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Abstract

Collective movement can be observed throughout the animal kingdom, particularly in

fish. Yet, despite many studies on the subject, the decision-making mechanisms of

these collective events remain poorly understood. In this thesis, we want to better

understand collective movement by studying more precisely the decision-making process,

the organisation and the cohesion of groups of social fish. Our study focuses on the

zebrafish (Danio rerio), a model used in different areas of research. To highlight those

behaviours, we have developed a specific constrained environment composed of two

rooms connected by a corridor. Cohesion on groups of different sizes and the organisation

of leadership have been examined. The collective behaviour of zebrafish in a constrained

environment was then described throughout a multi-contextual stochastic model. We

have also developed a robotic agent to determine the importance of aspect and behaviour

in conspecific recognition. Finally, after its integration into the group, we influenced

the movements of the fish group with this biomimetic and autonomous fish robot to

test our hypotheses on the different rules underlying collective movements. We have

achieved the following results. In a constrained environment, fish use the rooms as

resting areas and frequently move from one area to another. We observed that the size

of fish groups influences the structure and proportion of these transitions. Group size also

changes the cohesion between individuals and their spatial distribution. We studied more

precisely the decision-making process during transitions, and in particular the mechanics

of leadership. We have shown that leadership is shared among all individuals in a

group, with heterogeneous sharing modalities between the different groups studied. The

stochastic model developed from these results correctly simulates fish group behaviour

in a constrained environment, using different parameter values according to the position

of the agent. We have succeeded in integrating an autonomous and biomimetic fish

robot into a group of zebrafish. The use of the stochastic model to drive the robot

has highlighted the importance of biomimetic behaviour in the process of recognising a

conspecific. Finally, we modulated the behaviour of the zebrafish with the fish robot

by inducing collective departures as well as significantly biasing the distribution of fish

between the two rooms. These positive results allow us to validate the hypotheses about

leadership and cohesion among social fish.

Keywords: collective behaviour, biohybrid systems, modeling, animal-robot interac-

tion, biomimetic robotics, zebrafish



iv

Résumé

Le mouvement collectif est un phénomène observable dans tout le règne animal et no-

tamment chez les poissons. Néanmoins, malgré un grand nombre d’études sur le sujet,

les mécanismes de prises de décisions durant ces évènements collectifs sont encore mal

compris. Dans cette thèse, nous avons cherché à mieux comprendre les déplacements

collectifs en étudiant plus précisément les prises de décision, l’organisation et la cohésion

de groupe de poissons sociaux. Nos travaux utilisent le poisson-zèbre (Danio rerio), qui

est un modèle d’étude dans différents domaines de recherche. Pour analyser la cohésion

au sein de groupes de différentes tailles ainsi que l’organisation du leadership, nous avons

développé un environnement contraint spécifique composé de deux chambres reliées par

un couloir. Le comportement collectif des poissons-zèbres en environnement contraint a

ensuite été décrit dans un modèle stochastique multicontextuel. Nous avons également

développé un agent robotique afin de déterminer l’importance de l’aspect et du comporte-

ment pour s’intégrer de manière autonome au sein d’un groupe de poissons. Enfin, après

son intégration au groupe, nous avons utilisé ce robot poisson biomimétique et autonome

pour tester nos hypothèses sur les différentes règles à l’œuvre dans les mouvements col-

lectifs en influant sur les mouvements du groupe de poisson. Nous sommes parvenus aux

résultats suivants. Dans un environnement contraint, les poissons utilisent les chambres

comme zones de repos et transitent fréquemment d’une zone à l’autre. Nous avons ob-

servé que la taille des groupes de poissons a une influence sur la forme et la proportion de

ces transitions. La taille des groupes modifie également la cohésion entre les individus et

leur utilisation de l’espace. Nous avons étudié plus précisément les prises de décision lors

des transitions, et tout particulièrement le fonctionnement du leadership. Nous avons

fait apparâıtre que le leadership est partagé entre tous les individus d’un groupe, avec

néanmoins des modalités de partage hétérogènes entre les différents groupes étudiés. Le

modèle stochastique développé à partir de ces différents résultats simule correctement le

comportement de groupe de poisson dans un environnement contraint, en utilisant des

valeurs de paramètre différentes en fonction de la position de l’agent. Nous avons réussi

à intégrer un robot poisson, autonome et biomimétique, au sein de groupe de poisson-

zèbre. L’utilisation du modèle stochastique pour guider le robot a mis en évidence

l’importance d’un comportement biomimétique dans le phénomène de reconnaissance

d’un conspécifique. Enfin, nous avons modulé le comportement du poisson-zèbre avec

le robot poisson en provoquant des départs collectifs ainsi qu’en biaisant de manière

significative la répartition des poissons entre les deux salles. Ces succès nous permettent

de valider les hypothèses émises sur le leadership et la cohésion chez les poissons sociaux.

Mots clefs : comportement collectif, systèmes biohybrides, modélisation, interaction

robot-animaux, robots biomimétique, poisson-zèbre



Contexte de la thèse

L’introduction qui suit fait état des principales étapes de mon parcours de jeune chercheur,

du contexte dans lequel j’ai travaillé et des compétences que j’ai eu l’occasion de développer.

Le reste du manuscrit, en anglais, présente mes travaux scientifiques et leurs apports au

domaine de l’éthologie.

De 2015 à 2018 j’ai exercé en tant qu’ingénieur biologiste au Laboratoire Interdisci-

plinaire des Énergies de Demain sous la direction du Professeur José Halloy. J’ai été

recruté pour travailler au sein du projet européen “Animal and robot Societies Self-

organise and Integrate by Social Interaction (bees and fish)” (ASISSIbf). Ce poste,

dont je développerai le détail dans la suite de cette introduction, faisait suite à mon

stage de recherche de Master 2 en Modélisation des Systèmes Écologiques effectué dans

la même équipe. A l’issue de ce stage, nous avions envisagé avec le Pr Halloy de prolonger

mon travail par un doctorat, malheureusement, le projet européen devait s’achever deux

ans et demi plus tard, durée trop courte pour un contrat doctoral. Par la suite, le projet

européen a été prolongé, portant la durée de mon contrat d’ingénieur à trois ans. La

procédure de validation des acquis de l’expérience me permet aujourd’hui de valoriser les

recherches que j’ai menées à ce poste, équivalentes à celles d’un doctorant, et d’obtenir

le diplôme de docteur en Ethologie en validant a posteriori mes travaux qui contribuent

aux avancées de ce domaine scientifique.

Le projet européen ASISSIbf avait pour objectif d’intégrer des agents robots autonomes

au sein de groupes d’animaux sociaux notamment afin de développer de nouveaux outils

en éthologie. Plus précisément, le projet a démontré la possibilité de moduler grâce

à la robotique le comportement des animaux, mais également la communication entre

deux espèces sociales très différentes : les abeilles et les poissons. Commencé en janvier

2013 et terminé en septembre 2018, ce projet a obtenu des évaluateurs la plus haute

notation, “Excellence”, après avoir atteint avec succès ses différents objectifs. La nature

interdisciplinaire du projet a nécessité l’expertise et la collaboration de six laboratoires

européens (figure 1). L’équipe de Paris a ainsi travaillé avec les ingénieurs de l’École

Polytechnique Fédérale de Lausanne (EPFL) pour concevoir un robot poisson capable

d’interagir de manière autonome et biomimétique avec le poisson-zèbre (Danio rerio),

une espèce de poisson social. Le reste du consortium a effectué en parallèle les mêmes

travaux sur les abeilles. Un projet européen diffère d’un projet de recherche plus classique

v
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par le nombre d’acteurs impliqués, l’ambition de ses objectifs et en lien, la taille de

son financement. Les différentes équipes s’engagent à respecter une série d’objectifs

précisément programmée dans le temps, et permettant la réalisation du but final, ici la

modulation du comportement de deux espèces sociales via la robotique. Cela nécessite

de tenir un planning serré parfois au détriment du recul ou des questions scientifiques

secondaires.

Figure 1: Le projet ASSISIbf était composé d’un consortium de six laboratoires.

J’ai été séduit par ce programme de recherche extrêmement novateur et pluridisciplinaire,

couvrant à la fois les domaines de l’éthologie, du machine learning et de la robotique. La

combinaison entre les aspects du comportement collectif qui me passionnent et dont j’ai

fait ma spécialité, et l’utilisation d’outils robotiques et électroniques de pointe, convenait

parfaitement au biologiste féru d’informatique que je suis. L’équipe de recherche que j’ai

rejointe en septembre 2015 était composée de deux doctorants et d’un post-doctorant.

C’est dans ce cadre et avec ces collaborateurs notamment que j’ai mené mes propres

recherches, intégrées au projet européen. La forme de l’équipe et mes responsabilités

ont évolué au cours de ces trois années de travail : les paragraphes qui suivent présentent

cette évolution.

Durant la première année de mon contrat, mes travaux se sont concentrés sur le com-

portement collectif des poisson-zèbres (étudié sans robots). Ils sont présentés dans la

partie I de ce manuscrit. Au cours des deux années qui ont suivi, j’ai travaillé sur

la modélisation du comportement du poisson-zèbre (partie II) et sur l’intégration des

robots au sein des groupes de poissons sociaux (parties III et IV).

J’ai utilisé les principes méthodologiques suivants pour aborder les différentes questions

scientifiques de mes travaux. Pour commencer, le dispositif expérimental est un élément

crucial dans la recherche, car son développement est la formulation concrète des questions

scientifiques posées. Précisément, les travaux présentés dans ce manuscrit, utilisent un
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type d’arène, un “labyrinthe” simple composé de deux chambres reliées par un couloir.

Celui-ci matérialise un choix à deux options, qui permet d’étudier les dynamiques et

les prises de décision au sein d’un groupe. Cette arène a été développée en équipe et

légèrement remaniée pour les expériences impliquant les robots. J’ai notamment travaillé

à la construction des différentes versions, pour laquelle j’ai mobilisé mes compétences

en dessin 2D et je me suis investi dans un nouveau Fablab de l’université Paris Diderot.

J’ai également collaboré avec des entreprises spécialisées pour les réalisations les plus

complexes.

Au sein de l’équipe, nous travaillions généralement de manière indépendante et autonome

pour la réalisation des expérimentations et leurs analyses. Ce mode de fonctionnement

a été facilité par le développement de l’environnement du laboratoire, auquel j’ai con-

tribué. Cet environnement nous permettait une forte automatisation des différentes

tâches, ainsi que de gagner du temps et de réduire les biais. Par exemple, chaque

expérience est enregistrée via une caméra avec une identification en temps réel de la

position des individus puis la vidéo est traitée par un logiciel spécialisé pour obtenir

en plus de la position, l’identité de chaque poisson. Cela nous permet de minimiser les

interactions avec les animaux pendant l’expérience et les erreurs de localisation. Afin

d’analyser les expériences, j’ai développé des scripts en Python adaptés à mes question-

nements qui nettoient, analysent et produisent les graphiques de manière automatisée

sur l’intégralité des données.

Le Pr José Halloy organisait régulièrement des réunions afin d’échanger sur nos avance-

ments respectifs et définir les objectifs à atteindre. Ces réunions m’ont permis de

développer mes capacités de synthèse, de valorisation de mes résultats, mais aussi

d’estimation du temps à consacrer à l’expérimentation et à l’analyse des données. L’acquisition

de cette dernière compétence me semble particulièrement importante, car les expérimentations

en recherche fondamentale sont souvent au moins en partie inédites, et cette qualité de

prototype rend l’estimation de leur durée délicate.

Après un an dans le laboratoire, mes travaux et mes tâches se sont complexifiés avec le

passage de la partie biologie pure aux expériences d’interactions robots animaux. Ce tra-

vail interdisciplinaire m’a amené à collaborer avec deux doctorants, le premier travaillant

au sein de l’équipe de Paris sur le machine learning, et le second, roboticien, travaillant

dans l’équipe suisse du projet européen localisée à Lausanne. Venant d’une formation de

biologie, mon expérience avec les robots était d’abord limitée ; cependant, mon intérêt

personnel pour le domaine m’a incité à communiquer intensément avec ce collègue con-

cepteur du robot utilisé dans nos expériences sur les poisson-zèbres. Cette collaboration

a constitué un des apprentissages importants de ces trois années de recherche. D’une

part, je n’avais pas la même vision du robot que son concepteur : pour moi celui-ci

était un outil, pour lui c’était une finalité de ses propres recherches. J’ai donc pu lui

apporter une perspective différente sur le comportement du robot, une perspective de

biologiste, pour lequel le robot devait se comporter comme un poisson. J’ai appris à
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percevoir les limites de cet outil et trouver de nouvelles solutions, fort des connaissances

du comportement du poisson-zèbre acquises durant la première année de mes recherches.

De plus, j’ai appris, empiriquement et grâce à nos échanges, à entretenir et réparer cet

outil et acquis quelques compétences dans ce domaine (pour plus de détails sur le robot,

voir le Chapitre 4). Cette expérience m’a également formé à collaborer efficacement avec

des experts spécialistes d’un autre domaine de compétence.

Enfin, à partir de fin de 2017, les travaux menés se sont encore complexifiés : l’intégralité

du consortium a été amenée à collaborer activement pour produire le démonstrateur fi-

nal. Il s’agissait d’une expérience ayant pour but de démontrer la faisabilité d’une

connexion inter-espèces via des robots animaux intégrés. Mes travaux sur la modulation

du comportement collectif des poisson-zèbres par les leurres robots ont alors été indis-

pensables pour la moitié du démonstrateur. Mes responsabilités ont donc augmenté en

proportion, car mon expertise m’a mis en position de représentant de la partie “poisson”

du projet européen. J’ai ainsi initié et participé à la conception du démonstrateur et j’ai

piloté les expériences qui étaient réalisées simultanément dans deux laboratoires à mille

kilomètres distance. Celles-ci consistaient à établir une communication entre robots in-

teragissant simultanément avec les poissons et les abeilles. Relever ce défi scientifique et

technologique a été un accomplissement professionnel et personnel, et ce travail n’aurait

pas été possible sans le grand effort de coopération avec mes collègues étrangers pour la

conception, mais également la réalisation des expériences.

J’ai également participé aux rapports internes du projet ASSISIbf. En effet, le con-

sortium doit produire périodiquement un rapport condensant les résultats obtenus. La

rédaction du rapport demande un effort de communication important, car chaque partie

du projet est un entremêlement de tâches produites par différentes équipes. J’ai été en

charge de certaines parties de ces rapports et il faut une certaine ténacité pour obtenir

des différents partenaires les informations sur les résultats attendus, mais également une

bonne compréhension des résultats pour résumer en quelques lignes plusieurs mois de

recherche. En parallèle et pour faciliter la coordination, des assemblées générales rassem-

blant toutes les équipes ont été régulièrement organisées. Lors des assemblées générales,

j’ai préparé et présenté des résumés de l’avancement des recherches de l’équipe française

en anglais, complétant ainsi mes compétences de synthèse et d’exposition des résultats.

Durant ces trois ans, j’ai communiqué à plusieurs reprises sur mes travaux et sur le projet

européen. Une des expériences de communication scientifique les plus marquantes a été le

Festival Ars Electronica à Linz en Autriche. Ce festival d’art et de technologie de grande

envergure est destiné au grand public. Les travaux du projet européen ont été présentés

au cours de deux éditions auxquelles j’ai participé, en 2016 et 2018. Notre stand a été

conçu par une designeuse professionnelle en communication au sein de l’équipe suisse

avec qui j’ai pu collaborer durant le festival. Communiquer avec le grand public a été

très instructif pour moi ; j’ai dû simplifier les questions scientifiques présentées jusqu’à

leurs enjeux très fondamentaux, tout en étant très bref, face à un public versatile et varié.



ix

Figure 2: Maintien du stock de poissons durant le Festival Ars Electronica 2018
(© Tom Mesic)

J’ai en effet dû répondre à un grand nombre de questions de visiteurs de tous milieux et

de tous âges, mais également à des journalistes, le plus souvent en anglais. Ce festival a

également été un défi logistique entre différentes équipes du projet européen, mais aussi

avec les organisateurs du festival. Il m’a fallu improviser pour produire un environnement

suffisamment proche d’un laboratoire pour mettre en place le dispositif expérimental

que mon équipe présentait. J’ai également dû former mes collègues à la préparation

des expériences biologiques pour qu’ils soient capables de tenir le stand. De nombreux

impromptus mécaniques et informatiques ont rendu l’édition de fin 2018 encore plus

ardue en termes d’organisation. J’ai relevé le défi seul, car la partie scientifique de

ASSISbf s’étant terminée, mes collègues des équipes poissons avaient quitté le projet.

Sans interlocuteur francophone, j’ai pu également constater avec plaisir les progrès que

j’avais réalisés dans la pratique de l’anglais.

Le projet européen a également organisé deux ateliers à destination des étudiants ingénieurs

et des doctorants. J’ai pris en charge un cours du second atelier, qui avait lieu à Graz

(en Autriche) avec mon collègue roboticien de l’EPFL sur le thème de l’utilisation de

robot en éthologie, de modélisation et d’intelligence artificielle. Je devais préparer les

conférences et encadrer les participants, expériences d’enseignement que j’avais déjà eues

de manière plus confidentielle avec les stagiaires du laboratoire. J’ai ainsi pu affiner mes

méthodes pédagogiques auprès d’étudiants de niveau universitaire.

J’ai également eu l’occasion de postuler à plusieurs demandes de bourse de thèse avec
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l’aide du Pr Halloy, afin de pouvoir prolonger mes travaux sur le comportement collectif

du poisson-zèbre à la fin du financement européen (nous ne savions alors pas que ceux-

ci allaient être prolongés). Ces propositions ont été très loin dans la sélection, sans

toutefois être finalement retenues. J’ai cependant appris à définir et développer de façon

formelle un projet de recherche : élaborer les questions scientifiques, les expériences

nécessaires pour y répondre, anticiper les modèles de simulation, préparer un planning

étalé sur trois ans et définir un budget prévisionnel. Dans l’optique de démontrer la

faisabilité technique de mon projet, j’ai produit un prototype de dispositif expérimental.

J’ai également défendu ces projets de recherche devant un jury d’experts.

Les travaux de recherche auxquels j’ai participé et qui sont présentés dans mon manuscrit

ont tous donné lieu à des publications scientifiques dans diverses revues. J’ai ainsi pu me

familiariser avec les différentes étapes de la publication et de la rédaction et contribuer

par mes relectures à l’évolution des articles, lors des échanges et retours avec l’éditeur.

Enfin, mes propres travaux ont donné lieu à deux articles en cours de publication. Sous

la direction de José Halloy, j’ai rédigé et mis en forme mes résultats, tout en situant

mes travaux dans la continuité des recherches existantes et en exposant les avancées

fondamentales qu’ils apportent au domaine d’étude.

Ces trois années au sein du laboratoire LIED et du projet européen ASSISbf ont donc

été riches d’enseignements : j’ai acquis de connaissances fondamentales en biologie et en

éthologie, et des compétences en robotique, pédagogie, gestion de projet, présentation

des résultats, et en rédaction de rapports et d’articles scientifiques. Réciproquement,

j’ai pu contribuer à la compréhension du comportement collectif des poisson-zèbres,

en développant mes propres expériences et analyses. Celles-ci ont été communiquées

aux parties prenantes du projet, mais également à la communauté scientifique par les

articles publiés ou en cours de publication. Mes travaux en éthologie sont présentés dans

le manuscrit de thèse qui suit.
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Expériences professionnelles

Ingénieur d’études Paris, France

Laboratoire Interdisciplinaire des Énergies de Demain Oct. 2015 - Oct. 2018

Projet européen ASSISIbf “Animal and robot Societies Self and Integrated by

Social Interaction”, sous la direction du Pr José Halloy. Ce projet de recherche a reçu

la notation “Excellence” en Septembre 2018.

• Recherche sur les comportements sociaux des poissons (décision de groupe, stratégies

d’exploration et leadership), modèle de poissons en environnement contraint et
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Université Paul Sabatier

Licence en Biologie des Organismes, des Populations Toulouse, France

et des Ecosystèmes 2011-2012
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Introduction

i.1 Collective group and decision making

Over the course of evolution, group life has appeared in different taxa and has reached

varying degrees of complexity since collective phenomena can be observed from bacteria

to vertebrates. Collective movements are very present among fish species: it is assumed

that 25% of fish species swim in groups throughout their lives and 50% during their

juvenile states [213]. The cohesion of these groups varies widely, from groups of fish

staying together for social reasons, called shoals, to groups of fish moving in a coordinated

and polarised way, called school.

Figure i.1: A school of barracudas (Sphyraena barracuda). Work of Robin Hughes
published on Wikimedia Commons (under licence CC BY-SA 2.0)

1
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2 INTRODUCTION

Living in a group provides an adaptive advantage in the face of environmental pres-

sures [133]. Group size can provide protection from predators by improving the detec-

tion process (“encounter dilution” effect) [74, 88, 148, 241], reducing the probability of

mortality relative to group size [209], but also by disturbing the predator in the presence

of too many prey in its visual field [111, 143] (“predator confusion” effect). It can also

improve foraging [62,189,222] and avoidance of pollutants [96,153]. Another mechanism

emerging from social groups is the “many wrong” mechanism where individual noise

and errors are averaged at the group level and produce an accurate decision [46, 219].

For example, it can improve navigation in a peaty environment [12, 94]. In this exam-

ple, a group of fish want to go to a preferential area, here the darkest zone. Despite

deliberately noisy light variations, the cohesion and polarisation of the group make it

possible to avoid individual errors and to find precisely the preferred area. The precision

increases with the number of individuals in the group. The improvement of the cognitive

performance in groups, which allows better and faster decision-making than for an iso-

lated individual, is called Swarm intelligence and results from distributed, self-organised

decision making [16, 72, 85, 202]. As part of a whole, individuality is partially or totally

erased and the decisions of each individual are influenced to a greater or lesser extent

by the behaviour of group members.

Collective movements can therefore improve collective intelligence, but it is necessary

to understand how it is organized. Collective movements can be defined as “as a group

of animals that decide to depart/move quite synchronously, move together in the same

direction and maintain cohesion until the group stops moving or starts a new activity”

[183] and were often studied [75, 100, 103, 176, 183, 197, 231, 233]. Collective movements

are active in different situations such as food collections [65, 112], nest site selections

[4,59,203,253], predator detection [13,28,45,145,149,263], habitat or territory selection

[82,212,252].

This implies that animals have to choose between different alternatives and therefore

reach a consensus to select the right one [50], by making a collective decision. To

understand how it works, we need to study how information is perceived and shared,

but also who makes the decision.

The transfer of information is quite well understood in insects. The information can be

shared with the use of chemical signals such as bumblebees that will take a pheromone

into the nest to recruit new workers as soon as new flowers are discovered [69]. In ants,

a chemical trail will be used by scouts to recruit workers to the food source [107, 178].

In this case, the information is completed by the recruited individuals who will reinforce

the lead as long as the resource is available. If it disappears, the track will also disappear

by evaporation due to its non-activity. In fish, the transfer of information from trained

individuals to the naive individual has been shown several times [155] but the underlying

mechanism remains unclear. While some of the signals used by fish are obvious, such as

colour changes [221] or sounds [135], current knowledge suggests that in most collective
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movements, information transfer is done by passive cues [110]. They are based on the

relative alignment between individuals and water movements and allow fish to react

quickly to the movements of neighbours. To allow this passive information transfer,

fish have, in addition to vision, a lateral line to detect disturbances in water such as

currents, prey, predators, congeners and obstacles [78]. They also have an inner ear to

detect sound in water.

Leadership is defined by one or more individuals initiating the group movement towards

a new direction [130]. Leadership can be designated, emerging spontaneously because

some individuals have knowledge appropriate to the situation or possess traits that give

them a tendency to make decisions [71].

Personal leadership is when an individual initiates the group activities alone [141]. This

capacity is inherent in hierarchical groups. The status of dominant can be vested in

the oldest individual such as the mountain gorillas (Gorilla beringei beringei) [6,255] or

to a dominant couple like wolves (Canis lupus) [154] and the common dwarf mongoose

(Helogale parvula) [5]. Leadership can also be established by several individuals at the

top of the hierarchy, for example, rhesus macaques (Macaca mulatta) [234] and dolphins

(Tursiops sp.) [147]. Being more autonomous, the dominant increases his chances of

being the first to act, especially since he exerts a very strong influence on the group [131].

This implies that the interests of the group may differ from those of the leader.

Conversely, when leadership is not attributed to a particular individual, it is said to be

distributed. All members of the group can initiate a collective activity regardless of their

position in the hierarchy. These temporary initiators may be individuals who are mo-

mentarily more motivated than their congeners, have a particular spatial position [141]

or even more informed. In zebra (Equus burchellii) [80], european bass (Dicentrarchus

labrax ) [160] or stickleback (Gasterosteus aculeatus) [166], temporarily more motivated

individuals initiate collective movements. In colombian white-faced capuchin (Cebus ca-

pucinus) [141] and rhesus macaque (Macaca mulatta) [234], individuals in the centre of

the group initiate collective movements while in golden shiner (Notemigonus crysoleu-

cas) [199, 205], roach (Rutilus rutilus) and stickleback [33, 130] are the individuals on

the periphery of the group. For sticklebacks, individual personality can influence lead-

ership [98]. Some sticklebacks are bolder than others, explore their environment more

willingly and initiate collective travel more often by easily recruiting so-called shy indi-

viduals. Finally, an informed individual will be able to take the leadership more easily,

as for example in the case of predator detection. It will then initiate an escape behaviour

that will be followed by the other members of the group [61,216].



4 INTRODUCTION

i.2 Mathematical models

In order to understand collective movements, mathematical models are often used as

tools to describe and validate by simulation hypotheses that underlay the cohesion of

these movements. To do this, it is necessary to formalise in a mathematical formulation

the empirically observed rules of behaviour. The solutions in these models can help to

better understand or highlight interactions within the group, but also to predict or refine

experiments that are difficult to perform.

Models can describe situations at different scales. At the macroscopic level, models de-

scribe collective movements at the group level, for example to describe the distribution

of agents between different sites [4]. At the microscopic level, it is the individual be-

haviours that are described, each individual being described independently and reacting

to the behaviour of other individuals described by the system. Due to the difficulty

of obtaining detailed data on collective group movements until recently, mathematical

models have made it possible to explain the theoretical rules of collective movements

by simulation. In particular, physical models of particle displacement have revealed

that complex collective movements can be summarised as simple rules of attraction and

repulsion.

Figure i.2: Simulation of Vicsek model by Vicsek [250] in Novel Type of Phase Tran-
sition in a System of Self-Driven Particles. (a) represents the starting position of the
simulation, where the velocity of the particles is represented by an arrow. (b), (c) and
(d) represent simulations after some time, with each different values of density and
noise. This demonstrate that it is possible to simulate collective displacements with

simple individual rules.

For example, one of the simplest models for reproducing collective movements is the

Vicsek model [250]. In this model, at each time step, the particles choose a direction

that align them with their neighbours and moves at a constant speed. From this base,
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by adding rules of repulsion [90], it is possible to maintain group cohesion. By using

similar rules but applied in 3D, it is also possible to reproduce the collective movements

produced by large fish groups as they had been observed in nature [53]. In this study,

the agents have a blind spot in their visions in order to get close to the limits of the

biological model. These models are defined as self-propelled particle models and a wide

variety have been studied [146]. They are sufficient to generate movements similar to

those observed in groups of animals. Several studies have shown that the features of

these models, such as nearest-neighbour distance, polarisation, group speed, and turning

rate, can be correlated with biological experiment data [101,106,109,175,251].

However, it has now become possible to obtain precise data on the movement of collective

animals [9, 31, 163, 169, 215, 247]. Tools such as idTracker [181] precisely track the posi-

tions and identity of the animals studied. Thanks to this, it is therefore possible to pro-

duce new models closer to the observed behavioural rules. Some studies [86,87] propose

a bottom-up data-driven approach, which consists of developing a model by comparing

each hypothesis with biological data. For example, the first iteration of the model will

only take into account the swimming of a single fish [87], before a subsequent iteration

adds cohesion parameters by studying two fish [86]. Since, several models have repro-

duced the social behaviours observed experimentally in fish [38,49,79,142,259,261], like

U-turns, hydrodynamic interactions, leadership, migrations, burst-and-coast (a swim-

ming feature of some fish species like zebrafish) or wall following.

i.3 Mixed groups of animals and robots

Ethology researchers have been using for a long time decoys to interact with animals.

This simple tool allows scientists to simulate a specific aspect of a behaviour, like feeding,

in order to understand how animal interactions work [243–245,248]. For example, in the

figure i.3 based on an experiment from Turner 1964 [248], a decoy is used to simulate a

bird food collection. The lure picks a food of a specific colour from among several and

the experiment seeks to determine if a chick observing the action chooses the same food.

In this experiment the lure is a simple flat shape that the experimenter moves by hand.

Technological advances have made more complex experiments possible, particularly with

the appearance of the first robotic decoys. Lures can now move, as Martins et al. shows

it with a lizard robot reproducing head movement patterns [151]. They can produce heat

like in the study of Rundus et al. 2007 [207] with its squirrel robot emitting infrared

through the tail to reproduce predator alert systems(figure i.4A). They can even produce

sound like the frog robot in the study of Taylor et al. 2008 [242], which reproduces

territory defence/reproduction vocalisations and moving vocal sac (figure i.4B).

However, these robots remain limited, often controlled by human operators and only able

to operate on one animal at a time and during short periods of time. They are not able to
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Figure i.3: Mechanical hen used by Turner [248] in Social feeding in birds.

(A) Rundus et al. 2007 [207] (B) Taylor et al. 2008 [242]

Figure i.4: Advance robotised lures used in behavioural studies. (A) Robotic squirrel
to study predator avoidance. (B) Robotic tungara frog to study mate selection.

respond autonomously to an animal interaction. It was only in 2000 that the first study

using a robot capable of interacting with animals autonomously appeared. Vaughan et

al. 2000 [249] shows that a robot can gather ducks by acting like a sheepdog. The robot

uses a model to predict the behaviour of the ducks, and moves accordingly to force the

group to reach a specific position. This study highlights that autonomous robots can

allow more complex interactions by interacting with groups of animals and no longer a

single individual. Since then, the number of studies in the field has increased significantly

[204]. For example, researchers have developed a chicken robot capable of interacting

with chicks [92] to study the imprinting mechanism. Similarly, they also developed a

cockroach robot capable of modulating cockroaches collective decision making to get

them to move from a safe shelter to an exposed shelter [97]. These studies all present

robots cooperating with a group of animals in a closed-loop interaction: robots influence

animals, which in turn will influence the behaviour of robots.

Robots do not necessarily need to be mobile to interact in closed-loop with animals.
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(A) Vaughan et al. 2000 [249]

(B) Halloy et al. 2007 [97] (C) Gribovskiy et al. 2015 [92]

Figure i.5: Autonomous robots interacted socially with animals. (A) The robotic
sheepdog with a ock of ducks. (B) The InsBot mobile robot with cockroaches. (C) The

PoulBot mobile robot with chicks.

For example, in Stefanec et al. 2017 [228] the robot developed to interact with bees is

actually a fixed grid of robots that simulate the presence of bees in a hive environment

through vibration and heat. Finally, the robot can be mounted directly on the animal

to monitor the animal activities or send stimuli. Studies using smart collars containing

a GPS and various environmental sensors as well as speaker and electric shock systems.

In Correll et al. 2008 [52], they used these collars on cows to influence them to stay in

a virtual enclosure and to cause stress in animals leaving the area. This stress will be

transmitted within the group by the cows themselves and will increase the aggregation

of individuals.

Based on these studies, three types of autonomous robots can be described:

(i) First, the artificial systems do not copy any feature of the animal but send cues that

the animal responds to. Being biomimetic is not a necessity to interact with animals [52].

(ii) Second, the artificial agent acts as a different animal species such as a sheepdog.

The robot can be biomimetic but to another species like a dog for the sheep [249].

(iii) Third, the artificial agent is mimicking the animal, luring it as if being the same

animal species and using similar signals and behaviours [97]. We call this approach

biomimetic and it will be the one developed in this manuscript.

A large number of studies focus on fish species, particularly for the easier conditions

of fish maintenance in laboratory [204]. However, it is more difficult to understand
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collective behaviours within fish groups as the transfer of information is less clear and

more complex than, for example, in insects. In addition, the heterogeneity of individual

behaviours increases the difficulty of studying the behaviour of the entire group [110]. In

different fish species, work has been carried out to replicate locomotion [19,20,22,126,150]

or the visual aspects [1, 10, 17, 138, 190, 192] to show their importance in attracting

conspecifics. Other cues have been investigated, like on the electric fish Mormyrus rume

where a robot was able to interact by displaying prerecord electric organ discharges

(EODs) in answer of EODs made by the live fish [258].

i.4 Thesis overview

In this thesis, I investigated the mechanisms of collective movement and decision-making

of social fish. This study focused on zebrafish (Danio rerio) in constrained environment.

This thesis aims to answer the following questions:

• How do social fish behave in constrained environments? Group size has an

effect on individual behaviours, group cohesion and transitions. During collective

departures, the order of exit of the fish corresponds to the topology of the group

a few seconds before the departure [211]. Leadership is shared among individuals:

each fish has the same ability to initiate a collective movement. Nevertheless, there

is a strong heterogeneity between groups on the proportion of each individual to be

leader [48]. These topics will be covered in Chapters 1 and 2 of this manuscript.

• How to model collective movement in constrained environments? Our

agent-based model takes into account the modulation of the collective behaviours

depending of the location in the environment and the social context. It will be

presented in Chapter 3.

• How to integrate autonomous robots with groups of fish in a constrained

and complex environment? Using a biomimetic robot driven by the context-

dependent model, we were able to integrate this biomimetic agent into a zebrafish

group. The robot interacts with fish in a closed loop and is recognised as a conspecific

[41–43]. The features used to achieve this result will be detailed mainly in the

Chapter 4 but also in Chapters 5 and 6, which show that the improvement of the

model also improves the integration of the robot with social fish.
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• How to modulate groups of fish using robots? We use robots to initiate

collective movements and lead the group of fish from one room to another. We

also modulated the time spent in each room by the fish using the robot as an

attractor [44]. This will be explained in the Chapter 7.

My work focused on the use of a constrained environment composed of two rooms

connected by a corridor. This experimental set-up can be used to highlight decision-

making and collective movements from one site to another. This study focused on a

social fish species, the zebrafish (Danio rerio). Highly appreciated in laboratory for

its robustness, it is a model organism [171, 172] living in a shoal-type group. I also

produced a model simulating the movement of these fish in a constrained environment.

The advantage of developing a context-dependent model is the inclusion of complex

dynamics that are less apparent in a simple homogeneous environment. Finally, I used

autonomous robotic agents, reproducing the patterns of a zebrafish and controlled by

the model, to create a closed loop system where the robots are recognised as conspecific

by the fish. I was then able to study leadership and collective movements using robots

to modulate the collective behaviour of zebrafish.

i.5 Project ASSISIbf

This work was part of the European project (FP7) ASSISIbf (Animal and robot Societies

Self-organise and Integrate by Social Interaction with bees and Fish).

The goal of ASSISIbf was to conceive autonomous and self-organised mixed-groups of

animals (in this case, with fish and bees) and robots, with robots capable of learning how

to interact with the animals, of adapting their behaviour to the animals response, and of

modulating their collective behaviour. Six partners were part of the ASSISIbf project.

Our team at the Université Paris Diderot (LIED lab) developed fish behavioural models

and performed experiments involving fish and robots. The roboticists at the EPFL

(LSRO lab) designed and built the robots used during our experiments. Meanwhile, the

four other partners were involved with mixed-groups of bees and robots. The roboticists

from the university of Zagreb (LARICS lab) designed and built robots and software

tools used to conducts experiments involving mixed-groups of bees and robots, with

some parts developed by another partner, the company Cybertronica. The ethologists

from the University of Graz (Artificial Life lab) performed these experiments. The group

from the University of Lisbon (FCiências.ID lab) developed multi-agents simulation tools

and optimisation frameworks.
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Zebrafish collective behaviour
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Zebrafish (Danio rerio) are a gregarious model fish. This species is a prime candidate

for research laboratories due to how easy it is to breed, its robustness, its gigantic

spawning and its rapid maturity. It is now a model organism [171,172] and its DNA was

fully sequenced in 2013 [108]. There are a multitude of zebrafish strains, with various

genetic and phenotypic properties, used according to research needs, in oncology [208],

neurology [95], toxicology [73], etc.

This freshwater fish of the Cyprinidae family is small in size (3.5 to 4.5 cm). Originally

from India, zebrafish are diurnal. Their habitat is very varied and ranges from simple

shallow and weak flowing rivers to non-permanent ponds or even irrigation canals. These

fish are very robust and can adapt to very variable water temperatures ranging from 6°C

in winter to 38°C in summer [226]. Danio rerio is omnivorous. Its diet mainly includes

zooplankton and insects, but it sometimes feeds on phytoplankton, algae, detritus, sand,

fish scales and other invertebrate eggs [70, 152, 224]. Zebrafish are oviparous; every two

to three days, depending on their age, females can lay several hundred eggs at a time.

On average, zebrafish mature 75 days after fertilisation [226].

In a previous study [212], the difference in behaviour was studied between two wild-type

zebrafish lines, AB with short fins, and TL with longer fins. AB zebrafish has been

used in all the works presented in this manuscript. The study takes place in a square

arena and includes two identical spots (Fig. 6) over a period of one hour. This study

highlights greater cohesion within TL groups and greater interest in spots among AB. It

also shows that zebrafish, AB or TL, are constantly in motion, and would rather swim

near walls or spots than in the empty space of the set-up. The fish swam mainly together

and oscillated from one landmark to another with short rest periods. No selection of a

specific spot was observed.

1 m

1
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Figure 6: Experimental set-up with spots. (A) Cylinders, (B) Discs.

With this knowledge and in order to be able to study more specifically the cohesion,

decision-making, organisation and use of space by the group during exploration events,
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the work presented in this first part focuses on the study of zebrafish in a constrained

environment developed for this purpose. The set-up consists of two rooms (patches)

separated by a corridor where fish can swim in groups and move freely between areas.

This corresponds to their natural fragmented habitat and allows us to observe repetitive

social interactions leading to collective departures.

In Chapter 1, we study the use of space and the cohesion of groups according to their

size in this maze. We present the experimental results of pair interactions and collective

departure organisations of seven sizes of zebrafish groups. Using a tracking system that

gives the position and identity of each fish without marking them, we computed individ-

ual measurements such as speeds, distances travelled and respective pair interactions.

We analysed collective departures by sorting the fish by their exit rank and distance

rank to the initiator (the first fish leaving a room) and we quantified site transitions.

Our results show that population size has an impact on individual speeds and distances

travelled. We show that there are preferential interactions between respective pairs and

that the larger the population, the weaker these preferential interactions are. The study

of area transitions reveals several social structures: “collective transitions”, “one-by-one

transitions” and “u-turns”. We show that population size influences the proportion of

these transitions. Finally, the results of this chapter show that the zebrafish transition

is determined by the topological structure before departure, where the second ranked

fish and the last ranked fish leaving a room are, most of the time, the closest and the

farthest fish from the initiator, respectively.

This work is based on the publication [211]:

Séguret A, Collignon B, Cazenille L, Chemtob Y, Halloy J. Loose social or-

ganisation of AB strain zebrafish groups in a two-patch environment. PloS one

2019

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The experimental arena was built by Bertrand

Collignon, Axel Seguret and myself. The experiments were carried out by Axel Seguret,

Bertrand Collignon and myself. I produced part of the preliminary analysis. This doc-

ument was written mainly by Axel Seguret, with the help of José Halloy and Bertrand

Collignon.

Chapter 2 focuses on decision-making and leadership. We present an analysis of the

collective departures of twelve groups of two, three, five, seven and 10 zebrafish swimming

in the two rooms maze. We focus our analysis on the identity of the first fish that exit the

rooms, the initiators, and on the possible features that favour them to take the lead of the

shoal. Our results show that groups of similar sizes display a wide range of distribution

of the leadership ranging from a homogeneous to a strongly asymmetrical sharing of the

initiative. However, in most of the group the number of departures is not homogeneously

https://doi.org/10.1371/journal.pone.0206193
https://doi.org/10.1371/journal.pone.0206193
https://doi.org/10.1371/journal.pone.0206193
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distributed among the group members, some fish leading more often than others. We

highlight that those initiators do not have a stronger influence on their congeners but

perform more attempts than other fish. Indeed, the number of successful departures

is linearly correlated with the number of attempts, giving the same success rate for all

fish. This conclusion is observed for all group sizes but the success rate decreases for

larger populations. Finally, we provide evidence that the number of attempts performed

by the fish is related to their intra-group ranking for average speed, the most mobile

individual leading more attempts than slower fish.

This work is based on the publication [48]:

Collignon B, Séguret A, Chemtob Y, Cazenille L, Halloy J. Collective departures

and leadership in zebrafish. PloS one. 2019

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The experimental arena was built by Bertrand

Collignon, Axel Seguret and myself. The experiment was done by Bertrand Collignon,

Axel Seguret and myself. I produced some of the preliminary analysis. This document

was written mainly by Bertrand Collignon.

https://doi.org/10.1371/journal.pone.0216798
https://doi.org/10.1371/journal.pone.0216798




Chapter 1

Loose social organisation of AB

strain zebrafish groups in a

two-patch environment

Abstract

We study the collective behaviour of zebrafish shoals of different numbers of individuals

(1, 2, 3, 5, 7, 10 and 20 AB zebrafish Danio rerio) in a constraint environment composed

of two identical square rooms connected by a corridor. This simple set-up is similar to

a natural patchy environment. We track the positions and the identities of the fish and

compute the metrics at the group and at the individual levels. First, we show that the

number of fish affects the behaviour of each individual in a group, the cohesion of the

groups, the preferential interactions and the transition dynamics between the two rooms.

Second, during collective departures, we show that the rankings of exit correspond to

the topological organisations of the fish prior to their collective departure. This spatial

organisation appears in the group a few seconds before a collective departure. These

results provide new evidences on the spatial organisation of the groups and the effect of

the number of fish on individual and collective behaviours in a patchy environment.

1.1 Introduction

Across the collective behaviours observed in social animals, collective movements [75,

100, 103, 176, 183, 197, 231, 233], nest site selections [4, 59, 82, 203] and site transitions

[98] have been evidenced in many species. In this latter case, the groups face several

alternatives and transit between them. The study of these transitions relies on decision-

making processes and individual or collective preferences for environmental [50] or group

members characteristics [75,76,106,195] like leadership [56], motion [27] or behavioural

traits, for example bold and shy individuals [59, 201].

17
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Numerous animal species have been observed in different sorts of constraint setups or

mazes to study collective movements from one site to another: corridor type [75,76,185],

Y-maze [253], T-maze [124] or Plus-maze [155, 220]. Such constraint set-ups engage

the animals to transit alone or in group from site to site and allow the observation of

leadership [26, 48, 252], initiation of group movements [27, 205, 252], followers organisa-

tions [252], pre-departure behaviours [26,27] and sites transitions [98,164,167]. In these

latter cases the authors studied the transitions from one site to the other of one and

two fish separated by a transparent partition (Gasterosteus aculeatus and Sciaenops

ocellatus). Although such experimental procedure provided evidence of different lead-

er/follower behaviours in fish, they prevent the fish from direct interactions between

each other during the departures.

On the one hand, studies performed with groups of fish swimming together have evi-

denced that the group size can impact swimming behaviours with a variety of results.

Several papers showed that the speed, the turning speed, the nearest neighbour distances,

the milling or the alignment are affected by the number of group members [11,102,247].

The authors present opposite results depending on the species: increasing the group size

of Oreochromis niloticus (330 and 905 fish), makes a stronger alignment [11], while for

Notemigonus crysoleucas (30, 70, 150 and 300 fish) alignment decreases [247]. On the

other hand, Shelton et al. [214] have shown that the density influenced nearest neigh-

bour distances in Danio rerio when Frommen et al. [83] noticed that shoaling preferences

might not always be influenced by a higher number of group members but also by the

density and cohesiveness of the respective groups.

We focus on the collective movements between two environmental patches of different

numbers of zebrafish. We have shown in a previous study that zebrafish transit without

interruption from one landmark to another one in an open environment during trials

of one hour [212]. Moreover, we have shown that groups of fish were swimming along

the border of the tank and thus had a strong thigmotactic tendency [49]. Inspired by

the experiments developed for highly dynamical groups of animals like the ants [113]

or the fish [75, 76, 185] in constraint set-ups, we created a binary choice set-up able

to channel the groups of zebrafish and to increase their stabilisation in the patches.

Our experimental set-up is composed of two environmental patches (rooms) linked by a

corridor. The geometry of the setup is designed to study collective transitions between

patches allowing to quantify the group cohesion and collective decision-making. In this

study, we aim at characterising the dynamics of departure during sites transitions for

several group sizes (1, 2, 3, 5, 7, 10 and 20 individuals) of AB zebrafish swimming in a

constraint environment. Here we consider group size as the number of fish in a group.

Zebrafish are gregarious vertebrate model organisms often used in behavioural stud-

ies [171,172]. In the laboratory as much as in the nature, the zebrafish behave in groups

[75,152,226]. They are native to the Indian sub-continent and live in small groups or in
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big shoals of several hundreds of fish depending on the region and the water or the envi-

ronmental features (temperature, pH, human activity, predators, ...) [174,195,225,238].

Zebrafish live in a wide variability of habitats with varying structural complexities [7,238]

(from river channels, irrigation canals to beels) and we based our experimental method

on the observations of fish swimming in a constraint set-up composed of two identical

squared rooms (evoking patchy environments [257]) connected by a long corridor. The

goal of the paper is to measure the impact of the groups of fish on the collective decision

making between two identical patches. This methodology has been developed in [4].

Here, we study the collective dynamics of group transitions in zebrafish with a new

type of set-up. By observing groups composed of different numbers of fish, we evaluate

the influence of the number of individuals in the shoals on the structure of the group

(cohesiveness, inter-individual distances) and on the sequence of exit for each collec-

tive departure. By performing trials of one hour, we could observe a large number of

successive transitions.

1.2 Results

1.2.1 Group structure and number of individuals

First, we studied the change of the group structure according to the location of the

group and the number of fish by measuring the nearest neighbour distances for each

individual. Fig 1.1 shows the boxplots of the medians of the nearest neighbour distance

distributions for each fish in 5 shoal sizes (2, 3, 5, 7 and 10 fish). We chose to use the

Nearest Neighbour Distance (NND) because we wanted to describe the shoal dynamics.

If we took an average of all Inter-Individual Distance (IID), this would have been higher

in larger shoals than smaller shoals because larger shoals take up more volume. Also the

NND lowers the effect of the geometry of the set-up compared to IID. Thus, the boxplots

for each area (rooms or corridor) and each number of individuals consist in 12 values

of medians. For groups of 2 to 3 individuals, the increase of the number of individuals

made the medians of the nearest neighbour distances decrease until a plateau value of

approximately 4 cm. For groups of 5, 7 and 10 individuals, the medians of the nearest

neighbour distances remained very close from each other.

We compared with a Two-way ANOVA the distributions of the medians of the nearest

neighbour distances for each fish focusing on each area (room 1, room 2 and corridor)

or each number of individuals. The test shows that there is an effect of the number

of individuals on the medians of the nearest neighbour distances (p − value < 0.005,

F = 3.87, MS = 0.00092 and df = 4). However, it does not show any significant effect

of the type of the area – Room 1, Room 2 or Corridor – (p − value > 0.1, F = 1.96,
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Figure 1.1: Boxplots of the medians of the nearest neighbour distance distri-
butions for each zebrafish (blue) in the room 1, (green) in the room 2 and (yellow)
in the corridor. The red line is the median. The higher the number of individuals, the

lower the nearest neighbour distances between fish.

MS = 0.00047 and df = 2) nor of an interaction between the number of individuals and

the type of the area (p− value > 0.5, F = 0.15, MS = 0.00004 and df = 8).

1.2.2 Oscillations and collective departures

Then, we characterised the collective behaviours of the fish. In particular, we focused our

investigation on the oscillations between both rooms and the dynamics of the collective

departures of the groups. First, we studied the repartition of the fish among the two

rooms. Approximately 70% of the positions of the fish were detected in the rooms,

independently of the number of individuals. In the Fig 1.2, we show that 80% of the

time, less than 20% or more than 80% of the whole group is detected in the room

1. This result highlights that, as expected for a social species, the fish are not spread

homogeneously in the two rooms but aggregate collectively in the patches, with only

few observations of homogeneous repartition in both rooms. However, this analysis also

shows that the proportion of observations with equal repartition between both rooms (40-

60%) increases with the number of individuals. Thus, even if they are mainly observed

together, fish in large group have a slightly higher tendency to split into subgroups.
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Figure 1.2: Frequency of the proportion of the whole group in room 1.
Almost 35% of the time, 0 to 20% of the whole group is present in the room 1 when
almost 50% of the times, 80 to 100% of the whole group is in the room 1. Focusing on
more equal repartition of the fish between the rooms (40 to 60% of the whole group),

larger groups lead to higher frequency of group splitting.

We show that the frequencies of observations for the proportions of 80 to 100% of the

whole group in the room 1 are higher than 50% for all group sizes, except for 10 and 20

fish. For each trial, we defined the room 1 as the starting room where we let the fish

acclimatize during 5 minutes in a transparent perspex cylinder. This may explain the

observed bias of presence in favour of room 1 that may be a consequence of a longer

residence time at the beginning of the trials.

Then, since the fish are observed most of the time forming one group in one of the

two rooms, we studied the transitions of the majority of fish between the two patches

during the whole experimental time. In Fig 1.3, we plot the number of transitions

between both rooms for the plot of the means of the numbers of transitions and their

standard deviations in a table). First, we present the total number of transitions (All

transitions) for all group sizes (referred as All transitions). Then for groups with at

least two individuals, we detailed these transitions into two subcategories: Collective

transitions (they occur when the whole group transit between both rooms through the

corridor, i.e. the majority of the group is detected successively in one room, the corridor

and the other room) and One-by-one transitions (they occur when the fish transit one

by one from one room to the other through the corridor, i.e. the majority of the group
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Figure 1.3: Mean and median number of transitions for groups of different
numbers of individuals. The red curve shows Collective transitions, the blue curve
shows One-by-one transitions, the black curve represents the Collective U-turns and the
magenta (All transitions) is the sum of Collective transitions and One-by-one transi-
tions. The stars show the medians. One-by-one transitions occur when the fish transit
one by one from one room to the other through the corridor. Collective transitions
appear when the whole group transit between both rooms through the corridor. Col-
lective U-turns occur when the whole group go back to the previous room. The dashed
lines facilitate the lecture. The figure shows that increasing the number of individuals
makes the number of Collective U-turns and Collective transitions decrease and the
number of One-by-one transitions increase. Each point shows the median of 12 values.

is detected successively in one room and then in the other room, indicating that the

fish did not cross the corridor together). In addition, we also quantified the Collective

U-turns that occur when the majority of the group was detected successively in one

room, in the corridor and back to the previous room.

For larger groups, the numbers of All transitions, Collective transitions and Collective U-

turns decrease while the number of One-by-one transitions increases. For the transitions

(Collective, One-by-one and All), this tendency intensifies for bigger groups of 10 and

20 zebrafish. Also, for groups of 3 zebrafish, there are less Collective transitions (as well

as All transitions) than for groups of 2, 5 and 7 zebrafish. U-turns remained rare and

are very stable for all shoal sizes and their highest means are reached for groups of 2 and

3 zebrafish. One-by-one transitions are as well very rare for small groups and increase

when the shoal size reaches 10 zebrafish.

For each number of fish (Fig 1.3), we compared with a Kruskal-Wallis test the distribu-

tions of the number of transitions (Collective, One-by-one and U-turns) and found: for
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Figure 1.4: Probability of occurrence of the rank of exit with the rank of
distance to the initiator for groups of 5 zebrafish (left column) and 10 zebrafish
(right column). We counted N = 1456 exits for 12 replicates with 5 zebrafish and N =
277 for 12 replicates with 10 zebrafish. (A) and (B) show the map at the time when
the initiator leave the room. As an example, in (A) the probability of occurrence where
the second fish leaves the room and has the shortest distance from the initiator is 0.82.
This probability decreases to 0.12 for fish with rank of 2 for exit and rank of 3 for

distances (the second closest distance from the initiator).
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Figure 1.5: Time series of the probability of equal ranking between the rank of exit and the rank of
distances from the initiator for groups of (A) 3 zebrafish, (B) 5 zebrafish, (C) 7 zebrafish and (D) 10 zebrafish.
This figure is related to the results shown in Fig 1.4 (the diagonal). We plot a time series of the 5 seconds before
the initiation. We show that the probability increases strongly 2 seconds before the initiation. We see also that this
probability is the highest for the first ranked fish and higher for the 3 first ranked fish and for the last ranked fish. This
behaviour is also valid even few seconds before the initiation. In (A) the line-plots for 2nd and 3rd fish are overlapping.

1 fish, df = 2, Chi-sq = 31.62 p < 0.001; for 2 fish, df = 2, Chi-sq = 30.76, p < 0.001; for

3 fish, df = 2, Chi-sq = 30.94, p < 0.001; for 5 fish, df = 2, Chi-sq = 30.41, p < 0.001; for

7 fish, df = 2, Chi-sq = 30.54, p < 0.001; for 10 fish, df = 2, Chi-sq = 19.22, p < 0.001

and for 20 fish, df = 2, Chi-sq = 18.36, p < 0.001. For each group size, we show that

at least one of the distributions is significantly different from the others. The Tukey’s

honest significant difference criterion shows that: all the distributions are significantly

different (p < 0.05) except in groups of 10 individuals between Collective U-turns and

One-by-one transitions and in groups of 20 individuals between Collective U-turns and

Collective transitions.

As most of the transitions occur in groups, we analysed the dynamics of collective

departures from the rooms with a particular emphasis to the pre-departure period.
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Figure 1.6: Time series of the Kendall rank correlation coefficient. It has
been calculated every 1/3 second starting 10 seconds before the initiation. The Kendall
rank correlation coefficient is a measure of ordinal association between two measured
quantities. It goes to 0 when the two quantities are independent and goes to 1 if they
are correlated. For example with 5 zebrafish, the time series shows that from 4 seconds
before the initiation the Kendall rank increases from 0.06 to 0.75 (at T = t = 0 s).
Whatever the number of individuals, we conclude that the closer to the initiation the
higher the correlation between the rank of exit and the rank of the distances with the

initiator.

Thus, for each collective departure of the fish, defined as the whole group leaving one of

the resting sites for the corridor towards the other one, we identified the ranks of exit

of each fish and also their distances from the first fish leaving the room (i.e. defined

as the initiator) measured at the departure timing of this initiator. Fig 1.4 represents

the normalised contingency table of the rank of exit for all zebrafish from both rooms

(without distinction) with the rank of the distances of all zebrafish to the initiator.

These results correspond to 12 replicates of groups of 5 and 10 zebrafish. The initiator

has a rank of exit and a rank of distances of 1. For example, in (A) the probability

that the first fish to follow the initiator (rank 2) was also the closest fish of the initiator

when it exited the room is 0.82. As evidenced by the darker diagonal of the contingency

matrix, the rank of exit was closely related to the distance from the initiator at the

beginning of the departure. In Fig 1.5, we plot for 3, 5, 7 and 10 zebrafish the values

of the probability of equal ranking between the exit and the distances with the initiator

(i.e. the diagonal of the previous plots – Fig 1.4) for different time-lag before the exit of
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the initiator. In particular, we computed the ranks of the distances from the initiator

at 1 to 5 seconds before the exit of the initiator. First, these measures show that the

further from the time of the initiation the lower the probability of equal ranking. This

assessment is valid for every shoal sizes. Second, we see that the probability of equal

ranking is often higher for the first and for the last ranked fish even few seconds before

the initiation (around 2 seconds before the initiation). In Fig 1.6, we use the Kendall

rank correlation coefficient to see if the rank of exit and the rank of distances with the

initiator are dependent (close to 1) or not (close to 0) through the time. For every group

sizes, we show an increase of the Kendall rank correlation coefficient when closer to the

initiation. For 3 zebrafish, the time series show that from 4 seconds before the initiation

the Kendall rank correlation coefficient fully increases from 0.11 to 0.79 (at T = t = 0

s). For 5 zebrafish, it increases from 0.06 (at T = t - 4 s) to 0.75 (at T = t = 0 s), for

7 zebrafish, it increases from 0.10 to 0.70 and for 10 zebrafish, it increases from 0.08 to

0.58. These results show that for all group sizes, the closer to the initiation the higher

the correlation between the rank of exit and the rank of the distances with the initiator.

1.3 Discussion

We studied the impact of the number of individuals in the shoals (1, 2, 3, 5, 7, 10

or 20 individuals) on the collective motion and the collective departure between two

environmental patches in adult AB zebrafish.

Here we consider group size as the number of fish in a group. By changing that number

of fish it may lead to size or density effects. We do not adress the question of untangling

size or density effects in this study. The density is related to a need of individual space

and the group size is related to a limitation in the considerations, for each individual,

of the other members of the group. Our set-up reached a compromise between reducing

the size of the set-up for small numbers of individuals, that would have an effect on

the small group collective transitions, and increasing the size of the set-up, that would

have led to tracking issues (less pixels by fish) [181]. Actually, if we resize the set-up

proportionally to the density, we will modify the lengths and the widths of the rooms

and the corridor. This would have an effect on the time of residency in the rooms or on

the decision to cross the corridor and would introduce new variables in the experiment.

Furthermore, the Fig 1.1, showing that the more individuals the lower the nearest neigh-

bour distances, elucidates the previous statement. For small groups, the medians of the

nearest neighbour distances distributions decrease when increasing the numbers of in-

dividuals. This result could be due to an effect of the set-up where the environment

is not resized in proportion of the number of the individuals. For groups of at least 5

fish, it seems that the medians of the nearest neighbour distances distributions are very

similar. Here, it is possible that the threshold value of the nearest neighbour distance
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for the AB zebrafish has been evidenced. In this latter case, it means that the zebrafish

spread more in the set-up which show that the groups are not denser when we increase

their sizes. Moreover, the results of the Two-Way ANOVA evidenced that the influence

of the number of individuals over the nearest neighbour distances was significant when

the influence of the type of the area (rooms or corridor) is not. In [67], the authors have

shown that the mean of the nearest neighbor distances is about 30 mm for groups of

8 wild type zebrafish (presumably AB). Their results are very close from ours and the

experiments were performed in a circular shape bowl of 20 cm in diameter. Both of our

results may show that the environment has no influence on the compact structure of

big groups. In parallel, if we focus on the distances between all pairs within a group we

show that the higher the number of individuals the higher the medians of the distances

between all respective pairs of zebrafish (S4, S5, S6, S7, S8 and S9 Figs). Finally, we

show that the higher the number of individuals the lower the time the fish stay with

their nearest neighbours. The combination of these results shows that there is a clear

effect of the number of individuals on the cohesion; an effect that we already have shown

in [212] where the bigger the group the higher the cohesion of the whole group.

It seems that there are preferential interactions between zebrafish (S4, S5 and S6 Figs)

and increasing the number of individuals will affect these interactions: respective pairs

are less cohesive in larger groups. We considere that revealing the time spent by the

fish with their nearest neighbours show stronger informations about preferences be-

tween pairs than the median distances of each couple, which are already approximations.

Hence, we show that for groups of 3 fish the distribution of the number of times the fish

stay with their nearest neighbours is not significantly different from a random uniform

distribution. It means that for such number of individuals there is no preferential inter-

action. For bigger groups, these distributions are significantly different from a random

uniform distribution which means that there are preferential interactions. Preferential

interactions have been evidenced in other species: Briard et al. [32] show affinities, hi-

erarchy and pairs interactions in a group of domestic horses, [114, 123, 234, 236] show

that the affinity between individuals (monkeys, Macaca mulatta, Macaca tonkeana, Pa-

pio ursinus; or fish, Gasterosteus aculeatus) play a role in the collective movements.

We propose two hypotheses that could explain the change of the interactions between

pairs of zebrafish when changing the number of individuals. On the one hand, in groups

larger than two fish, each zebrafish has to choose the preferred partners, between all

other fish. In larger groups there are more individual choices and more preference tests.

On the other hand, the patchy environment may break pair interactions and may force

the emergence of new pairs. These two hypotheses could explain the dynamics of the

pair interactions observed during the experiments.

The fish are detected 70% of the time in the rooms. On average, they spend about
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10 seconds in a room, transit to the other room through the corridor (4 seconds on

average) and then come back. They oscillate between the rooms. In a previous study

we showed that zebrafish also transit and oscillate between landmarks in an open en-

vironment [212]. The Fig 1.3 shows that most of the transitions are collective when

the Fig 1.2 shows that the whole group swim generally together in both rooms. This

observation is strengthened by the very rare number of One-by-one transitions between

the rooms. However, groups of 10 and 20 zebrafish show sharp decreases in the num-

ber of collective transitions. This drop could be due to the topology of the set-up and

congestion effects. Larger groups can split into smaller subgroups. The threshold we

imposed in the analysis of the collective transitions (below 70% of the whole group,

the transitions were not taken into account) may reinforce this effect. This seems to

be confirmed by the mean and median number of transitions for different numbers of

individuals when all the fish start to move from a room: the larger the group, the lower

the number of transitions with the whole group. Also the Fig 1.2 shows that the bigger

the groups, the higher the frequency of observations of sub-groups located in the rooms

and in the corridor (20-40%, 40-60% and 60-80%). Many studies have analysed the

fusion-fission mechanisms occurring in groups of fish or mammalians. In [57, 105, 133],

the authors show that these mechanisms are frequent in the wild and generate body

length assortment within groups of fish (Fundulus diaphanus, Notemigonus crysoleucas,

Catostomus commersonii, Poecilia reticulata). Sueur et al. [233] show that fission-fusion

mechanisms participate in the information transfer between subgroups and the group of

Myotis bechsteinii.

In the corridor, we observe few U-turns. The zebrafish swimming preferentially along

the walls and a canalisation effect of the corridor may explain this observation. As ex-

pected, connecting the two patches, the corridor is used as a mere transit area.

We show that the organisation of the group during collective departures takes place

during a short pre-departure period and is related to the distances between the initiator

(of the exit from the room) and the other fish. Ward et al. have shown that the first

fish (of a group of 5 Dascyllus aruanus) to follow the initiator is generally (rank = 2:

53% of the trials over 2 trials for each 15 groups of fish) the nearest neighbour of the

initiator and that the frequency of equality between the rank of exit and the rank of

the distances from the initiator decreases, with these results rank = 3: 27% and 33%,

rank = 4: 20% and 7% then rank = 5: 0% and 7%) [252]. We tested four different

numbers of individuals (3, 5, 7 and 10 zebrafish) and show similar results especially

on the decreasing trend of the probability when focusing on the next ranked fish and

Fig 1.5). However, we observed an extremely high probability of equal ranking for the

first fish that follows the initiator (rank = 2: 75% to 90%), high probabilities of equal

ranking for the second and the last fish that follow the initiator (rank = 3: 50% to 65%

and rank = last fish: 38% to 75%) and showed that the probabilities of equal ranking

for the other fish are quite similar to each others. The rank of exit and the rank of
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the distances from the initiator are strongly correlated at the moment of the exit (T =

0s, Fig 1.6), from 60% to 80%. Hence, it seems that the organisation of the zebrafish

groups (2nd, 3rd and last ranked fish) during the collective departures is topological.

Other studies about the organisations of collective departures show a joining process for

Equus ferus caballus that is related to affinities and hierarchical ranks [32]. Rosenthal et

al. show that, in groups of Notemigonus crysoleucas, the initiator is the closest fish from

the group boundary in 27% of the cases and the first responder is the closest fish from

the group boundary in 19% of the cases [205]. Moreover during the initiation, when fish

leave the rooms, our results suggest the idea of cascades of behavioural changes already

developed by Rosenthal et al. [205]: the initiator drags another fish along that drags

another one, etc.

This organisation appears a few seconds before the fish leave a room to transit to the

other one. Two seconds before the initiation, the groups show a structure that prepares

for the exit (Fig 1.5). The Kendall rank correlation coefficient confirmed the idea of

the organisation as it reaches 18% to 25% two seconds before the departure and 30%

to 50% one second before the departure (Fig 1.6). In the literature we found other

cases of initiations: [188, 201] have shown that a three-spined stickleback Gasterosteus

aculeatus or a sheep Ovis aries alone moving away from the herd can initiate a collective

departure, [37] have noticed a large variety of initiations for groups of mountain baboons

Papio ursinus where the initiator can be joined by the group immediately or [141, 184]

have observed for white-headed capuchins Cebus capucinus a synchronization of their

behaviours and also that a minimum proportion of the whole group is needed to launch

a collective departure.

In conclusion, this study showed that the number of fish affects the motion of each

individual in the groups and the group cohesion. The analysis of the dynamics showed

that the zebrafish oscillate mainly in groups between the two patches in the environment

and that the majority of the departures is collective. During the collective departures,

we observed that an intra-group organisation appears prior to the transition. Increasing

the number of individuals makes this organisation less predictable. Finally, we noticed

that a few seconds before the collective departures the groups have a particular spatial

organisation.
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1.4 Methods

1.4.1 Fish and housing

We bred 600 AB strain laboratory wild-type zebrafish (Danio rerio) up to the adult

stage and raised them under the same conditions in tanks of 3.5L by groups of 20 fish

in a zebrafish aquatic housing system (ZebTEC rack from Tecniplast) that controls the

water quality. It changes 10% of the water in the breeding tanks every hour. Zebrafish

descended from AB zebrafish from different research institutes in Paris (Institut Curie

and Institut du Cerveau et de la Moelle Épinière). AB zebrafish show zebra skin patterns

and have short tail and fins. They measured in mean = 3.0 cm ± 0.36 cm, median =

2.9 cm long. All zebrafish used during the experiments were adults from 7 to 8 months

of age. We kept fish under laboratory conditions: 27 ◦C, 500µS salinity with a 10:14

day:night light cycle, pH is maintained at 7.5 and nitrites (NO2−) are below 0.3 mg/L.

Zebrafish are fed two times a day (Special Diets Services SDS-400 Scientic Fish Food).

1.4.2 Experimental setup

The experimental tank consisted in a 1.2 m x 1.2 m tank confined in a 2 m x 2 m x 2.35

m experimental area surrounded by white sheets, in order to isolate the experiments and

homogenise luminosity. A white opaque perspex frame (1 m x 1 m x 0.15 m - interior

measures) is placed in the center of the tank. This frame helped us to position the two

rooms and the corridor. The squared rooms (0.3 m x 0.3 m) and the corridor (0.57 m

x 0.1 m) have been designed on Computer-Aided Design (CAD) software and cut out

from Poly(methyl methacrylate) (PMMA) plates of 0.003 m thickness. Each wall are

titled, (20◦ from the vertical) to the outside with a vertical height of 0.14 m, to avoid

the presence of blind zones for the camera placed at the vertical of the tank (Fig 1.7).

The water column had a height of 6 cm, the water pH is maintained at 7.5 and Nitrites

(NO2−) are below 0.3 mg/L. The experiments are recorded by a high resolution camera

(2048 px x 2048 px, Basler Scout acA2040-25gm) placed above the experimental tank

and recording at 15 fps (frame per second). The luminosity is ensured by 4 LED lamps of

33W (LED LP-500U, colour temperature: 5500 K - 6000 K) placed on each corner of the

tank, above the aquarium and directed towards the walls to provide indirect lightning.

1.4.3 Experimental procedure

We recorded the behaviour of zebrafish swimming in the setup during one hour and

did 12 replicates with groups of 1, 2, 3, 5, 7, 10 and 20 zebrafish. Each fish is tested

only once. Every six replicates out of twelve we rotated the setup by 90 ◦ to avoid

a potential bias associated with the initial position of the tank or environmental bias
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Figure 1.7: Experimental setup. A tank of 1 m x 1 m is divided into three areas:
two rooms (0.3 m x 0.3 m) connected by a corridor (0.57 m x 0.1 m). The water column
has a height of 6 cm. The luminosity is ensured by 4 LED lamps of 33W (LP-500U)
placed on corners of the tank and directed towards the walls to provide indirect lighting.
The whole setup is confined in a 2 m x 2 m x 2.35 m experimental chamber surrounded

by white sheets to isolate the experiments and to homogenise luminosity.

(noise, light, vibrations, ...). For each replicate we choose randomly the starting chamber

by flipping a coin. We called the starting chamber Room 1. Heads or tails defined the

starting chamber with a maximum of three starts in each chamber. This method gave

us 3 experiments with each combination of orientation of the setup x starting chamber.

Then, the fish are placed with a hand net in a cylindrical arena (20 cm diameter) made

of Plexiglas in the centre the selected rooms. Following a five minutes acclimatisation

period, this cylinder is removed and the fish are free to swim in the setup. The fish are

randomly selected regardless of their sex and each fish is never tested twice to prevent

any form of learning. The water of the tank is changed every week and the tank and

the set-up are cleaned during the process.
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1.4.4 Tracking & data analysis

Today, many studies on animal collective behaviours use methodologies based on massive

data gathering, for exemple with flies (Drosophila melanogaster) [31,60], birds (Sturnus

vulgaris) [9,156,159], fish (Notemigonus crysoleucas) [229]. Our experiments are tracked

in real-time (”on-line”) by a custom made tracking system based on blob detection.

Each replicate except experiments with 20 zebrafish is also tracked by post-processing

(”off-line”) with the idTracker software to identify each fish and their positions [181].

Each replicate consisted of 54000 positions (for one zebrafish) to 1080000 positions (for

20 zebrafish). The idTracker software is not used for groups of 20 fish due to higher

number of errors and too long computing time. For example, for a one hour video with

2 fish idTracker gives the results after 6 hours of processing and for a one hour video with

10 fish it lasts a week to do the tracking (with a Dell Precision T5600, Processor : Two

Intel Xeon Processor E5-2630 (Six Core, 2.30GHz Turbo, 15MB, 7.2 GT/s), Memory :

32GB (4x8GB) 1600MHz DDR3 ECC RDIMM).

Since idTracker solved collisions with accuracy [181] we calculated individual measures

and characterised the aggregation level of the groups (except for groups of 20 individ-

uals). We also calculated the distances between each pair of zebrafish respectively, the

travelled distances of each individual and their speeds. The computing of the speed

has been done with a step of a third of a second in sort of preventing the bias due

to the tracking efficiency of idTracker that does not reach 100% (see S2 Table). The

data gathered for groups of 20 individuals are only used in the analyses which focused

on group behaviour and do not need the identities of the fish. The data analysts were

not blind to group size. However, the data analysis was done automatically by custom

scripts that did not differentiate between the different experimental conditions. Each

.txt with the position (x,y,t) of the fish entered the pipeline analysis and received the

same treatment. Thanks to this automated treatment, we ensured that there was no

bias in the data analysis due to the observer.

The Fig 1.2 has been obtained following this process : At each time step with at least

one fish detected in a room, we analysed the repartition of the group among the rooms

by computing the proportion of fish present in room 1 = R1 / (R1+R2) with R1 and R2

the number of fish in the respective room number.

When all fish were present in the same room, we identified which fish initiates the exit

from the room, established a rank of exit for all the fish and calculated the distances be-

tween all zebrafish to the initiator to establish a rank of distances. Finally, we confronted

these ranks and count the number of occurences for each ranking case. We checked the

results for different time steps before the initiation. The idea was to highlight a correla-

tion between the spatial sorting and the ranks of exit and also a possible prediction of

ranks of exit.
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We looked at majority events defined as the presence of more than 70% of the zebrafish

in one of the three areas of the setup, either in the room 1 or in the room 2 or in the

corridor. To compute their numbers, we averaged the number of fish over the 15 frames

of every second. This operation ensures that a majority event is ended by the departure

of a fish and not by an error of detection during one frame by the tracking system. We

then computed the durations of each of those events and counted the transitions from a

room to the other one and sort them. All scripts were coded in Python using scientific

and statistic libraries (numpy, pylab, scilab and matplotlib).

Finally, we computed the neighbour distances as the distances between each nearest fish.

1.4.5 Statistics

All scripts were coded in Matlab and Python using statistics libraries (numpy, pylab,

scilab and matplotlib). For the Figs 1.1 and 1.3 we tested the distributions using

Kruskal-Wallis tests completed by a post-hoc test: Tukey’s honest significant difference

criterion.

The Kendall rank correlation coefficient [119], τ , is a measure of ordinal association

between two measured quantities. It goes to 0 when the two quantities are independent

and to 1 if they are correlated. It is computed by:

τ = number of concordant pairs − number of discordant pairs
number of concordant pairs + number of discordant pairs .

We use the Kendall rank correlation coefficient to see if the rank of exit and the rank of

distances with the initiator are dependant or not through the time.





Chapter 2

Collective departures and

leadership in zebrafish

Abstract

In social animals, morphological and behavioural traits may give to some individuals a

stronger influence on the collective decisions, even in groups assumed to be leaderless such

as fish shoals. Here, we studied and characterized the leadership in collective movements of

shoals of zebrafish Danio rerio by observing groups of 2, 3, 5, 7 and 10 zebrafish swimming

in a two resting sites arena during one hour. We quantified the number of collective

departures initiated by each fish and the number of attempts that they made. To do so,

we developed an automated pipeline that analysed the individual trajectories generated

by the tracking software. For all shoal sizes, the leadership was distributed among several

individuals. However, it was equally shared among all the fish in some shoals while other

groups showed a more asymmetrical sharing of the initiation of collective departures. To

quantify this distribution, we computed the entropy associated with the time series of the

identity of all initiators for each experiment and confirmed the presence of a continuum

between a homogeneous and a heterogeneous distribution of the leadership. While some

fish led more departures than others, an individual analysis showed that all fish had

actually the same success rate to lead the shoal out of a resting site after an attempt.

Thus, some individuals monopolized the leadership by attempting more often than others

to exit a resting site. Finally, we highlight that the intra-group ranking of a fish for

the initiative is correlated to its intra-group ranking for the average speed with mobile

individuals more prone to lead the shoal. These results demonstrate that the collective

behaviour of a shoal can be mainly driven by a subset of individuals even in the absence

of higher influence of a fish on its congeneers.

2.1 Introduction

Collective movements in animals often require that the group members make decision on

the move. In this process, an individual generally initiates the movement of the group

35
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towards a new direction or out of a resting site. The identity and motivation of this ini-

tiator vary widely according to the social organisation of the considered species [122,183].

The initiation of movement may be undertaken by a unique or a subset of individuals

resulting in a consistent leadership over time. These individuals can be older [235], of

a specific sex [5] or dominant in the group [182, 235]. In societies that do not identify

a specific individual as the group leader, initiations may be performed by any mem-

ber of the group without consistency over time. In this context, fish are a traditional

example of animal that form leaderless shoals or schools and rely on self-organized pro-

cesses for information transfer and collective decision-making [55,100,130,142]. Indeed,

a distributed mechanism in which any individual can potentially initiate a collective

movement seems particularly suited for large schools of fish that lack global communica-

tion systems and share similar interests and costs [50,51]. For example, the first fish to

spot a predator coming potentially from any direction can start an escaping manoeuvre

that will be propagated from neighbour to neighbour in the whole school.

In this case, the emergence of a leader is favored by external factors (e.g. the direction

of the predator’s attack and it’s perception). However, internal factors can also cause

an individual to act as a leader. Indeed, these individuals may be temporarily more

motivated due to their physiological state [80,84,198,232], level of information [47,55,188]

or position in the group [33,141]. In fish shoals, collective movements are mainly driven

by the individuals located at the front of the shoal [33]. Several motivations might

prompt a fish to occupy these leading positions. Starved fish that have temporary

higher nutritional needs are observed at the front positions of the shoal [128] associated

with a higher rate of prey capture and food intake [127,129]. In this case the preference

for leading positions dissipates once the fish are fed [128]. Similarly, individuals that

know the location of a potential food source can lead a group of naive fish towards

foraging patches either by initiating departures [199] or favoring a particular swimming

direction [54, 55]. The success of this steering has been shown to be related to the

size of the guiding individuals in golden shiners, larger individuals being more often

followed than smaller ones [200]. In this case, the propensity of some fish to take the

lead is related to an information that can be gained by other fish or that can become

outdated, resulting in an ephemeral leadership by some group members. Finally, the

initiation of collective departures has been related to the personality of the fish (mainly

bold versus shy) by several studies. Indeed, while front positions are linked with higher

food intake, they are also more exposed to attacks by ambushed predators [132]. Faced

with this trade-off, bolder individuals are more prone to exit a shelter and search for food

than shyer fish that will mostly follow them rather than initiate a departure [254]. This

asymmetry can be reinforced by the social composition of the group with shy individuals

enhancing leadership b y bold ones [98]. In addition, bolder individuals show a lower

behavioural plasticity than shyer ones, even when rewarded after following a partner

rather than taking the lead [115, 168]. Thus, although each individual can initiate a
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collective movement, some characteristics may enhance the probability of some fish to

take the leadership more often than others.

While the literature provides evidences for morphological and behavioural traits that

lead some fish to become initiator more than others, the impact of this heterogeneous

distribution of initiative on the collective dynamics of the group remains unclear. Indeed,

most of the works rely on a preliminary binary classification of the individuals (e.g. bold

or shy) that are then observed only in pairs with both fish being physically separated in

two adjoined tanks or on the observation of groups during a short period of time, often

due to tracking limitations preventing a reliable identification of the fish. Therefore,

the relation between the individual characteristics of the fish and the distribution of the

leadership is still clouded by the lack of repeated observations of collective departures in

freely swimming shoals. However, the recent development of tracking techniques based

on the individual recognition of specific patterns associated with each fish [181] allows

us to overcome these limitations and to individually follow fish in larger groups and for

longer time periods.

In this context, we studied the distribution of leadership during collective movement

in small shoals of zebrafish Danio rerio swimming in an environment composed by two

connected spots. At the collective level, the shoaling behaviour of zebrafish is already

observed in larvae and shoaling preferences appear at the juvenile stage [75]. Once adult,

zebrafish periodically oscillate from loosely connected groups to dense aggregates [157]

and regularly transit from unstructured shoals to polarised schools (and inversely). Dur-

ing the school phases, they show a larger inter-individual distances and swim at a higher

speed [158]. Here, we observed shoals of 2, 3, 5, 7 and 10 zebrafish swimming for one

hour in an experimental arena consisting in two rooms connected by a corridor. We ex-

pected the fish to show a succession of mobile and static phases with frequent transitions

from one spot to the other one, as observed for other heterogeneous environments [212].

For each experiment, we measured the number of collective transitions from one site

to the other as well as the identity of the leading fish of each departure. In addition,

we also quantified the number of attempts to initiate a collective departure made by

each fish. As fish are generally characterized as leaderless, we expect that the number

of initiated departures is proportional to the number of attempts made (i.e. the fish

have a similar success rate). However, as mentioned above, individualities may incline

some fish to initiate a collective departure more often than other ones. In particular,

we expect that the individuals with the highest mobility would be more likely to steer

the shoal by attempting to leave a resting site more frequently than the other members

of the shoal. Therefore, we also characterized the mobility of the fish by computing

their average speed as well as the related intra-group ranking from the fastest fish to

the slowest one and related these traits with their tendency to lead their shoal out of

the resting sites.
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2.2 Materials and methods

2.2.1 Ethic statement

The experiments reported in this study were approved by the Buffon Ethical Committee

(registered to the French National Ethical Committee for Animal Experiments #40)

after submission to the state ethical board for animal experiments.

2.2.2 Animals and housing

Around 150 adult laboratory wild-type zebrafish (Danio rerio AB strain) were reared

in housing facilities ZebTEC and fed two times a day (Special Diets Services SDS-400

Scientific Fish Food). The sex ratio was close to 1:1 with females and males randomly

mixed in groups of 15 to 20 fish housed in 8l containers with continuous renewal of the

water by the ZebTEC system. All zebrafish observed in this study were 6-12 months

old at the time of the experiments. We kept the fish under laboratory conditions, 27℃,

500µS salinity with a 10:14 day:night light cycle. The water pH was maintained at 7

and the nitrite concentration (NO2-) was below 0.3 mg/l.

2.2.3 Experimental setup

We observed shoals of zebrafish swimming in an arena consisting of two square rooms

connected by a corridor starting at one corner of each room placed in a 100 cm x 100

cm x 30 cm experimental tank (Fig 2.1). This experimental set-up allowed us to observe

a large number of collective departures for long duration experiments (1 hour) without

human intervention. The walls of the arena were made of white opaque PMMA. The

water depth was kept at 6 cm during the experiments in order to keep the fish in nearly

2D to facilitate their tracking. One lamp (400W) was placed on the floor at each edge of

the tank which is 60 cm above the floor to provide indirect lightning. The whole setup

was confined behind white sheets to isolate experiments and homogenise luminosity.

A high resolution camera was mounted 1.60m above the water surface to record the

experiments at a resolution of 2048 x 2048 pixels and at 15 frames per second.

2.2.4 Experimental procedure

We observed 12 shoals of two, three, five, seven and ten zebrafish during one hour for

a total of 60 experiments. The shoals were formed so that no fish was tested twice the

same day and no fish was tested twice for a particular shoal size. Before the trials, the

fish were placed with a hand net in a cylindrical arena (20 cm diameter) in one of the

two rooms. Following a 5 minutes acclimatisation period, the camera started recording
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Figure 2.1: Experimental setup. The arena consists of two square rooms (30 cm
x 30 cm) connected by a corridor (57 cm x 10 cm) placed in a 100 cm x 100 cm tank.
Twelve groups of 2, 3, 5, 7 and 10 zebrafish were observed swimming freely during trials
of 1 hour to study the collective departures of the fish from one room to the other.

and the fish were released and able to swim in the experimental arena. After one hour,

the fish were caught by a hand net to be placed temporarily in a separated tank and

replaced in the rearing facilities at the end of the day.

2.2.5 Tracking

The videos were analyzed offline by the idTracker software [181]. This multi-tracking

software extracts specific characteristics of each individual and uses them to identify each

fish without tagging throughout the video. This method avoids error propagation and is

able to successfully solve crossing, superposition and occlusion problems. However, the

tracking system failed to track correctly two experiments with two fish, two experiments
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with five fish and four experiments with ten fish (some sections of 5 to 10 seconds were

missing on the trajectories of one or two fish). Therefore, these four experiments were

excluded from our analysis.

In addition, the software provides a confidence probability for the identification of the

fish at each time step. We used this identification of the leader (see below)

2.2.6 Data analysis

For all other experiments, we obtained the coordinates P(x,y,t) of all fish as well as a

confidence probability for their correct identification by the software at each time step

Δt = 1/15s. With these coordinates, we built the trajectories of each fish and computed

their position in the arena.

To automatically detect collective patterns in the dataset, we developed an automated

data analysis pipeline that analyses the trajectories of the fish (Fig 2.2). First, the

algorithm converts the positions P(x,y,t) into symbolic coordinates corresponding to

the three regions of the experimental arena (Room 1, Corridor and Room 2, Fig 2.2A).

From this derived dataset, the algorithm computes the total number of fish in each zone

(Fig 2.2B). Then, it retains only the time steps at which the movement of a fish occurred

(Fig 2.2C). In this time series, the algorithm searches for particular sequences that

correspond to target collective behaviors. As we focused our analysis on the collective

departures and the leadership, we targeted three types of event: (i) Collective Residence

Events (CRE ) defined by the entire shoal resting in one of the two rooms, (ii) Attempts

of collective departures defined as one fish living one of the two room after a CRE

and (iii) Collective Departure Events (CDE ) defined by the whole shoal leaving one of

the two rooms for the corridor after a CRE. For a shoal of n-fish, Collective Residence

Events are identified by n-fish in Room 1 or Room 2. Attempts of collective departure

correspond to a successive sequence n-fish, n-fish-1 in Room 1 or Room 2. Finally,

collective departures events are identified by a succession of n-fish, n-fish-1, ..., 1, 0 fish

in Room 1 or Room 2. Then, the algorithm identifies the first fish that left the room 1

or 2 for all attempts and collective departures (Fig 2.2D) and stores their ID and the

departure time in two arrays. If more than one fish left the room at the same time step,

the algorithm randomly select one of those fish as the leader (this case happened with a

frequency of 2% for 2 fish, 2.5% for 3 fish, 14.5% for 5 fish, 6 % for 7 fish and 11 % for

10 fish). To make sure that we considered only events with a correct identification of

the individuals, the algorithm check the confidence probability for the ID the potential

leader. If the confidence is higher than 0.75, the candidate fish is definitely considered as

the leader of the collective departure or the attempt, otherwise the event is discarded and

the algorithm consider the next event of departure (this case happened with a frequency

of 3% for 2 fish, 6% for 3 fish, 28% for 5 fish, %15 for 7 fish and 41% for 10 fish). Finally,

it computes the total number of attempts and collective departures led by each fish.
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Figure 2.2: Automated data analysis pipeline of collective departure and leadership. Example for a shoal
of three fish. (A) Transformation of the P(x,y,t) positions of the fish into symbolic coordinates (C:corridor, R1:room
1, R2:room 2). (B) Computation of the total number of fish in each region. (C) Removal of successive duplicate
time steps with no event. (D) Search for particular sequences: three fish in room 1 or 2 (collective residence event),
sequences of 3-2 fish in room 1 or 2 (attempt of collective departure) and sequences of 3-2-1-0 fish in room 1 or 2
(collective departure), and identification of the first fish that left the room 1 or 2 for all attempts and successful

departures.

Thanks to this analysis, we obtained the total number of collective residence events

(CRE ) and collective departure events (CDE ) observed for each experiment. To study

the effect of the shoal size on these events, we compared the number of events observed

for each shoal size but also compared them with measures obtained from simulated non-

social shoals in which fish do not pay attention to other shoal members. This null model

allowed us to evaluate if any change in the number of collective events detected in our

experiments was only due to a scaling effect independently of the social interactions be-

tween the animals. To design this non-social shoals, we combined the trajectories of fish

originating from different experimental shoals of the same size. Then, we performed the

same analysis on this artificial dataset and computed the number of collective residence

events (CRE) and collective departure events (CDE).
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Then, the distribution of the leadership was quantified by computing the entropy H(l)

(Eq. 2.1) of the time series of leadership events computed in Fig. 2.2G:

H(l) = −
k

∑

i=1

Li

L
logk(

Li

L
) (2.1)

with k the number of fish in the shoal, Li the number of transitions led by the fish i,

L the total number of transitions observed in the experiment and logk the logarithm to

base k. In this equation, the ratio Li/L estimates the probability to observe the fish i as

the leader of a departure. A perfectly uniform distribution of the leadership is associated

with the maximal entropy H(l) = 1 while a totally despotic organisation is associated

with the minimal entropy H(l) = 0. Similarly, we studied the temporal organisation of

the leaders by computing the conditional entropy H(lt|lt-1):

H(lt|lt−1) = −
k

∑

i=1

k
∑

j=1

p(lt−1 = i, lt = j) logk(
p(lt−1 = i, lt = j)

p(lt−1 = i)
) (2.2)

with lt the identity of the leader of departure t and lt-1 the identity of the leader of

departure t-1. In this case, the quantity H(lt|lt-1) quantify the ability to predict the

identity of the leader lt of a departure given the identity of the fish lt-1 that led the pre-

vious departure. A totally random organisation is associated with the maximal entropy

H(lt|lt-1) = 1 while a perfectly predictable organisation results in a minimal entropy

H(lt|lt-1) = 0.

Finally, we studied the relationship between the tendency of the fish to initiate a collec-

tive departure and their motility. To do so, the instantaneous speed of the fish vt was

computed as the distance between P(x,y,t-1) and P(x,y,t+1) divided by two time steps.

2.3 Results

2.3.1 Distribution and temporal organization of the leadership

In all experiments, the fish mainly swam together and regularly transited from one room

to the other. In the rooms, the shoal circled a few times before one fish decided to leave

the room for the corridor. This fish was either followed by the whole shoal, only a part

of the shoal resulting in a temporary split, or not followed at all. In this section, we

focused our analysis on the distribution of the leadership and the sequential organisation

of the leaders during collective departures from one room to the other. For each CDE,
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the leader was identified as the first fish of the shoal that left the room. Therefore, we

excluded from our analysis the departure of only a subgroup of fish while the rest of the

fish remained in the room as well as the departure of a remaining subgroup to join the

rest of the shoal.

First, we quantified the total number of collective departures events and collective res-

idence events for the different shoal sizes. The number of CRE significantly decreases

when the number of fish increases with an average number of 249 ± 38 CRE for two fish

to 158 ± 36 CRE for groups of ten fish (Fig 2.3A, Kruskal-Wallis test, χ2=15.39, df = 4,

p<0.01). Similarly, the number of CDE also decreases but with a stronger difference be-

tween the shoals from an average number of 228 ± 35 for two zebrafish to 49 ± 31 CDE

for ten zebrafish (Fig 2.3B, Kruskal-Wallis test, χ2=33.15, df = 4, p<0.001). Therefore,

an average of 92% of the CRE were followed by a collective departure in dyads while

only 29% were in groups of ten fish (Fig 2.3C). This success rate was mainly influenced

by the shoal size (p<0.0001) rather than by the number of residence events (p>0.05)

that has only a marginally significant effect when coupled with the shoal size (p=0.03)

as shown by the model Succes ∼ shoal size + CRE + shoal size * CRE (Null deviance

= 2152.38 with 51 df, Residual deviance = 261.22 with 48 df). Thus, larger shoals were

more likely to split during departures while small ones remained cohesive most of the

time. However, the shoals remained strongly cohesive compared to simulated non-social

shoals. Indeed, the occurrence of these CRE and CDE decreases much more promptly

in the null model, with only a few CRE and almost no CDE observed for shoals of

five, seven, and ten non-interacting fish. Thus, the smaller decrease in CRE and CDE

observed in real shoals compared to non-social agents confirms that the shoals remained

strongly social, even with 10 individuals.

Thanks to the individual tracking of the fish, we determined the identity of the leaders

for all collective departures and computed the sequence of successive leaders’ identities

along the experiments. While multiple leaders were observed in each shoal, the leadership

was monopolized by only some members of the shoal (e.g. for a shoal of 5 fish Fig 2.4A)

or equally distributed among all individuals (e.g. for a shoal of 5 fish Fig 2.4B). To

better characterise the distribution of the leadership among the fish, we computed the

entropy H(L) associated with those sequence of leaders observed in each experiment. The

distribution of the leadership was significantly influenced by the shoal size (Fig 2.4C,

Kruskal-Wallis test, χ2=13.77, df = 4, p<0.01). Leadership in small shoals was more

likely to be shared among all fish (H(L)≈1) while a subgroup of individuals was more

involved than others in the leadership for larger shoals (intermediate values of H(L)).

However, this result also shows that (i) a continuum from homogeneous to heterogeneous

sharing of leadership was observed for all shoal sizes, but with different distributions and

(ii) no shoal was organized despotically (H(L)≈0) with one fish leading all departures,

independently of the shoal size. As several initiators were observed in each shoal, we

studied the temporal distribution of the leading events to highlight a potential temporal
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Figure 2.3: Collective behaviours observed in real shoals (experimental data) and simulated non-social
shoals (null-model). (A) Number of collective residence events (CRE) and (B) collective departure events (CDE)
for the 11 groups of two, 12 groups of three, 11 groups of five, 12 groups of seven and 10 groups of 10 zebrafish
observed during one hour. Collective residence events are defined as the whole group resting in one of the two rooms
and collective departures events are defined as the whole group leaving one of the resting sites. (C) Efficiency of the
first leaver to trigger a collective departure of all fish computed as the proportion of CRE that were followed by a

CDE.

organisation of the leaders over successive departures. To do so, we computed the

conditional entropy H(lt|lt-1) normalized for the group size for all sequences of leaders

that informs us on the probability to correctly predict the leader of the departure t

knowing the identity of the leader of the previous departure t-1. While no shoal shows

a strongly predictable turnover of leaders, the succession of leaders was proportionally

less predictable in smaller shoals than in large ones (Kruskal-Wallis test, χ2=22.94, df =

4, p<0.001). Indeed, the distributions of the conditional entropy were shifted towards

lower values as the shoal size increased (Fig. 2.4B). However, the particularly low values

observed for 10 fish probably results from the small number of collective departures

observed for some shoals (2.3D), reducing the potential to observe repeated measures.

These first quantifications at the collective level showed that the leadership during col-

lective departures in zebrafish is shared among the shoal members without a strong

temporal organisation. However, they also reveal an inter-shoal variability in addition

to a shoal size effect. To highlight this variability, we computed the proportion of col-

lective departures initiated by each fish for each shoal. As expected by the computation

of the entropy H(L), we observed a continuum from a homogeneous distribution of the

initiation between the shoal members to more heterogeneous ones with some fish having

a higher tendency to start a departure than others (Fig. 2.5). Therefore, we studied the

individual characteristics of the fish to determine the key factors that influence their

propensity to initiate a collective departure.
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Figure 2.4: Distribution of the leadership between the shoal members. Se-
quence of leaders observed for the experiments with the most heterogenous (A) and the
most homogeneous (B) distribution of leadership in shoals of five zebrafish. Entropy
(C) and conditional entropy (D) computed for all experiments with shoals of 2, 3, 5, 7

and 10 zebrafish.

2.3.2 Success and profile of the leaders

First, we studied the link between the temperament of the fish and their propensity

to initiate collective departures. We determine the boldness of the fish by quantifying

the number of times that a fish was the first one to exit a room, independently of its

success to be followed by the other shoal members (defined as an attempt). For each

shoal, we analyzed the potential correlation between the number of attempts and the

number of initiations made by each fish. A linear regression showed that the number

of initiations is linearly correlated to the number of attempts performed by the fish and

that the coefficient of this correlation (i.e. the success rate) depends on the shoal size

(Fig 2.6A). For shoal of two fish, 96% of the attempts made by an individual resulted in

a collective departure of the dyad. In accordance with the results observed at the shoal

level (Fig 2.3C), the success rate for each fish decreases when the population increases:

93% for 3 fish, 82% for 5 fish, 74% for 7 fish and 44% for 10 fish. To determine the

factors that significantly influence the number of departures initiated by each fish, we
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Figure 2.5: Proportion of departures initiated by each fish in shoals of five
zebrafish. The shoals are ranked according to their entropy H(L) from the most
heterogeneous distribution (left) to the most homogeneous distribution (right). In each
shoal, the fish are identified with different colors and ranked from the highest proportion

of initiation (bottom) to the lowest proportion of initiation (top).

designed the GLM Initiations ∼ shoal size + attempts. As expected, the shoal size

(p<0.0001) as well as the number of attempts made by the fish (p<0.0001) significantly

impact the leading success of the fish (Null deviance = 11532.4 with 269 df, Residual

deviance = 1880.6 with 267 df). Thus, the attempts made by the fish were significantly

more successful in small shoals than in larger ones.

Then, we analysed the success of the fish by comparing their intra-shoal proportion of

initiated departures with the intra-shoal proportion of attempts that they made. A

linear relationship would imply that all fish shared the same success rate, independently

of the number of attempts that they made while a wider dispersion or a non-linear

relationship would highlight that some fish have a higher success rate than others. As

shown in Fig 2.6B, the two proportions are linearly correlated for all shoal sizes with

a slope ≈ 1, revealing an equal success rate for all shoal members. This conclusion is

supported by the model Proportion of initiations ∼ shoal size + proportion of attempts

identifying only the intra-shoal proportion of attempts (p<0.0001) made by a fish as a

significant predictor of the proportion of collective departures that it initiated with no

influence of the shoal size (p=0.648) on its success (Null deviance = 7269.78 with 269
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df, Residual deviance = 521.27 with 267 df). Thus, the larger number of departures

initiated by some fish is not related to a higher influence on other group members or a

better success rate but on a higher tendency to exit the resting sites.
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Figure 2.6: Success rate of the fish. (A) Total number of collective departures
initiated as a function of the total number of attempts for each fish. The number of
initiations is directly proportional to the number of attempts but the success rate of
the initiations decreases for larger group sizes. (B) Proportion of attempts made by
the fish in relation to the proportion of departures initiated. For each group size, the

success rate is identical for all fish in the shoal.

Finally, we looked at a potential link between the motion characteristics of the fish and

the number of collective departures that they have initiated. To do so, we measured the

average linear speed of all individuals and also compared their intra-group ranking for

the number of initiations with their intra-group ranking for the linear speed using the

Kendall’s τ coefficient. For small shoals (two and three fish), we found no correlation

between the average speed of the fish and their tendency to lead a departure (Figs 2.7A-

B for global comparisons and & F-G for intra-group comparisons). On the contrary,

there was a significant positive correlation between the average speed of the fish and the

number of initiations that they performed for shoals of 5, 7 and 10 fish (Figs 2.7C-E).

Indeed, for the majority of the shoals (8 out of 10 for 5 fish; 8 out of 12 for 7 fish

and 4 out of 8 for 10 fish) the individual that initiated the largest number of collective

departures was also the one with the highest average speed (Figs 2.7H-J). Thus, the

initiation of collective movements is related to the motility of the fish but only for large

shoals.

2.4 Discussion

The coordinated movements of fish shoals are often reported as a collective process in

which each fish can potentially lead a departure. Here, we confirmed that the initiation
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Figure 2.7: Motility of the fish and leadership. (A-E) Proportion of attempt made by each fish according to its
average speed. For small group sizes (2 or 3 fish), the absolute value of the mean linear speed is not a good predictor
of the number of attempts performed by a fish (Sperman’s correlation) but for larger group size (5, 7 and 10 fish), the
linear speed of a fish is statistically correlated with the number of attempts. (F-J) Distribution of the fish according
to their intra-group ranking of the number of collective departures that they initiated and their intra-group ranking
for the average speed. By taking into account their ranking inside the group, the relationship is statistically significant

as soon as the groups is formed by at least five fish.

of collective departures is a distributed process among the shoal members. However,

our results also showed that the sharing of the leadership across the different groups

was a continuum from a homogeneously distributed leadership to strongly asymmetri-

cal distributions. A similar diversity was observed in groups of four zebrafish during

foraging [181]: in two groups out of four, the order of arrival was consistent over succes-

sive trials while the fish in the two other groups showed a random arrival order. In our

experiments, dyads showed the most egalitarian situations but also the strongest monop-

olization of leadership with one fish performing up to 85% of the initiations of its shoal.

A similar result was observed in trios with some shoals sharing equally the leadership

between all members and other groups with a disproportionate number of initiations

led by the same fish (up to 75% for one group). As the shoal size increases, almost all

shoals showed a heterogeneous distribution of the leadership between the fish even if we

did not observe a clear monopolization of the initiations of collective departures in these

shoals. A similar effect of group size on leader-followers interaction was evidenced in

minnows [177]. In this latter study, 6 out of 9 dyads displayed a clear leader-follower

relation, 2 showed an equally shared leadership and 1 was formed by fish that did not

interact with each other. The author concluded that one fish leads the other in groups

of two but that this behaviour is not observed for larger groups.

Stronger asymmetries are more likely to be observed in small group sizes but an unbal-

anced distribution is almost always present in groups of a dozen of individuals. Such
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outcome can be the result of sampling of a continuous distribution for an individual

characteristic that influences the probability to lead the group. Indeed, as we add more

individuals, there is a higher probability that at least two of them significantly differ

from each other, leading to an unshared decision-making process but by the same time,

the average difference between individuals tends to stabilize to a limit value. On the

contrary, as only two fish are forming a dyad, there is a probability that these fish are ei-

ther almost identical, resulting in a homogeneous leadership, or on the contrary strongly

different, leading to a heterogeneous leadership, with a continuum of possibilities be-

tween these extrema. For example, the boldest individual of a dyad tend to take the

lead more often than the shier one in pairs of sticklebacks, this tendency being amplified

for greater difference in boldness between the fish [98].

Incidentally, one should be cautious when subdividing the tested population into binary

behavioural classes and then performing experiments with pairs of opposed individuals.

Indeed, such classification may lead to a misrepresentation of the social organisation

observed in free-living groups by forming only asymmetrical pairs. This effect was

already mentioned by [201] that concluded that a significant relation between boldness

and leadership in golden shiners only when they classified the fish into the binary leaders

or non-leaders classes. Thus, social species in which the initiation of specific behaviours

is related to individual characteristics rather than to a particular hierarchical position,

are more likely to display a whole range of social structures from despotic to egalitarian

groups without any behavioural changes but only due to sampling effects.

Thanks to the individual tracking of repeated departures, we also highlighted that the

heterogeneous distribution of leadership was not the result of a higher success rate of

some individuals that could have a higher tendency to be followed. On the contrary, the

number of successful departures initiated by the fish was linearly correlated to their num-

ber of attempts. In addition, we showed that the initiation process was not temporarily

organised as the identity of the fish that led a departure does not provide information on

the identity of the fish leading the next one. A similar result was also observed in other

fish species like Damselfish in which collective departures from one spot to another was

mainly led by fish that performed a higher number of attempts [3]. In sticklebacks, shy

individuals tend to be more responsive to the departure of another shy fish while bold

individuals are less sensible to the personality of the initiator [165]. Nevertheless, bold

individuals are more likely to be observed as leader simply because they try to initiate

more collective movements.

While the linear relation between the number of attempts and initiations was observed

for all group sizes in our experiments, the success rate of the attempts drops from ≈90%

in dyads to only ≈20% in groups of ten fish. The majority of attempts led to a temporary

fission of the shoal into subgroups for this larger group size. In our experimental setup,

the subgroups always reassembled after a short period of time. However, in natural

conditions where the fish are not restrained to a small environment, those splitting events
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could lead to a permanent fission of the group. Indeed, zebrafish form shoals of a few

to dozens of individuals in their habitat [174]. The size of the shoals observed in nature

can be driven by a trade-off between the advantages (e.g. detection of predators and

potential food sources) and disadvantages (e.g. larger groups are more easily spotted by

predators, increased inter-individual competition for food) of being in groups. According

to our results, the intermediate shoal sizes observed in zebrafish could be maintained by

a strong cohesion in small groups but a loose organisation of larger ones making them

more prone to splitting.

Our results also highlighted that the motility of the fish was a predictor of its tendency

to initiate collective departures for larger groups. Indeed, the intra-group ranking of

a fish for the average speed was correlated to its intra-group ranking for the number

of led departures for shoals of five, seven and ten fish. In those shoals, the leaders

of collective movements do not seem to occupy a particular hierarchical status in the

group but are generally the most mobile individuals. A similar result was predicted by

a theoretical analysis on the emergence of leadership in simulated zebrafish [262]. This

study showed that an informed individual moving in a specific direction is more likely

to be followed by a group of naive individuals when it moves just faster than the naive

group. In Damselfish Dascyllus aruanus, the initiator of a collective movement also

displays a higher level of activity than their group members before the departure [3]. A

similar result was observed during pigeon flocking: birds with the highest ground speed

tend to lead the flock more often than others [186]. A favored direction, a higher level

of activity or a higher average speed can lead an individual to occupy the front position

of the group more often than other individuals. As the direction of the group is mainly

decided by the front individuals (at least in shoals of fish [33]), these inter-individual

behavioural differences lead to a heterogeneously distributed leadership in the shoal.

The present study demonstrated that any fish could potentially lead the collective move-

ments of its shoal, with the same success rate for all shoal members. Such democratic

organisation may enhance the transfer of information between shoal members. Indeed,

the fish did not differ in their needs or in their knowledge about the environment in

the experiences described in this paper. However, in a natural context, some fish may

differ in the level of information that they have about environmental opportunities or

threats. In this context, it seems more adaptive to adopt a collective decision-making

process that allows any group member to initiate a collective decision or movement.

Nevertheless, we also showed that even if the process allows any individual to act as a

leader, some individuals do so more often than others. This variation in the tendency to

initiate a collective movement or to follow other shoal members could tend to stabilize

over time and lead to specialized roles. Indeed, if initiation is linked to individual per-

sonality traits such as boldness, individuals could repeatedly experience the same role in

decision making process (i.e. initiator or follower). This division of labour in decision-

making may be advantageous as some member may become more incline to propose new
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directions of movement that can be evaluated and then approved or rejected by other

group members.

This may be a primitive division of labour in collective information processing and

decision-making. Initiators may be bolder individuals that react more promptly and less

carefully to their environment while followers may be more cautious in their decision.

This balance between bold initiators and shy followers may prove to be advantageous

for group living species, as initiators will bring possibilities and followers may help to

select the best options proposed as well as maintain social cohesion. Indeed, it has been

shown that the presence of naive followers in fish may maintain the social cohesion of

their shoal when some shoal members have conflicting information about the direction

to adopt [54]. This process may be particularly adaptive for collective decision-making

in groups that share the same interests as each individual is able to express an opinion

but also rely on the approval of the majority of the group members.





Part II

Collective behaviour model of the

zebrafish
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Collective motion has been intensively studied in physics, biology and computer sciences.

In the early-developed models, individuals move along the resulting vector computed

as the sum of attraction/alignment/repulsion vectors describing the interactions with

congeners according to their distance. Although these rules are sufficient to produce

coherent and aligned groups travelling in the same direction, they can result in biological

incoherent behaviour. Particularly, this mechanism does not allow an individual to

choose one of two equally distant stimuli. Moreover, a fish will always respond in the

same way when facing identical situations since the classical approach generally relies

on a deterministic, albeit noisy, behaviour of the individuals. However, new studies

revealed that multiple species do not exhibit such highly ordering of individuals and

show stochastic behaviour in binary choices.

In this context, my colleagues developed a stochastic model [49] based on a probabil-

ity distribution function to move in targeted directions rather than on a summation of

influential vectors as it is classically assumed. This model defines the probability for

fish to move in all possible directions by a circular probability density function. Each

stimulus perceived by the fish locally increases the probability for the focal fish to move

in its direction. This model can spontaneously produce transitions from consensus (an

individual follows the direction of its congeners) to choice (an individual choose between

congeners). Experimental results of zebrafish (alone or in groups of 10) swimming in

both bounded homogeneous and heterogeneous environments have been used to cali-

brate it. This model is novel in three aspects: (i) it is a perception based model that

explicitly take into account information gathering and processing, (ii) it is a hybrid

modelling approach including behaviour based stochasticity leading to biased random

walks and self-propelled particles properties, (iii) it takes into account a bounded and

inhomogeneous environment closer to natural conditions while most models are designed

for homogeneous unbounded environments.

The Chapter 3 presents a new model derived from this one and adapted to the two room

arena, which is a complex and narrow environment. This new model is segmented into

spatial zones that each corresponds to different behavioural patterns. The model param-

eters are automatically fit for each zone using a multi-objective evolutionary algorithm

to match the behaviours exhibited by experimental fish. We evaluate how the resulting

calibrated model compares to the experimental data. This new model is multi-contextual

and takes account of narrow space that previous models could not handle.

This work is based on:

Chemtob Y, Cazenille L, Halloy J. Modelling context dependent collective be-

haviours of zebrafish in bounded fragmented environment.

I wrote the model, based on Bertrand Collignon previous work. The transcription into

computer code and the calibration system were mainly carried out by Leo Cazenille, with
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some adaptations by myself. I developed and implemented the data analysis scripts. This

document was written mainly by me, with the help of José Halloy and Leo Cazenille.



Chapter 3

Modelling context-dependent

collective behaviours of zebrafish

in bounded and structured

environment

Abstract

Modelling animal collective behaviours and in particular of fish has been fruitful during

the last two decades. Important progress has been made thanks to mathematical mod-

els based on experimental data and empirically validated hypotheses. However, most

models consider a simplified homogeneous environment without borders to focus on inter-

individual interactions. Obviously, animals do also take into account others elements in

their environments like tank walls or structured space. Furthermore, most models focus

on aligned individuals in cohesive group behaviours. Thus, it would be interesting to

develop mathematical models for collective behaviours that describe more complex dy-

namics. Hopefully, these models can describe a group of fully autonomous individuals

in bounded and structured environments. Here, we consider the case of small zebrafish

groups in a structured tank. The tank is composed of two rooms linked by a corridor.

This tank can be used to study how fish groups explore their environment and make tran-

sitions between the two rooms. We propose an agent-based model that takes into account

the modulation of the collective behaviours depending on the location in the environment

and the social context. The model also reproduces the fission and fusion dynamics of the

group. The model, based on intrinsic stochastic individuals reacting to visual perception,

can automatically be calibrated with experimental data by evolutionary computation.

57
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3.1 Introduction

Collective movements are one of the most frequently observed phenomena, whether in

insects, fish or birds. Still, this remains a challenge to study despite the interest of

researchers from various fields, including biology, mathematics, physics and computer

science. To better understand this phenomenon, many mathematical models have been

developed to simulate the collective movement of agents inspired by birds, mammals or

fish.

From the 1960s to the present day, many models have succeeded in reproducing collective

movements using general rules of attraction, repulsion and alignment [146]. However,

these works are only weakly linked to biological data. Thanks to the development of

methods for tracking and identifying individuals during experiments, more accurate

data on collective movements are now available [9,31,163,169,215,247]. Several models

have been designed to reproduce several behavioural mechanics extracted from biological

data [9, 15, 38,86,109,261].

In previous article [49], a stochastic model has been developed based on a probability

distribution function to move in targeted directions rather than on a summation of

influential vectors. This model defines the probability for fish to move in all potential

directions by a circular probability density function. Each stimulus perceived by the fish

locally increases the probability for the focal fish to move in this direction. While most

models are designed for homogeneous unbounded environments, it takes into account

a bounded and inhomogeneous environment closer to natural conditions. This model

makes the link between fish visual perception and motor response.

Even so, the environment described in this model is a large square aquarium, which re-

mains a fairly simple environment. In many studies, researchers use more complex and

constrained environments in order to be able to observe certain collective behaviours

more accurately [26,27,98,164,167,205,252]. In previous studies a constrained environ-

ment, a two rooms arena with a corridor, has been used to highlight decision-making

and leadership in the zebrafish [48, 211]. Principally, it has been observed that fish

produce different behaviour in the different areas of the set-up, with slower speeds and

higher occupancy in the rooms and lower residence time and higher speed in the corri-

dor. To successfully simulate the behaviour of the zebrafish in such an environment, the

previously produced model [49] can not be used without adaptation [43].

In this context, we have developed a new agent-based, stochastic and context-dependent

model capable of simulating the collective behaviour of zebrafish in a complex and

structured environment. In this study, the environment is a maze composed of two

rooms connected by a corridor and the model is able to take into account the different

behaviours produced by fish in each zone of the arena. This model is calibrated according

to our experimental observations, but because of the different zones taken into account,
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C D

Figure 3.1: Experimental set-up. (A) Experimental arena composed of a tank
containing two square rooms (350 × 350 mm at floor level) connected by a corridor
(380×100 mm at floor level). The fish tend to swim from one room to the other, either
in small groups, or individually. This set-up is used to study the zebrafish collective
dynamics. (B) Positions of the three different zones corresponding to different types
of behaviours: in the corridor (zone 1), in the centre of each room (zone 2) and near of
the walls of each room (zone 3). (C) Probabilities of presence and (D) Linear Speed
of 8 group of five zebrafish swimming in the experimental arena for 30 minutes. Fish
are mainly observed along the wall of the room with a slow speed, and in the corridor
with a superior speed. They are less in the centre in the room, but higher speed values

are measured.

the number of parameters to be optimised is too high to be fitted empirically. To this

end, we used in this article an evolutionary algorithm to optimise each parameter of the

model. Then, we compare simulated agents trajectories to the biological experiments

using the distributions of several metrics as references.

3.2 Results

3.2.1 Zebrafish context-dependent behaviours

Fish behave differently in complex environments depending on their spatial position.

Based on the set-up (figure 3.1 A) described in our various experiments [41–44,48,211],

we want to identify zones of the structured set-up where fish display different behaviours.
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Zone at time t,
behavioural attractor

Zone at time t+1
behavioural attractor

Position of the agent

Focal Agent Determine linear
speed

Determine acces-
sible zones

in every direction

Compute PDF for 
perceived agents

Compute Final PDF

Draw orientation 
in final PDF

Compute next 
position of agent

Perception model

Specify parameters of

Current zone from agent position

Compute PDF for 
basic-swimming

Compute PDF for 
wall-following 

Figure 3.2: Multilevel model used to describe fish behaviour. The agents
display different behavioural attractors depending on the zone where they are situated.
Thus, according to the agent spatial position, the physical features of the zone drive
them towards a specific behavioural attractor. A behavioural attractor corresponds
to a set of behavioural patterns adapted to the zone where they are located. It can

correspond to different parameters sets for the same behaviour kind.

In a constrained system of two rooms connected by a corridor, previous works [48, 211]

have shown that fish have a different dynamic depending on the area. For instance,

groups of fish remain mainly in the rooms while frequently passing through the corridor

[211]. They perform collective departures from one room to the other [48].

Figures 3.1 highlights such variation in behaviour between zones. The spatial distri-

bution (figure 3.1C) shows a stronger presence near the walls of the rooms and in the

corridor. The high presence in the corridor is explained by the high number of transi-

tions and the width of the area, as the residence times in this part are in the order of a

few seconds [211]. The spatial representation of linear speeds (figure 3.1D) also shows

strong variation. Speeds are high in the corridor, confirming the rapid transitions in this

area. Speeds are also high in the centre of the rooms, unlike the areas near the walls

which show lower speeds. We therefore identify three zones of the structured set-up with

different fish behaviours (figure 3.1 B) : near the walls, at the centre of the rooms, and

inside the corridor.

We have empirically selected the distributions of speed, distance to walls, subgroup size

and inter-individual distance in the different zones of the set-up as markers of zebrafish

behaviour (figures 3.5&3.6 in blue). The last two are representative of the group cohesion

while the rest of the distributions represent the swimming metrics.

The distribution of subgroup sizes (figure 3.5) is particularly interesting because it high-

lights a stronger cohesion in the corridor than in the rest of the areas.

We measured the differences between the zones for each of these distributions with a

Friedman test. All distributions were significantly different from one zone to another
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κ0,zi [0.0, 30.0] Dispersion parameter associated with

basic-swimming in zone i
κW,zi [0.0, 30.0] Dispersion parameter associated with

wall following in zone i
κf,zi [0.0, 30.0] Dispersion parameter associated with a

fish in zone i
βzi [0.0, 3.0] Weight of the wall following attraction

in zone i
αzi [0.0, 100.0] Weight of the perceived fish in zone i
γzi,zj [0.0, 1.0] Weight of the attraction of zone j from

zone i
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tribution
Linear speed of each agent in zone i

C
Zones κ0,zi κW,zi κf,zi βzi αzi

Corridor 22.60 24.60 28.11 0.39 92.77
Room centre 1.70 21.62 4.65 0.01 99.54
Room walls 4.21 28.07 29.41 2.90 94.62

D
Zones i\j Corridor Room centre Room walls
Corridor 0.991 0.070 0.001
Room centre 0.046 0.827 0.009
Room walls 0.949 0.004 0.083

Figure 3.3: Panel A Computation of the PDFs functions used by the model. One
function corresponds to the focal fish; another corresponds to the perceived neighbour-
ing agents. The final PDF is a weighted sum of these functions, with a normalisation
factor γz1,z2 corresponding to the affinity between the zones z1 (origin) and z2 (destina-
tion). The direction taken by an agent is drawn randomly from the resulting PDF by
inverse transform sampling. Panel B Table of model parameters for each agent. The
zone zi corresponds to the zone where the agent is situated at time t, and zj to the zone
where the agent would be at time t+1. The linear speed distributions of the agents are
the same as the ones observed in the Control experiments, and they are not optimised.
The other parameters in the table are optimised. Panel C Table of parameters values
for each zone zi.Panel D Table of parameters values γzi,zj corresponding to the affinity

between the zones zi (origin) and zj (destination).
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Figure 3.4: Examples of trajectories over a duration of one minute (Left reference,
Right simulation). In this example, the model simulates transitions between the rooms

while maintaining the cohesion of the group.

(pvalues ≪ 0.01) except for the subgroup size between the borders and centres of the

rooms (pvalue = 0.07) and all the zones of the interindividual distance of 2 fish (pvalue

= 0.15). This choice of these distributions is therefore relevant in the context of a

dependent context model.

3.2.2 Multilevel and context-dependent stochastic model

The model developed in this article describes the individual and collective behaviours of

fish. It is stochastic, multi-level and context-dependant. Zones of different behaviour are

take into account and thus allows context-dependent behaviours. Our model describes

individual choices close to action selection and collective behaviours at the same time.

This model is inspired by a previous model [49] as it makes the link between fish visual

perception (of congeners and walls) and motor response (i.e.: trajectories of the agents).

However, it is also capable of expressing a variability in agents behaviours when they

occupy specific zones of the arena. Table 3.3B lists the model parameters.

The agents update their position vector Xi with a velocity vector Vi :

Xi(t+ δt) = Xi(t) + Vi(t)δt (3.1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (3.2)

The model computes a circular probability distribution function (PDF) [49] correspond-

ing to the probability of the agent to move in a specific direction (Θi). This PDF is as a

mixture of von Mises distributions, an equivalent to the Gaussian distribution in circu-

lar probability. The computation of this PDF involves the calculation of three different

PDF functions: the first one describing agent behaviour when no stimuli is present, the
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Figure 3.5: Speed density, distance to walls and subgroup size distributions for the
zebrafish over the span of an hour in the three different zones of the maze (from top
to bottom : corridor, border of rooms and centre of rooms. Reference data in blue
and simulation in orange). All distributions are significantly different from each zones
(pvalues ≪ 0.01) except for the subroupe size between borders and centres of the rooms

(pvalue = 0.07)
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the three different zones of the maze(from top to bottom : corridor, border of rooms and
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second one implement the wall-following behaviour, and the third one characterising

agent behaviour when conspecifics are perceived by the agent. The attraction of agents

towards target zones is represented by the parameter γz1,z2 , used as a multiplicative

term of the final PDF.

The PDF capturing agent behaviour when no stimuli is present is given by:

f0,zj (θ) =
exp(κ0,zjcos(θ))

2πI0(κ0,zj )
(3.3)

for an agent situated in zone zj , and with I0 the modified Bessel function of first kind

of order zero.

The wall-following behaviour is implemented by increasing the probabilities of moving

towards either side of the closest wall. This is achieved by using the following PDF:

fW,zj ,w(θ) =
1

2

2
∑

k=1

(µwk
− π)exp(κW,zjcos(θ − µwk

))

2πI0(κW,zj )
(3.4)

with µwk
the two possible directions along the considered wall. The factor µwk

− π

increase the probability to go in the direction close to the fish one.

Once the PDFs of the basic swim have been computed, we must calculate the influences

of the other agents. In this model, the perceived fish are represented in three dimensions

in order to be able to calculate the solid angle they represent in the visual field of the focal

fish. The calculation of the solid angle instead of the angle allows a better discrimination

of the different distance and positions of the perceived fish [49]. The probability of the

focal fish to orient towards a perceived fish is given by a von Mises distribution clustered

around the fish position:

fF,zj (θ) =
n
∑

i=1

Afi

ATf

exp(κf,zjcos(θ − µfi))

2πI0(κf,zj )
(3.5)

with µfi the direction towards the perceived agent, AfT =
∑nf

i=1Afi the sum of the solid

angles Afi captured by each agent and nf the number of perceived agents.

The final PDF f(θ) is computed as follow:

fzj ,zk(θ) = γzj ,zk
f0,zj (θ) + βzjfW,zj (θ) + αzjATf

fF,zj (θ)

1 + βzj + αzjATf

(3.6)

with αzj and βzj the parameters weighting the influence of the perceived fish and the

wall-following.

Figure 3.3A describes how the final PDF is computed and how it is used to determine

the agents next positions.
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Unreachable areas of the PDF (e.g. the walls) are attributed a probability of 0. Then,

we numerically compute the cumulative distribution function (CDF) corresponding to

this custom PDF f(θ) by performing a cumulative trapezoidal numerical integration of

the PDF in the interval [−π, π]. Finally, the model draws a random direction Θi in this

distribution by inverse transform sampling. The position of the fish is then updated

according to this direction and his velocity with equations 3.1 and 3.2.

3.2.3 Numerical simulations and experimental results

The interpretation of the calibrated parameter values (figure 3.3) allows us to better

understand the rules of behaviour. By comparing the parameter values between the

corridor and the zone near the walls, we can deduce that wall following is less important

in the corridor as the β value is much lower than near the walls in the rooms. Similarly,

the low κ0 value in this area indicates a lower attraction to conspecifics than in the

corridor. Finally, in the centre of the rooms, the low values of κ0, κW and β made it

difficult to interpret the influences in this zone.

We defined a similarity measure (see 3.4.6) to compare the experimental results and

numerical simulations. We used the distribution of zones occupation, polarisation and

subgroup size for the similarity scores. Those scores are used as references for the

automatic calibration of the model parameters.

The fitness function value between the best-performing individuals and the Control case

is 0.670 with similarity scores of 0.769 for the subgroup size, 0.498 for the transition

probabilities, and 0.787 for the polarisation distributions. The score of other distribu-

tions is also calculated but is not used for the calibration: 0.982 for the zones occupation

and 0.726 for the inter-individual distance.

By comparing the distributions of simulations and control experiments in figure 3.5, we

can see that the angular speed distributions and the distance to the wall are correctly

respected. Looking in detail at the distributions of subgroup sizes, it can be seen that if

the proportion of groups of five individuals (the whole group) is well simulated, interme-

diate sizes differed from the reality. In particular, the proportion of isolated individuals

is over-represented in the corridor and in the centre of the rooms. In figure 3.6, the

interindividual distance distributions also show higher distances in the simulations than

in the control experiments for the zone representing the centre of the rooms. However,

the rest of the distributions are accurate.

In the trajectory example in figure 3.4, we can see a correct simulation of the transitions

between the rooms. However, the trajectories seem less fluid and more subject to U-turns

than in real fish.
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3.3 Discussion

Collective behavioural models often focus on collective movement in a homogeneous and

unbounded environment. We present here a model capable of simulating the behaviour

of several agents in a constrained environment by expressing different behaviour de-

pending on the spatial context. This model is based on previous work [49] presenting a

behavioural model in a simple bounded environment. Here we have added the consider-

ation of the spatial context. We have performed a series of experiments, and combined

with the knowledge acquired in similar works [48, 211], we observed that agents behave

differently depending on the type of environment. Based on those biological observa-

tions, we segment our environment into several characteristic zones, each corresponding

to different types of agent behaviour. Due to these different zones, we obtain a large

number of parameters to calibrate. To solve this problem, we use a multi-objective op-

timisation methodology to automatically calibrate this model. Compared to the model

developed by Collignon et al. [49], wall following has also evolved. Previously, it was

modelled by a new PDF replacing the basic-swimming PDF when the agent was near

it. In the environment presented here, the omnipresence of walls has forced us to re-

think this mechanism by integrating it as an influence in the same way as the attraction

towards another agent.

We compared our simulations to our experiments and observed that this biomimetic mul-

tilevel and context-dependent model reproduces the collective behaviour of zebrafish. It

maintains group cohesion while producing satisfactory transitions between the different

zones.

However, some aspects could be further improved. The calibration of the model is

performed on a relatively small number of metrics that have been empirically selected.

Also, even if the calibration is automatic, the parameters limits are defined manually.

Similarly, the areas selected in this study were defined empirically. If the model does

not simulate agents with a fixed speed, it draws its speeds randomly according to a

distribution calibrated on fish experiments. The model could be improved by taking into

account the speed according to previous movements and speeds. Other studies [38] have,

for example, produced models describing burst-and-coast dynamics present in several

fish species, including zebrafish. Finally, the model could take into account variations in

individual behaviour within the same group to highlight decision-making and leadership

[48]. This could allow more fluid trajectories to be obtained while maintaining cohesion,

as an agent with ‘bold’ parameters could drive a group of ‘shy’ agents without necessarily

seeking to turn around when several individuals are behind him. Similarly, the model

could be improved by more accurately simulating the fish reaction time. Here, the fish

reaction is correlated to the time step used in the simulation and arbitrarily set to 1/3s.

We could imagine a model where the time step would be adaptive to the social context
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and would take into account the temporality of fish reaction as it could be shown in

Harpaz et al. [99].

In addition to understanding the interactions between fish, the approach used to produce

our model allows us to simply adapt to the problem of a constrained environment and

could be implemented in robotic agents used in ethological experiments. It has been

shown that the use of biomimetic behaviour in a robot agent increases its ability to

be integrated [43] and the use of such a model could allow a robot to be driven in a

constrained environment.

3.4 Materials and Methods

3.4.1 Ethic statement

The experiments reported in this study were performed in accordance with the recom-

mendations and guidelines of the Buffon Ethical Committee (registered to the French

National Ethical Committee for Animal Experiments #40) after submission to the state

ethical board for animal experiments.

3.4.2 Animals and housing

The fish were reared in housing facilities ZebTEC and fed two times a day (Special Diets

Services SDS-400 Scientific Fish Food). We kept the fish under laboratory conditions,

27 ◦C, 500µS salinity with a 10:14 day:night light cycle. The water pH was maintained

at 7 and the nitrite concentration (NO2−) was below 0.3 mg/l. All zebrafish observed

in this study were 6-12 months old at the time of the experiments.

3.4.3 Experimental set-up

We observed groups of zebrafish swimming in an arena consisting of two square rooms

connected by a corridor starting at one corner of each room placed in a 100 cm x 100

cm x 30 cm experimental tank (figure 3.1A). The walls of the arena were made of white

opaque PMMA. The water depth was kept at 60 mm during the experiments. One lamp

(400W) was placed on the floor at each edge of the tank which is 60 cm above the floor to

provide indirect lightning. The whole set-up was confined behind white sheets to isolate

experiments and homogenise luminosity. An overhead acA2040-25gm monochrome GigE

CCD camera (Basler AG, Germany) and equipped with low distortion lenses CF12.5HA-

1 (Fujinon, Tokyo, Japan) was mounted 1.60m above the water surface to record the

experiments at a resolution of 2 048× 2 048 pixels and at 15 frames per second.
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3.4.4 Experimental procedure

We observed 8 groups of five adult laboratory wild-type zebrafish (Danio rerio AB

strain) during one hour for a total of 8 experiments. Before the trials, the fish were

placed with a hand net in a cylindrical arena (20 cm diameter) in one of the two rooms

randomly. Half of the experiments started in the upper room and the other half in

the lower room. Following a 5 minutes acclimatisation period, the fish were released

and able to swim in the experimental arena. After one hour, the fish were caught by a

hand net and replaced in the rearing facilities. All the experiment was recorded by the

camera.

3.4.5 Data analysis

The videos were analysed offline by the idTracker software [181]. This multi-tracking

software extracts specific characteristics of each individual and uses them to identify

each fish without tagging throughout the video. This method avoids error propagation

and is able to successfully solves crossing, superposition and occlusion problems. We

obtained the coordinates P (x, y, t) of all fish at each time step ∆ t = 1/15s. With these

coordinates, we built the trajectories of each fish and computed their position in the

arena and their instantaneous speed vt computed as the distance between P (x, y, t− 1)

and P (x, y, t + 1) divided by two time steps. We compute the probability of presence

(figure 3.1C&D) and from both information, we built three zones (figure 3.1B): the

corridor, the centre of each room and near of the walls of each room. Position of the

wall where found from the video and consider as multiple lines. The distance to the

walls have been calculate as the smallest distance between the lines and fish positions.

Unlike more cohesive species, zebrafish have a very dynamic collective behaviour in

which the group will frequently split into sub-groups before quickly reforming. We

identify sub-groups of agents using a clustering algorithm that uses only the position of

each individual to detect the sub-groups in each frame.

3.4.6 Implementation and numerical simulations

We define a similarity measure (ranging from 0.0 to 1.0) to compare two experiments

(e1 and e2), and define it as:

S(e1, e2) =
3
√

I(Oe1 , Oe2)I(Te1 , Te2)I(De1 , De2) (3.7)

Oe is the distribution of sub-groups sizes in zone e, Te the transition probabilities from

zone e to the others, and De the distribution of the polarisation between agents in zone

e. The similarity measure S(e1, e2) corresponds to the geometric mean of these three
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features. The function I(P,Q) is defined as such:

I(P,Q) = 1−H(P,Q) (3.8)

The H(P,Q) function is the Hellinger distance between two histograms [66]. It is often

used as a metric to compare distributions [41–43]. It is defined as:

H(P,Q) =
1√
2

√

√

√

√

d
∑

i=1

(
√
pi −

√
qi)2 (3.9)

We use the NSGA-II [64] multi-objective algorithm with three objectives to maximise,

as it was done in Cazenille et al. [41]. The first objective is a performance objective

corresponding to the S(e1, e2) function. We also consider two other objectives used to

guide the evolutionary process: one that promotes genotypic diversity [162] (defined

by the mean euclidean distance of the genome of an individual to the genomes of the

other individuals of the current population), the other encouraging behavioural diversity

(defined by the euclidean distance between the Oe, Te and De scores of an individual).

We use populations of 50 individuals (approximately twice the number of dimensions of

the problem) and 200 generations. The linear speed vi of the agents is not optimised, and

is randomly drawn from the instantaneous speed distribution measured in the control

experiment.
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Animals recognise and interact with each other through mechanisms that have been the

focus of behavioural research for a long time. Animal communication can be based on

simple signals [243] and it is therefore possible to interact with animals via artefacts

specially designed to specifically generate relevant signals for social behaviour. First of

all, for each lure used, only one specific behaviour could be studied. Consequently, these

devices remain limited to simple interactions and are unable to adapt their behaviours

to the animal responses. But, thanks to advances in technology, these simple tools have

been replaced by robotic devices, now more advanced and affordable, capable of sending

stimuli to the animal, detecting the response and adapting its behaviour to it. Each

element of the robot behaviour can be controlled individually and their abilities allow

them to interact with groups of animals and not be limited to interactions from one

robot to one animal.

As part of the European project ASSISIbf, a new robot has been developed to study

the collective behaviour of zebrafish [17, 19, 24]. It consists of a mobile robot moving

below the aquarium tank and coupled magnetically with a lure module moving inside the

aquarium. The small dimensions of the mobile robot and the fact that it is controlled

using wireless link, offer the possibility of multi-robot experiments. The robot is powered

using conductive plates that are installed on the experimental set-up to allow long-term

experiments.

In Chapter 4, we study the parameters necessary for the integration of a robot into

a social group of zebrafish. Our hypothesis is that the robotic lure not only needs

to have a biomimetic visual appearance, but also needs to be driven by a biomimetic

behavioural model, in order to be socially accepted. We describe a robotic behavioural

model inspired from a previously developed model of fish behaviour [49]. We validate

this model experimentally, and compare it to experiments where the robot is not driven

by a biomimetic model. We complement this study by investigating the effect of lure

visual appearance on social integration. We show that both robot behaviour and lure

appearance are relevant for a robotic lure to be socially integrated into a group of fish.

Our results confirm that both aspects need to be designed to be biomimetic.

This work is based on the publication [43]:

Cazenille L, Collignon B, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F,

Bredeche N, Halloy J. How mimetic should a robotic fish be to socially integrate

into zebrafish groups? Bioinspiration & biomimetics. 2018

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The FishBot robot was developed at the EPFL,

by Frank Bonnet and Francesco Mondada. The experimental arena was built by Axel

Seguret and myself. The control and tracking system was jointly developed by Frank

Bonnet, Alexey Gribovskiy and Leo Cazenille. The experiments were carried out by

https://doi.org/10.1088/1748-3190/aa8f6a
https://doi.org/10.1088/1748-3190/aa8f6a
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Bertrand Collignon and myself. This document was written mainly by Leo Cazenille,

with the help of José Halloy and Nicolas Bredeche.

In Chapter 5, in order to improve the biomimetic behaviour of the robot, we implement

in it the biomimetic multi-level and context-dependent model from Chapter 3. We show

experimentally that this model allows good social integration of fish and robots in a

structured environment.

This work is based on the publication [41]:

Cazenille L, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche N,

Halloy J. Automated calibration of a biomimetic space-dependent model for ze-

brafish and robot collective behaviour in a structured environment. InConference

on biomimetic and biohybrid systems 2017

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The FishBot robot was developed at the EPFL,

by Frank Bonnet and Francesco Mondada. The experimental arena was built by Axel

Seguret and myself. The control and tracking system was jointly developed by Frank

Bonnet, Alexey Gribovskiy and Leo Cazenille. I carried out all the experiments. This

document was written mainly by Leo Cazenille, with the help of José Halloy and Nicolas

Bredeche.

Finally the Chapter 6 developed the use of a continuous real-time calibration method

for the multi-level behavioural model. In the previous Chapter, the model has been cal-

ibrated on experimental data from a set of experiments with only fish. In this Chapter,

while the robot moves along the fish, the model is calibrated using an evolutionary algo-

rithm to correspond to the observed fish behaviour in real-time. The calibrated model

is implemented on the robot every minute with each new update. This method allows

to cope with changes of dynamics in fish behaviour as well as taking the individual be-

havioural variability into account. This real-time calibration methodology can optimise

the robot behaviours during the experiments.

This work is based on the publication [42]:

Cazenille L, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche N,

Halloy J. How to blend a robot within a group of zebrafish: Achieving social

acceptance through real-time calibration of a multi-level behavioural model. In-

Conference on Biomimetic and Biohybrid Systems 2018

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The FishBot robot was developed at the EPFL,

https://doi.org/10.1007/978-3-319-63537-8_10
https://doi.org/10.1007/978-3-319-63537-8_10
https://doi.org/10.1007/978-3-319-63537-8_10
https://doi.org/10.1007/978-3-319-95972-6_9
https://doi.org/10.1007/978-3-319-95972-6_9
https://doi.org/10.1007/978-3-319-95972-6_9
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by Frank Bonnet and Francesco Mondada. The experimental arena was built by Axel

Seguret and myself. The control and tracking system was jointly developed by Frank

Bonnet, Alexey Gribovskiy and Leo Cazenille. I carried out all the experiments. This

document was written mainly by Leo Cazenille, with the help of José Halloy and Nicolas

Bredeche.





Chapter 4

How mimetic should a robotic

fish be to socially integrate into

zebrafish groups ?

Abstract

Biomimetic robots are promising tools in animal behavioural studies. If they are socially

integrated in a group of animals, they can produce calibrated social stimuli to test the

animal responses. However, the design of such social robots is challenging as it involves

both a luring capability including appropriate robot behaviours, and the acceptation of

the robots by the animals as social companions. Here, we investigate the integration of

a biomimetic robot driven by biomimetic behavioural models into a group of zebrafish

(Danio rerio). The robot behaviours are based on a stochastic model linking zebrafish

visual perception to individual behaviour and calibrated experimentally to correspond to

the behaviour of zebrafish. We show that our robot can be integrated into a group of

zebrafish, mimic their behaviour and exhibit similar collective dynamics compared to fish-

only groups. This study shows that an autonomous biomimetic robot was enhanced by a

biomimetic behavioural model so that it can socially integrate into groups of fish.

4.1 Introduction

Robots are used in ethology and behavioural studies to untangle the multimodal modes of

interactions and communication between animals. They can be biomimetic mechanical

artefacts that are teleoperated in order to trigger a response from the studied animals.

This allows testing various hypothesis on the type of signal used by animals for social

interactions [125, 180]. In those studies the human is still in the loop of interactions

between the artefact and the animal. This simplifies the design, the implementation and

the control of the robot. Alternatively, since the pioneer work of the robot sheepdog and

77



78
Chapter 4 How mimetic should a robotic fish be to socially integrate into zebrafish

groups ?

ducks [249], an increasing number of studies [120] have used fully autonomous robots

to interact with animals. These robots are programmed to induce reproducible stimuli

(possibly embedded in the social context), in order to observe the response of the studied

animals during repetitive, sustained and long-lasting social interactions. In this case,

the human is not in the experimental loop, and doesn’t even need to be present during

the experiments. Examples of autonomous robots used in ethology include cows [52],

drosophila flies [260] or fish [77]. Different strategies exist to build robot and animal

interactions:

(i) First, the artificial systems do not copy any feature of the animal but send cues that

the animal responds to. It can for example make use of supra-normal stimuli [243]. The

cues can also be abiotic repellent signals such as threats or pain (like electric shocks), or

can be attractant such as food or any other attracting chemicals or features. The devices

can be carried by animals that are somehow tele-operated by these devices [52]. We call

this approach non-biomimetic as the aim of the design of the robots or devices is not to

mimic a feature of the studied animal. Indeed, being biomimetic is not a necessity to

interact with animals.

(ii) Second, the artificial agent acts as a different animal species such as a sheepdog.

The robot can be biomimetic but to another species like a dog for the sheep. This

can be a special biomimetic case of inter-species interactions [230] if the robot copies

the sheepdog-like animal in its features and behaviours and pertains also to the next

category below. But this approach can also be non biomimetic and fall back to the first

approach, the robot being just an alien agent interacting with the animals [249].

(iii) Third, the artificial agent is mimicking the animal, luring it as if being the same

animal species and using similar signals and behaviours [97]. We call this approach

biomimetic and it is the approach developed in this study.

However, the biomimetic parameter and feature space are very large. The challenge

is to choose the most relevant features like some specific visual resemblance, olfactory

signature, behavioural similarity. This approach needs metrics to compare each selected

features or set of features to select the most relevant ones to avoid the elusive task of

building an artificial animal in all its features. We define social integration as being

part of a group displaying biomimetic features compared with the animals. The social

integration (and its quantification using these metrics) of a robot in a group of fish is

the main contribution developed in this study.

Several studies (see Tab. 4.1) have used robots to influence or to control the behaviour

of fish, either alone or in a shoal. Most studies involve a robot driven by simple and non-

adaptive behaviours (termed fixed pattern in Tab. 4.1), and open-loop social interactions.

Closed-loop interactions occur when the robot influences the behaviour of the fish, and

the fish influence the behaviour of the robot. The study on the electric fish (Mormyrus

rume) opens interesting perspectives where a physical communication signal is used by
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both the animals and the robots in a closed loop [68]. The electric fish study is closer to

the work done on cockroaches where a chemical signal was used [97]. However in [68],

the fish robot system represents a breakthrough where a modulated signal is used to

achieve a close-loop communication, in this case electric.

Often the robotic systems are composed of two parts. The first part is a robot actuating

the second part that is an artefact mimicking some fish features (see Tab. 4.1). This

second part acts as a lure to the fish. This lure can be designed to look like a conspecific.

In general, the term ”robot” is used loosely to mean the whole system or only the

actuating first part. Here, we refer to the second part as ”the lure” because it carries

the bio-mimetic body features.

Type of robots Study Robot behaviour Social Interaction Number of fish Type of lure
Fixed to Phamduy et al. 2014 [187] Fixed pattern open-loop Single Biomimetic
mobile arm Polverino et al. 2013 [191] Fixed pattern open-loop Shoal Biomimetic

Polverino & Porfiri 2013 [193] Fixed pattern open-loop Shoal Larger Size
Abaid et al. 2012 [1] Fixed pattern open-loop Single Biomimetic
Butail et al. 2014 [35] Fixed pattern open-loop Single Biomimetic
Ladu et al. 2015 [136] Fixed pattern open-loop Single Biomimetic
Ladu et al. 2015 [137] Fixed pattern open-loop Single Biomimetic

Polverino et al. 2012 [190] Fixed pattern open-loop Shoal Larger Size
Spinello et al. 2013 [227] Fixed pattern open-loop Single Larger Size

Polverino & Porfiri 2013 [192] Fixed pattern open-loop Single Biomimetic
Ruberto et al. 2016 [206] Fixed pattern open-loop Single Biomimetic
Bartolini et al. 2016 [10] Fixed pattern open-loop Single Biomimetic (sev-

eral lures on a
robot)

Kruusmaa et al. 2016 [134] Fixed pattern open-loop Shoal Biomimetic
(shape only)

Donati et al. 2016 [68] Fixed pattern, communica-
tion by electric signals and
tail beats

closed-loop Shoal Biomimetic
(shape and
communication)

Self- Abaid et al. 2013 [2] Fixed pattern open-loop Single Larger Size
propelled Butail et al. 2013 [34] Fixed pattern open-loop Shoal Larger Size

Butail et al. 2014 [36] Fixed pattern open-loop Shoal Larger Size
Moved by a Faria et al. 2010 [77] Fixed pattern open-loop Single Biomimetic
mobile robot Swain et al. 2012 [240] Follow the centroid closed-loop Shoal Biomimetic

Landgraf et al. 2014 [139] Follow the centroid or Re-
cruitment

closed-loop Shoal Biomimetic

Landgraf et al. 2016 [138] Follow the centroid or Re-
cruitment

closed-loop Shoal Biomimetic

Table 4.1: Recent research using robots to study fish behaviour. We classified the studies according to the
technique used to move the lure, the behaviours of the lure, the number of fish swimming with the robot and the
shape of the lure. The robots used in these studies can be classified into three categories: First, by using a fish-lure
fixed to a mobile arm. This allows to test the reaction of one (or a few) fish to lures that differ by one characteristic,
e.g. colour, size, tail-beating frequency. Second, by using a self-propelled aquatic robot that swim in the water with
the animals. Such robots are fully autonomous and are a first step towards robots that can be used out of the lab in
natural conditions. Third, by using a fish-lure linked through magnets to a mobile robot that moves under the tank.
This allows the decoupling of the stimuli shown to the fish (the mock-up fish in the water) and the robot responsible
for mobility. By doing so, it is possible to develop a biomimetic lure that has the same size and aspect as a real fish
but also capable of reproducing their movement patterns. Four types of lures are used in the literature: biomimetic
lures are designed to look like (in term of shape and texture) a fish and are of similar size of a fish; biomimetic (several
lures) involves several lures actuated by a single robot; biomimetic (shape only) lures have a biomimetic shape, but
not a biomimetic texture; large sized lures are not biomimetic, and are (far) larger than a fish. In [68], the lure is
equipped with electric sensors and actuators, which enables the lure to communicate with a shoal of electric fish and

to create closed-loop interactions between fish and robot.
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The studies [138, 139, 240] describe experiments where there is a closed-loop of social

interactions and adaptive robotic behaviour. Additionally, [138] presents experiments

where the robot was driven by a biomimetic behaviour; but it was not adaptive (with

respect to the fish behaviour) and only followed fixed-patterns of behaviour. However,

in these studies, the integration of the robot in fish groups is not quantified and not

established. Indeed, this kind of controller implies that the robot is more a follower

than a real group-member (i.e. integrated into the group) making its own decisions.

Simply following the centroid of the group is not biomimetic as fish do not exhibit this

kind of behaviour, and such controller does not allow the robot to initiate action but

forces it to simply follow fish. In this regard, the embodiment of biomimetic behavioural

models could lead to a better integration of artificial agents in animal groups and could

allow the robots to influence the collective decision of the mixed group by giving specific

preferences to the robot by tuning parameter values of the model [97]. While such

controllers have been said to be developed in [139], no experiments have been analysed

and reported in the literature yet. Moreover, social integration can only be measured

on long-lasting experiments, as it allows to test robot social integration across a large

set of social and environmental contexts. While such long-lasting experiments where

described in [139] (30 minutes experiments), the non-adaptive biomimetic experiments

in [138] were relatively shorter (five minutes experiments).

In this study, we ask the following question: can we quantify and discriminate between

sets of biomimetic features needed for a robotic fish to be socially integrated into a group

of fish as an autonomous member of the group? We make the hypothesis that this robot

must be designed not only to be biomimetic at the level of the lure morphology and

other physical aspects but also at the level of its social behaviours.

Here, we propose to implement, in a closed-loop of social interaction, a multi-level and

context-dependent biomimetic behavioural model as a controller of a small mobile robot

moving a biomimetic fish-lure in a closed tank with a shoal of zebrafish.

We observe ten different groups of four zebrafish and one fish-robot moving in a two-

patch square tank. For each trial, we track and identify all agents. Contrary to more

cohesive species, the zebrafish often tend to have a very dynamical collective behaviour,

with short-lived sub-groups of individuals. Because such splitting influences their be-

haviour as its changes the social context, we use a simple clustering method to identify

sub-groups of agents. Then, we analyse the collective dynamics of the population, and

the propensity of the robot to be integrated into the fish group. These results are then

compared with data obtained by observing five zebrafish swimming in the same condi-

tions without the fish-robot. In order to compare the experiments with fish and a robot

to the control experiments with only fish, we define a similarity measure quantifying the

social integration. This measure is based on several metrics characterising the impact
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of the chosen biomimetic features: the linear speed distribution of the agents, the inter-

individual distances distributions of agents in a sub-group, the distribution of sub-group

size.

4.2 Materials and Methods

4.2.1 Ethics statement

The experiments performed in this study were conducted under the authorization of

the Buffon Ethical Committee (registered to the French National Ethical Committee for

Animal Experiments #40) after submission to the French state ethical board for animal

experiments.

4.2.2 Experimental set-up

We use ten groups of five adults wild-type AB zebrafish (Danio rerio) in our experiments.

Our experimental set-up (Fig. 4.1A) is equipped with two environmental patches (rooms)

linked by a corridor (see Fig. 4.2A). The geometry of the setup is designed to study col-

lective transitions between patches allowing to quantify the group cohesion and collective

decision-making as in [48, 211]. Thus the robot has to be socially integrated to be part

of the collective transitions between the rooms. The floor of the aquarium is covered

with a sheet of teflon to provide a smooth surface for the motion of the fish-lure. An

overhead camera (Fig. 4.1A) captures video frames of experiments. Then, our control

and tracking software (called CATS2 [18]) is able to track the positions of the agents

(fish and robots), and to control the robots. A system that controls the robots of a

mixed-society containing zebrafish must cope with their fast reaction time and sudden

movements. Our system is designed to handle low latencies (less than 70ms, as we work

in 15 frames per seconds), both at the tracking and at the control levels.

The control of fish lure motion is done through events that are sent from the control

software and that contain the parameters for the locomotion.

4.2.3 FishBot and fish lures

We consider two kinds of fish lures: a biomimetic lure, and a non-biomimetic lure. The

biomimetic lure was designed to mimic the visual appearance of a zebrafish as close as

possible (Fig. 4.1B) using the methodology presented in [20], based on a 3D scan of a

zebrafish. The lure was also covered with a decal to have the similar color patterns as
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BA

C D

Figure 4.1: Panel A: Experimental set-up used during the experiments [17,19,24]. (a)
Camera used to track the lure and the zebrafish. (b) Zebrafish. (c) Fish-lure inside the
aquarium linked to the mobile robot through magnetic coupling. (d) FishBot moving
under the aquarium. (e) Aquarium of 1000×1000×250 mm. (f) Water layer of 60 mm
depth. (g) The computer that processes the camera frames and remotely controls
the robots via Bluetooth. (h) Conductive plates to power the mobile robot. Panel B:
Description of the FishBot [17,19,24], the robot used for mimicking fish motion patterns.
a) Magnets to magnetically couple FishBot with the lure module. b) Electric brushes to
retrieve the power from the positive conductive plate. c) Microcontroller dspic33f128.
d) Supercaps that store power if the contact with the plates is lost. e) Bluetooth
antenna. f) Maxon DC motor. g) Infrared Proximity sensors. h) Wheel i) Electric
brushes to retrieve the power from the Ground connected conductive plate. Panel C:
biomimetic lure used during the C1,C2,C3 experiments (see Table 4.3) [17, 19, 24].

Panel D: Non-biomimetic lure used in the C4 experiment.

the zebrafish (the methodology is described in Supplementary Information). The non-

biomimetic lure is a zebrafish-sized 3D printed black ellipsoid (of 4.5×0.5×0.8cm). The

lures are linked by magnetic coupling to a mobile robot moving below the experimental

tank.

We use the miniature mobile robot ”FishBot” described in [17, 19, 24] that can achieve

the required speeds and accelerations in order to reproduce the fish displacement under

water. The robot is continuously powered as described in Figs. 4.1A and 4.1C and

controlled with a wireless bluetooth link, therefore it is possible to achieve long duration

experiments in closed-loop (described in Supplementary Information).
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4.2.4 Data analysis

Zebrafish tend to form short-lived sub-groups of individuals (especially in fragmented

environments [211]), which often translate to different sub-group behaviour, as sub-group

size changes the social context. In particular, fish do not behave the same way when

they are alone as when they are in a group (for instance, they have different distributions

of linear and angular speeds). As such, we identify sub-groups of agents in each frame

of our experimental videos. We use a clustering algorithm that uses only the position of

each individual to detect the sub-groups in each frame of our experimental videos. This

algorithm is described in Supplementary S1.

Then, by using the tracked positions of agents (fish and robot) and the information

describing sub-groups membership, we compute several statistics of individual and col-

lective behaviour: the density of presence in the arena, the distributions of linear speeds

in each room, the inter-individual distances in sub-groups of size two to five individuals,

and the distribution of the number of agents in sub-groups.

4.2.5 Quantifying social integration

To quantify the social integration of the robot into the group of fish, we compare the

results of the experiments with a robot with the corresponding results from the biological

reference case. We define a similarity measure to compare the results of all experiments,

taking into account the distribution of linear speeds, the distribution of inter-individual

distances and the distribution of sub-groups size. We postulate that this similarity

measure translates directly to the capabilities of the robot to socially integrate into the

group of fish. We term this similarity measure the social integration index (I(Ci) for

the Ci experiment), and define it as:

I(Ci) =
IlinSpeedRooms(Ci) + IlinSpeedCorridor(Ci) + IinterindivSG2(Ci) + ...+ IinterindivSG5(Ci) + ISGSize(Ci)

7
(4.1)

Ia(Ci) = 1−H(C0a, Cia) (4.2)

The social integration index I(Ci) of the experiment Ci has a value between 0.0 and

1.0. A value of 0.0 corresponds to the absence of social integration of the robot, and a

value of 1.0 corresponds to a social integration of the robot comparable to that of a fish.

The vectors IlinSpeedRooms(Ci), IlinSpeedCorridor(Ci), IinterindivSG2(Ci), ..., IinterindivSG5(Ci)

and ISGSize(Ci) correspond respectively to the histograms of the distributions of linear
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speeds in the rooms, linear speeds in the corridor, inter-individual distances in sub-

groups of sizes two to five individuals and to the size of sub-groups, for experiment Ci.

These histograms are presented in Figs. 4.6, 4.7 4.8, and in Supplementary Information.

We hypothesise that these are the most relevant features to identify the social integration

of the robot into the group of fish. First, the speed distributions show the ability of the

robot to follow the fish at the same speed as the fish. Second, the inter-individual

distance distributions show the capability of the robot to be at the same distance to

the fish as a fish would be towards its neighbours. Lastly, the distribution of sub-group

sizes shows that sub-group dynamics in experiments with a robot are similar to those in

experiments with only fish.

The H(P,Q) function is the Hellinger distance between two histograms. The Hellinger

distance [66] is a divergence measure, similar to the Kullback-Leibler (KL) divergence.

However, the Hellinger distance is symmetric and bounded, unlike the KL-divergence

(and most other statistical distance metrics). It is often used as a metric to compare

distributions, and is defined as:

H(P,Q) =
1√
2

√

√

√

√

d
∑

i=1

(
√
pi −

√
qi)2 (4.3)

where pi and qi are respectively the i-th bin values of histograms P and Q; d is the

number of bins in both histograms P and Q.
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Figure 4.2: Panel A: Experimental arena composed of two linked square rooms used
to study collective transitions and decision-making. Our biomimetic lures, described in
Fig. 4.1B, can be integrated within the fish group and mimic their collective behaviours.
Panel B: Colored zones of the arena corresponding to the three different types of
behaviour of the robot. These behaviours are outlined in Table 4.2. When the robot is
in the rooms (in red) or near the entrance of the corridor (in blue), it is driven by the
biomimetic model presented in Sec. 4.3. This model is used to generate a new target
position of the robot every 1/3 s. If this target position is near the entrance of the
corridor (in blue), the target position of the robot is not updated before 5 s are passed,
to give the robot enough time to go to the entrance of the corridor. When the robot
is in the corridor (green zone), it passes straight through the corridor, with a constant

speed.
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4.3 Multi-level approach for the robot behaviour

We present here a biomimetic model of fish behaviour, that can be implemented as a

robotic controller. Our model is multi-contextual, to take into account the different

behaviours exhibited by the fish in the different zones of our fragmented experimental

set-up (with two rooms and a corridor, cf Fig. 4.2A). We design this model to be multi-

level (Fig. 4.3.

The high-level control manages the biomimetic trajectories of the robot. We use different

behavioural schemes to generate desired target positions of the robot depending on its

position in the arena. These trajectories are calibrated to correspond to the analysed

fish trajectories.

The low-level control corresponds to the movement patterns of the robot that are also

important to facilitate social integration. It describes how the robot can move from its

current position to the target positions provided by the high-level control system.

Control at both levels can be designed to be biomimetic. At the level of trajectories,

zebrafish have a complex social behaviour and tend to form dynamic and short-lived

groups. At the level of movement patterns, zebrafish move by successive bouts of tail-

beats [261]. Each tail-beat can be modelled as a sequence of three steps: first, the

tail-beat allows the fish to reorient itself towards its target position; second, the fish

accelerates linearly by using the thrusting effect of the tail-beat; third, the tail-beating

stops and the fish slides into water with a decreasing linear speed [19]. Here, we present

a biomimetic multi-level model of these dynamics, taking into account both high-level

(in Sec. 4.3.1) and low-level (in Sec. 4.3.2) controls.

Figure 4.2B and Table 4.2 summarise the different behaviours depending of the position

of the robot, and how they are implemented in terms of high-level control (trajectories)

and low-level control (movement patterns). A general description of this biomimetic

model can be found in Fig. 4.3.

We designed our behavioural model to exhibit different behaviours depending on the

spatial position of the robot in the arena. Indeed, we observed that zebrafish exhibit

Color in Fig.4.2B Robot Current
Zone

Target Zone Trajectories Movement pat-
terns

Obstacle avoidance

Red In Rooms or
Near entrance

In Rooms probabilistic
(cf. Sec. 4.3.1), updated
every 1/3 s

biomimetic
(cf. Sec. 4.3.2)

Turn to avoid (cf. Sec. 4.3.2)

Blue In Rooms or
Near entrance

Near entrance probabilistic (cf.
Sec. 4.3.1), updated
every 5 s

biomimetic
(cf. Sec. 4.3.2)

Turn to avoid (cf. Sec. 4.3.2)

Green Corridor any Pass-through
(cf. Sec. 4.3.3)

Constant speed
(cf. Sec. 4.3.4)

Braitenberg (cf. Sec. 4.3.4)

Table 4.2: Robot behaviours depending on the context
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Figure 4.3: Multilevel behavioural model (here denotedBM) used as robot controller.
Our robot control system is divided into two layers. The high-level control layer (in A
and D) describes the trajectory of the robot in the arena and generates target positions.
The low-level control layer (in B and C) handles the movement patterns of the robot
to reach the target positions derived from the high-level control layer. The robot has
different behaviours depending on whether it is in the rooms (in A and B, represented
in red and blue in Fig. 4.2B) or in the corridor (in C and D, in green in Fig. 4.2B).
In the rooms, the high-level (in A) and low-level (in B) controls are biomimetic. In
the corridor, the high-level (in D) and low-level controls (in C) are not biomimetic,
and drive the robot to transit from one room to the other through the corridor. These

behaviours are summarised in Table 4.2.

different behaviours when they are in the corridor compared to when they are in a

room [211] (cf Supplementary Information Figs. S2, S3, S4, S5). When they are in the

corridor, they tend to go from one of the entrances of the corridor to the other room,

with a different speed distribution. The fish only transit in the corridor in a rather

straight manner.

When the robot is in the rooms (in red) or near the entrance of the corridor (in blue),

it is driven by a biomimetic probabilistic behavioural model (Fig. 4.3A), and described
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below (cf Sec. 4.3.1). This model is used to generate new target positions of the robot

every 1/3 s (this time step was chosen to correspond to the tail beat frequency of the

zebrafish of ∼ 2.5Hz, as in [49]). The low-level controller of the robot makes it follow

and reach these target positions with fish-like biomimetic movement patterns (Fig. 4.3B,

cf Sec. 4.3.2). If a target position of the robot is near the entrance of the corridor (in

blue), it is not updated before 5 s are passed, to give the robot enough time to reach the

entrance of the corridor. When the robot is in the corridor (in green), it passes straight

through the corridor with a constant speed.

At present, while the robot can pass through the corridor from one room to the other

without wall-collision, it can be difficult for the robot to perform U-turns in the corridor

(i.e. turn around in the corridor and go back to the room the robot was previously

situated) without colliding into the walls due to the narrowness of the corridor. As

such, when the robot enters the corridor, it is driven by a pass-through behaviour to

transit from one room to the other in a straight line, without possibility of U-turn

(Fig. 4.3D). We do not use the biomimetic probabilistic behavioural model (Fig. 4.3A)

in this case, as it would have a small probability of generating target positions toward

the room where the robot was previously situated, thus driving the robot to perform an

U-Turn.

Additionally, the teflon sheet that we put on the floor of the aquarium is not perfectly

plane (as it is difficult to glue this layer to the aquarium), which can slightly influence

the movement of the robot due to the magnetic coupling between the robot and the

lure (sliding on the teflon layer). This is especially the case when the robot is moving

at high speed, or when it performs strong accelerations, for instance when it is driven

by the biomimetic low-level controller (Fig. 4.3B). This is why we use a constant speed

behaviour (without strong acceleration, Fig. 4.3C) when the robot is passing through

the corridor.

4.3.1 High-level biomimetic behavioural model in the rooms

To define the trajectories of the robot in the rooms (red and blue zones in Fig. 4.2B,

Fig. 4.3A), we developed a biomimetic behavioural model inspired from the probabilistic

model in [49], which used a gaussian mixture agent-based approach to describe zebrafish

behaviour in a shoal. However, the model in [49] was designed to model zebrafish

behaviour in an empty square arena. We modified this model to be used as a robotic

controller, and to handle our arena with two rooms and a corridor.

In this model, the agents update their position vector Xi with a velocity vector Vi:

Xi(t+ δt) = Xi(t) + Vi(t)δt (4.4)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (4.5)
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The speed vi is drawn from the speed distribution of the fish in the rooms (cf Supple-

mentary Information Fig. S4, experiment C0). The orientation Θi is drawn from the

probability density function (PDF) computed as a mixture distribution of von Mises

distributions centred on the stimuli perceived by the focal agent. In this study, we only

take into account the influence of other agents. The attraction towards the walls is not

considered yet as it would put the robots too close to the walls, increasing greatly the

number of collisions between them.

The PDF f0(θ) for an agent to move in each potential direction θ in a bounded envi-

ronment without perceptible stimulus is given by:

f0(θ) =
exp(κ0cos(θ))

2πI0(κ0)
(4.6)

with κ0 a dispersion parameter associated with movements not influenced by stimulus,

and I0 the modified Bessel function of first kind of order zero, defined as:

I0(κ) =
∞
∑

k=0

(κ/2)2k

k!Γ(k + 1)
(4.7)

where Γ(z) is the gamma function:

Γ(z) =

∫ ∞

0
xz−1e−xdx (4.8)

The model computes a PDF for the focal agent to move according to other agents

(congeners). The probability of the focal agent to orient towards a perceived agent is

given by a von Mises distribution clustered around this agent:

ffi =
exp(κfcos(θ − µfi))

2πI0(κf )
(4.9)

with θ the potential direction of movement of the agent, µfi the location of the perceived

fish i and κf a dispersion parameter associated with agent attraction.

The model computes a weighted sum of all distributions ffi for all agents i, resulting in

a PDF fF (θ) defined as:

fF (θ) =

nf
∑

i=1

Afi

ATf

exp(κfcos(θ − µfi))

2πI0(κf )
(4.10)

ATi
=

nf
∑

i=1

Afi (4.11)

with ATf
the sum of solid angles Afi captured by each perceived agent i and nf the

number of perceived agents.
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Finally, we calculate a weighted sum of the PDFs to obtain the global probability dis-

tribution function f(θ) of the focal fish to move towards a given direction. This global

PDF is different from [49], as we removed the attraction to the walls, and is computed

as follow:

f(θ) =
f0(θ) + α0ATf

fF (θ)

1 + α0ATf

(4.12)

with α0 a parameter weighting the influence of the perceived agents. The parameters

κ0 = 6.3 and κf = 20 are the same as in [49].

There is a delay (< 500 ms) between the time when a new target position is computed

and the time when the robot actually reaches this position. This can have an adverse

effect on the desired fish-following behaviour of the model, when the robot is part of a

sub-group and is moving alongside its neighbours. Indeed, the target-following system

(low-level control) must compromise between efficiency (the capability of reaching the

target with a low latency) and biomimetism (fish-like movement, and fish-like speed

distribution). To mitigate this effect, we selected a different value of α0 than in [49]: we

consider α0 = nA ∗ 1000/nD with nA = 5 the total number of agents in the experiment,

and nD the number of detected agents in the current frame. This increases the tendency

of the robot to follow fish groups. The number of detected agents is used to normalise

the computation of α0 as the model only takes into account the agents that are actually

detected by the tracking system, which introduces a bias.

Then, we numerically compute the cumulative distribution function (CDF) correspond-

ing to this custom PDF f(θ) by performing a cumulative trapezoidal numerical inte-

gration of the PDF in the interval [−π, π] (as described in [49]). Finally, the model

draws a random direction Θi in this distribution by inverse transform sampling. The

position of the fish is then updated according to this direction and his velocity with

equations 4.4 and 4.5. If the target position of the robot is in an unreachable area

(e.g. the walls), we draw another random direction from the CDF.

4.3.2 Low-level biomimetic movement patterns in the rooms

In the rooms (red and blue zones in Fig. 4.2B), the robot is following trajectories drawn

by the high-level biomimetic model described in Sec. 4.3.1. The low-level robot controller

(Fig. 4.3B) is programmed to follow the target position computed using the high-level

behavioural model. When the target is near the entrance of the corridor (blue zone

of Fig. 4.2B), it remains there for 5s to leave enough time for the robot to reach the

entrance of the corridor, and then pass through it to the next rooms. We choose the

relatively long duration of 5s to prevent the high-level model to generate a new target

not situated in the corridor before the robot is able to reach the entrance of the corridor,

as it could lead to experiments where the robot never go through the corridor.
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To accurately mimics the movement patterns of the zebrafish inside the two rooms, we

used the low-level robot controller designed in [19]. At each control steps, the desired

target position generated by the model described in Sec. 4.3.1 is compared with the

current robot position and orientation. The difference in orientation is sent to the robot,

that executes a step machine composed of three steps: First, the wheels are controlled in

position to reorient the robot towards the desired target (Re-orientation phase). Second,

the robot accelerates to 0.7 m.s−2 (Acceleration phase) and third, the speed of the robot

is set to a constant speed of 8.5 cm.s−1 (Relaxation phase). The robot will keep this

speed until the next control step. This mimics the typical locomotion of zebrafish in

open areas as demonstrated in [19].

We use a simple collision avoidance scheme (termed Turn to avoid), where the robot

stops when it is too close to a wall and then turns at a reduced speed (5 cm.s−1) for

3.5 s before going back to its normal behaviour.

4.3.3 Robot trajectories in the corridor

When the robot is in the corridor (green zone in Fig. 4.2B), it is programmed to transit

in a straight line towards the other room (Fig. 4.3D), with a constant speed of 12 cm.s−1

if the robot is not in collision with a wall. This speed is reduced to 5 cm.s−1 when the

robot is too close to the walls, e.g. after a collision. The resulting mean speed of the

robot is still lower than the one of the fish (cf Supplementary Information). We could

not increase the speed of the robot to match the mean speed of the fish in the corridor,

as it would increase the probability of crashing against a wall.

4.3.4 Biomimetic movement patterns in the corridor

Inside the corridor (green zone in Fig. 4.2B), the zebrafish usually have a constant

speed as they are stressed due to the reduced size of the environment. Therefore, we

implemented a controller (Fig. 4.3C) for the robot to maintain a constant linear speed

of 9.4 cm.s−1 inside the corridor while the rotating speed is controlled using a PID

(Proportional-Integral-Derivative) controller for the robot to reach the opposite room.

To mitigate the effect of eventual collisions of the robot with the walls, the low-level

controller of the robot implements a Braitenberg-based obstacle avoidance scheme [30].

While this Braitenberg obstacle avoidance scheme is more efficient than the Turn to

avoid scheme used in the rooms, it only works when the robot is moving with a constant

speed. This is why we did not use it in the rooms, where the robot is driven by the

biomimetic movement patterns (described in Sec. 4.3.4).
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Label Experiment Number of agents Robot Trajectories in
the rooms

Robot Movement pat-
tern in the rooms

Lure

C0 wild-type zebrafish only 5 fish + 0 robot - - -
C1 Biomimetic model with

Biomimetic lure
4 fish + 1 robot Biomimetic

(cf Sec. 4.3.1)
Biomimetic
(cf Sec. 4.3.2)

Biomimetic

C2 Random walk with Biomimetic
lure

4 fish + 1 robot Random Walk Biomimetic
(cf Sec. 4.3.2)

Biomimetic

C3 Biomimetic model with Con-
stant Speed

4 fish + 1 robot Biomimetic
(cf Sec. 4.3.1)

Constant Speed Biomimetic

C4 Biomimetic model with non-
biomimetic lure

4 fish + 1 robot Biomimetic
(cf Sec. 4.3.1)

Biomimetic
(cf Sec. 4.3.2)

Non-biomimetic

Table 4.3: Analysed experiments. The C0 experiment is the biological reference case, involving a group of five
wild-type zebrafish and no robot. The C1 experiment involves four wild-type zebrafish and one robot driven by
the multi-level biomimetic model presented in Sec. 4.3. These experiments are performed in the set-up described in
Fig. 4.1A with the arena in Fig. 4.2B after a 30 minutes period of acclimatization. Each experiment is repeated ten
times and lasts 30 minutes. The C2,C3 and C4 experiments are control experiments based on the C1 experiment.
The C2 experiment involves a robot driven by a random walk behaviour, to assess to impact of biomimetic trajectories
on social integration. In the C3 experiment, the robot moves with a constant speed along its trajectory instead of

moving using biomimetic movement patterns. The C4 experiment is performed with a non-biomimetic lure.

4.4 Results

Our goal is to socially integrate a robot driven by a multi-level biomimetic behaviour

into a group of laboratory wild-type zebrafish. The experiments are done in a two con-

nected room aquarium that is designed to study social cohesion, collective departures

and decision-making [48, 211]. We consider five different experimental conditions sum-

marised in Table 4.3. Each one of the five experimental conditions is composed of ten

repetitions of 30 minutes lasting trials. Each experimental condition has thus been tested

for five hours in total. We tested ten different fish groups per experimental conditions,

i.e. 40 different fish with the robot. We compare these five experiments by using the

similarity measure described in Sec. 4.2.5.

4.4.1 Individual trajectories

We rebuild the trajectories of each individual (fish and robot) by using the individual

tracking of the agents (cf Sec. 4.2.4). Figure 4.4 presents examples (of 1 minute) of such

trajectories for experiments C0 and C1 (in Panel B, the robot trajectories are in black).

The fish tend to follow walls rather than staying in the center of the rooms.

Even though we did not implement any wall following behaviour into the high-level part

of the BM model (Fig. 4.3A, see Sec. 4.3.1), the robot still exhibits a wall following

behaviour as it tends to be attracted to fish. The trajectories of the robot appear

qualitatively biomimetic. We further quantify the mixed group in the following sections.
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A

C0

B

C1

Figure 4.4: Examples of trajectories of the agents in experiments C0 (Panel A)
and in experiment C1 (Panel B). Each subplot corresponds to 1-minute sections of a

30-minutes experiment. In Panel B, the robot trajectories are in black.

4.4.2 Group clustering and social cohesion

We compute the mean inter-individual distances between each pair of agents (fish and

robots) of a sub-group for all experiments. Three characteristic cases were considered:

all sub-groups (i.e. sub-groups of two to five individuals) in Fig. 4.6, sub-groups of two

individuals in Fig. 4.7, and sub-groups of all (five) individuals in Fig. 4.8. For all three

cases, the distributions of inter-individual distances of the C1 and C3 experiments are

the closest to the ones of the C0 experiment.

We compute the mean fraction of non-isolated individuals in each experiment (Fig. 4.5A).

In experiments with a robot, C1 (mean of 78.1%, std of 0.050) is the closest to C0

(mean of 83.3%, std of 0.037), followed by C3 (mean of 75.9%, std of 0.049), C4 (mean

of 74.4%, std of 0.622), and C2 (mean of 67.4%, std of 0.062). The robot tends to be

isolated slightly more often than the fish. When the robot follows our biomimetic model,

it increases its capability to be in a sub-group (experiments C1 and C3). The type of

movement pattern and lure also affect the capability of the robot to be in a sub-group

(experiments C2 and C4).

Figure 4.5B presents the mean fraction of the population either isolated (”sub-group”

of size 1) or in a sub-group with two to five individuals. Agents in the experiments

with the robot (C1, C2, C3, C4) have a higher probability to be isolated and a lower

probability to be in sub-groups of five individuals (whole population). Experiments C1

and C3 provide the results that are the most similar to C0. Indeed, while the robot

can integrate into the group of fish, especially when driven by a biomimetic model, its

behaviour could still be improved to be closer to a fish.
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C1 C2 C3 C4

Linear speed in the rooms 0.706 0.739 0.708 0.739
Linear speed in the corridor 0.812 0.694 0.608 0.637

Inter-indiv. distances in SG of 2 indiv. 0.894 0.893 0.780 0.524
Inter-indiv. distances in SG of 3 indiv. 0.927 0.897 0.972 0.885
Inter-indiv. distances in SG of 4 indiv. 0.915 0.837 0.953 0.798
Inter-indiv. distances in SG of 5 indiv. 0.866 0.759 0.861 0.706

Distribution of SG size 0.899 0.854 0.875 0.848

Social integration index (Mean score) 0.860 0.810 0.822 0.734

Table 4.4: Social integration indexes for all experiments. Higher values correspond to
better integration of the robot in the group of fish. Results in bold correspond to the
highest values for each feature. The C1 experiment involves 4 wild-type zebrafish and
one robot driven by the multi-level biomimetic model presented in Sec. 4.3. The C2,C3
and C4 experiments are control experiments based on the C1 experiment. The C2
experiment involves a robot driven by a random walk behaviour, to assess to impact of
biomimetic trajectories on social integration. In the C3 experiment, the robot moves
in a constant speed along its trajectory, instead of biomimetic movement patterns. The

C4 is performed with a non-biomimetic lure.
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Figure 4.5: Panel A: Mean fraction of non-isolated individuals in all experiments.
The distributions differ significantly (Two-sample Kolmogorov-Smirnov test, with p-
values < 0.05; cf Sec. 4.2.4). Panel B: Mean fraction of the population in a sub-group
of one (isolated individuals) to five (whole population) individuals. The distributions
differ significantly (Two-sample Kolmogorov-Smirnov test, with p-values < 0.05; cf
Sec. 4.2.4). Results are obtained in ten trials of 30 minutes experiments using groups

of wild-type zebrafish moving in the set-up described in Fig. 4.2A.

4.4.3 Quantifying social integration

Table 4.4 presents the resulting social integration index and the associated Ia(Ci) values

for all experiments with a robot (C1, C2, C3, C4). The experiment with the highest

number of biomimetic characteristics, C1, has the highest integration index: 0.860.

Experiment C3 has the second highest integration index: 0.822, followed by C2 (0.810)

and C4 (0.734). It shows the veracity of our hypothesis: a robotic fish has higher social

integration capability into a group of fish if it is designed to be biomimetic on three key

aspects: the morphology of the lure, the type of trajectories, and the type of movement

patterns. Here, we show that the morphology of the lure has the highest impact on social

integration, followed by the type of trajectory of the robot and by the type of movement

patterns of the robot, with differences of social integration indexes (mean score) with

C1 of respectively 0.126, 0.050 and 0.038. While C1 has the highest social integration
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Figure 4.6: Mean inter-individual distances between each pair of agents (fish and
robot) in all sub-groups. Results are obtained in 30 minutes experiments using groups
of wild-type zebrafish moving in the set-up described in Fig. 4.2A. Each experiment is
reiterated ten times. All distributions of inter-individual distances differ significantly

(Two-sample Kolmogorov-Smirnov test, with p-values < 0.05; cf Sec. 4.2.4).
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Figure 4.7: Mean inter-individual distances between each pair of agents (fish and
robot) in sub-groups of only two individuals (pairs). Results are obtained in 30 min-
utes experiments using groups of wild-type zebrafish moving in the set-up described
in Fig. 4.2A. Each experiment is reiterated ten times. All distributions of inter-
individual distances differ significantly (Two-sample Kolmogorov-Smirnov test, with

p-values < 0.05; cf Sec. 4.2.4).
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Figure 4.8: Mean inter-individual distances between each pair of agents (fish and
robot) in sub-groups of five individuals (entire population). Results are obtained in
30 minutes experiments using groups of wild-type zebrafish moving in the set-up de-
scribed in Fig. 4.2A. Each experiment is reiterated ten times. All distributions of
inter-individual distances differ significantly (Two-sample Kolmogorov-Smirnov test,

with p-values < 0.05; cf Sec. 4.2.4).
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index, C2 and C4 have the highest score of linear speed in the rooms, and C3 has the

highest score in inter-individual distances in sub-groups of three to four individuals.

4.5 Conclusions

In this study, we present a biomimetic model of fish behaviour in a fragmented environ-

ment. This model is multi-contextual spatially (square rooms and corridor), multi-level

(collective dynamics, collective departures, trajectories, movement patterns) and prob-

abilistic. Then, we describe a methodology to create a closed-loop of social integration

between a shoal of zebrafish and a biomimetic fish-lure moved by a robot driven by this

biomimetic behavioural model. We use a similarity measure as a metric to quantify the

capability of this lure to be socially integrated in the shoal of fish and the biomimetism

of the behaviour of the robot.

While previous studies of the literature (Tab. 4.1) showed that a robotic fish needs to

be biomimetic in order to be socially integrated in a group of fish, most efforts were

made on finding attractive biomimetic lure morphologies, with no or few considerations

( [138,139,240]) on the effects of robot behaviour (trajectories and movement patterns)

on social integration. Both [139] and [138] present experiments involving a closed-loop

of interaction between a group of fish and a robot driven by a controller inspired from fish

behaviour and magnetically coupled with a biomimetic lure. However, in these studies,

the social integration of the robot is not quantified and the robot is more a follower or

initiator following fixed patterns of behaviour rather than an entity capable of being

integrated with the group of fish and initiating its own decisions during trials lasting 30

minutes.

The biomimetic model of fish behaviour we present can effectively socially integrate a

group of wild-type zebrafish.

This problem is challenging because zebrafish present loose social organisation [211].

Indeed this fish species does not form stable schooling patterns (i.e. fish aligned and

swimming together in the same direction) but form shoals (tendency to form irregular

groups). Moreover, it is difficult to model zebrafish collective behaviour and translate

it directly into a robotic controller. Here we consider complex social behaviour in a

designed set-up to study social cohesion and collective departures. This fragmented set-

up induce more elaborate behaviours than simpler round or square empty tanks. Such

environment requires to develop context dependent collective behaviour models taking

into account spatial context and social effects.

In this study, we compare mixed groups of one robot and four fish to groups of five fish

and no robot. It allows us to quantify the social integration of the robot i.e. if the robot

belongs to the group, like another fish, for trials lasting for 30 minutes each and during
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five hours in total. We present metrics that quantify the distance between a mixed and

a pure fish group. According to these metrics, the closer we are to a pure fish group the

more the robot is socially integrated.

We analyse the impact of both lure morphology and robot behaviour aspects on social

integration and show that a robotic fish driven by a biomimetic behavioural model

is more akin to be socially accepted by the fish compared to a robotic fish driven by a

simple non-biomimetic behavioural model. We assess the importance of biomimetism on

different aspects of the robot design: the morphology of the lure, the type of trajectories

of the robot, and the type of movement patterns exhibited by the robot, its decision

making capabilities depending on the context. All three aspects are shown to be relevant

to facilitate the social integration of the robot. We present results showing that both

the lure and the behaviour of the robot are important in the design of robots able to

socially integrate a group of fish. We show that the morphology of the lure is the feature

with the highest impact, followed by the type of robot trajectories and the type of robot

movement patterns.

Additionally, we include a behavioural analysis of the fish group and of the mixed-group

of fish and robot. This analysis takes into account the tendency of fish to gather in

short-lived and dynamic sub-groups, that can exhibit different behaviour depending on

sub-group size and composition. While studies in the literature established the existence

of these sub-group dynamics in fish [211], no method was described to identify them. We

present an algorithm to identify sub-groups of fish based on their spatial proximity. The

results of this sub-group analysis show that fish exhibit different behaviours depending

on the size of the sub-group they are part of, and of their position in the arena. In

particular, fish behave differently when alone compared to when in a group. We showed

that the inter-individual distances of fish in a sub-groups is dependant of the size of the

sub-group. When they are in the corridor, they tend to pass through quickly from one

room to the other.

The social integration of the robot into the groups of fish could still be improved by

refining the behavioural model. The model could be further calibrated to take into

account more aspects of the fish collective behaviour in this complex environment. The

robot behaviour could be closer to the fish behaviour that depends on the size of its sub-

group and to its spatial position in the set-up. Our model does not yet take into account

explicitly the attraction of the agents towards the walls, like the model in [49]. This

was mainly motivated by current technical difficulties as this would greatly increase the

number of collisions between the robot and the walls. This problem will be addressed

in a subsequent study. Robots can still be seen to be following walls in the colored

trajectory presented in Fig. 4.4 because they are attracted to fish, which, in turn, tend

to follow walls.
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Future works will focus on automating the calibration of model parameters, by opti-

mising them using evolutionary algorithms. Additionally, the social integration can

be further quantified by adding other kind of analysis, and by using more behavioural

features in the computation of the social integration indexes.

This study is a first step towards more complex biohybrid groups: instead of just fo-

cusing on integration, the robots could be used to control or to modulate the collective

behaviour of the mixed group of fish and robots. Indeed taking advantage of specific

social behaviours the robots could modulate the whole mixed-groups [97]. The number

of robots necessary to have a good control of the mixed groups can also be optimised for

example by evolutionary computation [40, 41]. This type of control would be based on

natural animal behaviours thus reducing stress and not using coercion to get the target

results [97,120]. Indeed, in zebrafish groups all the fish can be leaders and induce groups

transitions from one place to the other. For example, we have shown that the number

of initiation is linearly proportional to the number of attempts performed [48]. This

allows biomimetic robots to make use of the fish behavioural features to be capable of

inducing collective departures and to modulate the spatial distribution of the groups.

Such biohybrid social systems would allow us to modulate and to control group living

animals.





Chapter 5

Automated calibration of a

biomimetic space-dependent

model for zebrafish and robot

collective behaviour in a

structured environment

Abstract

Bio-hybrid systems made of robots and animals can be useful tools both for biology and

robotics. To socially integrate robots into animal groups the robots should behave in a

biomimetic manner with close loop interactions between robots and animals. Behavioural

zebrafish experiments show that their individual behaviours depend on social interactions

producing collective behaviour and depend on their position in the environment. Based

on those observations we build a multilevel model to describe the zebrafish collective be-

haviours in a structured environment. Here, we present this new model segmented in

spatial zones that each corresponds to different behavioural patterns. We automatically

fit the model parameters for each zone to experimental data using a multi-objective evo-

lutionary algorithm. We then evaluate how the resulting calibrated model compares to

the experimental data. The model is used to drive the behaviour of a robot that has

to integrate socially in a group of zebrafish. We show experimentally that a biomimetic

multilevel and context-dependent model allows good social integration of fish and robots

in a structured environment.

101
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5.1 Introduction

Robotics stands now as a convenient tool to study the animal behaviour. In recent

ethological and animal behavioural studies, robots are used to induce specific and con-

trolled stimuli and assess the response of the animals under scrutiny. This allows to

test various hypothesises on the nature of the signals used by the animals for social

interactions [125,179].

Autonomous robots interacting in real-time with animals [120] makes it possible to create

social interactions between both of them. This has already been demonstrated by several

authors for studying the behaviours of sheepdogs [249], cows [52] or drosophila [260] to

cite a few.

In this paper, we focus on zebrafish (Danio rerio), and we describe a biomimetic model

that can be implemented in a robotic lure and validated its acceptance by four zebrafish

in a structured environment.

The main difficulty is to make the robotic lure behave in such a way that it is accepted

by the animals as social companion, just as any other interacting fish would be. Beyond

the scope of this paper, this is a first step to enable the modulation (though action) of

the collective behaviours of the observed zebrafish [97].

Different approaches have been proposed to control the movement of fish-lures [43]. Most

of them do not involve a closed loop of social interaction with the fish. This is often

the case for lures fixed to a robotic arm that performs repeated movements, but also

for studies with autonomous fish-lures. Closing the loop of social interactions requires a

real-time tracking, or perception, of the agents (fish and robot), and a decision-making

algorithm to control the robot behaviours. In most of the experiments reported in

the literature, the robots driven with closed-loop control are programmed to follow the

centroid of the fish group, to ensures that the robot will join and follow the group of fish.

However, this type of controller implies that the robot is more a passive follower than a

real group-member making its own decisions. The embodiment of bio-inspired models

can lead to a better social integration of the artificial agents in animal groups and can

allow the robots to influence the collective decision of the mixed group by giving specific

preferences to the robot by tuning parameter values of the model [43, 97].

We present a method to calibrate automatically a new behavioural zebrafish model by

evolutionary parameters optimisation. This multilevel model describes collective be-

haviour in a structured environment in agreement with experimental observations. This

model makes important extensions to our previous model for collective behaviour in a

homogeneous environment [49]. The model takes into account a simple structured en-

vironment composed of two rooms and the fact that the fish adapt their behaviour to

the zones where they are while performing collective behaviour. For such multilevel and
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spatially dependent social behaviour model it is an issue to calibrate the model because

it involves trade-offs between social tendencies (aggregation, group formation), and re-

sponse to the environment (wall-following, zone occupation). We use an evolutionary

algorithm (NSGA-II [64]) to optimise the parameters of this model so that the exhibited

collective dynamics correspond to those observed in biological experiments. Then, we

validate experimentally this model by implementing it as the controller of robots that

are integrated in small fish groups.

5.2 Materials and Methods

5.2.1 Experimental set-up

We use the experimental set-up described in [18, 43, 48, 211], with the arena presented

in [43, 211]. This set-up (Fig. 5.1A) consists of a white plexiglass arena (Fig. 5.1C) of

1000× 1000× 100 mm, that is composed of two rooms linked by a corridor. To validate

experimentally our calibrated model, we use a robot developed by the EPFL [17–19,24]

for the ASSISI project [210]. This robot is powered by two conductive plates under the

aquarium. An overhead camera captures frames that are then processed for tracking

and control purposes (see Fig. 5.1A).

All trials have a duration of 15min. We tracked the positions of the agents by using

the idTracker software [181]. Using this software, we obtain the positions P (x, y, t) of

all agents at each time step ∆ t = 1/15 s for all experiments, and build the trajectories

of each agent. The experiments performed in this study were conducted under the

authorisation of the Buffon Ethical Committee (registered to the French National Ethical

Committee for Animal Experiments #40) after submission to the French state ethical

board for animal experiments.

5.2.2 Behavioural model

Most of the fish collective behaviour models do not take into account the environment

i.e. the walls or the structure of the tanks because they only focus on the social inter-

actions [146,237].

However, zebrafish show context-dependent behaviours when they are in a structured

environment. Depending on their spatial position in the environment they adapt their

individual behavioural pattern. Moreover, because they are a gregarious species they

also take into account the position and the behaviours of the other fish and can aggre-

gate or start collective behaviours. As many animal species, zebrafish display strong

thigmotactism and follow walls or edges. We show that they adapt their behaviour in

three different zones of the structured set-up: first the zone when they are close to the
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Figure 5.1: Panel A: Experimental set-up used during the experiments [17–19,24,43].
Panel B: FishBot [17,19,24]: the robot used for mimicking fish motion patterns, with
the biomimetic lure used during the reference experiments. This robot was developed
by the EPFL for the ASSISI project [210]. Panel C: Experimental arena composed
of a tank containing two square rooms (350 × 350 mm at floor level) connected by a
corridor (380 × 100 mm at floor level). The fish tend to swim from one room to the
other, either in small groups, or individually. This set-up is used to study the zebrafish
collective dynamics. Panel D: Positions of the three different zones corresponding to
different types of behaviours: in the corridor (zone 1), in the center of each room (zone

2), and near of the walls of each room (zone 3).

walls, second the zone when they are in the centre of the rooms and third when they use

the corridor to change room. We take into account this spatial and context-dependent

behaviours.

Each zone corresponds to a behavioural attractor. When the individuals are in one of

the three zones they adapt their behaviour and perform specific behavioural patterns.

In the zone near the walls they perform mainly thigmotactism (wall following), in the

centre of the room they explore, in the corridor they transit from one room to the other.

At the same time they also take into account the behaviour of the other fish as they also

do collective behaviour such as collective departures from the rooms. The other fish can

be in any of the other zones and thus can also induce behavioural attractor switching of

their companions.

We extend the biomimetic hybrid model [43, 49] using microscopic and macroscopic

information [40, 41]. This new model (described in Fig. 5.2) takes into account zones

that correspond to different behavioural attractors and thus allows context-dependent

behaviours. The individual can switch from one behavioural attractor to the other and

at the same time perform collective behaviour. Our model describes individual choices
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close to action selection and collective behaviours at the same time. It is a step towards

modelling action selection in the context of collective behaviours.

Zone at time t,

behavioural attractor

Zone at time t + 1

behavioural attractor

Position of the agent

Focal Agent Determine linear speed

Determine ac-

cessible zones

in every direction

Compute PDF for

perceived agents

Compute Final PDF
Draw orientation

in final PDF

Compute next

position of agent

Perception model

Specify parameters of

Current zone from agent position

Figure 5.2: Multilevel model used to describe fish behaviour. The agents display
different behavioural attractors depending on the zone where they are situated. Thus,
according to the agent spatial position, the physical features of the zone drive them
towards a specific behavioural attractor. A behavioural attractor corresponds to a set
of behavioural patterns adapted to the zone where they are located. It can correspond

to different parameters sets for the same behaviour kind.

We present a multi-level and multi-agent biomimetic model, inspired from [43, 49] that

describes the individual and collective behaviours of fish. As in [49], this model makes

the link between fish visual perception (of congeners and walls) and motor response

(i.e.: trajectories of the agents). However, it is also capable of expressing a variability in

agents behaviours when they occupy specific zones of the arena (behavioural attractors).

Table 5.3B lists the model parameters.

In this model, the agents update their position vector Xi with a velocity vector Vi :

Xi(t+ δt) = Xi(t) + Vi(t)δt (5.1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (5.2)

The model computes a circular probability distribution function (PDF) [49] correspond-

ing to the probability of the agent to move in a specific direction (Θi). This PDF is

as a mixture of von Mises distributions, an equivalent to the Gaussian distribution in

circular probability. The computation of this PDF involves the calculation of two other

PDF functions: the first one describing agent behaviour when no stimuli is present, and

the second one characterising agent behaviour when conspecifics are perceived by the

agent.
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κf,zi [0.0, 30.0] Dispersion parameter associated with a fish in zone i
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Figure 5.3: Panel A Computation of the PDFs functions used by the model. One
function corresponds to the focal fish; another corresponds to the perceived neighbour-
ing agents. The final PDF is a weighted sum of these functions, with a normalisation
factor γz1,z2 corresponding to the affinity between the zones z1 (origin) and z2 (desti-
nation). The direction taken by an agent is drawn randomly from the resulting PDF
by inverse transform sampling. Panel B Table of model parameters for each agent.
The zone zi corresponds to the zone where the agent is situated at time t, and zj to
the zone where the agent would be at time t+ 1. The linear speed distributions of the
agents are the same as the ones observed in the Control experiments, and they are not

optimised. The other parameters in the table are optimised.

The PDF capturing agent behaviour when no stimuli is present is given by:

f0,zj (θ) =
exp(κ0,zjcos(θ))

2πI0(κ0,zj )
(5.3)

for an agent situated in zone zj , and with I0 the modified Bessel function of first kind

of order zero. When the agent is situated in a zone close to a wall (zones 1 and 2 of

Fig. 5.1D), we implement a wall-following behaviour, by increasing the probabilities of

moving towards either side of the closest wall. This is achieved by using the following

PDF:

f0,zj ,w(θ) =
1

2

2
∑

k=1

exp(κ0,zjcos(θ − µwk
))

2πI0(κ0,zj )
(5.4)

with µwk
the two possible directions along the considered wall.

Examples of agents trajectories are found in Fig. 5.5B. The probability of the focal fish

to orient towards a perceived fish is given by a von Mises distribution clustered around
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the fish position:

fF,zj (θ) =
n
∑

i=1

Afi

ATf

exp(κf,zjcos(θ − µfi))

2πI0(κf,zj )
(5.5)

with µfi the direction towards the perceived agent, AfT =
∑nf

i=1Afi the sum of the solid

angles Afi captured by each agent and nf the number of perceived agents.

The final PDF f(θ) is computed as follow:

fzj ,zk(θ) = γzj ,zk
f0,zj (θ) + αzjATf

fF,zj (θ)

1 + αzjATf

(5.6)

The parameter γz1,z2 , used as a multiplicative term of the final PDF, modulates the

attraction of agents towards target zones. Figure 5.3A describes how the final PDF is

computed and how it is used to determine the agents next positions.

Unreachable areas of the PDF (e.g. the walls) are attributed a probability of 0. Then,

we numerically compute the cumulative distribution function (CDF) corresponding to

this custom PDF f(θ) by performing a cumulative trapezoidal numerical integration of

the PDF in the interval [−π, π]. Finally, the model draws a random direction Θi in this

distribution by inverse transform sampling. The position of the fish is then updated

according to this direction and his velocity with equations 5.1 and 5.2.

5.3 Results

We consider four cases. We define the Control results as obtained from biological

experiments with five zebrafish in the experimental set-up described in Sec. 5.2.1. The

Sim-MonoObj and Sim-MultiObj results are defined to correspond to the model

in simulation with five agents, calibrated respectively using mono-objective or multi-

objective optimisation. The Biohybrid results are obtained from experiments with

four zebrafish and one robot driven by the model using the best optimised parameters.

5.3.1 Optimisation of model parameters

We define a similarity measure (ranging from 0.0 to 1.0) to compare two experiments

(e1 and e2), and define it as:

S(e1, e2) =
3
√

I(Oe1 , Oe2)I(Te1 , Te2)I(De1 , De2) (5.7)

with Oe the distribution of zones occupation, Te the transition probabilities from zone e

to the others, and De the distribution of inter-individual distances of all agents in zone

e. The similarity measure S(e1, e2) corresponds to the geometric mean of these three
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features. The function I(P,Q) is defined as such:

I(P,Q) = 1−H(P,Q) (5.8)

TheH(P,Q) function is the Hellinger distance between two histograms [66]. It is defined

as:

H(P,Q) =
1√
2

√

√

√

√

d
∑

i=1

(
√
pi −

√
qi)2 (5.9)

We consider two optimization methods. In the Sim-MonoObj case, we use the CMA-

ES [8] mono-objective optimisation algorithm, with the task of maximising the S(e1, e2)

function. In the Sim-MultiObj case, we use the NSGA-II [64] multi-objective algo-

rithm with three objectives to maximise. The first objective is a performance objective

corresponding to the S(e1, e2) function. We also consider two other objectives used to

guide the evolutionary process: one that promotes genotypic diversity [162] (defined by

the mean euclidean distance of the genome of an individual to the genomes of the other

individuals of the current population), the other encouraging behavioural diversity (de-

fined by the euclidean distance between the Oe, Te and De scores of an individual). In

both methods, we use populations of 60 individuals (approximately twice the number of

dimensions of the problem) and 300 generations. The Sim-MonoObj stabilises around

the 50-th generation. The Sim-MultiObj stabilises around the 250-th generation. The

linear speed vi of the agents is not optimized, and is randomly drawn from the instan-

taneous speed distribution measured in the control experiment. It should be noted that

evolutionary algorithms do not over-fit (as it is an optimization process), even if we use

the same data (trajectories) for both training and testing.

5.3.2 Robot implementation

The robot is driven by the model described in Section 5.2.2, after calibration. Robotic

trials have a duration of 15 minutes, and are repeated 10 times. They involve one robot

and four zebrafish. Every 333ms, we integrate the tracked positions of the four fish

into the model, and compute the target position of a fifth agent. We then control the

robot to follow this target position by using the biomimetic movement patterns described

in [19,43].

5.3.3 Model performance analysis and experimental validation

We assess the similarity between the results from the calibrated cases (Sim-MonoObj,

Sim-MultiObj and Biobybrid) and those of the Control case by using the similarity

measure defined in Sec. 5.3.1. The similarity scores are shown in Table 5.1.
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Using information about zones occupation and probabilities of transition from one zone

to another, we define a finite state machine corresponding to the behavioural attractors

dynamics of the entire agent population. The resulting finite state machines obtained

from the Control and Biohybrid cases are shown in Fig. 5.4. The probability of

presence of an agent in each part of the arena is presented in Fig. 5.5A. Examples of

agents trajectories are found in Fig. 5.5B.

The best-performing individuals of the Sim-MonoObj and Sim-MultiObj cases dis-

play distributions of inter-individual distances that are relatively close to those of the

Control case, which suggests that these models can convincingly exhibit fish tendency

to aggregate. However, of the two cases performed in simulation, only Sim-MultiObj

is capable of displaying zones dynamics (occupation of the zones, and transition prob-

abilities from one zone to the others) similar to the Control case. This suggests that

multi-objective optimisation is required to handle the conflicting dynamics present in

fish collective behaviour.

The robot of the Biohybrid case is driven by a controller using our model with the

parameters of the best-performing individual obtained in the Sim-MultiObj. The

results of the Biohybrid case correspond to those of the Sim-MultiObj case. The

ethogram of the Biohybrid case (cf Fig. 5.4) shows an increased preference for the

centre of the rooms compared to the Control case. This could be explained by our

current lower level robotic implementation of wall-following behaviour that could still

be sub-optimal.

Control Biohybrid

Figure 5.4: Ethogram as finite state machine corresponding to the behavioural at-
tractors for all agents. Each zones drive the agents into the corresponding behavioural
attractor.Thus, agents modulate their behaviour in each zone as if they enter into a
specific behavioural state. Here we show the resulting transition probabilities obtained
after optimisation and implementation as robotic controllers (biohybrid) based on the
experimental observations (control). The number in each state corresponds to the pro-
portion of time agent spend in this state. The numbers on the arrows correspond to

the transition probabilities between zones with a time-step of 1/3s.
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Figure 5.5: Panel A Probabilities of presence in each part of the arena, for all cases.
Panel B Examples of trajectories over a duration of 2 minutes (1800 frames). In the

Biohybrid case, the robot is in black.

Sim-MonoObj Sim-MultiObj Biohybrid
Occupation 0.57 0.97 0.89
Transitions 0.76 0.81 0.88

Interindiv. Dists 0.90 0.87 0.89
Fitness 0.73 0.88 0.89

Table 5.1: Similarity scores between the best-performing individuals of the three
calibrated cases and the Control case used as reference, as defined in Sec. 5.3.1. We
consider three standard features to characterise the collective behaviour exhibited in
each case. Occupation corresponds to the probability of presence of the agent in
each zone. Transitions corresponds to the probabilities of an agent to transition from
one zone to another. Inter-individual distances corresponds to the distribution of
inter-individual distances between all agents in a specific zone. The fitness function is

computed as the geometric mean of these scores.

5.4 Discussion and Conclusion

Collective behaviour models often focus on collective motion in homogeneous unbounded

environment. Here we present a multi-level model that is space-dependent with individ-

uals that behave in a context-dependent way. We make the hypothesis that the type of

behaviour displayed by the agents depends on their position in the environment. This al-

lows us to segment our environment into several characteristic zones, each corresponding

to a particular behavioural attractor, matching different types of agent behaviour.

We present a methodology to calibrate this model to correspond to the collective dy-

namics exhibited by fish in the experiments. This calibration process is challenging,

as it involves a trade-off between social tendencies (group formation), and response to

the environment (wall-following, exploration). Moreover, our model encompasses the

notion of behavioural attractors, allowing agents to exhibit several different behaviours

depending on the context. Our methodology is able to cope with this trade-off by using

multi-objective optimisation.
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However, this calibration methodology could still be improved: the similarity measure we

use to compare two cases only takes into account three aspects of collective behaviours

corresponding to behavioural attractors, and aggregation dynamics. Other behavioural

aspects could also be relevant at the level of collective dynamics and can be considered:

e.g.: agent groups aspects, residence time in a zone, at the level of the individuals

e.g.: agent trajectory aspects, curvature of trajectories, etc. Moreover, in relation to

the environment e.g.: the distance of an agent to the nearest wall could also be taken

into account. Alternatively, it would be possible to perform the calibration without

defining a similarity measure explicitly, using a method similar to [144], by co-evolving

simultaneously the parameters of the models and classifiers. These classifiers would be

trained to identify whether or not the resulting behaviours of the optimised models are

distinct from the behaviours from the reference experiments.

Here, we make the assumption that the behavioural attractors are linked to the posi-

tion of the agent in their environment. This assumption could be relaxed, to handle

ethograms with more complex classes of behaviours like behavioural attractors linked to

agent group dynamics. Additionally, the idea that actions are selected and segmented

by the fish is questionable. While our decomposition of fish behaviour in different be-

havioural attractors is convenient for modelling purpose and ease the implementation of

a biomimetic robot controller by having a collection of discrete acts that it can perform,

it is not determined that fish make this kind of decomposition into distinct elements

(actions) [25]. Finally, we could apply our model in more complex set-up, involving

large societies with a larger number of robots, and with a more complex topology.





Chapter 6

How to blend a robot within a

group of zebrafish: Achieving

social acceptance through

real-time calibration of a

multi-level behavioural model

Abstract

We have previously shown how to socially integrate a fish robot into a group of zebrafish

thanks to biomimetic behavioural models. The models have to be calibrated on experimen-

tal data to present correct behavioural features. This calibration is essential to enhance

the social integration of the robot into the group. When calibrated, the behavioural model

of fish behaviour is implemented to drive a robot with closed-loop control of social inter-

actions into a group of zebrafish. This approach can be useful to form mixed-groups, and

study animal individual and collective behaviour by using biomimetic autonomous robots

capable of responding to the animals in long-standing experiments. Here, we show a

methodology for continuous real-time calibration and refinement of multi-level behavioural

model. The real-time calibration, by an evolutionary algorithm, is based on simulation

of the model to correspond to the observed fish behaviour in real-time. The calibrated

model is updated on the robot and tested during the experiments. This method allows

to cope with changes of dynamics in fish behaviour. Moreover, each fish presents individ-

ual behavioural differences. Thus, each trial is done with naive fish groups that display

behavioural variability. This real-time calibration methodology can optimise the robot be-

haviours during the experiments. Our implementation of this methodology runs on three

different computers that perform individual tracking, data-analysis, multi-objective evo-

lutionary algorithms, simulation of the fish robot and adaptation of the robot behavioural

models, all in real-time.
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6.1 Introduction

The study of animal collective behaviour involves the search for the relevant signals

and mechanisms used by the animals for social interactions [125, 179]. Robots can help

ethologists to test various hypothesis on the nature of these signals by inducing specific

and controlled stimuli to assess animal response.

Autonomous robots are capable to interact with animals and can serve as tools to study

social dynamics [161]. This approach has already been used in studies to analyse the

behaviour of ducks [249], drosophila [260], cockroaches [97], fish [14,21,43,117,121,138,

139], bees [93, 140,228] and birds [63, 91,116].

Here, we socially integrate a behavioural biomimetic robotic lure into a group of four

zebrafish (Danio rerio) moving in a structured environment and validate its acceptance

by the animals. This problem is difficult because the robotic lure must be designed to

be perceived as a social companion by the animals: it must, to a certain extent look

like a fish, behave like a fish, be able to respond appropriately to environmental and

social cues to close the loop of social interactions with the fish. Closing the loop of social

interactions requires real-time individual perception and a decision-making algorithm to

control the robot behaviours [43].

These aspects were investigated in [41, 43] through the use of biomimetic robotic fish

lures driven by a calibrated biomimetic model to make the robot mimics expected fish

behaviour. An evolutionary algorithm (NSGA-II [64]) was used to optimise the pa-

rameters of this model so that the resulting collective dynamics corresponded to those

observed in biological experiments. This type of controller allowed the robot to be a

real group-member making its own decisions rather than a passive follower.

However, the model calibration was done off-line and not during the ongoing experi-

ments. As such, it could not take into account the changes in animal behaviour across

experiments and the intrinsic behavioural differences between groups used in experi-

ments.

Here, we tackle this problem by continuously refining and calibrating the biomimetic

model driving the robot behaviours in real-time during the experiment by using on-line

evolutionary algorithm (NSGA-II [64]). This task is computationally-intensive and re-

quires three computers to deal with agent real-time tracking, robot control, real-time

data-analysis, and model calibration. We test this methodology in a set of 10 exper-

iments with four fish and one robot. In each case, the robot closed-loop behaviour

becomes progressively socially integrated into the group of fish. This is the first step

towards evolving mixed-group of animals and robot [43].
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Figure 6.1: A. Experimental setup: a tank with two square rooms (350× 350 mm at
floor level) connected by a corridor (380 × 100 mm). This set-up is used to study ze-
brafish collective behaviours [41,43,49,211,212]. It is composed of three zones (corridor,
center of the rooms, close to room walls) that correspond to three different behavioural
attractors. B.Multilevel model for fish behaviour [41,43]. The agents behave differently

depending on the zone where they are situated.

6.2 Materials and Methods

6.2.1 Experimental set-up

We use the experimental set-up from [18,41,43,48,211] (Fig. 6.2, ”Control & tracking”

part) with a white plexiglass arena (Fig. 6.1A) of 1000×1000×100 mm composed of two

rooms linked by a corridor.We use the FishBot robot [17–19], powered by two conductive

plates under the aquarium, to interact with fish. An overhead camera captures frames

(15 FPS, 500×500px), that are then tracked to find the fish positions. A complementary

fish-eye camera (15 FPS, 640 × 480px) placed under the fish tank is used to track the

position of the robot.

We used 10 groups of 4 adults wild-type AB zebrafish (Danio rerio) in ten 30-minutes

experiments as in [41, 43, 211]: 30 minutes is sufficient to capture the behaviour and

dynamics of groups of 4 zebrafish. Fish are released in the aquarium after the lure is

placed in the aquarium.

To ensure real-time adaptation, our methodology is computationally intensive, and uses

three networked 32-core computers (Fig. 6.2). Computer 1 is used to track the agents

in real-time and control the robot according to the behavioural model of Sec. 6.2.2.

Computer 2 performs every 60s data-analysis on the tracked positions of agents from

Computer 1, and estimates the biomimetism of robot behaviour (which, in our case, can

be viewed as a metric of social integration as defined in [43]). Computer 3 re-calibrates

every 60s the behavioural model to correspond as close as possible to the behaviour of

experimental fish (measured by Computer 2). The resulting calibrated parameter set is

then sent to Computer 1 to serve as parameters of the robot controller model. It allows

the robot to progressively mimics the behaviour of the fish and be socially accepted.
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The experiments performed in this study were conducted under the authorisation of

the Buffon Ethical Committee (registered to the French National Ethical Committee for

Animal Experiments #40) after submission to the French state ethical board for animal

experiments.

6.2.2 Behavioural model

We use the multi-level model from [41, 43] (inspired from [49]) that describes the indi-

vidual and collective behaviours of fish (Fig. 6.1B). This model takes into account both

social interactions and environmental cues (i.e. walls and structure of the tanks). It is

stochastic, multi-level and context-dependent.

Fish behave differently depending on their spatial position. Namely, this model identify

three zones of the structured set-up with different fish behaviours (Fig. 6.1A): when

they are close to the walls, when they are in the centre of the rooms, and when they

pass through the corridor. Near the walls, fish perform mainly thigmotactism (wall

following) while in room centre they exhibit exploratory behaviour. In the corridor,

they tend to go in a straight line with increased speed to reach the subsequent room.

Fish also react to social cues leading to collective behaviour such as collective departures

from the rooms [48]. Very few models of fish collective behaviours take into account the

presence of walls [38, 49].

The agents update their position vector Xi with a velocity vector Vi:

Xi(t+ δt) = Xi(t) + Vi(t)δt (6.1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (6.2)

with vi the linear speed of the ith agent and Θi its orientation. The linear speed vi

of the agent is randomly drawn from the experimentally measured instantaneous speed

distribution.

The orientation Θi is drawn from probability density function (PDF) computed as a

mixture distribution of von Mises distributions centred on the stimuli perceived by the

focal agent.It takes into account the influence of other agents and of the walls of the

experimental arena. The resulting PDF is composed of the weighted sum of (i) a PDF

taking into account the effect of the walls and (ii) a PDF describing the response to other

agents. The parameter γz1,z2 , used as a multiplicative term of the final PDF, modulates

the attraction of agents towards target zones.

We numerically compute the cumulative distribution function (CDF) corresponding to

this final PDF by performing a cumulative trapezoidal numerical integration of the PDF

in the interval [−π, π]. Then, the model draws a random direction Θi in this distribution
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by inverse transform sampling. The position of the fish is then updated according to

this direction and his velocity.

Figure 6.2: Workflow of our real-time calibration methodology. It involves extensive
computation to be able to function in real-time, and thus is implemented over three 32-
core computers. Computer 1 tracks the positions of fish and robot and is also running
the robot controller. Computer 2 performs data-analysis of the fish and the robot
behaviour using the data gathered by Computer 1 during 60s. Computer 3 calibrates
the behavioural model (presented in Sec. 6.2.2) to be as close as possible to the observed
behaviour of the fish as assessed by the data-analysis performed by Computer 2. It also
uses the knowledge acquired during the previous calibration processes. The calibrated
model is sent every 60s to Computer 1 to be used to drive the robot. The social
acceptation of the robot behaviour is measured by Computer 2 with a distance metric

of collective features.
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6.2.3 Communication between computer nodes

We connect the three computers (Fig. 6.2) using the ZeroMQ distributed messaging

protocol [104]: computers receiving messages act as ZeroMQ subscribers, and computers

sending messages act as ZeroMQ publishers.

The tracked agent trajectories are compiled in the form of trajectory files, and sent every

60s from Computer 1 to Computer 2 through the rsync command line application (a

process which usually only need 2s to 3s that is sufficient because the parameter update

is every 60s). Then, Computer 1 send a ZeroMQ message to Computer 2 to acknowledge

that the transfer is completed. Data-analysis scores from Computer 2 to Computer 3,

and model parameters from Computer 3 to Computer 1 are sent every 60s through

ZeroMQ messages.

6.2.4 Real-time tracking

We use the CATS framework [18] to track agents (fish and robot) in real-time, on

Computer 1. Fish are tracked (but not identified) by using frames captured by the

overhead camera (Fig. 6.2) through the Shi-Tomasi method [217] implemented in the

OpenCV library [29]. In parallel, the robot is tracked through the video frames from

the camera below the fish-tank by colour and contours detection [239]. Every 60s the

positions of the agents are sent to Computer 2 for data-analysis.

6.2.5 Data-analysis

Every 60s, Computer 2 calculates the behavioural statistics using the tracked positions

of agents (from computer 1) over the last 120s of the running experiment, for all three

zones of the arena. For a zone e, these statistics are: the distribution of inter-individual

distances between agents (De), the distribution of distances of agents to their nearest

wall (We), the distribution of zones occupation (Oe), the transition probabilities from

zone e to others (Te).

These statistics are computed either only on fish agents (Control case: ec) or on fish

and robotic agents (Robot Social Integration case: er). We define a similarity score

(ranging from 0.0 to 1.0) to measure the biomimetism of robot behaviour compared to

the Control case:

S(er, ec) =
4
√

I(Der , Dec)I(Wer ,Wec)I(Oer , Oec)I(Ter , Tec) (6.3)

The function I(P,Q) is defined as such: I(P,Q) = 1−H(P,Q). The H(P,Q) function

is the Hellinger distance between two histograms [66]. It is defined as: H(P,Q) =

1√
2

√

∑d
i=1(

√
Pi −

√
Qi)2 where Pi and Qi are the bin frequencies.
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Cazenille et al. [41, 43] demonstrated that robotic lures with biomimetic morphology

and behaviour are be more socially integrated into the group of fish than non-biomimetic

lures. As such, the biomimetism score defined earlier corresponds to the social accep-

tatation of the robot by the fish.

When this statistics and scores are computed, they are dispatched to Computer 3 (by

the ZeroMQ system described in Sec. 6.2.3) to guide the optimisation process.

6.2.6 Real-time optimisation of model parameters

We design a calibration methodology (Fig. 6.2) capable of optimising in real-time the

parameters of the behavioural model from Sec. 6.2.2 to mimic as close as possible to the

behaviour of experimental fish. The behavioural similarity is quantified as described in

Sec. 6.2.5.

It is inspired from the off-line calibration methodology in [41] and uses the NSGA-

II [64] multi-objective global optimiser (population of 60 individuals, 300 generations)

with three objectives to maximise. We define a fitness with three objectives: the first

objective is a performance objective corresponding to the S(e1, e2) function. Two other

objectives are considered to guide the evolutionary process: one that promotes genotypic

diversity [162] (defined by the mean euclidean distance of the genome of an individual to

the genomes of the other individuals of the current population), the other encouraging

behavioural diversity (defined by the euclidean distance between the De, We, Oe and Te

scores of an individual).

This process is performed and restarted every 60s on Computer 3 (starting 120s after

the beginning of the experiment to gather data, Fig. 6.2) using data gathered during

the last 120s. Every restart of the evolutionary algorithm keeps the last generation

of individuals evolved during the previous round of evolution to bootstrap the current

round of evolution, a system akin to transfer learning. On our 32-core computer, one

generation is computed approximately every 4s, so around 15 generations are computed

at every evolutionary round.

We do not optimise the linear speed vi of the agents. It is randomly drawn from the

experimental speed distribution. We use the NSGA-II implementation provided by the

DEAP python library [81].

6.2.7 Robot implementation and control

The robot is driven by the model presented in Sec. 6.2.2 thanks to the CATS frame-

work [18]. The model is calibrated every 60s using the methodology of Sec. 6.2.6, in

experiments involving four fish and one robot. Every 200ms, the tracked positions of
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the four fish are integrated into the model to compute the target position of a fifth

agent. The robot is programmed to follow this target position by using the biomimetic

movement patterns as in [19, 43].

6.3 Results
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Figure 6.3: Similarity scores between the behaviour of the experimental fish and the
behaviour of the best-performing individuals of the calibrated model at different time
intervals of 10 different experiments. These scores are computed using data over 120s,
and starting from the third time interval (120s to 180s) to ensure gathering enough
experimental data. In these plots, lines correspond to the mean scores across the 10
experiments, and the grey translucent areas correspond to the standard deviation. We
consider four behavioural features to characterise the behaviour exhibited in each time
interval. Inter-individual distances corresponds to the similarity in distribution
of inter-individual distances between all agents in a specific zone and measures the
capabilities of the agents to aggregate. Distances to nearest wall corresponds to
the similarity in distribution of agent distance to their nearest wall, and assess their
capability to follow the walls. Occupations corresponds to the similarity in probability
of presence of the agent in each zone. Transitions corresponds to the similarity in
probabilities of an agent to transition from one zone to another. The Biomimetic

score corresponds to the geometric mean of the other scores.
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We assessed the evolution of the similarity scores (defined in Sec. 6.2.5) between robot

behaviour and fish behaviour, across sliding windows of 120s intervals of a set of 10 trials

each one lasting 30 minutes, starting in each trial from the second time interval (120s to

180s) to gather enough experimental data. These scores are compiled in Fig. 6.3. The

variance for the 10 trials is plotted as a grey area around the curves and remains rather

small.

From its initial value of about 0.610 (second time interval: 120s to 180s), the average

fitness (mean scores) fastly converges to values around 0.850 starting from the fourth

time interval (0.827 on 240s to 300s). This is also observed for similarity scores of

transitions and of distances to nearest wall. This shows that both of these behavioural

features can be effectively optimised through an online evolutionary algorithm process,

and remain stables during the experiment.

The similarity score of zone occupation is particularly high at the beginning of the

experiment, and is only slightly improved by our calibration methodology; this would

suggests that room occupation is only slightly dependent of model parameters. This

could be explained by a strong effect of room geometry (room size, and the general

room configuration of the arena) over room occupation: rooms cover a larger area than

the corridor. This could also be an effect of the aggregative behaviour exhibited by fish

and by the model: the robot would follow the fish, which would tend to follow walls,

thus explaining the relative invariance of the occupation score with respect to parameter

values.

The variations in similarity score of inter-individual distances suggests changes of fish

aggregative behaviour during the experiment. This could be explained by the fact that,

while zebrafish tend to remain cohesive most of the time, they have the tendency of form-

ing short-lived (a few seconds to a few minutes) sub-groups, especially when confronted

to a fragmented environment [43].

6.4 Discussion and Conclusion

Animal-robot interaction studies employ simple robot behavioural model that are not

adaptive or updated during the experiments. Often they are not biomimetic and do not

close the interaction loop between the animals and the robots [43]. Here we present a

methodology to calibrate in real-time a multi-level context-dependent biomimetic model

of fish behaviour to drive the behaviour of a biomimetic robot into a group of zebrafish.

The model parameters are continuously refined to accurately correspond to the collec-

tive dynamics exhibited by fish during the experiments. The real-time nature of this

calibration process allows the robot to react to changes in observed fish dynamics and

cope with uncertainties.
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Animals can present significant inter-individual behavioural differences. They can present

significant differences in terms of personalities typically bold and shy types [246]. In most

of the experiments individuals are selected randomly from a stock. Consequently, each

group trial present differences depending on the characteristics of the individuals. Cur-

rently, the models are calibrated on a set of averaged experimental data and are not

optimised to take into account inter-individuals differences. We present here a method

to adapt in real-time the models and that is thus capable to cope with this issue. This

method can reduce significantly the number of experimental trials necessary to calibrate

the model.

Our approach is computationally intensive and use three networked computers to handle

in real-time the tracking, the robot control, the data analysis and the model calibration

tasks.

Our methodology builds on the work presented in [41] by adding real-time capabilities to

the calibration process. However, it also suffers from the same limitations. Namely, the

model we calibrate must still be structurally defined empirically (i.e. defining behavioural

attractors, zones of the environment, etc) with ethological a-priori knowledge about fish

dynamics. The calibration process could also still be improved by taking into account

additional behavioural metrics in the computation of similarity scores, either in term

of collective dynamics (e.g. agent groups aspects, residence time in a zone), individual

behaviours (e.g. agent trajectory aspects, curvature of trajectories). This could possibly

be bypassed through the use of a calibration process without explicit similarity measure

(e.g. GAN [89] or Turing Learning [144]). Our behavioural model could be revised to

account for collective departures of agents from one room to the other, as described in

biological studies [48].

Additionally, our methodology could make use of global optimisation techniques de-

signed to minimise the number of evaluations before reaching convergence, like Bayesian

Optimisation [58, 223]. This would reduce calibration computation costs, and possibly

reduce the time needed to accurately calibrate the models.
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Modulating fish collective

dynamics with robots
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Collective behaviour based on self-organisation has been observed in populations of ani-

mals from insects to vertebrates. These findings have motivated engineers to investigate

approaches to control autonomous multi-robot systems able to reproduce collective an-

imal behaviours, and even to collectively interact with groups of animals.

In parallel of the work presented in Chapter 7, our colleagues at the EPFL in Lausanne

have achieved closed loop interaction and modulation in a circular set-up [21] between

the same robots as in Part III and zebrafish. In this study, they focused on the swim-

ming direction of fish and in order to obtain clear reading, they used a constrained

environment, a circular corridor. This set-up forces the fish to go either in a clockwork

or a counter-clockwork direction. In experiment with zebrafish only, they move half of

the time in each direction, which shows that this set-up is non-biased. In mixed group

experiments, the robots were programmed to swim in only one direction and were able

to influence the swimming direction of the fish. This result shows that robots are able

to change the collective choices of group of social fish and modulate their behaviours.

In Chapter 7, we study the different strategies to modulate the behaviour of zebrafish in

a more complex environment, the two rooms set-up. Unlike a more uniform environment

such as the circular corridor, the two rooms environment requires that these strategies

be based on the biomimetic behaviour developed in Part III. First we used the robot

to highlight the mechanisms of leadership. Then we modulated the spatial distribution

of zebrafish by extreme bold and shy strategies. Our results support the hypotheses

made on the heterogeneity of leadership in zebrafish groups [48]. We also showed that

shy strategies were more efficient to modulate the spatial distribution due to the high

mobility of zebrafish.

This work is based on the publication [44]:

Chemtob Y, Cazenille L, Bonnet F, Gribovskiy A, Mondada F, Halloy J. Strate-

gies to modulate zebrafish collective dynamics with a closed-loop biomimetic robotic

system. bioRxiv 2019

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,

Leo Cazenille, José Halloy and myself. The FishBot robot was developed at the EPFL,

by Frank Bonnet and Francesco Mondada. The experimental arena was built by Axel

Seguret and myself. The control and tracking system was jointly developed by Frank

Bonnet, Alexey Gribovskiy, Leo Cazenille. I carried out all the experiments. I developed

and implemented the data analysis scripts. This paper was mainly written by me, with

the help of José Halloy and Leo Cazenille.

https://doi.org/10.1101/831784
https://doi.org/10.1101/831784
https://doi.org/10.1101/831784




Chapter 7

Strategies to modulate zebrafish

collective dynamics with a

closed-loop biomimetic robotic

system

Abstract

The objective of this study is to integrate biomimetic robots into small groups of zebrafish

and to modulate their collective behaviours. A possible approach is to have the robots

behave like sheepdogs. In this case, the robots would behave like a different species than

the fish and would present different relevant behaviours. In this study, we explore different

strategies that use biomimetic zebrafish behaviours. In past work, we have shown that

robots biomimicking zebrafish can be socially integrated into zebrafish groups. We have

also shown that a fish-like robot can modulate the rotation choice of zebrafish groups in a

circular set-up. Here, we further study the modulation capabilities of such robots in a more

complex set-up. To do this, we exploit zebrafish social behaviours we identified in previous

studies. We first modulate collective departure by replicating the leadership mechanisms

with the robot in a set-up composed of two rooms connected by a corridor. Then, we

test different behavioural strategies to drive the fish groups towards a predefined target

room. To drive the biohybrid groups towards a predefined choice, they have to adopt

some specific fish-like behaviours. The first strategy is based on a single robot using the

initiation behaviour. In this case, the robot keeps trying to initiate a group transition

towards the target room. The second strategy is based on two robots, one initiating and

one staying in the target room as a social attractant. The third strategy is based on a

single robot behaving like a zebrafish but staying in the target room as a social attractant.

The fourth strategy uses two robots behaving like zebrafish but staying in the target room.

We conclude that robots can modulate zebrafish group behaviour by adopting strategies

based on existing fish behaviours. Under these conditions, robots enable the testing of

hypotheses about the behaviours of fish.
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7.1 Introduction

Current research in engineering and science is seeking to bridge the gap between living

and artificial systems to design new technologies. Building on biomimetic approaches, a

stream of this research trend aims to build biohybrid systems that harness the advantages

of both living and artificial systems [194]. Some of these biohybrid systems comprise

robots and animals producing collective behaviours [204]. Here, we focus on experiments

with autonomous robots that interact socially in closed-loops with animals, that is,

robots perceiving and reacting to animals and vice versa. A limited number of research

studies deal with the difficult task of producing collective, closed-loop animal-robot

behaviours, especially controlling entire biohybrid systems to perform predefined tasks.

For example, Vaughan et al. [249] showed that a robot can gather ducks by acting like

a sheepdog. Halloy et al. [97] demonstrated that multiple robots socially integrated and

interacting in a closed-loop with cockroaches could be used to control their decision-

making mechanisms to reach predefined targets. Swain et al. [240] explored the inter-

actions between a mobile robot and a shoal of Golden shiners by presenting the robot

as a predator. Kawabata et al. [118] showed that a robot can modulate the behavioural

reactions of a cricket. Kopman et al. [126] showed that fish adapt their behaviour to

the tail-beating of a robotic lure and also that this response can be improved when the

robotic tail beating is controlled, in closed-loop, according to the movement of the fish.

Landgraf et al. [139] showed that a mobile robot can interact with a shoal of Guppies

and make recruitment. Shi et al. [218] showed that a robotic rat can modulate the be-

haviour of several laboratory rats with or without direct interactions. Donati et al. [68]

showed that a dummy attached to a robotic arm can socially interact with the electric

fish Mormyrus rume. Landgraf et al. [138] showed that a mobile robot with realistic eye

dummies and natural motion patterns significantly improved its acceptance level among

a shoal of Guppies. Stefanec et al. [228] showed that static robots simulating the pres-

ence of individuals by controlling their temperatures could interact and attract young

bees. Worm et al. [258] showed that a robot moving randomly can interact with the elec-

tric fish Mormyrus rume by displaying prerecorded electric organ discharges (EODs) in

answer to the EODs made by the live fish. Cazenille et al. [42,43] showed that a mobile

robot capable of biomimetic behaviours can successfully integrate a group of zebrafish

and produce collective behaviours. Bonnet et al. [21] showed that such mobile robots

can modulate the collective decision-making of a group of zebrafish in a circular set-up.

Papaspyros et al. [173] improved the integration of the robot under similar conditions

by using a biomimetic model to drive it. Quinn et al. [196] showed that rats can re-

lease robot-rats from restrainers as they do for other conspecifics and can discriminate

between different behaviours the robots expressed. Kim et al. [121] used a robotic arm

with a zebrafish lure moving in three dimensions in an isolated tank connected to the

fish tank only visually to show that, if the system is in a closed-loop, some transfer

learning can be observed. Bonnet et al. [23] showed that robotic fish and robotic bees
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integrated with their respective conspecifics could produce cooperation between the fish

and the bees, respectively, in real time and over long distances.

While these previous studies succeeded in modulating animal behaviour with robots

in closed-loop, few used mobile robots on social animal groups, and even fewer used

them with biomimetic trajectories. In studies involving fish, only Cazenille et al. [42,43]

used a biomimetic model to drive a fish robot. However, this work did not modulate

fish behaviour, as Bonnet et al. [21] and Papaspyros et al. [173] achieved in a simpler

environment.

Here, we study the modulation capabilities of fish robots integrated into zebrafish (Danio

rerio) groups in a complex environment. We aim to achieve this by reproducing specific

behaviours of collective movement, such as the leadership described by Collignon et

al. [48] and collective spatial distribution [211]. This allows us to validate hypotheses

made about the collective behaviour of zebrafish and gain a better understanding of

zebrafish group decision-making. Leadership is an essential element in collective decision-

making, as it reflects the will of one or a minority of individuals to initiate the movement

of the group in a new direction. We have implemented theoretical leadership mechanisms

in the robot to make it initiate collective departure in groups of fish.

We test different biomimetic behavioural strategies to drive the fish groups towards a

predefined target room in a set-up composed of two rooms connected by a corridor. We

test the hypothesis that, to drive the biohybrid groups towards a predefined choice, the

robots have to adopt some specific, fish-like behaviours. Several studies have shown the

influence of personality in collective movements often described by the opposition of bold

and shy behaviour [98, 115, 168, 254]. Here, we test both a bold behaviour with a robot

performing collective departures towards the target and a shy behaviour with a robot

delaying collective departures from the target.

7.2 Materials and Methods

7.2.1 Ethics statement

All fish experiments were performed in accordance with the recommendations and guide-

lines of the Buffon Ethical Committee (registered to the French National Ethical Com-

mittee for Animal Experiments #40) after submission to the state ethical board for

animal experiments.

7.2.2 Animals and housing

We used groups of four or five adult, wild-type AB zebrafish (Danio rerio) in our ex-

periments for a total of 300 fish. The fish were 6–12 months old at the time of the
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experiments with a body lenght of three to four centimeter. We kept the fish under

laboratory conditions: 27 ◦C, 500 µS salinity with a 10:14 day:night cycle. The fish

were reared in ZebTEC housing facilities and fed twice a day (Special Diets Services

SDS-400 Scientific Fish Food). The water pH level was maintained at 7, and nitrites

(NO−2) were below 0.3 mg l.

7.2.3 Experimental set-up

We used the set-up described in [18, 42, 48, 211] consisting of two rooms linked by a

corridor (1 000 × 1 000 × 100 mm3) made of white plexiglass (figure 7.1B) placed in a

1 200×1 200×300 mm3 experimental tank. The tank was filled with water up to a level

of 60 mm. The whole set-up was exposed to diffused light and confined behind white

sheets to isolate experiments and homogenise luminosity. We used the Fish-CASUs

(Fish-Control-Actuator-Sensor-Unit) [17–19] to interact with the fish (figure 7.1A).

They were composed of soft fish lures linked by magnetic coupling to mobile robots

(FishBots) moving below the experimental tank. The fish lures had lengths of 4.5 cm that

mimicked the morphology of the zebrafish by passively beating their tails when moving

underwater. The floor of the aquarium was covered with a sheet of teflon to provide

a smooth surface for the motion of the fish-lure. The FishBot robots were powered by

two conductive plates, one glued to the bottom of the aquarium and one to the support

on which the robot moved (figure 7.1C). An overhead acA2040-25gm monochrome GigE

CCD camera (Basler AG, Germany) with a maximum resolution of 2 048 × 2 048 px

and equipped with low distortion lenses CF12.5HA-1 (Fujinon, Tokyo, Japan) grabbed

frames that were then processed to find the fish positions. A complementary fisheye

camera (15 FPS, 640 × 480 px) was placed under the fish tank and was used to track

the position of the robot. The tracking of the agents and the control of the robot were

done using the CATS (Control and Tracking Software) framework [18].

Each experiment was repeated 10 times and lasted 15 minutes. At the start of every

trial, we let the fish occupy the set-up for 5 minutes with the robot not moving for

acclimatisation.

7.2.4 Data analysis

In addition to the online tracker included in the CATS framework [18], we acquired

the identity of each agent using idTracker software [181] after the experiments. We

obtained the positions P (x, y, t) of all agents at each time step ∆ t = 1/15s for all

experiments and built the trajectories of each agent. For each video, we manually

selected which trajectory corresponded to the robot. Using the methodology developed

in [48], we identified and detailed all collective departure. Using the agent positions, we

also quantified the presence of fish in each part of the set-up.
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Figure 7.1: Experimental set-up. A: The FishBot [17,19,24] and a biomimetic lure
used during the experiments. B: Experimental arena composed of two square rooms
(350 mm x 350 mm at floor level) connected by a corridor (380 mm x 100 mm at floor
level). C: Experimental set-up used during the experiments [17, 19, 24]. (a) Overhead
camera used to track zebrafish. (b) Zebrafish. (c) Fish-lure. (d) FishBot moving under
the aquarium and linked to the lure through magnetic coupling. (e) Fish tank of 1 000 x
1 000 x 250 mm. (f) Water layer 60 mm deep. (g) Computer processing camera frames
and remote-controlling the robots via Bluetooth. (h) Conductive plate powering the
mobile robot. (i) Perforated steel plate for powering the FishBot and to observe the
FishBot LEDs from below. (j) 180 degree Fisheye camera to track the FishBot from
below. D: Coloured zones of the arena corresponding to the three different types of
behaviour of the robot [43]. When the robot is in one of the rooms (in red) or near
the entrance of the corridor (in blue), it is driven by the biomimetic model presented
in Sec. 7.2.5. When the robot is in the corridor (in green), it drives straight through

the corridor at a constant speed.

7.2.5 Perception-based behavioural model

To control the FishBots, we used the multilevel behavioural model presented by Cazenille

et al. [43], which is derived from the model developed by Collignon et al. [49] and can

simulate the collective behaviour of zebrafish in a finite environment. This model relies

on two levels of control which are biomimetic and context-dependent according to the

different behaviour expressed by the fish and according to the geometry. The high level

controller build the trajectories that the robot follow. In large environments, that is,

the rooms in this set-up, the robot followed a perception model, describe in previous

study [43] and bellow, while in narrow spaces, that is, the corridor, it followed a straight
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line. The low level controller deal with the movement patterns and allows the robot

to reach the new position, produced by the high level controller, by reorienting the

robot, then performing acceleration and deceleration to reproduce the burst-and-coast

swimming motion performed by the zebrafish [43].

This perception model (see [43]-III-A) is inspired by the probabilistic model described

in [49]. The agents update their position vectors Xi with a velocity vector Vi:

Xi(t+ δt) = Xi(t) + Vi(t)δt (7.1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (7.2)

where vi is the linear speed of the ith agent and Θi is its orientation. The linear speed vi

of the agent is randomly drawn from the experimentally measured instantaneous speed

distribution.

The Θi orientation is sampled from a probability density function (PDF) calculated

according to the direction of the different stimuli. This PDF is the combination of a

first PDF of the potential directions of a fish with no perceptible stimulus and a PDF

representing the attraction towards all fish perceived according to their distances. The

final PDF is calculated at time t. The position of the fish and the robot is obtained

in real time by the two cameras of the experimental system. The agent’s position is

updated according to this direction and linear speed.

7.3 Defining different robot behaviour modulation strate-

gies

Figure 7.2 shows the description of the algorithm run by the robot for the initiation

experiment E2. The goal was to influence the group of fish to move from one room to

another. The robot initiated collective departure from the starting room towards the

target room.

The robot had two phases in the starting room: when it waited for the group of fish

and when it started a transition. When it waited, the robot stayed in the starting room

using the biomimetic perception model described in Sec. 7.2.5. If three fish or more

were detected in the starting room, the robot turned in the room over the course of one

second, using the model to attract the fish.

After that, the robot reached a target put in the target room and wait for the fish using

the perception model. Six seconds after the beginning of the transition, the controller

checked the number of fish in the target room. The six seconds delay corresponded to

the maximum delay observed for the fish to make a transition. If at least three fish
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were detected in the room, the target room became the starting room, and the algorithm

started again. If not, the robot went back to the starting room.

Ten trials were done with the robot following this behaviour over 15 minutes with four

fish.

Starting Room

Corridor

Target Room

Robot in the room

Robot Waits Robot Waits 1 second

Robot goes to target in Target Room

3 or 4 fish in the room

At least 3 fish in Target 

Room 6 second after the beginning 

of the transition

Robot goes back to the Starting Room Target Room becomes Starting Room

No Yes

Use perception model Use perception model

No Yes

Robot crosses corridor without U-turn

Figure 7.2: Initiation behavioural strategy of the robot. The behavioural
model of the robot is a mix of biomimetic initiation behaviour and artificial behaviours

developed to enhance the effect of the initiation strategy.

Label Experiment Number of agents Robot strategy

E1 Reference AB zebrafish only 5 fish + 0 robot –
E2 Initiation of transitions 4 fish + 1 robot Biomimetic initiation without tar-

get room
E3 Modulation by initiation 4 fish + 1 robot Biomimetic initiation to target

room
E4 Modulation by attraction 4 fish + 1 robot Fish behaviour & stay in target

room
E5 Modulation by attraction 4 fish + 2 robots (R1,R2) R1 & R2 stay in target room
E6 Mixed initiation and attraction 4 fish + 2 robots (R1,R2) R1 biomimetic initiation & R2 stays

in target room

Table 7.1: Strategies of modulation. The E1 experiment is the biological reference case, 10 trials of five wild-
type zebrafish groups and no robot. The E2 experiment involves 10 trials of four wild-type zebrafish and one robot
performing a maximum of collective departures. The E3 experiment involves 10 trials of four wild-type zebrafish and
one robot driven by the initiation strategy to modulate the presence of fish in the rooms. The E4 experiment involves
10 trials with a robot driven by attraction behaviour and 4 zebrafish. The E5 experiment is the same as E4 but with
two robots with fish-like behaviour. The E6 experiment mixes these two strategies and uses two robots, one initiating

and the other attracting.

Experiment E1 was the biological reference case, involving 10 groups of five wild-type

zebrafish and no robot. In experiment E3, we used the initiation behaviour described

above to modulate the presence of four fish between the two rooms with one robot. We

wanted to attract the fish to one room more than the other, so the target room and the
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starting room defined in the initiation behaviour were set at the beginning of each of

the 10 trials and did not change during the trial. For experiments E4 and E5, either

one or both robots used the following attraction behaviour on a group of four fish: the

robot was driven by the biomimetic perception model but could only navigate inside the

target room. The target room changed between each of the 10 trials and was selected

randomly. This corresponded to the behaviour of a fish with a strong preference for one

room and no exploration behaviour. Experiment E6 was a mix between experiments E3

and E4 with two robots and four fish. One robot used the initiation behaviour and the

other the attraction behaviour. The target room was the same for the two robots and

was selected randomly at the beginning of the 10 trials. All the trials lasted 15 minutes.

7.4 Results

7.4.1 Initiation of collective departure

In a previous study [48], we showed that zebrafish present a shared leadership: each fish

has the same ability to initiate a collective movement, which our experiments demon-

strated with the action of initiating a transition from one room to the other. However,

zebrafish groups exhibit heterogeneity, ranging from groups in which leadership-sharing

is egalitarian to groups in which a single fish monopolises the leadership. This difference

is explained by the greater mobility of these individuals [48]. Here, we emulated this

behaviour by forcing the robot to perform as many transitions as possible.

We validated with experiment E2 that the robot can, in fact, lead the group with this

behaviour. Here, every time the robot was with the most fish in one chamber, it exited

the room to go to the other room (Sec 7.3).

Our results showed (figure 7.3A) that, in ten trials with different groups of fish, the

robot initiated a transition of the group of fish more often than all the other fish in the

group (7 / 10) or all the fish except one (3 / 10).

As in [48], a linear regression shows that the total number of initiations of each fish is

linearly correlated to the total number of attempts performed (figure 7.3B). This means

that the success of fish that initiate more group starts than their congeners can be

explained simply by the fact that they tried to exit the room more often [48], not by

their physical traits, such as size or sex. In our experiment, we applied this hypothesis to

the robot behaviour, and figure 7.3B shows that the ratio of attempts and successes of the

robot initiating collective departure, represented by green stars, corresponds to the fish.

We also compared the distribution of the number of initiations by individuals between

the reference experiment E1 and experiment E2 using a t-test and did not observe any

significant difference (p-value = 0.3880). The number of initiations performed by the

robot was therefore not excessive compared to that observed in fish. This experiment
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Figure 7.3: Robot initiation of transition towards the target room. (A) Frequency
of initiation according to the intra-group ranking of the fish for initiation. For each
group, we calculate the proportion of group departure that each individual initiated,
as in [48]. The fish are then ranked according to this frequency. The robot is indicated
in dotted green. (B) The total number of collective departures initiated in relation
to the total number of attempts made by fish, in black, and by the robot, in green.
The data show that the number of initiations is directly proportional to the number of
attempts. Each fish has the same probability of success to initiate a collective departure
when attempting. The robot, even with more initiations than most fish, has a similar

probability of success.

demonstrated that we could reproduce zebrafish initiation behaviour as described in [48]

with our robot during long trials. By comparing the robot trajectories in figure 7.4 during

the initiation phases with a fish under similar conditions, we observed that the robot

followed a trajectory with linear speeds comparable to those observed in fish. In the

example figure 7.4B, we observed that fish used the same trajectories as the robot with

a one seconds delay. Also, the fish exited the rooms in groups.

7.4.2 Modulation of the spatial distribution

We wanted to modulate the collective decisions of the fish with the robot and change

the time spent by the fish in each room. We considered two main strategies: first, using

the robot as a leader to create a collective decision of exiting one room to a target room,

and second, attracting the fish in the target room using the robot as an active lure. We

also combined these strategies in an experiment with two robots, one the leader and one

the attractor.

Experiment E1 was our reference with five fish and no robot. We demonstrated that

the fish did not have a preference for either room. We measured the time spent in

each room (figure 7.5A). We looked for differences between the two distributions using a

Wilcoxon test and observed no significant difference (p-value = 0.8886). Without robot

interference, the fish were in each room the same amounts of time. We also observed
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C D

Fish 

leader

Robot 

leader

Other 

fish

Figure 7.4: Examples of individual trajectories during a collective departure event
(A) with a fish as a leader from the fish control experiment E1 and (B) with the robot
as the leader, as in experiment E2. (C) and (D) are zooms of (A) and (B), respectively.
The trajectory of the leader is in green for the robot, in blue for the fish and in purple
for the other fish. The colour scale indicates the linear speed of the agent in m/s. A star
indicates the beginning of the trajectory, with a white centre for the leaders. Crosses
on the trajectory indicate the time step in seconds. By comparing the trajectories of
the robot and fish, we observe that the robot succeeds in reproducing the initiating

behaviour.
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that they spent less time in the corridor, so this part of the set-up was considered a

transition zone.

In experiment E3, we used the initiation behaviour tested in E2 to modulate the fish

spatial distribution during a 15 minutes trial. Figure 7.5B corresponds to experiment

E3, in which the robot acted as a leader and initiated transitions towards the target

room. There was no significant difference between the time spent in each room (p-

value = 0.3329). When using the initiation behaviour, the robot failed to modulate the

spatial distribution. However, looking at the initiation successes in each of the rooms

(figure 7.6), we can see that the robot succeeded in initiating collective departures to the

target room (except for one group) (figure 7.6A) and did not lead in the other direction

(figure 7.6B), as expected. The failure of the modulation of spatial distribution could

therefore be explained by the fact that zebrafish have short residence times [211]. The

collective departures of the robot may therefore have occurred in a timeframe close to

that executed by the fish themselves.

Figure 7.5: Fraction of time spent by all groups in the five experiments:
E1 Use of space for only five fish in the different parts of the two-room set-up (A),
E3 for groups comprising four fish and one robot acting as a leader and initiating
transitions towards the target room (B), E4 groups of four fish and one robot acting as
an attracting lure in the target room (C), E5 groups of four fish and two robots acting
as attracting lures in the target room (D), E6 groups of four fish and two robots, one
acting as an initiating leader and the other an attracting lure (E). AWilcoxon test shows
no significant difference between fish presence in the rooms in (A), as fish spend the
same amount of time in both rooms and transit rapidly through the corridor between
the rooms (p-value = 0.8886) and (B) (p-value = 0.3329) when there is significant
difference of the spatial distribution in (C) (p-value = 0.0284), (D) (p-value = 0.0051),

(E) (p-value = 0.0367).
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Figure 7.6: Proportion of departures initiated by each agent in experiment E3. The
robot is indicated in dotted green. (A) To the target chamber. The robot is a leader.
(B) From the target chamber. The robot is not the leader. The results indicate that
the modulation of the transitions towards the target room works (A), although the

residence time in the target room is not significantly changed (figure 7.5B).

Another strategy to modulate the spatial distribution is therefore to delay collective

departures thanks to an agent that represses any exit from the target room.

In experiment E4 (figure 7.5C), the robot acted as a lure by swimming only in the target

room during all the trials. We observed that fish stayed more in the target room (p-value

= 0.0284) with a median of 0.45 against 0.31 in the other room. However, the variability

of the time spent by the shoal in each room was quite high between trials, with values

in the target room ranging from 0.3 to 0.7. This behaviour significantly modulated the

time spent in each room by the fish, but over ten trials, three groups did not show any

bias (the time spent in the target room being slightly less than in the other room).

In experiment E5 (figure 7.5D), we used two robots with the same behaviour as in

E4. This experiment also biased the time spent between each room (p-value = 0.0051).

The difference between the medians was higher than in E4 (0.63 against 0.18), and the

variability was reduced between trials. The effect observed with one robot was amplified

with two robots, and the influence of the robots along all groups was constant.

From the results above, we combined experiments E3 and E4. In experiment E6 (fig-

ure 7.5E), one robot acted as a leader to encourage the group to exit the other room

while the other robot acted as a lure to delay the group from exiting the target room.

There was a significant difference between the occupation of the two rooms (p-value

= 0.0367). The medians were similar to the ones found in E4 (figure 7.5C), but the

variability was even higher than in E4. Instead of being complementary, the initiation

behaviour had a diminishing effect on the attraction behaviour.



Discussion 139

7.5 Discussion

Previously, we have analysed the collective behaviours of small zebrafish groups in struc-

tured environments composed of two rooms connected by a corridor [48,211]. This set-up

was designed to study how zebrafish groups navigate between the two rooms and how

they make decisions to switch from one room to the other. In parallel, we developed

an autonomous robot capable of zebrafish biomimetic behaviours that can be socially

integrated into small zebrafish groups [19,43]. We further showed that a small number of

those robots can modulate the collective behaviour of mixed zebrafish and robot groups

in a circular set-up [21].

Here, we further explored the possibilities of modulating the behaviour of small zebrafish

groups by using the same, previously integrated robot. We tested several strategies

inspired by the biological results obtained by Collignon et al. [48] and Seguret et al. [211].

We used the robot to modulate collective departure over a period of about 15 minutes.

The objective was to test the hypothesis that an individual with bold behaviour could

exert a form of leadership by initiating transitions between the two rooms more often

than other members of the fish group. We used the same behaviours as [43], but we

added a behavioural rule that made the robot initiate a room transition as often as

possible. Under these conditions, the robot could induce transitions more often than

most of the fish. By looking at the ratio between exit attempts and initiations of

movement from one room to another, we observed that the robot followed the same

linear relationship as that observed in fish. These two results are consistent with what

has been observed in zebrafish groups alone [48]. It also confirms the hypothesis that

‘bold’ behaviour is sufficient to explain the variations observed in the distribution of

leadership of Danio rerio. This conclusion goes further than our previous work with

autonomous robots [41–43]. Indeed, the initiations of collective departures have never

been explicitly simulated by a fish robot before. In this study, we reproduced this process

in a way similar to what can be observed in fish [48].

We then used the robot to bias the residence time of fish between the rooms.

Once we showed that the robot could induce group transitions between the rooms,

making the robot choose one of the two rooms as the target room was simple. The

hypothesis was that, by making more transitions towards that target room, the fish

robot could bias the fish group presence density in favour of the target room. The

experiments showed that this did not work, as the presence of the fish groups remained

equivalent in both rooms. This may be due to the fact that zebrafish are highly dynamic

fish with short residence times that keep moving in their environments, never setting

long in one room [48,211]. As soon as they arrived in the target room, they did not stay

long and made another transition towards the other room.
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Chapter 7 Strategies to modulate zebrafish collective dynamics with a closed-loop

biomimetic robotic system

We tested another strategy to bias the residence time of the groups in favour of a target

room. The fish robot made a choice and remained in the target room to become an

attracting lure for the fish group. In this experiment, the results showed that, indeed,

the fish groups spent more time in the target room. The luring strategy of using an

individual (the fish robot) to attract the group is thus more efficient than inducing

group transitions towards the target room. Moreover, this strategy was simpler in terms

of behavioural program.

The recruitment effect can be enhanced by adding more robots behaving as robot-fish

duets in the target room. In this case, the bias in favour of the target is maximal

compared to the other strategies we tested in this study.

If we try to mix the two types of strategies, transition initiations and attraction, we see

that the bias in favour of the target is low. In addition, the dispersion of the results

showed that the group of fish was disturbed by this strategy. This disturbance was

probably due to the mobility of the robots, which are not as fluid as that of fish.

This study dealt with groups comprising small numbers of zebrafish. We know that such

small groups are more socially unstructured and less cohesive than larger groups. In this

configuration, we chose the maximum difficulty to try to modulate the groups of fish

with robots. Some of these strategies therefore allowed us to significantly bias the spatial

distribution of fish groups over a long period of time by using robots moving with them.

This was done previously in cockroaches [97] with robots selecting specific shelters. In

fish, Bonnet et al. [21] succeeded in biasing the swimming direction of fish using the

same robots. However, the environment used, a circular corridor, and the objective

were both simpler than in our study. In the two-room set-up, the robots could not move

according to a predefined path as in Bonnet et al. [21] but had to use a behavioural

model to navigate the environment and interact with fish. This made it more complex

to carry out modulation, but it allowed us to better understand decision-making within

social fish groups.

Whether on collective starts or spatial distribution, we have shown that it is possible

to modulate the behaviour of social fish with autonomous, biomimetic robots using

strategies based on behaviours observed in animals. Our methodology allows us to test

hypotheses about the functioning of specific collective behaviours. Other behaviours

could therefore be tested with this same methodology such as learning behaviour or

collective exploration.
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8.1 Main contributions

Collective behaviour is a phenomenon widely studied by many disciplines. Through the

spectrum of “classical” observational ethology, the use of simulation models inherited

from mathematics and physics and finally robotics, there are many methods to under-

stand and decipher the mechanisms allowing complex behaviours expressed by social

animal groups. In this manuscript, I studied the collective behaviour of group of fish

in zebrafish. My research has focused on the use of a constraining experimental set-up

to highlight collective travel. I have studied collective movements and decision-making

using tools from several disciplines, such as precise fish identification tools, behavioural

model and biomimetic autonomous robots.

8.1.1 Zebrafish collective behaviour

In Chapter 1 we tested seven group sizes in a maze made of two rooms connected by a

corridor. Beyond the simple observation that zebrafish move from one room to another

without interruption, we highlight in our analyses that the larger a group is, the shorter

the distances are between the nearest neighbours, while those separating each pair of fish

increase. As for the use of space, when the zebrafish stay in one of the two rooms, they

do it in subgroups of more than 80% of the group. However, the larger the group, the

fewer events with all the individuals will be recorded in the rooms. We note that groups

(at least 70% of the individuals) make five to six times fewer U-turns than transitions

from one room to the other, for group sizes below 10 individuals. Finally, an analysis

of the collective departures from one of the two rooms shows that, a few seconds before

and at the time of departure, the fish adopt a very particular organisation. Indeed, the

zebrafish located just after the initiator of the movement, as well as the last to leave,

rarely change position between the few seconds before the exit of the group and the

actual moment of the exit. Thus, we notice that there is a correlation link between the

exit order and the ranking of distances in relation to the initiator of the movement as we

approach the moment of departure. These results are similar to what has been observed

in other social fish [205, 252] and suggest that the topology of the group is linked to a

cascade of behaviour change [205] where the first fish drags another fish that will lead

the next one.

In Chapter 2, we have shown that the ability to initiate a collective movement is possible

for all members of the group. It is therefore a distributed leadership. In addition, we

showed that the initiation process was not temporarily organised as the identity of

the fish that led a departure does not provide information on the identity of the fish

leading the next one. Our results also show that sharing within the group varies between

groups. In some groups, leadership is distributed equally, with each individual having

initiated the departures a number of times similar to the other members of the group.
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In other cases, one or two individuals will lead them most of the time. If groups of

two individuals mainly show the two extremes, the larger the group size, the more

groups with a heterogeneous leadership distribution will appear, while limiting the most

extreme cases. We also highlighted that the heterogeneous distribution of leadership

was not the result of a higher success rate of some individuals that could have a higher

tendency to be followed. On the contrary, the number of successful departures initiated

by the fish was linearly correlated to their number of attempts. This is consistent with

what has been observed in Damselfish Dascyllus aruanus [252], where the individuals

making the most attempts are the most followed. For groups of five, seven and ten

fish, the individual who has initiated the most collective departure is often the most

mobile, which corresponds to theoretical prediction [261] and observation made in other

species [186,252]. This situation highlights personality differences within the zebrafish.

8.1.2 Model of the collective behaviour of zebrafish in a constrained

environment

In Chapter 3, we established a multi-level, stochastic and microscopic model of zebrafish

behaviour in a constrained environment, a two rooms maze. The observations in Part I

show that fish exhibit different behaviours in a constrained environment depending on

their spatial positions. To correctly model these specificities, we have described global

behavioural rules, similar to the previous models [41, 49], and for which the parameter

values vary according to three spatial zones defined by the experimental observations.

The model is automatically calibrated by a multi-objective evolutionary algorithm that

compares the simulations with the experimental data. This model is able to simulate

different behaviours depending on the spatial context. It also reproduces the fission and

fusion dynamics of the group and the transitions between the two rooms of the simulated

set-up, as observed in zebrafish [48,211].

8.1.3 Integration of robotic fish into zebrafish groups

In Chapter 4, we integrated a biomimetic and autonomous robot into a group of fish.

We have sought to better understand the key points that allow a fish to recognise a

conspecific. We worked on the visual aspect, via a biomimetic lure, but also on the

behavioural aspect. Previous studies [138,139,240] had highlighted the need for a robot

to be biomimetic in order to successfully integrate a group of fish with a focus on the

visual aspect but without taking into account the impact of the robot behaviour on

social integration. The robot movements are based on a low level control imitating

the swimming of fish from scripted accelerations and decelerations, and a high level

control reproducing the behaviour of the fish through a mathematical model previously

developed [49] and adapted to this study. We have shown that the visual and behavioural

aspects both play a role in the integration of the robot inside zebrafish groups.
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To improve the integration of the robot, we used, in Chapter 5, the biomimetic models

designed and calibrated in Chapter 3 to drive the behaviour of the robot. This creates

a mixed-group of zebrafish and robot because we demonstrate quantitatively that: (i)

the robot responds to the animals with closed-loop interactions; and (ii) the robot is

effectively socially integrated into the group of zebrafish. This new approach provided

a better representation of behavioural variability and allowed the robot to be socially

integrated with the group of fish.

Finally, in Chapter 6, we extended this approach further. Instead of calibrating the

model driving the robot using a set of neutral experiments with only fish, we have decided

in this chapter to calibrate the model in real time during robot-animal experiments.

Thanks to this method, which nevertheless requires substantial computer resources, we

were able to improve the integration of the robot by taking into account the behavioural

variations existing between groups of fish of the same species and age. This method can

significantly reduce the number of experimental trials necessary to calibrate the model.

8.1.4 Modulating fish collective dynamics with robots

In Chapter 7, we succeeded in modulating the behaviour of the zebrafish by using the

previously integrated robot and those autonomously and over a long period of time. We

have tested several strategies in this chapter. First, by using the work developed in

Chapter 2, we used the robot as a leader. The objective was to demonstrate the theory

that an individual, without possessing a specific trait, but with bold behaviour, could

be a leader more often than other members of the group. Using the same behavioural

model as in Chapter 4, we have added a behaviour rule that forces the robot to leave the

room with the group as much as possible. Under these conditions, the robot was able to

lead more often than the majority of fish, but also to obtain an attempt and initiation

success ratio similar to fish.

We also modulated the presence of fish between the rooms. In Chapter 1, we showed

that the fish used both rooms in the same way. Here, we tried to modify the time spent

in each room, in a similar way to what was done on cockroaches [97], by using two

different strategies, with one or two robots. We first used an initiation strategy to drive

the group in one specific room. However, if the robot has demonstrated its ability to

lead the group, in this configuration it seemed unable to follow fish and it was often

found out of sync with the group. As a result, this strategy has not been successful in

modulating the fish group density.

The second strategy was to use the robot as an attractor. In this experiment, the

robot moves autonomously following the model, but is limited in its movements to a

single chamber. It imitates the behaviour of a fish that extremely prefers one room over

another and does not lead. In this configuration, the robot was able to significantly
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modulate the residence time between the two rooms. When using two robots with the

same strategy, the space modulation was even stronger with less variability between the

replicas. Finally, we applied both strategies at the same time by using two robots, one

remaining in the target chamber, and the other initiating collective departures to the

same chamber. We see that the bias in favour of the target is lower than in the attraction

strategy with two robots.

8.2 Perspectives and concluding remarks

The studies discussed in this manuscript have explored group dynamics in structured

environment. They provided a better understanding of the influence of group sizes

on collective movement, transition phenomena and decision-making. They have also ex-

panded our understanding of leadership in cohesive groups such as the zebrafish. Part of

my work has focused on the modelling of zebrafish collective movements in a constrained

and structured environment, a notion rarely developed in similar modelling works, with

a few exceptions with explicit formalisation of fish interactions with tank walls [38, 49].

This aspect of my work has been used for the integration of an autonomous biomimetic

robot into a zebrafish group. It has allowed us to better understand the different as-

pects necessary for a fish to recognise and interact with one of their congeners. This

research therefore focused on both the visual and behavioural aspects translated in this

context by biomimetic lure and individual-agent model. Finally, thanks to robotics, we

were able to explore in greater depth specific aspects of zebrafish behaviour, particularly

leadership and decision-making.

While this work has relied on a methodology combining a variety of approaches - biolog-

ical observation, modelling and robotics - the objective of this manuscript has remained

to provide a better understanding of the collective behaviour of the zebrafish, and on a

broader scale of social fish.

However, my research leaves much room for improvement. The results of this research

focus on a social fish species, the zebrafish, and it would be interesting to obtain a greater

transversality on the issues addressed by studying in a similar way other social species,

including more cohesive species such as Hemigrammus rhodostomus. Studies in more

complex environments could highlight more accurate decision-making and exploratory

behaviours like Y-maze [253], T-maze [124] of Plus-maze [155,220]. Finally, it would be

interesting to study in more detail the personality of individuals within the group and

their impacts on the dynamics of collective movement.

The model developed here makes it possible to solve in a simple way the problem of sim-

ulating animal behaviour in complex environments often used in ethology. Maintaining

identical behavioural rules, but modulating the parameters according to zones, allows

to quickly produce models adapted to a variety of situations. Nevertheless, a number
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of questions could be explored to obtain a better understanding of the behaviour of the

zebrafish. For example, linear velocity has been simplified in this study by randomly

picking the instantaneous speed in a distribution from the biological data, without tak-

ing into account the previous velocities (if the fish accelerates) or the angular speed (if

the fish is rotating). Being able to simulate burst-and-coast swimming movements, as

it has been done in Calovi et al. 2018 [38], could make our model more accurate while

providing information on the influence of swimming on individual decision making [86].

Similarly, it would be interesting to observe whether adding heterogeneity in the model

parameters between the simulated agents provides information on the fish personality.

My work is therefore part of the current methodological approach [39,86,237,256] with

a first step of biological experimentation with a precise recording of observations and

an analysis of data to identify behavioural rules. This is followed by a formulation of

these rules in the form of a mathematical model. A comparison of the model simulations

against the biological data makes it possible to discuss the relevance of the behavioural

rules. However, the use of robots makes it possible to add a new step to this approach.

There is no doubt that they are an innovative tool in ethology. The development of

robotics has enabled the scientists to use increasingly sophisticated tools to study animal

behaviour. My work is the result of this trend and proposes significant advances in the

field. By comparing the mathematical model directly with biological agents, the step

of integrating the robot into the group of fish makes it possible to go further than the

simulations to validate or not the behavioural rule hypotheses. But the last part of

my work allows me to go even further as the modulation of social animals involves the

replication of specific decision-making mechanisms with the robot. The success of the

modulation therefore validates our understanding of these mechanisms a posteriori. In

my work, I automatically modulate the behaviours of a group of zebrafish over long

periods of time, validating our knowledge of the social behaviour of this fish. My work

is therefore a new step in the use of robots in ethology and paves the way for more

studies of this kind that could provide a better understanding of other mechanisms,

such as collective exploration.
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