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1 General Introduction

We make most decisions under uncertainty, that is without having a precise idea of the final
outcome. When information is not complete, we have to rely on hearsay, rules of thumb,
past experience or the experience of others. We form beliefs based on available information
and these beliefs in turn shape our actions and choices. They affect the products we choose,
our preferences and level of cooperation. This thesis focuses on two main research themes a)
how do individuals form beliefs from the experience of others and b) why does cooperation
vary across groups and how can it be improved.

To answer the first question, I use concepts from bounded rationality, which is the idea
that the cognitive limitations of the mind limits the rationality of individuals (Simon, 1982).
It is different from the usual assumption made in economics of individuals being rational
and working towards maximizing their utility. Given the informational constraints and
limitations in processing information, bounded rationality presents a more realistic picture
of human behavior. We start with an initial belief about the available options. In the
face of new incoming information, we learn and update our existing beliefs. Based on the
new belief, we take actions leading to a payoff. How we learn is explained by two broad
classes of theories: belief based learning and reinforcement learning. Belief based learning
assumes that we make decisions based on beliefs about the behavior of others and calculate
an expected payoff. With reinforcement learning, we assume learning solely from our past
payoffs. We tend to look back at similar situations and extrapolate that experience to
current decisions. In the first half of my thesis, I work with my supervisor Philippe Jehiel
to combine bounded rationality with learning.

In Chapter 1, we are interested in understanding how individuals makers make their
decisions in multi-state binary decision problems. In particular, we study cases when deci-
sion makers have precise state-specific information about the performance of one alternative
and less precise information about the other. Less precise in the sense that decision makers
only receive aggregate feedback about the performance of that alternative instead of state-
specific information. We allow a set of agents to act repeatedly in such environments to
understand the steady-state effects of providing agents with aggregate feedback about some
alternatives. To better understand the feedback structure consider an example of adoption
of a new technology by farmers. A farmer is familiar with the performance of the current
technology but not about the new one. Before deciding to adopt the new technology, the
farmer collects information about it. The feedback is from other farmers who have already
adopted it. Yet, due to the heterogeneity of the soil or ability of farmers, what works well
for one farmer need not perform in the same way for another. Thus, the feedback received
about the new technology is coarse in the sense that it is aggregated over different situa-
tions (states in the decision theoretic terminology) as compared to the information for the
current technology.
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We conduct a lab experiment with the following experimental setting. There are two
states, s = 1, 2. In each state, the decision maker has to choose between two urns identified
with a color, Blue and Red in state s = 1, Green and Red in state s = 2 where the Red
urns have different payoffs in each state s = 1 and 2. Each urn is composed of ten balls,
black or white. When an urn is picked, one ball is drawn at random from this urn (and it
is immediately replaced afterwards). If a black ball is drawn, this translates into a positive
payment whereas a white ball offers no payment. We conduct three treatments varying
the composition of the Red urns across states and keeping the composition of Blue and
Green fixed. For the Blue and Green urns, we provide information on the number of black
and white balls obtained after 100 random draws, giving the agents an idea of its composi-
tion in the spirit of familiar alternatives. The Red urns correspond to the unfamiliar choice
in the above example (new technology for the farmer) and no initial information is provided.

There are twenty subjects and 70 rounds. In each round, ten subjects are randomly
assigned state 1 and the other ten make a choice of urn in state 2. There are permutations
of subjects between rounds so that every subject is in each state s = 1 or 2 the same
proportion of time. Between rounds, subjects receive feedback about the number of times
the Green, Blue and Red urns were picked by the various agents in the previous round, and
for each color of urn, they are informed of the number of black balls that were drawn. In
the case of the Red urns, this number is the total the number of black balls drawn from
both the Red urns picked in state s = 1 and the Red urns picked in state s = 2 mimick-
ing the kind of aggregate information suggested in the motivating examples. It should be
highlighted that subjects were explicitly told that the compositions of the Red urn in state
s = 1 and in state s = 2 need not be the same. We consider three treatments that differ in
the composition of the Red urns but we fix the compositions of the Blue and Green urns in
all treatments. The initial conditions in these various treatments are thus identical and any
difference in behavior observed in later periods can be safely attributed to the difference in
the feedback received by subjects across treatments.

Faced with this environment, we use reinforcement learning with a component of
bounded rationality to understand the decision-making process. In particular, we use a so-
lution concept proposed by Jehiel and Samet (2007) called the valuation equilibrium aimed
at capturing the limiting outcomes of this type of similarity-based reinforcement learning
models. Via reinforcement learning, subjects could assess the strength of the various urns
by considering the proportions of black balls drawn in the corresponding urns (aggregat-
ing past feedback). However, for the Red urns feedback is aggregated over states s = 1
and 2, and so similarity-based reinforcement suggests assigning a common value to Red in
both states. This value depends on feedback from both states and how frequently Red was
picked in each state. An alternative way to learn about the urns could be by forming beliefs
about the compositions of the two Red urns relying on some form of Bayesian updating to
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adjust the beliefs after the additional feedback. In the Bayseian model, subjects construct
an intermediate object which is a belief about the composition of the various urns, whereas
the reinforcement model mediates payoffs more directly. We find that the similarity-based
learning model fits the data better than the Bayesian model.

In Chapter 2, a natural followup to this question would be to see how learning differs
when individuals can generate their own feedback instead of endogenous group feedback.
In the context of our farmer example, instead of relying on information from others, the
farmer would be allowed a trial window to use and learn about the new technology. It is
possible that even under this scenario, the farmer fails to learn correctly given concerns
of imperfect recall. We conduct additional experiments varying the feedback generation
where each player plays for a total of 20 rounds with 10 repetitions. After each repetition,
the player receives feedback about the number of times the Green, Blue and Red urns were
picked by her in the previous round, and for each color, she is informed of the number of
black balls that were drawn. The feedback for Red is still aggregated over states s = 1 and
2. We find similar findings as in the original experiment where players follow similarity-
based reinforcement learning. We find a slightly higher proportion of Bayesian learners
compared to the original experiment.

Given the importance of the information we have access to, it would be important to
understand what determines the information we get. We miss an important part by mod-
eling individuals without taking into consideration how their beliefs are shaped by their
peers. An immediate answer would be social networks. It is responsible in determining
information flows, and thus economic outcomes and plays a central role in determining our
beliefs, social norms, transactions and preferences (Grief, 1989). We could improve the
first experiments by incorporating this factor, but for now we leave it for future research.
The second theme of this dissertation is cooperation and how closeness and the endogenous
choice of monitor affects cooperation in social networks. We study this in the context of a
developing country where individuals rely on "local connections" and personalized relation-
ships for risk sharing, public good provision and information delivery (Kranton, 1996). In
such a setting, it becomes crucial to understand a) how social structures affect behavior and
b) how these structures are formed in the first place. With my co-author Giulio Iacobelli,
I study the first question in the third chapter of my thesis.

We conduct a lab in the field experiment in 19 villages in rural Nepal. Villagers play a
cooperation game and can choose to elect a monitor through majority voting. This mon-
itor can impose higher cooperation through reputational concerns. Reputation and social
image are a strong driver for desired behavior in these villages. In the event of someone
monitoring, the fear of being reported outside the experimental setup may induce higher
cooperation (Andreoni et al., 2006). Further, the demand for monitoring itself may depend
on the social structure. We estimate the demand for monitoring, relate it to the network
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structure and study its impact on cooperation by tackling three questions. First, do in-
dividuals change their demand for monitoring as a function of the social composition of
the group they interact with? Second, do monitors who are endogenously chosen spur co-
operative behavior compared to those assigned exogenously? Third, is the monitor choice
perceived as a signal of intra-group trust?

To answer these questions, we first conduct an intensive network survey a la Banerjee
et al., 2015. We ask questions about advice, trust, friendship and financial relationships
such as "who do you spend your free time with", "in case of an emergency, who would you
rely on" and "who do you borrow money from". Based on data from the survey, we build
an undirected social network where a connection between two people is established if any
one of them names the other. Next, we identify the person in the network with the highest
and lowest eigenvector centrality. In other words, we identify the most influential and least
influential individuals in the village. Eigenvector centrality is a network measure that gives
an idea of the influence of an individual by taking into consideration the friends of a friend.
This is more robust than considering only the total number of connections each person has
(refereed to as degree in network economics). These two individuals are assigned the role of
monitor candidates and the rest of the village is divided into groups of three with varying
network distance. Groups of three are an optimal choice to study questions of mutual trust
as it is maximizes the behavioral contrast between groups which can sustain high levels of
cooperation and those which cannot (Jackson et al., 2012).

The division into groups is made based on network distance. Distance refers to the
shortest path to reach from one individual to the other. Players interact both in a closely-
knit group and in a group with socially distant individuals. The closely-knit groups are
often homogeneous in terms of caste. We refer to the closely-knit group as "dense" and
the group with acquaintances as "sparse". In formal network terms "dense" implies each
individual is at most at distance 2 (average path length < 1.6) and "sparse" implies each
individual is at least at distance 4 (average path length > 4). We allow individuals to
either vote for no monitor or to choose from two monitor candidates belonging to their
village: a high central monitor (very prominent individual) or a low central monitor (less
prominent). Voting for a monitor is costly. Players play a contribution game both with a
monitor chosen by the group (endogenous treatment) and an externally assigned monitor
(exogenous treatment). The monitor does not punish but only observes the contributions
of each player, which would otherwise be private information. Players have an initial en-
dowment and need to decide between how much to contribute to a common pot and how
much to keep for themselves. Total contribution in the common pot is augmented by 50
percent and divided equally among the three players irrespective of initial contribution.
Each individual, thus, plays both in a dense and in a sparse group. And in each group,
both with exogenous and endogenous monitors. The order of all treatments is randomized.
We also build a theoretical model supporting our experimental findings.
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We find that socially distant groups are more likely to elect a high central monitor
than closely-knit groups. Individuals are 40% less likely to elect a monitor with their close
peers compared to when they are in groups with socially distant members. With respect
to monitoring by an externally assigned monitor, we find that cooperation in the sparse
group increases by 15.8%. Comparing endogenous versus exogenous monitoring, we find
that letting individuals choose their monitor is important for sparse groups. When sparse
groups can choose their monitors, choosing a socially prominent monitor increases contri-
butions by 8.6% while choosing no monitor increases contribution by 21.9%. Lastly, since
the chosen monitor is only revealed in the endogenous case, we find that this acts as a sig-
nal of intra-group trust. We average contribution across both endogenous and exogenous
treatments. If sparse groups are in the endogenous treatment first, contribution increases
significantly by 19.7% when no monitor is chosen. On the contrary, when dense groups play
the endogenous treatment first and elect a high central monitor, contribution decreases by
13.3%. We model this using varying level of altruism across groups.

Introduction générale

Nous prenons la plupart des décisions dans l’incertitude, c’est-à-dire sans avoir une idée pré-
cise du résultat final. Lorsque l’information n’est pas complète, nous devons nous fier aux
ouï-dire, aux règles empiriques, à l’expérience passée ou à celle des autres. Nous formons
des croyances à partir des informations disponibles et ces croyances façonnent à leur tour
nos actions et nos choix. Elles influencent les produits que nous choisissons, nos préférences
et notre niveau de coopération. Cette thèse se concentre sur deux thèmes de recherche
principaux : a) comment les individus forment-ils des croyances à partir de l’expérience des
autres et b) pourquoi la coopération varie-t-elle d’un groupe à l’autre et comment peut-elle
être améliorée.

Pour répondre à la première question, j’utilise les concepts de rationalité limitée, c’est-
à-dire l’idée que les limitations cognitives de l’esprit limitent la rationalité des individus
(Simon, 1982), ce qui est différent de l’hypothèse habituelle en économie selon laquelle les
individus sont rationnels et travaillent à maximiser leur utilité. Étant donné les contraintes
et les limites du traitement de l’information, la rationalité limitée présente une image plus
réaliste du comportement humain. Nous partons d’une conviction initiale sur les options
disponibles. Face aux nouvelles informations qui nous parviennent, nous apprenons et met-
tons à jour nos croyances existantes. Sur la base de cette nouvelle croyance, nous prenons
des mesures qui se traduisent par un gain. La façon dont nous apprenons est expliquée par
deux grandes classes de théories : l’apprentissage basé sur les croyances et l’apprentissage
par renforcement. L’apprentissage basé sur les croyances suppose que nous prenons des
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décisions basées sur des croyances concernant le comportement des autres et que nous cal-
culons un gain attendu. Avec l’apprentissage par renforcement, nous supposons que nous
apprenons uniquement à partir de nos gains passés. Nous avons tendance à revenir sur
des situations similaires et à extrapoler cette expérience aux décisions existantes. Dans la
première moitié de ma thèse, je travaille avec mon directeur de thèse Philippe Jehiel pour
combiner la rationalité limitée et l’apprentissage.

Dans le chapitre 1, nous cherchons à comprendre comment les individus prendraient
leurs décisions dans des problèmes de décision binaire multi-états. En particulier, nous
étudions les cas où les décideurs disposent d’informations précises, spécifiques à un état,
sur les performances d’une alternative et d’informations moins précises sur l’autre. Les in-
formations moins précises prennent la forme que le décideur reçoit un retour d’information
global (non spécifique à un état) sur les performances de cette alternative. Nous per-
mettons à un ensemble d’agents d’agir de manière répétée dans de tels environnements
afin de comprendre les effets en régime permanent de la transmission aux agents d’un re-
tour d’information global sur certaines alternatives. Pour mieux comprendre la structure
du retour d’information, prenons un exemple d’adoption d’une nouvelle technique par des
agriculteurs. Un agriculteur connaît les performances de sa technique existante, mais pas
tellement celles de la nouvelle technique. Avant de décider d’adopter la nouvelle tech-
nique, l’agriculteur recueille des informations à son sujet. Le retour d’information provient
d’autres agriculteurs qui l’ont déjà adoptée. Cependant, en raison de l’hétérogénéité des
sols ou des capacités des agriculteurs, ce qui fonctionne bien pour un agriculteur ne doit
pas nécessairement fonctionner de la même manière pour un autre. Ainsi, les informations
reçues sur la nouvelle technique sont grossières dans le sens où elles sont agrégées sur dif-
férentes situations (états dans la terminologie de la théorie de la décision) par rapport aux
informations détenues pour l’ancienne technologie.

Nous effectuons une expérience en laboratoire dans le cadre suivant. Il y a deux états,
s = 1, 2. Dans chaque État, le décideur doit choisir entre deux urnes identifiées par une
couleur, Bleu et Rouge en état s = 1, Vert et Rouge dans l’état s = 2 où les urnes rouges
ont des implications différentes dans les états s = 1 et 2. Chaque urne est contient de dix
boules, noires ou blanches. Lorsqu’une urne est choisie, une boule est tirée au hasard (et
elle est immédiatement replacée par la suite). Si une boule noire est tirée, cela se traduit
par un paiement positif alors qu’une boule blanche n’offre aucun paiement. Nous procédons
à trois traitements en faisant varier la composition des urnes rouges selon les états et en
maintenant fixe la composition des urnes bleues et vertes. Pour les urnes bleues et vertes,
nous fournissons des informations sur le nombre de boules noires et blanches obtenues après
100 tirages au sort, ce qui leur donne une idée de leur composition dans l’esprit des alterna-
tives habituelles. Les urnes rouges correspondent au choix inconnu dans l’exemple ci-dessus
et aucune information initiale n’est fournie.
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Il y a vingt sujets et 70 tours. Dans chaque tour, les sujets sont assignés à des états au
hasard et font un choix d’urne dans l’état 1 et les dix autres font un choix d’urne dans l’état
2. Il y a des permutations de sujets entre les tours de sorte que chaque sujet se trouve dans
chaque état s = 1 ou 2 la même proportion de temps. Entre les tours, les sujets reçoivent
des informations sur le nombre de fois que les urnes verte, bleue et rouge ont été choisies
par les différents agents au cours du tour précédent, et pour chaque couleur d’urne, ils sont
informés du nombre de boules noires qui ont été tirées. Dans le cas des urnes rouges, ce
nombre additionne le nombre de boules noires tirées des urnes rouges choisies dans l’état
s = 1 et des urnes rouges choisies dans l’état s = 2, imitant ainsi le type d’information
agrégée suggéré dans les exemples de motivation. Il convient de souligner que les sujets ont
été explicitement informés que les compositions de l’urne rouge en état s = 1 et en état
s = 2 n’ont pas à être identiques. Nous considérons trois traitements qui diffèrent dans
la composition des urnes rouges mais notons que nous fixons les compositions des urnes
bleues et vertes dans tous les traitements. Les conditions initiales dans ces différents traite-
ments sont donc identiques et toute différence de comportement observée dans les périodes
ultérieures peut être attribuée sans risque à la différence dans le retour d’information reçu
par les sujets au cours des traitements.

Face à un tel environnement, nous utilisons l’apprentissage par renforcement avec une
composante de rationalité limitée pour comprendre le processus de décision. En particulier,
nous utilisons un concept de solution proposé par Jehiel et Samet (2007) appelé "valua-
tion equilibrium" visant à saisir les résultats limites de tels modèles d’apprentissage par
renforcement basé sur la similarité. Par le biais de cette méthode, les sujets pourraient
évaluer la force des différentes urnes en considérant les proportions de boules noires tirées
dans les urnes correspondantes (en agrégeant les réactions passées). Cependant, pour les
urnes rouges, le feedback est agrégé sur les états s = 1 et 2, et donc le renforcement basé
sur la similarité suggère d’attribuer une valeur commune au rouge dans les deux états.
Cette valeur dépend du feedback des deux états et de la fréquence à laquelle le rouge a été
choisi dans chaque état. Une autre façon de connaître les urnes pourrait être de former des
croyances sur la composition des deux urnes rouges en s’appuyant sur une forme de mise
à jour Bayesian updating pour ajuster les croyances après le retour d’information supplé-
mentaire. Dans le modèle bayésien, les sujets construisent un objet intermédiaire qui est
une croyance sur la composition des différentes urnes, alors que le modèle de renforcement
sert de médiateur plus directement. Nous constatons que le modèle d’apprentissage basé
sur les similitudes correspond mieux aux données que le modèle bayésien.

Dans le chapitre 2, une suite naturelle à cette question serait de voir comment
l’apprentissage diffère lorsque les individus peuvent générer leur propre feedback au lieu
d’un feedback de groupe endogène. Dans le contexte de notre exemple d’agriculteur, au
lieu de se fier aux informations des autres, l’agriculteur aurait une période d’essai pour
utiliser la nouvelle technique et en apprendre davantage à son sujet. Il est possible que,
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même dans ce scénario, l’agriculteur ne parvienne pas à apprendre correctement en raison
d’une comparaison imparfaite à la technique précédente. Nous menons des expériences
supplémentaires en faisant varier la génération de rétroaction, où chaque joueur joue un
total de 20 tours avec 10 répétitions. Après chaque répétition, le joueur reçoit un retour
d’information sur le nombre de fois qu’il a choisi les urnes verte, bleue et rouge au cours
du tour précédent, et pour chaque couleur de l’urne, il est informé du nombre de boules
noires qui ont été tirées. Le feedback pour le Rouge est toujours agrégé sur les états s = 1
et 2. Nous constatons des résultats similaires à ceux de l’expérience originale où les joueurs
suivent un apprentissage de renforcement basé sur les similarités. Nous constatons une pro-
portion légèrement plus élevée d’apprenants bayésiens par rapport à l’expérience originale.

Étant donné l’importance des informations auxquelles nous avons accès, il serait impor-
tant de comprendre ce qui détermine le feedback que nous recevons. Nous passons à côté
d’un élément important en modelant les individus sans prendre en considération la façon
dont leurs croyances sont façonnées par leurs connexions. Une réponse immédiate serait
les réseaux sociaux. Il est responsable de la détermination des flux d’information, donc
des résultats économiques et joue un rôle central dans la détermination de nos croyances,
des normes sociales, des transactions et de nos préférences (Grief, 1989). Nous pourrions
améliorer les premières expérimentations en intégrant ce facteur, mais pour l’instant nous
le laissons pour les recherches futures. Le deuxième thème de cette thèse est la coopéra-
tion et comment la proximité et le choix endogène du moniteur affectent la coopération.
Nous l’étudions dans le contexte d’un pays en développement où les individus comptent
sur le "connexions locales" et les relations personnalisées pour le partage des risques, la
fourniture de biens publics et la transmission d’informations (Kranton, 1996). Dans un tel
contexte, il devient crucial de comprendre a) comment les structures sociales affectent le
comportement et b) comment ces structures sont formées en premier lieu. Avec mon co-
auteur Giulio Iacobelli, j’étudie la première question dans le troisième chapitre de ma thèse.

Nous menons une expérience en laboratoire sur le terrain dans 19 villages du Népal
rural. Les villageois jouent à un jeu de coopération et peuvent choisir d’élire un moniteur
par un vote à la majorité. Ce moniteur peut imposer une plus grande coopération par souci
de réputation. La réputation et l’image sociale sont des drivers important des comporte-
ments et interaction sociale. Dans le cas d’une surveillance, la crainte d’être dénoncé en
dehors du lab peut induire une plus grande coopération (Andreoni et al., 2006). En outre,
la demande de surveillance elle-même peut dépendre de la structure sociale. Nous estimons
la demande de surveillance, la mettons en relation avec la structure du réseau et étudions
son impact sur la coopération en abordant trois questions ultérieures. Premièrement, les
individus modifient-ils leur demande de surveillance en fonction de la composition sociale
du groupe avec lequel ils interagissent ? Deuxièmement, les surveillants choisis de manière
endogène encouragent-ils le comportement coopératif par rapport à ceux qui sont assignés
de manière exogène ? Troisièmement, l’élection des surveillants est-elle perçue comme un
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signal de confiance intra-groupe ?

Pour répondre à ces questions, nous réalisons tout d’abord une enquête intensive sur le
réseau à la Banerjee et al., 2015. Nous posons des questions sur les conseils, la confiance,
l’amitié et les relations financières, par exemple "avec qui passez-vous votre temps libre","en
cas d’urgence, à qui vous fieriez vous" et "à qui vous empruntez de l’argent". Sur la base des
données de l’enquête, nous construisons un réseau social non dirigé où une connexion entre
deux personnes est établie si l’une d’entre elles nomme l’autre. Ensuite, nous identifions
la personne dans le réseau ayant la centralité de vecteur propre la plus élevée et la plus
basse. En d’autres termes, nous identifions les personnes les plus influentes et les moins
influentes du village. La centralité des vecteurs propres est une mesure de réseau qui donne
une idée de l’influence d’un individu en prenant en considération les amis d’un ami. Cette
mesure est plus robuste que si l’on considère uniquement le nombre total de connexions
que chaque personne possède (on parle alors de degree en économie des réseaux). Ces deux
personnes se voient attribuer le rôle de candidats moniteurs et le reste du village est ensuite
divisé en groupes de trois avec une distance de réseau variable. Les groupes de trois sont
un choix optimal pour étudier les questions de confiance mutuelle dans la mesure où il est
possible de maximiser le contraste comportemental entre les groupes qui peuvent maintenir
des niveaux élevés de coopération et ceux qui ne le peuvent pas (Jackson et al., 2012).

La division en groupes se fait sur la base de la distance du réseau sociale. La distance
fait référence au chemin le plus court pour se rendre d’un individu à l’autre. Les joueurs
interagissent à la fois dans un groupe étroitement lié et dans un groupe avec des individus
socialement distants. Les groupes étroitement liés sont souvent homogènes en termes de
caste. Nous appelons le groupe très soudé "dense" et le groupe composé de simples con-
naissances "éparses". En termes de réseau formel, "dense" implique que chaque individu
se trouve au maximum à la distance 2 (longueur moyenne du chemin < 1,6) et "éparse"
implique que chaque individu se trouve au minimum à la distance 4 (longueur moyenne du
chemin > 4). Nous permettons aux individus soit de voter pour aucun moniteur, soit de
choisir parmi deux candidats moniteurs appartenant à leur village : un moniteur central
haut (individu très proéminent) ou un moniteur central bas (moins proéminent). Voter
pour un moniteur est coûteux. Les joueurs jouent un jeu de contribution à la fois avec un
moniteur choisi par le groupe (traitement endogène) et un moniteur attribué de l’extérieur
(traitement exogène). Le moniteur ne sanctionne pas, mais se contente d’observer les con-
tributions de chaque joueur, qui seraient autrement des informations privées. Les joueurs
ont une provision initiale et doivent décider du montant de leur contribution à un pot com-
mun et du montant à garder pour eux-mêmes. La contribution totale au pot commun est
augmentée de 50 % et divisée en parts égales entre les trois joueurs, indépendamment de
la contribution initiale. Ainsi, chaque individu joue à la fois dans un groupe dense et dans
un groupe clairsemé. Et dans chaque groupe, à la fois avec des institutions de surveillance
exogènes et endogènes. L’ordre de tous les traitements est randomisé. Nous construisons
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également un modèle théorique à l’appui de nos résultats expérimentaux.

Nous constatons que les groupes socialement éloignés sont plus susceptibles que les
groupes étroitement liés d’élire un moniteur central élevé. Les individus sont 40 % moins
susceptibles d’élire un moniteur avec leurs amis proches que lorsqu’ils sont en groupe avec
des membres socialement distants. En ce qui concerne la surveillance par un moniteur ex-
terne, nous constatons que la coopération dans le groupe éparse augmente de 15,8 %. En
comparant la surveillance endogène et exogène, nous constatons que laisser les individus
choisir leur moniteur est important pour les groupes épars. Lorsque les groupes épars peu-
vent choisir leurs moniteurs, le choix d’un moniteur socialement important augmente les
contributions de 8,6 %, tandis que le choix d’aucun moniteur augmente les contributions
de 21,9 %. Enfin, comme le moniteur choisi n’est révélé que dans le cas endogène, nous
constatons que cela agit comme un signal de confiance intra-groupe. On fait la moyenne
des contributions pour les traitements endogène et exogène. Si les groupes épars sont dans
le traitement endogène en premier, la contribution augmente de manière significative de
19,7% lorsqu’aucun moniteur n’est choisi. Au contraire, lorsque les groupes denses suivent
d’abord le traitement endogène et choisissent un moniteur central élevé, la contribution
diminue de 13,3 %. Nous modélisons cela en utilisant un niveau variable d’altruisme entre
les groupes.
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2 Multi-state choices with Aggregate Feedback on Unfamiliar
Alternatives

Abstract

This paper studies a multi-state binary choice experiment in which in each state,
one alternative has well understood consequences whereas the other alternative has
unknown consequences. Subjects repeatedly receive feedback from past choices about
the consequences of unfamiliar alternatives but this feedback is aggregated over states.
Varying the payoffs attached to the various alternatives in various states allows us to
test whether unfamiliar alternatives are discounted and whether subjects’ use of feed-
back is better explained by similarity-based reinforcement learning models (in the spirit
of the valuation equilibrium, Jehiel and Samet 2007) or by some variant of Bayesian
learning model. Our experimental data suggest that there is no discount attached
to the unfamiliar alternatives and that similarity-based reinforcement learning models
have a better explanatory power than their Bayesian counterparts.

Key words: Ambiguity, Bounded Rationality, Experiment, Learning, Coarse feedback,
Valuation equilibrium

JEL Classification: D81, D83, C12, C91
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1 Introduction

In many situations, the decision maker faces a choice between two alternatives one of them
being more familiar and thus easier to evaluate and another one being less familiar and thus
harder to assess. There is generally some information about the less familiar alternative,
but this information is typically coarse not being entirely relevant to the specific context of
interest.

To give a concrete application, think of the adoption of a new technology by farmers.
A farmer has a lot of information about the performance of the current technology but not
so much about the new one. The farmer may collect information about the new technol-
ogy by asking around other farmers who would have previously adopted it. But due to
the heterogeneity of the soil and/or the heterogeneity in the ability of the farmers, what
works well/poorly for one farmer need not perform in the same way for another. Thus,
the feedback received about the new technology is coarse in the sense that it is aggregated
over different situations (states in the decision theoretic terminology) as compared to the
information held for the old technology.1 Another example may concern hiring decisions.2

Consider hiring for two different jobs, one requiring high skill going together with higher
education level and the other requiring lower skills, and assume potential candidates ei-
ther come from a majority group or a minority group (as determined by nationality, color,
caste or religion, say). Presumably, there is a lot of familiarity with the majority group
allowing in this group to distinguish the productivity as a function of education as well as
past experiences. However, in the minority group information is more likely to be coarse
and perceived productivity in that group may not be as easy to relate to education or past
experiences.

We are interested in understanding how decision makers make their decisions in multi-
state binary decision problems in which decision makers would have precise state-specific
information about the performance of one alternative and less precise information about
the other alternative. The less precise information takes the form that the decision maker
receives aggregate (not state-specific) feedback about the performance of that alternative.
Our interest lies in allowing a set of agents to act repeatedly in such environments so as to
understand the steady state effects of having agents provided with coarse feedback about
some alternatives.

To shed light on this, we consider the following experimental setting. There are two
states, s = 1, 2. In each state, the decision maker has to choose between two urns identified

1Ryan and Gross (1946) propose an early study of the diffusion of new technology adoption in the
farming context. See also Young (2009) for a study focused on the diffusion dimension.

2This example is inspired by Fryer and Jackson (2008)’s discussion of discrimination and categorization.
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with a color, Blue and Red in state s = 1, Green and Red in state s = 2 where the Red 3

urns have different payoff implications in states s = 1 and 2. Each urn is composed of ten
balls, black or white. When an urn is picked, one ball is drawn at random from this urn
(and it is immediately replaced afterwards). If a black ball is drawn this translates into a
positive payment. If a white ball is drawn there is no payment. We conduct three treat-
ments varying the composition of the Red urns across states and keeping the composition
of Blue and Green fixed. One hundred initial draws are made for the Blue and Green urns
with no payoff implication for participants, and all subjects are informed of the correspond-
ing compositions of black and white balls drawn from these urns. Thus, as seen in Table
1, subjects have a precise initial view about the compositions of the Blue and Green urns
(these urns correspond to the familiar choices in the motivating examples provided above).
In the experiment, the Blue urn has 3 black balls out of ten and the Green urn has 7 black
balls out of ten.

Concerning the Red urns, there is no initial information. The Red urns correspond to
the unfamiliar choices in the above examples. To guide their choices, subjects are provided
with feedback about the compositions of the red urns as reflected by the colors of the balls
that were previously drawn when a red urn either in state s = 1 or 2 was chosen. More
precisely, there are twenty subjects and 70 rounds. In each round, ten subjects make a
choice of urn in state 1 and the other ten make a choice of urn in state 2. There are
permutations of subjects between rounds so that every subject is in each state s = 1 or 2
the same proportion of time. Between rounds, subjects receive feedback about the number
of times the Green, Blue and Red urns were picked by the various agents in the previous
round, and for each color of urn, they are informed of the number of black balls that were
drawn. A typical feedback screen is shown in Figure 1. Note that in the case of the Red
urns, this number aggregates the number of black balls drawn from both the Red urns
picked in state s = 1 and the Red urns picked in state s = 2 mimicking the kind of coarse
information suggested in the motivating examples. It should be highlighted that subjects
were explicitly told that the compositions of the Red urn in state s = 1 and in state s = 2
need not be the same.

We consider three treatments T1, T2, T3 that differ in the composition of the Red urns
as depicted in Figure 2, but note that we maintain the compositions of the Blue and Green
urns in all treatments. The initial conditions in these various treatments are thus identical
and any difference of behaviors observed in later periods can safely be attributed to the
difference in the feedback received by the subjects across the treatments. In treatment 1,
the best decision in both states s = 1 and 2 would require the choice of the Red urn, but
averaging the composition of the Red urns across the two states leads to a less favorable

3In the instruction in Appendix A, Red in State 1 is referred to as Red1 and in State 2 is referred to as
Red2. It is explicitly mentioned that these are two different urns with different payoff implications.
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composition than the Green urn. In treatment 2, the best decision would require picking
the Red urn in state 1 but not in state 2, but the average composition of the two Red
urns dominates that of both the Blue and Green urns. Finally, in treatment 3, the best
decision would require picking the Red urn in state 2 but not in state 1. Faced with such
an environment, what could be the decision making process followed by subjects? We see
the following possible approaches.

First, in the tradition of reinforcement learning (see Barto and Sutton 1998 or Fuden-
berg and Levine 1998 for textbooks), subjects could assess the strength of the various urns
by considering the proportions of black balls drawn in the corresponding urns (aggregating
past feedback in some way). One key difficulty in our context is that there is no urn specific
feedback for the Red urns as the feedback is aggregated over states s = 1 and 2, and so
the standard reinforcement learning models which attach a different strength to every pos-
sible strategy do not apply. But, following Jehiel and Samet (2007), one could extend the
approach by considering similarity-based reinforcement learning models in which a single
valuation would be attached to the Red urns whether in state s = 1 or 2 (and reinforced
accordingly) and the two Red urns would be considered alike in terms of strength by the
learning subjects. Jehiel and Samet (2007) have proposed a solution concept called the
valuation equilibrium aimed at capturing the limiting outcomes of such similarity-based
reinforcement learning models. In our context, there would be a valuation for each color,
Blue, Red and Green; a subject would pick the urn with a color attached to the highest
valuation; the valuation attached to the Blue and the Green urns would be 0.3 and 0.7
respectively as reflected by the true compositions of these urns; the valuation of Red would
be an average of the proportion of black balls in the Red urns in states s = 1 and s = 2
where the weight assigned to the Red urns in the various states should respect the pro-
portion of times the Red urn is picked in states s = 1 and 2.4 The valuation equilibrium
would predict that in treatment 1 (T1), the Red urn is picked in state 1 but not in state
2; in treatment 2 (T2), the Red urns are picked both in states 1 and 2; in treatment 3
(T3), the Red urns are picked neither in state 1 nor 2. In our estimation, we will consider
a noisy version of such a model in which subjects rely on noisy best-response in the vein of
the logit model (as popularized by McKelvey and Palfrey (1995) in experimental economics).

Second, subjects could form beliefs about the compositions of the two Red urns relying
on some form of Bayesian updating to adjust the beliefs after they get additional feedback.
Note that being informed of the number of times the Blue and the Green urns were picked
in the last round is also informative so as to determine if feedback about the Red urns con-
cerns more state 1 or state 2 (as for example a strong imbalance in favor of the Green urns

4For the sake of illustration, if the Red urns are picked with the same proportion in states s = 1 and 2,
the valuation should be the unweighted average proportion of black balls in the two Red urns. If the Red
urn is only picked in state 1 (resp 2), the valuation of Red should be the proportion of black balls of the
Red urn in state 1 (resp 2).
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as opposed to the Blue urns would be indicative that the previous red choices corresponded
more to state 1). Of course, such a Bayesian approach heavily depends on the initial prior.
When estimating such a model, we will assume that subjects consider a uniform prior over
a support that we will estimate, and as for the reinforcement learning model we will assume
that subjects employ a noisy best response of the logit type.

Another key consideration is that the feedback concerning the Red urns is ambiguous to
the extent that it does not distinguish between states s = 1 and 2. Following the tradition
of Ellsberg (1961), one may suspect then that subjects would apply an ambiguity discount
to the Red urns (see Gilboa and Schmeidler (1989) for an axiomatization of ambiguity
aversion ). In the terminology of Epstein and Schneider (2007) or Epstein and Halevy
(2019), the coarse feedback about the composition of the Red urns can be viewed as an
ambiguous signal. To cope with the ambiguous nature of the feedback in a simple way, we
propose adding to the previous models (the similarity-based reinforcement learning and the
Bayesian model) an ambiguity discount to the assessment of the Red urns. In the statis-
tical exercise, the ambiguity discount is estimated for each learning model on the basis of
the observed data, and a key question of interest is whether a non-null discount is applied
to the Red urns in this context. Beyond the estimation exercise within each approach,
another objective is to analyze which of the similarity-based reinforcement learning or the
generalized Bayesian learning model explains best the observed data.

Our main findings are as follows. First, in our estimation of the similarity-based re-
inforcement learning model, we find that there is no ambiguity discount. That is, despite
the inherent ambiguity of the feedback received about the Red urns, the Red urns are not
discounted more than the familiar urns. This is similar to what is being assumed in the val-
uation equilibrium approach, even if to account for the steady state of the learning model
that we propose, there is a need to extend the notion of valuation equilibrium to allow
for noisy best-responses. Second, we find that the similarity-based reinforcement learn-
ing model explains the observed data much better than the generalized Bayesian learning
model. In the last part, we discuss various robustness checks of the main findings. To the
extent that the valuation equilibrium has properties very different from those arising with
ordinary maximization (see Jehiel and Samet, 2007), we believe our experimental finding
calls for pursuing further the implications of valuation equilibrium in economic contexts
involving familiar and unfamiliar choices beyond the stylized lab examples considered in
our experiment.

2 Related Literature

While the experimental literature on ambiguity is vast, there are only few experimental
papers looking at ambiguous signals as we do (beyond Epstein and Halevy, we are only
aware of Fryer et al (2019)). Note though that our experiment has a distinctive feature
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not present in the previous experiments on ambiguous signals. In our setting, the nature
of the ambiguity of the received signals (feedback) is endogenously shaped by the choice of
subjects (if the Red urn is only chosen in state 1, there is no ambiguity as the feedback
about Red urns is then clearly only informative about the composition of the Red urn
in state 1; by contrast ambiguity seems somehow maximal if the Red urn is picked with
the same frequency in the two states). This endogenous character of the ambiguity has no
counterpart in the previous experiments on ambiguity, as far as we know. Our paper is
related to other strands of literature beyond the references already mentioned. A first line
of research related to our study is the framework of case-based decision theory as axiom-
atized by Gilboa and Schmeidler (1995). Compared to case-based decision theory, in the
valuation equilibrium approach, the similarity weights given to the various actions in the
various states happen to be endogenously shaped by the strategy used by the subjects, an
equilibrium feature that is absent from the subjective perspective adopted in Gilboa and
Schmeidler.

Another line of research related to our study includes the possibility that the strategy
used by subjects would not distinguish behaviors across different states (Samuelson (2001),
Mengel (2012) for theory papers and Grimm and Mengel (2012), Cason et al (2012) or
Cownden et al. (2018) for experiments). Our study differs from that line of research in that
subjects do adjust their behavior to the state but somehow mix the payoff consequences of
some actions (the unfamiliar ones) obtained over different states, thereby revealing that our
approach cannot be captured by a restriction on the strategy space. Another line related
to our study is that of the analogy-based expectation equilibrium (Jehiel (2005) and Jehiel
and Koessler (2008)) in which beliefs about other players’ behaviors are aggregated over
different states. Our study differs from that literature in that we are considering decision
problems and not games. Yet, viewing nature as a player would allow to see closer con-
nections between the two approaches. To the best of our knowledge, no experiment in the
vein of the analogy-based expectation equilibrium has considered environments similar to
the one considered here.

A related experimental literature includes a recent strand concerned with selection ne-
glect. Experimental papers in this vein include Esponda and Vespa (2018), Enke (2019) or
Barron et al. (2019). These papers conclude in various applications that subjects tend to
ignore that data they see are selected. In our setting, the data related to Red are selected,
and one can argue that subjects by behaving in agreement with the (generalized) valuation
equilibrium do not seem to account for selection. Another related recent strand of experi-
mental literature is concerned with the failure of contingent reasoning and/or some form of
correlation neglect (see Enke and Zimmerman (2019), Martinez-Marquina et al (2019) or
Esponda and Vespa (2019)). Some of these papers (see in particular Martinez-Marquina et
al.) conclude that hypothetical thinking is more likely to fail in the presence of uncertainty,
which somehow agrees with our finding that in the presence of aggregate feedback, subjects

16



find it hard to disentangle the value of choosing Red in the two states.

There is a number of contributions comparing reinforcement learning models to belief-
based learning models in normal form games. While some of these contributions conclude
that reinforcement learning models explain better the observed experimental data than
belief-based learning models (Roth and Erev 1998, Camerer and Ho 1999), others suggest
that it is not so easy to cleanly disentangle between these models (Salmon 2001, Hopkins
2002, Wilcox 2006). Our study is not much related to this debate to the extent that we
consider decision problems and not games and that subjects do not immediately experience
the payoff consequences of their choices (the feedback received concerns all subjects in the
lab and subjects are only informed at the end how much they themselves earned). Relat-
edly the feedback received about some possible choices is aggregated over different states,
which was not considered in the previous experimental literature. Despite these differences,
relating Bayesian learning models to belief-based learning models, our results suggest that
these perform less well than their reinforcement learning counterpart in our context, as in
these other works.

Finally, one should mention the experimental work of Charness and Levin (2005) who
consider decision problems in which, after seeing a realization of payoff in one urn, subjects
have to decide whether or not to switch their choices of urns. In an environment in which
subjects have a probabilistic knowledge about how payoffs are distributed across choices and
states (but have to infer the state from initial information), Charness and Levin observe that
when there is a conflict between Bayesian updating and Reinforcement learning, there are
significant deviations from optimal choices. While the conclusion that subjects may rely on
reinforcement learning more than on Bayesian reasoning is somehow common in their study
and our experiment, the absence of ex ante statistical knowledge about the distribution
of payoffs across states in our experiment makes it clearly distinct from Charness and
Levin’s experiment. In our view, the absence of ex ante statistical knowledge fits better the
motivating economic examples mentioned above.

3 Background and theory

In the context of our experiment, this section defines a generalization of the valuation
equilibrium allowing for noisy best-responses in the vein of the quantal response equilib-
rium (McKelvey and Palfrey, 1995). We next propose two families of learning models, a
similarity-based reinforcement learning model (allowing for coarse feedback on some alter-
natives and an ambiguity discount attached to those)5 as well as a generalized Bayesian
model (also allowing for noisy best -responses and a discount on alternatives associated to

5When there is no ambiguity discount, the long run properties of the similarity-based reinforcement
learning model correspond to the generalized valuation equilibrium.
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coarse feedback). The learning models will then be estimated and compared in terms of fit
in light of our experimental data.

3.1 Quantal valuation equilibrium

In the context of our experiment, there are two states s = 1 and 2 that are equally likely.
In state s = 1, the choice is between Blue and Red1. In state s = 2, the choice is be-
tween Green and Red2. The payoffs attached to these four alternatives are denoted by
vBlue = 0.3, vRed1 , vRed2 and vGreen = 0.7 where vRed1 and vRed2 are left as free variables
to accommodate the payoff specifications of the various treatments.

A strategy for the decision maker can be described as σ = (p1, p2) where pi denotes
the probability that Redi is picked in state s = i for i = 1, 2. Following the spirit of the
valuation equilibrium (Jehiel and Samet, 2007), a single valuation is attached to Red1,
Red2 so as to reflect that subjects in the experiment only receive aggregate feedback about
the payoff obtained when a Red urn is picked either in state s = 1 or 2. Accordingly, let
v(Red) be the valuation attached to Red. Similarly, we denote by v(Blue) and v(Green)
the valuations attached to the Blue and Green urns, respectively.

In equilibrium, we require that the valuations are consistent with the empirical ob-
servations as dictated by the equilibrium strategy σ = (p1, p2). This implies that
v(Blue) = vBlue, v(Green) = vGreen and more interestingly that

v(Red) =
p1 × vRed1 + p2 × vRed2

p1 + p2
(1)

whenever p1 + p2 > 0. That is, v(Red) is a weighted average of vRed1 and vRed2 where the
relative weight given to vRed1 is p1/(p1+p2) given that the two states s = 1 and 2 are equally
likely and Redi is picked with probability pi for i = 1, 2. Based on the valuations v(Red),
v(Blue) and v(Green), the decision maker is viewed as picking a noisy best-response where
we consider the familiar logit parameterization (with coefficient λ). Formally,

Definition: A strategy σ = (p1, p2) is a quantal valuation equilibrium if there exists
a valuation system (v(Blue), v(Green), v(Red)) where v(Blue) = 0.3, v(Green) = 0.7,
v(Red) satisfies (1), and

p1 =
eλv(Red)

eλv(Red) + eλv(Blue)

p2 =
eλv(Red)

eλv(Red) + eλv(Green)

It should be stressed that the determination of v(Red), p1 and p2 are the results of a
fixed point as the strategy σ = (p1, p2) affects v(Red) through (1) and v(Red) determines
the strategy σ = (p1, p2) through the two equations just written.

18



We now briefly review how the quantal valuation equilibria look like in the payoff spec-
ifications corresponding to the various treatments. In this review, we consider the limiting
case in which λ goes to ∞ (thereby corresponding to the valuation equilibria as defined in
Jehiel and Samet, 2007).

Treatment 1: vRed1= 0.4 and vRed2= 0.8
In this case, clearly v(Red) > v(Blue) = 0.3 (because v(Red) is some convex combi-

nation between 0.4 and 0.8). Hence, the optimality of the strategy in state s = 1 requires
that the Red urn is always picked in state s = 1 (p1 = 1). Regarding state s = 2, even
if Red2 were picked with probability 1, the resulting v(Red) that would satisfy (1) would
only be 0.4+0.8

2 = 0.6, which would lead the decision maker to pick the Green urn in state
s = 2 given that v(Green) = 0.7. It follows that the only valuation equilibrium in this case
requires that p2 = 0 so that the Red urn is only picked in state s = 1 (despite the Red urns
being payoff superior in both states s = 1 and 2). In this equilibrium, consistency (i.e.,
equation (1)) implies that v(Blue) < v(Red) = 0.4 < v(Green).

Treatment 2: vRed1= 1 , vRed2= 0.6
In this case too, v(Red) > v(Blue) = 0.3 (because any convex combination of 0.6 and 1

is larger than 0.3) and thus p1 = 1. Given that vRed2 < vRed1 , this implies that the lowest
possible valuation of Red corresponds to 1+0.6

2 = 0.8 (obtained when p2 = 1). Given that
this value is strictly larger than v(Green) = 0.7, we obtain that it must that p2 = 1, thereby
implying that the Red urns are picked in both states. Valuation equilibrium requires that
p1 = p2 = 1 and consistency implies that v(Blue) < v(Green) < v(Red) = 0.8.

Treatment 3: vRed1= 0.1 , vRed2= 0.9
In this case, we will show that the Red urns are not picked neither in state 1 nor in state

2. To see this, assume by contradiction that the Red urn would (sometimes) be picked in
at least one state. This should imply that v(Red) ≥ v(Blue) (as otherwise, the Red urns
would never be picked neither in state s = 1 nor 2). If v(Red) < v(Green), one should
have that p2 = 0, thereby implying by consistency that v(Red) = vRed1 = 0.1. But, this
would contradict v(Red) ≥ v(Blue) = 0.3. If v(Red) ≥ v(Green), then p1 = 1 (given that
v(Red) > v(Blue)), and thus by consistency v(Red) would be at most equal to 0.1+0.9

2 = 0.5
(obtained when p2 = 1). Given that v(Green) = 0.7 > 0.5, we get a contradiction, thereby
implying that no Red urn can be picked in a valuation equilibrium.

As explained above the value of v(Red) in the valuation equilibrium varies from being
below v(Blue) in treatment 3 to being in between v(Blue) and v(Green) in treatment 1
to being above v(Green) in treatment 2, thereby offering markedly different predictions
according to the treatment in terms of long run choices. Allowing for noisy as opposed to
exact best-responses would still allow to differentiate the behaviors across the treatments
but in a less extreme form (clearly, if λ = 0 behaviors are random and follow the lottery
50 : 50 in every state and every treatment, but for any λ > 0, behaviors are different across
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treatments).

3.2 Learning Models

We will consider two families of learning models to explain the choice data observed in the
various treatments of the experiment: A similarity-based version of reinforcement learning
model in which choices are made on the basis of the valuations attached to the various
colors of urns and valuations are updated based on the observed feedback, and a Bayesian
learning model in which subjects update their prior belief about the composition of the Red
urns based on the feedback they receive. In each case, we will assume that subjects care
only about their immediate payoff and do not integrate the possible information content
that explorations outside what maximizes their current payoff could bring. This is -we
believe- justified to the extent that in the experiment there are twenty subjects making
choices in parallel and that the feedback is anonymous making the informational value of
the experimentation by a single subject rather small (it would be exactly 0 if we were to
consider infinitely large populations of subjects and we are confident it is negligible when
there are twenty subjects).

3.3 Similarity-based reinforcement learning

Standard reinforcement learning models assume that strategies are reinforced as a function
of the payoff obtained from them. In the context of our experiment, subjects receive
feedback about how the choices made by all subjects in the previous period translated
into black (positive payoff) or white (null payoff) draws. More precisely, the feedback
concerns the number6 of Black balls drawn when a Blue, Green or Red urn was picked in
the previous period as well as the number of times an urn with that color was then picked.
Unlike standard reinforcement learning, payoff obtained from some actions are coarse in our
setting and hence similarity- based reinforcement. Accordingly, at each time t = 2, ...70,
one can define for each possible color C = B,R,G (for Blue, Red, Green) of urn(s) that
was picked at least once at t− 1 :

UCt =
#(Black balls drawn in urns with color C at t− 1)

#(an urn with color C picked at t− 1)
. (2)

UCt represents the strength of urn(s) with color C as reflected by the feedback received at
t about urns with such a color. Note the normalization by #(an urn with color C picked at
t− 1) so that UCt is comparable to a single payoff attached to choosing an urn with color
C.

We will let BCt denote the value attached to an urn with color C at time t and BCinit
denote the initial value attached to an urn with that color. For Green and Blue there is

6The symbol # is used to refer to number.
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initial information and it is natural to assume that

BBinit =
30

100
= 0.3

BGinit =
68

100
= 0.68

whereas for Red, the initial value BRinit is a priori unknown and it will be estimated in
light of the observed choice data.

Dynamics of BCt:
Concerning the evolution of BCt, we assume that for some (ρU , ρF ), we have:7

BRt = ρU ×BRt−1 + (1− ρU )× URt
BBt = ρF ×BBt−1 + (1− ρF )× UBt
BGt = ρF ×BGt−1 + (1− ρF )× UGt

In other words, the value attached to color C at t is a convex combination between the
value attached at t−1 and the strength of C as observed in the feedback at t. Observe that
we allow the weight to be assigned to the feedback to be different for the Red urns on the
one hand and the Blue and Green urns on the other to reflect the idea that when a choice
is better known as is the case for more familiar alternatives (here identified with urns Blue
and Green) the new feedback may be considered as less important to determine the value
of it. Accordingly, we would expect that ρF is larger than ρU , and we will be concerned
whether this is the case in our estimations.8

Choice Rule:
Given that the feedback concerning the Red urns is aggregated over states s = 1 and

2, there is extra ambiguity as to how well BRt represents the valuation of Red1 or Red2

as compared to how well BGt or BBt represent the valuations of Blue and Green. The
valuation equilibrium (or its quantal extension as presented above) assumes that BRt is
used to assess the strength of Reds whatever the state s = 1, 2. In line with the literature
on ambiguity aversion as experimentally initiated by Ellsberg (1961), it is reasonable to
assume that when assessing the urn Reds, s = 1, 2, subjects apply a discount δ ≥ 0 to

7In case no urn of color C was picked at t− 1, then UCt = BCt−1 so that BCt = BCt−1.
8There are many variants that could be considered. For example, one could have made the weight

of the new feedback increase linearly or otherwise with the number of times an urn with that color was
observed. One could also have considered that the weight on the feedback is a (decreasing) function of t so
as to reflect that as more experience accumulates, new feedback becomes less important. These extensions
did not seem to improve how well we could explain the data and therefore, we have chosen to adopt the
simpler approach described in the main text.
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BRt.9 Allowing for noisy best-responses in the vein of the logit specification, this would
lead to probabilities p1t and p2t of choosing Red1 and Red2 as given by

p1t =
eλ(BRt−δ)

eλ(BRt−δ) + eλBBt

p2t =
eλ(BRt−δ)

eλ(BRt−δ) + eλBGt

The learning model just described is parameterized by (ρU , ρF , δ, λ, BRinit). In the next
Section, these parameters will be estimated pooling the data across all three treatments
using the maximum likelihood method. Particular attention will be devoted to whether
δ > 0 is needed to explain better the data, whether ρF > ρU as common sense suggests,
as well as to the estimated value of λ and the obtained likelihood for comparison with the
Bayesian model to be described next.10

3.4 Generalized Bayesian Learning Model

As an alternative learning model, subjects could form some initial prior belief regarding the
compositions of Red1 and Red2, say about the chance that there are ki black balls out of
10 in Redi, and update these beliefs after seeing the feedback using Bayes’ law.

Let us call βinit(k1, k2) the initial prior belief of subjects that there are ki black balls
out of 10 in Redi. In the estimations, we will allow the subjects to consider that the
number of black balls in either of the two Red urns can vary between kinf and ksup with
0 ≤ kinf ≤ ksup ≤ 10 and we will consider the uniform distribution11 over the various
possibilities. That is, for any (k1, k2) ∈ [kinf , ksup]2

βinit(k1, k2) =
1

(ksup − kinf + 1)2
,

and βinit(k1, k2) = 0 otherwise. The values of kinf and ksup will be estimated.

Dynamics of the beliefs:
9One possible rationale following the theoretical construction of Gilboa and Schmeidler (1989) is that

the proportion of Black balls in Red1 and Red2 is viewed as being in the range [BR - δ, BR + δ] and that
subjects adopt a maxmin criterion, leading them to consistently use BR− δ to assess both Red1 and Red2.
More elaborate specifications of ambiguity would be hard to estimate given the nature of our data.

10If δ = 0, it can be shown that (p1t, p2t) converges to the quantal valuation equilibrium as defined in
subsection 3.1.

11This choice of prior is somewhat arbitrary. For robustness check, we have also considered the case of
triangular priors centered around 5, which together with the uniform prior considered in the main analysis
allows us to span a wider range of priors. As it turns out the uniform prior leads to a better fit so that our
main finding that the generalized reinforcement learning model outperforms the Bayesian learning model
would a fortiori be true had we considered the triangular prior.
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To simplify the presentation a bit, we assume there is no learning on the urns Blue
and Green for which there is substantial initial information. At time t + 1, the feedback
received by a subject can then be formulated as (b, g, n) where b, g are the number of blue
and green urns respectively that were picked at t, and n is the number of black balls drawn
from the Red urns. In the robustness checks, we allow for Bayesian updating also on the
compositions of the Blue and Green urns, and obtain that adding learning on those urns
does not change our conclusion.

To further simplify the presentation, we assume that in the feedback subjects are ex-
posed to, there is an equal number of states s = 1 and s = 2 decisions assumed by the
subjects (allowing the subjects to treat these numbers as resulting from a Bernoulli distri-
bution would not alter our conclusions, see the robustness check section for elaborations).
In this case, the feedback can be presented in a simpler way, because knowing (b, g, n) now
allows subjects to infer that m1 = 10 − b choices of Red urns come from state s = 1 and
m2 = 10 − g choices of Red urns come from state s = 2. Accordingly, we represent the
feedback as (m1,m2, n) where mi represents the number of Redi that were picked. Clearly,
the probability of observing m1,m2, n when there are k1 and k2 black balls in Red1 and
Red2 respectively is given by:

Pr(m1,m2, n|k1, k2) =
∑

n1≤m1
n2≤m2
n1+n2=n

(
m1

n1

)(
m2

n2

)
(k1/10)n1(1−k1/10)m1−n1(k2/10)n2(1−k2/10)m2−n2

where
(
a
b

)
= a!

(a−b)!b! for integers a, b with a ≥ b.

The posterior at t+ 1 about the probability that there are k1 and k2 black balls out of
ten in Red1 and Red2 after observing (m1,m2, n) at t is then derived from Bayes’ law by

βt+1(k1, k2) =
βt(k1, k2) · Pr(m1,m2, n|k1, k2)∑
r1,r2

βt(r1, r2) · Pr(m1,m2, n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2).
Define vBayest (Redi) =

∑
ki

ki
10βt(ki) where βt(ki) =

∑
k−i

βt(ki, k−i) as the time t ex-
pected proportion of black balls in Redi given the distribution βt.

Choice Rule:
As for the similarity-based reinforcement learning model, we allow for noisy best re-

sponses and we introduce an ambiguity discount δ for the evaluation of the Red urns.12

12Some might dispute that the ambiguity discount is not so much in the spirit of the Bayesian model in
which case one should freeze this parameter to be 0.
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Accordingly, the probabilities p1t and p2t of choosing Red1 and Red2 at time t in the
generalized Bayesian learning model are given by:

p1t =
eλ(vBayes

t (Red1)−δ)

eλ(vBayes
t (Red1)−δ) + eλv(Blue)

p2t =
eλ(vBayes

t (Red2)−δ)

eλ(vBayes
t (Red2)−δ) + eλv(Green)

where as our simplification implies we assume that v(Blue) = 0.3 and v(Green) = 0.7.13

Studying the dynamics of the above Bayesian learning model is a bit cumbersome
for general specifications of (kinf , ksup, λ, δ). But to illustrate how it leads to predictions
markedly different from those of the valuation equilibrium, consider the case in which δ = 0,
kinf = 0, ksup = 10 and λ = ∞ . Then in all treatments, Red2 is not chosen to start with
given that it is perceived to deliver 0.5 in expectation, which is less than 0.7. As a result,
subjects can safely attribute the feedback they receive about Red to be coming from Red1.
This in turn implies that (considering the limiting case with large population of subjects)
subjects eventually learn the value of Red1 and never play Red2. Thus, subjects play Red1

in treatments 1 and 2 but give up playing Red1 in treatment 3, and they never play Red2

in any of the treatments (by contrast, Red2 was played in treatment 2 in the valuation
equilibrium).

More generally, the proposed (generalized) Bayesian learning model is parameterized by
(kinf , ksup, λ, δ). In the next section, these parameters will be estimated by the maximum
likelihood method in light of the collected data.

4 Results

4.1 Further Description of the Experimental Design

The computerized experiments were conducted in the Laboratory at Maison de Sciences
Economiques (MSE) between March 2015 and November 2016, with some additional ses-
sions running in March 2017. Upon arrival at the lab, subjects sat down at a computer
terminal to start the experiment. Instructions were handed out and read aloud before the
start of each session. The experiment consisted of three main treatments which varied in
the payoffs of the Red urns as explained above. In addition we had two other treatments
referred to as controls in which subjects received state-specific feedback about the Red urns,
i.e the feedbacks for Red1 and Red2 appeared now in two different columns, for the two
payoff specifications of treatments 1 and 2. The purpose of these control treatments was to
check whether convergence to optimal choices was observed in such more standard feedback

13As previously mentioned, we present a model that allows subjects to update v(Blue) and v(Green)
according to Bayes rule in the robustness checks.
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scenarios.

Each session involved 18-20 subjects14 and four sessions were run for each treatment
and control. Overall, 235 subjects drawn from the participant pool at the MSE -who were
mostly students- participated in the experiment. Each session had seventy rounds. In all
treatments, all sessions, and all rounds, subjects were split up equally into two states, State
1 and State 2. Subjects were randomly assigned to a new state at the start of each round.
The subjects knew the state they were assigned to, but did not know the payoff attached
to the available actions in each state.15 In each state, players were asked to choose between
two actions as detailed in Figure 1. The feedback structure for the main treatments was
as explained above. For the control group, the information structure was disaggregated.
We use this as a baseline to show that under simpler feedback structure, individuals learn
optimally the best available option.

Subjects were paid a show-up fee of 5 e. In addition to this, they were given the
opportunity to earn 10 e depending on their choice in the experiment. Specifically, for
each subject, two rounds were drawn at random and a subject earned an extra 5 e for each
black ball that was drawn from their chosen urn in these two rounds. The average payment
was around 11 e per subject, including the turn-up fee. All of the sessions lasted between
1 hour and 1.5 hour, and subjects took longer to consider their choices at the start of the
experiment.

4.2 Preliminary findings

We first present descriptive statistics and next present the structural analysis. In Figure 3,
we report how the choices of urns vary with time and across treatments. Across all these
sessions, initially, subjects are more likely to choose the Red urn than the Blue urn in state
1 and they are more likely to choose the Green urn than the Red urn in state 2. This is,
of course, consistent with most theoretical approaches including the ones discussed above
given that the Green urn is more rewarding than the Blue urn and the Red urns look (at
least initially) alike in states 1 and 2.

The more interesting question concerns the evolution of choices. Roughly, in state 1,
we see toward the final rounds, a largely dominant choice of the Red urns in treatments 1
and 2 whereas Red in state 1 is chosen less than half the time in treatment 3.

Concerning state 2, we see that in the final rounds, the Red urns are rarely chosen in
treatments 1 and 3 and chosen with high frequency in treatment 2. The qualitative differ-
ences of the choices in the final rounds among the three treatments and the two states are in
line with the prediction of the valuation equilibrium even if some noise in the best-response

14Note that when 18 subjects participated in the session, Bayes updating was modified accordingly.
15For urns Blue and Green, they had initial information, as explained in the Introduction.
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is obviously needed especially for treatment 3 in state 1 to explain why about 40% of choices
correspond to Red.16

In Figure 4, with state-specific feedback for the Red urns, we see a clear trend toward
the optimal choices even if some noise would be needed to explain why only 49% of choices
correspond to Red in state 2 in Control 1. In contrast to the feedback structure in the
treatment group, we see that disaggregating feedback on the Red urns across states, players
learn the optimal choice. In line with section 3.1, the fine feedback helps the agent attach
a valuation v(Red1) and v(Red2) separately for the Red urns in the two states instead
of a joint valuation v(Red). Due to this finer feedback structure, the simple heuristic of
reinforcement learning leads to an optimal choice, unlike in the control treatments in which
an analogous reinforcement learning heuristic leads to valuation equilibrium.

4.3 Statistical estimations

Similarity-based reinforcement learning
The estimations of the parameters of the similarity-based reinforcement learning model

together with the corresponding log likelihood17 is given in the following Table 2. Con-
cerning the likelihood, by way of comparison, a complete random choice model where in
every state, subjects would randomize 50:50 between the two choices would result in a
negative log likelihood of L=11402, which is much higher than 7626.6. More generally, the
similarity-based reinforcement learning model explains data much better than any model
in which behavior would not be responsive to feedback.18 We now discuss the most salient
aspects of the estimations.

The finding that ρF > ρU seems natural as mentioned above, to the extent that for the
familiar urns, the feedback should affect less how the valuations are updated.

The finding that BRinit is slightly below 0.5 may be interpreted along the following
lines. In the absence of any information, an initial value of 0.5 would be the one dictated
by the principle of insufficient reason, but the uncertainty attached to the unfamiliar urns
may lead to some extra discount in agreement with some form of ambiguity aversion as
reported in Ellsberg.19

16We note that the large share of Red chosen in state 2 of treatment 2 is not in line with the noisy
version of the Bayesian learning model as explained above.

17Likelihood throughout the paper refers to the negative of the log likelihood. Thus, the lower the
likelihood, the better the model (See textbook Train 2003 for further details). Standard errors are reported
in brackets.

18Optimizing on the probability of Red1 vs Red2 in such a model, would lead to assume that Red1 is
chosen with probability p1=0.7 and Red2 is chosen with probability p2= 0.3 with a negative log likelihood
of L=9899.6 which is much higher than 7626.6

19The difference 0.5 − 0.44 = 0.06 can be interpreted as measuring the ambiguity aversion of choosing
an unfamiliar urn when no feedback is available.
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The most interesting observation concerns δ which is estimated to be 0. Even though
the feedback for the Red urns is ambiguous (because it is aggregated over the two states),
the valuations for Red are not discounted as if subjects were ambiguous neutral from that
perspective. Thus, what our estimation suggests is that while there may be some (mild)
initial ambiguity aversion relative to the unfamiliar choices (as reflected by BRinit being
smaller than 0.5), no ambiguity discount seems to be applied to the valuation of Red despite
the ambiguity attached to the feedback received about the Red urns.

Generalized Bayesian learning model :
The estimated parameters for the generalized Bayesian learning model is given in Table

3. The value of δ =0.003 implies that with the Bayesian model, the subjects show some mild
form of ambiguity aversion. However we cannot statistically reject the hypothesis that δ = 0,
which implies that with the Bayesian model too, there is no significant ambiguity discount
similarly to what we found in the similarity-based reinforcement learning estimations. For
the support of initial prior, we found that kinf = 3 and ksup = 7.20 We also note that the
value of λ is slightly higher than that for the reinforcement model.

Comparing the two models:
Maybe the most important question is which of the Bayesian learning model or the re-
inforcement learning model explains the experimental data best. We use three methods
of comparisons, all establishing that the reinforcement learning model outperforms the
Bayesian learning model. First, looking at the likelihood of the two models, we see that the
Bayesian learning Model explains less well the data than the similarity-based reinforcement
learning model. Second, to account for the difference in the number of parameters between
the two models, we use the Bayesian Information Criterion (BIC) or Schwarz criterion (also
SBC, SBIC). BIC is a criterion for model selection among a finite set of models where the
model with the lower BIC is closer to the data generating process. It is based, in part, on
the likelihood function to determine the goodness of fit in the two models accounting for
the no. of parameters, formally defined as

BIC = ln(n)k − 2 ln(L∗)

where L∗ is value of maximized likelihood of model M, n is the number of observations, k is
the number of parameters estimated by the model. As seen from Table 4, we can conclude
that the reinforcement model performs better than the Bayesian one in explaining the data.

Finally, we perform a Vuong test21 to compare the performance of the two models
statistically. Under the null hypothesis H0 , that both models perform equally well, we

20The value of the bounds correspond to vBlue=0.3 and vGreen=0.7 respectively and so one may speculate
that maybe the compositions of the familiar urns serve as anchoring the support of the priors. Observe that
because best-responses are noisy, the derived support does not imply that the Red urn is always picked in
state 1 and never picked in state 2.

21See Merkel et al. 2016 for more details.
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conclude that the null can be rejected in favor of the reinforcement model. Specifically,

H0 = E(L(θR;xd)) = E(L(θB;xd))

Ha = E(L(θR;xd)) 6= E(L(θB;xd))

where xd is the collection of observed individual data points, θR is the set of parameters
estimated via reinforcement learning, θB is the set of parameters estimated via Bayesian
learning, L(θR;xd) is the log likelihood under reinforcement model and L(θB;xd) is the log
likelihood under Bayesian learning model for each data point d. The Vuong statistics is
then defined by

Vstat =
√
N
m̄

Sm

where m̄= E(L(θR;xd))- E(L(θB;xd)) for each individual d, N is the total number of ob-
servations and Sm is the sample standard deviation.

Vstat tests the null hypothesis (H0) that the two models are equally close to the true
data generating process, against the alternative H1 that one of the model is closer.22 The
obtained Vstat = 25.01 being large and positive implies that the reinforcement model is
a better fit to our experimental data than the Bayesian model. This is in line with the
findings derived with the BIC.

4.4 Comparing the Reinforcement learning model to the data

It is of interest to see how the obtained frequencies of choices as generated by the similarity-
based reinforcement learning model with estimations as reported in Table 2 compare to the
observed frequencies from our experimental data. In Figure 5, we report the simulated
frequencies of urn choices using the reinforcement model across all time periods and treat-
ments. Across all these sessions, our simulated frequencies remain close to the actual
frequencies with a slightly less good fit in Treatment 1. Allowing for a different λ in Treat-
ment 1, we observe that a larger lambda significantly improves the fit in this treatment as
shown in Appendix C.

4.5 Individual level heterogeneity

While we have established that the similarity-based reinforcement learning model explains
the data better than its Bayesian counterpart, it is of interest to see how the fit as generated
by such a model with estimations as reported in Section 4.3 vary across individuals. The

22Vuong test compares the predicted probabilities of two non nested models. It computes the difference
in likelihood for each observation i in the data. A high positive Vstat implies Model 1 is better than Model
2 where m̄=log(Pr(xi|Model1)-log(Pr(xi|Model2)
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pool of 235 subjects had very similar backgrounds across treatments. We fit the parameters
obtained from the two learning models to each individual across 70 rounds. That is, for each
individual, we ask for each of the two learning models, the generalized reinforcement learning
model with parameters as in Table 2 or the generalized Bayesian model with parameters as
in Table 3 allows to better explain the observed choices of the individual over the 70 rounds
given the feedback he has been exposed to. And for the model comparison, we use the
Vuong test as explained above. Overall, we find that 82.97% of players can be categorized
as reinforcement learners and the rest as Bayesian learners.

Comparing across treatments, we find that T1 has the highest proportion of Reinforce-
ment learners (93.5%). In T2, the proportion of similarity-based reinforcement learners is
79.22% followed by 76.25% in T3. The higher proportion of Reinforcement learners in T1
can be related to the previous observation that in aggregate in the Reinforcement learning
model with lower level of noise allows for a better fit in T1.

We have also compared the overall payoff as measured by the sum of black balls obtained
over the 70 rounds across the population of subjects categorized as reinforcement learners
or Bayesian learners. For reinforcement learners, the average was 42.09 black balls whereas,
for Bayesian learners, an average of 40.55 black balls was observed. This difference is not
statistically significant.

5 Robustness Checks

As many variants of reinforcement learning models and Bayesian models could be consid-
ered, we review a few of these here and suggest that our basic conclusions remain the same
in these variants. In each case, the reported estimation relies on the same methodology as
above.

Similarity-based reinforcement learning model
Regarding reinforcement models, we consider the following variants. First, we allow the

speed of adjustment of the valuation of the Red urns to differ across the two states as a large
imbalance in the number of green urns as opposed to blue urns in the feedback is indicative
that the feedback concerned more Red urns in state 1 than in state 2.23 Specifically, we now
introduce a new parameter µ and specify the weight on the previous valuation to satisfy

ρU1 = ρU × [1− µ · ( NB

NG+NB
− 0.5)]

ρU2 = ρU × [1− µ · ( NG

NG+NB
− 0.5)]

23This is in some sense making use of some qualitative features of the Bayesian model to improve the
reinforcement learning model.
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where NB and NG are the respective numbers of Blue and Green urns appearing in the
feedback. One would expect mu to be negative so that when NB is observed to be smaller
than NG, subjects infer the new feedback on the Red urns is more informative on the com-
position of Red in state 1 than Red in state 2. The estimations of this extended model are
reported in Table 5. Our estimation yields mu > 0 but note that it is not significant and
that mu=0 cannot be rejected. Thus, this extended model does not explain the data better
than our previously proposed version.

A different idea somewhat related to the one just discussed is that subjects would apply
a different discount to the Red urn in state 1 and 2 maybe because they would consider the
feedback for the Red urns to be more indicative of Red in state 1 than in state 2 (again
maybe because of the imbalance of the number of Blue and Green urns in the feedback).
This leads us to consider an extended version with two different discounts δ1 and δ2 for Red
in state 1 and 2 while keeping the other aspects of the dynamics unchanged as compared
to the main reinforcement learning model. That is, the only change in this variant is in the
choice rule.

Choice Rule:

p1t =
expλ(BRt−δ1)

expλ(BRt−δ1) + expλBBt

p2t =
expλ(BRt−δ2)

expλ(BRt−δ2) + expλBGt

The estimated parameters for this variant are reported in Table 6.
In this variant, we see a slight discount for Red2 but not for Red1. The likelihood for

this model is better than for the original model and the hypothesis δ1 = δ2 = 0 is rejected
under significance level 0.01. While this extension has a slightly better explanatory power,
we find only a modest level of ambiguity aversion applied to the urn Red in state 2 when
allowed to differ from the ambiguity aversion to the urn Red in state 1.24

Generalized Bayesian learning model
For the Bayesian model, one could argue that instead of fixing v(Blue) = 0.3 and

v(Green) = 0.7, the values of the Blue and Green urns could be updated similarly to the Red
urns.25 We have estimated such an extended model taking the same prior parameterized

24We also considered the possibility that subjects would use a different slope to appreciate payoffs above
0.5 and payoffs below 0.5 in the spirit of prospect theory (with a reference payoff fixed at 0.5), but such a
variant did not result in an improvement of the likelihood, hence we do not report it here (see Tversky and
Kahneman (1974), (1979) for the introduction of prospect theory).

25The initial information provided about those urns would of course be used.
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by the support [kinf , ksup] for all the urns in Table 7. This model performs better than
the generalized Bayesian one in terms of likelihood. However, this extended model is still
statistically dominated by the similarity-based reinforcement learning model.26

A more elaborate version of the Bayesian approach would be to take into account the
probability of having ri state i in the 20 observation of the feedback (instead of assuming
that in each round, there are exactly 10 subjects assigned to each state). Accordingly, we
now represent the feedback as (b, g, n) where b, g are the number of draws from blue and
green urns and n is the number of black balls in Red. We modify the generalized Bayesian
model by taking into account the probability of having x states s = 1 out of 20. Formally,

Pr(b, g, n|k1, k2) =
∑
x

(
20
x

)(
1

220

)
Pr(m1 = x− b,m2 = 20− x− g, n|k1, k2)

where x is the number of times state s = 1 was observed in one round, Pr(m1 =
x − b,m2 = 20 − x − g, n|k1, k2) is defined as in section 3.2.2 where the total number of
players in each session is 20.

The dynamics of beliefs is now given by

βt+1(k1, k2) =
βt(k1, k2) · Pr(b, g, n|k1, k2)∑
r1,r2

βt(r1, r2) · Pr(b, g, n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2). The other ingredients of the Bayesian learning model are
identical to those considered in section 3.2.2.

After running the estimation of this model in Table 8, we note that the correspond-
ing likelihood further improved compared to the other two Bayesian models. However,
even with the improved likelihood, the model still under performs when compared to the
reinforcement model, and the Vuong test still statistically favors the similarity-based rein-
forcement learning model.27

6 Conclusion

In this paper, we have considered the choices to be made between familiar alternatives and
unfamiliar alternatives for which the obtained feedback is aggregated over different states
of the economy. The literature on ambiguity aversion would suggest that the unfamiliar
alternatives would be discounted as compared to the familiar ones, but that literature has

26The Vuong test was conducted with the null hypothesis that both models explain the data equally
well. The null was rejected in favor of the similarity-based reinforcement learning model with Vstat= 24.72.

27The Vuong test was conducted with the null hypothesis that both models explain the data equally
well. The null was rejected in favor of the similarity-based reinforcement learning model with Vstat= 20.18.
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largely ignored how behaviors would change in the face of continuously coming new feed-
back that would remain aggregated over different states.

Several competing learning models could be considered to tackle the choices in the face
of new feedback: either extensions of reinforcement models in the spirit of the valuation
equilibrium (Jehiel and Samet, 2007) or Bayesian models in which subjects would start
with some diffuse priors and update as well as they can, based on the coarse feedback they
receive. Clearly, ideas of ambiguity aversion can be combined with such learning models
along with the idea that subjects make noisy best-responses to their representations of the
alternatives, as routinely done in the empirical literature (discrete choice models as con-
sidered by McFadden) or in the experimental literature (quantal response equilibrium as
defined by McKelvey and Palfrey, 1995).

Our results indicate that the similarity-based reinforcement learning models outper-
form their Bayesian counterparts and that little discount seems to be applied to unfamiliar
choices even when the feedback relative to them is aggregated over different states. As in
other experimental findings, our results also indicate that subjects’ choices are noisy, which
we have tackled by assuming that subjects employ noisy best-responses. We believe such
a work could be viewed as a starting point for an ambitious research agenda that aims at
understanding how subjects make choices in the face of a mix of coarse and precise (state-
specific) feedback. It seems well suited to cope with a number of choice problems in which
one alternative is familiar and another one is not. Questions of whether subjects seek to
generate state-specific feedback (and when) should also be part of this broader agenda.
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Figures

Figure 1 Feedback structure for treatment sessions

Figure 2 Set up of the different treatment sessions
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(a) Red1 across treatments

(b) Red2 across treatments

Figure 3 Evolution of choice across treatments with aggregated feedback
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(a) Red1 in control

(b) Red2 in control

Figure 4 Evolution of choice across treatments with dis-aggregated feedback
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(a) Treatment 1: State 1 (b) Treatment 1: State 2

(c) Treatment 2: State 1 (d) Treatment 2: State 2

(e) Treatment 3: State 1 (f) Treatment 3: State 2

Figure 5 Simulated choices using the reinforcement model
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Tables

Blue 30 black (B) 70 white (W)
Green 68 black (B) 32 white (W)

Table 1 Information about the relative payoff of urns Blue and Green after 100 random
draws is reported at the start of each session.

ρU ρF δ BRini λ L
0.43 0.599 0.00 0.42 5.24 7626.6

[0.4, 0.49] [0.55,0.64] [0, 0.0009] [0.38, 0.49] [5.04, 5.39] -
Note: Confidence interval at 95% are reported in brackets for the restricted estimators.
(See Ketz 2018 for details).

Table 2 Parameters for similarity-based reinforcement learning model

λ kinf ksup δ L
7.488 3 7 0.003 8816.2

[7.43, 7.52] - - [0.001, 0.005] -

Table 3 Parameter for Bayesian model with bounds

Valuation model Bayesian model
1.52 x 104 1.763 x 104

Note: BIC is a model selection criterion partly based on the likelihood function to
determine the goodness of fit in the two models accounting for the no. of parameters.
Lower the BIC value, better the fit. Valuation model therefore fits our data better.

Table 4 BIC values for the two competing models

ρU ρF δ BRini λ µ L
0.45 0.6 0.00 0.45 5.2 0.108 7626.3

[0.40, 0.49] [0.55,0.64] [0, 0.001] [0.39, 0.5] [5.02, 5.37] [-0.26, 0.48] -

Table 5 Parameters for variant1 of similarity-based reinforcement learning model
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ρU ρF δ1 δ2 BRini λ L
0.39 0.54 0.00 0.04 0.46 4.99 7610.6

[0.34, 0.44] [0.49,0.58] [0, 0.0007] [0.03, 0.05] [0.39, 0.52] [4.8, 5.17] -

Table 6 Parameters for variant2 of similarity-based reinforcement learning model

λ kinf ksup δ Likelihood
8.69 3 7 0.008 8583.8

[8.4, 8.9] ( - ) ( - ) [0.003, 0.013] ( - )

Table 7 Parameter for Bayesian model with Blue and Green updating

λ kinf ksup δ Likelihood
6.56 3 7 0 8584.4

[6.57, 6.64] ( - ) ( - ) [0, 0.008] ( - )

Table 8 Parameter for elaborate Bayesian model

7 Appendix

Appendix A
Instruction sheet for the players (In the lab the instructions were in French):
Control Group:
Welcome to the experiment and I thank you for your participation. Please listen to

these instructions carefully. If you have any questions kindly raise your hand and it shall
be addressed. You receive 5 euros for participating and then your payoff depends on your
performance in the experiment.

The Experiment:
The experiment consists of 70 rounds. It is a simple decision task. There are two

situations you may face referred to as states 1 and 2. In each state, you have to choose one
of two urns. Each urn is composed of ten balls either black or white in color. When you
choose an urn, one of the balls in the urn is drawn at random (by the computer) and it is
immediately replaced after the computer has noted the color of the ball. If the ball drawn
is Black, you can receive extra payment (see below for details) whereas if the ball drawn is
White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available
in state 2 are Green and Red, respectively. While the compositions of the various urns
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remain the same throughout the experiment, note that the compositions of the Red urn in
state 1 need not be the same as the composition of the Red urn in state 2. These are two
different urns.

As the experiment goes, on your computer screen, you will be informed whether you
have to make a choice of urns in state 1 (Blue or Red) or in state 2 (Green or Red). The
sequence of choices from states 1 or 2 is decided randomly by the computer. Your task is
to choose one urn out of the two in each state.

Note: We drew 100 times a ball (replacing the ball in the urn after each draw) out of
the Blue and Green urn. We obtained the following composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose
between a Red and Blue urn. If in State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen.
A ball (the color of which could be either Black or White) will be drawn from that
urn by the computer. You will not know the color of the ball drawn. This implies
you will not have the information for your choice.

• Once all participants have made their choices, we provide you with some feedback.
The total number of black and white balls drawn in previous rounds by all subjects
according to the color of the urn (Blue, Red1, Red2, Green).

• Following the feedback, your terminal is randomly assigned a state of the world again.
The state may vary from the previous round or remain the same.

• We then repeat the same experiment again until the completion of the 70 rounds.

For determining your payoff, two of the rounds will be randomly chosen at the end of
the experiment. If one of your balls in these two rounds is Black, you will get an extra
5 euros. If both of your balls in these two rounds are Black, you will have an extra 10
euros. Otherwise (if both balls are White), you will have no extra return. So if you have
no questions let us begin!

Treatment Group:
Welcome to the experiment and I thank you for your participation. Please listen to

these instructions carefully. If you have any questions kindly raise your hand and it shall
be addressed. You receive 5 euros for participating and then your payoff depends on your
performance in the experiment.

The Experiment:
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The experiment consists of 70 rounds. It is a simple decision task. There are two
situations you may face referred to as states 1 and 2. In each state, you have to choose one
of two urns. Each urn is composed of ten balls either black or white in color. When you
choose an urn, one of the balls in the urn is drawn at random (by the computer) and it is
immediately replaced after the computer has noted the color of the ball. If the ball drawn
is Black, you can receive extra payment (see below for details) whereas if the ball drawn is
White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available
in state 2 are Green and Red, respectively. While the compositions of the various urns
remain the same throughout the experiment, note that the compositions of the Red urn in
state 1 need not be the same as the composition of the Red urn in state 2. These are two
different urns.

As the experiment goes, on your computer screen, you will be informed whether you
have to make a choice of urns in state 1 (Blue or Red) or in state 2 (Green or Red). The
sequence of choices from states 1 or 2 is decided randomly by the computer. Your task is
to choose one urn out of the two in each state.

Note: We drew 100 balls randomly out of the Blue and Green urn which gave us the
composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose
between a Red and Blue urn. If in State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen.
A ball (color of which could be either Black or White) will be picked up from that
urn. You will not know the color of the ball drawn. This implies you will not have
the information of your choice

• Once every participant has made their choice, we provide you with the feedback. The
no. of black and white balls drawn from each colored urn (Blue, Red, Green) across
states based on only the previous round draw is reported. Note that the information
for Red corresponds to the no. of balls picked in State 1 and 2.

• Following the feedback, your terminal is randomly assigned a state of the world again.
The state may vary from the previous round or remain the same. Note that the
composition of the urn is however fixed throughout the experiment.

• We then repeat the same experiment again till we complete 70 rounds.
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For determining your payoff, two of the rounds will be randomly chosen at the end of
the experiment. If you have picked up B in that particular round, you end up with 5 euros
more for each B otherwise no returns. So if you have no questions let us begin!

Appendix B
The learning model we described is parameterized by (ρR, ρB, δ, λ, BRinit). The dia-

grams below show that these parameters are normally distributed via Monte Carlo simula-
tions with 1000 iterations and n=240. 28

Figure 6 Results for Montecarlo simulations for Model 1.

28This is in line with number of players in our actual experiment.
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Appendix C
The figure shows simulated proportions of choices for the reinforcement model over

70 rounds with the estimated parameters for Treatment 1. Instead of using the noise
parameter, λ= 5.23, we use λ= 7 to introduce less noise. This improves the fit of the
simulated data with the actual one.

(a) Treatment 1: State 1 (b) Treatment 1: State 2

Figure 7 Improving the fit of simulated data in T1 with a lower noise parameter λ
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3 Multi-state choices with Aggregate Feedback on Unfamiliar
Alternatives: a Followup

Abstract

This paper follows up on a multi-state binary choice experiment in which in each
state, one alternative has well understood consequences whereas the other alternative
has unknown consequences. Subjects repeatedly receive feedback from past choices
about the consequences of unfamiliar alternatives but this feedback is aggregated over
states. The follow up experiment allows subject to experiment and generate individ-
ual level feedback unlike the group feedback in the original one. Varying the payoffs
attached to the various alternatives in various states allows us to test whether unfamil-
iar alternatives are discounted via three different treatments. Our experimental data
suggest similar findings as in the original experiment where players follow similarity-
based reinforcement learning. We find a slightly higher proportion of Bayesian learners
compared to the original experiment. is no difference in choice in the followup.

Key words: Ambiguity, Bounded Rationality, Experiment, Learning, Coarse feedback,
Valuation equilibrium

JEL Classification: D81, D83, C12, C91
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1 Introduction: Why a follow up?

Our previous paper studies a multi-state binary choice experiment in which in each state,
one alternative has well understood consequences whereas the other alternative has un-
known consequences. Subjects repeatedly receive feedback from past choices about the
consequences of unfamiliar alternatives but this feedback is aggregated over states and
across choices of everyone. We vary the payoffs attached to the various alternatives in vari-
ous states to test whether unfamiliar alternatives are discounted and whether subjects’ use
of feedback is better explained by similarity-based reinforcement learning models (in the
spirit of the valuation equilibrium, Jehiel and Samet 2007) or by some variant of Bayesian
learning model. Our experimental data suggest that there is no discount attached to the
unfamiliar alternatives and that similarity-based reinforcement learning models have a bet-
ter explanatory power than their Bayesian counterparts.

A natural follow up to the question would be to understand how these findings would
change in the face of the feedback being individual specific in the spirit of learning by doing.
Going back to one of the concrete example mentioned in our previous paper, think of the
adoption of a new technology by farmers. A farmer has a lot of information about the per-
formance of the current technology but not so much about the new one. The farmer may
collect information about the new technology by asking around other farmers who would
have previously adopted it. But due to the heterogeneity of the soil and/or the heterogene-
ity in the ability of the farmers, what works well/poorly for one farmer need not perform in
the same way for another. Thus, the feedback received about the new technology is coarse
in the sense that it is aggregated over different situations (states in the decision theoretic
terminology) as compared to the information held for the old technology.29 Now consider
an alternative scenario where the farmer instead of relying on others experience, himself
uses the new technology over different situations. In principal, the farmer should be able
to experiment and observe performance of the unfamiliar technology separately in the two
states. However, an external factor like weather condition at the time the new technology is
adopted might affect the state. There could also be concerns of imperfect recall regrading
which state the performance data is coming from. Hence, the information still remains
coarse in the sense that it is aggregated over different situations.

We are interested in understanding how decision makers would vary their decisions in
multi-state binary decision problems in which decision makers would have precise state-
specific information about the performance of one alternative and less precise information
about the other alternative. The less precise information takes the form that the decision
maker is responsible to experiment and generate aggregate (not state-specific) feedback

29Ryan and Gross (1946) propose an early study of the diffusion of new technology adoption in the
farming context. See also Young (2009) for a study focused on the diffusion dimension.
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about the performance of that alternative. In course of presentations30, we were often
asked if allowing experimentation rather than aggregate group feedback could change the
behavior of subjects. Feedback can be generated in many different ways and via this fol-
lowup, we try to specifically understand if the aggregated valuation equilibrium still holds
true when subjects are given the opportunity to be responsible for their own feedback.
Similar to the earlier paper, our interest lies in allowing a set of agents to act repeatedly in
such environments so as to understand the steady state effects.

We have established that subjects in the face of repeated aggregated information learn
with a similarity-based reinforcement learning when the feedback is generated by group
choices rather than individual. The feedback on the unknown alternative when allowed
to be generated via individual experimentation, subjects continue to learn with similarity-
based reinforcement learning. In the follow up, the performance of the unknown alternative
still remains aggregated (not state-specific) but every individual is now able to experiment
and generate their own set of feedback. In the next section, we detail the experiment in
greater details and point out the differences from the previous case. This is followed by
comparing results of the old and the follow up design.

2 Experimental design: How is it different?

2.1 Context

The computerized experiments were conducted in the Laboratory at Maison de Sciences
Economiques (MSE) in September 2019. Upon arrival at the lab, subjects sat down at a
computer terminal to start the experiment. Instructions were handed out and read aloud
before the start of each session. The experiment consisted of three main treatments which
varied in the payoffs of the Red urns as will be explained below. In addition we had two
other treatments referred to as controls in which subjects received state-specific feedback
about the Red urns, i.e the feedbacks for Red1 and Red2 appeared now in two different
columns, for the two payoff specifications of treatments 1 and 2. The purpose of these
control treatments was to check whether convergence to optimal choices was observed in
such more standard feedback scenarios.

Each treatment involved 76 participants. Overall, 328 subjects drawn from the partic-
ipant pool at the MSE -who were mostly students- participated in the experiment. Each
session had ten repetition of twenty rounds. In all treatments, all repetitions, and all rounds,
subjects were randomly assigned to a new state at the start of each round. The subjects
knew the state they were assigned to, but did not know the payoff attached to the available

30We would sincerely like to thank our anonymous referee for suggesting an alternative way the feedback
could be generated,
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actions in each state.31 In each state, players were asked to choose between two actions. The
feedback structure for the main treatments is explained in the design section. For the con-
trol group, the information structure was disaggregated. We use this as a baseline to show
that under simpler feedback structure, individuals learn optimally the best available option.

Subjects were paid a show-up fee of 5 e. In addition to this, they were given the op-
portunity to earn 12 e depending on their choice in the experiment. Specifically, for each
subject, six rounds were drawn at random and a subject earned an extra 2 e for each black
ball that was drawn from their chosen urn in these six rounds. The average payment was
around 11 e per subject, including the show-up fee. All of the sessions lasted around an
hour.

2.2 Design

We consider the following experimental setting. There are two states, s = 1, 2. In each
state, the decision maker has to choose between two urns identified with a color, Blue and
Red in state s = 1, Green and Red in state s = 2 where the Red urns have different payoff
implications in states s = 1 and 2. Each urn is composed of ten balls, black or white.
When an urn is picked, one ball is drawn at random from this urn (and it is immediately
replaced afterwards). If a black ball is drawn this translates into a positive payment. If a
white ball is drawn there is no payment. One hundred initial draws are made for the Blue
and Green urns with no payoff implication for participants, and all subjects are informed
of the corresponding compositions of black and white balls drawn from these urns. Thus,
as seen in Table 9, subjects have a precise initial view about the compositions of the Blue
and Green urns (these urns correspond to the familiar choices in the motivating example
provided above). In the experiment, the Blue urn has 3 black balls out of ten and the Green
urn has 7 black balls out of ten.

Concerning the Red urns, there is no initial information. The Red urns correspond to
the unfamiliar choices in the above examples. To guide their choices, subjects are provided
with feedback about the compositions of the red urns as reflected by the colors of the balls
that were previously drawn when a red urn either in state s = 1 or 2 was chosen. More
precisely, each subject plays 10 repetitions with 20 rounds in each repetition. In each round,
subjects make a choice of urn in either state 1 or 2. There are permutations of subjects
between rounds so that every subject is in each state s = 1 or 2 the same proportion of
time. Between repetitions, subjects receive individual feedback about the number of times
the Green, Blue and Red urns were picked by them individually in the previous repetition
(previous 20 rounds), and for each color of urn, they are informed of the number of black
balls that were drawn. A typical feedback screen is shown in Figure 8. In the case of the

31For urns Blue and Green, they had initial information, as explained the design section.
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Red urns, this number aggregates the number of black balls drawn from both the Red urns
picked in state s = 1 and the Red urns picked in state s = 2 mimicking the kind of coarse
information suggested in the motivating examples. It should be highlighted that subjects
were explicitly told that the compositions of the Red urn in state s = 1 and in state s = 2
need not be the same.

Note that in the original experiment, subjects faced similar situation with the only dif-
ference being how the feedback is generated. In the original experiment, unlike the follow
up where aggregated feedback is generated individually after 20 rounds of choice, subjects
at the end of each round were informed of the number of black balls drawn form each urn
by everyone in the session. There were around 20 individuals per session. In the case of the
follow up, despite the feedback being aggregated across states, players have an opportunity
to experiment and learn more about the composition of the Red urns.

We consider three treatments T1, T2, T3 that differ in the composition of the Red urns
as depicted in Figure 9, but note that we maintain the compositions of the Blue and Green
urns in all treatments. The initial conditions in these various treatments are thus identical
and any difference of behaviors observed in later periods can safely be attributed to the
difference in the feedback received by the subjects across the treatments. In treatment 1,
the best decision in both states s = 1 and 2 would require the choice of the Red urn, but
averaging the composition of the Red urns across the two states leads to a less favorable
composition than the Green urn. In treatment 2, the best decision would require picking
the Red urn in state 1 but not in state 2, but the average composition of the two Red urns
dominates that of both the Blue and Green urns. Finally, in treatment 3, the best decision
would require picking the Red urn in state 2 but not in state 1.

3 Results

We compare the findings in the follow up experiments to the original ones. In order to review
the optimal strategies under aggregated and unaggregated feedback, we present Table 10.
We want to understand if the valuation reinforcement model can still explain the behavior
of subjects given that the feedback is more informative yet still aggregated. In other words,
we want to test if subjects successfully learn the composition of Red1 and Red2 separately
due to experimentation despite the feedback being aggregated.

3.1 Preliminary findings

In Figure 10, we report how the choices of urns vary with repetitions and across treatments.
Across all the sessions, initially, subjects are more likely to choose the Red urn than the
Blue urn in state 1 and they are more likely to choose the Green urn than the Red urn in
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state 2. This is, of course, consistent with most theoretical approaches including the ones
discussed above given that the Green urn is more rewarding than the Blue urn and the Red
urns look (at least initially) alike in states 1 and 2.

The more interesting question concerns the evolution of choices. Roughly, in state 1, we
see toward the final rounds, a largely dominant choice of the Red urns in treatments 1 and
2 whereas Red in state 1 is chosen less than half the time in treatment 3. Concerning state
2, we see that in the final rounds, the Red urns are rarely chosen in all treatments. The
qualitative differences of the choices in the final rounds among the three treatments and the
two states are in line with the prediction of the valuation equilibrium except in treatment 2.

This graph is also interesting to understand information generation under ambiguity.
In State 2, where the outside option, Green urn has a higher value than that of the Blue
urn, subjects experiment less with the ambiguous option. The inverse is true for State 1.
Comparing with previous graphs in Figure 11, we see that the trend is similar across all
treatments except in Treatment 2. The final convergence is however starker in the original
experiment than in the followups. This could be explained by the fact that individual level
feedback generation and experimentation leads to more noise hence the convergence is less
starker.

Explaining the difference in Treatment 2:
In the followup, feedback is individual specific and subjects can in principle experiment

to learn the exact composition of the Red urns across states separately. This learning state
by state should show a strong imbalance in the number of times Red is picked in State1
and State2. In Figure 12 we plot the imbalance between the no. of times Red was chosen
in State 1 and 2 in the first repetition where no feedback on the Red urns were provided.
The red lines are the imbalance in the original treatments across sessions.

We see that in T2, compared to the original treatment, there is more imbalance where
most people either choose Red always in State 1 but not in State 2. The distribution of the
difference is skewed to the right unlike the difference in original treatment marked by red
lines on 2-4. The imbalance in the other two treatments are closer to the original treatment.
In T1, the original treatment had a difference between 5-7 which is closer to the followup.
In T3, the difference is fairly spread with a peak at 0. Note that 0 could mean none of the
Reds are chosen.

3.2 Statistical estimations

Similarity-based reinforcement learning
The estimations of the parameters of the similarity-based reinforcement learning model

together with the corresponding log likelihood32 are given in the Table 11. The model is
32Likelihood throughout the paper refers to the negative of the log likelihood. Thus, the lower the
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explained in great details in the previous paper. Concerning the likelihood, by way of com-
parison, a complete random choice model where in every state, subjects would randomize
50:50 between the two choices would result in a negative log likelihood of L=1580.4, which
is much higher than 1340.3 obtained in Table 11. More generally, the similarity-based re-
inforcement learning model explains data much better than any model in which behavior
would not be responsive to feedback. We now discuss the most salient differences in the
estimations.

The finding that ρF > ρU seems natural as mentioned above, to the extent that for
the familiar urns, the feedback should affect less how the valuations are updated. The
values in followup are similar to the original estimation. ρU seems to be slightly lower
which seems natural given the fact that the followup allows greater experimentation hence
subjects tend to rely more on current period feedback rather than previous belief. The
finding that BRinit is slightly below 0.5 is similar to the original experiment and can be
interpreted along the following lines. In the absence of any information, an initial value of
0.5 would be the one dictated by the principle of insufficient reason, but the uncertainty
attached to the unfamiliar urns may lead to some extra discount in agreement with some
form of ambiguity aversion as reported in Ellsberg.33

The most interesting observation concerns δ which is estimated to be 0.08 in contrast
to δ = 0 in the original experiment. This difference could be due to the fact that Red is
chosen less frequently in State 2 therefore leading to a different trend in T2. Even though
the feedback for the Red urns is ambiguous (because it is aggregated over the two states),
the valuations for Red are not much discounted as if subjects were almost ambiguous neu-
tral from that perspective. Thus, our estimation suggests that even with more informative
feedback and individual experimentation, very little ambiguity discount seems to be applied
to the valuation of Red.

Given Figure 12, we next estimate a model that takes the imbalance in the choice of
Red across states into account. We consider the following variant where we allow the speed
of adjustment of the valuation of the Red urns to differ across the two states. A large
imbalance in the number of green urns as opposed to blue urns in the feedback is indicative
that the feedback concerned Red urns in state 1 more than in state 2. Specifically, we now
introduce a new parameter µ and specify the weight on the previous valuation to satisfy

likelihood, the better the model (See textbook Train 2003 for further details). Standard errors are reported
in brackets.

33The difference 0.5 − 0.44 = 0.06 can be interpreted as measuring the ambiguity aversion of choosing
an unfamiliar urn when no feedback is available.
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ρU1 = ρU × [1− µ · ( NB

NG+NB
− 0.5)]

ρU2 = ρU × [1− µ · ( NG

NG+NB
− 0.5)]

where NB and NG are the respective numbers of Blue and Green urns appearing in the
feedback. Given that one could infer from NB being smaller than NG that there were more
draws from Red1 than from Red2, one would expect more weight to be assigned to the
feedback in the reassessment of Red in state 1 i.e µ < 0. The estimations of this extended
model are reported in Table 12. As expected, we find that µ < 0. There is a significant
gain in likelihood and δ = 0 cannot be rejected. Thus, this extended model explains the
data better than our previously proposed version.

Generalized Bayesian learning model :
Subjects could form some initial prior belief regarding the compositions of Red1 and

Red2, say about the chance that there are ki black balls out of 10 in Redi, and update
these beliefs after seeing the feedback using Bayes’ law. The estimated parameters for the
generalized Bayesian learning model are given in Table 13.

The value of δ =0.0116 implies that with the Bayesian model, the subjects show some
mild form of ambiguity aversion. However we cannot statistically reject the hypothesis that
δ = 0, which implies that with the Bayesian model, there is some ambiguity discount. For
the support of initial prior, we found that kinf = 3 and ksup = 7.34

Comparing the two models:
Maybe the most important question is with the new feedback structure which is more in-
formative than the original design, does Bayesian learning model explains the experimental
data better than the reinforcement one. We consider two methods of comparisons, all es-
tablishing that the reinforcement learning model outperforms the Bayesian learning model.
First, looking at the likelihood of the two models, we see that the Bayesian learning model
explains less well the data than the similarity-based reinforcement learning model. Second,
we perform a Vuong test35 to compare the performance of the two models statistically.
Under the null hypothesis H0 , that both models perform equally well, we conclude that
the null can be rejected in favor of the reinforcement model. Specifically,

H0 = E(L(θR;xd)) = E(L(θB;xd))

34The value of the bounds correspond to vBlue=0.3 and vGreen=0.7 respectively and so one may speculate
that maybe the compositions of the familiar urns serve as anchoring the support of the priors. Observe that
because best-responses are noisy, the derived support does not imply that the Red urn is always picked in
state 1 and never picked in state 2.

35See Merkel et al. 2016 for more details.
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Ha = E(L(θR;xd)) 6= E(L(θB;xd))

where xd is the collection of observed individual data points, θR is the set of parameters
estimated via reinforcement learning, θB is the set of parameters estimated via Bayesian
learning, L(θR;xd) is the log likelihood under reinforcement model and L(θB;xd) is the log
likelihood under Bayesian learning model for each data point d. The Vuong statistics is
5.87 which is positive and hence we can conclude that the reinforcement model explains the
data better than the Bayesian one.

3.3 Individual level heterogeneity

While we have established that the similarity-based reinforcement learning model explains
the data better than its Bayesian counterpart, it is of interest to see how the fit as generated
by such a model with estimations as reported in Section 3.2 vary across individuals. The
pool of 228 subjects had very similar backgrounds across treatments. We fit the parameters
obtained from the two learning models to each individual across 10 repetitions. That is, for
each individual, we ask for each of the two learning models, the generalized reinforcement
learning model with parameters as in Table 11 or the generalized Bayesian model with pa-
rameters as in Table 13 allows to better explain the observed choices of the individual over
the 200 rounds given the feedback he has been exposed to. And for the model comparison,
we use the Vuong test as explained above. Overall, we find that 64.03% of players can be
categorized as reinforcement learners and the rest as Bayesian learners. Comparing across
treatments, we find that T3 has the highest proportion of Reinforcement learners (72.3%).
In T2, the proportion of similarity-based reinforcement learners is 53.9% followed by 65.7%
in T3.

We have also compared the overall payoff as measured by the sum of black balls ob-
tained over the 200 rounds across the population of subjects categorized as reinforcement
learners or Bayesian learners. For reinforcement learners, the average was 105.3 black balls
whereas, for Bayesian learners, an average of 112.7 black balls was observed. This difference
is significant (p-value 0.019) with Bayesian learners performing better.
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Figures

Figure 8 Feedback structure for treatment sessions

Figure 9 Set up of the different treatment sessions
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(a) Red1 across treatments (b) Red2 across treatments

Figure 10 Evolution of choice across treatments with aggregated feedback: followup design

(a) Red1 across treatments (b) Red2 across treatments

Figure 11 Evolution of choice across treatments with aggregated feedback: original design
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Figure 12 Imbalance in the choice of Red across states

Tables

Blue 30 black (B) 70 white (W)
Green 68 black (B) 32 white (W)

Table 9 Information about the relative payoff of urns Blue and Green after 100 random
draws is reported at the start of each session.

T1 T2 T3
Nash (R,R) (R,G) (B,R)

Valuation (R,G) (R,R) (B,G)

Table 10 Optimal choice under the two solution concept.
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ρU ρF δ BRini λ L
0.204 0.64 0.08 0.46 3.032 1340.3

[0.17,0.23] [0.54 ,0.730] [0.07, 0.09] [0.41 ,0.51] [2.82, 3.25] -
Note: Confidence interval at 95% are reported in brackets for the restricted estimators. (See Ketz 2018 for
details).

Table 11 Parameters for similarity-based reinforcement learning model

ρU ρF δ BRini λ µ L
0.45 0.73 0.002 0.28 3.55 -2.53 1278.9

[0.33, 0.56] [0.63,0.824] [0, 0.051] [0.148, 0.41] [3.18, 3.93] [-2.82, -2.19] -
Note: Confidence interval at 95% are reported in brackets for the restricted estimators. (See Ketz 2018 for
details).

Table 12 Parameters for variant1 of similarity-based reinforcement learning model

λ kinf ksup δ L
3.08 3 7 0.0116 1429.3

[3.04, 3.12] - - [0, 0.01] -

Table 13 Parameter for Bayesian model with bounds

4 Appendix

Appendix A: Instructions
Instruction sheet for the players (In the lab the instructions were in French):
Control Group:
Welcome to the experiment and I thank you for your participation. Please listen to

these instructions carefully. If you have any questions kindly raise your hand and it shall
be addressed. You receive 5 euros for participating and then your payoff depends on your
performance in the experiment.

The Experiment:
The experiment consists of 10 repetitions. In each round, there is a simple decision task.

Every repetition has 20 rounds. There are two situations you may face referred to as states
1 and 2. In each state, you have to choose one of two urns. Each urn is composed of ten
balls either black or white in color. When you choose an urn, one of the balls in the urn is
drawn at random (by the computer) and it is immediately replaced after the computer has

55



noted the color of the ball. If the ball drawn is Black, you can receive extra payment (see
below for details) whereas if the ball drawn is White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available
in state 2 are Green and Red, respectively. While the compositions of the various urns
remain the same throughout the experiment, note that the compositions of the Red urn in
state 1 need not be the same as the composition of the Red urn in state 2. These are two
different urns.

As the experiment goes, on your computer screen, you will be informed whether you
have to make a choice of urns in state 1 (Blue or Red) or in state 2 (Green or Red). The
sequence of choices from states 1 or 2 is decided randomly by the computer. Your task is
to choose one urn out of the two in each state.

Note: We drew 100 times a ball (replacing the ball in the urn after each draw) out of
the Blue and Green urn. We obtained the following composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose
between a Red and Blue urn. If in State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen.
A ball (color of which could be either Black or White) will be picked up from that
urn. You will not immediately know the color of the ball drawn.

• Once you have made your choice, your terminal is randomly assigned a state of the
world again. The state may vary from the previous round or remain the same.

• After having played 20 rounds, a supplementary information appears on your screen:
For each colored urn (Blue, Red1, Red2, Green), you are informed the no. of black
and white balls drawn by you in the 20 previous rounds corresponding to the color of
the urn.

• We then repeat the same experiment 10 times.

For determining your payoff, of the rounds will be randomly chosen at the end of the
experiment. If you have picked up a black ball in that particular round, you end up with
2 euros more for each black ball otherwise no returns. So if you have no questions let us
begin!

Treatment Group:
Welcome to the experiment and I thank you for your participation. Please listen to

these instructions carefully. If you have any questions kindly raise your hand and it shall
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be addressed. You receive 5 euros for participating and then your payoff depends on your
performance in the experiment.

The Experiment:
The experiment consists of 10 repetitions. In each round, there is a simple decision task.

Every repetition has 20 rounds. There are two situations you may face referred to as states
1 and 2. In each state, you have to choose one of two urns. Each urn is composed of ten
balls either black or white in color. When you choose an urn, one of the balls in the urn is
drawn at random (by the computer) and it is immediately replaced after the computer has
noted the color of the ball. If the ball drawn is Black, you can receive extra payment (see
below for details) whereas if the ball drawn is White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available
in state 2 are Green and Red, respectively. While the compositions of the various urns
remain the same throughout the experiment, note that the compositions of the Red urn in
state 1 need not be the same as the composition of the Red urn in state 2. These are two
different urns.

As the experiment goes, on your computer screen, you will be informed whether you
have to make a choice of urns in state 1 (Blue or Red) or in state 2 (Green or Red). The
sequence of choices from states 1 or 2 is decided randomly by the computer. Your task is
to choose one urn out of the two in each state.

Note: We drew 100 balls randomly out of the Blue and Green urn which gave us the
composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose
between a Red and Blue urn. If in State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen.
A ball (color of which could be either Black or White) will be picked up from that
urn. You will not immediately know the color of the ball drawn.

• Once you have made your choice, your terminal is randomly assigned a state of the
world again. The state may vary from the previous round or remain the same.

• After having played 20 rounds, a supplementary information appears on your screen:
For each colored urn (Blue,Red, Green), you are informed the no. of black and white
balls drawn by you in the 20 previous rounds corresponding to the color of the urn.
Note that information for Red represents a total of balls from both State 1 and State
2.

• We then repeat the same experiment 10 times.
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For determining your payoff, six of the rounds will be randomly chosen at the end of
the experiment. If you have picked up a black ball in that particular round, you end up
with 2 euros more for each black ball otherwise no returns. So if you have no questions let
us begin!

Appendix B: Explaining the difference in Treatment 2:
In order to understand the difference in trend for T2, we try to look at a different

measure, the spread of feedback for the Red urns across treatments in the first round.
Note that these choices were made initially without feedback. In Fig 6, the yellow squares
represent feedback in the original experiment across sessions and the red dots represent
feedback in the followup for each person. The graph plots UR1 where

UCt =
#(Black balls drawn in urns with color C at t− 1)

#(an urn with color C picked at t− 1)
. (3)

UCt represents the strength of urn(s) with color C as reflected by the feedback received at
t about urns with such a color. Note the normalization by #(an urn with color C picked at
t− 1) so that UCt is comparable to a single payoff attached to choosing an urn with color
C.

For T1, the value of Red is fairly concentrated between 0.3 and 0.7. For T2, it is
concentrated between 0.7 and 1. Our hunch is that most of the information in this treatment
is coming from Red in State 1 hence imbalance in learning across the two states. In T3, it
is concentrated between 0.1 and 0.4.
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(a) Red2 across treatments

Figure 13 Evolution of choice across treatments with aggregated feedback: followup design

Appendix C: Control
In Figure 14, with state-specific feedback for the Red urns, we see a clear trend toward

the optimal choices even if some noise would be needed to explain why only 30% of choices
correspond to Red in state 2 in Control 1. In contrast to the feedback structure in the
treatment group, we see that disaggregating feedback on the Red urns across states, players
learn the optimal choice. The fine feedback helps the agent attach a valuation v(Red1) and
v(Red2) separately for the Red urns in the two states instead of a joint valuation v(Red).
Due to this finer feedback structure, the simple heuristic of reinforcement learning leads to
an optimal choice, unlike in the aggregated treat- ments in which an analogous reinforcement
learning heuristic leads to valuation equilibrium.
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(a) Red1 across treatments (b) Red2 across treatments

Figure 14 Evolution of choice across treatments with dis-aggregated feedback: Control
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4 Endogenous Institutions: a Network Experiment in Nepal

Abstract

In developing countries where formal institutions are often weak, the community is
responsible to enforce local agreements. In such settings, peer monitoring represents a
natural mechanism for the enforcement of agreements. This paper studies the demand
for monitoring and its effectiveness in sustaining cooperation across social groups. We
map social networks of 19 villages in rural Nepal and conduct an experiment to explore
the role of the endogenous choice of monitors. Individuals play in groups of three, both
with their close friends and with people socially distant in their network. They receive
the opportunity to anonymously choose their preferred "institution". We combine a
theoretical model and a unique lab-in-the-field experiment to show that closely knit
groups are significantly more likely not to choose a monitor, while sparse groups tend
to prefer a monitor who is highly central in the network. The endogenous selection of
monitoring ensures higher cooperation compared to an exogenous assignment, but only
in sparse groups. Further, we observe that the outcome of the vote acts as a signal of
intra-group trust.

Key words: Network, Peer Monitoring, Experiment, Public good game, Sparseness

JEL Classification: C93, L14, P48
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1 Introduction

The engagement of local communities is a standard mechanism for channeling development
programs. The benefit of this approach lies in increased participation of communities and in
deeper adaptation to local needs. Yet, the efficiency of such initiatives crucially depend on
the institutional environment and on the level of cooperation. Development practitioners
recognize the increased risk of free riding when institutions are imposed without involving
the community (Mansuri and Rao, 2004; Narayan, 1995). In this context, it is important to
understand which informal institutions sustain and promote cooperation. Peer monitoring
represents a natural mechanism for the enforcement of social norms in such a setting. Pre-
vious research has focused on the effectiveness of peer monitors but the demand for such a
mechanism is understudied. Our paper fills this gap in two main directions. First, it studies
the demand for peer monitors across social groups. Second, it explores how endogenous
monitors affect cooperation.36 We focus on the role of social networks in the choice of these
monitors and its impact on cooperation.

In developing countries, given the weakness of formal institutions, social networks repre-
sent a relevant tool to regulate transactions between individuals. Communities mostly rely
on interactions with socially proximate peers and third party institutions are often used
to enforce contracts among socially distant individuals. Ostrom, 1991 suggests how mech-
anisms based on social ties have sustained cooperation37 rather than mere punishment.38

We conduct a lab in the field experiment in 19 villages in rural Nepal to understand third
party monitoring and cooperation. Villagers play a cooperation game and can choose to
elect a monitor through majority voting. This monitor can impose higher cooperation
through reputational concerns. Concerns of social image are important drivers of coopera-
tive behavior. Third party monitoring can substitute for social density by emphasizing on
these very concerns (Andreoni et al., 2006; Greif, 1989; Bowles, 2008). Further, the impact
of the monitor may depend on his position in the social network39 and on the political
process whereby it is assigned to groups. We explore the effects of monitoring induced
by reputation concerns rather than by material punishment. Two main pieces of evidence
emerge from previous research. First, dense groups are able to sustain more cooperation
than socially distant groups. Second, monitors have the power to relax the inefficiencies

36See Olken, 2007; Bjorkman et al., 2009 and Gelade, 2018. Unlike direct reporting in these papers, our
experiment relies on reputational concerns affected via gossip by the chosen monitor.

37In rural Nepal, community-based organizations (Forest User Associations, Water User Associations
and Cooperatives) presents a good example of the success of such reputational mechanisms.

38There is a huge literature that shows the effect of punishment on public good games. For more
details see Fehr and Gachter, 2000; Charness et al., 2008; Beersma and Kleef, 2011; Wu et al., 2015, 2016;
Sommerfeld et al., 2007; Glockner et al., 2007; Galbiati and Vertova, 2008; Fiedler Harvey, 2016; Fonseca,
2018 and Fehr and Sutter, 2019.

39Central individuals in the network are shown to be particularly effective in monitoring due to their
higher ability of spreading information in the form of gossip (Ballester et al., 2006 and Banerjee et al., 2013)
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arising from contractual incompleteness in the context of socially distant groups (Breza
and Chandrashekhar, 2018; Breza et al., 2016; Chandrashekhar et al., 2018). These studies
focus on the impact of exogenously assigned monitors on cooperation in groups.

The aim of this paper is to bring the literature forward by allowing individuals to en-
dogenously elect their preferred monitor and by studying the induced cooperative behavior.
We estimate the demand for monitoring, relate it to the network structure and study its
impact on cooperation by tackling three questions. First, do individuals change their de-
mand for monitoring as a function of the social composition of the group they interact
with? Second, do monitors who are endogenously chosen spur cooperative behavior com-
pared to those assigned exogenously? Third, is the election of monitors perceived as a
signal of intra-group trust? To answer these questions, we conduct a lab in the field ex-
periment in rural Nepal and build a theoretical model supporting our experimental findings.

First, we ask whether groups with different social proximity elect different third party
institutions. In line with the literature, we offer three monitoring options, according to a
measure of social prominence. We present strong evidence that socially distant groups are
more likely than closely-knit groups to elect a high central monitor. We find that individ-
uals are 40% less likely to elect a monitor with their close peers compared to when they
are in groups with socially distant members. This supports the idea that contractual in-
completeness can be mitigated by social density, but socially distant individuals need third
party monitors to enforce social norms and increase efficiency.40

Secondly, we investigate whether the political process by which the institution is chosen
matters for cooperative behavior. Interestingly, we find that a monitor that is democrat-
ically elected has strong positive effects on cooperation compared to a randomly assigned
monitor. Previous experimental evidence in economics (Sutter et al., 2010; Tyran and
Feld, 2006; Dal Bo et al., 2010) and sociology (Grossman and Baldassarri, 2012) show
that cooperation is higher when players are given the opportunity to choose the institu-
tion rather than having an externally imposed one. We dig deeper in this dimension, and
we offer evidence that the positive impact of endogenous institutions is limited to socially
distant groups. More precisely, the magnitude of the increase in contribution ranges from
8.6 % when a socially prominent monitor is chosen to 21.9 % when no monitor is chosen.
In socially close groups, the point estimate is negative and not significant. The possible
mechanism underlying this “democracy premium” can be explained by an increased sense
of agency and control, increased sense of authority (Greif, 2006) and stronger worthiness
of authority (Zelditch, 2001).

40In line with this reasoning Glaeser et al., 2000 establish that groups with shorter social distance. In
the same spirit, experiments in the lab (Hoffman et al., 1996; Leider et al., 2009; Goeree et al., 2010) and
in the field (Etang et al., 2011) show that cooperation increases with decreasing social distance.
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Third, we present the first evidence of heterogeneous impact of asymmetric informa-
tion in different social groups. The theoretical literature of principal-agent models (Herold,
2010) shows that the proposal of a complete contract can signal distrust. The principal
may thus prefer to leave the contract incomplete rather than to signal distrust by propos-
ing a complete contract. On this basis, we explore if group members perceive the election
outcome as a signal of intra-group trust. Individuals in closely-knit groups are particularly
affected by the outcome of the vote. We find that the group interprets the outcome of the
vote as a strong signal of trust when no monitor is chosen. This entails a significant increase
in contribution by 19.7% in sparse groups. On the contrary, dense groups perceive the elec-
tion of a high central monitor as a signal of mistrust leading to a decrease in contribution
by 13.3%. This finding sheds light on how the effects of signaling are heterogeneous when
we take into account the social structure of the agents.

To answer these questions, we first conduct an intensive network survey a la Banerjee
et al., 2015. We ask questions about advice, trust, friendship and financial relationships
such as "who do you spend your free time with", "in case of an emergency, who would you
rely on" and "who do you borrow money from". Based on data from the survey, we build
an undirected social network where a connection between two people is established if any
one of them names the other. Next, we identify the person in the network with the highest
and lowest eigenvector centrality. In other words, we identify the most influential and least
influential individuals in the village. The rest of the village is divided into groups of three
with varying network distance. Groups of three are an optimal choice to study questions of
mutual trust inasmuch it is possible to maximize the behavioral contrast between groups
which can sustain high levels of cooperation and those which cannot (Jackson et al., 2012).
Players interact both in a closely knit group and in a group with socially distant individuals.
The closely knit groups are often homogeneous in terms of caste.

We refer to the closely knit group as "dense" and to the group with acquaintances as
"sparse". In formal network terms "dense" implies each individual is at most at distance 2
(average path length < 1.6) and "sparse" implies each individual is at least at distance 4
(average path length > 4). We allow individuals to either vote for no monitor, or to choose
one from two monitor candidates belonging to their village: a high central monitor (very
prominent individual) or a low central monitor (less prominent). Players play a contribution
game both with a monitor chosen by the group (endogenous treatment) and an externally
assigned monitor (exogenous treatment). The monitor does not materially punish but only
observes the contributions of each player, which would otherwise be private information.
Players have an initial endowment and need to decide between how much to contribute to
a common pot and how much to keep for themselves. Total contribution in the common
pot is augmented by 50 percent and divided equally among the three players irrespective of
initial contribution. Each individual therefore plays both in a dense and in a sparse group,
and in each group both with exogenous and endogenous monitoring institution. The order
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of all treatments is randomized.

We vary both the social composition of groups and how monitors are assigned to study
the demand for monitoring and cooperation. The rest of this paper is organized as follows:
Section 2 presents the experimental protocol and the data collection process. Section 3
describes the experiment’s results and the econometric specifications we use. In Section 4,
we build a theoretical model supporting our empirical results. We discuss the results and
conclude in Section 5.

2 Experiment

2.1 Overview: Networks and Data

We start by mapping the social network of villages, with a special focus on relations of
trust. Given the location of these villages 41, mutual trust fundamentally shapes social in-
teractions and the contribution to local public goods. As a first step, we assigned a unique
identification code to each woman in the census. We started interviewing very few indi-
viduals, who would give us names of their closest friends and we administered the network
questionnaire to those women who were nominated in the first round. This process was re-
peated iteratively until either all women were covered or no new individual was nominated
- the elicited network is "closed". This technique has the advantage to be faster than the
standard network elicitation method and simplifies considerably the issue of homonyms.
Each woman was asked at least three connections for each question. The questionnaire
consisted of a set of questions designed to elicit social networks, inspired by Banerjee et al.,
2015. These questions are meant to elicit ties of friendship and trust and span along vari-
ous dimensions of social interactions. A link between two individuals i and j is established
when either i nominates j or vice versa in any of the questions. We then aggregate and
collapse the networks obtained from different questions into one, undirected network. Once
a network is fully mapped, it is possible to visualize it and extract important statistics that
are central in our experimental design. Figure 15 in the Appendix is a snapshot of the
network of a village where we conducted the experiment.

The network we obtain is thus a good representation of the social structure of the com-
munity and it is an essential variable of our study. More precisely, we use the network
to create groups of contrasting social density for every participant and interact it with
variations along two dimensions: monitoring centrality and the political process by which
monitors are assigned, either democratically elected or exogenously given. We focus on
networks of only women due to the high emigration rate of men either to Kathmandu or
abroad, as shown by our pilot experiment conducted in the spring 2018. In the districts

41The villages are situated at 1200m above sea level in the mid hills of Nepal. They are a four hours
drive away from Kathmandu
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we worked in, social networks are often gender specific and women play a preponderant
role: they are responsible for households’ finances, for agricultural production and for their
children.

We look at how social density influences the demand for monitors and how it ultimately
affects individual contribution to public goods. Groups are formed in order to maximize the
number of participants who play in both dense groups, i.e. groups of average path length
less than 1.6, 42 and in sparse groups, i.e. with average path length higher than 4. In other
words, being in a dense group implies that the members of the group are at no more than
2 steps away from each other whereas in the sparse group they are at least 4 steps away.
The cutoffs defining dense and sparse have been carefully chosen in order to amplify the
respective contrast in trust and reputation while maximizing the number of observations.
The starker is the difference between dense and sparse groups, the more different will be
the behavioral response in the different treatments. Figure 21 in Appendix B shows the
distribution of average path length of all groups we formed. We over sampled dense groups
to make a reliable comparison with sparse ones. Players in the dense groups often belong
to the same caste and have similar characteristics. We end up with 503 women who played
in both sparse and dense groups, as defined by our thresholds. The summary statistics are
presented in Table 20. In total, we have four observations for each participant, for a total
of 2012 observations.

We choose monitors candidate with respect to their Eigenvector centrality and their as-
signment to groups can be determined by either democratic election or random exogenous
assignment. In order to neatly disentangle the different possible channels that might drive
behavior, we set up an experiment where groups of three individuals are asked to privately
vote for their preferred monitor and then play twice a standard public good game. The
experimental session is sequenced as follows: first, players are assigned to a group formed
either by their closest friends or by socially distant peers. The order of assignment to these
two group compositions is randomized. Secondly, after being assigned their groups, players
privately vote for their preferred monitor. Third, the choice of monitor is immediately
followed by a contribution game. Each individual plays 2 rounds of a public good game
within each group, once played with the elected monitor and once with a randomly picked
monitor option, where we randomize the order of the two treatments. Groups are then
reshuffled so that the same player is then placed in a different group composition (dense or
sparse) and the game unfolds again as explained above. In total, each individual plays 4
rounds in two different groups (dense and sparse).

After participants play in the experimental sessions and receive payment for their perfor-
42The dense groups would correspond to topography that is a triangle (average path=1), line (average

path=1.3)
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mance in the games, we administer a second questionnaire meant to capture caste, wealth,
religion, membership to community based organizations and a set of other individual level
characteristics. Participants are quite homogeneous in terms of wealth and networks display
high level of clustering with respect to caste.

2.2 Experimental context

Nepali villages are often too remote to be reached easily or too sparse to ask their members
to participate to group sessions in a fixed location. We decided to conduct our experi-
ments in the mid-hills of Nepal in the district of Makwanpur, which is around four hours
drive from Kathmandu. The municipalities we chose - Palung, Bajrabarahi, and Chitlang -
present an economy almost uniquely focused on agriculture and the exploitation of natural
resources. Dozens of community based organizations are active in the region and people
are generally involved in at least one, they are familiar with issues of coordination and with
the risks of free-riding. Villages are on average composed of 70 households, for an average
of 120 women per village. We covered 19 villages with more than 2000 women between
18-60 years answering our network survey. We have a census of all inhabitants living in
each village and administered the network questionnaire to every woman.

In partnership with a local research company based in Kathmandu, we hired a team of
local enumerators. All enumerators were women, in order not to add any confounding fac-
tor in the network elicitation and in the experimental sessions. In each village, women who
answered our network survey were invited via a phone call to take part in the experiment.
We invited around 75% of interviewed women in each village and, based on a measure of
(eigenvector) network centrality, we divided people into either players or monitor candi-
dates. The individuals belonging to the top and bottom 5% of the centrality distribution
were assigned the role of monitor candidates, while the others were assigned the role of
players. Among those who were assigned the role of players, we oversampled groups in the
periphery so as to avoid picking high centrality individuals in order to maximize the contrast
between dense and sparse groups. This gives more power to the information transmission
role of the monitor. As an incentive to participate, every player was given 100 Nrs (1e)
along with the possibility to obtain additional money up to 200 Rs, as a function of their
performance in the games. On average, the total gain was around 220 Rs. per individual
which is half day’s wage. Monitors were given a fixed sum of 250 Rs. for their participation.

The experiments were typically conducted early in the morning in schools close to each
village. Women, as they arrived to schools, were assigned to either sparse or dense groups
for the experiment. They were progressively sent to one of the classrooms to play the games.
Once played, they got reassigned to play again with another group with a different group
composition. The order of the dense and sparse groups was randomized. Typically, three
sessions were run in parallel in separate classrooms with one session lasting for around 15
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min. Two enumerators were in charge of each session: they read the instructions, conducted
the game and noted down the choices of participants.

2.3 Design

In our experiment, we have three treatments variables. First, group composition. Groups
can be composed of either close friends or people socially distant in the network. Second,
centrality of monitors. In our experiment, we offer three monitoring options: high central
monitors, low central monitors and no monitors. Third, the process whereby monitoring
institutions are assigned: either democratically elected by the group or exogenously im-
posed. After assigning the role of high central and low central monitors, which remains
fixed throughout the experiment, we divide the rest of the individuals into groups of three
with varying group composition, either dense or sparse. Individuals play in groups of three
in both dense and sparse treatment in a randomized order. In Figure 15, we show two
possible groups for the player circled in green. She plays both with her closest friends -
circled in red - and with individuals far in the social network circled in blue. By always
reshuffling groups in such a way that every individual plays exactly in two different groups,
we are able to extract individual fixed effects. This part of the design is of paramount im-
portance because of the intrinsically endogenous nature of networks: the network position
of player i is endogenous to her observable characteristics which are in turn affecting her
contribution. This design allows a neat disentanglement of the endogenous position in the
network from the contribution, through the extraction of fixed effects at the individual level.

At the start of each session, group players are gathered in a room where they can see
each other, but no communication is allowed. Each member of the group receives 10 to-
kens of a different color, where the value of 1 token is marked at Rs 10. Each session is
divided in two stages. In the first stage, each player privately casts a vote on her preferred
monitoring option.43 In Figure 16, step 1 represents the setting of the game. Players are
given the option to choose between high central monitor (H), a low central monitor (L)
or no monitor at all (NM). Note that this monitor is a fourth "player" that remains the
same for all groups within a village. The cost of choosing the monitor is 20 Rs.44 This
cost makes always choosing a monitor a non - dominated strategy. The cost is paid by
participants who vote to have a monitor (either high central or low central), irrespective
of the voting outcome of the group.45 The monitor is elected by a majority rule and the
result of the vote is not immediately revealed. As seen in Step 2 of Figure 16, the group
is then randomly assigned to either the endogenous treatment or the exogenous one. The

43In case of a tie, the monitor choice was determined by a random draw. Ties represent around 6% of
cases.

44In line with the public good literature, the cost of the option was around 7% of the average earnings
across all games.

45If x votes for a monitor but no monitor is elected by the group, x stills pays the cost of voting for a
monitor.
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randomization is implemented by picking one out of two balls: if the ball drawn is green,
the endogenous treatment is played first and the exogenous follows. If the ball drawn is
pink then exogenous is played first followed by endogenous. The result of voting is only
revealed just before playing the endogenous treatment. In the exogenous treatment, the
group is randomly assigned either to a high central, low central or to no monitor treatment.

In the second stage of the experiment, the group plays a public good game where each
player decides how many tokens to contribute to the public pot out of the 10. They are
informed that the money in the public pot would be increased by 50% and then divided
equally among them. As seen from Step 3 of Figure 16, once the contributions are made,
the monitor -either elected or assigned- is called into the room to see how much each player
contributed in the public pot. The monitor can distinguish the contributions belonging to
each player by the different colors of the tokens they were endowed with. Moreover, the
monitor does not have the power to impose fines and simply observes how much each player
contributed. We exploit only the informational channel whereby the players’ reputation can
be affected (e.g. gossips, reporting etc.), following the assumption that it would drive a
lot of real-life interaction in the village. We study how the fear of being reported on by
the monitor outside the lab drives the behavior of people and how it consequently affects
the demand for third party monitoring.46 To sum up, the contribution game is played
twice in the same group without receiving any feedback, once with the monitor option cho-
sen by the group (endogenous) and once randomly assigned monitoring option (exogenous).

3 Results

The hypothesis is that the individual demand for peer monitoring varies depending on the
identity of group members. In particular, we expect individuals in dense groups to not
choose a monitor and to enforce co-operation on their own in the second stage of the game.
This result would not hold for socially sparse groups where the temptation to free ride is
higher, given the lower level of reciprocal trust. Thus, socially sparse groups might have a
stronger incentive to pay the fixed cost of electing a monitor that is able to strengthen the
reputation channel and the level of intra-group trust. The presence of a monitor - even more
so for a high central one - increases the possibility of being reported on outside the lab in
case of "defection". On the other hand, we expect socially close groups to be co-operative
irrespective of the treatments.47 We also expect to find a different impact between the
endogenous and the exogenous monitors. The choice of the group is revealed only in the
endogenous treatment.

46Breza et al (2016 do not find a significant difference between information and punishment treatments)
47Socially close or distant is characterized by the average social distance (path length) in a group
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3.1 Preliminary findings and limitations

We start the analysis by looking at the individual level variation in the choice of the mon-
itor. In Table 14, the numbers along the diagonal represent the percentage of individuals
that always choose the same voting strategy irrespective of group composition. The largest
proportion being 34.95% that always chooses to have no monitor, followed by 19.68% that
always vote to have a high central monitor. The voting result shows substantial variation
in voting strategy. Looking at the aggregate demand for peer monitoring, both dense and
sparse groups vote more often to not have a monitor. Figure 17 shows that in dense groups,
around 32% of players vote for a high central monitor, while in sparse groups more than
39% of players do so. Low central monitor is seldom chosen accounting for around 13% in
both dense and sparse groups. For contribution, exogenous monitoring increases contribu-
tion only in sparse groups as seen from Table 15. We want to study how this differs when
individuals have the power to demand their own monitoring institution. To begin with,
we compare the outcomes under endogenous and exogenous institutions, clubbing all three
monitor treatments together for the later in Figure 18. ’How’ the monitoring institution
is obtained matters only for sparse groups where endogenous monitoring in blue increases
contribution compared to the exogenous one.

Before presenting the results, we want to highlight a possible limitation of the result
given the caveats in the process of network elicitation. We ask for at least three "nomina-
tions" of friends. In most interviews, women named an average of 3-4 women which may
not be fully exhaustive and may lead to networks that are much sparser than they actually
are. This could imply an overestimation of social distance, i.e. individuals are actually
socially closer than what they appear to be. It does not however represent a threat to
the validity of our results. On the contrary, it implies that the estimated effects of our
treatments represent a lower bound of the real effect.

3.2 Statistical Estimation

3.2.1 Impact of group on monitor voting: Sparse groups elect a high central monitor more
often than dense

As suggested by the preliminary results shown in Figure 17, we conduct a Mann-Whitney
test to understand whether the proportion of participants choosing a given monitor is signif-
icantly different across group compositions. We find that no monitor is chosen significantly
more often in dense groups rather than in sparse groups (p-value 0.07) and that high central
monitors are chosen more often in sparse rather than in dense groups (p-value 0.002).

In order to estimate how the demand for monitor varies depending on the group compo-
sition, we use a multi logit regression with individual and round fixed effects. Since players
vote once in a dense and once in a sparse group in a random order, we can include both
individual and round fixed effects, therefore exploiting a "within" design. The fixed effect
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multi logit model is therefore defined by the logistic probability of choice of monitor yjt,
where yjt=0: No monitor, yjt=1: Low central monitor and yjt=2: High central monitor.
We take yjt=0 as base category and can write the fixed effect logit as

Pr(yjt = 1) =
1

1 + e−(α+β1Gjt+β2Xg+ρj+νt+εjt)

Pr(yjt = 2) =
1

1 + e−(α+β2Gjt+β3Xg+ρj+νt+εjt)

where yjt is the chosen level of monitoring, Gjt: dummy for group composition equal to
1 if the treatment is for dense groups, Xg: group characteristics νt: round fixed effect and
ρj : individual fixed effects.

We present in Table 16 the results of the multinomial fixed effect regression of individual
monitor choice (voting) on the social composition of the group (dense / sparse). In the first
column, we find that dense groups are less likely to elect a high central monitor by 40%
points compared to sparse groups. In the second column, we see that this is also true when
we control for group characteristics (if the members have same caste and same education
level). More details on voting as a function of individual characteristics is presented in Ap-
pendix C. This result is in line with our hypothesis that closer groups would prefer not to
have monitoring whereas individuals in sparse groups would want a high level of monitoring.

3.2.2 Impact of different exogenous monitoring: High central monitor increases cooper-
ation relative to no monitor in sparse groups

For contribution, we start with the baseline case where monitors are assigned exoge-
nously and study the difference in contribution between sparse and dense groups. As seen
from Table 15, in sparse groups, average contributions increase significantly (p-value 0.014)
by Rs 7.448 (15.8% of the mean) in the presence of a high central monitor (H) as compared
to no monitor (NM). In dense groups, there is a Rs 4.5 increase (8.3% of the mean) but the
difference is not significant. This result is in line with the literature that suggests presence
of a central monitor increases cooperation only in sparse groups (Breza et al, 2016). Further
the cost of the monitor being 8% of the average payoff, it is optimal for sparse groups to
vote for a monitor but not dense. Taking only the exogenous monitor treatment, we run a
linear regression with fixed effects on the contribution with respect to the type of monitor
that was assigned and the group composition. It takes the following form:

cjt = α+ β1 ·Dense+ β2 ·H + β3 · L+ β4 ·H ∗Dense+ β5 · L ∗Dense+ ρj + νt + εjt

48Note that the value of 1 token is Rs 10. The regression is in terms of tokens but all the results are
expressed in terms of Rs.
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where cjt: contribution of individual j in round t, Dense: dummy equal to 1 if the group
is dense, H: dummy equal to 1 if a high central monitor is assigned, L: dummy equal to 1
if a low central monitor is assigned, ρj : individual fixed effect and νt: round fixed effects.

We are particularly interested in the coefficient β2 that shows the effect of being assigned
a high central monitor and β4 that shows the difference in the effect across dense and sparse
groups. In the first column of Table 17, the dependant variable is the monitor choice. We
see that dense groups in general contribute Rs 13.7 higher (23% of the mean) than sparse
ones. Next, contribution increases by Rs 7.25 (11% of the mean) in the presence of a High
central monitor (H). As seen from the interaction term49, the effect is starker in sparse
groups. The second column shows similar effects when controlled for group characteristics.
In both columns we control for the monitor choice of the individual.

3.2.3 Impact of endogenous v/s exogenous monitoring: Holding the monitoring institu-
tion fixed, for a given population, choosing a monitor increases cooperation only in sparse
groups

To answer the impact of "how" the monitoring institution is chosen impacts contribu-
tion, we estimate a linear fixed effect regression. In the endogenous treatment, individuals
’select’ into an institution that drives their contribution in addition to "how" the monitor is
chosen. In order to overcome this selection problem, we keep monitoring fixed and compare
groups which play both exogenous and endogenous treatment under the same monitor. Our
identification strategy is to overcome selection by comparing the same group, with the same
monitor treatment, differing only on how this monitor was obtained. Inspired by Dal bo et
al., 2010, an individual i′s action in the game may depend on the group density G ε {dense,
sparse}, elected monitor M ε {NM, H ,L} , mechanism that selected the monitor I ε {Endo,
Exo} and her type αi. The probability of cooperation is therefore determined by

Pi = f(M,G, I, αi)

We fix the group G and monitor M to determine the effect of the mechanism by which
the monitor is elected. More formally,

E(Pi|G = dense,M = NM,αi, Endo)− E(Pi|G = dense,M = NM,αi, Exo)

By doing so, we eliminate the threat of self-selection and we are able to disentangle the
effect of the exogenous vs endogenous treatments. In terms of regression, it translates into

49H x Dense being an interaction term represents [(H=1)-(H=0)|Dense]- [(H=1)-(H=0)|Sparse]
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the following fixed effect equations.

cjt = α+ β1 · (Endo | G = S,M = H) + ρj + νt + εjt

cjt = α+ β1 · (Endo | G = D,M = H) + ρj + νt + εjt

cjt = α+ β1 · (Endo | G = S,M = NM) + ρj + νt + εjt

cjt = α+ β1 · (Endo | G = D,M = NM) + ρj + νt + εjt

where cjt: contribution of individual j in round t, Endo: is a dummy variable that takes
value 1 if monitor is endogenously chosen , given group G : {D = dense, S = sparse} and
monitor choice M : {NM = No monitor,H = High central monitor}, 50 ρj : individual
fixed effect and νt: round fixed effect. We are primarily interested in the coefficient β1

that captures the effect of having an endogenous monitor as compared to being assigned
exogenously.

Figure 19 shows the average contributions for sub samples that are free from selec-
tion effect. We see that for a sparse group, contribution increases under an endogenous
monitoring setting as seen form the red bars. In particular, with endogenous no moni-
tor, contribution increases significantly (p-value 0.009) by Rs 9.1 while with a high central
monitor it increases by Rs 5 but not significantly. The change in dense groups across en-
dogenous and exogenous monitoring institutions is not significantly different. We find in
sparse groups that giving individuals opportunity to chose their own monitoring institution
leads to better outcomes than externally imposing a third party monitor.

The first column in Table 18 reports results for individuals who self-selected into high
monitoring institution in sparse groups followed by dense groups in the second column.
The next two columns report the same but for the case where groups self selected into no
monitoring. We see that a sparse group electing a high central monitor (H) endogenously
increases contribution by Rs 5 (8.6% of the mean) whereas there is no effect for the dense
group. Similarly, sparse group electing no monitor (NM) endogenously increases contribu-
tion by Rs. 9.13 (21.9% of mean) with no effect in the dense groups. This result presents
evidence to believe that there exists a sort of "endogenity premium": individuals facing
the same monitoring institution behave differently depending on whether the institution is
chosen by the group itself or imposed.

3.2.4 Impact of order endogenous/exogenous on contributions: Contributions are higher
under EndoExo for dense NM and lower for dense H

Next, we look at the effect of order of endogenous and exogenous treatment on contribu-
tion. The result of the vote is only revealed in the Endogenous case, hence if Endogenous is

50We also tried to do individual level analysis by looking at variation in monitor choice within groups.
We find that 50% of the groups vote unanimously for the same monitor option hence not much power to
study this effect.
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played first, there is a possible extra information51 that could affect contribution in both the
endogenous and exogenous treatment. We focus on No Monitor and High central monitors
because of the very few observations we have for Low central monitor. In presenting this
comparison, we plot the average contribution in treatments across monitoring condition and
group composition that vary by the order in which endogenous and exogenous treatments
were implemented. We can see in Figure 20 an evidence of a possible significant effect
of the order, especially in dense groups. The election of a high central monitor in dense
groups decreases contribution by Rs 9.7 significantly (p-value 0.09). When no monitor is
elected, contribution increases by Rs 7.1 in sparse groups and Rs 9.4 in dense groups ( p
value 0.07). We run OLS regressions controlling for individual level characteristics. The
dependant variable takes value 1 if the endogenous round is played first and 0 otherwise. We
look at average contribution across the endogenous and exogenous treatments conditional
on endogenous being played first versus if it is played second.

cjt = α+ β1 · (Order | G = S,M = H) + βi ·X + εjt

cjt = α+ β1 · (Order | G = D,M = H) + βi ·X + εjt

cjt = α+ β1 · (Order | G = S,M = NM) + βi ·X + εjt

cjt = α+ β1 · (Order | G = D,M = NM) + βi ·X + εjt

where cjt: contribution of individual j in round t, Order: is a dummy variable that takes
value 1 if endogenous treatment is played first , given group G : {D = dense, S = sparse}
and monitor choice M : {NM = No monitor,H = High central monitor}, X: individ-
ual characteristics (caste, wealth, age and education). We are primarily interested in the
coefficient β1 that captures the effect of having played an endogenous monitor round first
followed by the exogenous one.

In Table 19, we see that the effect of revealing the group’s choice is stronger in dense
groups as compared to the sparse. The average contribution decreases significantly by Rs
13.68 (13.3 % of mean) in dense groups that played endogenous first and elected a high
central monitor (H). On the other hand, when groups play endogenous first and elect no
monitor (NM), contribution increases by Rs 12.73 (19.7 % of mean) in dense groups and
Rs 7.7 (7% of mean) in sparse. We hypothesize that signalling is stronger in dense groups,
since they have a stronger prior about the altruism level in their group and are more likely
to have future interactions. We model this in the section below.

51We hypothesize that this information could act as a signal of the level of trust in the group vis à vis
each other.
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4 The model

Through our data, we observe that the density of groups; either close in the network (dense)
or far away (sparse) matters in demand for peer monitoring. Particularly, sparse groups
vote more often to have a high central monitor. Through the model, we want to show this
difference in demand for peer monitoring. Further, how the monitor is chosen matters for
cooperation. The group having the choice to choose it’s own monitor increases cooperation
when no monitor is elected and decreases cooperation otherwise. The group’s vote outcome
may act as a signal about the level of altruism and trust in the group. The outcome of
the vote being revealed only in the endogenous setting carries extra information that can
change the belief of player i about the type of player j. We want to study the possible
differences in contribution when endogenous is played first versus played second via a simple
two player model where players vary in the level of altruism.

Types

We model the contribution behavior of individuals with an altruism parameter α. We can
think of this parameter as determining the propensity of higher contribution. As people be-
come more altruistic, i.e, the value of α increases, individuals are more likely to contribute
a higher amount. Each player depending on the group can have a level of altruism αi ε
{αl, αh}, where αh > αl. We further think of the parameter α as determining the choice
of the monitor. Player i knows her own level of altruism αi and forms a prior µ0i(αj) on
the level of altruism of the other player j. Let us assume that the subjective probability of
individuals being type αh is p in dense groups and q in sparse, where p>q 52. This mimics
the fact that in dense groups, people perceive their neighbors to be more altruistic com-
pared to in a sparse group. Let di represent group composition where di ε {dense, sparse}.

The initial prior of Player i about j is then as follows:

µ0i(αj = αh) =

{
p if di = {dense}
q if di = {sparse}

(4)

Timing, Actions and Payoff

First, agents simultaneously vote for their preferred monitor mi ∈ {0, 1}, where mi=0
implies no monitor is chosen by individual i andmi=1 means i votes for having the monitor.
Once the participants cast their votes, a monitoring technology is assigned to the group
according to the following rule

52This assumption is in line with the literature on altruism where individuals contribute and cooperate
more in closely knit dense groups. See Liedler et al. (2009) and Goeree et al. (2010).
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m∗ =

{
1 if mi= mj= 1
0 if otherwise

(5)

where m∗ denotes the outcome of the vote. Second, agents make their contribution
decision ci ∈ R. The action profile of agent i is then (mi, ci). The total contribution is
increased by 50 % and divided equally among the group meaning the rate of return for the
contribution game with two players is 3

4 .
The utility of Player i is a function of both ci and cj , of the level of altruism αi and the

rate of return in the contribution game 3
4 . We assume a convex cost c2 in order to ensure

there is an interior solution. We also believe this functional form characterized by increasing
marginal cost well represents the behavioral burden of contributing. Further, in the spirit
of psychological games53, how much player i values the utility of player j depends on i′s
belief about the altruism of player j, µ0i(αj), since we believe that in this context belief
dependant motivations deeply affect player i′s actions. In this regard, we take inspiration
by Rabin (1993), who models reciprocity where players wish to act kindly (unkindly) as a
function of belief about the other’s type. The payoff of player i in the contribution game
without a monitor is

U(αi|m∗ = 0) = W − ci − c2
i +

3

4
(ci + cj) + αi · µ0i[W − cj − c2

j +
3

4
(ci + cj)] (6)

In the case where a monitor is elected, we add two terms to the above utility function:
a monitor cost mc and a reputation cost -δP (ci < θ). Voting for the monitor is costly and
i pays mc if she votes for the monitor irrespective if the monitor gets elected or not. If
elected, the monitor can impose a reputation cost on the players. We introduce a parameter
δ > 1 which represents the penalty from a contribution lower than the social norm θ
in the presence of the monitor. For the sake of exposition, we use a fixed value of δ.
However, we could incorporate varying power of the monitor depending on their centrality
by allowing δ ε {δH , δL}, where δH>δL i.e. high central monitors are more effective in
spreading information. The social norm is a stochastic parameter given that different
monitors would have a different view of what a socially acceptable norm is. It is assumed
to be uniformly distributed between [0, θ̄] where θ̄ is the highest possible contribution. It
can also be interpreted as a reference point (Kahneman and Tversky 1991) that varies with
each monitor, i.e. it hinges on the distribution of θ. The probability of one’s contribution
being higher than the norm is then simply the cumulative distribution of all contributions
which is ci

θ̄
and the probability of contributing below the acceptable social - as perceived

by the monitor - norm can thus be represented as
53For a review on psychological game refer to Dufwenberg (2008) and Attanasiy and Nage (2008).
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P (ci < θ) =

{
1− ci

θ̄
if ci < θ

0 if otherwise
(7)

The utility if a monitor is elected (m∗ = 1) is then Ui(αi|m∗ = 1)=

W−ĉi−λĉi2+
3

4
(ĉi+ĉj)−mc−δP (ĉi < θ)︸ ︷︷ ︸+αi · µ0i[W − ĉj − λĉj2 +

3

4
(ĉi + ĉj)−mc− δP (ĉj < θ]︸ ︷︷ ︸

(8)
Moreover, players are Bayesian and i updates her prior about j′s type µ0i(αj) via

Bayesian rule to µ1i(αj) depending on the outcome of the voting , m∗.

Equilibrium

We assume that the altruism parameter αi of individual i fully determines her demand for
peer monitoring. More formally, we consider an equilibrium of the form below. An (altru-
istic) player i of type αh cares very much about the utility of the other player irrespective
of j′s type. She would therefore prefer not to elect a monitor 54 in order to avoid the other
player being punished via bad reputation in case of low contribution. For a player i of
type αl, however, the cost of electing a monitor and the negative reputation effects for both
herself and j is outweighed by the increase in group contribution driven by the presence of
the monitor. Agents then contribute differently depending on their type αi, outcome of the
vote m∗ and updated belief µ1i about player j, once the outcome of the vote is revealed.
The separating equilibrium would then be

σi(αi) =

{
mi = 0 if αi = αh

mi = 1 if αi = αl
(9)

Given the equilibrium above, when αi = αl, i would always vote for a monitor and,
given the voting rule m∗ defined above, she is able to perfectly infer the voting choice of
player j. In this case, i updates her prior to µ1i(αj) = 1 if m∗ = 0 and µ1i(αj) = 0 if
m∗ = 1. On the other hand, type αh always votes for mi = 0 and no monitor is elected
- m∗ = 0 - irrespective of the vote of the other player. In this case player i cannot infer
anything about j’s type and she sticks to the prior µ1i(αj) = µ0i(αj). First, we solve the
above set of equations and calculate the value of optimal contributions across the different
scenarios. Secondly, given ci, we study when the above separating equilibrium holds true.

54Given that dense groups have higher subjective probability of being altruists, the demand of peer
monitoring should be lower than that in sparse as seen in Fig 17.
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We find that for type αl, voting for the monitor is an optimal strategy for certain values
of initial prior µ0i(αj)< p∗αl

. On the other hand, for type αh it is always a dominant strategy
to vote for no monitor. Therefore in order for there to be a separating equilibrium, it should
be the case that people have a low prior on the proportion of altruists.

Proposition 1. In the game with exogenous monitors, high-type players αh contribute
always more than low-type ones αl. Moreover, at equilibrium the contributions of both
players’ types are higher in the presence of the monitor than without,

ĉexoi > cexoi

for i = h, l

where ĉexoi indicates the optimal contribution when the contribution game is played in
presence of a monitor and cexoi . The result is simply driven by the reputation effect of the
monitor, which can entail the penalty δ in case of contributions lower than the social norm
θ.

We now study the optimal contributions in the setting with the endogenous election
of the monitor. In this case, the elected monitor serves as a signal of each other’s types.
Players are Bayesian and update their prior beliefs about the opponent’s type, knowing
their own vote in the election stage. The subjects play the game twice in random order,
once with the endogenous monitor and once with the exogenous. When they play with the
endogenously elected monitor first, they update their beliefs before the first contribution
and we assume they will contribute identical amounts in the rounds, given their constant
beliefs across rounds. On the other hand, when they play first with the exogenously assigned
monitor, the updating happens only at the second round.

Proposition 2. When the endogenous selection of monitors is allowed, the average contri-
bution across the exogenous and the endogenous selection of monitors is higher if endogenous
is played first and no monitor (m∗ = 0) is elected by the group. If the group elects a monitor
(m∗ = 1), contribution decreases if endogenous is played first only in dense group.

The election of no monitor signals that the group peers are high types αh, thus pushing
the posterior belief up to µ1i = 1. When this happens in the first round, contribution
in both rounds increases since updating of the prior happens before players choose their
optimal contribution. Surely, in this case it is higher then when the updating occurs only
in the second round. On the other hand, when a monitor is elected in the first round,
contribution decreases in both rounds. The decrease is however starker for dense groups
due to higher initial prior. Hence, this effect holds only in dense groups.

Proposition 3. Let us assume that δ is large enough and θ is small enough. Then, there
exists a value of the initial prior p∗αl

such that for p < p∗αl
, low types players αl are better

off voting for no monitor. Moreover, for 0 < p < p∗αl
, there always exists the separating

equilibrium σ, where low types αl vote for the monitor and high types αh vote for no monitor.
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We believe that the assumption of large δ is quite natural, given that in our context
formal institutions are weak, and reputation concerns drive most of the social interactions.
Similarly, the ex-ante level of cooperative behavior of these villages is modest, hence jus-
tifying the assumption of low values of θ. The mechanism underlying this proposition lies
in the fact that high type players αh always vote for no monitor, irrespective of the group
they are in. Moreover, this proposition gives us reason to believe that a story of reciprocal
altruism where players strategically vote for peer monitoring and contribute to a local pub-
lic good, well describes the voting behavior we see in the experimental data, i.e. players
vote more often for having a monitor in sparse groups (low p) rather than in dense ones.

5 Conclusion

By using original network data and a novel design, we try to understand how the varying
demand of peer monitoring depends on group density and how this in turn affects coopera-
tion. We divide the network into groups of three individuals with varying network distance,
where dense implies each individual is at most at distance 2 (average path length < 1.6)
and sparse implies each individual is at least at distance 4 (average path length > 4). To
begin with, we show that dense groups prefer to not have a monitor whereas sparse groups
choose to have a central one, reflecting variation in trust. Low central monitors are seldom
chosen. In line with previous literature, when individuals are socially close (dense), they
can sustain a higher level of cooperation without outside intervention. Dense groups con-
tribute higher than the sparse group in the contribution game.

Next, we show "how" an institution is assigned matters for cooperation. The endoge-
nous choice of monitoring increases cooperation in only sparse groups. Looking at the order
of the monitor treatment, the outcome of the vote being revealed in endogenous treatment
carries an additional information regarding individual preferences and hence, when revealed,
acts as a signal to the group. When endogenous treatment is played first and no monitor is
chosen by the group, individuals tend to contribute higher in both groups. However, when
endogenous treatment is played first and a monitor is chosen, contribution decreases only
in dense groups due to a stronger prior about the level of altruism. This is an interesting
finding that suggests monitoring should be catered to the needs of the community. It is also
in line with the argument that repeated interactions in dense groups imply higher concern
for reputation.

Given the increased popularity of community-based interventions and focus on peer
monitoring, it is important to understand the role social networks play in small scale soci-
eties. We propose here a theoretical framework followed by a simple experiment that show
that the effect of a monitor can be very different depending on the density of the network.
Our work opens avenues for further research. We would like to understand the choice of
the monitors further by presenting individuals with a panel of monitor options rather than
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just the high and low central ones.

Figures

Figure 15 Example of formation of groups

(a) 1 (b) 2

(c) 3 (d) 4 (e) 5

Figure 16 Experimental Design
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Figure 17 Percentage of individuals voting in Sparse and Dense groups

Figure 18 Average contribution endogenous v/s exogenous monitors with selection
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Figure 19 Contribution with endogenous v/s exogenous monitors without selection

Note: In the bar graph, y-axis represents group composition and x-axis represents average
contribution. We focus on a sub sample where the same group plays under the same
monitoring condition both exogenously and endogenously. The blue bar represents no
monitor being assigned exogenously as compared to the red bar where monitor is assigned
endogenously. The green bar represents exogenously assigned high central monitor as
compared to the yellow bar.
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Figure 20 Order of endogenous and exogenous monitors

Note: In the bar graph, y-axis represents group composition and x-axis represents average
contribution. We focus on a sub sample where the same group plays under the same
monitoring condition both exogenously and endogenously. The blue bar represents no
monitor being assigned exogenously as compared to the red bar where monitor is assigned
endogenously. The green bar represents exogenously assigned high central monitor as
compared to the yellow bar.

Tables

Dense group

No monitor Low central High central

Sparse group

No monitor 34.95% 4.57% 9.34%

Low central 5.17% 4.37% 2.98%

High central 14.71% 4.17% 19.68%

Table 14 Variation in voting within individual across different groups
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NM L H
DENSE 5.39 5.71 5.84
SPARSE 4.67 4.76 5.41
Notes: Dense group contribute more than the sparse ones. In the presence
of a high central monitor, contribution increases significantly in sparse
groups.

Table 15 Average contribution in the exogenous treatment

Monitor choice Monitor choice
Low central
Dense -0.062 0.062

(0.24) (0.20)

High central
Dense -0.407*** -0.466**

(0.18) (0.20)
N 503 459
Group characteristics No Yes
* p<0.10, ** p<0.05, *** p<0.01
Notes: No monitor is the base outcome. Monitor choice refers to the
individual choice out of: No monitor, High central monitor and Low
central monitor. Elected monitor is choice at the level of the group. Dense
is a dummy variable that takes value 1 if the group is dense (average path
length <2) and 0 otherwise. We control for individual and round fixed
effects.

Table 16 Multilogit regression on monitor choice
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contribution contribution
Dense 1.407*** 1.614***

(0.31) (0.33)
H 0.760** 0.939**

(0.36) (0.38)
H × Dense -0.933** -1.088**

(0.43) (0.44)
L 0.646* 0.748*

(0.38) (0.39)
L × Dense -0.972** -1.170***

(0.42) (0.45)
N 503 459
Group characteristics No Yes
* p<0.10, ** p<0.05, *** p<0.01
Notes: Dense is a dummy variable that takes value 1 if the group is dense
(average path length <2) and 0 otherwise. H is a dummy variable which
is 1 if a High central monitor is elected and L is a dummy variable which
is 1 if a Low central monitor is elected. We control for individual and
round fixed effects along with individual choice.

Table 17 Fixed effect regression on average contribution under exogenous monitors

Contribution
Sparse(H) Dense(H) Sparse(NM) Dense(NM)

Endogenous 0.50** -0.377 0.913*** -0.111
(0.24) (0.25) (0.22) (0.20)

N 112 106 184 144
* p<0.10, ** p<0.05, *** p<0.01
Notes: Contribution is the amount given by individuals under each sub
group. Sparse (H) refers to sparse groups (average path length > 4) who
played both endogenous and exogenous treatment under a High central
monitor (H). Dense NM refers to dense groups (average path length < 2)
who played both endogenous and exogenous treatment under no monitor.
Endogenous is a dummy that takes value 1 if contribution was made with
choice of the group. We control for individual and round fixed effects.

Table 18 Endogenous v/s Exogenous Contribution Regression FE
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Contribution
Sparse(H) Dense(H) Sparse(NM) Dense(NM)

Order 0.281 -1.368** 0.770* 1.273**
(0.58) (0.59) (0.42) (0.64)

N 92 94 158 120
* p<0.10, ** p<0.05, *** p<0.01
Notes: Contribution is the amount given by individuals under each sub
group. Sparse (H) refers to sparse groups (average path length > 4) who
played both endogenous and exogenous treatment under a High central
monitor (H). Dense NM refers to dense groups (average path length <
2) who played both endogenous and exogenous treatment under no mon-
itor. Order is a dummy that takes value 1 if endogenous treatment was
played first. We control for individual characteristics and have round
fixed effects.

Table 19 Effect of order on Contribution

6 Appendix

Appendix A Important clarification
The text in italic is not meant to be read aloud to experiment participants. It has the

explanation of what experimenters should do. The remaining text that is not in italics is
meant to be read aloud to experiment participants.

Experiment
Divide the research team into two groups: team A and team B. As participants enter the

venue, team A must welcome them and locate their ID number based on their name from
the individual identification list. The research team must then provide the participants with
the consent forms, read the forms aloud, explain to them the contents of the forms and that
the participants are free to leave at their discretion, answer any questions participants may
have, and obtain their consent. [Go to Consent Form]

Then, team B should be ready to enter data on contributions.

Experiment begins
Thanks for coming today! We are researchers from Rooster Logic. You are participat-

ing in a study on daily decision-making. Today you will play a series of short games. The
information gathered here will be confidential and used for research purposes only.

Overview
Today, we will ask you to play a game with two different groups of people for two rounds
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each. You will randomly be placed in groups of three for the game, whose identity will be
known. In each game, you and your group members will make some decisions. The result
of these decisions will determine how much money you will earn today.

The games will represent situations and decisions you make every day in your life. You
earn some money, you keep some money for yourself, you might give some money to your
neighbors or friend, use the money to fund a common project etc.

Explanation of payment
Let us now discuss how you will make money today. First, you will receive 100 Rs. for

simply participating in our games. Second, you will make money from the decisions made
during the game.

You will play the same game with two different groups. In the beginning of each game,
you will get some income in the form of tokens in a bag we call an “INCOME POT”. The
game is easy and all that you need to do is decide how many tokens you want to keep
for yourself and how many tokens you want to contribute to the “PUBLIC POT“. The
total amount collected in the “PUBLIC POT“ will be increased in value by 50%. In both
games, the experimenter will collect the tokens that you want to contribute in two different
“PUBLIC POT”.

At the end of the experiment, we will pick one “PUBLIC POT” out of the 4 and the total
amount with the additional 50% increase will be equally divided among the four players
in your corresponding group. You will receive equal share, irrespective of how much you
put in the ‘PUBLIC POT’, Respectively, the tokens you decided to keep for yourself in the
“INCOME POT “corresponding to that game will be yours.

Demonstrate: The “experimenter” should explain that they will be playing four rounds
during the day with two different groups of people. Please show them the graphical image
and explain how the contribution game works and how they would earn.

See then that the decisions you make in all rounds count but you will only be paid the
amount in one randomly chosen game. Before I explain the game you will play today in
detail, are there any questions?

Answer any questions that they may have.

Explanation of the game
The game I will explain to you is a very simple one. In this game, you will be matched

randomly with 3 more people who you will interact with. You are not allowed to talk to
each other throughout this game. At the beginning of the game, you and your partners will
get some money that you can either keep for yourself or contribute to a common pot.

There are two stages in this game: First you will be given the choice to elect a monitor
to oversee the contribution game that we just briefly explained. The monitor vote will be
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followed by the contribution task. Let me explain in detail what the contribution task is.
At the beginning of each game, each of you will be given an initial income of Rs 100.

All earnings during the games will be represented by tokens, each with a value of Rs 10.
Then, each of you will be provided with 10 tokens that are worth Rs 100 in total. This cup
will be known as “INCOME POT”.

Demonstrate procedure, the objective you should have in mind is that individuals acquire
a sense of the physicality of the game.

Now, we will explain how you can use your income in the game. You can either keep the
tokens for yourself in the ‘INCOME POT’ or you can contribute to the ‘PUBLIC POT’.
The money that you decided to keep in the ‘INCOME POT’ will be yours. The tokens that
you will put in the ‘PUBLIC POT’ will be added to the tokens that rest of your group put
in the ‘PUBLIC POT’. The total amount contributed by the group will then increase in
value by 50%.

The amount you contribute to the ‘PUBLIC POT’ will not be revealed to the rest of
the members of your group. To contribute to the ‘PUBLIC POT’, you will give the number
of tokens you want to contribute to the experimenter in the ‘PUBLIC POT’. Remember
that 1 token is worth 10 Rs.

Demonstrate the procedure via the chart again. Explain to them that 2 tokens= 20 Rs

In the first stage, you will be given a chance to elect a monitor to oversee this contri-
bution task. The monitor will observe the amount contributed by each individual to the
‘PUBLIC POT’ which is otherwise not known. In order to choose a monitor, you will put
a tick next to one of the two choices: either having a monitor or not having a monitor. If
you decided to have a monitor by putting a tick on the square, you will choose the name of
the person you want to elect in the same sheet. If you decide to vote for having a monitor,
you will be charged 10 Rs from the money you have been given for participation in the game.

Demonstrate the voting sheet to participants.

We will consider the choices of everyone in your group. The option that gets the highest
number of votes will be chosen. Now, to see whether the majority choice will be implemented
or an external option will be randomly assigned, we will pick a ball from this box without
looking. In the box which we will call the ‘CHOICE BOX’.

We have two balls, 1 Pink and the other Green. We will pick a ball from the box, if a
green ball is chosen, then the option chosen by the group will be implemented. If a pink
ball is chosen instead, we will randomly assign one of the 3 options to your group.

Demonstrate the voting procedure to the participants with four enumerators. Make sure
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they understand the use of the ‘CHOICE BOX’

Do we have any questions at this point? Have you understood the two stages of the
game? Now, we will demonstrate the complete game.

Five members of the team of experimenters should do the demonstration. Four of them
should take the role contributors. The fifth person should represent himself and we will refer
to him/her as the “experimenter.”

Do you have any questions?
Now, we will practice the game. Note that this will only be practice rounds and that

you will not actually play with your actual partner. You will play the actual games with
your actual partners after we explain the contribution game, practice them and we answer
any question you might have about the games.

Participants play three rounds of the game and information is recorded exactly as if the
game was actually being played.

Appendix B

This is the distribution of average path length in the 1006 groups
we formed. Average path length is defined as the average num-
ber of steps along the shortest paths for all possible pairs of the
group. We over sampled closely knit groups with average path
length <2 (dense). Sparse group is defined as groups with aver-
age path length >4.

Figure 21 Distribution of average path length across groups
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Mean Std.dev N

Individual Characteristics
age 35.8 11.43 503
education 3.06 3.85 503
no, of links 11.38 4.46 503
centrality 0.052 0.071 503
wealth index -0.253 1.503 503

Group Characteristics
Same caste 0.74 0.438 503
Same education 0.3801 0.485 503

Table 20 Summary statistics of the participants

Appendix C: Monitor choice

It shows the variation in individual choice within a group. NM:
no monitor being chosen, L: low central monitor and H: high
central monitor is chosen. In most groups, all three members
vote for NM followed by all three group members voting for H .

Figure 22 Variation in individual choice within a group

90



Monitor
Dense Sparse

Age -0.0004 -0.003*
(0.002) (0.001)

Caste 0.021 0.090***
(0.02) (0.02)

Education -0.030** -0.052***
(0.01) (0.01)

Wealth 0.014 0.050***
(0.01) (0.01)

Favor return strangers 0.002 -0.048***
(0.01) (0.01)

Help friends -0.009 0.038***
(0.01) (0.01)

Centrality 0.181 0.566**
(0.30) (0.29)

Distance to H -0.001 0.032***
(0.01) (0.01)

Distance to L 0.005 0.010*
(0.01) (0.01)

N 842 842
* p<0.10, ** p<0.05, *** p<0.01
Notes:Monitor is a dummy that takes value 0 if no monitor is elected and
1 if either a high or low monitor is elected. The first column (Dense) re-
gresses individual characteristics with outcome of the vote and the second
column does the same but for sparse groups.

Table 21 OLS regression for monitor choice behavior

Appendix D: Model
Let us first consider the exogenous case with no signalling. Since the monitoring tech-

nology is randomly assigned and not chosen by the group, there is no update of the prior
µ0i.

For type αh

U(αi = αh, ·,m∗ = 1) = p · U(ĉh
exo, ĉh

exo, αh, αh) + (1− p) · U(ĉh
exo, ĉl

exo, αh, αl)

U(αi = αh, ·,m∗ = 0) = p · U(ch
exo, cexoh , αh, αh) + (1− p) · U(ch

exo, cexol , αh, αl)

For type αl

U(αi = αl, ·,m∗ = 0) = p · U(cl
exo, cexoh , αl, αh) + (1− p) · U(ĉl

exo, ĉl
exo, αl, αl)

U(αi = αl, ·,m∗ = 1) = p · U(cl
exo, cexoh , αl, αh) + (1− p) · U(ĉl

exo, ĉl
exo, αl, αl)

where ĉexoi denotes the contribution of player i when there is the monitor and cexoi when
there is no monitor.
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Solving for each contribution level cexol , cexoh , ĉlexo, ĉhexo we get for the exogenous
assignment of monitoring technology,

ĉl
exo =

3αlp− 1

8
+

δ

2θ
cexol =

3αlp− 1

8

ĉh
exo =

3αhp− 1

8
+

δ

2θ
cexoh =

3αhp− 1

8

In the endogenous case we have to take into account the election rule and now the
monitor outcome (m∗) becomes a signal according to which players update their belief
about player j’s type. We show that in both dense and sparse groups, average contribution
in two rounds is higher if endogenous is played first and no monitor (m∗ = 0) is elected by
the group. In the event of a monitor (m∗ = 1) being elected by the group, contribution
decreases significantly only in dense groups. Given the updated priors, we can write the
utility function for type αh

U(αi = αh, ·,m∗ = 1) = U(ĉh
end, ˆcendl , αh, αl)

U(αi = αh, ·,m∗ = 0) = p · U(cendh , cendh , αh, αh) + (1− p) · U(cendh , cendl , αh, αl)

For type αl

U(αi = αl, ·,m∗ = 0) = U(cendl , cendh , αl, αh)

U(αi = αl, ·,m∗ = 1) = U( ˆcendl , ˆcendl , αl, αl)

Solving for each contribution level cendl , cendh , ĉlend, ĉhend we get,

ˆcendl = −1

8
+

δ

2θ
cendl =

3αl − 1

8

ĉh
end = −1

8
+

δ

2θ
cendh =

3αhp− 1

8

To establish the separating equilibrium,

For type: αi= αl

To show that voting for a monitor is optimal we calculate ex-ante utility of player i using
prior beliefs via ,

U(αi = αl|mi = 1) = p · U(αl, αh, cl, ch) + (1− p) · U(αl, αl, ĉl, ĉl)

U(αi = αl|mi = 0) = p · U(αl, αh, cl, ch) + (1− p) · U(αl, αl, cl, cl)

U(αi = αl|mi = 1)− U(αi = αl|mi = 0) = (1− p) · {U(αl, αl, ĉl, ĉl)− U(αl, αl, cl, cl)} − p ·mc
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There exists a p∗αl
st. p < p∗αl

U(αi = αl|mi = 1)− U(αi = αl|mi = 0) is positive.

Figure 23 Difference in utility between voting for a monitor or not U(mi = 1)−U(mi = 0)

For type: αi= αh

U(αi = αh|mi = 0) = p · U(αh, αh, ch, ch) + (1− p) · U(αh, αl, ch, cl)

U(αi = αh|mi = 1) = p · U(αh, αh, ch, ch) + (1− p) · U(αl, αl, ĉh, ĉl)

U(αi = αh|mi = 1)− U(αi = αh|mi = 0) = (1− p) · {U(αh, αl, ĉh, ĉl)− U(αh, αl, ch, cl)} − p ·mc

In calculating the difference, we find that U(αh|mi = 1) − U(αh|mi = 0)<0, therefore
a high type would always vote for no monitor.

Combining the two results above, there exists an interval of p where type αl would
choose a monitor whereas type αh would choose no monitor. Therefore there exists a sep-
arating equilibrium with p st. 0 < p < p∗αl

where the above equilibrium holds true. If
p > p∗αl

then there is no separating equilibrium and both types vote for no monitor.

Appendix E: Model extension with three agents
We expand the two agent model to three agents for it to be more representative of the

interaction. Let us first consider the exogenous case with no signalling. Since the monitoring
technology is randomly assigned and not chosen by the group, there is no update of the
prior µ0i. The voting rule m∗ is slightly different with no tie possible.

For type αh

U(m∗ = 1) = p(1− p) · [U(ĉh
exo, ĉh

exo, ĉl
exo) + U(ĉh

exo, ĉl
exo, ĉh

exo)]+

p2 · [U(ĉh
exo, ĉh

exo, ĉh
exo) + U(ĉh

exo, ĉl
exo, ĉl

exo)]

U(m∗ = 0) = p(1− p) · [U(ĉh
exo, ĉh

exo, ĉl
exo) + U(ĉh

exo, ĉl
exo, ĉh

exo)]+

p2 · [U(ĉh
exo, ĉh

exo, ĉh
exo) + U(ĉh

exo, ĉl
exo, ĉl

exo)]
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For type αl

U(m∗ = 1) = p(1− p) · [U(ĉl
exo, ĉh

exo, ĉl
exo) + U(ĉl

exo, ĉl
exo, ĉh

exo)]+

p2 · [U(ĉl
exo, ĉh

exo, ĉh
exo) + U(ĉl

exo, ĉl
exo, ĉl

exo)]

U(m∗ = 0) = p(1− p) · [U(ĉl
exo, ĉh

exo, ĉl
exo) + U(ĉl

exo, ĉl
exo, ĉl

exo)]+

p2 · [U(ĉl
exo, ĉh

exo, ĉh
exo) + U(ĉl

exo, ĉl
exo, ĉl

exo)]

where ĉexoi denotes the contribution of player i when there is the monitor and cexoi when
there is no monitor. Solving for each contribution level cexol , cexoh , ĉlexo, ĉhexo we get for the
exogenous assignment of monitoring technology,

ĉl
exo =

2αlp− 1

4
+

δ

2θ
cexol =

2αlp− 1

4

ĉh
exo =

2αhp− 1

4
+

δ

2θ
cexoh =

2αhp− 1

4

Given the calculated level of contribution under the exogenous monitor, we reiterate
Proposition 1 where

ĉexoi > cexoi

for i = h, l
In the endogenous case we have to take into account the election rule and now the

monitor outcome (m∗) becomes a signal according to which players update their belief
about player j’s type. We show in Proposition 2 that in both dense and sparse groups,
average contribution in two rounds is higher if endogenous is played first and no monitor
(m∗ = 0) is elected by the group. In the event of a monitor (m∗ = 1) being elected by the
group, contribution decreases more in dense groups for a small p, where p < 2

3 . Given the
updated priors, we can write the utility function for type αh

U(αi = αh, ·,m∗ = 1) = U(ĉh
end, ˆcendl , cendl )

U(αi = αh, ·,m∗ = 0) = p(1− p)[U(ch
end, cendh , cl

end) + U(ch
end, cendl , ch

end)] + p2U(ch
end, cendh , ch

end)

For type αl

U(αi = αl, ·,m∗ = 0) = U(ĉl
end, ĉh

end, ĉh
end)

U(αi = αh, ·,m∗ = 0) = p(1− p)[U(cl
end, cendh , cl

end) + U(ch
end, cendl , ch

end)] + p2U(cl
end, cendl , cl

end)

Solving for each contribution level cendl , cendh , ĉlend, ĉhend we get,
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ˆcendl =
4αl − 3

12
+

δ

2θ
cendl =

2αl − 1

4

ĉh
end = −1

4
+

δ

2θ
cendh =

4αh − 3

12

To establish the separating equilibrium,

For type: αi= αl

To show that voting for a monitor is optimal we calculate ex-ante utility of player i using
prior beliefs via ,

U(mi = 1) = p(1− p) · [U(ĉl
exo, ĉh

exo, ĉl
exo) + U(ĉl

exo, ĉl
exo, ĉh

exo)]+

p2 · [U(cl
exo, ch

exo, ch
exo) + U(ĉl

exo, ĉl
exo, ĉl

exo)]

U(mi = 0) = p(1− p) · [U(cl
exo, ch

exo, cl
exo) + U(cl

exo, cl
exo, ch

exo)]+

p2 · [U(cl
exo, ch

exo, ch
exo) + U(ĉl

exo, ĉl
exo, ĉl

exo)]

There exists a p∗αl
st. p < p∗αl

U(αi = αl|mi = 1)− U(αi = αl|mi = 0) is positive.

For type: αi= αh

U(mi = 1) = p(1− p) · [U(ĉh
exo, ĉh

exo, ĉl
exo) + U(ĉh

exo, ĉl
exo, ĉh

exo)]+

p2 · [U(ch
exo, ch

exo, ch
exo) + U(ĉh

exo, ĉl
exo, ĉl

exo)]

U(mi = 0) = p(1− p) · [U(ch
exo, ch

exo, cl
exo) + U(ch

exo, cl
exo, ch

exo)]+

p2 · [U(ch
exo, ch

exo, ch
exo) + U(ĉh

exo, ĉl
exo, ĉl

exo)]

In calculating the difference, we find that U(αh|mi = 1) − U(αh|mi = 0)<0, therefore
a high type would always vote for no monitor.

Combining the two results above, there exists an interval of p where type αl would choose
a monitor whereas type αh would choose no monitor. Therefore there exists a separating
equilibrium with p st. 0 < p < p∗αl

where the above equilibrium holds true. If p > p∗αl

then there is no separating equilibrium and both types vote for no monitor.
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5 Summary

This thesis combines experiments and theoretical models with data analysis to answer ques-
tions on the role of social network and aggregated information. Chapter 1 studies a multi-
state binary choice experiment in which in each state, one alternative has well understood
consequences whereas the other alternative has unknown consequences. Subjects repeat-
edly receive feedback from past choices about the consequences of unfamiliar alter-natives
but this feedback is aggregated over states. Varying the payoffs attached to the various al-
ternatives in various states allows us to test whether unfamiliar alternatives are discounted
and whether subjects’ use of feedback is better explained by similarity-based reinforcement
learning models (in the spirit of the valuation equilibrium, Jehiel and Samet2007) or by
some variant of Bayesian learning model. Our experimental data suggest that there is no
discount attached to the unfamiliar alter-natives and that similarity-based reinforcement
learning models have abetter explanatory power than their Bayesian counterparts.

Chapter 2 studies a natural follow up to the question to understand how these findings
would change in the face of the feedback being individual specific in the spirit of learning
by doing. The follow up experiment allows subject to experiment and generate individual
level feedback unlike the endogenous group feedback in the original one. Our experimental
data suggest that there is not much difference in learning and the choice in the proportion
of Bayesian learners.

Chapter 3 studies the demand for monitoring and its effectiveness across different group
compositions. In developing countries where formal institutions are often weak or non-
existent, the community is responsible to enforce local agreements. Peer monitoring rep-
resents a natural mechanism for the enforcement of social norms and local agreements in
such a setting. In this paper we collect original network data in 19 villages in rural Nepal
and conduct an experiment to study who is elected as a monitor in a public good game.
Individuals play in groups of three, both with their close friends and with people socially
distant in the network. They receive the opportunity to anonymously choose their preferred
"institution". We combine a theoretical model and a unique lab-in-the-field experiment to
show that closely knit groups are significantly more likely to not choose any monitor, while
sparse groups tend to prefer a monitor who is highly central in their network. Low central
monitors are seldom chosen. Endogenous election of the high central monitor ensures higher
cooperation compared to an exogenous assignment, but only in sparse groups.

Field: Economics

Key words: Social network, Peer monitoring, Experiment, Public good game, Learning,
Bounded Rationality, Valuation equilibrium
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