, j′)∀j, j′ ∈ J ∪ {∅}. A matching µI of

13The empitness of the core in the presence of externalities also exists in the auction literature (Jehiel and Moldovanu,
1996). Jeong (2017) showed the existence of weaker stability notions in this context. Contrary to them, our setting
does not allow any monetary transfers, which creates important differences even in the standard framework.
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I-agents to houses is said to be Pareto-efficient with respect to preferences (�̃i)i∈I if one cannot find

another matching of I-agents to houses such that all I-agents, according to their preferences (�̃i)i,

prefer their newly assigned houses. In that case, one may match the I-agents to the houses in a

Pareto-efficient maner with respect to (�̃i)i and then select a stable matching to match the J-agents

as in the proof of Proposition 3.3.2.14 Since I-agents have been matched in a Pareto-efficient way and

first value the houses, it can be shown that the obtained matching is necessarily Pareto-efficient. As

mentioned above, the induced double matching is also stable with respect to θM . Note however that

this remark does not depend on any assumption on the preferences of the women, which may still

exhibit complementarities.15 In the following proposition, we also show that the obtained matching

is in the θ-core:

Proposition 3.3.4. Let I ∈ {M,W}; if preferences of I-agents are lexicographic and θ is the strong

I-ownership structure, then there exists a double matching that is in the θ-core.

Proof. W.l.o.g let θ be the strong W -ownership such that women have lexicographic preferences.

Match women to houses such that the resulting matching is Pareto-efficient with respect to preferences

(�̃w)w; call this matching µW . Since by Assumption 1, all women prefer to be matched to a house

alone to not being matched at all and that there is the same number of houses as women, then

all houses are occupied by a woman. As in the proof of Proposition 3.3.2, let P be the set of

pairs p = (h,w) s.t. µW (h) = w, �̃p be the preferences of the pair p over the men and �m be the

preferences of man m over the pairs. Thus, the market formed by pairs in P and men in M is a

standard two-sided market as defined by Gale and Shapley (1962). We know that there exists an

assignment of men to the pairs in P that is stable with respect to the aforementioned preferences. In

a standard two-sided market, stable matchings are also in the core, and hence, there is no coalition

formed by pairs in P and men in M that can block the matching in the two-sided matching setting,

i.e., conditional on keeping µW fixed in our setting. Therefore, if a coalition M ′ ∪W ′ blocks µ

with a matching µ′, there must be one woman in W ′, say w1, who will be matched to a different

house under µ′, say h1, than under µ. Since she does not have the ownership of h1 under µ and all

houses are occupied, the woman, say w2, matched to h1 under µ must be part of the coalition and,
14The Pareto-efficiency of the assignment of I-agents to houses is important; otherwise, one may still produce a

stable matching with respect to θ that is not Pareto-efficient.
15One can hope that a weaker notion would allow the existence, for instance, with additive preferences where the

utility of a pair (w, h) for man m would be given by u(w) + v(h). However, the problem becomes intractable. We have
not been able to exhibit a counter example nor a proof of existence due to the combinatorial aspect of the problem.
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hence, by strict preferences also be better-off, meaning that she must obtain a house h2 that, by

lexicographic preferences, she prefers to h1. Continuing the argument, one can exhibit a cycle of

women exchanging their houses when going from matching µ to µ′. By lexicographic preferences, this

contradicts the Pareto-efficiency of the matching µW of women to houses with respect to preferences

(�̃w)w.

3.4 An alternative notion of the core

In a housing market problem, as defined in Shapley and Scarf (1974), agents are initially assigned

to a house and would like to exchange it. Shapley and Scarf (1974) and Roth and Postlewaite (1977)

defined a notion of the core with respect to this initial assignment: a matching of agents to houses is

in the core if no subset of agents can exchange their initial houses with one another while all being

strictly better-off. Note the difference with respect to the core notion defined above: here, the set of

agents blocking must exchange their initial house, not the one that they obtain under the blocked

matching. One may wonder whether considering a housing market setting would allow a non-empty

core as naturally defined in this context. This turns out not to be the case, as shown in Proposition

3.4.1 below. Before turning to this question, let us define the core notion in this framework. An

initial ownership is an injection θ0 : H 7→M ∪W where θ0(h) is interpreted as the agent initially

owning house h. Note that we assume that all houses have an initial owner. As usual, we abuse

notations and denote θ0(a) as the initial house, if any, of agent a ∈ M ∪W (if there is none, let

θ0(a) = ∅). An initial ownership θ0 is an I-initial ownership if ∀h ∈ H, θ0(h) ∈ I. We will refer

to the latter as a one-sided initial ownership. A double matching µ is in the housing market

θ0-core if there is no blocking coalition of agents M ′ ∪W ′ ⊆M ∪W and a matching µ′ s.t. the

following hold:

1. If µ′(h′) = (m′, w′) ∈M ×W then m′ ∈M ′ ⇔ w′ ∈W ′.16

2. For all a ∈M ′ ∪W ′ s.t. a ∈ µ′(h′), then h′ ∈ θ0(M ′ ∪W ′).

3. ∀a ∈M ′ ∪W ′, µ′(a) �a µ(a) and strictly for some.

16This condition is only for men and women who are matched to one another under µ′ and are part of the coalition.
For instance, if there is a man who was unassigned under µ and who is matched alone to his initial house under µ′,
then this condition is trivially satisfied.

313



Matching with Ownership

The idea is standard: there is no subset of initial owners who could exchange their houses and be

matched with other agents such that all of them are better-off. In a housing market setting, Roth

and Postlewaite (1977) defined two different core notions: strict and weak. The former imposes

that the preference relation in condition (3) of the above definition is strict for every member of

the coalition. The weak version is similar to ours and allows indifference for some members of the

coalition. Our next proposition shows that even for a I-initial ownership, this (weak) core notion

may be empty:

Proposition 3.4.1. Let θ0 be an I-initial ownership. Then, the housing market θ0-core may be

empty.

Proof. There are 3 men, 3 women and 3 houses. The initial ownership is given by θ0(hi) = mi for

i = 1, 2, 3. Preferences are as follows:

m1 m2 m3 w1 w2 w3

(w3, h2) (w2, h1) (w3, h3) (m1, h1) (m3, h3) (m3, h2)

(w1, h1) (w2, h2) (w3, h2) (m2, h3) (m2, h1) (m1, h2)

(w2, h1) (w1, h3) (w2, h3) (m2, h1) (m2, h2) (m3, h3)

(∅, h1) (w1, h1) (w1h3) (m3, h3) (m1, h1) (∅, h1)

(∅, h2) (∅, h1) (∅, h1) (∅, h1) (∅, h1) (∅, h2)

(∅, h3) (∅, h2) (∅, h2) (∅, h2) (∅, h2) (∅, h3)

(∅, h3) (∅, h3) (∅, h3) (∅, h3)

Assumption 1 implies that, with this core notion, a matching in the housing market θ0-core

has to match all the men to all houses. Otherwise, the unmatched man could always block with

his initial house. As in Proposition 3.3.3, we will check the six ways to assign men to houses. For

each case, we will use the same table presentation and terminology as in Proposition 3.4.2 in listing

the men matching to houses, the women matchings to houses and the same presentation of the

blocking coalitions. The main difference will be that, now, men could block a matching by only

using/exchanging their initial house and not the one that they are assigned to under the blocked

matching.

Case 1. µM (h1) = m1, µM (h2) = m2, µM (h3) = m3.
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h1 h2 h3

µM m1 m2 m3

µW

w1 w2 w3 ⇒ Blocked by (m1, w3, h2), (m2, w2, h1)

w1 ∅ w2 ⇒ Blocked by (m3, w3, h3)

∅ w2 w1 ⇒ Blocked by (m3, w3, h3)

w2 ∅ w1 ⇒ Blocked by (m3, w3, h3)

w2 ∅ w3 ⇒ Blocked by (m1, w1, h1)

For instance, note that here, one does not have to consider an assignment of women to houses

such that only w2 is matched to h2 and the others remain unmatched. Indeed, the former could be

obtained from the first assignment of women in the above table by letting w1 and w3 be unassigned.

Therefore, the matching would be blocked by exactly the same coalition using the same matching as

in the table. A similar argument could be used for all other assignments of women that could be

obtained from those above by just letting some women be unmatched. In all the tables, we do not

explicitly specify these matchings since they can be inferred using those we provide.

Case 2. µM (h1) = m1, µM (h2) = m3, µM (h3) = m2.

h1 h2 h3

µM m1 m3 m2

µW
w1 w3 ∅ ⇒ Blocked by (m2, w2, h2)

w2 w3 w1 ⇒ Blocked by (m1, w1, h1)

Case 3. µM (h1) = m2, µM (h2) = m1, µM (h3) = m3.
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h1 h2 h3

µM m2 m1 m3

µW

w2 w3 w1 ⇒ Blocked by (m3, w2, h3)

w1 w3 w2 ⇒ Blocked by (m2, w1, h3), (m3, w3, h2)

w1 ∅ w3 ⇒ Blocked by (m1, w1, h1)

w2 ∅ w3 ⇒ Blocked by (m1, w1, h1)

Case 4. µM (h1) = m2, µM (h2) = m3, µM (h3) = m1.

h1 h2 h3

µM m2 m3 m1

µW
w2 w3 ∅ ⇒ Blocked by (m1, w1, h1)

w1 w3 ∅ ⇒ Blocked by (m1, w1, h1)

Case 5. µM (h1) = m3, µM (h2) = m1, µM (h3) = m2.

h1 h2 h3

µM m3 m1 m2

µW ∅ w3 w1 ⇒ Blocked by (m3, w2, h3)

Case 6. µM (h1) = m3, µM (h2) = m2, µM (h3) = m1.

h1 h2 h3

µM m3 m2 m1

µW ∅ w2 ∅ ⇒ (m1, h1, w1) Blocked by

Having exhausted all the possible cases, we conclude that the housing market core is empty.
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Note that in the previous example, the matching µ(h1) = (m1, w1), µ(h2) = (m2, w2) and

µ(h3) = (m3, w3) is Pareto-efficient and not blocked by any coalition of size two. As the next

proposition shows, such a matching always exists for one-sided initial ownerships.17 Since the

previous counterexample involved coalitions of size four and smaller and because a coalition is always

formed by an even number of agents, the result is tight.18

Proposition 3.4.2. If the initial allocation is one-sided, there always exists a Pareto-efficient

matching that is not blocked by any coalition M ′ ∪W ′, of size two, i.e., |M ′ ∪W ′| = 2.

Proof. Since the initial allocation is one-sided, w.l.o.g, assume that the women are initially matched

to the houses s.t. θ0(hi) = wi for all i = 1, ..., n. Fix this matching of women to the houses, and call

it µW . Since the number of houses and women is the same, there are no empty houses or unassigned

women under µW . As in the proof of Proposition 3.3.2, consider the two-sided market formed by

a set P of pairs of the form pi = (wi, hi), where µW (hi) = θ0(hi) = wi, �̃pi is the preference order

of a pair pi over the men in M , and �m is the preference order of a man m over the pairs in P .

In this two-sided market, as before, one can match men to the pairs s.t. the resulting matching

is stable. The resulting double matching µ will be composed of µW and an assignment of men to

houses, µM . Therefore, µ = (µM , µW ) will not be blocked by any coalition of size two. Indeed, in

such a coalition, there must be one man m, one woman wi and matching µ′. Since the coalition is of

size two, by the definition of the housing market θ0-core, woman wi cannot be matched to a house

other than the one she is assigned to under µ, i.e., hi. Indeed, under µ, she is assigned to her initial

house under θ0. Thus, if she were matched to another house, say hj with j 6= i, by the definition of

the housing market core, the coalition would have to include the initial owner of this house, woman

wj , and this would contradict there being only one woman in the blocking coalition. Thus, wi has

to remain in her initial house under the blocking matching µ′. We therefore have the following:

µ′(wi) = (m,hi) �wi µ(wi) and (wi, hi) �m µ(m). However, this would contradict the stability of

the matching in the two-sided setting formed by pairs P and men in M since (hi, wi) ∈ P prefers

being matched with man m and the latter prefers being matched to (hi, wi).
17In the previous section, with the other core notion, we proved for such ownerships the existence of a matching not

blocked by any coalition of size two. However, we showed in Proposition 3.3.3 that there could be no matching that is
Pareto-efficient and not blocked by any coalition of size two.

18When one only imposes a coalition of size two in our setting, then there is no difference between the strict and
weak notions as defined above. Indeed, if a coalition of size two formed by a man m and a woman w is blocking a
matching µ with the initial house h being held by one of them, then, in our definition, one of the two, say m must be
strictly better-off. Thus, by strict preferences, this means that m and w were not matched together in h under µ, and
hence, w must also be strictly better-off.
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Thus, the matching µ is not blocked by any coalition of size two. Assume that it is not Pareto-

efficient. There hence exists a double matching µ′ = (µ′M , µ′W ) that Pareto dominates µ. We will

show that µ′ is also not blocked by any coalition of size two. If so, there exists a woman wi and a

man m who are blocking the matching µ′. Using the same argument as above, it must be the case

that they are blocking using the initial house of woman wi, that is, hi = θ0(wi). Therefore, by the

definition of the blocking coalition and by strict preferences,

(m,hi) �wi µ′(wi) �wi µ(wi)

(wi, hi) �m µ′(m) �m µ(m)

The first preference relations come from the blocking coalition condition and strict preferences and

the second from the assumption that µ′ Pareto-dominates µ. However, this would mean that wi and

m were already a coalition of size two blocking µ, a contradiction. Hence, to find a Pareto-efficient

matching, one simply needs to iterate the procedure. If another matching µ′′ Pareto-dominates µ′

then, using the same argument, it will not be blocked by any coalition of size two. Continuing the

argument will, by the finiteness of the environment, lead to a Pareto-efficient matching that, by

construction, will not be blocked by any coalition of size two.

3.5 Conclusion

We introduced a new matching model in which two types of agents have to be matched to a set

of objects. We defined a notion of ownership structure over the objects that specifies, for each object

and its possible assignments of agents, the agent owning that object. Only owners are allowed to

block a given matching and let other agents join them and their objects. For general ownership

structures, we showed that stable matchings with respect to an ownership may fail to exist. However,

assuming that all agents prefer to be matched to an object to being unassigned, we showed that

stable matchings always exist for a simple class of one-sided ownership structures: those that assign

the ownership of objects to agents of the same type. For one-sided ownerships, stable matchings

share similarities with the standard two-sided matching setting. However, we showed that there is an

important difference: they could be disjoint from Pareto-efficient matchings. Thus, in this context,

a generalization of the core with respect to an ownership can be empty, which is not the case in
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the standard two-sided market setting. We introduced an alternative ownership approach whereby

each house is initially owned by one agent. We also showed that for initial ownerships where houses

are owned by the same type of agents, an alternative notion of the core may fail to exist. However,

one can always find a Pareto-efficient matching that is not blocked by any coalition of size two. In

both settings, the one-sided structure of ownership is an important class to ensure the existence of

matchings not blocked by pairs of agents. With initial ownership, one can in addition ensure the

Pareto-efficiency of one of these matchings.

Our results show that the one-sided ownership structure is an important requirement for the

existence of a pairwise stability notion. From a positive point of view, it implies that one should

mostly observe one sided ownership structures in practice. As mentioned, the one-sided structures

are not the only ones admitting a stable matching. A complete characterization would be needed

to precisely identify the structures. However, the problem becomes combinatorial and intractable.

Counter examples suggest that one cannot go much beyond the one-sided ownership structure.
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Conclusion Générale

Cette thèse s’attèle à étudier le problème d’affectation des enseignants aux écoles. Nous avons

montré que ce problème est l’intersection de deux grands types de problèmes au sein de la littérature

d’appariement: l’appariement avec deux types et les problèmes d’allocation de logements. Dans le

Chapitre 1, nous avons proposé un premier cadre théorique pour analyser les propriétés particulières

de ce problème d’affectation et avons montré que la procédure actuellement identifiée dans la

littérature et utilisée en pratique en France souffre d’un défaut important: il est possible de réaffecter

les enseignants aux écoles de telle sorte qu’ils soient tous “mieux”. Nous avons étudié une classe

de mécanismes qui ne souffre pas de ce défaut et avons identifié une unique procédure qui incite

les enseignants à être sincères dans la soumission de leurs listes de préférences. Dans le Chapitre 2,

nous avons exploré la conception pratique de cet algorithme pour le cas français d’affectation des

enseignants du second degré en prenant en compte une multitude de contraintes pratiques pour ce

marché. Nous avons proposé un algorithme pouvant être parametrisé afin de s’adapter à un grand

nombre d’objectifs de politiques régionales d’affectation des enseignants en termes de mouvement

et de distribution de ces derniers. Plus généralement, cet algorithme peut s’avérer être un outil

important de politique publique afin de répondre à deux problèmes centraux des systèmes éducatifs

au sein des pays de l’OCDE: i) le manque d’attractivité de la profession enseignante et ii) les fortes

inégalités de réussite entre élèves issus de différents milieux sociaux. Dans le Chapitre 3, nous avons

développé une nouvelle classe de modèles d’appariement inspirée de l’affectation des enseignants et

des élèves aux écoles. Des paires d’agents doivent être affectés ensembles à des objets, par exemple

un manager et un travailleur à des projets. Chaque agent (manager ou travailleur) a des préférences

sur les paires agent-objet auxquelles il peut être affecté. Nous avons exploré la question classique de
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l’existence d’appariements stables dans ce nouveau modèle. Nous avons montré qu’une notion forte

de stabilité, où un manager ou un travailleur peut librement renvoyer son partenaire et demander à

un autre de rejoindre son projet, peut ne pas exister. Cependant, nous avons montré que lorsque

l’on définit correctement une structure de propriété sur les projets, c.a.d. quel agent est autorisé à

librement renvoyer son partenaire et demander à un autre de le rejoindre, alors on peut restaurer

l’existence d’une notion de stabilité. La structure de propriété requise pour cette existence est

naturelle: il faut toujours donner la propriété d’un projet au même type d’agents, c.a.d. toujours

des managers ou toujours des travailleurs. Même si ces appariements stables ont des similarités avec

ceux du cadre standard d’affectation avec deux types, nous avons montré que, contrairement au

cadre classique, une notion naturelle de coeur peut être vide.

Recherches futures

Les travaux développés au sein de cette thèse sont les premiers pas d’un agenda de recherche

plus général sur l’affectation des enseignants aux écoles. Nous donnons ici une liste de potentielles

recherches futures en plus de celles déjà mentionnées dans les conclusions des chapitres de cette

thèse.

Un modèle stochastique de réaffectation

L’analyse développée au sein des Chapitres 1 et 2 de cette thèse se concentrait sur des mécanismes

dits ex post qui donnent une affectation finale des enseignants aux écoles. Cela nous a amené à

considérer une contrainte de Rationalité Individuelle (RI) pour cette affectation finale: chaque

enseignant doit toujours recevoir une affectation qu’il préfère faiblement à son affectation initiale.

Dans la procédure d’affectation française, il n’est pas clair que cela soit pleinement le cas. En effet,

comme nous l’avons décrit, la procédure d’affectation est divisée en deux étapes:

1. Une affectation inter-académique: les enseignants souhaitant changer d’académie d’affectation

doivent soumettre leurs préférences sur les 31 académies françaises. La contrainte RI est imposée

sur leur académie d’affectation initiale: ils sont sûrs d’être affectés à une académie qu’ils ont

classée au dessus de leur académie initiale. Une fois l’affectation décidée par l’algorithme, elle

est définitive.

2. Une affectation intra-académique: une fois l’affectation inter-académique de la première phase
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décidée, les enseignants affectées à une académie donnée et ceux en poste au sein de cette

académie et souhaitant changer d’établissement au sein de celle ci soumettent leurs listes de

préférences sur les établissements au sein de cette académie. Si un enseignant était en poste au

sein d’un établissement de celle ci, la contrainte RI lui assure d’être affecté à un établissement

qu’il a classé au dessus de son établissement initial. Cependant, un enseignant ayant été affecté

à cette académie suite à la première phase est considéré comme n’ayant aucun établissement

initial au sein de l’académie et peut donc se retrouver sans affectation à la fin de l’algorithme.

Dans ce cas, le ministère l’affecte à un poste de remplaçant sur une zone géographique proche

de sa première école classée. Ce dernier sera remplaçant au cours de l’année académique et

participera encore à cette étape l’année suivante.

Un enseignant souhaitant changer d’académie fait donc face à un certain risque: celui de ne pas

recevoir d’affectation au sein de sa nouvelle académie à la seconde étape. On peut modéliser ce

risque comme une croyance que l’enseignant formule: il affecte une probabilité d’être affecté à tel ou

tel établissement au sein de l’académie. Théoriquement, cela ouvre la possibilité de considérer des

mécanismes stochastiques de réaffectation, c.a.d. qui retourneraient des probabilités d’obtenir tel ou

tel appariement. Chaque enseignant posséderaient une utilité cardinale pour chaque établissement

et évaluerait un distribution de probabilités donnée en utilisant son utilité espérée. La contrainte RI

serait alors interim et non ex post: pour une distribution de probabilités donnée, i.e. une affectation

probabiliste, l’utilité espérée d’un enseignant doit être plus grande que l’utilité que lui procure son

établissement initial. Cette approche implique qu’il est possible, pour certaines réalisations de la

distribution de probabilités, qu’un enseignant se voit être affecté dans un établissement qui lui

procure une plus faible utilité que son établissement initial. Ce dernier cas n’est pas autorisé par

une contrainte RI ex post. Cette relaxation pourrait potentiellement permettre plus d’échanges et

serait une étude théorique intéressante. Cependant, en pratique, il faudrait connaitre ou demander

les utilités cardinales de chaque enseignant, qui sont difficiles à estimer ou même à connaitre pour

les enseignants. De plus, il est connu dans la littérature de théorie des jeux que des contraintes ex

post, comme celle considérée dans cette thèse, sont des solutions plus robustes quand il existe de

l’incertitude sur les primitives du modèle (valeurs des utilités cardinales, information que possède

chaque enseignant...etc)19.
19Voir par exemple la très bonne revue de littérature de Kajii and Morris (1997) et, pour la littérature de mechanism

design, l’article de Bergemann and Morris (2005).
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Une caractérisation de notre généralisation de l’algorithme TO-BE

Dans le Chapitre 2, nous avons fourni une généralisation de l’algorithme TO-BE trouvé dans le

Chapitre 1 afin de prendre en compte la présence d’enseignants néotitulaires sans affectation initiale

et la présence de positions vacantes. Comme nous l’avons mentionné, ce problème est similaire à

celui de généraliser l’algorithme TTC pour le problème d’allocation de logements avec locataires

comme dans Shapley and Scarf (1974) à l’algorithme YRMH-IGYT proposé par Abdulkadirouglu

and Sonmez (1999). En effet, ce dernier permet de généraliser l’algorithme d’échange de logements

occupés entre locataires au cas où des agents sans logement initial et des logements vacants sont

présents. Notre généralisation de TO-BE dans ce chapitre est une généralisation de l’algorithme

YRMH-IGYT qui permet d’incorporer deux points additionnels: i) un environnement plusieurs-pour-

un où les écoles ont plusieurs positions et ii) l’existence de “préférences”du côté des écoles. Sonmez

and Unver (2010) ont fourni une caractérisation axiomatique de l’algorithme YRMH-IGYT.20 Une

caractérisation axiomatique similaire pour notre généralisation de TO-BE permettrait d’exhiber une

classe plus importante de mécanismes.

Un modèle de réaffectation dynamique

Tous les modèles présentés dans cette thèse prennent une approche statique de la réaffectation.

L’aspect dynamique est pris comme une primitive du modèle via l’allocation initiale. Dans le cas

de l’affectation inter-académique des enseignants en France, cette approche peut être justifiée. En

effet, comme montré par Prost (2013), le principal déterminant de la mobilité inter-régionale des

enseignants est la volonté de se rapprocher de leur région natale. Une fois qu’un enseignant rejoint

cette dernière, il ne participera probablement plus au mouvement inter-académique21. Donc pour

le problème de réaffectation pur étudié dans le Chapitre 1, l’approche statique peut être justifiée.

Cependant, dans le Chapitre 2, il pourrait être intéressant de considérer un modèle dynamique

simple: un enseignant doit d’abord postuler pour un premier poste en tant que néotitulaire puis

peut postuler une deuxième fois dans sa carrière pour une réaffectation. Comme montré dans le

Chapitre 2, un changement d’algorithme affecte la qualité de l’affectation des néotitulaires et celle

20Les axiomes étant quelques peu techniques, nous renvoyons le lecteur à l’article cité pour plus de détails.
21Bien entendu, il peut toujours demander une réaffectation pour changer d’établissement au sein de cette académie.

Il n’y a pas de statistiques ou rapports publics donnant le nombre moyen de fois qu’un enseignant participe au
mouvement inter-académique dans sa carrière. Cependant, il serait possible de retrouver cette information en
fusionnant l’ensemble des bases de données d’affectation avant 2013, qui est la base sur laquelle les travaux de cette
thèse se sont appuyés.
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des titulaires demandant une réaffectation. Les effets de long terme ne sont pas clairs et une analyse

théorique complète serait utile. Récemment, la littérature académique en théorie de l’appariement

a eu un intérêt croissant pour des modèles dynamiques. Notre but n’est pas de donner une revue

complète de ces modèles, le lecteur intéressé peut se référer aux sections de revue de littérature

des articles cités ci-après. Ils peuvent être divisés en deux types (les listes suivantes ne sont pas

exhaustives):

1. Des modèles cherchant à étendre les notions de stabilité et d’efficacité à un contexte dynamique

et à étudier leur existence: Damiano and Lam (2005), Kurino (2009), Pereyra (2013), Doval

(2017).

2. Des modèles simplifiés de dynamique pour étudier les mécanismes optimaux: Bloch and Cantala

(2013), Bloch and Cantala (2017), Leshno (2017), Baccara, Lee and Yariv (2015).

Une estimation structurelle des préférences dynamiques des enseignants

La procédure d’affectation en France demande à chaque enseignant souhaitant une (re)affectation de

soumettre une liste de préférences sur les académies (ou établissements). Cependant, au cours sa

carrière, un enseignant se verra affecté à plusieurs établissements. Il est donc probable que ce dernier

ait des préférences sur des séquences d’affectations c.a.d. l’ensemble des affectations possibles de

sa carrière. Par exemple, un enseignant peut préférer un établissement A, par exemple car il est

situé dans sa ville natale, à un établissement B lui même préféré à C. Cependant, il peut préférer

être affecté à C une période pour ensuite rejoindre A, appelons cette affectation (C,A), plutôt

que de rester deux périodes à B, appelons cette affectation (B,B). En effet, comme nous l’avons

mentionné en évoquant la préférence qu’ont les enseignant à être plus proches de leur région natale,

préférer (C,A) à (B,B) est très probable en pratique. Les néotitulaires demandent des établissements

défavorisés afin d’obtenir un bonus de points qui leur permettra plus tard de rejoindre leur région

natale. Cependant, recouvrir ces préférences dynamiques à partir des observations de listes statiques,

par exemple préférer A à B à C, n’est pas aisé. Dans la littérature des problèmes d’appariement, il y

a un nombre croissant de travaux sur l’estimation statique des préférences: voir par exemple Fack,

Grenet and He (2015), Abdulkadiroglu, Agarwal and Pathak (2015) ou Calsamiglia, Fu and Guell

(2016). Utiliser ces techniques sur un problème dynamique pourrait amener à ne pas correctement

prendre en compte les possibles stratégies dynamiques et éventuellement biaiser les résultats. En
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économétrie structurelle, il y une littérature importante de modèles de choix dynamiques, voir par

exemple la revue de littérature de Aguirregabiria and Mira (2010). Appliquer ces techniques dans

un contexte d’appariement dynamique serait prometteur, notamment, voir notre discussion politique

dans la section suivante, en termes de politiques publiques.

Un modèle avec entrée et sortie endogènes des enseignants.

Comme évoqué dans le Chapitre 2, un problème important au sein des pays de l’OCDE est le

manque d’attractivité de la profession enseignante. Un autre problème de politique éducative est

le fort taux d’abandon des jeunes enseignants22. Pour prendre en compte ces effets, il faut étudier

les déterminants des flux d’entrées et de sorties des enseignants. Bien entendu, comme montré par

Boyd et al. (2005), les établissements dans lesquels les enseignants sont affectés (ou anticipent être

affectés) sont importants dans leur décision de rejoindre ou de sortir de la profession. Par exemple,

si l’on se fixe l’objectif de minimiser le nombre de néotitulaires affectés à un établissement défavorisé,

cela peut réduire le taux d’abandon de ces derniers. Cependant, comme mentionné dans le Chapitre

2, augmenter la mobilité des enseignants titulaires, et donc leur donner de meilleures perspectives de

carrière, peut induire une augmentation du nombre de personnes rejoignant la profession. Cependant,

il n’est pas clair que ces deux effets peuvent être conjointement atteints. Si les enseignants ont des

préférences relativement corrélées, augmenter la mobilité des enseignants titulaires peut se faire au

détriment des néotitulaires et vice-versa. En effet, les différents résultats exposés dans le Chapitre 2

de cette thèse semblent confirmer cet arbitrage. Développer un modèle formel qui incorporerait les

décisions d’entrées et de sorties pourrait aider à quantifier ces effets. Couplé avec le projet ci-dessus

d’estimation des préférences pour les titulaires et néo-titulaires, cela pourrait se révéler être un outil

important de politique publique.

Un modèle sur les interactions entre l’affectation des enseignants et des élèves aux

écoles

Ces dernières dizaines années, la littérature sur les problèmes d’appariement a mené à une multitude

de réformes politiques des systèmes d’affectation des élèves aux écoles. L’algorithme AD a été

utilisé dans un grand nombre de villes dans le monde et une importante partie de la littérature s’est

intéressée aux moyens d’accomplir certains objectifs politiques via la conception des priorités des
22Aux Etats-Unis, ce problème a été souligné par Ingersoll (2003) ou encore Boyd et al. (2005). En France, il n’existe

pas de données disponibles ou rapports quantifiant ces taux d’abandon. Dans leur rapport, Cooper and Alvarado
(2006) semblent souligner que c’est un problème moindre en Allemagne, France ou Portugal.
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écoles. Un agenda de recherche important a été celui des politiques de discrimination positive afin

de donner un meilleur accès aux bons établissements aux étudiants de milieux sociaux défavorisés.23.

D’autres se sont concentrés sur les moyens de mettre en œuvre des contraintes de diversité dans

les appariements, cherchant une certaine balance entre différents types d’étudiants affectés au sein

des établissements24. En France, Hiller and Tercieux (2014) ont montré que l’algorithme Affelnet

utilisé pour affecter les élèves aux lycées est équivalent à l’algorithme AD où les écoles proposent.

Pour définir les priorités au sein d’Affelnet, un système de points est utilisé, octroyant des points à

un étudiant selon différents critères: zone géographique, présence d’un frère ou d’une soeur dans

l’établissement, notes ou encore statut social. La dernier critère est en effet un bonus de points aux

étudiants issus de milieux aux revenus modestes et qui reçoivent une bourse du CROUS. En pratique,

ce bonus est tellement important que tous les élèves le reçevant ont une priorité plus élevée que ceux

ne le recevant pas. A Paris par exemple, ce bonus a eu un impact significatif sur la composition

des cohortes d’entrées d’élèves au sein de certains établissements25 au point que, récemment, un

important lycée parisien, le lycée Turgot, s’en est plaint26. Un point important ici est que ces plaintes

étaient également émises par le corps enseignant de l’établissement. Comme montré par Prost (2013),

les enseignants au sein d’établissements avec une plus forte proportion d’élèves aux résultats plus

faibles ou d’élèves issus de la minorité ou d’élèves aux origines sociales plus modestes ont tendance

à plus quitter ces établissements. Si la composition des élèves au sein d’un établissement est un

déterminant important dans les préférences des enseignants, alors il faut considérer conjointement

l’analyse des problèmes d’affectation des enseignants et des élèves aux écoles afin d’en capturer

tout les effets potentiels. Inversement, si la qualité d’une école dépend significativement des types

d’enseignants qui y sont affectés, alors les préférences des élèves pour les établissements va également

dépendre de la distribution des enseignants au sein de ces derniers. Une politique importante qui

affecte la distribution des élèves au sein des établissements, comme par exemple une politique de

discrimination positive, peut avoir des effets indirects importants sur la distribution des enseignants

23Notre but n’est pas de donner une revue détaillée des articles. Le lecteur peut se référer aux deux articles de
Kojima (2012) et Hafalir, Yenmez and Yildirim (2013).

24Voir par exemple Erdil and Kumano (2012), Kamada and Kojima (2014) ou encore Echenique and Yenmez (2015)
parmi d’autres. Récemment, Ashlagi and Shi (2015) ont montré comment concevoir des systèmes de priorité sous
l’algorithme AD afin de prendre en compte une multitude d’objectifs politiques comme les couts de transport, la
diversité, l’efficacité...etc.

25Pour les effets de cette politique, le lecteur peut se référer au rapport de Fack, Grenet and Benhenda (2014)
26Il y a une multitude d’articles français de presse mentionnant ce cas. Voir par exemple “Affelnet : Paris amende

le système d’affectation des lycées”, Le Monde 3/24/17 (link) ou encore “Lycées : à Paris, des parents d’élèves se
mobilisent contre le logiciel Affelnet”, Libération 8/7/17 (link)
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au sein des écoles, ce qui pourrait in fine avoir des effets de retour néfastes pour la politique initiale.

Afin de pleinement considérer ces effets, il faudrait considérer un modèle complet prenant en compte

cette interdépendance. Dans le Chapitre 3, nous avons analysé les effets de cette interdépendance sur

l’existence des concepts de base comme la stabilité. Analyser les effets dans un modèle plus positif,

où les enseignants et les élèves sont affectés chacun séparément par l’algorithme AD et doivent

soumettre des listes ordonnées d’écoles, serait intéressant afin d’étudier les effets de long terme

des certaines politiques. En soumettant leurs listes, les enseignants et étudiants doivent anticiper

l’affectation finale afin de choisir comment classer les écoles: les préférences deviennent endogènes.

Discussions pratiques de politiques publiques

L’analyse contre factuelle exposée dans le Chapitre 2 de cette thèse a aboutit à plusieurs

discussions politiques et deux articles de vulgarisation additionnels: une note de l’Institut des

Politiques Publiques (Combe, Tercieux and Terrier, 2016c) et une publication, en français, dans un

journal du Ministère de l’Education Nationale (Combe, Tercieux and Terrier, 2016a).

Nous avons pu discuter et présenter ces travaux avec plusieurs institutions importantes pour

l’affectation des enseignants:

1. Administrations:

• La direction de la DEPP27, le département de statistiques du Ministère de l’Education

Nationale.

• Certains directeurs de la DGRH28, le département de ressources humaines du Ministère de

l’Education Nationale, en charge de l’allocation inter-académique et qui nous ont fourni

les données utilisées au sein de nos travaux.

• Le (ex) directeur de cabinet de Madame la Ministre de l’Education Nationale29, conjoin-

tement avec les directions de la DEPP et de la DGRH.

2. Les syndicats enseignants:

27Direction de l’Evaluation de la Prospective et de la Performance
28Direction Générale des Ressources Humaines
29En juin 2016, sous Madame la Ministre Vallaud-Belkacem.
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• Le SNES-FSU30 le principal syndicat des enseignants du secondaire public qui regroupe

environ 80% des enseignants syndiqués.

• Le SGEN31 le deuxième plus grand syndicat pour les enseignants du secondaire public.

3. Think Tanks:

• Terra Nova: un think tank français, identifié à gauche du spectre politique.

• France Stratégie: un think tank gouvernemental directement attaché au du bureau du

Premier Ministre.

Comment mentionné dans l’Introduction de cette thèse, le syndicat principal, le SNES-FSU, est

très attaché au principe d’égalité de traitement des enseignants. Pour eux, le système de barème

de points pour classer les enseignants dans les académies et établissements est un outil qui permet

d’assurer ce traitement égalitaire et les enseignants ne doivent pas être traités différemment pour des

critères en dehors de ceux définis au sein du barème. Ils ont émis deux commentaires importants:

1. L’existence possible sous TO-BE d’envies justifies, comme définies par Pereyra (2013), c.a.d.

l’existence d’enseignants qui préfèrent une académie sous l’affectation de TO-BE et qui ont un

plus haut barème (priorité) qu’un autre enseignant qui n’était pas initialement affecté à cette

académie mais l’a été sous TO-BE.

2. La possibilité d’avoir des académies cibles différentes entre les différentes matières, ce qui,

selon eux, est une violation du principe d’égalité de traitement.32

Concernant le premier point, un de leur argument est que, sous DA∗, il est possible de calculer

ce qu’ils appellent des barres d’affectation pour chaque académie. Une barre correspond à ce qui

est appelé communément un cutoff score dans la littérature d’appariement, c.a.d. le plus petit

nombre de points de priorité parmi les enseignants ayant été affectés par l’algorithme au sein de

cette académie mais qui n’y étaient pas initialement affectés. S’il n’y a aucune envie justifiée, alors

30Syndicat National des Enseignements de Second degré - Fédération Syndical Unitaire
31Syndicat Général de l’Éducation Nationale
32Dans notre analyse du Chapitre 2, nous avons utilisé la même règle de ciblage des académies entre différentes

matières. Cependant, en pratique, les différentes matières ne font pas face aux même problèmes structurels de
congestion. Par exemple, les Mathématiques sont une matière qui a beaucoup moins de néotitulaires que de besoins de
postes contrairement à, par exemple, l’Histoire-Géographie ou la Littérature. Dans une mise en œuvre pratique, le
ciblage devra probablement être différent entre ces différentes matières.
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n’importe quel enseignant qui n’est pas affecté à une académie qu’il préfère aura moins de points de

barème que la barre d’affectation de cette académie. Cela leur permet de facilement vérifier leur

motif de rejet et de “faire confiance”à la procédure de l’administration centrale. Comme évoqué

à la fin de la Section 6.7 du Chapitre 2, nous savons que si l’on s’impose de n’avoir aucune envie

justifiée, alors DA∗ permet d’obtenir le plus grand mouvement possible. Si les critiques récurrentes

des enseignants concernant les faibles taux de mouvement sous DA∗ sont suffisamment importantes,

alors il faudrait considérer la possibilité d’autoriser l’existence d’envies justifiées. En un sens, nous

revenons, comme en littérature sur le choix d’école, à un arbitrage entre efficacité, avec TO-BE, et

une notion de stabilité, avec DA∗. Cependant, même si la plupart des décideurs publics ont opté

pour l’algorithme DA dans le problème d’affectation des élèves aux écoles, il n’est pas clair que ce

dernier soit l’algorithme le plus naturel dans le cas de la réaffectation des enseignants. En effet,

avec l’existence d’une allocation initiale, l’idée d’échanges par cycles peut être mieux acceptée et

comprise par les participants que sous un cadre standard de choix d’école avec des élèves. C’est ce

qui s’est passé en France dans le cas de l’affectation des enseignants du primaire: à cause d’un taux

de mouvement très bas sous DA∗, ils décidèrent de réaliser des cycles d’échanges avec l’algorithme

TTC par dessus l’affectation obtenue par DA∗33. Comme l’algorithme TTC ignore complètement la

notion de stabilité en réalisant ses échanges, cette procédure peut créer un nombre important d’envies

justifiées. Il semble que le législateur et les différents acteurs ont bien compris ce débat. Par exemple,

le deuxième syndicat enseignant, le SGEN, semble plus ouvert à l’existence d’envies justifiées. Le

directeur de cabinet était également bien conscient des raisons du manque de mouvement comme

illustré dans notre exemple stylisé du Chapitre 1. Il mentionna plusieurs discussions pour autoriser

des échanges de postes ex post au sein des comités académiques mais ces échanges, créant des envies

justifiées, étaient refusés par les syndicats. Une critique mentionnée par le SGEN sur l’interdiction

totale d’envies justifiées est que cela peut créer des cas pratiques d’inégalités très importantes. Par

exemple, un enseignant célibataire sans enfants et affecté au sein d’une école relativement défavorisée

se verra, à cause de la forte contrainte qu’impose l’interdiction d’envies justifiées, rester à son poste

pendant une période très importante sans pouvoir échanger (ils mentionnèrent des cas allant de

10 à 15 ans). De même, le Mediateur de l’Education Nationale (Mediator of the French Ministry

of Education, 2015), en charge de concilier les conflits entre le ministère et les enseignants, reçoit

33Cet algorithme est cependant manipulable.
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environ 700 plaintes d’enseignants du primaire et secondaire chaque année concernant des problèmes

d’affectation. Il déclare que “fondé sur l’exploitation d’un barème, l’algorithme d’affectation laisse

ouvertes des portes sur des situations humaines difficiles et qui peuvent, à terme, entacher la qualité

et l’investissement de la ressource et l’acte éducatif ”. Dans le rapport cité, il souligne ce points en

disant, p54: “Le barème est une chose, le processus d’affectation en est une autre”, et il mentionne

la nécessité d’un débat approfondi sur le système entièrement basé sur le barème. Un article de

presse mentionnant nos travaux34 écrivit également qu’ils questionnent “une lecture plus souple

du barème”afin de gagner en efficacité. Ce débat est important et le choix final relève d’un choix

politique et public. Nous espérons que nos travaux ont aidé ce débat en quantifiant les possibles

améliorations et arbitrages.

Concernant le second point de commentaire, il semble que leur notion d’égalité de traitement

soit considérée ex ante: chaque enseignant doit être traité de façon égalitaire avant son affectation

en utilisant seulement ses points de barème. Cependant, chaque matière peut être considérée comme

un marché indépendant avec ses problématiques propres. Comme mentionné, un problème récurrent

en Mathématiques est le manque important de nouveaux enseignants. Chaque année, un grand

nombre de places au concours restent non affectées. Les néotitulaires étant peu nombreux dans

cette matière, ils peuvent facilement obtenir une affectation dans une académique qu’ils souhaitent.

Leur trajectoire de carrière est donc différente. En Histoire-Géographie par exemple, le scenario

inverse se produit: il y a plus de candidats que de positions disponibles au concours et la plupart des

néotitulaires se retrouvent affectés à une académie défavorisée. Toutes ces différences structurelles

créent des inégalités d’affectation ex post, c.a.d. dans les types de carrières et les difficultés de travail.

Notre point est que, pour obtenir une certaine égalité ex post des affectations, il est nécessaire

de discriminer ex ante à travers, par exemple, l’outil de ciblage des régions au sein de TO-BE.

Cependant, leur critique semble plus reliée à la peur d’un potentiel système opaque, où les ciblages

et objectifs peuvent changer chaque année et potentiellement après des essais au sein même du

lancement de l’algorithme. Nous reconnaissons pleinement que la transparence d’un tel système

est importante car un système opaque risque de nuire à la non manipulabilité de la procédure. Un

système avec une règle officielle et contraignante d’options de ciblage basée sur des critères objectifs

et vérifiables par tous, discutés et décidés par l’administration et les syndicats, serait une nécessité

34TOUT EDUC, (8/4/2016): “Mouvement des enseignants : pour plus d’efficacité, l’Ecole d’économie de Paris
propose une lecture souple du barème ”[link]
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en cas de mise en oeuvre pratique d’un algorithme tel que TO-BE. Cela aiderait à la mise en place

d’un système d’affectation transparent et digne de confiance pour les différents acteurs.

Sur un autre sujet, nous avons discuté avec Terra Nova de solutions afin d’augmenter la proportion

d’enseignants titulaires entrant à Amiens, Créteil ou Versailles tout en conservant un taux de mobilité

similaire à celui de l’algorithme DA∗ actuel pour les enseignants demandant à sortir de ces académies.

En effet, un nombre important de néotitulaires sont affectés au sein de ces trois académies ce qui,

comme mentionné plus haut, peut être considéré comme un problème concernant la réussite des

élèves. Une première observation est, qu’en utilisant les préférences soumises dans nos données de

2013, peu d’enseignants titulaires classent ces académies. Par exemple, sur les 12 123 enseignants

titulaires du Chapitre 2, 159 classent Amiens dans leur liste, 260 Créteil et 371 Versailles35. Pour

ces enseignants, le rang moyen d’Amiens, Créteil et Versailles est respectivement 5.53, 3.22 et 3.11.

Il est intéressant de noter que le rang médian est de 2 pour les trois académies, donc la moitié de

ces enseignants classent ces régions premier ou second36. On peut en déduire qu’avec les mêmes

préférences soumises, un algorithme d’affectation différent peut difficilement augmenter la proportion

de titulaires affectés dans ces académies puisque peu d’entre eux les classent au sein de leurs listes

de préférences. Cela montre que cet objectif nécessite des outils qui vont au delà d’un simple

changement d’algorithme: il faut inciter les enseignants titulaires à demander ces académies. Cela

peut être réalisé via plusieurs outils, par exemple:

• Un bonus de salaire pour les enseignants affectés à des écoles d’éducation prioritaire. Il semble

que, ces dernières années, le gouvernement français a mis en place ces bonus. Par exemple,

depuis Septembre 2016, chaque enseignant au sein d’un établissement d’éducation prioritaire

reçoit au moins 1734 euros et jusqu’à 2312 euros supplémentaires par an37. Récemment,

Monsieur le Président Macron proposa dans son programme éducatif d’étendre ce bonus

jusqu’à 3000 euros par an38.

• Une amélioration des conditions de travail au sein des écoles d’éducation prioritaire:

35Parmi ces enseignants titulaires, respectivement 101, 145 et 217 sont des titulaires avec une affectation initiale.
Pour les 7106 néotitulaires, 2219 classent Amiens, 2562 Créteil et 3155 Versailles.

36Pour les néotitulaires, les moyennes de rang pour Amiens, Créteil et Versailles sont de respectivement 8.52, 6.9 et
6.65 et les médianes respectivement 6, 3 et 3.

37Voir http://www.education.gouv.fr/cid92275/education-prioritaire-un-nouveau-regime-indemnitaire-en-faveur-
des-personnels.html

38Voir https://en-marche.fr/emmanuel-macron/le-programme/education
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– La diminution des heures d’enseignement au sein de ces établissement. Cela a été mis en

place en 201439. Un problème important qu’une telle politique peut créer est le besoin

de personnel enseignant supplémentaire que cela engendre au sein de ces établissements

qui sont déjà très peu demandés. Cela créer le risque de faire appel à des enseignants

temporaires ou vacataires ayant peu d’expérience.

– Augmenter le budget de ces écoles.

Bien que l’ensemble de ces outils soient importants, on sait peu de chose sur leur impact pratique

sur les préférences des enseignants. Par exemple, comme mentionné dans l’introduction du Chapitre

1, Hanushek, Kain and Rivkin (1999) trouvèrent, avec des données sur le Texas, que la mobilité des

enseignants était plus affectée par les caractéristiques des élèves que par les salaires. En France,

Prost (2013) utilisa les données françaises sur les mouvements des enseignants du secondaire pour

estimer les déterminants de la mobilité de ces derniers. Elle trouva que les incitations monétaires

qui avaient été mises en place à l’époque n’étaient pas suffisantes pour retenir les enseignants

des écoles défavorisées. Elle trouva que “les enseignants ont tendance à changer d’écoles quand

ils travaillent dans des établissements avec une forte proportion d’élèves en difficultés scolaires,

d’élèves de groupes minoritaires et/ou d’élèves issus de milieux sociaux défavorisés. De plus, les

enseignants qui ne travaillent pas dans la région dans laquelle ils sont nés sont plus à même de

bouger”. Récemment, Benhenda and Grenet (2016), en utilisant également les données françaises

de mouvement, étudièrent l’impact d’un changement de barème de priorité pour les enseignants

des écoles d’éducation prioritaire. En 2005, le nombre d’années d’enseignement nécessaires au sein

d’un de ces établissements pour obtenir un bonus de barème a été étendu de 3 à 5 ans. Leurs

résultats semblent montrer que cela a eu un effet positif sur le nombre d’années que ces enseignants

passent au sein de ces établissements mais un effet négatif sur la qualité des enseignants entrant

dans ces établissements. Tous ces résultats utilisent uniquement les données de mouvement et

non les données de préférences soumises des enseignants. Des techniques récentes d’estimation de

préférences dans la littérature d’appariement40 offrent des outils intéressant pour estimer l’impact

de ces politiques sur les préférences des enseignants et identifier précisément les meilleures politiques.

Comme mentionné dans la section précédente, l’affectation des enseignants a une nature dynamique

39Voir http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=87302
40Voir Fack, Grenet and He (2015), Abdulkadiroglu, Agarwal and Pathak (2015) ou Calsamiglia, Fu and Guell

(2016).
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et pourrait nécessiter d’utiliser des techniques additionnelles que celles actuelles afin de précisément

estimer leurs préférences. C’est une question technique ambitieuse et un outil nécessaire à développer

pour les décideurs politiques.

Une explication possible discutée avec Terra Nova sur pourquoi les enseignants titulaires ne

veulent pas demander les académies de Amiens, Créteil et Versailles est que leur affectation y serait

définitive. Afin d’en sortir, ils doivent demander une nouvelle affectation qu’ils ne seraient pas sûr

d’obtenir. Une possibilité que Terra Nova a proposée est de permettre des échanges temporaires

de postes entre des néotitulaires affectés à l’une de ces académies et des titulaires volontaires qui

seraient prêts à enseigner temporairement dans ces académies. La période de l’échange peut être

déterminée à l’avance, par exemple 3 ans. L’avantage est, qu’après ces 3 ans, l’enseignant titulaire

peut automatiquement revenir à son ancien poste pré-échange et que le néotitulaire doit revenir

prendre son poste au sein de l’académie défavorisée. L’autre aspect positif est que le néotitulaire

aura ainsi accumulé plus d’expérience et serait mieux préparé. Pour l’enseignant titulaire souhaitant

faire l’échange, il est assuré de ne pas perdre son précédent poste. Comme mentionné précédemment,

le nombre d’enseignants titulaires prêts à faire cet échange est inconnu et une estimation précise

serait nécessaire. En termes pratiques, la mise en œuvre serait standard: on peut penser à une

procédure post-affectation qui demanderait aux enseignants titulaires et néotitulaires désirant faire

un échange de soumettre une liste de régions désirées. En utilisant un algorithme standard d’échange

de type TTC, on peut trouver les échanges à réaliser. La principale différence serait, qu’après une

période fixée, tous les enseignants de l’échange devront revenir à l’affectation initiale qu’ils avaient

avant l’échange.

General Conclusion

This thesis focused on the problem of assigning teachers to schools. We showed that this problem

is at the intersection of two important classes in the matching literature: the two-sided matching

problem and the house allocation one. In Chapter 1, we proposed a theoretical framework to study

the assignment of teachers. We showed that the actual procedure identified in the matching literature

and used in practice in France has an important drawback: it is possible to reassign teachers to

schools such that both of them are “better-off”. We theoretically explored the class of mechanisms

that does not suffer from this drawback and identified a unique one that gives incentives for the
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teachers to report their true preferences. In Chapter 2, we explored the practical design of such

algorithm for the French assignment of public secondary school teachers and accommodated several

practical constraints of this specific market. We offered an algorithm that can be parametrized to

incorporate a wide range of regional policy objectives in terms of movement of teachers and their

distribution. More generally, this algorithm can be a useful policy tool to help mitigate two central

problems in OECD countries: i) the lack of attractiveness of the teaching profession and ii) the

important achievement inequality between students of different social backgrounds. In Chapter 3,

we developed a new matching framework inspired by the assignment of teachers and students to

schools. Pairs of agents have to be assigned together to objects, e.g. managers and workers have

to be assigned to projects. Each agent (manager or worker) has preferences over the agent-object

pairs he can be assigned to. We explored the standard question of the existence of a stable matching

in this setting. We showed that a strong stability notion where a manager or a worker can freely

dismiss his partner and ask another one to join his project may fail to exist. However, we showed

that once one properly defines an ownership structure over the projects, i.e. which agent is able

to dismiss his partner and ask another one to join then a stability notion exists. This notion has

a natural structure: it always gives the ownership of the project to the same type of agents, e.g.

always the managers. Even if these stable matchings share similarities with the ones in a standard

two-sided matching setting, we showed that, contrary to the standard framework, a natural core

notion can be empty.

Future research

The works developed in this thesis are part of a more general research agenda about the assignment

of teachers to schools. We enumerate here a number of future research in addition to those mentioned

in the conclusion of each chapter of the thesis.

A stochastic model of reassignment

The analysis exposed in the Chapters 1 and 2 of the thesis was focusing on ex post mechanisms that

return an assignment of teachers to schools. In doing so, we imposed the Individual Rationality (IR)

constraint on the final assignment: each teacher must always receive a school that he weakly prefers

to the one he was initially matched. In the case of the French assignment procedure, it is not clear

that it is the case. Indeed, as we described, the assignment process is divided into two phases:
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1. An assignment between regions: the teachers willing to move from their region to another one

are asked to report their preferences over the 31 French regions. The IR constraint is imposed

on their initial region: they are sure to be assigned to a region that they weakly prefer to their

initial one. Once the assignment is determined, it is final.

2. An assignment within regions: once the regional assignment of the first phase is given, teachers

who were assigned to a region and those currently teaching inside this region but who would

like to move to another school, are asked to report their preferences over the schools inside

the region. If a teacher was currently teaching in a school, the IR constraint ensures him

to get a school that he weakly prefers to his initial one. However, a teacher who has been

assigned to the region at the first phase is considered as having no initial school, so that he

can end up being unassigned at the end of the phase. In that case, the ministry assigns him to

a replacement zone, that tries to cover the area of his first ranked school, where this teacher

will spend a year as a substitute teacher. After this year, he has to participate again to the

assignment phase within the region.

When applying to the first phase to move from his region, a teacher faces the risk of not being

assigned at the second phase. One can model this risk as a belief of the teacher over the possible

schools he might be assigned, i.e. probability distribution over the possible schools. Theoretically,

one can consider stochastic mechanisms of reassignment, i.e. that return a probability distribution

over the possible assignments. Each teacher has a cardinal utility for each school and evaluates a

given probability distribution over assignments using an expected utility. The IR constraint can

now be interim and not ex post: for a given probability distribution over assignments, called a

probabilistic assignment, the expected utility of a teacher must be greater than his utility for his

initial school. This approach implies that, for some realizations of the probability distribution, the

teacher can possibly be assigned to a school with a lower utility than his initial one. This is not

allowed with an ex post IR constraint. This relaxation of the IR constraint can potentially allow for

more exchanges and would be an interesting theoretical exercise. However, in practice, one would

have to know or ask the cardinal utility values of each teacher, a difficult exercise. Moreover, it is

well known in the game theory literature that ex post constraints are more robust solutions when

there exists some uncertainty about the primitives of the model (such as cardinal utility values, the
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information that each teacher has...etc).41

A characterization of our generalized TO-BE algorithm

In Chapter 2, we provided a generalization of the TO-BE algorithm found in Chapter 1 to accommo-

date vacant positions and newly tenured teachers without any initial assignment. As we mentioned,

the problem is similar to the one of extending the TTC algorithm for the housing market as in

Shapley and Scarf (1974) to the YRMH-IGYT algorithm proposed by Abdulkadirouglu and Sonmez

(1999). Indeed, the latter extends the TTC algorithm used to exchange initially occupied houses

between tenants to the case where there are initially non assigned agents looking for a house and

vacant houses. Our generalization of TO-BE is a generalization of the YRMH-IGYT algorithm

incorporating two additional features: i) a many-to-one framework where schools have several seats

and ii) the existence of “preferences”for the schools. Sonmez and Unver (2010) provided a complete

characterization of the YRMH-IGYT algorithm.42 A complete axiomatic characterization for our

generalized TO-BE algorithm would allow us to exhibit a broader class of mechanisms.

A dynamic model of reassignment

All the models in this thesis took a static approach for the reassignment problem. The dynamic was

considered as a primitive through the initial allocation. In the case of the French assignment phase

between regions, this static approach can be justified. Indeed, as found by Prost (2013), the main

determinant of the inter-regional mobility of teachers is their willingness to be closer to the region

where they were born. So once a teacher is able to reach this region, he will probably never apply

again to assignment phase between regions.43 So in considering the pure reassignment problem of

Chapter 1, the static approach can be justified. However, in Chapter 2, it would be interesting to

investigate a simple dynamic model: a teacher has to apply as a newly tenured teacher for his first

assignment and can apply for a reassignment only once during his career. As showed in Chapter 2, a

change of algorithm affects both the quality of the match for newly tenured teachers and the one for

tenured teachers asking for a reassignment. The long run effects are not fully clear and a complete

theoretical analysis would be needed. Recently, there has been an increasing interest for dynamic

41See for instance the excellent survey of Kajii and Morris (1997) and, for mechanism design, Bergemann and Morris
(2005).

42The axioms being technical, the reader can refer to the cited article for a complete description.
43Obviously, he can be willing to move inside the region. There are no public statistics about the average number of

times a teacher participates to the between-regions assignment phase. In this thesis, we focused on the 2013 assignment
data. However, it can be possible to recover such information in merging all the datasets prior to 2013.

337



Conclusion

models in the matching literature. Our goal is not to do a complete review of these models, the

interested reader can refer to the literature review sections of the next cited papers. They can be

divided into two types:

1. Models trying to extend the stability or efficiency notions to a dynamic setting and that

investigate their existence: Damiano and Lam (2005), Kurino (2009), Pereyra (2013), Doval

(2017).

2. Simple dynamic models solving for dynamically optimal mechanisms: Bloch and Cantala

(2013), Bloch and Cantala (2017), Leshno (2017), Baccara, Lee and Yariv (2015).

The idea would be to define a simple toy dynamic model similar to the ones in the papers of the

second type. The main difference is that, in their models, once agents are matched, they definitely

leave the market. It is not true in our context: the quality of one teacher’s assignment today can

affect his future willingness to apply for a reassignment. The dynamic stability notion explored by

the papers of the first type seems to be less of a concern in practice. Participants of the market

seem to be more concerned by the static notion of stability.44 From a normative point of view, it

seems, see our policy discussions below, that it is not a concern for policy makers or unions. From a

positive point of view, it would be interesting to explore whether practical dynamic mechanisms tend

to be abandoned if they are not dynamically stable. The French procedure, DA∗, is not dynamically

stable but has been used for many years.

A structural estimation of dynamic preferences of teachers

The French procedure asks each teacher willing to move to report a list of preferences over regions

(or schools). However, in his career, a teacher will be matched to several schools. So he is likely to

have preferences over sequences of assignments i.e. his possible complete career assignments. For

instance, a teacher can prefer school A, say because it is located in his hometown, to school B to

school C. However, he can still prefer to be matched to school C one period and then to school A, call

this assignment (C,A) than being assigned the two periods to school B, call this assignment (B,B).

Indeed, referring to our previous discussions on teachers’ preference to be closer to their home-region,

preferring (C,A) to (B,B) is likely in practice. Newly tenured teachers ask to join disadvantaged

schools to obtain a bonus of points that will allow them to later join their home-region. However, it

44With the notable exception of Pereyra (2013), see our discussion in Section 3.5 below.
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is not clear how to recover this information in observing preference lists only over the schools i.e.

A preferred to B preferred to C. In the matching literature, there has been an increasing number

of works on the structural estimation of static preferences: see for instance Fack, Grenet and He

(2015), Abdulkadiroglu, Agarwal and Pathak (2015) or Calsamiglia, Fu and Guell (2016). Directly

applying those techniques on a dynamic problem, missing the possible dynamic strategies, could lead

to biased estimates. In structural econometrics, there has been an important literature on dynamic

discrete choice models, see for instance the survey of Aguirregabiria and Mira (2010). Applying such

techniques in a dynamic matching context would be of interest, especially, see our policy discussions

below, for policy making purposes.

A model with endogenous entry and exit of teachers

As mentioned in Chapter 2, an important issue in OECD countries is the lack of attractiveness of

the teaching profession. Another important concern for policy making is the high drop out rate of

newly tenured teachers. To deal with these issues, one has to study the determinants of the inflows

and outflows of teachers. Obviously, as showed in the U.S by Ingersoll (2003) or Boyd et al. (2005),

the schools to which the teachers are assigned (or expect to be) matter in their decisions of entry

or drop out.45 For instance, aiming to minimize the number of newly tenured teachers assigned

to a disadvantaged school can decrease the drop out of such teachers. As mentioned in Chapter 2,

increasing the mobility of the tenured teachers, and so giving them better career perspectives, can

lead to an increase of the number of people joining the profession. However, it is not clear that these

two effects can be achieved together. Indeed, if there is correlation in the preferences of teachers,

increasing the mobility of the tenured teachers will be done at the expense of the newly tenured

ones and vice-versa. The different results exhibited in Chapter 2 of this thesis seem to confirm this

trade-off. Developing a formal model that incorporates entry and exit decisions can help to quantify

these effects. Coupled with the above project on the estimation of the preferences for newly tenured

and tenured teachers, it can become an important tool and guidance for policy makers.

A model concerning the interactions between the assignments of teachers and students

to schools

Over the past decade, the matching literature leaded to many policy reforms concerning the design

45In France, there is no available data or reports quantifying these drop outs. In their report, Cooper and Alvarado
(2006) seem to claim that the dropout of teachers is much less of a concern in France, Germany or Portugal.
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of centralized systems of assignment of students to schools. The DA algorithm has been widely

implemented in many cities around the world and a part of the literature has focused on the ways to

achieve certain policy goals through the careful design of schools’ priorities. An important research

agenda has focused on affirmative action policies that aim to give access to better schools to students

from disadvantaged social backgrounds.46 Another literature has focused on how to implement

diversity constraints in a matching setting, seeking for a balance between different types of students.47

In France, Hiller and Tercieux (2014) showed that the Affelnet algorithm used to assign students to

high schools is equivalent to the DA school-proposing algorithm. To define priorities in Affelnet, a

point system is used that grants points to students depending on several criteria: geography, whether

he/she has a sibling in the school, grades and social status. The last aforementioned criterion is a

bonus of points for all students from low income families that receive public grants called CROUS.

Actually, this bonus of points is such that all the students receiving it end up having more points

than those who do not. In Paris for instance, this bonus had a significant impact on the composition

of the entering students in some high schools48 to the point that, recently, an important Parisian high

school, lycée Turgot, complained.49 An important point for us is that these complaints also came

from the teachers of this high school. As showed by Prost (2013), teachers in schools with higher

proportions of low achieving students or students from minority groups or from disadvantaged social

backgrounds have a higher probability to quit these schools. If teachers care about the composition

of the students in the schools, then one has to jointly consider the assignments of teachers and

students to schools in order to capture all the effects on both markets. On the other way around, if

the quality of a school is significantly determined by the teachers assigned to it, then the preferences

of the students over the schools also depend on the distribution of the teachers over the schools. An

important policy affecting the distribution of the students in the schools, as for instance an important

affirmative action policy, can have indirect impacts on the distribution of the teachers that can, in

the long run, have potential counter effects on the initial policy. To fully consider all the effects, one

46We do not aim to review the articles on the subject, the reader can refer to the two seminal papers of Kojima
(2012) or Hafalir, Yenmez and Yildirim (2013).

47See for instance Erdil and Kumano (2012), Kamada and Kojima (2014) or Echenique and Yenmez (2015) among
many others. Recently, Ashlagi and Shi (2015) also showed how to design priority systems under the DA algorithm to
implement diverse policy objectives such as bus costs, diversity, efficiency and so on.

48For the detailed effects, we refer the reader to the report (in french) of Fack, Grenet and Benhenda (2014).
49There are many available articles in the French news. See for instance “Affelnet : Paris amende le système

d’affectation des lycées”, Le Monde 3/24/17 (link) or “Lycées : à Paris, des parents d’élèves se mobilisent contre le
logiciel Affelnet”, Libération 8/7/17 (link)
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has to develop a complete model taking into account the interdependence of the teachers and the

students’ assignments. In Chapter 3, we analyzed in a general matching framework the effects of

such interdependence on the existence of standard concepts such as stability. Analyzing the effects

in a positive model, where teachers and students are assigned using a standard DA algorithm and

are asked to report an ordered list of schools would be of interest. It would allow to study the long

run impact of some policies such as affirmative actions. In reporting their preferences, teachers and

students would have to anticipate the resulting matching to choose how to rank schools: preferences

would be endogenous.

Practical policy discussions

The counter factual analysis exposed in Chapter 2 of this thesis leaded to several policy discussions

and two additional vulgarized papers: a Policy Brief from the Institut des Politiques Publiques

(Combe, Tercieux and Terrier, 2016c) and a publication, in french, in a policy making journal from

the French Ministry of Education (Combe, Tercieux and Terrier, 2016a).

We have been able to discuss and present our results with several important institutions relevant

for the assignment of teachers in France:

1. Administrations:

• The board of directors of the DEPP,50 the statistical department of the French Ministry

of Education.

• Some directors of the DGRH,51 the department of human resources of the French Ministry

of Education, in charge of the assignment phase between regions for french teachers and

who provided the data we used in our analysis in partnership with the DEPP.

• The (former) Chief of Staff of the French Minister of Education,52 together with the heads

of the aforementioned DEPP and DGRH.

2. Teacher unions:

50Direction de l’Evaluation de la Prospective et de la Performance
51Direction Générale des Ressources Humaines
52In June 2016 under the Minister Vallaud-Belkacem.
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• The SNES-FSU,53 the main teacher union for the secondary public school teachers,

regrouping roughly 80% of the union registered teachers.

• The SGEN,54 the second biggest union for secondary public school teachers.

3. Think Tanks:

• Terra Nova: a French think tank, identified at the left of the French political scale.

• France Stratégie: a public think tank directly attached to the French Prime Minister.

As mentioned in the Introduction of the thesis, the main teacher union, the SNES-FSU, is really

attached to what they call the equal treatment of teachers. For them, the point system used to rank

teachers is a way to ensure such equal treatment and teachers should not be treated differently using

criteria outside the ones defined by the point system. They expressed two important concerns:

1. The possible existence under TO-BE of justified claims as defined by Pereyra (2013), i.e. the

existence of teachers who prefer a region to their TO-BE assignment and who have a higher

priority than a teacher who is not initially assigned to this region but has been matched to it

under TO-BE.

2. The possibility to have different targeted regions across different subjects that, according to

them, is breaking the equal treatment principle.55

For the first concern, one of their arguments is that, under DA∗, they can calculate what they

call assignment bars for each region. A bar corresponds to what is referred to as a cutoff score in the

matching literature, i.e. the lowest score among the teachers assigned to a region by the algorithm

but who were not initially matched to that region. If there is no justified claim, then any teacher

not assigned to a region and who prefers it will have a lower priority score than the cutoff. It allows

him to easily check his rejection motive and to “trust”the central administration procedure. As

mentioned in Section 2.6.7 in Chapter 2, we know that if one does not want any justified claim, then

DA∗ achieves the highest possible movement. If the criticisms from teachers concerning the low
53Syndicat National des Enseignements de Second degré - Fédération Syndicale Unitaire
54Syndicat Général de l’Éducation Nationale
55In our analysis in Chapter 2, we applied the same rule for targeting regions and teachers across subjects. However,

in practice, different subjects do not face the same congestion problems. For instance, Mathematics is a subject that
has much fewer entering newly tenured teachers than available seats, contrary to History-Geography or Literature. In
a practical implementation, the targets will probably need to be different across subjects.
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movement under DA∗ are important enough, then one has to consider allowing justified claims. In

a sense, we come back, as in the school choice literature, to a trade-off between efficiency, under

TO-BE, and a notion of fairness, under DA∗. However, even if most of the policy makers chose the

DA algorithm to assign students to schools, it is not clear that, in the context of the reassignment

of teachers, DA∗ is the most natural algorithm. Indeed, with the existence of an initial allocation,

the idea of trading cycles can be better understood by participants than under the standard school

choice framework. This is what actually happened in France for primary school teachers: due to a

very low movement under DA∗, they decided to additionally run the TTC algorithm on top of the

DA∗ matching.56 Since TTC completely ignores the fairness of the allocation, this procedure can

potentially lead to an important number of justified claims. It seems that French policy makers and

the different participants have well understood this debate. For instance, the second teacher union,

the SGEN, is more open to consider justified claims. The Chief of Staff was well aware of the lack of

movement illustrated in our stylized example of Chapter 1. He mentioned several discussions to allow

ex post exchanges of positions during the regional committees but these exchanges, creating justified

claims, were refused by the unions. One criticism mentioned by the SGEN about the current system,

that forbids justified claims, is that it can create important inequalities. For instance, a single

teacher with no children assigned to a relatively deprived school will potentially stay at his position

for an important amount of time (they mentioned examples up to 10-15 years). Under TO-BE, such

teacher would be more easily able to exchange his position. Along this line, the Mediator of the

French Ministry of Education (2015), in charge of conciliating conflicts between the Ministry and

teachers, receives around 700 complaints from primary and secondary school teachers, every year,

related to assignment issues. He states that “based on a score system, the assignment algorithm

opens doors to difficult personal situations that can, eventually tarnish the quality and the investment

of human resources”. In the cited report, he highlighted this point in saying, p54: “The point system

is one thing, the assignment process another one ”, and mentioned the necessity to debate about the

point system. An article mentioning our work57 also wrote that it questions “a softer reading of

the point system ”to gain in efficiency. This debate is important and the final choice is a matter of

public choice. We hope that our work helped the debate in quantifying the possible improvements

56This procedure is not strategy-proof.
57TOUT EDUC, (4/8/2016): “Mouvement des enseignants : pour plus d’efficacité, l’Ecole d’économie de Paris

propose une lecture souple du barème”[link]
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and trade-offs.

For the second concern, it seems that their notion of equal treatment is ex ante: every teacher

has to be treated equally prior to the assignment solely based on his priority. However, each subject

can be considered as an independent market with its own issues. As mentioned, a recurrent problem

in Mathematics is the lack of newly tenured teachers. Every year, an important number of positions

remains unfilled, notably in Créteil and Versailles. The newly tenured teachers being few, they can

easily be assigned to a region that they desire. Thus, their career trajectory is different than the

one of the teachers teaching other subjects. In History-Geography for instance, the reverse occurs:

there are more candidates than open recruitment positions and most of the newly tenured teachers

end up being assigned to deprived regions. All of these structural differences create an ex post

assignment inequality. Our point is that, to create an ex post assignment equality, one needs to

discriminate ex ante through, for instance, the tool of targeting regions in TO-BE. However, their

concern seems to be related to the fear of an opaque system, where targets and objectives can be

changed yearly and potentially after trial and errors during the assignment process. We acknowledge

that the transparency is important since opaque systems can hurt the strategy-proofness of the

procedure. Our view is that an official rule to commit to targeting options according to objective

criteria, discussed and decided by the administration and the unions, would help to establish a

transparent and trusted assignment procedure.

On another topic, we discussed with Terra Nova solutions to increase the proportion of entering

tenured teachers at Amiens, Créteil and Versailles while keeping the same exit rate for those asking

to leave. As we mentioned in Chapter 2, doing so would improve the achievement of students in these

regions without hurting the teachers. Indeed, an important number of newly tenured teachers are

assigned to these three regions. A first observation is that, in the reported preferences in our 2013

data, very few tenured teachers rank these three regions. For instance, among the 12 123 tenured

teachers in Chapter 2, 159 ranked Amiens, 260 Créteil and 371 Versailles.58 For these teachers, the

average rank of Amiens, Créteil and Versailles is respectively 5.53, 3.22 and 3.11. Interestingly, the

median for the three regions is at 2 meaning that half of them rank these regions first or second.59

The point is that, with the same reported preferences, the assignment algorithm can hardly increase

58Among these tenured teachers, respectively 101, 145 and 217 are tenured teachers with an initial allocation. For
the 7106 newly tenured teachers, 2219 rank Amiens, 2562 Créteil and 3155 Versailles.

59For newly tenured, the means for Amiens, Créteil and Versailles are respectively 8.52, 6.9 and 6.65 and the
medians respectively 6, 3 and 3.
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the proportion of tenured teachers in these regions since only few of the tenured teachers rank them.

It shows that this goal requires policy tools that are beyond a simple change of algorithm: one has

to give incentives to tenured teachers to rank these regions. This can be achieved using several tools,

for instance:

• A salary bonus to those choosing to teach in disadvantaged schools. It seems that, recently,

the French government has taken a step toward it. For instance since September 2016, each

teacher in a disadvantaged school receives at least 1734 euros per year and up to 2312 euros per

year on top of his salary.60 President Macron, during his campaign, proposed in his education

program to extend this bonus up to 3000 euros per year.61

• An improvement of the job quality in these disadvantaged schools:

– To decrease the teaching load for the teachers in disadvantaged schools. This has been

in place since 2014.62 An important problem is that it creates a need to recruit more

teachers in these regions that are already unpopular. So the risk is to fill the empty

positions with temporary inexperienced teachers.

– To increase the budget for these schools.

Even if all these tools are important, little is known about their practical impact on teachers’

preferences. As mentioned in the introduction of Chapter 1, Hanushek, Kain and Rivkin (1999)

found, using data from Texas, that teachers’ mobility is more affected by students’ characteristics

than wages. In France, Prost (2013) used the data on French teachers’ movements to estimate

the determinants of their mobility. She found that the monetary incentives at that time were not

sufficient enough to retain teachers in disadvantaged schools. She found that “teachers tend to switch

schools when they work in establishments with a high proportion of less able students, students from

minority groups and/or students from economically disadvantaged backgrounds. In addition, teachers

who do not work in the region where they were born are more likely to move”. Recently, Benhenda

and Grenet (2016), also using the French movement data, studied the impact of a change in the

priority system for teachers in disadvantaged schools. In 2005, the number of years of teaching in a

60See http://www.education.gouv.fr/cid92275/education-prioritaire-un-nouveau-regime-indemnitaire-en-faveur-des-
personnels.html

61See https://en-marche.fr/emmanuel-macron/le-programme/education
62See http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=87302

345

http://www.education.gouv.fr/cid92275/education-prioritaire-un-nouveau-regime-indemnitaire-en-faveur-des-personnels.html
http://www.education.gouv.fr/cid92275/education-prioritaire-un-nouveau-regime-indemnitaire-en-faveur-des-personnels.html
https://en-marche.fr/emmanuel-macron/le-programme/education
http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=87302


Conclusion

disadvantaged school required to get a bonus of points in their priority score was extended from 3 to

5 years. Their first results seem to show that it had a positive effect on the number of years teachers

stayed in a disadvantaged school but a negative effect on the quality of the teachers entering these

schools. All these results only used the movement data and not the reported preferences of the

teachers during the assignment procedure. Recent preference estimation techniques in matching63

offer promising tools to estimate the impacts of the above policies on the teachers’ preferences. As

mentioned in the previous section of this conclusion, the assignment market for teachers is dynamic

and so can require additional techniques than the actual ones to precisely identify the preferences

of the teachers. It is a technically challenging question and a necessary tool to develop for policy

making.

One possible explanation discussed with Terra Nova about why tenured teachers are not willing

to move to Amiens, Créteil or Versailles can be that their assignment there would be definitive. To

exit these regions, they would have to ask for a new assignment that they would not be sure to

obtain. One possibility that Terra Nova proposed is to allow a temporary exchange of positions

between a newly tenured teacher assigned to one of these regions and a tenured teacher who would

be ready to temporarily teach in these regions. The period of the exchange can be determined in

advance, say 3 years. The advantage is that, after these 3 years, the tenured teacher is entitled to

automatically come back to his position before the exchange. The newly tenured teacher would

also have to come back to teach in the disadvantaged region. The other positive aspect would

be that this newly tenured teacher would have acquired experience and would be better prepared

to teach. As for the tenured teacher willing to do the exchange, it ensures him not to loose his

previous position. As mentioned before, it is not clear what would be the number of tenured teachers

willing to do such exchange and a precise estimation would be necessary. Practically speaking, the

implementation would be standard: one can think about an additional exchange procedure, after

the main assignment is determined, that asks tenured teachers and newly tenured ones willing to

exchange to report a list of desired regions. Using a standard exchange graph, one can find cycles of

exchanges between teachers to determine the exchanges to implement. The only difference would be

that, after a fixed period of time, all the teachers who exchanged would have to come back to their

assignment before the exchange.

63For instance, Fack, Grenet and He (2015), Abdulkadiroglu, Agarwal and Pathak (2015) or Calsamiglia, Fu and
Guell (2016).
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