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RÉSUMÉ

Cette thèse est constituée de trois essais indépendants, chacun traitant d’un problème

théorique particulier relatif aux questions d’asymétrie d’information ou de régulation.

Le premier chapitre s’intéresse à l’analyse des mécanismes efficaces de dissolution

de partenariats en présence de contraintes financières. Ces mécanismes sont suscepti-

bles de s’appliquer à de nombreuses situations telles que, par exemple, la dissolution

des joint ventures, les procédures de faillite, les divorces ou encore la redistribution des

terres agricoles. Ce travail propose une condition nécessaire et suffisante d’existence des

mécanismes dits de «premier rang» lorsque les partenaires sont initialement contraints

financièrement. Il est également montré comment mettre en œuvre ces mécanismes par

le biais d’une enchère. L’existence de ces mécanismes de premier rang est étroitement

liée à la répartition initiale des droits de propriétés ainsi qu’à celle des ressources finan-

cières entre les partenaires. Les répartitions homogènes des droits de propriétés initiaux

et des ressources financières sont en général préférables. Lorsque les mécanismes de

premier rang ne sont pas réalisables, ce travail propose également une caractérisation des

mécanismes de second rang.

Le second chapitre étudie la régulation optimale d’entreprises dont l’activité peut

provoquer des dommages à des tiers. Le cœur de l’analyse consiste à déterminer s’il est

plus efficace d’attribuer les pénalités financières, en cas d’accident avéré, au propriétaire de

l’entreprise ou bien à son employé en charge de veiller à la sûreté de l’activité. Dès lors que

l’employé est sujet à des contraintes financières, il est montré que la régulation optimale

consiste à attribuer la totalité des pénalités financières au propriétaire de l’entreprise, sans

quoi, le niveau des mesures de précaution est sous-optimal. Si, au contraire, le niveau des

mesures de précaution dépend des actions jointes de deux agents plutôt que d’un seul,

tous deux contraints financièrement, alors la régulation optimale consiste à attribuer les
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pénalités de manière égale aux deux agents.

Le troisième chapitre traite de la régulation optimale des aéroports. Il met en lumière

l’importance de réguler de façon jointe les prix des services aéronautiques, ceux des

services commerciaux ainsi que le niveau des investissements dans l’infrastructure aéro-

portuaire. Les régulations traditionnellement utilisées y sont analysées et il est montré

que celles-ci ne sont généralement pas optimales. En particulier, elles ne semblent pas

permettre de fournir des incitations à investir suffisantes aux aéroports. Une méthode

est proposée pour corriger ces régulations. Les conséquences de la séparation verti-

cale entre un aéroport et les compagnies aériennes ainsi que l’observabilité des niveaux

d’investissement sur la régulation optimale sont également analysées.

Mot-clés : Asymétrie d’information, Régulation, Mécanismes incitatifs, Sélection Adverse, Aléa

Moral, Partenariat, Contraintes Financières, Aéroports.



SUMMARY

This thesis consists of three self-contained essays, each dealing with a particular theoretical

issue in asymmetric information problems and regulation.

The first chapter is devoted to the analysis of partnership dissolution mechanisms

when partners face limited financial resources. Those mechanisms cover a large range

of applications such as termination of joint ventures, bankruptcy procedures, divorce

or, land reallocation. The work presents an existence condition of first-best dissolution

mechanisms with financially-constrained partners as well as a methodology to implement

those mechanisms in practice. It is shown that a well-balanced distribution of initial

ownership rights and financial resources among partners is crucial for the existence

of the first-best solution - more extreme distributions generally lead to a failure of

negotiations on efficient dissolution. Second-best mechanisms are also investigated as

well as generalizations to richer settings.

The second chapter considers the optimal regulation of firms whose activity may be

harmful to society. The analysis focuses on determining whether monetary punishments

should target more the owner of the firm or the employee in charge of taking precautionary

measures. When the employee has limited financial resources, the analysis shows that

monetary punishments should be imposed solely on the owner of the firm if the regulator

wants the firm to take appropriate precautionary measures. An extension to the case of

two financially-constrained individuals jointly in charge of safety shows that monetary

punishments should be evenly distributed among the two injurers.

The third chapter addresses the issue of regulating airports. It sheds light on the

importance of jointly regulating the price of aeronautical services, the one for commercial

services offered at the airport as well as the level of investment chosen by the airport.

An investigation of traditional regulations shows that they generally fail to implement
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the optimal regulation as they do not provide sufficient incentives to invest. A corrective

regulation is proposed to tackle this issue. The consequences of the nature of the airport-

airline relationship and the observability of investment on the optimal regulation are also

investigated.

Keywords: Asymmetric Information, Regulation, Mechanism Design, Adverse Selection, Moral

Hazard, Partnership, Financial Constraints, Airport regulation.
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GENERAL INTRODUCTION

Organizations and firms are complex entities in which several individuals have their

own characteristics, knowledge, and goals. Formal or informal contracts among their

members govern the nature of their relationship, assign responsibilities, and provide

incentives to fulfill the purpose of the organization. A fundamental question is whether

those organizations are adequately designed to achieve efficiency and, if not, how can

they be improved? For economists, the problem is twofold. On the one hand, a wide

range of inefficiencies arise internally within the firm due to asymmetric information,

allocation of ownership, bargaining power and authority, financial constraints and capital

structure, performance measurement, diverging priorities and goals to mention just a few.

On the other hand, it is most often the case that organizations or their members pursue

goals that differ from those promoted by economists. Generally, economists tend to focus

on what is best for society and not necessarily for the interest of organizations themselves.

For instance, a pharmaceutical firm might want to withhold a drug patent as long as

possible to enjoy a monopoly position while it would be socially desirable – from the

point of view of the economist – to authorize other producers to distribute a generic drug.

Environmental protection is another important concern for society that firms, absent any

regulation, are likely to disregard. Hence, as economists, we have not only to understand

how organizations work and what are their sources of inefficiencies but we also have to

determine what goals should be promoted and how to make organizations comply with

them.

Far from the neoclassical theory that viewed firms solely as a production function

combining inputs such as capital and labor to produce output, recent theories consider

organizations and firms as a collection of individuals with dispersed information, often

conflicting interests and generally some degree of complementarity. One of the most

important breakthroughs in the understanding of organizations is undoubtedly the

1



General Introduction 2

paradigm of asymmetric information and conflicting interests which led to what has been

coined “The Theory of Incentives”. Even in an organization with a well-defined hierarchy

of authority such as a principal-agent relationship, it is impossible to perfectly control and

monitor the agent as long as they detain private information relevant to the organization.

Think of how difficult it might be for a landlord to assess the effort of an agent in charge of

the management of their property or for the State to evaluate the amount of subsidy that

should receive an airport without being able to truly learn its cost structure. Those two

examples correspond to the two types of private information considered by The Theory of

Incentives: moral hazard (or hidden action) and adverse selection (or hidden knowledge).

The private information forces the principal to design incentive schemes so as to elicit the

agent’s information which requires to concede information rent to the agent. The problem

with those frictions is not only that the agent enjoys larger payoffs at the expense of

the principal, but mainly that it introduces distortions in decisions, output or actions

of the organization. Other elements such as limited liability, risk aversion, performance

measurement issues add up to this information problem and create further distortions.

More complex environments in which several individuals have private information and

must take a collective decision are often even more challenging. Hopefully, a wide range

of theoretical models and empirical findings have allowed a better understanding of

organizational design in the last forty years.

As mentioned earlier, economists not only endeavor to understand how organizations

work but they also try to design solutions to make them function more effectively or more

in accordance with society’s preferences. The difficulty of such a task is that a designer

also faces informational constraints – sometimes even more severe than those faced

by members of the organization – alongside administrative and legal constraints. The

intervention of a designer cannot simply rule out the very existence of private information

within organizations nor can it force its revelation. The designer must then resort to

methods similar to those used within organizations. Administrative and legal constraints

may further limit the scope of intervention through codes of regulation and tort or civil

law.

The work presented in this thesis is to be viewed in this context. It is constituted

by three independent papers, yet each deals with problems related to the economics of
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organizations and investigates how they can be improved. The first chapter investigates the

design of efficient dissolution mechanisms in partnerships with various initial ownership

structures and limited financial resources. The second chapter is concerned with the

optimal distribution of fines within a firm whose activity may cause an accident while

some of its members may have insufficient financial resources to pay their share of fines.

The third chapter studies the optimal design of airport regulation and its implementation.

I briefly introduce each of these chapters below to provide the reader with an overview of

the topics studied as well as their main results.

In the first chapter, entitled “Partnership Dissolution with Cash-Constrained Agents”,

I investigate the design of trading mechanisms to efficiently reallocate an asset within

a group of agents – a partnership – when they face limited financial resources. The

study of efficient of trading mechanisms goes back to the seminal work of Myerson and

Satterthwaite (1983) who consider bilateral trade between a buyer and a seller who have

both private information. Their setting is very general and encompasses many important

problems, yet they show that ex post efficient trade is impossible. It is worth noticing that,

contrary to the standard principal-agent problem in which the contracting frictions comes

from the separation of who has the bargaining power (the principal) and who has the

information (the agent), neither the buyer nor the seller has bargaining power in a formal

way as trade is organized by a benevolent designer. Their impossibility result, therefore,

seems that it is only due to the presence of two-sided asymmetric information. Cramton,

Gibbons, and Klemperer (1987) generalize this trading problem to any number of agents –

that they call partners – and assume that those agents could have initial ownership rights

in the asset to be traded. The interpretation of their trading mechanism goes beyond the

simple buyer-seller story and encompasses many more applications such as termination of

joint ventures, divorces, bankruptcy procedures, or land reallocation among farmers. More

importantly, they show that ex post efficient trade is, in fact, possible if initial ownership

rights are evenly distributed among traders. Their result therefore reveals that the problem

lies in the combination between multi-sided asymmetric information and initial allocation

of property rights – the Myerson and Satterthwaite’s trading problem simply being an

extreme case in which the seller has full initial ownership. Those findings clearly establish

that the famous Coase Theorem (Coase, 1960), which stipulates that decentralized trade is

efficient regardless of the initial allocation of property rights, is invalidated in the presence
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of asymmetric information. The main lesson of Cramton, Gibbons, and Klemperer (1987)

is therefore that successful negotiations to reallocate the asset among partners rely on

the fact that no party is initially given excessive bargaining power through ownership

rights. In my work, however, I argue that those equal-share ownership structures might

not be desirable in the presence of cash-constrained agents. Instead, heavily financially

constrained partners should be initially given larger ownership shares. Allocating initial

ownership not only allocates bargaining power but it also affects the future volumes

of trade. It is therefore better to reduce as much as possible the volume of trade for

partners with low financial resources so as to minimize the share they might have to

buy out to the others. The main economic insight is that achieving efficient reallocation

of resources requires that liquid and illiquid assets are appropriately balanced among

traders. I derive a necessary and sufficient condition for the feasibility of ex post efficient,

interim incentive compatible, interim individually rational, ex post budget balance and

ex post cash-constrained mechanisms. I propose a construction of those mechanisms as

well as a way to implement it through a simple auction. I show that cash-constrained

mechanisms are able to dissolve some partnerships that Cramton, Gibbons, and Klemperer

(1987)’s mechanism fails to dissolve in the presence of limited cash resources. When

the initial distribution of ownership and financial resources is such that efficient trading

mechanisms do not exist, I investigate second-best mechanisms. I show that the final

allocation of ownership should be distorted in favor of wealthy partners to overcome the

problem of limited financial resources. Finally, my work extends to more general settings

than partnership dissolution problems: It solves the general mechanism design problem

of allocating private resources to cash-constrained agents with type-dependent utility

outside options. For instance, the framework applies to privatization problems in which

the state wants to allocate an initially publicly-owned asset (road, railway, real estate)

to a private firm among a pool of candidates. The allocation mechanism that I propose

takes into account the fact that each candidate has outside opportunities and limited cash

resources.

In the second chapter, entitled “Optimal Structure of Penalties with Judgment-Proof

Injurers”, I study the problem of regulating a firm that may cause an accident as a result

of its activity. It is common that production may result in causing damage such as an

accidental spill of toxic waste, harmful air pollution or causes illness to consumers. For
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instance, construction workers could be exposed to harmful substances such as asbestos

during the course of their normal duties or untreated spills that could leak and result in

soil contamination. This does not mean that those activities should be forbidden per se but

that their inherent risk should be taken into account seriously. To this end, it is generally

the case that there exists a set of precautionary measures, controls or technologies to avoid

or at least reduce the likelihood that harmful events occur. The main problem, however,

is that those who have the ability to take precautionary measures are often not directly

–or only partially– concerned by the damage their activity may cause. In a perfect world

with well-defined property rights, the Coase theorem would apply so that decentralized

bargaining between potential injurers and potential victims would lead to an efficient

provision of precautionary measures by the former. In practice, unfortunately, it is more

often the case that such decentralized markets do not exist, either because potential

victims are not even aware of the risk or lack the ability to take action against potential

injurers. Following the seminal work of Becker (1968), economists have developed a wide

range of measures to regulate those situations. One of them is ex post regulation and

consists of imposing monetary penalties (or fines) on injurers whenever a harmful event

is detected. This should, in principle, provide potential injurers with incentives to take

appropriate precautionary measures. One of the central questions is how to efficiently

design those penalties, namely, how large should be the monetary sanctions and how

they should be allocated if there is more than one injurer. This question is even more

important when injurers are part of a firm in which the internal organization suffers from

asymmetric information problems. The seminal works of Newman and Wright (1990)

and Segerson and Tietenberg (1992) have shown that in principal-agent firms with moral

hazard only the total amount of penalties imposed on the firm matters. In other words,

the allocation of legal responsibilities within the firm is irrelevant as the private contract

between the principal and their agent can undo any distribution of penalties. In this

chapter, I challenge the view that the allocation of penalties within the firm is neutral. For

that matter, I rely on the assumption that some injurers may be judgment proof, that is,

they may have insufficient assets to pay for the fines imposed on them. I examine two

interesting cases: (i) A simple moral hazard problem in which only one worker (agent)

is in charge of preventing the damage on behalf of an employer (principal) and, (ii) a

double-sided moral hazard problem in which the joint actions of two firms determine
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safety measures. In the first scenario, if the worker may be judgment proof, I show that

the optimal regulation requires to fully target the employer. In the second scenario, if both

firms can be judgment proof, the optimal regulation must target each firm equally. Those

findings contrast with the result of the regulation literature, the so-called “Equivalence

Principle” (see Segerson and Tietenberg (1992)), that states that only the total amount of

fines matters whereas their distribution among tortfeasors is inconsequential. My result

stems from the way I model the presence of limited financial resources. Unlike previous

works, I do not assume that the contract between potential injurers must include ex post

limited liability constraints. Instead, I assume that at the contracting stage, the players’

wealth is unknown and ex post transfers potentially unbounded. When uncertainty is

resolved, players only pay what they can afford. I show that players therefore become

strategic in concealing profits from the regulation. In the two-firm case, for instance, firms

optimally choose to transfer profits to the less targeted entity in case of accident. Equal

distribution of fines minimizes firms’ ability to conceal profits and therefore maximizes

their incentives to exert safety care.

The third chapter, co-authored with David Martimort and Jérôme Pouyet, is entitled

“How to Regulate Modern Airports?”. Modern airports have become complex structures

carrying out many activities in the same place. In addition to their traditional core

business – aeronautical services to passengers – it is by now well-established that non-

aeronautical services, hereinafter referred to as “commercial activities”, account for a

significant share of the airports’ total revenues. Those commercial activities are, for

instance, retailing services in the airport, car parking or office rental to mention just a

few. Moreover, airports are also responsible for investing in their infrastructure in order

to enhance the overall quality for passengers and to relieve congestion in the facilities.

Finally, airports do not directly supply aeronautical services to passengers but they

supply access to their facilities to airlines which, in turn, supply aeronautical services to

passengers. We can therefore consider that the relationship between airports and airline is

non vertically integrated. In this work, we investigate the design of the optimal regulation

policy and its implementation in this context. To this end, we consider that prices of

both aeronautical services and commercial activities as well as investment decisions must

be jointly regulated. The specificity of our analysis also lies in the following important

features that characterize modern airports. First, we consider that an airport and an airline



7 General Introduction

are not vertically integrated. The airport can charge a price to provide an airline with

an “essential facility” (runway, terminal buildings, navigational services) but the price of

aeronautical services is set by the airline. Second, we take into consideration the fact that

aeronautical services and commercial activities carried out at the airport exhibit a specific

kind of complementarity: Demand for commercial activities is conditional upon the fact

that a consumer is in the airport, that is, the fact that a consumer has a positive demand

for aeronautical services but not the reverse. Third, we assume that the airport has to

exert some (observable or not observable) investment decision in infrastructure in order

to increase the value for aeronautical services to consumers. Our results are as follows.

First, we characterize the first-best solution for the regulator when she can freely choose

prices of aeronautical and commercial services as well as the level of investment made

by the airport. We show that the first-best prices relies on a Ramsey-Boiteux pricing rule

and are both above their associated social marginal cost. We point out that some of the

traditional regulations implemented are likely to fail in the context of modern airports.

For instance, we show that the use of a price-cap regulation for both aeronautical and

commercial services successfully implements the optimal regulation for these prices but

fails to provide enough investment incentives to the airport. We propose subsidy-penalty

policy on investment decision to supplement the price-cap regulation and fully implement

the first-best regulation. Our analysis also contributes to the debate of whether revenues

generated from commercial activities should be included in the price-cap formula (single-

till v.s. dual till): We show that this choice is irrelevant and has no impact on the optimal

regulation. We then investigate how the nature of the relationship between the airport

and an airline affects the optimal regulation. Our results point out that when the airport

can offer a contract with both a fixed access charge and a unit price for providing one unit

of aeronautical services to the airline, the regulator can implement the optimal regulation

as if the airport and the airline were a vertically integrated structure. However, when

the airport can only offer a unit price for aeronautical services, the optimal regulation is

modified leading to an increase in the price of aeronautical services to passengers. This

change stems from the double marginalization problem that occurs along the supply

chain. Finally, we look at the case of unobservable investment decision. In that case, we

solve the moral hazard problem between the regulator and the airport. Compared to case

where investment decisions are observable, we show that the regulator must set higher
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prices for both aeronautical and commercial activities to give the airport proper incentives

to invest in the infrastructure. The optimal level of investment is, however, lower than in

the observable case.
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low (resp. large) cash resources own more (resp. less) initial ownership rights. Fur-
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1.1. INTRODUCTION

The Coase theorem stipulates that when transaction costs are sufficiently low, negotiations

will always lead to an efficient outcome regardless of the initial allocation of ownership

rights. Unfortunately, however, assuming something as simple as asymmetric information

means that those transaction costs are no longer negligible. This is illustrated by the major

contribution of Myerson and Satterthwaite (1983) who consider trade between a seller (the

owner) and a buyer with bilateral asymmetric information. Their striking result is that no

mechanism can achieve ex post efficient trade. Cramton, Gibbons, and Klemperer (1987) –

henceforth CGK – show that the Myerson and Satterthwaite (1983) impossibility result

becomes a possibility result if agents initially own equal (or close to equal) shares. The

economic insight is that ownership rights give agents bargaining power in negotiations.

When this bargaining power is excessive - the seller has “monopoly” power over the good

in Myerson and Satterthwaite (1983) – negotiations fail. Equal-share ownership, on the

contrary, is enough to curb the bargaining power of each agent and restore trade efficiency.

However, allocating ownership rights not only allocates bargaining power but it also

determines the volume of trade. If efficiency requires one agent to buyout the shares of

(n− 1) other agents, equal-share ownership will require the transfer of a fraction (n− 1)/n

of all shares. It therefore means that the buyer will have to assume large cash payments to

compensate the sellers. If some agents are financially constrained, such payments may be

unfeasible when traded volumes are excessive and equal-share ownership might not be

desirable anymore.

In this paper, I consider limited cash resources as another source of inefficiency in

those trading problems. I investigate how trading mechanisms should be constructed and

which ownership structures allow for efficient trade when agents are cash constrained.

Formally, I build on the partnership dissolution model, first initiated by CGK, in which

I consider agents with (possibly asymmetric) cash resources. In this framework, each

partner initially owns shares of common assets. Dissolution simply means that following

some event (disagreement, natural termination, bankruptcy), the commonly owned assets

must be reallocated, that is, each partner will buy or sell their share to others. The

framework therefore applies to various economic problems such as divorce, inheritance,
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termination of joint-ventures, privatizations. Examples of applications are covered in

more detail below.

Although the presence of cash – or budget – constraints seems to be a reasonable

claim, little is still known about the design of trading mechanisms with cash-constrained

agents. In auction design, earlier contributions of Laffont and Robert (1996), Che and Gale

(1998, 2006) and Maskin (2000) have investigated cash constraints in standard auction

settings. More recently, several authors have recognized limited cash resources as one of

the gaps that limits the implementation of theory into practice.1 In partnership problems,

limited cash resources are directly linked to the initial distribution of ownership. Buying

out a partner with large initial entitlements requires the ability to raise enough money

to compensate them. In privatization of public-private partnerships or in spectrum

allocations, cash constraints matter as the value of traded assets is often worth millions.2

In divorce, inheritance or joint-venture problems, it is likely that agents have limited access

to credit markets. Cash resources also create some kind of bargaining power: Partners

with large cash resources could take advantage of very cash-constrained partners.

Applications. I now present some applications that can be addressed within the partner-

ship dissolution framework.

(i) Divorce, inheritance: Marriage or civil union represent, among other aspects, the joint

ownership of some assets and the pursuance of a common goal. If dissolution occurs,

i.e. divorce, the partners ought to agree on the reallocation of the family home, cars, and

other possessions. Limited financial resources, especially compared to the market value

of the family home, may complicate the process of finding an agreement on who should

be the final owner. Alternatively, the assets to be traded may have more sentimental value

than market value (e.g. the inherited childhood home) so that it may be difficult to use

it as a collateral to borrow from a bank. Along the same lines, heirs of the deceased’s

property (real estate, business, debts) may want to reallocate the inheritance differently to

what they had initially been entitled by the testament.

1See, among others, Dobzinski, Lavi, and Nisan (2012), Bichler and Goeree (2017), Carbajal and Mu’alem
(2018) and Baisa (2018). Two other important recent contributions to auction design with cash constraints
are Pai and Vohra (2014) and Boulatov and Severinov (2019).

2Cramton (1995) argues that cash constraints have played a major role in the Nationwide Narrowband
PCS Auction in 1994. Some bidders had likely dropped out from the auction because of limited resources
although they had large valuations for the good.
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(ii) Joint ventures: Business associates, joint ventures or venture capital firms are often

governed by partnership law. For instance, in biotechnology and high-technology sectors,

it is common that strong-potential young firms with low financial resources decide to

rely on alliances with larger firms to compensate for the lack of complementary assets

and liquidity (Aghion and Tirole, 1994, Lerner and Merges, 1998, Aghion, Bolton, and

Tirole, 2004). Interestingly, Aghion, Bolton, and Tirole (2004) point out that not only can

dissolution be triggered by dispute or unsuccessful results but it may also be due to the

very nature of this form of partnership. Indeed, Aghion, Bolton, and Tirole (2004) report

that those partnerships are generally temporary by nature and the young firms eventually

seek other sources of funding requiring an exit from the partnership. As recognized

by both Aghion and Tirole (1994) and Lerner and Merges (1998), the presence of cash

constraints for the young firm generates inefficiencies in investment decisions as well as

in allocation of ownership.

(iii) Bankruptcy procedures: Wolfstetter (2002) mentions that some bankruptcy procedures

can be seen as a partnership dissolution problem. One example of a bankruptcy procedure,

a cash auction, is given by Aghion, Hart, and Moore (1994): All remaining assets of the

bankrupt firm are simply sold in an auction to the highest bidder. Some bidders may be

former owners (with positive ownership rights in the firm) and other may be outsiders

(with null ownership rights). Aghion, Hart, and Moore (1994) believe that a cash auction

would be the “ideal bankruptcy procedure” (p. 855) in the absence of the difficulty to

raise enough cash to buy the firm at its true value. They argue that cash constraints will

likely result in a lack of competition in the auction and the firm would then be sold at a

low price. This stresses the importance of designing mechanisms that directly take cash

constraints into consideration.

(iv) Land reallocation: Land reallocation problems may also be challenged by the partnership

framework. Che and Cho (2011) report the inefficiencies of the initial land allocation in

the Oklahoma Land Rush in the late 19th century. Therefore, reallocation of those lands

required to take into consideration the initial ownership structure induced by the first

allocation. More recently, Loertscher and Wasser (2019) mention that land reallocation

will be a major challenge in China. Starting in 1978, several reforms occurred in China to

give household land use rights to farmers and then secure household land transfer rights



13
CHAPTER 1. PARTNERSHIP DISSOLUTION WITH

CASH-CONSTRAINED AGENTS

(2002, 2007, 2008) while the land is still collectively owned by villages.3 Participation by

farmers in reallocating their land must then be voluntary and compensated by monetary

transfers. The State Council of China believes that agricultural modernization in China

will occur through the reallocation of the use of land from traditional farmers to a new

generation of farmers (professional farmers or dragonhead enterprises; see Zhang (2018)).

Traditional farmlands are considered too small and inefficient and reallocating them to

larger and more skilled producers would help the modernization of agriculture in China.

Contribution. The main feature of a partnership model is that participation constraints

in the dissolution mechanism depend on the initial allocation of ownership rights among

partners. Partners with relatively more initial shares have a higher claim and their par-

ticipation in the mechanism is harder to ensure, making the initial ownership structure

a determinant condition for optimal dissolution. In their seminal paper, CGK answer

this problem by designing ex post efficient, Bayesian incentive compatible, interim indi-

vidually rational and ex post budget balanced mechanisms. Their main finding consists

in characterizing the initial allocations of property rights among partners that allow for

ex post efficient dissolution. They show that equal-share partnerships can always be ex

post efficiently dissolved whereas partnerships with excessive concentration of ownership

are less likely to be dissolved efficiently. In particular, in a two-agent partnership with

extreme ownership – one agent owns the whole asset –, their model collapses to the one

of Myerson and Satterthwaite (1983) which proves the impossibility of ex post efficient

dissolution in extreme ownership partnerships.

One of the main simplifying assumptions in CGK, however, is that all partners are

always endowed with enough money so that they are able to pay for the monetary

transfers proposed by the dissolution mechanism. While this assumption may seem

innocuous in many contexts, I argue that it is not the case in the partnership dissolution

problem. First, one of the purposes of a partnership generally consists in sharing the

burden of acquiring costly assets such as firm premises, industrial equipment, computer

hardware and software for businesses, or real estate, cars and household appliances for

a couple. In some business partnerships, one agent provides the physical capital while

the other one provides the human capital.4 It is also possible that dissolution occurs
3See Ma, Wesseler, Heerink, Qu, et al. (2013) for a detailed chronology of land reforms in China.
4For instance, Landeo and Spier (2014) cite the Haley v. Talcott case. In, 2001, the two of them started a
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precisely when partners face financial difficulties. That is, some partnerships may be,

by essence, constituted by cash-constrained agents.5 Second, from both the theoretical

and practical point of view, introducing cash constraints in the partnership dissolution

model of CGK requires nontrivial changes in the design of monetary transfers. For

instance, ex post monetary transfers in cash-constrained mechanisms must be bounded

and must also satisfy the exact same conditions as in CGK at the interim level; namely

incentive compatibility and individual rationality. Constructing those transfers therefore

requires to find ex post transfers with a lower range but with the exact same marginals

when projected at the interim level. In CGK, and in many other works on partnership

dissolution, the absence of cash constraints is implicitly used and greatly simplifies the

construction of dissolution mechanisms but they may also induce unreasonably high

transfers for some states of the world.

In this paper, I first investigate the possibility of ex post efficient partnership dissolution

when partners are ex post cash constrained, that is, when they have an upper bound on

the payments they can make to other partners to buy out their shares. I derive necessary

and sufficient conditions for ex post efficient partnership dissolution with Bayesian (resp.

dominant strategy) incentive compatible, interim individually rational, ex post (resp. ex

ante) budget balanced and ex post cash-constrained mechanisms. While the necessary

and sufficient conditions for ex post efficient dissolution end up being quite a natural

generalization of the results of CGK, the construction of the mechanism transfer function

requires some extra work. I fully characterize these conditions and I show that the equal-

share partnership is no longer the initial ownership structure that ensures feasibility of ex

post efficient dissolution. Instead, partners who are initially relatively more (resp. less)

cash-constrained than others must receive relatively more (resp. less) initial ownership

rights. Intuitively, the more cash-constrained a partner is, the higher the utility they

would receive in the mechanism (as they cannot be asked to pay much but they could

still receive the asset) relatively to less cash-constrained partners. Thus, a very cash-

constrained partner with few initial ownership rights will always be willing to participate

(low maximal monetary transfers and low utility if they refuse the mechanism). It follows

restaurant in Delaware, Talcott provided the capital while Haley was supposed to manage the restaurant
without salary for the first year.

5Some companies are specialized in providing short-term financial resources to partners facing a
dissolution, see the Shotgun fund, for instance.
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that giving more initial ownership rights to these cash-constrained partners does not

change their participation decision but it implies that other less cash-constrained partners

receive less initial ownership rights, which reduces their claim. This result sheds light on

a new link between liquid and illiquid assets in partnership regardless of prior investment

decisions. It is worth noting that the asymmetry in cash constraints among partners drives

the result that optimal initial ownership rights must also be asymmetric. If partners all

have the same exact cash resources, the equal-share partnership is still optimal as in CGK.

Focusing on equal-share and equal-cash-resources partnerships, I characterize the

minimal amount of cash each partner must hold so that ex post efficient dissolution is

achievable. Interestingly, the minimal amount of cash resources each partner must possess

is increasing in the number of partners and converges to the maximal possible value

of the asset when the number of partners becomes large. For instance, if a four-agent

partnership with equal-share owns an asset worth 1 million and valuations are uniformly

distributed on the unit interval, each agent must possess 0.8 million for ex post efficient

dissolution to be possible. This result stresses the importance of taking cash constraints

into account as they appear to be quite restrictive.

Interestingly, the standard equivalence theorem between Bayesian and dominant

strategy implementation is robust to the addition of cash constraints. That is, any ex

post efficient, interim individually rational and ex post cash-constrained mechanism can

be implemented in dominant strategies with ex ante budget balance or with bayesian

incentive compatibility with ex post budget balance. Moreover, transfers in both cases can

be interim equivalent for all agents, that is, one can ensure the same interim utilities for

all agents.6 It also appears that there is an equivalence between ex post cash constraints

and interim cash constraints. More precisely, I show that relaxing cash constraints from

the ex post level to the interim level does not weaken the conditions for ex post efficient

dissolution.

As the general mechanism design formulation is often difficult to apply, I propose

a simple bidding game that implements the ex post efficient dissolution mechanisms.

6This equivalence has first been studied by Mookherjee and Reichelstein (1992) and Makowski and
Mezzetti (1994) for the same classes of mechanisms but without cash constraints. Kosmopoulou (1999)
proves the equivalence when replacing interim individual rationality constraints by ex post ones.
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In this bidding game, partners receive/pay an upfront transfer and then simply submit

bids in an all-pay auction. It is constructed such that the bidding strategy of a partner is

increasing in their valuation so that the highest bidder (the winner) is also the partner

with the highest valuation. The upfront payment ensures interim individual rationality,

budget balance and cash constraints. This bidding game can replace the one proposed

by CGK, which fails to satisfy cash constraints when some or all partners have low cash

resources.

Finally, I investigate second-best mechanisms to characterize the optimal allocation

of final ownership rights when cash constraints are such that the first-best allocation is

not attainable. First, I characterize all incentive compatible, interim individually rational

and cash-constrained mechanisms for any possible allocation rule. Second, building on

Lu and Robert (2001), Loertscher and Wasser (2019) and Boulatov and Severinov (2019), I

show that solving the problem of maximizing a weighted sum of ex ante gains from trade

and the revenue collected on agents requires allocating the asset to the agent(s) with the

highest ironed virtual valuation. As in Lu and Robert (2001), Loertscher and Wasser (2019)

, the solution of maximizing ex ante gains from trade subject to incentive compatibility,

interim individually rationality, cash constraints and budget balance is simply a particular

solution to the previous problem for a specific weight.

Literature Review. Several contributions related to cash constraints can be found in

the auction literature. Laffont and Robert (1996) characterize optimal auctions under

independent valuations and symmetric cash-constrained agents. Maskin (2000) also ex-

amines constrained efficiency in auctions with symmetrical cash constraints. Malakhov

and Vohra (2008) restrict the analysis to two-agent problems but assume only one agent

is cash-constrained. More recently, Boulatov and Severinov (2019) propose a complete

characterization of optimal auctions with asymmetrically cash-constrained bidders. How-

ever, adding cash constraints in a partnership problem is different than in the auction

settings, namely, the budget balance requirement in partnership problems ties all partners

monetary transfers together which makes the construction of those monetary transfers a

challenge in itself.

Another strand of the literature considers agents whose valuations and cash resources

are private information. Che and Gale (1998, 2006) compare the performances of standard
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auctions in that case. Che and Gale (2000) study the optimal pricing of a seller facing a

cash-constrained buyer who has private information over their valuation and “budget”.

Pai and Vohra (2014) derive optimal auctions when both valuations and budget are private

information. Assuming that cash resources are private information is an interesting

feature, however, as it creates a multidimensional incentive compatibility problem, I will

consider only commonly known budget in the present paper.

Finally, it is worth noting that ex post cash constraints are quite different from the ex

post individual rationality requirement that has been extensively studied in the literature

with Gresik (1991), Makowski and Mezzetti (1994), Kosmopoulou (1999) and Galavotti,

Muto, and Oyama (2011) among others. The ex post individual rationality constraints,

sometimes called “budget constraints“ or ”ex post regret-free“, require that agents do not

have negative net utility ex post. On the contrary, pure ex post cash constraints ignore

the utility a partner derives from the share of ownership they receive in the dissolution

mechanism. In a mechanism where a good is traded among several agents, the ex post

participation constraints are generally harder to satisfy for the agents who receive nothing

as they do not enjoy utility from consumption. As for the ex post cash constraints, they are

generally harder to satisfy for the agent who receives the highest quantity of the good, as

they must pay higher prices (due the monotonicity of the allocation rule under incentive

compatibility) and that the utility generated from the consumption is ignored. In other

words, ex post cash constraints assume that the ability to pay of an agent in a mechanism

cannot be contingent on what they receive in the mechanism.

Organization of the paper. In Section 1.2, I present the theoretical framework for

studying partnership dissolution mechanisms. Section 1.3 gives necessary and sufficient

conditions to achieve ex post efficiency with cash-constrained agents. Section 1.4 provides

characterization results of these conditions. Section 1.5 proposes a bidding game that

replicates the mechanism through an all-pay auction. Section 1.6 second-best mechanisms.

Finally, Section 1.7 proposes some extensions.
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1.2. THEORETICAL FRAMEWORK

Consider a finite number of risk-neutral agents n > 2 indexed by i ∈ N := {1, . . . ,n}.

Each agent i ∈ N initially owns a share ri ∈ [0, 1] of a perfectly divisible asset, where∑
i∈N ri = 1.7 Each agent i ∈ N has private information over their valuation vi for

the asset. Valuations are independently distributed according to a commonly known

cumulative distribution function F with support V := [v, v] ⊆ R+ and density function

f.8 Further assume that F is absolutely continuous. Let v := (v1, . . . , vn) ∈ Vn and

r := (r1, . . . , rn) ∈ ∆n−1 denote the vectors of valuations and initial shares, respectively.

This defines the standard partnership framework as first studied by CGK.

The additional assumption I require concerns agents’ cash resources. Each agent i ∈ N
is endowed with some amount of cash li ∈ R+. This amount represents the upper bound

on payments that agent i can be requested to make in the mechanism. The source of these

cash constraints is not explicitly modeled here and each li is considered to be exogenously

determined and publicly known at the beginning of the game.9 Let l = (l1, . . . , ln) ∈ Rn
+

denote the vector of agents’ cash resources.

Dissolving the partnership consists in reallocating the commonly owned asset to the

agents who value it the most. As valuations for the asset are private information to

the agents, dissolution requires to make them reveal their valuations. By the Revelation

Principle, the analysis can be restricted to the search of direct revealing mechanisms in

which each agent’s optimal strategy consists in truthfully revealing their valuation. Such

mechanisms will be refer to as dissolution mechanisms.

In a dissolution mechanism, each agent reports their valuation vi and then receives

an allocation of the asset si(v) and a monetary transfer ti(v), both depending on the

vector of all reports v ∈ Vn. Let s(v) := (s1(v), . . . , sn(v)) denote the allocation rule, where

si : V
n → [0, 1] such that

∑
i∈N si(v) = 1 for all v ∈ Vn, and t(v) := (t1(v), . . . , tn(v))

7The requirement that
∑
i∈N ri = 1 is not necessary to derive the condition under which ex post efficient

dissolution is feasible. I chose to impose it to fit the partnership dissolution story of CGK. In Section 1.7, I
provide an extension and examples in which property rights can take many other forms.

8In Section 1.7, I show that the main results can easily be extended to asymmetric distributions of
independent valuations.

9Those limited cash resources can be the result of different financial situations of the agent after
considering their personal wealth, borrowing capacities, debts or limited liability.
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denote the transfer rule where ti : Vn → R. By convention, the couple (s, t) represents a

dissolution mechanism implementing allocation rule s with transfers t.

Illustrating Example. To illustrate the theoretical framework, consider the following

example.10 A pharmaceutical firm, say partner 1, and a R&D firm, say partner 2, decide

to form a partnership to develop a new pharmaceutical drug. Initial ownership, r1 and r2,

represent claims on final output, that is, shares that each firm has the right to retain on

the final value of the partnership. It is common that pharmaceutical firms own shares

of small R&D firms to whom they provide capital and liquidity. Valuations, v1 and v2,

represent perceived potential cash flows from exploiting the drug. Finally, l1 and l2

corresponds to each firm’s financial resources (cash holdings, borrowing capacities). Once

the drug has been developed, the two firms negotiate the rights to exploit it. Either the

pharmaceutical buys out the R&D firm and sell the drug on the market, or the R&D

firm obtains full ownership and try to sell it to another pharmaceutical company. The

dissolution mechanism will (i) make each firm truthfully report their valuation so that

it is possible to allocate the drug to the one with the highest valuation; (ii) determine

associated monetary transfers to compensate the partner who relinquishes their claim on

the product.

Utility. The utility function of agent i is assumed to be linear in ownership shares and

separable in money. Hence, agent i has utility viαi + βi when they own a share of the

asset αi and has an amount of money of βi. Therefore, participation in a dissolution

mechanism (s, t) gives agent i utility (net of initial ownership rights):

ui(v) := vi(si(v) − ri) + ti(v).

By convention, when a function is evaluated at a vector (vi, v−i) it is implicitly assumed

that the argument are still ordered by the agents’ indices, where v−i ∈ Vn−1 is the vector of

all agents’ valuations except the one of agent i. For instance, si(vi, v−i) = si(v1, v2, . . . , vn).

As valuations are private information, each agent considers their interim utility, i.e.

their utility averaging over all other agents’ valuations (given that they all report truthfully).

10The example is inspired by Minehart and Neeman (1999).
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Let Ui(vi) be agent i’s interim utility, that is,

Ui(vi) := vi(Si(vi) − ri) + Ti(vi),

where Si(vi) := E−isi(v), Ti(vi) := E−iti(v) and where E−i is the expectation operator

over all valuations except vi.

Incentive Compatibility. The first property required on a dissolution mechanism is that

it induces information revelation, thereafter called incentive compatibility. Two standard

notions of incentive compatibility will be considered separately: (i) interim incentive

compatibility (IIC), and (ii) ex post incentive compatibility (EPIC). Formally, IIC and EPIC

are defined as follows.

Definition 1 A dissolution mechanism (s, t) is interim incentive compatible (IIC) if for all i ∈ N,

vi ∈ V and ṽi ∈ V ,

Ui(vi) > vi(Si(ṽi) − ri) + Ti(ṽi).

Definition 2 A dissolution mechanism (s, t) is ex post incentive compatible (EPIC) if for all

i ∈ N, vi ∈ V , ṽi ∈ V and v−i ∈ Vn−1,

ui(vi, v−i) > vi(si(ṽi, v−i) − ri) + ti(ṽi, v−i).

Definitions 1 (resp. 2) simply defines dissolution mechanisms (s, t) such that truth-telling

is a Bayesian Nash (resp. dominant strategy) equilibrium. Notice that if a dissolution

mechanism (s, t) is EPIC then it is also IIC, but the reverse is not necessarily true. Both

IIC and EPIC will be investigated in the first-best analysis whereas I will restrict to IIC for

the analysis of second-best mechanisms.

Individual Rationality. The second property of a dissolution mechanism is that

participation is voluntary. Following CGK, I require that dissolution mechanisms are

interim individual rational (IIR). Given that utilities are defined net of the initial ownership

shares, IR is defined as follows.

Definition 3 A dissolution mechanism (s, t) is interim individually rational (IIR) if for all i ∈ N
and vi ∈ V ,

Ui(vi) > 0.
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Notice that IIR depends on ri for each agent i. The higher ri the more difficult it is to

satisfy Ui(vi) = vi(Si(vi) − ri) + Ti(vi) > 0 for a given mechanism (s, t). This is the main

feature of partnership problems: The initial distribution of ownership shares has a direct

impact on the feasibility of dissolution mechanisms through the constraints it imposes on

each agent’s minimal claim.11

Budget Balance. A dissolution mechanism (s, t) is said to be budget balanced when no

subsidy is required to implement the allocation rule s. Two notions of budget balance

are considered: (i) ex post budget balance (EPBB) , and (ii) ex ante budget balance (EABB).

Formally, these two standard notions write:

Definition 4 A dissolution mechanism (s, t) is ex post budget balanced (EPBB) if for all v ∈ VN,

∑
i∈N

ti(v) = 0.

Definition 5 A dissolution mechanism (s, t) is ex ante budget balanced (EABB) if

E

[∑
i∈N

ti(v)

]
= 0.

EPBB implies that for every profile of valuation v ∈ VN, the transfers required to im-

plement the allocation rule s cancel out between agents. EABB, however, only requires

transfers to cancel out on average. Therefore, EPBB is, of course, a stronger requirement

than EABB. As it will be shown below, the only advantage of relaxing budget balance

from the ex post level (EPBB) to the ex ante one (EABB) consists in being able to impose

incentive compatibility at the ex post level (EPIC) rather than at the interim level (IIC).

Cash-Constrained Mechanisms. Finally, I require that dissolution mechanisms satisfy

ex post cash constraints, that is, no agent can be required to pay more than their cash

resources.

11See Section 1.7 for an extension of more general interim individual rationality constraints. I show that
the framework is not limited to partnership dissolution problems and can be easily extended to study the
problem of optimally allocating a good to agents with type-dependent outside options.
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Definition 6 A dissolution mechanism (s, t) is ex post cash-constrained (EPCC) if for all i ∈ N
and v ∈ Vn,

ti(v) > −li.

The cash-constrained requirement is imposed at the ex post level and therefore assumes the

most extreme form of cash constraints. As it will be shown later, ex post cash constraints

are equivalent to interim cash constraints so that relaxing the ex post requirement to the

interim level has no benefit.

1.3. EX POST EFFICIENT DISSOLUTION

I start by investigating ex post efficient dissolution mechanisms or, equivalently, first-best

dissolution mechanisms. I provide necessary and sufficient conditions for the existence of

such mechanisms when agents are cash-constrained. Two types of dissolution mechanisms

are investigated. First, I will consider dissolution mechanisms simultaneously satisfying

IIC, IIR, EPBB and EPCC, thereafter referred to as Bayesian mechanisms. Second, I will

consider dissolution mechanisms simultaneously satisfying EPIC, IIR, EABB and EPCC,

thereafter referred to as dominant strategy mechanisms. These two classes of mechanisms

have been widely studied and one of the most important result in the literature is that

they are equivalent in various environments.12 Not surprisingly, the equivalence between

Bayesian mechanism and dominant strategy mechanisms extends to an environment with

ex post cash constraints.

Ex Post Efficient Allocation Rule. Ex post efficiency requires that the allocation rule

maximizes the gains from trade for every realization of valuations v ∈ Vn. Let s∗ denote

the ex post efficient allocation rule, it must satisfy for all v ∈ Vn

s∗(v) ∈ arg max
s∈∆n−1

∑
i∈N

visi(v).

The solution to this linear problem simply requires to allocate full ownership rights to the

agent with the highest valuation. In case of tie between two or more agents (i.e., they have

the same valuation) assume, without loss of generality, that the agent with the lowest

12The word equivalent is stressed here as this notion has to be carefully defined and may vary across
different equivalence theorems. See Manelli and Vincent (2010) on that matter.
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index is allocated the whole asset.13 Therefore, the ex post efficient allocation rule for

agent i can simply be written as

s∗i (v) =

1 if ρ(v) = i

0 if ρ(v) 6= i,
(1.1)

where ρ(v) := min
{
j ∈ N | j ∈ arg maxi vi

}
, so that ties are always broken in favor of the

agent with the lowest index.

1.3.1. Groves Mechanisms

To derive the main condition for ex post efficient dissolution of partnerships, I rely on the

methodology derived by Makowski and Mezzetti (1994). They show that every mechanism

satisfying both ex post efficiency (EF) and incentive compatibility (either interim or ex

post) must be a Groves mechanism, and can be fully characterized by a specific transfer

function defined up to a constant.

Let g(v) :=
∑
i∈N vis

∗
i (v) denote the maximum gains from trade at v ∈ Vn and let the

transfer function writes

t∗i (v) = g(v) − visi(v) − hi(v), (1.2)

for some function hi : Vn → R and all i ∈ N. The first two terms of this function, namely

g(v) − visi(v), ensure that the mechanism implements the ex post efficient allocation rule

by inducing revelation. The last term, −hi(v), is an arbitrary function whose purpose is to

collect money back from agent without distorting their incentives to reveal information.

The following proposition details the required properties of the function hi.

Proposition 1 (Makowski and Mezzetti (1994)) The dissolution mechanism (s∗, t∗) is

a. EF and IIC if and only if t∗ satisfies (1.2) and E−ihi(vi, v−i) = E−ihi(v
′
i, v−i) = Hi for all

vi, v ′i ∈ V and Hi ∈ R is a constant;

b. EF and EPIC if and only if t∗ satisfies (1.2) and hi(vi, v−i) = hi(v ′i, v−i) for all vi, v ′i ∈ V .
13As F(·) is assumed to be absolutely continuous, ties occur with probability zero and thus can be ignored

in the design of the ex post efficient mechanism. However, this will no longer be the case in the second-best
analysis.
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Proof. See Makowski and Mezzetti (1994). �

I now turn to the existence of ex post efficient Bayesian and dominant strategy dissolu-

tion mechanisms.

1.3.2. The Existence Condition

Proposition 1 ensures that a dissolution mechanism (s∗, t∗) satisfies EF and IIC (resp. EPIC)

if transfers follows (1.2) and the function hi(·) is independent of vi on average over v−i
(resp. independent of vi). Therefore, investigating ex post efficient Bayesian or dominant

strategy mechanisms can be done by directly imposing all other requirements (individual

rationality, budget balance and cash constraints) on t∗. I restrict the presentation of

the argument to ex post efficient Bayesian mechanisms. The case of dominant strategy

mechanisms is almost exactly the same and therefore relegated to Appendix A.

Bayesian Mechanisms. Take a dissolution mechanism (s∗, t∗) satisfying EF and IIC (i.e.

t∗ satisfies Proposition 1.a). Imposing EPBB requires
∑
i∈N t

∗
i (v) = 0 for all v ∈ Vn or,

equivalently,

∑
i∈N

hi(v) = (n− 1)g(v), for all v ∈ Vn. (1.3)

The term (n− 1)g(v) can be interpreted as the ex post deficit generated by an EF-IIC

mechanism. EPBB then implies that the hi(·) functions are designed to absorb this deficit

while satisfying the requirement of Proposition 1.a. At the ex ante stage, EPBB requires

(taking expectations over all v on both sides of equation (1.3))

∑
i∈N

Hi = (n− 1)G, (1.4)

where Hi := Ehi(v) = E−ihi(v) and G := Eg(v).

At the same time, imposing IIR on (s∗, t∗) requires that Ui(vi) = vi(S
∗
i (vi) − ri) +

T∗i (vi) > 0 for all vi ∈ V and i ∈ N. Replacing T∗i (vi) := E−it
∗
i (v) by its expression (given

by taking expectations E−i of equation (1.2)) gives E−ig(v) −Hi − viri > 0. Rearranging,
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IIR requires that

Hi 6 E−ig(v) − viri, for all vi ∈ V , i ∈ N.

Define,

C(ri) := inf
vi

{
E−ig(v) − viri

}
. (1.5)

Then IIR be can rewritten as

Hi 6 C(ri) for all i ∈ N. (1.6)

Equation (1.6) simply defines C(ri) as the maximal amount of money that can be collected

on agent i at the interim stage without violating IIR. Notice that C(ri) is a decreasing

function of ri. This reflects that initial shares provide bargaining power to their owner:

Higher initial shares allows an agent to claim a larger part of the gains from trade.

Finally, imposing EPCC on (s∗, t∗) gives t∗i (v) = g(v) − vis
∗
i (v) − hi(v) > −li for all

v ∈ Vn and i ∈ N. This implies that at the interim stage (taking expectation over all v−i):

Hi 6 E−i

[
g(v) − vis

∗
i (v)

]
+ li, for all vi ∈ V , i ∈ N.

Straightforward computations give that minvi E−i

[
g(v) − vis

∗
i (v)

]
= 0 at vi = v and thus

the above equation simply rewrites:

Hi 6 li, for all vi ∈ V , i ∈ N. (1.7)

Equation (1.7) yields the maximal amount of money that can be collected on agent i at the

interim stage due to the presence of cash constraints.

The Dissolution Condition. It appears that the existence of ex post efficient Bayesian

dissolution mechanisms simply relies on whether it is possible to collect enough money

from agents to cover the ex ante deficit (n− 1)G given the upper bounds C(ri) and li
implied by IIR and EPCC, respectively. I now state the existence condition of ex post

efficient Bayesian dissolution mechanisms.



1.3. EX POST EFFICIENT DISSOLUTION 26

Theorem 1 An EF, IIC, IIR, EPBB and EPCC dissolution mechanism exists if and only if

∑
i∈N

min{C(ri), li} > (n− 1)G. (1.8)

Proof. (Necessity) Equations (1.6) and (1.7) are both necessary conditions for IIR and

EPCC, respectively. Combining the two equations gives Hi 6 min{C(ri), li} for all i ∈ N.

Summing over i ∈ N gives
∑
i∈NHi 6

∑
i∈N min{C(ri), li}. Finally, using equation (1.4)

(implied by EPBB) yields (n− 1)G 6
∑
i∈N min{C(ri), li} which concludes the necessity

part.

(Sufficiency) To prove sufficiency, I explicitly construct a transfer function that satisfies

all requirements when (1.8) holds. Let tCi (v) = g(v) − vis
∗
i (v) − h

C
i (v) where hCi (v) is

defined as follows:

hCi (v) :=
n− 1
n

g(v) + 1
n− 1

∑
j 6=i
s∗j (v)ψ(vj) − s

∗
i (v)ψ(vi)

+φi, (1.9)

where

ψ(vk) :=

∫vk
v F(x)

ndx

F(vk)n
, (1.10)

and φi ∈ R is a constant. I further discuss the choice of the transfer function after the

proof.

EF and IIC. The transfer function tCi (v) writes as equation (1.2). Therefore, if hCi (v) satisfies

Proposition 1.a then the mechanism (s∗, tC) is EF and IIC. Standard computations (see

Appendix A) give

E−ih
C
i (v) =

n− 1
n

G+φi.

Hence, E−ih
C
i (v) does not depend on vi and satisfies Proposition 1.a. Let HCi := E−ih

C
i (v).

The mechanism (s∗, tC) is EF and IIC.

EPBB. The dissolution mechanism (s∗, tC) is EPBB if it satisfies
∑
i∈N t

C
i (v) = 0 for all
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v ∈ VN. Notice that,

∑
i∈N

tCi (v) = (n− 1)g(v) −
n− 1
n

[
ng(v) +

1
n− 1

∑
i∈N

∑
j 6=i
s∗j (vj)ψ(vj) −

∑
i∈N

s∗i (v)ψ(vi)
]
−
∑
i∈N

φi

= −
∑
i∈N

φi.

EPBB is therefore equivalent to
∑
i∈Nφi = 0.

IIR. Recall from equation (1.6) that IIR requires HCi 6 C(ri). Hence, (s∗, tC) satisfies IIR if

HCi =
n− 1
n

G+φi 6 C(ri), for all i ∈ N.

EPCC. Finally, EPCC requires that tCi (v) > −li for all i ∈ N, v ∈ Vn, or, equivalently,

minv∈VN t
C
i (v) > −li for all i ∈ N. Notice that

tCi (v) =

−n−1
n [vi −ψ(vi)] −φi if ρ(v) = i

1
n

[
vj −ψ(vj)

]
−φi if ρ(v) = j 6= i.

The following lemma is useful to determine the minimum of tCi .

Lemma 1 For all k ∈ N, [vk −ψ(vk)] is nonnegative and increasing in vk ∈ V .

Proof. See Appendix A. �

From Lemma 1 it is clear that the minimum of tCi is attained when ρ(v) = i and vi = v.

Therefore,

min
v∈Vn

tCi (v) = −
n− 1
n

[v−ψ(v)] −φi

= −
n− 1
n

G−φi. (1.11)

EPCC is then equivalent to −n−1
n G−φi > −li for all i ∈ N.

Combining IIR and EPCC yields the following condition

φi 6 min{C(ri), li}−
n− 1
n

G.
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Then, for each i ∈ N, let the constant be

φi = min{C(ri), li}−
1
n

∑
j∈N

min{C(rj), lj}.

It is straightforward that
∑
i∈Nφi = 0 so that EPBB holds for tCi . Furthermore, if

condition (1.8) holds, i.e.
∑
j∈N min{C(rj), lj} > (n − 1)G, it is immediate that φi 6

min{C(ri), li}− n−1
n G so that IIR and EPCC also hold for tCi . �

Remark. In the absence of cash constraints, i.e. when the li’s are sufficiently large for each

i ∈ N so that min{C(ri), li} = C(ri) for all i ∈ N and r ∈ ∆n−1, condition (1.8) simply

rewrites

∑
i∈N

C(ri) > (n− 1)G.

It can easily be shown that this condition is simply equation (D) in CGK (Theorem 1, p.

619). Without cash constraints, the feasibility of ex post efficient dissolution mechanisms

relies only upon the sum of maximal collectible charges due to individual rationality

constraints. As shown by CGK, there always exists initial ownership structures such that

ex post efficient dissolution is feasible (and in particular, equal-share partnerships). With

cash constraints, however, ex post efficient dissolution might be impossible regardless of

the distribution of ownership and cash resources. See Section 1.4 for a detailed analysis

on that matter.

On The Transfer Function. The major difficulty in establishing Theorem 1 lies in

the construction of the transfer function tCi to prove the sufficiency of condition (1.8).

Unfortunately, the transfer function proposed by CGK – that I will denote tCGK
i thereafter

– cannot be used to prove the sufficiency part of Theorem 1. Investigating tCGK
i allows for

a better understanding of the construction of cash-constrained mechanisms. Furthermore,

the transfer function tCGK
i is not peculiar to the work of CGK and it is commonly used in
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the mechanism design literature.14 Formally, tCGK
i writes

tCGK
i (v) = ci −

∫vi
v
xdF(x)n−1 +

1
n− 1

∑
j 6=i

∫vj
v
xdF(x)n−1,

where ci ∈ R is a constant and
∑
i∈N ci = 0 (see CGK, p. 628). Imposing EPCC requires

that tCGK
i (v) > −li for all i ∈ N and v ∈ Vn. It is immediate that minv∈V tCGK

i (v) = ci −∫v
v xdF(x)

n−1, that is when vi = v and vj = v for all j 6= i. Straightforward computations

yield that tCGK
i is EPCC if

ci −
n− 1
n

G−

∫v
v
x[1 − F(x)]dF(x)n−1 > −li. (1.12)

Applying a similar reasoning to that of the proof of Theorem 1, it is easy to show that a

mechanism (s∗, tCGK
i ) is EF, IIC, IIR, EPBB and EPCC if and only if

∑
i∈N

min
{
C(ri), li −

∫v
v
x[1 − F(x)]dF(x)n−1

}
> (n− 1)G. (1.13)

This condition is undoubtedly more restrictive than condition (1.8).15 This is due to the

fact that the minimum of the variable part of tCGK
i (i.e. ignoring the constant ci) is lower

than the minimum of the variable part of tCi (i.e. ignoring the constant φi). It is therefore

interesting to notice that what matters for EPCC is the minimum of the variable part of the

transfer function. If the variable part of the transfer function is too low, adding a higher

constant to shift the function up to satisfy EPCC does not help as this would contradict

EPBB.

Therefore, it is necessary that tCi has a lower span than tCGK
i to satisfy EPCC. Notice

that IIC requires that both transfer functions must be equal at the interim level (up to

a constant), that is E−it
CGK
i (v) = E−it

C
i (v) + cst for some constant.16 The problem of

constructing tCi is then a problem of constructing multivariate random variables with

14To the best of my knowledge, this function has first been introduced by d’Aspremont and Gérard-Varet
(1979). It can also be found in Lu and Robert (2001), Ledyard and Palfrey (2007) and Segal and Whinston
(2011) among others.

15See Section 1.5 for an example in which the dissolution mechanism proposed by CGK does not allow
for efficient dissolution whereas it is possible with my mechanism.

16This is a consequence of Proposition 1 and one of the most important features of incentive compatibility.
See Myerson (1981), Makowski and Mezzetti (1994) and Williams (1999).
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given marginals (IIC), bounded support (EPCC) and such that the sum of all is zero

(EPBB). In this paper, I have constructed the function tCi by adapting the one proposed in

an unpublished paper of Dudek, Kim, and Ledyard (1995) who study ex post individually

rational Bayesian mechanisms with no initial endowments. In future works, it would be

interesting to fully characterize the space of transfer functions that satisfy EPCC.

Dominant Strategy Mechanisms. As mentioned earlier, the same dissolution condition

applies to dominant strategy mechanisms.

Theorem 2 An EF, EPIC, IIR, EABB and EPCC dissolution mechanism exists if and only if

∑
i∈N

min{C(ri), li} > (n− 1)G. (1.14)

Proof. See Appendix A. �

Condition (1.14) is exactly the same as condition (1.8). This implies that when it is

possible to ex post efficiently dissolve a partnership with a Bayesian mechanism then

it is also possible to do it with a dominant strategy, and reciprocally. The equivalence,

however, goes further than that as discussed below.

1.3.3. The Equivalence Theorem

From Theorem 1 and Theorem 2 it is then clear that when it is possible to implement ex

post efficient dissolution with a Bayesian mechanism then ex post efficient dissolution

can also be implemented with a dominant strategy mechanism, and vice versa. Yet, the

following results give a much stronger equivalence between the two classes of mechanisms.

Theorem 3 If (s∗, t̃) is an EF, EPIC, IIR, EABB and EPCC dissolution mechanism, then there

exists a t such that

1. (s∗, t) is an EF, IIC, IIR, EPBB and EPCC dissolution mechanism;

2. E−iti(vi, v−i) = E−it̃i(vi, v−i) for all i ∈ N, vi ∈ V .
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Proof. See Appendix A. �

The converse is also true.

Theorem 4 If (s∗, t) is an EF, IIC, IIR, EPBB and EPCC dissolution mechanism, then there

exists a t̃ such that

1. (s∗, t̃) is an EF, EPIC, IIR, EABB and EPCC dissolution mechanism;

2. E−iti(vi, v−i) = E−it̃i(vi, v−i) for all i ∈ N, vi ∈ V .

Proof. See Appendix A. �

The additional feature of the equivalence theorem relies on the equivalence between

the interim transfers. Thus, Theorem 3 and 4 state that one can alternatively choose to

implement ex post efficient dissolution with Bayesian or dominant strategy mechanisms

and offer the same interim transfers and utilities to every agent. It means that any final

distribution of welfare among agents that is attainable in Bayesian mechanisms is also

attainable in dominant strategy mechanisms.

1.3.4. Interim Cash Constraints

So far, I have assumed the strictest requirement for cash constraints, namely, ex post

cash constraints. An important question is whether relaxing the requirement from the

ex post to the interim level helps relaxing the dissolution condition (1.8). Formally, the

constraints would become E−iti(v) ≡ Ti(vi) > −li for all vi ∈ V . This constraint therefore

requires that each agent, when privately informed about their type, thinks that they will

have enough cash in expectations. This is a softer budget constraint than ex post cash

constraints as it may occur that agents have to pay more than li at the end of the game.

The following result provides an important insight about interim cash constraints.

Proposition 2 An EF, IIC, IIR, EPBB and EPCC exists (s, t) if and only if there exists an

EF, IIC, IIR, EPBB and interim cash-constrained mechanism (s, t̃) such that E−iti(vi, v−i) =

E−it̃i(vi, v−i) for all i ∈ N and vi ∈ V .
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Proof. See Appendix A.

Proposition 2 shows that the existence of dissolution mechanisms with interim cash

constraints is equivalent to the existence of dissolution mechanisms with ex post cash

constraints. Therefore, relaxing cash constraints to the interim level has no advantages

compared to the ex post level. This result straightforwardly applies to dominant strategy

mechanisms.

1.4. FIRST-BEST CHARACTERIZATION RESULTS

The condition that must hold to implement ex post efficient dissolution (equation (1.8))

depends both on the initial ownership structure r and on the cash resources l. It is then

natural to investigate the set of partnerships that can be efficiently dissolved when r and l

vary.

1.4.1. Optimal Initial Ownership Structures

For a given distribution of cash resources l ∈ Rn
+, I first characterize the initial ownership

structures that maximize the contributions that can be collected on agents
∑
i∈N min{C(ri), li}.

Initial ownership structures r∗(l) ∈ arg maxr∈∆n−1
∑
i∈N min{C(ri), li} are said to be opti-

mal. It may obviously be the case that even the optimal initial ownership structures do

not allow for ex post efficient dissolution if cash resources are low for some agents.17

Recall that C(ri) = infvi
{

E−ig(v) − viri
}

. Let y = maxj 6=i vj, then

E−ig(v) − viri = viE−i1{vi > y}+ E−iy1{vi < y}− viri

= viF(vi)
n−1 +

∫v
vi

ydF(y)n−1 − viri.

Differentiating this expression with respect to vi, the first-order condition gives F(v∗i (ri))
n−1 =

17This happens when
∑
i∈Nmin{C(r∗i (l)), li} < (n− 1)G. It is then possible to characterize the minimal

subsidy that would be necessary to satisfy the ex post efficient dissolution condition (1.8).
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ri, where v∗i (ri) is said to be the worst-off type of agent i.18 Therefore,

C(ri) =

∫v
v∗i (ri)

ydF(y)n−1, (1.15)

which is continuous and differentiable in ri. The Envelope Theorem directly gives

C ′(ri) = −v∗i (ri) 6 0 and C ′′(ri) = −
∂v∗i
∂ri

(ri) < 0 so that C(ri) is both decreasing and

concave in ri. Notice also that C(0) =
∫v
v ydF(y)

n−1 and C(1) = 0.

It is useful to introduce the following notation. Let r̃i ∈ [0, 1] be such that C(r̃i) = li
when li 6 C(0) and let r̃i = 0 if li > C(0). This threshold is such that cash constraints are

more restrictive than the individual rationality constraint when ri < r̃i and the opposite

when ri > r̃i. As r̃i is decreasing in li, a higher r̃i indicates that cash constraints are more

restrictive for agent i.

The characterization results depend both on the total amount of available cash resources

and on its distribution over agents. Assume, without loss of generality, that l1 > · · · > ln
so that r̃1 6 · · · 6 r̃n. Consider first the case in which cash constraints are not too severe,

that is when
∑
i∈N r̃i 6 1.

Proposition 3 Assume
∑
i∈N r̃i 6 1, then the optimal distribution of property rights r∗ ∈ ∆n−1

is as follows:

a. If r̃i 6 1
n for all i ∈ N , then r∗ = ( 1

n , . . . , 1
n);

b. If r̃i > 1
n for some i ∈ N, then r∗ = (r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) where r̂ =

1−
∑
j>p r̃j

p−1 for

some p ∈ N such that maxi<p r̃i < r̂ 6 minj>p r̃j.

Proof. See Appendix A. �

Proposition 3.a is simply CGK main result (Proposition 1, p.621). When each agent

is endowed with enough cash, i.e. r̃i 6 1
n , then the equal-share ownership structure is

optimal. However, as soon as at least one agent’s cash resources go below some threshold,

18The second-order derivative immediately writes (n− 1)f(vi)F(vi)n−2 > 0 so that the first-order condi-
tion characterizes a minimum.
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i.e. r̃i > 1
n for some i ∈ N, Proposition 3.b implies that the optimal ownership structure

allocates more initial ownership rights to more cash-constrained agents.

To illustrate Proposition 3.b , consider a two-agent partnership in which agent 1

has large cash resources so that r̃1 = 0 and agent 2 is heavily cash constrained so that

r̃2 ∈ [1
2 , 1). It is clear that starting from any r2 < r̃2, and in particular r2 = 1

2 , it would be

possible to strictly increase
∑
i=1,2 min{C(ri), li} = C(r1) + l2 by increasing r2 up to r̃2 as

C(·) is a decreasing function and min{C(r2), l2} = l2 in unchanged for all r2 6 r̃2. In other

words, it is innocuous to give more initial ownership rights to heavily cash-constrained

agent as they are already limited by their cash resources but it allows to give less initial

ownership rights to less cash-constrained agents and then collect more from them.

When cash constraints are more severe, for some or all agents, so that
∑
i∈N r̃i > 1, the

structure of the optimal initial ownership structure can be characterized as follows.

Proposition 4 Assume
∑
i∈N r̃i > 1, then the optimal distribution of property rights r∗ ∈ ∆n−1

is such that r∗i 6 r̃i for all i ∈ N and
∑
i∈N min{C(r∗i ), li} =

∑
i∈N min{C(0), li}.

Proof. First, notice the following upper bound,
∑
i∈N min{C(ri), li} 6

∑
i∈N min{C(0), li}

for all r ∈ ∆n−1. For every i ∈ N, let ri 6 r̃i which is always possible as
∑
i∈N ri =

1 6
∑
i∈N r̃i . Then min{C(ri), li} = min{C(0), li} for all i ∈ N and

∑
i∈N min{C(ri), li} =∑

i∈N min{C(0), li}. To conclude, it is clear that choosing any ri > r̃i would decrease∑
i∈N min{C(ri), li}. �

When
∑
i∈N r̃i > 1, optimal initial ownership structures may or may not have a clear

characterization. Consider for instance the case in which all agents i < p for some

p ∈ N \ {1} have large cash resources so that r̃i = 0 for all i < p and all agents i > p

have low cash resources so that r̃i > 0 and
∑
i∈N r̃i > 1. Then, Proposition 4 gives that

all agents i < p must have r∗i = 0 and for i > p, the r∗i must be such that
∑
i>p r

∗
i = 1.

Therefore, initial ownership goes only to agents with few cash resources and this resembles

Proposition 3.b. Consider now a case in which for instance 1
2 = r̃1 = r̃2 6 r̃3 6 · · · 6 r̃n.

Then choosing r∗1 = r∗2 = 1
2 and r∗i = 0 for all i > 3 is optimal. Hence, at some point, cash

constraints are so severe that optimal initial ownership structures have no clear structure

other than that of Proposition 4.
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1.4.2. Minimal Cash Resources To Dissolve Equal-Share Partnerships

One of the main results of CGK states that equal-share partnership can always be ex post

efficiently dissolved. de Frutos and Kittsteiner (2008) report that one-half to two-third of

two-agent partnerships exhibit equal-share ownership. It is then interesting to investigate

how cash constraints mitigate this finding.

Proposition 5 Assume li := l for all i ∈ N. Then, every equal-share partnership is dissolvable

for any absolutely continuous cumulative distribution function F(·) if and only if

l >
n− 1
n

G. (1.16)

Furthermore, for any F(·), l is increasing in n and converges to v when n goes to infinity.

Proof. From CGK (Proposition 1), an equal-share partnership is always dissolvable in the

absence of cash constraints, that is,
∑
i∈NC(

1
n) > (n− 1)G. Equation (1.16) immediately

follows from the dissolution condition
∑
i∈N min{C( 1

n), l} > (n− 1)G.

Recall that G = E[maxj∈N vj] =
∫v
v ydF(y)

n. Differentiating the right-hand side of (1.16)

with respect to n gives 1
n2G+ n−1

n
∂G
∂n > 0 as G is increasing in n. Finally, if n→∞ then

G→ v and so does n−1
n G. �

Equation (1.16) simply states that in equal-share-equal-cash partnerships, each agents

must be endowed with a fraction 1
n of the total ex ante expected deficit generated by a

Groves mechanism. By construction, this ex ante deficit becomes larger as the number of

agents increases as the probability of maxi∈N vi increases (which must be distributed to

(n− 1) agents, see Section 1.3) and so do the minimal cash resources.

Finally, the result that l→ v when n→ +∞ suggests that cash constraints are likely

to be a major concern as the number of agents becomes large. In many cases, it seems

reasonable to think that one of the main purposes of forming a partnership is precisely to

split the burden of a costly investment between partners because of initial cash constraints.

Hence, it seems unlikely that every agent possesses the maximal value of the asset in cash

when dissolution occurs.
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1.4.3. Optimal Organization of Cash and Ownership

So far, I have only investigated the optimal allocation initial ownership for fixed distribu-

tions of cash resources or minimal cash requirements for equal-share partnerships. To

assess the importance of cash constraints in the feasibility of ex post efficient dissolution

mechanisms, it is also useful to investigate what would be the best joint initial allocations

of ownership and cash resources.

Consider that both r ∈ ∆n−1 and l ∈ Rn
+ are allowed to vary. An optimal organization

of the partnership (r∗, l∗) solves

(r∗, l∗) ∈ arg max
r̂,l̂

∑
i∈N

min{C(r̂i), l̂i},

subject to r ∈ ∆n−1 and
∑
i∈N li = L, where L ∈ R+ is exogenous. In general, there is no

unique solution to this problem and I will solely focus on the maximal attainable value

for collectible charges
∑
i∈N min{C(r∗i ), l

∗
i } at an arbitrary optimal solution.

Recall that, in the absence of cash constraints, the equal-share partnership is always ex

post efficiently dissolvable. As a result, when one is allowed to perfectly choose r and l

simultaneously, the only reason ex post efficiency would fail would come from insufficient

total cash resources. The following propositions derive the maximal collectible charge

depending on total cash resources L.

Proposition 6 Assume L >
∑
i∈NC(1/n), then the maximal collectible charge is

∑
i∈N

min{C(r∗i ), l
∗
i } =

∑
i∈N

C(1/n).

The optimal ownership structure is unique and is r∗i = 1
n for all i ∈ N (equal-share). Any

distribution of cash resources satisfying li > C(1/n) for all i ∈ N is optimal.

Proof. First notice that for any (r, l),
∑
i∈N min{C(ri), li} 6

∑
i∈NC(ri) 6

∑
i∈NC(1/n),

where the first inequality is by definition of the min function and the second one comes

from optimality of equal-share ownership in the absence of cash constraints. Then , simply

let r∗i = 1
n for all i ∈ N and choose any l∗ such that l∗i > C(1/n) for all i ∈ N. This
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last inequality can always be satisfied as L >
∑
i∈NC(1/n). It immediately follows that∑

i∈N min{C(r∗i ), l
∗
i } =

∑
i∈NC(1/n) which is necessarily the maximum. �

Proposition 6 simply establishes the optimality of equal-share partnerships when cash

resources are large enough and can be freely allocated among partners. The following

corollary is directly linked to the result of CGK.

Corollary 1 Assume L >
∑
i∈NC(1/n) and that it is possible to simultaneously choose r and l,

then ex post efficient dissolution mechanism are always feasible.

Proof. From Proposition 6,
∑
i∈N min{C(r∗i ), l

∗
i } =

∑
i∈NC(1/n) and equal-share partner-

ship are always dissolvable as
∑
i∈NC(1/n) > (n− 1)G (CGK, 1987). �

When total cash resources are large enough and can be freely allocated among partners

the problem simply collapses to the CGK problem without cash constraints. The next

proposition establishes the impact of more severe cash constraints on the total collectible

charge.

Proposition 7 Assume L <
∑
i∈NC(1/n), then the maximal collectible charge is

∑
i∈N

min{C(r∗i ), l
∗
i } =

∑
i∈N

li,

that is, the maximal collectible charge is entirely defined by the total amount of cash resources.

Proof. Notice that
∑
i∈N min{C(ri), li} 6

∑
i∈N li by definition of the min function. If

there exists an organization (r∗, l∗) such that C(r∗i ) > l
∗
i for all i ∈ N then

∑
i∈N min{C(r∗i ), l

∗
i } =∑

i∈N l
∗
i = L would attain its maximal value. From the assumption of the proposition,

L <
∑
i∈NC(1/n), and continuity of

∑
i∈NC(ri), it is straightforward that there must exist

a nonempty subset R ∈ ∆n−1 such that
∑
i∈NC(r̃i) > L for all r̃ ∈ R. Take an arbitrary

r∗ ∈ R, then it always possible to find an l∗ such that C(r∗i ) > l
∗
i for all i ∈ N. Hence∑

i∈N min{C(r∗i ), l
∗
i } =

∑
i∈N l

∗
i = L. �

When the total amount of cash resources are such that L <
∑
i∈NC(1/n), the maximal

collectible charge is simply bounded above by the total amount of amount cash resources

L. The optimal organization therefore allocates initial cash resources so that the maximal
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collectible is equal to the total amount of amount cash resources. The feasibility of ex post

efficient dissolution mechanism is therefore characterized as follows.

Corollary 2 Assume L <
∑
i∈NC(1/n) and that it is possible to simultaneously choose r and l,

then ex post efficient dissolution is feasible if and only if L > (n− 1)G.

Proof. Immediate from Proposition 7. �

From Corollary 2, one can assess how much cash resources affect the feasibility of

ex post efficient dissolution mechanisms. Whenever L < (n − 1)G, ex post efficient

dissolution mechanisms would require to produce an ex post deficit of (n− 1)G− L to

ensure all other constraints. This means that, even if ownership and cash can be perfectly

allocated initially, the total amount of cash resources must still cover the ex ante cost of

implementing a Groves mechanism.

1.4.4. Some Examples

To illustrate Propositions 3, 4 and 5, assume that the asset value is between 0 and 1 million

and valuations are uniformly distributed over support [0, 1].

Example 1. Let n = 3 and assume r̃ = (0, 0.4, 0.5). This happens when cash resources

are approximately (l1, l2, l3) ≈ (0.66, 0.49, 0.43). Assuming equal-share ownership gives∑
i=1,2,3 min{C(1

3), li} = C(1
3) + l2 + l3 ≈ 1.47 as C(1

3) ≈ 0.54 > l2 > l3. Given that

(n− 1)G = 3
2 , it follows that the equal-share ownership structure does not allow for ex

post efficient dissolution.

Instead, as
∑
i∈N r̃i = 0.9 and 1

3 < r̃2 < r̃3, Proposition 3.b gives that the optimal

ownership structure writes r̃∗ = (0.1, 0.4, 0.5). As
∑
i=1,2,3 min{C(1

3), li} ≈ 1.57 > 3
2 , the

optimal ownership structures allows for ex post efficient dissolution. Ownership rights

are then inversely proportional to cash resources and the optimal ownership structure is

quite asymmetric.

Example 2. Let n = 3 and assume r̃ = (0.3, 0.4, 0.45). This corresponds to (l1, l2, l3) ≈
(0.56, 0.50, 0.47). Notice that

∑
i=1,2,3 r̃i = 1.15 > 1 so that Proposition 4 applies and thus

r∗i 6 r̃i for i = 1, 2, 3. As C(0) = 2
3 > l1 > l2 > l3, it follows that

∑
i=1,2,3 min{C(ri), li} =
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l1 + l2 + l3 ≈ 1.52 > 3
2 and the partnership can be ex post efficiently dissolved. Notice

that choosing for instance r∗ = (0.3, 0.3, 0.4) or r∗ = (0.3, 0.25, 0.45) both give r∗i 6 r̃i

for all i ∈ N and achieve the same outcome. However, agent 2 receives less initial

ownership rights than agent 1 whereas the former has larger cash resources than the latter.

This illustrates that optimal ownership structures might not always exhibit an inversely

proportional relationship between cash and ownership rights when cash resources are

severe, i.e.
∑
i∈N r̃i > 1.

Example 3. Assume equal-share ownership, ri = 1
n for all i ∈ N and symmetric cash

resources li = l̃ for all i ∈ N. According to Proposition 5, ex post efficient dissolution is

possible if and only if l̃ > n−1
n G = n−1

n+1 . Hence, when n = 2, 3, 4, 5 and 6, the minimal cash

resources are respectively 1
3 , 1

2 , 3
5 , 2

3 and 5
7 . A partnership with 5 agents for instance, each

partner must possess two-third of a million to achieve ex post efficient dissolution.

1.5. IMPLEMENTATION: A SIMPLE AUCTION

The ex post efficient dissolution mechanism presented in Section 1.3 is appealing for

its convenient mathematical properties which greatly simplifies the analysis of such

mechanisms. It is, however, less appealing for the practitioner as it requires the setup

of a game in which each agent reports their valuation and is communicated the transfer

function tCi (v).

Ex Post Efficient Bidding Game. I propose a simple auction that replicates the ex post

efficient dissolution mechanism whenever the ex post efficient dissolution condition (1.8)

holds. Each agent proposes a bid and the highest bidder receives full ownership of the

asset. The auction is designed such that the bidding strategies are increasing in the agents’

valuations so that the highest bidder coincides with the agent with the highest valuation.

Each agent also receives side payments conditional on their share of ownership rights and

cash resources to ensure IIR, EPBB and EPCC.

Let b := (b1, . . . ,bn) ∈ Rn
+ denote the vector of bids. In the ex post efficient bidding

game each agent receives a side payment φi(r, l) and pays a price pi(b1, . . . ,bn).
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Theorem 5 A bidding game with prices

pi(b1, . . . ,bn) :=

(n− 1)
[
bi +

1
nv
]

if bi > maxk bk

−
[
bj +

1
nv
]

if bj > maxk bk,

and side-payments

φi(r, l) :=
1
n

∑
j∈N

min{C(rj), lj}− min{C(ri), li},

efficiently dissolves any dissolvable partnership with cash-constrained agents.

Proof. Let bi be player i’s strategy and b(vj) be the bidding strategy of player j 6= i with

valuation vj. Agent i’s interim expected utility (omitting side payments) when bidding bi
writes

Ui(bi; vi) :=
[
vi − (n− 1)(bi +

1
n
v)

]
E−i1{bi > max

k 6=i
b(vk)}

+
∑
j 6=i

E−i

[
1{b(vj) > bi}1{b(vj) > max

k 6=i,j
b(vk)}

[
b(vj) +

1
n
v

]]
.

Solving for strictly increasing symmetric Bayesian equilibrium, the bidding strategy of the

j 6= i players, b(vj), is strictly increasing and then invertible. Notice that 1{bi>maxk6=i b(vk)} =

1{b−1(bi)>maxk6=i vk} and 1{b(vj)>maxk6=i b(vk)} = 1{vj>maxk6=i vk}. It follows that player i’s interim

expected utility rewrites

Ui(bi; vi) =
[
vi − (n− 1)(bi +

1
n
v)
]
Z(b−1(bi)) +

∫v
b−1(bi)

[
b(vj) +

1
n
v
]
dZ(vj),

where Z := Fn−1. Let z = Z ′, differentiating U(bi; vi) with respect to bi and simplifying

using ∂b−1

∂bi
(bi) =

1
b ′(b−1(bi))

gives

∂Ui
∂bi

(bi; vi) = −(n− 1)Z(b−1(bi)) +
z(b−1(bi))

b ′(b−1(bi))

[
vi −nbi − v

]
.
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At equilibrium, b(vi) must be such that ∂Ui∂bi
(b(vi); vi) = 0. Therefore, b(vi) must solve

−(n− 1)Z(vi) +
z(vi)

b ′(vi)

[
vi −nb(vi) − v

]
= 0.

It is easy to show that b(vi) :=
∫vi
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt solves this first-order differential

equation and is strictly increasing in vi.19 It follows that at the Bayesian equilibrium,

player i pays a price

pi(b(v1), . . . ,b(vn)) =


(n− 1)

[∫vi
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ 1
nv

]
if bi > maxk bk

−

[∫vj
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ 1
nv

]
if bj > maxk bk.

(1.17)

It can easily be proven that pi(b(v1), . . . ,b(vn)) together with φi(r, l) exactly replicates the

transfer rule of Theorem 1, tCi (v), for all v ∈ Vn and all i ∈ N. The bidding game is thus

EF (as b(·) is increasing, the bidder with the highest valuation gets full ownership), IIR,

EPBB and EPCC as it reproduces the transfer rule of Theorem 1. �

Theorem 5 can be interpreted as follows. The agent with the highest bid, bk =

maxi∈N bi, receives full ownership of the asset and gives an amount of money equal to

bk to all other agents j ∈ N \ {k}. Unconditional on bids, each agent receives a transfer

φi(r, l).

Furthermore, there is no need for an outside party to advance money before running

the auction. In practice, the auctioneer could simply announce to each agent their

side payment φi(r, l), run the auction and then compute total payment for each agent,

φi(r, l)−pi(b1, . . . ,bn) from the submitted bids. Agents with a φi(r, l)−pi(b1, . . . ,bn) < 0

pay the auctioneer who then redistribute this amount of money to the agents with

φi(r, l) − pi(b1, . . . ,bn) > 0. As the auction is budget balanced, this can always be done

without outside funding.

19The first-order condition is also sufficient. Notice that b(vi) =
∫vi
v ψ(t)

f(t)
F(t)dt where ψ(t) is defined by

equation (1.10). Then b ′(vi) = ψ(vi)
f(vi)
F(vi)

= (vi −nb(vi) − v)
f(vi)
F(vi)

, where the second equality stems from

Lemma 1. Hence, after simplifications, ∂Ui∂bi
(bi; vi) = (n− 1)Z(b−1(bi))

[
−1 + vi−nbi−v

b−1(bi)−nbi−v

]
. It follows

that ∂Ui∂bi
(bi; vi) > 0 (resp. 6 0) when bi 6 b(vi) (resp. > b(vi)) for any vi ∈ V .
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Comparison With CGK: Uniform and Symmetric Example. It is interesting to investi-

gate the properties of the bidding game proposed in Theorem 5 with the one proposed by

CGK (Theorem 2, p. 620). In CGK, the bidding game has prices pCGK
i (b) = bi−

1
n−1
∑
j 6=i bj

and side payments cCGK
i (r) =

∫v∗i
v xdF(x)

n−1 − 1
n

∑
j∈N
∫v∗j
v xdF(x)

n−1 where v∗i is defined

as in Section 1.4.1. The equilibrium bidding strategy in CGK is given by bCGK(vi) =∫vi
v udF(u)

n−1.

For simplicity, assume that valuations are uniformly distributed over support [0, 1],

and consider an equal-share-equal-cash partnership, i.e. ri = 1
n and li = l̃ for all i ∈ N. It

immediately follows that φi(r, l) = cCGKi (r) = 0 for all i ∈ N, that is, side payments are

zero for all agents in both bidding games. In the cash-constrained auction, the maximal

price is obtained by maximizing equation (1.17), which is the same as minimizing tCi
(ignoring the constant term) as the auction replicates the dissolution mechanism. Therefore,

from equation (1.11), maxv∈Vn pi(b) = n−1
n G = n−1

n+1 as G = n
n+1 in the uniform case.

Alternatively, using the LHS of equation (1.12) (again ignoring the constant) gives that

maxv∈Vn pCGK
i (b) = n−1

n . Hence, it is clear that maxv∈Vn pCGK
i (b) > maxv∈Vn pi(b) so that

the maximal price in CGK auction is strictly higher than the one in the cash-constrained

auction.

Given that side payments are null in both auctions, EPCC requires that the maximal

price never exceeds the agents’ financial resources l̃. Let n = 2, then maxv∈Vn pCGK
i (b) = 1

2

and maxv∈Vn pCGK
i (b) = 1

3 . It follows that any of the two auctions ex post efficiently

dissolves this symmetric partnership for l̃ > 1
2 and none dissolves it if l̃ < 1

3 (this

indeed violates condition (1.8)). However, only the cash-constrained auction ex post

efficiently dissolves this partnership for l̃ ∈
[1

3 , 1
2

)
as CGK auction requires agents to

pay prices that may exceed their financial resources. This particular example illustrates

the discrepancy between the necessary and sufficient condition (1.8) and the sufficient

dissolution condition with CGK mechanism, condition (1.13).

1.6. SECOND-BEST DISSOLUTION MECHANISMS

When condition (1.8) is not satisfied, it is not possible to simultaneously ensure an ex post

efficient allocation rule and all the required constraints. Therefore, the problem consists
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in finding a new mechanism whose allocation rule simultaneously maximizes the ex ante

surplus and satisfies all the constraints. These mechanisms are referred to as second-best

mechanisms.

One of the most difficult challenges when investigating second-best mechanisms comes

from the participation and cash constraints. Usually, the structure of the problems studied

in the literature are such that those types of constraints can be replaced by the one for the

lowest/highest type independently of the mechanism in question. In partnership models,

however, the worst-off types are endogenously determined by the mechanism and must

be defined simultaneously to the allocation rule.

Second-best mechanisms in partnership models have mainly been studied by Lu and

Robert (2001) and Loertscher and Wasser (2019) who consider Bayesian mechanisms

without cash constraints. I build on these two papers and on Boulatov and Severinov

(2019) who investigate the design of optimal auctions in the presence of cash-constrained

bidders.

Methodology And Assumptions. I investigate dissolution mechanisms satisfying IIC,

IIR, EPCC but I relax EPBB to EABB as imposing EPBB had proved too difficult. I

conjecture, however, that adding the EPBB requirement can directly be derived using the

present work and only requires to construct an appropriate transfer function. I hope that

future work will address this issue.

The first-best analysis shows that implementing the ex post efficient allocation rule

requires that enough money can be collected on agents to cover the cost of imposing

incentive compatibility. The same logic applies to any other allocation rule. Following

the methodology of Lu and Robert (2001) and Loertscher and Wasser (2019), I start by

investigating allocation rules that maximize a linear combination of the expected surplus

and the expected revenue that can be collected on agents by imposing IIC, IIR and EPCC

but ignoring EABB. This allows to characterize optimal second-best mechanisms for any

possible budget deficit.20 It then appears that solving the second-best problem including

20It may sometimes not be desirable to strictly impose budget balance. For instance, if the dissolution
problem is run by a public authority, it may be willing to achieve a more efficient outcome at the expense of
covering a strictly positive deficit.
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EABB is just a particular solution to the previous problem for well-chosen weights on

expected surplus and collected revenue.

Then, for any weight λ ∈ [0, 1], the objective function writes,

Wλ := (1 − λ)
∑
i∈N

E
[
vi(si(v) − ri)

]
+ λ
∑
i∈N

E
[
− ti(v)

]
, (1.18)

where the first term is the expected surplus and the second term is the expected revenue.

I introduce the following two notations. For any λ ∈ [0, 1], let

α(vi | λ) = vi − λ
1 − F(vi)

f(vi)
and β(vi | λ) = vi + λ

F(vi)

f(vi)
,

where α(· | λ) and β(· | λ) are referred to as buyer’s virtual valuation and seller’s virutal

valuation, respectively (see Lu and Robert (2001)). Notice that for any vi ∈ (v, v) and

λ ∈ [0, 1], α(vi | λ) < vi < β(vi | λ). The following assumptions are made on these

functions.

Assumption 1 For any λ ∈ [0, 1], the virtual valuations α(vi | λ) and β(vi | λ) are both strictly

increasing in vi.

This assumption is a regularity assumption on the distribution function F(·) to avoid

bunching due to nonregular distribution functions.21 It is standard in the literature (see

Myerson (1981)) and weaker than imposing increasing hazard rate.

Assumption 2 Assume that f(·) is nonincreasing.

This assumption is not necessary as suggested by Boulatov and Severinov (2019) but it

is imposed in the present work as it greatly simplifies the analysis.

1.6.1. Characterization Of General IIC, IIR And EPCC Mechanisms

The analysis of dissolution mechanisms is no longer restricted to the ex post efficient

allocation rule s∗ defined in Section 1.3. Therefore, Proposition 1 does not apply here and

21However, second-best mechanisms will generically involve bunching due to the initial allocation of
ownership rights and to the cash constraints. This assumption on the distribution of valuation therefore
only rules out bunching due to nonregular distribution functions.
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it is necessary to characterize dissolution mechanisms satisfying IIC, IIR and EPCC for

any possible allocation rule.

Incentive Compatibility. Take any allocation rule s(v) = (s1(v), . . . , sn(v)) such that

si(v) ∈ [0, 1] for all i ∈ N, v ∈ Vn and
∑
i∈N si(v) = 1 for all v ∈ Vn. The following

standard characterization of IIC mechanisms applies (see Myerson (1981)).

Lemma 2 A dissolution mechanism (s, t) is IIC if and only if

Si is nondecreasing for all i ∈ N, (IC1)

Ui(vi) = Ui(v
∗
i ) +

∫vi
v∗i

(Si(x) − ri)dx for all vi, v∗i ∈ V . (IC2)

Proof. The proof is standard and thus omitted (see Myerson (1981), Lu and Robert

(2001)). �

The set of dissolution mechanisms satisfying IIC must then be such that the interim

allocation rule Si := E−isi is nondecreasing and the interim utility of each agent must

satisfy (IC2). Lemma 2 also implies that Ui is absolutely continuous. Recall that, by

definition, Ui(vi) = vi(Si(vi) − ri) + Ti(vi) so that (IC2) indirectly defines the interim

transfers as follows

Ti(vi) = Ti(v
∗
i ) −

∫vi
v∗i

xdSi(x) for all vi, v∗i ∈ V , (1.19)

which is decreasing in vi.

Individual Rationality. Imposing IIR requires that Ui(vi) > 0 for all i ∈ N and vi ∈ V
where Ui(vi) is defined by (IC2). Let v∗i ∈ arg minṽi∈V Ui(ṽi) denote a worst-off type for

agent i, then IIR can be characterized as follows (see CGK and Lu and Robert (2001)).

Lemma 3 A dissolution mechanism (s, t) is IIC and IIR if and only if it satisfies Lemma 2 and

for every i ∈ N,

Ui(v
∗
i ) > 0, (IR1)
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where v∗i denotes a worst-off type of agent i and

v∗i ∈ V∗(Si) := {vi | Si(x) 6 ri,∀x < vi; Si(y) > ri,∀y > vi}. (IR2)

Proof. The proof is the same as in Lu and Robert (2001). �

(IR1) simply states that the continuum of constraints Ui(vi) > 0 can be replaced by

imposing IIR only on the set of worst-off types V∗(Si) and (IR2) defines this set. Notice

that (i) the set of worst-off types is endogenously determined by the interim allocation

rule Si and, (ii) this set contains all agents who are expected to be neither a buyer nor a

seller.

Cash Constraints. Finally, imposing EPCC requires that ti(v) > −li for all i ∈ N and

v ∈ Vn. As first noted by Laffont and Robert (1996), it is possible to set a mechanism (s, t)

where ti(v) depends only on agent i’s private information so that ti(v) = Ti(vi) for all

v ∈ Vn. It affects neither the objective function Wλ nor IIC nor IIR as they all depend only

on the interim transfers Ti(vi). Therefore, without loss of generality, EPCC is satisfied by

requiring Ti(vi) > −li for all i ∈ N, vi ∈ V .

Following Boulatov and Severinov (2019), define

mi := inf {vi ∈ V | Ti(vi) = Ti(v)}. (1.20)

Then, any dissolution mechanism (s, t) for which mi < v is such that Ti(vi) = Ti(v) for

all vi ∈ [mi, v] as IIR imposes that Ti(vi) is nondecreasing in vi. As Si is nondecreasing it

follows from (1.19) that imposing Ti(vi) = Ti(v) for all vi ∈ [mi, v] requires that Si(vi) is

constant over [mi, v]. Then, without loss of generality, Si(vi) = Si(mi) for all vi ∈ [mi, v]

must hold for interim transfer to be constant.

EPCC can therefore be replaced with the following two conditions for all i ∈ N

Ti(mi) > −li, (CC1)

Si(vi) = Si(mi) for all vi ∈ [mi, v]. (CC2)

(CC1) ensures that all transfers are lower or equal to each agent’s cash resources while



47
CHAPTER 1. PARTNERSHIP DISSOLUTION WITH

CASH-CONSTRAINED AGENTS

(CC2) is necessary for interim transfers to stay constant when vi ∈ [mi, v].

Notice that (CC1) can also be expressed in terms of interim utility, that is, Ti(mi) =

Ui(mi) −mi

(
Si(mi) − ri

)
> −li. Replacing Ui(mi) by (IC2) evaluated at mi gives that

(CC1) rewrites

Ui(v
∗
i ) > mi

(
Si(mi) − ri

)
−

∫mi
v∗i

(Si(x) − ri)dx− li, (CC1)

so that (CC1) is expressed only in terms of the interim utility of a worst-off type.

1.6.2. The Second-Best Optimization Program

The problem therefore consists in maximizing Wλ subject to (IC1), (IC2), (IR1), (IR2),

(CC1), (CC2) and the two resource constraints si(v) ∈ [0, 1] for all vi ∈ V and
∑
i∈N si(v) =

0 for all v ∈ Vn. First, notice that the transfer function only enters the objective function

but can be completely removed from the problem by directly imposing (IC2) on Wλ.

Rewrite,

Wλ =
∑
i∈N

∫
V

{
(1 − λ)vi(Si(vi) − ri) − λTi(vi)

}
dF(vi).

(IC2) gives that Ti(vi) = Ui(v∗i ) +
∫vi
v∗i
(Si(x) − ri)dx− vi[Si(vi) − ri]. Plugging this expres-

sion in the objective function, integrating by parts and rearranging yields

Wλ =
∑
i∈N

∫
V
(Si(vi) − ri)

[
vi + 1{vi 6 v

∗
i }λ
F(vi)

f(vi)
− 1{vi > v

∗
i }λ

1 − F(vi)

f(vi)

]
dF(vi) − λ

∑
i∈N

Ui(v
∗
i ).

Now I want to impose (CC2) directly on the objective function. For that matter, first

consider the following result.

Lemma 4 For any IIC, IIR and EPCC mechanism with l ∈ (R∗+)
n, if mi < v then mi >

supV∗(Si).

Proof. As mi < v then Ti(mi) = −li and then Ui(mi) = mi(Si(mi) − ri) − li. IIR implies

that Ui(mi) = mi(Si(mi) − ri) − li > 0 which immediately requires that Si(mi) > ri. By
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definition of V∗(Si), Si(vi) 6 ri for all vi 6 infV∗(Si) and Si(vi) = ri for all vi in the

interior of V∗(Si). It follows that mi > supV∗(Si). �

As lemma 4 ensures that mi > supV∗(Si), plugging (CC2) into the objective function

and using the definitions of β(vi | λ) and α(vi | λ) yields

Wλ(s,U,m) :=
∑
i∈N

∫mi
v

(Si(vi) − ri)
[
1{vi 6 v

∗
i }β(vi | λ) + 1{vi > v

∗
i }α(vi | λ)

]
dF(vi)

+
∑
i∈N

∫v
mi

(Si(mi) − ri)α(vi | λ)dF(vi) − λ
∑
i∈N

Ui(v
∗
i ),

where Wλ(s,U,m) defines the objective as a function of the allocation rule s, the in-

terim utilities of the worst-off types U = (U1(v
∗
1), . . . ,Un(v∗n)) and the thresholds m :=

(m1, . . . ,mn).

The Relaxed Problem. As it is standard in the literature, consider a relaxed problem

in which (IC1) and (IR2) are ignored. It will be proven later that the relaxed problem

satisfies those constraints. Let χ := (χ1, . . . ,χn) ∈ Rn
+ and τ := (τ1, . . . , τn) ∈ Rn

+ denote

the Lagrange multipliers associated with (IR1) and (CC1), respectively. Then, the relaxed

problem is given by the following Lagrangian

L :=Wλ(s,U,m) +
∑
i∈N

χiUi(v
∗
i ) +
∑
i∈N

τi

(
Ui(v

∗
i ) −mi

(
Si(mi) − ri

)
+

∫mi
v∗i

(Si(x) − ri)dx+ li

)
.

A little algebra shows that the Lagrangian can be rewritten

L =
∑
i∈N

∫mi
v

(Si(vi) − ri)
[
1{vi 6 v

∗
i }β(vi | λ) + 1{vi > v

∗
i }
[
α(vi | λ) +

τi
f(vi)

]
dF(vi)

+
∑
i∈N

∫v
mi

(Si(mi) − ri)
[
α(vi | λ) −

τimi

1 − F(mi)

]
dF(vi) +

∑
i∈N

(χi + τi − λ)Ui(v
∗
i ) +
∑
i∈N

τili.

Notice that∫v
mi

(
Si(mi) − ri

)
α(vi | λ)dF(vi) =

∫v
mi

(
Si(mi) − ri

)
E
[
α(vi | λ) | vi > mi

]
dF(vi), (1.21)
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Then, define the virtual valuation of agent i as

Γi(vi | v
∗
i ,mi, λ) :=



β(vi | λ) if vi ∈ [v, v∗i )

v∗i if vi = v
∗
i

α(vi | λ) +
τi
f(vi)

if vi ∈ (v∗i ,mi)

E
[
α(vi | λ) | vi > mi

]
− τimi

1−F(mi)
if vi > [mi, v].

Using the fact that Si(vi) =
∫
Vn−1 si(v)

∏
j 6=i dF(vj) and the definition of Γi, the Lagrangian

simply rewrites

L =

∫
Vn

(si(v) − ri)Γi(vi | v
∗
i ,mi, λ)

∏
k∈N

dF(vk) +
∑
i∈N

(χi + τi − λ)Ui(v
∗
i ) +
∑
i∈N

τili.

Notice that Γi is strictly increasing over [v, v∗i ) and (v∗i ,mi) and constant over [mi, v]. Yet,

the virtual valuation Γi has a downward discontinuous jump at v∗i and it is not clear how

it behaves at mi. Therefore, it is not possible to directly solve the problem by pointwise

maximizing L as it would violates the monotonicity of Si at vi = v∗i .

To ensure that (IC1) is satisfied, I first replace the virtual valuation Γi by an ironed

virtual valuation around v∗i (see Myerson (1981), Lu and Robert (2001), Loertscher and

Wasser (2019)). Formally, for any given λ, define xi ∈ V such that β(xi | λ) = α(mi |

λ) + τi
f(mi)

. Now, for any xi ∈ [v, xi] let yi be such that

α(yi | λ) +
τi
f(yi)

= β(xi | λ). (1.22)

Then, define

δi(vi | xi,mi, λ) :=

Γi(vi | xi,mi, λ) if vi /∈ [xi,yi]

β(xi | λ) if vi ∈ [xi,yi].

The function δi(· | ·) is referred to as the ironed virtual valuation of agent i. It coincides

with the virtual valuation Γi everywhere but on [xi,yi] where it is constant. By definition

of xi and yi, δi(· | ·) is therefore increasing and continuous on [v,mi].

The methodology is as follows. First, I replace Γi by δi in the Lagrangian of the
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relaxed problem and solve for si in the new problem by pointwise maximization. Building

on Boulatov and Severinov (2019), I show that δi is nondecreasing at vi = mi so that,

combined with the definition of δi for vi /∈ [xi,yi], the solution si is increasing in vi and

so does Si, satisfying (IC1). Second, I prove that the solution to the problem with ironed

virtual valuation δi also solves the problem with virtual valuation Γi.

For some xi ∈ [v, xi], consider the problem of maximizing the following Lagrangian

L̂ :=

∫
Vn

(si(v) − ri)δi(vi | xi,mi, λ)
∏
k∈N

dF(vk) +
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili.

Pointwise maximization with respect to si gives

si(vi, v−i) =


1 if δi(vi | xi,mi, λ) > maxj 6=i δj(vj | xj,mj, λ)

∈ [0, 1] if δi(vi | xi,mi, λ) = maxj 6=i δj(vj | xj,mj, λ)

0 if δi(vi | xi,mi, λ) < maxj 6=i δj(vj | xj,mj, λ),

(1.23)

as the problem is linear in si, full ownership goes to the agent with the highest ironed

virtual valuation δi. If two or more agents have the highest valuation, the final distribution

of ownership among those agents does not affect optimality. Yet, contrary to the first-best

mechanism, ties may occur with positive probability (due to bunching regions) so that the

way the mechanism breaks ties among agents will now affect IIR. As in Lu and Robert

(2001) and Boulatov and Severinov (2019), the design of tie-breaking rules becomes an

important element of the mechanism.

Using equation (1.23), the Lagrangian L̂ rewrites

L̂ =

∫
Vn

{
max
i∈N

δi(vi | xi,mi, λ) −
∑
i∈N

riδi(vi | xi,mi, λ)
}∏
k∈N

dF(vk)

+
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili.

The following result is a generalization of Boulatov and Severinov (2019), Theorem 1 (p.

15). Define first,

δ−i (mi | xi,mi, λ) = lim
vi↑mi

δi(mi | xi,mi, λ) = α(mi | λ) +
τi

f(mi)
,
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then,

Theorem 6 A solution to the maximization of L̂ is such that

1. For all i ∈ N such that mi 6 mj for some j 6= i, δi(vi | xi,mi, λ) is continuous at vi = mi,

that is,

τi =

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
. (1.24)

2. If it exists, agent z1 ∈ N such that maxi 6=z1 mi < mz1 < v then δz1(mz1 | xz1 ,mz1 , λ) >

δ−z1
(mz1 | xz1 ,mz1 , λ) = maxi 6=z1 δi(mi | xi,mi, λ). Hence, we have

α(mz1 | λ) +
τz1

f(mz1)
= max

i 6=z1

∫v
mi
α(vi | λ)dF(vi) +mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)
. (1.25)

Proof. See Appendix B. �

Although complex, Theorem 6 gives one important simple result: At vi = mi, the

ironed virtual valuation δi(· | ·) is either continuous or has a discontinuous upward jump.

Hence, combined with the fact that by definition δi(· | ·) is increasing on [v,mi], the

ironed virtual valuation is therefore nondecreasing for all vi ∈ V . It follows that the

allocation rule that maximizes L̂, equation (1.23), is nondecreasing in vi. Thus, Si is also

nondecreasing in vi and pointwise maximization of L̂ satisfies (IC1). Then the following

holds.

Theorem 7 If there exists an x := (x1, . . . , xn) ∈ ×i∈N[v, xi] and a solution to the following

problem,

(A) max
s,m,U,τ,χ

L̂ =

∫
Vn

∑
i∈N

(si(v) − ri
)
δi(vi | xi,mi, λ)

∏
k∈N

dF(vk)

+
∑
i∈N

(χi + τi − λ)Ui(xi) +
∑
i∈N

τili

s.t. si(v) > 0 ∀i ∈ N, v ∈ Vn∑
j∈N

sj(v) = 1,
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(B) For all i ∈ N, Si(vi) = ri for vi ∈ [xi,yi].

Then if (s∗,U∗,m∗, τ∗,χ∗) satisfies (A) and (B) it also solves the full problem.

Proof. See Appendix B.

From Theorem 7, directly maximizing L̂ subject to the resource constraints is sufficient

to obtain the solution to the general problem. So, the second-best solution amounts to give

the final ownership to the agent with the highest ironed virtual valuation characterized by

δi(vi | ·). Those ironed virtual valuations are nondecreasing in vi so that higher valuations

give (weakly) better chances to receive final ownership. In case of tie (in terms of ironed

virtual valuation), however, the second-best solution can lead to a situation in which more

than one agent receives final ownership shares.

Yet, it remains to determine to characterize more precisely the ironed virtual valuations

that depend on the endogenously determined cut-off typesm and the Lagrange multipliers

τ associated with (CC1). The following three corollaries derived from Theorem 6 help

better characterize the ironed virtual valuations. The proofs are relegated to Appendix B.

Corollary 3 At optimum, τi is decreasing in mi for all i ∈ N.

Corollary 4 For all i ∈ N such that δ−i (mi | xi,mi, λ) = δi(mi | xi,mi, λ), δi(mi) is increasing

in mi.

Corollary 5 There is a bijection between m = (m1, . . . ,mn) and τ = (τ1, . . . , τn) according to

equations (1.24) and (1.25).

To illustrate the intuition of these results, take two agents with mi 6 mj, then τi > τj
from Corollary 3. From Corollary 4, δi(mi | xi,mi, λ) 6 δj(mj | xj,mj, λ). Loosely speaking,

agent j is given and advantage over agent i in terms of ironed virtual valuation for large

valuations as δi(mi | xi,mi, λ) 6 δj(mj | xj,mj, λ) but this advantage is compensated by a

disadvantage for middle range valuations as τi > τj implies that α(u | λ) + τi
f(u) > α(u |

λ) +
τj
f(u) for some u ∈ V .

Corollary 5 shows that the relationship between the cut-off types m and the Lagrange

multipliers τ is a one-to-one relationship. It follows that determining the optimal values
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of m (resp. τ) uniquely determines the optimal values of τ (resp. m) therefore greatly

simplifying the problem.

Moreover, differentiating L̂ with respect to Ui(xi) gives χi + τi − λ = 0. Hence, for

any λ > 0 (i.e. nonnegative weight on collected revenue), it is clear that χi and τi cannot

be simultaneously null, that is, either the individual rationality or the cash constraint

(or both) is binding. As χi = λ− τi for all i ∈ N it is straightforward that if mi 6 mj

then χi 6 χj as τi > τj. If some agent j with cut-off mj gets some rent at optimum,

i.e. Uj(xj) > 0, all agents i with a lower cut-off mi 6 mj must also get some rent, i.e.

Ui(xi) > 0 as χi 6 χj = 0 implies χi = 0. Therefore, there is a clear relationship between

the cut-off value mi and the presence of rents.

In order to obtain a more detailed characterization of the second-best solution, the

next subsection investigates the case of bilateral equal-share partnerships.

1.6.3. Bilateral Equal-Share Partnerships

Consider a partnership with n = 2 whose partners are denoted by i and j. To focus on the

problem of cash-constraints, assume equal distribution of ownership shares r1 = r2 = 1
2 .

From Theorem 7, a solution to the second-best problem must be such that Si(vi) = ri
for all vi ∈ [xi,yi] and Sj(vj) = rj for all vj ∈ [xj,yj]. In particular, Si(xi) = Sj(xj) = 1

2 .

Assume xi < xj, then δi(u) = δj(u) for all u ∈ [v, xi]. It follows that Si(u) = Sj(u) for all

u ∈ [v, xi]. But then as Si(xi) = Sj(xj) = 1
2 it must be that Sj(w) = 1

2 for all w ∈ [xi, xj]

as Sj must be nondecreasing. Yet, for Sj(w) to be constant on w ∈ [xi, xj] it is necessary

that δj(w) is also constant, however, xi < xj implies that δj(w) is strictly increasing on

w ∈ [xi, xj]. Hence, xi < xj is not possible. The exact same reasoning applies for xi > xj.

Therefore, the only possible solution is xi = xj =: x∗.

Now, it is possible to characterize the relationship between the cash resources li and lj
with the threshold values mi and mj.

Lemma 5 If li > lj then mi > mj.
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Proof. Assume that li > lj but assume instead that mi < mj. Then, τi > τj and yi < yj
from the definition of yi, equation (1.22). Moreover τi > τj implies that τi > 0 and

thus (CC1) is binding for agent i. Moreover, τi > τj implies that δi(u) > δj(u) for all

u ∈ [yi,mi] and thus Si(u) > Sj(u) for all u ∈ [yi,mi]. From Corollary 4, δi(mi) < δj(mj)

and then Si(mi) 6 Sj(mj). Then, as (CC1) must be satisfied for agent j. Notice that as

mi < mj it must be also be that χi < χj so that χj > 0 and thus Uj(xj) = 0. Therefore,

(CC1) for agent j writes

lj >mj

(
Sj(mj) −

1
2

)
−

∫mj
yj

(
Sj(u) −

1
2

)
du

= mi

(
Sj(mj) −

1
2

)
+

∫mj
mi

(
Sj(mj) − Sj(u)

)
du−

∫mi
yj

(
Sj(u) −

1
2

)
du

> mi

(
Si(mi) −

1
2

)
−

∫mi
yj

(
Sj(u) −

1
2

)
du,

where the third line stems from the fact that Si(mi) 6 Sj(mj) and,
∫mj
mi

(
Sj(mj)−Sj(u)

)
du >

0 as mi < mj and Sj(mj) > Sj(u) for all u ∈ [mi,mj].

Assume first that mi 6 yj, then
∫mi
yj

(
Sj(u) −

1
2

)
du = 0 as Sj(u) = 1

2 for all u ∈
[mi,yj] ⊂ [x∗,yj]. Assume now thatmi > yj, then

∫mi
yj

(
Sj(u)−

1
2

)
du 6

∫mi
yi

(
Si(u)−

1
2

)
du

as Si(u) > Sj(u) for all u ∈ [yj,mi] and Si(u) − 1
2 > 0 for all u ∈ [yi,yj]. Hence, in both

cases,

lj > mi

(
Si(mi) −

1
2

)
−

∫mi
yj

(
Sj(u) −

1
2

)
du > mi

(
Si(mi) −

1
2

)
−

∫mi
yi

(
Si(u) −

1
2

)
du

= Ui(xi) + li,

where the equality holds as (CC1) binds for agent i. From (IR), Ui(xi) > 0 so that the

above result implies that li 6 lj, contradicting the initial assumption that li > lj. Therefore,

li > lj implies that mi > mj. �

Assume now, that l2 > l1. It follows from Lemma 5 that m1 6 m2 and thus τ1 > τ2.

Figure 1.1 illustrates the different possible shapes for the ironed virtual valuations of

each agent where it is assumed, without loss of generality, that V = [0, 1] to simplify the

exposition.
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x∗ y1 y2 m1 m2 1

v

δi(vi | xi,mi, λ)

(a) Case 1

x∗ y1 = y2m1 = m2 1

v

δi(vi | xi,mi, λ)

(b) Case 2

x∗ y1 y2 m1 m2 = 1

v

δi(vi | xi,mi, λ)

(c) Case 3

Figure 1.1: Ironed virtual valuations for agent 1 (red) and 2 (green) when l1 < l2.
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Case 1 illustrates the case in which both agents are cash-constrained but l1 and l2 are

far apart. In that case, agent 2 is defined as in equation (1.25) of Theorem 6 and agent

1 by equation (1.24). Therefore agent 1 has a continuous ironed virtual valuation at m1

while agent 2’s ironed virtual valuation jumps at m2. Both agents are similar for low and

medium valuations (below y1) but then agent 1 is advantaged over [y1,m1] and agent 2 is

advantaged over [m1, v].

In case 2, the two agents share the same cut-off m1 = m2. This happens whenever they

are both cash-constrained and the difference between l1 and l2 is small. As m1 = m2 it

follows that τ1 and τ2 are defined by equation (1.24) so that both ironed virtual valuations

are continuous at m1 = m2.

Case 3 occurs when agent 1 is cash-constrained while agent 2 is almost not cash-

constrained. In that case, agent 2’s ironed virtual valuation is not distorted for large

valuations but agent 2 is still disadvantaged over agent 1 for some valuations above y1.

1.6.4. Budget Balanced Second-Best Mechanisms

Now, assume that the goal is to maximize the ex ante surplus subject to incentive

compatibility, individual rationality, cash constraints and budget balance as in Section

1.3.22 This problem can be written as

max
s,t

∑
i∈N

E
[
vi(si(v) − ri)

]
,

subject to incentive compatibility, individual rationality, cash constraints and −
∑
i∈N E

[
ti(v)

]
>

K. Where K ∈ R+ is a given budget limit that should not be exceeded by the transfers

made to the agents. Denote by λ > 0, the Lagrange multiplier associated with the budget

balance constraint so that the problem rewrites,

max
s,t

∑
i∈N

E
[
vi(si(v) − ri)

]
+ λ
(
−
∑
i∈N

E
[
ti(v)

]
−K

)
,

22Although, as previously said, I restrict the analysis to ex ante budget balanced mechanisms rather than
ex post budget balanced due to the complexity of the latter.
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subject to incentive compatibility, individual rationality and cash constraints. Notice that

maximizing this objective is equivalent to maximize the following objective

max
s,t

(1 + λ)W λ
1+λ

(s, t) − λK,

subject to incentive compatibility, individual rationality and cash constraints and where

Wω is given by equation (1.18), i.e. the objective function of the problem solved in Section

1.6, where λ is replaced by λ
1+λ and it is clear that λ

1+λ ∈ [0, 1).

Therefore, maximizing the ex ante surplus subject to incentive compatibility, individual

rationality, cash constraints and budget balancedness is equivalent to solve the second-best

problem derived in Subsection 1.6.2 for a well chosen λ.

1.7. EXTENSIONS

1.7.1. Other Ownership Structures

The ex post efficient dissolution condition, the Equivalence Theorem and the auction

(Theorems 1, 2, 3, 4 and 5) actually apply to more general settings than the partnership

problem discussed above. The interpretation of the setting as a partnership problem lies in

the assumption that for all i ∈ N, ri ∈ [0, 1] and
∑
i∈N ri = 1, that is, each partner initially

owns a share of an asset which is then redistributed to the one with the highest valuation.

Although crucial for the characterization of optimal initial ownership structures in

Section (1.4) and their interpretation, this assumption plays a very limited role in the

derivation of Theorems 1-5. Coming back to Section 1.3, recall that IIR can be written

as Hi 6 C(ri) where C(ri) := infvi
{

E−ig(v) − viri
}

. From there on, Theorems 1-5 can be

written only using the definition of C(ri) without any particular reference to the particular

outside options viri.

Consider the following. If agent i ∈ N refuses to participate in the mechanism, then it

receives ϕi(v; θ, l) ∈ [0, v] where ϕi is assumed to be concave in vi and θ ∈ Rn
+ is some

vector of parameters where θi ∈ R+ is associated with agent i. Notice that ϕi may depend

on all valuations, on the cash resources and on some other parameters defining the agents.
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Setting ϕi(v; θ, l) := viθi with
∑
i∈N θi = 1 simply replicates the ownership structure

investigated in the rest of the paper. In the general case, IIR writes

viS
∗
i (vi) + T

∗
i (vi) − E−iϕi(v; θ, l) > 0, for all vi ∈ V , i ∈ N.

Replacing T∗i (vi) := E−it
∗
i (v) where t∗i (v) is given by equation (1.2), IIR rewrites

Hi 6 E−ig(v) − E−iϕi(v; θ, l), for all vi ∈ V , i ∈ N.

Define for each i ∈ N,

Zi(θ, l) := inf
vi∈V

{
E−ig(v) − E−iϕi(v; θ, l)

}
,

then IIR rewrites

Hi 6 Zi(θ, l), for all i ∈ N.

The function Zi(·) serves the same role as C(·) in Section 1.3. It defines the maximal

amount that can be collected on agent i without violating their interim individual ratio-

nality constraint. Hence, v∗i ∈ arg minvi
{

E−ig(v) − E−iϕi(v; θ, l)
}

is agent i’s worst-off

type which is characterized by the first-order condition of the minimization problem:

F(v∗i )
n−1 = ∂

∂vi
E−iϕi(v; θ, l).23

The condition for the existence of ex post efficient dissolution (with Bayesian or

Dominant Strategy mechanisms) then simply rewrites

∑
i∈N

min
{
Zi(θ, l), li

}
> B.

The equivalence theorems still hold and the cash-constrained auction (Section 1.5) still

applies by modifying the side payments accordingly. Therefore, the dissolution condition

applies to more general settings than the ones with outside options of the form viri.

23The first-order condition is necessary and sufficient. Indeed the second-order derivative of E−ig(v) −

E−iϕi(v; θ, l) immediately writes (n− 1)f(vi)F(vi)n−2 − ∂2

∂v2
i

E−iϕi(v; θ, l) < 0 as ϕi(v; θ, l) is assumed to

be concave in vi.
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Example 1: Allocation of a Private Good. The simplest and most general extension

of the partnership dissolution framework is that of the allocation of a private good to

agents with type-dependent outside opportunities. Assume the state wants to privatize a

publicly-owned asset (road, spectrum, . . . ). A group of n candidate firms is considered.

None of the firms has initial ownership rights in the publicly-owned asset but each has

some outside opportunities that likely depend on their ability to efficiently run a business.

Applying the partnership dissolution framework with general outside opportunities

ϕi(·) directly provides the mechanism that efficiently allocates the asset to the most

efficient firm. Those kinds of allocation problems generally involve highly valued assets

and require large monetary transfers to get control rights. As previously showed, the

mechanism I propose performs better than that of CGK in the presence of limited cash

resources and could be used to help small firms with low cash resources to compete

against larger well-established incumbents.

Example 2: Silent Partners. This example is inspired by Ornelas and Turner (2007).

Assume n partners jointly own a business where each of them can claim a share ri ∈ [0, 1]

(and
∑
i∈N ri = 1) of total output value. Each partner’s valuation vi ∈ V represents their

ability to run the business and the business value is given by the valuation of the partner

in charge, say partner 1. In this setting, it is assumed that partner 1 has claims r1 on total

output value but is also given control rights over the business. This framework provides a

way to unbundle control rights from ownership rights on the value of the output.

Let (with a slight abuse of notations) ϕ1 := v1r1 and ϕj := E−jv1rj for all j 6= 1. The

difference with the standard case is that if agent i ∈ N refuses to participate in the

mechanism, the business continues as usual, that is, it is still worth v1.

Assume now that the partners consider dissolving their partnership and let Zi(ri) be

partner i’s maximal payment before refusing to participate in dissolution. Then Z1(r1) =

C(r1) as partner 1 exhibits exactly the same outside option as in the previous analysis.

On the contrary, for each j 6= 1, Zj(rj) = infvj
{

E−jg(v) − rjE−jv1
}

=
∫v
v xdF(x)

n−1 −

rj
∫v
v xdF(x) where it is easy to show that the worst-off type is v∗j = v for all j 6= 1. The

dissolution condition therefore writes
∑
i∈N min{Zi(ri), li} > B.

Let n = 3, F(vi) = vi and V = [0, 1]. Then Z1(r1) = 2/3 − (2/3)r3/2
1 and Zj(rj) =
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2/3 − (1/2)rj for j 6= 1. In the absence of cash constraints, dissolution is possible if and

only if r1 6 9/16 and the remaining shares can be distributed arbitrarily between the silent

partners. Furthermore, the extreme ownership structure where r1 = 0 is also dissolvable.

With cash-constraints, however, those extreme ownership structures where r1 is close to

zero will generally prevent ex post efficient dissolution. Assume for instance that partner 1

has l1 = 1/2 while the other two partners are not cash-constrained. Then, ex post efficient

dissolution is impossible whenever r1 < 1/3. Cash constraints somehow prevents extreme

ownership structures to be desirable in some cases.

1.7.2. Asymmetric Distributions of Valuations

Most of the results concerning ex post efficient dissolution mechanisms naturally extends

to asymmetric distribution of the agents’ valuations. More precisely, Theorems 1, 2, 3 and

4 still hold with only slight modifications of the dissolution condition for the first two. I

give the main elements of the proof for Bayesian mechanisms which mainly consists in

the construction of the transfer function to satisfy EPCC. The case of Dominant Strategy

mechanisms can easily be obtained using this transfer function and the proof of Theorem

2 and is therefore omitted.

Extending the analysis to asymmetric distributions of valuations is important as many

applications of the partnership dissolution framework can be better represented that way.

In the divorce problem for instance, the asset that has to be reallocated might be the

family house of one of the spouses. The family house might have a low market value

but a large sentimental value for the spouse who has spent their childhood in the family

house. Therefore it is more likely that this spouse has a larger valuation for the family

house than the other one, i.e. distributions of valuations are likely to be asymmetric. In

the biotechnology sector, large well-established firms partner with small young firms to

develop new research. It is more likely that large firms have higher valuations (as they

are more capable of using the results of the research) than small firms. The question is

therefore to understand how asymmetric distributions of valuations and limited cash

resource interplay and affect the dissolution condition.

The Dissolution Condition. Consider the same setting as the one described in Section 1.2

except for the distribution of valuations. Assume that partner i ∈ N has valuation vi ∈ V



61
CHAPTER 1. PARTNERSHIP DISSOLUTION WITH

CASH-CONSTRAINED AGENTS

where each vi is independently distributed from an absolutely continuous cumulative

distribution function Fi. Let fi = F ′i be the probability distribution function for vi. For

convenience for any x ∈ V , let GGG(x) :=
∏
k∈N Fk(x), GGGi(x) :=

∏
k 6=i Fk(x) and GGGij(x) :=∏

k 6=i,j Fk(x) denote the distributions of the maximum of all valuations, all valuations

except vi and all valuations except vi and vj, respectively.

Proposition 1 holds with asymmetric distributions of valuations (see Makowski and

Mezzetti (1994)), then the transfer function of partner i ∈ N must write ti(v) = g(v) −

vis
∗
i (v) − hi(v). Recall that the ex ante cost of implementing a Groves mechanism writes

G := Eg(v) =
∫
V xdGGG(x) as in the case of symmetric distributions of valuations. The

main difference concerns the upper bound of how much can be taken from partner i

without violating their individual rationality constraints. In Section 1.2, this upper bound

was defined by C(ri) = infvi
{

E−ig(v) − viri
}

so that two partners with the same initial

ownership shares ri = rj had the same upper bounds C(ri) = C(rj). With asymmetric

distributions of valuations two agents with the same initial ownership shares may have

different upper bounds. Formally, simply let Ci(ri) := infvi
{

E−ig(v) − viri
}

denote this

upper bound in the asymmetric case. The only difference is that now each partner may

have a different function Ci(·) depending on their cumulative distribution function Fi.

These new pieces of notations are sufficient to state the result extending the analysis to

asymmetric distributions of valuations.

Proposition 8 An EF, IIC (resp. EPIC), IIR, EPBB (resp. EABB) and EPCC dissolution

mechanism exists if and only if

∑
i∈N

min{Ci(ri), li} > (n− 1)G. (1.26)

Proof. I provide a sketch of the main elements of the proof for Bayesian mechanisms.

See Appendix C for further details. The “only if” part (necessity) is obtained exactly

as in the proof of Theorem 1: Simply replace C(ri) by Ci(ri) in equation (1.6) and then

combining it with (1.7) and (1.4) it gives (1.26).

The “if” part (sufficiency) requires the construction of an appropriate transfer function.

Again, using the transfer function proposed by Dudek, Kim, and Ledyard (1995) is helpful
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for the cash-constrained case. Consider the following:

ti(v) :=


−

∫
vi

v

∑
k 6=i

∫x
vGGG(y)dy

GGG(x)

fk(x)

Fk(x)
dx−

n− 1
n

v−φi if ρ(v) = i∫
vj

v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−φi if ρ(v) = j 6= i,

(1.27)

where ρ(v) is defined as in Section 1.3 and φi ∈ R is a constant.

It is immediate to see from (1.27) that EPBB is equivalent to
∑
i∈Nφi = 0. It is also EF

as it allocates all the ownership shares to the partner with the highest valuation. Moreover,

it is clear that the minimum of this function is attained when ρ(v) = i and vi = v, that is

min
v∈Vn

ti(v) = φi −

∫v
v

∑
k 6=i

∫x
vGGG(y)dy

GGG(x)

fk(x)

Fk(x)
dx−

n− 1
n

v.

A little algebra on the integral term (see Appendix C for detailed computations) shows

that EPCC can be written as

φi 6
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+ li. (1.28)

Computing the interim transfer Ti(vi) := E−iti(v) gives

Ti(vi) =

∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+

∫v
vi

xdGGGi(x) −φi,

Detailed computations of Ti(vi) and proof that the mechanism is IIC can be found in Ap-

pendix C. The characterization of C(ri) =
∫v
v∗i (ri)

xdF(x)n−1 given by equation (1.15) natu-

rally extends to asymmetric distributions of valuations as follows: Ci(ri) =
∫v
v∗i (ri)

xdGGGi(x),

where v∗i (ri) is the worst-off type that solves infvi
{

E−ig(v) − viri
}

which is given by

GGGi(v
∗
i (ri)) = ri. As in CGK, satisfying IIR is equivalent to Ti(v∗i (ri)) > 0. Therefore, using

the expression of Ci(ri), IIR can be written as

φi 6
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G+ Ci(ri). (1.29)
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Combining equations (1.28) and (1.29) and simplifying gives

φi 6 min{Ci(ri), li}+
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G. (1.30)

Simply let

φi = min{Ci(ri), li}+
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx+

1
n
v−G−

1
n

∑
j∈N

min{Cj(rj), lj}− (n− 1)G

 .

Given that equation (1.26) is satisfied, it is then immediate that φi satisfies equation (1.30)

so that the mechanism is IIR and EPCC. For EPBB, it is easy to show that
∑
iφi = 0 holds

after noticing that
∑
i∈N
∫v
v

∫x
vGGG(y)dy

GGG(x)

fi(x)

Fi(x)
dx = G− v where the result is obtained by

integration by parts. �

Some Characterization Results. Providing a full characterization of the dissolution

condition with asymmetric distributions of valuations and asymetric cash resources is

not very insightful. Many subcases can occur depending on the various initial conditions

for distributions of valuations and for cash resources. Instead, I provide particular

characterization results to illustrate some of the effects of asymmetric distributions of

valuations on optimal initial ownership structures.

In order to make meaningful and easy comparisons between the partners, assume that

distributions of valuations can be ranked according to first-order stochastic dominance as

follows: For all x ∈ V , F1(x) 6 F2(x) 6 · · · 6 Fn(x). It follows that for any i, j ∈ N with

i < j, partner i is more likely to have a higher valuation than partner j. For any i < j and

x ∈ V , notice that GGGi(x) = GGGj(x)
Fj(x)

Fi(x)
> GGGj(x) as Fi(x) 6 Fj(x). Given that for any k ∈ N

and r̂ ∈ [0, 1], GGGk(v∗k(r̂)) = r̂ then for any i, j with i < j, v∗i (r̂) 6 v
∗
j (r̂) as Gi(x) > Gj(x) and

Gk(x) is increasing for any x ∈ V . It follows that for any i, j with i < j and any r̂ ∈ [0, 1],
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Ci(r̂) 6 Cj(r̂) as

Ci(r̂) − Cj(r̂) =

∫v
v∗i (r̂)

xdGGGi(x) −

∫v
v∗j (r̂)

xdGGGj(x)

= v∗j (r̂)GGGj(v
∗
j (r̂)) − v

∗
i (r̂)GGGi(v

∗
i (r̂)) −

∫v
v∗i (r̂)

GGGi(x)dx+

∫v
v∗j (r̂)

GGGj(x)dx

=

∫v
v∗j (r̂)

[GGGj(x) −GGGi(x)]dx−

∫v∗j (r̂)
v∗i (r̂)

[GGGi(x) − r̂]dx 6 0,

where the second line is obtained after integrating the two terms by parts and the third

line uses the fact thatGGGi(v∗i (r̂)) = GGGj(v
∗
j (r̂)) = r̂. The inequality follows fromGGGi(x) > GGGj(x)

for all x ∈ V , v∗i (r̂) 6 v
∗
j (r̂) and GGGi(x) > r̂ for x ∈ [v∗i (r̂), v

∗
j (r̂)] so that the first is always

nonpositive and the second one always nonnegative.

Consider now the optimal ownership structure r∗ ∈ arg maxr∈∆n−1
∑
i∈N Ci(ri) in the

absence of cash constraints. Recall that from the Envelope Theorem, C ′k(rk) = −v∗k(rk),

then optimality conditions implies C ′i(r
∗
i ) = C ′j(r

∗
j ) for all i, j, which is equivalent to

v∗i (r
∗
i ) = v

∗
j (r
∗
j ). As v∗i (r

∗
i ) 6 v

∗
j (r
∗
j ) and v∗k(·) is increasing for all k ∈ N, it follows that the

initial ownership structure maximizing
∑
i∈N Ci(ri) must satisfy r∗1 > r

∗
2 > · · · > r∗n. This

result is the one obtained by Figueroa and Skreta (2012), Corollary 1.

Intuitively, Ci(r̂) 6 Cj(r̂) for i < j means that less money can be collected on partners

whose valuations are more likely to be high as they are more likely to have a higher initial

outside option. Optimality conditions reveal that it is better to give more initial ownership

rights to those partners as already few money can be collected on them and fewer initial

ownership rights to partners who are more likely to have low valuations in order to

collect larger amount of money from them. This feature is reminiscent of the results of

Figueroa and Skreta (2012) who characterize optimal ownership structures in partnership

dissolution problems with asymmetric distributions of valuations. They show that if

asymmetries in distributions of valuations are quite important, the optimal ownership

structures might be very extreme. Limited cash resources, however, may mitigate those

extreme ownership structures as it is illustrated in the following example.

A Two-agent Example. Take the case of a large pharmaceutical firm i and a small R&D

firm j forming an alliance to develop a new drug. Ownership shares ri and rj := 1 − ri
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represent initial claims on the output generated with the new drug. It is reasonable to

think that the pharmaceutical firm has a higher potential than the R&D firm to distribute

the drug once it has been developed. This idea is simply modeled by assuming that

the pharmaceutical firm is more likely to have a higher valuation for the drug than the

R&D firm. Then, let Fi(x) 6 Fj(x) for all x ∈ V . Furthermore, the small R&D firm can

be assumed to be financially constrained while I assume that the large firm is not for

convenience. Let li = +∞ and lj < +∞ and define r∗i ∈ arg maxri∈[0,1] Ci(ri) + Cj(1 − ri).

Consider first the case in which lj > Cj(1 − r∗i ). Then, it is clear that r∗i is also the

solution to maxr̂i Ci(r̂i) + min{Cj(1 − r̂i), lj}. Previous computations show that r∗i > r
∗
j , i.e.

the pharmaceutical firm should have more initial ownership rights as it is more likely to

be the final owner of the drug. If asymmetries in distributions of valuations are large,

then it can become optimal to initially give a very large share of ownership rights to the

pharmaceutical firm.

But now consider the case in which lj < Cj(1 − r∗i ). It is clear that r∗i is not the optimal

ownership structure anymore. Indeed, take r̂i such that Cj(1 − r̂i) = lj. As Cj(·) is a

decreasing function this implies that r̂i < r∗i and as Ci(·) is also a decreasing function it

implies that Ci(r̂i) > Ci(r
∗
i ). It follows that Ci(r̂i) + Cj(1 − r̂i) = Ci(r̂i) + lj > Ci(r

∗
i ) + lj.

If it were beneficial to further decrease r̂i then the left derivative of Ci(ri) + Cj(1 − ri) at

ri = r̂i would be negative, i.e., C ′i(r̂i) −C ′j(1− r̂i) < 0. But from optimality conditions recall

that C ′i(r
∗
i ) = C ′j(1− r

∗
i ) and thus C ′i(r̂i) > C ′i(r

∗
i ) = C

′
j(1− r

∗
i ) > C ′j(1− r̂i) as C ′i(·) and C ′j(·)

are both decreasing. Therefore, the left derivative of the objective at ri = r̂i is nonnegative

and r̂i is the solution to the problem when lj < Cj(1 − r∗i ).

In the latter case, r̂i < r∗i , that is, the distortion in initial ownership rights due to

asymmetries in distributions of valuations is mitigated by the presence of cash constraints.

Giving more initial ownership shares to the pharmaceutical firm is good as it is likely

that it will efficiently be the final owner of the drug but at the same time it could make

impossible an efficient buyout by the financially-constrained R&D firm.
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1.7.3. Partnership Formation Game

Disposable financial resources are not exogenous to the partnership problem. Partners

initially invest some of their financial resources to contribute to the partnership assets

and receive cash flows from the day-to-day operations of the partnership. As a result,

disposable financial resources of a partner at the dissolution stage is most likely to depend

on their the initial ownership stakes. I consider now the following problem.

An exogenous number of agents n > 2 decide to form a partnership which requires

and initial investment of X ∈ R+ and future value of vi ∼ F(vi) for partner i. In the first

stage, partners choose an initial ownership structure r = (r1, . . . , rn) ∈ ∆n−1 which fully

determines the allocation of initial investment and agree on an ex post efficient dissolution

mechanism. That is, partner i with initial ownership share ri has to invest riX of their own

financial resources. The disposable financial resources of partner i after their investment

riX is denoted by li(riX), where li(0) represents their initial financial resources prior to

the investment. In the second stage, each partner privately learns their valuation vi and

dissolution occurs according to the previous agreement. In the dissolution mechanism,

ex post cash constraints are determined by the partners disposable financial resources

li(riX).

I impose some structure on the initial asset value and disposable financial resources.

Assumption 3 The initial investment X is lower than the expected maximal valuation G =

E[maxi∈N vi], that is X < G.

This assumption simply ensures that forming the partnership is ex ante beneficial.

Indeed, assuming that ex post efficient dissolution is feasible, the expected value of the

partnership is G as the asset is finally allocated to the partner with the highest valuation.

Initial investment is X so that the partnership is ex ante beneficial when G−X > 0.

The relationship between the initial investment and the final value of the partnership

could be equivalently formulated as follows. Each partner has a final valuation of the

asset vi = X +wi where wi ∼ F(y − X) with support y ∈ [v − X, v − X], that is, each

partner has a final valuation for the asset that can be either lower or greater than the

initial investment cost. With this formulation G = E[maxi∈N X+wi] = X+ E[maxi∈Nwi].
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Therefore, assuming G > X implies that E[maxi∈Nwi] > 0, that is, in expectation there

is at least one partner who values the asset more than the initial cost at the end of the

partnership. The next assumption defines the structure of disposable financial resources.

Assumption 4 After the initial investment at cost riX, the amount of disposable financial re-

sources, denoted by li(riX), is a function li : [0,X]→ R+ such that for all i ∈ N

• li(riX) is decreasing, and twice continuously differentiable;

•
∑
i∈N li(0) > X, li(0) < G and l ′i(0) 6 −1.

The strongest requirement on li(·) is the assumption that it is monotonically decreasing

in invested capital. On the one hand, it is intuitive that after investing in the asset, each

partner has less financial resources at their disposal.24 On the other hand, it is generally

the case that partners receive operating cash flows proportional to their ownership shares

in the partnership so that a larger initial contribution to the asset gives rights to a larger

share of operating cash flows. By assuming that li(riX) is a decreasing function of the

initial contribution, I therefore assume that the initial investment of each partner always

outweighs the additional financial resources provided by operating cash flows. Concavity

of li(·) implies that as the initial contribution increases, it is more and more costly in

terms of disposable financial resources. Intuitively, this means that the marginal cost of

finding additional financing capacities is increasing.

The assumption that
∑
i∈N li(0) > X simply ensures that partners have enough total

initial financial resources to purchase the asset at cost X. Then, li(0) < G implies that each

partner’s initial financial resources never exceeds the expected value of the partnership.

This assumption rules out very wealthy partners for whom the partnership potential value

is low compared to their financial capabilities. Finally, l ′i(0) 6 −1 implies that investing

one euro in the asset decreases future disposable financial resources by more than one

euro.

For instance, disposable financial resources could take the linear form li(riX) = αi− riX

where αi 6 G represents the initial financial resources of partner i before investment.

24Those resources do not necessary represent cash resources, they can be borrowing capacities as well.
Then, one can think that after borrowing a large amount of money to finance the initial investment, the
ability to raise further amounts of money is more and more difficult.
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Dissolution Stage. Assume partners have already chosen how to allocate initial contribu-

tion in the first stage so that the initial ownership structure r ∈ ∆n−1 is given. Disposable

financial resources are determined by li(riX) for each partner i ∈ N. Following Section

1.3, ex post efficient dissolution is feasible if and only if

∑
i∈N

min{C(ri), li(riX)} > (n− 1)G. (1.31)

The formation game only affects the distribution of initial ownership shares and financial

resources which must satisfy a very similar necessary and sufficient for an ex post efficient

dissolution mechanism to exist.

The Formation Stage. In the first stage, partners must agree on (i) an allocation of

investments to purchase the asset at cost X and (ii) an allocation of surplus in the ex post

efficient dissolution mechanism.

First, let us define the expected utility of dissolution for each partner. From Proposition

1, the ex post utility of partner i in ex post efficient dissolution mechanism must satisfy

ui(v) = g(v) − hi(v). Let hi(v) = n−1
n G+φi(ri) as in Section 1.3 so that ex ante utility

of partner i writes as Ui(ri) := 1
nG−φi(ri). The first term, 1

nG, is the expected surplus

partner i can derive from obtaining final ownership at the dissolution stage.25 The second

term, φi(ri), is the constant transfer (independent of the realization of valuations) partner

i receives in the mechanism. As in Section 1.3, this transfer must satisfy the following

conditions

∑
i∈N

φi(ri) = 0,

φi(ri) 6 min{C(ri), li(riX)}−
n− 1
n

G, for all i ∈ N,

where the first condition ensures ex post budget balance and the second condition

ensures both interim individual rationality and ex post cash constraints. Any vector

φ := (φ1(r1), . . . ,φn(rn)) satisfying these two conditions will be called feasible.

Now let Wi(ri) := −riX+Ui(ri) denote the expected utility of agent i before signing

25Here 1/n is the ex ante probability that partner i has the highest valuation as valuation are iid.
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the partnership agreement. Agent i is willing to participate in the partnership if Wi(ri) >

0, that is, if their expected utility in the dissolution mechanism exceeds their initial

investment. A partnership agreement is therefore a pair (r,φ) where r ∈ ∆n−1 is the initial

ownership structure (and thus initial contribution to the investment) and φ ∈ Rn is the

vector of constant transfers in the dissolution mechanism. I assume that agents behave

cooperatively to determine the partnership agreement (r,φ), that is, they choose an initial

ownership structure r and future constant transfers φ such that all agents are willing to

participate ex ante and so that ex post efficient dissolution is feasible.

Ex ante participation writes Ui(ri) > riX for all i ∈ N. Using Ui(ri) := 1
nG−φi(ri), it

rewrites as 1
nG−φi(ri) > riX. Interestingly, summing this condition over all i ∈ N gives

the following necessary condition: G > X, which is guaranteed by Assumption 3. For

each agent i ∈ N, this condition also requires that φi(ri) 6 1
nG− riX. The following result

greatly simplifies the analysis.

Proposition 9 Given Assumption 4, the existence of an ex post efficient mechanism guarantees

ex ante participation constraints in the formation game for each agent i ∈ N.

Proof. Assume (r,φ) is such that 1.31 holds. Then, it must be the case that, for all i ∈ N,

φi(ri) 6 li(riX) −
n−1
n G so that U(ri) > G− li(riX). Notice that G > riX+ li(riX) for all

ri ∈ [0, 1] as under Assumption 4, riX+ li(riX) is decreasing in ri from l ′i(riX) 6 −1 and

li(0) < G. It immediately follows that U(ri) > G− li(riX) > riX, i.e., that the ex ante

participation constraint to the formation game is satisfied. �

Intuitively, the ex post efficient dissolution mechanism guarantees to each agent a

utility level that depends on their disposable financial resources. As those resources

decrease at a higher rate than the initial cost of investment, the ex post constraints are

stronger than the ex ante ones. As a result, existence of an ex post efficient dissolution

mechanism is a sufficient condition for ex ante participation. The result of Proposition

9 relies heavily on Assumption 4 and especially on the fact that disposable financial

resources are decreasing at a larger rate than one and that initial financial resources are

less than G.

Efficient Initial Allocation. Let us consider what would be the initial allocations

of ownership so that all agents are willing to participate and ex post efficient disso-
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lution is feasible. First, assume that li( 1
nX) >

n−1
n G. Then one possible efficient ini-

tial allocation is simply ri = 1
n for all i ∈ N, that is, an equal-share partnership. In-

deed, what can be collected on agent at the dissolution stage is given by (1.31) writes∑
i∈N min{C( 1

n), li(
1
nX)} >

∑
i∈N

n−1
n G = (n− 1)G as C( 1

n) >
n−1
n G.

For instance, let n = 2 and assume valuations are uniformly distributed on the unit

interval. Suppose also that li(riX) = αi − riX where αi < G. What are the conditions

on initial financial resources that guarantee the possibility of forming an equal-share

partnership? Straightforward computations gives that G = 2
3 so that li( 1

nX) >
n−1
n G

is equivalent to αi > 1
3 + 1

2X. When the initial investment is null, i.e., X = 0, each

partner must have at least 1
3 = 1

2G of financial resources which is reminiscent of previous

characterization results. When X > 0, initial required financial resources are increasing in

X.

Another interesting question is how should initial ownership rights be allocated when

one partner is relatively more financially constrained than the other one? In Section

1.4, partners with low cash resources were supposed to receive relatively more initial

ownership rights. But this was not taking cash constraints as given. In the partnership

formation game, giving more ownership rights to cash-constrained partners also means

that they will have to incur a larger initial investment. Consider a two-agent partnership

in which partner i has large cash resources but partner j is heavily cash constrained so that

at the equal-share partnership
∑
i∈N min{C( 1

n), li(
1
nX)} = C(1/2) + lj(1

2X) < G. Further

assume that li(riX) + lj(rjX) > G with lk(rkX) = αk− rkX. Consider an increase in partner

i initial share (with respect to equal-share ownership). If it is possible to find ri > 1/2 such

that C(ri) > li(riX) and C(rj) > lj(rjX) then the partnership is ex post efficient dissolvable.

This will typically occur if, for partner i, C(·) decreases at a lower rate than li(·) and the

reverse for partner j. Given assumptions on initial financial resources, this is consistent

with partner i suffering from an increase of financing cost at increasing marginal rate.

The result is ambiguous and is likely to depend on the relative rate of change of financial

resources and minimal collectible fee.
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1.7.4. Financing Dissolution with Outside Parties

The previous analysis shows that feasibility of ex post efficient dissolution relies on a

“well-balanced” distribution of ownership and cash resources among partners. Problems

occur when some partners have too large ownership shares or too few cash resources –

then the budget balance condition prevents poor partners to compensate those with large

ownership shares. In this section, I investigate two extensions in which the partnership

has recourse to an outside party to make ex post efficient dissolution feasible.

External Buyer. Given the nature of the problem, a natural remedy to the non-feasibility

of ex post efficient dissolution mechanisms would be to introduce a new potential buyer

of the partnership asset with no initial ownership and large cash resources, such as a

bank or a private fund. Contrary to current partners, this new potential buyer would

not have to be compensated for the value of already owned ownership shares and would

have large enough cash resources to help to ensure the budget balance condition. In this

section, I investigate to what extent this additional potential buyer can restore feasibility

of ex post efficient dissolution mechanisms.

Consider a partnership with a set of partners N = {1, . . . ,n}, an initial ownership

structure r ∈ ∆n−1 and cash resources l ∈ Rn
+. To simplify the exposition, let C[n](ri) :=

C(ri) be the maximal collectible fee on partner i ∈ N due to interim individual rationality

when reallocation occurs among the n partners only and where C(ri) is defined as in

(1.15). Let G[n] := E[maxi∈N vi] be the expectation of the maximal valuation when there

are n partners. Further assume that
∑
i∈N min{C[n](ri), li} =

∑
i∈N li < (n− 1)G[n], that

is, ex post efficient dissolution is not feasible for this partnership due to heavy cash

constraints.

Suppose that a new potential buyer, denoted by n + 1, with no initial ownership

(rn+1 = 0) and unlimited cash resources (ln+1 = +∞) now participates in the dissolution

mechanism. This potential buyer has valuation vi ∼ F(vi) for the asset. Under this

assumption, the final allocation of the asset is no more limited to original members of the

partnership as it can now be sold to an outside party. The potential buyer can therefore

be modeled as being the n+ 1 partner with no initial ownership and unlimited cash

resources. Therefore, ex post efficient dissolution will allocate final ownership to the
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agent with highest valuation among the set N∪ {n+ 1}. Let C[n+1](ri) denote the maximal

collectible fee on partner i ∈ N∪ {n+ 1} and G[n+1] := E[maxi∈N∪{n+1} vi] the expectation

of the maximal valuation with n+ 1 partners. Feasibility of ex post efficient dissolution

requires that the following holds:

∑
i∈N∪{n+1}

min{C[n+1](ri), li} > nG[n+1].

Equivalently, this condition can be rewritten as

∑
i∈N

min{C[n+1](ri), li}+C[n+1](0) > nG[n+1]. (1.32)

For the n original partners, the addition of a potential buyer with no change in the initial

ownership structure directly leads to an increase in the collectible fee due to IIR, that

is, C[n+1](ri) > C[n](ri).26 Moreover, there is now an additional collectible fee C[n+1](0)

due to the presence of the potential buyer. This fee is the highest possible as C[n+1](ri) is

decreasing in ri. Overall, the addition of the potential buyer strictly increases the left-hand

side of (1.32). However, the right-hand side of (1.32) also increases with the participation of

the potential buyer as G[n+1] > G[n]. This occurs as the cost of implementing an incentive

compatible mechanism increases in the number of participants. Therefore, the question

is whether the increase of collectible fees on original partners and the potential buyer

outweighs the increase in the cost of implementing an incentive compatible mechanism.

The following proposition shows that, unfortunately, it is not the case.

Proposition 10 Let (N, r, l) ∈ {1, . . . ,n}×∆n−1×Rn
+ be a partnership such that ex post efficient

dissolution is not feasible due to cash constraints, i.e.,
∑
i∈N min{C[n](ri), li} =

∑
i∈N li <

(n− 1)G[n]. Then, considering the participation of an additional potential buyer n+ 1 with no

initial ownership share rn+1 = 0 and unlimited cash resources ln+1 = +∞ never allows for ex

post efficient dissolution.

Proof. First, notice from (1.15) that C[n+1](0) = G[n]. It follows that C[n+1](ri) 6 G[n]

as C[n+1](ri) is decreasing in ri. Therefore,
∑
i∈N min{C[n+1](ri), li} =

∑
i∈N li so that

26Recall that C[n](ri) = infvi
{

E−ig(v)− viri
}

. Using the Envelope Theorem, it is immediate that C[n](ri)
is increasing in n.
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collectible fees on original partners do not increase with the addition of the new buyer.

Then total collectible fees on the n+ 1 partners writes
∑
i∈N li +C[n+1](0) =

∑
i∈N li +

G[n] < nG[n] < nG[n+1], that is, the partnership with the n+ 1 new potential buyer is not

feasible either. �

The addition of the potential buyer is not enough to compensate for the lack of

financial resources in the original partnership with n agents. Although this result could

be mitigated by the fact that cash constraints are not that severe initially, the fact that the

potential buyer is assumed to have no ownership and unlimited financial resources make

the result of Proposition 10 quite strong. In other words, it means that the addition of a

potential new buyer can be beneficial only if cash constraints are not very severe so that

the usefulness of doing is likely to be limited.

Coalition of a Partner with a Private Fund. Consider now another possibility

for partners to finance their participation in ex post efficient dissolution mechanisms.

Assume n partners have initial ownership structure r ∈ ∆n−1 and cash resources l ∈ Rn
+.

Suppose that ex post efficient dissolution is not feasible due to very important cash

constraints for one partner, say partner n. Formally, assume
∑
i∈N min{C(ri), li} < (n−

1)G but
∑
i<n min{C(ri), li}+C(rn) > (n− 1)G, that is, non-feasibility of ex post efficient

dissolution is due to partner n low cash resources.

Assume that a private fund proposes to partner n to team up so that if n receives

final ownership, the private fund will receive a share 1 − α ∈ [0, 1] of the asset. The

private fund has unlimited amount of financial resources. I model the coalition between

partner n and the private fund as a single agent. The set of partners therefore becomes

Ñ = {1, . . . ,n − 1, ñ} where ñ denotes the coalition between partner n and the fund.

Initial ownership shares and cash resources are unchanged for partners i < ñ. The

coalition inherits initial ownership shares of partner n, i.e., rñ = rn whereas it has now

unlimited cash resources lñ = +∞. The valuation of the asset in the coalition is given by

vñ ∼ Fñ(vñ | α) where I assume that Fñ(vñ | 0) = F(vñ) and Fñ(vñ | α ′) > Fñ(vñ | α) > F(vñ)

for all α ′ < α < 1. In other words, the more partner n shares the asset with the private

fund, the less likely it is that the coalition has a high valuation (in the first-order stochastic

dominance sense).27 I also assume that the ex post efficient mechanism takes into account

27It seems reasonable to assume that the private fund has generally a lower valuation for the asset than
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the loss induced by the sharing of the asset by partner n and the private fund. Hence, ex

post efficiency considers valuation (v1, . . . , vn−1, vñ) to reallocate ownership.

This problem can therefore be seen as a partnership problem with n partners, initial

ownership structure r = (r1, . . . , rn) and cash resources l = (l1, . . . , ln−1,+∞). Valuations

are drawn from F(vi) for all i < n and from Fñ(vñ | α) for the coalition. As shown in

Section 1.7, the dissolution condition can easily be extended to asymmetric distribution

of valuations. From Proposition 8, ex post efficient dissolution is feasible if and only if∑
i∈N min{Ci(ri), li} > (n− 1)Gwhere Ci(ri) = Cj(rj) for all i < n, j < n and Cn(x) > Ci(x)

for all i < n and x ∈ [0, 1]. Following the same reasoning as in Section 1.7, Ci(ri) 6 C(ri)

for all ri so that less can be collected on partners i < n.

Whether the private fund allows for ex post efficient dissolution is ambiguous. On the

one hand, the private fund relaxes the cash constraint and increases the collectible fees

on partner ñ compared to partner n. On the other hand, the coalition also implies that

collectible fees on partners i < n decrease as Ci(ri) 6 C(ri). The overall effect is highly

dependent on the actual distribution of valuations and initial distribution of ownership

and cash resources. However, the following proposition shows that the coalition may

help to implement the first-best dissolution mechanism if the private fund’s share is low

enough.

Proposition 11 There exists a threshold α̂ ∈ [0, 1) such that ex post efficient dissolution is feasible

for any coalition between partner n and a private fund for all α > α̂.

Proof. Take α arbitrarily close to 1. It follows that all valuations (including that of

partner ñ) are drawn from F(·) as Fñ(· | α) converges in distribution to F(·). Then, we have

approximately Ci(x) = Cn(x) = C(x) for all i < n and all x ∈ [0, 1]. As the private fund

relaxes the cash constraint for partner n, the total collectible fee approximately writes∑
i<n min{C(ri), li}+C(rn) > (n− 1)G so that ex post efficient dissolution is feasible for

α arbitrarily close to 1. Hence, there must exist a threshold α̂ < 1 such that for all α > α̂,

this condition holds. �

partners themselves as the private fund lacks the fundamentals skills to run the business as good as partners
do.
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Proposition 11 therefore states that the coalition between a private fund and the

partner with low cash resources can be beneficial as long as the private fund’s share of

final ownership remains reasonably low. Although I have not investigated the participation

constraint of the private fund, the result of Proposition 11 indicates that the limited share

of ownership granted to the private fund may hinder its willingness to participate. As the

size of final ownership claimed by the private fund is likely to increase in the amount of

financial resources it provides to the coalition, the benefits of the coalition are, once again,

likely to be restricted to cases in which cash constraints are not too severe.

1.8. CONCLUSION

In this paper, I study partnership dissolution problems with cash-constrained agents.

This framework applies to various economic settings such as divorces, terminations of

joint ventures, bankruptcy procedures or land reallocation. Relying on the mechanism

design literature, I construct dissolution mechanisms that perform well even in the

presence of cash-constrained agents. I derive necessary and sufficient conditions for ex

post efficient partnership dissolution with interim (resp. ex post) incentive compatible,

interim individually rational, ex post (resp. ex ante) budget balance and ex post cash-

constrained mechanisms. I show that the dissolution condition is a generalization of the

condition found in CGK. Interestingly, when partners have asymmetric cash constraints,

the equal-share partnership is no more the optimal initial ownership structure (as found

by CGK). Instead, the optimal initial ownership structure allocates relatively more (resp.

less) property rights to more (resp. less) cash-constrained partners. This result sheds light

on the role of the distributions of liquid and illiquid assets in organizations.

I show that the standard equivalence between Bayesian and dominant strategy mech-

anisms remains valid under the assumption of cash-constrained partners. This result

indicates that both classes of mechanisms can be equivalently implemented and that there

is no new restrictions due to the presence of cash-constraints.

I propose a simple “cash-constrained” auction to implement the ex post efficient

dissolution mechanisms. It simply consists in asking agents to submit bids to an auctioneer

who finally allocates ownership rights to the highest bidder. Prices and side payments
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are designed to satisfy all the desired properties of the dissolution mechanism. I further

show that the cash-constrained auction allows to dissolve some partnerships with cash-

constrained agents that CGK’s auction would fail to dissolve.

Finally, I investigate second-best mechanisms whose objective function is a convex

combination of the expected surplus and the expected collected revenues. I characterize

the set of interim incentive compatible, interim individually rational and ex post cash-

constrained mechanism for any allocation rule. I show that the problem can be solved

using a relaxed problem. The solution involves (i) ironing of the virtual valuations of the

partners and, (ii) favors heavily cash-constrained agents towards less cash-constrained

agents for medium-range valuation and (iii) favors less cash-constrained agents towards

heavily cash-constrained agents for high-range valuations. Imposing a budget balance

condition can be simply done by solving the above problem for a well-chosen weight of

the convex combination the expected surplus and the expected collected revenues.

APPENDIX A

Additional computations for Theorem 1. To prove that tCi is IIC, Proposition 1 requires that E−ih
C
i (v) =

Hi where Hi ∈ R is a constant. Taking expectations E−i over equation (1.9) gives

E−ih
C
i (v) =

n− 1
n

E−ig(v) +
1

n− 1

∑
j6=i

E−isj(v)ψ(vj) −ψ(vi)E−isi(v)

+φi

=
n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 +

∫v
vi

ψ(vj)F(vj)
n−2dF(vj) −ψ(vi)F(vi)

n−1
]
+φi.

Replacing ψ(·) by its expression and integrating the third term by part gives

E−ih
C
i (v) =

n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 +

(
−

∫v
v
F(x)ndx+

∫vi
v F(x)

ndx

F(vi)
+

∫v
vi

F(x)n−1dx

)

−

∫vi
v F(x)

ndx

F(vi)

]
+φi

=
n− 1
n

[
viF(vi)

n−1 +

∫v
vi

xdF(x)n−1 −

∫v
v
F(x)ndx+

∫v
vi

F(x)n−1dx
]
+φi.

Notice that, by integration by parts

∫v
vi

F(x)n−1dx = v− viF(vi)
n−1 −

∫v
vi

xdF(x)n−1.
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Plugging this expression into E−ih
C
i (v) gives

E−ihi(v) =
n− 1
n

[
v−

∫v
v
F(s)nds

]
−φi

=
n− 1
n

G−φi,

which concludes the proof. �

Proof of Lemma 1. Notice that,

∫vk
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt = −

[∫t
v F(s)

nds

nF(t)n

]vk
v

+
1
n

∫vk
v
dt

=
1
n

[
vk −

∫vk
v F(s)nds

F(vk)n
− v

]

=
1
n
[vk −ψ(vk) − v] ,

where the first line stems from integration by parts and the second line is obtained using L’Hôpital’s rule,

i.e., limt→v

∫t
v F(s)

nds

nF(t)n
= limt→v

F(t)

nf(t)
= 0.

Then, vk −ψ(vk) = n
∫vk
v

∫t
v F(s)

nds

F(t)n+1 f(t)dt+ v from which it immediately follows that [vk −ψ(vk)] is

nonnegative and increasing in vk ∈ V . �

Proof of Theorem 2. (Necessity) Take a dissolution mechanism (s∗, t∗) satisfying EF and EPIC, i.e.,

satisfying Proposition 1.b. Then, t∗i (v) = g(v) − visi ∗ (vi) − hi(v) with hi(v) is constant in vi. Define

Hi := E−ihi(v), it is then straightforward to see that equations (1.6) and (1.7) necessary in Bayesian

mechanisms are also necessary for dominant strategy mechanisms. As shown in the proof of Theorem 1,

the necessity of equations (1.6) and (1.7) implies the necessity of
∑
i∈Nmin{C(ri), li} > (n− 1)G which is

(1.14).

(Sufficiency) Consider the following transfer function for agent i: t∗i (v) = g(v) − vis
∗
i (v) −Φi where Φi ∈ R

is a constant. From Proposition 1.b., t∗i (v) is EF and EPIC. EABB requires E
[∑

i t
∗
i (v)

]
= 0, which is

equivalent to
∑
iΦi = (n− 1)G. EPCC requires that t∗i (v) = g(v) − vis

∗
i (v) −Φi > −li which is equivalent

to Φi 6 li +
∑
j6=i vjs

∗
j (v) for all v ∈ Vn. Thus, the most restrictive case gives Φi 6 li. Finally, IIR requires

E−ivi(s
∗
i (v) − ri) + E−it

∗
i (vi) = E−ig(v) −Φi − viri > 0 for all vi ∈ V ,

or equivalently that Φi 6 C(ri) with C(ri) := infvi {E−ig(v) − viri}. Aggregating IIR and EPCC, i.e. Φi 6 li
and Φi 6 C(ri), respectively, gives Φi 6 min{C(ri), li} for all i ∈ N.
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Take for instance, Φi = min{C(ri), li} −
∑
k∈Nmin{C(rk),lk}−(n−1)G

n . It is immediate that EABB is

satisfied as
∑
i∈NΦi = (n− 1)G. Moreover, as condition (1.14) is satisfied, i.e.

∑
imin{C(ri), li} > (n− 1)G,

it is clear that Φi 6 min{C(ri), li} therefore satisfying IIR and EPCC as well. �

Proof of Theorem 3. The dissolution mechanism (s∗, t̃) is EF and EPIC then, from Proposition 1.b.,

t̃i(v) = g(v) − vis
∗
i (v) − ki(v−i) for some function ki independent of vi. Let Ki := E−iki(v−i). From EABB,

E
∑
i∈N t̃i(v) = (n− 1)G−

∑
i∈N Ki = 0. Take another dissolution mechanism (s∗, t) with

ti(v) = g(v) − vis
∗
i (v) − hi(v) +

n− 1
n

G−φi −Ki,

where hi(v) is defined by equation (1.9) for which E−ihi(v−i) = n−1
n G − φi and

∑
i∈N hi(v) = (n −

1)g(v)−
∑
i∈Nφi. Then, it is immediate that (s∗, t) is EF and IIC. From (1.11), minv g(v)− visi(v)−hi(v) =

−n−1
n G+φi and then minv ti(v) = −Ki. As t̃ is EPCC, t̃i(v) = g(v) − vis∗i (v) − ki(v−i) > −li for all i ∈ N,

v ∈ Vn which implies that E−i[g(v) − vis
∗
i (v)] − Ki > −li for all i ∈ N, vi ∈ V and then that −Ki > −li

given that the infimum of E−i[g(v) − vis
∗
i (v)] is zero. It follows that minv ti(v) = −Ki > −li so that t is also

EPCC. Straightforward computations shows that
∑
i∈N ti(v) = 0 as

∑
i∈N Ki = (n− 1)G. Finally, notice

that E−iti(v) = E−i[g(v) − vis
∗
i (v)] −Ki = E−it̃i(v) implying that (s∗, t) is payoff equivalent to (s∗, t̃) at

the interim stage and thus also IIR. �

Proof of Theorem 4. The dissolution mechanism (s∗, t) is EF and IIC then, from Proposition 1.a., ti(v) =

g(v) − vis
∗
i (v) − hi(v) where E−ihi(v) =: Hi. Take another dissolution mechanism (s∗, t̃) where

t̃i(v) = ti(v) + hi(v) −Hi

= g(v) − vis
∗
i (v) −Hi.

Then, from Proposition 1.b., t̃ is EF and EPIC. From EPCC, ti(v) = g(v) − vis
∗
i (v) − hi(v) > −li for all

i ∈ N, v ∈ Vn which implies that E−i[g(v) − vis
∗
i (v) −Hi > −li for all i ∈ N, vi ∈ V . This is equivalent to

−Hi > −li for all i ∈ N. Then notice that minv t̃i(v) = −Hi > −li such that t̃ is also EPCC. Computing

E
∑
i∈N t̃i(v) = E

∑
i∈N ti(v) = 0 and thus t̃ is EABB. Finally, as E−it̃i(v) = E−iti(v) for all i ∈ N, vi ∈ V ,

then (s∗, t̃) is interim payoff equivalent to (s∗, t) and also IIR. �

Proof of Proposition 2. (Only if) Assume there exists an EF, IIC, IIR, EPBB and EPCC mechanism (s, t).

From EPCC we have ti(v) > −li for all i ∈ N, v ∈ Vn. Then, simply let t̃i(v) = ti(v) for all i, v and it is

immediate that E−it̃i(vi, v−i) > −li for all i,v. The mechanism (s, t̃) therefore satisfies all the properties of

the mechanism (s, t) and also satisfies interim cash constraints.

(If) Assume there exists an EF, IIC, IIR, EPBB and interim cash-constrained mechanism (s, t̃). As (s, t̃) is

IIC, the transfer rule is Groves in expectations and can be written as t̃i(v) = g(v) − visi(v) − hi(v) with

E−ihi(v) := Hi for all i, vi. The interim cash constraints then writes E−it̃i(vi, v−i) > −li for all i ∈ N,
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vi ∈ V or equivalently

Gi(vi) − E−ivisi(v) −Hi > −li for all i, vi.

This inequality is equivalent to Hi 6 infvi {Gi(vi) − E−ivisi(v)}+ li for all i ∈ N. As the infimum is zero,

we simply have Hi 6 li for all i ∈ N. Remark that this is the same necessary condition to satisfy the cash

constraints as in the proof of Theorem 1, i.e., it is the same necessary condition than for a mechanism with

EPCC. As the other conditions (EF, IIR and EPBB) are the same we can say that we have a mechanism

(s, t̃) only if
∑
imin{Ci, li} > (n− 1)G. But from Theorem 1, we know that this condition is sufficient to

construct a mechanism (s, t) satisfying EPCC. �

Proof of Proposition 3. Starting with Proposition 3.a., assume that r̃i 6 1
n for all i ∈ N. Notice that

maxr∈∆n−1
∑
i∈N C(ri) =

∑
i∈N C(

1
n ) and thus for all r ∈ ∆n−1,

∑
i∈Nmin{C(ri), li} 6

∑
i∈N C(

1
n ). It is

then clear that choosing r∗i = 1
n for all i ∈ N is such that for each i ∈ N, min{C(r∗i ), li} = C(r∗i ) = C( 1

n )

provided that r∗i > r̃i for all i ∈ N. Hence,
∑
i∈Nmin{C(ri), li} =

∑
i∈N C(

1
n ) which is the upper bound.

Consider now Proposition 3.b., i.e. assume that r̃i > 1
n for some i ∈ N. Define L(r, λ) =

∑
i∈Nmin{C(ri), li}+

λ(
∑
i∈N ri − 1) where λ ∈ R is the Lagrange multiplier associated with the constraint

∑
i∈N ri = 1. Notice

that
∑
i∈Nmin{C(ri), li} is concave as C(ri) is concave for each i ∈ N and differentiable everywhere except

at ri = r̃i. Let δriL(r, λ) denote the superdifferential of the Lagrangian in ri, then

δriL(r, λ) = λ+


0 if ri < r̃i

[C ′(r̃i), 0] if ri = r̃i

C ′(ri) if ri > r̃i.

The necessary optimality condition writes 0 ∈ δriL(r, λ) for all i ∈ N. First, assume that there is at least one

r∗j < r̃j. Then λ = 0 and ri > r̃i is impossible as it is impossible to have C ′(ri) = 0 with ri > r̃i (indeed

C ′(ri) = 0 only occurs when v = 0 and ri = 0). But then, if all r∗i 6 r̃i with one strict inequality at least, it

follows that
∑
i∈N r

∗
i <
∑
i∈N r̃i 6 1 which is also impossible. Therefore, it is necessary that ri > r̃i for

all i ∈ N. Assume now that ri > r̃i for all i ∈ N. Then, the necessary optimality condition implies that

λ+C ′(r∗i ) = 0 for all i ∈ N. But then it follows that r∗i =
1
n for all i ∈ N which is impossible as some r̃i > 1

n

contradicting that r∗i > r̃i for all i ∈ N.

Hence, the solution must be such r∗i > r̃i for all i ∈ Nwith at least one equality. Let A := {i ∈ N | r∗i > r̃i}

and B := {j ∈ N | r∗j = r̃j}. Then, for all i ∈ A, λ+C ′(r∗i ) = 0 implies that λ > 0 and r∗i = r∗k for any two

i,k ∈ A. For any i ∈ A, and let r∗i = r̂ with r̂ :=
1−
∑
j∈B r̃j

|A|
. As by assumption r̃1 6 · · · 6 r̃n and for all i ∈ A

it is necessary that r̂ > r̃i, it is possible to rewrite A := {i ∈ N | i < p} and B := {j ∈ N | j > p} for some

p ∈ N \ {1} and r̂ = 1−
∑
j>pr̃j
p−1 . It is also necessary that r̂ 6 r̃j for all j ∈ B. The solution therefore writes

r∗ = (r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) and maxi<p r̃i < r̂ 6 minj>p r̃j. �
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APPENDIX B

Proof of Theorem 6. The right derivative of δi(vi) | ·) writes:

∂+δi(vi | ·)
∂mi

=

0 if vi < mi
f(mi)

1−F(mi)

[
1

1−F(mi)

∫v
mi
α(vi | λ)dF(vi) −α(mi | λ) −

τi
f(mi)

− τimi
1−F(mi)

]
if vi > mi,

then we simply have

∂+δi(vi | ·)
∂mi

=

0 if vi < mi
f(mi)

1−F(mi)

[
δi(mi | xi,mi, λ) − δ−i (mi | xi,mi, λ)

]
if vi > mi.

Now, taking the right derivative of L̂ at mi gives

∂+L̂

∂mi
=

∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v) − ri

∫
V

∂+δi(vi | ·)
∂mi

dF(vi)

+ f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j 6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i)

− ri

(
δ−i (mi | ·) − δi(mi | ·)

)
f(mi).

Notice that the terms that depend on ri cancel out. Thus we obtain

∂+L̂

∂mi
=

∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v)

+ f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i).

First, assume that δ−i (mi | ·) > δi(mi | ·). This is equivalent to say that

τi >

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
.

Using the fact that ∂+δj(vj | ·)/∂mi = 0 for all j 6= i and the expression of the right derivative of δi(vi | ·),
the first term of ∂+L̂

∂mi
rewrites

∫
Vn

∂+ maxi∈N δi(vi | ·)
∂mi

dF(v) =∫
v∈Vn | vi∈[mi,v],maxj6=i δj(vj|·)<δi(mi|·)

f(mi)

1 − F(mi)

(
δi(mi | ·) − δ−i (mi | ·)

)
dF(v) =

f(mi)

∫
v−i∈Vn−1 | maxj 6=i δj(vj|·)<δi(mi|·)

(
δi(mi | ·) − δ−i (mi | ·)

)
dF−i(v−i).
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As for the second term, it rewrites

f(mi)

∫
Vn−1

(
max

{
δ−i (mi | ·), max

j 6=i
δj(vj | ·)

}
− max

{
δi(mi | ·), max

j6=i
δj(vj | ·)

})
dF(v−i) =

f(mi)

∫
v−i∈Vn−1 | maxj6=i δj(vj|·)<δi(mi|·)

(
δ−i (mi | ·) − δi(mi | ·)

)
dF(v−i)

+ f(mi)

∫
v−i∈Vn−1 | δi(mi|·)6maxj6=i δj(vj|·)<δ−i (mi|·)

(
δ−i (mi | ·) − max

j 6=i
δj(vj | ·)

)
dF(v−i).

As the first term of ∂+L̂
∂mi

cancels out with the first term of the above equation we finally get

∂+L̂

∂mi
= f(mi)

∫
v−i∈Vn−1 | δi(mi|·)6maxj6=i δj(vj|·)<δ−i (mi|·)

(
δ−i (mi | ·) − max

j 6=i
δj(vj | ·)

)
dF(v−i).

Therefore, this expression is exactly the same as in Boulatov and Severinov (2019). It follows that is it not

possible that δ−i (mi | ·) > δi(mi | ·) and that the set Ai(·) := {v−i ∈ Vn−1 | δi(mi | ·) 6 maxj6=i δj(vj | ·) <
δ−i (mi | ·)} has positive measure as it would imply that ∂+L̂

∂mi
> 0, contradicting the optimality of mi.

The same reasoning as in Boulatov and Severinov (2019) can be done to prove that it is not possible to

have δ−i (mi | ·) < δi(mi | ·) and the set Bi(·) := {v−i ∈ Vn−1 | δ−i (mi | ·) < maxj6=i δj(vj | ·) 6 δi(mi | ·)}
has a positive measure.

Let δi(mi | ·) be replaced by δi(mi) for convenience of the following lemmas.

Lemma 6 Assume that for some i and j, δ−i (mi) 6 δ
−
j (mj). Then δ−i (mi) 6 δi(mi).

Proof. Assume that δ−i (mi) 6 δ
−
j (mj) for some i and j but δi(mi) < δ−i (mi). Then, as for any k ∈ N,

δk(v) = v we must have δ−i (mi) > v. Then, for all k ∈ N there exists a ṽk ∈ (0,mk] such that δk(vk) <

δ−i (mi) for all vk ∈ [v, ṽk).

At the same time, as v 6 δi(mi) < δ−i (mi) 6 δ
−
j (mj) and δj(v) = v, then, by continuity of δj(vj) there

must exist some ṽj such that δj(ṽj) = δ−i (mi) and a bj > 0 (that can be made arbitrarily small) such that

δi(mi) < δj(vj) < δ
−
i (mi) for all vj ∈ (ṽj − bj, ṽj). Hence, for all vj ∈ (ṽj − bj, ṽj) and all vk ∈ [v, ṽk) for

all k 6= i, j we have δi(mi) < max{δj(vj), maxk6=i,j δk(vk)} < δ−i (mi). As both (ṽj − bj, ṽj) and [v, ṽk) have

non-zero measure, it follows that Ai(·) has positive measure which contradicts the optimality of mi. Thus,

we must have δ−i (mi) 6 δi(mi). �

Lemma 7 Let h1 ∈ arg maxj∈N δ
−
j (mj). Assume either (i) δ−i (mi) < δ

−
h1
(mh1) or (ii) δ−i (mi) = δ

−
h1
(mh1) and

δi(mi) 6 δh1(mh1). Then δi(mi) 6 δ−i (mi).

Proof. Case (i). Assume (i) but suppose that δ−i (mi) < δi(mi). Then, as δk(v) = v for all k ∈ N we must

have δi(mi) > v. For all k 6= i,h1 is it clear that there exists ṽk ∈ (v,mk] such that δk(vk) < δi(mi) for all

vk ∈ [v, ṽk).

Additionally either v 6 δ−i (mi) < δ
−
h1
(mh1) 6 δi(mi) or v 6 δ−i (mi) < δi(mi) < δ

−
h1
(mh1). In both

cases, there must exist a m̃h1 ∈ (v,mh1] such that δh1(vh1) < δi(mi) for all vh1 ∈ [v, m̃h1). As δ−i (mi) <
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δi(mi) there must be a bh1 > 0 (that can be made arbitrarily small) such that δ−i (mi) < δh1(vh1) < δi(mi)

for all vh1 ∈ (m̃h1 − bh1 , m̃h1).

It immediately follows that for all k 6= i,h1, vk ∈ [v, ṽk) and for all vh1 ∈ (m̃h1 − bh1 , m̃h1), δi(mi) <

max{δ−h1
(vh1), maxk6=i,h1 δk(vk)} < δi(mi), i.e., the set Bi(·) has a positive measure, which contradicts the

optimality of mi.

Case (ii). Assume now (ii) and δ−i (mi) < δi(mi). This would imply δ−i (mi) = δ
−
h1
(mh1) < δi(mi) 6

δh1(mh1). It follows that δi(mi) > v and also that the set {vk | δk(vk) < δh1(mh1)} includes [v,mk) for all

k 6= i,h1 as by definition δ−i (mi) = maxj∈N δ−j (mj) < δi(mi) 6 δh1(mh1).

Additionally, we have the {vi | δ
−
h1
(mh1) < δi(vi) 6 δh1(mh1)} = [mi, v] which has positive measure as

mi < v (given that we have a jump in δi(·)).
Therefore, for all vi ∈ [mi, v] and vk ∈ [v,mk) for k 6= i,h1, we have that δ−h1

(mh1) < max{δi(vi), maxk6=i,h1 δk(vk)} 6

δh1(mh1) and thus the set Bh1(·) has positive measure which contradicts the optimality of mh1 . �

Lemma 8 Let h1 ∈ arg maxj∈N δ
−
j (mj) and assume that for i 6= h1, δ−i (mi) = δi(mi) < δ−h1

(mh1) then we

must have δ−i (mi) = δi(mi) < δh1(mh1).

Proof. Assume instead that δh1(mh1) 6 δ
−
i (mi) = δi(mi) < δ−h1

(mh1). It follows that δ−h1
(mh1) > v.

Hence, as for all k ∈ N, δk(v) = v, there exists a ṽk ∈ (v,mk] such that δk(vk) < δ−h1
(mh1) for all vk ∈ [v, ṽk).

Then, as v 6 δh1(mh1) 6 δi(mi) < δ−h1
(mh1), there must exists a m̃i ∈ (v,mi] and a bi > 0 such that

δh1(mh1) 6 δi(vi) < δ
−
h1
(mh1) for all vi ∈ (m̃i − bi, m̃i). Then, the set Ah1 would have positive measure

and this would contradict the optimality of mh1 .

Lemma 9 There exists a unique z1 ∈ arg maxj∈N δ
−
j (mj) and z1 ∈ arg maxj∈H1

δj(mj) such that for all i 6= z1

we have

δ−i (mi) = δi(mi).

and either

min{δ−z1
(mh1), δz1(mz1)} > max

i 6=z1
δi(mi) = max

i 6=z1
δ−i (mi)

or

δz1(mz1) > δ
−
z1
(mz1) = max

i 6=z1
δi(mi) = max

i 6=z1
δ−i (mi).

Proof. Let H1 =
{
h1 ∈ N | h1 = arg maxj∈N δ

−
j (mj)

}
, i.e., the set of agents for which δ−j (mj) is the

maximum. Let Z1 =
{
z1 ∈ H1 | z1 = arg maxj∈N δj(mj)

}
, i.e., the set of agents in H1 for which δj(mj) is

the maximum.

Then, for all i /∈ H1 we must have δ−i (mi) < δ−h1
(mh1) and both Lemma 6 and Lemma 7 (through

condition (i)) apply. Hence δ−i (mi) = δi(mi) for all i /∈ H1.

Now consider i ∈ H1.

1. Case |H1| > 1. Clearly, for all i ∈ H1, Lemma 6 applies and thus δ−i (mi) 6 δi(mi) for all i ∈ H1.
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(a) Case |Z1| > 1 then all i ∈ H1 ∩ Z1 have δ−i (mi) < δj(mj) for j ∈ Z1 and all k, j ∈ Z1 have

δ−k (mk) < δj(mj). Thus Lemma 7 (part (ii)) applies for all i ∈ H1 ∩ Z1 and all i ∈ Z1. Hence

δ−i (mi) = δi(mi) for all i ∈ N.

(b) If |Z1| = 1, then Lemma 7 (part (ii)) applies to all i ∈ H1 ∩Z1 but not to z1 ∈ Z1 = {z1}.

2. Case |H1| = 1. Then it is immediate that |Z1| = 1 as well. Then Lemma 7 (part (ii)) applies to all

i ∈ H1 ∩Z1 but not to z1 ∈ Z1 = {z1}.

Then either |Z1| > 1 and δ−i (mi) = δi(mi) for all i ∈ N or |Z1| = 1 and δ−i (mi) = δi(mi) for

all i 6= z1. By definition of Z1, when |Z1| = 1, δz1(mz1) > maxi 6=z1 δi(mi) = maxi 6=z1 δ
−
i (mi). As

z1 ∈ H1 we also have that δ−z1
(mz1) > maxi 6=z1 δi(mi) = maxi 6=z1 δ

−
i (mi). Therefore, we must have

min{δ−z1
(mz1), δz1(mz1)} > maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi).

The only reason we could have an equality in the above inequality is when δ−z1
(mz1) = maxi 6=z1 δ

−
i (mi)

as we have shown that δz1(mz1) > maxi 6=z1 δ
−
i (mi). But if we assume δ−z1

(mz1) = maxi 6=z1 δ
−
i (mi) then it

means that Lemma 6 applies and thus we must have δ−z1
(mz1) 6 δz1(mz1).

Hence either we have min{δ−z1
(mz1), δz1(mz1)} > maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi) or we have

maxi 6=z1 δi(mi) = maxi 6=z1 δ
−
i (mi) = δ

−
z1
(mz1) 6 δz1(mz1). �

Lemma 10 There exists mz1 > mj for all j 6= z1 if and only if either for all j 6= z1, min{δ−z1
(mz1), δz1(mz1)} >

δ−j (mj) = δj(mj) or δz1(mz1) > δ
−
z1
(mz1) = maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi).

Proof. (Only if) Assumemp > mj for all j 6= p. First, let us show that this implies that p ∈ arg maxj∈N δ
−
j (mj).

Suppose the contrary, that is, p /∈ H1. Then by Lemma 6 and 7 we must have δ−p (mp) = δp(mp) and

thus δ−p (mp) = δp(mp) < δ−i (mi) for some i ∈ H1. From Lemma 8 it must then also be the case that

δ−p (mp) = δp(mp) < δi(mi) for i ∈ H1. But then min{δ−i (mi), δi(mi)} > δ−p (mp) = δp(mp). For any

j, let ∆j(mj) :=

∫v
mj
α(vj|λ)dF(vj)+mjf(mj)α(mj|λ)

1−F(mj)+mjf(mj)
, i.e. the value of δi(mi) when it is continuous at mi.

Notice that when min{δ−i (mi), δi(mi)} = δ−i (mi) then we must have τi 6 τ̂i and then it follows that

δ−i (mi) 6 ∆i(mi). Hence we must have ∆i(mi) > δ−i (mi) > ∆p(mp) = δ
−
p (mp) = δp(mp). However, from

Lemma ??, ∆j(mj) is increasing in mj and thus this would imply that mi > mp, a contradiction. Now when

min{δ−i (mi), δi(mi)} = δi(mi) we must have τi > τ̂i and thus δi(mi) 6 ∆i(mi). This would then imply

∆i(mi) > ∆p(mp) and thus mi > mp, again a contradiction. Hence, if mp > mj, we must have p ∈ H1.

From now on, we know that p ∈ H1, that is, δ−p (mp) > δ
−
j (mj) for all j ∈ N. Let us consider the

following subcases.

1. Assume p /∈ Z1.

(a) If |Z1| = 1 then from Lemma 9, there is a unique i ∈ Z1 such that min{δ−i (mi), δi(mi)} >

δ−p (mp) = δp(mp). But then, if δi(mi) > δ−i (mi) we must have τi 6 τ̂i, ∆i(mi) > δ−i (mi) >

δ−p (mp) = δp(mp) = ∆p(mp) and thus mi > mp which is a contradiction. If otherwise

δi(mi) 6 δ−i (mi) then we must have ∆i(mi) > δi(mi) > δ−p (mp) = δp(mp) = ∆p(mp).

Which also leads to the contradiction that mi > mp. Then, if p /∈ Z1 we cannot have |Z1| = 1.
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(b) If |Z1| > 1 then we have δ−j = δj for all j ∈ N. As p ∈ H1 and |Z1| > 1 we must have |H1| > 1

and then there exists a i ∈ H1, i 6= p such that δ−p = δp = δ−i = δi. It directly follows that

∆p = ∆i and thus mp = mi, which is a contradiction. Therefore, we must have p ∈ Z1.

2. Assume now that p ∈ Z1.

(a) If |H1| = 1 then δ−p > δ
−
j for all j 6= p. We also have |Z1| = 1 and thus δp > δj for all j 6= p. As

|H1| = 1, then H1 = {p} and thus for all j 6= p, δ−j = δj. Hence min{δ−p , δp} > δ−j = δj for all

j 6= p, which is the first condition of the Lemma.

(b) If |H1| > 1 and |Z1| = 1. Then δp > δj for all j 6= p. As p ∈ H1 and |H1| > 1, then from Lemma 6

we must have δ−p 6 δp. But as |H1| > 1, there must exist a i ∈ H1, i 6= p such that δ−i = δ−p . As

i ∈ H1 but i /∈ Z1 then δ−i = δi. It follows that we must have δp > δ−p = δ−i = δi which is the

second condition of the Lemma.

(c) If |H1| > 1 and |Z1| > 1. Then we must have δ−j = δj for all j ∈ N. Then take any i ∈ Z1, i 6= p
which exists as |Z1| > 1, it follows that δp = δ−p = δi = δ

−
i . However, this implies that ∆p = ∆i

and thus that mp = mi which is a contradiction.

Then, assuming mp > mi implies that for any j 6= p, either min{δ−p , δp} > δ−j = δj or δp > δ−p = δ−j = δj

which concludes the proof of the only if statement.

(If) For any j 6= p we have δ−j = δj = ∆j. Assume first that min{δ−p , δp} > δ−j = δj for some j 6= p. If

δp > δ−p then we must have τp 6 τ̂p and thus ∆p > δ−p > δ
−
j = δj = ∆j. This implies that mp > mj. Same

logic applies when δp 6 δ−p as this implies that τp > τ̂p, ∆p > δp > δ−j = δj = ∆j and thus mp > mj.

Assume now that for some j 6= p, δp > δ−p = δ−j = δj. Then, τp < τ̂p and ∆p > δ−p = δ−j = δj = ∆j,

implying mp > mj. �

Lemma 11 Let z1 ∈ arg maxj∈N δ
−
j (mj), for any j 6= z1 it is not possible that min{δ−z1

(mz1), δz1(mz1)} >

δ−j (mj) = δj(mj). Therefore, only the case δz1(mz1) > δ−z1
(mz1) = maxi 6=z1 δ

−
i (mi) = maxi 6=z1 δi(mi) is

possible.

Proof. Assume that there is an mz1 such that min{δ−z1
(mz1), δz1(mz1)} > δ

−
j (mj) = δj(mj) for all j 6= z1.

Notice that for any k ∈ N, δk(v) = v and min{δ−z1
(mz1), δz1(mz1)} > v. So, there must exist a m̃z1 < mz1

such that for all vz1 ∈ [m̃z1 ,mz1) we have maxi 6=z1 δi(mi) < δz1(vz1) 6 δz1(mz1). But then, for all those

vz1 ∈ [m̃z1 ,mz1), we have δz1(vz1) > maxi 6=z1 maxvi∈V δi(vi) and thus Sz1(vz1) = 1 for all vz1 ∈ [m̃z1 ,mz1).

It follows that Tz1(vz1) = Tz1(v). But then, this means that mz1 is not the smallest value in V before

transfers become constant due to cash-constraints. Therefore, their must exist a m̂z1 such that δ−z1
(m̂z1) =

maxi 6=z1 δi(mi). �
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Proof of Theorem 7. Assume that for a given x∗ = (x∗1 , . . . , x∗n), the vector O∗ := (s∗,U∗,m∗, τ∗,χ∗) solves

(A) and satisfies (B). Then, from (A) we must have that s∗i (v) writes

s∗i (vi, v−i) =


1 if δi(vi | x∗i ,m∗i , λ) > maxj 6=i δj(vj | x∗j ,m∗j , λ)

something in [0, 1] if δi(vi | x∗i ,m∗i , λ) = maxj 6=i δj(vj | x∗j ,m∗j , λ)

0 if δi(vi | xi,m∗i , λ) < maxj 6=i δj(vj | x∗j ,m∗j , λ)

As shown previously, m∗ is such that for all i ∈ N, δi(vi | x∗i ,m∗i , λ) is nondecreasing w.r.t. vi. It follows

that Si(vi) is also nondecreasing in vi. From (B), V∗(S∗i ) = [x∗i ,y∗i ] for all i ∈ N and thus s∗i satisfies all

constraints of the original problem.

Notice also that for any v∗i ∈ V∗(S∗i ) = [x∗i ,y∗i ]

E
[∑
i∈N

(
S∗i (vi) − ri

)
δi(vi | x

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(x

∗
i ) +

∑
i∈N

τ∗i li =

E
[∑
i∈N

(
S∗i (vi) − ri

)
Γi(vi | v

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(v

∗
i ) +

∑
i∈N

τ∗i li. (1.33)

This equality stems from two facts.

(i) We have that δi(vi | x∗i ,m∗i , λ) = Γi(vi | v∗i ,m∗i , λ) for all vi /∈ [x∗i ,y∗i ] and v∗i ∈ [x∗i ,y∗i ] by definition of

δi(·) so that the expectation is the same on both sides for vi /∈ [x∗i ,y∗i ]. For vi ∈ [x∗i ,y∗i ], δi and Γi differ, but

at the same time we have that S∗i (vi) = ri as s∗ satisfies (B). Thus the expectation is the same on both sides.

(ii) As V∗(S∗i ) = [x∗i ,y∗i ] it is clear that Ui(v∗i ) = Ui(x
∗
i ).

Now, by definition of O∗, we must have that for all Ô := (ŝ, Û, m̂, τ̂, χ̂)

E
[∑
i∈N

(
S∗i (vi) − ri

)
δi(vi | x

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(x

∗
i ) +

∑
i∈N

τ∗i li >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
δi(vi | x

∗
i , m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili. (1.34)

At the same time we also have that for any v̂i ∈ V∗(Ŝi)

E
[∑
i∈N

(
Ŝi(vi) − ri

)
δi(vi | x

∗
i , m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili, (1.35)

as for all vi < v̂i we have δi(vi | x∗i , m̂i, λ) 6 Γi(vi | v̂i, m̂i, λ) and Ŝi(vi) − ri 6 0 and for all vi > v̂i

we have δi(vi | x∗i , m̂i, λ) > Γi(vi | v̂i, m̂i, λ) and Ŝi(vi) − ri > 0. 28 Hence, for all vi ∈ V we have(
Ŝi(vi) − ri

)
δi(vi | x

∗
i , m̂i, λ) >

(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ).

28Ŝi(vi) − ri 6 0 (> 0) for all vi < v̂i (vi > v̂i) directly stems from the fact that v̂i ∈ V∗(Ŝi).
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But then combining equation (1.33), (1.34) and (1.35) we get that for all Ô and v̂i ∈ V∗(Ŝi)

E
[∑
i∈N

(
S∗i (vi) − ri

)
Γi(vi | v

∗
i ,m∗i , λ)

]
−
∑
i∈N

(λ− χ∗i − τ
∗
i )Ui(v

∗
i ) +

∑
i∈N

τ∗i li >

E
[∑
i∈N

(
Ŝi(vi) − ri

)
Γi(vi | v̂i, m̂i, λ)

]
−
∑
i∈N

(λ− χ̂i − τ̂i)Ûi +
∑
i∈N

τ̂ili, (1.36)

which directly means that O∗ is also the maximum of the original problem. �

Proof of Corollary 3. Assume first that τi is defined by equation (1.24). It can easily be rewritten as

τ̂i =
f(mi)

∫v
mi
α(vi | λ)dF(vi) −α(mi | λ)(1 − F(mi))f(mi)

1 − F(mi) +mif(mi)
.

Differentiating w.r.t. to mi gives the following condition for the numerator (after factorization by (1− F(mi))

which is positive)

(
f ′(mi)E

[
α(vi | λ) | vi > mi

]
−α ′(mi | λ))f(mi) −α(mi | λ)f ′(mi)

)(
1 − F(mi) +mif(mi)

)
−mif

′(mi)
(

E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
f(mi) 6 0,

which reduces to

−α ′(mi | λ))f(mi)
(

1 − F(mi) +mif(mi)
)

+ f ′(mi)(1 − F(mi))
[
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

]
6 0.

The above inequality holds as α ′ is positive, f is nonincreasing and E
[
α(vi | λ) | vi > mi

]
−α(mi | λ) > 0.

Then, τi is decreasing in mi.

Now assume instead that τz1 is defined by equation (1.25). For a given m−z1 the right-hand side of

(1.25) is constant. Fix τz1 and assume mz1 increases. Then α(mz1 | λ) +
τz1

f(mz1)
increases as α(vi | λ) is

increasing in vi and f is nonincreasing. Hence, to maintain the equality defined by equation (1.25) it is

necessary that τz1 decreases. �
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Proof of Corollary 4. Assume that for i ∈ N, δ−i (mi) = δi(mi). This implies that τi is defined by equation

(1.24). Therefore,

δi(mi) = E
[
α(vi | λ) | vi > mi

]
−

τimi
1 − F(mi)

= E
[
α(vi | λ) | vi > mi

]
−mi

(
E
[
α(vi | λ) | vi > mi

]
−α(mi | λ)

)
f(mi)

1 − F(mi) +mif(mi)

=
(1 − F(mi))E

[
α(vi | λ) | vi > mi

]
+mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)

=

∫v
mi
α(vi | λ)dF(vi) +mif(mi)α(mi | λ)

1 − F(mi) +mif(mi)
.

Differentiating this expression w.r.t. mi gives the following numerator

mif(mi)α
′(mi | λ)][1 − F(mi) +mif(mi)]+

(1 − F(mi))mif
′(mi)

[
α(mi | λ) −

1
1 − F(mi)

∫v
mi

α(vi | λ)dF(vi)
]
. (1.37)

Given the assumption that f is nonincreasing, that α(·) is increasing and that α(mi | λ) − 1
1−F(mi)

∫v
mi
α(vi |

λ)dF(vi) = α(mi | λ) − E
[
α(vi | λ) | vi > mi

]
6 0 then (1.37) is positive and thus δi(mi) is increasing in mi

whenever δi(mi) is continuous at mi. �

Proof of Corollary 5. (i) Take any m ∈ ×i∈N(yi, v]. Then for all mi 6 mj for some j, τi is uniquely

defined by (1.24). If it exists, mz1 > maxi 6=z1 mi defines τz1 from equation (1.25).

(ii) Now take any τ. Notice first that for all i ∈ N, mi is decreasing in τi. Indeed, for any mi satisfying

(1.24), the RHS is decreasing in mi. Now for mz1 satisfying (1.25), it is clear that the RHS does not

depend on τz1 nor mz1 . Then, if τz1 increases, the only way to satisfy the equality is that mz1 decreases as

α(vz1 | λ) +
τz1
f(vz1)

is increasing in vz1 .

Then, for any i, j such that τi > τj we must have mi 6 mj. It follows that mi is uniquely defined

by (1.24) as the RHS is decreasing in mi. Finally, if there exists a τz1 < mini 6=z1 τj then we must have

maxi 6=z1 mi < mz1 and mz1 solves (1.25). The RHS of (1.25) depends only on mini 6=z1 τi and thus there

exists a unique mz1 that solves (1.25) for a given τz1 given that α(vz1 | λ) +
τz1
f(vz1)

is increasing in vz1 . �
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2. OPTIMAL STRUCTURE OF PENALTIES

WITH JUDGMENT-PROOF INJURERS 1

Asbtract

I characterize the optimal regulation of a firm constituted by potential judgment-proof

agents. I investigate two cases: (i) A principal hires an agent to undertake a prevention

effort on their behalf; (ii) Two agents are jointly responsible of undertaking a prevention

effort. In both cases, agents are in charge of exerting an unobservable level of safety care

to reduce the probability of an accident that may occur due to the firm risky activity.

Agents are called judgment proof when their final wealth is not enough to pay for the

monetary penalties imposed by the regulator. I show that the standard Equivalence

Theorem, stating that the distribution of penalties among injurers is irrelevant, does not

hold in this context. Instead, in a principal-agent firm, the optimal regulation requires to

fully target the principal if the agent can be subject to judgment proofness. In a two-agent

firm, the optimal regulation consists in an almost equal sharing of penalties among agents.

Keywords: Moral Hazard, Regulation, Limited Liability, Judgment Proofness.

JEL Classification: K13, K32, G33, D86.

1I would like to thank David Martimort, Pierre Fleckinger, Patrick Legros, Jérôme Pouyet, Julien Combe,
Philippe Colo, Estelle Malavolti, Sergei Severinov, Shaden Shabayek and Takuro Yamashita for discussions
and critical comments on this paper.
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2.1. INTRODUCTION

When a firm’s activity may cause an accident to outside parties, how should be designed

penalties to induce the firm to undertake enough safety measures, that is, what should be

the optimal total amount of penalties and how should it be apportioned among the firm’s

members?

The earlier works of Newman and Wright (1990) and Segerson and Tietenberg (1992)

suggest that only the total amount of penalties matters and not their allocation within the

firm. The main argument relies on the existence of private transactions within the firm

that can undo any allocation of responsibilities coming from the regulation authority. This

result, known as the Equivalence Principle, had a significant influence on many works in

the economic literature of tort and environmental law.

This result relies on the strong assumption that the private contract between injurers

always satisfies each party’s solvency towards the potential payment of fines. However,

when injurers may be judgment proof (see Shavell (1986)), that is, financially insolvent

when facing the penalties imposed by the regulation authority, it may be optimal not

to provide them with additional resources to limit corporate liability. For instance,

Ringleb and Wiggins (1990), empirically find that large firms prefer to buy inputs whose

manufacture is risky to small firms with few assets. Others establish special subsidiaries

or product manufacturing by contract with dedicated small-scale specialized producers.

Those choices are deliberately made so as to shield the large firm’s assets from potential

liability in case of accident. When considering situations of long-term or large-scale

hazards such as environmental degradation (hazardous waste, water pollution) or workers

exposition to harmful substances (asbestos, radiation, vinyl chloride) the amount of

damages are likely to be large and therefore exceed some of the injurers’ financial

resources if no (or small) corporate compensation exists.

In this paper, I consider a situation in which the Equivalence Principle breaks down.

Under the assumption that some injurers may be judgment-proof and that the private

contract between them does not guarantee solvency towards the payment of fines, the

allocative role of penalties is restored. I consider a firm whose activity is risky and may

cause an harm to third parties. To reduce the probability of accident, the firm has to exert
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costly precautionary care. I then investigate how should penalties be optimally allocated

among injurers in the cases of simple and double moral hazard.

First, I consider a principal-agent firm in which the principal hires and agent to

undertake an effort of prevention. The agent’s effort is unobservable and the problem is a

moral hazard one. Therefore, parties can contract only on outcome realizations (accident

or no accident). At the contracting stage, I assume that the agent’s financial resources are

a random variable so that parties are unsure about the agent’s ability to make monetary

transfers when the outcome is realized. In the absence of regulation, the principal has

no incentive to induce the agent to exert effort as the harm does not affect her. Thus, I

introduce a regulation authority who can impose ex post penalties on the principal and on

the agent when an accident occurs. Obviously, as the agent has limited resources, he may

not be able to pay for the penalties imposed on him.

In the literature, it is usually assumed that transfers from the agent to both the

regulation authority and the principal are designed ex ante such that they never exceed the

agent’s resources ex post. I depart from this modeling by allowing unbounded transfers

in the first place, which will be truncated ex post in case of insolvency of the agent (or

equivalently “judgment-proofness”). Indeed, if one assumes that the private transaction

between the principal and the agent is generally not observed by the regulation authority,

then there is no reason for the principal to ensure the agent’s ability to pay for the

penalties. This assumption is also supported by empirical evidence (Ringleb and Wiggins

(1990)) that shows that large firms intentionally choose to leave risky manufacturing to

small firms with few assets.

For a given regulation policy, I derive the equilibrium contract between the principal

and the agent when the former has all the bargaining power. I find that the equilibrium

effort level of prevention decreases as the share of penalties imposed on the agent increases.

This results stems from the fact that imposing a larger share of penalties on an ex post

potentially insolvable agent acts as an ex ante decrease in the total amount of penalties

imposed on the principal-agent relationship. It follows that if the regulation authority

wants the firm to exert an efficient precautionary care level, it must impose the penalties

on the principal only. Targeting the agent is always detrimental to the provision of effort

of prevention.
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I also investigate the design of the optimal regulation when the bargaining power

varies inside the firm. I show that when the principal has most of the bargaining power, it

is still optimal to impose all penalties on her. However, when the agent has most of the

bargaining power, the previous optimal regulation may lead to an excess of precautionary

care (with respect to the first-best level). In that case, the regulation must be such that the

total expected fine paid by the firm decreases. Finally, I investigate whether we should

authorize the principal to give rewards to the agent in case of accident. It appears that if

the agent has most of the bargaining power, allowing the principal to reward the agent in

case of accident leads to the first-best level of precautionary care.

Second, I investigate a situation in which two agents are responsible for exerting an

unobservable effort of prevention and may both be potentially insolvable ex post. The

regulation authority now faces a multiple tortfeasors problem where each injurer can be

judgment-proof. The contracting problem between the two agents is now described as a

double moral hazard problem in a partnership: In the first stage, agents sign a binding

agreement to maximize their joint profits and, in the second stage they simultaneously

choose their effort levels (similar to Cooper and Ross (1985)). In this problem, the sharing

of profits among agents not only plays the traditional role of incentive provision in the

partnership (due to moral hazard) but also the role of revenue concealment from the

regulation authority.

When agents have symmetric initial resources distributions, the solution to this problem

shows that agents sign a contract such that the profits in case of accident go to the agent

who is the least targeted by the regulation policy. This allows the partnership to escape

as much as possible from the penalties and thus provide very low effort provision. This

result resembles firms’ strategies to create insolvent subsidiaries to escape from paying

fines.

The optimal regulation policy of the partnership consists in an equal-sharing of the

penalties among the two agents. Any other allocation of penalties results in a decrease in

effort provision. Notice that when agents have asymmetric initial resources distribution,

the optimal allocation of penalties is centered around the equal-sharing allocation while

being adjusted to target more the agent with higher average initial resources.
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The paper is organized as follows. In Section 2, I present the model and the standard

framework. In section 3, I develop the principal-agent problem with a judgment-proof

agent. Section 4 investigates the double moral hazard problem with two judgment-proof

agents. Section 6 concludes.

2.2. THE STANDARD FRAMEWORK

A firm undertakes a project that may cause an accident harming third parties. The owner

of the firm (the principal) hires a worker (the agent) to run the firm on her behalf. Both of

them are assumed to be risk-neutral. The firm’s activity generates a certain surplus Π > 0

that accrues to the principal but also causes an environmental harm D with probability

1 − e. The agent is responsible for preventing the harm by exerting effort e ∈ [0, 1]

at personal cost ψ(e). For the problem to be well-behaved, I assume ψ ′, ψ ′′, ψ ′′′ > 0,

ψ ′(0) = 0 and ψ ′(1) = +∞ so that effort solution is always interior. 2 The agent’s effort is

unobservable to both the principal and the regulator.

Regulation. It is assumed that only third parties suffer from the harm D, leaving the

firm with no natural incentives to prevent the accident. Therefore, there is room for a

regulation authority (the regulator) to act in favor of third parties. Throughout the paper

I assume that only ex post regulation is available to the regulator, that is, the regulator

can impose fines on the firm’s parties only after an harm occurred. A regulatory policy

is a couple (α, F) ∈ [0, 1]× [0,D], where F is the total amount of the fine imposed on the

firm and α (resp. 1 −α) is the share of the fine charged on the agent (resp. principal).3 I

also assume that the regulator’s objective is to make the probability of accident as close as

possible to its first-best level.4 This last assumption, in addition to greatly simplify the

analysis, allows me to distinguish the judgment-proof problem from other considerations.

Private Contract. Due to the moral hazard problem, the principal cannot directly offer

a contract contingent on the effort level exerted by the agent. Instead, she offers transfers

to the agent conditional on the occurrence of an accident. Let us denote by tN ∈ R

2See for instance Chapter 5 of Laffont and Martimort (2002).
3I assume that the total fine cannot exceed total harm D caused by the firm as it is usually the case in

the literature.
4This differs from the literature in which the regulator takes into account both the harm to the third

parties and the profit of the firm.
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and tA ∈ R those transfers where the subscripts N and A stand for “no accident” and

“accident”, respectively. Typically, the principal will offer tN > 0 and tA 6 0 so that tN and

tA act as a reward and a punishment, respectively. Therefore, the principal has the ability

to punish the agent by the means of private transactions as well as the regulator has the

ability to punish the agent (and the principal) by the means of the regulation policy.

The Standard Model With Limited Liability. To see how the results depart from the

case with a judgment-proof agent it is useful to briefly expose the standard analysis.

For this section only, I will assume the standard limited liability constraints on transfers,

that is, tN > −l and tA > −l+ αF where l ∈ R+ is the agent’s cash/financial resources.

Those ex post constraints ensure that the agent is always endowed with enough resources

to honor both the private transfer (tA) and the regulatory transfer (αF). The limited

liability constraint in case of accident tA > −l+ αF implies, de facto, that the principal

provides the agent with the necessary resources in the private transaction. As shown

below, this requirement trivially implies that the regulator’s choice of distribution of

penalties is irrelevant.

Notice that the amount of resources l may not necessarily represent the full range

of the agent’s resources but may represent a reasonable lower bound on the “collectible

assets” that can easily be observable and seized when an accident occurs. I will therefore

abstract from the situation in which the agent can engage in strategies to hide the real

value of his assets.5

The timing of the game is as follows. First the regulator publicly commits to a

regulatory policy (α, F). Second the principal offers a contract (tN, tA) to the agent. Third,

the agent chooses his effort level e.

For a given regulation policy (α, F) and private contract (tN, tA) the agent’s expected

utility is given by

UB = etN + (1 − e)
[
tA −αF

]
−ψ(e),

5Hiriart and Martimort (2006) follow the same approach.
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and the expected profit of the principal writes

VB = Π− etN − (1 − e)
[
tA + (1 −α)F

]
.

To induce a particular level of effort e, the principal must choose (tN, tA) such that the

agent has the proper incentives to do so. Relying on the first-order approach, I replace the set

of the agent’s incentive constraints by the first-order condition of his utility maximization

problem with respect to effort:

tN − tA +αF = ψ ′(e), (2.1)

which is a necessary condition when the effort level is interior.6 This equation reveals that

the agent’s incentives to exert effort depends on monetary incentives from both private

transactions and regulation policy.

The principal must also ensure the participation of the agent (UB > 0) and accounts

for ex post limited liability. Her maximization problem then writes

max
{e,tN,tA}

VB = Π− [etN + (1 − e)tA] − (1 − e)(1 −α)F,

subject to equation (2.1), UB > 0, tN > −l and tA > −l+αF for all l ∈ [0, l].

Examining equation (2.1) immediately reveals that the ex post limited liability con-

straint on tN is always satisfied when the one on tA holds. It is therefore possible to drop

condition tN > −l from the principal’s problem.

Using (2.1), the agent’s expected utility becomes

UB = eψ ′(e) −ψ(e) + tA −αF = R(e) + tA −αF, (2.2)

where R(e) := eψ ′(e) −ψ(e) is nonnegative, increasing and convex in e. Using (2.1) and

(2.2) it is useful to rewrite the principal’s objective in terms in the plane (e,UB) as follows

VB = Π−ψ(e) − (1 − e)F−UB. (2.3)

6From the initial assumption it also a sufficient condition for the agent’s problem. Indeed, from convexity
of ψ the agent’s maximization problem is concave in e. Moreover, ψ ′ is an increasing function of e and (2.1)
defines a unique solution for any given tN, tA and αF.
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This formulation clearly shows that the principal’s objective takes into account the total

amount of the fine and must also leave some rent to the agent. The problem of the

principal rewrites

max
{e,UB}

Π−ψ(e) − (1 − e)F−UB

s.t. UB > 0

UB > R(e) − l,

where the first constraint is the agent’s participation constraints and the second one the

the limited liability constraints in the plane (e,UB).

From linearity of UB it is clear that at least one constraint must bind at the optimum.

Let us focus on the case where only the limited liability constraint binds, UB = R(e) − l.7

Substituting the binding constraints in the principal’s objective gives

max
e

Π− eψ ′(e) − (1 − e)F.

Notice that the principal’s maximization problem is independent of α and that the

principal takes into account the entire value of the fine F. This leads us to the following

statement.

Proposition 12 (Equivalence Principle 8) In a principal-agent relationship with moral hazard,

when the principal has to ensure the agent’s ability to pay the regulator in any states of the world,

the way the regulator allocates responsibilities within the firm does not affect the equilibrium level

of effort to prevent the harm to occur.

This result is not new and generally known as the Equivalence principle. It states that,

even in the presence of moral hazard and agent’s limited liability, the regulator cannot

increase the level of effort by targeting more the principal or the agent.

The equilibrium level of effort, eB solves the following first-order condition:

ψ ′(eB) + eBψ ′′(eB) = F. (2.4)

7The case where UB = 0 at optimum implies that the level of effort attains the first best, i.e. ψ ′(eFB) = F.
This occurs when the level of liability l is large enough, namely, when l > R(eFB). This case presents no
interest in the analysis as the moral hazard problem entails no distortion. Therefore, assume l < R(eFB).
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As the left-hand side of the equation is increasing in e, the optimal regulation policy sets

F = D according to the maximum punishment principle. The α can take any value in [0, 1]

without changing the optimal level of effort nor the distribution of revenues between the

principal and the agent.

2.3. JUDGMENT-PROOF AGENT

In this section, I develop the problem of designing a regulatory policy (α, F) for a judgment-

proof agent, that is, when he may be unable to pay his share of the fine for some levels of

wealth. I argue that the formal treatment of limited liability constraints in the regulation

literature is generally too restrictive as they require the principal to fully ensure the agent’s

ability to pay his share of the penalty.

In the standard treatment of moral hazard problem, limited liability constraints on

transfers formally put a limit on the monetary punishment the agent may have to pay

to the principal. When the relationship generates only private benefits and no negative

externality (such as an accident), the limited liability constraints only applies on the

transfers between the principal and the agent and do not involve a third party such as a

regulator. In that case, those constraints reasonably assume that the principal must offer a

contract whose transfers do not exceed some lower bound.

In the presence of a regulator, however, the assumption of ex post limited liability

means that the principal must ensure the agent’s ability to pay both private transfers and

potential fines to the regulator. This would require (i) that the principal is legally bound

to ensure agent’s liability in any scenario and (ii) sufficient observability of the private

contract that takes place within the firm. When at least one of these conditions fails it

is unlikely that the principal will ensure agent’s liability towards the regulator. Indeed,

assume that the principal does not provide the agent with enough cash to pay for the

fine for some realizations of the agent’s wealth. When the accident occurs, the agent may

simply not be able to pay for the entire fine and will pay at most with his disposable cash.

The fact that the agent cannot pay for punishments coming from the regulator does not

hurt the principal. On the contrary, the agent’s inability to pay the fine to the regulator

reduces the total amount of the firm paid by the firm making the principal better off.
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To model a judgment-proof agent, I do not assume ex post limited liability constraints

as in the previous section. In other words, the private contract offered by the principal does

not need to provide the agent with some minimal level of resources in case of accident.

Instead, the principal can impose unlimited punishment on the agent. Obviously, as the

agent is still resource-constrained, he will never pay above his level of resources and

his transfer will be naturally bounded below. It is then necessary to modify the agent’s

expected utility accordingly.

Agent’s Payoff. Assume that an accident occurs. For a given level of resources l ∈ R+,

the agent now faces the private transfer tA < 0 to the principal and the regulatory transfer

αF to the regulator. If tA −αF is larger than the agent’s resource −l, the agent can fully

pay the principal and the regulator. On the contrary, if tA −αF < −l then the agent has

not enough financial resources to cover both transfers. In this section, I assume that the

regulator has the ability to collect money before the principal so that when tA −αF < −l,

the agent pays the regulator first and gives the remaining resources, if any, to the principal.

Let m̃ := c̃P(tA,α, F; l) − c̃R(α, F; l) denote the transfer the agent receives when an accident

occurs where c̃P(·) and c̃R(·) denote the agent’s transfers to the principal and the regulator,

respectively. Formally,

c̃P(tA,α, F; l) = 1{l>αF−tA}tA − 1{l∈[αF,αF−tA]}(l−αF),

c̃R(α, F; l) = 1{l>αF}αF+ 1{l6αF}l.

Notice that the transfer to the regulator, c̃R(·) is independent of tA. This stems from the

fact that the regulator has priority over the agent’s wealth so that the principal cannot

reduce the agent’s payment to the regulator by punishing him more trough tA.

In order to greatly simplify the mathematical reasoning I now make the following

assumption.

Assumption 5 The agent’s wealth l is a random variable drawn from an absolutely continuous

cumulative distribution function H(l) over the support [0, l] where l > D so that the maximal

agent’s wealth exceeds the monetary damage caused by an accident. The realization of the agent’s

wealth is known to all players only at the end of the game.
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As all players now view l as a random variable, they will evaluate their payoff by

taking expectations of c̃P(·) and c̃R(·) over l. Define cP(tA,α, F) := Elc̃P(tA,α, F; l) and

cR(α, F) := Elc̃R(α, F; l). This makes the analysis easier as now cP(tA,α, F) and cR(α, F) are

differentiable in each argument. No particular conditions are imposed on H(·) so that

the randomness assumption of l is quite mild and could simply represent that there is

always a small uncertainty about the agent’s wealth when the regulator decides to enforce

penalties. Furthermore, I show below that the framework with a judgment-proof agent

and random wealth can be equivalently rewritten in a model with certain wealth that

resembles the model presented in section 3.2.

Formally, the total expected transfer of the agent in case of accident is given by

m(tA,α, F) =
∫ l
αF−tA

(tA −αF)dH(l) +

∫αF−tA
0

(−l)dH(l). (2.5)

Taking partial derivatives of m(tA,α, F) with respect to tA and α gives:

∂m(tA,α, F)
∂tA

=

∫ l
αF−tA

dH(l) > 0,

∂m(tA,α, F)
∂α

= −

∫ l
αF−tA

FdH(l) 6 0.

Thus, the transfer of the agent is nondecreasing in tA and nonincreasing in α. More

precisely, m(tA,α) increases in tA when tA is high enough, but as soon as tA becomes too

low the agent’s payment becomes flat and equal to −l. The same thing happens with α:

the agent’s transfer is decreasing in α as long as α is not too high and then becomes flat

when the regulator asks too much money.

It is now possible to write the agent’s expected utility as

U = etN + (1 − e)
[
cP(tA,α, F) − cR(α, F)

]
−ψ(e),

where the only difference with the standard framework is that tA is replaced by cP(tA,α, F)−

cR(α, F). For a given private contract (tN, tA) the induced level of effort e is given by

tN −
[
cP(tA,α, F) − cR(α, F)

]
= ψ ′(e). (2.6)
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Therefore, when the principal offers tA in case of accident, the agent now considers

cP(tA,α, F) − cR(α, F) rather than directly tA. Using (2.6), the agent’s expected utility

becomes

U = R(e) + cP(tA,α, F) − cR(α, F) (2.7)

where R(e) = eψ ′(e) −ψ(e) > 0 is defined as in section 3.2. Equation (2.7) shows that

when the principal wants to induce level of effort e, she has to give a positive rent

R(e) to the agent. Then the principal can extract this rent through the side-payment

cP(tA,α, F) − cR(α, F). Notice that for any tA 6 αF− l, cP(tA,α, F) − cR(α, F) is bounded

below by −E[l]. That is, even when the principal sets a very low tA, she cannot extract

more than E[l] from the agent through the side-payment.

Again, when the principal sets tA she only expects to receive cP(tA,α, F) from the

agent. Thus, her expected profit is given by

V = Π− etN − (1 − e)cP(tA,α, F) − (1 − e)(1 −α)F.

Notice that

∂cP(tA,α, F)
∂tA

=

∫ l
αF−tA

dH(l) > 0,

∂cP(tA,α, F)
∂α

=

∫αF−tA
αF

FdH(l) > 0.

Naturally, the more the principal increases the punishment in case of accident (reduces

tA) the more she can expect to collect on the agent. More interestingly, let us investigate

what happens for the principal when the regulator targets the agent more, i.e. when α

increases. Two effects are at play: On the one hand, as the agent becomes more targeted

by the regulation, the principal expects to collect less on the agent as the regulator has

priority over the agent’s wealth which is illustrated by ∂cP(·)/∂α 6 0. On the other hand,

an increase in α increases the principal’s expected payoff through a decrease in his share

of the fines. The overall effect, however, is positive on the principal’s expected payoff.9

9This can be easily seen by differentiating the principal’s expected payoff in case of accident with respect
to α. Indeed, ∂

∂α (−cP(tA,α, F) − (1 −α)F) = −
∫αF−tA
αF FdH(l) + F > 0.
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Using (2.6) and (2.7), it is useful to rewrite the principal’s profit as

V = Π−ψ(e) − (1 − e)
[
cR(α, F) + (1 −α)F

]
−U. (2.8)

It is instructive to compare the objective of the principal with a judgment-proof injurer

with the one obtained in the standard framework, namely, equation (2.3). The principal

still receives benefits from production Π, has to pay ψ(e) as if she were exerting effort

herself and leaves a rent U to the agent. However, the principal considers the threat of

the penalty differently. Notice that cR(α, F) + (1 − α)F 6 αF+ (1 − α)F = F, that is, the

principal does not consider the total amount of fines F as some of it is imposed on a

potentially insolvent agent. The assumption of judgment-proofness on the agent’s side

formalizes the idea that potential insolvency of an injurer creates a discrepancy between

the sanction and the way it is perceived by the firm.

When the regulator targets more the agent (α increases), the firm then faces an overall

lower sanction than F. At the same time, the burden of payments rests more upon the

agent whose participation must be ensured.

The principal’s problem now consists in maximizing her objective subject to the agent’s

participation. It is worth to stress once again that the principal does not ensure a limited

liability constraints on transfers so that tA is here unconstrained. For the sake of clarity,

let us first consider the following formulation of the principal’s problem

max
e,tA

V = Π− etN − (1 − e)cP(tA,α, F) − (1 − e)(1 −α)F

s.t. U = R(e) + cP(tA,α, F) − cR(α, F) > 0.

As in section 3.2, let us make a change of variable so that the principal chooses e and

U instead of e and tA. However, this requires to take into account that even if tA is

unbounded below, cP(tA,α, F) − cR(α, F) is bounded by −E[l]. This limits how much

the principal can take collect on the agent through the side-payment. Using (2.7), this

condition can be written as cP(tA,α, F) − cR(α, F) = U− R(e) > −E[l]. Notice that this

constraint resembles the standard limited liability constraint of section 3.2. The principal’s
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problem rewrites

(JP) : max
e,U

Π−ψ(e) − (1 − e)
[
cR(α, F) + (1 −α)F

]
−U

s.t. U > 0

U > R(e) − E[l].

The following proposition summarizes the solution to the optimization problem.

Proposition 13 Assume the agent may be judgment proof for some realizations of his wealth.

Then, the equilibrium effort level, e(α, F), induced by the principal is nondecreasing in α. More

precisely,

• For α ∈ [0, α̃1), cP(tA,α, F) − cR(α, F) = −E[l], the agent has a positive utility, U > 0,

and the optimal effort level is given by

ψ ′(e) + eψ ′′(e) = cR(α, F) + (1 −α)F. (2.9)

• For α ∈ [α̃1, α̃2], cP(tA,α, F) − cR(α, F) = −E[l] and the optimal effort level is given by

the binding participation constraint of the agent, U = 0,

eψ ′(e) −ψ(e) = E[l]. (2.10)

• For α ∈ (α̃2, 1], cP(tA,α, F) − cR(α, F) > −E[l], the agent’s participation constraint is

binding, U = 0, and the optimal effort level is given by

ψ ′(e) = cR(α, F) + (1 −α)F. (2.11)

Proof. The proof and the characterization of thresholds α̃1 and α̃2 are in the appendix.

�

Distribution of Penalties. When the agent may be judgment proof, the equilibrium

solution crucially depends on the distribution of liabilities α and 1 −α within the firm.

Proposition 13 states that the optimal effort level e(α, F) is nonincreasing in α, that is,

the firm exerts less and less precautionary effort to prevent an accident as the regulator
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increases the liability of the agent to pay for the damage. The intuitive explanation for

this results is as follows. From the agent’s point of view, only the size of the punishment

matters and not to whom it is due. Therefore, whether the monetary punishment comes

from the principal or the regulator is irrelevant for the agent’s decision to exert the

precautionary effort. From the principal’s point of view, however, a shift in regulation

that targets more the agent induces a lower expected total fine on the firm through the

agent’s unability to pay in some states of the world. As a result, the principal perceives

the fine less and less as a threat and does not want to induce a high effort level.

Therefore, the Equivalence Principle does not hold anymore in this context. In other

words, the structure of penalties designed by the regulator affects the equilibrium level of

effort chosen by the firm. This naturally raises the question of determining the optimal

regulatory policy (α, F) with a judgment-proof agent. In the simple case in which the

regulator is only concerned about making the probability of accident as close as possible

to its first-best level, the optimal distribution of fines is as follows.

Corollary 6 With a judgment-proof agent, the optimal regulatory policy consists in targeting

only the principal of the firm, that is, α = 0 so that the principal faces the total amount of the fine

F.

This result contrasts with Segerson and Tietenberg (1992). As soon as the agent may be

unable to pay the regulator in some states of the world, the Equivalence Principle fails and

the distribution of penalties within the firm is no more neutral. Considering the standard

formulation presented in section 3.2, this result should not be surprising at all. Indeed, the

ex post limited liability constraint tA > −l+αF in the standard model artificially assumes

that the principal must ensure the agent’s ability to pay his share fines for any value of α.

This implicitly amounts to saying that the whole burden of penalties lies on the principal,

which is equivalent to consider that α = 0 in the judgment-proof case.

It is worth noting that when the regulator chooses α = 0, the agent’s transfer to the

regulator is naturally cR(0, F) = 0. In that case, Proposition 13 gives that the equilibrium

effort level is uniquely defined by ψ ′(e) + eψ ′′(e) = cR(0, F) + F = F. 10 This effort

level is the same as the one obtained in section 3.2 (equation (2.4)) with the standard

10To see that the effort level is uniquely defined by the equation, simply notice that ∂
∂e (ψ

′(e) + eψ ′′(e)) =
2ψ ′′(e) + eψ ′′′(e) > 0 as ψ ′′, ψ ′′′ > 0 by assumption.
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limited liability constraints. However, as soon as α > 0, the equilibrium effort level in the

judgment proof case decreases.

Equilibrium Characterization. The equilibrium characterization along the value of

α is also worth to investigate. When the principal is mostly targeted, i.e. α ∈ [0, α̃1), the

equilibrium effort level is given by (2.9). As the left-hand side of the equation is strictly

decreasing in α, so is the equilibrium level of effort. Moreover, the principal chooses tA
such that cP(tA,α, F) − cR(α, F) = −E[l] in order to extract as much as possible from the

agent through the side-payment. Even if the principal is not as concerned by the threat of

the sanction as in the standard framework, she is still inducing a quite large effort level

which forces her to leave a positive rent to the agent, U > 0. Indeed, to induce this effort

level, she must leave a rent R(e) to the agent that is greater that what she can extract

from the agent through the side-payment. When α ∈ [α̃1, α̃2], the effort level is given by

equation (2.10), which is simply the binding participation constraint of the agent. The

principal still chooses tA so as to extract all the rent from the agent. She can therefore

implement the effort level at no informational cost. The equilibrium effort level is constant

over the region α ∈ [α̃1, α̃2] as the principal is still concerned by the threat of sanction and

does not face the the trade-off between increasing the effort level and minimizing the rent

left to the agent. However, when the agent becomes mainly targeted, i.e. when α ∈ (α̃2, 1],

the principal is almost not anymore concerned by the threat of the sanction and the effort

level decreases once again with respect to α. As effort level becomes low, the rent R(e)

left to the agent becomes low as well and the principal chooses higher values of tA so that

the agent still wants to participate. Therefore, we can also see that the more the principal

is targeted by the regulation the larger the punishment tA she imposes on the agent.

Consider finally the case where the regulator mainly targets the agent, that is, α ∈
(α̃2, 1]. Recall that the first-best solution to the moral hazard problem is defined by

ψ ′(eFB) = F. Then, it is clear that it resembles equation (2.11) that determines the

equilibrium level of effort for α ∈ (α̃2, 1]. When the agent is mainly targeted, his incentives

to exert effort comes mainly from the regulator and that from the principal decreases

as she is less and less concerned by the risk of accident. Equation (2.11) resembles the

first-best solution as the agent internalizes the risk of accident but the effort level is much

lower as the fine the agent’s expect to pay is less and less important.
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Total Amount of Penalties. The second choice of the regulator is the total amount of

fine F that is imposed on the firm. Recall that F ∈ [0,D] as tort law generally precludes

fines to exceed monetary damages caused by the accident. The optimal level of fine is

defined as follows.

Corollary 7 When the regulator optimally allocates fines within the firm (α = 0), the optimal level

of fine that maximizes the equilibrium agent’s effort is F = D, that is, the maximum punishment

principle applies with a judgment-proof agent.

If Corollary 6 challenges the view that allocation of penalties within the firm is relevant

when the agent may be judgment-proof, Corollary 7 re-establishes a very well known

result: the so-called Becker’s maximum punishment principle. This last result is not

surprising: potential judgment proofness of the agent reduces the expected total fine

perceived by the principal. Thus, in essence, Corollary 6 tells us that fully targeting the

principal is the only way to maximize the “perceived” total fine which is a maximum

punishment principle in itself. Intuitively, choosing the maximal amount of total fines

ensures that the firm internalizes the risk of accident at most. In particular, when α = 0

and F = D, the effort level is given by ψ ′(e) + eψ ′′(e) = D which corresponds to the

equilibrium effort in the standard case (when the distribution of fines does not matter)

when the regulator chooses the optimal regulation. It is also interesting to notice that

choosing F = D is optimal even when α > 0.

Uncertainty of Penalties. So far, I have assumed that the regulation was nonrandom

so that the firm can perfectly anticipate the amount of fines and its distribution between

the principal and the agent. In practice, however, it is likely that there is some uncertainty

about the exact amount and who will be accountable for it. The analysis of the judgment-

proof case shows that what matters for regulation is how the firm perceives the threat of

paying fines. As soon as the fine is not at its maximum or if there is a chance that the agent

cannot fully pay his share, the threat perceived by the firm becomes lower. As a result, any

uncertainty in the total amount of penalties or about its distribution will makes the firm

less concerned about the accident. Whenever possible, the regulator should announce and

commit to a certain regulation policy to ensure that the firm better internalizes the risk of

accident.
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An Equivalent Formulation. The judgment-proof problem can can be simply rewrit-

ten in a formulation very similar to the standard model with ex post limited liability

constraints. This reformulation is useful to interpret and compare the judgment-proof

problem with the standard formulation as well as providing a simpler and more tractable

model.

Simply consider the following expected payoffs and limited liability constraints:

UE = etN + (1 − e)
[
tA − cR(α, F)

]
−ψ(e)

VE = Π− etN − (1 − e)
[
tA + (1 −α)F

]
tA > −E[l] + cR(α, F)

where the only difference with the standard model of section 3.2 is that the agent’s payment

to the regulator is cR(α, F) instead of αF and l replaced by E[l]. The incentive constraints

immediately writes tN − [tA − cR(α, F)] = ψ ′(e). Therefore, UE = R(e) + tA − cR(α, F) and

the limited liability constraint can be rewritten asUE−R(e)+cR(α, F) > −E[l]+cR(α, F)⇔
UE > R(e) − E[l]. The participation constraint of the agent still writes UE > 0 and the

principal’s expected payoff is VE = Π − ψ(e) − (1 − e)
[
cR(α, F) + (1 − α)F

]
− U. The

principal’s problem therefore writes exactly as problem (JP) and the equilibrium effort

level is characterized by proposition 13.

This equivalent formulation shows that it is as if ex post limited liability constraints

in the standard framework were replaced by interim limited liability constraints. In

other words, the private contract ensures that the agent has enough resources to pay the

regulator but only in average and not ex post. This suggests that even if the principal is

legally bound on the size of the punishment is limited the nonneutrality of the distribution

of fines still hold when the principal is constrained on the size of punishment.

Notice also that the judgment-proof problem is not due to the randomness of the

agent’s wealth. If instead, we assume that l is certain – as in the standard framework –

then it is easy to see that the agent’s expected utility defined by (2.7) and the principal’s

expected profit defined by (2.8) can be accommodated by simply replacing cp(ta,α, F) and

cR(α, F) by c̃p(ta,α, F; l) and c̃R(α, F; l). The principal’s maximization problem writes as
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follows:

max
e,U

Π−ψ(e) − (1 − e)
[
c̃R(α, F; l) + (1 −α)F

]
−U

s.t. U > 0

U > R(e) − l.

It is easy to see that this problem is very similar to the (JP) problem. Proposition 13 applies

with the minor change of replacing cR(α, F) by c̃R(α, F; l) and an appropriate change in

treshold values α̃1 and α̃2. Consider for instance the case in which U = R(e) − l > 0 at

equilibrium. Then the equilibrium effort level is given by eψ ′′(e) +ψ ′(e) = c̃R(α, F; l) +

(1 −α)F. Notice that,

∂

∂α

(
c̃R(α, F; l) + (1 −α)F

)
=

0 if l > αF

−F if l < αF,

so that the equilibrium effort level e(α) is constant and at its second-best level as long as

l > αF but starts decreasing as soon as l < αF, or equivalently when the agent’s share of

fines is large enough. Although the certainty of the agent’s wealth makes the problem less

“continuous” in α, it does not change the qualitative result that the optimal regulation

should concentrate fines mainly on the principal. This shows that the judgment-proof

problem exists even in the absence of uncertainty about the amount of financial resources

the agent possesses.

Limits Of The Optimal Regulation. Although the optimal regulation with a judgment-

proof agent seems to be very clear, it can be difficult to implement as it if for various

reasons. First, they might be legal restriction on the choice of the distribution of liabilities

within the firm. The question of whether the principal can be vicariously liable for the

acts of the agent is likely to depend on the nature of their relationship. Vicarious liability

generally applies when the agent commits negligent acts in the course of employment. In

the case of the present paper, the agent can be seen as an employee or an independent

contractor whose responsibility is to ensure some level of precautionary care on behalf of

the principal. Although the principal is responsible to incentivize the agent, the latter can

still be seen as responsible for his choice of precautionary care. Unobservability of the
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effort level or the precise private contract between the two makes it difficult to assess each

injurer’s responsibility in the accident.

Second, if the regulator decides to target only the principal two problems can arise: (i)

The principal may simply not engage in production as she expects that the benefits from

production Π do not cover the expected fines and costs of precaution. In other words,

the principal’s participation constraint must also be taken into account in the design of

the optimal regulation. Or (ii) If the fine is large, the principal may also have insufficient

financial resources to cover the whole payment by herself. In that case, also relying on the

agent’s wealth may improve the amount that the regulator is able to collect.

Distribution Of Revenues Within The Firm. One interesting aspect of the framework

with a judgment-proof agent is that α also affects the distribution of revenues within the

firm. Let e = e(α, F) the equilibrium effort level defined by proposition 13. First, the

agent’s expected utility is U = R(e(α, F)) − E[l] > 0 for all α ∈ [0, α̂1) and then U = 0 for

all α ∈ (α̂1, 1]. On the principal’s side, let V(α) denote the value function of program

(JP). From the envelope theorem, V ′(α) = −(1 − e) ∂∂α(cR(α, F) + (1 − α)F) > 0 so that

the principal’s expected payoff is increasing in α. Therefore, an increase in α benefits

the principal but decreases the rent of the agent. It may also appear surprising that the

optimal regulation (α, F) = (0,D) is such that the agent gets the highest possible rent

although he is the one who may cause the accident by taking two little precautionary care.

In fact, leaving the agent with a high rent is the best possible way to incentivize him to

maximize the effort level.

2.3.1. Participation of the Principal

As mentioned above, when the regulator imposes the optimal regulation (α, F) = (0,D)

it may occur that the principal makes negative profits V < 0. Even if the regulator

wants to avoid as much as possible the occurrence of an accident, it does not mean that

the economic activity must be prohibited. Ensuring the participation of the principal is

therefore important if the regulator values the production of the firm (though not modeled

here).

For simplicity, first assume that the regulator sets F = D by default and can only use α
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as an instrument policy. It follows that the optimal regulation (α, F) = (0,D) ensures the

principal’s participation as long as

Π−ψ(e∗) − (1 − e∗)
[
cR(0,D) + (1 −α)D

]
− R(e∗) + E[l] > 0,

where e∗ solves equation (2.9) for α = 0 and F = D. This condition can be violated when

Π or E[l] are low. If this occurs, assuming that the regulator only considers α ∈ [0, α̃1], the

new optimal choice of allocation of responsibilities, αV within the firm must solve

Π−ψ(e(αV ,D)) − (1 − e(αV ,D))
[
cR(α

V ,D) + (1 −α)D
]
− R(e(αV ,D)) + E[l] = 0

This is indeed possible as the profit of the principal is increasing in α so that there exists a

αV > 0 such that the principal’s profit is nonnegative.

A more complete analysis of the optimal regulation subject to the principal’s partici-

pation would allow for change in both α and F with respect to Corollaries 6 and 7. Let

Ω(α, F) := cR(α, F) + (1 − α)F and V(Ω(α, F)) denote the total amount of fines imposed

on the firm and the value function of problem (JP), respectively. From the Envelope

Theorem, it is straightforward to see that the principal’s expected payoff decreases in

Ω(·) as ∂V(Ω(α, F))/∂Ω = −(1 − e(α, F)) < 0. Furthermore, proposition 13 states that the

equilibrium effort level is (weakly) increasing in Ω(·). Therefore, to ensure the principal’s

participation constraint and maximize the equilibrium effort level, the regulator must

choose Ω such that

When both α and F are close to 0 and D, respectively, the equilibrium is given by

Proposition 13 (a). Therefore, when the regulator seeks to maximize precautionary care it

is equivalent to choose α and F so that

max
Ω∈[E[l],D]

Ω

s.t. V(Ω) > 0

It is clear that the constraint must bind so that the optimal choice of Ω satisfies V(Ω∗) = 0.

Uniqueness of Ω∗ is guaranteed by V ′(Ω) < 0. Then, the regulator must choose (α∗, F∗)

so that cR(α∗, F∗) + (1 − α∗)F∗ = Ω∗. Observe, however, that the choice of (α∗, F∗) is not
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unique so that the optimal regulation can be achieved with various combinations of the

regulation instruments. More precisely, if (α∗, F∗) implements Ω∗ then it is also possible

to find (α̂, F̂) with α̂ > α∗ and F̂ > F∗, that is, another regulation scheme in which the

agent is more targeted but the total amount of fines imposed on the firm increases.11

Proposition 14 When the optimal regulation (α∗, F∗) = (0,D) is such that the principal does

not want to participate ex ante, the regulation policy (α, F) must be such that the total perceived

fine solves V(Ω(α, F)) = 0, that is, the principal’s expected profit is null. The choice of (α, F) is

nonunique.

Participation of the principal crucially depends on the benefits of the productive activity Π

and on the agent’s expected wealth E[l]. Indeed, let e = e(Ω), then the optimal regulation

subject to the principal’s participation sets Ω to solve

Π−ψ(e(Ω)) − (1 − e(Ω))Ω− R(e(Ω)) + E[l] = 0.

Totally differentiating this expression yields dΩ
dΠ = dΩ

dE[l] = − 1
V ′(Ω) > 0. Hence, an increase

in either the productive activity of the expected agent’s wealth allows the regulator to set

a higher total perceived fine Ω which, in turn, leads to higher level of precautionary care.

Quite intuitively, it seems therefore easier to regulate profitable businesses with wealthy

members rather than small returns activities with very financially constrained agents.

2.3.2. Observability of the Private Contract: Negligence Rule

So far, I have assumed that the private contract was not observable to the Regulator, or,

equivalently, that the Regulator was not using the private contract as a tool to provide the

firm with incentives to take precautionary care. I only considered the “strict liability” rule,

that is, the firm is subject to fines when an accident occurs, regardless of the implemented

effort level.

Assume now that the court can observe the private contract and infer the equilibrium

effort level from the incentive scheme offered by the principal. This kind of regulation is

generally referred to as a “negligence rule”. The regulator defines a negligence standard

11Naturally, I assume that Ω∗ < Ω(0,D) and (α∗, F∗) ∈ (0, 1)× (0,D) so that there exists α̂ ∈ (α∗, 1] and
F̂ ∈ (F∗,D].
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(an effort level), and the firm is subject to fines only if both an accident occurs and the

negligence standard is not met.

Suppose that the regulator sets a negligence standard eS ∈ [0, 1] and a regulatory policy

(α, F). When an accident occurs, the regulator investigates the firm and observes the

private contract from which is deduced the equilibrium effort level e∗. If the equilibrium

effort level is equal or higher than the negligence standard, no fine is imposed on the firm.

If, however, the effort level is lower than the negligence standard, the regulatory policy

(α, F) applies.

Hence, following the analysis of Demougin and Fluet (1999), it is clear that when the

firm does not comply with the negligence standard, it faces the exact same trade-off than

in the strict liability rule, i.e., problem (JP). Therefore, it is still optimal to fully target the

principal when the negligence standard is not met.

The regulator can then set the negligence standard to the first-best level of effort

eS = eFB. The principal will therefore have to choose either to comply and induce the

first-best level of effort or to choose not to comply and face problem (JP). As in Proposition

4 of Demougin and Fluet (1999), it is clear that such a negligence rule always weakly

improve the equilibrium effort level.

2.3.3. Extension of Liability to the Principal

Assume that if ex post the agent has not enough wealth to pay his share of fines αF,

then the Regulator can seize the amount remaining due to the principal with probability

γ ∈ [0, 1]. This practice is commonly referred to as extended liability. I now consider

whether extension of liability to the principal can help mitigate the judgment-proof

problem.

First, notice that the utility of the agent is still defined by equation (2.7). However, the

principal’s expected profit now writes

VJ = Π− etN − (1 − e)cP(tA,α, F) − (1 − e)
[
(1 −α)F+ γ

(
αF− cR(α, F)

)]
,
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where αF− cR(α, F) 6 0 is the expected unpaid amount of fines by the agent. Once again

using equation (2.7), the principal’s expected profit rewrites as:

VJ = Π−ψ(e) − (1 − e)
[
(1 −α)F+ cR(α, F) + γ

(
αF− cR(α, F)

)]
−U.

Notice that for γ = 0, the problem is identical to the (JP) problem for any (α, F) and

for γ = 1 it is as if the Regulator fully targets the principal, that is, (α, F) = (0, F). The

principal’s maximization problem writes maxe,U VJ subject to U > 0 and U > R(e) − E[l].

This problem differs from (JP) only through the additional payment of γ
(
αF− cR(α, F)

)
in case an accident occurs in the principal’s expected profit. Therefore, Proposition 13

directly applies by adding this additional payments in the right-hand side of (2.9) and

(2.11) and an appropriate change in threshold levels. For instance, when α is low enough,

the equilibrium effort level is given by

eψ ′′(e) +ψ(e) = (1 −α)F+ cR(α, F) + γ
(
αF− cR(α, F)

)
It is clear that having γ > 0 strictly increases the equilibrium effort level, that is, extending

liability to the principal mitigates the judgment-proof problem. Immediate computations

shows that the right-hand side of this equation decreases in α for γ < 1 and is constant

in α for γ = 1. Hence, the optimal regulation policy still consists in fully targeting the

principal (α = 0) for γ < 1. When γ = 1, the Regulator can fully pass on any unpaid fines

by the agent to the principal and the structure of penalties becomes irrelevant.

2.3.4. Nonmonetary Sanction: Jail sentences

Other penalties than monetary sanctions can be considered such as jail sentences or

reputation losses for instance. It seems intuitive that nonmonetary sanctions can be used

as a way to mitigate the judgment-proof problem.

Segerson and Tietenberg (1992) consider the joint use of monetary and nonmonetary

sanctions when the firm’s assets are insufficient or when actual fines are below efficient

levels for other legal reasons. They assume that members of the firm can be incarcerated

in addition to the payment of fines when an accident occurs. Jail sentences generates

disutility for individuals directly from the years spent in jail and indirectly also from
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reputational losses while it also generates a social cost of incarceration. They find that

efficiency of nonmonetary sanctions crucially hinges on large reputational losses for the

members of the firm.

As they also rely on the assumption that the firm can partially escape paying the fines

levied on them, their results suggest that the same type of effect would apply in the

judgment-proof case. Therefore, imposing nonmonetary sanctions such as jail sentences -

especially on the agent – would help mitigate the judgment-proof problem as well.

2.4. BARGAINING POWER AND OPTIMAL

REGULATION

So far, I have assumed that the principal had all the bargaining power in the choice of the

private contract. It seems important to investigate the importance of this assumption for

the choice of the equilibrium effort level. The results for the optimal regulation suggest

that imposing the total amount of the fine on the principal forces her to fully internalize

the sanction. But this result holds because the principal is the one with the bargaining

power in the relationship. Indeed, if the agent has more bargaining power in the private

relationship, he will try to impose his terms to the principal and will obviously benefit

from a heavily targeted principal.

To investigate this issue, assume that b ∈ [0, 1] and 1 − b denote the bargaining power

of the principal and the agent, respectively. Let us now assume that the principal and the

agent have the following objective

bV + (1 − b)U = b
[
Π−etN − (1 − e)cP(tA,α, F) − (1 − e)(1 −α)F

]
+ (1 − b)

[
etN + (1 − e)

[
cP(tA,α, F) − cR(α, F)

]
−ψ(e)

]
The agent’s local incentive constraint is still characterized by (2.7). Substituting it into

the objective of the coalition and expressing everything in the plane (e,U) as before, the

objective can be rewritten as

T :=
(
Π−ψ(e) − (1 − e)

[
cR(α, F) + (1 −α)F

]
−U

)
+βU,
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where β := 1−b
b represents the agent’s relative bargaining power.12 When the agent

has bargaining power, he will try to extract rent from the principal. However, I still

assume that the principal cannot reward the agent in case of accident, that is, tA 6 0,

so that there is an upper bound on how much rent the agent can extract from the

principal. Formally, if tA 6 0 then cP(tA,α, F) 6 0. This constraint can be rewritten as

cP(tA,α, F) = U− R(e) + cR(α, F) > 0. The maximization problem writes

max
e,U

(
Π−ψ(e) − (1 − e)

[
cR(α, F) + (1 −α)F

]
−U

)
+βU

s.t. U > 0

U > R(e) − E[l]

U 6 R(e) − cR(α, F)

Π−ψ(e) − (1 − e)
[
cR(α, F) + (1 −α)F

]
−U > 0,

Notice that the value of β plays a crucial part in the solution of this problem. Let us first

consider the case β ∈ [0, 1). It immediately follows that U enters the objective negatively.

Therefore, as in the case in which the principal has all the bargaining power (special

case β = 0 here), at least one of the agent’s constraint must bind and the principal’s

participation constraint is relaxed as U decreases.

Let µ and ν be the Lagrange multipliers associated with the two first constraints.

Ignoring the principal’s participation constraint, the first-order conditions of the problem

write13

ψ ′(e) + νeψ ′′(e) = cR(α, F) + (1 −α)F

µ+ ν = 1 −β.

For simplicity let us focus on the case where α is low (similarly to Proposition 13, case

(a)). Only the second constraint binds and thus µ = 0. It follows that the equilibrium

effort level is given by ψ ′(e) + (1 −β)eψ ′′(e) = cR(α, F) + (1 −α)F.

12After plugging (2.7) into T and changing variables the actual objective of the coalition is bT . As it is
equivalent to maximize bT and T , I choose the latter for convenience.

13As long as Π is large enough, the principal’s participation constraint will not be a problem here as she
has most of the bargaining power.
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Proposition 15 When the principal is dominant, β < 1, the equilibrium effort level is increasing

in β and the optimal regulation policy still satisfies (α, F) = (0,D).

This result simply confirms results obtained in section 2.3 when the principal has most of

the bargaining power. It shows, however, that an increase in the agent’s bargaining power

mitigates the judgment-proof problem as the equilibrium effort level increases in β.

When β > 1, the agent has most of the bargaining power and U now enters the

objective positively. It is therefore clear that either the third or the fourth constraint is now

binding. For simplicity, I assume that Π > D so that the participation constraint of the

principal is never binding (as shown below). Let U = R(e) − cR(α, F), then maximizing

the objective with respect to e gives the following first-order condition14

ψ ′(e) + (1 −β)eψ ′′(e) = cR(α, F) + (1 −α)F.

Notice that when β = 1 and α = 0, the equilibrium effort level solves ψ ′(e) = F. Hence, if

the regulator sets F = D, it is possible to achieve the first-best effort level (characterized

by ψ ′(e) = D). This occurs as β = 1 is equivalent to b = 1/2, that is, the principal-agent

coalition puts the same weights on each member’s payoff. However, as equilibrium effort

level is increasing β it follows that if β > 1 and (α, F) = (0,D) then the equilibrium effort

level is higher than the first-best one. The following proposition summarizes those results.

Proposition 16 When the agent is dominant, β > 1, the equilibrium effort level is increasing in

β. If the regulator chooses (α, F) = (0,D), the equilibrium effort level attains the first-best level

for β = 1 but exceeds the first-best level when β > 1.

When the agent is dominant, setting the regulation policy (α, F) = (0,D) might lead to an

excessive precautionary effort level. The intuition behind this finding is the following.

The dominant agent tries to extract as much rent as possible from the principal through

increases in payments tN and tA. However, recall that only punishments are available

in case of accident (tA 6 0) so that once the agent has set tA = 0 (from the binding

constraint U = R(e) − cR(α, F)), the only to extract more rent from the principal is through

an increase in tN, the payment in the absence of accident. This makes the agent even more

14The second-order condition requires that −ψ ′′(e) − (1−β)[ψ ′′(e) + eψ ′′′(e)] 6 0 or, equivalently, that β
is not too large. To ensure that the effort level is always interior, I assume that β is such that the second-order
condition always hold.
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incentivized that no accident occurs and in that situation the effort level becomes higher

than the first-best one. The optimal regulation in that case might therefore surprisingly be

milder and a decrease in the total amount of perceived fines cR(α, F) + (1 −α)F becomes

desirable. Once again, several combinations of (α, F) can achieve a lower total amount of

perceived fines.

Rewards in Case of Accident. So far, I have assumed that the principal could not offer

rewards (tA > 0) in case of accident but only a punishment (tA 6 0). Although it may be

difficult to regulate private contracts between a principal and an agent, it may be possible

to make sure that an agent does not receive bonuses when accident occurs. This legal

restriction can be imposed for ethical reasons or following the reasoning of incentive

theory. Furthermore, when the principal has all the bargaining power, it is intuitive that

she would not offer rewards to the agent as it would both reduce incentive provision and

the possibility of extracting rent from him.

When the agent is dominant, however, we have seen that the private contracts is such

that tA = 0 when only punishments are available. This suggests that a dominant agent

would like to set positive tA if possible. Assume now that rewards in case of accident,

i.e. tA > 0, are allowed. The agent’s payoff in case of accident can still be written as

m(tA,α, F) = cP(tA,α, F) − cR(α, F) so that neither his expect utility nor his incentive

constraint changes. For the principal, however, the payoff in case of accident simply

becomes tA (instead of cP(tA,α, F)) as the reward she pays the agent is independent from

the regulation policy. Her expected payoff therefore rewrites VR = Π− etN − (1 − e)tA −

(1 − e)(1 −α)F.

For simplicity, assume that the agent has all the bargaining power. It follows that the

maximization problem writes

max
e,tA

R(e) +m(tA,α, F)

s.t. Π− eψ ′(e) − (1 − e)(1 −α)F− em(tA,α, F) − (1 − e)tA > 0,

where it is clear that we can ignore the agent’s participation constraint. As ∂m(tA,α,F)
∂tA

> 0,

the objective is increasing in tA whereas the principal’s profit is decreasing in tA. Then, the

principal’s participation constraint is binding. Notice that if tA > αF, i.e. in case of accident
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the agent receives a reward that covers his share of fines, then m(tA,α, F) = tA − αF.

Assume that the equilibrium tA is greater than αF, then it follows that the binding

participation constraint of the principal gives tA = Π− eψ ′(e) − (1 − e)(1 − α)F+ eαF.

Plugging this expression into the objective reduces the problem to maxeΠ−ψ(e)− (1−e)F.

This program is simply the social objective and it yields the first-best level of effort

ψ ′(e) = F.

This result, although not surprising, stresses two important insights for the regula-

tion.15 First, this finding shows that the allocation of penalties between the principal and

the agent is irrelevant when the agent has all the bargaining power. Intuition could have

suggested that members with more bargaining power should be more targeted but this is

not the case. Second, it shows that rewards should be allowed in case of accident. When

they are, a fully dominant agent can extract the whole surplus from the principal and

the first-best level of effort is attained. This contrasts with the result of proposition 16 in

which only punishments are allowed and the agent chooses an excessively large effort

level.

2.5. TWO-SIDED MORAL HAZARD

In many situations, the responsibility of preventing an accident lies with more than one

agent. The probability of accident may then depend upon the action of several agents and

it is not possible to hire a single agent in charge of safety. In that case, what should be

the optimal targeting policy if some of the tortfeasors are judgment-proof? Agents may

differ in their wealth characteristics and cost of effort. Should the regulation change with

respect to agents’ efficiency and wealth?

To capture the fact that the probability of accident depends on more than one agent,

I now model a two-agent partnership with double-sided moral hazard. Assume that

each partner receives a non-contractible benefit b only when no accident occurs whereas

they receive Π < b independently of the accident. Therefore, their contract consists in

choosing a sharing of Π for the two state of the world. The environmental harm is denoted

15As in standard principal-agent models, giving the bargaining power to the informed party makes the
moral hazard problem disappear as the rent extraction-efficiency trade-off vanishes.
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by D < Π. Agent 1 and agent 2 exert efforts e ∈ [0, 1] and a ∈ [0, 1], respectively. The

probability of accident is determined by
(
1 − p(e,a)

)
where p(e,a) is the joint production

function. Individual cost functions of effort are ψ(e) and C(a) that are both increasing

and convex functions. To obtain a tractable model I further assume the following specific

functional forms: p(e,a) = e+ a, ψ(e) = γ1
e2

2 and C(a) = γ2
a2

2 .

As in the one-sided moral hazard case, the regulator chooses the level of total fine

F ∈ [0,D] and a distribution of fines (α1,α2) among the two agents, where α1 + α2 = 1

and αiF is the share of the fine imposed on agent i = 1, 2. For simplicity, I will assume

that F = D so that the regulator only has to determine the distribution of fines.

Each agent i = 1, 2 has a liability li, uniformly distributed over [0, li]. Neither the

regulator nor the agents know the value of l1 and l2 until the end of the game. The final

wealth of agent i is given by the realization of his liability and his share of the total profit

Π. An agent i = 1, 2 is said to be judgment proof when his final wealth is lower than

the amount of the fine αiD he has to pay to the regulator. I will further assume that

D > max{E[l1], E[l2]} so that in expectation, none of the agent has enough resources to

pay the fine in full.

The timing of the game is the following. First, the regulator announces an ex post

regulation policy (D,α). Second, the agents observe the regulation policy and contract

upon profit. The contracting stage is close to Cooper and Ross (1985). Agents play a two-

stage game in which they first agree on a binding contract with respect to their respective

share of profit in the two possible states of the world (“no accident” and “accident”). In

the second stage, taking the terms of the contract as given, they simultaneously choose

their effort level e and a.

The design of the private transactions among the two agents has a particular interest

in the context of judgment proofness. Here, I assume that agents agree on a contract

(tN, tA) ∈ [0,Π]2 where tk is the share of agent 1 in state k = N,A and thus Π− tk is the

share of agent 2 in state k = N,A. As usual in double moral hazard problems, the sharing

of the profit ensures distribution of incentives in the partnership. With judgment-proof

agents, however, the sharing of profit plays the additional role of concealing revenue to

the regulation authority.
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Following the same line as the previous principal-agent model, the potential agents’

unability to pay the regulator modify their ex post transfer in case of accident. Let mi(tA)

denote the transfer of agent i = 1, 2 in case of accident. Again, this transfer incorporates

both the private and the public transactions. For uniformly distributed level of liability

li ∈ [0, li], I define

m1(tA) :=

∫ l1
α1D−tA

(tA −α1D)

l1
dl+

∫α1D−tA

0

(−l)

l1
dl,

m2(tA) :=

∫ l2
α2D−Π+tA

(Π− tA −α2D)

l2
dl+

∫α2D−Π+tA

0

(−l)

l2
dl.

Naturally, the payoff of agent 1 is increasing in tA while the one of agent 2 is decreasing

in tA. Let M(tA) := m1(tA) +m2(tA) be the total profit of the partnership when an

accident occurs. Notice that it depends upon tA, that is, the way profit is split up in case

of accident. This stems directly from the assumption that agent may be judgment proof:

internal distribution of profits matter now.

I solve the perfect Bayesian equilibrium of the contracting game by backward induction.

For a given contract (tN, tA) ∈ [0,Π]2, agents’ utility functions write

U1 = p(e,a)(b+ tN) +
[
1 − p(e,a)

]
m1(tA) −ψ(e),

U2 = p(e,a)(b+Π− tN) +
[
1 − p(e,a)

]
m2(tA) −C(a).

At the second stage of the contracting game, agents simultaneously choose their effort

level. Differentiating the utility of each agent with respect to own effort and equating to

zero gives the two incentive constraints:

b+ tN −m1(tA) = γ1e, (2.12)

b+Π− tN −m2(tA) = γ2a. (2.13)

Given that functions mi(·) are monotonic, the equilibrium effort levels e and a are

uniquely defined by a contract (tN, tA) in the subgame. For simplicity, I ignore both

agents’ participation constraints. This approach would therefore fit with a situation in

which agents are already engaged in production and cannot decide to quit ex ante like
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for instance if agents run an established nuclear power plant that cannot be stopped

overnight.16

Therefore, assume agents choose a sharing of profit and effort levels to maximize joint

profits as follows

max
{e,a,tN,tA}

(e+ a)(2b+Π) + (1 − (e+ a))M(tA) −ψ(e) −C(a)

subject to constraints (2.12), (2.13) and (tN, tA) ∈ [0,Π]2.

Notice that tA enters directly into the objective function of the firm. Usually, without

judgment-proofness, profit sharing only serves as a way to distribute incentives within the

firm and affects joint profits only indirectly through changes in equilibrium effort level. In

the judgment-proof case, profit sharing also directly affects profits in case of accident as

shifting monetary resources from one agent to the other also serves as a way of concealing

profits to the regulator. For intermediate values of α1, the total profit of the firms in case

of accident is a U-shape function of tA. The minimal total profit in case of accident is

attained for intermediate values of tA and is exactly Π−D for tA ∈ [α1D,Π−D+α1D].

In other words, for intermediate values of tA, the firm pays the whole fine whereas it can

increase total profit by shifting resources more extremely to one or another agent.

Consider first the case of an interior solution in the sense (tN, tA) ∈ (0,Π)2. Plugging

(2.12) into (2.13), the first-order conditions with respect to e, a and tA write:

2b+Π−M(tA) − γ1e− λγ1 = 0 (2.14)

2b+Π−M(tA) − γ2a− λγ2 = 0 (2.15)

(1 − (e+ a) − λ)M ′(tA) = 0. (2.16)

where λ is the Lagrange multiplier associated with (2.13). Analyzing those first-order

conditions (details in the appendix) shows that there exists a local maximum for which

16In the one-sided moral hazard case, the agent can be seen as an employee or an independent contractor
who is in charge of take precautionary care on behalf of the principal. In that case, it is crucial to take into
account his participation constraint as he may simply refuse to take part in a risky activity.
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CHAPTER 2. OPTIMAL STRUCTURE OF PENALTIES

WITH JUDGMENT-PROOF INJURERS

M ′(tIA) = 0 so that tIA ∈ [α1D,Π−D+α1D] and

eI =
γ2(2b+D)

γ1(γ1 + γ2)

aI =
γ1(2b+D)

γ2(γ1 + γ2)

Notice that only tIA depends upon α1 whereas eI and aI only depend uponD and marginal

costs of efforts. More importantly, as the solution requires M ′(tIA) = 0, it means that total

profits of the firm are at their lowest possible value, namely M(tIA) = Π−D. Therefore,

the firm faces the whole amount of fines and agents have to provide quite high effort

levels. 17

Intuition suggests that this candidate is, in some cases, the worst possible scenario for

the firm as it has to pay the fine in full and exert effort levels accordingly. As mentioned

above, this candidate to the maximization problem is only a local maximum and it may

not be a global one.

This is indeed the case when the regulator heavily targets one agent. Let us assume

that α1 is close to zero, that is, agent 1 is almost not targeted by the regulation while agent

2 faces almost the whole fine D. Then the following may arise.18

Proposition 17 When the regulation heavily targets agent 1 (resp. agent 2), the equilibrium

contract may exhibit an extreme sharing out of the profit, namely, tN = tA = Π (resp. tN = tA =

0).

That is, when an accident occurs, the two-agent partnership secures profit by giving it to

the least targeted agent. Notice that when tA = Π and α1, thenM(tA) = Π−α1D−E[l2] >

Π−D if α1 is small enough as D > E[l2]. As the firm is able to secure profits in case of

accident by moving resources to the least targeted agent, it will also exert a lower total

17As a way of comparison, the first-best levels of effort solve maxe,a(e+a)(2b+Π)+(1−(e+a))(Π−D)−
ψ(e)−C(a) and thus they write eFB = (2b+D)/γ1 and aFB = (2b+D)/γ2. Therefore eI = γ2

γ1+γ2
eFB < eFB

and aI = γ1
γ1+γ2

aFB < aFB. When γ1 = γ2, the total level of effort eI + aI is exactly twice as less as the
first-best total of effort eFB + aFB.

18Whether the interior equilibrium is a global maximum crucially depends on the size of D. For low D,
the interior is a global maximum, whereas it is always dominated by extreme sharing when D becomes
higher.
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effort level as the threat of an accident is also lower. In the case where tN = tA = Π,

equilibrium effort levels are given by

e =
b+α1D

γ1
,

a =
b+ E[l2]

γ2
.

The interpretation is as follows. Each agent has natural incentives to exert effort as b > 0 is

obtained only when no accident occurs. Agent 1 has all the contractible profit Π whether

an accident occurs or not so that an increase in α1 gives him additional incentives to exert

effort. Agent 2, however, receives nothing whether an accident occurs or not so that his

incentives to exert effort are unchanged with respect to α1. However, agent 2 faces a large

share of the fine (as α1 is small) and therefore expects to pay E[l2] if an accident occurs.

For larger α1, the extreme equilibrium tN = tA = Π may not hold anymore. In that

case, we have tA = Π but tN < Π so that e = γ2(2b+α1D+E[l2])
γ1(γ1+γ2)

and a =
γ1(2b+α1D+E[l2])

γ2(γ1+γ2)
. By

symmetry, when α1 is close to 1, we have tN = tA = 0, e = b+E[l1]
γ1

and a =
b+(1−α1)D

γ2
and

for lower α1, tA = 0, tN > 0, e = γ2(2b+(1−α1)D+E[l1])
γ1(γ1+γ2)

and a =
γ1(2b+(1−α1)D+E[l1])

γ2(γ1+γ2)
.

When agents both share the same marginal cost of effort, that is, γ1 = γ2, the optimal

regulation takes a very simple form.

Proposition 18 When γ1 = γ2, the optimal regulation (minimize probability of accident) requires:

α∗1 =
1
2
+

E[l1] − E[l2]

2D
.

Thus, the optimal regulation policy is centered around 1/2 and targets more the agent

with more liability. More importantly, this optimal regulation is unique and thus the way

it is designed matter for incentivizing agents to exert effort.

Two important things stems from Proposition 18. First, the Equivalence Principle

fails to apply due to the judgment-proofness possibility. Agents anticipate the regulation

and write contracts accordingly. Second, in a double moral hazard setting, the optimal

regulation allocates the total fines evenly among injurers. This is in sharp contrast with the

optimal regulation in the case of one-sided moral hazard in which targeting the principal

only was optimal.
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2.6. CONCLUSION

In this paper, I have proposed a theoretical foundation for the optimal distribution of

penalties among several potential injurers. Assuming that injurers have limited financial

resources and therefore sometimes declared judgment proof, I show that the usual

Equivalence Principle does not hold anymore. On the contrary, both in the principal-agent

firm and in the two-agent partnership firm, the optimal regulation distributes fines toward

the injurers with available cash resources. On their side, firms anticipate the regulation

and try to prevent paying the fines as much as possible. This requires the optimal contract

to solve a trade-off between allocating incentives (to avoid the accident) and sharing profits

in case of accident to avoid paying penalties. My result stems from relaxing the modeling

assumption that the individuals must contract ex ante to avoid ex post insolvency. Instead,

I assume that there is no need to contract ex ante on that matter as insolvency simply

implies not paying the fines.

APPENDIX

Proof of Proposition 13. Let λ and µ be the Lagrange multipliers associated with the participation

constraint U > 0 and the constraint U > R(e) − E[l], respectively. First-order conditions write

µeψ ′′(e) +ψ ′(e) = cR(α, F) + (1 −α)F

λ+ µ = 1.

It is clear that λ = µ = 0 is impossible. Consider first that λ = 0, so that µ = 1. It follows that the equilibrium

effort level e1 is given by

e1ψ
′′(e1) +ψ

′(e1) = cR(α, F) + (1 −α)F,

which is equation (2.9). Let e1(α) be the implicit solution to this equation. Notice that the LHS is strictly

increasing in e and the RHS is stricly decreasing in α so that e1(α) is decreasing in α. As µ = 1, the second

constraint is binding so that U = R(e1(α)) −E[l]. This holds as long as the agent’s participation constraint is

also satisfied, that is U = R(e1(α)) − E[l] > 0. As e1(α) decreases in α, there exists a threshold α̂1 such that

U = R(e1(α̂1)) − E[l] = 0. The principal sets tA = αF− l̂ to extract as much rent as possible from the agent.

Consider now the case where both µ > 0 and λ > 0. Complementary slackness implies that U =

R(e) − E[l] = 0. For this case, the effort level e2 = e1(α̂1) is constant with respect to α. Notice that the
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first-order condition with respect to e gives that µ =
cR(α,F)+(1−α)F−ψ ′(e2)

e2ψ
′′(e2)

. It is easy to see that for α = α̂1

we have cR(α̂1, F) + (1 −α)F = e2ψ
′′(e2) +ψ

′(e2) > ψ
′(e2) so that µ > 0. This solution is then valid until α

reaches the second threshold α̂2 defined by cR(α̂2, F) + (1 −α)F = ψ ′(e2).

Finally, when µ = 0 it implies λ = 1 and U = 0. The equilibrium effort level is defined by ψ ′(e3) =

cR(α, F) + (1 − α)F and is decreasing in α. Recall that U = R(e) + cP(tA,α, F) − cR(α, F) so that U = 0

requires that cP(tA,α, F) − cR(α, F) > −E[l] in that situation as R(e3(α)) < R(e2) = E[l] for all α > α̂2. �

Interior Solution for the Two-Sided Moral Hazard Problem

Equation (2.16) directly rewrites M ′(t) [1 − (e+ a) − λ] = 0.

• Let us assume that M ′(t) 6= 0 Thus, we must have 1 − (e+ a) − λ = 0. The bordered Hessian of the

problem writes:

H =


0 −γ1 −γ2 −M ′(t)

−γ1 −γ1 0 −M ′(t)

−γ2 0 −γ2 −M ′(t)

−M ′(t) −M ′(t) −M ′(t) 0


Using Sydsæter, Hammond, Seierstad, and Strom (2008) we have to compute two determinants:

B2 :=

∣∣∣∣∣∣∣∣
0 −γ1 −γ2

−γ1 −γ1 0

−γ2 0 −γ2

∣∣∣∣∣∣∣∣ = γ1γ2(γ1 + γ2) > 0

B3 :=

∣∣∣∣∣∣∣∣∣∣∣

0 −γ1 −γ2 −M ′(t)

−γ1 −γ1 0 −M ′(t)

−γ2 0 −γ2 −M ′(t)

−M ′(t) −M ′(t) −M ′(t) 0

∣∣∣∣∣∣∣∣∣∣∣
= [M ′(t)]2[γ2

1 + γ1γ2 + γ
2
2] > 0

These determinants are neither both negative (local min) nor of alternate sign (local max). Thus, this

stationary point is a saddle point.

• Let us assume that M ′(t) = 0. Solving M ′(t) = 0 for t we get:

∫ l1
α1D−t

dH(l) −

∫ l2
α2D−Π+t

dH(l) = 0
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Then, the solutions tF lie in the interval [α1D,Π−D+α1D]. We simply obtain that 19

M(tF) = Π−D.

In other words, if this were a solution to the partnership problem, the agents would pay all the damages

without trying to escape and would exert maximal levels of efforts.

Equation (2.14) and (2.15) write

2b+D− λγ1 = γ1e,

2b+D− λγ2 = γ2a.

Summing this two constraints and plugging this into the constraint gives:

λ =
2b+D
(γ1 + γ2)

,

and then

e =
γ2(2b+D)

γ1(γ1 + γ2)

a =
γ1((2b+D)

γ2(γ1 + γ2)

The partnership’s total revenue at this equilibrium writes:

VF = Π−D+
γ2

1 + γ1γ2 + γ
2
2

2γ1γ2(γ1 + γ2)
(2b+D)D2.

Let L∗ be the Hessian of the Lagrangian at the candidate solution:

L∗ :=


−γ1 0 0

0 −γ2 0

0 0 0


From Luenberger and Ye (1984) we have a local maximum if yTL∗y < 0 for all y ∈M = {y = (y1,y2,y3) : (−γ1,−γ2, 0)y = 0}.

Here, we have

yTL∗y = −γ1y
2
1 − γ2y

2
2 < 0.

Then we have a local maximum.

19Be careful, here other t might solve M ′(t) = 0. Check what happens.
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3. HOW TO REGULATE MODERN AIRPORTS?

(with David Martimort and Jérôme Pouyet)

Asbtract

In addition to the provision of aeronautical services, modern airports are also in charge of

providing commercial services to passengers as well as investing in their infrastructure.

We investigate the optimal regulation of airports and its implementation. Optimal

prices for aeronautical services and commercial services follow a Ramsey-Boiteux pricing

rule. Traditional price-cap regulations of aeronautical and commercial activities fail to

implement the optimal regulation as they do not provide sufficient incentives to invest. A

successful implementation must rely on a price-cap formula supplemented by a subsidy

policy specific to the regulation of investment. The choice between a single-till and

a dual-till approach does not change the optimal regulation. We also investigate the

consequences of the nature of the airport-airline relationship and of the observability of

investment on the optimal regulation.

Keywords: Airports, Price-cap Regulation, Non-Aeronautical Revenues, Vertical Separation.

JEL Classification: L51, L93, L22.
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3.1. INTRODUCTION

Until the 1980s, most airports were publicly-owned companies. Airport privatization

began with the privatization of seven airports in the UK, and notably three in the London

area (Heathrow, Gatwick, and Stansted). They were sold in 1987 by the UK government

to a pure privately-owned company, British Airports Authority. Since then, many airports

have been privatized in Europe (Copenhagen, Vienna, Rome for instance) as well as

in New Zealand and Australia.1 New waves of privatizations also occurred in Asia

and South America more recently.2 According to the Airports Council International,

over 40% of European Airports were partially or fully privatized in 2016 and those

account for about three-quarters of total passenger traffic in Europe. Privatization not

only occurs through the transfer of ownership to private actors but also through the

transfer of management. Many airports are publicly owned but privately operated as it

is mainly the case in the US. Others such as Athens, Hamburg and Rome are partially

for-profit entities in which private investors have stakes but limited to a minority interest.

Gillen (2011) argues that minority private interests have often been sufficient to cause a

change in management attitude and leads the airport to develop commercial value. The

motive for privatization has generally been to improve operational efficiency and access

to private sector financing and investment. Vogel (2006) presents evidence that privatized

European airports exhibits better financial performance and are more cost-efficient than

publicly-owned airports. Tretheway (2001) argues that privatization allows airports to

raise equity capital and finance investments when they are needed. Publicly-owned

airports, on the contrary, generally suffer from government priorities and a rigid budget

process. Airport privatization also seems to foster strategic investment where public-

owned entities were unable to create value. Although benefits from the privatization

of ownership or orientation to a for-profit privately-managed airport seem to largely

improve airport’s cost-efficiency, adaptability and investment incentives it has also raised

concerns among practitioners and economists. Unregulated privately-owned airports,

however, are likely to pursue profit maximization as they operate on a relatively captive

market of both passengers and airlines through their control of “an essential facility”

1See for instance Oum, Zhang, and Zhang (2004) and Oum, Adler, and Yu (2006).
2See Hooper (2002) for airport privatization in Asia.



129 CHAPTER 3. HOW TO REGULATE MODERN AIRPORTS?

(runways, terminal buildings, navigational services). The traditional view is that airports

behave as monopolies and almost every privatization was accompanied by some sort of

price regulation (Tretheway, 2001). For instance, Bel and Fageda (2010) find evidence

that nonregulated airports charge higher aeronautical charges than regulated ones. Non-

aeronautical services such as commercial activities (retailing services, car parking, office

rental) are also a major source of revenues. By now, they represent 40% of total airport

revenues (see ACI (2017)) and their magnitude raises further concerns about the risk that

airports may abuse market power.

Various forms of regulations have been adopted to tackle this issue although price-cap,

rate-of-return, and light-handed regulations have been predominant. Price-cap regulation

has been widely used in Europe (UK, France, Spain, Germany, for instance) and consists in

setting a cap – reevaluated every three or five years by the regulator – on the price that the

airport can charge for providing services.3 Although rate-of-return regulation has been

criticized for its complexity and inefficiencies by several authors, it is still used by airports

in Geneva, Zurich, Athens, Amsterdam and others (Reynolds, Sean, Veronese, and von

Hinten Reed, 2018).4 An important question to be addressed by regulators concerns the

scope of the regulation. Should it be solely used to set prices of aeronautical services or

should it also be extended to prices of commercial activities? Should revenues generated

by commercial activities be included in the computations of the price-cap formula? This

last point is generally referred to as the problem of single-till versus dual-till regulation.

Some have argued that price-cap regulation tends to be overcomplicated and as the

presence of commercial activities drives airports to set relatively low aeronautical prices,

it might be better to avoid unnecessary regulation (Beesley, 1999, Starkie, 2001). Other

critics against price-cap regulation suggest that imposing low charges for aeronautical

services lowers airports’ incentives to invest in the infrastructure.5 Overall, there is still a

lively debate around the various distortive effects of single and dual-till approaches in

3See Oum and Fu (2009) and Reynolds, Sean, Veronese, and von Hinten Reed (2018) for more detailed
information.

4Tretheway (2001) and Kunz and Niemeier (2000) argue that rate-of-return is inefficient and tends to be
complex.

5Investing in the infrastructure helps to reduce congestion or attract richer passengers and therefore
can lead to an increase in passengers’ willingness to pay. Under a price-cap regulation, an airport can
imperfectly raise prices to capture this additional willingness to pay and thus does not fully internalize the
benefits from investing in the infrastructure. On that matter see Czerny (2006) and Oum, Zhang, and Zhang
(2004).
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airport regulation.6

The difficulty of establishing the shape and scope of regulation for modern airports

lies in their complexity. As mentioned above, airports carry out commercial services (or

concessions) to passengers in addition to their core business of providing aeronautical

services to airlines and passengers. The specific complementarity between the demands

of those two activities plays a crucial role in the airport pricing decisions as we shall see

below. Furthermore, airports are in charge of investment decisions in their infrastructure

to improve the overall quality for passengers and to relieve congestion in the facilities.

Finally, airports do not directly provide aeronautical services to passengers but instead

charge airlines so that they can access the infrastructure. The final price of aeronautical

services paid by passengers is therefore charged by the airlines and not the airport.

Therefore, regulating prices for aeronautical services ultimately depends on the nature of

the vertical relationship between the airport and airlines.7

In this paper, we investigate the design of the optimal airport regulation policy and

its implementation in various scenarios. We allow for the possibility that prices of both

aeronautical services and commercial activities as well as investment decisions can be

jointly regulated. We assume that the airport sets the intermediary price for aeronautical

services to the airline as well as the price of commercial activities. The airline sets the

final price for aeronautical services to passengers. To take into account the specific

complementarity between demands of aeronautical and commercial services, we assume

that the consumption of commercial services is restricted to passengers. We further

assume that the decision to consume aeronautical services is independent of a consumer’s

valuation for commercial services, that is, consumers decide to fly solely based on their

valuation for aeronautical services.8 The airport is also responsible for investing in the

6Oum, Zhang, and Zhang (2004) provide empirical evidence on the distortions caused by single and dual
till regulation; Czerny (2006) shows analytically that single-till generally dominates the dual-till approach
but that none of them gives proper incentives for investments. Malavolti (2016) and Ivaldi, Sokullu, and Toru
(2015) investigate this question by considering the airport as a platform in a two-sided market environment.

7We call “modern”, airports which satisfy those main characteristics. Namely, airports that are in charge
of activities outside their core business of aeronautical services, which are responsible for investments and
that are in vertical relationships with airlines. Gillen (2011) uses a close definition to ours.

8Other authors have made similar albeit not equivalent assumptions about demand complementarity.
For instance, Czerny (2006) assumes that consumption of commercial services is restricted to passengers
but he also assumes that consumers decide to fly by taking into account the sum of the surplus generated
by aeronautical and commercial activities. As a result, a positive surplus generated by the consumption of
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infrastructure and we model the benefits of investment by assuming that it increases the

passengers’ value for aeronautical services. We investigate the case of observable and

unobservable (moral hazard) investment decisions. The airport-airline relationship is

vertically separated and we study two types of contracts. (i) The airport may offer a fixed

price along with a unit price for providing aeronautical services to the airline and; (ii)

only a unit price.

Our results are as follows. First, we characterize the optimal solution for the regulator

when she can freely choose the prices of aeronautical and commercial services as well as

the level of investment made by the airport. We show that optimal prices obey a Ramsey-

Boiteux pricing rule and are both above their associated social marginal cost. We find that

the presence of commercial activities only partially mitigates the unregulated airport’s

incentives to raise prices of aeronautical prices. As for the price of commercial services,

we find that an unregulated airport would charge the monopoly price on commercial

services as passengers are captive once they have entered the airport.

Assuming first observability of investment decisions and vertical integration between

the airline and the airport, we investigate the implementation of the optimal regulation.

We show that traditional regulations are likely to fail in the context of modern airports. For

instance, price-cap regulation for both aeronautical and commercial services successfully

implements Ramsey-Boiteux prices but fails to provide enough investment incentives to

the airport. We propose a subsidy-penalty policy on investment decisions to supplement

the price-cap regulation and fully implement the optimal regulation. Our analysis also

contributes to the debate of whether revenues generated from commercial activities should

be included in the price-cap formula (single-till v.s. dual till): We show that this choice

is irrelevant and has no impact on the optimal regulation in the context of observable

investment decisions.

Relaxing the assumption of vertical integration between the airport and the airline,

our results point out that, when the airport can offer a contract with both a fixed access

charge and a unit price for providing aeronautical services to the airline, the regulator

commercial service can compensate for a negative surplus on aeronautical services. Although it may be true
for some passengers (business) or when several airports are available for the same aeronautical services, we
believe that our assumption better reflects the consumer decision to fly.
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can implement the optimal regulation as if the airport and the airline were a vertically

integrated structure. However, when the airport can only offer a unit price for aeronautical

services, the optimal regulation is modified and leads to an increase in the price of

aeronautical services to passengers. In the absence of the fixed access charge, the airport is

unable to fully extract the rent from the airline and the increase in the price of aeronautical

services is necessary to satisfy the airport break-even condition. Interestingly, neither the

optimal price for commercial services nor the rule to define the optimal level of investment

decision is modified in that case.

Finally, we look at the case of unobservable investment decisions (moral hazard).

Compared to the case where investment decisions are observable, we show that the

regulator must set higher prices for both aeronautical and commercial activities to give

the airport proper incentives to invest in the infrastructure. Intuitively, rising prices helps

the airport to better appropriate the additional surplus generated by investing in the

infrastructure and therefore provides incentives to do so. The optimal level of investment

is, however, lower than in the observable case as the regulator wants to avoid an excessive

price increase.

Related Literature. Most of the recent literature on airport regulation takes into account

the interdependence of aeronautical and non-aeronautical services. Whether prices of

each activity should be regulated and whether revenues from non-aeronautical services

should cover a portion of airports’ costs are among the most debated issues. Follow-

ing Beesley (1999), Starkie (2001) conjectures that the interdependence of aeronautical

and non-aeronautical services suffices to temper airports’ abuse of market power and

therefore advocates abolition of price-cap regulation. However, several contributions

(including Zhang and Zhang (2003); Oum, Zhang, and Zhang (2004); Zhang, Fu, and Yang

(2010); Yang and Zhang (2011)) have shown that the presence of commercial activities

only partially mitigates the incentives to set excessive prices of aeronautical services for

unregulated airports. These studies build on the same interdependence assumption which

was firstly introduced in a formal model by Zhang and Zhang (1997). Similarly to our

approach, they assume that commercial activities do not affect individuals’ decisions to

fly and that their consumption is restricted to passengers. Unlike our model, however,

their relationship is not micro-founded. Czerny (2006), on the other hand, assumes
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that individuals take into account the consumption of commercial services when they

decide whether to fly. Under this assumption, he shows that price-cap regulation can

implement optimal prices only if both aeronautical and commercial services are regulated.

Concerning revenues generated from commercial services, both theoretical and empirical

works tend to favor the single-till regime at non-congested airports (Zhang and Zhang

(1997); Czerny (2006); Yang and Zhang (2011); Czerny, Shi, and Zhang (2016)) whereas

the dual-till regime seems preferable at congested airports (Oum, Zhang, and Zhang,

2004, Lu and Pagliari, 2004, Yang and Zhang, 2011). Another recent strand of the litera-

ture, such as Ivaldi, Sokullu, and Toru (2015), Malavolti (2016) and Malavolti and Marty

(2017) investigates airport regulation by adopting a two-sided market perspective. Finally,

vertical relationships and arrangements between airports and airlines have notably been

investigated by Zhang, Fu, and Yang (2010), Fu, Homsombat, and Oum (2011) and Yang,

Zhang, and Fu (2015).

The paper is organized as follows. Section 3.2 presents the model relying on the

complementarity between aeronautical services and commercial activities. Section 3.3

derives the optimal regulation for prices of aeronautical services and commercial activities

and for the level of investment when the airport and the airline are vertically integrated.

Section 3.4 shows that the implementation of the optimal regulation of prices and invest-

ments fails when one only relies on price-cap regulation and that regulating investments

through a marginal subsidy on invested capital is necessary. Section 3.5 investigates

the consequences of the vertical separation between the airport and the airline on the

optimal regulation policy. Section 3.6 examines how the optimal regulation is modified

when investments are non-verifiable and we show that prices of aeronautical services and

commercial activities are both impacted. All proofs are in the Appendix.

3.2. THE MODEL

Consider an airport providing both aeronautical and commercial services. We assume

that the airport possesses market power in both activities. For convenience, we assume

that there is only one airline using this airport.

We consider that revenues from commercial activities are conditional upon revenues
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from aeronautical services. Indeed, passengers may want to consume commercial services

once they entered the airport. It seems, however, unlikely that a consumer not interested

in aeronautical services has a demand for the airport’s commercial activities. Therefore,

commercial activities are complementary to aeronautical services, but the reverse is not

true.

The recent literature on airport-airline relationships has emphasized the importance

of the relationship between aeronautical services and commercial activities. However,

its nature differs from one paper to another. For instance, Czerny (2006) assumes that

an individual decides to fly if its surplus from the consumption of aeronautical services

plus the consumption of commercial activities is positive. This assumption implies that

an individual who gets a negative surplus from flying would still want to travel if the

positive rent from commercial services were to compensate for the negative rent from

flying. Ivaldi, Sokullu, and Toru (2015) and Malavolti (2016) consider airports as two-

sided platforms arguing that passengers are attracted by both aeronautical services and

commercial activities whereas airlines prefer airports that are attractive to passengers.

Although it may be true in some cases, airlines generally face severe competition to access

airport facilities and airports tend to have significant market power.9 As a result, the

airport may not take into account the airlines’ side. Finally, Oum, Zhang, and Zhang

(2004) propose a relationship between aeronautical services and commercial activities

similar to what we are suggesting. Unlike our model, however, their relationship is not

micro-founded.

Demand for Aeronautical Services. Suppose there is a continuum of individuals with

valuation ṽ for aeronautical services, where ṽ is drawn from a cumulative distribution

F(·, e) on V = [0, v], with a strictly positive density f(·, e) and no mass point. Note that both

the cumulative distribution and the density of ṽ depend upon the amount of investment

e of the airport, as we will see below. Hereafter, an individual who decides to consume

aeronautical services will be referred to as “a passenger.”

Investment in Airport Infrastructure. The airport can invest an amount e ∈ R+ to

enhance the quality of its infrastructure or to relieve congestion. Investing in airport

9See Oum and Fu (2009) for a discussion on airports’ market power and airline market structure.
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infrastructure directly leads to an increase in consumer demand for aeronautical services.

As a result, commercial activities also indirectly benefit from the investment.

This feature appears in the specification of the cumulative distribution function F(·, e)
of consumers’ valuations for aeronautical services. We assume that F(·, ê) first-order

stochastically dominates F(·, e) for any ê > e, that is, F(v, ê) 6 F(v, e) for any v ∈ V
and ê > e. Intuitively, higher investment levels make higher valuations for aeronautical

services more likely. Commercial activities are also positively affected by investment

decisions as for given prices p and p0, D(p, ê) > D(p, e) so that D0(p,p0, ê) > D0(p,p0, e)

for any ê > e.10

Demand for Commercial Services. We assume that only passengers can consume

commercial services. Therefore, once a passenger is in the airport, we suppose that he has

a valuation ṽ0 for commercial services, where ṽ0 is drawn from a cumulative distribution

G(·) on V0 = [0, v0], with a strictly positive density g(·) and no mass point.11

Total Demand. Let p and p0 denote unit prices of aeronautical and commercial services,

respectively. The airport sets p0 whereas the airline sets p. Following our assumption

of unidirectional complementarity between aeronautical and commercial services, the

indirect utility of a consumer can be expressed as:

max{ṽ− p, 0}+ 1{ṽ−p>0} max{ṽ0 − p0, 0}.

10Under this assumption, the level of congestion can be captured by changing the specification of the
cumulative distribution function. A congested airport with CDF F̃(v, e) is such that F̃(v, 0) > F(v, 0) for all
v ∈ V , where F(v, e) is the CDF of a less congested airport. In other words, in the absence of investment, a
less congested airport has a demand of a lesser quality than a less congested airport. The CDF can also be
adjusted to reflect the marginal utility of investment at congested and less congested airports: For instance,
if ∂F̃∂e (v, e) 6

∂F
∂e (v, e) for all v ∈ V and e ∈ [0, 1], one euro of investment in the congested airport enhances

its demands relatively more than the investment of one euro in the less congested airport.
11We assume that investment in the airport infrastructure does not directly affect the demand for

commercial services. This assumption could be relaxed by assuming that total investment is e+ e0 where
e and e0 are investment levels specific to aeronautical and commercial services, respectively. Demand
for commercial services could then be written as G(v0, e0), social marginal cost becomes cs(p0, e0) and
price elasticity of commercial services writes ζ(p0, e0). Optimal prices and investment level in aeronautical
services follow equations (3.9), (3.10) and (3.11) with the slight change in social marginal cost and price
elasticity of commercial services. An additional first-order condition defines the optimal level of investment
in commercial services: −(p0 − c0)

∂G
∂e0

(p0, e0) −
1

1+λ
∫v
p0
∂G
∂e0

(v0, e0)dG(v0, e0) = 1. An increase in the
investment level specific to commercials services, decreases the social marginal cost of aeronautical services
and therefore decreases the optimal price of aeronautical services.
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The indicator function 1 captures the unidirectional complementarity between aeronautical

services and commercial activities. This formulation implies that: (i) only passengers

(consumers with ṽ− p > 0) can benefit from the consumption of commercial services, and

(ii) when choosing whether to fly or not, consumers only take into account the surplus

they can derive from consumption of aeronautical services.12

From our assumption of unidirectional complementarity, the demand for aeronautical

services depends only upon the price p set by the airline, that is:

D(p, e) = Pr{ṽ > p|e} = 1 − F(p, e).

The price elasticity of this demand is denoted by:

ε(p, e) = −
pD ′(p, e)
D(p, e)

=
pf(p, e)

1 − F(p, e)
.

Although we do not explicitly model competition in the airline industry, this feature can

be captured through the elasticity of demand. For a given price p and level of investment

e, the more competitive the airline industry is, the more elastic demand is.13

Demand for commercial activities, however, depends upon both the price of aeronauti-

cal services p and the price of commercial activities p0. For a given p0, a passenger buys

commercial services with probability 1 −G(p0). Demand for commercial activities is ob-

tained by taking the unidirectional complementarity 1{ṽ−p>0} into account and integrating

over V :

D0(p,p0, e) =
∫
V
1{ṽ−p>0}[1 −G(p0)]dF(v, e) = D(p, e)[1 −G(p0)].

12By way of comparison, the indirect utility of a consumer in Czerny (2006) can be written as
1{ṽ−p+ṽ0−p0>0}

[
ṽ − p + max{ṽ0 − p0, 0}

]
in our model. Therefore, it satisfies (i) as consumers can en-

joy commercial services only if they decide to fly. But it does not satisfy (ii) as consumers can decide to fly
even if they get a negative surplus from aeronautical services as long as it is compensated by a positive
surplus from consumption of commercial services.

13Competition can be captured by changing the specification of the cumulative distribution function F.
Indeed, assume that each consumer has an outside option for aeronautical services whose net valuation is a
random variable w̃ drawn from a cumulative distribution H(·), with density h(·). The probability that the
consumer is willing to pay p for aeronautical services, or equivalently, the residual demand, is as follows:
D̃(p, e) = Pr{ṽ− p > w̃} =

∫v
0 H(v− p)f(v, e)dv. Therefore, the elasticity of demand can be expressed as:

ε̃(p, e) = −
pD̃ ′(p,e)
D̃(p,e)

=
p
∫v

0 h(v−p)f(v,e)dv

1−
∫v

0 H(v−p)f(v,e)dv
.
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The elasticity of demand with respect to price can be expressed as a function of p0 only:

ζ(p,p0) ≡ ζ(p0) = −
p0
∂D0
∂p0

(p,p0, e)

D0(p,p0, e)
=

p0g(p0)

1 −G(p0)
.

To ensure the quasi-concavity of optimization problems and monotonicity of equilibrium

prices we make the following assumptions.

Assumption 6 Monotone hazard rate property:

d

dv

(
1 − F(v, e)
f(v, e)

)
6 0 ∀v ∈ V and

d

dv0

(
1 −G(v0)

g(v0)

)
6 0 ∀v0 ∈ V0.

Economically, these assumptions guarantee that the elasticities for aeronautical services

and commercial activities are both increasing in the price of the service concerned.

Assumption 7 Consumer demand for aeronautical services increases in the amount of investment

at an increasing marginal rate:

∂F

∂e
(v, e) 6 0,

∂2F

∂e2 (v, e) > 0, ∀v ∈ V .

The first part of this assumption guarantees that increasing the level of investment

increases the demand for aeronautical services (in the first-order stochastic demand sense).

The second ensures the concavity of optimization program and the validity of the first-

order approach in the case of non-observable investments. Economically, it means that

additional investments are less and less effective to increase the demand of aeronautical

services.

Costs. We assume that aeronautical and commercial services are produced at constant

marginal costs c ∈ R+ and c0 ∈ R+, respectively. Hence, the cost structure exhibits neither

economies of scope nor economies of scale in our model. However, we can still interpret

the investment e as a fixed cost for setting up airport infrastructure. For future reference,

let cpr(p0) = c − (p0 − c0)(1 − G(p0)) denote the private marginal cost of production.

This cost takes into account the marginal cost of aeronautical services minus the profits

generated by commercial activities.
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3.3. BENCHMARK

We now present the first-best solution to the regulator’s problem. To this end, the regulator

must be able to (i) freely set prices for aeronautical services and commercial activities

(p,p0) and (ii) suggest an amount of investment e to the airport. Note that this last point

implicitly requires observability of investment decisions e. As the regulator controls both

p and p0, we can consider the airport-airline relationship as if it were vertically integrated.

Finally, we assume that the regulator aims to maximize social welfare subject to the profit

of the integrated structure (airport-airline) being nonnegative.

Relying on the results of the first-best solution, we aim to shed light on the debate

around airport regulation. For instance, several authors argue that demand complemen-

tarity between aeronautical and commercial services favorably mitigates the airport’s

incentives to excessively raise prices. The presence of commercial services indeed allevi-

ates the airport’s incentives to increase the price for aeronautical services, but the effect

is only partial. Worst still, we find that an unregulated airport sets the monopoly price

for commercial activities unconditional upon the competitiveness of aeronautical services.

Those findings directly stem from our assumption of unidirectional complementarity

between aeronautical services and commercial activities.

The present section is organized as follows. First, we briefly present the problem

of an unregulated airport. Then, we derive the optimal regulation policy for prices of

aeronautical and commercial services and we examine how our results might shed some

light on the debate about airport regulation. Finally, we investigate the optimal investment

rule when e is contractible.

3.3.1. The Unregulated Airport

Let us first consider the simple case in which the airport can freely choose the prices of

both aeronautical and commercial services as well as investment in the infrastructure. We

assume that the airport and the airline are vertically integrated so that their joint profit

writes:

PR(p,p0, e) = [1 − F(p, e)] [p− c+ (p0 − c0)(1 −G(p0))] − e.
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This expression contains the airline’s profit (1 − F(p, e))(p− c) and the airport’s profit

(net of investment costs) (1 − F(p, e))(p0 − c0)(1 −G(p0)) − e. In the absence of regulation,

the airport chooses (p,p0, e) to maximize PR(p,p0, e). The solution to this problem is as

follows.

Proposition 19 The unregulated airport sets prices:

pm − cpr(p
m
0 )

pm
=

1
ε(pm, em)

, (3.1)

pm0 − c0

pm
=

1
ζ(pm0 )

, (3.2)

and investment decisions solve:

−
∂F

∂e
(pm, em)(pm − cpr) = 1. (3.3)

Notice that the price of aeronautical services depends on the private marginal cost of

production, cpr, and not only on the marginal cost to produce aeronautical services c. As

cpr < c, it follows that p is lower than if no commercial services were carried out at the

airport and thus the unregulated airport takes into account the complementarity between

services. As we will see below, however, the unregulated airport only partially internalizes

the complementarity between services and sets an excessive price for aeronautical services.

From (3.2), it is clear that the airport sets the monopoly price for commercial services and

the demand for aeronautical services plays no role in that.

3.3.2. Optimal Price Regulation

Let us now turn to the optimal regulation for prices of aeronautical and commercial

services. First, we still assume that the airport and the airline are vertically integrated.

Additionally, we allow the regulator to provide public subsidies T to the integrated

structure in order to ensure the nonnegativity of their joint profit. For convenience, define:

PR(p,p0, e, T) = PR(p,p0, e) + T . (3.4)

Second, let us define consumer surplus. It is simply given by the sum of the surplus

generated by aeronautical services and the surplus generated by commercial services.
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Again, the unidirectional complementarity must be taken into account, that is, the surplus

generated by commercial activities is conditional upon the consumption of aeronautical

services. Therefore, we obtain:

CS(p,p0, e) =
∫
v>p

(v− p)dF(v, e) + (1 − F(p, e))
∫
v0>p0

(v0 − p0)dG(v0). (3.5)

Finally, we can define social welfare as the sum of consumer surplus and the profit of the

integrated structure, net of the social cost of public subsidies:

SW(p,p0, e, T) = CS(p,p0, e) +PR(p,p0, e, T) − (1 + λ)T , (3.6)

where the parameter λ > 0 stands for the cost of public funds.14 The optimization problem

of the regulator writes as follows:

(OS) : max
(p,p0,e,T)

SW(p,p0, e, T)

s.t. PR(p,p0, e, T) > 0. (3.7)

Before deriving optimal prices, we should stress that the social marginal cost of aeronau-

tical services must take into account the consumer surplus and the profit generated by

commercial activities arising from the demand for aeronautical services. Consequently, the

social marginal cost of aeronautical services is both lower than the marginal cost of produc-

tion, c, and lower than the private cost of production of the integrated structure. Formally,

recall that the private cost of production writes as: cpr(p0) = c− (p0 − c0)(1 −G(p0)).

This is the cost of production of aeronautical services minus the profits generated by

commercial activities. However, this cost does not include the social costs and benefits,

and, therefore, we define the social marginal cost of aeronautical services as:

cs(p0) = cpr(p0) −
s0(p0)

1 + λ
< c, (3.8)

where s0(p0) =
∫
v0>p0

(v0 − p0)dG(v0) denotes the consumer surplus generated by com-

mercial activities. The social marginal cost of aeronautical services is lower than the

associated private cost as it incorporates the consumer surplus derived from commercial

14In developed countries, this cost is about 0.3. See Oum, Waters, and Yong (1992).
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activities, weighted by the cost of public funds.

Proposition 20 The socially optimal regulatory policy of aeronautical services and commercial

activities relies on a Ramsey-Boiteux pricing rule. Optimal prices write as:

prb − cs(p
rb
0 )

prb
=

λ

1 + λ

1
ε(prb, erb)

> 0, (3.9)

prb0 − c0

prb0
=

λ

1 + λ

1
ζ(prb0 )

> 0, (3.10)

and are both greater than their associated social marginal cost.

Notice that the optimal price for aeronautical services relies on the associated social

marginal cost of production cs(·) and not only on the private marginal cost as in the

unregulated case. This result is intuitive as the difference between the two costs is precisely

the consumer surplus generated by commercial activities, weighted by the cost of public

funds, which the unregulated airport obviously ignores.

In light of the above results, we are able to revisit some common wisdom of the debate

about airport regulation.15

Common Wisdom 1 For aeronautical services and commercial activities, prices must equal

marginal costs.

On the contrary, our results on the optimal regulation suggest that both prices must be

greater than their associated social marginal cost. For aeronautical services, pricing at

marginal cost would ignore additional profits and surplus that could be derived from an

increase in passengers also consuming commercial services. However, it is not optimal

either to price aeronautical and commercial services exactly at their social marginal cost

as the cost of public funds is positive. The regulator wants to avoid giving too large a

subsidy to ensure the break-even condition and therefore prefers, to a certain extent, that

the airport makes some profits on each activity.

15We draw upon Gillen (2011). He offers a presentation of the evolution of airport governance and reports
that entities such as the ICAO (International Civil Aviation organization) and IATA (International Air
Transport Association) have traditionally considered that pricing at marginal cost is efficient, that pricing
below marginal cost indicates predation or that high price-cost margins indicates market power.
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Common Wisdom 2 The price of aeronautical services must cover the marginal cost of produc-

tion.

From Proposition 20, we see that the price of aeronautical services does not necessarily

cover the marginal cost of production. Indeed, the price of aeronautical services must

be greater than the social marginal cost of this activity, which includes revenues and

consumer surplus generated by commercial activities.

The regulator’s choice to increase prb is a trade-off between an increase in the profits

of the integrated structure motivated by the nonnegativity constraint and a decrease in the

consumer surplus generated by aeronautical services and commercial activities. Indeed

prb − cs(p0) =
λ

1+λ
prb

ε(prb,erb) and:

prb − cpr(p
rb
0 ) =

λ

1 + λ

prb

ε(prb, erb)
−
s0(p

rb
0 )

1 + λ
.

When the demand for aeronautical services is very elastic or when the consumer surplus

generated by commercial activities is significant, it is possible that prb − cpr(p0) < 0. In

that case, it is clear that the profit of the integrated structure is negative without a subsidy.

This suggests that, even with a positive cost of public funds, the regulator may want to

price aeronautical services below marginal cost and subsidize the integrated structure so

as it breaks even. Notably, when commercial services generate a high consumer surplus,

the regulator is more likely to set the price of aeronautical services below the marginal cost

of production and must, therefore, provide a higher subsidy to ensure that the integrated

structure breaks even.

Small regional airports and big international hubs do not face the same level of

demand and competition. Therefore, their ability to derive revenue from aeronautical and

commercial services is likely to vary according to their size. Some regional airports may

face more competition than larger hubs so that price elasticity for aeronautical services

is larger for small airports. In that case, our optimal regulation would tend to have to

subsidize more small airports as the elasticity of demand would require lower aeronautical

prices. Small airports could also be modeled by assuming that their fixed costs are larger

relative to the demand they face. In our case, optimal prices and investment levels are be
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independent of additional fixed cost so that airport’s profits would be inversely related to

those fixed cost, and larger subsidies would be needed for the airport to break-even.

Common Wisdom 3 The intensity of competition can be assessed through the profits generated

by commercial activities.

Competition does not affect profit margins. From Proposition 20, the price-cost margins
prb−cs
prb

and prb0 −c0

prb0
depend upon the inverse of the elasticity of aeronautical services and

commercial activities, respectively. Therefore, more competition in the airline industry

increases the elasticity of demand for aeronautical services and decreases the price-cost

margin of the airline.

However, the price-cost margin of commercial activities is not affected by this change

in competition in the airline industry. Again, this stems directly from the unidirectional

externality between aeronautical services and commercial activities. Once the consumer is

in the airport, the airport enjoys monopoly power on commercial services, regardless of

the intensity of competition between airlines. For the same reasons, equivalent commercial

activities outside the airport do not compete with commercial activities supplied by the

airport.

3.3.3. Optimal Level of Investment

Let us now turn to the optimal regulation of investment. We assume here that the

investment level e is observable and thus contractible. We investigate the unobservable

case in Section 3.6.

Proposition 21 The optimal level of investment erb solves:

−
∂F

∂e
(prb, erb)

(
prb − cs(p

rb
0 )
)
−

1
1 + λ

∫
v>prb

∂F

∂e
(v, erb)dv = 1. (3.11)

When Assumption 7 holds, a marginal increase in the level of investment e directly

leads to an increase in the demand for aeronautical services. Note that the first term in

the left-hand side of (3.11) can be decomposed as:

−
∂F

∂e
(prb, erb)

(
prb − c

)
−
∂F

∂e
(prb, erb)

(
c− cs(p

rb
0 )
)

.
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When e increases, −∂F
∂e(p

rb, erb)
(
prb − c

)
represents the increase of the airline’s profit on

the last unit sold whose sign is a priori ambiguous. The term −∂F
∂e(p

rb, erb)
(
c− cs(p

rb
0 )
)

captures the positive benefit of an increase in e on the consumer surplus generated from

commercial activities. Finally, 1
1+λ

∫
v>prb

∂F
∂e(v, e

rb) represents the positive impact on the

surplus of supra-marginal consumers, that is, consumers who would still buy aeronautical

services even if their price were to increase. When the airport invests in quality, the mass

of these supra-marginal consumers increases.

3.4. FAILURES OF TRADITIONAL REGULATIONS

We now turn to the question of implementing the optimal regulation. We investigate

the traditional use of price-cap regulation and show that it fails to provide incentives for

implementing the optimal level of investment. The sole use of a price-cap regulation only

allows implementation of prices satisfying equations (3.9) and (3.10), but for a suboptimal

level of investment e 6= erb. We then show that an additional policy must supplement

the price-cap regulation. We also investigate the traditional rate-of-return regulation and

dual-till versus single-till approaches.

3.4.1. Implementation of Optimal Prices

Let p denote the price-cap chosen by the regulator. The airport is free to choose any

combinations of prices and level of investment (p,p0, e) as long as the following condition

is satisfied:

wp+w0 p0 6 p, (3.12)

where the coefficients (w,w0) are also chosen by the regulator.16

We still consider that the airport-airline pair is vertically integrated. Hence, the

16This “global price-cap” formula differs from the usual price-cap formula used by regulation authorities.
Czerny (2006) reports that, in practice, only aeronautical services are subject to the price-cap formula.
However, it is easy to see that if we assume that the price-cap formula only applies to aeronautical services,
the airport will choose the monopoly price for commercial services which is strictly higher than the Ramsey-
Boiteux price defined by (3.10). Hence, restricting the price-cap formula only to aeronautical services would
surely lead to a failure of the implementation of optimal prices and investment level. For more on the global
price-cap formula, see Laffont and Tirole (1993) and Laffont and Tirole (2000) who advocate its use.
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integrated structure faces the following optimization problem:

max
(p,p0,e)

[1 − F(p, e)] [p− c+ (p0 − c0)(1 −G(p0))] − e

s.t. wp+w0 p0 6 p.

Let µ denote the Lagrange multiplier of the price-cap constraint (3.12). First-order

conditions with respect to p and p0 write as follows:

p̂− cpr
p̂

=
1

ε(p̂, ê)
−

µw

p̂f(p̂, ê)
, (3.13)

p̂0 − c0

p̂0
=

1
ζ(p̂0)

−
µw0

p̂0(1 − F(p̂, ê))g(p̂0)
, (3.14)

and the optimal level of investment is given by:

−
∂F

∂ê
(p̂, ê) (p̂− cpr(p̂0)) = 1. (3.15)

Notice first that even if prices were set at their optimal regulated levels p̂ = prb and

p̂0 = prb0 , condition (3.15) would differ from (3.11). It follows that even if price-cap

regulation successfully implements optimal prices, it surely fails to implement an optimal

investment level.

Assume for the moment that the integrated structure chooses ê according to (3.15)

and let us implement optimal prices for this particular level of investment. That is, let us

implement prices that satisfy equations (3.9) and (3.10) for e = ê.

Proposition 22 The following choice of (w,w0,p):

w∗(ê) = 1 − F(prb, ê) + s0(p
rb
0 )f(prb, ê),

w∗0(ê) =
(
1 − F(prb, ê)

)(
1 −G(prb0 )

)
,

p∗(ê) = w∗(ê)prb +w∗0(ê)p
rb
0 ,

implements Ramsey-Boiteux prices defined by (3.9) and (3.10) for the investment level e = ê.

Therefore, a traditional price-cap regulation does not provide any incentives to achieve the

optimal level of investment. It is therefore not sufficient to implement the optimal regula-
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tion. Price-cap regulation can, however, achieve the Ramsey-Boiteux prices corresponding

to the particular investment level e = ê.

These results are summarized in the next proposition.

Proposition 23 A price-cap regulation alone can implement Ramsey-Boiteux pricing only for the

equilibrium level of investment e = ê defined by equation (3.15). This level of investment, however,

differs from the optimal one defined by (3.11) so that the optimal regulation cannot be implemented

with the sole use of price-cap regulation.

This suggests that airports subject to price-cap regulation still have weak incentives to

invest. Ramsey-Boiteux pricing can be achieved by the price-cap formula but differs from

the optimal regulation prices as they apply to an airport choosing ê 6= erb.17 Successful

implementation of the optimal regulation policy must then also take into account the

implementation of investment levels.

3.4.2. Regulation of Investment Decisions

We now examine the implementation of the optimal level of investment given by equation

(3.11). We first investigate the traditional rate-of-return regulation and show that it is

prone to over-investment from the airport. We then propose a subsidy-penalty regulation

of investment to supplement the previous price-cap regulation in order to implement the

optimal regulation policy.

Rate-of-Return Regulation. Under a rate-of-return regulation, the integrated structure

freely chooses the level of investment e for which it has a guaranteed rate of s on invested

capital.18 Formally, for given (p,p0), the optimization problem of the integrated structure

is the following:

max
e

[1 − F(p, e)] [p− c+ (p0 − c0)(1 −G(p0))] − e

s.t. [1 − F(p, e)] [p− c+ (p0 − c0)(1 −G(p0))] 6 s · e, (3.16)

17The sole use of a price-cap regulation fails to achieve optimal prices and level of investment as equation
(3.9) depends upon e so that if e 6= erb it follows that prb(ê) 6= prb(erb). However, the price of commercial
activities is independent of e and is therefore at its optimal level.

18So far, we have normalized, without loss of generality, the cost of capital to 1. All results can be easily
generalized to a cost of capital r > 0.
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where constraint (3.16) stands for the rate-of-return constraint with a maximum guaran-

teed rate s chosen by the regulator.

When the rate of return s is greater than the cost of capital, which is equal to 1 in our

case, the rate-of-return constraint is binding at the optimum. Therefore, the optimization

problem of the integrated structure can be simplified to:

max
e

(s− 1)e.

This clearly indicates that the integrated structure has an incentive to over-invest as soon

as the rate-of-return regulation guarantees a rate s greater than the cost of capital. This

well-known effect is commonly referred to as the Averch and Johnson (1962) effect.

Proposition 24 Rate-of-return regulation gives the airport incentives to over-invest even when

prices are set at their socially optimal levels.

Subsidy-Penalty Policy. To achieve the optimal regulation of investment, we propose

the following solution. The regulator offers a subsidy when the level of investment is

below the optimal level of investment erb and imposes a penalty in case of overinvestment.

Let s denote the marginal subsidy-penalty. The optimization problem of the integrated

structure becomes:

max
e

[1 − F(p, e)] [p− c+ (p0 − c0)(1 −G(p0))] − e− s
(
e− erb

)
,

where −s(e− erb) represents the amount of the subsidy when e < erb and the amount of

the penalty when e > erb.

The first-order condition of this problem with respect to e writes as:

−
∂F

∂e
(p, e) [p− c+ (p0 − c0)(1 −G(p0))] − s = 1. (3.17)

It suffices now to set the optimal marginal subsidy srb equal to:

srb =
1

1 + λ

∫v
prb

∂F

∂e
(v, erb)dv. (3.18)
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and to choose the price-cap and weights (p∗(erb),w∗(erb),w∗0(e
rb)) to ensure that first-

order conditions (3.13), (3.14) and (3.17) yield optimal prices (prb,prb0 ) and the optimal

level of investment erb defined by equations (3.9), (3.10) and (3.11), respectively.

Proposition 25 The optimal regulation of prices and level of investment can be implemented by

combining a price-cap regulation of aeronautical and commercial prices and a subsidy-penalty

policy on investment.

We insist on the fact that any price-cap regulation must go along with a marginal subsidy-

penalty on invested capital policy that in turn requires that prices are set at their socially

optimal levels to achieve the optimal level of investment. Omitting one dimension of this

policy affects both prices and level of investments. In any case, a rate-of-return regulation

leads to over-investment and should be avoided.

Last, observe that the optimal marginal subsidy srb given by (3.18) is exactly equal to

the positive impact of investment on supra-marginal consumers, which is not internalized

by an unregulated airport.

3.4.3. Single-till Versus Dual-till Regulation

Any form of regulation requires non-negativity of the airport’s revenues. As revenues

from commercial activities are now significant for modern airports, it raises the question

of whether we should include revenues generated from commercial activities into the

price-cap formula. This question is commonly referred to as the single-till versus the

dual-till approach. The first one includes commercial revenues into the airport’s total

revenues to compute the price-cap formula, whereas the second does not.

Single-till and dual-till approaches have been widely discussed in the literature and

the conclusions differ from one paper to another. For instance, Beesley (1999) is one of

the first to attack the single-till approach but he also recognizes the difficulties to adopt

a dual-till approach in practice. On the contrary, Starkie (2001) supports the dual-till

approach, arguing that it could reduce some distortions on aeronautical prices and on

investment incentives induced by the single-till approach.19 In this section, we address

19Oum, Zhang, and Zhang (2004) are in line with Starkie (2001) while Lu and Pagliari (2004) and Czerny
(2006) argue that the single-till approach dominates the dual-till one. See Czerny (2006) for a more detailed
discussion.
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this question and find that, when investments are verifiable, the single-till approach and

the dual-till are equivalent so that the distinction between the two of them is irrelevant.

Observe that, so far, we have implicitly assumed a single-till regime for the price-

cap regulation, that is, revenues from aeronautical services as well as revenues from

commercial services were included in the break-even condition. Let us now assume a

dual-till regime wherein the revenues from commercial activities must cover a fraction

αe of the investment and those from aeronautical services must cover a fraction (1 −α)e,

where α ∈ [0, 1]. Notice that the cases for which α < 1 correspond to an hybrid-till regime

while α = 1 corresponds to a pure dual-till regime. This specification implicitly assumes

that the investment level is verifiable. The first budget constraint associated with the

revenues generated by commercial activities writes as:

(1 − F(p, e))(1 −G(p0))(p0 − c0) −αe > 0. (3.19)

Likewise, revenues generated by aeronautical services must cover the other fraction of

investments (1 −α)e and the following budget constraint must hold:

(1 − F(p, e))(p− c) − (1 −α)e > 0. (3.20)

The problem of the regulator is then as follows:

max
(p,p0,e,α)

SW(p,p0, e)

s.t. (1 − F(p, e))(1 −G(p0))(p0 − c0) −αe > 0

(1 − F(p, e))(p− c) − (1 −α)e > 0. (3.21)

When the level of investment e is verifiable, the regulator is able to choose how to

allocate the investment cost on each budget constraint by setting α. The allocation of

the investment cost will depend upon which constraint is “more likely” to bind, that

is, the constraint which is the hardest to satisfy. At the optimum, the opportunity cost

of allocating one additional unit of investment must be the same for the two budget

constraints. We then obtain the following result.

Proposition 26 When investments are verifiable and the airport and the airline are vertically
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integrated, the optimal regulation of aeronautical services, commercial activities and investment

under a dual-till approach is identical to the one obtained in Proposition 20.

Notice that one can also interpret this result in the following way: when investment is

verifiable, the optimal regulation does not depend upon the choice of a single-till regime

or a dual-till regime.

3.5. VERTICAL SEPARATION

In this section, we relax the assumption that the airport and the airline are vertically

integrated. This relationship is now characterized by a contract between the two entities.

The airport provides aeronautical services to the airline (landing rights, aircraft parking

areas, airport taxiways, passenger facilities) and the airline is responsible for charging

prices to consumers. Investment decisions, however, are still carried out by the airport.

We investigate how the optimal regulation is modified for two types of contracts

between the airport and the airline. In both cases, we assume that the airport can offer a

contract specifying a unit price for aeronautical services, but may or may not be able to

set a fixed access charge to its facilities. For simplicity, we also assume that the airport

has all the bargaining power in the relationship, i.e., the airport makes a take-it-or-leave-it

offer to the airline.20

3.5.1. Fixed Access Charge

First, we consider that the airport can set both a fixed access charge A and a unit price

w for aeronautical services. When the airline sets p, demand for aeronautical services is

1 − F(p, e) so that it has to buy the same quantity of aeronautical services to the airport at

unit price w. Formally, the airline solves:

max
p

(p−w− c)(1 − F(p, e)) −A.

20The assumption that the airport has all the bargaining power can be justified in environments in which
airlines are engaged in fierce competition to access to the airport facilities. Moreover, airlines may have
limited access to close substitutes although this idea may not hold for low-cost carriers. Major airports may
also have significant market power over dominant carriers due to the non-substitutability and to the cost
of moving away from major hubs. See Gillen, Oum, and Tretheway (1988a) and Oum and Fu (2009) for
detailed discussions.
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Notice that the price p set by the airline depends upon the level of investment e chosen

by the airport. The first-order condition of this problem writes as follows:

p = w+ c+
1 − F(p, e)
f(p, e)

. (3.22)

When Assumption 6 holds, there is a one-to-one correspondence between w and p.21 It

follows that choosing the level of investment e and the unit price w uniquely determines

the price to passengers p set by the airline for aeronautical services. Let P(w, e) denote

the solution to the airline first-order condition (3.22).

Once the unit price w has been set, the airport must decide the level of the fixed access

charge A. As the airport has all the bargaining power, the fixed access charge is chosen so

as to extract all the profit of the airline, that is:

A = (P(w, e) −w− c)(1 − F(P(w, e), e)) =
(1 − F(P(w, e), e))2

f(P(w, e), e)
. (3.23)

From equation (3.23), and assuming that the airport can receive a lump-sum subsidy

T , the airport’s profit writes as:

[1 − F(P(w, e), e)] [P(w, e) − c+ (p0 − c0)(1 −G(p0))] − e+ T . (3.24)

This profit is equivalent to the integrated structure’s profits PR(P(w, e),p0, e, T) defined

by equation (3.4). The only difference is that p is replaced by P(w, e), the price chosen by

the airline for a given unit price w and a level of investment e.

As in Section 3.3, assume that the regulator can choose the level of investment e and

the price of commercial activities p0. It is not anymore possible to directly choose the final

price of aeronautical service p, but if we assume that the regulator can choose the unit

price w, then the following holds.

Proposition 27 When the airport and the airline are not vertically integrated, but the airport

can set both a fixed access charge A and a unit price w for the access to its facilities, the optimal

regulation is achieved in the same way as described in Proposition 20 and Proposition 21.
21Indeed, let p(w, e) be an implicit solution of (3.22). Differentiating (3.22) on both sides with respect to w

gives ∂p∂w (w, e) = (1 − ∂
∂p

( 1−F(p(w,e),e)
f(p(w,e)

)
)−1 > 0 as the denominator is positive when Assumption 6 holds.
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Therefore, the optimal regulation is unchanged when contracts between the airport and

the airline allow for both a unit price and a fixed access charge. As in the two-part tariff

literature, a contract of the type (A,w) allows the airport to extract all the profit of the

airline with A and w is set to maximize the profit of the replicated integrated structure.

As we will see below, the fixed access charge is crucial for the result of Proposition 27.

3.5.2. No Fixed Access Charge

We investigate the same vertical relationship between the airport and the airline when

the airport cannot use a fixed access charge A. In that case, the unit price w plays two

roles: (i) it collects profit on the airline for each unit of aeronautical services provided

and (ii) it determines the final price p and therefore how many units are eventually sold.

Unfortunately, this distorts both prices as well as the investment level.

The objective of the airline is the same as in the case with a fixed access charge and

P(w, e) is still set according to equation (3.22). The airport, however, cannot extract the

profit of the airline through a fixed charge and must at least break even, that is:

[1 − F(P(w, e), e)] [w+ (p0 − c0)(1 −G(p0))] − e > 0. (3.25)

Due to the absence of fixed access charge, the only available tools to satisfy the previous

equation are the unit price w and the level of investment e. We then obtain the following

result.

Proposition 28 When the airport cannot charge a fixed access charge A to the airline, the optimal

regulation of aeronautical services and commercial activities leads to the following prices and level

of investment:

• The price of aeronautical services is greater than the Ramsey-Boiteux price:

po − cs(p
o
0)

po
=

λ

1 + λ

1
ε(po, eo)

(
1 +

1
∂P
∂w(w

0, eo)

)
>

λ

1 + λ

1
ε(po, eo)

, (3.26)

po0 − c0

po0
=

λ

1 + λ

1
ζ(po0)

> 0. (3.27)
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• The optimal level of investment eo satisfies:

−
∂F

∂e
(po, eo) (po − cs(po0)) −

1
1 + λ

∫v
po

∂F

∂e
(v, eo)dv = 1. (3.28)

The airport cannot extract the airline profit through the fixed access charge A and must

therefore use the unit price w as an instrument to satisfy the break-even condition (3.25).

The unit price is distorted upward and the price of aeronautical services P(w, e) set by the

airline increases above its previous level. This effect is the standard double marginalization

problem. The vertical relationship between the airport and the airline and the absence

of a fixed access charge raises the cost payed by the airline to access the airport facilities.

The airline passes through this increase to the price of aeronautical services to consumers.

By contrast, the price of commercial activities p0 is unchanged and stays at the Ramsey-

Boiteux price level po0 = prbr . Interestingly, the optimal regulation rule for the investment

is the same as in the integrated structure case. Hence, we obtain that the choice of the

optimal level of investment is orthogonal to the choice of the optimal level of prices even

when the vertical relationship between the airport and the airline is imperfect. However,

it is important to recall that the level of investment eo differs from the benchmark level

erb due to the change in prices (p,p0) induced by the distortions. Only the rule to choose

the optimal level of investment is unchanged.

It is worth noting that the distortion of the optimal regulation due to the absence of

access charge is unambiguously detrimental to social welfare. Double marginalization

creates a loss even when the regulation authority can impose the unit price for aeronautical

services set by the airport. Propositions 27 and 28 therefore suggest that forbidding the

use of two-part tariffs in airport-airline relationships is detrimental to social welfare

when the airport is regulated. As reported by Fu, Homsombat, and Oum (2011), price

discrimination is generally is generally prohibited, notably by the The International

Air Transport Association (IATA, 1997). Our results provide an argument in favor of

reconsidering those guidelines.
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3.6. NON-VERIFIABLE INVESTMENTS

So far, we have assumed that the level of investment ewas verifiable and hence contractible.

After determining the optimal level of investment, the regulator was able to implement it

by using a marginal subsidy-penalty on invested capital as we suggested in Section 3.4.

However, in many cases, the level of investment is fully contractible due to intangible

investment opportunities or difficulties in measuring investment returns. In this section,

we investigate how prices and the level of investment are affected by the non-verifiability

of investments.

The airport chooses e to maximize its profits and the regulator now faces the following

incentive constraint:

e ∈ arg max
ẽ

(1 − F(p, ẽ))(p− c+ (p0 − c0)(1 −G(p0))) − ẽ.

In other words, the set of feasible levels of investment is restricted to the set of e that

maximize the airport’s profit for each value of p and p0. When Assumption 7 holds, the

first-order condition to this problem is a sufficient condition and writes as:

−
∂F

∂e
(p, e)

[
p− c+ (p0 − c0)(1 −G(p0))

]
= 1. (3.29)

Contrary to the optimal investment rule (see equation (3.11)), the airport only perceives

the private cost when choosing its optimal level of investment, that is, the cost of supplying

aeronautical services to the airline minus the profit on commercial activities. This private

cost ignores the social benefits on consumer surplus generated by both aeronautical

services and commercial activities.

Let µ be the Lagrange multiplier associated with the incentive constraint (3.29). When

prices are set at their Ramsey-Boiteux levels (see Proposition 20), if the following holds:

−
∂F

∂e
(prb, erb)

[
prb − c+ (prb0 − crb0 )(1 −G(prb0 ))

]
> 1, (3.30)

then this implies that Ramsey-Boiteux prices as defined by Proposition 20 do not provide

enough incentives to invest in the infrastructure.



155 CHAPTER 3. HOW TO REGULATE MODERN AIRPORTS?

Proposition 29 Suppose that the level of investment is non-verifiable and that µ > 0 (i.e.,

equation (3.30)) holds). The social optimum obtained by regulating both prices of aeronautical

services and commercial activities has the following properties.

• Prices are greater than Ramsey-Boiteux prices:

pnv − cs(p
nv
0 )

pnv
=

λ

1 + λ

1
ε(pnv, env)

−
µ

1 + λ

∂F
∂e −

∂2F
∂e∂p
∂F
∂e

pnvf(pnv, env)
, (3.31)

pnv0 − c0

pnv0
=

λ

1 + λ

1
ζ(pnv0 )

−
µ

1 + λ

∂F
∂e

[
(1 −G(pnv0 ) − (pnv0 − c0)g(p

nv
0 )
]

pnv0 g(p
nv, env)(1 − F(pnv, env))

. (3.32)

• Conditional upon the above price levels, the optimal level of investment induced by the

incentive constraint env is lower than the optimal level of investment when e is verifiable:

−
∂F

∂e
(pnv, env) (pnv − cs(pnv0 )) −

1
1 + λ

∫v
prb

∂F

∂e
(v, erb)dv

= 1 −
µ

1 + λ

∂2F
∂e2

∂F
∂e

(pnv, env) > 1. (3.33)

When the investment level is non-verifiable, the airport lacks incentives to invest at the

Ramsey-Boiteux price levels because, for these prices, the airport’s margin is too low and

investing to create demand is not interesting enough. Therefore, in order to increase

the airport’s incentives to invest, the regulator sets higher prices so that the airport’s

margin increases when investment increases. However, the level of investment env is lower

than the optimal level of investment. This results from the trade-off between increasing

the price of aeronautical services to support higher investment levels and keeping the

aeronautical price low enough to increase consumer surplus on both aeronautical and

commercial activities.

To summarize, non-verifiability of investment induces (i) higher prices for both aero-

nautical and commercial services (ii) a level of investment lower than the optimal one in

the verifiable case.
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3.7. CONCLUDING REMARKS

Modern airports are often privately-owned entities in charge of several activities. Besides

their core business, aeronautical services, airports also offer commercial services to

passengers. The magnitude of revenues generated by commercial services and the

captivity of passengers once they are in the airport has raised the question of extending

the regulation to these activities in addition to that of aeronautical services. Another

important policy issue has been the choice between the use of single-till or dual-till

regulation, that is, whether revenues generated by commercial services should cover

airports’ investments.

This paper models an airport as an entity in charge of providing aeronautical and

commercial services as well as investing in its infrastructure. We assume that individuals

decide whether to fly uniquely based on the surplus they can derive from the consumption

of aeronautical services. In addition, commercial services are available only to individuals

who have decided to fly. We also suppose that the airport can invest in the infrastructure

to relieve congestion or increase the quality of services. As a result, higher investment in

the infrastructure increases the demand for aeronautical services.

The optimal regulation concerns both prices of aeronautical and commercial services

as well as investment decisions. Optimal prices follow a Ramsey-Boiteux pricing rule

and are both above their social marginal cost which takes into account the demand

complementarity between aeronautical and commercial services.

We investigate a traditional price-cap regulation in a single-till regime and show that

its sole use fails to implement both optimal prices and level of investment. This result

stems from the fact that the price-cap does not provide enough incentive to invest in

the infrastructure. To implement the optimal regulation, the price-cap regulation must

be supplemented by a subsidy policy on the level of investment. We also show that the

optimal regulation is unchanged in a dual-till regime in which the regulator can choose

the fraction of investments that must be covered by commercial revenues.

We point out that the nature of the airport-airline relationship may affect the design

of the optimal regulation. When two-part tariffs are available, we show that the optimal



157 Appendix

regulation is unchanged with respect to the case in which the airport and the airline are

vertically integrated. When the airport can only charge a per-unit price, however, we find

that the optimal price of aeronautical services must increase due to a standard double

marginalization problem. Those findings shed light on the benefits of allowing some form

of price discrimination in airport-airline relationships.

Finally, we consider the optimal regulation when investment decisions are unobserv-

able to the regulator. We find that prices of both aeronautical and commercial services

must increase to give the airport proper incentives to invest in its infrastructure.

APPENDIX

Proof of Proposition 19. The airport freely chooses p, p0 and e so as to maximize PR(p,p0, e). First-order

conditions of the problem write as:

−f(p, e)
[
p− c+ (p0 − c0)(1 −G(p0))

]
+ 1 − F(p, e) = 0,

(1 − F(p, e))
[
1 −G(p0) − (p0 − c0)g(p0)

]
= 0,

−
∂F

∂e
(p, e)

[
p− c+ (p0 − c0)(1 −G(p0))

]
− 1 = 0.

Rearranging each equation and using cpr(p0) = c− (p0 − c0)(1 −G(p0)) in the first and third equations, we

obtain:

p− cpr(p0) =
1 − F(p, e)
f(p, e)

,

p0 − c0 =
1 −G(p0)

g(p0)
,

−
∂F

∂e
(p, e)

[
p− cpr(p0)

]
= 1.

Dividing the first two equations by p and p0, respectively, gives equations (3.1) and (3.2). The last equation

already corresponds to equation (3.3). �

Proof of Proposition 20. Consider the maximization problem of the regulator. Notice that the objective

simply rewrites as:

SW(p,p0, e, T) = CS(p,p0, e) +PR(p,p0, e) − λT .
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As the cost of public funds is strictly positive, the regulator sets T as low as possible until the participation

constraint of the airport-airline entity binds, i.e., T = −PR(p,p0, e). Then the problem rewrites as:

max
p,p0,e

CS(p,p0, e) + (1 + λ)PR(p,p0, e). (3.34)

First-order conditions with respect to p and p0 give:

−(1 − F(p, e)) − fs0(p0) + (1 + λ)(−f(p− cpr(p0)) + 1 − F(p, e)) = 0,

−(1 − F(p, e))(1 −G(p0)) + (1 + λ)(1 − F(p, e))(1 −G(p0) − g(p0)(p0 − c0)) = 0,

where recall that s0(p0) =
∫
v0>p0

(v0 − p0)dG(v0) and cpr(p0) = c− (p0 − c0)(1 −G(p0)). Rearranging we

obtain:

p− cs(p0) =
λ

1 + λ

1 − F(p, e)
f(p, e)

,

p0 − c0 =
λ

1 + λ

1 −G(p0)

g(p0)
.

Dividing by p and p0, respectively, yields equations (3.9) and (3.10) of Proposition 20. �

Proof of Proposition 21. Consider again problem (3.34). The first-order condition with respect to e writes

as: ∫v
p
(v− p)

∂f

∂e
(v, e)dv−

∂F

∂e
(v, e)

∫v0

p0

(v0 − p0)dG(v0) + (1 + λ)
[
−
∂F

∂e
(v, e)(p− cpr(p0)) − 1

]
= 0.

By integration by parts, the first term of this equation rewrites as:

∫v
p
(v− p)

∂f

∂e
(v, e)dv =

[
(v− p)

∂F

∂e
(v, e)

]v
p
−

∫v
p

∂F

∂e
(v, e)dv

= −

∫v
p

∂F

∂e
(v, e)dv.

Using this result and dividing both sides by (1 + λ), the first-order condition with respect to e rewrites as:

−
∂F

∂e
(v, e)

[
p− cpr(p0) +

1
1 + λ

∫v0

p0

(v0 − p0)dG(v0)
]
−

1
1 + λ

∫v
p

∂F

∂e
(v, e)dv = 1.

Recall that cs(p0) = cpr(p0) −
s0(p0)

1+λ , where s0(p0) =
∫v0
p0
(v0 − p0)dG(v0), then we obtain equation (3.11). �

Proof of Proposition 22. Assume that the regulator chooses (p∗,w∗,w∗0) and recall that cs(p0) = cpr(p0)−
s0(p0)

1+λ . Then equation (3.13) rewrites as:

p̂− cs(p̂0)

p̂
=

1
ε(p̂, ê)

+
s0(p̂0)

(1 + λ)p̂
−

µw∗

pf(p̂, ê)
.
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Assume that the airport chooses p̂ = prb and p̂0 = prb0 then the left-hand side of the last equation is given

by (3.9) at e = ê and we obtain:

µ =
prbf(prb, ê)
(1 + λ)w∗

[
1

ε(prb, ê)
+
s0(p

rb
0 )

prb

]

=
prbf(prb, ê)
(1 + λ)w∗

[
1 − F(prb, ê) + s0(p

rb
0 )f(prb, ê)

]
=

1
1 + λ

> 0,

so that the constraint is binding. It is straightforward to check that that plugging µ = 1/(1 + λ) into the

right-hand side of equation (3.14) evaluated at p̂ = prb and p̂0 = prb0 gives equation (3.10) for e = ê. �

Proof of Proposition 23. Assume that there exists a combination of (w,w0,p) such that prices are set

exactly at p = rrb and p0 = prb0 , that is, optimal prices as defined in Proposition 20. Evaluating equation

(3.15) at those prices clearly shows that the airport ’s choice of level of investment will differ from the

optimal one as defined by equation (3.11). �

Proof of Proposition 24. Immediate from the text. �

Proof of Proposition 25. Immediate from the text. �

Proof of Proposition 26. Let λ1 and λ2 be the Lagrange multipliers associated with the first and the

second constraints, respectively. The Lagrangian of the problem therefore writes as:

L = SW(p,p0, e) + λ1
[
(1 − F(p, e))(1 −G(p0))(p0 − c0) −αe

]
+ λ2

[
(1 − F(p, e))(p− c) − (1 −α)e

]
.

The first-order condition with respect to α immediately gives that λ1 = λ2. Let us define λ = λ1 = λ2. It is

immediate that the Lagrangian rewrites as:

L = CS(p,p0, e) + (1 + λ)PR(p,p0, e),

so that the problem is equivalent to the regulator’s problem under a single-till approach. �

Proof of Proposition 27. As the regulator can freely choose the price of commercial activities and the

level of investment, assume they are set to their optimal level, that is, p0 = prb0 and e = erb as defined by

equations (3.10) and (3.11). Then, assume the regulator chooses the following unit price of aeronautical

services charged by the airport:

wrb = cs(p
rb
0 ) − c−

1
1 + λ

1 − F(prb, erb)
f(prb, erb)

.
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The airline chooses the price of aeronautical services according to equation (3.22). When w = wrb, it solves

p = c+
(
cs(p

rb
0 ) − c−

1
1 + λ

1 − F(prb, erb)
f(prb, erb)

)
+

1 − F(p, erb)
f(p, erb)

,

or, rearranging,

p− cs(p
rb
0 ) =

1 − F(p, erb)
f(p, erb)

−
1

1 + λ

1 − F(prb, erb)
f(prb, erb)

.

It is clear that choosing p = prb is a solution to this equation and from Assumption 7, it is unique. �

Proof of Proposition 28. The Lagrangian of the problem writes as follows:

L(w,p0, e) = CS(P(w, e),p0, e) +PR(P(w, e),p0, e)

+ λ
(
(1 − F(P(w, e), e)) [w+ (p0 − c0)(1 −G(p0))] − e

)
.

To simplify the notation, let P = P(w, e). The first-order condition with respect to w writes as:

−
∂P

∂w
f(P, e)

[
P− cpr(p0) + s0(p0)

]
) + λ

(
−
∂P

∂w
f(P, e)[w+ (p0 − c0)(1 −G(p0))] + 1 − F(P, e)

)
= 0.

Using equation (3.22) and rearranging gives equation (3.26). The first-order conditions with respect to p0

and e immediately give equations (3.27) and (3.28). �

Proof of Proposition 29. The Lagrangian of the problem writes as follows:

L = CS(p,p0, e) + (1 + λ)PR(p,p0, e) + µ
(
−
∂F

∂e
(p, e)

[
p− c+ (p0 − c0)(1 −G(p0))

]
− 1
)

.

The first-order condition with respect to p writes as:

−(1 + λ)f(p, e)(p− cs(p0)) + µ
(
−
∂F

∂e
(p, e) −

∂2F

∂e∂p
(p, e)

[
p− cpr(p0)

])
+ λ(1 − F(p, e)) = 0.

Using the incentive constraint, we obtain that p− cpr(p0) = −1/∂F∂e (p, e). Plugging this into the above

first-order condition,rearranging and dividing by p on both sides gives equation (3.31). From Assumption

7, both ∂F
∂e (p, e) and ∂2F

∂e∂p (p, e) are negative so that the price of aeronautical services with non-verifiable

investment decisions is greater than Ramsey-Boiteux prices defined by equation (3.9).

Now, the first-order condition with respect to p0 writes as:

−(1 + λ)g(p0)(p0 − c0)(1 − F(p, e)) + λ(1 − F(p, e))(1 −G(p0))

+ µ
(
−
∂F

∂e
(p, e)

[
1 −G(p0) − g(p0)(p0 − c0)

])
= 0.
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Rearranging and dividing on both sides by p0 gives equation (3.32). Whenever pnv0 < pm0 , the monopoly

price of commercial services defined in equation (3.2), we must have that 1−G(pnv0 )−g(pnv0 )(pnv0 − c0) > 0

from concavity of the integrated structure’s profit.

Finally, following the proof of Proposition 20, the first-order condition with respect to e gives:

−
∂F

∂e
(v, e)

[
p− cpr(p0) +

∫v0

p0

(v0 − p0)dG(v0)
]
−

1
1 + λ

∫v
p

∂F

∂e
(v, e)dv = 1 +

µ

1 + λ

∂2F

∂e2 (v, e)
[
p− cpr(p0)

]
.

Using once again the fact that p− cpr(p0) = −1/∂F∂e immediately yields equation (3.33). �
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