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RÉSUMÉ

Ce que l’on appelle Industrie 4.0 (d’après la quatrième révolution industrielle), Industrie du futur
ou Smart Factory est un changement de paradigme qui s’opère dans les outils de production
industrielle : leur informatisation. L’Industrie 4.0 correspond à une automatisation des proces-
sus industriels à travers des échanges de données toujours plus volumineux, et l’intégration
de nouvelles technologies telles que l’infonuagique ou l’internet des objets. Une conséquence
de cela est la généralisation de systèmes cyber-physiques pour contrôler et superviser ces
processus.

De nombreux avantages accompagnent ce nouveau paradigme, mais également de nou-
veaux défis à traiter. En ce qui concerne la sécurité en particulier, les changement sont consé-
quents.

Historiquement, les systèmes industriels étaient conçus pour être relativement fermés du
monde extérieur. On pourrait dire qu’une simple cloture et un gardien étaient nécessaires pour
en assurer la sécurité. En effet, un attaquant devait avoir un accès physique au système pour
pouvoir l’endommager. Les différents composants des systèmes industriels ont donc été conçu
avec le postulat que cette protection physique était déployée et ils n’embarquaient aucune
forme de sécurité.

Les systèmes cyber-physiques, cependant, outrepassent le besoin d’être physiquement
présent dans le système pour pouvoir l’influencer. Un attaquant peut donc utiliser les mêmes
canaux que le système de contrôle pour accéder au système et l’attaquer. Des attaques sur
des systèmes cyber-physiques ont déjà eu lieu par le passé comme l’attaque STUXNET sur
le programme nucléaire iranien [27, 69, 1] en 2010 ou l’attaque sur le système de distribution
d’électricité ukrainien en 2015 [68, 28].

Ce doctorat a été réalisé dans le cadre de la chaire Cyber-CNI, Cybersécurité des Infra-
structures Nationales Critiques. Cette chaire a pour but d’améliorer la sécurité des systèmes
critiques. Les travaux présentés dans cette thèse se concentrent sur le diagnostic d’évène-
ments de sûreté et de sécurité. Autrement dit lorsque des incidents, qui peuvent être de nature
accidentelle ou malveillante, surviennent dans un système industriel, nous cherchons à fournir
des informations précises et pertinentes afin qu’un décisionnaire puisse adopter la réaction
la plus appropriée. En raison de la nature de l’Industrie 4.0, et que les changements dans
l’environnement défini par les systèmes cyber-physiques, diagnostiquer des incidents pose de
nouvelles questions, en grande partie à cause des interactions entre sûreté et sécurité, qui
sont bien plus importantes qu’auparavant.
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D’après Piètre-Cambacédès et Bouissou [95], la sûreté et la sécurité ont quatre types d’in-
terdépendances : dépendance conditionnelle, renforcement, antagonisme et indépendance.
La sûreté et la sécurité sont conditionnellement dépendantes lorsque l’une est un prérequis
pour l’autre. Le renforcement a lieu lorsqu’elles sont chacune renforcé par le même procédé.
L’antagonisme survient lorsque l’augmentation de l’une cause une diminution de l’autre. L’indé-
pendance correspond à une non affectation de l’une par une modification de l’autre.

Un example simple montrant comment sûreté et sécurité peuvent entrer en conflit est
l’exemple de la sortie de secours. Si le feu se déclenche dans un bâtiment, il faut que la sortie
de secours soit ouverte afin que les gens puisse se mettre à l’abri. Néanmoins, un terroriste
pourrait tirer parti de ce mécanisme en déclenchant lui-même une alarme à incendie afin de
déverrouiller les sorties de secours et entrer dans le bâtiment. Dans cette situation, la sûreté et
la sécurité sont chacune capable de gérer la situation mais arrivent à une conclusion opposée
qui peut, dans les deux cas, mettre en péril la sécurité des personnes à l’intérieur du bâtiment.
L’objectif dans cette situation est de fournir des informations qui permettent de choisir la ré-
ponse la plus appropriée lorsqu’un incident implique à la fois sûreté et sécurité. Dans le cas de
la sortie de secours, une question à laquelle le diagnostic doit répondre est « l’alarme est-elle
légitime ou bien a-t-elle été déclenchée par un attaquant? ».

Historiquement, les modèles de sûreté et de sécurité sont monolithiques : ils ne considère
que soit la sécurité, soit la sûreté mais pas les deux à la fois. C’est une conséquence de l’ab-
sence de besoin de sécurité dans les équipements industriels évoquée lors des paragraphes
précédents. Cependant, en raison de la désormais interaction entre la sûreté et la sécurité, il
est bien évidemment nécessaire d’utiliser les modèles capables de les considérer en même
temps.

Mélanger sûreté et sécurité n’est pas un problème trivial. Les objectifs sont différents et les
techniques mis en oeuvre pour les atteindre exploitent des spécificités que la sûreté et la sécu-
rité ne partagent pas nécessairement. Ces comportements peuvent aisément être représentés
par des modèles dédiés mais cela rend toute généralisation presque impossible. Gibaudo et al.
[50] citent par exemple que l’ordre dans lequel des évènements surviennent est fondamental en
sécurité alors qu’il peut généralement être ignoré en sûreté de fonctionnement. Gibaudo et al.
[50] notent également que les modèles de sûreté étant structurellement proches du système,
ils ne varient que peu lors de modifications mineures de celui-ci contrairement aux modèles de
sécurité qui nécessitent des révisions importantes après le moindre changement. La littérature
a parfois tenté d’utiliser des combinaisons de modèles de sûreté et de sécurité [47, 85]. De
telles approches ont été rendues possibles au prix de restrictions quant aux interactions entre
sûreté et sécurité [47], ou bien en utilisant des modèles très abstraits fournissant peut d’infor-
mations [85]. Décrire un modèle suffisamment générique pour pouvoir représenter à la fois la
sûreté et la sécurité, tout en fournissant assez d’informations pour réaliser le diagnostic est le
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défi relevé dans cette thèse.

La définition du diagnostic est indissociable du contexte dans lequel elle est utilisé. C’est
pourquoi les définitions et les objectifs du diagnostics sont non seulement différents entre la
sûreté et la sécurité, mais de profondes divergences peuvent également apparaitre entre deux
modèles de sûreté ou de sécurité. C’est pourquoi il est nécessaire de définir précisément ce
qu’est le diagnostic dans un contexte où sûreté et sécurité sont mélangés. Nous proposons
la définitions suivante : le diagnostic dans un contexte de sûreté-sécurité est la processus
de déduire le mécanisme le plus probable ayant causé une condition observée, ainsi qu’en
identifier les conséquences. Cette définition nous permet d’identifier un ensemble de fonctions
que doivent réaliser un modèle de diagnostic : de la détection d’incident, de la corrélation
d’incident, de l’explication, de l’évaluation de risque, de l’évaluation de vraisemblance, de la
prise en compte de contremesures et une utilisation en direct.

Il n’existe que très peu de modèles combinant sûreté et sécurité et aucun n’est dédié au
diagnostic. Par conséquent, l’état de l’art présenté dans cette thèse ne se concentrent pas sur
la finalité des modèles mais sur les informations qu’ils sont capables de fournir et des fonctions
de diagnostic qu’ils peuvent assumer. L’objectif était à la fois de définir une taxonomie pour aider
à situer de nouveaux modèles, ainsi que pour identifier des modèles existant pouvant servir de
base à un modèle de diagnostic. Nous avons identifié LAMBDA/CRIM comme particulièrement
intéressant pour notre étude.

LAMBDA [36] est un langage permettant de décrire des attaques. CRIM [35, 34], quant à
lui, est un moteur de corrélation utilisant des modèles LAMBDA pour en obtenir des scéna-
rios d’attaque complet. LAMBDA/CRIM fait partie des modèles de dépendances : ce sont des
modèles qui expriment les dépendances entre les évènements en décrivant les conditions né-
cessaire pour qu’ils puissent survenir ainsi que leurs conséquences lorsqu’ils sont réalisés. Un
intérêt de LAMBDA/CRIM est qu’il permet de décrire des évènements dits atomiques, c’est à
dire qui ne peuvent être raffinés en deux évènements, aisément descriptibles par des experts
en sécurité, puis laisser le moteur de corrélation reconstruire les scénarios en exploitant les
conditions et conséquences décrites en LAMBDA. Travailler sur des évènements atomiques
permet de s’affranchir de la difficulté de considérer à la fois sûreté et sécurité : les experts
de sûreté et de sécurité peuvent indépendamment modéliser leurs évènements respectifs et
laissent le moteur de corrélation réaliser l’intégration. Il a été nécessaire d’adapter LAMBDA
pour y intégrer des évènements de sécurité mais le principe général décrit dans ce paragraphe
reste le même.

LAMBDA/CRIM ne permettent pas d’obtenir des métriques importantes pour le diagnostic
telles que le temps moyen avant la réalisation d’un évènement ou sa probabilité de réalisa-
tion après un certain temps. Pour cela, il a été nécessaire d’ajouter une couche probabiliste à
LAMBDA/CRIM, ce qui a aboutit à la création de PROS2E. PROS2E associe à chaque évène-
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ment une variable aléatoire représentant le temps nécessaire pour que l’évènement ait lieu. En
utilisant des formules probabilistes décrites et prouvées dans cette thèse, il devient possible
d’obtenir, à partir des variables aléatoires de chaque évènement atomique, celle associée au
temps de réalisation d’un scénario complet. Cela permet donc de calculer toutes les métriques
temporelles ou probabilistes nécessaires à la réalisation du diagnostic. PROS2E est ensuite
amélioré en lui rajoutant la capacité de considérer des contremesures, puis en améliorant ses
capacités de modélisation temporelles et séquentielles. Ces capacités sont illustrées sur des
scénarios de diagnostic tout au long de la thèse.

En plus d’avoir produit un modèle d’évènements novateur proposant une méthode inno-
vante pour prendre en compte les probabilités temporelles, cette thèse a abouti à la publication
de deux articles de conférences sans compter un autre article de conférence et un article de
journal en soumission.
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The work presented in this thesis addresses the problem of diagnosis in industrial systems.
We describe a framework to represent incidents that can happen in complex systems, how they
influence each other to lead to undesired events, and adjoin it with a probabilistic model. This
allows us to obtain various metrics that we use to provide diagnosis of ongoing incidents. We
illustrate this by showcasing the use of our framework on various examples and use cases.

1.1 The new paradigm of the Industry 4.0

The Industry 4.0 paradigm can have many names such as Industry of the Future, Smart Fac-
tories or Industry 4.0 (as in the Fourth Industrial Revolution) but it corresponds to the same
principle: the computerization of manufacturing. Industry 4.0 leads to increasingly automated
industrial processes through ever more data exchange and the integration of new types of tech-
nologies such as the cloud computing or the internet of things. This results in the generalization
of complex cyber-physical systems to control and monitor manufacturing processes.

This shift in the way industrial systems are designed and handled brings several benefits
but is also accompanied with new issues that need to be addressed. Concerning security,
specifically, the changes are substantial.

Industrial systems were initially designed to be relatively sealed from the outside world.
One could say that the security was ensured by building a fence around the factory and hiring
a guard at the gate. This is overstating the point but not too far off the truth though. Indeed,
a physical access to the industrial system was once necessary for an attacker to provoque
any perturbation to it. Industrial equipment such as Programmable Logical Controllers (PLC),
sensors or actuators were developed with the assumption that this physical protection was
deployed. They therefore did not need to embed any form of security.

Cyber-physical systems, however, bypass the need to be physically present in the system
to be able to influence it. An attacker can use the same channels as the control system to
access and attack the industrial system. Cyber attacks on industrial systems are a reality and
have already made the news in several occasions such as the STUXNET attack on the Iranian
nuclear program in 2010 [27, 69, 1] or the attack on the Ukrainians power plants in 2015 [68, 28].

This doctorate has been realised as part of the chair Cyber-CNI, Cybersecurity of Critical
National Infrastructure, that aims at enhancing the security of critical systems. This entails mul-
tifarious research subjects such as resilience [29, 30], system architecture [108, 53], defence
strategy [54], intrusion detection [109, 107, 106, 105, 110], alert reporting and visualisation
[61, 60], or the evaluation of the impact of attacks [49], as well as the human and psychological
aspect of security [84, 102, 104, 103]. Our study focuses on diagnosis of safety and security
related events. In other words, when incidents occur in an industrial system, these incidents can
be of accidental or malicious nature, and we aim at providing precise and relevant information
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in order, for a decision maker, to select the most appropriate reaction. Due to the nature of the
Industry 4.0, and the changes in the environment set by cyber-physical systems, diagnosing
incidents raises new questions, mostly because of the interactions between safety and security
that are much more important than before. The next section is focused on these interactions
between safety and security.

1.2 Redefining the relationship between safety and security

Depending on the field of application, safety and security can have various perimeters. Before
discussion about their interactions, it is necessary to define the terms for our study. In that
purpose, we use the SEMA (System-Environment Malicious-Accidental) framework defined by
Piètre-Cambacédès and Bouissou and Bouissou [95]. It is a compilation of several definitions
and scopes of safety and security used in various environments.

1.2.1 What are safety and security?

In this thesis, we use the Malicious vs. Accidental definition: "Security typically addresses mali-
cious risks while safety addresses purely accidental risks". This is a distinction about the origin
of an incident. Indeed, we are interested in achieving a better comprehension of an incident
when it is initially unclear whether its nature is accidental or malicious. This is the relevant defi-
nition for our study since the accidental side has been studied for decades when the malicious
is fairly recent for industrial systems and is a consequence of Industry 4.0.

With these definitions being given, we can move on to the next point of the discussion and
see how safety and security interact and create non-trivial situations.

1.2.2 The intricacy of interactions

According to Piètre-Cambacédès and Bouissou [95], safety and security have four types of
interdependencies: conditional dependencies, reinforcement, antagonism and independence
[94]. Safety and security are conditionally dependent when one is a requirement for the other.
For example, ensuring that an attacker cannot blow up a pipeline is part of ensuring the safety
of the pipeline. Reinforcement occurs when both are strengthened by the same process. This
is the case when isolating an industrial system in a dedicated network for security reason will
also increase its bandwidth for more interactions with the supervision. Antagonism happens
when an increase in one causes a decrease in the other. This occurs when providing a re-
mote access to an industrial system’s supervision increases the attack surface of an attacker.
Independence is when a modification of one has no impact on the other. Using https instead
of http on the embedded server of a controller yields a better security without impacting the
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safety. Understanding an ongoing incident, and deploying the most appropriate response, is a
non-trivial problem, particularly in case of antagonism.

A simple example of how security and safety can conflict with each other is the problem
of the fire door. If a fire occurs in a building, the fire doors should automatically unlock and
open to ensure people’s safety by allowing them to exit the building. However, a terrorist could
take advantage of this safety response by triggering the alarm of the building for the doors to
unlock, allowing him to get inside. In this situation, safety and security supervision are both
capable of handling the situation but with opposite response that will jeopardize the safety of
the persons in the building if wrongfully deployed. The objective in this situation would be to
provide information that will allow for the most sensible and appropriate response to an incident
involving potentially both safety and security. In the case of the fire door, a question diagnosis
should be providing an answer to could be "is the alarm legit or is it triggered by an attacker?".

This thesis focuses on providing an answer to such questions since they are part of the
process we call diagnosis. This diagnosis is obviously to be based on a model that captures
the incidents regardless of their nature. This is actually a major issue and the subject of the
next paragraphs.

1.2.3 The difficulty of mixing safety and security

Historically, safety and security models are monolithic: they only consider safety or security
but not both. This is another by-product of a separation by design between safety and security
discussed in the previous paragraphs. Due to interactions between safety and security, it is
obviously necessary to use models that can consider them both.

Blending safety with security is not a trivial problem. Their objectives are different and the
techniques developed to achieve them exploit some of specific aspects that they do not nec-
essarily share. In safety, for example, the failure rate of a component is generally a well known
value, obtained experimentally from the failure of other components. Whereas in security, esti-
mating the time necessary for an attack step is a difficult problem and the consensus is that it
has not yet been addressed. On the contrary, in security, probabilities are more used in terms
of choice that an attacker can make between multiple options than on the time taken to perform
them. This raises another point where in security, events happen because a person chose to
cause them, while in safety, a component failure is generally accidental.

Dedicated models will capture these specific behaviours that allow them to achieve their
objective but make almost impossible any generalisation. Gibaudo et al. [50] also cite the fact
that the order of occurrence of events is fundamental in security when it can be mostly ignored
in safety, as well as fault models being structurally similar to the system and therefore not
much subject to change when attack model will need important revisions after even minor
modifications.
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The literature has sometimes tried to use combinations of a safety model with a security
model [47, 85]. Such approaches are possible with narrowing the scope of interactions safety
and security can have [47], or using very abstract models with few computing possibilities [85].
Describing a model generic enough to capture both safety and security but enabling enough
extraction of information is a challenge. In this thesis, we discourse on how it can be done for
diagnosis.

The second chapter of this thesis is dedicated to the study of models that consider safety
and/or security in order to provide information for diagnosis. But for now, we still have to pre-
cisely define what diagnosis in a safety and security environment means.

1.3 Different questions for diagnosis

So far, we have several times used the term diagnosis in a broad sense. However and much
like safety and security, it can have many definitions depending on the environment or context
of application. In this section, we discuss about existing definitions and we give our own.

1.3.1 The different types of diagnosis

Studying safety diagnosis models and security diagnosis models was a necessary preliminary
step in understanding the whys and wherefores of what can be considered diagnosis in the
literature. And it appeared that these definitions are not necessary relevant for a safety-security
context. Therefore, it is beyond the scope of our study to provide an in-depth review of the
state of the art of these models since they are, in retrospect, unfit for the problem we want to
address. However, we mention them in this section as we discuss about the various definitions
of diagnosis and provide a suitable one for a mixed safety-security perspective.

Diagnosing incidents in an environment where both accidents and attacks are considered
is very different from an environment where only accidents or only attacks can happen. Indeed,
when dealing with both safety an security, one will require information such as the accidental
or malicious nature of the incident, its causes, the consequences and the nature of the con-
sequences, etc. Such information is not needed when performing legacy diagnosis of purely
accidental faults or malicious attacks, or has a different meaning.

Techniques dedicated to purely accidental or malicious incidents achieve their objective
but cannot provide the information we believe necessary for a mixed-nature diagnosis. This
type of diagnosis needs a different perspective to perform an analysis that requires different
information. Instead of articulating our study around existing diagnosis models that are unfit
for the considered problem, we have decided to focus on means to obtain this information and
how it will enable diagnosis of accidental and malicious incidents. In the upcoming paragraphs,
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we discuss about the definitions accepted for the different types of diagnosis and provide a
justification for the definition we retain.

Diagnosing accidental faults

In the field of safety, diagnosis is typically considered as the defined of three tasks: fault detec-
tion, fault isolation and fault identification [90, 119]. Fault detection is the action of discovering
that the system has switched from a normal state to an abnormal one. Fault isolation is the pro-
cess of finding which components are at fault. Fault identification is the discovery of the nature
of the fault.

However, diagnosis is sometimes defined as simply fault isolation and fault identification [26,
76]. In that case, fault detection constitutes a singular process out of the scope of the diagnosis.
In other cases, diagnosis is going to be fault detection and fault isolation, fault identification not
being mentioned [5, 48]. Table 1.1 summarises various scopes of what is called diagnosis in
several works on the subject.

Nonetheless, two families of approaches are identified: logic-based and behavioural [119].
The logic-based approach detects faults by comparing the inputs of a component to its out-
puts. The behavioural basically monitors the evolution of physical measures in the system and
detects faults based on the deviation of these measures from a normal state. Overall, safety
diagnosis is about determining which components are at fault. And it makes sense since, in an
industrial system, it is safe to assume that the propagation of an incident is deterministic when
the original faults are known. However, when security is also a parameter, new situations occur.
First, all of the steps of a security attack do not necessarily correspond to the exploitation of a
vulnerability, the security counterpart of a fault. For example, an attacker could take advantage
of an auto-update mechanism to push a back-door in the new version of a software. The up-
date in itself is not a vulnerability, but it becomes part of an attack scenario. With such neutral
events, the semantics of the model is then violated in a way that may render its result ques-
tionable. Of course, this would require further investigation on a case-by-case basis. Yet, even
if the semantics was adaptable enough to provide a meaningful result, another issue arises.

The information sought for a diagnosis with security involved is very different from a purely
safety one. An example of that is the nature of the incident. If safety alone is considered, an
incident can obviously only be accidental and there is therefore no need for a means to evaluate
its nature. With security involved, an incident could be identified as a fault but be actually caused
by an attack, thus needing to trigger a different response from the system. For instance, a
component could be breaking out of natural decay, or because its wear was sped up by an
attacker. If it is the later, replacing the component without preventing the attacker from doing it
again does not represent a perennial solution. Safety-oriented diagnosis models do not provide
any means to evaluate this because it is not relevant in the context they were designed for.
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References Detection Isolation Identification
[5, 48] x x
[26, 76] x x

[90, 119] x x x

Table 1.1: Diagnosis scope in safety oriented articles

Diagnosing malicious attacks

When studying the security of a system, diagnosis is sometimes understood as intrusion detec-
tion. Jackson et al. [55] proposed an intrusion diagnosis model able to detect an ongoing attack
as well as classifying it, based on some predefined symptoms. Diagnosis is then an on-line
process that happens at the same time of the attack.

For Elsaesser and Tanner [44], "diagnosis is the process of deducing the most likely mech-
anism that caused an observed condition". In their article, oriented towards computer forensics,
they also provide a five step approach to achieving diagnosis: observe abnormality, generate
possible explanations, eliminate impossible explanations, eliminate implausible explanations,
and then rate the remainder. They consider diagnosis as being an off-line investigation opera-
tion.

For Arshad et al. [9], diagnosis "is traditionally defined as the process to investigate the
cause of a successful intrusion". In their paper, though, it is defined as "the process of evaluat-
ing the severity of an intrusion for a monitored host".

In these definitions, a diagnosis model may have to raise alerts corresponding to an attack
but are mostly designed to identify its causes, or its consequences. This is a major difference
with safety diagnosis models which focused on identifying which components are at fault but
not the cause of these faults.

Safety-security diagnosis

Before giving a definition of diagnosis in a safety-security environment, let us first develop the
differences between the objectives of the different types of diagnosis. Piètre-Cambacédès and
Bouissou have identified four types of interactions between safety and security [94]. The intri-
cacy of such interactions are what makes diagnosis in a safety-security environment different.

Let us illustrate this on the following scenario, inspired from the Stuxnet attack. We con-
sider a programmable logic controller (PLC) connected to a SCADA server. The PLC controls,
amongst other, a centrifuge. An attacker has a remote access to the SCADA server and is able
to send orders to the centrifuge, as well as conceal these orders from the supervision. The
attacker wants to destroy the centrifuge and does so by rapidly varying its rotation speed. Upon
destruction of the centrifuge, the industrial supervision will call for its replacement, not aware of
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the presence of the attacker since safety diagnosis does not acknowledge for such situations.
However, the attacker still being in the SCADA server, replacing the centrifuge is hardly a solu-
tion since he will manage to break it again. Let us now consider the security supervision, which
has detected the presence of a rogue agent in the SCADA system. Security diagnosis has also
identified what vulnerability has been exploited and even that a patch exists to solve this issue.
However, deploying a patch requires qualification, scheduling and disruption of ongoing opera-
tion. In the mean time, from the security point of view, the most sensitive thing to do is to switch
off the SCADA server. This is of course an unacceptable solution from the point of view of the
industrial process. This situation illustrates that safety and security have to be supervised as
a whole, and cannot simply rely on legacy diagnosis. What we expect from diagnosis in this
situation is, first, to correlate the attacker present in the system with the failure of the centrifuge,
but also to be able to consider potential solutions and ponder their consequences.

To summarize, we can say that legacy diagnosis is about raising alerts when safety-security
diagnosis has to got much further. However, it will rely on alerts raised thanks to this legacy
diagnosis. Safety-security diagnosis’ objective is not to redo what is done by these existing
models because it is not about raising alerts. On the contrary, it is about using these alerts to
understand an ongoing situation and conciliate safety and security in providing explanation and
identifying solutions.

Elsaesser and Tanner’s definition [44] is close to what diagnosis in a safety-security envi-
ronment should be since it is about identifying how an incident has occurred and has spread
to the system. However, we also believe diagnosis should go further and also evaluate the risk
associated with the ongoing incidents. Indeed, safety and security responses for the same inci-
dent can enter into conflict with each other, or could impact one another. Knowing the outcome
that carries the higher overall risk for the system and not simply from a security or a safety point
of view will help choosing the most appropriate response. Therefore, we adapt this definition
for the identified needs:

Definition 1 Diagnosis in a safety-security context is the process of deducing the most likely
mechanism that caused an observed condition, and identifying the future outcome

As such, and unlike Elsaesser and Tanner, we consider this type of diagnosis to be an on-
line process. From now and until the end of this thesis, unless explicitly mentioned, the term
"diagnosis" will have this definition.

To perform its intended use, a diagnosis model needs to realise several functions:

• Incident detection. This is the preliminary step to any diagnosis operation. In practice,
incident detection is mostly an input and not performed by the diagnosis model since it is
efficiently performed by legacy diagnosis tools.
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• Incident correlation. In an industrial system, when a component fails, it will most likely
affect other sub-systems that will generate incidents as well. An attack is also generally
executed in several steps, each of them susceptible to generate alerts. Moreover, faults
and attacks can have effect on each others. Therefore, a diagnosis model is expected to
understand if several incidents are related or correspond to independent situations.

• Explanation. A diagnosis model aims at generating hypothesis on the origin and the out-
come of an incident. A scenario is a composition of incidents that lead to an undesired
event and a diagnosis model should provide possible scenarios corresponding to obser-
vations.

• Risk evaluation. A supervisor of a system will not necessarily rely on the most probable
outcome when selecting an appropriate response. Indeed, it is sometimes the one pro-
voking the highest impact that will be remedied to. Thus, it is necessary to evaluate the
probability and the risk associated with identified explanations.

• Likelihood evaluation. When a very unlikely incident happens, it is generally the sign that
it was wrongfully identified. Whether it be a false positive or mistaken for something else,
it is the sign that further analysis is required. When dealing with a security model whose
perimeter can, therefore, not realistically consider every possible incident, it is a very
important feature.

• Countermeasures. In reaction to an incident, the system will deploy countermeasures.
These responses will remedy to the incident, meaning that they will cancel its effects, or at
least mitigate it, transitioning the system back to a functioning state different from before
the incident. However, they may have side-effects on the system such as creating new
opportunities for an attacker or disrupting the industrial process. Moreover, even without
side-effects, deploying these countermeasures will change the state of the system and
are needed to be registered when performing live analysis. A diagnosis model needs to
be able to consider countermeasures into their scenarios.

• On-line. A diagnosis model is used to identify the causes and consequences of an inci-
dent, and will therefore be used to identify the most appropriate response to an incident.
It is therefore necessary that relevant and intelligible information is provided in time for
the most appropriate countermeasure to be deployed.

In the next chapter, we analyse models that are able to provide information to realise such
functions. Even though they are not always explicitly designed to perform diagnosis, they could
be used, to some extent, for it. We are interested in the metrics they are able to compute and
how these metrics represent valuable information towards diagnosis.
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Chapter 2 focuses on models used respectively for safety, security, and both. We provide
an overview of relevant models and metrics. We then propose a classification of these models,
and compare them to what we consider a diagnosis model could have, based on what exists in
the literature.

1.4 Contributions

This thesis presents two major contributions: a discussion on the ins and outs of diagnosis in a
safety and security environment, and a model to perform this diagnosis.

The first contribution leads to a definition of diagnosis, and the identification of several func-
tions desirable in a diagnosis model. It is accompanied with a review of existing models that can
fulfil these functions by studying them under the angle of the metrics and information they are
able to provide. These models are not diagnosis models per se but could be used to partially
perform diagnosis, or could be used as the fundamentals for a more elaborate and comprehen-
sive diagnosis model.

The second contribution is PROS2E, an event model used to several metrics and infor-
mation to diagnosis incidents in complex systems. This contribution was incremental, with a
first version that laid out the mathematical foundations upon which more elaborate iterations
were built. These subsequent contributions to PROS2E allowed to model more situations more
accurately, enhancing the diagnosis capacities of the model.

1.5 Organisation of the thesis

The remainder of the thesis is divided in five chapters.
Chapter 2 is a state of the art in terms of obtaining the relevant metrics for diagnosis.

As we discussed in the previous paragraphs, there exists no diagnosis model for safety and
security. However, we have identified the information necessary to perform the diagnosis and
this chapter is a review of existing models that provide these metrics.

Chapter 3 presents PROS2E, an model used to represent the events that can occur in a
system, keep track of there occurrence in real-time and provide relevant metrics for diagnosis
on the fly.

Chapter 4 focuses on the integration of countermeasures in PROS2E. Countermeasures
are particular events that prevent a scenario from happening. As such, they require a reflection
on how they impact the various metrics computed by the model, an consequently a specific
probabilistic modelling.

Chapter 5 improves the modelling and diagnosis capabilities of PROS2E by adding the
Sequential-AND gate and reworking the time processing. This leads to more complex system
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that can be modelled, and more accurate metrics that can be computed for previously existing
situations.

Chapter 6 concludes the work presented in this thesis by summarizing it, and by presenting
perspectives for future works regarding PROS2E and diagnosis in cyber-physical systems in
general.
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STATE OF THE ART
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2.1 Chapter content

Since diagnosis for an environment where both safety and security are to be considered is
a mostly unexplored field, it is not surprising that no model have been developed for it. In
Chapter 1, we have however identified several functions that such a model should realise.
These functions can be realised, even partially, by existing models that are the subject of the
this chapter.

Due to the different nature of safety and security events, we have organised this chapter in
three sections: safety models, security models, and hybrid models. Because these models are
not diagnosis models per se, they are not studied under the scope of how they can perform
diagnosis but what they can provide for diagnosis. We discuss about various metrics or infor-
mation that these models can provide and that can be valuable when establishing the diagnosis
of an incident.

We do not simply focus on the metrics but also more generally on which functions they can
realise, and summarize this in a classification of the models.

2.2 Safety models

In this section, we study safety models and the information they are able to provide for diagno-
sis. As a preamble, we illustrate what sort of information we look for by presenting some simple
scenarios and raising some questions that diagnosis should provide an answer to.

First, let us consider a cream enrichment plant designed to produce cream from milk. The
separation of cream from the milk is realised by two centrifuges in series. When a centrifuge
encounters a problem, it is possible to increase the rotation speed of the other centrifuge to
compensate but it also speeds up its deterioration. The occurrence of such incident raises
several questions that diagnosis can address.

A question one might ask is, if the functioning centrifuge increases its rotation speed to
compensate for the failure of the other one, how long until it wears out? To answer this question,
it is necessary to have a measure of the time until the next failure in the model. It is usually
expressed as a Mean Time To Failure (MTTF). However, for this specific question, the model
needs to handle the fact that this MTTF depends on the rotation speed of the centrifuge, or
more generally on the state of the system. A sister metrics to the MTTF is the reliability of
the system. It is defined as the probability that the system works for a given period. Similar to
reliability, but particularly useful for repairable systems, the availability is the probability that the
system works at a given time. Repairable systems can also gain from knowing their Mean Time
Between Failures (MTBF). Since the repairing of the failed centrifuge will take some time, they
are important information to balance risk and benefits between deciding to stop the system or
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increase the rotation speed.

Another information one might want to know is how long until the system is fully functional
again. This is typically computed by a Mean Time To Repair (MTTR), which expresses the
average time it takes to address a specific failure. In our scenario, it will correspond to the time
taken to repair the broken centrifuge or to increase the rotation speed of the remaining one.

Sometimes, repairing a component is not sufficient to restore the system to a normal state.
We now consider another scenario of an incinerator supplied in combustive, for example dioxy-
gen, by a bellows. In an incinerator, the energy produced by the combustion of already present
waste is sufficient to ignite additional waste in a sort of self-sustained reaction. However, like
any combustion, it needs a supply of combustive. If the bellows providing the combustive fails,
the combustion stops. Replacing the bellows will not be sufficient to restore the system to a
functioning state because the combustion will need to be restarted. In this scenario, having the
MTTR and the repair cost of the pump is not sufficient to have the one of the system. Indeed,
kick-starting the reaction again will have to be modelled independently, most likely by a dedi-
cated countermeasure event, and will induce an additional cost, therefore impact and risk, on
the system.

Let us now consider a water plant that drills water from a phreatic table. The water plant
relies on seven drills that can be switched on or off by a controller. After being drilled, the water
is filtered, exposed to UV lamps, and mixed with chlorine in a processing basin. Water in then
transferred from this basin to a water reservoir with six pumps that can be individually switched
on or off by a controller. In this process, the failure of the system could require the failure of
several components at the same time. Minimal cut sets are minimal sets of events causing a
system failure. They are useful because they point out critical components of the system that
need to be closely monitored, as well as reduce the complexity of required computation since it
becomes possible to focus on smaller sets of events. Minimal path sets represent minimal sets
of components that will keep the system running as long as they do not fail, providing emphasis
on critical components, as well as reducing computation complexity if demanded.

The seven drills and six pumps of the water plant are used to mitigate water production
depending on the demand. They also act as a convenient redundancy mechanism when a
pump or drill would malfunction. However, all of the drills and pumps are of the same model,
and therefore suffer from the same weaknesses: the failure of one component could mean
a higher risk for remaining ones. Such behaviour is called Common Cause Failures (CCF)
and is extremely important to spot in order not to overestimate the reliability of the system.
Spotting CCF allows to correlate events as well as update the failure probability of remaining
components.

Finally, when providing a possible explanation or a possible outcome, the ability for a model
to give a confidence interval of its result is greatly appreciated. Indeed, on the one hand, the
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return on experience is not always the same for each component of the system. On the other
hand, depending on the position of an event in the scenario, a small variation of the probability
of occurrence of this event could have either little or important consequences on the MTTF,
reliability or other probabilistic computations. This consequence that a variation of a random
variable associated with an event has on the probability of the scenario is called the sensitivity
of the random variable, or of the associated event.

Having introduced important metrics that are sought in for diagnosing purely safety situa-
tions, we will now see if such information is present in existing models.

2.2.1 Fault tree based models

Fault Tree analysis (FT) is one of the most widely used techniques to compute risks concern-
ing industrial systems. They were developed as a means to evaluate the launch system of the
Minuteman Missile in 1962. After almost two decades of development for avionics and nuclear
plants, the Fault Tree Handbook [120] was published in 1981, still being a well respected refer-
ence on the subject. Fault trees are widely used for probability risks assessments in industrial
systems. Several different variations, which we discuss about in this section, have then been
developed to suit specific needs. However, they all share a common origin that is a mature and
reliable model to analyse risks.

In this section, we give the general principles of fault trees and fault tree analysis, as well as
some close variations, and the metrics they are able to produce that are potentially interesting
for diagnosis.

Fault tree structure

A fault tree has a tree structure of which the root is the undesired event being investigated,
leaves are safety events, branches model failure propagation, and nodes are logical gates
conditioning this propagation. Figure 2.1 is an example of a fault tree.

To create a fault tree, one can use five types of events. First, there are the basic events
that correspond to a basic initiating fault. Then there are intermediate events that verbosely
describe the combination of its child events but have no effect on the analysis. There are also
undeveloped events whose development into smaller events is not relevant for the study or
impossible due to insufficient information. The last two types of events are transfer ins and
transfer outs used to cut the tree into several trees when the FT becomes too large.

The events are then recombined into scenarios using four types of logical gates. There is
the and gate describing a conjunction of events, the or gate describing a disjunction of events,
the k/N gate that is activated when k out of its N input are active, and the inhibit gate whose
output can only be active if a condition is verified.
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Transformer failed Engine-
generator failed

Power supply failed Pump failed

No water pumped

Figure 2.1: An example of a fault tree

Other gates and event types are defined and used by extensions of FT to adapt to specific
situations [41, 71, 14].

Information available

Fault trees usually perform risk analysis of a system. They are built by system experts that
investigate possible failure of components and how these failures can cause damage to the
system, damage represented by the top event of the tree. Once built, they provide analysts with
valuable information for risk analysis.

First, from the structure of the tree, one can extract several information. Minimal cut sets
are available [32, 124, 24]. Ali [2] showcases the use of minimal path sets to evaluate the
reliability of a system. CCF, however, cannot be analysed by fault trees. They can nevertheless
be modelled using OR gates, but rely on external information added by the system expert [111].

Fault trees are also able to provide so called "single time" metrics. In these situations, prob-
abilities are associated with each basic event, describing the confidence that the components
will fail during a predetermined period of time. They allow for computation of a failure propaga-
tion: the failure rate of all basic event being known, the failure of each intermediate event can be
computed using the ones of his children according to the type of gate that recombines them. By
iterating this process on the whole tree, one can obtain the failure rate of the top event. Lastly,
fault trees can be converted into Bayesian networks for further analysis [13]. The capacities of
Bayesian networks for safety analysis is discussed in section 2.2.2.

Having probabilistic capabilities is, as stated in section 1.3.1, mandatory for diagnosis. Sin-
gle time metrics are, however, quite limited. The failure rate is valid for a predefined amount of
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time, which is not suited for an on-line use. However, there exists counterpart to these metrics
that are function of the time. They are called continuous time metrics.

The goal of continuous time analysis is to assess the evolution of the safety of the system
over time. To do so, a probability distribution function De representing the evolution of the failure
rate over time is assigned to each event. For repairable components, a reparation distribution
RDe is also assigned. Then a random variable Xe, function of the time, which values are in
{0, 1}, represents the state of the component : 1 if at fault and 0 else. Similar random variables
Xg can also be computed for the gates from the random variables Xe. With that additional
mathematical tool, several metrics can be computed such as reliability [120, 13, 42], MTTF [4],
availability [42, 11] or MTBF [4, 113] if the model account for the repairability of the system. The
sensitivity of a random variable, and therefore the basic event it is associated with, can also be
computed.

With continuous time analysis, an on-demand estimation of the time until the failure of the
system is available, that can be used to evaluate the risk undergone by the system. By assign-
ing the probabilities of realised events to 1, as it corresponds to the certainty that a fault has
happenned, a fault tree could adapt itself to an undergoing situation. Fault trees are also able
to provide a probability of failure for any given period, which are, once again, useful for the risk.
Lastly, having a probabilistic evaluation for each basic event, they are potentially able to evalu-
ate the likelihood of occurrence of any failure, or combination of failures. This would make fault
trees both able to quantify their confidence in the diagnosis provided, as well as raise suspicion
on a system being improperly modelled. Indeed, an event occurring despite an extremely low
probability might mean that it was wrongfully modelled or detected.

Limits

Fault Trees can only consider two-state components: working and not-working. However, it is
sometimes relevant for a component to have more. For instance, a component can be in an
overclocked state, in order to compensate for a failed component, in which case the failure rate
is increased. Or at the contrary, a downgraded state when it has suffered some damage but not
enough to render it completely inoperative.

Some common behaviour of industrial systems cannot be modelled by a standard fault tree.
For example, in the system modelled by the fault tree represented on figure 2.1, the engine-
generator is a backup in case the transformer fails. Therefore, it would not be started unless
needed, and as such, its failure rate would depend on the state of the transformer. Although
it can be acceptable for a purely logical representation, it leads to inadequate and misleading
results when computing temporal metrics such as MTTF or reliability.

Moreover, there would most likely be a switch between the transformer and the engine-
generator and the order in which the components fails would have a consequence on the out-
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come. If the switch fails after the transformer, it is not an issue since the engine-generator was
successfully started. However, if the switch fails before the transformer, the engine-generator
cannot be started and the water cannot be pumped. Standard fault trees cannot acknowledge
such elementary behaviour in which the temporal order of occurrence of the faults has an im-
pact on the scenario. Dynamic fault trees were developed to address this issue.

Dynamic fault trees

As we’ve just seen, in some cases, a specific order in which the components fail is necessary
for top event to be realised. Regular fault trees cannot take this behaviour into account. Dynamic
fault trees were developed in 1990 to address this issue [41].

Dynamic Fault Trees (DFT), as defined by Dugan et al. [41] add three types of gates to
regular fault trees: functional dependency, cold spares and priority-AND.

The functional dependency gate has one output, one trigger input and one or more regular
inputs. The occurrence of the trigger event forces all of the input events to occur. An example
of a functional dependency gate could be with components communicating through a network.
The input events would be the ability for components to communicate on the network, and the
trigger event would be the network failing. Indeed, if the network fails, regardless of the state of
each component, they would not be able to communicate.

Cold spares are backup components that are initially unpowered and that are only activated
upon failure of a functioning one. Cold spare gates are gates with one output, and several
inputs. Each input corresponds either to the primary input, or an alternative input. Alternative
inputs are ordered and are only allowed to fail if all of the previous ones have failed. The first
alternative input can only fail if the primary input, the only one initially powered on, has failed.

Priority-AND is a regular AND gate with the additional condition that failure has to happen in
a specific order. If the order of occurrence is not respected, the failures are ignored by the gate.
This is particularly useful to model the situation we previously described with the transformer,
the engine-generator and the switch.

Reliability [41, 15, 83, 31], availability [41, 15, 31], MTTF are computable in a DFT, and
even MTTR and MTBF if the DFT is repairable [15]. Minimal cut sets do not capture sequential
information but they can still be computed by swapping priority-AND gates and cold spare gates
for AND gates and functional dependency gates for OR gates. To preserve this sequential
information, Tang et al. [126] defined cut sequences, which are basically ordered cut sets,
and means to compute them. Several other computation or representation methods were then
developed [125, 73, 74, 82, 99, 25].

Analysis of a DFT can also be done by converting it into a Dynamic Bayesian Network
[83, 97], a model we discuss in section 2.2.2.

33



2.2.2 Bayesian Networks

Although Bayesian networks (BN) functioning is based on Bayes’ theorem (2.1), named after
Thomas Bayes (1701-1761) and formulated by Pierre-Simon de Laplace in 1812, Bayesian
networks were introduced by Judea Pearl as late as 1986 [89]. In 2010, Weber et al. [122]
proposed a bibliographical overview of various uses of Bayesian networks in industrial systems.
Their study showcases early proposals in the 90s and a huge increase of contributions in the
years 2000s, especially after 2005. Bayesian networks can now be considered a mature method
to evaluate different aspects of safety in industrial systems.

P (A|B) = P (A)P (B|A)
P (B) (2.1)

A Bayesian network is a graphical model representing random variables laid out in a di-
rected acyclic graph. The graph (V,E) is composed of edges E and vertices V . Each vertex,
or node, represents a random variable and each edge represents a dependency between the
two random variables of the corresponding edges. Each node is also associated with a proba-
bility distribution function that takes the values of the parent nodes as an input, and outputs the
probability of the variable of the considered edge. The joint probability of the network is effec-
tively (2.2), with pa(x) being the parents of variable x. Figure 2.2 displays a classical Bayesian
network and the conditional probability tables of the random variables.

P (V ) =
∏

x∈V

P (x|pa(x)) (2.2)

Rain Sprinkler

Wet grass

Rain
T F

0.3 0.7

Sprinkler
Rain T F

T 0.1 0.9
F 0.6 0.4

Wet Grass
Rain Sprinkler T F

T T 0.99 0.01
T F 0.9 0.1
F T 0.8 0.2
F F 0.01 0.99

Figure 2.2: A BN with the corresponding conditional probability tables

Bayesian networks are useful for safety and security modelling because they can represent
dependencies between faults and/or attacks in global scenarios. Under the hypothesis that
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the marginal probability of each event can be known, it is then possible to obtain a model
for a probabilistic evaluation of the safety and the security of a given system. Then, when
a set of events occurs, this information can be transmitted to the corresponding nodes and
then propagate in the system. In a nutshell, Bayesian networks are a means to obtain, spread
and extract knowledge. For diagnosis, specifically, BN are particularly useful because they can
compute the probability distribution of variables based on the observation of others. This means
that they can provide an explanation for an observed phenomena.

Information available

According to Bobbio et al. [13], diagnosis with BN generally represents three types of infer-
ence: the computation of the posterior marginal probability distribution of each component, the
computation of the posterior joint probability distribution of subset of components, and the com-
putation of the posterior joint probability distribution on the set of all nodes, but the evidence
ones. They all correspond to the propagation of the information after a phenomena has been
observed, and the showcase of the most probable explanation. This is, for example, showcased
in Mengshoel et al. [81]. They can therefore estimate the same reliability [13, 117, 16] of single-
time fault tree analysis that presents limited interest for diagnosis compared to continuous time
analysis, as discussed in section 2.2.1.

Unlike fault trees, BN can easily model dependencies between events such as common
cause failures on mutually exclusive events, standby dependencies or components supporting
loads where the occurrence of one event changes the probabilities of other events [117].

By adding decision and utility nodes, in which case the Bayesian network is called an influ-
ence network, cost can be evaluated, proportionally with the probability of the various events in
the model [51]. Cost can be either damage cost, which can be considered as impact, or, for in-
stance, the cost of installing a new equipment. Cost is represented by so called chance nodes,
Therefore, the cost is not associated with each event but only with terminal ones. Moreover, the
cost is not exactly seen as a numerical parameter but is represented by the label of the chance
nodes. This hybrid perspective of cost being an event makes it questionable for providing a
measure of impact for diagnosis. Similarly, Kang and Golay [62] propose to use BN to evaluate
the impact that actions taken by operators, when responding to a fault, can have on the system.

Just like fault trees, BN are able to compute what combinations of events can lead to an
undesired one. They are able to compute cut-sets [13] in that regard.

Limits

One of the major drawback of BN is their impossibility to model temporal dependencies. There-
fore, BN cannot consider the order in which events have to happen. Moreover, a BN cannot
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make a forecast of what is going to happen if the variables change over time. In an environ-
ment where some events can only happen if other events are realised and where time is an
important parameter, this is a major issue.

Importing the time dependencies, such as the ones found in a DFT, in a BN have been
done by Boudali et al. [16] by discretising the time of the study in several intervals and adding
as many states in each node as there are intervals. They are able to produce similar results as
a DFT at the expense of a considerable increase of complexity.

Several other models have been developed to address this issue, as we discussed in the
following sections. Nonetheless, adding temporality to a BN is a tedious task that adds a lot
of complexity to the model and therefore, is a constant trade-off between the accuracy of the
model and its computability [8].

Building BN has been identified as being difficult for safety experts [18, 62] which is an
obstacle towards a wider adoption. Automatic transformations from a more common model
such as FT has however been considered [13].

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN), that can also be called two-timeslice Bayesian networks
(2TBN), are an extension of regular BN designed to address the temporal issue [38]. A DBN
is defined as a couple (B1, B2d). B1 is a regular BN that describes the initial distribution of
the variables. B2n is a two-step DBN that describes the transition from time t − 1 to time t; it
contains P (xt|xt−1) for each variable x in the network. The joint probability of a time-step is then
(2.3), only now, the parents of xt can be in the time t − 1. Figure 2.3 showcases the temporal
dependencies in a DBN.

P (Vt|Vt−1) =
∏

x∈V

P (xt|pa(xt−1)) (2.3)

At−1

Bt−1

At

Bt

Figure 2.3: Temporal dependencies in a DBN

DBN are a solution to the temporal problem addressed in section 2.2.2. However, to our
knowledge, they were never used to compute MTTF or similar metrics. The reason behind this
is unsure, whether the model cannot provide such information or because the formalism is too
complicated for a computer to provide results in resonable time.
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Moreover, P (xt|xt−1) being the same for any t, the time, expressed in number of steps,
taken for any event to be realised follows a binomial distribution. It is impossible to use a Dirac
distribution to describe an event that occurs after a specific amount of time, or a Weibull distri-
bution which is much more fit to model hard-drive failure [114].

Temporal Nodes Bayesian Networks

Temporal nodes Bayesian networks (TNBN) [8] were designed to address the lack of temporal
capabilities of regular BN. In a BN, a node is associated with a random variable that represents
the state of the node. In a TNBN, the random variable of the node represents the temporal
interval in which a change of state occurs.

With this modification, they are able to predict and diagnose events and give an estimation
of the time needed for these events to happen.

TNBN constitutes an interesting approach in addressing a major disadvantage BN suffers
from compared to other models: time modelling. However, they do it by multiplying the number
of values the random variables in the nodes can have, therefore rendering the model much
more difficult to establish for a system expert, and increasing the computing time. We note that
the establishment of the model aspect was eased by an algorithm based on machine learning
techniques [52].

2.2.3 Petri nets

Petri newtorks were developed by Carl Adam Petri in his Ph. D. thesis in 1962. A Petri net-
work (PN) is a directed bipartite graph with two types of nodes: places and transitions. Places
are graphically displayed as circles and transitions as rectangles. When used in dependability
analysis, places represent the states of the components and the transitions describe how these
states can change. Places can be marked with tokens. Edges are associated with a multiplicity,
a natural non null number. A transition is enabled if every place connected to input edges con-
tain as many token as their respective multiplicity. An enabled transition can be fired, therefore
removing as many token in input places as the respective multiplicity of input edges, and add
as many token in output places as the respective multiplicity of output edges. The marking of
a Petri net, i.e. a distribution of tokens amongst places, describes one state of the modelled
system. Graph 2.2.3 is a Petri net modelling the failure and the repair of two components c1
and c2. The token in the place c1 working represents a marking when the component c1 is
functioning.

A Stochastic Petri Net (SPN) is an extension of a Petri net where the time taken to fire
a transition after it is enabled is modelled by a random variable. In practice, these random
variables are described by exponential distributions and each transition is therefore associated
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c1 working

failure c1 repair c1

c1 failed

c2 working

failure c2 repair c2

c2 failed

both components failed

Figure 2.4: An example of a Petri net

with parameter λ called the firing rate. With this addition, a stochastic Petri net is actually a
particular continuous time Markov chain. Ajmone-Marsan et al. defined Generalised Stochastic
Petri Nets (GSPN) that allow immediate transition corresponding to a firing time of zero [78].

Petri nets are a general formalism used for process analysis. As the literature shows, they
are able to model faults in an industrial system, but they are also able to model the system as
a whole. This can be done at a much higher cost than simply focusing on failures, but could
provide much more detailed about the circumstances of these faults or combinations of them.
From a diagnosis perspective, this is an extremely interesting characteristic. However, to the
extent of our knowledge, such detailed modelling has not been given to the literature.

Overall, designing a Petri net can be a tedious task, particularly for complex systems with a
lot of dependencies between the components. However, they tend to retain a topology close to
the one of the system which simplifies the update process.

Information available

In terms of quantitative analysis, the literature shows examples of computing reliability [43, 121,
31] and MTTF [43], using Monte Carlo simulations [43].

The versatility of Petri nets in terms of modelling capabilities is extremely useful because
they can natively model reparation process and therefore compute associated metrics such as
MTTR or MTBF.

Limits

The distribution associated with the firing of a transition can only be exponential. As shown
previously, exponential distributions do not accurately model every type of failure and this con-
stitutes an important limit in terms of obtaining a correct evaluation of the metrics required for
diagnosis. Also, as stated earlier, the complexity of Petri nets that increases with the scale of
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the system constitutes a major drawback in a broad use of the model. However, there have
been proposition for a conversion process from a simpler model such as DFT to Petri nets [31].

Even though Petri nets are mathematicaly able to assimilate the modifications the oc-
curence of events have on the system, which they can do by updating the markings, that would
require the development of external tools to process such information. As such, we couldn’t find
any example of a live usage of Petri nets to track the evolution of ongoing incidents and couldn’t
evaluate their behaviour ina live usage.

Stochastic Reward Networks

In 1993, Ciardo et al. proposed stochastic reward nets (SRN). They associate reward rates to
the network which corresponds to a reward rate associated with each marking of the net. With
this reward rate, another way of computing the reliability of the system becomes available [77].

The major advantage of stochastic reward nets is a reduction in the size of the network,
compared with a GSPN, since some behaviour of the system is no longer needed to be explicitly
expressed using places and transitions but can rather be captured with the reward rates. They
are therefore able to resonably model more complex system and would provide information for
the diagnosis of a wider range of model than regular GSPN.

2.2.4 Safety models summary

Table 2.1 summarizes features available in safety models and useful for diagnosis. The table
does not account, however, for some enhanced modelling capacities some models have against
others. For example, dynamic fault trees can, contrary to regular fault trees, take into account
the order in which events have to happen. They are therefore allowed to model more scenarios
or yield more accurate results than their counterparts.

2.3 Security models

Information sought after in case of a purely security incident can be similar to the ones consid-
ered when a purely safety incident occurs. The names of the information differ but sometimes
correspond to equivalent notions. These names, for that matter, are most of the time from the
point of view of the attacker. For example, in that context, "success" would mean success for
the attacker and achievement of his objectives.

Let us consider an intrusion detected in a workstation. The workstation is operated by a
salesperson whose job is to overview and manage the sales of the company. The attacker, upon
exploitation of vulnerabilities, has acquired a remote access to the workstation and escalated
his privileges to those of the salesperson. He is therefore now able to add, delete or modify
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Feature Model
Minimal Cut Sets Fault trees [32, 124, 24]

Bayesian networks [13]
Cut Sequences Dynamic fault trees [126]
Minimal Path Sets Fault trees [2]
Reliability Fault trees [120, 13, 42]

Dynamic fault trees [41, 15, 83, 31]
Bayesian networks [13, 117, 16]
Dynamic Bayesian networks [38]
Petri nets [43, 121, 31]

Mean Time To Failure Fault trees [4]
Dynamic fault trees [15]
Petri nets [43]

Availability Fault trees [42, 11]
Dynamic fault trees [41, 15, 31]

Mean Time To Repair Dynamic fault trees [15]
Mean Time Between Failures Fault trees [4, 113]

Dynamic fault trees [15]
Common Cause Failure Bayesian networks [117]
Cost Bayesian networks [51, 62]

Table 2.1: Summary of information available in safety models for diagnosis

information critical for the company. Having detected the intrusion, an IDS is able to inform
about the presence of an attacker in this workstation. However, the alert raised by the IDS
does not contain any information about the next possible actions an attacker can take such
as modifying the amount of a given product to be shipped for a given sale. This represents
important information to be able to evaluate the criticality of an intrusion and to understand the
objectives of the attacker. Diagnosis being, amongst other things, about establishing the risk
of an incident, getting this data represents valuable information that need to be provided by a
diagnosis model.

It is also possible that an attacker raises several alerts when performing its attack. Those
alerts need to be correlated to obtain the most accurate picture of the ongoing situation in order
to provide the most sensible explanation. It is also possible that several intruders are present in
the system at the same time, either contributing to the same attack or being completely inde-
pendent. A diagnosis model should be able to consider and differentiate all of these situations.

Based on this qualitative analysis, a quantitative one can take place. Similarly to safety, an
evaluation of the remaining time until completion of the scenario is still interesting and is called
Mean Time To Success (MTTS) or Mean Time To Compromise (MTTC) and is the security
tantamount to MTTF. The reliability finds its equivalent in the success probability. It represents
the probability that an attacker achieves either an attack step or a complete scenario. It can be
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done with or without taking time into account. Both of these measures can be used to determine
how much time is available to deploy a countermeasure, or to estimate whether the threat is
serious or not. They can also be used to estimate the expertise of an attacker. Indeed, while
the MTTF of a component is most of the time deduced from feedback, the MTTS of an attack
is much more controversially estimated by a security expert, and is function of the skill and
experience of the attacker: a veteran attacker should take less time to perform an attack that a
rookie one. Therefore, MTTS can be compared to the actual time it took an attacker to perform
an action, and adjust the expected time of the future ones to have a more accurate MTTS of
the overall scenario.

The repairability, however, is not a major concern in security since the restoration of the
information system might come with a reconfiguration to remove the vulnerabilities exploited by
the attacker when the restoration of an industrial system is more linked with the reparation of
defective components. Also, deploying countermeasures often have the objective of preventing
the attacker from progressing in its attack, and therefore, act before the scenario is completed.
Thus, the availability, MTTR, MTBF do not necessarily have a relevant equivalent in security
diagnosis. However, considering countermeasures is obviously a requisite of the model, but so
is being able to model as accurately as possible the sequence in which the scenario has to
happen.

We will now present several models used in purely security contexts able to provide one or
more of these pieces of information.

2.3.1 Attack trees

The term "attack trees" designates a family of models that have a wide range of applications.
This paper focuses on diagnosis and analyses models under that scope. As such, attack trees,
in their most basic form, present few features exploitable for that purpose. In order to address
specific issues, several refinements were produced.

In fault trees, the number and nature of features available depend on the mathematical tool
used for the computation and a differentiation between mathematical tools is out of the scope of
this study. In attack trees, the features rely on the variations of the models, and it is impossible
to mention these capacities without mentioning the model associated with them. A common
structure between all of these models exists, and we consider every model that align itself with
this structure as being an attack tree. As such, the structure of this section is slightly different
to the others of this survey: we mention the various models along with the feature they provide
towards diagnosis.

Attack Trees (AT) are a widely used family of models to represent and analyse security in
an information system. They were first mentioned by Schneider in 1999 [21]. They are derived
from Threat logic trees [123], themselves inspired from fault trees. Compared to FT, they are
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therefore fairly recent. However, their strong versatility combined with an increased need for
security in information system triggered a rapid development of AT and AT-based models.

Attack trees are used to identify the steps necessary for an attack to be realised. They are
created with a top-down process that stems from the root of the tree, the main goal of the
attacker. The immediate steps that lead to the root are added to the tree as the children of the
root. Each child is then expanded with the same process until no further refinement is required.
The resulting attack tree is an extensive representation of the options an attacker has to realise
the considered attack, and therefore highlights vulnerabilities that may be important to remedy.

AT-based model do not generally have the strict structure a FT has. Every node can loosely
represent actions, events, goals or objectives. Contrary to FT where failures can only happen
in leaf nodes, actions can happen at any level in the graph. Children are connected to their
parents through logical connections (OR, AND, XOR, etc...) that are not always made explicit
with logical gates. Figure 2.3.1 is an example of an attack tree where an attacker wants to
modify an order placed by a client to a company. The attacker can modify the order either
through the ERP software or the database directly.

Corrupt em-
ployee

Access to sales
system

Access to sales
website

SQL injection

Change com-
mand through
ERP

Change com-
mands through
DB

Modify order

Figure 2.5: An example of an attack tree

This structure is the only greatest common divisor between various models that claim to
be attack trees or are inspired of them. Most analysis capacities of attack trees are achievable
through specificities provided by those models. We will therefore exhibit a range of models that
cover metrics identified in the introduction of this section, such as Mean Time To Success,
success probability, impact or risk.
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Attack steps order

Most of the time in an attack scenario, actions need to be achieved in a certain order. For
example, in the attack tree of figure 2.3.1, the SQL injection must happen after the attacker
accesses the sales website. In a regular attack tree, such sequential behaviour cannot be
modelled. A few models add this feature to attack trees.

In 2009, Khand [64] proposed to overcome static limitations of attack trees by using gates
developed for FT and DFT. Even though Khand does not explicitly name its model, Kordy et
al. [65] named it Dynamic Fault Trees for Security (DFTS). Khand proposes to use Priority-
AND (PAND), k-out-of-n (k/n), Conditional subordination (CSUB), Sequence enforcing (SEQ)
and Housing nodes. PAND and k/n and SEQ nodes are identical to the one in DFT, CSUB
corresponds to FDEP gates. Housing nodes are used to switch on or off a specific subtree. They
represent some different configurations of the system in which some actions may or may not
be possible. No quantification is showcased in Khand’s article, so it is unclear if the computing
capabilities of DFT are inherited by this model.

Enhanced attack trees (EAT) [23] also provide a means to express this behaviour using an
Ordered-AND gate, similar the the Priority-AND one.

Evaluating the progress of an attack

Some models add features to attack trees in order to evaluate how much of the attack scenario
has been done and how far the attacker is from reaching his goal.

Augmented attack trees (AAT) [100] use the same general structure of an AT and add labels
to the nodes of the tree. These labels quantify how many subgoals were compromised on an
attack path and how many are to compromise to reach the root of the tree. The ratio of these
two quantities expresses how close the attacker is from reaching his objective.

Similarly to the labels of an AAT, EAT [23] also add an attack level attribute, corresponding
to how much of the attack has been accomplished at any given node. On top of Ordered-AND
gates and an attack level, EAT add a Time-To-Live (TTL) feature to the nodes representing a
time span outside of which the attack is considered failed. Their objective is to assist an IDS
in the detection of ongoing attacks with the specific concern of reducing the number of false
positives. In such, EAT are designed to function and analyse data in real-time. Their TTL feature
is singular and interesting for diagnosis purposes. Nonetheless, even if they add time ordering
of attacks, and TTL, they do not use the time when estimating how much has been done or is
left.

AAT and EAT represent an interesting step towards computing risk by providing a measure
of the attacker’s success probability, this approach has some important limits. First, they do not
take time into account when computing the probability, even though it is a major parameter to
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consider when assessing the risk.
We must note that two other definitions of AAT were given but they do not provide additional

information for diagnosis [96, 40].

Probabilistic success evaluation

Multi-Parameters Attack Trees (MPAT), proposed by Buldas et al. [22], do not take time into
account. They analyse the behaviour of the attacker from an economics point of view and anal-
yse several parameters, including the probability of success. To do so, they decorate the nodes
of a standard attack tree with six parameters: the cost of the attack, the success probability,
the probability of getting caught if the attack was unsuccessful, the expected penalty in case
the attack was unsuccessful, the probability of getting caught if the attack was successful, and
the expected penalty in case the attack was successful. These parameters are then used to
compute the overall gain of the attacker. The probability of getting caught if the attack was un-
successful and the probability of getting caught if the attack was successful are more interesting
from an intrusion detection point of view than a diagnosis one.

In 2008, Jürgenson and Willemson gave a modified version of this model with only two
parameters [57]. This contribution addressed several limits identified in the original model such
as an overestimation of the gain of the attacker or the impossibility for the attacker to try several
atomic attacks. They also noted that this model in which all of the atomic attacks can happen
simultaneously is unrealistic [57]. Standard AT and AT-based models are parallel models. They
address this issue by developing what they call a Serial Model for Attack Tree (SMAT) [58].
They claim to be able to compute the same results as MPAT, but with better accuracy since
they consider a more realistic model for the attacker’s behaviour. They were not included in
section 2.3.1 because they model a sequential behaviour of the attacker but not the order in
which the actions must happen.

For models taking time into account, we may cite Arnold et al. [7] who defined Time Depen-
dant Attack Trees (TDAT) in 2014. Their objective is to evaluate the evolution of the success
probability of an attack over time. To do so, they associate each leaf node with a probability
distribution function. They can be any acyclic phased distribution (APH), and since APH distri-
butions are topologically dense, any continuous distribution can be arbitrarily closely approxi-
mated by one [56]. They consider three types of gates: AND, OR and SEQ gates and provide
formulas to recombine the distributions of child nodes into one for the gate. The process can
then be iterated until the root of the tree has been processed and a distribution function for the
overall attack is available.

It is to be noted that they consider non-leaves nodes as simple gates and not associated
with an actual action. They are therefore, in that aspect, closer to fault trees than some other
AT-based models. However, they constitute a powerful enrichment of regular attack trees in
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providing them a means for temporal evaluation of the probability. They also provide actual
mathematical and exact expressions of the result contrary to stochastic methods.

Impact and risk

To compute the risk, after having the probability of success, the impact is required. In that case,
we compute risk with the formula risk = impact× probability. Several models provide a way to
compute either just the impact, which can be named "cost", or the risk.

Multi-Parameter Attack Trees, with their various parameters, provide attack trees with a
means of computing gains for the attacker, which can be used to evaluate the risk. And there-
fore, Serial Model for Attack Tree can too.

Improved Attack (IAT) Trees, proposed in 2011 by Wen-ping and Wei-min [75], add various
parameters to leaf nodes and use them to compute risks evaluation of parents nodes until
reaching the root. They provide with an evaluation of the overall probability, impact and risk of
the attack. However, they seem to adopt a formalism closer to the one of fault trees than attack
trees. Indeed, their formulas make us believe that nodes that are not leaves are just logical
gates and do not correspond to an actual action by the attacker. Therefore, they seem to have
provided a way to compute risk at the expense of weaker modelling capabilities.

Countermeasures

As we developed earlier, being able to take countermeasures into account is important to model
complete scenarios.

Defence trees (DT) are a way to add countermeasures to an attack tree [12]. Sets of coun-
termeasures are added to the leaf nodes. They also provide a framework to evaluate the cost
and the impact, from an economics perspective, of the various choices attackers and defenders
can make. Their behaviour are then analysed through the scope of game theory.

We may also cite Countermeasure Graphs [10], a framework based on attack trees that
aims at selecting a set of countermeasures to deploy in order to maximize the efficiency in
terms of effectiveness versus cost.

Recap of information available

If we consider all of the mentioned models as attack trees, we are able to say that attack trees
are able to compute several metrics such as sequential modelling [64, 58], success probability
[100, 75, 7], MTTS [7], the impact [10, 75, 22, 57, 58], the risk [123, 22, 57, 75]. It shows that
attack trees can be used live [23] and take countermeasures into account [10, 12].
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2.3.2 Other attack graph based approaches

Other graphic based approaches can be loosely related to attack trees. They do not, however,
have the same structure as the family previously discussed and were therefore isolated from
the rest of the models.

Compromise Graphs

Compromise Graphs (CG) were introduced by McQueen et al. in 2006 [79]. They are directed
graphs where nodes are attack steps and edges represent the achievement of attack steps.
The edges are weighted with the time estimated to be necessary to realise the corresponding
step. CG are used to compute Time To Compromise (TTC) in the form of the shortest path from
the input node to the output node being the attacker’s objective. They are used to compute the
effects of security measures on the TTC.

CG have a very simple modelling that makes them relatively easy to used, but that does not
allow for thorough quantitative analysis. They only produce a TTC estimation although taking
into account several parameters including the skill of the attacker or the number of vulnerabilities
for a same attack step.

Vulnerability Cause Graphs

Vulnerability Cause Graphs (VCG) were designed in 2006 with the objective of designing more
secured software [6]. They are used to analyse the causes of a vulnerability. A VCG is a directed
acyclic graph whose nodes are vulnerabilities and causes, and edges are logical connections
between nodes. Nodes without children are vulnerabilities and other nodes are causes and
represent events that can cause vulnerabilities.

Although they are meant to be used during the design of a software, they represent an inter-
esting way of linking vulnerabilities, and therefore attacks exploiting these vulnerabilities, with
causes. VCG are also general enough to be potentially applied to safety scenarios. However,
they do not offer quantitative analysis and, in order to be used for a diagnosis purpose, would
need to be integrated in another model.

Nzoukou et al., 2013 [88]

In 2013, Nzoukou et al. [88] have proposed a framework to compute MTTC in information
system. Their model is based on attack graph to obtain the dependencies between atomic
attacks and a BN to represent the conditional dependencies between events. They map MTTC
to each atomic attack and give a formula to obtain the one of the overall attack based on the
conditional dependencies.
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Their work puts a lot of emphasis on the acquisition of the atomic MTTC, which is a recurrent
issue in security. They base the computation of the MTTC on the Common Vulnerability Scoring
System (CVSS) [80] for each documented attack. When no vulnerability documented, they also
provide a means to estimate its MTTC corresponding to the one of a zero-day attack. Lastly,
they take into consideration the fact that the re-exploitation of a previously exploited vulnerability
is quicker, and update the MTTC accordingly.

It is unclear how they generate the attack graph and therefore to identify a probable contri-
bution on that part. However, they are able to obtain any information present in an attack graph
such as a description of scenarios or dependencies between attacks. MTTC also becomes
available for overall scenarios after being modelled for each atomic event. Using a BN, they are
able to update the state of the system based on evidence that attacks happened, and compute
up to date MTTC.

We must stress that the main contribution of this article relies on the use of CVSS to ob-
tain MTTC. Indeed, as we stated in Section 2.3, the relevance of using MTTC in security is
questioned because unlike in safety, there is no reliable way to obtain this information. The
information is most of the time provided by an expert and is therefore subject to bias. Using
CVSS, a standardized and reasonably trusted system, to calculate an MTTC improves the con-
fidence one would have in this information.

2.3.3 Bayesian Networks For Security

As developed in section 2.2.2, Bayesian Networks are used to evaluate safety. The literature
also shows that they can be used for security in various configurations to obtain different infor-
mation.

Qin and Lee [98], use Bayesian networks as a predictive tool to anticipate an attacker’s be-
haviour. They propose a set of procedures to transform an attack tree into a Bayesian network
and estimate the probabilities of the nodes of the Bayesian network. Using the network, they
can estimate the likelihood for a node of the network to be a goal of the attacker, based on
observed evidence. Using BN, their results are devoid of any temporal evaluation. Gribaudo et
al. [50] or Dantu et al. [37] also use BN as a mathematical tool to compute probabilities based
on an attack graph.

Bayesian networks are not always derived from attack trees and can also be used directly.
For example, Feng et al. [45] have used Dynamic Bayesian Networks to predict goals when
events, in the form of system calls, happen. Althebyan and Panda [3] use BN in conjunction
with dependency graphs and knowledge graph to anticipate the risk that an attacker might
obtain some confidential information based on a detected attack. However, they amalgamate
risk and success probability so they do not quantify the impact on the system.
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2.3.4 Dependencies models

Unlike safety models that remain topologically close to the system, security models lose the
ability to quickly associate an element of the model with a specific component. Therefore, ap-
plying the consequences of a modification in the system to the associated model is a difficult
task that often results with the analysis of the system being remade from scratch. The quality of
a model does not solely rely on its metrics or features but also on its convenience of use. When
establishing models to evaluate the security of a system, this is a particularly important param-
eter to consider. In order to address this problem, a range of models, that we call dependencies
models, were produced. Their general principle is the same: elementary attacks are described
using a specific language, and then fed to a correlation engine to obtain complete scenarios.
Indeed, from a security expert’s point of view, it is much easier to associate a component with
its vulnerabilities and attacks than to do it on a system scale. By automating the generation of
the scenarios, a lot of resources can be saved and human errors avoided.

These languages describe an attack by its conditions and consequences. The attack cannot
happen unless its conditions are met and, if realised, have the described consequences on the
system. Conditions and consequences can have different names, such as preconditions and
postconditions [36, 87] or prerequisite and consequences [86], but always represent the same
thing. They are typically coupled with a correlation engine that apply the following principle: if
the consequences of an attack A are the conditions of another attack B, then attack B depends
on attack A to be realisable. The correlation engine tries to connect every two pairs of attacks
and then output an attack graph, a more general model than attack trees.

We illustrate this section with LAMBDA and CRIM since they are used in the model pre-
sented in this thesis in Chapters 3, 4 and 5 but we mention other models of this family and
some of their specificities.

LAMBDA [36] is a language used to describe attacks with describing the preconditions and
the postconditions. It uses three languages to model an attack. First, the language L1 used
for the state description corresponds to the logic of predicates. It describes preconditions and
postconditions as conjunctions, disjunctions and negation of predicates. Then, the language
L2, similar to event calculus, describes the transitions to the occurrence of events using logical
operators ¬ and land and the equality operator =. Last, the language L3 describe the combi-
nation of events based on the event calculus algebra. LAMBDA also has the objective to assist
IDS in detecting those attacks. That is why an attack in LAMBDA also has parameters to detail
how the attack can be detected, and to check that it effectively took place. The languages L2

and L3 are also used to describe how to detect the attack and how to verify that it effectively
took place in order to assist intrusion detection.

CRIM [35, 34] is a correlation engine taking LAMBDA models as inputs and outputting com-
plete scenarios. Indeed, LAMBDA is convenient to describe atomic attacks independently form
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attack attack_name(arg1, arg2, ...)
pre: cond ∈ L1
post: cond ∈ L1
scenario: expr ∈ L3

where cond ∈ L2
detection: expr ∈ L3

where cond ∈ L2
verification: expr ∈ L3

where cond ∈ L2

Figure 2.6: Outline of an LAMBDA event

each others, and CRIM then uses them to construct global scenarios. The general principle
behind the construction is that if one of the postconditions of an attack A matches one of the
preconditions of another attack B, then an attacker could perform attack A in order to later
perform attack B. After trying to match every couple of attacks, CRIM produces an attack graph
consisting of all the possible attack paths for an attacker to fulfil his objectives.

However, CRIM is not limited to attack graph generation. CRIM is usable live thanks to a
powerful instantiation system. When an attack is detected by an IDS, for example, an alert can
be raised. CRIM understands alerts in the IDMEF format, and uses them to instantiate the
element in the graph corresponding to the attack detected. Instantiation consists in fixing the
variables of the predicates of the event, and propagate these values to connected events. If two
alerts are raised and the instantiation of the parameters generate conflict, they are considered
as being part of two different attacks. If not, the two alerts are deemed correlated and as
considered as part of a more global attack.

Upon other languages that function with the same principle, we may cite STRIPS and its
evolution Concurrent STRIPS [20] that focuses on the modelling of concurrent attacks.

Ning et al. [86] defined Hyper-alerts in 2002 that describe elementary attacks by means of
facts, prerequisites and consequences. These hyper alerts can then be correlated in an hyper-
alert correlation graph. An initial difference between hyper-alerts and LAMBDA is that hyper-
alerts were, from the beginning, defined to describe elementary attacks to be correlated when
LAMBDA only achieve this aspect with CRIM. But in fine, Hyper-alerts and LAMBDA/CRIM are
very similar in that regard. Noel et al. [87] also have a similar model.

FIGARO [19] is a language developed by EDF1. From a diagnosis point of view, it has the
advantage to embed probabilistic information in each elementary event. FIGARO was initially
developed for safety management but was later adapted to consider security. An event in FI-
GARO is still described in terms of preconditions and postconditions, but is also associated with
a probabilistic distribution that represents the time necessary for the event to be realised if the

1. Électricité de France (EDF) is the third largest electric utility supplier world wide and the first in Europe.
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preconditions are met. A FIGARO model is then fed to a framework named KB3 that can output
various models such as fault trees (see Section 2.2.1) or BDMP (see Section 2.4.1). However,
KB3 is a proprietary framework and little to no information was abled to be gathered about it.

Information available

Dependencies models are very powerful to obtain complete scenarios: they are able to capture
the dependencies between the various components and describe how their associated vulner-
abilities can be combined for an attacker to achieve identified objectives. Their most valuable
output is the generation of a complete attack graph.

Unfortunately, the attack graph output by LAMBDA allows for no quantitative analysis. The
strength of LAMBDA/CRIM is twofold. First, it is designed to be used live and in conjunction with
IDS or similar systems. CRIM is therefore able to correlate events when they are happening and
record any change to the state of the system. Secondly, designing attack graphs is increasingly
difficult with the complexity of the system. Instead of asking security experts to design the whole
tree, with the risk of forgetting dependencies between events and having to redesign most of it
when the system changes, LAMBDA and CRIM offer a simpler process. Experts simply have to
design atomic attacks, and the attack graph is automatically generated.

Limits

Dependencies models were not developed with the objective of enabling quantitative security
analysis. Therefore, few metrics can be extracted from these models. We note, however, that
Kanoun et al. [63] have proposed an extension of LAMBDA/CRIM to compute MTTS, named
Mean Time to Intrusion Objective in the paper. To do so, they transform the attack paths pro-
duced by CRIM in a Markov model where transitions between states correspond to an attacker
achieving an attack step. They limit their analysis to exponential distributions.

Being able to consider several attackers simultaneously in the system is not a common
feature in security models. LAMBDA/CRIM or other models correlating meta-information from
alerts raised by IDS are able to do it, to some extent. However, coordinated attacks are a subset
of those and are not modelled by LAMBDA/CRIM. However, a few models such as Concurrent
STRIPS [20] or LICCAS [112], were designed to address this issue.

2.3.5 Petri nets for security

As presented is section 2.2.3 Petri nets are a very general formalism that can also be used for
security purposes. We do not dwell to much on the use of Petri nets for security since they are
identical to the safety applications. But for the sake of extensiveness, we have to mention that
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generalized stochastic Petri nets can also be used to evaluate the probability of occurrence of
a scenario [116, 72] or MTTS [72].

Petri nets benefit from their general formalism to be able to model seamlessly safety and
security. However, the limits identified for safety are still valid for security, with a scalability
problem and the obligation to consider exponential distributions.

2.3.6 Security models summary

Table 2.2 summarizes information available in security models and useful for diagnosis.

Information Model
Sequential order Attack trees [64, 23]
Attack progress Attack trees [100, 23]
Success probability Attack trees [22, 57, 58, 7, 75]

Bayesian networks [50, 37]
Petri nets [116, 72]

Mean Time To Success Attack trees [7]
Compromise graphs [79]
Nzoukou et al. [88]
Petri nets [72]

Impact Attack trees [10, 75, 22, 57, 58]
Risk Attack trees [123, 22, 57, 75]

Bayesian networks [3]
Countermeasures Attack trees [12, 10]

CRIM [36, 35, 34]

Table 2.2: Summary of information available in safety models for diagnosis

2.4 Hybrid models

In this section, we discuss about models that are explicitly used in the literature to address
situations where both safety and security are considered. Bayesian networks, for example, are
showcased in the literature to model both safety and security but not simultaneously and are
therefore excluded from this section. Indeed, we have evidence that they can provide useful
information for diagnosis, as mentioned in the previous sections, but there is no contribution
on how they handle the interactions safety and security have, which is the focal point of this
section. That is why we focus on the specificities of mixing safety and security and not linger on
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metrics useful for purely safety or security situations. It is obvious that they are still needed for
diagnosis but they are not the subject of the following paragraphs.

Before studying such models that we call "hybrid", we will first develop on the differences
between safety and security modelling,

A major difference between component faults and security attacks is that attacks require
an action from an attacker when component faults happen spontaneously or without premedi-
tation [50]. As a direct consequence, the modelling of events will not be the same, particularly
from a probabilistic point of view. Some similarities still exist but dedicated models generally
exploit specificities of situations they address and become therefore not general enough. EAT
[23], for instance, have a time to live feature not really relevant for component faults. Another
consequence of this difference caused by the spontaneousness of safety events compared to
security events is that safety events are somehow bound to happen, whereas attackers can be
stopped before they can harm the system: the objective of safety is to maximize the availability
of the system when the objective of security is to limit the damages of attackers. An example
of how safety and security can look for adversary objectives was given in section 1.3.1. A sen-
sible safety/security diagnosis model has to acknowledge for that difference of objectives and
reconcile them.

As demonstrated with the example of section 1.3.1, when considered independently, secu-
rity and safety can come up with unacceptable solutions. Even though it is not the responsibility
of the diagnosis to select a response, it is necessary to take them into account to detect and
report those conflicts, and identify the consequences of considered responses to an incident.
And since these countermeasures modify the system, they may have undesired side effects
that open new opportunities for an attacker or decrease the reliability of a system. As such,
they may not simply be considered as terminations of scenarios, like in defence trees, but need
to be fully integrated into them like in LAMBDA/CRIM.

However, we must point out that countermeasures are not the only way safety and security
interact with each other:

• An attacker can obviously want to cause a failure: sending orders to an automate to
disrupt the industrial process and cause a catastrophic failure.

• An expected failure can provide new opportunities to an attacker: a malfunctioning pres-
sure regulation system can be exploited to cause a catastrophic explosion.

• An attack can cause an unplanned failure: an attacker executing a denial of service on
the gateway of a company can disable any remote supervision of the industrial system
and let it shift to a breakdown.

The ramifications of these interactions are potentially infinite, with an attack causing a failure
itself allowing an attack, etc... Therefore, deporting the security modelling as an input to an
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attack tree like extended fault trees do [47] is not sufficient to cover all scenarios. We discuss
about extended fault trees in section 2.4.2. Being able to represent interactions between safety
and security incident is an essential step towards obtaining an efficient diagnosis model.

Indeed, a mission of diagnosis is to find the origin of a problem. If we consider the example
of section 1.3.1 where an attacker would destroy centrifuges. The outcome of the scenario is the
destruction of a means of production and would be handled by the safety supervision. However,
the origin of the incident is a security issue. In today’s architectures, safety and security being
supervised separately, this discovery of the origin of this attack is not an automatic process.
Diagnosis models have to provide a means to achieve that and it goes with representing these
interactions between safety and security.

The required metrics for safety/security diagnosis are the same as the ones defined in the
two previous sections 2.2 and 2.3. Some of them are defined for a specific context but have
a counterpart in the other, as seen in the introduction to section 2.3. For example, the MTTF
of a safety events can be mixed with the MTTS of a security event to obtain the mean time
to realisation of a combination of the two of them. These metrics are therefore homogenous,
since they both represent a duration. However, determining MTTF for safety is done through
return on experience that provide with a high level of confidence whereas MTTC for security
is often appreciated by security experts and subject to discussion (hence Nzoukou et al. [88]).
Therefore, mixing MTTC with MTTF, albeit mathematically sound, will dilute the confidence one
have in the values output by the system. As a result, one must be cautious and check the
rationality of mixing two metrics that seam similar. For instance, the impact is defined both for
safety and for security but some model measure it from a system point of view and others from
an attacker point of view. Mixing both will result in modelling and diagnosis errors.

2.4.1 Boolean-logic Driven Markov Processes

Boolean-logic Driven Markov Processes (BDMP) were introduced in 2003 by Bouissou and
Bon [17]. It was presented as a synthetic way to model complex systems but still keeping the
mathematical properties inherited from Markov processes. They were initially designed as a
tool to model safety and later adopted to security [93].

BDMP are a powerful graphical model with an underlying probabilistic component. The
graphical model is similar to a fault tree with leaves consisting of events, other nodes being
logical gates and the root also corresponds to the undesired events. However, a new graphical
element is added: triggers. Triggers are arrows that point from an origin node to a destination
node. Its meaning is that the event, or combination of events, represented by the destination
node, cannot happen unless the origin node has been realised. It is a way of introducing se-
quence modelling and dependencies between events. Figure 2.7 is an example of a BDMP.

Each leaf corresponds to an event that can be in several modes and each mode can be
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Figure 2.7: An example of a BDMP

in several states. Each mode is associated with a Markov process. Probabilistic distribution
functions, called transfer functions, are used to describe how an event can switch between
modes. A more thorough definition was given by Pietre-Cambacedes and Bouissou, 2010 [91].
This approach enables the modelling of a potential repairability of the component represented
by a transfer function from a damaged mode to a functional mode.

BDMP are used to analyse the dependability of modelled systems. They are used to com-
pute the general probability of occurrence of a scenario as well as the importance of each fault,
or atomic attack, in term of contribution to the general failure. The initial contribution stands
in a simpler and more readable modelling of Markov processes but still keeping their powerful
mathematical outputs. In 2010, with the addition of security [93], it became one of the few mod-
els to propose a semantics for representing both safety and security events. Kriaa et al., 2014
[66] showcases how BDMP can be used to measure the influence of security vulnerabilities in
an industrial system.

Contributions to diagnosis

BDMP describe how individual events interact with each others to form complete scenarios.
They have an explicit way to describe these logical interactions but have also a framework to
express sequential temporal dependencies between events. Therefore, they are not only able to
provide usual structural information such as minimal cut sets [17] but are also able to consider
sequences of events when analysing the past or generate hypothesis on the future.

From a probabilistic point of view, BDMP are capable of computing usual metrics such
as reliability or MTTF [17, 93, 66], meaning that they can provide on demand probabilistic
evaluation of future events and of how much time it will take to realise some sequences of
events. BDMP are able to measure the contribution of each event to the overall probability of
success [17, 93, 66]. BDMP are therefore able to compute the likelihood of occurrence of past
or future events, raising suspicion if relevant, as well as giving the most probable explanation
from a probabilistic point of view.
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Limits

BDMP cannot model every type of scenario. In many cases, restoring a faulty component to
a functioning state ends up, after eventual propagation, to a functioning state of the system.
However, in some cases such as a knowledge gain by an attacker, providing a countermeasure
to the only abnormal component of the system does not prevent the scenario from going for-
ward. To our comprehension and experimentations of the model, the way the triggers and the
process selectors function mean that such situation cannot be handled by BDMP.

BDMP do not have an embedded metrics for the impact of events or sequences of events
on the system and are therefore unable to compute risk.

On more general aspects, even though BDMP require little to no other knowledge than the
one already acquired by safety experts, they are quite tedious to construct and suffer from a
poor adaptability of the model in case of a modification of the system. Automatic generation of
BDMP are possible using the FIGARO language [19] and the KB3 platform.

Generalized Boolean-logic Driven Markov Processes

Generalized Boolean-logic Driven Markov Processes (GBDMP) are a recent extension of BDMP
[92]. They aim at addressing three limits identified in BDMP: triggers are too restrictive in the
way components interact with each others, components can only have two modes while an
overclocked or degraded mode can sometimes be relevant, and triggers never fail. The BDMP
framework is modified to include two new elements: switches and Moore machines. Switches
connect several nodes and contain a Moore machine that outputs a reconfiguration strategy
that depends on the state of the input nodes.

GBDMP are used to provide a means to evaluate the impact of various reconfiguration
strategies and the effects of a potential failure in these reconfigurations. This is achieved at the
cost of a model even more complex than BDMP.

2.4.2 Integration of fault trees and attack trees

Extended Fault Trees

Fovino et al. [47] mixed FT and AT, creating extended fault trees (EFT). Their reasoning is that
the top event of an attack tree corresponds to an undesired event, similar to a basic event in
a fault tree. Therefore, they basically plug the attack tree at the bottom of the fault tree, where
the realisation of the attack objective could disrupt the system. To do so, they first adapt the
attack tree so its structure complies with the fault tree framework and then connect it to the
corresponding event or logical gate of the FT.
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EFT represent an ingenious way to model both security and safety at the same time, but
keeping the analysis tools of fault trees. However, they also inherit the same limits and are not
able to overcome them (no time modelling, etc.).

Attack-Fault Trees

Attack-Fault Trees (AFT) were invented by Kumar and Stoelinga in 2017 [67]. Their proposal is
to decompose an undesired event in smaller sub-goals until reaching basic component failures,
basic attack steps or instant failures. The subgoals are described using logical gates taken from
dynamic fault trees and attack trees such as the AND, OR, SAND, VOT(k)/n, PAND, FDEP and
SPARE gates. In a way, attack-fault trees can be seen as a mix between fault trees and attack
trees. The resulting model is then translated in several stochastic timed automata to compute
some identified safety-security metrics: probability of disruption, expected cost of malicious
disruption and mean-time to malicious disruption.

In their mixing of security and safety events, Kumar and Stoelinga are conscious to capture
specificities of each events, much like BDMP do it. Where BDMP associate different Markov
processes with each type of event, AFT do the same with stochastic timed automata. As such,
they present a rather reasonable way of mixing safety events and security events. However,
they still suffer from the inability to consider other probability distributions than the exponential
one. Indeed, as we saw in section 2.2.2 other distributions are more suited to represent some
types of events [114]. They also do not consider countermeasures or events that are neither
failure nor attacks. Indeed, such events can provide meaningful context by tracking a relevant
change in the system.

2.4.3 Hybrid models summary

Table 2.3 summarizes information available in hybrid models and useful for diagnosis.
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Information Model
Cut sets BDMP [17, 93]
Sequential order BDMP [17, 93]

Extended fault trees [47]
Attack-fault trees [67]

Success probability BDMP [17, 93]
Extended fault trees [47]
Attack-fault trees [67]

Mean Time To Success/Failure BDMP [17, 93]
Attack-fault trees [67]

Table 2.3: Summary of information available in safety models for diagnosis

2.5 Classifying models based on their contributions to diagnosis

In this section we propose a taxonomy to characterize several capacities of models and dis-
criminate them either from their ability to be used live during an incident or from the information
they provide. Being used live encompasses the categories adaptative and real-time. Provided
information considers information inferred from the incidents with categories hybrid, descriptive,
explicative, evaluative and remediative.

2.5.1 Description of categories

Hybrid A model belongs to the hybrid category if it is designed to model both safety and
security events. The literature has to explicitly showcase the use of the model in hybrid contexts;
we do not simply assume such capacity.

Descriptive A model is said descriptive when it explicitly decomposes a global scenario in
several elementary events, and provide a logical structure to describe in which way these ele-
mentary events compose the global scenario. For the most simple cases, when an event can
only be in a binary state, that is realised or not, a Boolean expression would be extractable from
the model. A descriptive model can therefore provide information about events to monitor and
describe the state of the system when alerts are raised. The vast majority of models presented
in this thesis are descriptive.

Explicative An explicative model considers the temporal order in which elements have to
take place. It does not necessarily quantify the time but it is at least able to organise events
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relatively to each others. This is an important feature for several steps of diagnosis. First, dur-
ing the correlation of incidents, it allows to know which ones are supposed to happen before
others: alerts being raised in the wrong order could for example mean that they are actually not
related. Then, when performing explanation, knowing the order in which events arrive will help
to investigate the origin of the incident, as well as generate hypothesises for future events.

Evaluative A model is considered evaluative if it is able to compute either a probability of
occurrence or the impact of an event or a series of events over a period of time. It is usually
done by associating each atomic event with a probability distribution function, failure rates or
costs, and then using recombination formulas to obtain the compositions of events. The perks
of an evaluative model are that it is able to provide a probabilistic evaluation of how much time
is available to deploy a countermeasure or how much is at stake. Moreover, when an event
occurs, it is able to compute the probability that this event should have happened. When that
probability is unreasonably low, it might point out a suspicious behaviour. This is reasoning
beyond the model but evaluative models have the ability to raise such issues.

Remediative A remediative model considers countermeasures as part of the scenario. This
is particularly useful for scenarios mixing security and safety because they can be antagonistic
[94]. Therefore, knowing the side effects of a safety response on the security, and vice versa,
might cause system administrators to reconsider such deployment. In any case, this is valuable
information for the diagnosis.

Adaptative Adaptative models are evaluative models with the ability to adjust probabilities
based on observed events. It means both updating the probabilities based on events that have
already happened, and taking into account the elapsed time for unrealised events. Evaluative
models using failure rates usually lack this sort of flexibility necessary to provide the most
practical information.

Real-time Establishing a link between an event and an alert raised by a SIEM2, a SCADA
or any other agent is fundamental to keep track of events that have occurred in the system.
But being able to do it live greatly increases the value of a diagnosis model in an environment
where reactivity and swiftness are key. Real-time models are able to track occurred events in
order to update their picture of the system and provide up-to-data analysis. If the model is also
remediative, it should also be able to monitor the deployment of countermeasures.

2. Security Information and Event Management, it is a system responsible for handling security events in an
information system.
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2.5.2 Classification of studied models

Models described in Sections 3, 4 and 5 are added to their respective categories as displayed
on Table 2.4. For the sake of conciseness, when all of the variations of a particular model
pertain to the same category, only the parent model is listed. For example, all the variations of
attack trees reviewed are descriptive: only "attack trees" are listed in table 2.4.

Category Description Models

Hybrid Able to consider both safety and
security events

Bayesian networks [89]
BDMP [17, 93]
Extended fault trees [47]

Descriptive

Decomposing a high-level event in
elementary ones and making
explicit logical connections
between the elementary events
that lead to the high-level one

Fault Trees [120]
Bayesian networks [89]
Attack trees [21]
LAMBDA/CRIM [36, 35, 34]
Nzoukou et al. [88]
BDMP [17, 93]
Extended fault trees [47]

Explicative

Able to provide an explanation on
what events have taken place,
and in what order, as well as
conjecturing on future events and
probable future outcomes

Dynamic fault trees [41]
Dynamic fault trees for security [64]
Extended attack trees [23]
Time dependant attack trees [7]
LAMBDA/CRIM [36, 35, 34]
BDMP [17, 93]

Evaluative

Able to provide a probabilistic
evaluation of each atomic event,
when described, and/or the
occurrence probability of the top
event

Fault trees [120]
Bayesian networks [89]
Advanced attack trees [100]
Time dependant attack trees [7]
Defense trees [12]
Nzoukou et al. [88]
BDMP [17, 93]
Extended fault trees [47]

Remediative
Ability to consider
countermeasures and their
consequences

Defense trees [12]
LAMBDA/CRIM [36, 35, 34]

Adaptative Can update the variable of the
model based on observation

LAMBDA/CRIM [36, 35, 34]
Nzoukou et al. [88]

Real-time

With embedded capacities to
catch and analyse alerts raised by
agents such as SCADA, IDS or
SIEM

Extended attack trees [23]
LAMBDA/CRIM [36, 35, 34]

Table 2.4: Capabilities of the models

Table 2.4 illustrates that very few models are suited for a live analysis of a problem. This
is probably reinforced by the fact that there is no standard for safety alert exchanged between
agents, unlike security where the IDMEF format exists [39]. Indeed, safety alerts are always
raised and handled by the SCADA. In the rare cases where the SCADA have to spread this
information, a custom mechanism has to be created. This is a major issue that need to be
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addressed for diagnosis model to use information contained in the SCADA.
We also notice that the consideration of countermeasures is not deemed important in most

existing models. We have however pointed out in Sections 1 and 2 that they can have important
consequences on the system and, therefore, radically change the selected response to an
incident.

To conclude this chapter, we begin by remembering that legacy diagnosis questions and
techniques are not suited for cyber-physical systems. We define diagnosis in a safety-security
context as "the process of deducing the most likely mechanism that caused an observed con-
dition, and identifying the future outcome". Based on this definition, we identify seven functions
that have to be covered by a diagnosis model: incident detection, incident correlation, explana-
tion, risk evaluation, likelihood evaluation, countermeasures and on-line.

Based on this observation, we have analysed existing models not necessarily oriented to-
wards legacy diagnosis but rather providing relevant and useful information for diagnosis in a
safety security context. Before dwelling on the models, we first illustrate on practical examples
what information is sought after and how the models can provide it. After that analysis, we
classify the models, according to their contributions to diagnosis, throughout seven categories:
hybrid, descriptive, explicative, evaluative, remediative, adaptative and real-time.

First, we can deduce from our classification that none of the analysed model fill all of the
functionalities previously identified. However, we acknowledge that the needs of a diagnosis
model are contextual. We have established this classification with the most general approach
of the problem. Yet, for specific needs, some functionalities might not be needed and a model
would not need to pertain to all categories. Therefore, our classification can still be used to
identify both the needs of a specific context and a suitable model.

We must nonetheless point out that there exists relatively few models that consider both
safety and security, which limits the pool of available models for safety-security diagnosis. The
literature shows that works are being conducted to define new models or to adapt existing ones.
However, the process of including safety events in a security model, and vice-versa, is far from
being trivial, and studies are being conducted to address this issue.
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CHAPTER 3

PROS2E: A NEW PROBABILISTIC

REPRESENTATION OF EVENTS
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3.1 Introduction

This chapter presents the first iteration of PROS2E, a Probabilistic Representation Of Safety
and Security Events. It is a first approach to providing information for diagnosis. PROS2E is
used to model individual events from a logic and probabilistic point of view. It is more designed
as a proof of concept than a practical model but constitutes a necessary step to explore the
whys and wherefores of diagnosis as well as lay the mathematical foundations on which dwells
the second version of PROS2E, whose Chapters 4 and 5 are dedicated to. Of course, this
model has to respect the same constraints that we identified in the previous chapters and that
we recall as a preamble.

Concerning its capacities, a good diagnosis model should be able to provide several metrics
such as Mean Time To Success/Failure, Success Probability, Likelihood, etc. It should be able
to be used live and process new information in real-time in order to keep track of ongoing situ-
ations. It should have advanced modelling capabilities in order to consider complex scenarios,
by addressing the side effects of counter measures for example. But the functionalities of the
model are not the only criterion to consider. Indeed, we want to provide with a model that can be
easily handled by system experts. As such, we have added the constraint that it should reuse
as much available knowledge as possible, and not call for unrealistic or unorthodox methods.
Moreover, since cyber-physical systems tend to evolve at a much higher rate than traditional
industrial systems, a good diagnosis model should consider this and offer a simple way for sys-
tem experts to update an existing model. This first version of PROS2E presented in this chapter
does not have the advanced modelling capabilities yet, this will come in the next chapter. But
we carefully designed PROS2E to cope with the rest of the constraints listed here, as well as
having an architecture that can be easily adapted to enhance its functionalities if required.

PROS2E is adapted from LAMBDA and CRIM, whose functions that are relevant for our
model are presented. This chapter also contains the new probabilistic layer of the model, along
with the corresponding proofs. It is concluded by a use case that presents various metrics that
can be obtained, and how they can be used for diagnosis.

3.2 Preliminaries: logical dependencies

As we stated in the introduction of this chapter, we use the methodology of dependencies mod-
els in order to obtain a representation of the events that can occur in the system, and particularly
the one of LAMBDA/CRIM [36, 35, 34]. LAMBDA/CRIM was designed with a security purpose,
but can be adapted to represent more general event. This section presents the functionalities
of LAMBDA/CRIM that were reused for PROS2E, namely the preconditions and postconditions,
the semi-explicit correlation of CRIM, and the detection and alert management.

62



3.2.1 Conditions and consequences

LAMBDA is a language that models attacks using the conditions for them to be achievable
and their consequences if performed. An event being defined as a modification in the state
of the system, it still happens under certain conditions and have an impact on the system.
The general formalism of LAMBDA can easily be extended to safety and security events. The
conditions and consequences are expressed using first order logic, and we reuse its vocabulary
in the upcoming paragraphs.

The state of the system, or system state, is a list of variables. These variables can be
checked or allocated using predicates. Saying that an event can happen if the event is in a spe-
cific state is therefore equivalent as saying that in can happen if a set of variables meet certain
conditions. The conditions on these variables are listed in the preconditions set. Similarly, the
consequences on the system can also be unequivocally expressed using a postconditions set.
Both preconditions and postconditions sets are predicates combined with the logical connec-
tives ∧, ∨ and ¬.

3.2.2 Semi-explicit correlation to obtain scenarios

CRIM has a correlation engine that is used to obtain complete scenarios from LAMBDA models.
It draws links from postconditions of a LAMBDA model to the preconditions of another. The idea
is that if the consequences of an event are also the conditions for another one, the realisation
of the first event might trigger the second. It is therefore relevant to consider that there are
sequential dependencies between the two events.

To express this formally, let us consider two LAMBDA models A and B. Let Post(A) and
Pre(B) respectively the postcondition set of A and precondition set of B. Post(A) and Pre(B)
are sets of predicates. A and B are said to be correlated if there exists predicates predA in
Post(A) and predB in Pre(B) such that predA and predB are unifiable through a most general
unifier (mgu) θ.

Two correlated events correspond to two events that can potentially happen in sequence.
They can therefore be represented in a directed graph to visually express this sequentiality, or
dependency, for example.

Using this principle, by trying to correlate every two pairs of LAMBDA models, CRIM is able
to obtain the dependencies between every pair of events, and thus obtain complete scenarios
out of atomically modelled events.

3.2.3 Raising alerts for an on-line use

CRIM is not only able to generate scenarios but is also able to process alerts. It is designed to
work with an IDS or a SIEM, software able to generate and centralise alerts. An alert contains
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information that can be used by CRIM to instantiate a LAMBDA model. An instantiated LAMBDA
model is a model whose variables in the predicates are allocated. It corresponds to an event
that has occurred.

A LAMBDA model is generally associated with an alert number. This number corresponds to
an alert that can be raised by an agent in the system. When it is raised, the alert can be captured
by CRIM and its metainformation extracted to instantiate a corresponding alert. When two alerts
corresponding to correlated LAMBDA models are raised, CRIM checks with the mgu θ that their
instantiated variables are coherent. If it is the case, the two alerts are part of the same ongoing
scenario. If not, CRIM considers two scenarios occurring in parallel: it may correspond to two
attackers performing independent attacks, for example.

3.2.4 Advantages of this approach

The first major reason for using LAMBDA/CRIM is its correlation engine. For an expert, not hav-
ing to generate complete scenarios by themselves like they would do with attack of fault trees
is a major time-saver. Indeed, when the topology of the event model does not match the one
of the system, it can be extremely tedious to update a model after even the slightest change
in the system. These situations actually often result in a new modelling from scratch. By defin-
ing atomic events and letting CRIM do the rest of the correlation, experts can be much more
efficient. Moreover, it provides a common language for safety, security, and system experts to
interact. Having several specialities that work on the same complex model can be challenging
and using LAMBDA/CRIM can simplify that.

Another reason is the instantiation. With it, CRIM is able to track the occurring of events
in the system. It provides us with a photography of the system at any given time, which is
fundamental for an on-line use. And as seen previously, this is an important aspect of diagnosis.

Finally, LAMBDA/CRIM is adaptable to our problem. To perform the correlation and the in-
stantiation, CRIM uses the preconditions and postconditions, and an alert number of a LAMBDA
model. LAMBDA is a more complex language but the aforementioned parts of the language are
sufficient to exploit the capacities of CRIM, and are relevant to model safety and security events
instead of just attacks.

At this point, we have the tools to model and track the realisation of events in a system, but
we need to reason about the probabilities and the time of realisation of the events in order to
obtain important metrics for diagnosis. This is the object of the next section.
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3.3 Preliminaries: Probabilistic theory

Thanks to LAMBDA and CRIM, we are able to generate complete scenarios out of atomic
events. We now need to obtain a probabilistic evaluation about the realisation of events. Once
again, using atomic events is a huge benefit: it is much easier for an expert to provide accurate
information about atomic events than a combination of several of them. We therefore exploit
this by providing a means to associate atomic events with this probabilistic measure and then
establish the mathematical tools to propagate this measure to complete scenarios.

3.3.1 Atomically modelling the time

Risk analysis models often provide with a means to provide information about risk. Fault trees,
for example, associate each failure with a failure rate. Some versions of attack trees do the
same. Petri nets have a similar technique to probabilistically represent the failure of a com-
ponent. However, these approaches of using failure rates are incompatible with diagnosis: the
failure rates are established for a predetermined timespan. For a live process such as diagno-
sis, these timespans represent a problem: what happens when we want to start diagnosing in
the middle of a timespan? We have adopted a different approach to overcome this problem. But
these risk analysis methods tell us that experts are used to provide failure rates in their models
and the solution we propose remains familiar with their usual work processes.

Instead of a failure rate, we associate a probabilistic distribution function (PDF) with each
event. More formally, each event is associated with a continuous random variable that repre-
sents the time at which the event is realised. This random variable is described by a PDF that is
to be determined by the experts modelling the system. There is no limitations on the PDF that
can be used: they can be standard ones (gaussian, exponential, etc) or totally custom ones.
We discuss about the choice of the PDF in section 3.3.4 but let us focus on the mathematical
theory for now.

Using continuous random variables instead of failure rates gives us more flexibility and al-
lows us for richer computations. Indeed, we have mathematical functions that we can evaluate,
integrate, combine with each other in order to obtain information. The computations are not
done through stochastic processes such as Monte-Carlo simulations, but provide exact mathe-
matical results which are obviously more accurate.

Having these functions for each event is the first step but we need to obtain the PDF for
any combination of events, including complete scenarios, for them to be practical. This is the
subject of the following paragraphs.
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3.3.2 Propagating the probability

Once the logical dependencies have been established between the different events and a sce-
nario has been selected, its PDF can be computed. To do so, the local PDF associated with
each event needs to be recombined in order to express the global PDF of the scenario. There
exist three different situations: the sequence, the AND, and the OR.

On a side note, we will assume that the random variables associated with two events are
always independent. It means that the time taken to realise one event has no influence on the
time taken to realise another event.

The Sequence

Let us consider that events A and B happen in sequence. C corresponds to “A happens then B
happens”. C is not a LAMBDA event. It is just an abstraction used to compute the PDF associ-
ated to a set of events. It has no meaning outside of the scope of the probabilistic calculations.
A, B, and C are respectively associated with the PDF fA, fB, and fC . The probability that C
happens in a given timespan I given that nothing has happened yet is actually the probability
that both A and B happen in I. This can be written:

fC : R→ R

x 7→
∫ +∞

−∞
fA(t)fB(x− t)dt

In other words, fC is the convolution of fA and fB: fC = fA ∗ fB. Figure 3.1 represents the
equivalent situation.

A B C

Figure 3.1: Events A and B happening in sequence and their equivalence C

This can also be expressed in a more "probabilistic" way. C is the sum of A and B: the
time necessary for C to be realised is the sum of the times for A and B to be realised. The
PDF associated with the sum of two independent random variables is the convolution of their
respective PDF. A and B being independent, hence the result.

The AND

Let us consider that both events A and B need to happen for C to happen. A and B are re-
spectively associated with the PDF fA and fB, the CDF FA and FB (the cumulative distribution
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function evaluated at x is the probability that the event will be realised at x), and with random
variables X and Y . The probability that A and B happen in a given timespan I can therefore be
written P (X ∈ I, Y ∈ I). X and Y being independent, we have:

P (X ∈ I, Y ∈ I) = P (X ∈ I)P (Y ∈ I)

If we call g the PDF associated with the event “A and B has happened”, we obtain:

g = fAFB + FAfB

Figure 3.2 represents the equivalent situation.

A

B

C D C

Figure 3.2: An AND gate and its equivalence

The OR

The case of the OR is similar to the one of the AND, with the difference that the AND is the set
intersection when the OR is the set union. The resulting PDF, using the same notations as the
AND case is:

g = fA + fB − fAFB − FAfB

Figure 3.3 represents the equivalent event.

A

B

C D C

Figure 3.3: An OR gate and its equivalence

The nature of the calculus used to obtain the PDF corresponding to the three situations
makes it so that they can be done in any order. For instance, the PDF associated with (Aor B) or C
is the same as Aor (B or C).
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A

B

C

Figure 3.4: Situation output by CRIM

A

B

C

Figure 3.5: Equivalence of Figure 3.4

A

B

C

Figure 3.6: Situation output by CRIM

A C

Figure 3.7: Equivalence of Figure 3.6

3.3.3 Probabilistic Equivalences

Depending on the pre/postconditions in the events, CRIM might output a graph such as in figure
3.4 where an event C can only happen after both B and A have happened, and B can only
happen after A has happened.

In terms of order of occurrence of the events, this situation is equivalent to the one rep-
resented in figure 3.5, where C can only happen after B that can also only happen after A.
The situation is then a simple sequence that can be computed using the formulas of paragraph
3.3.2.

Another situation is represented in figure 3.6 where an event C can only happen after either
B or A has happened, and B can only happen after A has happened.

The occurrence of B has no consequence whatsoever on C and therefore can be removed
from the probabilistic calculations, as represented in the equivalent graph in figure 3.7.

These equivalences are only to be used in the probabilistic calculations of the scenarios. To
have the best understanding of the logical dependencies between the events, the event graph
should be kept as is.

3.3.4 Obtaining relevant values for the distributions

Having a mathematical model is one thing but it being practical is another one. The strength of
our theory revolves around the probabilistic distribution functions and it is therefore legitimate
to wonder how convenient it is to provide these PDF. This is the discussion of this paragraph.

Establishing a PDF for an event might seem like a complex task when it actually is not. Most
standard PDF are defined using parameters. These parameters have a "physical" meaning.
The exponential distribution is defined by its parameter λ which is actually the inverse of its
expected value. The normal distribution (or Gaussian) is defined by its expected value µ and its
variance σ2. Establishing the PDF for a given event is actually answering two questions: what
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is the most appropriate distribution and what are its parameters.

Concerning the distribution to use, it depends generally on the nature of the event. For
example, a Weibull distribution might be well suited for mechanical failures when an electro-
magnetic failure would correspond to an exponential distribution. Indeed, a mechanical failure
happens after the wear of a component and would tend to be more common during a specific
timeframe. Conversely, an electromagnetic failure would be more unpredictable and not based
on the wear of the component: the exponential distribution being memoryless, it would seem
to be more suited for that sort of failure. Likewise, concerning attacks, knowing that an attacker
has not performed an attack yet does not give information about its future realisation: the expo-
nential distribution is once again a good candidate. Using PDF to model failures being a rather
unusual method, the literature is scarce on the matter but some studies can still be found [114].
In the end, it remains the choice of the expert who models the event but empirical studies and
experience allow to narrow down the realistic possibilities.

Parameters are statistical measures. As such, they can easily be obtained empirically but
this stresses out a great divide between safety and security. It is quite easy to obtain reliable
values for failures and accidents since the return on experience is important for them. This is
most of the time how the failure rates for usual risk analysis methods are determined. Getting
the parameters for attacks is a much trickier problem because there are much more parameters
to consider. For example, the level of the attackers, their means, or their motives are as many
factors that influence the time necessary for an attack to be performed. Studies such as REF
have been conducted to provide with a reliable way to estimate these parameters but the liter-
ature is not mature yet. It is however encouraging to see that this problem has been identified
and that efforts are being made to solve it. Nevertheless, for now, estimating parameters for
attacks is mostly an arbitrary decision by the security expert.

3.3.5 Recap

In this section, we have presented a probabilistic theory that can be used to model the time
necessary for an event to occur. We have established the practicability of this method that
calls on knowledge already used by risk analysis methods. It requires an expert to associate
a probability distribution function with each atomic event and the model would take care of the
recombination to provide PDF for composition of events, including complete scenarios. The
next section describes PROS2E, the event model built with this probabilistic theory and the
logical one of section 3.2.
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3.4 PROS2E

In this section, we present PROS2E, the event model that reuses the theoretical principles
previously described in this chapter.

3.4.1 The event model

An event is characterised by its attributes: a set of preconditions, a set of postconditions, the
nature of the event, a realisation process and a detection process.

The preconditions set and the postconditions set are inherited from LAMBDA. They are
composed of predicates combined with the logical connectives ∧, ∨ and ¬. The former set is
used to describe the value that the variables of the system state must have for the event to be
feasible. The later set is used to describe the value that the variables of the system state will
have after the event has occurred.

The nature of the events is a label used to quickly know the type of the event: so far, we
only used safety and security but any other type of events could potentially be added, such as
countermeasures or regular events whose occurrence is part of the industrial process.

We define the realisation process as a probability distribution function (pdf). It is used
to describe the evolution of the occurrence probability of the event over time, given that all
of the conditions for the event to happen are met. Any pdf can be used, even custom ones.
This is where the difference in modelling security and safety events lies in our model. Indeed,
their realisation process is different and is represented, in this model through the pdf. With this
approach, the model can therefore acknowledge for any kind of propagation: when modelling a
specific event, one simply has to use its most appropriate pdf.

The detection process is used to link the modelled event to an alert A collected by the
SCADA or SIEM system. It is used to inform the model that the event has been realised in
order to update the system state and trigger instantiation of alert A.

Figure 3.8 gives the model of the failure of a hard-drive. The pdf associated with the event
is a Weibull distribution. The distributions and their parameters are chosen by the experts mod-
elling the system, but can be derived from sizeable return on experience. For instance, when
it comes to hard-drive failures, [114] has determined that the Weibull distribution is much more
suited than the exponential distribution. Modelling this event with a pdf allows us to compute
the mean time to failure of the event (5 years) or the probability of failure after ninety days
(7.52× 10−9) for instance.

After several atomic events have been modelled, CRIM can be used to obtain complete
scenarios and display them in an event graph such as the one of figure 3.9, taken from the use
case of the following section.
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Name Hard-drive failure
Preconditions ¬failed(HardDrive)
Postconditions failed(HardDrive)
Nature Safety

Realisation
Weibull distribution
(lambda = 5.516, k = 4)

Detection
Server operating system
raises alert

Figure 3.8: Hard-drive failure

A

B C D

E F G

H

Figure 3.9: Scenario output by CRIM

3.4.2 Obtainable information

Given an event, or a set of events, associated with the random variable X and the pdf f , the
Mean Time To Failure, Mean Time To Success or Mean Time To Realisation of this event is
the expected value of X:

E[X] =
∫ +∞

−∞
xf(x)dx

Given an event, or a set of events, associated with the random variable X and the pdf f , the
Success probability between t0 and t is the difference of the cdf between these two times:

P (X ∈ [t0, t1]) = F (t0)− F (t1) =
∫ t1

t0
f(x)dx

In practice, t0 is generally the current time when the calculation is done.

The likelihood of an event, or a set of events is computed the same way as the Success
probability, but with t0 = −∞.

Cut sets can be computed with the topology of the event graph output by CRIM. They
can stress minimal sets of events to closely monitor, as well as reduce computation time by
reasoning on a smaller subset of events.
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3.5 An example on how to use PROS2E

In this section we give a more practical sense of the model and metrics we have previously
discussed. We make use of a study case to illustrate more concretely how PROS2E and its
metrics can be used to provide an explanation when several events occur in a system.

3.5.1 Taum Sauk Hydroelectric Power Station

The case study is based on an actual power station: Taum Sauk Hydroelectric Power Station.
An accident occurred there in 2005 that led to the destruction of a part of the power station
[101, 115, 59]. This accident was purely due to safety issues but could have possibly been
triggered by an attacker. The Taum Sauk Hydroelectric Power Station has previously been
used to showcase the use of BDMP on scenarios that mix safety and security [66].

The Taum Sauk power station is primarily composed of an upper reservoir, a lower reservoir,
a pump and a turbine. The reservoirs are filled with water. During low energy demand periods,
typically at night, the system pumps water from the lower reservoir to the upper one, storing
potential energy. Reciprocally, during high energy demand periods, water is allowed to flow
back from the upper reservoir to the lower one, driving the turbine and producing electricity.

Safety mechanisms were designed to prevent the upper reservoir from overflowing, but they
failed in December 2005 when water overtopped the upper reservoir, eroding the relief upon
which it was built and subsequently causing a massive breach in the dam.

The system architecture supposed to prevent the upper reservoir from overflowing is the
following. Three Druck pressure transducers, two Warrick sensors and two PLCs (the Common
PLC and the Upper Reservoir PLC). The Druck pressure transducers convert pressure into
water level. The three values output by the Druck transducers are transmitted to both PLCs, are
averaged and then used to trigger a normal smooth automatic shut down of the operations if
needed. If for whatever reason the operations are not shut down and the water level continues
to rise, the Warrick sensors are activated. They send a signal to the PLCs (each sensor is
connected to a different PLC) to trigger a hard emergency stop.

3.5.2 The scenario

Following the methodology of our model, in order to get scenarios, we first describe all of the
elementary attacks or failures. We present two elementary events with figures 3.10 and 3.11:
an intruder gaining access to the OCNet and an attacker compromising the communication link
between the Common PLC and the Pump. Data about all of the events are summarized in table
3.1.
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Name Access Operator Control Network
Preconditions encryption(OC_Net, null)
Postconditions remoteAccess(A, OC_Net)
Nature attack
Realisation exponential distribution (1/λ = 3years)
Detection IDS detects unknown IP address

Figure 3.10: Access to the Operator Control Network

Name
Compromise Common PLC
communication link

Preconditions
remoteAccess(A, OC_Net) &
vulnerable(Common_PLC, cve-2004-1234)

Postconditions manInTheMiddle(A, Common_PLC, Pump)
Nature attack
Realisation exponential distribution (1/λ = 10min)
Detection IDS detects ARP spoofing

Figure 3.11: Compromising of the communication link
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Ref Description PDF Nature
A1 Access OC net Exponential(1/λ = 3y) Attack

A2

Compromise
Common_PLC
communication link

Exponential(1/λ = 8min) Attack

A3
Compromise UR_PLC
communication link

Exponential(1/λ = 8min) Attack

A4
Compromise OCC
communication link

Exponential(1/λ = 10min) Attack

A5
Send false order
(Common_PLC)

Exponential(1/λ = 5min) Attack

A6 Send false order (UR_PLC) Exponential(1/λ = 5min) Attack
A7 Send false order (OCC) Exponential(1/λ = 7min) Attack

A8
Link with pump
compromised

Dirac δ0 Attack

B1 Warrick_2 failure Exponential(1/λ = 5y) Accident
B2 Common_PLC failure Exponential(1/λ = 15y) Accident
B3 Drucks failure Exponential(1/λ = 5y) Accident
B4 UR_PLC failure Exponential(1/λ = 15y) Accident
B5 Warrick_1 failure Exponential(1/λ = 5y) Accident

B6
Common_PLC and
sensors failure

Dirac δ0 Accident

B7 Both PLC failure Dirac δ0 Accident
B8 Water level sensor failure Dirac δ0 Accident

B9
UR_PLC and sensors
failure

Dirac δ0 Accident

O Pump does not stop Dirac δ0 Objective

Table 3.1: Events in the graph

After defining all of the events, they are fed to the correlation engine that outputs scenarios.
Several scenarios can lead to the failure of the upper reservoir. For the sake of providing a
clear and concise example, we have selected one displayed on figure 3.12. It is focused on
overtopping the upper reservoir. It can be done by an attacker intercepting all stop orders sent
to the pump while it is active. Three sources can produce the stop orders : the Common PLC,
the Upper Reservoir PLC and the Operator Control Center. All of the orders can be intercepted
if one compromises the communication links between the order sources and the pump. Finally,
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all of the communication links can be compromised if one has access to the Operator Control
Network. For reference, all of the probability distributions are chosen exponential, except for
the event “Pump does not stop” which is a Dirac delta function. The upper reservoir can also
fail if the PLCs fail, if both the Druck and Warrick sensors fail, or if the Druck sensors and a
combination of a Warrick sensor and a PLC fail.

A1

A2 A3 A4

A5 A6 A7

A8

B1 B2 B3 B4 B5

B6 B7 B8 B9

O

Objective Attack Accident

Figure 3.12: Scenario output by CRIM

Let us first consider a case where no alerts have been raised yet. Therefore, the considered
graph is the one presented in Figure 3.12. By recombining the PDF, we obtain the expression
of the distribution associated with the following event : “the pump stops given that no event has
occurred yet”. We will call h the PDF associated with this event and H the cdf. Having h, one
is now able to compute the MTTF of the specified undesired event: mttf(h) =

∫+∞
−∞ xh(x)dx =

3y23min27sec. Using H, we can compute the probability that the event is realised after a given
time. H is ploted on Figure 3.13 and we can read, for example, the probability of occurrence
after one year H(1y) = 28, 3%, three years H(3y) = 63.2%, or five years H(5y) = 81.1%.

Now we consider a situation where the two PLCs have failed and the reservoir has been
effectively overtoped. The SCADA system has issued an alert for each failure of a PLC as well
as the overtopping of the reservoir. The alerts have been captured and processed by PROS2E
that can immediately identify the origin of the incident. Indeed, as displayed on graph 3.14
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Figure 3.13: Evolution of the probabilities when no event has occurred

which corresponds to this situation, only safety events have been triggered and PROS2E will
say that the undesired incident is of accidental origin and can rebuild the sequence of events
that led to it: the failure of a PLC, followed by the failure of the other PLC that lead to the failure
of the upper reservoir.

A1

A2 A3 A4

A5 A6 A7

A8

B1 B2 B3 B4 B5

B6 B7 B8 B9

O

Objective Attack Accident

Figure 3.14: First case: accidental

In another situation, eventsA1,A2,A3,A4 andA7 have occurred as displayed on figure 3.17.
Each step that the attacker realises triggers an alert by an IDS that is captured by PROS2E.

76



CRIM analyses the metadata of the alerts and correlates as they satisfy the most general uni-
fiers corresponding to the dependency links. In that case, the undesired event has not occurred
yet, but PROS2E can still identify that the system is under attack due to the nature of the events
that have occurred. PROS2E can also provide various metrics required by a system adminis-
trator to take a decision as for the severity of the threat a response to it. The MTTF of O after
event A7 has been realised is 7min30sec. The probability of failure after 5min is 40.0% or 10min
is 74.8%. The evolution of the probability of occurrence of O given that A1, A2, A3, A4 and A7

have happened is displayed in Figure 3.16.

The MTTF has been computed for various sets of alerts raised in Table 3.15. All of the
computations were done using the software Maple and took around a second for each required
value.

Case Alerts raised MTTS
1 ∅ 3y 23min 27sec
2 A1 23min 27sec
3 A1, A2 21min 13sec
4 A1, A2, A5 20min 54sec
5 A1, A3, A4 14min 54sec
6 A1, A2, A3, A4, A7 7min 30sec

Figure 3.15: table
MTTS associated with various cases

Figure 3.16: Evolution of the probabilities in case 6
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A1

A2 A3 A4

A5 A6 A7

A8

B1 B2 B3 B4 B5

B6 B7 B8 B9

O

Objective Attack Accident

Figure 3.17: Second case: attack
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If we consider a situation where all of the attack events have been realised, and events B2

and B5 have occurred, we may wonder if the overtoping was due to an attack, an accident, or
both. If we look at the graph 3.18, we notice that the undesired event O has been triggered by
the security events and not the safety one. PROS2E is able to quickly identify the origin of the
incident, even if alerts of different nature have been raised.

A1

A2 A3 A4

A5 A6 A7

A8

B1 B2 B3 B4 B5

B6 B7 B8 B9

O

Objective Attack Accident

Figure 3.18: Third case: mixed

With several different cases over one scenario, we have shown that the model adapts to
real-time scenarios: the probabilities of the undesired events evolve over the realisation of sub-
sequent ones. This is important because, for example, the choices of the attacker may change
which are the most probable scenarios. And the appropriate response may differ depending on
what parts of the system are at risk. Safety and security supervisors obtain precious information
from the model in the form of probabilistic evaluations of the evolution of the failure/compromise
rate.
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3.6 Conclusion

In this chapter we have presented PROS2E, a framework to model and monitor incidents. We
have illustrated how it can be used to perform diagnosis on a real-life study case: the Taum
Sauk Hydroelectric Power Station. We have used some situations to showcase some of the
capacities of PROS2E.

Unfortunately, PROS2E suffer from limitations. Some events can be triggered by the opera-
tors of the system in response to an ongoing incident. Such events will hinder the progression
of the incident and need special probabilistic modeling. PROS2E as presented in this chapter
cannot capture this behaviour. The modeling of the time is also rather basic and need some
refinement to express more complex situations, and provide more accurate metrics. The next
two chapters are dedicated to these improvements.

All of the probabilistic computations presented in this chapter have been done using inde-
pendent Maple spreadsheets but were not part of a monolithic solution. We have proven that it
is technologically possible to perform the computations in real-time, and an integrated solution
that correlates LAMBDA models, tracks incidents and delivers metrics in real-time can be de-
veloped. We regret not having been able to do it so far, but are still expecting to be able to work
on it.
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CHAPTER 4

HANDLING COUNTERMEASURES
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4.1 Introducing countermeasures

In the version of PROS2E presented in the previous Chapter 3, countermeasures are not in-
cluded. This is identified as an issue since countermeasures can have side effects and there-
fore lead to undesired incidents. This Chapter is dedicated to their integration in PROS2E. This
process required to define what are countermeasures and how specific they are, which we dis-
cuss in the following paragraphs of this introduction. In Section 4.2 we provide a case study
with countermeasure to motivate this contribution. Once countermeasures are defined, their
probabilistic modelling became possible by providing a new probabilistic formula for their re-
combination with other events in order to follow the methodology developed in Chapter 3. This
is the subject of Section 4.3. Section 4.4 is an application of the contributions of this Chapter
on its study case. Section 4.5 is the conclusion of this Chapter.

4.1.1 Defining countermeasures

Countermeasures are actions taken to oppose an action, an effect, an event, or to prevent them.
They can take many forms such as replacing a defective part, switching to a spare component,
modifying the processing speed of a component to increase its life expectancy or compensate
the failure of another component, etc.

One could argue that countermeasures are measures taken after an undesirable event have
taken place and are outside of the scope of diagnosis. We argue that being able to measure
the consequence of a countermeasure goes hand in hand with evaluating the severity of an
incident: a serious incident with a good mitigating countermeasure is not necessarily as bad
as a benign incident with no countermeasure. Moreover and this is particularly the case when
mixing safety and security: countermeasures have side-effects that affect the system. And since
safety and security are most of the time considered independently, it is not trivial to measure
the impact a safety countermeasure will have on the security of the system, and vice versa. As
such, countermeasures are integral part of scenarios and have to be modelled and taken into
account in the probabilistic computations.

4.1.2 What makes countermeasures different from regular events?

Countermeasures are a particular type of events that are very different from regular attacks or
accidents. First, the system do not endure them but they are voluntarily triggered. That means
that when forecasting the outcome of a scenario, several different situations can be considered
depending on whether the countermeasures are deployed or not.

Secondly, unlike regular events, countermeasures impede the realisation of a scenario. It
means that if a countermeasures is deployed, it is possible that an objective is not reached.
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From a probabilistic point of view, this poses a challenge. Indeed, with the current formulas, it
is implied that the realisation of an event triggers the next one. With countermeasures, it is the
opposite.

4.1.3 Countermeasures in the dependency model

Countermeasures have already been introduced in LAMBDA [33]. At the same time, anti-
correlation was defined. To express this formally, let us consider two LAMBDA models A and
B. Let Post(A) and Pre(B) respectively the postcondition set of A and precondition set of B.
Post(A) and Pre(B) are sets of predicates. A andB are said to be anti-correlated if there exists
predicates not(predA) in Post(A) and predB in Pre(B), or predA in Post(A) and not(predB) in
Pre(B), such that predA and predB are unifiable through a most general unifier (mgu) θ.

Identifying countermeasures with anti-correlation is particularly interesting when safety and
security interact. As we have discussed before, the interactions between safety and security
sometimes lead to conflict between them. That is why an event A can be anti-correlated with a
security event B and corelated with a safety event C. A is therefore a countermeasure in the
scenario ofB but an integral part of the scenario of C. Labelling events with a "countermeasure"
tag is not sufficient to identify them in scenarios and anti-correlation provides just that.

Thanks to anti-correlation, we have a means to identify events that act as countermeasures
in any given scenario. We still need to translate this behaviour in probabilistic formulas. This is
the main contribution of this chapter.

4.1.4 Probabilistic representations of countermeasures in other models

The literature generally considers the cost of deploying countermeasures and not their effect
on the probability the scenario’s outcome [12, 118, 70]

In classical safety models such as fault trees of Petri nets, countermeasures are generally
the repair of a component. To quickly summarize their computations, being done using Monte-
Carlo simulation, they discretize a timespan in a certain number of intervals. At each interval
they roll probabilities to know which components have failed and which have been repaired in
that interval. This has the advantage to be able to look at very long timespans with several fail-
ures and repairs of components whereas our approach is more "single occurrence". However,
and as stated earlier, Monte-Carlo simulations are not suited to diagnosis, and it is not possible
to adapt their probabilistic handling of countermeasures to our model.

Kanoun et al. [63] used LAMBDA/CRIM to select countermeasures in a security context.
They mapped a Markovian model on a scenario output by CRIM, associating exponentially
distributed random variables to each attack, in order to compute the probability of occurrence
of various outcomes, and select the countermeasure depending on those probabilities. This
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approach was not satisfactory for the specificities of diagnosis because we need to be able
to use more distribution functions than the exponential one, and because they only consider
countermeasure that would hinder the objective of the attacker. In our approach, we want to
consider situations when a countermeasure could prevent an attacker from going further a
certain point but would not have any effect when the attacker is already beyond.

4.2 Motivating example

In order to illustrate the importance and the difficulty of correctly handling countermeasures,
we describe a case study from which we extract a few situations.

It is based on a Fischertechnik-based CPS testbed presented in [46]. This test-bed consists
of a virtualized IT network, three industrial PLCs Crouzet Millenium 3 XD26 and Fischertechnik
actuators and sensors miniaturising an industrial process of machining parts. The network is
organised in two networks. First, the IT networks consisting of a programming workstation used
to program the controllers, and a supervision workstation that supervises the industrial process.
Then the OT network containing the three controllers. The two networks are connected with
a firewall. The IT network is connected to the internet through another firewall. The network
diagram is represented on figure 4.2.

Figure 4.1: Fischertechnik-based CPS testbed

An attack developed for this testbed consists of an attacker tricking a legitimate employee
into opening an infected spreadsheet that gives him a remote connexion to the PLC program-
ming workstation. From there, the attacker can perform two actions. The first one is a Denial
Of Service (DOS) on the network modules of the PLC using malformed ModBus packets. That
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PLC1 PLC2 PLC3

Firewall2

Supervision Programming

Firewall1

Internet

Figure 4.2: Fischertechnik-based CPS testbed network architecture

way, the industrial process keeps going, since the program in the controllers is not affected, but
the supervision cannot contact the controllers anymore and no feedback can be collected by
the supervision. For the second attack, the attacker sends orders to the PLC and disrupt the
industrial process by opening the arm at an inappropriate time for example.

A system administrator is able to counteract on those attacks. The firewall is technically
able to spot this suspicious connection from the PLC programming workstation to an unknown
IP address and potentially reset it. The administrator could call for the reset of the connexion
in order to stop the attack and preserve the integrity of the industrial system. A reset of the
connexion would eventually stop the DOS attack and give back access to the supervision.
For the second attack, however, a reset after the attacker has already disrupted the industrial
process would not cancel the consequences.

To model the entirety of the scenario, we need the capacity to model the countermea-
sure. Standard metrics such as MTTS or success probability are required for the diagnosis and
means to compute them has to be provided. The following section is about modifying PROS2E
in order to address this issue.
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4.3 Probabilistic modelling of countermeasures

4.3.1 Computing probabilities with countermeasures, splitting the cases

When expressing a probabilistic computation, it is essential to precisely understand what is
being computed. The human language is extremely dense in unsaid and implied things that are
nevertheless necessary to be made explicit in the probabilistic problem. This is particularly the
case in the MTTS.

The Mean Time To Success is the average time necessary for a set of events to occur.
When computing it, it is implied that the event will indeed happen. The mean time of something
that can’t happen does not make sense. Probabilistically, the mean time is computed using
the expected value which weighs all of the cases to output a result. It is important that it only
considers situations in which the event happens. A countermeasure generates cases in which
the considered event will not happen. It should therefore never be considered in the probabilistic
computations of a MTTS.

On the other hand, the success probability represents the chance that an event will occur. A
countermeasure will obviously lower this success probability and, thus, have to be considered
in the computation.

In a nutshell, computing metrics for the same scenario can result in several different situa-
tions being considered. It is important to know what is implied and which events are relevant
for the metrics computed. As a consequence, a single mathematical formula cannot compute
all of the metrics but we need several formulas for several metrics. This does not invalidate the
probabilistic theory developed in chapter 3, on the contrary, all of the formulas are still valid. But
it is necessary to have in mind that a probabilistic model always has a "given that something"
and this "something" can lead to errors and mistakes if not understood.

In the next section, we develop the case when a countermeasure has to be considered, for
a success probability for instance, and the formulas that need to be used in order to recombine
several events into one, in the same principle of chapter 3.

4.3.2 Simplifying the situations

Let us consider a single countermeasure for the moment. A countermeasure is going to be
activated by one or more events, and will prevent one or more events from being realisable.
Figure 4.3 represents this situation. This situation is similar to the one of our motivating example
with an event providing an attacker with a remote access necessary for several events to occur,
and cancelled by a countermeasure.
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A

B

D

E

C
pre : remoteAccess()
post : ¬remoteAccess()

post : remoteAccess()

pre : remoteAccess()

pre : remoteAccess()

pre : remoteAccess()

Figure 4.3: Countermeasure situation

4.3.3 Probabilistic expression

In figure 4.4, event A represents the first event that can trigger the countermeasure C. Event
E is the last event affected by countermeasure C. It is important to consider the first event that
can trigger the countermeasure because it is the one that can start the timer for the deployment
of the countermeasure. Several events will be affected by the countermeasure and considering
the last one, meaning the deepest one in the scenario, is important because any event that
leads to this one will have no consequence on the general outcome if the countermeasure is
deployed. Using the recombination formulas of chapter 3, we obtain a meta-event E′ which we
can use to obtain another meta-event C ′.
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Figure 4.4: Countermeasure situation and equivalences

Event C ′ corresponds to "E′ occurs and C does not occur". Let us respectively associate
events E′, C and C ′ with random variables X, Y and Z, with PDF f , g and h, and cdf F , G and
H. Probabilistically, given any real t, "E′ occurs and C does not occur" translates into:

P (Z < t) = P (X < t ∩ Y > t)

P (Z < t) = P (X < t)P (Y > t)

P (Z < t) = P (X < t)(1− P (Y < t))

H(t) = F (t)− F (t)G(t)

h(t) = f(t)− f(t)G(t)− F (t)g(t)

These formulas can be used to compute the success probability of an event given that
a countermeasure is deployed. However it is important to note that H is not an actual CDF.
By definition, a probability distribution function is a measure whose mass is 1. This means
that the sum of the probability of all of the events is 1. In other words that the probability of
occurrence of an event after an infinite time is 1. However, in the case of an event that can be
hindered by a countermeasure, after an infinite time, both the event and the countermeasure
have been deployed, resulting in a probability of success after an infinite time of 0: H(∞) =
F (∞)− F (∞)G(∞) = 1− 1× 1 = 0. If h were a probability distribution function, and therefore
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H a cumulative distribution function, we would have H(∞) = 1. This does not prevent us from
using these formulas in order to compute the success probability, but it is another evidence that
they should not be used recklessly for any probabilistic computation, expected values for MTTS
in particular.

4.4 Application to the study case

In this section, we show how countermeasures are used to model scenarios in PROS2E and
how to compute metrics used for diagnosis.

4.4.1 Modelling events and obtaining the graph

After modelling each individual event, we obtain the scenario represented in figure 4.5. Data
about the nodes of the graph is summarized in table 4.1. We provide a LAMBDA model in figure
4.6.

A

B

C

D1

E1

O1

D2

E2

O2

K

Objective Attack Countermeasure

Figure 4.5: Scenario considered in this section
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Ref Description PDF Nature
A Infected mail received Exponential(1/λ = 1y) Attack

B
Infected mail opened;
remote access established

Exponential(1/λ = 1h) Attack

C ModBus scan Exponential(1/λ = 5min) Attack

D1
Malformed Modbus packet
sent

Exponential(1/λ = 5min) Attack

E1 Denial of Service Dirac δ0 Attack

O1
Supervision can’t reach
PLC

Dirac δ0 Objective

D2
Download controllers
programs

Exponential(1/λ = 5min) Attack

E2 Send malicious order Exponential(1/λ = 5min) Attack
O2 Industrial process disturbed Dirac δ0 Objective
K Reset connexion Exponential(1/λ = 2min) Countermeasure

Table 4.1: Events in the graph

Name Reset connexion
Preconditions remoteAccess(Attacker, ProgrammingWorkstation)
Postconditions ¬remoteAccess(Attacker, ProgrammingWorkstation)
Nature Countermeasure
Realisation Exponential distribution (1/λ = 2min)
Alert Countermeasure #001

Figure 4.6: Model of the countermeasure of the scenario

4.4.2 Computing metrics

For the first situation, we consider that no event has taken place yet. The MTTS for the occur-
rence of O1 is 1year and for O2 is also 1year. As presented in section 4.3, countermeasure K
was not included in the computation of the MTTS. It has, however, an influence on the Success
Probability after one year as shown in table 4.2.
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Objective O1 O2

Success Probability with K 1.14× 10−7 3.27× 10−8

Success Probability without K 0.632 0.632

Table 4.2: Success probabilities after one year

For the second situation, let us consider the case where events A, B and C have happened,
as represented in Figure 4.7.

A

B

C

D1

E1

O1

D2

E2

O2

K

Objective Gate Attack Countermeasure

Figure 4.7: Scenario considered in this section

In that case, the MTTS for O1 is 5min and for O2 is 10min. For both cases, the Success
Probability after 7min30sec is shown in table 4.3.
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Objective O1 O2

Success Probability with K 0.0183 0.0104
Success Probability without K 0.777 0.442

Table 4.3: Success probabilities after one year

4.5 Conclusion

In this chapter, we have presented countermeasures, why they are important to consider in
order to establish more complex and realistic scenarios, and how to integrate them to PROS2E.
We have illustrated this on a case study based on the Fischertechnik platform.

In terms of the limit of our approach, we concede that we have presented a very black and
white situation: an event is either a countermeasure or it is not. This is perfectly fine to establish
the probabilistic theory and give a precise idea of what is being considered, but in reality the
situation is more complex. Some events might not be flagged as countermeasures per se, but
will impede the realisation of other events. A denial of service attack, for example, will prevent
another attacker from reaching a remote server. In order to know when to use the probabilistic
formulas of a countermeasure, instead of using the nature of the event, the anticorrelation
already present in CRIM will probably produce more suitable candidates. Some research is
necessary to confirm this in order to obtain a more practical implementation. Nevertheless, this
does not challenge the correctness of the formulas developed in this chapter, and the overall
utility of including countermeasures in the model.
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CHAPTER 5

IMPROVING PROS2E WITH ENHANCED

AND ACCURATE REPRESENTATION OF

THE TIME
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This Chapter is dedicated to another improvement of PROS2E, this time adding improved
sequentiality and more accurate time representation in order to achieve better modelling and
diagnosis. We have identified that depending on the behaviour of the components, their wear
might be incorrectly tracked and measured by PROS2E. PROS2E also suffers from an incapa-
bility to cover relatively usual situations due to the semantics of its logical gates that are not
rich enough. In this Chapter, we begin to motivate these issues before solving them with re-
thinking the way the time is counted and with the addition of and SEQ-AND gate. In Section
5.1 we describe a case study used to justify the need for improvements in PROS2E in Section
5.2. Sections 5.3 and 5.4 are dedicated to the modifications in PROS2E, respectively for the
sequentiality and the time representation. Section 5.5 applies those new capacities on the use
case.

5.1 Motivating example

We use the Fischertecknik platform again in order to illustrate the need for further improvements
on PROS2E. These improvements concern time representation and are required to model more
situations with better accuracy, and to avoid obtaining false numerical results that would lead to
wrong diagnosis.

Figure 5.1: Milling operation in the Fischertechnik-based CPS testbed

The scenario we provide is focused on the milling operation. In this operation, a part to be
processed is brought under a milling machine by a conveyor belt. Upon receiving the informa-
tion from an optical sensor that a part is in position, one of the PLCs stops the conveyor belt
and starts the milling process. After a few seconds, the milling stops and the part is conveyed
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to the next operation.

For our scenario, we consider sets of events that can lead to a part being wrongly placed
under the milling machine. This can obviously happen if a problem occurs with the sensor, by
accident or intentionally. However, there are other situations in which that can happen. Indeed,
there is a slight delay between the activation of the optical sensor and the effective stopping of
the conveyor belt. This means that the part is not in position at the activation of the optical sen-
sor and travels a short distance that depends on the speed of the conveyor belt. This distance
can also be impacted if the conveyor belt is slippery. In case of a high required precision of the
milling, it can have important consequences.

A wrong speed of the engine can happen for two reasons. The first reason is that the engine
of the conveyor belt is malfunctioning due to its natural wear. Since it is continuously started
and stopped, this requires to monitor its functioning time with accuracy. The second reason
is when an attacker manages to modify the speed of the conveyor belt. This can be done by
plugging an electrical circuit, to the power supply of the motor of the conveyor belt. An attacker
can social engineer an operator of the industrial system to plug the electrical device and then
modify the speed of the engine through radio frequencies such as GSM or LORA.

The conveyor can be stopped at the wrong time if either the optical sensors is malfunction-
ing, if the PLC is malfunctioning or if the attacker infiltrates the RFCOMM networks and sends
wrong information to the PLC. However, according to its program, the PLC will only stop the
conveyor belt upon the activation of the optical sensor if it has previously received the infor-
mation that a switch has been activated. That switch corresponds to a previous actuator being
back to its stand-by mode. Therefore, the attacker will actually need to send two pieces of
information, in the correct order, to the PLC in order to successfully stop the conveyor belt.

The adherence of the conveyor belt can only be accidentally modified by oil spilling which
cause is out of the scope of this scenario but always considered accidental.

5.1.1 First diagnosis example: processing new alerts

As a first example, we consider an attacker that has setup an RFCOMM antenna within range of
the industrial system and the system raises an alert after detecting the presence of this antenna
thanks to an unknown MAC address. The attacker then sends the messages of activation button
Sw6 and photodiode Ph11, in that order. With these actions, the attacker manages to wrongfully
place the part under the milling machine.

With this first situation, we can evaluate how a model manages to process new alerts raised
by an IDS. These new events should orientate the diagnosis towards a pure security breach
since all of the events are either attacks or direct consequences of an attack.
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5.1.2 Second diagnosis example: Purely accidental?

For our second example, an attacker manages to damage a conveyor so that it breaks. The
attacker is able to perform this attack without disrupting the milling process and therefore remain
stealthy. This attack has not been anticipated by the experts and is therefore not part of the
models they produced. This event has happened after the conveyor has been deployed for
precisely four weeks.

This situation is used to illustrate the importance of accurate time modelling thanks to a
failure probability of the engine that can be misleading if the functioning time is improperly
measured. It is as well used to evaluate how a model behaves when it is confronted to a
situation not anticipated by its designer, in this situation an attack, and how information can still
be provided to avoid a wrong diagnosis.

5.2 Why PROS2E needs improvement

Let us use the two situations to justify the need to improve PROS2E.

5.2.1 Needing more sequentiality

In the example of Section 5.1.1, by successively sending activation messages of button Sw6
and photodiode Ph11, the attacker is able to stop the conveyor belt at an inappropriate time
and therefore place the part in an incorrect position. The attacker has to send the message for
Sw6, and only then the message Ph11 in order to achieve the attack. This seems to be natu-
rally modelled in PROS2E by two events happening in sequence as represented by figure 5.2.
However, this means that the event Message Ph11 could not happen before event Message
Sw6 has been sent, and specifically that the attacker could not start to send the second mes-
sage before the alert of the first have been processed. Yet the attacker is capable of sending
the Message Ph11 at the same time as Message Sw6: using sequential situation would result
in an inaccurate estimation of the time and a wrong probability.

It is then natural to try to use an AND gate to model this situation, as displayed on figure
5.3. But in this situation, receiving Message Ph11 before Message Sw6 would still trigger event
Part incorrectly placed in the model even though it would not correspond to the success of the
attack resulting in the wrong identification of a situation and an incorrect probability of success.

The only way to correctly model such dependency between events is to modify PROS2E.
In Chapter 2, we have discussed about several models that have similar issues and that have
been improved to solve them. In particular, attack and fault tree are not able to model our
example, but have been extended into dynamic attack trees [64] and dynamic fault trees [126]
in order to address this issue. They use a new gate for this: the Sequential-AND (SEQ-AND)
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Message Sw6

Message Ph11

Part incorrectly placed

Figure 5.2: First incorrect model to incorrectly place a part

Message Sw6 Message Ph11

Part incorrectly placed

Figure 5.3: First incorrect model to incorrectly place a part

gate. It describes that two events have to happen in a given order for the gate to be fired. We
have decided to incorporate a Sequential-AND gate into PROS2E since it is a well-known and
commonly used gate, whose signification is familiar to system experts.

5.2.2 Knowing when time is ticking or not

In the example of Section 5.1.2, we have a conveyor belt that is only started when it needs
conveying a part. We will do the hypothesis that it cannot spontaneously fail upon starting or
stopping: the probabilities of failure after ten continuous minutes of functioning and ten sessions
of one minute are the same. Let us say that the conveyor belt works in cycles of one minute
period during which it is on for the first twenty seconds and off for the remaining forty as repre-
sented in figure 5.4. The model associated with the failure of the conveyor belt is presented in
figure 5.5.

timeT0 T1 T2 T3

Conveyor belt offConveyor belt on

Figure 5.4: Timeline of the functioning of the conveyor belt

97



Name Conveyor belt failure

Preconditions
¬failed(ConveyorBelt) ∧
atWork(ConveyorBelt)

Postconditions
failed(ConveyorBelt) ∧
¬atWork(ConveyorBelt)

Nature Safety
Realisation Weibull distribution (λ = 5, k = 4)
Alert SCADA #003

Figure 5.5: Model of the conveyor belt failure

When the system starts the conveyor belt for the first time at T0, the preconditions of the
event Conveyor belt failure are met and the time is being counted. After twenty seconds,
the predicate atWork(ConveyorBelt) is not true anymore, the preconditions of the event are
not met anymore and the event is not realisable anymore. This poses a problem concerning
the time: how are the twenty seconds of period [T0, T1] counted? Since this situation was not
specified in the first version of PROS2E, we could have a clock that never stops ticking resulting
in the full minute of [T0, T1] being counted, or a clock resetting each time the preconditions are
met resulting of a maximum counted time of twenty seconds, regardless of the actual wear of
the conveyor belt. Just to illustrate how problematic this situation is, we computed the probability
of failure after nine years. The actual probability of failure is 7.772%, according to the probability
distribution function specified, the one for a clock that never stops ticking is 99.86%, and the
one for a clock that is constantly reset is 7.474× 10−24%. This would obviously lead to incorrect
diagnosis and incorrect probability of failure.

Rethinking and formalising the way time is being counted is necessary to address this issue.
This example highlights the need for PROS2E to have such feature, and we illustrate later in
this chapter how important this is for diagnosis.

5.3 Modelling sequences

In order to overcome the issues previously identified, we modified the pre/postconditions and
CRIM to support the Sequential-AND, we extended the nature of events, and we propose a
more accurate counting of the time in order to capture the wear of components, and we had to
rework the probabilistic formulas.
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5.3.1 Correlation with a SEQ-AND

In the first situation described in paragraph 5.1.1, the messages of activation button Sw6 and
photodiode Ph11 have to be sent in that order for the attack to work. If the messages are
reversed, the attack does not work. In order not to consider impossible situations, and to accu-
rately model possible ones, we introduce Sequential-AND gate (SEQ-AND) in addition to the
regular AND and OR gates, taking example on the solution proposed to overcome this problem
in fault trees and attack trees [41]. However, adding this SEQ-AND gate is not trivial since it
requires to accurately model its semantics both from the event correlation layer of the model,
and the probabilistic one.

CRIM [34] can be seen as a two-steps process: first the generation of the attack graph, and
then the instantiation of alerts. The sequentiality of events is a temporal notion to be applied
during the instantiation of alerts, but it has no impact on the generation of the graph other than
displaying a specific logic gate.

In order to generate an attack graph, CRIM correlates events according to their predicates:
two events are correlated if there exists a most general unifier to unify the preconditions of one
event with the postconditions of the other1. These predicates are described using the language
L1 of LAMBDA [36]. In order to express the sequentiality of event, we propose to add a SEQ-
AND operator ∧→ to this language: exprA∧→exprB describes that exprA and exprB must be
verified but also that exprA must be verified before exprB.

The SEQ-AND is a regular AND that adds a temporal condition. However, time does not
take part of the generation of the attack graph. That is why, for the acquisition of unifiers be-
tween events, the SEQ-AND can be treated as a regular AND. However, the SEQ-AND must be
apparent on the resulting event graph because it will be used for further operations such as the
instantiation of alerts and probabilistic computations. Indeed, when two alerts associated with
two events connected with a SEQ-AND are raised, CRIM has to check that the unifiers match,
but also that the timestamps of the alerts are consistent with the temporality expressed by the
SEQ-AND. Inconsistency noted on the unifiers or the temporality then results in uncorrelated
events, from the point of view of the scenario.

5.3.2 Probabilistic expression of the SEQ-AND

The semantics of the SEQ-AND also need to be expressed in the probabilistic computations
of the model because using either regular AND or pure sequentiality between such events will
result in inaccurate results.

Let us consider the following situation: event O is gated after events A and B and we try to
obtain a virtual event C corresponding to “A and B occur and A occurs before B”. A, B and C

1. More information in Cuppens et al. (2002)[34]
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O

A B

O

C

Original situation Equivalent situation

Figure 5.6: Recombination example

are respectively associated with random variables X, Y and Z, probability distribution functions
f , g and h, and cumulative distribution functions F , G and H. The expressions of f and g are
known and we want to get the expression of h. By definition of the SEQ-AND, and using Bayes
Law, we obtain for any real time t:

H(t) = P (Z < t) = P (X < t ∩ Y < t ∩X < Y )

= P (X < t|X < Y ∩ Y < t)P (X < Y ∩ Y < t)

= P (X < Y |Y < t)P (Y < t)

= P (X − Y < 0|Y < t)G(t)

The probability P (X − Y < 0|Y < t) is not known because we have an additional condition
on Y . Indeed, we now know that event B will occur before time t. Therefore, P (Y > t) = 0 and
g does not describe Y any more. We need a new probability distribution function for Y . We will
discuss about this new function in the next paragraphs but for the moment, let us assume that
we have it and denote it ġt. Let us define:

ġ∗t : R→ R

x 7→ ġt(−x)

Given that the probability distribution function of the sum of two variables in the convolution
of their probability distribution functions, we obtain:

H(t) = P (X − Y < 0|Y < t)G(t)

= G(t)
∫ 0

−∞
f ∗ ġ∗t (x)dx

We obtain an expression of H with no unknown elements provided that ġt is known. H can
then be derived to obtain h. However, there exists no rule to obtain ġt from g. The possibility
space of Y is modified and an assumption needs to be made to obtain ġt. Indeed, let us take the
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example of a hard drive. A hard drive can suffer from mechanical or electromagnetic failures. Let
us assume that electromagnetic failures are accurately described by an exponential distribution
when a mechanical failure is accurately described by a Weibull distribution [114]. The default
distribution to model the time until failure is therefore a combination of both. We will also assume
that the older the drive, the more prevalent mechanical failures are. The information that a fault
is occurring on a recent drive will probably mean that the default distribution does not fit to
model it, and the exponential one, corresponding to an electromagnetic failure, will be much
more accurate. This is an example why an absolute transformation from g into ġt cannot be
given. For the sake of this Chapter, we propose a way to obtain a ġt from g but we also stress
that this does not fit every situation.

The assumption we make is that when it is known that Y is inferior to t, for any real t, the
residual probability in g after t is equidistributed before t. We obtain the following expression for
ġt:

ġt : R→ R

x 7→
{
αg(x) if x < t

0 else
, with α =

(∫ t

−∞
g(x)dx

)−1

To better understand the transformation, figures 5.7 and 5.8 respectively plot g and ġt.

Figure 5.7: g Figure 5.8: ġ

As we saw in Chapter 4, the probabilistic expression of the problem depends on what is
actually computed. This expression is the one to be used when computing the probability that
an event will happen after a given amount of time. However, when computing a MTTS or a
similar metrics, this is computed with the hypothesis that the event will indeed happen, and
therefore that all of its conditions are verified. In the case of the SEQ-AND, that means that we
know that A happens before B, and the formula becomes:
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H(t) = P (Z < t) = P (X < t ∩ Y < t ∩X < Y |X < Y )

= P (X < t ∩ Y < t|X < Y )

= P (Y < t|X < Y )

= P (Y < t|X < Y )

= P (X − Y < 0|Y < t)G(t)
P (X < Y )

In a nutshell, the probabilistic semantics of the SEQ-AND depends on the event being mod-
elled. Indeed, it adds new information on the random variables that cannot have a generic ex-
pression. However, this information can be translated in new probability distribution functions,
based on new assumptions. Therefore, the SEQ-AND can still be expressed from a probabilistic
point of view and be integrated in PROS2E.

5.3.3 Nature of events: not just safety and security

In the initial version of PROS2E, the nature of events is simply a static label that has no particu-
lar behaviour. This is troublesome when an event can happen for various reasons. For example,
the wrong speed of the conveyor belt can happen either because of a failure of the conveyor
belt or because of an incorrect attack. To address this issue, we introduce neutral events. A
neutral event is an event whose nature is to be determined by its children upon its instantiation:
the nature of the children that activate the preconditions is transmitted to the neutral event. In
the case of the incorrect rotation speed, the neutral event could become a safety or a security
event depending on which child triggered it.

5.4 Managing the wear

Modelling repairable systems is a major concern for industrial experts. All the more for a model
that is designed to be used in real-time: the enable, disable, or repair of a component is to be
handled by the system. The probabilistic part of the model aims at providing with an accurate
estimation of the time necessary for a subset of events to happen. The evaluation is based
on failure and attack probabilities that are function of the time, described in the probability
distribution function. The assumption made in the previous chapters is that the probability starts
changing when the preconditions associated with the event are met. However, this does not
correspond to an accurate description of many situations.
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Let us consider the case of the conveyor belt: its failure only impacts the system when it
is conveying a part, and the precondition associated would look like atWork(ConveyorBelt) ∧
carried(Part, ConveyorBelt). This means that the probability would only start changing when
it is both working and conveying. However, the belt only requires to be working in order to wear
out and fail. Therefore, not considering the timespan in which the belt is working on but not
conveying will result in an inaccurate description of its failure probability.

Another situation poorly handled in the previous chapters is when the conveyor belt is being
started and stopped. At first it is up and can fail: its probability of failure evolves. Then it is
switched off and therefore cannot fail. It is then eventually restarted when a part needs moving.
After the restart and using CRIM, we shall have two possibilities: the time of origin of the event
would either be reset and every wear that has occurred in the first span of functioning would be
voided, or the clock would still have ticked when the component was stopped. Both situations
would lead to errors in the time counted. Moreover, upon repair of a component, it is required
that this reset happens. We therefore need to add to the model a means to express this reset
of the probability.

In order to address the issues raised in the previous paragraph, we modify LAMBDA to add
the concept of a local stopwatch to each event. This can be seen as a module that, if not used,
does not hinder the previous functioning of the model. A stopwatch is basically three buttons:
start, stop and reset.

The start button tells when the clock starts ticking and is implemented with the addition of a
new time-condition, being a set of predicates expressed in the language L1 just like precondi-
tions and postconditions. The time-conditions express the state of the system in which the event
can happen. However, the occurrence of the event will not have consequences on a possible
scenario until the preconditions are met. The stop button corresponds to the time-conditions
not being valid any more. Time-conditions are not to be correlated by CRIM.

The reset button describes the conditions upon which the counter is to be reset. It most
likely corresponds to the repair of a component, that can be announced to the network just like
its failure. It therefore corresponds to an alert that will, upon reception by the model, trigger the
reset of the counter. In the model, it is described by a "Reset" attribute that is an alert number
corresponding to an alert raised by the system. Figure 5.9 corresponds to the failure of the
conveyor belt, modelled with the new elements presented in this section.

Figure 5.9 corresponds to the failure of the conveyor belt, modelled with the new elements
presented in this section.
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Name Conveyor belt failure

Preconditions
¬failed(ConveyorBelt) ∧
atWork(ConveyorBelt)

Postconditions
failed(ConveyorBelt) ∧
¬atWork(ConveyorBelt)

Time-condition atWork(ConveyorBelt)
Nature Safety
Realisation Weibull distribution (λ = 5, k = 4)
Alert SCADA #003
Repair SCADA #503

Figure 5.9: Model of the conveyor belt failure

5.5 Application to the study case

In this section, we illustrate the added modelling capacities on the use case described in Sec-
tion 5.1, as well as showcase how it is possible to provide diagnosis of incidents using our
PROS2E.

5.5.1 Modelling events and obtaining the graph

After modelling each individual event and feeding them to CRIM, we obtain the scenario repre-
sented in figure 5.10. Data about the nodes of the graph is summarized in table 5.1. We provide
a LAMBDA model in figure 5.9.

5.5.2 First diagnosis example: processing new alerts

We apply PROS2E to the example of Section 5.1.1, event C7 is initially triggered. From this
situation, we are able to obtain the PDF of the general scenario and therefore compute an
MTTS of 7min29s, or a probability of occurrence after fifteen minutes of 45%. The MTTS is
computed as the expected value of the PDF and the probability is the evaluation of the cdf at
the time considered.

During the second step of the scenario, an IDS associates the activation messages with
the unknown antenna previously identified and raises an alert corresponding to events C5 and
C6. The consequence on the model is the firing of events C2, C1 and O. Since O and C1 were
only triggered by security events, they are themselves coloured as security events. The model
is therefore able to provide the origin and the consequences of the incident.
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Objective Gate Attack Accident

Figure 5.10: Scenario considered in this section

5.5.3 Second diagnosis example: Purely accidental?

In this situation, the only nodes activated in the graph are safety ones (A3, A1 and O), indicating
a pure accident. However, PROS2E can compute an important metrics in this situation: the
likelihood. Indeed, it computes the probability that the engine fails during its first four weeks.
Given that the engine is active 30% of the time, that corresponds to 1.2 weeks of functioning with
a probability of failure of 0.331%. Due to such a low probability, the fact that the situation has
been correctly identified by the model is extremely unlikely and this raises a lot of suspicion on
this event and calls for a more thorough analysis of its origin. The diagnosis here is: accidental
but highly suspicious.

This also demonstrates the importance of a correct measurement of the time. Indeed, with-
out being able to properly monitor the wear of the conveyor belt, the likelihood evaluation would
be way off its actual value : 7.47 × 10−24 corresponding to five seconds of wear for a clock
that resets at every start of the engine. Even though 7.47 × 10−24 is still a value that would
raise suspicion, it corresponds to a behaviour of the model that would raise suspicion for every
failure of the conveyor belt, even "normal" ones. Therefore the importance of correctly tracking
the system state and accurately measuring the time. Once again, the computations were done
using the software Maple and took around a second on a desktop computer for each required
value.

105



Ref Description PDF Nature
O Wrong part placement Dirac δ0 Objective
A1 Wrong conveyor belt speed Dirac δ0 Neutral

A2 Attacker decreases
conveyor belt speed

Dirac δ0 Attack

A3 Conveyor belt failure Weibull(λ = 5w, k = 4) Accident
A4 Circuit set up Exponential(1/λ = 2d) Attack
A5 Order sent to circuit Exponential(1/λ = 1d) Attack
A6 Corruption of employee Exponential(1/λ = 3w) Attack

B1 Bad grip on the conveyor
belt

Exponential(1/λ = 10w) Accident

C1 Conveyor belt stopped at
inappropriate time

Dirac δ0 Neutral

C2 Attacker provokes stop Dirac δ0 Attack
C3 PLC failure Exponential(1/λ = 10y) Accident
C4 Position sensor failure Weibull(λ = 1w, k = 4) Accident

C5 Activation of button Sw6 by
attacker

Exponential(1/λ = 5min) Attack

C6 Activation of photodiode
Ph11 by attacker

Exponential(1/λ = 5min) Attack

C7 Attacker sets up RFCOM
antenna

Exponential(1/λ = 3w) Attack

Table 5.1: Events in the graph

With these experiments, we illustrate that PROS2E is able to model complex scenarios with
elaborate sequentiality expressed in the relationships between the elements. This sequential-
ity is then translated into more accurate metrics such as MTTS or probability of occurrence.
PROS2E is able to provide information from past events such as identifying the nature of the
situation or raising suspicion when relevant, but also to anticipate future events thanks to its
graph as well as precious metrics that can be transmitted to system operators for them to take
the best solution to the ongoing problem.

5.6 Conclusion

In this chapter, we have improved PROS2E with advanced modelling and diagnosis capabili-
ties. Being able to consider the sequential order of events is actually a necessity in most event
models, such as fault trees, attack trees, or Bayesian networks. It broadens the range of sce-
narios that can be modelled and increases the accuracy of metrics that can be computed from
them. We also have demonstrated that tracking the actual wear of a component is paramount

106



O

A1

A2 A3

A4 A5

A6

B1 C1

C2 C3 C4

C5 C6

C7

Objective Gate Attack Accident

Figure 5.11: Aftermath of the attack

to obtaining relevant information when evaluating the likelihood of an event or forecasting future
ones.

The trade-of for the addition of the SEQ-AND gate is more work being required when es-
tablishing the probability distribution function. An additional condition on the time of the incident
sometimes calls for a completely different probability distribution function. Deciding on this is
not trivial an can be a source of subjectivity. The computation is also heavier but, according to
our experience in the subject, they remain very satisfactory.

We have displayed how PROS2E can be used for diagnosis. Our use case is based on
a research platform conceived with actual industrial components and allowed us to study the
evolution of computed metrics and their inferred diagnosis with ongoing events.
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CHAPTER 6

CONCLUSION
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6.1 Contributions of this thesis

In this thesis, we have presented our contributions to diagnosis in cyber-physical systems.

In Chapter 1 we discuss about the whys and wherefores of diagnosis in a safety and se-
curity environment. We provide our own definition for diagnosis in this particular context. We
establish that no diagnosis model exists for safety/security environment and instead identify the
functionalities a diagnosis model should have in order to base the Chapter 2 on.

Chapter 2 is a review of several models able to provide information that can be used to
perform diagnosis. The review is divided in three parts, focusing on models that can consider
respectively only safety events, only security events, or both at the same time. This chapter was
concluded by the establishment of a classification in order to identify more easily the function-
alities of existing models.

In Chapter 3, we present PROS2E, a framework to model and monitor incidents. It allows for
metrics to be computed and information to be obtained in order to perform diagnosis. PROS2E
does not call for new knowledge to model the elementary events which is an important point for
a practical use. Indeed, safety and security experts are used to modelling elementary events
with fault trees or attack trees, for example, and estimating the probability of occurrence is
also a regular exercise. Chapter 3 presents a basic model of PROS2E that is improved in the
following chapters.

Chapter 4 is dedicated to countermeasures. These events that hinder the overall realisation
of a scenario require specific probabilistic modelling to be included in PROS2E, which we have
provided. We also discuss the importance of including these countermeasures in scenarios.
Since safety and security are historically managed separately, the side effects of a safety coun-
termeasure on the security are not necessarily anticipated, et vice versa. All the more reasons
to include them in scenarios, as well as diagnosing both safety and security at the same time
in order not to trigger a countermeasure for a wrongfully identified incident.

Chapter 5 focuses on improving the time capabilities of PROS2E with two principal aspects:
sequentiality and counting time. Sequentiality is a common problem that required widely-used
models such as fault trees or attack trees to evolve: it occurs when the order in which events
happen have a consequence on the overall outcome. We have tackled this problem by adding
a Sequential AND gate, and expressing it both logically and probabilistically. This increased the
number of scenarios that could be represented, and provided more accurate results. Count-
ing time was troublesome when a component could be stopped, restarted, and replaced. We
introduced the concept of a stopwatch in the LAMBDA models to address this issue. This im-
provement yields much more accurate results to avoid incorrect diagnosis.

If we look back at the classification established in Chapter 2, we conclude that PROS2E is
a hybrid model since it considers both safety and security events, it is descriptive, explicative,
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adaptative and real-time thanks to the event graph and the ability to process alerts, it is evalu-
ative due to the probabilistic theory, remediative with the improvements of Chapter 4. PROS2E
ticks all the boxes of the classification. However and this is addressed in the perspectives sec-
tion, PROS2E is not perfect and can be improved.

6.2 Perspectives

One of the most natural way to continue our work is to automate PROS2E. For now, the prob-
abilistic part is done in independent Maple spreadsheets that served their purpose as a proof
of concept and proof of feasibility but an integrated solution is most desirable. Beyond obvi-
ous programming work necessary to integrate the parts developed in this thesis, two important
aspects need to be discussed.

First, there are the inputs of PROS2E. PROS2E relies on capturing alerts in order to know
what events are happening in the system. Ideally, these alerts need to be transmitted using
a standard format. For security, standards such as IDMEF exist. For safety, this is not the
case. For now, when a SCADA system needs to communicate with another entity, such as an
Enterprise Resource Planning (ERP), ad-hoc solutions are implemented. PROS2E cannot rely
on these ad-hoc solutions and, even beyond diagnosis, cyber-physical systems would gain from
an alert exchange format developed for safety too.

Secondly, a capacity to interrogate PROS2E is required for a complete automation. This
can take the form of a query language for example. This would allow an operator to interrogate
PROS2E with simple questions such as "What are the N most probable scenarios in the next
T minutes?", "What sequence of events lead to the current situation?" ou "How likely was this
event?". These questions would be translated into logic and probabilistic computations to output
the required response in the clearest way possible. But it has to be preceded by a study of what
information is required and how to present it. Providing exhaustive but raw data is probably not
the best option. Indeed, diagnosis is most likely performed in time of stress and the information
delivered should be as clear and useful as possible.

In the same vein as providing meaningful result, comes the problem of establishing the
probability distribution functions and particularly measuring the uncertainty. As discussed in
the thesis, anticipating an attack with precision is still an ongoing issue that PROS2E is not
designed to solve. However, we know that the distribution functions are established with various
degrees of confidence. Providing a way to express this confidence and carrying it to complete
scenarios will modulate the results output by PROS2E will improve the trust that we have in the
results output by the model. Moreover, there is a concept of volatility of a random variable: it is
the impact that a change in this random variable has on the overall result. A random variable
with a high volatility corresponds to an event that has a great influence on the result and should
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be monitored more thoroughly. Being able to express this volatility would enrich the diagnosis.
Lastly, we regret not having been able to pair our probabilistic evaluation with an impact

measure in order to output the risk associated with scenarios. The probability of occurrence
events is not enough when having to chose which one to act against. Indeed, a less probable
event with an important impact might be more interesting to prevent than a probable one with
little to no impact. This choice is of course to be made by the system experts, but we believe a
PROS2E, and diagnosis models in general, should provide such information.

We must also keep in mind that security and safety are proprieties of the system and do
not represent finalities to achieve. Trying to improve the security in industrial systems is met
with their huge inertia when it comes to change. The constraints of industrial systems and the
concerns of the people that work in them are different from those of conventional information
systems. This is also one of the reason behind many choices we made regarding PROS2E
and diagnosis in general. And it should always be considered when continuing our work on
diagnosis, or most universally when proposing solution to improve industrial systems’ security.

From a technical point of view, the convergence of information technologies and operational
technologies also poses numerous tricky challenges. In the sate of the art of this thesis, we
have studied several safety and security models and we have measured how difficult it is to mix
safety and security representations. Considerable efforts will be necessary to develop models
that meet both the expectations of safety and security experts, as well as capture the semantics
peculiar to their respective domains.

In a nutshell, understanding the needs of two so far independent functions of systems,
with different perspectives and objectives, and with irreconcilable legacy techniques creates a
mostly uncharted domain that was very exciting to explore during this thesis. This domain is
still not mature and is full of interesting and rewarding challenges that we look forward to tackle
in the near future.
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Titre : Diagnostic de défaillance et de malveillance dans les systèmes de contrôle industriels

Mot clés : Diagnostic, Sûreté de fonctionnement, Sécurité, Systèmes industriels

Résumé : La convergence des systèmes d’infor-

mations et des systèmes industriels entraine un

changement de paradigme dans la gestion des in-

cidents accidentels et malveillants. Sûreté de fonc-

tionnement et sécurité doivent désormais interagir,

ce qui change le périmètre et les problématiques

du diagnostic.

Après avoir défini ce nouveau périmètre du

diagnostic, cette thèse fournit une analyse des mo-

dèles existants permettant de fournir des informa-

tions nécessaires au diagnostic. Elle propose en-

suite PROS2E, un nouveau modèle d’évènements

sur lequel s’appuyer pour diagnostiquer des inci-

dents dans des systèmes industriels. Il a été spé-

cifiquement conçu pour réutiliser l’expertise déjà

présente dans les différents métiers de la sûreté de

fonctionnement et de la sécurité. PROS2E est en-

suite amélioré pour représenter des incidents plus

complexes et fournir des informations avec plus de

précision. Plusieurs exemples illustrent les possibi-

lités de diagnostic du modèle.

Title: Diagnosing accidental and maliciious events in industrial control systems

Keywords: Diagnosis, Safety, Security, Industrial systems

Abstract: The convergence of information and in-

dustrial systems triggered a paradigm shift in the

management of malicious and accidental events.

Safety and security must now interact and it

changes the perimeters and the issues of diagno-

sis.

After defining this new perimeter, this thesis

provides an analysis of existing models that pro-

vide necessary informations for diagnosis. It then

proposes PROS2E, a new event model upon which

safety and security diagnosis can be performed

in industrial systems. It was specificaly designed

to exploit experience already present in the fields

of safety and security management. PROS2E is

then improved to represent more complex inci-

dents and provide more accurate information. Sev-

eral examples illustrate the diagnosis capacities of

the model.
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