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“My life amounts to no more than one drop in a limitless ocean.  

Yet what is any ocean, but a multitude of drops?” 

David Mitchell, Cloud Atlas 
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A mon grand-père, Camille, 

qui éclaire ma voie.  
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Résumé 
 

Utilisation de bactéries du microbiote pulmonaire pour moduler le système immunitaire 

local à l’état basal et pendant l’infection par Mycobacterium tuberculosis chez la souris 

Les muqueuses du corps humain (notamment l’intestin) sont colonisées dès la naissance par des 

milliards de microorganismes formant le microbiote (ou flore commensale) et qui vivent en symbiose 

avec lui. La survie de notre organisme (l’hôte) et de son microbiote dépend de l’état d’activation de 

notre système immunitaire. Alors qu’une trop faible activation nous rend susceptibles aux infections, 

une trop forte activation ou inflammation altère nos tissus. Certaines bactéries du microbiote 

intestinal, interagissent avec les cellules du système immunitaire pour moduler cette balance. Leur 

administration en tant que probiotique améliore de nombreuses pathologies et est envisagée pour le 

traitement d’infections respiratoires. L’infection causant le plus de décès dans le monde est la 

tuberculose, une maladie respiratoire causée par Mycobacterium tuberculosis et dans laquelle une 

hyper-activation du système immunitaire détruit les tissus pulmonaires. Dans ce projet de thèse, j’ai 

cherché à savoir si des bactéries du microbiote peuvent influencer la réponse du système immunitaire 

à la tuberculose, évaluant ainsi le potentiel d’une stratégie probiotique pour améliorer les traitements 

de cette maladie. En particulier, j’ai fait l’hypothèse que des bactéries commensales isolées du 

microbiote pulmonaire (récemment décrit) pourraient, par un effet local, fortement modifier cette 

réponse comme c’est le cas dans l’asthme, chez la souris. Dans un premier temps, j’ai montré que 

certaines bactéries du microbiote pulmonaire, administrées à des souris saines par voie intranasale, 

ont une forte capacité à moduler les lymphocytes T CD4+ des poumons tels que les Th1 ou Th17, 

impliqués dans l’immunité pro-inflammatoire, et les T régulateurs (Treg) réduisant l’activation 

immunitaire. En particulier, elles induisent la prolifération d’un sous type de Treg exprimant RORt 

(facteur de transcription caractéristique des Th17), nommé RORt+ Treg, récemment identifié dans 

l’intestin où l’activation de ces cellules par le microbiote limite les maladies inflammatoires de l’intestin 

comme la colite. Nous avons montré pour la première fois que ces cellules sont induites dans les 

poumons de souris traitées avec des bactéries isolées du microbiote pulmonaire appartenant aux 

genres bactériens Lactobacillus, Staphylococcus et Neisseria et avons caractérisé leur phénotype. 

Comme dans l’intestin, ces cellules semblent avoir un fort potentiel anti-inflammatoire, soutenu par 

leur forte expression des molécules inhibitrices CTLA-4, ou PD-1, du marqueur d’activation ICOS et de 

la cytokine anti-inflammatoire TGF- associée à une faible sécrétion de cytokines pro-inflammatoires 

telles que le TNF-. De façon intéressante, j’ai observé que des souches de Lactobacillus pulmonaires 

induisent les mêmes populations leucocytaires dans le modèle murin de tuberculose que dans des 

souris naïves, et notamment les RORt+ Treg. Tandis qu’aucune des souches testées ne diminuent la 

charge bactérienne de M. tuberculosis dans les poumons ou la rate des souris infectées, une souche 

de Lactobacillus murinus (CNCM I-5314) qui augmente fortement les Th17 et les RORt+ Treg, réduit 

l’infiltration leucocytaire pulmonaire, suggérant sa capacité à réduire l’inflammation associée à cette 

infection. Bien que la détermination du rôle des Th17 et des RORt+ Treg dans ce phénotype reste à 

élucider, nos résultats démontrent d’ores et déjà que l’administration de bactéries commensales 

pulmonaires peut fortement moduler l’immunité locale même au cours d’infections comme la 

tuberculose. Une meilleure caractérisation des composants du microbiote pulmonaire et des 

mécanismes par lesquels ils interagissent avec notre système immunitaire pour maintenir la santé 

respiratoire devrait donc permettre l’émergence d’une nouvelle génération de probiotiques, d’origine 

pulmonaire, pour prévenir et améliorer le traitement des maladies respiratoires.  
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Abstract 
 

Use of lung microbiota strains to shape local immunity at steady state and during 

Mycobacterium tuberculosis infection in the mouse model 

Human mucosal sites (such as the gut) are colonized from birth by trillions of microorganisms that form 

the microbiota (or commensal flora), living in symbiosis with our organism. Survival of the host and of 

its microbiota is dependent on the activation status of our immune system. While poor immune 

activation results in sensitivity to infections, its uncontrolled activation or inflammation compromises 

host tissue integrity. Bacteria from the gut microbiota naturally interact with cells of our immune 

system to preserve an equilibrium. Administration of such commensals as probiotics improve many 

disease outcomes and is currently studied to improve respiratory infection treatment. The primary 

infectious cause of death, tuberculosis, a respiratory disease caused by Mycobacterium tuberculosis, 

involves an over-activation of the immune system causing lung damages. In this thesis project, I 

investigated whether bacterial strains from the microbiota influence the immune response in 

tuberculosis to assess the potential of probiotics to improve tuberculosis treatment. In particular, we 

hypothesized that pulmonary commensal bacteria modify the local immune response to tuberculosis, 

as recently demonstrated in an asthma murine model. Through intranasal administration in mice, I first 

identified different lung commensal bacterial strains with a strong ability to modulate the lung CD4+ T 

cell compartment at steady state. Indeed, these strains induced T-helper (Th) cells involved in pro-

inflammatory immunity, such as Th1 and Th17, and regulatory T cells (Treg) involved in anti-

inflammatory responses. In particular, they increase proliferation of a specific Treg subtype, expressing 

RORt (a transcription factor characteristic of Th17). These RORt+ Treg were recently described in the 

gut, where they are induced by the microbiota and are able to decrease inflammation occurring in the 

mouse model of colitis. We show for the first time that these cells are induced in the lungs of mice 

treated with pulmonary bacterial strains from the Lactobacillus, Staphylococcus and Neisseria genera, 

and characterize their phenotype. As in the gut, these cells seem to have a strong anti-inflammatory 

profile, supported by their high expression of the inhibitory molecules CTLA-4 and PD-1, activation 

marker ICOS, and suppressive cytokine TGF- associated to a poor production of pro-inflammatory 

cytokines such as TNF-. Interestingly, I demonstrate that pulmonary Lactobacillus strains induced the 

same lung leukocyte populations in the mouse model of M. tuberculosis infection as in naïve mice, 

including RORt+ Treg. While none of the tested strains reduced M. tuberculosis burden in lung or 

spleen, the Lactobacillus murinus (CNCM I-5314) strain, which induce a high number of Th17 and 

RORt+ Treg accompanied by a reduced leukocyte infiltration in the lung, suggesting a capacity to 

reduce lung inflammation associated with M. tuberculosis infection. The role of Th17 and RORt+ Treg 

in this phenotype remains to be elucidated. Nevertheless, our results clearly indicate that the 

administration of pulmonary commensal bacteria strongly modulate the local immunity, even during 

chronic infections such as tuberculosis. Therefore, a better characterization of the lung microbiota 

components and of the mechanisms by which they interact with our immune system to maintain 

health in the respiratory system, might lead to the emergence of a new generation of probiotics, of 

lung origin, to better prevent and treat pulmonary diseases. 
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Introduction 
 

Since the demonstration by Louis Pasteur that we are living in a world of microbes, and the discovery 

by Robert Koch that some of these, the pathogens, can cause human infectious diseases and 

epidemics, the understanding of how our immune system deals with this threat has been an intense 

area of research. A recent concept in immunology suggests that host defense mechanisms allowing 

the host survival to infection follow two strategies: resistance and disease tolerance (Schneider and 

Ayres, 2008; Medzhitov, Schneider and Soares, 2012). The former, and most described, comprises 

inflammation and microbicidal processes allowing the host to kill pathogens. However, pathogen 

elimination by resistance mechanisms can have deleterious consequences for the host (such as 

impairment of tissue structures or functions), known as immunopathology. For this reason, the latter 

strategy known as disease tolerance has a neutral or positive impact on the pathogen survival, but is 

essential to the host health because it prevents pathogen-mediated damages and immunopathology 

through tissue repair, neutralization of toxins, metabolic homeostasis and regulation of inflammation. 

Importantly, the concept of disease tolerance addressed in this manuscript is a different one from 

central immune tolerance (occurring in the thymus, where lymphocytes are generated), which grants 

unresponsiveness to self-antigens. Yet, disease tolerance may include mechanisms of peripheral 

immune tolerance that prevent over-reactivity of the immune system to allergens and some bacteria.  

Usually, equilibrium between the two arms of immune defense is attained with relation of the 

microbes that inhabit in our bodies, a clear reflection that the majority of our interactions with 

microbes do not result in a pathogenic outcome. Indeed, even healthy individuals harbor at least as 

much bacteria than eukaryotic cells, for an estimate of around 1013 bacteria belonging to different 

phyla and families, along with viruses, fungi, archaea and protozoa, which altogether form a resident 

community called the microbiota (Lloyd-Price, Abu-Ali and Huttenhower, 2016; Sender, Fuchs and 

Milo, 2016). As long as these microorganisms remain contained within the established limits at 

mucosal sites, their cohabitation with our body is not only harmless, but also it appears essential for 

important physiological functions. Recent findings suggest that, similarly to pathogens, beneficial 

microorganisms can manipulate biological processes in the host, such as resistance and tolerance 

mechanisms, to improve their own fitness. Yet, while pathogen fitness has detrimental consequences 

for the host, beneficial microbe fitness is obtained through promotion of the host health and fitness 

(Ayres, 2016). Therefore, microbiota fitness is improved in absence of pathogens. Consequently, 

among behaviors acquired by beneficial microorganisms, some result in direct inhibition of pathogens 

growth, and others modulate resistance and tolerance mechanisms of the host, leading to better 

infection outcome. This opens new avenues to the development of microbiota-based therapies against 

infection. One of the best examples of a pathogen altering the resistance/tolerance balance to 

promote its own fitness is Mycobacterium tuberculosis, the causative agent of tuberculosis. The main 

objective of this introduction is to provide a conceptual framework supporting the use of microbiota-

targeting strategies to harness the immune response in respiratory infectious diseases, like 

tuberculosis, which was the central theme of this thesis. 
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Figure 1: Equilibrium in the microbiota composition is required for the host health. At homeostasis, the balanced 
presence of symbionts or mutualists (with health promoting functions), commensals (with a neutral effect), and 
pathobionts (with the potential to induce pathology), is associated with protective functions benefiting the host 
and is controlled by a low level of inflammation. Genetic variations or environmental insults (e.g., antibiotic use, 
diet) may perturb this microbiota composition, leading to dysbiosis, characterized by pathobiont expansion, loss 
of diversity and/or loss of beneficial microbes. Dysbiosis can favor pathogen invasion and both often result in 
inflammation, leading to further commensal microbe elimination along with host tissue-damage, if not controlled. 
Figure adapted from (Round and Mazmanian, 2009; Petersen and Round, 2014). 
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Section 1: The microbiota,  
a key factor in host health and disease 

 

I. The human body, a super-host in symbiosis with its microbiota guest 

1. Characteristics of the host-microbiota interaction 

At homeostasis, the microbiota and the host have a relationship called mutualistic symbiosis (implying 

mutual benefice). On the one hand, the host provides the microbiota with a niche, including nutrient 

sources (such as non-digestible fibers), and controlled environmental parameters. On the other hand, 

the microbiota metabolism produces compounds important for the host such as B group vitamins or 

short chain fatty acids (SCFA) that can be transformed in glucose by the host cells (LeBlanc et al., 2017). 

Microbiota is also essential for correct host growth, mucosa development and immune homeostasis. 

However, such beneficial interaction is fragile and require equilibrium of multiple factors. For example, 

within the microbiota a balance is necessary between mutualist symbionts (having a beneficial effect 

for the host), commensals (having a neutral effect) and pathobionts (usually harmless for the host but 

becoming pathogenic if over-represented) (Round and Mazmanian, 2009). Even if commensals and 

pathobionts are not directly beneficial to the host, they may be needed to obtain the global microbiota 

protective role due to the complex interactions among microbiota organisms. For instance, some 

bacteria sustain the growth of other species, which are directly beneficial for the host or produce 

substrates transformed by other species in host accessible compounds. Such cooperation has been 

observed in the conversion of fibers in metabolites (Dethlefsen, McFall-Ngai and Relman, 2007). In 

addition, the status of one microbe can vary depending on the environment. An equilibrated 

microbiota composition, in adequation with host health is called eubiosis. Perturbation of microbiota 

composition, so-called dysbiosis, is observed in many diseases (as exemplified in different sections of 

this chapter). Dysbiosis can be characterized by the loss of beneficial microbes, expansion of 

pathobionts, loss of microbiota diversity, which are all associated with bad outcomes, such as infection 

and over-inflammation (Figure 1) (Petersen and Round, 2014). Homeostasis between the host and its 

microbiota also relies on an adequate immune activation. While microbial growth limitation by the 

host immune system is necessary to inhibit bacterial translocation, too much reactivity of our immune 

system against the resident microbes may result in collateral damages, such as direct harm to tissue 

integrity. Interestingly, it seems that during time, both the human body and its microbiota settler 

evolved to achieve an equilibrium favoring health. Thus, analyses of the microbiota composition 

variability between individuals suggest co-evolution between the host and its microbiota (considered 

as a super-host or holobiont) (Dethlefsen, McFall-Ngai and Relman, 2007). This hypothesis is supported 

by the fact that phylogenetically close host species harbor more similar microbiota than distant ones. 

For instance, human microbiota composition is more similar to Old World monkeys and apes than from 

New World primates and lemurs (Moeller et al., 2016; Davenport et al., 2017). This suggest that, in a 

healthy symbiotic situation, the microbiota composition and niches provided by the host should be 

adapted to the needs of the super-host.  

 

  



 27 

 

 

 

 

 

 

Figure 2: Microbiota composition at different mucosal sites in the human body. The microbiota is mainly composed 
of bacteria, viruses, and fungi. While the same microbial families are present in all mucosa, their relative 
proportion and composition (in term of species) is highly variable. For example, the human intestinal and lung 
bacteria are dominated by Bacteroidetes and Firmicutes, while Actinobacteria dominate the skin microbiota. 
Figure from (Marsland and Gollwitzer, 2014).  

 

 

  



 28 

2. Structure of the microbiota 

a) Components of the microbiota: beyond bacteria 

Most microbes from the microbiota inhabit the gut mucosa. However, the skin, vagina, and even the 

lungs, are also the home of diverse microorganisms. Advances in sequencing and culture methods 

during the last decades improved knowledge about microbiota composition at various mucosal sites 

(Figure 2). They have also highlighted the presence of non-bacteria organisms such as viruses, fungi, 

archaea and protozoa in the microbiota. The virobiota (or virome) is composed of many 

bacteriophages (approximately 1015 in the human intestine) and some eukaryotic viruses (~ 8% of the 

sequences) (Neil and Cadwell, 2018). The mycobiota (or mycobiome) is less represented, accounting 

for up to 75 fungal genera, representing 0.1% of total gut microbiota (Hoffmann et al., 2013). Viruses 

and fungi from the microbiota, as bacteria, directly modulate host physiology and the immune system. 

For instance, fungi are able to produce eukaryote metabolites such as prostaglandine (PGE)2, an 

important immunomodulatory molecule; murine norovirus infection preserve intestinal morphology 

and immune system maturation impaired in absence of the whole microbiota, preventing susceptibility 

to different diseases (Underhill and Iliev, 2014; Neil and Cadwell, 2018). Viruses and fungi may also 

indirectly modulate host functions by altering bacteria composition of the microbiota. Indeed, bacteria 

can be killed through bacterial lysis by virus or by antibiotic produced by fungi. In addition, some fungi 

produce a matrix that can be used by certain bacteria to settle down (El-Jurdi and Ghannoum, 2017; 

Neil and Cadwell, 2018). The mycobiota and virobiota are highly susceptible to environmental changes, 

and their disruption can lead to disease caused by pathobiont (from bacterial, fungi or viral origin) 

outgrowth (Underhill and Iliev, 2014; El-Jurdi and Ghannoum, 2017). Archaea have also been detected, 

in particular Methanobrevibacter, as well as protozoa, but their role is not understood at the moment 

(Hoffmann et al., 2013). Study of all these microorganisms is essential to better understand how the 

different compartments of the microbiota interact together and with the host. However, because their 

role in respiratory diseases is poorly described, the rest of this introduction is focused on the bacterial 

components of the microbiota.  

b) Variation of the microbiota bacterial composition depending on body site 

Predominant bacterial phyla are very similar in all body sites. They include Firmicutes, Bacteroidetes, 

Proteobacteria, Actinobacteria, Fusobacteria and Cyanobacteria. However, they are present in 

different abundance and are composed of different genera depending on body sites (Figure 2) (Cho 

and Blaser, 2012; Hoffmann et al., 2013; Marsland and Gollwitzer, 2014). This is not surprising because 

microbial composition is largely dependent on constrains from the environment that comprise nutrient 

availability, peristalsis rate, pH, oxygen levels, immune system, and host derived molecules 

(Dethlefsen, McFall-Ngai and Relman, 2007; Tropini et al., 2017). Similarly, bacteria are not randomly 

distributed but form different communities in each mucosa site. For instance, it is the case in the 

intestinal tract harboring the highest microbial density. Colonization of this mucosa mainly results from 

ingestion of bacteria present on food. During digestion, the bacteria will travel through different 

compartments with very distinct properties (Figure 3). In the small intestine, the pH is low and transit 

is fast, favoring facultative anaerobes with rapid growth based on simple sugar metabolism, such as 

Proteobacteria and Lactobacilli. By contrast, in the colon, the transit is slow and oxygen level low, 

favoring anaerobic bacteria that ferment host-indigestible plant polysaccharides or use host mucus to 

settle down. Of note, the colon and cecum contain the highest density and diversity of microbes 

(Ohland and Jobin, 2015; Tropini et al., 2017). They are dominated by Firmicutes and Bacteroidetes, 

including a majority of Clostridium, Bacteroides and Prevotella species (Rinninella et al., 2019). 
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Figure 3: Bacterial microbiota gradient along the human digestive tract. The localization and spatial organization 
of the microbiota depends on parameters such as oxygen tension (pO2) and pH among others, which vary along 
the gastrointestinal tract. Density and specie richness increase substantially in the colon and cecum. In these 
compartments, through fiber digestion, species will release SFCA having many immunomodulatory effects. Figure 
adapted from (Clarke et al., 2019; Maynard, 2019). 
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c) Inter-individual variations in microbiota composition 

Whereas rough microbiota composition is similar between individuals of the same species, inter-

individual variability does exist. Indeed, among the approximately 1000 species that can be found in 

the gut microbiota, each individual carry a combination of “only” around 160 species in proportion as 

unique as a fingerprint (Qin et al., 2010). This composition is dependent on genetic factors that may 

reflect differences in the habitat provided to the microbiota or in immune response components. In 

many diseases with a genetic component, such as intestinal bowel diseases (IBD), microbiota dysbiosis 

is often observed and exacerbates the pathologic outcome (Ley et al., 2006; Belkaid and Hand, 2014). 

In healthy individuals, microbiota composition is more similar between family members than between 

unrelated individuals (Zoetendal et al., 2001) and some members of the microbiota seem to be 

inheritable (Goodrich et al., 2014). However, environmental factors are thought to play a more 

important role. For instance, microbiota similarity between family members may result from close 

contact and similar living habits rather than from genetic components. In this line,  a recent study 

revealed that spouses (having close relationships) have a more similar microbiota than siblings (Song 

et al., 2013; Dill-McFarland et al., 2019). Furthermore, genetic-induced dysbiosis responsible for 

diseases can be counteracted by changing the environmental factors impacting the microbiota 

composition, ultimately improving patient health (L. Zhao et al., 2018). Despite this high variation 

among the human population, some bacterial species are present in most healthy individuals forming 

the “core-microbiome” (Tap et al., 2009). In addition, there is redundancy in functions exerted by 

different microbes that are important for the host health. These two mechanisms allow quite different 

microbiota at eubiosis to have similar functions promoting the host health while major variations 

leading to dysbiosis are deleterious.    

 

3. How to study functions of the microbiota? 

The functions of the microbiota promoting health at homeostasis are complex and so intricate with 

the host physiology that they are difficult to identify. A major approach used for the identification of 

microbiota functions has been to assess the consequences of microbiota dysbiosis to host health. Due 

to the high inter-individual variability and diverse impact of environmental factors on the microbiota 

composition, the study of the microbiota usually involves several steps and experimental models 

(Gilbert et al., 2018). In general, the first step is the direct comparison of the microbiota of patients 

and healthy subjects, generating important correlations between dysbiosis and disease. A second 

approach is the use of laboratory animals having controlled genetic background and environment to 

prove the microbiota involvement in a given pathological disorder. Animal models are also needed to 

identify the microbiota species and the accompanying mechanisms involved in the process of question. 

These findings are then translated and validated in patients. Knowledge on the mechanisms and strains 

involved in health or disease can then provide the basis for the development of microbiota-based 

therapies to improve health (as detailed in Section 1.IV). 

Different animal models harboring no or altered microbiota have been developed as tools for loss-of-

function strategies. Germ-free (axenic) animals, born from Caesarian section under a sterile 

environment, can be maintained axenic if kept under such sterile environment (Smith, McCoy and 

Macpherson, 2007). The use of axenic mice has been critical to demonstrate the role of the microbiota 

in many biological processes. In particular, they were used to show that absence of microbes from 

birth results in defect in development of the host and of its immune system (as detailed in Section 1.II). 

However, these developmental consequences are pleiotropic and could affect the interpretation of 
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the consequences of a given biological process in adult mice. For this reason, axenic mice are 

sometimes replaced by other models to study the impact of the microbiota during particular challenges 

such as pathogenic infection. Alternatively, animals can be treated with antibiotics to deplete their 

microbiota for a specific period of time. A drawback  of this method is that total depletion of microbiota 

is rarely achieved; however, a very useful  advantage is that specific antibiotic regimens can be used 

to identify the type of microorganism involved in a given phenotype (Al Nabhani et al., 2019). The 

gnotobiotic model provides a gain-of-function model used in the microbiota field. It consists in 

recolonization of germ-free animals either by co-housing germ-free with control microbiota-containing 

animals, or by oral gavage with fecal content from control animals, or with specific bacterial strains. 

This latter point is particularly useful to prove the involvement of specific bacterial species to a given 

biological process. This model also allows translational studies as germ-free animals can be colonized 

by human microbes (isolated from feces samples). In particular, recolonization with microbiota from 

patients versus healthy donors can demonstrate a specific causal effect in the development of a given 

disease (Charbonneau et al., 2016).  

Most studies in the field have been performed using Specific Pathogen Free (SPF)1 mice as animal 

model. They do possess a complex gut microbiota, but somehow different from wild animals and with 

a reduced diversity. In particular, abundance of microbes in their respiratory tract is low (Yun et al., 

2014). In addition to mice, other animal models have also been developed. For example, studies in 

fruit flies, having a very simple microbiota (composed of approximatively 10 species), can facilitate the 

characterization of mechanisms in host-microbiota interaction that are conserved throughout 

evolution of complex multi-cellular organisms before validation in species closer to humans 

(Schwarzer, Strigini and Leulier, 2018).  

These different approaches have allowed researchers to unravel many essential functions of the 

microbiota and to decipher interactions between components of the microbiota and the host that lead 

to health or disease as exemplified in the following section. 

 

4. Factors influencing microbiota composition and consequences for the host health 

Microbiota acquisition is highly impacted by environmental factors. While microbiota dysbiosis is 

usually a reversible process, alteration of microbiota acquisition seems to have dramatic long-term 

consequences. This is because the microbiota have a key role in host development, as observed from 

studies in germ-free animals having impaired organ development and metabolic activities among other 

dysfunctions (Smith, McCoy and Macpherson, 2007). Likewise, the immune system development is 

also highly impacted by alteration of microbiota acquisition, but this concept will be addressed in part 

II of this section. 

The presence of microbes in the placenta remains controversial (Noel T. Mueller et al., 2015). 

Currently, most studies suggest that even if few microbes are present there, fetus do not possess a 

complex microbiota (Hansen et al., 2015; Dominguez-Bello et al., 2019). However, the gut and vaginal 

maternal microbiota undergo major changes during pregnancies (Aagaard et al., 2012; Koren et al., 

2012) that may indirectly impact the fetus development. During labor and birth, newborns are highly 

exposed to microbes, in particular to the maternal vaginal and perineal fecal microbes. Thus, upon 

birth, babies are covered by microbes and have swallowed many of them coming from their mother 

 
1 The SPF sanitary status refers to laboratory animals kept in specific environmental conditions whereby a 
number of most of the known chronic and latent persistent pathogens are excluded.  
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microbiota, initiating their own colonization (Dominguez-Bello et al., 2010). This first microbe 

colonization is very important. Indeed, children born by Cesarean section are at risk to develop celiac 

disease, asthma, type 1 diabetes or obesity, later in life (Kero et al., 2002; Algert et al., 2009; Decker 

et al., 2010; Huh et al., 2012; Mårild et al., 2012; Blustein et al., 2013; Noel T. Mueller et al., 2015). 

Unlike naturally born babies, these newborns are first colonized by microbes closer to their mother 

skin microbiota with lower Lactobacillus species abundance compared to naturally born infants 

(Biasucci et al., 2010; Dominguez-Bello et al., 2010; Nagpal et al., 2016). They also displayed an 

important delay and contrasting microbiota establishment at different sites such as the gut or lung 

(Grönlund et al., 1999; Bosch et al., 2016). Even if these differences are mainly transient, they may 

impair host function development occurring early after birth (Salminen et al., 2004). Apart from birth 

delivery, altered mother microbiota composition (e.g., in the case of IBD) also leads to deficient 

microbiota colonization in newborns, which is directly associated with abnormal imprinting of the 

immune system (Torres et al., 2019). 

Following this first colonization, microbes (mainly Enterobacteria in naturally born child) will settle 
down in different places depending on site-specific environment, and they will influence future 
colonization by additional waves of microbes acquired from different sources. One of them comes 
from the alimentation. Contrary to formula milk, maternal milk contains many bacteria including 
Lactobacillus and Bifidobacteria species as well as oligosaccharides favoring the growth of these 
bacterial species, and  will therefore shape the progressive colonization of the infant mucosa (Coppa 
et al., 2004; Knol et al., 2005; Palmer et al., 2007; Perez et al., 2007; Solís et al., 2010; Khodayar-Pardo 
et al., 2014). The first waves of microbe settlers may be important for essential organ development 
processes. For instance, presence of lactobacillus species in the respiratory tract were found to be 
required for alveoli structuration occurring during microbiota colonization in the mouse model (Yun et 
al., 2014; Man, De Steenhuijsen Piters and Bogaert, 2017). Conversely, malnutrition in young children 
is associated with impaired colonization by strains essential for the host correct growth (Schwarzer, 
Strigini and Leulier, 2018). Administration of lactobacillus plantarum WJL strain restores the normal 
growth of malnourished germ free fruitflies and mice, highlighting the importance of certain strains of 
the microbiota in host development (Storelli et al., 2011; Blanton et al., 2016; Schwarzer et al., 2016).  

The weaning period is also a crucial step, where the start of consumption of solid food by young 

children will progressively alter their microbiota composition shifting towards that of adults (Palmer 

et al., 2007) (Figure 4). Expansion of the microbiota composition at this age is, for example, crucial to 

shape the immune system and intestinal maturation (Hooper et al., 2001). Presence of indigestible 

carbohydrates favors the presence of Bacteroides, Parabacteroides, Clostridium, Lactobacillus, 

Bifidobacterium species and of Faecalibacterium prausnitzii, which are main producers of SCFA (Lloyd-

Price, Abu-Ali and Huttenhower, 2016). The type of solid food introduced, depending on cultural 

determinants, will be a major factor determining microbiota composition. Increased fiber associated 

with decreased sugar, meat and fat, seems to promote bacterial richness in the human gut. For 

instance, the metagenome of some non-Western human populations (with an alimentation based on 

hunting and gathering, and sometimes agriculture) has different bacterial phyla proportion and is 

composed of more species than those of Western populations (Obregon-Tito et al., 2015; Davenport 

et al., 2017; Tanaka and Nakayama, 2017; Rinninella et al., 2019). A shift in microbiota composition is 

also observed in vegetarians, suggesting that diet highly affects the microbiota composition even in 

adulthood (David et al., 2014). 
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Figure 4: Microbiota composition and alteration during lifespan. Since acquisition of the first commensals at birth, 
the microbiota composition is enriched during infancy, soon resembling to the adult one, depending on 
environmental factors such as alimentation and presence of microbes in the environment. Thereafter, the 
microbiota composition globally remains stable until old-age, where its richness decreases. The graphs provide a 
global overview of the relative abundance of key phyla of the human microbiota in different stages of life measured 
by either 16S RNA or metagenomic approaches (DNA sequencing). Figure from (Ottman et al., 2012).  
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Other environmental factors can explain differences between populations around the world and in 

particular the reduced diversity of microbiota observed in Western populations. The “hygiene 

hypothesis” suggests that individuals in rich-industrialized countries will experience a lower exposure 

to microbes due to the highly urbanized and sterile environment, easy access to antibiotic treatment 

and strong likelihood of vaccination during infancy, which will in turn alter immune responses 

(Strachan, 1989; Jernberg et al., 2007; Budden et al., 2017). In line with this hypothesis, antibiotic 

consumption before and after birth alters colonization by the microbiota, resulting in decreased 

proportions of Lactobacilli and Bifidobacteria in neonates. This has then long-term consequences, such 

as increased propensity to obesity and allergy (N T Mueller et al., 2015). On the contrary, living in a 

microorganism-rich, environment (e.g., farms), correlates with an increased diversity of microbial 

exposure and a decreased incidence of allergies (Riedler et al., 2001; Ege et al., 2011).  

Low microbiota density is also critical in case of infection. Indeed, apart from their immunomodulatory 

role (see part II of this section), microbiota species directly compete with pathogens (Croswell et al., 

2009; Buffie et al., 2012; Kamada et al., 2013). The presence of microbiota in their niche limits space 

and nutrients available for pathogens, a phenomenon known as colonization resistance (Buffie and 

Pamer, 2013). Some species of the microbiota also produce toxic compounds, such as bacteriocins, 

which may directly impair pathogen growth (Schamberger and Diez-Gonzalez, 2002; Hammami et al., 

2013; Kommineni et al., 2015; Sahoo et al., 2015). Eventually some microbiota members can modify 

the environment; for instance, Lactobacillus species produce lactic acids that reduce pH to limit vagina 

colonization by pathogens (Turovskiy, Sutyak Noll and Chikindas, 2011). 

However, interactions between microorganisms at mucosal sites are not limited to competition. 

Indeed, some microbiota species are known to release products used as nutrients by other species, 

including pathogens, favoring their colonization. Antibiotic treatment may have drastic consequences 

by altering such interactions. Indeed, dysbiosis of the microbiota induced by antibiotics may promote 

growth of bacterial species favoring pathogen colonization, or eliminate bacteria involved in 

colonization resistance allowing antibiotic-resistant pathogens to persist for years (Dethlefsen, McFall-

Ngai and Relman, 2007; Pacheco et al., 2012; Ng et al., 2013; Ferreyra et al., 2014; Theriot et al., 2014; 

Sassone-Corsi et al., 2016). Such mechanisms must be at play in Clostridium difficile infection as this 

bacteria is well known to colonize mainly individuals that have followed antibiotic treatment causing 

an alteration of the microbiota composition (Buffie et al., 2012; Theriot et al., 2014; Jenior et al., 2017).  

Some lifestyles known to be beneficial for the host are also linked with microbiota composition. Living 

with pets or practicing exercise are often associated with a healthy microbiota composition. 

Conversely, high levels of stress, sleep deprivation and smoking, for example, correlate with dysbiosis 

(Gilbert et al., 2018). During the last centuries, dramatic changes in our living habits, including diet 

change and lower microbial exposure, have changed the environment we provide to our microbe 

settlers. This disturb the microbiota composition selected through millenaries of co-evolution for 

optimal immune functions, leading to the rise of pathologies resulting from misdirected immune 

response against self, microbiota components or environmental antigens (Dethlefsen, McFall-Ngai and 

Relman, 2007; Chow et al., 2010; Belkaid and Hand, 2014). Not only microbiota beneficial functions 

may be absent, but this may even transform these allies into enemies. Therefore, better understanding 

the interaction between the host immune system and the microbiota in health and disease is key to 

reduce disease incidence and improve disease diagnosis and treatment. 
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II. Gut microbiota interaction with the local immune system 

Because mucosal sites are exposed to many microbes and particles, an adequate balance between 

immune resistance and tolerance mechanisms is critical to maintain homeostasis. In the intestine, this 

is achieved by the containment of the microbiota at distance from tissue, the presence of efficient 

phagocytes that can kill invading bacteria, and the activation of B and T cells in secondary lymphoid 

organs draining the intestine, promoting restriction and tolerance toward these bacteria. As detailed 

in this section, this efficient mucosal immunity largely depends on the microbiota.     

 

1. The mucosal firewall: containment of the microbiota for intestinal homeostasis 

Intestinal homeostasis relies on the limitation of host tissue invasion (by commensals and pathogens) 

and of immune activation against harmless bacteria. Interestingly, as detailed in this section, several 

mechanisms involved in mucosal immune response fulfill both functions.  

a) Physical barrier, the mucus layer 

The intestinal mucosa structure favors intestinal homeostasis. Indeed, in the intestine and particularly 

in the colon, a stratified layer of mucus containing the MUC2 mucin produced by goblet cells separates 

most bacteria from host cells. It is composed of the outer mucus layer in contact with the lumen, 

containing many bacteria, and of the inner layer, which is thick and dense, limiting bacterial access to 

the tissue. This physical separation limits invasion of the lamina propria by the microbiota or by 

pathogens, and over-reaction of the immune system (Van der Sluis et al., 2006; McGuckin et al., 2011; 

Earle et al., 2015; Tropini et al., 2017). Disruption of the mucus layer, in MUC2-deficient mice or in 

dextran sulfate sodium (DSS) colitis model2, results in an over-reaction of the immune system to 

microbiota members, causing colitis (Van der Sluis et al., 2006). While most bacteria are kept away by 

this mechanism, other bacteria, such as Bacteroides fragilis, Bacteroidetes thetaiotaomicron or 

Akkermansia muciniphila are able to bind mucins of the mucus and thus benefit from a specific niche 

(Derrien et al., 2004; Sonnenburg, 2005; Huang, Lee and Mazmanian, 2011). Some bacteria, such as 

Segmented Filamented Bacteria (SFB), are even able to adhere to epithelial cells (Hedblom et al., 2018). 

As exemplified later, this proximity gives this bacterial family a unique opportunity to modulate 

immune functions. 

b) Killing at proximity of the epithelium by AMP 

AMP are produced by all type of intestinal epithelial cells and, in particular, by Paneth cells (Vaishnava 

et al., 2008). AMP are composed of different type of proteins able to kill bacteria mainly through 

disruption of the bacterial cell wall or membrane. They include defensins, cathelicidins and specific 

members of the family of C-type lectins. Most of them, including many -defensins, are produced 

constitutively, even in germ-free mice. Others, such as the C-type lectin regenerating islet-derived 

protein 3 (RegIII ), are produced in response to microbial antigen recognition by Pattern Recognition 

Receptors (PRR)3 expressed by Paneth cells (Putsep et al., 2000; Kobayashi et al., 2005; Brandl et al., 

 
2 DSS is a chemical agent inducing epithelial damages. Its administration in mice is one of the most widely used 
experimental models of IBD.  
 

3 PRR are a wide family of receptors comprising Toll like Receptors (TLR), among other numerous families, present 
on epithelial and innate immune cells. Their combination with adaptor molecules, such as the myeloid 
differentiation primary response 88 (Myd88), allow sensing of pathogen, microbial or danger associated 
molecular pattern (PAMP, MAMP or DAMP) molecules, such as bacterial lipopolysaccharide (LPS). This signal 
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2007; Vaishnava et al., 2008). AMP are mainly retained in the dense mucus layer, allowing bacterial 

persistence in the outer mucus layer and intestinal lumen, while restraining their presence near the 

epithelium (Meyer-Hoffert et al., 2008). AMP production is a key mechanism in intestinal homeostasis 

as genetic polymorphisms in genes associated with Paneth cell development, bacteria recognition or 

AMP secretion, are risk factors for IBD (Hugot et al., 2001; Ogura et al., 2001; Wehkamp et al., 2005; 

Cadwell et al., 2008; Kaser et al., 2008). In addition to AMP, proteolytic enzymes such as trypsin or cell 

wall degrading enzymes such as lysozyme are secreted by Paneth cells that all contribute to limitation 

of bacterial invasion (Chassaing et al., 2014). 

c) Efficient local innate immune response 

Macrophages are also present in close contact with epithelial cells, and in the case of invasion, they 

will rapidly phagocytose bacteria crossing the epithelial barrier (Lee, Starkey and Gordon, 1985). These 

macrophages have high bactericidal capacity and are able to kill the captured bacteria through efficient 

production of reactive oxygen species (ROS)4 and AMP (Smythies et al., 2005). Bacterial invasion is 

often allowed by epithelium disruption. In addition to bacterial killing, macrophages are also mediating 

efficient epithelium repair following injury through production of growth factor that enhance the 

proliferation of epithelial progenitors (Pull et al., 2005).  

 Containment of the microbiota and pathogens also rely on the activation of T and B cells by antigen-
presenting cells (APC). Professional APC comprise dendritic cells (DC), macrophages and B cells5, which 
are able to process foreign antigens and to present them to B and T cells on major histocompatibility 
complexes II (MHC-II). Lamina propria DC are mainly composed of two subtypes. CD103+ CD11b+ DC 

deriving from the common DC progenitor, exhibit a low antigen sampling capacity combined with high 
migratory properties and are involved in tolerance induction. CX3CR1+ CD103− CD11b+ DC deriving 

from inflammatory blood-circulating monocytes are involved in effector T cell priming. Most 
macrophages highly express CX3CR1, have poor migratory properties and, during homeostatic 
conditions, display an anti-inflammatory profile (Rescigno et al., 2001; Chieppa et al., 2006; Rivollier et 
al., 2012). Bacterial sampling in the gut mainly occurs in the Peyer’s patch6 in the small intestine and 
isolated lymphoid follicles, located in both the small and large intestine, where bacteria can translocate 
through microfold cells (or M cells)7 and are then captured by lamina propria DC and macrophages 
(Figure 5) (Macpherson and Uhr, 2004; Kelsall, 2008).  

 
transduction induces in general the activation of these cells toward an inflammatory profile that will promote 
pathogen killing and a global inflammatory response through secretion of chemokines and pro-inflammatory 
cytokines, which will recruit and activate other immune cells. 
 

4 Oxygen radicals, such as ROS, are part of the molecules generated by innate immune cells after binding of 
PAMP through PRR in order to kill pathogens internalized through phagocytosis. 
 

5 Unlike T cells, B cells can bind soluble antigens using their B cell receptor. They can then internalize and process 
the antigen that will be presented to helper T cells on MHC-II molecules. This interaction can result in the 
activation of cognate T cells. However, the role of B cells as APC in the context of the microbiota is less described 
than DC. 
 

6 Peyer’s patches are lymphoid follicles present in the small intestine lamina propria for the generation of 

immune response within the lamina propria. They consist of a dome area, B cell follicles and interfollicular T cells. 

In Peyer’s patches the intestinal epithelium is characterized by few goblet cells (allowing bacteria to come closer) 

and the presence of microfold cells.  

7 Microfold cells are particular epithelial cells present in mucosal-associated lymphoid tissue specialized in 
endocytosis, phagocytosis, and transcytosis of microbes from the lumen to the lamina propria, where 
macrophages or DC will uptake them to initiate a local immune response. 
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Figure 5: Establishing the physical limits and containment of intestinal microbiota by IgA. Commensal antigens can 
be captured by macrophages and DCs extending dendrites between epithelial cells or near M cells in Peyer’s 
Patches. In Peyer’s patches or mesenteric lymph nodes, presentation of commensal antigens by these DCs leads 

to the differentiation of commensal specific CD4+ T cells, and induce B cells to differentiate into IgA-producing 

plasma cells. After homing to the lamina propria, these plasma cells secrete IgA that will be exported by 
transcytosis across epithelial cells to the lumen. Binding of these IgA to their targets prevents bacterial penetration 
of the lamina propria. Figure from (Hooper and Macpherson, 2010).  
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Alternatively, beyond these sites, CX3CR1high APC are able to modify the tight junctions between 
epithelial cells, and squeeze their dendrites though these junctions to reach outside the epithelium 
and sample bacteria present at the epithelial cell surface (e.g., SFB) (Rescigno et al., 2001; Suzuki et 
al., 2004; Chieppa et al., 2006; Mazzini et al., 2014).  

Unlike other tissues, APC found in these sites will not induce systemic response after bacterial sensing. 

This is first explained by their poor capacity to produce pro-inflammatory signals (e.g., Tumor Necrosis 

Factor (TNF-))  contrasted by their generation of anti-inflammatory mediators (e.g., PGE2) limiting 

the activation of neutrophils8 (Smythies et al., 2005; Grainger et al., 2013). Induction of systemic 

inflammation is also avoided by the limited migration capacities of lamina propria DC that are able to 

migrate to local mesenteric lymph nodes but not further, a mechanism also indirectly limiting 

pathogen dissemination via DC, which have poor bactericidal properties (Macpherson and Uhr, 2004). 

Nevertheless, these APC are able to induce a local adaptive immune response, as B and T cell follicles 

are present in the Peyer’s patches and mesenteric lymph nodes. Macrophage and DC of the lamina 

propria having the capacity to rapidly eliminate invasive microbes, promote repair of epithelium 

damages, and induce adaptive immunity are therefore key mediators of resistance and tolerance 

mechanisms needed for mucosal homeostasis. 

d) Restricted bacterial invasion by IgA 

Upon antigen capture, some DC produce retinoic acid (a derivate of vitamin A) and the pro-

inflammatory cytokine IL-6 or IL-5, to activate specific B cell (present in the Peyer’s patch and isolated 

lymphoid follicles or mesenteric lymph node) Immunoglobulin (Ig) class-switch towards IgA-producing 

plasma cells9 (Macpherson and Uhr, 2004; Mora et al., 2006). IgA are the main antibody class present 

in mucosa. Secreted dimeric IgA will be transferred to the lumen by transcytosis through epithelial 

cells. In the mucus layer, IgA will bind to both invading pathogen and commensal bacteria, limiting 

their presence at the cell surface and preventing lamina propria invasion (Figure 5). Interestingly, it 

seems that while DC will also activate cognate T cells favoring B cell differentiation, the induction of 

IgA specific for microbiota antigens is active even in the absence of T cells. This may allow a rapid IgA 

response to dysbiosis without inducing too much inflammation (Macpherson et al., 2000; Hooper and 

Gordon, 2001; Hapfelmeier et al., 2010). In addition, IgA may have an anti-inflammatory role on cells 

phagocyting an opsonized bacteria, limiting microbial stimulation and preserving intestinal barrier 

integrity (Fernandez et al., 2003; Peterson et al., 2007; Boullier et al., 2009).  

Therefore, the mucus, AMP, and IgA and B cells, are part of the recently proposed type-4 immune 

response, dedicated to the exclusion of microorganisms and protection of tissue from potentially 

destructive type-1 or -3 inflammation (that are described in the following paragraph), thus 

participating both in resistance and tolerance (Eberl, 2016). 

 

 

 
8 Neutrophils are main actors of the anti-microbial response, recruited from the blood to the tissue upon 
infection. They are highly potent for bacterial clearance after phagocytosis, and are able to form Neutrophil 
Extracellular Traps (NET). In this particular cell death, neutrophils release their DNA along with anti-microbial 
peptides that will form a scaffold that will immobilize and neutralize many pathogens (Boeltz et al., 2019). 
 
9 Binding of antigen on B cell receptor and interaction between antigen presented on MHC-II and specific T cell 
activates B cells. Activated B cells, called plasma cells, will produce IgM and IgD. Further binding of T cell CD40L 
on  CD40 and cytokine production will lead to recombination mechanisms called class switching, allowing the 
plasma cells to produce either IgG, IgA or IgE depending on the cytokines secreted. 
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Figure 6: Priming and differentiation of the main CD4+ T helper (Th) subtypes. Naive CD4+ T cells differentiate into 

Th1, Th2, Th17 and Treg, after antigen encounter presented by dendritic cell (DC), and followed by lineage 
commitment that is controlled by specific cytokine environments (IL-12, IL-4, TGF-β/IL-6, or TGF-β, respectively). 
These signals regulate the expression of lineage-specific transcription factors (TBX21 encodes for the transcription 
factor T-bet, and RORC for RORt). These effector T cells play specific roles in mucosal defenses, as denoted on 
the right side of each T cell illustration. Figure adapted from (Chen and Kolls, 2013). 
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2. Effector T cell present in mucosal tissue and controlling microbiota  

While innate functions are efficient, they are not sufficient to preserve homeostasis. The induction of 

a dedicated T cell response ensures homeostasis with resident microbiota (Loschko et al., 2016). Most 

effector and memory T cells reside in mucosal sites and are induced in response to the microbiota. The 

CD4+ T cells, which orchestrate the global immune response by producing cytokines and expressing co-

stimulatory molecules, have a prominent role in the maintenance of homeostasis at mucosal sites. 

Different subsets of CD4+ T cells or helper T cells (Th) exist, having different properties that confer 

specific functions: Th1, Th2, Th17 and Treg are discussed here (but other subtypes also exist)  

(Figure 6). Th1 cells are characterized by the expression of the transcription factor T-box expressed in 

T cells (T-bet) and the production of interferon gamma (IFN-) and TNFα, which grant the host the 

capacity to fight and eliminate intracellular pathogen and cancer cells; Th1 cells are the hallmark 

characteristic of the type-1 immune response and, when uncontrolled, they are responsible for tissue 

immunopathology (Figure 6). Th2 cells express the transcription factors GATA-binding protein 3 

(GATA3) and Interferon Regulatory Factor 4 (IRF4), produce IL-4 and IL-13, and are involved in 

extracellular pathogen killing; Th2 cells are the hallmark characteristic of the type-2 immune response 

and, when uncontrolled, they provoke inflammatory asthmatic and allergic disorders leading to 

potential tissue damage. Th17 express the transcription factors retinoic acid receptor-related orphan 

nuclear receptor gamma (RORt) and Signal transducer and activator of transcription 3 (STAT3), confer 

the host anti-bacterial and anti-fungal properties, and are involved in neutrophil recruitment to 

mucosal tissue (Hirahara and Nakayama, 2016); Th17 cells are the hallmark characteristic of type-3 or 

mucosal immunity response and when, uncontrolled, they are involved in multiple autoimmune and 

mucosal inflammatory disorders. Type-1, -2, -3 and -4 responses antagonize each other, and there is 

an equilibrium between these subsets until one of them will be favored to face a particular insult 

(Eberl, 2016). Tregs are mainly responsible for the control of all effector and inflammatory T cells, 

granting the host an insurance mechanism against tissue immunopathology; Tregs are the hallmark 

characteristic of immune tolerance and, when uncontrolled, they are involved in pathogen 

susceptibility and tumor developmental and metastasis (generation and functions of these cells are 

more detailed in the following subsection).  

 

In general, T cell subsets are determined during their priming by APC. This is dependent on the 

information delivered by i) antigen in the context of MHC molecules and specific for their T Cell 

Receptor (TCR), ii) co-stimulatory molecules such as B7 molecules CD80 and CD86 (that bind to CD28 

expressed by T cells), and iii) secretion of soluble signals in the form of cytokines and chemokines10 

that reflects the microenvironment and type of pathogen activating originally the APC. For example, 

the production of transforming growth factor (TGF)- by APC is required both for differentiation of 

Th17 and Treg. At steady-state, additional production of retinoic acid lead to the differentiation of 

Treg, while production of IL-6 upon infection will favor Th17 priming (Weaver and Hatton, 2009). 

Cytokines involved in the priming and functions of Th subsets, including Th1 and Th2, are summarized 

in Figure 6.  

 
10 Cytokines are proteins secreted by many cells including immune cells and are involved in cell signaling. They 
bind specific receptors expressed at the cell surface of many or specific target cells. They have various 
immunomodulatory functions such as maturation or responsiveness of immune cells that can differ depending 
on the target cell type, and expression level of their receptor. Chemokines are specific cytokines involved in cell 
recruitment. Upon production, they will diffuse in the organism and attract target cells that will migrate to the 
chemokine source following concentration gradient, a mechanism called chemotaxis. 
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In the intestinal mucosa, only a few Th2 cells are present; the main pro-inflammatory CD4+ T cell subset 

is Th17 followed by Th1, which are both essential to limit invasion by pathogen or misguided 

commensal bacteria. Hence, IL-17 blockade in patients, or T cell decrease during HIV infection, results 

in microbial translocation, increasing susceptibility to viral and fungal infections, and aggravating 

Crohn’s disease (Hueber et al., 2012; Klatt, Funderburg and Brenchley, 2013). Due to the antigen 

sampling mechanism that is performed only at the epithelial surface, and not further in the lumen, 

most T cells present in the lamina propria are Th17 specific for bacteria present at the epithelial 

surfaces, induced by CD103+ CD11b+ DC or macrophages producing IL-1 (Gaboriau-Routhiau et al., 

2009; Ivanov et al., 2009; Shaw et al., 2012; Persson et al., 2013; Panea et al., 2015). Th17 are mainly 

specific for commensals (e.g., SFB) rather than pathogens, which represent in comparison an 

occasional threat (Asseman, Read and Powrie, 2003; Niess et al., 2008; Ivanov et al., 2009; Furusawa 

et al., 2013; Atarashi et al., 2015; Hegazy et al., 2017). Upon invasion of lamina propria, more T cells 

are generated including Th1 following recruitment of CX3CR1+ DC that produce high level of IL-12 

(Rivollier et al., 2012). While Th1 secretion of IFN- enhances bacterial killing properties of 

macrophages, Th17 produce IL-17 to promote neutrophil recruitment and activation, and IL-22 to 

enhance anti-microbial peptide production. Altogether this type of cytokine production improves 

killing of the invading bacteria (Belkaid and Hand, 2014). 

The dynamics of the four CD4+ T cell subsets, and their corresponding mechanisms, help to monitor 

the status/composition of the local microbial residents or the presence of pathogens likely to invade 

the mucosal tissue, thus fomenting a homeostatic equilibrium and readiness to implement any 

required inflammatory response. This is well exemplified by a study showing that commensal-specific 

CD4+ T cells are highly proliferative and have high pro-inflammatory functions during infection, but 

they also display the specific capacity to decrease in number after bacteria elimination from the lamina 

propria (even though they remain alive in the intestinal lumen), demonstrating an intrinsic mechanism 

to prevent unnecessary inflammation (Hand et al., 2012). As for pathogen-specific T cells, they will also 

form memory cells, improving the efficiency of the response by increasing its speed (Hand et al., 2012). 

As already mentioned, prevention of unnecessary inflammation is crucial to avoid development of 

inflammatory diseases such as IBD (Asseman et al., 1999; Asseman, Read and Powrie, 2003). Most of 

this prevention is achieved thanks to immune cells specialized in tolerance, described in the next 

section.  

While not detailed here, unconventional T cells like invariant natural killer T cells (iNKT)11, which induce 

the release of lysozyme from Paneth cells, are also important in the defense against invading bacteria 

from commensal of pathogenic origin (Nieuwenhuis et al., 2009).  

 

 
11 iNKT are a subset of unconventional T cells. All unconventional T cells are highly present in mucosal sites, 
harboring low variant TCR allowing a rapid activation compared to classical lymphocytes. While less specific their 
rapid response seems key for an early activation of myeloid cells in case of infection. In particular, iNKT are 
activated by lipid or glycolipid antigens, presented on CD1 by myeloid cells. They can produce many cytokines 

such as Csf2, IFN-, IL-2, TNF-, or IL-17 activating many pro-inflammatory immune cells and mediate lysis of 
infected cells.  
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3. Tolerance to the microbiota 

The repertoire of leukocytes responsible to establish tolerance to the local microbiota are diverse. 

These include resident macrophages, CD103+ DC, Treg and Innate Lymphoid Cell12 (ILC)3. In addition, 

some CD8+ T cells have regulatory properties, but this leukocyte will not be discussed in this section 

(Ligocki and Niederkorn, 2015). While intestinal inflammation is characterized by leukocyte infiltration 

and increased mucus production to control invading bacteria, intestinal tolerance to the resident 

microbiota is induced by different mechanisms with the goal to preserve the intestine integrity and 

functions (Hooper and Macpherson, 2010). 

a) Treg, the main promoters of tolerance 

In the gut, different type of Treg exist and most of these are characterized by expression of the 

transcription factor forkhead box P3 (Foxp3). Foxp3+ Treg found at mucosal site originate either from 

the thymus or are induced locally, and the presence of both subtypes seems to be needed to preserve 

gut homeostasis (Haribhai et al., 2011; Cebula et al., 2013). Thymic or natural Treg (nTreg) generated 

during CD4+ T cell selection are characterized by the expression of the transcription factor Helios13 and 

the receptor Neuropilin-1 (Nrp-1)14; they are specific for self-antigens and migrate to peripheral tissues 

to reduce auto-immunity (Haribhai et al., 2011). In mucosal sites, there is another Treg subtype that is 

called peripheral or induced Treg (iTreg), which is essential to avoid immune activation toward local 

commensal micro-organisms (Haribhai et al., 2011; Lathrop et al., 2011; Kim et al., 2016). iTreg are 

generated in the spleen, lymph nodes or mucosal-associated lymphoid tissue, and they are specific for 

microbiota and food antigens. Interestingly, it seems that their priming involves food- or microbiota-

derived antigen sampling by CX3CR1+ macrophages that are able to transfer them to CD103+ DC 

(having poor antigen sampling but high priming capacities) in a process involving a rapid membrane 

transfer from macrophages to DC (Mazzini et al., 2014). The conversion of naïve T cells to iTreg involves 

the production of retinoic acid and TGF- by APC (Benson et al., 2007; Janine L. Coombes et al., 2007; 

Sun et al., 2007; Nutsch et al., 2016). After migration to the lamina propria dependent on the 

chemokine receptor CCR-9, iTreg will be locally re-stimulated by macrophages producing high quantity 

of IL-10 and induced to proliferate (Hadis et al., 2011). Of note, retinoic acid and TGF- are also 

produced by epithelial cells that promote a tolerogenic phenotype in DC, further improving their 

induction of iTreg (Iliev, Mileti, et al., 2009; Iliev, Spadoni, et al., 2009). 

Treg are able to suppress proliferation and activation of immune cells through different mechanisms 

(Figure 7) (Parkash, Agrawal and Madhan Kumar, 2015). They first down-modulate the activation of 

effector T cells by impairing DC functions.  

 

 
12 ILC derive from the common lymphoid progenitor, but unlike T or B cells, they do not express antigen-specific 
receptors. They are considered innate leukocytes due to their presence at mucosal sites, where they engage in 
homeostatic functions and response to infection by rapidly secreting immunomodulatory cytokines to 
orchestrate the early immune response. They are comprised of i) ILC1 and cytotoxic natural killer cells, which 

mirror Th1 for their capacity to produce IFN-/TNF-; ii) ILC2 mimicking Th2 for producing type-2 cytokines 
(e.g.,IL-4); and iii) ILC3, which produce IL-17/IL-22 just like Th17 and are involved in mucosal immunity.   
 

13 Helios is a transcription factor mainly expressed in Treg that may promote Foxp3 expression, stabilizing Treg 
suppressive functions (Getnet et al., 2010) 
14 Nrp-1 is a co-receptor for semaphorins and vascular endothelial growth factor that seems involved in Treg 
suppression of anti-tumoral immunity and in Treg stability at inflammatory sites (Delgoffe et al., 2013)  
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Figure 7: Mechanisms involved in Treg suppressive functions. Treg suppression involves the inhibition of T cell 

priming by DC as well as the production of soluble factors (e.g., IL-10, TGF-, granzyme A/B, or miRNA) that target 
directly effector T cell (Teff) proliferation/activation. Treg may also compete for IL-2 that is crucial for the clonal 
expansion of Teff. Figure from (Parkash, Agrawal and Madhan Kumar, 2015). 
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LAG-3 and CTLA-4 are also important to inhibit T cell proliferation (Huang et al., 2004). Indeed, CTLA-4 

induces the expression of indoleamine 2,3-dioxygenase (IDO) in DC, thus triggering tryptophan 

catabolism. In fact, the amino acid tryptophan is needed for effector T cell proliferation, but the 

tryptophan catabolites induce conversion of peripheral naïve T cell into Treg (Fallarino et al., 2006). In 

addition, Treg highly express CD39, an enzyme able to degrade Adenosine Triphosphate (ATP) released 

by damaged cells and acting as a pro-inflammatory signal activating effector T cells (Borsellino et al., 

2007). They also produce vesicles called exosomes containing miRNA15 that upon delivery inside 

effector T cell will mediates gene silencing inhibiting T cell proliferation or function (Okoye et al., 2014). 

Treg can also induce effector cell death through cytolysis by producing perforin/granzymes as CD8+ T 

cells or NK cells that will create pores in target cells dying from osmotic choc (Grossman et al., 2004; 

Borsellino et al., 2007; Okoye et al., 2014). Treg also modulate effector T cells through production of 

TGF- and IL-10 that inhibit their differentiation, proliferation and activation (Rubtsov et al., 2008).  

In the gut, another type of Treg named Tr116, which does not express Foxp3, may also be crucial for 

tolerance since they produce more IL-10 than conventional Foxp3+ Treg (Barnes and Powrie, 2009). 

One function of IL-10 is the ability to change macrophage metabolism from glycolysis (needed for pro-

inflammatory functions) to oxidative phosphorylation (needed for tissue repair and homeostatic 

functions) (Shouval et al., 2014; Zigmond et al., 2014; Ip et al., 2017). Together with TGF- IL-10  limits 

Th1 differentiation (Davidson et al., 1996; Asseman et al., 1999; Asseman, Read and Powrie, 2003), 

and on its own that of Th17 (Zhou and Sonnenberg, 2018).  

The crucial role of Treg is highlighted in mice deficient in Foxp3 that develop spontaneous colitis, which 

is also reproduced in mice deficient in IL-10 or TGF- (Davidson et al., 1996; Li, Wan and Flavell, 2007). 

In mouse models with T cell-deficiency, such as the RAG17 or SCID18, it is well-established that upon 

adoptive transfer of CD4+ T cells (that differentiate into pro-inflammatory Th1), the animals develop 

colitis; this process is inhibited when iTreg or Tr1 are co-transferred with CD4+ T cells (Cong et al., 2002; 

Haribhai et al., 2009). Likewise, simultaneous administration of anti-IFN- (or anti-TNF-) antibodies 

and recombinant IL-10 inhibits colitis development in this mouse model, highlighting the importance 

of cytokines as mediators of inflammation or tolerance (Powrie et al., 1994).  

 

 

 

 
15 MicroRNA or miRNA are small non-coding RNA that inhibit expression of messenger RNA by binding on 
complementary sequences. 
 
16 Type 1 Treg (Tr1) are a subset of Treg involved in peripheral tolerance, specific of antigens from self and non-
self. They highly express CD49b and LAG3, but not Foxp3. Their suppressive functions are mediated by rapid 

production of high levels of IL-10 and TGF-, expression of CTLA-4, CD39 and granzymes/perforins. They are 

induced in the periphery in presence of IL-27 and TGF-. 
 
17 Recombination-activating gene (RAG) 1 and 2 are needed for gene rearrangement allowing the expression of 
antigen receptor on T and B cells. Mice deficient in RAG1 or RAG2 do not possess T and B lymphocytes. 

18 Severe combined immunodeficiency (SCID) is caused by a mutation in the gene coding for an enzyme necessary 
for double-stranded DNA breaks reparation, a process also implicating in T and B cell receptor gene 
rearrangement. Similarly, to RAG mice, SCID mice are devoid of T and B cells.  b 

 



 45 

 

 

 

 

 

 

Figure 8: Establishment of physical limitations and tolerance mechanisms for the resident intestinal microbiota. 
The presence of NK cells as well as the generation of pro-inflammatory T cells, such as T helper 1 (Th1) that improve 
macrophage killing properties, or Th17 that augment the recruitment of neutrophils and production of 
antimicrobial peptides (AMP), is essential to prevent lamina propria invasion of pathogen or misguided commensal 
bacteria. Yet, too much of these pro-inflammatory functions may result in tissue damage. For this reason, acute 

inflammation is prevented by the induction of Foxp3+ Treg via CD103+ dendritic cells (DC) producing retinoic acid 

in presence of TGF-, and by Foxp3- Tr1 cells in the presence of IL-6 that will limit effector T cells functions. In 

addition, ILC3 also participate in tolerance to the microbiota, but are not illustrated in this figure. Figure from 
(Hooper and Macpherson, 2010). 
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Treg not only prevent inflammation in absence of invasion, but also promote its resolution post-

insult (e.g., after pathogen clearance) through production of IL-10 and TGF- (Maloy et al., 2003) 

(Figure 8). Finally, Treg promote Ig class switching to improve IgA production by B cells, limiting 

bacterial invasion of epithelial tissue (Cong et al., 2009). The role of Treg in this mechanism has been 

shown to improve microbiota diversity and may be implicated in selection of microbes (Kawamoto et 

al., 2014). 

b) RORt+ Treg, a Treg subset specialized in tolerance to the microbiota 

Growing evidence support the hypothesis that all immune cells including T cells can display some 

degree of plasticity to adapt to a given environment. In particular, in the case of Treg, it seems that co-

expression of master transcription factors governing all types of immunity will increase their ability to 

control other leukocytes expressing the same transcription factors (Figure 6). Thus, T-bet co-expression 

in Foxp3+ Treg occurs locally at sites where type-1 inflammation is engaged and requiring Treg 

surveillance to prevent tissue damage. Likewise, Foxp3+ Treg can also co-express GATA3/IRF4 to 

potentially regulate the type-2 immune response, and RORt/STAT3 to control type-3 mucosal 

immunity (Chaudhry et al., 2009; Koch et al., 2009; Zheng et al., 2009). In the latter case, more and 

more studies suggest that many of the protective functions in intestinal homeostasis are in fact 

promoted by Foxp3+ Treg co-expressing RORt named either “RORt+ Treg”, “Type 3 Treg” or 

“bifunctionnal Treg (biTreg)”. In fact, most iTreg in the gut express RORt, representing around half of 

all colonic Treg (Ohnmacht et al., 2015; Sefik et al., 2015). Interestingly, analysis of the Treg TCR reveals 

that all commensal-specific Treg express RORt while the other iTreg seem specific for food antigens 

(Kim et al., 2016; Solomon and Hsieh, 2016). RORt+ Treg are also present in other mucosal sites, such 

as the lungs, but are present at low levels in the spleen or lymph nodes (Lochner et al., 2008; Yang et 

al., 2016). The RORt+ Treg generation requires the presentation of microbiota antigens on MHC-II 

molecules by DC, stimulation with IL-6 and IL-23 along with STAT3 activity (necessary for RORt 

expression), and the presence of retinoic acid (favoring  RORt+ Treg generation over Th17) (Lochner 

et al., 2011; Ohnmacht et al., 2015; Yang et al., 2016). 

Different approaches indicate that these Foxp3+RORt+ population is a Treg subset rather than Th17 

effector cells. First, while there is a plasticity allowing conventional Foxp3+Treg to acquire RORt 

expression, Th17 are unable to co-express Foxp3 (Osorio et al., 2008; Yang et al., 2016). However, once 

Foxp3+ Treg acquires RORt expression, it becomes a stable cell lineage as RORt+ Treg (Yang et al., 

2016). Second, RORt+ Treg have a specific transcriptomic signature and genetic profile sharing Treg 

and Th17 signatures, but remaining more similar to that of Treg (Koenen et al., 2008; Sefik et al., 2015; 

Yang et al., 2016). Accordingly, RORt+ Treg highly express the marker of activation Inducible T-cell 

COStimulator (ICOS)19 and CTLA-4, and produce IL-10 (but no IL-17) at steady state; it is thought that 

Foxp3 represses the IL-17 production usually induced by  RORt (Lochner et al., 2008; Zhou et al., 2008). 

RORt+ Treg also express CCL20 and its receptor CCR6, which are involved in attraction of DC and 

lymphocytes to mucosal-associated lymphoid tissues (Ohnmacht et al., 2015; Chellappa et al., 2016). 

Based on this phenotype, RORt+ Treg are capable to suppress proliferation of intestinal CD4+ T cells 

(Lochner et al., 2008). Yet, their physiological function seems complex and highly dependent on the 

microenvironment. During immune development, presence of these cells prevents eventual 

susceptibility to cancer, allergy and colitis (Al Nabhani et al., 2019). RORt+ Treg increase is also highly 

 
19 ICOS or CD278 is a costimulatory molecule, mainly expressed at the surface of activated CD4+ T cells. Its binding 

to the ICOS ligand (ICOSL) expressed on phagocytes induces T-cell proliferation and cytokine secretion. ICOS can 
also be expressed on Treg, facilitating Foxp3 transcription to favor their suppressive functions. 
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protective in different models of colitis through various mechanisms. For example, in a model of tri-

nitrobenzene-sulfonic acid (TNBS) induced colitis, depletion of RORt+ Treg aggravates the 

inflammation mediated by excessive IL-17 and IFN- production (Sefik et al., 2015). Similarly, RORt+ 

Treg production of IL-10, is needed to avoid colitis mediated by Th17 cells specific for the pathobiont 

Helicobacter hepaticus (Xu et al., 2018). In the colitis model mediated by the adoptive transfer of CD4+ 

T cells in RAG2-deficient mice, the co-transfer of RORt+ Treg also prevents colitis and provides even 

better protection than RORt- Treg (Yang et al., 2016). However, in this model, IL-17 and IFN- 

production was not impacted by the increase in RORt+ Treg. Instead, total leukocyte infiltration in the 

lamina propria was reduced, suggesting that RORt+ Treg may suppress the induction of other immune 

cells, such as Th2 cells. Indeed, mice depleted of RORt+ Treg are more susceptible to colitis induced 

by oxazolone (an inducer of excessive type-2 inflammation) and more resistant to helminth infection, 

which require a Th2-mediated response (Ohnmacht et al., 2015). As such, at steady state, mice 

depleted of RORt+ Treg also have increased number of Th2 (Josefowicz et al., 2012; Ohnmacht et al., 

2015). This anti-Th2 suppressive properties may be linked to their expression of IRF4, an important 

transcription factor that allows Treg differentiation to the detriment of that of Th2 cells (Zheng et al., 

2009; Ohnmacht et al., 2015). Interestingly, germ-free mice colonized with microbiota from IBD 

patients, have an altered CD4+ T cell compartment that is characterized by low RORt+ Treg and high 

levels of Th17 and Th2, which correlates with increased susceptibility to colitis (Britton et al., 2019). 

Therefore, different mechanisms allow RORt+ Treg to prevent inflammation by reducing pro-

inflammatory CD4+ T cells specific for commensals. 

Notwithstanding, RORt+ Treg acquire pathogenic Th17 features in some conditions, such as high IL-17 

production along with their suppressive properties (being bifunctionnal), which aggravate cancer or 

chronic inflammation (Esposito et al., 2010; Kryczek et al., 2011; Blatner et al., 2012; Chellappa et al., 

2016; Kluger et al., 2016, 2017). IL-17 production by RORt+ Treg seems to be dependent on the 

presence of pro-inflammatory cytokines, such as IL-6 or IL-1, and the activation of Mincle or Dectin-1 

in DC (factors that drive Th17 activation) (LeibundGut-Landmann et al., 2007; Osorio et al., 2008; Yang 

et al., 2008; Martínez-López et al., 2019). (LeibundGut-Landmann et al., 2007). Therefore, like other 

immune cells, the protective role of RORt+ Treg can be diverted by changes in the environment and 

may be linked to the pathologic role of the microbiota in different diseases. Importantly, other Treg 

subtypes, expressing T-bet or GATA3, can similarly acquire pathogenic Th1 or Th2 properties, 

respectively (Wohlfert et al., 2011; Van Gool et al., 2019). It appears that GATA3 and RORt expressions 

are mutually exclusive and antagonistic (Wohlfert et al., 2011; Ohnmacht et al., 2015). GATA3+ Treg 

are also important to reduce tissue damage. Hence, protection of host tissue integrity may be 

dependent on the type of inflammation causing damage and mediated by an equilibrium between the 

different Treg subtypes (Lochner et al., 2008; Park and Eberl, 2018). It is possible that the differences 

observed in Th1 and Th17 in absence of RORt+ Treg are the consequence of deregulation of another 

Treg subset, such as GATA3+ Treg. Another argument in favor of a role of RORt+ Treg different from 

Th17 inhibition comes from the observation that in different models they evolved with similar 

tendencies. Indeed, both Th17 and RORt+ Treg increase after SFB administration, or in colitis or 

influenza infection (but not in cancer), and Th17 are decreased in RORt+ Treg deficient mice (Lochner 

et al., 2008; Ohnmacht et al., 2015). Also, RORt+ Treg  protective effect in the H. hepaticus model 

seems independent of their RORt expression (Xu et al., 2018). Further studies may help to decipher 

the protective role of these cells in homeostasis that seems key mediators of tolerance to the 

microbiota.    

 



 48 

c) ILC3 also participate in tolerance establishment 

Another important immune cell type involved in microbiota tolerance are the ILC3, an ILC subtype that 

also expresses RORt. ILC3 express MHC-II molecules that carry and present commensal antigens to T 

cells. Upon binding of the MHC-II/antigen complex to commensal-specific TCR, ILC3 are able to induce 

cell death of the recognized T cell. This process is known as “intestinal selection”, because it mimics 

thymic selection involved in suppression of self-specific T cells. For example, intestinal selection is 

responsible for the deletion of Th17 cells activated by commensal SFB (Hepworth et al., 2013; Qiu et 

al., 2013). Apart from T cell suppression, ILC3 are the main producers of IL-22, a cytokine that induces 

the early production of AMP, such as REGIII preventing tissue invasion by Citrobacter rodentium or 

Alcaligenes species from the microbiota (Zheng et al., 2008; Sawa et al., 2011; Sonnenberg et al., 2012).  

Production of IL-22 is also important to increase mucus production and wound repair, highlighting the 

essential role of this cytokine for mucosal homeostasis (Zenewicz and Flavell, 2011). ILC3 also promote 

tolerance by enhancing Treg generation and suppressive functions in combination with myeloid cells 

(Zhou et al., 2019). For instance, macrophage sensing of bacterial compounds through the PRR family 

of Toll-like receptors (TLR) does not lead to the production of conventional TNF-, but instead they 

will generate mature IL-1. This is important because the activation of IL1-R in ILC3 induces the 

production of colony-stimulating factor 2 (Csf2)20 and IL-2. Csf2 importantly modulate myeloid 

functions and will induce the production of retinoic acid and IL-10, which favor Treg generation 

(Mortha et al., 2014). IL-2 is needed for proliferation of Th1, Th2 and Treg, but it inhibits Th17 

differentiation (Boyman and Sprent, 2012). Importantly, Treg express high levels of CD25, the IL-2 

receptor, allowing these cells to sequestrate IL-2 (as a sink), inhibiting Th1 and Th2 proliferation. This 

mechanism is crucial for homeostasis as CD25 depletion on Treg, or IL-2 depletion, result in 

inflammatory diseases (Waidmann et al., 2003; Schuppler et al., 2004; Chinen et al., 2016).  

As discussed in the past sections, Th17, ILC3 and RORt+ Treg that regulate type-3 immunity have a key 

role in maintenance of a symbiotic relationship between the host and the microbiota in the gastro-

intestinal track (Park and Eberl, 2018). Therefore, a better understanding of their role in other mucosal 

sites like the lungs, and of how they interact together and with local microbiota, is needed to improve 

the development of new prophylactic and therapeutic approaches to treat infectious and 

inflammatory diseases. 

 

4. Natural modulation of immunity by the microbiota 

a) Immune system development following microbial colonization 

The basal level of tolerance of our immune system toward the microbiota, which develops during 

infancy, is a key parameter for health. This initial tolerance level determines the lifetime relationship 

our immune system will have toward the microbiota and environmental antigens but also upon 

infection (Al Nabhani et al., 2019). Microbiota colonization is first possible because the newborn’s 

immune system is immature; at this stage, the protection of the mucosa is ensured by IgA and immune 

cells present in the maternal milk, and by the first microbial settlers that rapidly induce tolerance at 

mucosal sites (Belkaid and Hand, 2014). This tolerance is induced through different mechanisms. First, 

 
20 Csf2, previously known as granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine promoting 
proliferation and maturation of hematopoietic precursors differentiating into macrophages, DC or granulocytes. 
It can also activates some of these cells functions such as ROS production.  
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there is a reduced accumulation of effector immune cells. For example, Bacteroides fragilis is  known 

to reduce the accumulation of iNKT observed in the gut and lungs of germ-free neonates, which are 

susceptible to IBD and asthma (Olszak et al., 2012; An et al., 2014). Second, the repeated stimulation 

of PRR by MAMP (microbial associated molecular pattern) leads to hypo-responsiveness of sentinel 

cells. In neonates, intestinal epithelial cells develop a decreased ability to respond to TLR activation by 

LPS (lipopolysaccharides) and remain hypo-responsive during life, demonstrating this is a key 

mechanism to avoid hyper-inflammation later in life; neonates born by C-section fail to activate such 

mechanisms and become highly susceptible to different inflammatory disorders in adult life (Rakoff-

Nahoum et al., 2004; Lotz et al., 2006). Another example of this mechanism is that of macrophages, 

since stimulation of TLR signaling results in low oxygen radical activation and induction of the anti-

inflammatory IL-10, which then leads to an hypo-activating environment against microbiota (Kollmann 

et al., 2012). Finally, there is the induction of specific tolerogenic leukocytes. In mice, the increase in 

Clostridia species (e.g., SFB) during intake of solid food, along with factors present in the weaning milk, 

induces a particular immune response called “weaning reaction”. This allows the set-up of a 

tolerogenic immune system governed by RORt+ Treg; the inhibition of these cells increases the  risk 

to develop colitis, allergic inflammation and cancer (Al Nabhani et al., 2019).  

The establishment of tolerance towards the microbiota by the mechanisms described above does not 

mean the immune system is impaired or unable to develop resistance for life-time. On the contrary, 

upon microbiota colonization, secondary lymphoid structures will develop including the Peyers’ 

patches that are directly driven by microbial compounds (Mazmanian et al., 2005; Jijon et al., 2018). 

Similarly, stimulation of TLR signaling does not only mediate IL-10 production, but also that of IL-6 and 

IL-23, resulting in robust Th17 differentiation and higher protection of the epithelial barrier (Kollmann 

et al., 2012). Therefore, in order to protect themselves and their ecological niche, microbiota first 

settlers ensure a basic education of the newborn’s immune system establishing a basal level of 

tolerance accompanied by the reinforcement of homeostatic mechanisms to delineate critical physical 

boundaries between them and leukocytes.  

b) Immunomodulatory properties of particular species of the microbiota 

Symbiosis with the microbiota is so tightly intricate that it is difficult to decipher whether the immune 

compartment controls microbiota composition or vice-versa. In fact, both options may occur 

simultaneously, resulting in the complex crosstalk that we just begun to understand. Development of 

both compartments is dependent on the other. As previously mentioned, germ-free mice have an 

altered intestinal barrier and exhibit defects in the establishment of immunological peripheral 

tolerance. In particular, they possess fewer Treg (above all RORt+ Treg) and Th17 (Belkaid and Hand, 

2014; Ohnmacht et al., 2015; Sefik et al., 2015; Kim et al., 2016). Germ-free mice also have impaired 

epithelium tissue repair following injury, suggesting the important role of the microbiota in the 

maintenance of epithelial barrier integrity (Pull et al., 2005).  

Among the microbiota, there are individual microbes with particular strong immunomodulatory 

properties. These properties are dependent on two mechanisms that are the presence of a specific 

antigen repertoire or the production of soluble metabolites such as SCFA, both exerting varying 

immunomodulatory effects on different host cell types. In particular bacteria residing in proximity to 

host cells seem to have potent immunomodulatory properties. For instance, while Bacteroides 

thetaiotaomicron and Faecalibacterium prausnitzii influence mucus production, Lactobacilli species 

expressing an aryl hydrocarbon receptor (AhR)21 ligand enhance the ILC3 mediated AMP secretion and 

 
21 The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor having a key role in immune 
cell development and functions including IL-22 production by ILC3. 
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reinforcement of epithelial tight junctions (P. D. Cani et al., 2007; Lochner et al., 2011; Kinnebrew et 

al., 2012; Wrzosek et al., 2013; Zelante et al., 2013; Duranti et al., 2016; Schroeder et al., 2018). By 

contrast, avirulent Salmonella strains inhibit epithelial cell-derived production of inflammatory 

cytokines and promote tolerance (Neish et al., 2000). 

Microbiota recognition by the immune system induces the generation of Th17 and Treg. Likewise, 

certain bacterial antigens are also capable to induce high proportion of Th17 or Treg, which has 

consequences for the host health. In the case of Th17 cells, epithelium adherent bacteria (e.g., SFB) 

are able to induce specifically high levels of these effector T cells. For example, SFB mono-colonization 

of germ-free mice induces similar Th17 cell levels compared to those found in SPF mice (Ivanov et al., 

2009; Furusawa et al., 2013; Atarashi et al., 2015). In this context, Th17 differentiation is mediated by 

the high quantity of ATP released by this strain into the environment, which then induces epithelial 

cell-derived production of IL-6, IL-23 and TGF- in the lamina propria; these cytokines favor Th17 

differentiation during CD4+ T cell priming  (Atarashi et al., 2008). This induction is so strong that it 

occurs even during infection by Listeria monocytogenes, a strong Th1 inducer (Yang et al., 2014). 

Moreover, SFB-induced Th17 appear to be important to prevent pathogen infections, such as C. 

rodentium infection (Heczko, Abe and Finlay, 2000; Ivanov et al., 2009). Indeed, the presence of SFB at 

the epithelial surface makes it more complicated for this pathogen to access the lamina propria, and 

the specific induction of Th17 by this commensal participates in pathogen clearance. By contrast, in 

the case of Treg induction, many microbiota strains promote their differentiation and improve their 

suppressive functions, limiting specifically the differentiation of Th17. For instance, T cells specific for 

some Clostridia species, Helicobacter hepaticus, B. thethaiotaomicron or B. fragilis, acquire a Treg 

phenotype under homeostatic conditions (Round and Mazmanian, 2010; Lathrop et al., 2011; Nutsch 

et al., 2016; Xu et al., 2018). Such tolerogenic cells allow these bacteria to colonize niches at the 

proximity of epithelial cells, which benefits the host. This is further exemplified in the case of B. fragilis 

administration, which prevents many immune development defects observed in germ-free mice 

(Mazmanian et al., 2005), and reduces colitis and colitis-associated colorectal cancer developments 

(Mazmanian, Round and Kasper, 2008; Lee et al., 2018). This protective effect is due to B. fragilis-

derived polysaccharide A (PSA) binding to T cell TLR222, favoring Treg induction and their production 

of IL-10, while also suppressing the development of specific IL-17-producing Th17 (Round and 

Mazmanian, 2010; Round et al., 2011; Dasgupta et al., 2014). For this reason, some commensal 

compounds are referred to as “symbiont-associated molecular patterns” owing to their capacity to 

trigger different PRR signaling pathway, resulting in the discrimination of immune response to 

pathogens from immune tolerance toward commensals (Round et al., 2011).  

Apart from effect of antigens, many bacteria modulate immune functions through their production of 

soluble molecules or metabolites. In particular, SCFA, produced during fiber fermentation, are used by 

the host as carbon source to produce ATP and also modulate immune functions (Cummings et al., 

1987). The most abundant (in the colon) and best characterized SCFA are acetate, propionate and 

butyrate. Their functions are mainly mediated by binding to G protein-coupled receptor (GPR) GPR43, 

GPR41, GPR109a and olfactory receptor Olfr-78, present on epithelial and immune cells (Corrêa-

Oliveira et al., 2016). Also, butyrate and propionate (but not acetate) are reported to inhibit histone 

deacetylase activity, regulating epigenetic changes in immune cells (Arpaia et al., 2013). SCFA 

supplementation to immune cell culture medium in vitro, and administration in mice, have 

controversial effects depending on the context, SCFA concentration, and interaction with other factors 

 
 
22 TLR are not only expressed on myeloid cells but also on T cells. Their activation on T cell have been shown to 
promote Th17 or Treg differentiation depending on the antigen (Reynolds et al., 2010; Round et al., 2011) 
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(Corrêa-Oliveira et al., 2016). Also, their effect on a given cell type may be different depending on this 

cell differentiation stage (Schulthess et al., 2019). However, there are clear beneficial effects enacted 

by SFCA. First, SCFA have a strong potential to increase AMP production and modify 

cytokine/chemokine produced by epithelial cells (Kim et al., 2013; Kelly et al., 2015; Y. Zhao et al., 

2018). Second, they modulate macrophage activation, and may be linked to their LPS hypo-

responsiveness (Cox et al., 2009; Chang et al., 2014; Ciarlo et al., 2016; Lee et al., 2017). Interestingly, 

SCFA may promote macrophage antimicrobial activity without increasing inflammatory cytokine 

response, resulting in better resistance to pathogens (Schulthess et al., 2019). Third, SCFA modify the 

T cell compartment and are involved in Th17-mediated protection against C. rodentium infection, 

which is distinguished by an accelerated T cell memory response (Kim et al., 2013; Balmer et al., 2016). 

Fourth, they directly inhibit pathogen virulence through modulation of virulence genes expression 

(Gantois et al., 2006; Hung et al., 2013; Hryckowian et al., 2018). Last, SFCA production by some 

bacteria, such as Clostridia, strongly participate to immune tolerance. For instance, they modulate the 

DC priming capacity to enhance iTreg accumulation in mucosal tissues, reducing susceptibility to colitis 

and colorectal cancer (Liu et al., 2012; Arpaia et al., 2013; Furusawa et al., 2013; Singh et al., 2014; 

Gurav et al., 2015; Qiang et al., 2017). They also increase directly the Treg suppressive functions by 

establishing the acetylation of Foxp3 promoter (Thorburn et al., 2015).  

Therefore, through two different mechanisms, bacteria from the microbiota are key players in gut 

mucosal development and homeostasis. Yet, this role is not limited to the gut. Even if mechanisms are 

less characterized outside of the gut, it is now clear that the gut microbiota (partly via SCFA) modulate 

homeostasis at distal mucosal sites such as the lungs.  
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III. Role of the microbiota in respiratory health and disease 

Respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, acute lower 

respiratory tract infections and tuberculosis, are among the most common causes of death and severe 

illness (Forum of International Respiratory Societies The Global Impact of Respiratory Disease, 2012). 

The microbiota is altered in many of these diseases and this alteration may aggravate the disease 

outcome. Germ-free mice are susceptible to a wide range of respiratory diseases, including asthma, 

viral and bacterial infections, leading to pneumonia (Olszak et al., 2012; An et al., 2014; Brown, 

Sequeira and Clarke, 2017). For the past few years, there has been an intense focus in deciphering if 

the gut and/or pulmonary microbiota modulate lung immunity, and whether this knowledge could 

shed light on respiratory health and the prevention/treatment of disease.  

 

1. The lung immune system at a glance 

a) Entry limitation to the alveoli 

Although mucosal sites such as the gut and lungs share many basic features, they also have different 

functions, structure and exposure to the external environment, which overall shape their immune 

response. Being in direct contact with the external environment and highly vascularized, the lungs are 

potentially the portal of entry of many harmless particles and, unfortunately, dangerous pathogens. 

Therefore, the immune system at this site must be potent but also highly regulated. The first line of 

defense is composed of epithelial cells, which prevent microbe invasion throughout the respiratory 

tract. The respiratory tract is divided into the upper respiratory tract, ranging from the nares to the 

vocal cords (including the nasopharynx, oropharynx and part of the larynx), and the lower respiratory 

tract, going from the vocal cords to the alveoli (comprising part of the larynx, bronchi and bronchioles). 

Excepting in the alveoli, epithelial cells produce high levels of mucus and AMP, and they promote the 

constant elimination of bacteria and particles trapped in the mucus through mucociliary clearance, 

which acts like a brush expelling materials towards the respiratory tract (Grubor, Meyerholz and 

Ackermann, 2006). Like in the gut, IgA are produced in the lungs and limit bacterial invasion. In the 

alveoli, different epithelial cells are present, namely Type I and II pneumocytes, ensuring the gas 

exchange in the absence of mucus, which is replaced by less viscous alveoli surfactant. Contrary to the 

bronchi or bronchioles, pathogens reaching the alveoli are, therefore, highly prone to invade the 

interstitial tissue. As a compensatory mechanism, microbial invasion is usually prevented by the 

presence of alveolar macrophages. 

b) Characteristics of lung macrophages 

Two main subtypes of macrophages are found in the lungs: the alveolar and interstitial macrophages. 

Alveolar macrophages are present in the alveoli airspace, in direct contact with microbes. By contrast, 

interstitial macrophages (and other leukocytes) reside in the lung tissue, separated from direct 

microbial contact (Kopf, Schneider and Nobs, 2015). Both subtype express the macrophage markers 

F4/80, the receptor tyrosine kinase MerTK, the Fc receptor CD64 and the integrin CD11c. Alveolar 

macrophages can be discriminated as Siglec-FhighCD11blowMHC-IIlow cells, and  interstitial macrophages 

by Siglec-FlowCD11bhighMHC-IIhigh expression (Misharin et al., 2013). Alveolar macrophages arise from 

embryonic progenitors, differentiating in presence of Csf2 and mainly replenished by proliferation, 

while interstitial macrophages appear to derive from blood monocytes recruited in case of infection 

(Kopf, Schneider and Nobs, 2015; L. Huang et al., 2018). Inflammatory monocytes expressing Ly6C can 

also be recruited in response to inflammation. Alveolar macrophages have anti-inflammatory profile 
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under homeostatic conditions and produce IL-10 and TGF- to suppress activation of other immune 

cells. In addition, it seems that they can convert vitamin A into acid retinoic more efficiently than lung 

DC, which makes them the main inducers of iTreg in the lungs (Soroosh et al., 2013). Importantly, this 

induction occurs in the lung tissue and not in draining lymph nodes, suggesting a key establishment of 

tolerance to allergens in the lung mucosa. In addition, along with epithelial cells, alveolar macrophages 

have an important role in tissue integrity protection, partly achieved by their tight control of neutrophil 

recruitment (Kopf, Schneider and Nobs, 2015). Despite this "peace-keeping" role, alveolar 

macrophages can acquire a pro-inflammatory phenotype upon PRR activation by certain antigens, 

leading to increased phagocytic capacities and high secretion of IL-1, IL-6, TNF- and TGF-. While 

interstitial macrophages may have higher intracellular microbicidal properties, alveolar macrophages 

are still required to orchestrate an immune response following infection. For these reasons, and 

because these cells are at the first contact, pathogens have developed various mechanisms to 

counteract alveolar macrophages functions. 

c) Lung dendritic cells and the T cell response 

In addition to macrophages, DC have important functions in the lungs. Different subtypes of DC are 

present in the lungs, the most abundant being conventional DC (cDC)(Chen and Kolls, 2013). Lung cDC 

are continually replenished from bone marrow progenitors, and their differentiation from blood 

monocytes depends on Fms-related tyrosine kinase 3 ligand (Flt3L) and Csf2. In general, there are two 

subtypes of DC present in the lungs: i) CD103+ DC, which are dependent on the basic leucine zipper 

transcriptional factor ATF-like (BATF)3, and ii) CD11b+ DC, which rely on IRF4 expression (Kopf, 

Schneider and Nobs, 2015). Resident conventional DC present directly below the epithelium are able 

to sample many antigens either directly, through the extension of dendrites across alveolar epithelial 

cells into the alveoli, or indirectly, when delivered by M cells (Jahnsen et al., 2006). Upon antigen 

sampling and acquisition, they will prime naïve T cells present in the lung-draining lymph nodes or in 

bronchus-associated lymphoid tissue. Noticeably, it seems that CD103+ DC are more prone to induce 

Th1 or Th2, while CD11b+ DC have a tendency for differentiating Th17 and Th2, but these modes of 

action depend on environmental factors (Kopf, Schneider and Nobs, 2015).  

Similar to the gut, CD4+ T cell subtypes in the lung are important for clearance of different types of 

pathogens. Their short lifespan usually allows high activation of immune cells by T cell pro-

inflammatory cytokine secretion without damaging the lung tissue. However, dysregulated T cell 

responses have been associated with many chronic lung diseases. For example, allergic induction of 

Th2 leads to asthma development. In COPD and cystic fibrosis, impaired elimination of pathogens, due 

to altered production of surfactant and AMP by epithelial cell, lead to persistent activation of T cells 

and prolonged inflammation resulting in parenchymal lung damage (Chen and Kolls, 2013).  

DCs mainly determine the status of the lung T cell compartment. Even if they are less efficient than 

alveolar macrophages, CD103+ DC are also able to induce iTreg along with their protective effects 

against inflammatory disease. This involves TGF- production by lung stromal cells, driving DC toward 

a regulatory phenotype and inducing iTreg, which then reduce the Th2 response in allergic asthma 

models (Li et al., 2008). CD103+ DC are also able to induce effector CD8+ T cells during infections, while 

CD11b+ DC are important for the generation of central memory CD8+ T cells (Kopf, Schneider and Nobs, 

2015).  

It is known that APC from the gut or skin can induce T cells that specifically home to the gut or skin. 

Recently, it has been demonstrated that DC and macrophages activated in the lungs are similarly able 

to imprint T cell lung homing, which is mediated through induction of CCR4 expression (Mikhak, 
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Strassner and Luster, 2013). The success of the adaptive immune response largely depends on the 

rapidity of T cell homing during infection, which is accelerated by CCR4 expression. Therefore, lung 

APC play a key role in T cell-mediated protection against respiratory infections. As such, their 

interaction in the lungs with microbiota components may play a crucial role in maintenance of 

respiratory health (Mikhak, Strassner and Luster, 2013).  

 

2. The gut-lung axis 

As previously mentioned, dysbiosis of the gut microbiota alters the intestinal homeostasis, including 

the immune cell compartments. In the last years, however, evidence accumulated to demonstrate that 

the gut microbiota is also implicated in homeostatic functions at distal sites, such as the brain, liver, 

kidney, adipose tissue or the lungs (Schroeder and Bäckhed, 2016; Dinan and Cryan, 2017). 

Additionally, gut microbiota dysbiosis is often observed in patients with respiratory diseases, such as 

asthma or cystic fibrosis (Abrahamsson et al., 2014; Bruzzese et al., 2014). Mechanisms linked to this 

distal effect of the gut microbiota are diverse and include direct modulation of immune cells at 

peripheral sites by microbiota-derived compounds, or indirectly by the modulation of the gut 

leukocytes creating a systemic effect. 

Multiple studies demonstrated that production of soluble mediators, such as SCFA, which can reach 

the blood stream and bind immune cell receptors in distant organs, is highly involved. In particular, 

this mechanism contributes to the effect of gut microbiota on pulmonary immunity by the so-called 

“gut-lung axis”. Indeed, mice deficient for the SCFA receptor GPR43, or under low-fiber diet 

(decreasing microbial SCFA-producers), developed aggravated inflammation in models of allergic 

asthma or infection with Klebsiella pneumoniae compared to WT mice (Maslowski et al., 2009; 

Trompette et al., 2014; Galvão et al., 2018). By contrast, SPF mice under high-fiber diet (increasing 

microbial SCFA-producers), or receiving SCFA administration, are more resistant to, infection with K. 

pneumonia or Influenza virus, and develop less allergic asthma, or sepsis- or LPS-induced lung injury 

(Zhang et al., 2010; Trompette et al., 2014, 2018; Thorburn et al., 2015; Galvão et al., 2018; Li et al., 

2018). In humans, high fiber diet is also associated with increased SCFA levels and low incidence of 

asthma, suggesting an overall protective role for gut microbiota-derived SCFA in respiratory health (De 

Filippo et al., 2010). It is thought that the beneficial effects by SCFA are mediated by their capacity to 

modulate the lung myeloid compartment. One proposed mechanism is that SCFA regulate 

hematopoiesis in the bone marrow, generating monocyte differentiating in DC or macrophages with 

lower inflammatory properties (Trompette et al., 2014, 2018). This is linked with fewer pro-

inflammatory lung Th2 cell induction in an allergic asthma model, as demonstrated by propionate 

administration in mice which reduce lung pathology (Trompette et al., 2014). Acetate also improves 

asthma through induction of Treg in the lungs (Thorburn et al., 2015). During flu infection, high fiber 

diet (or butyrate administration) increased monocyte recruitment to the lungs, increased 

differentiation of macrophages into more anti-inflammatory cells, and decreased neutrophil 

infiltration, reducing lung tissue pathology. In parallel, butyrate modulated CD8+ T cell metabolism 

enhancing their ability to kill infected cells, thus improving infection resolution (Trompette et al., 

2018). In spite of reducing inflammation mediated by macrophages, SCFA also improved phagocytosis 

and bacterial killing during infection of the lungs, as observed in the gut (Galvão et al., 2018). 

Collectively, SCFA produced by the gut microbiota enhance pathogen clearance, limit the inflammatory 

response, and protect the lungs from various inflammatory pathologies. 



 55 

Beyond SCFA, gut microbiota MAMP (microbial associated molecular pattern) recognition by PRR 

mediate protection against respiratory diseases (Brown and Clarke, 2017). While bacteria from the gut 

microbiota are mainly restricted inside the gut lumen, bacterial components such as LPS or 

peptidoglycan may pass the epithelial barrier and bind PRR outside the gut (Patrice D. Cani et al., 2007; 

Clarke et al., 2010; Iwamura et al., 2017).  In the lungs, Nod-like receptors (NLR) signaling is particularly 

important. Indeed, gut microbiota-derived NLR ligands increase the IL-17 concentration in the lungs, 

which in turn increases that of Csf2, and, as previously described, Csf2 improves alveolar macrophage 

phagocytosis and bacterial killing properties, leading to better protection against respiratory bacterial 

infection and resistance to allergic responses (Clarke, 2014; Schuijt et al., 2016; Brown, Sequeira and 

Clarke, 2017). Conversely, defects in NLR stimulation by microbial ligands result in increased 

susceptibility to Streptococcus pneumoniae following antibiotic treatment (Brown, Sequeira and 

Clarke, 2017). In addition, NLR activation by the microbiota also limits neutrophil recruitment and 

modulates monocyte hematopoiesis, arguing for a wide range of effects enacted by gut-microbiota 

MAMP outside the gut (Clarke et al., 2010; Brown and Clarke, 2017; Iwamura et al., 2017). 

Furthermore, other type of PRR may be implicated in the distal effects exerted by microbial-derived 

compounds. For example, TLR4 triggering by gut-derived LPS seems essential for efficient immune 

response to influenza infection and to prevent asthma (Ichinohe et al., 2011; Qian et al., 2018). 

Altogether, these studies clearly highlight the importance of microbiota-derived soluble compounds in 

the gut-lung axis and promote their exploitation for prophylactic and therapeutic purposes (this aspect 

will be discussed in subsection IV). 

The gut-lung axis is also influenced indirectly by the capacity of the microbiota to modulate gut 

leukocytes. T cells induced by the gut microbiota, in particular Th17, can migrate from the gut to the 

lung under the influence of CCL20/CCR6 (Bradley et al., 2017; Samuelson et al., 2017). Gut T cells also 

migrate to the bone marrow, where they produce cytokines such as IL-17, and modulate myeloid cell 

generation and phenotype (Chen and Kolls, 2013). ILC3 primed in the gut can also migrate to the lung 

where they either contribute to the protection against pneumonia (Gray et al., 2017) or   promote lung 

pathology, depending on the circumstances (Bradley et al., 2017). 

In conclusion, the gut microbiota contributes directly and indirectly to lung immunity, emphasizing the 

strong need to better understand the mechanisms implicated in this process to better prevent and 

treat respiratory diseases. However, such understanding may not be sufficient, as it is clear now that 

the respiratory tract also harbors its own microbiota. 

 

3. Role of the local pulmonary microbiota 

a) Composition and organization of the microbiota in the respiratory tract 

 The lungs were considered for a long time as a sterile organ. However, recent technological advances 

in 16S RNA sequencing and culture methods demonstrated that it is not the case. Detection of lung 

microbiota was difficult because i) the bacterial load in the lungs is low (103-5 CFU/g, compared to 1011 

CFU/g in the colon, for instance); ii) it is hardly accessible, often leading to contaminations during 

sampling; iii) intrapulmonary conditions are difficult to mimic as culture media (Charlson, Bittinger, et 

al., 2012; Sze et al., 2012; Marsland and Gollwitzer, 2014; Dickson and Huffnagle, 2015; Mathieu et al., 

2018). As in the gut, the respiratory tract contains different compartments with gradient of pH, oxygen 

and CO2 concentrations, humidity and temperature that offer different niches for various microbial 

needs (Man, De Steenhuijsen Piters and Bogaert, 2017) (Figure 9). In contrast to the digestive tract, 

the final compartment of the respiratory tract, lung alveoli, harbors low microbial diversity; they are 
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dominated by Bacteroidetes and Firmicutes with predominance of Streptococcus, Prevotella, and 

Veillonella genera (Erb-Downward et al., 2011; van der Gast et al., 2011; Charlson, Diamond, et al., 

2012; Man, De Steenhuijsen Piters and Bogaert, 2017). The lung microbiota share a more similar 

composition with the mouse microbiota compared to the nose microbiota (Figure 2), suggesting that 

the major source of lung microbes is immigration from the oral cavity into the upper and then lower 

respiratory tracts (Bassis et al., 2015; Dickson and Huffnagle, 2015; Venkataraman et al., 2015). 

Therefore, it is not surprising that the upper and lower respiratory tracts share multiple species, whose 

relative quantities depend on the different environmental conditions (Erb-Downward et al., 2011). The 

respiratory microbiota composition is highly dynamic. Many of the colonizing microbes are eliminated 

by mucocilliary clearance, cough and the immune system (Dickson and Huffnagle, 2015). In the lungs, 

microbes are indeed in direct contact with alveolar macrophages, which limit their growth in an 

environment already poor in nutrients23. Hence, except during diseases, bacteria may only transiently 

be present in the lungs rather than established (Man, De Steenhuijsen Piters and Bogaert, 2017). 

However, it is possible that passage through the respiratory tract select bacteria entering the lungs. 

Indeed, IgA may prevent colonization of some species over others (Man, De Steenhuijsen Piters and 

Bogaert, 2017). As already mentioned, the hypothetical presence of a mucus layer in the lower 

respiratory track would impair gas exchange, just like the one in the colon lowers nutrient import 

(which is less crucial as nutrients are highly imported in preceding gut compartments). In the absence 

of a mucus layer in the lower respiratory system, high bacterial load would be too much of a high risk 

for potential infection. Is it possible then that our body provides a specialized mucus layer in the colon 

and cecum as an environment very favorable to microbiota colonization, in order to benefit for their 

global immunomodulatory functions, which may complement site-specific interactions at other 

mucosal tissues, through a distal effect (e.g., the gut-lung axis). 

In spite of its dynamic aspect, the lung microbiota composition is similar across many individuals, 

suggesting the existence of a “core lung microbiota” that may be composed of species that resist better 

than others against the toxic mechanisms (e.g., IgA or AMP) encountered in the upper respiratory tract 

(Figure 10). Another element arguing for the presence of a specific microbiota in the lungs is the rapid 

alteration in microbiota composition following drastic life-habit changes of the host. As the gut 

microbiota, the  lung microbiota composition is altered by the diet and antibiotic use, increasing 

susceptibility to respiratory infections or asthma  (Leibovitz et al., 2003; Madan et al., 2012; Pettigrew 

et al., 2012; Trompette et al., 2014). Lung microbiota is also impacted by specific environmental factors 

such as cigarette smoking, air pollution and respiratory infections (Pettigrew et al., 2012; Man, De 

Steenhuijsen Piters and Bogaert, 2017). Interestingly, dysbiosis of the microbiota in the lower 

respiratory track does not always correlate with dysbiosis occurring in the mouth microbiota, 

highlighting the differences in the microbiota species according to their niche (Morris et al., 2013). 

Dysbiosis of the microbiota in the lower respiratory track is also observed in diseases such as chronic 

obstructive pulmonary disease (COPD), asthma or cystic fibrosis (Hilty et al., 2010; Erb-Downward et 

al., 2011; van der Gast et al., 2011). In these diseases, the equilibrium between dispersion, growth and 

elimination, is disturbed in favor of certain species, such as Proteobacteria (Marsland and Gollwitzer, 

2014). Therefore, environmental or genetic factors may induce dysbiosis that would in turn facilitate 

infection and/or aggravate disease outcome, but the causality relationship has not been clearly 

established.  

 
23 Nutrient sources for the microbiota are limited in the respiratory tract which seems to rely on host compounds, 
such as Igs, cytokines, defensins, lactoferrins, and mucins. (Mathieu et al., 2018) 
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Figure 9: Composition of the microbiota along the respiratory tract. Similar to the intestine, the microbiota is 
diverse in the lung depending on the physiological changes taking place from upper to lower respiratory tracks. 
Indeed, changes such as pH, relative humidity (RH), temperature, oxygen and carbon dioxide pressures, create 
different niches for various microbial needs. In contrast to the intestine, however, the end of the respiratory tract, 
lung alveoli, harbors low microbial diversity. Figure from (Man, De Steenhuijsen Piters and Bogaert, 2017). 

 

 

 

Figure 10: Host-microbiota cross-talk in the respiratory tract. Microbial invasion in the lung are prevented by 
mucus and AMP production by epithelial cells of the upper respiratory tract and lung airway, along with 
mucoscilliary clearance, secreted IgA and the local immune system. Interaction between immune cells and the 
microbiota modulates this immune response. The respiratory microbiota is formed by micro-aspiration and 
dispersion of environment and resident microbes and shaped by the respiratory tract niches and 
genetic/environmental parameters affecting the host. The respiratory microbiota is involved in modulation of the 
lung immune system resulting either in the improvement of pathogen clearance or establishment of 
immunological tolerance. In the latter point, it participates to the development of tolerance in neonates by 
reducing the accumulation of inducible Natural Killer T cells (iNKT) via epigenetic modulations of the chemokine 
CXCL16; it induces a tolerogenic phenotype in DC that will promote iTreg development, reducing the incidence of 
inflammatory disorder like asthma susceptibility. In addition, the gut microbiota can modify lung immune response 
through distal priming of immune cells, among other mechanisms. AEC: alveolar epithelial cells. Figure from (Man, 
De Steenhuijsen Piters and Bogaert, 2017). 
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Because of its low abundance, many scientists doubted that the lung microbiota could exert functions 

on host health. However, emerging evidence suggest that stable colonization and high load are not 

required for microbiota to exert its functions. For example, the skin microbiota, which is of much lower 

density than the gut microbiota and highly transient, has a prominent role in protection against skin 

infections, as compared to the gut-skin axis (Naik et al., 2012). Therefore, different dynamics may be 

responsible for the microbiota composition at different body sites, which may be crucial to sustain 

local health in addition to immunomodulatory properties of the gut microbiota. 

 

b) Functions of the pulmonary microbiota on respiratory health 

Early neonate colonization of lung by microbiota is involved in the respiratory tract development. 

Indeed, reduction of bacterial colonization is associated with altered alveoli architecture, which can be 

restored by nasal administration of Lactobacillus species (Yun et al., 2014; Man, De Steenhuijsen Piters 

and Bogaert, 2017). Microbiota acquisition at this period is also key to shape the lung immune 

response. Indeed, before microbiota acquisition, SPF neonates are as sensitive to allergic asthma as 

germ-free ones whereas adult SPF mice exhibit protection against asthma as compared to germ-free 

mice or neonates (Olszak et al., 2012; Gollwitzer et al., 2014; Remot et al., 2017). This susceptibility is 

associated with highly activated CD11b+ DC, exaggerated type-2 immunity activity, and accumulation 

of NKT cells. As observed in the gut, microbiota acquisition in the lung transiently modulates DC 

phenotype, inducing their expression of programmed death ligand 1 (PD-L1), which foments the 

differentiation of iTreg to establish long-term tolerance (Gollwitzer et al., 2014). Importantly, nasal 

administration of one pulmonary Enterococcus faecalis strain in neonates reduced dramatically type-

2 immunity and the incidence of allergic asthma (Remot et al., 2017). These findings suggest that, in 

addition to SCFA produced by the gut microbiota, the interaction between lung microbiota with local 

APC promote immunological tolerance that is essential to respiratory health (Figure 10).  

As of today, no study has shown that the specific absence or dysbiosis of the lung microbiota alter 

immune responses during infections. However, in different studies, nasal administration of pulmonary 

bacteria induced strong immune modulations that were protective in mouse models of infection and 

asthma, suggesting that this is the case (as detailed in subsection IV.4). For example, following the 

alteration of both gut and lung microbiota by antibiotic treatment of mice, nasal administration of high 

Nod2-stimulating Lactobacillus crispatus, Staphylococcus aureus or Staphylococcus epidermidis 

(species present in the lung microbiota), was sufficient to drive the production of Csf2,a cytokine 

promoting Streptococcus pneumoniae or Klebsiella pneumoniae clearance by macrophages-derived 

ROS (Brown, Sequeira and Clarke, 2017). Noticeably, oral administration of high NOD2-stimulating 

bacteria representative of gut microbiota species had the same protective effect, but the nasal 

administration of these bacteria failed to accomplish so (Brown, Sequeira and Clarke, 2017). Therefore, 

lung mucosal myeloid cells may have specific interactions with pulmonary bacteria, better adapted to 

survive in the lung environment and/or to interact with lung immune cells in comparison to strains 

from the gut microbiota. This study also suggests that while some mechanisms used by the gut and 

lung microbiota to modulate immune functions may be different and complementary, others may be 

conserved and redundant such as the induction of Csf2-dependent protective effects in the lungs. Of 

note, in this study, nasal administration of low NOD2-stimulating bacterial strains from the lung 

microbiota did not improve S. pneumoniae or K. pneumoniae clearance, suggesting that, as in the gut, 

individual bacterial strains from the lung microbiota possess particular immunomodulatory properties. 
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Altogether, this study highlights the strong need to further characterize strains of the respiratory 

microbiota and to identify those having key role in respiratory health. 

Apart from immunomodulatory functions, the microbiota of the respiratory tract may also play a role 

in resistance to colonization by pathogens. Evidence suggests that competition between species exists 

in the nose; for instance, resident S. epidermidis secretes proteases that inhibit invading S. aureus 

biofilm formation, while resident Corynebacterium accolens releases antibacterial fatty acids that 

prevent growth of invading S. pneumoniae (Iwase et al., 2010; Bomar et al., 2016). Cooperation of the 

immune system and commensals present in the respiratory tract may be crucial to prevent pulmonary 

infections, as many pulmonary species  (e.g., S. pneumoniae) are commensals of the upper respiratory 

tract but, if not controlled, may reach the lower respiratory track where they become pathogenic 

(Wypych, Wickramasinghe and Marsland, 2019). Further studies are needed to establish whether the 

interactions described above also occur in the lower respiratory tract.  

As previously discussed, the gut-lung axis is important for respiratory health and disease; for example, 

IBD causes alterations of respiratory functions (Douglas et al., 1989; Songür et al., 2003). Nevertheless, 

the opposite may be true as well as some respiratory disorders are associated with gastro-intestinal 

symptoms (Sze et al., 2014; Samuelson et al., 2016; Wypych, Wickramasinghe and Marsland, 2019). A 

study in the mouse model showed that influenza infection altered the gut microbiota through 

migration of lung-derived Th1 cells to the intestine. This microbiota alteration further results in Th17-

producing IL-17 leading to intestinal damage (Wang et al., 2014). Altogether, this suggests that the gut 

microbiota is not the only one impacting health at distant site. Further studies with other models 

should be performed to formally assess whether the gut-lung axis is bidirectional, and to determine if 

lung microbiota/pathogens affect intestinal (and other mucosal site) immunity. Indeed, we may 

consider the global microbiota as an entire organism with components at different sites equivalent to 

“microbial organs”, communicating between them and with the host, to ultimately promote the super-

host health.  

In conclusion, microbiota highly interacts with the immune system and pathogenic bacteria, and it is 

involved, consequently, in health and disease. It is, therefore, a target of choice to improve health not 

only of the intestine, but also at multiple other sites, including the respiratory tract. 
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IV. Manipulation of the microbiota to improve the host health 

Long before understanding of the mechanisms by which the microbiota interacts with the immune 

system in health and disease, fermented products such as Kefir or Kombucha have been part of 

traditional regimens in different human cultures, and are now globalized, to improve digestion and 

prevent diseases. In the 1900’s, Metchnikoff rationalized this practice, theorizing that senility was 

caused by the reaction of the immune system to harmful putrefactive bacteria present in the colon, 

which he supposed could be replaced by lactic bacteria over yogurt consumption (Mackowiak, 2013). 

With the discovery that many diseases are linked to microbiota dysbiosis, Metchnikoff original ideas 

about the modification of microbiota to improve health gained interest. Since then, different strategies 

have been developed that comprise fecal microbiota transplantation, probiotic, prebiotic or postbiotic. 

Their preventive and therapeutic potential have been assessed in animal models and for some, 

validated in humans. In addition to participating in the development of therapeutic applications, the 

studies presented in this section also contributed to improve our fundamental knowledge on host-

microbiota interaction mechanisms. 

1. Fecal microbiota transplantation 

Many studies have assessed a causal link of microbiota dysbiosis in different diseases. This was mainly 

assessed by colonizing germ-free mice with fecal microbiota content from patients versus healthy 

donors; the majority of the results clearly demonstrated that microbiota from patients increased 

susceptibility to disease (Goodrich et al., 2014; Blanton et al., 2016; Britton et al., 2019; Wong and Yu, 

2019). Based on these results, it can be hypothesized that the replacement of a patient microbiota 

showing dysbiosis by the microbiota of a healthy individual (that usually reflects eubiosis) will reduce 

the incidence/outcome of a given disease. Fecalotherapy or fecal microbiota transplantation (FMT), 

consisting of oral administration of microbiota strains obtained from fecal material, has the potential 

to replace the receiver microbiota by the donor one. In some models, colonization of diseased mice 

with microbiota from healthy mice protected them from disease development, supporting FMT as a 

therapy (Seekatz et al., 2015; Tian et al., 2016; Zhou et al., 2017; Le Bastard et al., 2018). FMT was first 

realized in humans in the 1950’s for the successful treatment of patients against Clostridium 

difficile enterocolitis (EISEMAN et al., 1958). The food and drug administration (FDA)24 has approved 

microbiota-based therapy for this disease. It is in fact the best treatment for  severe and recurrent 

cases of this infection, where antibiotics are poorly efficient (Van Nood et al., 2013; Quraishi et al., 

2017; Cammarota, Gallo and Bibbò, 2019). By contrast, the use of FMT against other diseases (e.g., 

IBD) had limited effect (Libertucci and Young, 2019; Wong and Levy, 2019). This issue highlights our 

need for better understanding the interactions between the different species forming the microbiota, 

as well as their interaction with pathogens and with the host. In the case of C. difficile infection, the 

efficacy might be higher because microbiota strains interact directly with the pathogen, avoiding the 

complexity of host interactions. While promising, FMT raise the risk to transfer pathobionts to the 

receiver, causing disease in this new environment or to induce a negative interaction with natural 

bacteria from the receiver leading to bad outcomes (Wong and Levy, 2019). Therefore, many efforts 

have been invested on searching for alternative strategies targeting the microbiota. 

 
24 The FDA is a US federal agency responsible for protecting and promoting public health. All drugs must be 
approved by this agency after extensive examination of clinical trials (that are also authorized by the FDA) before 
commercialization. 
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2. Traditional probiotic approaches 

a) First generation probiotics 

In parallel to FMT development, many studies were performed to identify beneficial micro-organisms 

that could be used to improve health by modifying the host-microbiota interaction. The Food and 

Agriculture Organization (FAO) and the World Health Organization (WHO) named these live 

microorganisms, whose administration in adequate amounts confer a health benefit on the host, 

“probiotics” (FAO/WHO 2001). The search for probiotic candidates started with the study of 

Lactobacillus and Bifidobacteria species from fermented products. Many strains of this origin were 

found to reduce inflammation in IBD models and prevent infections through immunomodulatory 

properties, decreased gut permeability or direct inhibition of pathogen growth, using in vitro and 

animal models (Medellin-Peña and Griffiths, 2009; Hsieh et al., 2012; Torres-Maravilla et al., 2016). 

These bacteria have a food-grade status, namely Qualified Presumption of Safety status (QPS) in 

Europe and Generally Recognized as Safe (GRAS)25 in the United States, which allowed their rapid 

commercialization for human consumption as probiotic products. Commercialized probiotics are 

mainly composed of the yeast Saccharomyces cerevisiae (boulardii); Lactobacillus species, such as L. 

rhamnosus, L. plantarum, L. casei, L. salivarius, or L. acidophilus; Bifidobacterium species, including B. 

bifidum, B. bifidus, or B. lactis; Streptococcus thermophiles and Streptococcus acidophilus; Lactococcus 

lactis, Enterococcus SF68; and Escherichia coli Nissle 1917. These probiotic strains or mixtures of them 

are commonly added to foods such as milk products, allowing their survival and delivery to the 

intestinal mucosa (Pandey, Naik and Vakil, 2015; Tsai et al., 2019). Comparative studies in humans 

suggest that probiotics may be effective in preventing antibiotic-associated diarrhea, enterocolitis, 

lactose intolerance and upper respiratory tract infections in children (McFarland, 2006; Pandey, Naik 

and Vakil, 2015; Plaza-Díaz et al., 2018). Yet, despite the generated and commercialized enthusiasm, 

there is a lack of clear clinical evidence to support the health benefits of these microorganisms in many 

disease contexts. Guidelines from the FAO and WHO emerged to regulate probiotic development, 

requesting the assessment of microbial strain identity and experimental proof for the strain safety, 

along with assessment of health effect in humans (M. J. Kim et al., 2018). 

Recent understanding of the mechanism of action of gut commensals and comparative studies of 

probiotic candidates in mice, indicate that some properties, including probiotic effects, can be either 

shared between bacteria from the same species, or specific to individual strains. Indeed, while 

secretion of lactic acid is shared by all lactobacilli, other products (e.g., bacteriocins) can be strain 

specific as well as their expression of MAMP (Hart et al., 2004; Foligne et al., 2007; Medellin-Peña and 

Griffiths, 2009; Sahoo et al., 2015). As example, L. reuteri, L. casei or L. rhamnosus JB-1 strains but not 

L. murinus or L. plantarum strains can bind to the DC-SIGN receptor26, leading to delayed microbe 

internalization, poor expression of co-stimulatory molecules and production of IL-10 in DC, and thereby 

favouring an increase in Treg-producing IL-10 over effector T cells (Smits et al., 2005; Konieczna et al., 

2015). Similarly, binding of L. salivarius Ls33 peptidoglycan muropeptide M-tri-Lys (but not L. 

acidophilus NCFM peptidoglycan devoited of this muropeptide) to NOD2 receptor induces IL-10 and 

retinoic acid production in DC, which then enable Treg differentiation to protect mice from 

experimental colitis (Foligne et al., 2007; Fernandez et al., 2011). Furthermore, not all Lactobacillus 

 
25 The QPS status is granted by the European Food Safety Authority as the GRAS status is given by the FDA to 
microorganisms used in food products that are well identified and lack pathogenic properties as demonstrated 
by experts. This assumption of safety exempts them of usual food additive tolerance requirements. 
26 Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) is PRR of the C-type 
lectin family presents on the surface of macrophages and DC that recognizes mannose type carbohydrates found 
on viruses, bacteria and fungi. 
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strains induce immunological tolerance through Treg activity. For example, the L. casei CHCC3139 

strain induces highly pro-inflammatory cytokines IL-12, IL-6, and TNF- when co-cultured in vitro with 

DC, suggesting that different strains of the same species can have opposite effect (Christensen, 

Frøkiaer and Pestka, 2002). In addition, while some strains have a synergistic effect, others have 

antagonistic effect, complicating the design of probiotic mixtures and questioning their interaction 

with the natural microbiota after administration  (Christensen, Frøkiaer and Pestka, 2002; Chapman, 

Gibson and Rowland, 2011). In addition to PRR activation, secretion of soluble molecules is also 

involved in some lactobacilli-based probiotic effect. For instance, L. reuteri 17938 induction of Treg (via 

DC modulation) is recapitulated by the use of supernatant derived from this strain (Haileselassie et al., 

2016).  

Altogether, the emerging picture is that the broad use of probiotics may not be efficient to prevent 

and treat all diseases, in spite of the reported efficacy achieved by specific individual probiotic for some 

diseases. Better knowledge of the mechanisms involved may allow the design of rationalized 

approaches to screen different strains using in vitro and animal models to select the best candidates 

before testing in clinical trials for a dedicated disease. Ongoing studies determining administration 

protocols allowing best efficacy of probiotic candidates (that may differ depending on the strains or 

disease) and higher standardization in pre-clinical models are also likely to improve probiotic efficiency 

in clinical trials (Dumas, Bernard, et al., 2018). In parallel, a better characterization of traditional 

probiotic strains and how to improve their beneficial effect, will likely advance other microbiota-based 

therapeutic strategies, including the use of prebiotics/synbiotics.  

b) Prebiotics and synbiotics 

Prebiotics are components of the diet that change the composition or activity of the gastrointestinal 

microbiota to engender health in the host. Most prebiotics are oligosaccharide carbohydrates, such as 

fructans or galacto-oligosaccharides, which promote the growth of Lactobacillus species over other 

species (Davani-Davari et al., 2019). The development of prebiotic is evolving rapidly with the use of 

bioinformatics tools that predict microbiota species able to metabolize a given prebiotic. However, this 

approach can be complex because some prebiotic may promote indirectly the growth of unexpected 

microorganism that feed on by-products of a given prebiotic fermentation, a process referred to as 

cross-feeding. Most prebiotic effects converge on increased production of of SCFA (see subsection II) 

(Rycroft et al., 2001; Artiss et al., 2006; Venkataraman et al., 2016). Prebiotics may also reduce 

pathogen binding to epithelial cells, as demonstrated for the monosaccharide mannose (Oyofo et al., 

1989). The effect of prebiotic is mainly beneficial against intestinal diseases, such as colorectal cancer, 

but it can also be relevant for skin diseases (e.g., atopic dermatitis), cardiovascular diseases or mental 

disorders (Davani-Davari et al., 2019). They may be particularly suitable to prevent acute infections in 

children (Lohner et al., 2014). However, as for probiotics, while clinical studies globally promote the 

potential of prebiotics, the results concerning their efficacy remain controversial. Their advantage over 

probiotic is that they may be suitable for larger human populations because they target large groups 

of bacteria (rather than a unique one). In addition, some of them are present in natural sources (e.g., 

the prebiotic inulin is present in chicory), inferring they can easily be added to diet to improve health.  

Synbiotics refer to the combination of probiotic and prebiotic. Their function can either be 

complementary (action involving two different mechanisms independently promoting health) or 

synergistic (with the prebiotic supporting growth or activity of the probiotic). Most of the time, 

prebiotic allow survival of the probiotic strain through the upper intestinal tract (Pandey, Naik and 

Vakil, 2015). Some of them are currently tested in humans. For instance, the combination of L. 

sporogens and fructo-oligosaccharides reduced antibiotic induced diarrhea in children (La Rosa et al., 
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2003). They represent an attractive strategy to improve traditional probiotic efficacy, but still requires 

further investigation.  

While most studies suggest that probiotic, prebiotic and symbiotic could improve human health in 

many inflammatory disorders, clear evidence for their efficacy is lacking. Furthermore, even if 

administration of probiotic or prebiotic is safe in most individuals, cautions should be taken for their 

administration to immuno-compromised populations including young children. Consequently, in 

parallel with the optimization of traditional probiotics and the development of new candidates, 

additional strategies targeting microbiota are sorely needed (Tsai et al., 2019). They comprise the use 

of strains that may have more specific and efficient protective role against dedicated diseases, and the 

direct delivery of active compounds from the microbiota as described in the next section. 

 

3. Next-generation probiotics and postbiotics 

a) Rational design for the development of new probiotics 

Comparison of microbiota from healthy and ill individuals identified unique microbiota strains that are 

strikingly decreased during disease, such as Akkermansia muciniphila, Faecalibacterium prausnitzii, 

Bifidobacterium species or B. fragilis. It has been postulated that these bacterial strains, adapted to 

the intestinal environment, could modulate the microbiota composition and have higher beneficial 

effects compared to common Lactobacillus species, thus representing very promising microbiota 

candidates for the development of next-generation probiotics (Chang et al., 2019). The main challenge 

for the probiotic use of these gut-microbiota strains was to isolate and cultivate them in vitro, which 

is a difficult task, in particular for strict anaerobic strains. Recent advances in this field have allowed a 

better characterization of these strains and their beneficial effect to the host (Duncan et al., 2002; 

Derrien et al., 2004). For example, administration of A. muciniphila ATCC BAA-835 in obese and type-

2 diabetes patients, carrying low levels of this species, improved some metabolic parameters (such as 

increase of insulin sensitivity or decrease in plasma cholesterol). In addition, administration of the 

Amuc_1100 protein from this strain also mediated a protective effect in mouse models of obesity ad 

type 2 diabetes (Everard et al., 2013; Plovier et al., 2017; Depommier et al., 2019). Similarly, one of the 

most abundant bacterium in healthy adults, F. prausnitzii, is reduced in different diseases including 

IBD, colorectal cancer or obesity (Hold et al., 2003; Sokol et al., 2008; Rajilić-Stojanović et al., 2011; 

Martín, Bermúdez-Humarán and Langella, 2018). Accordingly, F. prausnitzii A2-165 and HTF-F strains 

reduce inflammation in different colitis models, and restore intestinal permeability through Treg 

induction (Sokol et al., 2008; Carlsson et al., 2013; Martín et al., 2014, 2017; Rossi et al., 2016). The F. 

prausnitzii effect seems to be dependent on multiple effectors, including secretion of butyrate and of 

the microbial anti-inflammatory molecule (MAM)27 (Miquel et al., 2015; Quévrain et al., 2016; Martín, 

Bermúdez-Humarán and Langella, 2018). As previously described, different mouse models suggest that 

B. fragilis (or its PSA) could also have a strong potential to reduce IBD and colorectal cancer by inducing 

of Treg differentiation, but its effects have not been confirmed in humans yet (Mazmanian, Round and 

Kasper, 2008; Lee et al., 2018). 

In summary, such bacterial strains are highly promising due to their strong immunomodulatory 

properties. However, their safety assessment requires full testing (Martín, Bermúdez-Humarán and 

 
27 The MAM protein secreted by F. prausnitzii strains seems able to reduce effector T cells induction in colitis 
models through modulation the nuclear factor NF-kB pathway a key determinant of inflammatory responses in 
immune cells, but the mechanism is not fully elucidated. 
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Langella, 2018). In particular, some strains of B. fragilis produce enterotoxins that are linked with 

inflammatory diarrhea (Sears et al., 2008). While A. muciniphila ATCC BAA-835 administration was safe 

in the pilot study, it is associated with negative effects in models of multiple sclerosis or Parkinson’s 

disease (Tsai et al., 2019). Screening of different strains from these interesting species may allow the 

selection of candidates with most efficacy and safety profiles. In parallel to the use of these natural 

strains, two recent approaches that may be considered as safe and effective alternative microbiota-

based therapies are in development that are postbiotics and engineered microbiota strains. 

b) Postbiotics 

Postbiotics include bacterial components with the minimal structure that possess biological activity 

and are devoid of live bacteria side effects. This approach only begins to be explored with the 

administration of microbiota-derived metabolites. Because such metabolites are naturally present in 

our body at high concentrations, their use in humans should be safe (Corrêa-Oliveira et al., 2016; 

Canfora et al., 2017; Wong and Levy, 2019). As previously addressed in subsection II, SCFA have been 

associated with pleiotropic effects improving health and their administration in mice showed 

promising results in  colitis models (Smith et al., 2013). SCFA administration in obese humans appears 

to modulate energy metabolism (Canfora et al., 2017) and  may allow a rapid control of a 

disproportioned inflammatory response against the microbiota within the context of disease (Wong 

and Levy, 2019). This strategy is also suitable to large human populations, as it does not rely on the 

patient microbiota composition that may compete with a probiotic candidate (Wypych, 

Wickramasinghe and Marsland, 2019). As yet, the effects enacted by postbiotics are difficult to predict 

since they may differ depending on the organ and immune cell type exposed. Therefore, the choice of 

the route of administration and of the dosage are critical before this new strategy become an efficient 

therapeutic. 

c) Engineered strains for the delivery of microbiota compounds 

While microbiota-derived metabolites could be administered directly to the host, this is not the case 

for microbial antigens. One possible strategy to deliver antigens relies on safe bacteria used as carriers. 

First generation GRAS probiotics (e.g., lactic acid bacteria) are ideal candidates for this purpose. Several 

studies in animal models demonstrated that Lactococcus lactis, Lactobacillus plantarum or Escherichia 

coli Nissle 1917, are able to efficiently deliver therapeutic molecules in the intestinal lumen or vaginal 

mucosa (Bermúdez-Humarán and Langella, 2018). This include pathogen-derived antigens for 

vaccination purposes (later developed in Section 2), molecules inhibiting pathogen colonization, and 

host-derived molecules with therapeutic interest, such as anti-inflammatory cytokines that are 

promising to protect against infections or to treat IBD and diabetes (Bermúdez-Humarán et al., 2005, 

2015; Lagenaur et al., 2011; Duan, Liu and March, 2015; Hwang et al., 2017). Some of these 

recombinant strains have shown efficacy in non-human primates and are currently being tested in 

humans (Braat et al., 2006; Lagenaur et al., 2011; Limaye et al., 2013; Isabella et al., 2018). Thanks to 

current knowledge about the specific beneficial properties of different first-generation probiotics, it is 

now possible to strategize synergetic approaches to combine natural probiotic properties with the 

effects predicted by the molecule being delivered. For instance, there is an improved protection 

against S. pneumoniae infection by co-administration of antigens with the immunomodulatory strain 

L. rhamnosus CRL 1505 during nasal immunization, suggesting that antigen delivery by this strain would 

be a promising strategy (Laiño et al., 2018). In parallel, while past studies have focused on the delivery 

of host-derived molecules, new strategies now include the delivery of microbiota antigens with high 

immunomodulatory properties, such as the Amuc_1100 protein from A. muciniphila, microbial anti-

inflammatory molecule MAM from F. prausnitzii, or PSA from B. fragilis (Quévrain et al., 2016; Plovier 
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et al., 2017; Lee et al., 2018). In fact, one study has already shown that the delivery of MAM via L. lactis 

strain to epithelial cells was protective in a mouse model of colitis (Quévrain et al., 2016). 

 

4. Perspectives 

Microbiota-based therapy hold many advantages compared to other treatments. First, the microbiota 

is associated with the development of many diseases, and therefore it represents an etiological agent 

that should be targeted. Second, to modulate deleterious host-microbe interactions, the microbiota is 

a more accessible compartment to modulate in comparison to the host immune system. Last, in the 

infectious context, targeting the microbiota to boost the host immune response should avoid selection 

of multi-drug resistant super bugs in comparison to the further use of antibiotics.  

Even though there are multiple challenges to make microbiota-based therapy a reality, significant 

progress has been made on this front. Considering the complexity of the mechanisms underlying the 

relationship of the microbiota with its host, it is not surprising that our first blinded attempts to design 

microbe-based therapy show few efficiency. The design of rationalized approaches to identify best 

promising strains based on growing knowledge of interactions between microbiota members and the 

immune system promoting health or disease is likely to be successful in the near future. For instance, 

while lactobacilli-based probiotics may be highly efficient to prevent vaginal-related diseases, or 

diseases in young children, where they are naturally abundant and protective, other species studied 

as next-generation probiotics should be investigated for other contexts as well as complementary 

approaches (Mur Pérez et al., no date; Schwarzer et al., 2016; Gosmann et al., 2017; Libertucci and 

Young, 2019). Likewise, the development of computational tools may allow us to better decipher the 

complex relationships among the microbiota communities, and to better predict which microbiota 

strains are responsible for a given phenotype and with whom it interacts, improving again microbiota-

based therapies (Faith et al., 2014).  

Eventually, the effect of some strains may be dependent on the host age, nutritional status, genetic 

polymorphism or antibiotic use (Segers and Lebeer, 2014). Development of personalized medicine will 

represent a watershed moment in the way we treat patients and prevent diseases and this may be 

possible by targeting the microbiota. Data collected from the direct comparison of healthy individuals 

and patients have already delivered some microbiota-derived biomarkers of health and disease. With 

the reduction of DNA sequencing costs, it is possible that in the near future there will be combined 

host and microbiota genome sequencing to predict susceptibility to diseases. The development of 

different animal models mimicking specific host populations (e.g. use of neonates, models of 

malnutrition or antibiotic use) should enable the targeting of host populations which will benefit the 

most for a given microbiota strain candidate (Agüero et al., 2006; Schwarzer et al., 2016; Remot et al., 

2017; Khan et al., 2019). Altogether, while still in its infancy, microbiota-based therapies are likely to 

represent a consequent section of future preventive and therapeutic strategies to improve health. 
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5. Microbiota-targeted strategies for respiratory diseases 

Reflecting the protective impact of the microbiota outside the gut, the development of microbiota-

targeted strategies has a strong potential to improve respiratory health. In mouse models, 

administration of different lactic acid bacteria was found to dramatically modify the immune response 

to influenza infections or bacterial-derived pneumonia resulting in improved survival, decreased of 

weight loss, diminished viral titer or bacterial load and a lower incidence of tissue damages (Dumas, 

Bernard, et al., 2018). In addition, administration of Lactobacillus species or Bifidobacterium longum 

improved the early set-up of a pro-inflammatory response characterized by increased activation of 

alveolar macrophages (producing more ROS), accelerated recruitment of neutrophils and natural killer 

lymphocytes, and elevated levels of pro-inflammatory cytokines such as TNF- and IL-6, associated 

with rapid clearance of pathogens and infected cells. This inflammatory response appeared, however, 

highly controlled at later time points. Indeed, they were characterized by a diminution of inflammatory 

cells and cytokines, increase of Treg and IL-10 resulting in an overall decrease of lung injuries as 

compared to non-treated mice (Racedo et al., 2006; Kechaou et al., 2013; Khailova et al., 2013; Park et 

al., 2013; Zelaya et al., 2015; Vieira et al., 2016; Belkacem et al., 2017).  

Likewise, probiotics are also potent immunomodulators of lung immune response. Indeed, while germ-

free mice were highly susceptible to Klebsiella pneumonia infection due to unwanted levels of IL-10 

production, FMT with microbiota from SPF mice or mono-association with Bifidobacterium longum 

5(1A)) restored the control of the pathogen to the level of SPF mice (Fagundes et al., 2012; Vieira et 

al., 2016). Furthermore, this probiotic treatment also boosted the immune response of conventional 

mice, improving pathogen killing by alveolar macrophages and decreasing lung injuries, indicating that 

this strong immunomodulatory strain is an interesting probiotic candidate. One advantage of probiotic 

over more targeted treatments could be additional protection against secondary infections, as 

evidenced in mice, for influenza infections and Respiratory Syncytial Virus (RSV)-Streptococcus 

pneumoniae super-infection (Clua et al., 2017; Jung et al., 2017; Kanmani et al., 2017).  

Importantly, while few studies demonstrated that the protective effect of probiotics in respiratory 

diseases was due to their immunomodulatory role, one study showed that L. rhamnosus CRL1505 

protective effect was due at least in part to increase levels in IFN--producing T cells (reducing S. 

pneumonia bacterial burden), IL-10-producing T cells (reducing epithelial damages), and alveolar 

macrophages producing IFN- (reducing epithelial barrier permeability and limiting S. pneumonia 

colonization). In this model, the use of antibiotic improved bacterial clearance but did not reduce 

immunopathology; in contrast, its combination with L. rhamnosus CRL1505 administration (or with 

inflammation inhibitor dexamethasone) improved both parameters, highlighting a new potential 

probiotic strategy (Damjanovic et al., 2013; Clua et al., 2017). Beyond the infectious context, some 

probiotics can decrease the pathological Th2 response, demonstrating a strong potential for the 

treatment of asthma (Pellaton et al., 2012; Secher et al., 2018). While most probiotic protective effects 

in the lung appear to be driven by similar immunomodulation events, these effects are strain-specific 

(Youn et al., 2012; Tomosada et al., 2013). 

Several clinical studies have shown a beneficial effect of the consumption of probiotic (mostly 

Lactobacillus species) characterized by a reduction of infection incidence and the use of antibiotics 

(Alexandre et al., 2014; Lehtoranta, Pitkäranta and Korpela, 2014). However, the difference with 

placebo group was often low and a Cochrane evaluation28 suggested  that this may be due to poor 

 
28 The Cochrane Reviews are part of the Cochrane Library databases. They are systematic reviews and meta-
analyses which summarize and interpret the results of medical research and in particular of clinical trials to 
inform healthcare decision-making. 
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quality of trials (Hao, Dong and Wu, 2015). Thus, standardization of protocols and methods is needed 

to improve probiotic efficacy in the clinics, including a description of how bacteria modulate the 

immune system in a given disease context. The use of animal models will help for the selection of the 

most promising strains to test in future clinical trials.  

Administration of postbiotics may also be useful in the context of respiratory diseases. Several studies 

using inactivated bacteria reported a partial protection against various infections, suggesting that both 

membrane compounds such as peptidoglycan but also metabolites may contribute to the full effect of 

live bacteria (Youn et al., 2012; Vieira et al., 2016; Brown, Sequeira and Clarke, 2017; Clua et al., 2017; 

Kanmani et al., 2017). In addition, administration of propionate was protective in a mouse model of 

allergic asthma, and administration of acetate reduced susceptibility to K. pneumoniae infection, 

explaining in part the overall beneficial effect imparted by B. longum in this model (Trompette et al., 

2014; Galvão et al., 2018). Likewise, administration of prebiotics improving SCFA production is 

promising. Indeed, administration of inulin, favoring butyrate production, protects mice from 

influenza-induced pathology (Trompette et al., 2018). 

While our growing knowledge of the first-generation probiotic mechanisms of action may allow to 

improve their efficiency, the identification of more efficient candidates is needed. Strains highly 

involved in the gut-lung axis, such as SCFA producers, may be good candidates. Beyond microbiota 

strains (and their compounds) from gut origin, the discovery of the respiratory microbiota has opened 

new avenues for their use as probiotic candidates. This approach may be promising as studies 

employing microbiota strains from mucosal sites other than the gut (e.g., skin) demonstrate a strong 

potential to enact local beneficial effects. For example, administration of the skin commensal 

Staphylococcus epidermidis modulates the local DC compartment to induce IL-17+ CD8+ T cells that 

limit Candida albicans invasion of the skin (Naik et al., 2015). In addition, studies using first generation 

probiotics indicates improved protection by nasal compared to oral administration (Pellaton et al., 

2012; Youn et al., 2012).  

Moreover, in recent studies, presented hereafter, mice respiratory tract colonization using nasal 

administration of bacterial species that are naturally observed in this location (but that have not been 

isolated from the respiratory microbiota) decreased susceptibility to respiratory infections. For 

example, intranasal delivery of Staphylococcus aureus protects mice from influenza-mediated death. 

In this study, S. aureus binding to TLR2 signaling induced the recruitment of monocytes polarized 

toward anti-inflammatory macrophages secreting IL-10 and TGF-, which then decrease the 

recruitment of pro-inflammatory cells and attenuate consequently lung immune injury (Wang et al., 

2013). Likewise, intranasal administration of high NOD2- stimulators such as L. crispatus, S. aureus or 

S. epidermidis, improve the mouse resistance to S. pneumoniae and K. pneumonia infection (Brown, 

Sequeira and Clarke, 2017). Last, intranasal administration of Corynebacterium pseudodiphteriticum, 

which is present in the respiratory tract, was able to reduce features of both RSV primary infection and 

of secondary S. pneumoniae infection in infant mice, decreasing both pathogen burden and lung 

damage (Clua et al., 2017; Kanmani et al., 2017). Outside the infection context, intranasal 

administration of Acinetobacteri lwoffii F78, or Lactococcus lactis G121, which are present in cowsheds 

of farms, reduced the development of allergic reactions in mice associated with an increase in Th1 

cytokines and IL-10 that reduce type 2 immunity. This result suggests that natural acquisition of such 

strains in the respiratory tract may explain protection against asthma mediated by the farm 

environment that may represent another source of promising probiotic strains  (Debarry et al., 2007). 

Recently, a pioneering study from the laboratory of Muriel Thomas and Philippe Langella, reported the 

isolation of 20 lower respiratory commensal bacteria species from mice neonates (Remot et al., 2017). 

They demonstrated that these strains have different immunomodulatory properties in vitro and in an 
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allergic asthma model. As such, nasal administration of one Enterococcus faecalis strain strikingly 

decreased type-2 immunity, reducing most asthma features. This study demonstrated for the first time 

that the use of lung bacterial strains has the potential to improve respiratory health. In theory, these 

strains may have improved fitness for the lung environment and exert unique immunomodulatory 

pathways, and therefore represent highly attractive candidates.  

The use of probiotic is promising in the context of respiratory diseases. Determining which interactions 

between the microbiota and the immune system are required to promote health should foment the 

design of more efficient next-generation probiotics. In particular, as for skin diseases, recent studies 

suggest that commensals from lung origin should be considered as promising candidates. The 

development of such alternative strategies could improve treatment of many respiratory diseases for 

which we lack antibiotics, or in combination with a shorten antibiotic treatment, to protect tissue 

integrity from deleterious inflammation, and delay the emergence of multi-drug resistant pathogens. 

As explained in the following section, such approaches are highly needed, and may be particularly 

suitable to improve treatment of one deadly respiratory disease: tuberculosis.    
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Section 2: Tuberculosis 

 

I. Tuberculosis, the ever-present threatening disease 

Tuberculosis (TB) is a pulmonary infection caused by the pathogenic bacterium Mycobacterium 

tuberculosis. While most people in Western countries believed the disease does not exist anymore, it 

is still the main cause of death on earth from a single infectious agent, ranking above  acquired immune 

deficiency syndrome (HIV/AIDS) and malaria (Global and Tuberculo, 2018). As summarized in this 

chapter, the disease persistence in humans is partly due to specific properties of the bacillus, which is 

difficult to detect, control and kill, and partly due to the dedicated immune response against this 

pathogen, which is imperfect and difficult to improve. 

 

1. Mycobacterium tuberculosis, a singular bacterium 

The tubercle bacillus belongs to the Mycobacterium tuberculosis complex (MTC or MTBC) composed 

of mycobacteria causing tuberculosis (e.g., M. tuberculosis and M. bovis) in human or animals. It forms 

part of the Mycobacteriaceae family that is also composed of mycobacteria causing leprosy disease 

(M. leprae), and nontuberculous mycobacteria that are mainly environmental bacteria. Recent findings 

support the hypothesis that the common ancestor of this complex is an environmental 

mycobacterium, called M. prototuberculosis. Genetic material exchange through horizontal gene 

transfer with other bacteria, and clonal expansion, have given rise to this heterogeneous family 

(Gutierrez et al., 2005).  

M. tuberculosis is a microorganism difficult to study, which complicates the development of 

tuberculosis treatments. First, M. tuberculosis is a slow growing bacterium (under optimal growth 

conditions, its generation time is 18-24h). This implies long-term experimentation. Second, it is a 

dangerous pathogen, belonging to the risk group 329, which implies the need for particular and 

expensive biocontainment infrastructures along with complicated procedures. Many studies are using 

alternative model of mycobacteria, such as M. smegmatis, a fast-growing, non-pathogenic 

mycobacterium or M. bovis BCG (Bacille Calmette Guerin)30, a slow-growing highly attenuated strain, 

used as a live vaccine in humans. However, they do not reflect all M. tuberculosis characteristics and, 

in particular, its complex interaction with the host. Therefore, most studies aiming at understanding 

the immune response to tuberculosis use virulent M. tuberculosis strains despite their constraining 

handling. Third, pathogenic mycobacteria harbor a strict host specificity. For example, M. tuberculosis 

is a facultative intracellular pathogen that only infects human leukocytes. Understanding its interaction 

with humans as a natural host dictates complex ethical, socio-economical and technical issues, among 

others (Pai et al., 2016b).  Although a number of alternative animal models exist to study M. 

tuberculosis interactions with the host, they do not perfectly mimic the human pathology.  

 
29 Risk Group 3 organisms cause serious disease in humans and represent a serious hazard for workers. They are 
likely to spread to the community, but effective treatments and vaccines exist. 
30 BCG is the only current anti-tuberculous vaccine, an attenuated form of M. bovis obtained by Calmette and 
Guerin. As M. smegmatis, it is a risk group 2 bacteria, that may cause only non-severe and treatable disease. 
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Figure 11: Structure of bacterial envelopes. Like Gram-positive bacteria, mycobacteria have no outer membrane. 

Their cell wall core is composed of layers of Peptidoglycan, Arabinogalactan and Mycolic acids. The Mycolic acid 

layer (also called mycomembrane) is surrounded by the capsule (not represented) containing highly 

mannnosylated polysaccharides, such as Phosphatidyl-myo-inositol mannosides (PIM), Lipomannans (LM) or 

Lipoarabinomannans (LAM). The mycomembrane and capsule of mycobacteria have all a shared structure, but 

their components varied among mycobacteria species and are highly involved in their interaction with the immune 

system. Figure adapted from (Brown et al., 2015). 

 

 

 

 

 

 

Figure 12: The different stages of tuberculosis infection. Individuals infected with M. tuberculosis can undergo 

different stages of disease depending on their immune system status going from infection clearance to active 

disease. TB: tuberculosis. Figure adapted from (Pai et al., 2016b).  
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For instance, key findings in the mouse model (the most widely used in tuberculosis research) must be 

verified in translational research in non-human primates before a human attempt. For all these 

reasons, M. tuberculosis remains an ever-constraining and elusive micro-organism to be studied in the 

context of its natural host. 

Nevertheless, the tubercle bacillus offers some advantages that can be exploited for therapeutic 

purposes. Unlike most bacteria, mycobacteria metabolism is mainly devoted to the synthesis and 

degradation of lipids. Some of them, the mycolic acids, are very important in the formation of the 

complex cell wall. This structure, specific to mycobacteria also contains very particular polysaccharides 

(Guinn and Rubin, 2017) (Figure 11). Because of its specificity, the mycomembrane allows the specific 

detection of mycobacteria (such as the Ziehl-Neelsen staining) and is the target of several of the 

current regime of anti-tuberculosis antibiotics. However, because of its impermeability, it also render 

other antibiotic targets difficult to reach (Jackson, 2014). M. tuberculosis lipids are essential 

components for the bacterial growth but also for its pathogenesis and interaction with the host.  

The fact that M. tuberculosis is both a lethal pathogen and a micro-organism having co-evolve with 

humans for many thousands of years, makes these interactions highly complex. This for sure 

complicates the development of treatments but highlight the benefit of studying this pathogen to 

better understand the host-microbe interactions in health and disease even with the risk and level of 

difficulty involved.  

 

2. Overall view of the characteristics, development and transmission of tuberculosis 

As aforementioned, tuberculosis is caused by bacteria of the M. tuberculosis complex (in particular M. 

tuberculosis) (Pai et al., 2016b). M. tuberculosis is primarily a pulmonary pathogen, but it can 

disseminate outside of the lung, creating a whole spectrum of highly morbid diseases, called extra-

pulmonary tuberculosis (e.g., meningitis) (Pai et al., 2016a). Depending on the host status, the infection 

can lead to different outcomes depicted in Figure 12.  

There are people in contact with patients who never develop active disease and are thought to 

naturally eliminate the pathogen either during the early step of the innate immune response or after 

recruitment of adaptive immune cells. If the infection is not cleared at the earliest stages, different 

immune cells including T cells will migrate to the site of infection and become part of the aggregates 

forming around infected cells, culminating in hallmark tuberculosis-related structures called 

granulomas (the immune response to tuberculosis is described in Section 2.II). Among individuals who 

do not eliminate the bacillus, the majority will efficiently contain the bacteria inside these granulomas 

leading to latent and asymptomatic disease. About 5-10% of infected people will fail at some time to 

control the pathogen growth, developing subclinical disease if few bacteria escape immune control, or 

active tuberculosis disease if many bacteria are able to replicate and trigger an over-activation of the 

immune system (as detailed in subsection II). Bacterial replication inducing over-activation of the 

immune system in active tuberculosis will result in mild to severe symptoms associated with 

pneumonia including coughing leading to pathogen transmission (Churchyard et al., 2017), and in the 

more severe cases lung tissue lesions leading to the patient death (Taylor et al., 2005; Hunter, 2011; 

Guinn and Rubin, 2017). Patients with active tuberculosis can remain infectious for up to one year in 

some settings, while patients with subclinical disease are sporadically infectious and develop mild or 

none symptoms (Pai et al., 2016b). Importantly, patients can advance or reverse disease stages 

depending on reinfection or immune status of the host.  
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In fact, it is estimated that ¼ of the global population is infected today with tuberculosis, highlighting 

the fact that the low proportion of infected individuals developing active disease do not represent a 

low proportion of the global population. Because infection does not manifest any immediate visible or 

symptomatic signs, it is difficult to diagnose tuberculosis, a step needed to stop this transmission. In 

addition, even after pathogen eradication (naturally or following treatment), patients are susceptible 

to reinfection. Because progression to active disease depends on some settings, such as poor sanitary 

conditions, malnutrition or co-infection, weakening the immune system, the proportion of people 

developing active tuberculosis and dying from the disease is heterogeneous. As such, tuberculosis was 

pandemic in Europe and America in the past, and while lower proportions of patients develop active 

tuberculosis in these areas today and are in the majority of cases well treated for this disease, this is 

not the case in other areas of the world like Asia and Africa.  

 

3. A historical perspective of tuberculosis  

a) Tuberculosis pandemic in the pre-antibiotic era 

Recent data suggest that human infection by M. prototuberculosis may have occurred dating back to 
the Paleolithic period in Africa (Donoghue et al., 2004; Gutierrez et al., 2005). From this environmental 
ancestor, it seemed that the M. tuberculosis complex latter diversified and evolved along with the 
human species as its natural host, following historical human migration patterns ((Hershberg et al., 
2008) and reviewed in (Gagneux, 2012)). Along with the industrial revolution, tuberculosis peaked and 
reached epidemic levels at the start of the eighteenth and throughout nineteenth centuries in Europe 
and North America; its dissemination increased dramatically with migration, crowding, poor sanitation 
and famines associated with this period. More than 70% of the human population in these 
geographical areas were infected with M. tuberculosis, and up to 80% of these people died from this 
disease (Pezzella, 2019). Tuberculosis was given a variety of names such as phthisis, white plague or 
consumption (Pezzella, 2019). Since Antiquity, the nature/etiology of the tuberculosis (spontaneously 
generated, hereditary or transmissible) was unclear until the nineteenth century, when Jean-Antoine 
Villemin clearly demonstrated that it was an infectious and transmissible disease. Few years later, 
Robert Koch identified M. tuberculosis, also known as the “Koch’s bacillus”, in the patient sputum by 
using a new staining method, the Ziehl-Neelsen staining. He demonstrated that this bacterium was the 
disease causative agent using what are known now as the Koch Postulates31, a key step for the 
development of treatment. He also developed a glycerin extract from the bacteria, tuberculin, which 
was later used by Mendel and Mantoux to develop a skin detection test (PPD for Purified Protein 
Derivative). General advances in medicine, such as radiography, also improved the disease diagnosis 
allowing isolation of patients in sanatorium and reducing transmission of the disease.  

b) Development of first preventive and therapeutic strategies 

In 1908, Albert Calmette and Camille Guérin developed the BCG (Bacille Calmette Guerin) vaccine, an 

attenuated form of M. bovis. This is still today the only available vaccine. It has been extensively used 

to vaccinate infants due to its low cost, safety and stability (Ernst, 2018). While it shows efficiency to 

prevent TB-meningitis in children, its efficacy to prevent TB in adults varies widely and was not 

sufficient to stop expansion of tuberculosis (Rodrigues, Diwan and Wheeler, 1993; Ernst, 2018).  

 
31 Koch Postulates are criteria developed by Robert Koch for judging whether a micro-organism is the cause of a 
given disease. These are: (i) The bacteria must be present in every case of the disease; (ii) the bacteria must be 
isolated from the host with the disease and grown in pure culture; (iii) the specific disease must be reproduced 
when a pure culture of the bacteria is inoculated into a healthy susceptible host; (iv) the bacteria must be 
recoverable from the experimentally infected host. 
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Figure 13: Mortality rate and incidence of tuberculosis in England and Wales (A) or Canada (B). Tuberculosis was 

a major cause of death in Europe and America in the eighteenth-nineteenth century. Mortality declined greatly 

with improvement of sanitary conditions and isolation of infected individuals. Of note, tuberculosis caused 

increased death during World Wars (WW) in Europe, suggesting that nutritional deficiencies, crowding and 

reduced sanitary conditions decrease outcome in infected individuals. Discovery of antibiotics after 1940 

eventually allow reduction in mortality and incidence. Figure adapted from (Lönnroth et al., 2009; Public health 

agency of canada, TB case reporting, 2012). 
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Figure 14: Anti-tuberculosis antibiotic pipeline. Since 1940, various antibiotics have been developed to the present 

time. New drugs, however, are still needed because of the progress of drug resistance and, in particular, multi-

drug resistance (MDR-TB) (represented by the blue area). Figure adapted from (Olaru et al., 2015). 

 

 

 

 

 

Figure 15: Anti-tuberculosis drug targets. Many anti-tubercular drugs target cell wall or membrane synthesis: 

Isoniazid and Ethionamide inhibit mycolic acid synthesis (MA), Cycloserine and Imipenem inhibit peptidoglycan 

synthesis (PG), Ethambutol inhibits arabinogalactan (AG) synthesis, and Pyrazinamide impacts cell membrane 

function. Other drugs interfere with vital processes such as bacterial replication (Fluoroquinolones), transcription 

(Rifampicin, Clofazimine) and translation (Aminoglycosides, Linezolid). Figure adapted from (Sukhithasri et al., 

2014). 
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In addition, its inoculation to HIV-infected infants may lead to the development of disseminated BCG  

disease32 (Hesseling et al., 2007). Therefore, there is a critical need for vaccine development that would 

efficiently prevent the tuberculosis (Flynn, Chan and Lin, 2011; Pai et al., 2016b). After 1820’s, the 

advance in thoracic surgery also helped the treatment of the disease through lung collapse or resection 

(Pezzella, 2019). Since 1944, however, antibiotics were discovered and used to treat tuberculosis 

instead of surgery, marking a significant progression in tuberculosis treatment (Figure 13). In addition 

to antibiotherapy, it is thought that improvement of sanitary conditions mainly contributed to the 

decrease in tuberculosis incidence and mortality in Europe and America (Figure 13). Even if there is a 

low incidence of tuberculosis in these regions today, it is still a major health issue in other parts of the 

world where the hygiene, nutrition and socio-economic conditions are still a major issue (as detailed 

in subsection I.4).  

The use of the first anti-tuberculosis antibiotic, Streptomycin, was quickly limited by the appearance 

of resistant M. tuberculosis strains (Pezzella, 2019). Since then, antibiotics targeting different essential 

pathways of the bacteria were discovered, and their use in combination strongly decreased the 

appearance of resistant strains (Figure 14 and 15). Classical therapy regimen has not evolved much at 

the present moment. It consists in treatment with four first-line antibiotics (isoniazid, rifampicin, 

pyrazinamide and ethambutol) for two months, followed by treatment with isoniazid and rifampicin 

alone for two additional months (Furin, Cox and Pai, 2019). Yet, patients with high bacterial loads and 

tissue damages require longer treatment. In many parts of the world, such complicated regimen is 

almost impossible to sustain in the long-term treatment, leading to incomplete treatments that favor 

the selection of multi-drug resistant (MDR) strains33 (Russell, 2011). The discovery of new drugs and 

repurpose of existing drugs have hopefully increased alternative treatments. The second-line 

treatment (use to treat MDR-TB) comprise fluoroquinolones, acid para-amino-salicylic, 

aminoglycoside, ethionamid and cycloserine (Pai et al., 2016a). This treatment is even longer (up to 

two years) and has adverse effect. They are also less efficient. While treatment of sensitive tuberculosis 

reaches around 95% success, MDR-TB are only cured at 50% when efficiently diagnosed (WHO | Global 

tuberculosis report, 2018). Different strategies are being studied to shorten the treatment duration. 

They include the use of higher dose of rifampicin or the use of other antibiotics. The development of 

the drug pipeline is not a subject detailed here but is reviewed in (Pai et al., 2016a; Furin, Cox and Pai, 

2019). These strategies seem promising but may not be sufficient. Indeed, the appearance of 

extensively drug resistant strains (XDR, that are also resistant to fluoroquinolone and second-line 

aminoglycoside antibiotics) and totally-drug resistant strains increases the difficulty to treat all patients 

(Pai et al., 2016b). If duration, cost and side effect of these treatments are not reduced by strategies 

in development, patient compliance may rely low and resistance appearance quick. 

  

 
32 Disseminated BCG disease is a rare life-threatening complication of BCG application that resemble tuberculosis 
and that significantly occurs in immuno-compromised individuals. 
 
33 Different class of resistant tuberculosis strains exist. A strain is simply called resistant (R-TB) if resistant to at 
least one antibiotic used for therapy.  Multi-drug resistant (MDR-TB) are resistant to at least Rifampicin and 
isoniazid. Extremely-drug resistant (XDR-TB) are also resistant to fluoroquinolone and second-line 
aminoglycoside antibiotics while totally-drug resistant (T-DR) are resistant to all available antibiotics.  
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Figure 16: Top causes of death worldwide in 2016. Tuberculosis is the 9th cause of global death, and the 1st one 

from a single infectious agent. 25% of tuberculosis-related deaths are caused by co-infection with the HIV virus 

(represented in grey). Figure adapted from (WHO | Global tuberculosis report, 2018) 

 

 

 

 

 

 

 

 

Figure 17: Projected global trajectory of tuberculosis (TB) incidence rate required to reach targets of the End TB 

Strategy. Current incidence of tuberculosis is around 1.5% per year. Achievement of the End TB Strategy of 1 case 

per 100 000 population per year requires not only the optimization of the current diagnosis, prevention and 

treatment tools, but also the development of new ones. Figure adapted from (WHO | Global tuberculosis report, 

2018; Gilpin et al., 2018). 
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c) Diagnostic tools to detect tuberculosis infection 

While new diagnostic tools have been developed since Robert Koch visualization of M. tuberculosis by 

microscopy, serious challenges still remain today to identify latent or subclinical tuberculosis. 

Tuberculosis infection can be diagnosed based on identification of M. tuberculosis compounds, 

reactivity of the patient’s immune system to such compounds, or visualization of granulomatous 

structures via radiography. Active tuberculosis can be identified through observation of sputum smear 

in light or fluorescence microscopy, culture in liquid medium (allowing to test for drug resistance but 

with a long delay before results), detection of lipoarabinomannans34 in urine samples (at the moment 

not sensitive enough to detect active tuberculosis in HIV-negative individuals), or molecular tests such 

as the Xpert MTB/RIF and the Line Probe Assays (that rapidly detects genetic material from M. 

tuberculosis along with mutations that cause resistance to define antibiotics) (Zijenah, 2018; Furin, Cox 

and Pai, 2019). Tests based on immune system reactivity to M. tuberculosis antigens, such as the 

tuberculin skin test (detecting high immune recruitment following PPD subcutaneous administration) 

or Interferon- release assays (measuring ex-vivo blood T cell activation following exposure to 

antigens), allow the detection of active and latent tuberculosis. Yet, they do not allow to distinguish 

these two forms of tuberculosis, yield false positives in patients having eradicated already the infection 

or vaccinated with BCG, and have low sensitivity in immunocompromised patients (Pai et al., 2016b). 

With a better understanding of the pathology, disease biomarkers are under development that may 

help to predict risk of infection, disease, or cure. Eventually, chest radiography and PET-scan are used 

to detect active tuberculosis, in particular among HIV-positive patients, and are improved by the 

development of digital radiography and computer-aided diagnostic software (Pai et al., 2016b). One 

remaining problem is the determination of the disease stage, availability and cost of technologies 

(Furin, Cox and Pai, 2019). 

Even if improved sanitary/hygiene conditions, BCG vaccination, antibiotics and diagnostic tools, have 

together dramatically decreased the incidence and mortality of tuberculosis in Europe and America, 

we have still failed to end the pandemic tuberculosis.  

 

4. Why is there still tuberculosis today? 

a) From current epidemiology toward the end of tuberculosis 

Tuberculosis remains today a major public health issue, with more that 6 million of new cases every 

year and about 1.6 million deaths in 2017. Additionally, tuberculosis has become recently the leading 

cause of infectious death above malaria and HIV infection. It is in fact the only infectious disease among 

the top 10 causes of death (Figure 16) (WHO | Global tuberculosis report, 2018). As tuberculosis is a 

major global threat, the WHO has proposed strategies to coordinate efforts all around the world to 

fight the disease, the latest being the “End TB strategy”. It is built on the agreement of all member 

governments to accelerate their individual actions against tuberculosis and to include specific actions 

to prevent and cure drug-resistant tuberculosis. The aim of this program is to achieve by 2030 an 80% 

decrease in tuberculosis incidence compared to 2015 (corresponding to one new case per 100 000 

people per year), and a 90% decrease in deaths. Today tuberculosis incidence is reduced by 2% every 

year and its mortality by 5% (decreasing in particular among HIV-positive people) (Figure 17) (WHO | 

Global tuberculosis report, 2018). 

 
34 Lipoarabinomannans are polysaccharides present in M. tuberculosis mycomembrane. 
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Figure 18: Estimated incidence of total or resistant tuberculosis (TB) cases. Tuberculosis still has a high incidence. 

However, the disease is not randomly distributed and is mainly present in low- to mid-income countries (A). Among 

the positive cases for tuberculosis, the frequency of drug resistance is increasing, but its prevalence do not 

coincide with global high incidence. Figure adapted from (WHO | Global tuberculosis report, 2018) 
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Figure 19: Increase of global drug resistant tuberculosis (TB). Even if the global tuberculosis incidence is 

decreasing, the number of cases of Rifampicin (RR) or multidrug resistance to tuberculosis (MDR-TB) exhibits a 

constant increase. Since these patients are more difficult to treat, it may result in global increase of deaths caused 

by tuberculosis in absence of a better treatment for these cases. Figure adapted from (Global Health Observatory 

- WHO, 2018). 
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b) Obstacles in tuberculosis eradication 

Several pitfalls make tuberculosis eradication particularly difficult. First, most tuberculosis cases are 

currently appearing in low- and middle-income countries (two thirds of tuberculosis patients are living 

in only eight countries: India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh or South 

Africa) (Figure 16 and 18). In these countries, co-morbidity parameters such as HIV infection, diabetes, 

malnutrition, crowding, sanitation and reduced healthcare are all increased (see section 4.d for details 

on co-morbidity parameters). This implies a strong need for funds to better detect and report 

tuberculosis cases, but also to provide appropriate health care. Also, the disease characteristics and 

epidemiology vary greatly among countries. For example, high incidence of tuberculosis in South Africa 

is associated to high HIV prevalence, while in India this is mainly caused by a high transmission rate, in 

particular in hospitals (Dye et al., 2013). Together with the development of new treatments, the 

disparity in tuberculosis prevalence reinforces the need for therapeutic strategies that are adapted for 

each country. Second, more and more patients are infected with drug-resistant M. tuberculosis strains; 

in 2017, half a million patients were infected with M. tuberculosis strains resistant to Rifampicin, and 

about 80% of them were infected with multidrug-resistant M. tuberculosis strains (MDR-TB)) (Shah et 

al., 2017) (Figure 18 and 19). Global treatment success is today elevated with cure achieved in 82% of 

cases but does not progress, maybe due to a lower success rate among MDR-TB treatment (55%) (WHO 

| Global tuberculosis report, 2018). Finally, about 1.7 billion people (23% of the global population) are 

estimated to have latent TB and are at risk of developing active TB later in life. They represent an 

important and undetected reservoir of carriers of the disease. However, this estimation has recently 

been questioned with a new study suggesting that most cases of TB reactivation are due to re-infection 

rather than reactivation of a latent infection (WHO | Global tuberculosis report, 2018).  

c) Requirements for tuberculosis eradication 

Achievement in early detection of infection, prevention of new infections and neutralization of existing 

(latent) infections, are needed to achieve the End TB strategy goals (Dye et al., 2013). Current actions 

in this direction include BCG vaccination of children and preventive treatment of latent TB for HIV-

positive patients and children in contact with active pulmonary TB patients, but they will not be 

sufficient. One limitation to the success of the End TB Strategy is the lack of funding, needed partly to 

improve health services (with increase of health coverage and reduction of the cost faced by 

tuberculosis patients) in order to reduce tuberculosis incidence. The second one is the lack of more 

effective diagnostic (in particular to test drug susceptibility), preventive and therapeutic tools, as it is 

estimated that current tools are insufficient to eradicate tuberculosis (WHO | Global tuberculosis 

report, 2018). Predictive models suggest that action to block transmission and to cure existing (and in 

particular latent) infection should be a simultaneous effort to achieve synergistic effects (Dye et al., 

2013). Development of only new anti-tuberculous drugs may not be sufficient to achieve these goals. 

Targeting the host with the development of new vaccines or host-directed therapies may thus allow 

the synergic effect needed (current developments are detailed in subsection III). This implies a 

requirement to better understand the immune response during tuberculosis infection and how risk 

factors modify it. 
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d) Known co-morbidity parameters for tuberculosis 

M. tuberculosis elimination and containment require a complex immune response. Therefore, an 

immuno-compromised host may develop active disease upon infection or upon activation of 

asymptomatic latent tuberculosis. This is particularly true for HIV-1-infected patients, who display 

reduced CD4+ T cell counts, especially of M. tuberculosis-specific CD4+ T cells (essential for the control 

of M. tuberculosis growth in the granuloma). In the co-infection with M. tuberculosis, HIV-1+ individuals 

are more prone to develop active tuberculosis (Esmail et al., 2018), and often exhibit extra-pulmonary 

tuberculosis (Naing et al., 2013). In the case of type II diabetes mellitus, patients displayed an altered 

pro-inflammatory metabolism in CD4+ T cells and macrophages (Yorke et al., 2017). During 

malnutrition, which leads to secondary immunodeficiency, patients show micronutrients deficiencies 

such as vitamins or metal ions that are essential for cellular functions and proper activation of  the 

immune system to fight the bacterial pathogens (Kant, Gupta and Ahluwalia, 2015). Tuberculosis is 

also aggravated by cigarette smoke, air pollution, and high alcohol consumption (Lönnroth et al., 2009; 

Duarte et al., 2018; Silva et al., 2018). Indeed, food supplementation and smoking reduction are 

associated with improved tuberculosis recovery. Altogether, these co-morbidity parameters clearly 

indicate that a better understanding of the immune response during tuberculosis infection is essential 

to achieve the goals proposed by  the End TB Strategy (Duarte et al., 2018).  
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II. The immune response to tuberculosis 

The immune response to M. tuberculosis is quite complex and difficult to decipher. It is highly 

circumvented and subverted by the pathogen in multiple ways that are unique for this disease. As 

described in this section, the mechanisms leading to pathogen transmission are detrimental for the 

host. At the same time, pathogen survival and replication are dependent on host survival. Therefore, 

it is sometimes difficult to decipher if some immune mechanisms benefit the host or the bacteria. In 

addition, the host have to make compromises between engaging a hostile war against this pathogen 

to destroy it at all cost (via resistance mechanism), and the truce our bodies make to tolerate it and 

preserve tissue integrity (Russell, 2011; Bussi and Gutierrez, 2019). Altogether, the immune response 

to tuberculosis is fascinating and still today not fully characterized. Our current understanding of this 

immune response, based on intense investigations in animal models and human samples is 

summarized in this section. 

 

1. Overview of the immune response initiation in tuberculosis 

M. tuberculosis infection begins by inhalation of expectorated droplets containing bacteria released by 

an infected patient with lung lesions. Transmission is highly efficient as it is estimated that arrival of 

one bacterium could be sufficient to drive the infection. In addition, high bacterial load in the inoculum 

or repeated exposure correlate with the exacerbation of the disease (Russell, Barry and Flynn, 2010). 

After inhalation, small (but not larger) droplets may achieve entry into the lower lungs. Once in the 

airways, M. tuberculosis first encounters epithelial cells and alveolar macrophages that phagocytize it, 

a phenomenon resulting in the infection of these cells (Cohen et al., 2018).  

It is possible that alveolar macrophages are able to clear the infection at this early stage. Indeed, many 

humans in contact with the bacteria do not become infected or rapidly eliminate the infection without 

showing immunological reactivity to M. tuberculosis antigens (Dannenberg, 1991; Flynn, Chan and Lin, 

2011; de Martino et al., 2019). Yet, these observations need to be confirmed experimentally. By 

contrast, most experimental studies suggest that after internalization of the bacteria, intracellular 

killing of M. tuberculosis is impaired in infected macrophages. In fact, several mechanisms aimed at 

killing the bacteria may even benefit the pathogen.  

After phagocytosis, most pathogens are degraded when the phagosome compartment is fused with 

lysosomes, which are organelles enriched in acidic, oxidative compounds and in hydrolases. However, 

numerous studies have shown that M. tuberculosis is able to inhibit the acidification of the phagosome 

by blocking its fusion with lysosomes (Figure 20) (Sturgill-Koszycki et al., 1994; Clemens and Horwitz, 

1995; Via et al., 1997; Vergne, Chua and Deretic, 2003; Lugo-Villarino and Neyrolles, 2014). 

Nevertheless, a recent study using live imaging suggests that, in some cases, maturation of the 

phagosome may occur, trapping the bacteria in a proteolytic phagolysosome (Schnettger et al., 2017). 

Even if it seems that phagosome maturation occurs, it is not sufficient to kill M. tuberculosis, which is 

able to survive in this acid environment (Armstrong and Hart, 1975). The bacterium also induces 

phagosome membrane damages, which induce the release of bacterial compounds (and maybe living 

bacteria) inside the cytoplasm. This mechanism seems dependent on 6 kDa early secretory antigenic 

target (ESAT-6) secretion by M. tuberculosis ESX-1 secretion system, and phtiocerol dimycocerosates 

(DIM that are part of the bacteria outer membrane) expression by the bacteria (Mishra et al., 2010; 

Augenstreich et al., 2017).  
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Figure 20: Mechanisms of phagosome maturation. A: Receptors that engage the bacteria or molecules on its 

surface activate sphingosine kinase and/or phospholipase C (PLC), which induce an increase in the amount of 

cytosolic free calcium ions (Ca2+). Nascent phagosomes fuse with early endosomes to generate early phagosomes, 

which in turn fuse with late endosomes/lysosomes to become phagolysosomes. Lysosomal enzymes in the 

phagolysosome destroy the bacterium. B: In the presence of pathogenic mycobacteria, such as M. tuberculosis, 

bacterial components, possibly lipoarabinomannan, preclude the elevation of Ca2+ and thereby prevent fusion 

with late endosomes/lysosomes, arresting maturation at the early phagosome stage. C: Another model proposes 

that receptors induce an elevation of Ca2+ by a process that requires the actin-binding protein coronin 1. The rise 

in Ca2+ activates calcineurin, which blocks fusion of early phagosomes with late endosomes/lysosomes by an 

unknown mechanism. Both models would allow the bacterium to persist in macrophages. Figure adapted from 

(Trimble and Grinstein, 2007). 
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Bacteria released in the cytosol are usually targeted by xenophagy (a form of autophagy)35 in 

macrophages, but M. tuberculosis is again able to escape the following lysosomal degradation (Ouimet 

et al., 2016) and reviewed in (Kimmey and Stallings, 2016).  

During macrophage infection, various M. tuberculosis compounds are sensed by macrophages through 

PRR, such as TLR2, TLR9, DC-SIGN (Tanne et al., 2009), mannose receptor (Schlesinger, 1993), Mincle 

(Ishikawa et al., 2009), NOD2 (Divangahi et al., 2008) or NLR family, such as the NLR pyrin domain 

containing 3 (NLRP3) (Mishra et al., 2010), among others. Binding of the bacteria to those receptors 

and subsequent signal transduction is key for the activation of the infected macrophage. Recognition 

of bacterial antigens in the cytosol (after phagosome membrane damages) by PRR induces the 

activation of inflammasome and IL-1 production. IL-1 production by infected epithelial cells and 

macrophages is involved in alveolar macrophage translocation to the lung parenchym (Cohen et al., 

2018) and in the recruitment of other immune cells to the site of infection (Davis and Ramakrishnan, 

2009), such as neutrophils. M. tuberculosis transfer to the lung epithelium may also occur through 

migration of the bacteria inside infected epithelial cells (which seems also important for its 

dissemination to other organs) (Nair et al., 2016). Production of the metalloprotease Matrix 

Metallopeptidase 9 (MMP-9) by epithelial cells is also implicated in the recruitment of immune cells to 

the site of infection and in the formation of an environment favoring bacterial growth (Volkman et al., 

2010).  

The bacteria is able to limit apoptotic cell death (again through ESX-1 secreting system elements) of 

epithelial cells (Dobos et al., 2000) and macrophages (Divangahi et al., 2010). This is important since 

apoptosis of infected cells may result in phagocytosis of compartmentalized bacteria by other 

macrophages through efferocytosis36, a mechanism suggested to efficiently lead to M. tuberculosis 

killing (Martin et al., 2012). In absence of apoptosis, M. tuberculosis will multiply inside macrophages. 

Indeed, the bacteria not only inhibits phagosome lysosome fusion, but also resists to other killing 

mechanisms developed by macrophages, such as intoxication by transition metals (Botella et al., 2011) 

or reactive oxygen and nitrogen species (Lugo-Villarino and Neyrolles, 2014), allowing its intracellular 

replication.If the bacterial load is too high, burst size cytolysis (a necrotic cell death) of infected cells 

may occur, releasing free viable bacteria (Repasy et al., 2013). This leads to infection of newly recruited 

monocytes or neutrophils (Eum et al., 2010; Cohen et al., 2018; L. Huang et al., 2018). Recruited cells 

are usually grouped in aggregates around the released bacteria and infected cells, in order to contain 

the pathogen. But at this stage, newly recruited cells are also permissive to bacterial infection and 

represent more a reservoir rather than a threat for the pathogen (Ernst, 2012). Their recruitment is 

even accelerated by the secretion of exosome enriched in M. tuberculosis lipids by infected 

macrophages, suggesting that new target cells recruitment is directly induced by the pathogen (Davis 

and Ramakrishnan, 2009; P. P. Singh et al., 2012). Recruited cells also display an increased motility. 

Therefore, after infection, these cells may migrate to other sites of the lungs, resulting in the 

dissemination of the bacteria and to the formation of new aggregates (Davis and Ramakrishnan, 2009).  

 

 

 
35 Autophagy is a cellular process aiming at removing unnecessary or damage compounds. It occurs through 
engulfment of these compounds in an autophagosome vacuole that will fuse with lysosome for degradation. A 
form of autophagy, called xenophagy, uses similar pathways to eliminate intracellular pathogens. 
 
36 Efferocytosis consists on phagocytosis and subsequent degradation of apoptotic bodies from a dying cell. It 
prevents tissue exposure to toxic compounds such as enzymes contained in the apoptotic bodies. 
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Figure 21: The cellular immune response to M. tuberculosis. Following aerosol infection with M. tuberculosis, 

resident lung alveolar macrophages (1a), neutrophils (1b) and lung DCs (1c) can become infected, leading to the 

production and secretion of antimicrobial peptides, cytokines, and chemokines. The balance of lipid mediators, 

such as prostaglandin E2 (proapoptotic) or lipoxin (LX) A4 (pronecrotic), within infected macrophages plays a 

major role in determining downstream pathways leading to the induction of either apoptosis or necrosis. 

Infected apoptotic cells can be taken up by resident lung DC or efferocytosed by uninfected lung macrophages 

(1c). M. tuberculosis–infected DC migrate to the local lung-draining lymph nodes by 7–14 days post infection. DC 

migrate to the lymph nodes under the influence of IL-12(p40)2 and IL-12p70, and that of the chemokines CCL19 

and CCL21 (2), to drive naive T cell differentiation toward a Th1 phenotype (3). Protective antigen-specific Th1 

cells migrate to the lungs in a chemokine-dependent manner 14–17 days after the point of initial 

infection/exposure (4) and produce IFN-, leading to macrophage activation, cytokine production, the induction 

of microbicidal factors including iNOS (5), and bacterial control. Figure adapted from (O’Garra et al., 2013) 
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This stage of the infection, characterized by the replication of the bacteria, continues until the T cell 

response is activated and reinforces the microbicide activities in innate immune cells to overcome the 

pathogen’s influence, as described in the next subsections (Havlir and Barnes, 1999; Mogues et al., 

2001). 

 

2. T cell induction in the draining lymph nodes 

DC are also present early at the infection site and can become infected by M. tuberculosis. However, 

unlike macrophages and neutrophils, they do not represent a reservoir for the bacteria in the lungs 

(Cohen et al., 2018). Upon interaction with the pathogen, these cells migrate to the lung draining 

lymph node to present antigen and prime a dedicated T cell response. Intriguingly, while this process 

happens within the first 24 to 72 hour post-infection with most pathogen, DC migration to the lymph 

nodes is quite delayed in M. tuberculosis infection, ranging between 9-14 days post-infection (Cooper, 

2009; Roberts and Robinson, 2014). In addition, DC are thought to contribute to dissemination of the 

bacteria  when infected (Chackerian et al., 2002; Wolf et al., 2007) (Figure 21). Lymphatics and lymph 

nodes represent the main sites of extrapulmonary tuberculosis (Behr and Waters, 2014), but the 

bacteria can disseminate to any organ. T cell activation occurs in the draining lymph node where clonal 

expansion and activation of M. tuberculosis specific T cell is observed (Reiley et al., 2008; Wolf et al., 

2008). One main feature of M. tuberculosis infection is the delayed adaptive immune response. Indeed, 

in human, adaptive immune response appears 21-42 days post-infection (Wallgreen, 1948; Poulsen, 

1950) (in mice it takes up to 21 days (Lai et al., 2018)), which is quite long compared to many other 

infections. As previously mentioned, this is due to a delayed migration of DC to the lymph node (Wolf 

et al., 2008; Lai et al., 2014), while migration of T cells to the lung after their activation seems to take 

place at a normal speed (Reiley et al., 2008).  

A rapid initiation of T cell response is essential to the host and may constitute one factor that 

differentiates resistant C57BL/6 mice from susceptible C3H, DBA/2 or CBA/J mice strains to 

tuberculosis (Turner et al., 2001; Chackerian et al., 2002). It is possible that this delay is necessary for 

this slow growing pathogen to replicate in permissive non-activated myeloid cells. This may explain 

why delayed migration of DC seem directly caused by the bacteria. Indeed, their migration does not 

seem impaired when antigens are picked up from infected neutrophils compared to free bacteria 

(Blomgran and Ernst, 2011). By contrast, blockade of apoptosis in M. tuberculosis-infected cells 

reduces antigen presentation resulting in delayed adaptive immunity priming (Hinchey et al., 2007; 

Divangahi et al., 2010). Of note, migration and maturation of DC seemed dependent on the presence 

of IL-12p40, rendering them responsive to chemokines such as CCL19 (Khader et al., 2006; Wolf et al., 

2007). DC migration may be inhibited during homeostasis due to suppression of CCR7 by IL-10, a 

mechanism latter counteracted by IL-12p40 (Khader et al., 2006).  

M. tuberculosis-infected DC express low levels of MHC-II and are poor antigen presenters in vivo (Pai 

et al., 2003; Sendide et al., 2005). However, these cells are able to transfer M. tuberculosis antigens to 

more powerful uninfected bystander DC in the draining lymph node (Wolf et al., 2007; Srivastava and 

Ernst, 2014). Interestingly, this may be an adaptation of our immune system to overcome the 

decreased antigen presentation capacity of infected DC (Hudrisier and Neyrolles, 2014). Yet, 

presentation by bystander cells do not compensate for the reduced bacteria presentation by infected 

cells (Srivastava, Grace and Ernst, 2016), leading to an overall delay in T cell priming.  

Recent studies suggest that the two populations of lung cDC may not behave similarly during the 

infection. Both lung CD11b+ and CD103+ DC are infected by M. tuberculosis and will migrate to the lung 
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draining lymph nodes, but CD103+ DC carry higher bacterial loads (Lai et al., 2018). In the lymph node, 

only CD11b+ DC are able to mediate CD4+ T cells activation toward a Th1 phenotype. Conversely, 

CD103+ DC inhibit this priming by producing the anti-inflammatory cytokine, IL-10 (Lai et al., 2018). 

This is maybe due to their higher index of infection, which may render them susceptible to bacterial 

inhibition of their maturation and modification of cytokine secretion (Geijtenbeek et al., 2003; Madan-

Lala et al., 2014). Because CD103+ DC are also known to induce Treg (Suffia et al., 2005; Janine L 

Coombes et al., 2007), they also indirectly reduce effector T cell activation. It is clear that IL-10 (Redford 

et al., 2010) and Treg (Shafiani et al., 2010) delay priming of CD4+ and CD8+ T cells during tuberculosis. 

Of note, other mechanism besides the activity of CD103+ DC may exist to induce Treg in the lungs or 

lung draining lymph nodes, such as alveolar macrophages (Soroosh et al., 2013). 

 

3. T cell mediated containment of the infection 

M. tuberculosis-infected DC mainly induce the generation of both Th17 and Th1. Generation of Th1 

producing IFN- by DC seems dependent on IL-12. Among Th1, different CD4+ T cells are present, 

comprising early activated T cells producing IL-2, classical Th1 cells producing IFN- and multifunctional 

T cells producing both IL-2, IFN- and TNF (Winkler et al., 2005). The latter category seems crucial for 

the development of a protective immune response. Type-1 immunity cytokines IFN-, TNF, IL-1 and IL-

6 are produced in the lungs after Th1 activation and are involved in control of the infection (Da Silva et 

al., 2015). IFN- and TNF production by Th1 cells activates macrophage microbicidal activities (Figure 

21). Macrophage activation increases interactions of M. tuberculosis containing phagosome with the 

endosomal network, targeting mycobacteria to spacious, proteolytic compartments that efficiently 

reduce its replication and access to the cytosol (Schnettger et al., 2017). An activated phagosome is 

characterized by the presence of nitric oxides (in mouse), hypoxia and carbohydrate reduction, which 

perturb the M. tuberculosis envelop (Chan et al., 1992; Macmicking et al., 1997). Bacterial killing is also 

induced by vitamin D activation of macrophages, increasing autophagy (Gutierrez et al., 2004; Yuk et 

al., 2009) as well as anti-microbial peptide cathelicidin37 production (in humans) (Liu et al., 2007; 

Martineau et al., 2007). Some bacteria are eliminated at this step, but not all. Indeed, the bacteria is 

able to survive these toxic stress by shifting its metabolism and enter dormancy (Wayne and Hayes, 

1996; Schnappinger et al., 2003; Rohde, Abramovitch and Russell, 2007; Leistikow et al., 2010).  

Macrophage activation by T cells is required to control bacterial growth. Indeed, IFN--deficient mice, 

and human carrying genetic mutations in IFN- or IL-12 receptors, or infected by HIV are highly 

susceptible to tuberculosis (Cooper et al., 1993; Ottenhoff, Kumararatne and Casanova, 1998; Esmail 

et al., 2018). Similarly, the deleterious effects are observed in TNF-deficient mice (Flynn et al., 1995) 

or patients under anti-TNF therapies (Keane et al., 2001). Likewise, mice deficient in T-bet show 

increased IL-10 and decreased IFN- levels, associated with impaired macrophage activation and 

bacterial control (Sullivan et al., 2005). IL-12 is not only essential to induce and maintain IFN- 

producing Th1 (Feng et al., 2005), but also for induction of TNF- and nitric-oxide production by 

macrophages (Jana et al., 2003). Of note, other mice models show that protection by IFN- can be 

compensated by other mechanisms such as production by T cells of Csf2 (Rothchild et al., 2017; Sallin 

et al., 2018). These results highlight the key role of IL-12 mediated production of IFN- and TNF- by 

 
37 Cathelicidin is an anti-microbial peptide produced in phagocyte lysosomes involved in lipoprotein membrane 
disruption, leading to bacteria death. 
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Th1 cells to control the infection, while other mechanisms may be also involved and need to be 

investigated.  

Maintenance of macrophage activation is achieved partly because of T cell persistence. While T cells 

should have a short lifespan under chronic antigen stimulation due to replicative exhaustion, this is 

not the case during this infection. Even if their proliferation is reduced after the acute phase of 

infection, these lymphocytes are maintained (Winslow et al., 2003). In the mouse model, most antigen-

specific Th1 expressed programmed death-1 (PD-1), a marker of exhaustion, or killer cell lectin-like 

receptor G1 (KLRG1), a marker of terminal differentiation. PD-1+ cells were highly proliferative and, 

instead of becoming exhausted, they differentiated into KLRG1+ cells. These cells exhibited a short 

lifespan and secreted the pro-inflammatory cytokines IFN- and TNF-α. Therefore PD-1+ cells could 

constitute a reservoir of progenitors that continually produces terminal effector cells (Reiley et al., 

2010).  

Th17 produce IL-17 leading mainly to neutrophil recruitment, but their role in tuberculosis progression 

is less clear. In IL-23 p19-deficient mice, Th17 cells are absent and IL-17 and IL-22 are poorly produced. 

In this model, the unaltered Th1 compartment seems sufficient to control the pathogen growth at 

early time points but not on the long term (Khader et al., 2005, 2011). In addition, Th17 become 

important to control the pathogen growth in absence of IFN-, prolonging mice survival, but also 

inducing potential tissue damage through high neutrophil infiltrates (Wozniak et al., 2010). This 

phenomenon was exacerbated in a model of repeated BCG vaccination before M. tuberculosis 

infection, inducing high amount of IL-17 responsible for tissue damage (Cruz et al., 2010). Therefore, 

IFN- is also implicated in the control of IL-17 production to reduce neutrophil infiltrates, which is 

associated with immunopathology (Cruz et al., 2006; Nandi and Behar, 2011). This may occur through 

induction of IDO in lung epithelial and endothelial cells, which then inhibit IL-23-mediated induction of 

Th17 (Desvignes and Ernst, 2009). Another detrimental role for IL-17 consists in the inhibition of 

apoptotic death of infected macrophages, which restricts the pathogen growth and infection of other 

target cells (Cruz et al., 2015). However, Th17 may not be totally detrimental. Indeed, they are involved 

in the early recruitment of Th1 during vaccination, by induction of the CXCL9, CXCL10 and CXCL11 

chemokines (Khader et al., 2007), and inhibition of IL-10 induced by BCG, which limits Th1 activation 

(Gopal et al., 2012). Also, Th17 are able to mediate bacterial killing, but to a lesser extent than Th1 

(Gallegos et al., 2011). IL-17 is also essential for mature granuloma development and thus containment 

of the bacteria. In this case, the source of IL-17A responsible for this effect seems to be  T cells38 

rather than Th17 (Okamoto Yoshida et al., 2010). Further studies are needed to determine their role 

during the infection, and if this compartment could be modulated to benefit the host.  

 

 

 

 

 
38  T cells and MAIT cells, like iNKT cells are subsets of unconventional T cells highly present in mucosal sites. 

 T cells have a TCR composed of gamma and delta chains by opposition to classical T cells harboring alpha and 
beta TCR chains. They do not need antigen presentation by MHC molecules and seems able to recognize various 
antigens with different receptors including lipid antigens, presented on CD1 by myeloid cells or phosphoantigens. 

Upon activation, they produce cytokines (TNF-, IFN- or IL-17), chemokines and mediate lysis of infected cells. 
In mucosal sites, they seem to be the main source of IL-17. 
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Figure 22: Illustration of the progression of the Human Tuberculosis Granuloma. Once in the lung the bacilli are 
phagocytosed by alveolar macrophages that will translocate into the lung interstitium. This leads to recruitment 
of mononuclear cells from neighboring blood vessels that wil form the cellular matrix of the early granuloma. In 
its early stage, the granuloma has a core (inner ring) of infected macrophages enclosed by foamy macrophages 
and other mononuclear phagocytes, surrounded by an outer ring composed by T lymphocytes and anti-
inflammatory macrophages. This tissue response contains the infection and spells the end of the period of rapid 
replication for M. tuberculosis. As the granuloma matures, it is less vascularized and develops an extensive fibrous 
capsule that encases the macrophage core and excludes the majority of lymphocytes from the granuloma 
structure. At this stage, there is a noticeable increase in the number of foamy macrophages within the fibrous 
capsule. Necrosis of these cells may be responsible for the accumulation of caseous debris in the center of the 
granuloma, which portends progression to active disease. In a progressive infection the caseous, necrotic center 
of the granuloma may liquefy and cavitats spilling thousands of infectious M. tuberculosis into the airways. This 
damage to the lungs trigger development of a productive cough facilitating generation of the infectious aerosol 
and completion of the bacterium's life cycle. Figure from (Russell et al., 2009). 
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Apart from CD4+ T cells, CD8+ T cells and unconventional T cells such as  T cells, iNKT cells or MAIT39 

cells are also able to stimulate infected macrophages through cytokine production (Sada-Ovalle et al., 

2008; Gold et al., 2010; Harriff et al., 2014; Nunes-Alves et al., 2014; Lerner, Borel and Gutierrez, 2015). 

Cytotoxic granule released by  CD8+ T cells,  T cells, or iNKT also triggers apoptosis of infected cells 

(Gansert et al., 2003; Chen et al., 2013). Of note, granulysin (another anti-microbial peptide) contained 

in these granules also allow the delivery of proteases inside bacteria leading to their direct elimination 

(Gansert et al., 2003; Chen et al., 2013). In macaques, CD8+ T cells and  T cells seemed also important 

to protect against reinfection, and are part of the BCG efficacy (Shen et al., 2002; Chen et al., 2009). 

However, it seems that CD8+ T cells and unconventional T cells are more dispensable than CD4+ T cells 

in the mouse model (Nunes-Alves et al., 2014). Indeed, CD8+ T cell-deficient mice infected with low 

dose of M. tuberculosis have higher bacterial load than WT mice, but these mice achieved a better 

control of the infection over time and survive much longer than mice deficient for CD4+ T cells, IFN- 

or inducible nitric oxide synthase (iNOS)40 (Mogues et al., 2001). In fact, uncontrolled replication of M. 

tuberculosis led to a necrotic lung pathology, resulting in the rapid death of CD4+ T cell-deficient mice 

(Mogues et al., 2001). MHC-II-deficient mice are also very susceptible to this disease due to the delayed 

activation of infected phagocytes, which is not efficiently compensated by CD8+ T cell or NK cell activity 

and exhibit high dissemination of the bacteria in the organism.  

Therefore, macrophage activation by CD4+ T cells is essential for the host survival. However, while 

pathogen replication is certainly reduced by the arrival of T cells to the site of the infection, its 

elimination from the host is not guaranteed. Rather, macrophage activation mainly leads towards an 

equilibrium (or stationary phase) where the pathogen enters into dormancy state inside of well-

structured granulomas. Without a sustained T cell response over a long period of time, the dormant 

bacteria represent an ever-present danger to wake up and lead to lung disease. 

 

4. Granuloma dynamics  

Arrival of M. tuberculosis-specific T cells, as well as B cells that surround phagocytes at the site of the 

infection, lead to the formation of an organized early granuloma that is highly vascularized (Figure 22)  

(Russell, Barry and Flynn, 2010). In this structure, phagocyte activation leads to the arrest of pathogen 

proliferation and entry into a latent state. However, M. tuberculosis is still importantly remodeling 

macrophages within the granuloma. During the infection, they give rise to different specialized cell 

types, such as epithelioid macrophages (activated macrophages mainly observed in humans), foamy 

macrophages (containing multiple lipid droplets that may sustain the bacteria) (Peyron et al., 2008), 

and multi-nucleated giant cells (derived from the fusion of several macrophages such as epithelioid 

macrophages) (Puissegur et al., 2007). T cell activation drives macrophages toward a microbicidal (M1) 

phenotype, characterized for example by nitric oxide production in mice. To counteract these actions, 

M. tuberculosis changes the macrophage metabolism toward a tolerogenic (or M2) phenotype, 

characterized by ARG1 expression, with fewer killing elements (e.g., reactive species), reduced capacity 

to die by apoptosis, and increased matrix metalloproteinase MMP-12 production (Kahnert et al., 2006; 

Pessanha et al., 2012; Lugo-Villarino and Neyrolles, 2014). In fact, a precise controlled immune 

 
39 MAIT are activated by binding of their low variant TCR to bacterial vitamin B metabolites presented by the 

non-conventional MHCI MR1. Similar to  T cells, they are implicated in recruitment and activation of other 

immune cells through production of chemokines and cytokines such as TNF-, IFN- or IL-17. 
40 The inducible nitric oxide synthase (iNOS or NOS2) is the enzyme responsible for nitric oxide production that 

is part of the microbicidal molecules produced by macrophages activated by IFN- to kill pathogens.  
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response is needed so that mature granulomas persist without a potential escape of the bacteria. 

Ideally for the host, this implies the presence of microbicidal macrophages at the inner ring of the 

granuloma in contact with the bacillus, and tolerogenic macrophages in the outer ring to avoid an 

excessive inflammation causing tissue damage (Flynn, Chan and Lin, 2011).  

Progression toward disease is associated with reduced granuloma vascularization and development of 

a fibrous capsule around the inner ring-macrophage core that will exclude lymphocytes from the 

granuloma structure (Russell et al., 2009). This strongly impairs macrophage activation by CD4+ T cells. 

Foamy macrophages are highly present in the granuloma at this stage of the disease (Hunter, 2011). 

Growth of the bacteria in these permissive cells, releasing multiple antigens, may conduct to delayed-

type hypersensitivity reaction (Dannenberg, 1991). This over-reaction of the immune system, reflected 

by excessive TNF- (through ROS increase) or IFN- signaling, leads to necrotic death of the infected 

cells (Dannenberg, 1991; Roca and Ramakrishnan, 2013; Wong and Jacobs, 2013). Necrosis seems also 

to be directly triggered by the modulation of lipid mediators in cells infected by virulent M. tuberculosis 

(Chen et al., 2008). Indeed, virulent M. tuberculosis strains increase the levels of lipoxin LXA4, 

perturbing the balance between prostaglandin E2 (PGE2) and LXA441 that determine the cell type of 

death. This reaction may reflect an attempt of the immune system to destroy this bacterial niche, but 

it may directly be driven by the pathogen. Necrosis seems to appear more often in granuloma with 

immature macrophages in susceptible host, and is associated with disease progression, or post-

primary tuberculosis (Dannenberg, 1991). 

At this stage, the granuloma is characterized by the formation of the caseum at its center, giving the 

term “caseous granuloma”. Caseum is a material composed of lipid rich cell debris that are released 

by necrotic cells and extracellular trap (Wong and Jacobs, 2013), which is also thought to sustain 

bacterial survival (Russell et al., 2009) (Figure 22). In humans, the caseous granuloma contains hypoxic 

regions that impair the bacterial growth (Via et al., 2008). However, the bacteria is resistant to slow 

decrease in oxygen, entering an anaerobic persistent phase (Wayne and Hayes, 1996) from which it 

can rapidly recover (Leistikow et al., 2010). 

The caseous center of the granuloma is also highly pro-inflammatory, and characterized by the 

presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids, while 

the surrounding outer ring is more anti-inflammatory that presumably provides tissue protection and 

repair (Marakalala et al., 2016). Depending on immune regulation, it appears that each granuloma will 

later evolve individually and independently, displaying a different pattern of progression, cell 

composition and outcome (Martin et al., 2017; Cohen et al., 2018). Progression toward active disease 

seems dependent on the number of granulomas experiencing bacterial growth and immune over-

reaction.  

 

The lesion development may be dependent on B cells that appear during granuloma progression and 

localized into lymphoid cuff regions surrounding the granuloma (Gonzalez-Juarrero et al., 2001). Mice 

deficient in B cells are not affected in the IFN- production and control of the bacteria (C. M. Johnson 

et al., 1997), except when there is a high dose infection level (Vordermeier et al., 1996). However, they 

display increased Th17 activation, leading to neutrophilia and worsening of lung pathology (Taylor et 

 
41 Eicosanoids derived from arachidonic acid such as PGE2 and LXA4 are cell metabolites with important signaling 
properties. Different eicosanoids can have opposite functions. For example, PGE2 and LXA4 are important 
determinant of cell death, LXA4 favoring necrotic death while PGE2 promotes apoptosis. LXA4 also decreased 
inflammatory cytokine production and Th1 induction. Depending on environmental factors, arachidonic acid is 
more converted in some eicosanoids compare to others leading to different signal and outcome. 
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al., 2005; Kozakiewicz et al., 2013). The role of B cells in tuberculosis will not be further discussed here, 

but they appear to be essential for optimal immunity against M. tuberculosis, by modulating cytokine 

production, neutrophil infiltration, macrophage phenotype and opsonization42 of the pathogen 

through antibody production (Maglione and Chan, 2009; Flynn, Chan and Lin, 2011; Torrado et al., 

2013; Bénard et al., 2018).  

Necrosis progression leads the granuloma to cavitate (Hunter, 2011). This phenomenon appears 

amplified in region of the lungs with mechanical stress (Ihms, Urbanowski and Bishai, 2018). In these 

regions, pressures applied on the caseous granuloma composed of a soft center surrounded by a 

fibrotic rigid ring lead to ruptures (Ihms, Urbanowski and Bishai, 2018). Action of matrix remodeling 

enzymes also seemed involved in this process; the collagenase MMP-1, induced by IL-17, is increased 

in this type of granuloma while the metalloproteinase TIMP3 is decreased, resulting in the degradation 

of the lung parenchyma (Kübler et al., 2015; Squeglia, Ruggiero and Berisio, 2018) (Figure 23). 

Neutrophils are highly present in the granuloma at this stage of the disease (Nolan et al., 2013), 

recruited by Th17 and correlate with high inflammation and poor disease outcome (Gopal et al., 2013). 

This may be linked to the MMP-8 and -9 that are released upon infected neutrophil death in Neutrophil 

Extracellular Trap (NET) (Ong et al., 2015). One parameter involved in the disease progression is IFN-. 

Indeed, IFN- signaling is depressed in active tuberculosis and correlates with the disease severity in 

human (Sahiratmadja et al., 2007). Neutrophilia may also be explained by impaired IFN- signaling, 

which normally limit neutrophil recruitment (Cruz et al., 2006; Nandi and Behar, 2011). 

At this stage, lesions allow a contact between the granuloma center and the airways (Wong and Jacobs, 

2016). This may lead to an environment prone to bacterial growth reactivation (rich in oxygen), as 

abundant free bacteria are found in cavitated lesions. Granuloma rupture also allows liquid caseum 

containing bacteria to be released in the bronchial tree and transmit it to new host via cough droplets. 

This suggests that contrarily to most accepted hypothesis, the development of caseous granuloma may 

benefit the pathogen. Therefore, cavitation of the granuloma is a state of active tuberculosis.  

 

 

  

 

 

 

 

 

 

 

 
42 Opsonization is an immune process involving the binding of antibodies surrounding a pathogen that will favor 
its elimination by immune cells. The constant fragment (Fc) of antibodies is indeed recognized by Fc receptors 
present at the surface of phagocytes facilitating its phagocytosis, a process called antibody-dependent cellular 
phagocytosis. Fc binding on monocytes, neutrophils, eosinophils or Natural Killer cells also activates the release 
of lysis products by these cells, leading to bacterial elimination without phagocytosis, a process called antibody-
dependent cell-mediated cytotoxicity. 
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Figure 23: Immune mediators of tissue remodelling and lung function impairment in tuberculosis. Transcription 

factors, cytokines and chemokines that drive expression of tissue-degrading enzymes or directly mediate 

cavitation and/or fibrosis are shown in green. Matrix metalloproteinases (MMP) that promote granuloma and 

cavitation are depicted in purple. HIF, hypoxia inducible factor; NF, nuclear factor; mtROS, mitochondrial reactive 

oxygen species. #: IL-1β regulates fibrogenesis in idiopathic pulmonary fibrosis and may play a role in tuberculosis. 

Pathological processes contributing to the progression of lesions may influence the development of airflow 

obstruction and restrictive ventilatory patterns of pulmonary impairment. Figure adapted from (Ravimohan et al., 

2018)  
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In patients and mouse model of tuberculosis reactivation, the disease is characterized by lipid 

pneumonia and thrombosis with bronchial obstruction (Hunter, 2011). Patients in this state are highly 

contagious, experience strong tuberculosis symptoms and will die eventually, if untreated. Granuloma 

may harden (through fibrosis) or be healed by calcification (Wong and Jacobs, 2016), a state 

characterized by a decreased inflammation and elimination of the bacteria (Flynn, Chan and Lin, 2011). 

TNF- production increases fibroblast recruitment and activity following granuloma formation, leading 

to collagen synthesis, matrix degradation, and thus development of fibrosis (Shkurupiy et al., 2014). In 

addition to TNF-, aberrant TGF- and IL-1 appear to be involved in the development of fibrosis (Tsao 

et al., 2000; DiFazio et al., 2016; Ravimohan et al., 2018). Fibrosis may help pathogen containment but 

could also impair the host homeostatic lung functions. (Figure 23). 

Factors leading to active tuberculosis are still today not well understood. Indeed, while the early stages 

of tuberculosis immune response may be similar in many host species, few of them mimic the latter 

stages. For example, most mouse strains do not develop necrotic granuloma structures that resemble 

those in humans. Even if similar cell types are recruited, the organization of the granuloma is not the 

same and their center is less anaerobic compared to humans (Tsai et al., 2006). Difficulties to obtain 

tissue from patients, and the unknown impact of antibiotic treatment on granuloma dynamics, have 

also restrained validation of findings in animal models (Hunter, 2011). While no animals are known to 

develop cavities as in humans, some of them, including C3HFeJ mice, guinea pigs, rabbits or non-

human primates, develop exudative lesions with foamy macrophages and are therefore very helpful 

to understand disease development (Hunter, 2011; Williams and Orme, 2016). As humans, non-human 

primates develop heterogenous disease following infection, confirming that latent tuberculosis is not 

a fixed and well defined stage, but rather it is manifested in different forms such as a well-contained 

disease, or subclinical and asymptomatic disease at high risk to progress to active disease (Capuano et 

al., 2003).  

It was thought that progression toward active tuberculosis occurs mainly in immunocompromised 

patients or in patients having genetic polymorphisms rendering them more susceptible to the disease, 

reviewed in (Levin and Newport, 2000). Nevertheless, the fact that all granulomas in a single individual 

do not evolve similarly, suggest that this may be more complicated (Cadena, Fortune and Flynn, 2017; 

Martin et al., 2017).  In fact, it is still unclear if active disease occurs after reactivation or reinfection, 

in particular in patients presumably cured by antibiotic treatment. It is possible that some bacteria are 

not killed by the treatment, leading to relapse or reactivation of the primary infection that may occur 

early after infection(Malherbe et al., 2016). Conversely, reinfection may be the main cause of post-

primary tuberculosis, especially when the disease manifests one year or later after primary infection 

(Marx et al., 2014; Behr, Edelstein and Ramakrishnan, 2018). Even if the treatment results in clearance 

of the pathogen, the patients may keep pulmonary dysfunctions (such as cavitation, fibrosis, nodular 

infiltrates that impact ventilation) that are aggravated in case of reinfection and render patients more 

susceptible to death from respiratory causes, such as Chronic Obstructive Pulmonary Disease (COPD) 

(Hnizdo, Singh and Churchyard, 2000; Wohlfert et al., 2011). A better understanding of the immune 

response, and above all the reasons why the arrival of T cells do not allow disease resolution, may help 

to improve treatments as discussed in the following section. 
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Figure 24: Effector T cell activation by infected target cells is required for pathogen control. Naive T cells are 
primed by dendritic cells (DC) presenting their cognate antigens in lung draining lymph nodes. Priming initiates 
the clonal expansion of T cells and is influenced by cytokines produced by DC, leading to their differentiation into 
effector or memory T cell subsets, and egress from the lymph node via the blood. To accomplish effector functions, 
T cells must traffic to the site of infection and be activated by recognizing their cognate epitope presented by 
infected cells, to secrete cytokines (curved solid arrow in figure) and express surface ligands for activating 
receptors (squiggly arrow in figure) that activate intracellular microbicidal mechanisms. If T cells cannot be 
activated at the site of infection, they will not contribute to control of the infection. Figure from (Ernst, 2018). 
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5. T cell response limitations 

The fact that the pathogen is not eliminated after the arrival of T cells suggests that the host immune 

response is not fully efficient (Ernst, 2012). The mechanisms responsible for this phenomenon have 

been investigated and appear to be multiple. 

First, several CD4+ T cells may not be efficient because of antigen modulation. Many immunodominant 

antigens are shared between different M. tuberculosis lineages, suggesting that development of CD4+ 

T cells against these antigens is not fully detrimental to the bacteria. Indeed, M. tuberculosis highly 

expresses the immunodominant antigen Ag85A during the early stage of infection, and reduces its 

expression after the recruitment of CD4+ T cells. This results in the expansion of multiple CD4+ T cells 

specific for this antigen in the lymph nodes that will not find their target cells upon arrival to the site 

of infection, and thus cannot participate in the control of the pathogen (Bold et al., 2011). Indeed, 

direct recognition of infected cells by CD4+ T cells is needed to control of M. tuberculosis by infected 

cells (Figure 24) (Srivastava and Ernst, 2013). This is not the case for all antigens; for example, ESAT-6 

expression is maintained throughout all stages of infection. However, as previously mentioned, 

infected APC are able to transfer antigens to non-infected APC. While this phenomenon improved 

antigen-specific CD4+ T cells generation in the lymph node, it also results in reduced antigen expression 

by the infected cells leading to decreased recognition of these infected cells by antigen-specific CD4+ 

T cells in the lungs, even if the antigen is expressed by the pathogen (Srivastava, Grace and Ernst, 2016).  

In addition, the architecture of the granuloma, which keeps away T cells from infected phagocytes, 

may limit the T cell response efficiency (Kauffman et al., 2018). The proximity of T cell and infected 

macrophages is dependent on TNF- and lymphotoxins (Roach et al., 2001). Impaired localization may 

also be caused by IDO expression in M. tuberculosis-infected macrophages, as its silencing improved 

the localization of CD4+ T cell in the center of the granuloma, reduced the bacterial burden, and 

improved macaques survival (Gautam et al., 2018). In addition, co-culture of infected macrophages 

(silenced for IDO1) with CD4+ T cells resulted in an increased bacterial killing (Gautam et al., 2018). 

Interestingly, impaired T cell activity, characterized by reduced polyfunctional IFN-+ IL-2+ TNF-+ in 

patients with active compared to asymptomatic tuberculosis, becomes restored during antibiotherapy, 

suggesting that this process is masterfully controlled by the pathogen (Day et al., 2011). 
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Figure 28: Regulation of the immune response during M. tuberculosis infection. Following infection with M. 

tuberculosis, specific regulatory pathways that normally serve to limit host-induced immune pathology may 

inadvertently promote pathogen persistence. Two such regulators include IL-10 and regulatory T cells (Treg). The 

induction of IL-10 during infection can lead to the inhibition of macrophage effector functions, with reduced 

bacterial killing and impaired secretion of cytokines/chemokines. IL-10 can also block chemotactic factors that 

control DC trafficking to the draining lymph nodes. In the lymph nodes, both IL-10 and Treg can block the 

differentiation of naive T cells to IFN- -producing Th1 cells, predominantly through direct effects on the DC. 

Furthermore, IL-10 can block T cell chemotactic factors such as CXCL10, which mediates Th1 cell trafficking back 

to the lungs, in addition to blocking macrophage activation and downstream antimicrobial pathways in response 

to IFN-. In the lungs, Treg can inhibit Th1 cell activation of infected cells. Figure from (O’Garra et al., 2013). 
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6. Immune regulation 

Anti-inflammatory and suppressive mediators are highly involved in tuberculosis. They are needed to 

avoid late over-inflammation leading to necrosis and tissue damage. Nevertheless, M. tuberculosis 

appears to activate these factors too early during the infection, which lead to an overall impairment 

of bacterial killing. Therefore, understanding their role and finding ways to modulate their activation, 

is crucial to better understand and design the diagnosis and treatment of tuberculosis. 

One example of a molecule that is highly implicated in immunosuppression is the PD-143 receptor 

expressed by T cells. PD-1-deficient mice show high bacterial proliferation and succumb to the disease, 

early after expansion of highly pro-inflammatory CD4+ T cells, leading to immunopathology (Lázár-

Molnár et al., 2010; Barber et al., 2011). In fact, increased IFN- production by CD4+ T cells results in 

early death of infected mice without better control of the bacterial load, demonstrating the 

importance of the suppressive activity of PD-1 expression on T cells in this type of chronic infection 

(Sakai et al., 2014). Interestingly, the expression of PD-1 on CD4+ T cells, which represents a pool of 

activated KLRG1+ T cell progenitors, may be a key mechanism to restrict the generation of such 

activated T cell and prevent immunopathology at some stages of the infection (Urdahl, Shafiani and 

Ernst, 2011).   

As expected, the conventional suppressive Treg, which are highly present in infected mice (Scott-

Browne et al., 2007), non-human primates (Green et al., 2010) and patients (Guyot-Revol et al., 2006), 

are also involved in the control of the immune response. In humans, their abundance seems to 

correlate with M. tuberculosis load, low Th1 response and disease progression suggesting that the 

pathogen favors their induction (A. Singh et al., 2012; Pang et al., 2013; Arram, Hassan and Saleh, 

2014). As a matter of fact, there are antigen-specific Treg that are expanded in the pulmonary draining 

lymph node along with effector CD4+ T cells. This may be because of increased PD-L1 ligand expression 

on infected DC (Trinath et al., 2012). These Treg inhibit effector T cell priming through CTLA-4 

expression (Figure 25), participating in the delay in their recruitment into the lungs (Shafiani et al., 

2010). Subsequently, Treg migrate to the lungs at same speed and same location as effector T cells do, 

including inside granulomatous regions, being ideally situated to inhibit effector T cell functions (Scott-

Browne et al., 2007). Treg express high level of ICOS and PD-1 molecules and are associated with 

increased anti-inflammatory TGF- levels in human patients suggesting that they acquired an activated 

anti-inflammatory phenotype (Pang et al., 2013). Surprisingly, in mice, depletion of Treg using anti-

CD25 antibodies had modest effect in reducing bacterial loads and did not increase the 

immunopathology (Quinn et al., 2006; Ozeki et al., 2010). However, these results must be taken with 

caution given that, while not all lung Treg express CD25, some activated effector T cells do (Parkash, 

Agrawal and Madhan Kumar, 2015). Also, depletion of Treg by anti-Thy1.1 administration in either 

mixed bone marrow chimeric mice (in which all cells capable of expressing Foxp3 expressed Thy1.1) 

(Scott-Browne et al., 2007), or in a model of Rag1-/- receiving adoptive transfer of CD4+ CD25- T cells 

(Kursar et al., 2007), led to a better control of M. tuberculosis growth. These authors also showed that 

impairment of the control of M. tuberculosis growth was due specifically to the ability of Treg to 

suppress CD4+ T cell activity  in an IL-10-independent manner (Figure 25) (Scott-Browne et al., 2007; 

Kursar et al., 2007). Surprisingly, their deletion did not result in increased level of TNF-, IFN- or NO 

 
43 PD-1 is a receptor regulating inflammation upon binding of PD-L1 expressed by myeloid cells or cancer cells by 
favoring apoptosis of effector T cells while reducing apoptosis of regulatory T cells. Over-expression of PD-1 is 
associated to T cell exhaustion, a state of T cell linked with poor effector functions. 
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(Kursar et al., 2007). In a model of InterCellular Adhesion Molecule (ICAM-1)44 deficient mice that 

exhibit lower level of T cells including iTreg, M. tuberculosis infection resulted in high morbidity 

associated with high immune cell infiltration, which became reduced after adoptive transfer of CD25+ 

Treg (Windish et al., 2009). Therefore, while Treg may have an early deleterious role in delaying the T 

cell response, their presence may be essential latter to prevent immunopathology. In the non-human 

primate model, IL-2 administration mediating expansion of both effector T cell and Treg resulted in 

reduced immunopathology associated with decreased bacterial load (Chen et al., 2012). These results 

complement data from the mouse model and suggest a novel therapeutic approach to benefit from 

Treg protective role while limiting the impairment of the early effector T cell response. Besides Treg, 

M. tuberculosis induction of other CD4+ T cell subsets that regulate the Th1 response, such as Th2, 

Th22 or Th9, may also contribute to disease progression. Yet, at the moment, data regarding the role 

of the cells in this disease are scarce and controversial, highlighting the need for further investigation 

, as reviewed in  (Da Silva et al., 2015). 

Cytokines and their receptors are also part of the anti-inflammatory response limiting the T cell 

response in tuberculosis. Indeed, mice deficient in regulatory cytokines, such as IL-10 (Jung et al., 2003; 

Beamer et al., 2008; Cyktor et al., 2013; Moreira-Teixeira et al., 2017) or IL-27 (Pearl et al., 2004; 

Hölscher et al., 2005), are better able to control the pathogen growth or to limit reactivation (Turner 

et al., 2002). The role of IL-10 in particular has been extensively studied. The source of IL-10 may be 

diverse and even produced by Th1 or Th17 that could co-produce IL-10 and IFN- following chronic 

antigen stimulation (Da Silva et al., 2015). In the mouse model, overproduction of IL-10 by T cell in vivo 

was detrimental for bacterial control while IFN- was produced in large amounts (Murray et al., 1997). 

This suggests a direct role of IL-10 on macrophage activation rather than through effector T cell 

inhibition (Figure 25). In mice depleted of IL-10, the bacteria was not eliminated, and in fact, regrew at 

late time point, associated with excessive Type-1 immune inflammation, leukocyte infiltration, leading 

eventually to reduced survival (Higgins et al., 2009). In susceptible CBA/J mice depleted from IL-10, a 

mature, fibrotic granuloma is formed, associated with generation of multifunctional T cells, increased 

IFN- levels and reduced bacterial loads (Cyktor et al., 2013). Therefore, as for Treg, its presence to 

control immune activation after (but not before) initiation of the T cell response may be required for 

the host survival. Inflammatory status of the host may highly determine its protective versus 

detrimental role. Along with these findings in mice, it has been shown that in patients under clinical 

cure, IL-10 seems induced in combination to IFN- and TNF- and might allow eradication of the 

pathogen with minimum tissue damage (da Silva et al., 2013). In addition to cytokines, other regulatory 

molecules like the eicosanoid LXA4, (Bafica et al., 2005) or DNAX-activating protein of 12 kDa (DAP12)45 

are able to inhibit Th1 induction (Divangahi et al., 2007).  

Similar to Treg, anti-inflammatory mediators such as IL-10 or DAP12 seem essential to prevent death 

related to increased chronic inflammation (Hölscher et al., 2005; Divangahi et al., 2007). Therefore, 

even if the anti-inflammatory response seems inappropriate, pathogen survival is maybe a sacrifice 

granted by the host in order to protect tissue integrity. This phenomenon is not unique to tuberculosis. 

In fact, tolerance to microbes rather than resistance seems to be an option often considered by the 

host when facing an infection (Ayres and Schneider, 2012). As in its interaction with the microbiota, 

containment rather than elimination may be the less detrimental option for the host in a well-defined 

 
44 ICAM-1 is an adhesion molecule expressed on endothelial cells and immune cells, allowing leukocyte 
transmigration from blood vessels to tissue. 
 
45 DAP12 is a transmembrane signaling adaptor mainly expressed on myeloid cells that can either activate or 
inhibit the immune response depending on the receptor it is associated with. 
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situation. However, while being the better of two evils at a define point of the infection, tolerance is 

on the long term a risky option because it depends on perfect regulation of the immune system. This 

fault may have been exploited by pathogens such as M. tuberculosis during their long evolution with 

humans.  

Since the immune response to tuberculosis is imperfect, the different studies detailed in the following 

section aimed to improve it through vaccination and more recently via host-directed therapies. 

Complexity of the natural immune response to tuberculosis, and in particular of the mechanisms 

involved in the balance between resistance and tolerance have been a major challenge conducting to 

failure of many strategies. However, our growing understanding of such mechanisms, partly revealed 

by these approaches modifying the immune response, will likely allow the delivery of successful 

strategies in the future. 
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Figure 26: Pipeline for new tuberculosis vaccines development. Currently, multiple vaccine candidates at 

different clinical phases form part of a promising pipeline. They represent different strategies, being viral vector, 

subunit vaccines (protein/adjuvant), mycobacterial cell wall or living mycobacteria. In particular, there are two 

candidates in the phase III that may soon be used to prevent tuberculosis. Figure from (WHO | Global tuberculosis 

report, 2018). 
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III. Development of preventive and therapeutic strategies targeting the host 

1. Design of new vaccines in tuberculosis 

a) Classic strategies used for the development of the new pipeline 

Long-lasting immune protection following BCG inoculation and immunity generated in latent M. 

tuberculosis infection suggest that protective immunological memory can be induced by vaccination. 

However, developing more efficient vaccines has not been as easy as expected, and promising 

candidates are only emerging (Figure 26).  

New vaccine candidates can be categorized in three classes: (i) preventive pre-exposure vaccines, or 

priming vaccines, designed to be administered to neonates, prior to first exposure to M. tuberculosis, 

(ii) preventive post-exposure vaccines, or boosting vaccines, targeting adolescents and adults with LTBI 

and prior BCG immunization, and (iii) therapeutic vaccines, which are to be co-administered with 

antibiotics, notably to persons at higher risk of developing recurrent disease (Kaufmann, Weiner and 

von Reyn, 2017). They can also be classified depending on their constituent as follow: subunit vaccines, 

viable whole-cell vaccines, and inactivated whole-cell vaccines.  

Subunit vaccines are composed of one or more antigens that are often combined to improve vaccine 

efficacy. Protection of these vaccines is often low. Proteins efficacy is usually improved using adjuvants 

or through DNA delivery directly to host cells by a recombinant viral vector. One challenge for the 

design of a subunit vaccine is the choice of antigen. Investigated antigens, such as Ag85, ESAT-6 or 10 

kDa culture filtrate antigen (CFP-10)46, were considered as good candidates for pre-exposure vaccines 

due to their high immunogenicity and early expression during infection. However, as the immune 

response to tuberculosis is still not fully understood, delivery of a single antigen may fail to induce 

protection. MVA85A, was a promising candidate consisting in an attenuated poxvirus viral vector 

delivering Ag85A. It induced a high frequency of T cell responses, and was found to be safe and 

immunogenic in humans (McShane et al., 2004). However, it failed to prevent M. tuberculosis disease 

or new infections in two phase II clinical trials (one in HIV infected adults (Ndiaye et al., 2015) and in 

another one in infants (Tameris et al., 2013)). The design of hybrid vaccines such as H1 (ESAT-6/Ag85B) 

and H4 (TB10.447/Ag85B) was based on combination of antigens to decrease the risk of such issue (Voss 

et al., 2018). However, these candidates do not help prevention of disease reactivation in latent 

patients as the antigen used seem to be poorly expressed during latency. Therefore, dormancy related 

antigens, such as Heat-shock protein X (HspX)48, or antigens in the DosR regulon49, appear to be more 

suitable for a post-exposure strategy. Ideally, a combination of both types of antigens could be used 

for the development of a unique vaccine, called multi-stage vaccine. Fusion proteins were used to 

 
46 CFP-10 is a M. tuberculosis antigen secreted in complex with ESAT-6 by the ESX-1 secretion system, with the 
capacity to attach to host cell membranes, an important step for the prevention of phagolysosomal fusion. 
47 TB10.4 is another protein secreted by members of the MTBC, part of the ESAT-6 family. It is highly recognized 
by T cells, in particular by T cells from BCG vaccinated individuals suggesting its potential for the design of new 
subunit vaccines but its functions are poorly described. 
 
48 HspX, or Hsp 16.3 or Acr, is a protein highly produced by M. tuberculosis during stress conditions such as 
hypoxia, nutrient scarcity or in presence of NO during which it can represent 25% of total protein expression. It 
has a key role for bacterial survival in macrophages, reducing bacterial growth and acting as a chaperone allowing 
stability of proteins and cellular structures in the latent phase.  
49 DosR regulon is a genetic program also induced in stress conditions such as reduced oxygen levels. It is involved 
in the metabolic shift allowing bacterial survival in hypoxia and in the rapid bacterial regrowth when oxygen level 
increased. 
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design vaccine belonging to this class, including H56, M72 and ID93 that are today in clinical phase II  

(Figure 26) (Kaufmann and McMichael, 2005; Kaufmann, Weiner and von Reyn, 2017; Voss et al., 

2018). Importantly, recent results from the phase IIb trial evaluating the M72/AS01E vaccine 

(composed of the fusion of protein M72 derived from MTB32A and MTB39A antigens and of the AS01E 

adjuvant) suggest that vaccination with this candidate mediates an immune response that reduces the 

risk of latent infected individuals to develop pulmonary disease (Tait et al., 2019). Even if highly 

promising, this strategy is still risky today, as it induces a response to a limited number of antigens. The 

fact that the T cells induced by such vaccination will confer protection largely depends on our 

understanding of the immune response that is much more complicated than previously thought. In 

particular, the conservation of M. tuberculosis immunodominant antigens in the different lineages 

infecting different populations around the world suggest that their expression may not be to the 

disadvantage of the pathogen (Gallegos, Pamer and Glickman, 2008). 

Therefore, even if less controlled, the two other strategies, using more antigens, must be considered 

as promising. They comprise the use of viable or whole-cell vaccine. The complexity of their antigen 

components allows for interaction with innate immune cells, and induction of conventional and 

unconventional T cell responses, as well as humoral responses (Voss et al., 2018). However, the M. 

tuberculosis mutant MTBVAC, and the recombinant BCG vaccine VPM1002, have shown promising 

results in phase I and II, respectively, and seemed well tolerated (Figure 26). However, the use of living 

vaccines is complicated as there is still a risk that modified strains may revert or induce pathology in 

immuno-compromised individuals. The use of whole cell mycobacterial vaccines also remains central 

in tuberculosis vaccine development with two candidates tested as boosting vaccine: DAR-901, derived 

from SRL172, which is an inactive whole-cell vaccine derived from a non-tuberculous mycobacterium, 

and Vaccae vaccine, consisting of a heat-inactivated whole-cell from M. vaccae. They have respectively 

entered phase IIb and phase III (Figure 26) (Voss et al., 2018).  

Developing a therapeutic vaccine would be particularly critical for the treatment of drug resistant 

tuberculosis infections. The RUTI vaccine candidate, composed of fragmented M. tuberculosis cell wall 

delivered in liposome, inducing protection and safety in latent tuberculosis patients, is now evaluated 

as adjunction treatment for MDR-TB patients (Kaufmann, Weiner and von Reyn, 2017). The Vaccae 

vaccine has also been evaluated as adjunctive therapy for MDR-TB patients. In first studies it was well 

tolerated and improved both bacterial clearance and closure of tuberculosis cavity suggesting that 

therapeutic vaccines are highly promising (Weng et al., 2016).  

Several pitfalls may limit the efficacy of vaccines. First, the diversity of human populations and 

environmental factors, which may comprise risk factors for tuberculosis, render the establishment of 

correlations between protection in animal models and clinical trials difficult. This may indicate that 

several vaccines will be needed to achieve tuberculosis elimination (Kling et al., 2014). This and other 

factors certainly limit the efficacy of BCG. Indeed, our understanding on how BCG protects against 

disseminated tuberculosis, and why it fails to protects against pulmonary tuberculosis, is still 

incomplete (Pai et al., 2016b). Adoptive transfer of specific CD4+ T cell seemed unable to induce 

protective response before seven days post-infection (Gallegos, Pamer and Glickman, 2008). Even if it 

consists in an accelerated T cell response, it still gives too much time to the pathogen to replicate. 

However, such T cells may be able to prevent the bacterial dissemination (that occurs during this 

timeline), which may explain the protective effect of BCG against disseminated tuberculosis diseases. 

Reasons for this delay are still not fully understood. It may be explained by the ability of M. tuberculosis 

to block phagosome maturation, delaying the expression of antigens at the surface of infected cells 

(Singh et al., 2006; Russell, 2011; Srivastava and Ernst, 2013). Also, even when antigen presentation is 

restored, the fact that the bacteria reduced the expression of some immunodominant antigens, such 
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as Ag85A, would abolish the protection mediated by effector T cell (Bold et al., 2011). This may explain 

failure of the MVAg85A vaccine candidate and complicate the design of subunit vaccines. As detailed 

previously, the proximity of T cell to infected cells in the lung parenchyma and within the granuloma 

structure is also a key parameter for protective immune response. Intramuscular vaccination may not 

be the best delivery way/system to achieve such a goal (Lai et al., 2015). Indeed, BCG subcutaneous 

delivery only induces the recruitment of T cells in the lung parenchyma, but not to the airways. This 

may be directly responsible for the delayed protection observed after M. tuberculosis infection. 

Indeed, intratracheal transfer of primed T cells before the infection accelerates the immune response, 

decreasing the bacterial load (Horvath et al., 2012). Interestingly, intratracheal or intranasal delivery 

of BCG can also lead to the recruitment of lung resident PD-1+ KLRG1- and PD-1- KLRG1+ T cells, leading 

to a decreased bacterial load both in the lung and spleen after infection, compared to subcutaneous 

BCG delivery (Chen et al., 2004; Perdomo et al., 2016; Bull et al., 2019). M. tuberculosis subversion of 

the immune system seems highly dependent on the bacterial load. Therefore, bacterial load reduction 

by mucosal administration may allow better immune clearance of the pathogen. Mucosal 

administration of subunit vaccines in mouse models also resulted in better protection (Wang et al., 

2004; Santosuosso et al., 2005, 2007). This effect seems even improved using systemic priming 

followed by mucosal boosting (Wang et al., 2004). Such protocols may induce both improved CD4+ and 

CD8+ T cell responses (Wang et al., 2004). However, in NHP, mucosal boosting of BCG using subunit 

vaccines failed to improve protection (Darrah et al., 2019). Protective lung homing of T cells may also 

be achieved by injection of chemokines or retinoic acid (Riccomi et al., 2019). In human, MVAg85A 

aerosol delivery was compared to intradermal administration. Both routes were shown to be well 

tolerated and immunogenic. Although the aerosol route induced a better response in cells collected 

from bronchoalveolar fluid, suggesting a higher induction of local response (Satti et al., 2014), this 

induction was not efficient to protect the host from developing the disease. Therefore, this strategy 

seems promising while efficacy studies are needed. 

Many strategies have been used to develop a new vaccine to prevent tuberculosis. They have given 

rise to multiple candidates currently forming a rich pipeline. However, as many candidates fail to prove 

efficacy during the last stages of clinical trials or may not be adapted to all patients, the search for new 

strategies is still ongoing. 

b) Non-pathogenic bacteria as tuberculosis vaccines 

As described in Section 1.IV of this introduction, bacteria from the microbiota represent attractive 

carrier of molecules of interest to mucosal sites. In particular, the use of recombinant lactic bacteria, 

such as Lactococcus lactis or Lactobacillus plantarum, as vaccine vectors has been extensively tested 

in other diseases. They offer specific advantages compared to other strategies. For example, they are 

more immunogenic than naked purified antigens and can carry more foreign DNA than viruses 

(Bermúdez-Humarán et al., 2011; Rosales-Mendoza, Angulo and Meza, 2016). Their safety status and 

possibilities to further modify them for increased biocontainment is also very attractive (Steidler et al., 

2003). Two strategies using such vehicle have been developed. The first one consists in the production 

of antigens from the pathogen by the recombinant bacteria. Co-expression of immunomodulatory 

proteins such as IL-12 is also possible, and it has been shown to improve immunization effect 

(Bermúdez-Humarán et al., 2005; Hugentobler et al., 2012). The second strategy uses the bacteria as 

a DNA carrier, transmitting DNA to eukaryotic cells after its internalization (through phagocytosis or 

infection) (Yurina, 2018). To improve this strategy, integration of invasion-encoding genes for invasions 

has been used. For example, integration of the fibronectin-binding protein A (FnBPA) from 

Staphylococcus aureus has been expressed in L. lactis and increases its invasive power (Pereira et al., 

2015, 2017; Mancha-Agresti et al., 2017). Such strategy is beginning to be tested in the field of 
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tuberculosis. Delivery of Ag85A, ESAT-6, or MPB/MPT51 antigens in target cells using DNA delivery 

approach is successful in mouse model, inducing systemic Th1 response  (Pereira et al., 2015; Mancha-

Agresti et al., 2017) and protection against M. tuberculosis infection (Miki et al., 2004). Similarly, 

expression of ESAT-6 at the surface of L. lactis, or Ag85B-ESAT-6 fusion antigen expression at the 

surface of L. plantarum, induced an immune response in mice (Pereira et al., 2015; Kuczkowska et al., 

2017). However, this field is quite recent and at the moment few studies really show the protective 

potential of these approaches after M. tuberculosis infection. Therefore, further studies are needed to 

demonstrate efficacy of this approach retaining a great potential. 

One major advantage of this approach is its suitability for mucosal immunization that may improve 

vaccine efficacy. Indeed, nasal administration of bacteria delivering antigens seems potent for 

immunization in mice (Cortes-Perez et al., 2007; Kuczkowska et al., 2017). It is also suitable for mucosal 

boosting following BCG subcutaneous priming (Pereira et al., 2017). For example, intranasal boost 

using Bacillus subtilis spores coated with M. tuberculosis antigens after BCG priming, increases the 

level of specific IgG (in serum) and IgA (in the lungs), and the generation of tissue resident memory T 

cells in lung parenchyma, resulting in improved M. tuberculosis lung clearance after infection (Copland 

et al., 2018). In addition, the use of recombinant bacteria may be used to deliver therapeutic proteins 

or may be used as post-exposure vaccines (Bermúdez-Humarán et al., 2011; Jacouton et al., 2018).  

Achieving high efficacy may be dependent on the vector strain. L. lactis has been extensively used 

because it is easier to transform than, for example, L. plantarum. However, because L. plantarum is 

able to persist longer than L. lactis in the lung, it can be a candidate of choice in the case of tuberculosis 

(Oliveira et al., 2006; Cortes-Perez et al., 2007). Nevertheless, as protein expression differs between 

bacterial species, testing different strains may be needed to choose the best vector depending on 

proteins and disease (Oliveira et al., 2006; Cortes-Perez et al., 2007). The use of probiotic strains (such 

as L. plantarum), having specific immunomodulatory properties as a delivery vector, may have 

synergistic effect. This option is very promising and represents one main advantage of this strategy. 

Yet, more studies are needed to assess the proof-of-principle that bacterial strains can improve 

protection both by delivery of antigens and by their natural properties. More fundamental knowledge 

about the microbiota interaction with the immune system in the lung is also needed to choose the best 

vector candidates. 

While the development of microbiota-based vaccine is still in its infancy, this strategy is promising for 

safe mucosal delivery of M. tuberculosis antigens and may be strongly improved by studies of the lung 

microbiota that are on the rise. 

 

2. Appearance of host-directed therapies 

While preventing tuberculosis is important, improving treatment is also essential in the global fight 

against tuberculosis. Current anti-tuberculosis therapy is long and constraining. Appearance of drug-

resistant M. tuberculosis strains highlights the need not only to develop new antibiotics, but also new 

strategies to complement them. During the past years, increasing interest focuses on strategies aiming 

at improving the host natural ability to fight infections, rather than the classical and historical strategy 

to directly target the pathogen components. Such host-directed therapies appear particularly 

appropriate for tuberculosis, as patients suffer either from an insufficient or excessive immune 

response. Therefore, augmenting host defense mechanisms or modulating the excessive 

inflammation, or both, should improve clinical treatment outcomes (Flynn, Chan and Lin, 2011; Zumla 

et al., 2016). Many components of different nature, including drugs approved for other applications, 
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have been tested for their ability to improve bacterial killing by macrophages, delivery of antibiotics to 

the bacteria, or reduction of immune over-activation leading to necrosis and tissue degradation (Figure 

27). The most advanced ones are presented below to illustrate the advantages and limitations of this 

strategy. 

One interesting target for tuberculosis host-directed therapies are macrophages, as the activation of 

their killing properties is delayed in tuberculosis. In line with its role in the activation of macrophages, 

IFN- administration is one promising target for host-directed therapy. Its administration in patients 

have already been tested in humans, including in one clinical trial and was well tolerated, even with 

aerosolized administration. Administration was tested in patients with MDR-TB with or without 

antibiotic treatment depending on the studies. Improvement of bacterial clearance and reduction of 

the lung immunopathology was observed in most patients following IFN- administration in the 

different studies (Condos, Rom and Schluger, 1997; Koh et al., 2004; Dawson et al., 2009). These results 

suggest that host-directed therapies improving rapid bacterial killing also reduce immunopathology. 

Other molecules aiming at improving bacterial killing have been studied. They include compounds  

improving autophagy and phagosome maturation, such as metformin, gefitinib and carbamazepine50, 

which appear highly promising in the mouse model and a human-based study (Figure 27B) (Singhal et 

al., 2014; Stanley et al., 2014; Schiebler et al., 2015), or statins51, which reduce the incidence of active 

tuberculosis (Kang et al., 2014; Parihar et al., 2014; Skerry et al., 2014; Dutta et al., 2016; Lai et al., 

2016). Of note, some components, such as vitamin D, are not as encouraging in human trials. Indeed, 

vitamin D supplementation is beneficial for  patients with polymorphism in the vitamin D receptor, but 

not in other people for whom this vitamin is already found in saturating concentrations (Martineau et 

al., 2011; Coussens et al., 2012; Salahuddin et al., 2013; Harishankar, Anbalagan and Selvaraj, 2016). 

These data suggest that different host-directed therapies may suit different type of patients. The 

development of multiple therapies may allow their adaptation to patients depending on genetic 

susceptibility and co-morbidity factors. Increased macrophage killing capacity could also be achieved 

through accelerated T cell priming and expansion. In this regard, IL-2 administration is promising and 

show great results in the non-human primate model in which it results both in decreased bacterial load 

and decreased immunopathology (Chen et al., 2012). However, at the moment, administration of IL-2 

in clinical studies show either protection or no effect (B. J. Johnson et al., 1997; Johnson et al., 2003; 

Shen et al., 2015). Administration protocol was different in these studies, which may explain 

differences in results. This is observed for many host-directed therapy trials, suggesting that 

determination of doses and administration frequency is not trivial, complicating the identification of 

favorable candidates.  

 

 

 

 

 
50 Metformin is an antihyperglycemic agent used in treatment of type 2 diabetes and activates adenosine 
monophosphate–activated protein kinase (AMPK) that is an inducer of autophagy. Gefitinib is an inhibitor of the 
Epidermal Growth Factor Receptor (EGFR) tyrosine kinase used for the treatment of some cancer. It seems also 
to inhibit the EGFR/p38 MAPK pathway that restricts autophagy. Carbamazepine is an anticonvulsant drug and 
induces a myo-inositol-dependent activation pathway of autophagy. 
 

51 Statins are cholesterol-lowering drugs, targeting HMG-CoA reductase, used in treatment of coronary disorders 
and hypercholesterolemia. They seem also to reduce cholesterol levels in phagosomal membranes which 
promotes phagolysosomal fusion and autophagy. 
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Figure 27: Host-targeted therapies developed to improve tuberculosis treatment overview. Current strategies for 

host-targeted therapies include: A) granuloma structure disruption (to improve bacteria accessibility to 

antibiotics), B) autophagy induction (to improve bacterial killing in macrophages), C) the induction of anti-

inflammatory pathways to protect tissue integrity, D) T cell enhancement, and E) delivery of anti-M. tuberculosis 

antibodies that would improve opsonisation, bacterial killing and T cell activation. VEGF, vascular endothelial 

growth factor; PBA, phenylbutyrate; CAMP, cathelicidin antimicrobial peptide; ATG5, autophagy-related protein 

5; BECN1, beclin-1; AMPK, AMP-activated protein kinase; COX1/2, cyclooxygenase-1/2; GR, glucocorticoid 

receptor; PDE, phosphodiesterases; MMPs, matrix metalloproteinases; KLF, Kruppel-like factor; LAM, 

Lipoarabinomannan. Figure from (Kolloli and Subbian, 2017). 
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Although TNF- is required to induce macrophage-killing activities, excessive production is detrimental 

to the host as it mediates necrosis, worsening tissue pathology (Roca and Ramakrishnan, 2013) (Figure 

27A,C). Interestingly, in infected mice treated with etanercept (a soluble TNF- receptor), enbrel (a 

soluble TNF- receptor antagonist), or zileuton (inhibiting 5-lipoxygenase mediated TNF- production) 

(Figure 28), in combination with standard antibiotics, the level of TNF- was reduced along with a 

decreased bacterial burden and lung damage (Skerry et al., 2012; Bourigault et al., 2013). Granuloma 

disruption by these anti-TNF- agents improved bacterial killing and lung resolution after 

chemotherapy (Robert S Wallis et al., 2004). However, asymptomatic tuberculosis patients treated 

with etanercept or infliximab (another TNF- inhibitor) for non-related inflammatory diseases, 

developed tuberculosis (R S Wallis et al., 2004). Thus, targeting TNF- in human seems to have more 

complex outcome. In fact, polymorphism in 5-lipoxygenase (involved in TNF-  production) (Figure 28) 

is directly responsible for the sensitivity of patients to the disease, and for the poor response to therapy 

in TB meningitis (Tobin et al., 2012). Another clinical trial using the glucocorticoid prednisolone (which 

inhibits TNF-) showed an improved bacterial load clearance by antibiotics, but it also exerts adverse 

effects (Mayanja-Kizza et al., 2005). Therefore, approaches targeting TNF- production should be 

carried out with caution. Targeting other effectors involved in necrosis may be safer. For instance, 

PGE2 that favors apoptosis over necrosis (Figure 28), improves bacterial killing in vitro (Chen et al., 

2008). Administration of PGE2 with antibiotics also reduced type I interferon (promotes bacterial 

survival via IL-1 inhibition) levels in plasma, bacterial loads and mortality in infected mice (Mayer-

Barber et al., 2014; McNab et al., 2015). Interestingly, tuberculosis severity correlates with changes in 

IL-1, IFN-I and eicosanoids in patients, suggesting that PGE2 administration is promising and should be 

tested in patients (Mayer-Barber et al., 2014). Surprisingly, the use of aspirin or ibuprofen seems also 

promising despite the fact that they inhibit PGE2 synthesis (Figures 27B and Figure 28). Indeed, in 

infected mice, ibuprofen strongly reduced bacterial loads and tissue pathology (Vilaplana et al., 2013). 

Aspirin may also be a good candidate, but results in mice were more controversial (Sean T Byrne, 

Denkin and Zhang, 2007; Sean T. Byrne, Denkin and Zhang, 2007). However, combining glucosteroid 

with aspirine to standard chemotherapy decreased mortality induced by meningitis in a clinical trial 

(Ariel et al., 2003; Misra, Kalita and Nair, 2010). Therefore, the modulation of eicosanoids may also 

have broad effects and, while encouraging, should be considered with caution.  

There are other strategies with strong potential, but most have not been tested in humans yet. They 

involve the reduction of tissue damage by inhibition of metalloproteases (Elkington, D’Armiento and 

Friedland, 2011; Walker et al., 2012; Majeed, Radotra and Sharma, 2016) or inhibition of 

immunoregulators phosphodiesterases52 (PDE) (Figure 27C and Figure 28) (Koo et al., 2011; Subbian et 

al., 2011, 2016; Maiga et al., 2012, 2013). Others target the granuloma structure that, while helping to 

contain the bacteria, reduce antibiotic activity by targeting the abnormal vascularization of this 

structure with anti-angiogenic agents (Figure 27A) (Datta et al., 2015; Oehlers et al., 2015). These 

alternative strategies are very promising in animal models, and could be good substitutes to cytokine 

administration, but their safety in humans has not been assessed yet. 

 

 

 

 
52 Phosphodiesterases are enzymes degrading the second messenger cAMP, which mediates and regulates 
essential intracellular processes. Inhibitors of PDE3 and 4 possess immunomodulatory properties, decreasing 
TNF-α production by increasing intracellular cAMP in macrophages. 
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Figure 28: Host-targeted therapies targeting the eicosanoid pathway. Degradation and conversion of arachidonic 

acid by cyclooxygenase (COS) or lipoxygenase (LOX) produce different eicosanoids. In particular, LXA4, PGE2 and 

AMP, have different immunoregulatory properties that may either favor the host or the bacillus. Some of them 

also induce TNF production. Generation of these different eicosanoids can be inhibited by different drugs, altering 

their immunomodulatory properties for host-targeted therapies Figure from (Hawn et al., 2013). 
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These encouraging studies established host-directed therapies as an important element in the fight 

against tuberculosis. Such approaches should be integrated to existing (or future) chemotherapies to 

improve treatments, and are particularly promising for the treatment of infection with MDR- or XDR-

tuberculosis. Of importance, host-targeting strategy should not induce antibiotic resistance in the 

pathogen. Ideally, it could even reduce antibiotic resistance directly by improving killing host 

mechanisms against the surviving bacteria, and indirectly by shortening antibiotic treatment length (as 

they improve their efficacy) and patient compliance (Zumla et al., 2016). While most of the discussed 

candidates are at the preclinical stages, the identification of existing drugs that can be repurposed for 

tuberculosis treatment for the rapid therapy development. One other big advantage of host-targeting 

therapies is that they allow the reparation of tissue damage that is not triggered by the antibiotic 

therapy alone (Zumla et al., 2016). Importantly, several identified compounds are able to improve 

bacterial killing and tissue repair. However, the determination of the appropriate administration and 

efficiency in human is lacking for most candidates. Personalized medicine may allow better success of 

such therapies and treatment of all patients (Ndlovu and Marakalala, 2016). However, because 

immunomodulatory molecules may have broad effect, their use is not trivial. For example, granuloma 

structure disruption may lead to activation of latent or subclinical tuberculosis, if not combined with 

antibiotic therapy. The use of host-directed therapies decreasing inflammation would theoretically 

safer as adjunctive therapy rather than on its own (Kolloli and Subbian, 2017). Also, the cost of some 

candidates, such as cytokines, is an obstacle to their use in low-income countries, where the 

tuberculosis incidence is the highest (Hawn et al., 2013). Original strategies that would fulfill low cost 

and different immunomodulatory properties have been recently investigated. For example, the 

beneficial use of herbal plants, such as the one used in Chinese medicines, as adjunctive therapeutics 

was reported in humans with accelerated bacterial clearance and improved lesions resorption 

(Tomioka et al., 2019). Alternatively, probiotics (as described in Section1.IV) are cheap treatments 

having promising effect in respiratory diseases. And yet, there are no studies investigating their effect 

in tuberculosis patients. In Section 3, arguments in favor of their hypothetical protective role to treat 

or prevent tuberculosis are presented. 
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Table 1: Studies conducted on lung microbiota communities in M. tuberculosis infection. Adapted from  

(Hong et al., 2016; Tarashi et al., 2018). 
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Section 3: M. tuberculosis, the microbiota and the 
host, a complex cross-talk 

 

I. Microbiota alterations during tuberculosis 

 

1. Perturbations of the lung microbiota in tuberculosis patients 

In many diseases, dysbiosis of the microbiota is correlated with susceptibility and aggravation of 

pathology (as detailed in Section 1). In the last ten years, different groups tried to assess if this was the 

case in tuberculosis. Until now, nine studies have described respiratory microbes in the context of 

tuberculosis (summarized in Table 1). Seven of them performed broad characterization of the 

respiratory microbiota, while the other two compared the presence of specific species. Overall, the 

findings reported by these studies are divergent in terms of the microbiota composition differences 

between TB patients and healthy controls, some describing an increase in microbiota diversity while 

others describe a decrease. Such divergence is not specific to tuberculosis studies and is rather an 

important problem in studies of the respiratory microbiota (Adami and Cervantes, 2015). Differences 

in microbiota extraction methods, which can affect detection and relative abundance of species 

detected, or in sequencing platforms, which have different coverage and depth of sequencing, partly 

contribute to the divergence between studies (Hong et al., 2016). Another major issue for the studies 

of respiratory microbiota in humans, and in particular in the studies presented here, is the use of 

different sampling methods between studies and even in the same study between tuberculosis 

patients and healthy controls (Cui et al., 2012; Zhou et al., 2015).  

The ideal sample to determine the composition of the respiratory microbiota is actually lung tissue, 

but biopsies are an invasive procedure and are therefore only obtained when useful for patient 

treatment, and never obtained from healthy subjects for ethical reasons. For this reason, many studies 

use bronchoalveolar lavage fluids (BAL), considered as the second most representative sample to 

assess composition of the lung microbiota. While still invasive, this method allows the sampling of 

microbiota from the lower respiratory tract, without contamination from that found in the upper 

respiratory tract (Cabrera-Rubio et al., 2012). Most studies use induced sputum (for patients) or 

oropharyngeal samples (for healthy controls), which are non-invasive methods, allowing a greater 

access to samples and performance of longitudinal studies. The disadvantage of these samples is that 

their microbiota composition is a poor representative of that found the lower respiratory tract (Adami 

and Cervantes, 2015; Tarashi et al., 2018).  

As our knowledge of the microbiota composition progresses, it is now clear that different regions of 

the respiratory tract harbor different communities, as described in Section 1.III.  In spite of the 

differences in microbiota composition observed in the same individual when using different sampling 

methods, the sputum and oropharynx samples yield comparable results, suggesting that these two 

samples can be used to compare composition of the upper respiratory tract between healthy controls 

and patients (Cabrera-Rubio et al., 2012; Botero et al., 2014). This is important because a reliable 

characterization of the upper respiratory tract microbiota will help to decipher how it may serve as the  
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“front-line” barrier for reducing pathogen access to the lungs. Yet, sputum and BAL do not yield the 

same results using different sampling methods in the same individual (Cabrera-Rubio et al., 2012; 

Botero et al., 2014). This issue already reduced the relevance of different findings obtained in 

individual studies (comparing for example saliva sample from controls to BAL from tuberculosis 

patients) and meta-analyses (pooling data from different studies having used different sampling 

methods) (Zhou et al., 2015; Hong et al., 2018; Eshetie and Van Soolingen, 2019). Thus, the 

characterization of the microbiota composition in the lungs still poses multiple challenges, and caution 

must be exercised in the interpretation of the available data in tuberculosis patients at this site. 

Despite variability between subjects, one study report that some genera are found in all tuberculosis 

patients (i.e., Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Streptococcus, and Veillonella), 

arguing that some changes in the microbiota may be strongly correlated with tuberculosis (Cheung et 

al., 2013). In fact, comparison of studies using same type of samples between healthy controls and 

tuberculosis patients reveals that, while there may not be differences in the diversity of the respiratory 

microbiota, many taxa are differently represented between groups. For example, an increase in 

Streptococcus species in tuberculosis patients compared to controls has been observed in different 

studies (Wu et al., 2013; Botero et al., 2014; Nakhaee et al., 2018). Interestingly, two studies also 

analyzed differences in fungi species that are abundant in the lungs and found an increase in Candida 

albicans in tuberculosis patients (Querido et al., 2011; Botero et al., 2014). Differences in viruses have 

also been observed in tuberculosis patients, suggesting that the virobiota and mycobiota should 

continue to be investigated in future studies (Dube et al., 2016). Moreover, a recent study in non-

human primates confirms that M. tuberculosis infection causes microbiota changes, in particular 

shortly after infection, which gradually decreased with time (Cadena et al., 2018). These changes in 

microbiota composition may also occur within different part of lung tissue. A study based on 

tuberculosis patients with unilateral lesions found that the levels of Porphyromonas were increased in 

lesions along with M. tuberculosis (Zhou et al., 2015). It is possible that lung remodeling during fibrosis 

or cavitation induces regional lung changes favoring colonization by certain species (Zhou et al., 2015; 

O’Toole and Gautam, 2018). Hence, it appears that M. tuberculosis, as other respiratory diseases, 

drives an ecological reorganization of the lung microbiota during infection. This is a significant because 

such reorganization may allow the growth of pathobionts or entry of additional pathogens in the lungs, 

leading to future diseases. It is also possible that tuberculosis-induced dysbiosis is not only occurring 

in the lungs, as other respiratory diseases are associated with gut microbiota dysbiosis (Abrahamsson 

et al., 2014; Bruzzese et al., 2014; Groves et al., 2018), as addressed below. 

 

2. Gut microbiota dysbiosis in tuberculosis  

As of today, only four studies have tried to decipher microbiota variations in the gut of tuberculosis 

patients compared to controls. They have observed some differences, such as a decrease in Prevotella 

species and an increase in Roseburia (Luo et al., 2017; Maji et al., 2018; Hu et al., 2019). However, 

findings are again not homogeneous between studies. For instance, one study report a decrease in 

SCFA-producing bacteria in tuberculosis patients, while another one an increase in these species (Maji 

et al., 2018; Hu et al., 2019). Sampling of the gut microbiota is supposedly less variable (based on stool 

sample), but differences in DNA preparation or sequencing method may still lead to different results. 

In line with this, a study reveals that many species recovered by culturomic methods from a 

tuberculosis patient stool are not detected by sequencing (Dubourg et al., 2013). As for the lung 

microbiota composition, it is possible that differences could depend on the time following infection. 

Indeed, in a mouse model, a rapid loss of diversity and a decreased in Clostridiales and Bacteroidales 
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are observed after infection, followed by recovery of microbiota diversity over time (Winglee et al., 

2014). A similar effect was observed using two different M. tuberculosis strains (H37Rv and CDC1552). 

However, this effect was reported to be lower in another study, using the C57BL/6 genetic background 

instead of BALBc mice (Namasivayam et al., 2017). Therefore, tuberculosis likely induces alterations of 

both the respiratory and gut microbiota. These alterations may be through direct interaction or 

resulting from the high activation of the immune system that may target the microbiota as a side effect, 

but mechanisms this phenomenon remain unclear at the moment. 

Better understanding of microbiota changes during tuberculosis is important because species from the 

lung or gut microbiota that highly change during tuberculosis could be used as biomarkers to improve 

tuberculosis diagnosis, which is still complicated (Tarashi et al., 2018). To this date, these reports are 

preliminary and the low consistency between studies is a serious issue delaying progress in this field. 

Recent knowledge of the respiratory microbiota structure, and of the bias introduced by some 

sequencing methods, should allow the design of more robust and standardized human studies. The 

overall low number of subjects in all studies, and the fact that many of them were performed in the 

same geographical location (China), may also alter our perception of changes in microbiota 

composition during tuberculosis and should be taken into consideration (Adami and Cervantes, 2015). 

I will next address the need for the identification of indirect factors perturbing the microbiota 

composition (such as antibiotic use) during tuberculosis infection.  

 

3. Microbiota dysbiosis mediated by anti-tuberculosis therapy 

As mentioned in Section 2.I, the anti-tuberculosis therapy consists on a complex drug-regimen 

administered for a long time (Pai et al., 2016a). Among the antibiotics used, many of them target 

bacterial components specific of mycobacteria (case of isoniazide, ethambutol or pyrazinamide for 

example). By contrast, rifampicin and some second line antibiotics are broad spectrum antimicrobials. 

It is therefore possible that in addition to M. tuberculosis infection, anti-tuberculosis treatment induces 

microbiota dysbiosis. In humans, this is difficult to assess and in most existing studies where patients 

are already undergoing anti-tuberculosis treatment. Two studies comparing tuberculosis patients at 

different disease stages (i.e., under treatment, cured or recurrent tuberculosis), indicate an impact of 

the treatment on lung and gut microbiota. Treatment does not significantly disturb the overall gut 

microbiota diversity. In the lungs, microbiota diversity was decreased in patients experiencing 

treatment failure or recurrent tuberculosis compared to new patients, though Pseudomonas species 

were far more prominent (Wu et al., 2013). While these studies do not clearly demonstrate that anti-

tuberculosis drugs induce dysbiosis of the human gut and lung microbiota, some studies in animal 

models corroborate this hypothesis. Indeed, treatment of M. tuberculosis infected mice with isoniazid, 

rifampicin and pyrazinamide, induced a rapid but transient decrease in gut microbiota diversity 

associated with marked alteration of microbiota structure (with important decrease of Clostridiales); 

these changes were observed during the whole four months therapy course, and persisted at least 

three months after treatment cessation (Namasivayam et al., 2017). Interestingly, many of the changes 

occurring were similar to those observed in mice treated with vancomycin, ampicillin, neomycin and 

metronidazole, classically used to induce broad microbiota dysbiosis. In this study, microbiota changes 

induced by the infection were minor compared to changes induced by the therapy, arguing this is an 

important parameter to consider. As expected, changes and in particular diversity reduction were 

mainly driven by the use of rifampicin. Surprisingly, administration of isoniazide or pyrazinamide, 

which are designed to specifically target mycobacteria, also induces a decrease in species of the 
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microbiota distant from mycobacteria and their combination lead to increased dysbiosis 

(Namasivayam et al., 2017; Khan et al., 2019).  

The fact that microbiota composition is changing during treatment complicates the identification of 

microbiota species associated with tuberculosis development. However, changes induced by the 

treatment can also be useful for diagnostic purposes. Indeed, one study suggest that microbiota 

composition is changing in patients after cure, which may allow to detect treatment success 

(Wipperman et al., 2017). Conversely, many studies highlight that dysbiosis of the microbiota can be a 

risk factor to develop diseases. Therefore, it is possible that microbiota alteration predisposes to M. 

tuberculosis infection or aggravate infection consequences, which is discussed in next section. 
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II. Alteration of the microbiota-immune system cross-talk: a risk factor for 

tuberculosis? 

 

1. Tuberculosis infection outcome is influenced by microbiota composition 

Recent studies based on animal models helped to determine the interaction between tuberculosis, the 

microbiota and the host. It seems that a bidirectional causal link exists between tuberculosis 

susceptibility and microbiota dysbiosis. In mice, microbiota dysbiosis by antibiotic treatment results in 

increased M. tuberculosis bacterial load in the lung, spleen and liver (Khan et al., 2016; Dumas, Corral, 

et al., 2018; Negi et al., 2019). Similarly, a study in non-human primates found a correlation between 

the gut microbiota composition before infection and disease severity after M. tuberculosis infection, 

at the individual level. In this study, Lachnospiraceae and Clostridiaceae were enriched in susceptible 

animals, though some Streptococcaceae were decreased (Namasivayam et al., 2019). Therefore, 

dysbiosis of the microbiota may lead to increased susceptibility to tuberculosis. 

The microbiota influence on tuberculosis infection and progression can be through two mechanisms. 

First, it is possible that some species of the respiratory microbiota directly interact with M. tuberculosis 

mediating colonization resistance, as it is the case against S. aureus or S. pneumoniae (as detailed in 

Section 2 II. 3) (Iwase et al., 2010; Bomar et al., 2016). Medializations based on the studies comparing 

lung microbiota composition in human and non-human primates infected (or not) by M. tuberculosis, 

reveal this pathogen is in the center of many microbe-microbe interactions, and suggest that in human-

anchoring species Rothia mucilaginosais may favor M. tuberculosis infection (Cadena et al., 2018; Hong 

et al., 2018). While experimental confirmations are needed, it is therefore very likely that, depending 

on its composition, the lung microbiota may favor or impede M. tuberculosis access to the lung. 

Similarly, M. tuberculosis may favor or inhibit growth of some microbiota species, leading to dysbiosis. 

Second, the lung and gut microbiota are able to modulate the lung immune system. Some recent 

studies suggest that dysbiosis of the microbiota alter the immune response to tuberculosis with 

deleterious outcomes. 

 

2. Microbiota-immune system cross-talk during tuberculosis 

a) Microbiota dysbiosis alters the immune response during tuberculosis 

Different models inducing dysbiosis of the microbiota (at least in the gut) highlight the implication of 

the microbiota in different part of the immune response to tuberculosis. The microbiota seems, for 

example, to be implicated in innate cell activation. A study published this year reveals that after 

microbiota disruption by isoniazid and pyrazinamide, alveolar macrophage metabolism is highly 

altered, leading to reduced M. tuberculosis killing, an early phenomenon that seems to be independent 

of T cells (Khan et al., 2019). Interestingly, a study by my team also found an early increased pathogen 

burden in mice treated with a broad spectrum antibiotic combination (vancomycin, ampicillin, 

metronidazole and neomycin), which was associated with a default in MAIT cell presence in the lungs 

(Dumas, Corral, et al., 2018). Some studies suggest that MAIT cells present in the airway mucosa are 

activated after detection of M. tuberculosis in the airway by epithelial cells, and they can improve 

killing by alveolar macrophages through TNF- or IFN- production (Gold et al., 2010; Harriff et al., 

2014; Lerner, Borel and Gutierrez, 2015). It is, therefore, possible that at steady state, the healthy 
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microbiota is a source of ligand activating MAIT cells that will improve macrophage activation, but this 

requires further investigations. Other mouse-based studies reveal that the microbiota modulates the 

T cell compartment. Indeed, broad antibiotic-mediated dysbiosis reduced activation of Th1 and Th17, 

and increased the Foxp3+ Treg-induction of immunomodulation associated with increased survival of 

M. tuberculosis in the lungs and more granulomatous regions formation  (Khan et al., 2016; Negi et al., 

2019). Altogether, while preliminary, these studies strongly support the hypothesis of microbiota 

ability to alter different components of the immune response to tuberculosis. While a eubyotic 

microbiota may improve this response, its dysbiosis clearly impaired it at the detriment of the host.  

In the study by Khan and colleagues, administration of the broad-spectrum antibiotic rifampicin had 

few impact on pathogen growth compared to the combination of isoniazid and pyrazinamide, while 

rifampicin alone induced higher dysbiosis (Khan et al., 2019). This suggests, as shown in other contexts, 

that the role of the microbiota in the immune response to tuberculosis may be driven by some (but 

not all) species of the lung or gut microbiota having specific immunomodulatory effects, or effects 

important for the maintenance or restriction of species having these immunomodulatory effects. For 

example, a recent study shows that abundance of Haemophilus species in the BAL of tuberculosis 

patients correlated with expression of T-bet in BAL T cells; it is unknown at the moment if this effect is 

protective or deleterious regarding disease outcome (Nakhaee et al., 2018). In addition, studies 

focused on co-infection models with Helicobacter species53, considered as pathobionts, suggest the 

strong effect one bacterial species can have on the immune response to M. tuberculosis. Indeed, the 

presence of Helicobacter pylori in humans and non-human primates infected with M. tuberculosis 

correlates with protection against tuberculosis pathology; an effect mediated by increased of Th1 

specific for M. tuberculosis (Perry et al., 2010). By contrast, colonization of the gut microbiota with H. 

hepaticus increases mice susceptibility to M. tuberculosis infection characterized by higher pathogen 

burden, and increased immunopathology, leading ultimately to increased mortality (Majlessi et al., 

2017). This effect was mediated by impaired development of anti-tuberculosis immune response 

characterized by drastic accumulation of activated lung T cells leading to a huge increase in pro-

inflammatory cytokine (e.g., IL-6 or IL-1). In another mouse model, colonization of Helicobacter 

hepaticus reduces the development of specific T cells following immunization with the subunit vaccine 

Ag85A, leading again to susceptibility to infection (due this time to too low activation of T cell response) 

(Arnold et al., 2015). In fact, the strong immunomodulatory effect of H. hepaticus may not be a direct 

one, as its colonization induces dysbiosis of the gut microbiota, enriching it in Bacteroidaceae and 

reducing the presence of Clostridiales, Ruminococcaceae, Lachnospiraceae and Prevotellaceae, which 

are families comprising immunomodulatory strains (as exemplified in Section I and in the next 

paragraph) (Majlessi et al., 2017). Further identification of such species having direct or indirect 

beneficial (or deleterious) effect on the immune response to tuberculosis (and characterization of the 

mechanisms involved) may allow the design of microbiota-targeting approaches to improve 

tuberculosis treatment.   

 

 
53 Natural colonization with Helicobacter species is observed in the liver or gastrointestinal tract of many mice 
colonies and humans. While infection with Helicobacter species such as Helicobacter pylori or Helicobacter 
hepaticus is associated with development of diseases such as liver cancer and IBD it can be beneficial in other 
contexts as infection with Helicobacter pylori is associated with protection against infection by other pathogen 
and asthma, suggesting altogether that these bacteria may be pathobionts of the microbiota. 
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b) Mechanisms involved in the microbiota-driven alteration of the immune response 

to tuberculosis 

The influence of microbiota on the immune response to tuberculosis may be mediated both by SCFA 

production and antigen recognition by innate immune cells (as it is the case in other contexts depicted 

in Section 1.II and III). An in vitro study suggests that SCFA induce IL-10 production by human leukocytes 

that eventually decreases the M. tuberculosis-induced pro-inflammatory cytokine response, such as 

TNF-, IL-1 and IL-17 (Lachmandas et al., 2016). Importantly, it is possible that altered SCFA 

production is one link between susceptibility to tuberculosis and some risk factors. Indeed, microbiota 

dysbiosis is also implicated in tuberculosis risk factors such HIV, type-2 diabetes or malnutrition, which 

are discussed in Section 2.I.4 (Monira et al., 2011; Wang et al., 2012; Remely et al., 2014; Subramanian 

et al., 2014; Blanton et al., 2016; Segal et al., 2017). Microbiota dysbiosis in these diseases share some 

common features. For instance, the frequency of Candida albicans is increased in the oral microbiota 

of patients with tuberculosis, HIV, or type-2 diabetes (Belazi et al., 2005; Back-Brito et al., 2009). 

Interestingly, in HIV patients, an increase in pulmonary anaerobes (e.g., Prevotella), which produce 

SCFA, correlates with increased induction of M. tuberculosis-specific Treg upon antigen stimulation. 

These induced Treg by suppressing IFN- and IL-17 production may provoke susceptibility to 

tuberculosis in the context of co-infection with HIV (Segal et al., 2017). SCFA are reduced in type-2 

diabetes patients (Wang et al., 2012; Remely et al., 2014). Though the mechanism may be different 

compared to that in type-2 diabetes patients, mice fed a high fat diet causing a reduction in 

Bacteroidetes, develop lung damages more rapidly upon infection, and are poorly protected by BCG 

vaccine (Arias et al., 2019).  While preliminary, these results may unravel new perspectives to prevent 

tuberculosis by reducing co-morbidity parameters influenced by microbiota dysbiosis.  

One study published this year using a model of microbiota dysbiosis, reveals the protective effect of 

PRR stimulation by the microbiota. Upon vancomycin, neomycin and metronidazole administration, 

the authors show these mice (that are unable to restrict M. tuberculosis growth) exhibit altered M. 

tuberculosis-specific T cell response characterized by reduced activation of Th1 and Th17 and increased 

in Foxp3+ Treg induction. This effect is driven by altered Mincle-mediated activation of DC leading to 

impaired T cell priming following M. tuberculosis infection (Negi et al., 2019). Importantly, in this 

model, Lactobacillus and Bacteroides species are highly decreased during dysbiosis, while Enterococcus 

are increased. Oral administration of Lactobacillus plantarum in mice treated with the antibiotics 

restore the ratio of effector T cells to Treg induction, resulting in the improved control of M. 

tuberculosis burden to the level of mice without dysbiosis (Negi et al., 2019). In addition to deciphering 

mechanisms linking microbiota dysbiosis and altered immune response to tuberculosis, this study 

suggest that a probiotic strategy may reverse the deleterious effects induced by antibiotics on the host 

microbiota and immune system. 

 

 

 

 

 

 

 



 119 

 
 

Figure 29: The host immunity and microbiota interaction is important to tuberculosis. Transition from a healthy 

balance between host immunity and lung microbiota towards dysbiosis can be driven by TB infection and TB 

therapy. In the healthy state (top), host immunity and microbiota interact with each other to maintain a balance 

(green box on the left). Due to genetic and/or environment factors (e.g. co-infection with HIV), latent TB state may 

progress toward active TB (red box). This leads to dysbiosis of lung microbiota (bottom), where colonization 

resistance to pathogens is weakened, leading to increased infection. Under this scenario, the immune system is 

less capable to eliminate or contain the pathogen growth at first, and then over-reacts to cause active disease and 

lung injury. The genetic make-up of the host and comorbidities like diabetes and malnutrition (yellow box) can 

influence disease progression and dysbiosis. While antibiotic treatment for TB may change the landscape of 

microbial ecology, it certainly targets M. tuberculosis during active TB. The decrease of pathogen burden then 

causes a drop in the inflammatory response by the immune system. The restoration of a healthy host-associated 

microbiome and the immune system should occur over time, when active tuberculosis transitions back to its latent 

form. Microbiota-based strategies from lung origin may complement this antibiotic treatment, and its beneficial 

effects should be explored with regards of re-establishing the good balance between lung immunity and local 

resident microbes (green box on the right). Figure and legends adapted from (Hong et al., 2016). 
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III. Implications for the prevention and treatment of tuberculosis 

In the last years, multiple studies have analyzed the possible interactions between the microbiota, M. 

tuberculosis and the host immune response. While the results are mostly preliminary, they certainly 

point out that such interactions exist. First, either directly through competition or cooperation with 

other members of the microbiota, and/or through its capacity to modulate the immune response, M. 

tuberculosis affects the microbiota composition both in the respiratory tract and the gut. Second, 

microbiota dysbiosis predisposes the host to infection by M. tuberculosis and aggravates the disease 

outcome. This dysbiosis may be mediated by previous M. tuberculosis infection, HIV infection (or other 

pathogens), type 2 diabetes, antibiotic use (including anti-tuberculosis drugs), diet or any other 

environmental or genetic factors (Figure 29). Therefore, the microbiota composition is part of the 

factors explaining susceptibility to tuberculosis. It may partly explain why many of the patients’ 

contacts do not develop tuberculosis, and among those who are infected, why all patients do not 

develop active tuberculosis.  

Importantly, deleterious interactions mediated by microbiota dysbiosis may be prevented or resolved 

by microbiota-targeting strategies. This approach may be particularly beneficial in children treated for 

tuberculosis that may, in addition to susceptibility to tuberculosis, develop an impaired immune 

system (O’Toole and Gautam, 2018). However, substantial work is needed to establish underlying 

principles involved in the interactions between the microbiota, M. tuberculosis and the immune 

system, before the development of microbiota-targeting strategies could be envisaged. For instance, 

current studies do not allow the clear establishment of which microbiota strains are biomarkers of 

tuberculosis infection, progression or cure. Likewise, mechanisms linking microbiota components to 

immune response alterations are still sparse. For instance, using probiotics to induce higher pro-

inflammatory response may not be the only possible way they would improve protection against 

tuberculosis, as induction of immunological tolerance toward M. tuberculosis using environmental 

mycobacteria improves the infection outcome (Cardona et al., 2016). In addition, even if one study 

suggests that probiotics can restore immune response to M. tuberculosis, altered by microbiota 

dysbiosis, it is unknown if they can improve it in patients having a “normal” microbiota composition. 

Otherwise, the interaction between the lung microbiota and the local immune system is not described 

at all. Such comprehension is needed to design efficient probiotics that may be composed of lung 

microbiota strains. Eventually, immunomodulatory microbiota strains, in particular from respiratory 

origin, could be, in the future, genetically engineered to express M. tuberculosis-derived antigens and 

improved mucosal vaccines.    

In conclusion, in most cases, upon M. tuberculosis infection, the immune response may lead either to 

pathogen elimination or granuloma-based containment, which are two options that in theory ensures 

host survival and fitness. The microbiota may be implicated in the development of the immune 

response leading to these satisfying outcomes, as demonstrated by factors associated with dysbiosis 

that alter disease outcomes and render the host susceptible to reinfection or bacterial escape from 

containment. The host resistance mechanisms to control the bacillus, and how this pathogen has 

evolved to subvert and circumvent, have been an intense area of investigation since Robert Koch 

identification of the bacillus. By contrast, characterization of the disease tolerance mechanisms 

allowing symbionts from the microbiota to improve host survival in the tuberculosis context has only 

begun since 2012. As a whole, my thesis work argues that this must become a research priority if we 

wish to improve tuberculosis prevention and treatment, but also to exploit this microbial source of 

new candidates for host-directed therapies. 
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Thesis objectives 
 

 

As detailed in the introduction, tuberculosis is still a major health issue today and the development of 

new preventive and therapeutic strategies are urgently needed, in particular to treat emerging M. 

tuberculosis resistant strains. In addition to new antibiotics, the development of host-directed 

therapies seems promising to improve the balance between resistance and tolerance mechanism of 

the anti-tuberculosis immune response. The immune system is influenced by many factors, such as the 

host genetics, co-infections and/or life habits. Recent findings have shown that one of the factors 

altering the most the immune system is the composition of the microbiota; this “forgotten organ” is 

also affected by the factors influencing tuberculosis, thus representing a link between environmental 

factors and immune activation. Implication of the gut microbiota in immune responses have been 

demonstrated in several diseases originating in the gut and lungs. While poorly described, it also 

appears that the lung microbiota could alter them. In addition, administration of some microbiota 

components, such as probiotics, improve both pathogen clearance and reduce immunopathology 

during respiratory infections. 

Yet, at the beginning of this thesis (October 2015), few studies had investigated the implication of the 

microbiota in tuberculosis. Some suggested that the respiratory microbiota from tuberculosis patients 

differs from that of healthy individuals (Querido et al., 2011; Cui et al., 2012; Cheung et al., 2013; Wu 

et al., 2013; Botero et al., 2014; Zhou et al., 2015), and another study in mice had shown that M. 

tuberculosis infection causes gut microbiota dysbiosis (Winglee et al., 2014). These reports suggested 

that M. tuberculosis induces a shift in the composition of the local and distal microbiota. However, at 

that time, it was unknown if the microbiota was altering tuberculosis outcome. To answer this 

question, two complementary approaches were developed in parallel in my team. While another 

colleague PhD student, Alexia Dumas, investigated if microbiota dysbiosis altered the immune 

response to tuberculosis and disease outcome, I tried to decipher if specific microbiota components 

could modify the immune response during tuberculosis. In addition, to improve knowledge on 

microbiota-immune cells interaction, the aim of my PhD project was to assess if microbiota-based 

strategies could be applied to this disease. 

The lab of Dr. Olivier Neyrolles, where I performed my PhD, has a recognized expertise in the field of 

tuberculosis. In particular, we possess at my institute the BSL3 infrastructures and the expertise 

needed to study M. tuberculosis infection in cellular and mouse models. However, we did not have 

experience with microbiota studies. Therefore, at the beginning of my PhD thesis, we sought a 

collaboration with Drs. Muriel Thomas, Luis Bermudez-Humaran and Philippe Langella at the MICALIS 

institute (INRA, Jouy-en-Josas, France), which form a team unit recognized as one of the pioneers in 

France to investigate the use of commensal bacteria as probiotics. In addition of their advice, this 

collaboration gave me access to different bacterial strains from gut or lung origin that were used in 

different part of my thesis work. 

To answer my thesis objective, I hypothesized that the immune response to tuberculosis could be 

naturally affected by gut strains through a gut-lung axis, potentially mediated by production of SCFA 

(as supported in the literature for other diseases), or lung strains through a local effect (unknown in 

the field). I started three related projects with different levels of novelty and probability of success, as 

described below. 
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(1) Effect mediated by SCFA. Macrophages are key immune cell in the etiology of tuberculosis, and 

their dual role as an effector and target cell for M. tuberculosis mainly determines the outcome of 

this disease. As detailed in Chapter 1 section II, SCFA had been shown to reduce inflammation in 

asthma or colitis, and to modulate lung myeloid cell activation (Trompette et al., 2014). However, 

a few years ago, while oral administration of probiotics have been shown to improve respiratory 

pathogen clearance, the mechanisms involved were unknown (Racedo et al., 2006; Khailova et al., 

2013). For this objective, I hypothesized that SCFA could improve macrophage microbicidal 

properties in the context of tuberculosis. To this end, I developed and adapted different in vitro 

models to condition primary human monocyte-derived macrophages with butyrate, propionate or 

acetate, which were then infected by the H37Rv strain of M. tuberculosis; the intracellular load of 

the pathogen was assessed in a time-course analysis. Among the different tested protocols, the 

one that was originally developed by the group of Dr. Powrie (Schulthess et al., 2019), consisting 

on monocyte conditioning with butyrate during their differentiation towards macrophages, 

yielded a change in macrophage phenotype that lowers the intracellular burden of M. tuberculosis. 

However, these results were not reproduced in a second set of experiments in human 

macrophages or murine bone marrow derived macrophages. In addition, I also tested the effect of 

Butyrate administration in vivo. In a preliminary experiment where Butyrate was delivered in water 

supplementation, before and during infection with M. tuberculosis of SPF C57BL/6 mice, I observed 

no effect on the bacillus load in both the lungs and spleen, or in the granulomatous region 

formation in the lungs at day 21 or 42 post-infection. During my thesis, different studies were 

published eventually demonstrating that SCFA indeed improves pathogen clearance by 

macrophages (Schulthess et al., 2019). This includes a study showing that Klebsiella pneumonia 

susceptibility in GPR43-deficient mice is partly mediated by an impairment in phagocytosis and 

killing by alveolar macrophages, suggesting a protective role for SCFA in respiratory infections 

(Galvão et al., 2018). Another study showed that phenylbutyrate, a chemical derivative of butyrate 

also having histone deacetylase inhibitory properties, inhibits M. tuberculosis growth in vitro and 

modulates macrophage phenotype decreasing the bacillus load after infection (Coussens, 

Wilkinson and Martineau, 2015). While these studies corroborate my original hypothesis, they also 

reduced novelty of this project. Based on these events, we decided not pursuit this project, and its 

preliminary data will not be presented or discussed for the rest of this PhD thesis. 

 

(2) Distal effect of bona fide probiotics involved in the gut-lung axis. Independent of the effect of 

SCFA on macrophages, I hypothesized that the gut microbiota affects the immune response to 

tuberculosis, and that oral administration of probiotic strains improves disease outcome through 

the gut-lung axis. In this part of the project, I focused on two bona fide probiotic strains: 

Lactobacillus plantarum VEL12238 and Lactobacillus casei BL23, which were provided to us by our 

collaborators from the Langella team. These strains belong to species with known capacities to 

reduce pathogen load and inflammation in other respiratory infections (Racedo et al., 2006; 

Kechaou et al., 2013). In preliminary experiments, administration of either strain before and after 

infection with M. tuberculosis SPF C57BL/6 mice did not modulate the bacillus load in the lungs, 

dissemination to the spleen, or granulomatous region formation in the lungs 30 days post-

infection. While we cannot exclude that the gut-lung axis does not influence tuberculosis, it is 

probable that other known gut probiotic strains could improve disease outcome. In addition, we 

cannot conclude that the tested strains could not influence tuberculosis under other settings. 

Indeed, oral administration of Lactobacillus plantarum MTCC 2621 was recently shown to reduce 

M. tuberculosis burden in mice pre-treated with antibiotics, arguing the effects induced by this 

species may be compensated in our SPF (microbiota-competent) mouse model (Negi et al., 2019). 

Again, based on time limit and economic resources, it was decided not further pursue this project. 
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(3) Local effect of lung microbiota members. At the beginning of my PhD thesis, it was clear that 

commensal bacteria were present in the respiratory tract, and composition of this microbiota in 

health and disease was beginning to be comprehended (as detailed in Section 1.III). One study 

suggested that the respiratory microbiota was implicated in lung immune cell priming, suggesting 

that it may play a role in respiratory health and diseases (Gollwitzer et al., 2014). In many diseases 

in which microbiota dysbiosis was observed, it was later found that healthy gut microbiota 

modulates immune functions to protect against disease and that modulation of the gut microbiota 

can improve immune response and thus disease outcome. Respiratory microbiota composition in 

tuberculosis patients seemed to be disturbed compared to healthy individuals (see Section III). 

Based on this evidence, I hypothesized that the respiratory microbiota modulates the local 

immune system, and that modification of its composition could alter the immune response leading 

to susceptibility in tuberculosis. Above all, I predicted that administration of specific pulmonary 

strains, isolated from the healthy respiratory microbiota, could improve lung immunity to alter the 

tuberculosis outcome in favor of the host. Before I started, Dr. Aude Remot from the MICALIS 

institute had isolated and cultivated 20 bacterial strains from neonatal SPF mice lungs containing 

Staphylococcus, Streptococcus, Enterococcus, Listeria, Lactobacillus, Escherichia coli, and Proteus 

mirabilis strains (Remot et al., 2017). Few collections of lung microbiota bacteria have been 

generated so far (Sibley et al., 2011; Yun et al., 2014). Our collaboration with the MICALIS institute 

gave me access to these strains that I decided to use as a tool to assess immunomodulatory 

properties of the lung microbiota, considering that some of them may represent attractive 

candidates for microbiota-based therapies. Previously, Dr. Aude Remot had shown that these 

strains were able to modulate lung epithelium cytokine production with different profiles. Based 

on these strong encouraging results, my objectives for this project were to assess whether such 

strains could modulate the lung immune response in vivo, and if so, to determine their influence 

in tuberculosis disease outcome. Due to the high novelty of this project, and promising preliminary 

data obtained during my second year as PhD student, I decided to focus on this project. The 

following sections of this PhD thesis will describe the compilation of methods and results in this 

project, and the discussion and perspectives deriving from my doctoral work.   
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Scientific contributions 
 

This thesis project is part of a research collaboration effort aiming at developing microbiota-targeted 

strategies to improve the prevention and treatment of respiratory infectious disease. In particular, the 

objective of my PhD project was to assess if microbiota components could modulate the immune 

response during M. tuberculosis infection. The strategy chosen to answer this question was based on 

the development of in vitro and in vivo models characterized by exogenous administration of different 

microbiota components being: (i) known probiotic Lactobacillus species representative of the gut 

microbiota, (ii) known metabolites produced by the gut microbiota, and (iii) recently isolated 

commensals from the lung microbiota. The research work performed during my PhD at the IPBS in the 

team of Dr. Olivier Neyrolles, and under the supervision of Dr. Geanncarlo Lugo-Villarino, led to some 

significant scientific contributions. 

During my third year of thesis, I participated in the bibliographical research and writing of this mini-

review with my colleague PhD student, now Dr. Alexia Dumas. In particular, I was in charge of the 

probiotic chapter.  

• Mini review: “The role of the lung microbiota and the gut-lung axis in respiratory infectious 

diseases”. Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. Cell Microbiol. 2018. 

20(12): e12966. doi: 10.1111/cmi.12966 (See Appendix 1)  

Results obtained during the three first years of my PhD suggested that one of the commensal strains 

isolated from the lung microbiota could modulate the lung immune compartment and reduced 

leukocyte infiltration associated with tuberculosis. The use of this strain as a probiotic in the context 

of tuberculosis (and other respiratory diseases) is in the process of being patented. A provisional 

application was filed in France containing key results that I obtained during this PhD. A copy of this 

document (in French) is included in Appendix 2.  

Importantly, as detailed in the Results chapter, the commensal strain patented was first identified as 

a Lactobacillus animalis/spp based on sequencing of regions of the 16S rDNA. However, the analysis 

of its complete genome sequence recently revealed that it is in fact a Lactobacillus murinus strain. 

Therefore, the strain referred as to L. animalis in the patent is in fact the same strain as the one 

described in this thesis manuscript as L. murinus strain, which was deposited at the Pasteur collection 

under the number CNCM I-5314. 

 

• Patent FR1903364: “Treatment of respiratory diseases using the bacteria Lactobacillus 

animalis”. Bernard L, Lugo-Villarino G, Neyrolles O, Thomas M, Remot A, Langella P. Provisional 

application filed March 29, 2019. (See Appendix 2) 

 

• Original research article: “Pulmonary Lactobacillus murinus induces Foxp3+RORt+ regulatory 

T cells and reduces Tuberculosis-associated lung inflammation”. Bernard-Raichon L, Colom A, 

Namouchi A, Cescato M, Garnier H, Corral D, Dumas A, Ghebrendrias N, Guilleton P, Hudrisier 

D, Cougoule C, Remot A, Langella P, Thomas M, Neyrolles O*, Lugo-Villarino G*♱. In 

preparation. (*Equal contribution; ♱Corresponding author)  

  

https://onlinelibrary.wiley.com/doi/abs/10.1111/cmi.12966
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Attributions 
 

 

The work presented in this thesis would not have been possible without the main contributions of the 

people listed in this section. When not annotated otherwise, people mentioned belong to the team 

“Mycobacterial interaction with host cells” leaded by Dr. Olivier Neyrolles at IPBS. 

• All bacterial strains used in this study were provided by our collaborators from the MICALIS 

institute: Drs. Muriel Thomas, Luis Bermudez-Humaran and Philippe Langella (INRA, Jouy-en-Josas, 

France). In particular, the pulmonary commensals were isolated by Dr. Aude Remot (INRA, Jouy-

en-Josas, France). Data presented in Figure 33 and Table 6 were also generated by Dr. Aude Remot. 
 

• Lactobacillus murinus CNCM I-5314 DNA was extracted with the help of Dr. Alexia Dumas. 

Sequencing was performed by the DNA sequencing GeT-PlaGe (INRA, Castanet-Tolosan, France). 

Genome assembly, annotation, and comparisons to other genomes were performed by Dr. Amine 

Namouchi, as well as preparation of Figure 46 (CEES, Oslo, Norway).  
 

• Margot Cescato and Hugo Garnier performed their Master 1 internship under my co-supervision 

along with Dr. Geanncarlo Lugo-Villarino. They both participated in experimentations involving 

non-infected mice presented in Figures 35, 36 for Margaux Cescato, and Figures 44, 45, 47 as well 

as experimentations using heat-killed L. murinus mentioned in the discussion for Hugo Garnier. 
 

• Pauline Guilleton was a former Master 2 intern student and set-up culture of some of the strains 

used in this study. 
 

• André Colom and Dr. Geanncarlo Lugo-Villarino helped me in most in-vivo experiments, with 

bacterial administrations and organ preparation for analyses.  
 

• Histological preparation including paraffin embedding, lung slicing, coloring, and scanning were 

realized by Florence Capilla, Christine Salon or Annie Alloy of the Purpan histo-pathology platform 

Anexplo Genotoul Toulouse. Histological analyses were performed with the help of Dr. Céline 

Cougoule (IPBS - CNRS) and Dr. Talal Al Saati (Purpan histo-pathology platform Anexplo Genotoul 

Toulouse). 
 

• Flow-cytometry analyses, and in particular the ones involving bacteria detection (Figure 34), were 

performed with the help of Emmanuelle Näser (Tri Genotoul plateform, Toulouse). 
 

• RT-qPCR were performed with the help of Dan Corral and Maeva Dupont. 
 

• Lactobacillus murinus bacterial components (lipopolisaccharide, lipids, RNA and proteins) 

mentioned in the discussion were prepared with the help of Dr. Jérome Nigou (IPBS). 
 

• Breeding, housing and assessment of mice well-being used in all experiments was performed by 

the Anexplo Genotoul staff, in particular by Céline Berrone and Flavie Moreau (in the BSL-3 facility), 

and Gregory Marsal (in the conventional animal facility). 
 

• Natsinet Ghebrendrias and Yves-Marie Boudehen were highly involved in experiments belonging 

to my alternative projects that were halted during my thesis for strategic purposes and thus not 

described in this manuscript. 
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Material & Methods 
 

I. Bacterial strains, growth and preparation for inoculation 
 

1. Commensal bacteria 

Different commensal bacteria isolated from mouse lung homogenates, as described in (Remot 2017 
ISME), were provided by the laboratory of Dr. Muriel Thomas (INRA, Jouy-en-Josas, France). Among 
them, the strains tested in this study, three Lactobacillus, two Staphylococcus and a Neisseria strains 
are listed in Table 2. 
 
 
 
Table 2: Pulmonary bacterial strain growth conditions  

 
 
 
 
 
 It is worth to mention that the three Lactobacillus species, were deposited at the French National 
Collection of Microorganism Cultures (CNCM). As indicated in Table 2, these strains were cultivated in 
MRS (BD Difco Lactobacilli MRS Broth #288130) or BHI (BD Bacto Brain Heart Infusion #237500) media. 
15% agar containing media was used to cultivate the strains in solid culture for bacterial load 
determination. Since the Lactobacillus species are facultative anaerobe, they were cultivated without 
agitation, in tubes full of culture medium. For solid culture, the plates containing the bacterial strains 
were sealed in a plastic Ziploc bags.  
 

Aliquots received from our collaborators were cultured in a large media volume for 7 h to obtain 
important quantities of bacteria. These bacterial cultures were frozen in 15% glycerol (Promega 
#H5433) at -80°C, constituting the “master” bank. Before each experiment, an aliquot from the master 
stock was thawed, and similarly cultured to generate a “working” bank stored at -80°C. 
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Figure 30: Determination of bacteria characteristics based on growth curves. Bacterial growth was studied for 

each strain on fresh cultures inoculated with 1/100 overnight pre-culture by repeated OD and CFU measurements. 

The representation of natural logarithm (Ln) of OD600nm measurements, as function of time, allow linearization of 

OD that helps to identify growth phases by changes in curve slope, as exemplified here for L. murinus. Each point 

represents the medium of two duplicated OD measures from one among two independent experiments. Theses 

phases are: the lag phase (corresponding to a slow bacterial growth due to bacteria adaptation to the 

environment), the exponential phase (corresponding to growth in optimal conditions), the slow-down phase 

(characterized by a progressive reduction of growth caused by nutrient scarcity and increase in bacterial death 

due to waste accumulation), the stationary phase (characterized by an equilibrium between bacterial replication 

and death) and the decline phase (corresponding to superior death compared to replication, but not observed 

within the experiment duration). Slope during exponential growth was determined by linear regression. This value 

was used to determine the generation time of each strain in optimal conditions. During exponential phase, few 

bacteria are dying. Thus, correspondence between medium turbidity (measured by OD) and concentration in live 

bacteria is the highest in this phase, and few variations of this factor are observed within. 
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Bacterial growth characteristics were determined after performing bacterial growth follow up.  
Turbidity and bacterial concentration were assessed at regular time interval. Turbidity of the culture 
was estimated by spectrophotometric measurements of optical density (OD) at 600 nm. Colony 
Forming Unit (CFU) assay was used to determine the bacterial concentration (in CFU/ml) by serial 
dilution of culture in PBS, and incubation on agar medium for 48 h at 37°C. OD measurements were 
used to graph the strains growth curves, as represented for the Lactobacillus murinus in Figure 30. This 
allowed me to determine the different phases of bacterial growth and generation time. Comparison 
of OD and CFU count was then used to determine a concordance factor for each strain that permitted 
during experiments to estimate bacterial concentration in the culture at the time of measure based on 
OD value. These factors are calculated as follow. 
 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
𝐿𝑛(2)

𝐺𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒 𝑠𝑙𝑜𝑝𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ
 

 

𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝐷

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡
 

 

For example, I determined that for L. murinus, the generation time was around 40 min, and that during 
exponential growth, 1 OD correspond approximatively to 2.108 CFU/mL. Based on these results, OD 
measures were used to prepare bacterial suspensions in PBS at the required concentration.  
 
During mouse-based experiments, for each bacteria administration time-point, a pre-culture was 
prepared by diluting a new aliquot from the working stock in the appropriate medium, and incubated 
overnight. This pre-culture was then diluted 1/100, and incubated at 37°C for 3-4 h.  
 
Bacterial cultures in exponential phase were thus used to prepare the inoculum. Appropriate bacterial 

culture volume, to prepare a common inoculum for all mice of the same treatment group, was 

estimated based on OD measurements and concordance factor. Bacteria were harvested by 

centrifugation at 1550 xg at 4°C for 5 min, washed twice in phosphate buffered saline (PBS) (Gibco™ 

DPBS, no calcium, no magnesium #14190169), and resuspended in PBS before administration to mice. 

CFU assay was performed to verify at posteriori that the concentration in the inoculum was correct.  

For some experiments, heat-inactivated bacteria were obtained by incubation of a part of the inoculum 
30 min at 70°C, a pasteurization process conserving bacterial component integrity (Plovier et al., 2017). 
Other experiments were performed with labelled bacteria. Accordingly, CFSE stained bacteria were 
obtained after incubation of the inoculum in 100 µg/mL CFSE (CellTrace™ CFSE Cell Proliferation Kit, 
Invitrogen™ #C34554) for 10 min at 37°C, three washes in PBS 10% FBS (Fetal Bovine Serum) (PAN-
BIOTECH 3302-P281501), and resuspension in PBS for administration (Ueckert et al., 1997).  
 

2. Mycobacterium tuberculosis 

All experimentation using M. tuberculosis were carried out in BSL-3 laboratories and animal facility. M. 

tuberculosis (lab strain H37Rv) was grown in 7H9 (BD Difco Middlebrook 7H9 Broth #271310) 

supplemented with ADC (BD Difco™ BBL™ Middlebrook ADC Enrichment #11718173) at 10%, Glycerol 

at 0.5% and Tween 20 (EUROMEDEX #2001-B) at 0.05% as described in Table 2. A fresh culture in 

exponential growth was used to prepare each inoculum for infection. Bacteria were harvested by 

centrifugation at 1550 xg at 4°C for 15 min, and washed in PBS twice. M. tuberculosis growth is 

characterized by the formation of large aggregates or clumps; leukocytes infected by clumps are hardly 

able to control the infection (or are susceptible to cell death) compared to those infected with 
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separated bacteria (Brambilla et al., 2016). To limit infection variation between animals, bacterial 

suspensions were homogenized by passage through a blunted needle (BIORAD #3551174) loaded into 

a syringe. Remaining aggregates were precipitated using a centrifugation at low speed (75 xg for 5 

min). Bacterial concentration was then estimated by OD measurements at 600 nm with the 

concordance factor: 1 uDO ≈ 2.5.108 CFU/mL. An inoculum at 5.104 CFU/mL was prepared for mice 

infection. To verify at posteriori its concentration, the inoculum was spread on 7H10 Agar medium (BD 

Difco Middlebrook 7H10 Agar #262710) supplemented with peptone (Fischer Scientific #1207-3775), 

OADC at 10% (BD Difco™ BBL™ Middlebrook OADC Enrichment # BD 211886) and Glycerol at 0.5%.  

 

3. Lactobacillus murinus CNCM I 5314: whole genome sequencing 

DNA extraction. DNA from lactobacilli is difficult to extract. Using a classic protocol recommended in 
the DNeasy® Blood & Tissue kit (Qiagen), the extraction failed. However, after adaptation of this 
protocol based on those tested for L. casei DNA extraction (Alimolaei Biologicals 2017), DNA from L. 
murinus was successfully extracted. Briefly, cell pellet from a 15 mL L. murinus culture in exponential 
growth was collected after centrifugation at 1550 xg for 5 min and frozen at -20°C. It was then 
resuspended in a solution containing 30 mM NaCl, 2mM EDTA (pH=8.0). Bacterial suspension was 
centrifuged, and cell pellet was resuspended in lysis buffer (20mM Tris HCl pH 8.0, 2 mM EDTA, 1.2% 
Triton® X-100) supplemented with lysozyme (20mg/mL, Sigma-Aldrich #L6876) for 2 h at 37°C. 
Proteinase K (DNeasy® Blood & Tissue kit) and RNAse A were added to the lysate and incubated for 
another 1 h at 55°C. Same volume of the AL buffer (DNeasy® Blood & Tissue kit) was added to the 
lysate, vortexed and incubated 30 min at 56°C. After incubation, another volume of ethanol 100% was 
added. DNA was obtained from this suspension using DNeasy Mini spin columns (Qiagen) following the 
manufacter’s instructions.  
 
DNA sequencing. DNA librairies preparation and sequencing were performed by the DNA sequencing 
platform GeT-PlaGe (INRA, Castanet-Tolosan, France). Briefly, DNA was fragmented via sonication to 
200 to 1000 base pairs (bp). Fragments were then ligated to Illumina adapters. After sample quality 
assessment, DNA fragments were sequenced on an Illumina HiSeq 3000.  
 
Whole genome assembly and annotation. Raw sequence reads were pre-processed using fastp, 
version 0.19.4 (Chen et al., 2018) to remove illumina adaptors and low-quality reads. Filtered reads 
were assembled using Unicycler version, v0.4.7 (Wick et al., 2017). The assembly quality was assessed 
using QUAST v5.0.2, b7350347c (Gurevich et al., 2013) and the assembled genome was visualized using 
Bandage v0.8.1 (Wick et al., 2015). The genome annotation was made using Prokka v1.13 (Seemann, 
2014). 
 
Edit distance calculation. The edit distance reflects the number of differences between the sequenced 
reads and the genomic sequence used as a reference. To compute the edit distance, the information 
stored in the bam file under the tag “NM:i” is analysed. An edit distance of 0 means that the reads are 
identical to the reference sequence. The tool BAMstats was used to compute the edit distance. 

Evolutionary analyses of orthologous groups. Evolutionary analyses and comparative genomics of the 
new sequenced and assembled genome were performed using L. animalis and L. murinus. L. lactis was 
used as outgroup. To avoid any orthology discrepancies due to differences related to annotations 
methods, all selected genomes where re-annotated using Prokka v1.13. Orthofinder (v2.2.7) was used 
to identify orthologous sequences.  
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II. Assessment of immune system modulation by commensal bacteria in Mouse 

models 
 

1. Mouse models 

a) Ethic requirements and general considerations 

All mouse-based experiments were performed in animal facilities (including the IPBS BSL3 animal 
facility) that met all legal and ethical requirements in France, and by qualified personnel in such a way 
to prevent excessive use of animals and minimize their suffering and discomfort. Animal care and 
experimentation were consistent with the French guidelines, and were approved by the Ministry of 
Higher Education and Research (Agreement APAFIS 5704). Six- to eight-week-old female SPF C57BL/6 
mice were purchased from Charles River Laboratories. Five to thirteen mice per group were used in 
each experiment. Mice were sacrificed by cervical dislocation under anesthesia (4% isoflurane – 
Vetflurane Virbac Danmark) or by intraperitoneal administration of pentobarbital (Doléthal® 
Vétoquinol) at lethal dosing.  

b) Microbiota inoculation in mice 

To assess the direct effect of lung microbiota to local lung leukocyte populations, 107 CFU of lung 
commensal bacteria (or mock) in 20 µL of PBS were administered intranasally (i.n.) to each mouse; 
bacterial suspension was deposed at the animal nostril, and aspirated by the animal under anesthesia 
three times a week during two weeks (for a total of seven administration) before infection or sacrifice. 
In the context of infection with M. tuberculosis, lung microbiota administration was pursued thereafter 
twice per week until sacrifice time point. In some experiments, lung commensal bacteria 
administration was only started after infection, and repeated twice a week until sacrifice, as indicated 
in figure legends. 
 

To assess the indirect (gut-lung axis) effect of gut commensals to distal lung leukocyte populations, 109 
CFU of commensal in 200 µL of PBS were administered intragastrically (i.g.) to the mice every day 
during 10 day before sacrifice.  

c) Infection with M. tuberculosis 

In some experiments, mice were infected (i.n.) with 103 CFU of the H37Rv strain of M. tuberculosis 
under 4% isoflurane anesthesia. Mice were sacrificed at day 21, 30 or 42 post-infection, as indicated 
in figure legends. 
  

2. Histological analyses 

Because the intranasal infection does not lead to homogenized dispersion of M. tuberculosis in the 
lungs, we could not split the left and right lungs to perform simultaneously the histological and CFU 
analyses for each mouse. Therefore, specific mouse groups (3-6 mice per group) were dedicated 
exclusively to histological analyses. After mice were sacrificed by intraperitoneal administration of 
pentobarbital at lethal dosing, the lungs were inflated with 10% formol solution (Formalin solution, 
Sigma-Aldrich #HT501128-4L), and stored for 5 days at 4°C. This solution is proven to inactivate M. 
tuberculosis. Fixed lungs were then included in paraffin, and 5 µm horizontal slices were done using a 
microtome. Some slices were stained with haematoxylin and eosin stain (HE) that stains cell nuclei in 
purple and cytoplasm in light pink. Stained slices were numerated using a Pannoramic 250 scanner 
(3DHISTECH).  
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Figure 31: Quantification of leucocyte-infiltrated areas in M. tuberculosis-infected mouse lungs (related to Figures 
34, 37 and 42). HE stained lung paraffin-embedded slices were quantified and analyzed using the CaseViewer 
software. Area of each lung lobe was delimited and called “Total” (top right). Lymphocyte (blue) and myeloid (red 
frame) rich areas, characterized by a strong purple staining were determined as infiltrated area (top right, 
“Annotation 1”, and so on) in comparison to the white-light pink area (grey), which is considered as non-infiltrated 
(even if alveolar macrophages can also be distinguished in these areas).  
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Leukocyte infiltration was quantified using the software CaseViewer (3DHISTECH), as exemplified in 
Figure 31. One lung slice was quantified per mice. Lung area considered not be infiltrated was mainly 
composed of the airway space that is visible in white-light pink in HE stained slices, whereas that with 
leukocyte infiltration (and in particular lymphocyte infiltration) was measured as the dramatic increase 
of the number of purple stained nuclei, reflected by a distinguishable purple area. As illustrated in 
Figure 31, the total lung area was determined by the addition of the areas of each lobe; the murine 
right lung is composed of 4 lobes (i.e., superior, middle, inferior and post-caval), and the left lung by a 
single large lobe divided in regions (i.e., upper, middle and lower). Purple-infiltrated areas were then 
delimited for each lobe. Area infiltrated by lymphocyte or myeloid cells were all quantified as infiltrated 
areas without distinction. The area of the total lung and infiltrated zone were extracted from 
CaseViewer, and the proportion of infiltration determined as: 
 

        % 𝑜𝑓 𝑙𝑒𝑢𝑐𝑜𝑐𝑦𝑡𝑒 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑆𝑢𝑚 𝑜𝑓 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑠

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑢𝑛𝑔 𝑎𝑟𝑒𝑎
 x 100.  

 
  

3. Cellular and molecular analyses 

Lungs from five to eight mice were prepared individually into cell suspensions, and different analyses 
were performed: immune-phenotyping by flow cytometry, lung cytokine content by ELISA, RNA gene 
profiling by qPCR analyses, and M. tuberculosis growth scoring by CFU assay. For flow cytometry 
analyses, given that lung homogenates are highly contaminated by blood cells, mice were injected 
intravenously (i.v.) with 2 µg of anti-CD45.2 antibody (BD Biosciences # 563685) 5 min before sacrifice 
(Patel et al., 2015). This protocol allowed the staining of all leukocytes from the blood, but not those 
coming from the actual lung tissue. Entire lungs, spleen and colon (only in non-infected mice) were 
aseptically collected after sacrifice by cervical dislocation (followed by exsanguination).   

a) Cell suspension preparation 

Lung homogenate preparation. Lungs were collected in C-tubes (Miltenyi #130096334), homogenized 
with a gentleMACS dissociator (m_lung_01 cycle three times), incubated 30 min at 37°C with 
collagenase D (2 mg/mL, Roche #11088882001) and DNAse I (0,1mg/mL, Roche #10104159001), and 
homogenized again with the gentleMACS dissociator (m_lung_02 cycle). When mice were infected, a 
part of this cell suspension was used for M. tuberculosis bacterial load determination as described 
later. The homogenate was passed through a 70 µm cell strainer (ClearLine #141379C) to get rid of 
tissue and cell debris. 

Spleen and lymph nodes preparation. The spleens were individually collected from infected mice and 
only used for M. tuberculosis growth assessment. They were placed in M-tubes (Miltenyi #130096335), 
and homogenized with the gentleMACS dissociator (m_spleen_02 cycle twice). Alternatively, the 
spleens and mesenteric lymph nodes (MLN) were collected from non-infected mice and used for flow 
cytometry analyses. In this case, they were crushed up using a sterile syringe plunger on to 70 µm cell 
strainer, and washed thereafter to recover the debris-free homogenate. 

Red Blood cell lysis.After centrifugation of lung and spleen cell suspensions at 330 xg for 5min, cell 
pellets were resuspended in 1 mL PBS (lung supernatant was save at this step for cytokine 
measurement). 5 mL of lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 7.2)), was added 
on cell suspension for 5 min. Lysis was stopped by the addition of RPMI medium containing 10% FBS. 
After centrifugation cell pellet was 40 µm (ClearLine #141378C) filtered to eliminate lysed red blood 
cell aggregates. Part of it was saved for RNA analysis whereas the rest was used for flow cytometry 
analysis.   
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Table 3: List of antibodies used for extracellular cell stainings (related to Figures 35-42, 43-45, and 47). 

 

AF: Alexa Fluor, APC: Allophycocyanin, BV: Brilliant Violet, Cy: Cyanine, FITC: Fluorescein isothiocyanate, PE: 

Phycoerythrin, PerCP: Peridinin-Chlorophyll-protein 
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b) Flow cytometry 

Cell stimulation.To analyze cytokine production by CD4+ T cells, a fraction of cell suspension from lung 

homogenates was stimulated for 4 h at 37°C with 5% CO2 in RPMI medium (RPMI 1640 Medium, 

GlutaMAX™ Supplement, HEPES, Fisher #11544526) supplemented with 10% FBS, 50 ng/mL Phorbol 

Myristate Acetate (PMA, Sigma Aldrich #P8139-5MG), 500 ng/mL ionomycine (Sigma-Aldrich #I0634-

1MG), Brefeldin A (GolgiPlug™ 1/1000, BD Biosciences #555029), and Monensin (GolgiStop™ 1/2000, 

BD Biosciences #554724) to segregate cytokines inside the cell. The remaining cell suspension was 

stored in Cell Staining Buffer (CSB, Biolegend #420201) at 4°C, and will be used for extracellular marker, 

and transcription factor staining. For some experiments, a fraction was also saved in CSB at 4°C for 

myeloid cell analysis.  

Cell stainings. Cell staining were performed in V-bottom 96 well plates, centrifuged at 600 xg for 2 min 

(or 700 xg for 2 min after cell fixation). Cell suspensions are incubated 20-30 min at 4°C with a mixture 

containing an anti-CD16/32 antibody (TruStain FcX™, Biolegend #101320) to block Fc receptors 

(avoiding non-specific staining), a viability marker (live/dead fixable blue dead cell stain kit, 

Invitrogen™ #L34961), and appropriate extra-cellular antibodies diluted in CSB for which the 

references are presented in Table 3. Cells were washed in CSB, fixed 30 min at room temperature (RT), 

and permeabilized 15 min in permeabilization buffer (Foxp3/transcription factor staining buffer set, 

eBioscience #00-5523-00). Cells were stained with an antibody set to detect intracellular factors 

(transcription factors and cytokines) presented in Table 4, and then diluted in Permeabilization buffer 

for 45 min at RT. In the context of M. tuberculosis-infected mice, the stained cell preparation was fixed 

for 2 h in PBS containing 4% ParaFormAldehyde (PFA) at RT to ensure pathogen killing.  

 

 

Table 4: List of antibodies used for intracellular cell stainings (related to Figures 35-39, 41, 43-45, and 47) 
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Figure 32: Gating strategy for the identification and characterization of live lung CD4+ T cell populations by flow 

cytometry (related to Figures 35-39, 43-45 and 47). Small and non-granulosed cells were selected based on the 

FSC-A and SSC-A parameters. Doublets were then excluded based on cell roundness using successive FSC-H vs FSC-

W, and SSC-H vs SSC-W plots. Dead cells, stained with the Live/Dead™ fixable cell stain kit, were excluded. Likewise, 

contaminating cells from the blood were then excluded using CD45 labelling (an anti-CD45.2 intravenous injection 

5 min prior mice sacrifice). Lung CD4+ T cells were selected on their expression of CD4 and TCR- (or CD4 and 

CD3). Different CD4+ T cell subpopulations were identified by their expression of specific transcription factors 

(using intracellular cell staining). The expression of additional cell surface markers (or cytokine production) by total 

CD4+ T cell, or specific CD4+ T cell subpopulations, was assessed using isotype controls or FMO (Fluorescence 

Minus One) controls with the same gating for all conditions. As an illustrating example, IL-17-producing CD4+ T 

cells were chosen. 
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Flow cytometry analyses. Just before acquisition, 10-20 µL counting beads (Molecular Probes™ 

CountBright™ Absolute Counting Beads #11570066) were added to the cell suspension. Staining were 

acquired with a LSRII or Fortessa flow cytometer (BD Biosciences), and analyzed with the FlowJo V10 

software. As described in Figure 32, doublets, dead cells, and blood cells (excepted in some 

experiments, as indicated in figure legends) were excluded. CD4+ T cells were selected based on their 

expression of TCR- (or CD3) and CD4. Different CD4+ T cell subpopulations were then identified based 

on their intracellular expression of specific transcription factors: T-bet for Th1 cells, RORt for Th17, 

Foxp3 for Treg, and both RORt and Foxp3 for RORt+ Treg. The presence of these CD4+ T cell 

subpopulations was assessed as a percentage of the total CD4+ T cell gate, and as an absolute number. 

Their characterization was then based on expression of extracellular markers and transcription factors 

(in non-stimulated cells), as well as cytokines (in stimulated cells).   

 
To determine the absolute cell number, number of events in the “Beads” and “Lymphocytes” gates 
were extracted, as well as frequencies of each population, among the “Lymphocytes” gate. Cell 
number in the “Lymphocytes” gate was calculated as: 
 

𝐿𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒𝑠 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑛𝑏 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 "Lymphocytes" 𝑔𝑎𝑡𝑒

𝑛𝑏 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 "Beads" 𝑔𝑎𝑡𝑒
 ×  𝐵𝑒𝑎𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 
This number was adjusted, according to the proportion of lung cell suspension dedicated to this 
analysis, to obtain the “Total lymphocytes cell number” in the whole lung. It was then used to calculate 
the total number of cell within all cell populations from the same mice as: 
 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑇𝑜𝑡𝑎𝑙 𝑙𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒𝑠 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

100
  

 

c) M. tuberculosis burden in lung and spleen 

A fraction of the lung and spleen cell suspension was used to evaluate M. tuberculosis bacterial load. 
To this end, CFU assay was performed. Briefly, cell suspension was serially diluted in PBS, and spread 
on 7H10 Agar medium supplemented with peptone, OADC at 10%, Glycerol at 0.5%, and incubated at 
37°C. Three weeks later CFU were counted, and global lung or spleen burden estimated for each 
mouse.  
 

d) Cytokine concentration measurement 

Supernatants from lung homogenates were 0.2 µm filtered twice (using Millex® filtration units, Merck 
Millipore #GPSLGPX13NK) to ensure exclusion of M. tuberculosis, and kept samples at -80°C.  IL-6, TNF, 

IFN-, and IL-10 were dosed by ELISA using BD OptEIA™ Sets (#555240, 555268, 555138, 555252).  
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e) RT-qPCR 

A part of lung cell suspension was used to analyze gene profile RNA expression. To this end, cell pellets 
were resuspended in TRIzol™ reagent (Invitrogen™ #15596018), and samples were stored at -80°C for 
at least 48 h (a procedure that also inactivates M. tuberculosis). RNeasy spin columns (RNeasy mini kit, 
Qiaen #74106) were then used according to the manufacturer’s instructions to extract RNA. RNA was 
then reverse-transcribed into cDNA using M-MLV Reverse transcriptase (Invitrogen™ 28025013). RT-
qPCR reactions were performed using gene-targeted primers (Table 5), and a 7,500 RT-PCR System. 
Data were analyzed using the 7,500 Software version v2.3 (Applied Biosystems). Values were 

normalized using the -actin housekeeping gene, and expressed as a fold change between 
experimental samples (L. murinus-treated mice) relative to control samples (PBS-treated mice).  
 
 
 
 
 

Table 5: List of primers used for qPCR (related to Figure 42). 

 

il-17A and il-10 encode for the cytokines IL-17A and IL-10 respectively. 
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III. Statistical analyses 

Statistical analyses were performed using the software GraphPad Prism 7. In each graph, dots 
represent individual mice; a minimum of four mice per group were used in each experiment, repeated 
independently at least twice. Results from either one representative experiment or pooled 
experiments are presented as indicated in each figure legend. When samples followed a normal 
distribution, the mean value for each group was represented by the bar, and Student’s t-test (when 
only two groups were compared), or One-Way ANOVA followed by Holm-Sidak’s post-test (to compare 
more groups) were applied to compare each treated group to the PBS-control mice. When it was not 
the case (in particular when too few mice were compared), the bar represents the median of each 
group, and Mann-Whitney test or Kruskall-Wallis followed by Dunn’s post-test were applied. A 
significant difference was represented by *P < 0.05; **P < 0.01; ***P < 0.001 and **** P<0.0001. P < 
0.2 were indicated by their values. 
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Table 6: Description of the 20 strains isolated from the pulmonary microbiota (from Remot, ISME, 2017)   
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Results 

 

I. Pulmonary commensal lactobacilli modulate the local immune system in 

naïve and M. tuberculosis infected mice 
 

1. Previous characterization of the pulmonary commensal bacteria bank 

At the beginning of this PhD, our collaborators from the MICALIS institute have been able to isolate 20 

bacterial strains from neonatal SPF mice lungs, containing members of the families Staphylococcaceae, 

Streptococcaceae, Enterococcaceae, Listeriaceae, Lactobacillaceae, Clostridiaceae and 

Enterobacteriaceae (as listed in Table 6). They next investigated if some of these strains were able to 

influence asthma outcome. To this end, they first selected promising candidates using an ex-vivo 

screening based on co-culture of each bacterial strain with mouse lung explants (200 µm lung slices 

obtained from germ-free mice lungs and viable in culture). In particular, the Enterococcus faecalis 

CNCM I-4969 strain was selected based on its unique ability to decrease the secretion by the lung 

explants of Thymic stromal lymphopoietin (TSLP), a cytokine driving asthma by orienting T cell 

maturation by APC towards a Th2 profile (Table 1 and (Remot et al., 2017)). By contrast, S. sciuri CNCM 

I-4970 was selected for its strong induction of pro-inflammatory cytokine secretion, including TSLP, IL-

12, IL-17 or IL-5. Interestingly, when administered intranasally (i.n.) to neonates before and after 

asthma induction, E. faecalis reduced weight loss, eosinophil infiltration, IL-5 secretion and epithelium 

thickening, whereas S. sciuri increased weight loss and did not modify the other parameters (Figure 33 

and (Remot et al., 2017)). These data demonstrated that the bank of strains used in our study contains 

commensals with the potential to modulate respiratory disease severity. 

 

2. Rationale for candidate selection 

When my PhD project started in October 2015, it was not known yet if the intranasal administration 

of the MICALIS pulmonary bacterial strains could modify the lung immune system. Results from the 

co-culture with mouse lung explants led me to hypothesize that these pulmonary bacteria have 

immunomodulatory properties that could be strain dependent, as it is the case for commensal strains 

from other origin (Youn et al., 2012; Tomosada et al., 2013). I chose to test this hypothesis in SPF mice 

harboring a complex microbiota (rather than in mono-colonized mice, for example) to identify strains 

with dominant effects. Indeed, I inferred that if a strain’s immunomodulatory effect could be negated 

by the effect of the microbiota, it would then have poor probability to improve the tuberculosis 

treatment if given as a probiotic. Another parameter I kept in mind is the fact that the study of M. 

tuberculosis infection is long, constrainable and expensive. Therefore, I decided to first assess the 

impact of isolated pulmonary commensal strains in non-infected mice, which was previously a 

successful approach achieved in the context of skin probiotic identification by the team of Yasmine 

Belkaid (Naik et al., 2015). 
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Figure 33: Characterization of strains from the pulmonary microbiota bank in an asthma model (adapted from 
Remot, ISME, 2017). A: Experimental design: 5-day-old C57BL/6 pups received intranasally 106 bacteria 
(Enterococcus faecalis CNCM I-4969 or Staphylococcus sciuri CNCM I-4970) (or PBS) every two days before and 
after induction of house dust mite allergic asthma. B: Growth curves are expressed as the mean ± s.e.m. of 
individual weights (normalized to the initial weight on two days before infection, day -2) for n⩾5 mice per group 
and represent one of three independent experiments (n=5–10 mice per group). Tukey’s multiple comparison test, 
repeated measures One-Way ANOVA was used for comparison of the growth curves. C: Bronchoalveolar lavage 
(BAL) IL-5 levels were measured by enzyme-linked immunosorbent assay (ELISA). D: BAL cells were enumerated, 
cytocentrifuged and stained with May–Gründwald–Giemsa. Eosinophils were enumerated and expressed as the 
percentage of total BAL cells. Data in C and D are shown individually and as the mean ± s.e.m. All data represent 
one of three independent experiments (n=5–10 mice per group). E: Murine lung sections were stained with 
hematoxylin–eosin–saffron, or periodic acid–Schiff and alcian blue. Epithelium thickness was measured using Case 
Viewer software. In total, 100 measures per group are plotted on the graph. They correspond to the analysis of 
four mice per group. Five representative bronchi were selected for each mouse and four measurements were 
performed per bronchus (up, down, left, right side). All data represent one of two independent experiments (n=5–
10 mice per group). 
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A final parameter was to prioritize the safer class I bacteria present in our bank, in view of future 

application to humans. Indeed, as discussed in Section 1.I of the introduction, the microbiota (and our 

bacterial bank), is not only composed of safe symbiotic bacteria, but also of pathobionts, such as 

Staphylococcus aureus, which has the potential to cause disease if over-represented (Brugger, Bomar 

and Lemon, 2016).  

Among the 20 bacterial strains isolated from the pulmonary microbiota, six were safer class I strain 

listed in red in Table 6 and detailed in the Table 2. Among these, I first focused on the three 

Lactobacillus species having a GRAS status and easy to grow in culture in order to set up the bacterial 

assessment model. From here on, the results with these three strains are presented.  

 

3. Set-up of an in vivo model to study pulmonary commensal bacteria influence on 

local immunity 

As a first step, I set-up a model to administer the pulmonary commensal bacteria i.n., adapted from 

classic gavage protocols (Kechaou et al., 2013). I first cultured the lactobacilli and monitored their 

growth to determine their characteristics, such as generation time and a concordance factor between 

optical density (OD) and bacterial concentration, as detailed in the Material and Methods chapter 

(Section I.1). The OD/CFU concordance factor for each strain was used to prepare bacterial suspensions 

in PBS at the required density. Classic protocols used to identify gut probiotic bacteria use about 109 

CFU per mouse every day for 10 days for bacterial administration by gavage. Since anesthesia is 

needed for i.n. administration, I chose an every two day administration protocol to limit the animal 

suffering, as described in other studies (Pellaton et al., 2012; Remot et al., 2017). Due to too high 

inoculum viscosity, I could not reproduce the i.n. administration of 109 (or even 108) bacteria to the 

mice that was described elsewhere (Pellaton et al., 2012; Park et al., 2013). I opted eventually for an 

inoculum containing 107 bacteria that was easily up taken by the mice; this is one log higher than the 

dose adopted by our collaborators in their recent publication (Remot et al., 2017). Each inoculum was 

verified by counting CFU on agar-medium (Figure 34A).  

I also verified that the i.n. administration resulted in delivery of bacteria to the lungs. To do so, a 

portion of the L. murinus inoculum containing 107 bacteria per mouse was stained with the fluorescent 

dye CFSE54. Mice received either stained or unstained bacteria i.n. 2 hours before sacrifice. Broncho-

alveolar lavage fluid (BALF) and lungs were recovered from each mouse and analyzed by flow 

cytometry using adapted threshold for FSC and SSC settings to detect and separate bacteria from cells 

(Figure 34B). In BALF, CFSE-labelled bacteria were detected both in the gate with low FSC and low SSC 

corresponding to free bacteria, and in the “Cells” gate that correspond to bacteria phagocytosed by 

alveolar macrophages. This detection was not due to cell auto-fluorescence, as we were not able to 

observe any positive events in the two gates from mice receiving unstained bacteria.  

 

 

 
54 Carboxyfluorescein succinimidyl ester (CFSE) is a dye that can penetrate inside living cells (or bacteria) and 
covalently bind intracellular components, which allow a long-term staining of cells. It will be diluted by a two 
fold factor any time the stained cells divide. Dilution of the staining in a cellular population can be visualized by 
FACS allowing to follow cell proliferation. 
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Detection of positive events in lung homogenates was more difficult given that there is a higher 

frequency of cellular debris from this sample, and thus fewer events of interest were recorded. Yet, it 

seems that positive bacteria (that may come from the alveolar space) were also present in this organ. 

Therefore, I validated that i.n. instillation of 107 bacteria in 20 µL of PBS under isoflurane anesthesia is 

an appropriate protocol to deliver bacteria in the lungs.  

Concerning the readout for immunomodulation by my pulmonary bacterial strain candidates, I chose 

the T cell compartment. Indeed, lymphocytes are less plastic than myeloid cells, requiring a strong 

stimulus with a lasting effect. As previously mentioned, a similar strategy was used by the team of 

Yasmine Belkaid to identify skin probiotics interacting with myeloid cells that subsequently primed 

protective CD8+ T cell response (Naik, Nature, 2015). To allow the priming of T cells in draining lymph 

nodes and their recruitment to the lungs, I decided to perform the delivery of bacteria during 15 days 

before the end point. To verify that bacterial instillations are not harmful to animals, I first performed 

a kinetic analysis for body temperature and weight; there were no differences between the 

experimental and control groups (even in long-term experiments) (data not shown). 

I then confirmed that the repeated administration of the lactobacilli does not induce lung 

inflammation, as measured by histological analyses. As shown in Figure 34C, there is no apparent 

leukocyte infiltration (noticeable by purple coloration by hematoxylin and eosin staining) in any mice 

having received the commensal bacteria as compared to that from M. tuberculosis infected mice. 

Therefore, I concluded that the i.n. delivery of the pulmonary commensal bacterial strains is well 

tolerated.  

 

 

 

 

  

Figure 34: Characterization of the lung commensal Lactobacillus strains and set-up of their intranasal 

administrations. Inocula of each strain were prepared from fresh cultures in exponential phase. 107 CFU are 

administered intranasally three times a week to SPF C57BL/6 mice for 15 days, which are then sacrificed (“Non-

infected”) or infected with M. tuberculosis. For infected mice, lung commensal bacteria are again intranasally 

delivered two times a week following infection, and the mice are sacrificed at day 42 post-infection. After each 

instillation, the bacterial load is verified by spreading the inoculum on solid medium and colony scoring. A: As 

examples, the bacterial load within 20 µL (estimated by colony scoring) from each inoculum used for a whole 

experiment in the non-infected mice (left) and in the M. tuberculosis infected mice (right) models, comparing PBS 

to: Lactobacillus salivarius (in yellow), Lactobacillus murinus (in blue) and Lactobacillus rhamnosus (in orange). 

Each dot represents an individual inoculum. B: To assess delivery of L. murinus to the lung after intranasal 

instillations, the L. murinus inoculum was stained with CFSE (or kept unstained). Inoculum, bronchoalveolar lavage 

(BAL) or total lungs, from mice having received CFSE-labelled or unstained L. murinus intranasally 2 h before 

sacrifice were analyzed by flow cytometry. Free bacteria and internalized bacteria were selected with FSC and SSC 

parameter values corresponding to size and granularity of bacteria or myeloid cells, respectively (left). CFSE 

staining was observed in both gates for mice having received stained L. murinus (middle panels) compared to those 

animals inoculated with unstained L. murinus (overlayed plots on the right). Representative plots of two 

independent experiments with one mouse per group are presented.  C: In M. tuberculosis infected mice, leukocyte 

infiltration (purple area) was analyzed in pulmonary tissues at day 42 post-infection by histological hematoxylin 

and eosin staining (HE). Same analysis was performed in non-infected mice having received each Lactobacillus 

strain (individually) for 15 days i.n. in order to assess inflammatory status of lung tissue. A representative picture 

for each condition is shown. The black bars correspond to 5 mm. 
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4. Pulmonary commensal lactobacilli modulate the CD4+ T cell lung compartment in 

naïve mice 

For the first set of experiments, naïve mice received i.n. either PBS, L. salivarius, L. murinus or L. 

rhamnosus, every other day during 15 days (Figure 35A). Before sacrifice, mice were administered i.v. 

with an anti-CD45.2 antibody to exclude contaminating blood cells as described in (Patel et al., 2015). 

With the exception of L. salivarius, which increased the number of CD4+ T cells, administration of the 

different bacteria did not change the total number of lung T cells (Figure 35B). It was previously 

described that some probiotic strains that do not modify the global T cell number, mediate their 

protective effect by changing lymphocyte phenotype or by changing equilibrium between pro- and 

anti-inflammatory subpopulations (H. W. Kim et al., 2018). Thus, I characterized the CD4+ T cells more 

in details. To assess global changes in cytokine production, I performed intracellular cell staining of 

CD4+ T cells from lung homogenates stimulated with PMA and ionomycine (Figure 35C).  As shown in 

Figure 35D-E, L. salivarius elicited a massive immunomodulatory effect in the CD4+ T cell compartment 

reflected in the total number of cells producing both pro-inflammatory (IL-17A, TNF and IFN-) and 

anti-inflammatory (TGF-155 and IL-10) cytokines. By contrast, L. murinus showed a slight tendency to 

increase IL-17A, while L. rhamnosus did not modify cytokine production (Figure 35D-E).  

 

 

 

 

 

 

Figure 35: Intranasal administration of pulmonary commensal Lactobacillus strains modulates the lung CD4+ T cell 

cytokine production in naïve mice. A: Experimental design: C57BL/6 naïve mice received intranasally 107 CFU of 

murine pulmonary commensal bacteria (L. salivarius (yellow), L. murinus (blue), L. rhamnosus (orange)) in 20 µL 

PBS or mock (white) three times per week during two weeks before sacrifice. B: Vertical scatter plots show total 

number of live lung cells (left), lung CD8+ T cells (middle) and lung CD4+ T cells (right), as quantified by flow-

cytometry in lung homogenates. Blood-circulating and dead cells were excluded from all analyses. C-E: Part of the 

lung homogenates was stimulated for 4 h with PMA and ionomycine in presence of Brefeldin A to visualize 

intracellular cytokine production. Dot plots show the gating strategy used to select cytokine secreting lung CD4+ T 

cells (gated on CD4+CD3+ cells) based on intracellular cell staining, and using isotype or Fluorescence Minus One 

(FMO) controls (C). Vertical scatter plots indicate the frequencies (D) and total number (E) of cells producing IFN-

, TNF, IL-17A, IL-10, or TGF-1. LAP (Latency Associated Protein) is the membrane-bound form of TGF- Each 

circle represents an individual mouse, while the black bar line is the median of each group. Experimental groups 

were compared to control within the same experiment using a Kruskal-Wallis test and Dunn’s post-test, *P < 0.05; 

**P < 0.01; ***P < 0.001; a representative experiment is shown from two independent experiments.  

 

 

 
55 TGF-1 production was assessed in all experiments indirectly by the detection of LAP (Latent Associated 
Peptide), with which it forms a propeptide that can be expressed at cell membrane or be clived to release the 

biologically active form of TGF-1. 
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To continue with the characterization of CD4+ T cells, I use additional markers to discriminate different 

CD4+ T cell populations. I focused on Th1, Th17 and Treg subsets, which are crucially involved in the 

immune response to tuberculosis (unlike the Th2 subset) and often modulated by probiotic 

administrations as described in the introduction. These subsets were identified through the expression 

of characteristic transcription factors: T-bet for Th1, RORt for Th17, and Foxp3 for Treg (as shown in 

Figure 36A, B). While at first, I had considered all RORt+ CD4+ T cells as Th17, and all Foxp3+ CD4+ T 

cells as Treg, I recently realized by representing CD4+ T cells in a RORt versus Foxp3 dot plot that a 

fraction of these populations was expressing both transcription factors, in particular after commensal 

administration (Figure 36B). 

As detailed in the introduction (Section 1.II.3), commensal bacteria have been shown to induce such 

double positive cells often named  RORt+ Treg in the gut that have Treg functions, (Sefik et al., 2015; 

Yang et al., 2016). In the lungs, there is one study that report the presence of this population (Lochner 

et al., 2008), but until now, its modulation by the microbiota in this organ has never been addressed. 

Since the generation of gut RORt+ Treg is dependent on the presence of local microbiota (Ivanov et 

al., 2009; Atarashi et al., 2011; Sefik et al., 2015), I decided to pay special attention to this subset of 

Treg along with Th1, Th17 and classical Treg. Therefore, I went back to my previous flow cytometry 

data and reanalyze them considering this cell population (if the antibody panel allowed me to do so). 

In this aim, the term “Th17” used in this section includes CD4+ T cells expressing RORt but not Foxp3, 

“Treg” refers to CD4+ T cells expressing Foxp3 but not RORt, and “RORt+ Treg” alluding to the double 

positive population (Figure 36B).  

 

 

 

 

Figure 36: Intranasal administration of pulmonary commensal Lactobacillus strains modulates the lung CD4+ T cell 

populations in naïve mice. C57BL/6 naïve mice received intranasally 107 CFU of murine pulmonary commensal 

bacteria (Lactobacillus salivarius (yellow), Lactobacillus murinus (blue), Lactobacillus rhamnosus (orange)) in 20 µL 

of PBS or mock (PBS alone, white) three times per week during two weeks before sacrifice. Lung CD4+ T cells 

(expressing CD4 and TCR-) were analyzed by flow cytometry after exclusion of dead and blood-circulating cells. 

A, B: Dot plots illustrate the gating strategy for lung CD4+ T cell subpopulation selection based on the intracellular 

staining of specific transcription factor expression: T-helper 1 (Th1), expressing T-bet; Th17, expressing RORt; 

regulatory T cell (Treg), expressing Foxp3; and RORt+ Treg, expressing RORt and Foxp3. Positivity for T-bet was 

determined using an isotype control (A). As an example, representative dot plots for expression of RORt and 

Foxp3 in each experimental group are presented (B). C, D: Vertical scatter plots indicate the corresponding percent 

frequencies (C) and absolute number (D) of the indicated lung CD4+ T cell subpopulations, according to specific 

bacterial (or mock) administration. E: Vertical scatter plots display the percentage of RORt+ Treg frequency among 

total Foxp3+ (left) or RORt+ (right) CD4+ T cells. F: Vertical scatter plots indicate the frequency of Ki67 positive 

cells among CD4+ T cell sub-populations. Each circle represents an individual mouse, while the black bar line is the 

median of each group. Experimental groups were compared to control within the same experiment; a 

representative experiment is shown from two independent experiments. A Kruskal-Wallis test and Dunn’s post-

test were performed to compare the mean rank of each group to the PBS control group, *P < 0.05; **P < 0.01; 

***P < 0.001. 
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After administration in naïve mice, I observed that the three lactobacilli modulate CD4+ T cell 

populations. They all tended to induce a lower proportion of Th1 and conventional Treg, and an 

increased level of Th17 and RORt+ Treg (Figure 36C). In the case of L. salivarius, there was a significant 

increase in the total cell number of all populations, mainly distinguished by the massive presence of 

Th17 (Figure 36D). L. murinus displayed a similar (albeit lower) tendency to induce all populations of 

CD4+ T cell in terms of cell numbers, with a significant effect on RORt+ Treg (Figure 36D). By contrast, 

the immunomodulatory effect by L. rhamnosus was really low, characterized by small tendencies with 

no statistical significance (Figure 36C-D).  RORt+ Treg represented a high proportion of total Foxp3+ 

CD4+ T cells in the lungs, going from 20% in control mice to 40% in lactobacilli-treated mice (Figure 

36E, left).  

Of note, they were estimated to represent 40% in the colonic lamina propria in SPF mice by Sefik and 

colleagues (Sefik et al., 2015), ranging from 15% to 80% in mice harboring minimal to complex 

microbiota (Yang et al., 2016). In addition, we noticed that RORt+ Treg represented an important 

proportion of lung RORt+ CD4+ T cells, ranging up to 30% in all conditions except for the L. salivarius-

treated mice where Th17 were massively augmented (Figure 36E, right). This is quite in accordance 

with the previous study reporting that RORt+ Treg represented about 20% of total RORt+ CD4+ T cells 

in the lungs (Lochner et al., 2008). Moreover, I observed that the increase in CD4+ T cell populations 

seemed to be partly mediated by cell proliferation, as most lymphocytes expressed the proliferation 

marker Ki67 in lactobacilli-treated mice (Figure 36F). In particular, lung Th17 cells and RORt+ Treg 

seemed highly proliferative in mice treated with all the lactobacilli strains, suggesting an important 

role for lung microbiota in the generation of these subsets. 

This first set of experiments gave rise to different questions for my thesis project, including:  

(i) Is the modulation of the lung CD4+ T cell compartment by lung Lactobacillus strains conserved during 

tuberculosis infection? If so, would these changes alter the disease outcome? These questions are 

addressed in subsection I.5. 

 (ii) Is the induction of some CD4+ T cell subsets associated with modulation of their phenotype and 

functions? This aspect is described in subsection III.1. 

(iii) Are there additional lung commensals (other than Lactobacillus species) inducing modulations of 

the lung T cell compartment? This is assessed in subsection III.3.  
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5. L. murinus administration decreases lung inflammation associated to 

M. tuberculosis infection associated with an increase in lung Th17 and RORt+ Treg 

To test the probiotic effect of pulmonary commensal lactobacilli in the context of tuberculosis, I 

adapted the administration protocol of commensals to the mouse model of M. tuberculosis infection 

previously used in our team and others (Troegeler et al., 2017; Dumas, Corral, et al., 2018). In this 

model that I define here as the “prophylactic” administration mode, mice received 107 CFU of the 

Lactobacillus strains i.n. three times per week for 15 days, and were then infected (i.n.) with 1000 CFU 

of the H37Rv strain of M. tuberculosis. Thereafter, i.n. delivery of lactobacilli continued two times per 

week until end point at day 42 post-infection (Figure 37A). 

As in the non-infected mice, all Lactobacillus strains displayed a tendency to increase Th17 and RORt+ 

Treg. I observed again that L. salivarius and L. murinus were the strongest inducers of Th17 and RORt+ 

Treg, respectively (Figure 37B-E). Of note, neither Th1 cells nor conventional Treg were significantly 

modulated by the lactobacilli administration in this model. As discussed in the introduction, Th17 role 

is not fully understood in tuberculosis, but they are certainly involved in tuberculosis 

immunopathology. Some studies in patients suggest that pathogenic Th17 are in fact Th1/Th17 cells; 

RORt+ T-bet+ poly-functional cells producing both IL-17 and IFN- (Lyadova and Panteleev, 2015). In 

my hands, even though some RORt+ cells slightly expressed T-bet in the control group, the RORt+ 

population that increased with lactobacilli administration did not express this transcription factor 

(Figure 37B, bottom). This suggests a different role for the Th17 population induced by our strains, 

which is discussed in the Discussion section.  

To assess if the immunomodulation induced by the pulmonary lactobacilli could affect the disease 

outcome, we looked at the pathogen burden and lung integrity at a late time point (42 days post-

infection). The lactobacilli delivery to the lung neither modify M. tuberculosis loads in the lungs, nor its 

dissemination to the spleen (Figure 37F). This suggests that our Lactobacillus strains do not influence 

mechanisms involved in the control of this pathogen, and I infer that the increase in RORt+ Treg does 

not inhibit the protective anti-bacterial immunity. While histological examination of the lungs did not 

reveal massive leukocyte infiltration in all animal groups, quantification of the occupied area by 

leukocyte infiltrates revealed that administration of L. murinus resulted in a striking reduction of this 

inflammatory parameter (Figure 37G). By contrast, while administration of L. salivarius followed the 

same decreasing trend (albeit not significant), L. rhamnosus failed to exert any effect as compared to 

the mock-treated group.  

Based on these results, I decided to focus uniquely on L. murinus and to further characterize its effects 

in the context of tuberculosis.  
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Figure 37: Prophylactic administration of L. murinus decreases lung inflammation associated to M. tuberculosis 

infection associated with an increase in lung Th17 and RORt+ Treg. A: Experimental design. C57BL/6 naïve mice 

received intranasally (i.n.) 107 CFU of murine pulmonary commensal bacteria (Lactobacillus salivarius (yellow), 

Lactobacillus murinus (blue), Lactobacillus rhamnosus (orange)) in 20 µL of PBS or mock (PBS alone, white) three 

times per week during two weeks prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice 

were inoculated twice a week with each lactobacilli strain or mock. At day 42 post-infection, mice were sacrificed 

for analyses. B: Representative dot plots for expression of RORt and Foxp3 (top), or RORt and T-bet (bottom), 

among CD4+ T cell in each experimental group. Dead and blood-circulating cells were excluded from the analysis 

before CD4+ T cell (CD4+ CD3+) selection. C, D: Vertical scatter plots display the percent frequencies (C) and 

absolute number (D) of the indicated lung CD4+ T cell subpopulations, according to the commensal (or mock) 

administration. E: Vertical scatter plot show the RORt+ Treg frequency among total Foxp3+ CD4+ T cell (top) or 

total RORt+ CD4+ T cell (bottom). F: Vertical scatter plots show the loads of M. tuberculosis in lung (left) or spleen 

(right) homogenates day 42 post-infection. G: Leukocyte infiltration detected by histological hematoxylin and 

eosin staining (left), and quantified as illustrated in vertical plot (right) in pulmonary tissue. On the left panel, the 

black bars on pictures correspond to 5 mm. C-G: Each circle represents an individual mouse. In C-E, only one 

experiment was performed. In F-G, three independent experiments are pooled (each experiment is represented 

by a different symbol). The black bar line represents the median of each group. A Kruskal-Wallis test and Dunn’s 

post-test were performed to compare the mean rank of each group to the PBS control group, *P < 0.05; **P < 

0.01; ***P < 0.001. 
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II. Assessment of L. murinus potential as a probiotic candidate for tuberculosis 
 

1. Prophylactic and therapeutic administration of L. murinus increase lung Th17 and 

RORt+Treg during M. tuberculosis infection 

To assess the potential of L. murinus as a microbiota-based therapy in M. tuberculosis infection, mice 

received the lactobacillus administration only after infection, which I termed as “therapeutic” mode, 

or as previously in a “prophylactic” mode (Figure 38A). Similar to the prophylactic administration, the 

therapeutic mode does not significantly change the total number of lung CD4+ T cells (Figure 38B), nor 

the levels of Th1 and conventional Treg (Figure 38C-D). By contrast, it increases lung Th17 and RORt+ 

Treg compared to mock-treated ones inducing an even higher total numbers of these populations 

compared to the prophylactic mode (Figure 38C-E). In this experiment, the transcription factor Helios 

was added to our antibody panel. This allowed us to confirm that RORt+ Treg present in the lungs, and 

increased by L. murinus administrations, were induced locally (and not in the thymus) because they 

expressed poor level of Helios compared to conventional Treg, as reflected by the color scale in Figure 

38F. 

 

 

 

 

 

 

Figure 38: Prophylactic and therapeutic administration of L. murinus increase lung Th17 and RORt+Treg during 

M. tuberculosis infection. A: Experimental design. For the prophylactic administration, C57BL/6 mice received 

intranasally (i.n.) 107 CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, white) three times a week 

during two weeks prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice were inoculated 

twice per week post-infection to continue the prophylactic administration (dark blue), or as a starting point for the 

therapeutic administration (light blue). B: Vertical scatter plot showing the total number of live lung CD4+ T cells, 

as quantified by flow-cytometry in lung homogenate at day 42 post-infection, after blood-circulating and dead cell 

exclusion. C-D: Vertical scatter plots display the percent frequencies (C) and absolute number (D) of the indicated 

lung CD4+ T cell subpopulations, according to the indicated mode of L. murinus (or mock) administration. E: 

Vertical scatter plot show the RORt+ Treg frequency among total Foxp3+ CD4+ T cell. F: Representative dot plots 

for expression of RORt, Foxp3, and Helios (color gradient from low (blue) to high (red) expression) among CD4+ T 

cells in each experimental group. Each circle represents an individual mouse. A representative experiment is 

shown from two independent experiments. The black bar line represents the median of each group. A Kruskal-

Wallis test and Dunn’s post-test were performed to compare the mean rank of each group to the PBS control 

group, *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 39: Prophylactic and therapeutic administration of L. murinus modifies IL-17A and TGF-1 expression in the 

lung CD4+ T cell compartment during M. tuberculosis infection. For the prophylactic administration, C57BL/6 mice 

received intranasally (i.n.) 107 CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, white) three times 

a week during two weeks prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice were 

inoculated twice a week post-infection to continue the prophylactic administration (dark blue), or as a starting 

point for the therapeutic administration (light blue). Mice were sacrificed at day 42 post-infection. Lung 

homogenates were then stimulated for 4 h with PMA and ionomycine in presence of Brefeldin A and Monensin. 

Vertical scatter plots display the percent frequencies (A) and Median of Fluorescence Intensity (MFI) (B) of the 

indicated cytokines produced by total Foxp3+ cells (or Foxp3- cells) among lung CD4+ T cell, after blood-circulating 

and dead cell exclusion, and according to the indicated mode of commensal bacterial (or mock) administration. A 

representative experiment is shown from two independent experiments (n=7 mice per group). A Two-Way ANOVA 

test followed by Tukey multiple comparison test were performed to compare the mean of each group in each 

population (and between populations), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Statistical differences 

between Foxp3+ and Foxp3- are not represented. 
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To better characterize the immunomodulatory effect of L. murinus, we also analyzed the cytokine 

content in CD4+ T cells (Figure 39). Of note, the anti-RORt antibody was absent from the flow 

cytometry panel used in these given experiments, and thus I was not able to assess the cytokine 

content specifically in Th17 and RORt+ Treg. Nevertheless, I was able to discriminate cytokines 

produced by Foxp3+ (including conventional Treg and RORt+ Treg) from Foxp3- cells (Th17 and Th1 

cells, among others). As expected, Foxp3+ cells produced less pro-inflammatory cytokines (IFN-, TNF, 

IL-17A) and more of the anti-inflammatory TGF-1 propeptide (in complex with LAP) than Foxp3- cells 

(Figure 39A). The effect of L. murinus administration was quite evident (independent of the 

administration mode) in the higher percentage of CD4+ T cells that produced IL-17A among Foxp3- cells 

(Figure 39A), and in the elevated intensity of LAP expression among Foxp3+ cells (Figure 39B). I also 

observed tendencies (albeit not significant) for L. murinus to lower the IFN- production in Foxp3- cells 

and increase that of IL-10 expression in all CD4+ T cells (Figure 39 A-B).  

Altogether, these results indicate that the mode of administration does not vary in the fashion L. 

murinus modulates the lung CD4+ T cell compartment, and showed that this pulmonary strain has a 

clear effect in the induction of Th17 and RORt+ Treg. 
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Figure 40: Prophylactic and therapeutic administration of L. murinus does not modify the lung myeloid cell number 

during M. tuberculosis infection. For the prophylactic administration, C57BL/6 mice received intranasally (i.n.) 107 

CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, white) three times a week during two weeks 

prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice were inoculated twice a week post-

infection to continue the prophylactic administration (dark blue), or as a starting point for the therapeutic 

administration (light blue). Mice were sacrificed at day 42 post-infection and received anti-CD45.2 antibody i.v. 5 

min before sacrifice to discriminate cells from the blood. A: Gating strategy to assess the lung myeloid cell 

compartment after exclusion of doublets and dead cells regardless of the CD45.2 staining (All cells, black). Similar 

gating strategy was done for CD45.2+ (blood-circulating cells, red) and CD45- (lung cells, blue); examples of the 

Ly6G versus CD24 gate are provided. PMN: polymorphonuclear cells, MP: macrophages, AM: alveolar 

macrophages, IM: interstitial macrophages, DC: dendritic cells, Mo/MP: monocyte/macrophages. B: Vertical 

scatter plots display the cell number of the myeloid cell compartment based on either “All Cells” (left) or “Lung 

Cells” (right) gating, according to the indicated mode of L. murinus (or mock) administration. A representative 

experiment is shown from two independent experiments (n=7 mice per group). No significant difference between 

experimental group was found using Kruskal-Wallis test and Dunn’s post-test. 
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2. Prophylactic and therapeutic administration of L. murinus modulate the phenotype 

of lung macrophages and DCs at steady state and during M. tuberculosis infection 

Since myeloid cells are key players in the immune response to M. tuberculosis, I decided to assess 

whether the myeloid compartment was modulated by L. murinus administration during infection. At 

42 days post-infection, I identified lung neutrophils (PMN), eosinophils, alveolar (AM) and interstitial 

macrophages (IM), CD11b+ and CD103+ dendritic cells, and inflammatory monocytes/macrophages by 

flow cytometry, based on the markers proposed by the team of David Russell, among others (L. Huang 

et al., 2018) (Figure 40A). Of note, according to the i.v. staining performed before mouse sacrifice to 

stain cells present in the blood circulation, most of the interstitial macrophages, inflammatory 

monocyte/macrophages and neutrophils, were present in the lung vascularization in comparison to 

lung tissue (Figure 40A and B). With or without exclusion of cells from the blood, I did not detect any 

differences in the total number of myeloid cells identified with the administration of L. murinus, 

independently of the mode of administration. It is possible that L. murinus had an effect on the myeloid 

compartment at an earlier time point (as myeloid cells are activated and recruited in the lungs during 

the first 10 days post-infection), but I can exclude a long-lasting effect lingering at the end time point. 

It can also be noted that despite increased level of IL-17A secreting CD4+ T cells, L. murinus-treated 

mice did not show a massive lung infiltration by neutrophils.  
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To further characterize the myeloid compartment, I compared the expression of a battery of 

extracellular markers in mice infected (or not), treated with L. murinus (prophylactic mode) (or not) 

(Figure 41A). Such analysis reveals that alveolar macrophages exhibited a decreased expression of pro-

inflammatory macrophage (M1) markers (e.g., CD80 and CD86) and an increase in anti-inflammatory 

(M2) markers (e.g., CD206 and CD16/32) in mice treated with L. murinus, regardless of M. tuberculosis 

infection. The CD86 level was also decreased in CD103+ DC from L. murinus-treated mice. The inhibitory 

ligand PD-L1, involved in T cell exhaustion, was increased in alveolar macrophages and CD103+ DC from 

infected mice, and by L. murinus treatment in non-infected alveolar macrophages. CD40, involved in 

the induction of Th17 (Sia et al., 2017), was expressed by interstitial macrophages and DC. Its 

expression in both cell types was reduced in M. tuberculosis infected mice compared to non-infected 

ones. Yet, it was increased in interstitial macrophages from all L. murinus-treated mice.  

In another experiment comparing the different modes of L. murinus administration in M. tuberculosis 

infected mice, I assessed the cytokine production on LPS re-stimulated lung homogenates containing 

myeloid cells. IL-10 producing cells were not observed in this setting (data not shown). By contrast, 

TGF-1 production was detected in all APC and seemed to decrease upon treatment with L. murinus, 

independently of the administration mode. TNF expression, which was high in interstitial macrophages 

but not in other subsets, was not modulated by L. murinus administrations (Figure 41B).  

Altogether, these findings indicate that while L. murinus do not modify the numbers of myeloid cells 

present in the lungs late during tuberculosis infection, it modulates their phenotype. It is clear, 

however, that more experiments need to be performed in order to fully understand the effects exerted 

by this Lactobacillus strain, in particular at earlier post-infection time points. 

 

 

 

 

 

 

 

Figure 41: Prophylactic and therapeutic administration of L. murinus modulate the phenotype of lung 

macrophages and DC at steady state and during M. tuberculosis infection. For the prophylactic administration, 

C57BL/6 mice received intranasally (i.n.) 107 CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, 

white) three times a week during two weeks prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. 

Thereafter, mice were inoculated twice a week post-infection to continue the prophylactic administration (dark 

blue), or as a starting point for the therapeutic administration (light blue). Mice were sacrificed at day 42 post-

infection. A: In this experiment, a group of mice were kept uninfected (red border), but they received the 

prophylactic mode of L. murinus administration (or PBS) as the infected mice (with the same treatment duration). 

Vertical scatter plots display Median of Fluorescence Intensity (MFI) of indicated extracellular markers expressed 

by the indicated lung macrophage or dendritic cell populations. Results from one experiment with n=5 (uninfected) 

or 7 (M. tuberculosis infected) mice per group B: Cytokine stainings were performed on lung homogenates 

stimulated with LPS for 4h, in presence of Brefeldin A and Monensin. Vertical scatter plots display MFI of the 

indicated cytokines expressed by the indicated lung macrophage or dendritic cell populations. Results from one 

experiment with n=7 mice per group. AM: alveolar macrophages, IM: interstitial macrophages, DC: dendritic cells. 

A Two-Way ANOVA test followed by Tukey multiple comparison test were performed to compare the mean of 

each group in each population (and between populations), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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3. Prophylactic and therapeutic administration of L. murinus modulate the lung 

inflammation associated to M. tuberculosis infection  

To confirm the broad effect of the administration modes of L. murinus during M. tuberculosis infection, 

I measured in the same experiments, the pathogen burden, leukocyte infiltration and cytokine 

production in the lungs. The administration modes of L. murinus did not modify M. tuberculosis loads 

in the lungs or the incidence of bacterial dissemination to the spleen at day 21 or 42 post-infection 

(Figure 42A), suggesting again that this commensal bacterial strain does not affect the pathogen 

growth or its killing by the immune system. However, while the prophylactic mode clearly decreased 

leukocyte infiltration in the lung, as measured by histological staining, effect of the therapeutic mode 

was not significant (Figure 42B). More experiments with the therapeutic mode of administration may 

be required to assess whether it has a lower effect compared to the prophylactic mode or no effect at 

all on this parameter. Regarding cytokine production, I observed an overall decrease tendency in the 

level of pro-inflammatory cytokines IFN-, TNF and IL-6 in lung homogenate supernatants at day 42 

post-infection, as measured by ELISA (Figure 42C). By contrast with the leukocyte infiltration, here, the 

effect was stronger with the therapeutic administration. There was no difference in the overall 

production of IL-10 in the lung (Figure 42C). This result was confirmed by a preliminary RT-qPCR 

analysis on total lung homogenates in which no difference was observed between mock and treated 

animals (Figure 42D). As for the other cytokines, I tried to measure the level of IL-17 by ELISA, but its 

abundance level was below the detection limit (data not shown). However, the RT-qPCR analysis 

revealed a clear increase of IL-17 expression in mice treated with the prophylactic administration of L. 

murinus (Figure 42D). 

Collectively, these findings suggest that L. murinus has the capacity to reduce the lung inflammation 

associated with M. tuberculosis infection, without affecting the pathogen burden, and that 

prophylactic mode and therapeutic mode of administration may be different regarding this effect. 

 

 

 

 

 

Figure 42: Prophylactic and therapeutic administration of L. murinus modulate the lung inflammation associated 

to M. tuberculosis infection in C57BL/6. For the prophylactic administration, C57BL/6 mice received intranasally 

(i.n.) 107 CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, white) three times a week during two 

weeks prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice were inoculated twice per 

week post-infection to continue the prophylactic administration (dark blue), or as a starting point for the 

therapeutic administration (light blue). A: Vertical scatter plots show the M. tuberculosis burden in lung (left) or 

spleen (right) homogenates at day 21 or 42 post-infection. B: Leukocyte infiltration detected by histological 

hematoxylin and eosin staining (left), and quantified as illustrated in vertical plot (right) in pulmonary tissue at day 

42 post-infection. C: Vertical scatter plots illustrate the indicated cytokine concentration in lung homogenate 

supernatants at day 42 post-infection. D: Expression of IL-17 and IL-10 relative to -actin in lung homogenates was 

measured by RT-qPCR at day 42 post-infection. Values are expressed as a fold change between L. murinus-treated 

mice relative to PBS-treated mice. Each circle represents an individual mouse. In A and B, three experiments are 

pooled (different symbols are used for each experiment). In C, a representative experiment is shown from two 

independent experiments. The black bar line represents the median of each group. A Kruskal-Wallis test and 

Dunn’s post-test were performed to compare the mean rank of each group to the PBS control group, *P < 0.05; 

**P < 0.01.  
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4. Prophylactic and therapeutic administration of L. murinus do not exert beneficial 

effects in 129/Sv mice that are susceptible to lung inflammation associated to M. 

tuberculosis infection   

C57BL/6 mice are often used in the tuberculosis field to decipher mechanisms involved in the immune 

response, partly because many genetic tools are available on this background. However, there are not 

the best model to assess immunopathology associated to tuberculosis as they do not develop necrotic 

lung lesions as humans do (Kramnik and Beamer, 2016).  As in this model I still observed a difference 

in leukocyte infiltration, I was wandering if it could lead to a decrease in immunopathology. To do so, 

we choose to repeat our experiment in 129/Sv mice, that are more susceptible to the disease, 

succumbing to uncontrolled inflammation leading to lung tissue damages (Medina and North, 1998; 

Dorhoi et al., 2014).  

To assess the protective effect of L. murinus in this mouse model, I applied the same protocols as 

previously described for the C57BL/6 model. In line with the literature, M. tuberculosis burden in the 

lung of 129Sv mice was higher compared to C57BL/6 mice, as well as the lung leukocyte infiltration 

(Figure 42A,B and Figure 43A,B). Indeed, large infiltrated areas, containing dense cell clusters were 

visible in the lung of these mice (Figure 43B), whereas small and diffuse cell clusters were usually 

observed in C57BL/6 mice (Figure 42B). This higher infiltration was reflected by a ten-fold increase in 

the cell number of all CD4+ T cell subsets, while the proportion between them was similar between 

both mouse models (Figure 38 and Figure 43D,E). As in C57BL/6 mice, L. murinus administration 

(independently of the mode) did not change M. tuberculosis bacterial loads at day 42 post-infection 

(Figure 43A). However, in the 129/Sv mice, I did not see any effect of L. murinus in lung leukocyte 

infiltration (Figure 43B).  

Modulations of the CD4+ T cell compartment were also different between the two mouse models. In 

particular, in 129/Sv mice, while the prophylactic mode of administration of L. murinus increased the 

total number of lung CD4+ T cells, including Th1 and Th17, it failed to increase that of conventional and 

RORt+ Treg (Figure 43C-G). In fact, while modulations of Th17 and RORt+ Treg can be observed with 

both administration modes, there are clearly low compared to what was observed in the C57BL/6 mice 

(Figure 38). Regarding cytokine production, increased IFN- and IL-17A levels in lung CD4+ T cells were 

observed despite the high expression of the suppressive TGF- in L. murinus-treated mice with the 

prophylactic mode, while the cytokine production was less impacted by the therapeutic mode (Figure 

43H-I). Investigation of the impact of L. murinus on the myeloid compartment was not assessed in this 

mouse model.  

These results indicate that the beneficial effects of L. murinus in the context of tuberculosis might be 

dependent on the mouse genetic background, as well as the immunomodulatory capacity of the CD4+ 

T cell compartment in the lung.  
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Figure 43: Prophylactic and therapeutic administration of L. murinus do not exert beneficial effects in mice 

susceptible to lung inflammation associated to M. tuberculosis infection. 129Sv mice received intranasally (i.n.) 

107 CFU of Lactobacillus murinus in 20 µL of PBS or mock (PBS alone, white) three times a week during two weeks 

prior to i.n. infection with 103 CFU of M. tuberculosis H37Rv. Thereafter, mice were inoculated twice a week post-

infection to continue the prophylactic administration (dark blue), or as a starting point for the therapeutic 

administration (light blue). A: Vertical scatter plots show the M. tuberculosis loads in lung homogenates at day 42 

post-infection. B: Leukocyte infiltration detected by histological hematoxylin and eosin staining (B), and quantified 

as illustrated in vertical plot (C) in pulmonary tissue at day 42 post-infection. In (B) the black bars represent 5 mm. 

C: Vertical scatter plots show total number of live lung CD4+ T cells, as quantified by flow-cytometry in lung 

homogenates at day 42 post-infection, after blood-circulating and dead cell exclusion. D: Representative dot plots 

for expression of RORt and Foxp3 among CD4+ T cell in each experimental group. E-F: Vertical scatter plots display 

the percent frequencies (G) and absolute number (H) of the indicated lung CD4+ T cell subpopulations, according 

to specific bacterial (or mock) administration. G: Vertical scatter plot show the RORt+ Treg frequency among total 

Foxp3+ CD4+ T cell. H-I: Lung homogenates were stimulated for 4 h with PMA and ionomycine in presence of 

Brefeldin A and Monensin. Vertical scatter plots display the percent frequencies (I) and absolute number (J) of 

CD4+ T cell producing the indicated cytokines, according to the indicated mode of commensal bacterial (or mock) 

administration. Each circle represents an individual mouse. A representative experiment is shown from two 

independent experiments (the two experiments are pooled in C). The black bar line represents the median of each 

group. A Kruskal-Wallis test and Dunn’s post-test were performed to compare the mean rank of each group to the 

PBS control group, *P < 0.05; **P < 0.01. 
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III. Characterization of L. murinus and additional pulmonary bacterial strains  

1. Formal characterization of lung Th17 and RORt+ Treg at steady state or after 

intranasal administration of pulmonary L. murinus  

Among the few studies characterizing RORt+ Treg, most of them reported RORt+ Treg presence in 

intestinal and colonic lamina propria, and one reported that gavage with gut microbiota strains 

increased their presence in this mucosal site (Sefik et al., 2015). To compare our results with these 

studies, I performed administration of L. murinus either i.n. or intragastrically (i.g.) and assessed the 

distribution of RORt+ Treg in the lungs, colonic lamina propia, mesenteric lymph nodes and spleen. 

Unfortunately, I recovered few CD4+ T cell from the colonic lamina propria and was unable to carry out 

a proper assessment for this site. As previously described (Yang et al., 2016), I observed that RORt+ 

Treg were not a dominant CD4+ T cell subtype in non-mucosal sites, such as the spleen or  mesenteric 

lymph nodes in SPF mice (Figure 44A, B). Importantly, both i.n. and i.g. administrations of L. murinus 

increased RORt+ Treg levels in the lungs (but not in the spleen or lymph nodes) (Figure 44B). The i.n. 

administration resulted in a higher induction than the i.g. one (this difference was accentuated in 

another experiment) (Figure 44B). This result suggests that L. murinus may mediate immune regulation 

at the lungs, either distally through the gut-lung axis but also locally. This was shown with other 

Lactobacillus strains for example in (Youn et al., 2012) but was not addressed using strains from lung 

origin before.  

 

 

 

 

 

 

 

Figure 44: Formal characterization of lung Th17 and RORt+ Treg at steady state or after intranasal administration 

of pulmonary L. murinus. C57BL/6 naïve mice received intranasal (i.n.) administration of 107 CFU of Lactobacillus 

murinus in 20 µL PBS (blue circles or boxes) or PBS alone (white circles or boxes) three times a week during two 

weeks before being sacrificed. Alternatively, other mouse groups received intragastric (i.g.) administration of 109 

CFU of Lactobacillus murinus in 200 µL of PBS (blue triangles) or PBS alone (white triangles) every day during a 10-

day period before being sacrificed (only in B). A: Representative expression of RORt, Foxp3 and Helios (color 

gradient from low (blue) to high (red) expression) in CD4+ T cells in the lung, mesenteric lymph node (MLN) or 

spleen, from mock-treated mice. B: Vertical scatter plots show RORt+ Treg frequencies among CD4+ T cell in 

indicated organs, according to the indicated mode of L. murinus (or mock) administration. C-E: Representative 

expression (C), frequency (D) or Median of Fluorescence Intensity (MFI) (E) of indicated markers by lung CD4+ T 

cells populations: Foxp3
-
 RORt

-
 (other CD4+ T cells), Foxp3

-
 RORt+ (Th17), Foxp3+ RORt

-
(Treg), Foxp3+ RORt+ 

(RORt+ Treg), after intranasal administration of PBS or L. murinus. In B, Kruskal-Wallis test and Dunn’s post-test 

were performed to compare the mean rank of each group to the mock group. In C and D, a Mann-Whitney t-test 

was performed to compare the median of each marker in the mock group to the L. murinus-treated group for each 

cell population. A representative experiment is shown from two independent experiments in each panel, (n=5-6 

mice per group). *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 45: Formal characterization of the cytokine content in Th17 and RORt+ Treg at steady state or after 

intranasal administration of a pulmonary L. murinus. C57BL/6 naïve mice received intranasal (i.n.) administration 

of PBS (white boxes) or 107 CFU of Lactobacillus murinus (blue boxes) three times a week during two weeks before 

being sacrificed. Lung homogenates were stimulated for 4 h with PMA and ionomycine in presence of Brefeldin A 

and Monensin. A, B: Frequency (A) or Median of Fluorescence Intensity (MFI) (B) of indicated cytokines by lung 

CD4+ T cells populations: Foxp3- RORt- (other CD4+ T cells), Foxp3- RORt+ (Th17), Foxp3+ RORt-(Treg), Foxp3+ 

RORt+ (RORt+ Treg), according to the indicated mode of commensal bacteria (or mock) administration. Blood-

circulating cells were not excluded in this experiment. A Mann-Whitney t-test was performed to compare the 

median of each marker in the mock group to the L. murinus-treated group for each cell population. A 

representative experiment is shown from three independent experiments (n=5-6 mice per group). *P < 0.05; **P 

< 0.01; ***P < 0.001. 
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As described in the literature for RORt+ Treg from gut origin (Ohnmacht et al., 2015; Sefik et al., 2015; 

Yang et al., 2016), lung RORt+ Treg expressed Foxp3 at a similar level than conventional Treg, and 

RORt at similar level than Th17 (Figure 44C). In addition, lung RORt+ Treg expressed very low levels 

of Helios in comparison to conventional Tregs (Figure 44A, C-E). Moreover, these cells failed to express 

CD25 (Figure 44C), as reported in RORt+ Treg isolated from spleen and lymph node (Yang, mucosal 

immunol 2016). Of note, I found few levels of total Foxp3+ CD4+ T cells that express CD25 in the lungs 

in different experiments (Figure 44C). In terms of their activation status, I noticed that lung RORt+ 

Treg expressed high level of ICOS, which was even more increased by L. murinus administration (Figure 

44 C-E). They also highly expressed the immune-suppressive marker CTLA-4, which was not modulated 

by L. murinus administration. Surprisingly, Th17 were found to express CTLA-4 in our model, which was 

further increased in L. murinus-treated mice (Figure 44 C-E). L. murinus also induced the expression of 

the suppressive marker PD-1 in the entire CD4+ T cell compartment, including Th17 and RORt+ Treg 

(Figure 44 C-E). As previously described, Th17 and RORt+ Treg expressed high levels of CCR6 (Lochner 

et al., 2008). Except for RORt+ Treg, L. murinus enhanced the CCR6 expression levels in all CD4+ T cells 

(Figure 44 C-E).  

In terms of cytokine production, Th17, Treg and RORt+ Treg expressed low levels of TNF in comparison 

to Th1 cells; administration of L. murinus dramatically decreased this pro-inflammatory cytokine across 

all CD4+ T cells subsets (Figure 45). 

By contrast, production of IL-17A was massively increased in all CD4+ T cell subsets and, in particular, 

in Th17 and RORt+ Treg (Figure 45). Again, I observed very poor levels of CD4+ T cells expressing IL-10, 

and I failed to notice any effect induced by L. murinus on this cytokine. However, TGF-1 propeptide 

expression was generally increased in all CD4+ T cell subsets from L. murinus-treated mice, including 

Th17 cells. Of note, I report for the first time that lung RORt+ Treg expressed TGF-1 propeptide at 

the highest level (Figure 45).  

Collectively, this characterization suggests that lung RORt+ Treg have an inhibitory phenotype that is 

further enhanced by pulmonary L. murinus. This is mirrored by the expansion of Th17 cells with anti-

inflammatory properties that may participate in disease tolerance rather than resistance mechanisms. 
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2. Lactobacillus murinus genome analysis 

Given the highly interesting immunomodulatory properties of our L. murinus isolate along with the 
reduction of leukocyte infiltration observed in the C57BL/6 mice infected with M. tuberculosis, we 
sought the formal assessment of its identification to be crucial for its application as a probiotic strain. 
All lung strains used in this thesis have had been roughly identified at the time of their isolation by 16S 
PCR sequencing ((Remot et al., 2017) and Table 6). With this method, our strain candidate had been 
previously designated as a Lactobacillus animalis/species (Remot et al., 2017). Of note, it was reported 
that this technique does not always allow the precise identification of Lactobacillus species due to poor 
phylotype resolution of profiling approaches based on the 16S rRNA gene (carrying many 
recombination in these bacteria) (C. H. Huang et al., 2018; Milani et al., 2018; Seol et al., 2019). To 
assess its identity using a whole genome sequencing strategy, we established a collaboration with Dr. 
Amine Namouchi. After testing several protocols as detailed in the Material and Methods (subsection 
I.3), I successfully extracted the DNA of this strain. After sequencing, the short Illumina reads were 
assembled in contigs (that are larger fragments) using Unicycler. The assembled genome obtained with 
this strategy is shown in Figure 46A on a representation obtained with the Bandage program. The 
Unicycler analysis had generated 124 contigs with size varying from 100 bp to 168 265 bp with a 
median size (or N50) of 51 475 bp (Figure 46B). The cumulative size of the assembled contigs was 2.1 
Mbp, which is close to genome size obtained by other groups having sequenced whole genomes of L. 
murinus strains (Wannemuehler et al., 2014; Fritz and Miller, 2017; Bassam, Milovic and Barbour, 
2019). First comparisons of these contigs with published genomes of other L. animalis strains, 
suggested that our candidate strain’s genome was quite different from the others (data not shown). 
In fact, a broader search reveals that contigs generated were better aligned with genomes of L. murinus 
strains (which is the closest species to L. animalis). This is exemplified in Figure 46C showing that the 
percentages of reads with an edit distance56 of 0 is higher when aligning the reads against the genome 
from a L. murinus strain (~37.7%) than when aligning them against L. animalis (~5%). Furthermore, we 
performed evolutionary analyses and comparative genomics of the new sequenced and assembled 
genome of our strain with available genomes from L. murinus strains and L. animalis strains (in addition 
to a Lactococcus lactis, added to the analysis as an outgroup). This analysis confirmed that our 
Lactobacillus species CNCM I-5314 is in fact a Lactobacillus murinus and not a Lactobacillus animalis. 
This analysis also allowed the identification of the strains of L. murinus that are the closest to our 
isolate. For example, L. murinus CR147 strain is more relative to our strain than L. murinus ASF361. 
Identification of our isolate and of relative strains may be helpful in the future to further decipher our 
isolate mechanism of action as proposed in the discussion section.  

 

 

 

 

 

Figure 46: Lactobacillus murinus genome analysis. (A) Graph representation of the L. murinus assembly genome 

using Bandage. (B) Size of contigs generated from read assembly using Unicycler. (C) The histograms of each 

sample dataset show the edit distance and the percentage of reads after alignment to L. animalis strain LL1 (left) 

(Pan et al., 2018), and L. murinus stain CR147 (right) (Bassam, Milovic and Barbour, 2019). (D) Phylogenetic tree 

reconstruction based on the concatenation of all orthogroups identified after comparison of L. animalis, L. murinus 

and L.  lactis. The sequenced genome cluster with all the included L. murinus isolates, which confirms the result of 

Edit distance analysis. 

 
56 The edit distance reflects differences between the sequenced reads and the genome sequence used as a 
reference. 
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Figure 47: Intranasal administration of pulmonary commensal bacteria (other than lactobacilli) modulates the lung 

CD4+ T cell populations in naïve mice. Experimental design: C57BL/6 naïve mice received intranasally (i.n.) 107 CFU 

of murine pulmonary commensal bacteria (Neisseria mucosa (green), Staphylococcus sciuri (purple), 

Staphylococcus epidermidis (light blue)) in 20 µL of PBS or mock (PBS alone, white) three times a week during two 

weeks before being sacrificed. CD4+ T cells populations were quantified by flow-cytometry in lung homogenates 

(gated on live, singlet cells, without the exclusion of cells from the blood).  A: Vertical scatter plots show total 

number of CD4+ T cells. B: Representative dot plots for expression of RORt and Foxp3 in CD4+ T cells in each of 

the indicated experimental group. C, D: Vertical scatter plots display the corresponding percent frequencies (C) 

and MFI (D) of the indicated lung CD4+ T cell subpopulations, according to the indicated commensal bacterial (or 

mock) administration. E: Vertical scatter plot show the RORt+ Treg frequency among total FoxP3+ Treg population. 

Each circle represents an individual mouse, while the black bar line is the median of each group. Experimental 

groups were compared to control within the same experiment; two pooled experiment are presented (circles 

versus triangles represent different experiments). A Kruskal-Wallis test and Dunn’s post-test were performed to 

compare the mean rank of each group to the PBS control group, *P < 0.05; **P < 0.01; ***P < 0.001.   
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3. Intranasal administration of pulmonary commensal bacteria (other than 

lactobacilli) modulates the lung CD4+ T cell populations in naïve mice  

To find out if members of other families of lung commensal bacteria are able to induce lung RORt+ 

Treg, I delivered intranasally Neisseria mucosa, Staphylococcus sciuri and Staphylococcus epidermidis 

strains (described in the Table 2) in naïve mice, as previously described for L. murinus. Administration 

of the strains increased the total CD4+ T cell number in the lungs of treated mice, which was significant 

for S. sciuri (Figure 47A). All strains had the tendency to increase lung RORt+ Treg, including N. mucosa 

that exhibited the strongest effect (Figure 47B-E). Of note, this increase seemed higher than that 

induced with the lactobacilli. Likewise, I observed that these bacterial strains also induced an increase 

in lung Th17, which again was particularly high in the case of N. mucosa (Figure 47B-E). By contrast to 

the lactobacilli, these new strains also induced lung Th1 cells, and the total number of conventional 

lung Treg (but in lower proportion) (Figure 47B-E).  Therefore, it appears that various pulmonary 

microbiota strains, similarly to strains from the gut, can modulate the local immune system with 

different intensities and profils.  
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Discussion 
 

 

As I have discussed throughout this manuscript, the microbiota is a key parameter of the host health. 

Alteration of its composition by environmental and genetic factors can impair responses of the host 

immune system to various challenges leading to aggravated outcomes in cases of infections, among 

others. Interestingly, this also seems to be the case in tuberculosis. However, the mechanisms involved 

in microbiota alteration of immune responses directed against pathogens is still poorly understood. 

This knowledge is crucial as it may allow the development of host-directed therapies targeting the 

microbiota with the potential to improve prevention and treatment of infection diseases, such as 

tuberculosis. Our results demonstrate that bacteria isolated from the lung microbiota (including 

Lactobacillus species) have the potential to modulate the local immune system and in particular, to 

induce Th17 and RORt+ Treg. Importantly, induction of these cell populations by nasal administration 

of the Lactobacillus species is also observed in C57BL/6 mice infected with the H37Rv strain of M. 

tuberculosis. Of note, administration of the Lactobacillus murinus (CNCM I-5314) strain is associated 

with reduced lung leukocyte infiltration following M. tuberculosis infection. In this section, I will discuss 

how our results, and those from other teams, support the potential of L. murinus as a probiotic 

candidate and as a model microbiota strain to study interactions between the lung immune system 

and the respiratory microbiota. 

 

Properties of L. murinus strains 

The recent identification of the strain CNCM I-5314 as a Lactobacillus murinus strain allows comparison 

of our work with other studies describing this species. In human, Lactobacillus species are highly 

present in infants, playing key functions in host development. They are also present in the gastro-

intestinal tract of adults, in particular in the duodenum, but are not highly present in the lungs (Erb-

Downward et al., 2011; van der Gast et al., 2011; Charlson, Diamond, et al., 2012; Man, De 

Steenhuijsen Piters and Bogaert, 2017; Tropini et al., 2017). By contrast, Lactobacillus species were 

found to represent around 20% of detected species in the lungs of healthy SPF mice, and around 10% 

in wild-caught mice (Yun et al., 2014). In particular, L. murinus has been described as a natural member 

of the gut microbiota in mice (Tang et al., 2015; Wilck et al., 2017). Isolation of this strain from the 

lungs of neonates mice by our collaborators suggests its presence at both sites (Remot et al., 2017). Of 

note, L. murinus ASF361 strain is a component of the altered Schaedler flora (ASF), a bacterial mixture 

composed of 8 bacterial strains that are thought to represent the microbiota composition and 

functions of a normal microbiota (Brand et al., 2015). Indeed, ASF administration compensate for most 

alterations observed in germ-free mice and is used by Taconic Farms as a basal inoculum introduced 

in all rederived mice.  

Different studies have identified a decrease in Lactobacillus species, particularly L. murinus, in 

pathological conditions including gentamycin-mediated dysbiosis associated with susceptibility to 

pathobiont translocation, high salt diet associated with hypertension and autoimmunity, or colitis 

associated to lactobacillus species depletion by AMP production by the host (Tang et al., 2015; Wilck 

et al., 2017; Singer et al., 2019). On the contrary, L. murinus among other Lactobacillus species is 

increased in mice with lower gut permeability (mediated by vancomycin-mediated dysbiosis) and 

related lowered inflammation (by calorie restriction regimen in an inflammaging context) (Pan et al., 
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2018; Singer et al., 2019). In these models, administration of certain L. murinus strains (but not others) 

isolated from protected mice, recapitulates the protective effect, suggesting that some L. murinus 

strains have a strong potential as probiotics to prevent or ameliorates intestinal disorders.  

Until now, no strains of L. murinus have been detected in humans (Wilck et al., 2017). While it is still 

possible that strains of L. murinus are present and have not yet been detected, it is likely that L. murinus 

have poor fitness in this host. Therefore, administration of L. murinus in humans may not lead to 

establishment of this strain. Yet, this does not mean that this species is useless for microbiota-targeting 

therapies. For instance, it is probable that administration of L. murinus in humans will still yield 

beneficial interactions with human immune cells improving human health. Alternatively, if the RORt+ 

Treg induced by L. murinus are responsible for diminishing the lung over-inflammation associated to 

tuberculosis in mice, then human lactobacilli strains (or strains from other families) can be screened 

for their capacity to modulate this cell population. Moreover, the identification of the L. murinus-

derived components (e.g., antigen, metabolite) exerting the beneficial effects in mice may further 

improve the screen for microbiota strains inducing immunomodulatory effect in humans (Tang et al., 

2015), and it may even foment the development of recombinant bacteria (suitable for administration 

in humans) carrying L. murinus antigens or producing same metabolites. 

The capacity of L. murinus to engender health in the host seems mediated by different properties of L. 

murinus. First, it may influence colonization of mucosal sites by other species. In a study related to 

pathobiont translocation (due to neonate exposure to gentamycin), it was suggested that the 

protective effect exerted by L. murinus was mediated by the modulation of microbiota establishment 

during infancy (while not yet demonstrated). The intestine of neonates is aerobic, an environment 

tolerated by this species. Generation of fermentation products by L. murinus in this environment may 

change the oxygen tension in the intestine, favoring the colonization by other strains (Singer et al., 

2019). Such modulation of the environment by Lactobacillus species was shown in the vaginal mucosa, 

where their production of lactic acid maintains a low pH, influencing bacteria colonization (Turovskiy, 

Sutyak Noll and Chikindas, 2011). It is possible, while not addressed in our study that L. murinus CNCM 

I-5314 perform similar functions in the lung. Last, L. murinus may increase the disease tolerance 

mechanisms at mucosal sites, as different studies have described its immunomodulatory effect 

resulting in an overall inflammation decrease, which is in line with the results I generated in my thesis 

project in the lung context (Tang et al., 2015; Lamas et al., 2016; Wilck et al., 2017; Pan et al., 2018).  

 

Deciphering the mechanisms involved in L. murinus  induction of lung RORt+ Treg 

In our study, along with that by Tang and colleagues, the administration of L. murinus in mice results 

in Treg increase, and higher expression of TGF- by these cells. While it was not clearly established, 

colonic Treg increased in their model are probably also RORt+ Treg (Tang et al., 2015). Interestingly, 

induction of RORt+ Treg (and Th17) is not a feature shared by all L. murinus strains, as mice colonized 

by ASF (containing the L. murinus ASF361) have low levels of colonic Th17 and RORt+ Treg (Ivanov et 

al., 2009; Yang et al., 2016). The fact that colonic RORt+ Treg can be induced by different bacterial 

genera, but not by strains from the same species, raises the question about the mechanisms leading 

to their increase. This has been investigated in the gut and, while the mechanism is not fully 

understood, some factors have been determined. However, our study is the first one studying RORt+ 

Treg induction in the lung and the mechanisms involved in our model may be slightly different to those 

already described. 
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As discussed in the introduction (Section 1.IV), the interaction of some Lactobacillus strains with APC 

result in Treg induction. While different mechanisms have been described depending on the strain 

used, they seems mostly to involved the recognition and binding of the lactobacilli by  PRRs (such as 

DC-SIGN, TLR2, or NOD2), resulting in the induction of tolerogenic APC, and the secretion of retinoic 

acid, heme-oxygenase and/or IDO expression that favors the generation of Treg over other CD4+ T cell 

subtypes (Smits et al., 2005; Foligne et al., 2007; Fernandez et al., 2011; Karimi et al., 2012; Konieczna 

et al., 2015). Importantly, Treg generated by tolerogenic APC in these experiments were not specific 

for the commensal having induced their generation; naïve T cells used in the assays were isolated from 

OTII mice57 and were thus all specific for the OVA peptide. Interestingly, L. murinus induction of Treg 

in the gut was mediated by modulation of lamina propria APC that produced increased levels of IL-10 

and TGF- (Tang et al., 2015). In other studies, APC production of IL-10 and TGF- was also induced in 

the presence of different Lactobacillus species. While these cytokines were not linked to the APC 

capacity to induce Treg, they were involved in the protective anti-inflammatory effect exerted by the 

Lactobacillus species (Foligne et al., 2007; Karimi et al., 2012). Altogether, these studies suggest that 

some L. murinus strains can induce a tolerogenic profile in APC.  

In our study, we did not demonstrate how L. murinus exerts its immunomodulatory effect in the lung, 

which could be direct or mediated by another commensal bacterial strain(s) favored by L. murinus 

administration. I propose to test the hypothesis of a direct effect through an ex-vivo co-culture system 

where the RORt+ Treg induction may be driven from CD4+ T cells from OTII transgenic mice and OVA 

peptide-loaded APC that have been activated/conditioned by L. murinus. Alternatively, L. murinus co-

culture with lung single-cell suspension may also increase RORt+ Treg, which can be detected by flow 

cytometry. Indeed, a similar protocol with colonic cells leads to the increase of Foxp3, RORc and Tbx21 

expression in CD4+ T cells after L. murinus stimulation (Tang et al., 2015). Interestingly, this could be 

done in comparison with other pulmonary Lactobacillus strains, such as L. rhamnosus, which I showed 

has a poor capacity to induce lung RORt+ Treg in vivo. To test the indirect effect, I would have carried 

out a 16S sequencing analysis of the lung microbiome of mice treated with L. murinus, L. rhamnosus 

(internal control) or mock (PBS), at different time points. In this manner, I could assess whether the 

administration of L. murinus results in dysbiosis of the local microbiome associated with the RORt+ 

Treg generation. In parallel, I propose to test the capacity of L. murinus to induce lung RORt+ Treg in 

the absence of other microbiota strains by either using axenic or antibiotic-treated mice. If this strain 

is still capable to induce lung RORt+ Treg in either mouse model, then I can discard the potential 

indirect effect by favoring other microbiota communities.  

For the rest of the discussion, I will assume that L. murinus has direct immunomodulatory properties. 

In this hypothesis, identifying PRR interacting with our L. murinus strain may be key to understand how 

this strain mediates important generation of RORt+ Treg. It has been shown that APC (mouse bone 

marrow derived DC (BMDC) or human monocyte-derived DC) in co-cultured with Lactobacillus species 

are able to bind and phagocytose them, leading to their internalization in phagosomes (Foligne et al., 

2007; Konieczna et al., 2015). However, the nature of the PRR in this process influenced the induction 

or not of the APC tolerogenic phenotype. Low expression of co-stimulatory molecules (CD80/CD86, 

CD40) and low production of cytokines (IL-10, IL-6, TNF-, IL-12, IL-2) were also characteristic of the 

activation of the tolerogenic profile (Foligne et al., 2007; Konieczna et al., 2015). Of note, one study 

reported that a L. murinus strain bound poorly to DC-SIGN, induced the increase of co-stimulatory 

CD80/CD86 molecules on DC surface, and was not able to favor Treg induction over Th1 and Th17 (all 

 
57 T cells from the transgenic OTII mice have all a T cell receptor specific for chicken ovalbumin 323-339 peptide 
(OVA). 
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three subsets were induced) (Konieczna et al., 2015). This is probably not the mechanism at play in the 

case of our L. murinus strain. While I observed that L. murinus administration induced the presence of 

lung Th17 (along with an anti-inflammatory phenotype), Th1 and classical Treg were not affected in 

vivo, suggesting a selective induction capacity.  In addition, in a preliminary experiment, co-culture of 

L. murinus with BMDC did not modify DC-SIGN expression and poorly induced CD86 expression 

compared to L. salivarius (data not shown).  

To identify the PRR responsible for recognition of our L. murinus, I propose the use of commercially 

available PRR (or adaptor molecules) reporter cell lines. Among PRR, I predict that our L. murinus strain 

may bind Mincle, which was previously shown to recognize a L. plantarum-derived glycolipid (Shah et 

al., 2016; Chellappan et al., 2019). Mincle recognition of this glycolipid was shown to reinforce the 

intestinal immune barrier via the induction of intestinal Th17- and ILC3-driven production of IL-17 and 

IL-22 (Martínez-López et al., 2019). It was also associated with restored controlled of M. tuberculosis 

burden in infected mice treated with antibiotics via Th1 and Th17 induction (Negi et al., 2019). 

Therefore, the potential binding of L. murinus to Mincle is likely to be responsible for the induction of 

Th17 and overall production of IL-17 observed in our model. While I cannot exclude that Mincle is also 

involved in the generation of RORt+ Treg, L. murinus strain may bind to a different PRR. Hence, the 

identification of PRR(s) recognizing L. murinus may allow a better understanding of its 

immunomodulatory properties. In addition, at the end of this PhD, I was able, thanks to a collaboration 

with Dr. Jérôme Nigou (IPBS, Toulouse), to prepare fractions from our L. murinus strain containing 

either lipopolysaccharides, lipopolysaccharides with RNA, and proteins or lipids (not shown). The use 

of these fractions with the reporter cell lines may facilitate the identification of components triggering 

different PRR. Co-culture experiments of APC, primed with these L. murinus-derived components and 

loaded with a specific peptide (e.g., OVA), and naïve transgenic T cells (e.g., OTI-II), will likely facilitate 

the identification of the molecular factors involved in the induction of RORt+ Treg. In this context, I 

performed intranasal administration of heat-killed L. murinus and compared its effect on the 

generation of lung CD4+ T cell subsets to administration with the live bacteria. Unfortunately, I 

obtained contradicting results in two independent experiments; one suggesting that the heat-killed 

bacteria poorly induced RORt+ Treg and Th17 compared to mock (PBS) or live L. murinus treatment, 

while in the second one the induction of both populations was higher with the heat-killed than with 

the live strain (data not shown). Future experiments will be carried out to define this issue, and to test 

the different components of L. murinus. 

If the above experiments demonstrate that heat-killed L. murinus cannot induce RORt+ Treg (or only 

partially), it is also possible that the secretion of microbial-derived soluble factors (e.g., metabolites) 

are responsible for this effect. Indeed, while Lactobacillus species do not produce SCFA, L. murinus 

CNCM I-5020 strain metabolizes tryptophan in indole derivates that are AhR ligands (Lamas et al., 

2016). A lactobacilli mixture containing L. murinus CNCM I-5020 was involved in this pathway resulting 

in increased ILC3-production of IL-22, ultimately leading to AMP production and tissue repair (Lamas 

et al., 2016). Also, IDO generation of such indole tryptophan derivates by DC activates AhR activity, 

which is involved in the generation of Treg versus Th17 in the lungs (de Araújo et al., 2017). Therefore, 

production of AhR ligands by our L. murinus strain could be a mechanism inducing RORt+ Treg. 

Alternatively, it is also possible that the APC phenotype is modulated by cytokines produced by 

epithelial cells in contact with the bacteria. However, in the co-culture model using lung explants 

developed by our collaborators, no modification of cytokine production was reported in presence of 

L. murinus, unlike that obtained with L. salivarius and L. rhamnosus strains (Table 6).  

Another approach to identify the mechanisms involved in the induction of lung RORt+ Treg would be 

to characterize more in detail the interaction between L. murinus and the lung APC compartment. This 
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is a pertinent issue given that the interaction between commensals and lamina propria DC does not 

induce same phenotypes as exerted in spleen DC (Tang et al., 2015). In addition, induction of iTreg in 

the lung is poorly characterized even though it is a key mechanism involved in the ability of pulmonary 

commensal microbes to generate a local tolerogenic environment during development (Gollwitzer et 

al., 2014). The induction of lung iTreg providing tolerance to allergens is established by lung 

macrophages producing retinoic acid and TGF- (Soroosh et al., 2013). Because these factors have 

been implicated in generation of RORt+ Treg, it is possible that this is also how commensal specific 

lung iTreg are induced (Lochner et al., 2011; Ohnmacht et al., 2015; Yang et al., 2016; Al Nabhani et 

al., 2019).  

In this front, I provided the partial characterization of the lung myeloid compartment in mock- and M. 

tuberculosis-infected mice (day 42 post-infection) treated (or not) with L. murinus. In general, I did not 

observe any significant changes in terms of total cell number from the major myeloid-derived 

populations, such as neutrophils, eosinophils, monocytes, macrophages or DC. Intriguingly, however, 

alveolar macrophages exhibited an anti-inflammatory phenotype characterized by CD16hiCD206hiPDL-

1hiCD86lowCD80low (Figure 41). This cell-surface marker signature, including the high ratio between PDL-

1 and CD86, has been previously associated to immuno-suppressive macrophages that downregulate 

the capacity of CD4+ T cells to proliferate and produce IFN-  (Lastrucci et al., 2015). The establishment 

of this cell-surface marker signature in alveolar macrophages appears to be independent of the M. 

tuberculosis infection, as those from mock-infected mice displayed a similar phenotype. Moreover, this 

phenotype seems specific to alveolar macrophages, as other cells including interstitial macrophages 

fail to acquire it. Of course, while these results point towards alveolar macrophages as the main APC 

modulated by L. murinus, and the main candidate responsible for the induction of RORt+ Treg, I cannot 

discard that other APCs are probably involved. In fact, the characterization performed at day 42 post-

infection is definitely a late time point to observe the true effects of L. murinus within the myeloid 

compartment. Thus, future experiments will assess the myeloid compartment at different early time 

points of L. murinus administration and during M. tuberculosis infection. I predict that the DC 

compartment might be heavily modulated during the first week following L. murinus administration.  

If it is the case, I propose to combine ex vivo and in vivo approaches to characterize L. murinus 

modulation of APC phenotype in order to investigate the mechanisms leading to RORt+ Treg 

generation. While the use of lung cells is challenging because few APC can be sorted from the lungs, it 

is still worth the trouble as mucosal APC do not exactly behave as spleen or bone marrow APC (Tang 

et al., 2015). In fact, it could be interesting to compare APC from different compartments to assess if 

L. murinus modulations are tissue-specific, and thus improving our understanding of microbiota 

regulation of the immune system at mucosal sites. Characterization of lung APC sorted from mice 

(treated with L. murinus or mock) by qPCR (targeting RALDH enzymes, IDO, AhR or TGF-), may 

facilitate to determine which of them (and how) are modulated by L. murinus (Soroosh et al., 2013). 

This approach should be complemented by co-culture of ex vivo L. murinus-induced lung APC (loaded 

in vitro with OVA) and naïve T cells (from OTII mice) to characterize their capacity to differentiate 

RORt+ Treg (and Th17) generation (by qPCR, FACS phenotyping and ELISA). Alternatively, adoptive 

transfer of lung APC, loaded with L. murinus (either sorted from L. murinus treated mice or ex-vivo co-

cultured), into untreated mice should lead to the generation of RORt+ Treg, if our hypothesis is true.  

This type of characterization may lead to the identification of molecular pathway involved in the 

induction of Treg. Blocking these pathways with blocking antibodies (e.g., anti-TGF-), or with 

inhibitors of the molecules identified (e.g., retinoic acid receptor inhibitor), or by using APC from mice 

deficient for such factors (e.g., IDO1-/- or AHR-/- mice), may prove critical to demonstrate their 
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pertinence (de Araújo et al., 2017; Al Nabhani et al., 2019). Such type of approaches were successful 

to show, for example, the protective effect of Treg generated by BMDC loaded with Lactobacillus 

rhamnosus during a TNBS-induced colitis model (Foligne et al., 2007). The use of live, heat-killed, 

isolated bacterial components or supernatants from L. murinus cultures, may also shed light on which 

bacterial component are involved in activating these molecular pathways. Likewise, the use of 

alternative L. murinus strains (for example isolated from other sites such as the gut, from different 

mouse strains or from mouse models of different respiratory diseases), might help to decipher if all 

members of this species are capable to induce lung RORt+ Treg using the same or different 

mechanisms. Finally, I provided evidence that other lactobacilli, as well as other pulmonary bacterial 

strains (e.g., N. mucosa), are also able to induce lung RORt+ Treg; the use of these strains may provide 

further clues to understand whether specific (or shared) mechanisms are involved in the generation of 

RORt+ Treg among lung microbiota strains.  

 

Characterization of resident and L. murinus-induced lung RORt+ Treg 

Lung RORt+ Treg have been previously identified by Lochner and colleagues (Lochner et al., 2008). 

Yet, they were probably previously observed by other groups that characterized the lung Treg 

population without assessing their expression of RORt, as I show that most Helioslo Treg were indeed 

RORt+ Treg. Indeed, one of the main contributions of thesis work is the first formal characterization 

of lung resident RORt+ Treg as HeliosloCD25loICOSintCTLA-4hiPD-1intCCR6hiIL-17intTGF-1hiIL-10loTNFlo, 

whose total numbers are increased and phenotype is further accentuated (HeliosloCD25loICOShiCTLA-

4hiPD-1hiCCR6hiIL-17hiTGF-b1hiIL-10loTNFlo) by L. murinus.  

I compared the expression of several cell-surface markers that distinguish their counterparts in the gut 

or lymph nodes; these markers are also partially shared by Th17 and conventional Treg from the lungs 

(Figure 44).  Importantly, as in the gut, lung RORt+ Treg expressed ICOS, which is considered as a 

marker of activated T cells, and as a mucosal Treg marker that is essential for their development and 

production of IL-10 (Brusse J Immunol 2012, RedpathEur J Immunol 2013). Lung RORt+ Treg highly 

expressed CTLA-4, indicating a potential immuno-suppressive capacity (Ohnmacht et al., 2015). In 

support of this, they also expressed PD-1 (and at higher levels than conventional Treg), which has not 

been assessed at steady states in other organs, but was observed in the lymph node RORt+ Treg upon 

different types of stimulation (Kim et al., 2017). Importantly, Gollwitzer and colleagues report that the 

set-up of a tolerogenic lung environment during colonization by the microbiota was dependent on the 

generation of PD-1+ Helios- Treg (Gollwitzer et al., 2014). In our experiments, L. murinus further 

accentuates the ICOS and PD-1 expression in lung RORt+ Treg. Comparison of our results with the 

available literature suggests that lung iTreg induced during microbiota acquisition are indeed the 

RORt+ Treg, and this Treg subset likely possesses anti-inflammatory functions (Al Nabhani et al., 2019).  

Unlike in the spleen, I was not able to detect CD25 expression on lung RORt+ Treg or conventional 

Treg (Data not shown and Figure 44C). Another study suggests that Foxp3+CD25-  CD4+ T cells are the 

dominant Treg population in the lung (and also in the gut). Yet, unlike our study, the authors found 

that 40% of lung Treg still expressed CD25 (Coleman FEMS Immunol Med Microbiol 2012). In addition, 

Lochner and colleagues detect CD25 expression on lung Treg (independently of their expression of 

RORt) (Lochner et al., 2008). Determining expression of CD25 is important because it acts as a “sink” 

for IL-2 consumption on Treg to deprive and inhibit effector T cell functions; such mechanism has not 

yet been described for RORt+ Treg. We also observed that, as in the colon, lung RORt+ Treg express 
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CCR6 at higher levels compared to conventional Treg, indicating these cells have the capacity to 

migrate in CCL20-dependent manner at sites of inflammation (Jetten et al., 2008; Ohnmacht et al., 

2015; Yang et al., 2016). Of note, Lochner and colleagues show that lung RORt+ Treg also secrete 

CCL20, and propose that it may help them to track Th17 (highly expressing CCR6) migration towards 

inflammatory sites, where they can later inhibit the production of IL-17 to decrease inflammation 

(Lochner JEM 2008). While we confirm that lung Th17 also express CCR6, we did not stain for CCL20, 

and thus we cannot determine whether this hypothesis is valid in the tuberculosis context.  

Regarding the cytokine profile, lung RORt+ Treg produce IL-17A accompanied by noticeable high levels 

of the anti-inflammatory TGF- propeptide and low levels of the pro-inflammatory TNF (Figure 45), 

which becomes strongly accentuated in mice treated with L. murinus compared to controls. IL-17 

production by these cells was described to be pathologic in other contexts, and linked to aggravated 

inflammation (Esposito et al., 2010; Kryczek et al., 2011; Blatner et al., 2012; Chellappa et al., 2016; 

Kluger et al., 2016, 2017). However, I propose that the RORt+ Treg-driven production of IL-17A, in 

combination with a high ratio of anti-inflammatory to pro-inflammatory cytokines, is likely to have a 

homeostatic role that contributes to tissue integrity. This is also reflected in the simultaneous 

induction by L. murinus of Th17 cells expressing immunosuppressive markers, such as TGF-, CTLA-4 

and PD-1 (an issue discussed later on).  

Importantly, we recently obtained Foxp3RFPRORtGFP reporter mice from the lab of Dr. Gérard Eberl 

from the Pasteur Institut, Paris, France. The Foxp3RFPRORtGFP reporter mice will help us to dissect 

many of these issues. For example, it will allow the simultaneous FACS sorting of these populations 

after L. murinus treatment to better characterize their phenotype using qPCR analysis, test their 

capacity to respond to stimuli ex vivo and define their cytokine/chemokine secretion content, and 

perform adoptive transfers into different mouse models,  as detailed in the following section.  

 

A role of lung RORt+ Treg in Type 2 immunity 

It is described that gut RORt+ Treg inhibit type 2 immune response defined by the hallmark Th2 subset, 

expressing the GATA3 transcription factor. This is an aspect that was not explored in this project 

because, unlike Th1, Th17 or Tregs, Th2 cells are not critical for the etiology of tuberculosis. Yet, the 

generation of lung RORt+ Treg may be one mechanism by which a microbiota at eubiosis reduces 

susceptibility to asthma (in particular during development). This hypothesis is strongly supported by 

the study of Gollwitzer and colleagues showing the reduction of type 2 cytokines in response to allergic 

challenge upon commensal-mediated generation of iTreg in the lungs or upon adoptive transfer of 

spleen Treg (Gollwitzer et al., 2014). Our collaborators observed decreased susceptibility to asthma in 

neonates receiving nasal delivery of the lung commensal Enterococcus faecalis that was also associated 

to decreased type 2 immunity (Remot et al., 2017). It would be interesting to show if this protection 

against asthma/allergy is associated to an increase of lung RORt+ Treg. If it is the case, then we could 

adopt a “gain-of-function” approach by performing intranasal adoptive transfer of lung RORt+ Treg 

isolated from Foxp3RFPRORtGFP reporter mice treated with Enterococcus faecalis or with L. murinus. 

Of note, a mouse model exist to deplete RORt+ Treg, the Foxp3-cre × Rorcfl/fl mice, which have been 

successfully used to demonstrate importance of RORt+ Treg in protection against colitis (Sefik et al., 

2015). Such “loss-of-function” approach may be used to complement the adoptive transfer strategy to 

unequivocally demonstrate a role for lung RORt+ Treg in diseases related to type 2 immunity. If type 

2 immune response inhibition is mediated by RORt+ Treg, it could be studied in vitro to investigate 

molecular mechanisms involved.  
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Suppressive functions of lung RORt+ Treg may be assessed using co-culture assays with CFSE stained 

T cells from OTII transgenic mice and OVA peptide loaded APC. In particular, naïve CD4+ T cells from 

OTII mice can be differentiated ex-vivo toward distinct CD4+ T cell subsets using anti-CD3, anti-CD28, 

IL-2 and specific polarization cytokines. They can be driven toward a Th2 phenotype using IL-4 and IL-

5/IL-13, combined with anti-IFN and anti-IL-12; toward a Th1 phenotype in presence of, IL-12 and 

anti-IL-4; and toward a Th17 phenotype by the presence of anti-IL-4 and anti-IFN. Their use as 

responder T cells in the suppressive assay may allow us to determine if the L. murinus-induced lung 

RORt+ Treg suppress Th2 proliferation or modulate the Th17 subset, along with factors involved in 

either process. Inhibition of Th2 by RORt+ Treg has been shown to be dependent on CTLA-4 

(Ohnmacht et al., 2015), but additional suppressive functions of Treg could be involved, as previously 

discussed and could be investigated in this suppressive assay. 

 

Characterization of resident and L. murinus-induced lung Th17 cells  

Lung resident Th17 cells are scarcely present in the lung of C57BL/6 mice at steady state, and they 

displayed the ICOSintCTLA-4loPD-1loCCR6intIL17AintTGF-1intTNFint phenotype. Of note, to the best of my 

knowledge, the expression of CTLA-4, PD-1 or TGF- has not been previously described in these 

homeostatic lung Th17. In my thesis work, I now report that the L. murinus administration increases 

significantly the total number of lung Th17, and strongly establishes the ICOShiCTLA-4hiPD-

1hiCCR6hiIL17AhiTGF-1hiTNFlo phenotype, which I propose, may have homeostatic and anti-

inflammatory functions similarly to lung RORt+ Treg. 

IL-17 production by Th17 is usually associated with autoimmunity, but this cytokine has other multiple 

roles. In particular, while its over-production leads to chronic inflammation and fibrosis (through TGF-

 promotion) in the lungs, IL-17 also participates to resistance to infection by pulmonary pathogens 

and can improve epithelial damage repair through IL-22 induction (Gurczynski and Moore, 2018). In 

particular, it was described that Th17 induced by commensals (e.g., SFB) have an anti-inflammatory 

phenotype when compared to those induced by pathogens (Omenetti et al., 2019). In this study, for 

example, Th17 induced by SFB were characterized by IL-22 and IL-17 production, along with an 

oxidative phosphorylation metabolic state, which is associated with immune cell anti-inflammatory 

properties. By contrast, pathogen-elicited Th17 cells show high plasticity towards pro-inflammatory 

cytokines (e.g., IFN-), dependency on aerobic glycolysis metabolic state (associated with pro-

inflammatory functions), and a better engagement in C. rodentium clearance. Importantly, SFB-

induced Th17 were shown to not be involved in models of systemic pathological inflammation, such 

as EAE (Experimental autoimmune encephalomyelitis). In fact, they do not participate in C. rodentium 

clearance, but instead decrease the barrier permeability and favor epithelium damage repair occurring 

during pathogen infections, and thus reducing pathogen invasion (Edelblum et al., 2017). L. plantarum 

is also able to induce Th17 producing IL-17 and IL-22 that are essential for the maintenance of the 

intestinal barrier, which was dependent on the capacity of DC to recognize L. plantarum via Mincle 

(Martínez-López et al., 2019).  

These studies may be in accordance with the expression of suppressive markers observed in our model 

on L. murinus-induced Th17. Unfortunately, the key cytokines to assess this phenomenon in our model 

were not assessed in lung Th17; IL-22 was poorly detected by FACS and IFN- staining was not included 

in the antibody mix containing RORt. Detection of these critical factors either by optimization of this 

flow cytometry staining strategy or by other methods (qPCR or ELISA on sorted cells in culture), may 

allow the corroboration of an anti-inflammatory profile of Th17 cells generated by L. murinus. Beyond 
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these cytokine issue, I was able to measure other factors that may support the homeostatic role for 

lung Th17. First, L. murinus significantly decreases the capacity of these cells to produce the pro-

inflammatory TNF. And last, I demonstrate the induced lung Th17 cells failed to co-express T-bet along 

with RORt (Figure 5); T-bet expression in Th17 cells has been associated to a pathogenic role affecting 

the ration of Th1/Th17 (Lyadova and Panteleev, 2015). These observations are crucial because high 

presence of Lactobacillus species observed in mouse model of COPD was associated with the 

pathological increase of IL-17 that aggravate the disease (Yadava et al., 2016). Therefore, more 

experiments are required to assess the role of lung RORt+ Treg and Th17 induced in our model. The 

use of the previously discussed reporter mice may allow us to assess other parameters characterizing 

lung RORt+ Treg and Th17 induced, such as metabolism as assessed for Th17 in the study with SFB 

(Omenetti et al., 2019). This could be achieved using the Seahorse technology that can measure the 

live oxygen consumption rates (indicator of oxidative phosphorylation), extracellular acidification rates 

(indicator of glycolysis), mitochondrial respiration or energetic phenotypes (measuring glycolysis 

potential). If both cells harbor anti-inflammatory profiles, I predict that the L. murinus-induced Th17 

should be characterized by oxidative metabolism. This aspect could reinforce their characterization as 

homeostatic rather than pathologic cells. Whatever the case may be, I consider that the L. murinus-

induced IL-17 production in these cells is likely to be beneficial for M. tuberculosis-infected mice 

because the bacterial burden is unchanged even though the leukocyte infiltration is significantly 

reduced (Gurczynski and Moore, 2018).  

 

A role for RORt+ Treg and Th17 induced by commensals in tuberculosis? 

In our model of M. tuberculosis infection, both lung Th17 and RORt+ Treg are significantly increased 

in mice having received L. murinus compared to controls. This is interesting because it suggests that 

the strong immunomodulatory properties of M. tuberculosis do not invalidate those previously 

established by the L. murinus administration. This was previously described in the gut, as the prior 

generation of Th17 by SFB was conserved during Listeria monocytogenes infection (Yang et al., 2014). 

Our data thus suggest that this effect may be common to all commensal-induced T cells.  

The role of Th17 in tuberculosis is starting to be comprehended and has both protective and 

pathological consequences. It is possible that this dual effect is due to effect of different Th17, as 

previously proposed in the gut (Omenetti et al., 2019). Th17 participate in control of pathogen load 

and recruitment of neutrophils during tuberculosis (Torrado and Cooper, 2010; Gallegos et al., 2011). 

However, while I observed the increased of lung Th17 and IL-17-producing CD4+ T cells, there was no 

significant reduction of the pathogen growth or increased neutrophils recruitment in mice infected by 

M. tuberculosis and having received L. murinus administration (Figure 38, 39, 40 and 42). Therefore, I 

predict that induction of Th17 cells in our model is a specific response to commensals and not to 

pathogen, and these may not be involved in mechanisms of resistance toward M. tuberculosis, lacking 

a pro-inflammatory potential. Alternatively, IL-17 has other functions such as granuloma development 

to contain the pathogen (Okamoto Yoshida et al., 2010). Granuloma formation could be considered as 

a result of activation of disease tolerance mechanisms when the microbicidal mechanisms were not 

sufficient to rapidly eliminate the pathogen and potentially lead to tissue damage. In this hypothesis, 

induction of granuloma may be mediated partially by commensal-specific Th17 cells participating in 

pathogen containment and preservation of host tissue. While the C57BL/6 mouse model used for my 

thesis work is not optimal to study granuloma formation in response to M. tuberculosis, I predict that 

L. murinus-induced Th17 cells could have an impact on the incidence of necrotic granuloma and the 
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bacillus extra-pulmonary dissemination in the C3HeB/FeJ mouse model (as discussed in the following 

subsection).  

The role of Treg in tuberculosis is also controversial as their early presence in the lung is thought to 

allow bacterial escape from immune control. By contrast, Treg presence is known to be critical to avoid 

over-inflammation leading to necrosis and tissue damage at later stages of infection (Windish et al., 

2009). It has been shown that M. tuberculosis-specific Treg are generated in the lymph node during 

the infection, and participate in the delay of the Th1 response observed in tuberculosis (Shafiani et al., 

2013). However, it is unknown if these cells belong to the RORt+ Treg subtype, and whether the 

RORt+ Treg induced by commensals could alter the specific response to the pathogen. Therefore, the 

role of RORt+ Treg in tuberculosis remains to be determined. If RORt+ Treg are able to inhibit Th2 

during M. tuberculosis infection, it is possible that they may contribute to the development of the Th1 

response. Yet, this is unlikely the case in our model because I did not observe differences in the number 

of Th1 cells at day 42 post-infection. Another aspect they could regulate is neutrophil-mediated tissue 

damage in active tuberculosis. Neutrophils may be protective at the beginning of the infection to avoid 

bacterial spread, but they often tend to be detrimental if their abundance becomes too high at later 

stages of infection due to their toxic inflammatory properties. However, I did not see that the 

neutrophil levels changed in the lungs at 42 post-infection in mice infected with M. tuberculosis 

depending on L. murinus administration. Therefore, it is unlikely that lung RORt+ Treg regulate 

neutrophil activity in our model. Finally, I favor the idea that lung RORt+ Treg may regulate the 

induction of M. tuberculosis-specific Th17, to limit the pathogenesis of tuberculosis. As detailed in the 

Introduction (Section 1.II.3), conventional Treg can induce the expression of IDO in DC via CTLA-4. This 

results in the production of AhR ligands, whose activation favor the generation of Treg over Th17 cells. 

In the tuberculosis context, one study demonstrated that IDO expression by lung epithelial and 

endothelial cells reduced M. tuberculosis-specific Th17 associated with neutrophilic inflammation and 

mortality (Desvignes and Ernst, 2009). As the lung RORt+ Treg induced by L. murinus express high 

levels of CTLA-4, they may similarly down-modulate the generation of M. tuberculosis-specific Th17 

cells, ultimately reducing lung immunopathology. 

At the moment, I have not assessed the specificity of Th17 and RORt+ Treg induced by L. murinus at 

steady state or during tuberculosis infection. If my hypothesis above is correct, I predict these cell 

populations are specific for L. murinus rather than for M. tuberculosis. To demonstrate T cell specificity, 

conventional Treg, RORt+ Treg and Th17 could be sorted from the lungs of infected mice having 

received L. murinus administration. These T cells could then be labeled with CFSE and co-cultured with 

lung APC that would be pre-loaded with materials either from heat-killed L. murinus or M. tuberculosis. 

I would then assess the T cell proliferation after 3-5 days of co-culture and their capacity to produce 

key cytokines, which will reveal their activation if their cognate antigen is presented by APC (Yang et 

al., 2014; Hepworth et al., 2015). Since ex-vivo Lactobacillus strains can induce the generation of non-

lactobacilli specific Treg, it is probable that this assay reveals that some of the RORt+ Treg and Th17 

induced by L. murinus are in fact M. tuberculosis specific. This would imply that our strain is able to 

modify the phenotype and functional profile involved in the response to this pathogen, favoring 

tolerance mechanisms at a late time point.  

Determination of the role of RORt+ Treg in tuberculosis could be evaluated using the Foxp3-cre × 

Rorcfl/fl mice to specifically delete this cell subset from the Treg compartment. Comparison of results 

obtained in this model with the CD4-Cre x STAT3fl/fl mice (Raz et al., 1999; Wu et al., 2015), where both 

both Th17 and RORt+ Treg should be depleted, would be even more interesting. In this manner, we 

might determine the relationship between these two cell populations and their role in the tuberculosis 



 190 

disease outcome. Adoptive transfers may also be useful to assess involvement of L. murinus-specific 

Th17 and Treg during tuberculosis infection and associated lung inflammation.  

 

Regulation of lung inflammation associated to tuberculosis by L. murinus  

In many studies, leukocyte infiltration following M. tuberculosis infection, also described as 

granulomatous region formation, is associated to immunopathology leading to tissue damage. 

Antibiotherapy reduces bacterial load but does not prevent lung lesion formation if started at a late 

stage (Malherbe et al., 2016). Therefore, host-directed therapies protecting or inducing reparation of 

lung tissue, without fomenting the bacteria growth, are highly needed to complement anti-

tuberculosis antibiotics. In the context of my thesis work, it is difficult to definitely conclude about a 

protective role of L. murinus administration in this disease, in particular because the effect on 

leukocyte infiltration and pro-inflammatory cytokine secretion was minor (albeit significant) compared 

to controls (Figure 42). One factor influencing these results is the choice of our animal model. Unlike 

the guinea pig, for example, the mouse model is not ideal to study the immunopathology associated 

with tuberculosis. Yet, due to cost, space, and ethical reasons, the mouse model is still the most 

common one used in the investigation of tuberculosis. This is also the only animal model adapted to 

the BSL3 facility at our institute. Another influencing factor affecting our results is the choice of the 

C57BL/6 genetic mouse background.  C57BL/6 mice were chosen because it is the best studied genetic 

background in tuberculosis research, and due to availability of many knockout and transgenic mouse 

models in this background. This is useful to study mechanisms involved in the observed phenotype as 

proposed previously. However, the C57BL/6 background does not mimic all stages of the tuberculosis 

disease. In fact, mice of this background are quite resistant to M. tuberculosis infection, granuloma 

formation does not recapitulate the classical features as in humans, and they develop few necrosis 

either at the beginning of the infection (macrophages efficiently contain the bacilli and few neutrophils 

are recruited) or at the late stages of the disease (they do not develop necrotic lung lesions) (Kramnik 

and Beamer, 2016). Accordingly, we observed M. tuberculosis growth and induction of type-1 immune 

response, but no hyper-activation or lung lesions in response to M. tuberculosis. 

The 129/Sv mouse model was described in the literature as a susceptible genetic background to 

tuberculosis compared to C57BL/6 (Medina and North, 1998; Dorhoi et al., 2014). One of the main 

reasons is that these mice succumb to uncontrolled inflammation driven by the type I IFN signaling 

pathway, which regulates neutrophil-mediated pro-inflammatory response in tuberculosis (Dorhoi et 

al., 2014; Mayer-Barber et al., 2014). This model therefore looked interesting to study the effect of L. 

murinus on immunopathology associated with tuberculosis infection. However, in this model we 

observed no changes in leukocyte infiltration according to L. murinus administration (Figure 43). This 

means that L. murinus administration has lower effect on immunopathology than we expected, or that 

the mechanism induced by our bacterial strain does not target the type I IFN signaling pathway. It 

should be noted that in the study by the team of Dorhoi, most of the 129/Sv mice died of M. 

tuberculosis infection at day 40 post infection (Dorhoi, Eur J Immunol 2014). In my hands, while the 

granulomatous region formation was increased in this model compared to the C57BL/6, no mice died 

from the infection; in fact, the mice did not even lose weight or exhibit temperature changes during 

the infection (data not shown), suggesting that I did not perform these experiments in the most 

optimal conditions as previously reported.  

As mentioned earlier, the C3HeB/FeJ mice that develop necrotic granuloma lesions and may even 

develop cavities during tuberculosis infection as human, may also represent an attractive model for 

my thesis project (Kramnik and Beamer, 2016). In particular, it was shown in these mice that induction 
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of Treg can reduce immunopathology and improve survival of infected animals (Cardona et al., 2016). 

In this study, the Treg were induced by administration of an environmental mycobacterium 

Mycobacterium manresensis, and were reactive to M. tuberculosis antigens. Heat-killed preparation of 

this bacteria is now commercialized under the name Nyaditum resae® and its administration in humans 

increases specific Treg (Montané et al., 2017). While efficacy tests are ongoing, these studies suggest 

that the C3HeB/FeJ mouse model would be ideal to assess if commensal-induced RORt+ Treg can 

protect against immunopathology and the potential of L. murinus as a probiotic strain for tuberculosis. 

At the end of my thesis, I tried one experiment with these mice background. However, a technical 

problem at the infection stage resulted in low infection load, and consequently provoked very low 

incidence of inflammation and leukocyte infiltration in control mice (data not shown). Due to time 

constraints, this experiment was not reproduced during the thesis.  

A third factor influencing our results is the choice of the M. tuberculosis experimental strain: H37Rv. 

While IL-17 may be dispensable to control infection by the H37Rv, these cells are essential in response 

to the hypervirulent clinical isolate Beijing strain HN878, which causes exacerbated immunopathology 

in infected animals. The HN878 infection model demonstrated that IL-17 signaling is important for 

localization of T cells near infected macrophages in the granuloma, which is key for activation of their 

microbicidal functions (Gopal et al., 2014). Therefore, L. murinus administration that increased IL-17 

levels may be protective in response to this emerging M. tuberculosis strain. 

Finally, susceptibility of the different mouse backgrounds to tuberculosis is usually associated to 

genetic variations, but it may also be correlated to microbiota divergence between mouse strains 

(Ericsson et al., 2015). Probiotic administration may have a different effect depending on the 

composition of the microbiota. It is possible that the immune response induced by L. murinus in 

C57BL/6 mice results redundant to an already existing cooperation of the resident microbiota and host 

immune system. Indeed, lactobacillus strains are already highly present in the lungs of SPF C57BL/6 

mice, and thus the protective effect exerted by L. murinus (or of strains with similar effect) may be 

already happening in PBS treated mice. Microbiota divergence between different mouse backgrounds 

may also influence the capacity of M. tuberculosis to interact with the host. M. tuberculosis infection, 

which induces dysbiosis of the microbiota, may also impede the protective immunomodulatory effect 

established by the resident microbiota. This may be due to direct interaction between the pathogen 

and the resident microbiota (competition for nutrients, secretion of antimicrobial factors or 

modification of the environment), or by the capacity of the bacillus to turn the immune response 

against the commensal strains, such as AMP production that reach non-invasive bacteria and are not 

specific for the pathogen. For instance, Dectin-1 activation is involved in the induction of the signaling 

molecule S100A8/A9, which has an AMP activity shown to deplete the gut microbiota of Lactobacillus 

species, including L. murinus (Tang et al., 2015). In this study, such loss of Lactobacillus species resulted 

in reduction of iTreg and consequently to susceptibility to colitis. Dectin-1 recognizes -glucan of M. 

tuberculosis and is overexpressed on the surface of alveolar epithelial cells infected with mycobacteria 

(Lugo-Villarino et al., 2011). S100A8/A9 are produced during tuberculosis and mediate neutrophil 

accumulation and inflammation associated with immunopathology in tuberculosis (Gopal et al., 2013). 

These effects are usually attributed to a S100A8/A9-dependent role as a signaling molecule between 

immune cells. However, it probably mediates late inflammation via the targeted loss of Lactobacillus 

species that induce RORt+ Treg. Similar to the gut, this would suggest that, while Dectin-1 has an 

important role to patrol against pathogen invasion, it also increases the risks to develop unnecessary 

inflammation in the lung (Tang et al., 2015). Interestingly, loss of lactobacillus species (among other 

commensals) after antibiotic treatment is associated with susceptibility to the pathogenic infection in 

mice that could be reduced by oral administration of Lactobacillus plantarum. However, 

immunopathology was not assessed in this study. Some dysbiosis conditions, such as infection by 
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Helicobacter hepaticus, lead to aggravated immunopathology, associated with altered CD4+ T cell 

response (Majlessi et al., 2017). Testing nasal administration of L. murinus in models of dysbiosis 

caused by tuberculosis co-morbidity parameters (such as HIV infection, type 2 diabetes, or 

malnutrition among others), or due to antibiotic therapy against tuberculosis, may be the most obvious 

scenario to best define whether this pulmonary strain could be a probiotic candidate reducing 

immunopathology in tuberculosis and for which type of patients.  

 

Applications to other respiratory diseases 

L. murinus immunomodulatory effects on the lung were similar in absence of M. tuberculosis infection, 

suggesting that this strain may be useful for other respiratory infections associated with over-reaction 

of the immune system and dysbiosis of the microbiota. This could be the case of chronic infections 

such as COPD, in which disease severity correlates with high neutrophil-secreting proteases infiltration, 

high Th1 and Th17 levels and decrease in Treg in the lung (Rovina, Koutsoukou and Koulouris, 2013), 

or such as cystic fibrosis associated with high Th1, Th2 and Th17 response, high neutrophil and 

eosinophil infiltration, epithelium damages and mucus production (Yonker et al., 2015). Of note, cystic 

fibrosis can be caused by another mycobacteriium: Mycobacterium abscessus. One study suggests that 

the oral administration of Lactobacillus animalis (which is phylogenetically the closest species to L. 

murinus) modulates the immune response during Mycobacterium avium subspecies tuberculosis58 

infection in mice. It reduces the levels of IFN- and IL-6, while increases those of TNF- and IL-17, which 

were associated to reduction of early pathogen load (Karunasena et al., 2013). Based on these studies, 

I predict that L. murinus could mediate protection against over-inflammation caused by different 

mycobacteria infections and possibly caused by other pathogens. Beyond mycobacterial infections, 

there are several acute infections such as Influenza involving high immunopathology that may be 

ameliorated by L. murinus administration. In this disease, the resolution of immunopathology is 

associated with the balanced induction of Treg (to prevent reinfection) and establishment of tissue 

repair mechanisms (Wang et al., 2013; Herold et al., 2015). As previously proposed, induction of 

RORt+ Treg by L. murinus may also be protective in type 2 inflammatory diseases, such as asthma.  

Given its potential as probiotic, the use of L. murinus was patented as “Treatment of respiratory 

diseases using the bacteria Lactobacillus animalis59.” Patent FR1903364 (Provisional application filed 

March 29, 2019). Bernard L, Lugo-Villarino G, Neyrolles O, Thomas M, Remot A, Langella P. This patent 

(in French) is provided in the Appendix 2 and it contains results presented in this thesis main text. 

 

Potential of commensal strains from lung origin to modulate the lung immune 

system 

One interesting aspect of this PhD thesis was the focus given to strains from the lung microbiota. These 

commensals may have unique interactions with the lung immune system and represent valuable target 

to modulate respiratory diseases, but these aspects have been poorly described. The results obtained 

during my PhD strongly support this hypothesis. Indeed, we observe that nasal administration of other 

strains than L. murinus also isolated from the airway microbiota, and belonging to Lactobacillus, 

 
58 Mycobacterium avium subspecies tuberculosis is a pathogen causing Johne's Disease in ruminant animals, 
leading to chronic gastro-intestinal inflammation, and involved in human Crohn’s disease. 
 

59 The strain patented was identified as Lactobacillus murinus after the patent provisional application. 
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Neisseria and Staphylococcus genera, modulate the lung CD4+ T cell compartment (Figure 35 and 47). 

To my knowledge, the study by our collaborators is the only other one showing that strains isolated 

from the lung microbiota possess immunomodulatory properties (Remot et al., 2017). Of note, in the 

study by Remot and colleagues, the CD4+ T cell compartment was not assessed. In fact, the modulation 

of lung CD4+ T cells by the different microbiota-based approaches is poorly described in the literature. 

Given the role of these cells in orchestrating the immune response, understanding their modulation 

by the microbiota is key. In our study, depending on the species, total number of CD4+ T cells was 

increased or not, and the subsets induced were differentially modulated. All strains tested, were able 

to increase levels of RORt+ Treg in the lungs, with the highest induction observed after administration 

of the Neisseria mucosa strain and the lowest by the Lactobacillus rhamnosus strain. Importantly, only 

one other study reported the presence of RORt+ Treg in the lungs (Lochner et al., 2008) and we are 

the first ones demonstrating that as in the gut, these cells are induced by the microbiota in the lungs 

(Sefik et al., 2015; Yang et al., 2016). Interestingly, oral administration of Lactobacillus or 

Staphylococcus species also leads to an induction of RORt+ Treg in the gut, suggesting there are 

conserved immunomodulatory mechanisms of resident commensals at both mucosal sites. It is, 

however, possible that due to different environmental constrictions between these two organs, the 

natural major inducers of these cells may not be the same commensal bacterial species. Interestingly, 

some of these pulmonary strains also induced high levels of Th17 and Th1. This was particularly the 

case of Neisseria mucosa, which was the strongest inducer of all CD4+ T cell populations observed. This 

suggests that, similar to the gut, different commensals in the lungs will have different interactions with 

immune cells. This is in accordance with our collaborators’ study showing that Enterococcus faecalis 

nasal administration, but not Staphylococcus sciuri, alters the immune response in the context of 

asthma. 

Deciphering which strains would be beneficial or detrimental in a given context is a current challenge 

in probiotic development. Our study reveals the use of naïve and microbiota-competent mice, rarely 

studied in this context, could be a valuable intermediate/screening step between in vitro tests and 

disease models. Interestingly, the use of aerosolized or nasal antibiotics was recently shown to alter 

the lung microbiota and immune system (Barfod et al., 2015; Noci et al., 2018). This could be helpful 

to generate models of respiratory microbiota dysbiosis, which could be used as a screening step to 

select strains able to compensate locally for dysbiosis. The combination of lung microbiota depletion 

and nasal administration of commensals may greatly improve in the near future our understanding of 

the role of the lung microbiota. Comparison of different antibiotic or commensal delivery may also 

help to better understand the dynamics between the lung and gut microbiota. This fundamental 

knowledge will be crucial to improve the rationalized development of probiotic for respiratory 

diseases. It will also be key to improve administration protocols. In our study, administration of L. 

murinus intragastrically also induced RORt+ Treg in the lungs. This induction was slightly lower than 

the one induced by intranasal administration, mirrored by equally low levels of lung Th17 cells (data 

not shown). However, it is difficult to assess if administration protocols are comparable in term of 

bacterial quantity that may reach the lung and gut mucosa. L. murinus strains are found in the gut 

mucosa, thus making it possible that this species has fitness for both the lung and gut environment. 

However, nasal administration may allow to benefit from colonization resistance mechanisms, which 

could be very interesting, in particular in preventive approaches. Some studies suggest that live 

bacteria administration in nasal spray to humans is safe (Cervin, 2018). While live strains may have 

more potent effects than heat-killed ones, there is a strong need to verity that the identified strain 

does not become a pathobiont under certain conditions, such as administration in immuno-

compromised individuals (which may be the case in the tuberculosis context). In this case, postbiotics 

or engineered Lactobacillus strains may be an interesting alternative. While the study of the lung 



 194 

microbiota is still in its infancy, transfer of knowledge from the gut microbiota (or skin) may allow a 

rapid characterization of its interaction with the immune system. This should lead in a near future to 

microbiota-based therapies targeting this new player in respiratory diseases.  

 

 

 

 

Conclusion 

Altogether, my PhD work demonstrates that administration of commensals from the lung microbiota, 

such as L. murinus CNCM I-5314, induces lung RORt+ Treg and Th17 populations expressing anti-

inflammatory markers in naïve and M. tuberculosis-infected mice. Thus, these results contribute to the 

existing evidence for a major role of the lung microbiota in respiratory health and disease, and highlight 

the importance of RORt+ Treg and Th17 cells as key mediators of its immunomodulatory role. I 

hypothesized that a better characterization of the mechanisms leading to the generation of these cell 

populations by commensals, and of their role in lung immune responses to pathogens, allergens or 

self-antigens, will deeply improve our understanding of the mechanisms involved in protective versus 

pathological immune responses. This knowledge will greatly improve the development of host-

directed therapies targeting the gut and lung microbiota for the prevention and treatment of 

respiratory diseases. In particular, while more work is needed to assess if L. murinus CNCM I-5314 

would be the most promising candidate to improve tuberculous patient health, our study is the second 

one suggesting a high potential for microbiota-based interventions in this disease, and the first one 

focused on the lung microbiota. The understanding of interactions between our body and its resident 

microbes is still today a complex and challenging issue. In particular, various immune mechanisms are 

involved in the interaction with both symbionts and pathobionts, and their role as tolerance or 

resistance mechanisms could be beneficial or pathological depending on genetic and environmental 

factors affecting the host. However, in the past, our gain of  knowledge regarding pathogen interaction 

with our body led to changes in life habits improving infection prevention (e.g., hygiene, 

pasteurization) and to the development of antibiotics targeting microbes and successful vaccines to 

eradicate some diseases (e.g., poliomyelitis). Similarly, our current understanding of the mechanisms 

linking the microbiota to host health and disease is leading to new changes in life habits (e.g., diet 

adaptation) with the goal to prevent the global occurrence of infections, but also inflammatory 

diseases and cancers. Likewise, the ongoing development of host- and microbiota-targeted strategies 

may in parallel help specific prevention and treatment of multiple diseases, as suggested by the current 

success against C. difficile infection. Detection of factors from host and microbiota origin that are 

involved in susceptibility to develop diseases at the individual level may spearhead personalized 

applications of these microbiota-based approaches. Combined approaches targeting pathogens (e.g., 

antibiotics) and the host response (e.g., vaccines, probiotics) may enhance the prevention and cure of 

many diseases, including tuberculosis. Therefore, a better characterization of our interaction with the 

microbiota, including bacteria from gut and other sites as well as viruses and fungi, is interesting on a 

fundamental point of view and possesses high potential to improve human health in infection and 

many others disease contexts, which was the main theme of my PhD thesis.  
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Abstract

The pulmonary microbial community, described only a few years ago, forms a discreet

part of the human host microbiota. The airway microbiota has been found to be sub-

stantially altered in the context of numerous respiratory disorders; nonetheless, its

role in health and disease is as yet only poorly understood. Another important param-

eter to consider is the gut–lung axis, where distal (gut) immune modulation during

respiratory disease is mediated by the gut microbiota. The use of specific microbiota

strains, termed “probiotics,” with beneficial effects on the host immunity and/or

against pathogens, has proven successful in the treatment of intestinal disorders

and is also showing promise in the context of airway diseases. In this review, we high-

light the beneficial role of the body's commensal bacteria during airway infectious dis-

eases, including recent evidence highlighting their local (lung) or distal (gut)

contribution in this process.

1 | INTRODUCTION

“Microbiota” refers to the community of microorganisms, including

bacteria, viruses, fungi, and protozoans, that live in a host (Limon

et al., 2017; Mirzaei et al., 2017). The human body is host to at least

as many microbes as there are human cells (Sender et al., 2016), and

these microbes are present in all mucosal sites. The beneficial role of

our microbiota in shaping the immune system and in maintaining

homoeostasis has been known for more than a century from studies

of the gut, the organ where the microbial population is the more abun-

dant (Brestoff et al., 2013; Lozupone et al., 2012). Studies using germ‐

free (GF) mice or mice treated with broad‐spectrum antibiotics have

highlighted the protective role of the host microbiota in a variety of

pathological settings, ranging from metabolic disorders (Turnbaugh

et al., 2006) to inflammatory and infectious diseases in the gut and

at distal body sites, such as the skin and the lungs (Khosravi et al.,

2014; Samuelson et al., 2017; Zhang et al., 2015).

The host‐microbiota symbiotic equilibrium is highly sensitive to a

number of intrinsic and environmental factors, including the host

genetic background, the use of antibiotics, diet, the presence of aller-

gens or infectious agents, all of which can disturb microbiota compo-

sition, leading to a state of “dysbiosis” (Levy et al., 2017). Dysbiosis

can result in disease aggravation or increased susceptibility to new dis-

orders, such as the growth of potentially pathogenic commensals or

pathobionts. The development of metaomics approaches (including

16S ribosomal RNA profiling and the more accurate shotgun‐

sequencing technology) has allowed a more detailed and extensive

definition of the microbiome of healthy subjects throughout life and

its dependence on gender, diet, or geographical location, as well as

on the body sites sampled (Eckburg et al., 2005; Peterson et al.,

2009; Yatsunenko et al., 2012) and its alteration during disease (Ley

et al., 2006; Nelson et al., 2012). Metagenomic approaches also

revealed the presence, composition, and relative abundance of micro-

bial commensals at body sites previously thought to be sterile, such as

the lungs. Such sequencing‐based approaches were complemented

and confirmed by culture‐based approaches (Remot et al., 2017). Since

2010, studies have described alterations of the lung microbiota in a

number of disease conditions, such as chronic obstructive pulmonary

disease, cystic fibrosis, and asthma (Hilty et al., 2010; Pragman et al.,

2012; Willner et al., 2012), indicating that the lung microbiota influ-

ences both respiratory health and disease. In addition, the gut microbi-

ota has been shown to influence pulmonary immunity through what is

commonly referred to as the gut–lung axis (Budden et al., 2017;

Trompette et al., 2014).
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This review focuses on respiratory infectious diseases, caused by

a broad range of airborne pathogens, causing acute or chronic infec-

tions. We highlight the beneficial role of the host commensal bacteria

during these pathologies, notably in mouse models of dysbiosis, which

involve the gut–lung axis (Table 1). Finally, we discuss strategies aimed

at modifying the host microbiota (e.g., using probiotics), especially

targeting the lungs as a strategy to combat respiratory infections

(Figure 1).

2 | THE LUNG MICROBIOTA IN HEALTH
AND DISEASE

The lungs are inhabited by a microbial population distinct from that of

the gut (Man et al., 2017). Although the human core gut and lung

microbiota are similar at the phylum structure level (e.g., Bacteroidetes

and Firmicutes predominate in the gut, and Bacteroidetes, Firmicutes,

and Proteobacteria are predominant in the lung), they differ in their

bacterial species composition. For example, although Faecalibacterium

prausnitzii and Bacteroides thetaiotaomicron are found in the intestinal

tract and not in the lung (Lopez‐Siles et al., 2012; Mahowald et al.,

2009), Haemophilus spp., Pseudomonas spp., Streptococcus spp., and

Veillonella spp. are frequently found in the airways and not in the gut

(Charlson et al., 2011; Morris et al., 2013). The characterisation of

the lung microbiota in humans is complicated by the invasive methods

required to sample the lower respiratory tract, making contamination

with populations of the upper respiratory tract a serious problem

(Dickson et al., 2017). However, in mice, it is possible to directly col-

lect lung tissues aseptically in order to carefully assess their microbial

composition. Studies in mice have confirmed that the lung microbiota

is variable and different of those from other body sites, such as the

oral cavity or the gut (Dickson et al., 2018; Kostric et al., 2018).

Alteration of the lung and gut microbiota has been observed in

many respiratory diseases (Dickson et al., 2014; Taylor et al., 2016).

Whether microbial dysbiosis at both sites is a cause or a consequence

of disease remains to be determined, for example, using the mouse

models. However, since the gut microbiota is the largest and most

diverse community of the mammalian microbiome, with an important

impact on immunity in both the gut and the lungs, the specific contri-

bution of the lung microbiota to the host immunity remains difficult to

assess. The intensive present focus on the gut–lung axis overshadows

the potential role of local microbiota in health and airway diseases

(Dickson et al., 2017).

3 | PROTECTIVE ROLE OF THE HOST
MICROBIOTA DURING DISEASES OF THE
AIRWAYS: INVOLVEMENT OF LOCAL AND
DISTAL COMMUNITIES

3.1 | Acute bacterial infections

The composition of the airway microbiota has been studied exten-

sively in patients with chronic airway diseases of both infectious and

non‐infectious origins (Marsland et al., 2014). By contrast, analysis of

the composition of this microbial community has been poorly explored

in patients suffering from acute lung infections, such as pneumonia,

probably due to the short duration of such diseases. However, the

beneficial role of the host microbiota during acute bacterial infections

of the lungs has been demonstrated in numerous settings using GF

mice. For example, GF mice are more sensitive to lung infection by

Pseudomonas aeruginosa, Streptococcus pneumoniae, and Klebsiella

pneumoniae (Brown et al., 2017; Fagundes et al., 2012; Fox et al.,

2012). Dissection of the molecular mechanisms involved in host pro-

tection against lung infections by the microbiota has been limited

because of the complication that, in addition to profound anatomical

and developmental differences compared with specific pathogen‐free

mice, GF mice display an altered immune system (Al‐Asmakh et al.,

2015). To avoid this problem, recent studies have used combinations

of broad‐spectrum antibiotics to provoke dysbiosis and assess the role

of the bacterial microbiota in resistance to pulmonary infections in

mice (Table 1).

In general, studies using antibiotic‐treated mice have not

addressed whether oral antibiotic administration also eliminated all

or part of the lung microbiota, in addition to gut microbial communi-

ties; however, it seems likely that this is the case, because such treat-

ments are known to affect the upper airways community (Cheng et al.,

2017). Antibiotic‐treated mice have been reported to be more suscep-

tible to respiratory pathogens such as S. pneumoniae and

K. pneumoniae. In particular, antibiotic‐treated mice infected with

S. pneumoniae suffered a defect in lung cytokine production. Faecal

transplantation by oral gavage with a normal gut microbiota restored

both control of the infection in the mice and cytokines' levels in the

lungs, illustrating the contribution the gut microbiota makes to lung

immunity (Schuijt et al., 2016). Nevertheless, the potential role of

the local, pulmonary microbiota in host defence against S. pneumoniae

remains to be evaluated (Lankelma et al., 2017). In another study, sus-

ceptibility to S. pneumoniae and K. pneumoniae infection in antibiotic‐

treated mice correlated with reduced production of granulocyte‐

macrophage colony‐stimulating factor (GM‐CSF) and interleukin (IL)‐

17A in the lungs (Brown et al., 2017). Control of infection was

restored after the transfer of a normal microbiota from the upper

respiratory tract (via the intranasal route) or after faecal transplanta-

tion (via the oral route), demonstrating a beneficial role of both local

and distal microbiota on lung immunity. This beneficial effect was

abolished when a GM‐CSF‐neutralising antibody was delivered intra-

nasally. GM‐CSF levels were restored following intranasal administra-

tion of IL‐17A in antibiotic‐treated mice, indicating that the microbiota

protects the host from respiratory pathogens via IL‐17A, which in turn

regulates local GM‐CSF production (Brown et al., 2017). Finally, in the

context of infection with K. pneumoniae, microbiota depletion by oral

antibiotic administration prevented the innate immune clearance of

this pathogen (Clarke, 2014). Although the oral administration of bac-

terial nucleotide‐binding oligomerization domain (NOD)‐like receptor

ligands rescued the host's ability to control the infection, intranasal

administration of these ligands failed to do so. This study highlights

the complexity of the mechanisms employed by the microbiota in

the gut–lung axis for sustaining host immunity in the lungs.

In the context of acute infections, it has also been shown that

specific commensals have the capacity to regulate host immunity.
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TABLE 1 Studies of the impact of the microbiota or probiotics administration on host resistance to pulmonary pathogens

Mouse model Pathogen studied Main findings
Phenotype rescue
(route of administration) References

Germ free Klebsiella pneumoniae Survival ↘; CFUs ↗ in blood
and lungs; neutrophils,
CXCL1, TNFα ↘, and
IL‐10 ↗ in lungs

IL‐10 blocking antibody
(s.c.); LPS (i.p.); faecal
tranplant (i.g.)

Fagundes et al., 2012

Streptococcus pneumoniae CFUs ↗ in lungs High NOD2‐stimulating
bacteria group (i.g.)

Brown et al., 2017

Pseudomonas aeruginosa Survival ↘; TNFα and
IL‐1β ↘ in BALF; intestinal
epithelial apoptosis ↘

Fox et al., 2012

P. aeruginosa CFUs ↗ in lungs and blood Robak et al., 2018

Antibiotics treated Escherichia coli
(pneumonia)

Survival ↘; CFUs ↗ in blood
and lungs; NF‐κB binding
activity, TNFα ↘, and
IL‐6, IL‐1β ↗ in lungs;
MPO activity in lungs
and killing
activity of AM ↘

LPS (oral, drinking water) Chen et al., 2011

K. pneumoniae CFUs ↗ in lungs; TNFα
and IL‐6 ↘ in lungs;
ROS‐mediated
killing by AM ↘

NLR ligands (i.g.); AM (i.n.) Clarke, 2014

K. pneumoniae Survival ↘; CFUs ↗ in
lungs; GM‐CSF, IL‐17A,
CXCL1, and CXCL2
↘ in lungs

Faecal tranplant (i.g.) and
lavage fluid (i.n.); NLR‐
stimulating bacteria (i.n.);
GM‐CSF, IL‐17A‐neutralising
antibodies, and GM‐CSF,
IL‐17A recombinant
cytokines (i.n.)

Brown et al., 2017

S. pneumoniae

S. pneumoniae Survival ↘; CFUs ↗ in blood
and lungs; inflammatory
and tissues damages ↗ in
lungs and gut; IL‐10,
TNFα ↘, and IL‐1, IL‐6,
CXCL1 ↗ in lungs;
phagocytosis and
cytokine production
by AM ↘

Faecal tranplant (i.g.) Schuijt et al., 2016

P. aeruginosa Survival ↘; CFUs ↗ in lungs,
BALF, and blood; IL‐6, CXCL2,
and neutrophils ↗ in BALF;
IgA ↘ in BALF and blood

IgA purified (i.n.) Robak et al., 2018

Mycobacterium
tuberculosis

Lungs damages and CFUs ↗ in
lungs, spleen, and liver; Treg ↗
and Th1 ↘ in spleen

Faecal tranplant (i.g.) Khan et al., 2016

Conventional Influenza virus Body weight loss, virus titre,
symptoms, and histopathology
scores ↘; myeloid cells,
NK, IL‐1‐α/β, IL‐33 ↗, and
eotaxin, MIP‐1, MCP‐1, IFNγ
↘ in lungs; IL‐10 in lungs ↘
(early response) and
↗ (late response)

Lactobacillus paracasei
CNCM I‐1518 (i.g.)

Belkacem et al., 2017

Influenza virus Body weight loss, histopathology,
and viral titre ↘; TNFα, IL‐6 ↘,
and IL‐12, IFNγ ↗ in BALF

Lactobacillus plantarum
DK119 (i.g. or i.n.)

Park et al., 2013

Influenza virus Survival ↗ (highest protection
with Lactobacillus fermentum‐1);
virus titre and histopathology ↘;
IgA ↗ and TNFα and IL‐6 ↘ in lungs

eight different lactobacillus
strains (i.g. or i.n.)

Youn et al., 2012

P. aeruginosa Survival ↗; CFUs and histopathology
scores ↘; IL‐6 ↘ and IL‐10 ↗ in
serum and lungs; neutrophils ↘
and Treg ↗ in lungs

Lactobacillus rhamnosus
GG (i.g.)

Khailova et al., 2013

S. pneumoniae CFUs and histopathology scores ↘;
specific IgG and IgA ↗ in BALF;
neutrophils, TNFα ↗ (early response),

Lactobacillus casei (i.g.) Racedo et al., 2006

(Continues)
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One of the best‐known cases is that of segmented filamentous

bacteria (SFB), a bacterial lineage of the gut microbiota, which is

sufficient to induce the appearance of T‐helper (Th)17 cells in the

lamina propria in mice. SFB‐induced Th17 immunity protects the

host from infection by either intestinal or pulmonary pathogens

(Gauguet et al., 2015; Ivanov et al., 2009). Because colonisation

of the gut by defined microbial species seems to be important in

the context of infectious diseases, it would be interesting to

TABLE 1 (Continued)

Mouse model Pathogen studied Main findings
Phenotype rescue
(route of administration) References

and ↘ (late response) in serum and
lungs; IL‐10 ↗ in serum and lungs

K. pneumoniae Survival ↗; body weight loss, CFUs
and histopathology score ↘; TNFα
and IL‐6 in BALF ↘; IL‐10 ↗ in lungs;
ROS and bacterial killing by AM ↗

Bifidobacterium longum
51A, live, or heat‐killed
bacteria (i.g.)

Vieira et al., 2016

RSV and S. pneumoniae Body weight loss, viral titre, CFUs,
and histopathology score ↘; IFNβ,
IFNγ, TNFα, IL‐6, IL‐10 ↗ in BALF;
DC, AM, CD4 T cells ↗ in lungs

Corynebacterium
pseudodiphtericum
090104 (i.n.)

Kanmani et al., 2017

Note. AM: alveolar macrophages; BALF: broncho alveolar lavage fluid; CFUs: colony forming units; CXCL: chemokine (C‐X‐Cmotif) ligand; DC: dendritic cells;
GM‐CSF: granulocyte colony stimulating factor; IFN: interferon; Ig: immunoglobulin; IL: interleukin; i.g.: intragastric administration (gavage); i.n.: intransal
administration; i.p.: intraperitoneal administration; LPS: lipopolysaccharide; MCP: monocyte chemoattractant protein; MIP: macrophage inflammatory pro-
tein; MPO: myeloperoxidase; NF‐κB: nuclear factor kappa‐light chain enhancer of activated B cells; NK: natural killer lymphocytes; NLR: nucleotide‐binding
domain leucine‐rich repeat containing; NOD: NLR, nucleotide oligomerization domain‐like receptor ligands; ROS: reactive oxygen species; RSV: respiratory
syncitial virus; s.c.: subcutaneous administration; Th: T‐helper lymphocyte; TLR: toll like receptor; TNF: tumour necrosis factor; Treg: regulatory T cells.

FIGURE 1 Model of the host–microbiota interaction during dysbiosis (and microbiota restoration) within the context of pulmonary infectious
disease: the gut–lung axis. The dysbiotic state (i.e., the alteration of the function and composition of the microbiota) can be caused by a variety
of environmental (e.g., pathogenic and allergenic contexts and diet) or genetic‐induced (e.g., autoimmunity) factors and/or disorders. In this model,
a respiratory pathogen causes dysbiosis where the commensal bacterial diversity is perturbed, and pathobionts (i.e., any potentially disease‐
causing microorganism) can subsequently emerge in the gut and/or the lungs. As a consequence of dysbiosis, there is a disturbance of the level
and activation of leucocytes, potentially leading to lung damage. Reintroduction of beneficial microbial strains (i.e., probiotics) may help to recover
a healthy status (e.g., microbiota function and composition, leucocyte homoeostasis, and/or activation to control infection and immunopathology)
through microbiota‐derived (e.g., short chain fatty acids) or host‐derived products (e.g., cytokines and chemokines) at the local (lung) or distal (gut)
level. The “gut–lung axis” refers to the crosstalk between these two mucosal sites of the body
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colonise the lungs with one or several well‐defined microbiota

species in order to better characterise their local and/or distal role

in host immunity development and homoeostasis.

3.2 | Chronic bacterial infections: The case of
Mycobacterium tuberculosis

Chronic infections by the airborne bacterial pathogen M. tuberculosis,

which causes tuberculosis (TB), can remain latent for years or decades

before becoming reactivated and leading to chronic immunopatholog-

ical lung tissue destruction. Several studies have compared the lung

microbiota composition in sputum or bronchoalveolar lavages' fluids,

which are more representative of the lower respiratory tract, in TB

patients and healthy controls. Although these studies have revealed

differences in the airway microbiota composition between patients

and controls, the results are not always consistent, likely because of

poorly standardised experimental protocols, from initial sampling to

sequencing and to the absence of harmonised experimental controls.

Six such studies have already been reviewed and summarised by Hong

et al (Hong et al., 2016). The same group recently published a meta‐

analysis study, using the same methods, to reanalyse four of these

studies and an additional cohort of healthy individuals (Hong et al.,

2018). The authors did not find any difference in the overall global

lung microbiota diversity between TB patients and healthy controls.

However, they did find that TB patients differed from healthy controls

in the abundance of a limited number of bacterial species, with

some species being specifically associated with the presence of

M. tuberculosis.

Gut microbiota has been analysed during the course of TB

infections and also during anti‐TB treatment in humans. These studies

revealed that bacterial diversity in the gut of TB patients is altered and

this may correlate with the progress of the disease (Luo et al., 2017;

Maji et al., 2018). Anti‐TB therapy includes antibiotics, such as

rifampicin, that target bacteria other than mycobacteria, and one study

showed that prolonged anti‐TB treatment broadly alters the gut

microbiota of TB patients and that the resulting dysbiotic state

persists following cessation of therapy (Wipperman et al., 2017). This

suggests that the long anti‐TB treatment, which lasts at least 6 months,

may render the patients more susceptible to other disorders

and infections.

How the gut microbiota influences anti‐TB immunity in the lungs

is not yet fully understood. Two recent studies have shown that the

short chain fatty acid (SCFA) butyrate modulates the production of

M. tuberculosis‐induced pro‐ and anti‐inflammatory cytokines in the

lungs, associated with an increased susceptibility to M. tuberculosis

(Lachmandas et al., 2016; Segal et al., 2017). Because SCFAs, which

are produced and released by microbial species of the gut, are

mediators of immunity and play a crucial role in gut homoeostasis, it

remains to be determined whether and how these metabolites could

affect the M. tuberculosis growth and resilience in the infected host.

The first study addressing the possible functional role of the host

microbiota in TB immunity in vivo found that multiplication and

dissemination of M. tuberculosis were elevated in mice treated with a

cocktail of broad‐spectrum antibiotics during the course of infection,

and this treatment was associated with a higher number of TB‐

associated lung lesions (Khan et al., 2016). This correlated with

decreased production of tumour necrosis factor (TNF)α‐positive and

interferon‐γ‐positive CD4 T cells and an increase of FoxP3‐positive

regulatory T cells (Treg) in the spleen, suggesting that microbiota

dysbiosis following antibiotic treatment adversely altered the immune

response to M. tuberculosis infection. However, this study did not

evaluate the status of local immunity in the lungs of antibiotic‐treated

animals. More analyses are required to determine the involvement of

the host microbiota in the immune response to TB.

4 | TARGETING THE LUNG MICROBIOTA
DURING RESPIRATORY DISEASES

In light of our increasing appreciation of the protective role that

bacterial commensals play in lung homoeostasis, a number of

approaches have been developed that target the microbiota‐host

immune system interaction, with the goal of improving both

prevention and treatment of respiratory diseases. Administration of

microbes (using probiotics or faecal transfer), microbe components,

or products favouring their growth (e.g., prebiotics) has been sug-

gested to confer host protection through direct competition with the

disease‐causing microbes, enhancement of epithelial barrier functions,

or immune modulation during respiratory diseases (Alexandre et al.,

2014; Trompette et al., 2018). In this section, we highlight reports of

the improved immune responses to lung infections seen upon treat-

ment with probiotics.

Until now, most studies in mice have focused on two infection

models—influenza and pneumonia—in which a beneficial effect of oral

or nasal probiotic administration has been characterised by improved

survival, decreased weight loss, decreased viral titre or bacterial load

in the lung, and decreased bronchial epithelium damage (summarised

in Table 1). These studies report that the protective effect was

mediated by specific immune modulation, distinguished by an early

recruitment in the lung of innate leucocytes displaying potent killing

properties, such as alveolar macrophages (Park et al., 2013; Vieira

et al., 2016), neutrophils (Racedo et al., 2006), or natural killer

lymphocytes (Belkacem et al., 2017; Kawahara et al., 2015), and ele-

vated levels of pro‐inflammatory cytokines (e.g., TNF‐α, IL‐6). This

inflammatory boost then rapidly diminished, likely due the subsequent

increase of anti‐inflammatory factors, such as Treg cells and IL‐10 in

the lungs, reducing lung injuries observed in nontreated mice (Khailova

et al., 2013). However, in most studies, causality between immune

modulation and host protection has not been demonstrated, and

global analysis of the data is complicated by differences in the proto-

cols used for probiotic administration (e.g., oute, dose, and duration).

A number of more experimentally sophisticated studies have

recently been published that corroborate the potential of probiotics.

Oral administration of Bifidobacterium longum has been shown to

improve the immune response of K. pneumoniae‐infected mice,

enhancing their survival. It was also shown that the administration in

GF mice was able to induce the same beneficial effects as that pro-

vided by faecal transfer of whole microbiota (Fagundes et al., 2012;

Vieira et al., 2016). This effect may be enacted by acetate production
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by B. longum, which is consistent with a recent report demonstrating

significant protection against K. pneumoniae in acetate‐treated mice

(Galvao et al., 2018).

Concerning administration protocols, comparative studies have

suggested that intranasal administration and the use of viable bacteria

are the most effective methods for reducing disease features in mice

(Youn et al., 2012). It seems that short pretreatment induces a more

protective immune response than the classical longer treatments

(Racedo et al., 2006). Also, it seems that protection granted against a

given pathogen is not only different when using different microbiota

species but also between different strains from the same species

(Youn et al., 2012). Such results may suggest why, until now, clinical

studies using probiotics have shown a promising yet limited potential

for the reduction of respiratory disease incidence (Alexandre et al.,

2014; Lehtoranta et al., 2014). Therefore, further experimentations

helping to identify the most effective strains as well as optimal admin-

istration protocols are needed to improve clinical trials.

Lastly, although most commensal bacteria being used as probiotics

are of gastrointestinal origin, an alternative strategy is to use natural

resident commensal bacteria from the respiratory system. A pioneering

study reported the isolation of 20 lower respiratory commensal

bacteria species in mice, including Enterococcus faecalis that modulates

asthma susceptibility in mice (Remot et al., 2017). In the context

of infectious diseases, it has been demonstrated that intranasal

administration in infant mice of Corynebacterium pseudodiphteriticum,

which is present in the respiratory tract, was able to reduce features

of both respiratory syncitial virus primary infection and of secondary

S. pneumoniae superinfection, decreasing both pathogen burden and

lung damage (Kanmani et al., 2017).

There has been tremendous progress in leveraging the potential

of probiotics in the prevention and treatment of respiratory infec-

tions. In spite of this, there is still much more that needs to be

done. One key area is extending the successes seen in the various

mouse models to the so far more limited successes seen in clinical

trials, as already reported for the use of probiotics in intestinal dis-

eases (Suez et al., 2018). Likewise, more detailed studies are needed

to address how probiotics (a) modulate the resident lung microbiota

community, (b) persist and are localised in airways, (c) interact with

resident cells and leucocytes, and (d) influence the homoeostasis of

lung immunity during and after infection with different pathogens.

Finally, we envision the emergence of the characterisation of novel

lung microbiota strain interaction with both the local and

distal immune systems that could become the next generation of

probiotics for respiratory diseases.

5 | PERSPECTIVE

We are only just beginning to understand the functional implications

of the lung microbiota in health and disease. It is clear that a much

greater research effort needs to be dedicated to uncovering how the

lung microbiota interacts and collaborates (or antagonises) with the

now increasingly well‐studied gut microbiota. Although the existence

of a gut–lung axis has been clearly established (Figure 1), the contribu-

tion of the airway resident microbiota to this axis remains to be

elucidated. Even if it presently appears difficult to specifically target

the lung microbiota without distal effect on other communities, its role

needs be carefully evaluated, possibly by using intranasally delivered

antibiotics in order to modify the lung communities (Barfod et al.,

2015). Another possible approach involves the introduction, via the

oropharyngeal route, of probiotics, which seem to modulate lung

immunity, increase protection against respiratory pathogens, and

reduce lung damage. Application of these findings in the clinic is

moving ever closer, but safety issues concerning the oropharyngeal

delivery of living gut or newly identified lung strains remain to be

clearly delineated, along with the search for specific active

compounds. Similarly, faecal microbial transplantation in humans

showed systemic effects (Li et al., 2014) that may prove beneficial in

the context of respiratory diseases.

Another outstanding question is whether specific interactions

exist between different airways commensals (i.e., trophical niches), as

is the case with gut commensals. In addition, even if the great majority

of the host microbiota is composed of bacteria, recent evidence has

demonstrated that fungal or viral agents can also have beneficial func-

tions (Jiang et al., 2017; Kernbauer et al., 2014) and are a natural part

of the lung microbiota (Nguyen et al., 2015; Wylie, 2017), indicating

that there is a clear need to better study this (somewhat neglected)

aspect of the microbiota during health and disease. In this regard,

the use of antifungal and/or antiviral treatments, along with the

traditional antibiotic treatments used in mouse models of infections,

would represent a highly valuable approach. A potential complication

in many studies is the use of laboratory mice confined to highly sterile

environments, which is not a representative of the complexity of

microbiota present in wild mice and results in altered immune

development (Rosshart et al., 2017). Even further complicating this

situation, it is known that mice and humans share only 15% microbiota

species in the gut (Ley et al., 2005). This is likely similar or even more

divergent at other body sites. This will have to be taken into account

in future studies.

We envision the application of “omics” studies, such as metage-

nomics, metabolomics, metatranscriptomics, and metaproteomics, to

reduce the gap in knowledge of how the lung microbiome communities

affect health and disease. We also encourage functional and mechanis-

tic experimental studies that aim to better understand lung microbial

community functions and causality, microbe–microbe and microbe–

host cell interactions, as well as inflammatory and resolution

pathways/circuits.
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Description
Titre de l'invention : TRAITEMENT DES MALADIES RESPI-

RATOIRES AVEC LA BACTERIE LACTOBACILLUS
ANIMALIS

[0001] Le microbiote, composé de bactéries mais aussi de virus, parasites et champignons
présents au-niveau de toutes les muqueuses, telles que l’intestin ou les poumons, est
une composante majeure des interactions hôte-pathogène. Le microbiote intestinal, par
exemple, exerce un effet protecteur, tant pour le maintien de l’homéostasie
(mécanisme de tolérance), que pour la protection contre des pathogènes [1].
Notamment, l’orientation du système immunitaire vers un profil anti-inflammatoire,
permettant de limiter l’inflammation, dépend largement du microbiote [2]. Son étude a
ainsi permis l’identification parmi les bactéries du microbiote intestinal, de souches
dites probiotiques, possédant des propriétés spécifiques permettant la prévention ou le
traitement de différentes maladies (notamment les infections pulmonaires) [3, 4].

[0002] Bien que longtemps considérés comme stériles, les poumons possèdent eux aussi un
microbiote. Les données disponibles dans la littérature proviennent majoritairement
d’étude de métagénomique [5,6, 7]. En effet, la charge bactérienne dans les poumons
en bonne santé est au moins d’un ordre de grandeur plus faible que celle de l'intestin. Il
a pu être montré que le microbiote du poumon se compose d'une relativement grande
diversité d'espèces bactériennes.

[0003] La colonisation par le microbiote a un impact très important sur l’immunité et la
santé. Les présents inventeurs ont ainsi mis en évidence l’effet protecteur d’une souche
d’Enterococcus faecalis contre l’asthme allergique [8]. En outre, un candidat pro-
biotique issu du microbiote pulmonaire, Corynebacterium pseudodiphtheriticum,
améliore la réponse immunitaire pulmonaire contre l'infection par le virus respiratoire
syncytial (VRS) et la pneumonie résultant de l’infection secondaire par Streptococcus
pneumoniae [9]. Ces questions sont plus largement développées dans [10, 11].

[0004] La tuberculose est l’une des 10 premières causes de mortalité dans le monde. Grâce
aux traitements actuels (vaccin BCG (Bacillus Calmette–Guérin) et quadrithérapie an-
tibiotique), l’incidence de la maladie diminue en moyenne de 1,5 % par an. Cependant,
l’apparition de formes de tuberculose résistante aux antibiotiques souligne le besoin
d’identifier de nouvelles stratégies thérapeutiques [12].

[0005] La tuberculose est une maladie infectieuse causée par une bactérie (Mycobacterium
tuberculosis) et touchant le plus souvent les poumons [13]. La multiplication du
pathogène et l’expression de certains composés moléculaires induisent une hypersen-
sibilité immunologique conduisant à une inflammation incontrôlée [14].
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[0006] Une fois que le bacille tuberculeux inhalé a atteint les alvéoles, il est phagocyté par
différentes cellules immunitaires, dont notamment des macrophages alvéolaires. Cette
défense cellulaire est complétée par une défense immune, impliquant les lym-
phocytes T par l’intermédiaire de leurs récepteurs avec les antigènes de M. tuberculosis
. Ces cellules après s’être multipliées localement vont migrer dans l’organisme et
gagner le foyer infectieux primaire où elles vont déclencher une réaction in-
flammatoire.

[0007] Les facteurs toxiques sécrétés par les cellules immunitaires, délétères pour les
bactéries, mais aussi pour les cellules de l’hôte, conduisent à des dommages tissulaires
importants au niveau des poumons [15]. Ainsi, pour lutter efficacement contre la tu-
berculose, il est nécessaire de développer de nouveaux antibiotiques, mais aussi
d’identifier des outils permettant de maintenir une inflammation suffisante pour
contrôler la bactérie mais sans être délétère pour l’hôte. Ce type de thérapeutique est
important également en dehors de la tuberculose puisque de nombreuses maladies res-
piratoires sont liées à une inflammation trop importante, comme par exemple les in-
fections par Francisella tularensis ou Pseudomonas aeruginosa.

[0008] La présente invention a pour objet de nouveaux traitements de l’inflammation liée à
une maladie respiratoire, notamment la tuberculose. La présente invention a
notamment pour objet leur prévention.

[0009] Plus particulièrement, les présents inventeurs ont montré que la bactérie Lacto-
bacillus animalis possède des propriétés tout à fait avantageuses dans le traitement et/
ou la prévention de maladies respiratoires liées à l’inflammation telles que la tu-
berculose.

[0010] En effet, l’administration de cette bactérie confère une forte protection contre
l’infiltration leucocytaire des poumons, un marqueur clinique important de
l’inflammation. En outre, elle entraîne une forte diminution de la population de
leucocytes produisant des cytokines pro-inflammatoires dans les poumons. Dans le
même temps, les lymphocytes T régulateurs produisant des cytokines anti-
inflammatoires sont fortement stimulés. En particulier, les lymphocytes iTregs sont
induits. Encore plus particulièrement, les lymphocytes iTregs qui sont induits sont des
lymphocytes T régulateurs bifonctionnels.

[0011] Dans un premier aspect, l’invention a pour objet la bactérie L. animalis pour son uti-
lisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie res-
piratoire, notamment la tuberculose. Elle a aussi pour objet l’utilisation de la bactérie
L. animalis pour la préparation d’un médicament pour traiter et/ou prévenir
l’inflammation liée à une maladie respiratoire, notamment la tuberculose. Préféren-
tiellement, le sujet affecté par ladite maladie respiratoire est un mammifère, y compris
l'homme, le chien, le chat, les équidés, les bovins, les caprins, les porcs, les ovins et les
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primates non-humains. De façon plus préférée, ledit sujet est un sujet humain. Alterna-
tivement, le sujet peut être un mammifère non-humain, tel qu’un chien, un chat ou un
équidé.

[0012] L’invention a notamment pour objet une souche particulière de L. animalis pour son
utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie
respiratoire, notamment la tuberculose. Plus spécifiquement, l’invention a pour objet la
souche de L. animalis déposée sous le numéro I-5314 le 16 avril 2018 à la Collection
Nationale des Cultures de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724
Paris Cedex 15, France, pour son utilisation dans le traitement et/ou la prévention de
l’inflammation liée à une maladie respiratoire, notamment la tuberculose.

[0013] L’invention a aussi pour objet une souche particulière de L. animalis possédant des
propriétés de prévention et/ou de traitement des maladies respiratoires liées à
l’inflammation. Plus spécifiquement, l’invention a pour objet la souche de L. animalis
déposée sous le numéro I-5314 le 16 avril 2018 à la Collection Nationale des Cultures
de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.

[0014] La souche I-5314 est produite par culture, par exemple, dans un milieu de croissance
connu de l’homme du métier (par exemple, un milieu liquide MRS : « Man, Rogosa et
Sharpe ») pendant 1 à 2 jours en conditions aérobie, à une température de 30-37°C,
avec ou sans ajustement du pH. Le bouillon de fermentation contenant les cellules bac-
tériennes est recueilli. Le bouillon peut être utilisé tel quel, concentré ou lyophilisé.
Avantageusement, les bactéries seront recueillies, par exemple par centrifugation puis
remises en suspension dans un tampon approprié, par exemple du PBS
(« phoshate-buffered saline »). La concentration bactérienne peut être établie en
utilisant un cytomètre de flux ou un autre procédé équivalent.

[0015] La souche de l’invention est particulièrement avantageuse en ce qu’elle entraîne une
forte augmentation des populations aussi bien de lymphocytes Th17 que de lym-
phocytes Tregs. L’induction des lymphocytes Treg est notamment importante car ce
sont avant tout des Tregs bifonctionnels qui ont à la fois des propriétés pro- et anti-
inflammatoires. Ainsi, en fonction du contexte, les biTregs peuvent réguler de manière
positive ou négative la réponse inflammatoire intervenant au cours de la maladie in-
fectieuse [16, 17, 18].

[0016] Selon un mode préféré de réalisation, l’invention a donc pour objet la bactérie L.
animalis pour son utilisation dans le traitement et/ou la prévention de l’inflammation
liée à une maladie respiratoire, notamment la tuberculose, ledit traitement et/ou
prévention comprenant une diminution de l’infiltration leucocytaire et une aug-
mentation des populations pulmonaires lymphocytes Th17 que de lymphocytes Tregs.

[0017] Selon un autre mode préféré de réalisation, l’invention a pour objet l’utilisation de la
bactérie L. animalis pour la préparation d’un médicament pour traiter et/ou prévenir
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l’inflammation liée à une maladie respiratoire, notamment la tuberculose, ledit
traitement et/ou prévention comprenant une diminution de l’infiltration leucocytaire et
une augmentation des populations pulmonaires lymphocytes Th17 que de lymphocytes
Tregs.

[0018] Selon un mode de réalisation encore plus préféré, les lymphocytes Tregs sont des
lymphocytes iTregs. Encore plus préférentiellement, les lymphocytes iTregs sont des
lymphocytes iTregs bifonctionnels.

[0019] Les « lymphocytes T » ou « cellules T » sont un type de lymphocytes (globules
blancs) jouant un rôle central dans l'immunité à médiation cellulaire. Ils peuvent être
distingués d'autres lymphocytes, tels que les cellules B et les cellules tueuses naturelles
(cellules NK), par la présence d'un récepteur de cellules T (TCR) à la surface de la
cellule. Tel qu'utilisé ici, le terme « récepteur de cellules T » ou « TCR » représente un
récepteur présent à la surface des cellules T qui est responsable de la reconnaissance
des antigènes liés aux molécules du complexe majeur d'histocompatibilité (MHC). Les
cellules T ne présentent pas d'antigènes et dépendent d'autres lymphocytes (cellules
tueuses naturelles, cellules B, macrophages, cellules dendritiques) pour faciliter la pré-
sentation de l'antigène. Les types de cellules T incluent notamment les cellules T
auxiliaires (cellules Th), les cellules T mémoire (Tcm, Tern ou Temra), les cellules T
régulatrices (Treg), les cellules T cytotoxiques (CTL), les cellules T tueuses naturelles
(cellules NKT), les cellules T gamma delta et les cellules T invariantes associées à la
muqueuse (MAIT).

[0020] Parmi les lymphocytes T, les « lymphocytes T CD4+ », appelés également « T
auxiliaires » et aussi « T helper (Th) », ont pour fonction principale de réguler posi-
tivement ou négativement d’autres cellules immunitaires. Ces cellules expriment la
glycoprotéine CD4 à leur surface. Le terme « CD4 », tel qu'utilisé ici, désigne une gly-
coprotéine membranaire de lymphocytes T qui interagit avec les antigènes du
complexe majeur d'histocompatibilité (CMH) de classe II et est également un récepteur
du virus de l'immunodéficience humaine. La protéine fonctionne pour initier ou
augmenter la phase précoce d'activation des cellules T. De préférence, la molécule
CD4 de l'invention est un polypeptide ayant la séquence d'acides aminés représentée
par NP_038516.

[0021] Les lymphocytes T CD4+ peuvent être classifiés selon le type de cytokines qu’ils
produisent. On peut ainsi notamment identifier des lymphocytes T CD4+ Th1, des lym-
phocytes T CD4+ Th2, des lymphocytes T CD4+ Th17 ou encore des lymphocytes T
CD4+ régulateurs.

[0022] On appelle « lymphocytes T CD4+ Th1 » ou « lymphocytes Th1 » ou « Th1 » une po-
pulation de lymphocytes T CD4+ activés qui orientent la réponse immunitaire vers la
réponse cellulaire et la cytotoxicité. Les Th1 produisent principalement les cytokines
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IL-2, TNFα et IFNγ et expriment le facteur de transcription T-bet. Le terme « T-bet »
ou « TBX21 », tel qu’utilisé ici, représente un facteur de transcription de la famille des
facteurs de transcription à T-box, qui est nécessaire à la différenciation des lym-
phocytes T Th1 et des lymphocytes T cytotoxiques Tc1 (c’est-à-dire un lymphocyte T
cytotoxique présentant à sa surface des récepteurs pouvant se lier à des complexes
formés par un peptide présenté par une molécule CMH de classe I), deux populations
lymphocytaires capables de sécréter l'IFNγ. Dans un mode préféré de réalisation, la
protéine T-bet possède la séquence d’acides aminés représentée par NP_037483.1.

[0023] Les lymphocytes Th1 sont induits par la cytokine IL-12 en réponse aux infections par
des pathogènes viraux ou bactériens (comme M. tuberculosis par exemple). Les
cytokines alors produites par les Th1 activent les macrophages qui détruisent les pa-
thogènes. Cependant, cette réponse anti-infectieuse Th1 peut aussi être à l’origine des
lésions immunopathologiques tissulaires, notamment en présence d’une infection
chronique.

[0024] Par « lymphocytes T CD4+ Th17 » ou « lymphocyte Th17 » ou « cellules Th17 » ou
« Th17 », on entend ici une population de lymphocytes T CD4+ auxiliaires exprimant
le facteur de transcription RAR-related orphan receptor-γt (ROR-γt) et produisant la
cytokine IL-17A, une cytokine fortement pro-inflammatoire. Avantageusement, les
cellules Th17 sont également caractérisées par la libération d’IL‐17F, d’IL‐21 et
d’IL‐22 et la co‐expression des marqueurs membranaires CCR6, ICOS et CCR4. Les
cellules Th17 sont impliquées dans le contrôle des infections bactériennes extracel-
lulaires et fongiques.

[0025] Tel qu'utilisé ici, le terme « cellules T régulatrices » ou « cellules Tregs » ou
« Tregs » ou « cellules T suppresseurs » désigne une population de cellules T qui
expriment le facteur de transcription FOXP3 et qui maintiennent la tolérance immu-
nologique. Les cellules Tregs sont importantes pour maintenir l'homéostasie, contrôler
l'ampleur et la durée de la réponse inflammatoire et prévenir les réponses auto-
immunes et allergiques. Au cours d'une réponse immunitaire, les Tregs suppriment
ainsi les réactions immunitaires médiées par les cellules T effectrices, telles que les
cellules T effectrices CD4+ ou CD8+.

[0026] Les cellules T régulatrices peuvent être des cellules Tregs naturelles ou des cellules
Tregs induites. Par « cellules Tregs naturelles » ou « Tregs naturels », on entend ici des
cellules T d’origine thymique qui expriment des marqueurs particuliers de la surface
des cellules, à savoir les marqueurs CD4 et CD25. Lesdites cellules sont donc de
préférence de phénotype CD4+CD25highFOXP3high. En outre, les Tregs naturels
expriment le facteur de transcription Helios.

[0027] Les « lymphocytes Tregs induits » ou « cellules Tregs induites » ou « cellules
iTregs », tel qu’on les entend ici, sont des cellules T d’origine périphérique dont la dif-
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férenciation est induite à la suite d’une interaction antigénique en présence de
cytokines telles que TGF-β et IL-2. Les iTregs sont caractérisées par la présence de la
chaîne α du récepteur de l’IL‐2 (CD25) et de CCR4 à leur surface et la production de
cytokines suppressives comme par exemple IL-10, en sus de l’expression de FOXP3.
En outre, les cellules iTregs n’expriment pas le facteur de transcription Helios.

[0028] Le terme « CD25 », tel qu'utilisé ici, désigne la chaîne alpha du récepteur de l'IL-2.
Cette protéine est une protéine transmembranaire de type I présente sur les cellules T
activées, les cellules B activées, certains thymocytes, les précurseurs myéloïdes et les
oligodendrocytes qui s'associent à CD122 pour former un hétérodimère pouvant servir
de récepteur à haute affinité pour IL-2. Les Tregs en particulier expriment CD25 en
plus des CD4 et FOXP3. De préférence, la molécule CD25 de l'invention est un po-
lypeptide ayant la séquence d'acides aminés représentée par NP_032393.

[0029] Par « Helios », on entend ici un facteur de transcription à doigt de zinc codé par le
gène IKZF2. Le facteur de transcription Helios forme des homodimères, voire des hé-
térodimères avec les facteurs de transcription Iskaros et Aiolos. Helios est exprimé
notamment dans les cellules Tregs. Plus spécifiquement, Helios est exprimé exclu-
sivement dans les Tregs naturels, mais pas dans les Tregs induits. Préférentiellement,
la protéine Hélios telle qu’on l’entend ici correspond à deux isoformes, dont les
séquences en acides aminés sont représentées par NP_057344.2 et NP_001072994.1,
respectivement.

[0030] Dans un mode de réalisation préférentiel, les cellules iTregs sont des cellules
possédant une double fonctionnalité et sont appelées « lymphocytes iTregs bifonc-
tionnels » ou « lymphocytes bi-Tregs » ou « cellules iTregs bifonctionnelles » ou
« cellules bi-Tregs » ou « biTregs ». Selon ce mode de réalisation, les cellules biTregs
sont des cellules qui expriment à la fois ROR-γt et FOXP3. Préférentiellement, les
cellules biTregs produisent à la fois la cytokine pro-inflammatoire Il-17 et la cytokine
anti-inflammatoire IL-10. De façon encore plus préférée, les cellules biTregs
produisent en outre les cytokines TGF-β et IL-35.

[0031] Par « RAR-related orphan receptor-γt » ou « ROR-γt », on entend ici un facteur de
transcription de la famille des récepteurs nucléaires des hormones stéroïdiennes, exclu-
sivement exprimé dans les cellules du système immunitaire. Le facteur de transcription
ROR-γt joue ainsi un rôle clé dans la régulation de la différenciation des cellules Th17.
De préférence, le facteur de transcription ROR-γt est un polypeptide ayant la séquence
d'acides aminés représentée par NP_001001523.1.

[0032] Tel qu'utilisé ici, le terme « FOXP3 » désigne un facteur de transcription appartenant
à la famille des régulateurs de transcription « forkhead / winged helix ». Le facteur de
transcription FOXP3 est le régulateur principal du développement et de la fonction des
lymphocytes Tregs. En outre, FOXP3 est un marqueur des lymphocytes Tregs,
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l’expression de ce facteur de transcription dans un lymphocyte T CD4+ suffisant à ca-
ractériser un lymphocyte Treg. De préférence, le facteur de transcription FOXP3 est un
polypeptide ayant la séquence d'acides aminés représentée par NP_001186276.

[0033] Les présents inventeurs ont ainsi montré que l’administration de la bactérie L.
animalis conduit à une augmentation de la population pulmonaire de cellules iTregs.
Cette augmentation n’est pas causée par un accroissement de la prolifération cellulaire,
mais par une induction de la différenciation de ces cellules. De préférence,
l’administration de L. animalis conduit à une induction dans le poumon de lym-
phocytes iTregs sécrétant aussi bien des cytokines pro-inflammatoires (par exemple, Il-
17A) que des cytokines anti-inflammatoires (par exemple IL-10).

[0034] Le terme « cytokine », tel qu’on l’entend ici, se rapporte à une famille de petites
protéines sécrétées régulatrices ayant un rôle crucial dans les réponses immunitaires.
Les cytokines sont impliquées dans la communication entre cellules et régulent de
nombreuses fonctions cellulaires, comme par exemple la survie et la croissance des
cellules, ainsi que l'induction de l’expression de nombreux gènes. Les cytokines
peuvent être produites par de nombreux types cellulaires. Comme expliqué plus haut,
le type cellulaire d’un lymphocyte donné est notamment déterminé par son profil cy-
tokinique. Ainsi, les « cytokines Th1 », telles qu’on les entend ici, sont les cytokines
produites par les lymphocytes T CD4 Th1 (notamment IL-2, IFNγ et TFNα).

[0035] Par « cytokine pro-inflammatoire », on entend ici les cytokines qui conduisent à une
augmentation de l’inflammation. Elles comprennent notamment des cytokines telles
que, par exemple, IL-1β, TNFα, IL-6, IL-15, IL-17, IFN-γ et IL-18. Selon un mode de
réalisation préféré, les cytokines pro-inflammatoires sont TNFα, IL-6, IFN-γ et IL-17,
plus préférentiellement IL-17. Les « cytokines anti-inflammatoires » sont celles qui
contrôlent la réponse des cytokines pro-inflammatoires. Les cytokines anti-
inflammatoires agissent de concert avec des inhibiteurs de cytokines spécifiques et des
récepteurs de cytokines solubles pour réguler la réponse immunitaire humaine. Les
cytokines anti-inflammatoires majeures comprennent l'antagoniste au récepteur d’IL-1,
IL-10 et TGF-β. Préférentiellement, les cytokines anti-inflammatoires sont IL-10 et
TGF-β.

[0036] Selon un mode de réalisation plus particulièrement préféré, l’administration de L.
animalis entraîne l’induction dans le poumon de lymphocytes iTreg produisant de
l’Il-10, du TGF-β et de l’IL-17. Les inventeurs ont d’ailleurs montré que le nombre de
cellules produisant ces cytokines est augmenté après administration de L. animalis. En
revanche, la concentration de cytokines pro-inflammatoires telles que TNFα, IL-6 et
IFN-γ n’est pas affectée.

[0037] Le terme «'interleukine 17 » ou « IL-17 » ou « IL-17A », tel qu’on l’entend ici, re-
présente une glycoprotéine homodimérique de 20-30 kDa. Le gène de l'IL-17 humaine
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code une protéine constituée de 155 acides aminés, dont une séquence signal de 19
acides aminés et un segment mature de 136 acides aminés. Il-17 est une cytokine pro-
inflammatoire qui participe aux défenses contre les infections bactériennes extra-
cellulaires et fongiques. Une fois sécrétée, cette cytokine agit sur les cellules épi-
théliales, les cellules endothéliales, les fibroblastes ainsi que sur d’autres cellules du
système immunitaire, en les activant pour qu’elles produisent des cytokines pro-
inflammatoires comme l’IL-1, l’IL-6, le TNF-α, des chimiokines, du GM-CFS, etc.

[0038] Par « interleukine 10 » ou « IL-10 », on entend ici une protéine homodimérique
composées de deux sous-unités en hélice α liées par des interactions non covalentes.
De façon préférée, chaque monomère d’IL-10 est exprimé sous la forme d’un
précurseur dont la séquence en acides aminés est représentée par NP_000563.1.
L'IL-10 est une cytokine anti-inflammatoire clé produite par des cellules immunitaires
activées qui joue un rôle critique dans le contrôle des réponses immunitaires. En par-
ticulier, elle réduit l'expression des cytokines Th1, des antigènes du CMH de classe II
et des molécules co-stimulatrices sur les macrophages. Elle améliore également la
survie, la prolifération et la production d'anticorps des cellules B. L'IL-10 peut bloquer
l'activité de NF-KB et est impliquée dans la régulation de la voie de signalisation JAK-
STAT.

[0039] On entend ici par « TGF-β » ou « transforming growth factor-β” ou « facteur de
croissance transformant-β » une cytokine multifonctionnelle appartenant à la su-
perfamille des facteurs de croissance transformants et comprenant quatre isoformes
différentes (TGF-β1 à 4). De façon préféré, TGF-β1, 2, 3 et 4 ont des séquences en
acides aminés représentées par NP_000651, NP_001129071 ou NP_003229,
NP_001316867 ou NP_001316868 ou NP_003230, et Q64280.1. Le TGF-β est
impliqué dans de multiples processus. Notamment, il joue un rôle immunosuppresseur
et anti-inflammatoire en favorisant la résolution de l’inflammation et le retour à
l’homéostasie. Il supprime ainsi la production de cytokines en inhibant l'activité des
macrophages et des cellules Th1. En particulier, il neutralise l'IL-1, l'IL-2, l'IL-6 et le
TNFα, et induit IL-1RA.

[0040] Le terme « augmenté », tel qu'il est utilisé ici dans certains modes de réalisation,
signifie une plus grande quantité, par exemple, une quantité légèrement supérieure à la
quantité d'origine ou par exemple une quantité en grand excès par rapport à la quantité
d'origine, et notamment toutes les quantités dans l'intervalle. En variante,
« augmentation » peut faire référence à une quantité ou une activité qui est au moins
1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%,
18%, 19% ou 20% de plus que la quantité ou de l'activité pour laquelle la quantité ou
de l'activité accrue est comparé. Les termes « augmenté », « plus grand que », et
« accru » sont utilisés ici de manière interchangeable. Une « population de lym-
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phocytes augmentée » signifie ainsi une population desdits lymphocytes, par exemple
des lymphocytes Th17 ou iTregs, notamment des biTregs, accrue par rapport à un
contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été traité avec la
présente bactérie L. animalis. En d’autres termes, une « population de lymphocytes
augmentée » dans les poumons, par exemple des lymphocytes Th17 ou iTregs,
notamment des biTregs, signifie que le nombre desdits lymphocytes dans les poumons
est augmenté par rapport à un contrôle de référence, tel que, par exemple, un contrôle
n’ayant pas été traité avec la présente bactérie L. animalis. Cette augmentation peut
résulter notamment d’une augmentation de la différenciation des lymphocytes T dans
le type de lymphocytes d’intérêt (par exemple des lymphocytes Th17 ou iTregs,
notamment des biTregs) et/ou d’une augmentation de la prolifération cellulaire. Préfé-
rentiellement, cette augmentation de la population de lymphocytes d’intérêt (par
exemple des lymphocytes Th17 ou iTregs, notamment des biTregs) ne résulte pas
d’une augmentation de la prolifération cellulaire.

[0041] Le terme « diminution », tel qu'il est utilisé ici dans certains modes de réalisation,
signifie une plus petite quantité, par exemple, une quantité légèrement inférieure à la
quantité d'origine, ou par exemple une quantité beaucoup plus petite que la quantité
d'origine, et notamment toutes les quantités dans l'intervalle. En variante,
« diminution » peut faire référence à une quantité ou une activité qui est au moins 1%,
2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%,
18%, 19% ou 20% de moins que la quantité ou de l'activité pour laquelle la quantité ou
de l'activité diminuée est comparé. Les termes « diminué », « plus petit que »,
« moindre » et « décru » sont utilisés ici de manière interchangeable. Une « population
de lymphocytes diminuée » signifie ainsi une population desdits lymphocyte réduite
par rapport à un contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été
traité avec la présente bactérie L. animalis. En d’autres termes, une « population de
lymphocytes diminuée » dans les poumons signifie que le nombre desdits lymphocytes
dans les poumons est réduit par rapport à un contrôle de référence, tel que, par
exemple, un contrôle n’ayant pas été traité avec la présente bactérie L. animalis.

[0042] Ledit « contrôle » tel qu’utilisé ici peut être un patient, un modèle animal ou encore
un modèle cellulaire in vitro. De préférence, le « contrôle » est un patient. Par
« patient », on entend ici un sujet humain souffrant d’une inflammation liée à une
maladie respiratoire, notamment la tuberculose. Selon un autre mode de réalisation
préféré, le sujet est un animal, notamment un chien, un chat ou un cheval.

[0043] Dans un autre aspect, la présente invention a aussi pour objet une composition phar-
maceutique comprenant la souche I-5314 et au moins un excipient pharmaceu-
tiquement acceptable.

[0044] La bactérie inactivée induit les mêmes effets que la souche vivante et possède donc
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elle aussi des propriétés de prévention et/ou de traitement des maladies respiratoires.
[0045] Selon un mode de réalisation particulier de l’invention, la souche I-5314 présente

dans la composition pharmaceutique est une souche inactivée. Par « souche
inactivée », on entend ici une souche bactérienne qui est incapable de croître et/ou de
se diviser. Préférentiellement, une souche inactivée n’a plus d’activité métabolique.
Toutefois, les bactéries inactivées selon l’invention sont toujours capables de modérer
l’inflammation, c’est-à-dire que l’administration de la bactérie inactivée entraîne une
diminution de l’infiltration leucocytaire et une augmentation des populations pul-
monaires de lymphocytes Tregs.

[0046] Les techniques d’inactivation des bactéries sont bien connues de l’homme du métier.
On citera par exemple l’inactivation par la chaleur, l’irradiation par les UV ou les
rayons gamma, le traitement par les acides, le traitement par le peroxyde d’hydrogène,
etc. Les bactéries L. animalis seront préférentiellement inactivées par traitement à la
chaleur.

[0047] Il est particulièrement avantageux d’utiliser des extraits de la souche I-5314 dans les
présentes compositions pharmaceutiques. Un « extrait », tel qu’on l’entend ici, désigne
tout matériel cellulaire obtenu suite à la lyse d'une ou plusieurs souches bactériennes.
Avantageusement, un extrait a subi une ou plusieurs étapes supplémentaires
d’extraction et/ou de purification. Préférentiellement, l'extrait est obtenu à partir d’une
seule souche ; plus préférentiellement, ladite souche est la présente souche I-5314.

[0048] La lyse peut être réalisée par tous les moyens connus de l’homme du métier : lyse
alcaline, lyse par sonication, lyse par haute pression (presse de French), etc. L’extrait
obtenu par la lyse cellulaire peut ensuite être soumis à des étapes d’extraction et/ou de
purification supplémentaires. Celles-ci peuvent comprendre n’importe quel traitement
usuel de tels extraits et connu de l’homme du métier : on mentionnera entre autres les
centrifugations (par exemple pour séparer la membrane plasmique du cytoplasme), les
filtrations, les précipitations et les séparations des différents constituants cellulaires
(par exemple en utilisant l’un des nombreux types de chromatographie), etc. Chacun
des différents extraits obtenus à chacune de ces étapes peut être utilisé dans la méthode
de l’invention pour autant qu’il soit toujours capable de modérer l’inflammation,
c’est-à-dire que l’administration dudit extrait entraîne une diminution de l’infiltration
leucocytaire et une augmentation des populations pulmonaires de lymphocytes Th17 et
de lymphocytes Tregs.

[0049] Les présentes compositions sont utiles pour le traitement de l’inflammation liée aux
maladies respiratoires.

[0050] Par « maladie respiratoire », on entend ici les maladies de l'appareil respiratoire,
notamment des poumons ou des bronches, ou provoquant des troubles de la respiration.
Parmi ces maladies respiratoires, un grand nombre sont liées à une inflammation de
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l'appareil respiratoire, notamment des poumons ou des bronches. On citera ainsi, et de
manière non exhaustive, l'asthme (légère, modérée ou sévère), par exemple,
bronchique, allergique, intrinsèque, extrinsèque, induite par l'exercice, d'origine médi-
camenteuse (y compris l'aspirine et aux AINS) et l'asthme induit par la poussière,
l'asthme résistant aux stéroïdes, la bronchite, y compris la bronchite infectieuse et à éo-
sinophiles, d'une maladie pulmonaire obstructive chronique (COPD), comme la BPCO
(broncho-pneumopathie chronique obstructive), la fibrose cystique, la fibrose
pulmonaire, y compris cryptogénique alvéolite fibrosante, la fibrose pulmonaire idio-
pathique, prieumonias interstitielles idiopathiques, la fibrose compliquant une thérapie
anti-néoplasique et chronique, l'infection, y compris la tuberculose, la tularémie
(causée par F. tularensis), l'aspergillose et d'autres infections bactériennes (par
exemple par Francisella Novicida ou par P. aeruginosa) ou fongiques (par exemple
par Candida albicans ou par Aspergillus fumigatus) ; complications de la trans-
plantation pulmonaire; vascularite et troubles thrombotiques du système vasculaire
pulmonaire et hypertension artérielle pulmonaire (y compris l'hypertension artérielle
pulmonaire); activité antitussive comprenant le traitement de la toux chronique
associée à des affections inflammatoires et sécrétoires des voies respiratoires et la toux
iatrogène; rhinite aiguë et chronique, y compris la rhinite médicamenteuse, et la rhinite
vasomotrice; perannuelle et saisonnière rhinite allergique y compris la rhinite nerveuse
(rhume des foins); polypose nasale; infection aiguë virale, y compris le rhume, et
l'infection due au virus respiratoire syncytial, la grippe, coronavirus (SRAS
notamment) et l'adénovirus, un œdème pulmonaire, embolie pulmonaire, pneumonie,
sarcoïdose pulmonaire, la silicose, poumon de fermier et les maladies apparentées;
pneumopathie d'hypersensibilité, insuffisance respiratoire, syndrome de détresse res-
piratoire aiguë, l'emphysème, la bronchite chronique, la tuberculose et le cancer du
poumon, etc. Les maladies respiratoires telles qu’on l’entend ici comprennent aussi les
maladies respiratoires affectant spécifiquement les animaux, notamment les chats, les
chiens ou les chevaux. Elles comprennent notamment la toux du chenil, causée en par-
ticulier par les infections au virus Parainfluenza et la bactérie Bordetella bron-
chiseptica. Selon un mode de réalisation préféré, ladite maladie respiratoire est la tu-
berculose.

[0051] Par « tuberculose », on entend ici une maladie infectieuse causée par la bactérie My-
cobacterium tuberculosis. Dans la grande majorité des cas, la tuberculose est une tu-
berculose pulmonaire, ce qui signifie que l’infection touche les poumons. Lorsqu’elle
se déclare, la tuberculose pulmonaire se manifeste par une toux, parfois productive ou
sanglante, des douleurs thoraciques, une asthénie, une perte de poids et des sueurs
nocturnes. En outre, la tuberculose peut être responsable d'une inflammation
d'évolution prolongée, dont l'aspect anatomopathologique est caractéristique.
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[0052] Par « inflammation », on entend ici l’ensemble des mécanismes réactionnels de
défense par lesquels l’organisme reconnaît, détruit et élimine toutes les substances qui
lui sont étrangères. La réaction inflammatoire est la réponse à une agression d'origine
exogène (cause infectieuse, traumatique) ou endogène (cause immunologique, par
exemple une réaction d'hypersensibilité ou une autre cause, par exemple le syndrome
d'ischémie- reperfusion). La réponse inflammatoire est habituellement composée d’une
phase d'initiation qui fait suite à un signal de danger d'origine exogène ou endogène et
qui met en jeu des effecteurs primaires, d’une phase d'amplification avec la mobi-
lisation et l'activation d'effecteurs secondaires et d’une phase de résolution et de ré-
paration qui tend à restaurer l'intégrité du tissu agressé. La réaction inflammatoire est
ainsi, le plus souvent, une réponse adaptée strictement contrôlée par de multiples
systèmes régulateurs, dont, par exemple, les cellules Tregs. Toutefois, si la réponse in-
flammatoire est inadaptée ou mal contrôlée ; elle peut devenir agressive. Dans certains
cas, l’inflammation peut devenir chronique : par exemple, la tuberculose entraîne une
inflammation chronique.

[0053] Les termes « traiter », « traité », « traitement », ainsi que les termes analogues, tels
qu'ils sont utilisés ici, se réfèrent à la réduction ou l'amélioration des symptômes d'un
trouble (par exemple, l’inflammation liée à une maladie respiratoire, notamment la tu-
berculose) et/ou les symptômes associés avec celui-ci chez un sujet. On notera que,
bien que ce ne soit pas exclu, le traitement d'un trouble ou un état ne nécessite pas que
la pathologie, la condition ou les symptômes qui lui sont associés soient complètement
éliminés.

[0054] Les termes « prévenir », « prévention », ainsi que les termes analogues, tels qu'ils
sont utilisés ici, se réfèrent à la suppression du risque d’apparition d'un trouble (par
exemple, l’inflammation liée à une maladie respiratoire, notamment la tuberculose) et/
ou les symptômes associés avec celui-ci chez un sujet.

[0055] On entend ici par « sujet » n’importe quel mammifère pouvant bénéficier du
traitement décrit ici, y compris l'homme, le chien, le chat, les équidés, les bovins, les
caprins, les porcs, les ovins et les primates non-humains. Plus spécifiquement, on
appelle ici « patient » un sujet humain. Ledit patient peut appartenir à n’importe quelle
classe d’âge, c’est-à-dire le patient peut être un enfant, un adolescent ou un adulte. Al-
ternativement, le sujet peut être un mammifère non-humain, tel qu’un chien, un chat ou
un équidé.

[0056] Les présentes compositions pharmaceutiques comprennent outre la souche I-5314, un
ou plusieurs excipients pharmaceutiquement acceptables.

[0057] Par « excipient pharmaceutiquement acceptable », on entend ici un excipient dont
l'administration à un individu ne s'accompagne pas d'effets délétères significatifs. Les
excipients pharmaceutiquement acceptables sont bien connus de l’homme du métier.
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[0058] Tel qu'il est utilisé ici, l’expression « excipient pharmaceutiquement acceptable »
comprend tous les solvants, tampons, solutions salines, milieux de dispersion, re-
vêtements, agents antibactériens et antifongiques, agents isotoniques et retardant
d'absorption, et analogues qui sont physiologiquement compatibles. Les excipients sont
choisis selon la forme pharmaceutique et le mode d'administration souhaité, parmi les
excipients habituels qui sont connus de l'homme du métier. Le type de support sera
ainsi choisi en fonction de la voie d'administration prévue. Dans divers modes de réa-
lisation, le support est approprié pour une administration intraveineuse, intrapé-
ritonéale, sous-cutanée, intramusculaire, topique, transdermique, orale, ou par aérosol.
Ainsi, dans des modes particuliers de réalisation, la présente souche est formulée dans
des véhicule pharmaceutiquement acceptables, tels que des solutions, suspensions,
comprimés, comprimés dispersibles, pilules, gélules, poudres, formulations à libération
prolongée ou élixirs, pour administration orale ou dans des solutions ou suspensions
stériles pour administration parentérale, ainsi que des patchs transdermiques et des in-
halateurs de poudre sèche. Les véhicules pharmaceutiquement acceptables com-
prennent les solutions ou dispersions aqueuses stériles et des poudres stériles pour la
préparation extemporanée de solutions ou dispersions injectables stériles. L'utilisation
de milieux et agents pour des substances pharmaceutiquement actives est bien connue
dans la technique. Les techniques et les méthodes bien connues de la personne du
métier seront ainsi utilisées pour préparer des compositions pharmaceutiques contenant
la souche I-5314 ou les extraits de celle-ci (voir par exemple, Ansel (1985) In-
troduction to Pharmaceutical Dosage Forms, 4th Ed., p. 126). Les procédés pour
préparer des compositions pharmaceutiques, notamment des compositions pharma-
ceutiques administrables par voie orale ou par inhalation, seront connus ou évidents
pour l'homme du métier et sont décrits plus en détail dans, par exemple, « Remington's
Pharmaceutical Science, 17th ed., Mack Publishing Company, Easton, Pa. (1985) », et
le 18e et 19e éditions de ce manuel.

[0059] Les présentes compositions sont administrées au patient à une dose thérapeu-
tiquement efficace. Le terme « dose thérapeutiquement efficace » tel qu'utilisé ici se
réfère à la quantité nécessaire pour observer une activité thérapeutique ou préventive
sur l’inflammation liée à la maladie respiratoire, notamment la tuberculose, en par-
ticulier la quantité nécessaire pour observer une amélioration des symptômes. La
quantité de bactérie I-5314 à administrer ainsi que la durée du traitement sont évaluées
par l'homme du métier selon l'état physiologique du sujet à traiter, ainsi que la voie
d'administration utilisée. La souche bactérienne utilisée peut être administrée sous la
forme d'une dose unique ou de doses multiples.

[0060] L’homme du métier saura ainsi choisir au mieux les voies et modes d’administration
de la composition, ainsi que les posologies et formes galéniques optimales, selon les
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critères généralement pris en compte dans la fabrication d’un médicament ou
l’établissement d’un traitement pharmaceutique ou vétérinaire. De préférence, ces
composés seront administrés par voie systémique, en particulier par voie intraveineuse,
par voie intramusculaire, intradermique, intra-péritonéale ou sous-cutanée, par voie
orale, ou par voie topique (au moyen de gel, aérosols, gouttes, etc.). Les formes
unitaires d'administration appropriées comprennent les formes par voie orale telles que
les comprimés, les gélules molles ou dures, les poudres, les granules et les solutions ou
suspensions orales, les formes d'administration sublinguale, buccale, intra-trachéale,
intraoculaire, intranasale, par inhalation, les formes d'administration topique, trans-
dermique, sous-cutanée, intramusculaire ou intraveineuse, les formes d'administration
rectale et les implants. Pour l'application topique, on peut utiliser les composés selon
l'invention dans des crèmes, gels, pommades ou lotions.

[0061] Il sera particulièrement avantageux d’administrer la composition par voie entérale,
orale, parentérale (par exemple sous-cutanée, intradermique, ou intramusculaire) ou
mucosale (par exemple intranasale, sublinguale, intravaginale, transcutanée). De
manière plus préférée, la composition pharmaceutique sera administrée à plusieurs
reprises, de manière étalée dans le temps. Son mode d’administration, sa posologie et
sa forme galénique optimale peuvent être déterminés selon les critères généralement
pris en compte dans l’établissement d’un traitement adapté à un patient comme par
exemple l’âge ou le poids corporel du patient, la gravité de son état général, la
tolérance au traitement et les effets secondaires constatés.

[0062] Dans les présentes compositions pharmaceutiques, le principe actif ou les principes
actifs sont généralement formulés en unités de dosage. Par exemple, quand la bactérie
I-5314 vivante est administrée, l'unité de dosage contient au moins 102 ufc, préféren-
tiellement au moins 103 ufc, préférentiellement au moins 104 ufc, préférentiellement au
moins 105 ufc, préférentiellement au moins 106 ufc, plus préférentiellement au moins
107 ufc, encore plus préférentiellement au moins 108 ufc, le plus préférentiellement au
moins 109 ufc, par unité de dosage. Selon un autre mode de réalisation, l'unité de
dosage contient entre 102 et 109 ufc, avantageusement entre 105 et 109 ufc, de
préférence de 107 à 109 ufc par unité de dosage, pour les administrations quotidiennes,
une ou plusieurs fois par jour. Par ailleurs, quand des extraits bactériens sont ad-
ministrés au patient, l'unité de dosage contient 2,5 à 500 mg, avantageusement de 10 à
250 mg, de préférence de 10 à 150 mg par unité de dosage, pour les administrations
quotidiennes, une ou plusieurs fois par jour. Bien que ces dosages soient des exemples
de situations moyennes, il peut y avoir des cas particuliers où des dosages plus élevés
ou plus faibles sont appropriés, de tels dosages appartiennent également à l'invention.
Selon la pratique habituelle, le dosage approprié à chaque patient est déterminé par le
médecin selon le mode d'administration, l'âge, le poids et la réponse dudit patient.

14



[0063] L’invention sera décrite plus précisément au moyen des exemples ci-dessous.
LEGENDES DES FIGURES

[0064] [Figure 1 : Protocole expérimental utilisé pour étudier l’effet de l’administration
de bactéries isolées du microbiote pulmonaire sur l’infection par Mycobacterium
tuberculosis (Mtb). Des souris C57BL/6 femelles âgées de 6 semaines reçoivent par
voie intranasale (i.n.) 107 bactéries (L. salivarius CNCM I 4968, ou L. animalis CNCM
I ou L. rhamnosus CNCM I 4967 ou du PBS) dans 25µL de PBS 3 fois par semaine
pendant 2 semaines. Selon les expériences elles sont ensuite sacrifiées (Figure 2.) ou
infectées par 103 UFC de Mtb (autres figures). Pour les souris infectées,
l’administration de lactobacilles est poursuivie jusqu’au sacrifice à raison de 2 fois par
semaine (groupes traités avant et après infection, noté « av/ap »). Alternativement les
lactobacilles peuvent n’être administrés qu’après infection (groupe CNCM I 5314 ap)
et non avant. Après sacrifice, les poumons sont utilisés soit entiers pour une analyse en
histologie de l’immunopathologie soit homogénéisés pour déterminer la charge bac-
térienne et caractériser la réponse immunitaire locale par cytométrie en flux.

[0065] Figure 2 : Modification du système immunitaire pulmonaire de souris non
infectées par des bactéries isolées du microbiote pulmonaire. Des souris C57BL/6
reçoivent par voie intranasale 107 bactéries (L. salivarius CNCM I 4968 ou L. animalis
CNCM I 5314 ou L. rhamnosus CNCM I 4967 ou PBS) dans 25 µL de PBS 3 fois par
semaine pendant 2 semaines. Après sacrifice, une suspension cellulaire est obtenue par
dissociation enzymatique et mécanique des poumons. Les proportions de sous-
populations de lymphocytes T CD4+ sont déterminés par cytométrie en flux. A.
Stratégie d’analyse: Après exclusion des doublets et des cellules mortes, les lym-
phocytes T CD4+ sont sélectionnés. La proportion de différentes sous-population est
déterminée en sélectionnant les cellules exprimant un facteur intracellulaire spécifique
d’intérêt (panel du bas) et pas son isotype contrôle (panel du haut). B. Proportion de
lymphocytes T CD4+ exprimant le facteur Foxp3 (appelés Treg), produisant du TNF-α
(cellules de type Th1) ou de l’IL-17 (Th17). Les graphiques représentent la médiane
obtenue en groupant 3 expériences ayant chacune 4-7 souris. Statistique : test de
Kruskal-Wallis : * p<0,05 ; ** p<0,01 ; *** p<0,001 ; **** p<0,0001

[0066] Figure 3 : Impact de l’administration de bactéries isolées du microbiote
pulmonaire sur l’infection par Mtb. Des souris C57BL/6 reçoivent par voie in-
tranasale 107 bactéries

(L. salivarius CNCM I 4968 ou L. animalis CNCM I 5314 ou L. rhamnosus CNCM I
4967 ou PBS) dans 25 µL de PBS 3 fois par semaine pendant 2 semaines. Elles sont
ensuite infectées par 1000 bactéries de la souche H37Rv de Mtb par voie intranasale.
Après infection les souris reçoivent les bactéries pulmonaires comme précédemment 2
fois par semaine pendant 30 jours. Après sacrifice les poumons sont dissociés pour
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estimer la charge bactérienne ou fixés pour évaluer les dommages tissulaires. A. Es-
timation de la charge bactérienne mesurée par étalement sur milieu gélosé d’un broyat
de poumon. Chaque graphique représente une expérience indépendante comparant 2
groupes de souris traitées avec un groupe contrôle, n=3-7 souris par groupe. B.
Dommages tissulaires estimés par observation de colorations Hematoxylin-Eosine
(HE) réalisées sur des coupes histologiques de poumons fixés en formol 10% et inclus
en paraffine. Images représentatives de 2 expériences indépendante n=3 souris par
groupe.

[0067] Figure 4 : Caractérisation de l’impact de l’administration de L. animalis sur
l’infection par Mtb. Des souris C57BL/6 reçoivent du PBS (barres blanches) ou 107

de L. animalis par voie intranasale avant et après infection (groupe CNCM I 5314 av/
ap, barres grises) par 1000 UFC de la souche H37Rv de Mtb par voie intranasale, ou
uniquement après infection (groupe CNCM I 5314 ap, barres hachurées). A. Es-
timation de la charge bactérienne 42 jours après infection, mesurée par étalement sur
milieu gélosé d’un broyat de poumon. Le graphique montre une expérience repré-
sentative de 2 expériences indépendantes, n=6 souris par groupe. B. Dommages tis-
sulaires estimés par observation (panel de gauche) et quantification des infiltrats leuco-
cytaires (panel de droite) sur colorations Hematoxylin-Eosine réalisées sur des coupes
histologiques de poumons fixés en formol 10 % et inclus en paraffine 42 jours après
infection. Le pourcentage d’infiltration correspond au ratio de l’aire occupée par des
infiltrats leucocytaires par rapport à l’aire totale des poumons. 2-5 expériences
comprenant chacune 4-5 souris par groupe sont représentées. C.D. Caractérisation des
lymphocytes T CD4+ pulmonaires présents 42 jours après infection par cytométrie en
flux. Les proportions de LT CD4+ exprimant différents facteurs de transcription (C.)
(T-bet, caractéristique des Th1, RORγt pour les Th17 et Foxp3 pour les Treg) ou
produisant des cytokines (D.) après stimulation avec phorbol 12-myristate 13-acetate
(PMA) et Ionomicine en présence de Monensin et Brefeldin A (IFN-γ et TNF-α pour
les Th1, IL-17 pour les Th17, IL-10 et TGF-β pour les Treg) sont représentées. E.F.G.
Caractérisation des lymphocytes Treg exprimant Foxp3. L’origine des Tregs, naturels
(nTreg, exprimant le facteur Helios, haut) ou induits (iTreg, qui ne l’expriment pas,
bas) (E.), leur prolifération (caractérisée par l’expression de l’antigène Ki67) (F.) et
production de cytokines (G.) est détectée par cytométrie en flux comme en C et D. Sta-
tistiques : graphiques correspondants à 1-4 expériences indépendantes poolées avec 4-7
souris par groupe pour les panels C et D. La médiane de chaque groupe est représentée
et un test de Kruskal-Wallis compare les souris traitées aux souris contrôles : * p<0,05
; ** p<0,01 ; **** p<0,0001.
EXEMPLES

16



Matériels et Méthodes
[0068] Souches bactériennes, milieux, conditions de croissance
[0069] Les souches bactériennes pulmonaires ont été isolées d’homogénats de poumons de

souris avec un homogénéiseur (Ultraturax (IKA) ou Tissu Lyser (Qiagen)). Elles ont
ensuite été cultivées sur milieu yhBHI, M17, MRS, ou Mannitol Sel Agar (BD
biosciences) pendant 24 à 48h à 37°C sous conditions aérobie ou 5 jours à 37°C dans
une chambre Freter sous conditions anaérobie. Les souches isolées ont été congelées à
-80°C dans 16% de glycérol. L’identité de chaque souche a été confirmée par spectro-
photométrie de masse et séquençage par PCR de l’ARN 16S. Les souches sélec-
tionnées ont été déposées à la Collection Nationale des Cultures de Microorganismes
(CNCM). Les trois souches utilisées ici sont un Lactobacillus animalis (souche de
l’invention) déposée sous la référence CNCM I 5314, un Lactobacillus rhamnosus
(CNCM I 4967) et un Lactobacillus salivarius (CNCM I 4968). Ces bactéries sont
cultivées en milieu liquide MRS 24h à 30°C (pré-culture) ou 3-4h à 37°C (pour les ins-
tillations) sans agitation.

[0070] Modèle murin d’infection par la tuberculose et traitement probiotique
[0071] Toutes les expériences réalisées sur des animaux ont été approuvées par le Ministère

de l'enseignement supérieur et de la recherche après examen par le Comité d’Ethique
Régional (Agréments APAFIS 5704). Les souris utilisées sont des femelles C57BL/6
âgées de 6 à 8 semaines provenant des élevages de Charles River Laboratories.

[0072] Pour chaque administration in vivo d’un des lactobacilles, une suspension bac-
térienne contenant 4.0 x 108 CFU/mL a été préparée en tampon phosphate salin (PBS)
à partir de cultures fraiches en phase exponentielle. Les souris reçoivent 25 µL de PBS
contenant 1.0 x 107 CFU ou 25 µL de PBS (groupe contrôle) par voie intranasale (i.n.)
sous anesthésie gazeuse (isoflurane 4%, Virbac Danmark). Cette opération est répétée
3 fois par semaine pendant 2 semaines puis les souris sont soit sacrifiées (expériences
sur les souris non infectées) soit infectées (procédures décrites ci-après), et reçoivent à
nouveau l’administration des bactéries commensales 2 fois par semaine jusqu’au
sacrifice. Dans certaines expériences, l’administration des lactobacilles est réalisée
uniquement après infection et non pas avant et après infection (voir Figure 1).

[0073] Une culture fraîche de la souche H37Rv de Mtb (cultivée en milieu liquide 7H9
(Difco) supplémenté en glycérol 0,5%, ADC (Middlebrook) 10% et tyloxapol 0.05%)
est utilisée pour infecter les souris. Chaque souris reçoit par voie i.n. 1.0 x 103 CFU de
Mtb dans 25 µL de PBS sous anesthésie isoflurane. Les souris sont sacrifiées par dis-
location cervicale (sous anesthésie isoflurane) après 42 jours d’infection.

[0074] Analyses histologiques
[0075] Les poumons entiers de souris dédiées aux analyses histologiques sont utilisés. Ils

sont gonflés puis fixés pendant 5 jours à 4°C avec une solution contenant 10% de
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formol (Formalin solution, Sigma-Aldrich) et inclus en paraffine. Des colorations hé-
matoxyline-éosine (HE) sont réalisées pour visualiser les infiltrats leucocytaires qui
sont quantifiés, après numérisation, sur le logiciel CaseViewer (3DHISTECH).

[0076] Préparation des homogénats pulmonaires et détermination de la charge bactérienne
[0077] Les poumons entiers des souris ont été prélevés de manière stérile, homogénéisés

avec un gentleMACS dissociator avant (tubes C, cycle m_lung_01, Miltenyi) et après
(cycle m_lung_02) 30 min d’incubation à 37°C avec de la collagénase D (2 mg/mL,
Roche) et de la DNAse I (0,1mg/mL, Roche). Une part de cet homogénat est diluée en
série en PBS puis étalée sur milieu gélosé 7H10 (Difco) supplémenté en peptone et
OADC (Middlebrook). Après 2-3 semaines, le dénombrement des colonies de Mtb
obtenues permet d’estimer la charge bactérienne pulmonaire. Le reste des homogénats
est passé au travers de filtre 70 µm pour détruire les agrégats, et centrifugé à 329 x g
pendant 5 min. Les surnageants sont passés 2 fois au travers de filtres 0,2 µm et stockés
à -80°C pour l’analyse des cytokines présentes dans les poumons. Les globules rouges
présents dans le culot sont lysés pendant 5 min avec une solution contenant 150 mM
NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 7.2), neutralisée par ajout de milieu RPMI
contenant 10% du sérum de veau fœtal (SVF). La suspension cellulaire ainsi obtenue
est filtrée au travers d’un filtre 40 µm (élimination des agrégats de globules rouges
lysés) pour les analyses de cytométrie en flux.

[0078] Cytométrie en flux
[0079] L’analyse des différentes populations de lymphocytes T auxiliaires CD4+ est réalisée

grâce à la détection par cytométrie en flux de facteurs de transcription et de cytokines
caractéristiques de ces sous population par marquages des cellules présentes dans la
suspension cellulaire obtenue comme décrit dans la section précédente. Une partie de
la suspension cellulaire est incubée dans du RPMI contenant 50 ng/mL de Phorbol
Myristate Acetate (PMA, (Sigma Aldrich) et 500 ng/mL d’ionomycine
(Sigma-Aldrich) pour induire la production de cytokines par les lymphocytes ainsi que
de la Brefeldin A (Golgi plug 1/1000, BD Biosciences) et du Monensin (Golgi Stop
1/2000, BD Biosciences) pour ségréger ces cytokines dans l’appareil de Golgi pendant
4h à 37°C et 5% CO2. Le reste de la suspension cellulaire, utilisée pour le marquage de
facteurs de transcription, est conservée dans du Cell Staining Buffer (CSB, Biolegend)
4 h à 4°C. Le marquage extracellulaire de ces deux fractions est réalisé en CSB 30 min
à 4°C dans le noir en utilisant un anticorps anti-Cluster Differentiation 16 /32
(CD16/CD32, Biolegend) pour limiter les marquages aspécifiques, un marqueur de
viabilité (live/dead fixable blue dead cell stain kit, Invitrogen), un anti-CD45.2 BV711
(clone 104, BD Biosciences), un anti-CD3 FITC (17A2, Biolegend) ou anti-T cell
Receptor beta (TCRb) Alexa 700 (H57-597, Biolegend) et un anti-CD4 BV786 (Sk3,
BD Biosciences). Pour le marquage intracellulaire les cellules sont ensuite fixées 30
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min à température ambiante (TA), perméabilisées 15 min à TA (Foxp3 / transcription
factor staining buffer set, eBioscience) et incubées 45 min à TA avec un panel
d’anticorps comprenant un anti-RORgt PE-CF594 (Q31-378, BD Biosciences), un
anti-T-bet PE-Cy7 (eBio4BIO, eBiosciences), un anti-Foxp3 APC (FJK-16s,
eBioscience), un anti-Helios APC-eFluor 780 (22F6, eBiosciences), un anti-Ki67
Alexa 700 (SolA15, eBioscience) ou un anti-interleukin 10 (IL-10) FITC (JES5-16E3,
BD Biosciences), un anti-IL-17 PE (TC11-18H10, BD Biosciences), un anti-IFNγ PE-
Dazzle (XMG1.2, Biolegend), un anti-TNFα PE Cy7 (MP6-XT22, BD Biosciences),
l’anti-Foxp3 APC et un anti-TGF-β BV421 (TW7-16B4, BD Biosciences). Pour les
expériences réalisées sur des souris infectées par Mtb, les cellules sont fixées 2h en pa-
raformaldéhyde (PFA) 4% à TA. Les données sont acquises avec un FACS LSRII ou
Fortessa (BD Biosciences) et analysées sur le logiciel FlowJo V10. Les doublets
(FSH-H vs. FSC-W et SSC-H vs. SSC-W) et les cellules mortes (live/dead positives)
sont exclues au début de chaque analyse.

[0080] Analyse statistique
[0081] L’analyse statistique des résultats a été réalisée avec le logiciel GraphPad Prism 7.

Sur les graphiques, chaque point représente une souris différente. La médiane de
chaque groupe est représentée par les barres. Un test de Mann-Whitney (comparaison
de 2 groupes) ou de Kruskall-Wallis (comparaison de 3 groupes) a été utilisé pour
comparer les valeurs. La significativité est représentée par : * p<0.05; ** p<0.01; ***
p<0.001; and **** p<0.0001.
Résultats

[0082] L’identification de bactéries du microbiote pulmonaire capables de modifier la
réponse immunitaire au cours de l’infection par Mtb s’appuie sur une banque de
bactéries primo-colonisatrices du poumon de souriceaux isolées et identifiées par
l’équipe du Dr Langella (Probihôte – MICALIS – INRA), et notamment par Aude
Remot et Muriel Thomas. L’une de ces bactéries, une souche d’Enterococcus sp.
déposée à la CNCM sous le numéro I-4969 est capable de moduler la susceptibilité des
souris à l’asthme allergique (voir WO 2017/12987 et [8]). Parmi ces bactéries, 3 sont
des lactobacilles (L. salivarius, L. animalis et L. rhamnosus) qui possèdent un statut
d’organismes GRAS (Generally Recognised As Safe) et ont été déposés à la CNCM
sous les numéros : CNCM I 4968, CNCM I 5314 et CNCM I 4967, respectivement.

[0083] Pour déterminer le potentiel probiotique de ces 3 lactobacilles pour la prévention et le
traitement de la tuberculose, différents protocoles résumés en Figure 1 ont été
employés dans un modèle murin. L’administration de 107 bactéries est réalisée par voie
intranasale pendant deux semaines avant sacrifice des souris (Figure 2) ou infection par
Mycobacterium tuberculosis (Mtb) (autres figures). Dans ces expériences les bactéries
sont administrées avant et après infection (groupes av/ap) ou seulement après infection
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(groupe ap, Figure 4).
[0084] Dans un premier temps, la capacité des bactéries à modifier le système immunitaire

local de souris non-infectées a été évaluée par l’analyse en cytométrie en flux de
l’expression de marqueurs intracellulaires caractéristiques de différentes sous-
populations de lymphocytes T auxiliaires CD4+ (stratégie d’analyse en Figure 2A), or-
chestrateurs clés de la réponse immunitaire anti-Mtb: les lymphocytes Th1 (produisant
du TNF-α), Th17 (produisant l’IL-17A) et T régulateurs (Treg exprimant Foxp3) [16,
17, 18]. Nos résultats montrent que les trois lactobacilles isolés du microbiote
pulmonaire ont des capacités immunomodulatrices fortes, avec un profil anti-
inflammatoire (même en dehors d’un contexte infectieux). La souche CNCM I 5314 de
L. animalis est celle qui induit la plus forte diminution des Th1, augmentation des
Th17 et des Treg pulmonaires (Figure 2B), alors que ces trois espèces appartiennent au
même genre bactérien.

[0085] Pour déterminer si ces bactéries (et notamment la souche de L. animalis) induisent
une réponse anti-inflammatoire suffisante pour diminuer l’immunopathologie associée
à la tuberculose, les bactéries ont été administrées comme précédemment par voie in-
tranasale, 15 jours avant infection par Mtb puis tout au long de l’infection (Figure 1).
Dans ce modèle, les trois bactéries ne modifient pas la charge bactérienne de Mtb
(Figure 3A). En revanche, L. animalis CNCM I 5314 semble conférer une protection
importante contre l’infiltration leucocytaire des poumons (moins de surface
pulmonaire occupée par des cellules immunitaires) menant à l’immuno-pathologie à
des stades tardifs de l’infection (et pas les deux autres bactéries) (Figure 3B).

[0086] Pour mieux caractériser l’effet protecteur de la souche CNCM I 5314, la même ex-
périence a été répétée (groupe CNCM I 5314 av/ap) en incluant des analyses
permettant de déterminer la composition de l’infiltrat immunitaire des poumons. De
plus, la capacité de cette bactérie à exercer son effet protecteur dans une stratégie de
traitement (par opposition à l’approche prophylactique décrite précédemment) a été
évaluée en ajoutant un groupe pour lequel l’administration de la bactérie ne commence
qu’après l’infection (groupe CNCMI 5314 ap) (détail des différents groupes dans la
Figure 1). Ces expériences confirment que l’effet anti-inflammatoire induit par cette
bactérie ne permet pas à Mtb de se multiplier de manière incontrôlée (Figure 4A) alors
qu’il accorde une protection significative (pour le groupe ayant reçu la bactérie en pré-
traitement, CNCM I 5314 av/ap) contre l’immuno-pathologie induite par l’infection
avec une réduction des infiltrats leucocytaires (Figure 4B). Bien que l’infiltration
pulmonaire de lymphocytes Th1 pro-inflammatoires (exprimant T-bet et produisant du
TNF-α ou de l’IFN-γ) varie peu entre les groupes, la souche CNCM I 5314 induit une
augmentation à la fois des lymphocytes Th17 (exprimant RORγt et produisant de
l’IL-17A) et des Treg (exprimant Foxp3, produisant de l’IL-10 et du TGF-β) 42 jours
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après infection (Figure 4C). Cependant une analyse plus poussée révèle que
l’augmentation des Treg observée avec l’administration de L. animalis (que ce soit
avec une approche prophylactique ou de traitement) n’est pas liée à une augmentation
de Treg conventionnels (Foxp3 + RORγt - ), mais à celle d’une population récemment
décrite, double positive Foxp3 + RORγt + appelée bi-Treg. Ces cellules possèdent à la
fois des fonctions pro-inflammatoires et anti-inflammatoires et produisent de l’IL-17
mais aussi de l’IL-10, du TGF-β et de l’IL-35 (non analysée ici) qui en font des ré-
gulateurs clés de l’inflammation [17, 18]. Elles pourraient donc être responsables de la
diminution des infiltrats leucocytaires (observés en 4B) et donc de l’effet prometteur
de cette bactérie pour la prévention et le traitement de la tuberculose. La proportion de
Th17 (Foxp3 - RORγt + ) semble également augmentée. Dans le cas d’un envi-
ronnement riche en IL-10 et TGF-β (comme c’est le cas ici), l’activité des Th17/IL-17
est biaisée et ces cellules exercent des fonctions anti-inflammatoires et protectives vis-
à-vis des dommages tissulaires, principalement via la production d’IL-22 (production
non mesurée dans nos expériences), suggérant un rôle bénéfique de ces cellules dans
notre contexte [16, 17]. Les Treg augmentés par L. animalis, et en particulier les
biTreg n’expriment pas le facteur de transcription Helios, indiquant qu’ils sont induits
au niveau des muqueuses (iTreg) par opposition aux Treg d'origine naturelle (nTreg)
c’est-à-dire générés dans le thymus, suggérant que cet effet est spécifique et lié à la
tolérance périphérique (Figure 4E). L’augmentation de ces cellules ne semble pas liée
à une plus forte prolifération puisque l’expression de l’antigène Ki67 est diminuée
(Figure 4F). Elles semblent pouvoir avoir les effets pro- et anti-inflammatoires décrits
dans la littérature puisque les Tregs observés produisent de l’IL-17, de l’IL-10 mais
surtout du TGF-β (dont la production est également plus forte dans les deux groupes de
souris ayant reçus l’administration de L. animalis) (Figure 4G).

[0087] Nous montrons ici pour la première fois qu’une souche bactérienne du microbiote
pulmonaire (L. animalis CNCM I 5314) est capable de modifier la réponse im-
munitaire à Mtb notamment par une induction de biTreg qui pourraient mieux
contrôler la balance immunitaire (pro-/anti- inflammatoire) et ainsi réduire
l’immunopathologie induite par l’infection. Ces résultats présentent ainsi la souche L.
animalis (CNCM I-5314) isolée du microbiote pulmonaire comme un probiotique
prometteur pour la tuberculose. Les résultats préliminaires obtenus avec le groupe
« CNCM I 5314 ap » suggèrent également des applications pour le traitement de cette
maladie. D’autres maladies respiratoires étant liées à une inflammation, nous
supposons que son rôle bénéfique ne se limiterait pas à la tuberculose.
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Revendications
[Revendication 1] Bactérie L. animalis pour son utilisation dans le traitement et/ou la

prévention de l’inflammation liée à une maladie respiratoire.
[Revendication 2] Bactérie L. animalis pour son utilisation selon la revendication 1, ca-

ractérisée en ce que ladite bactérie est inactivée.
[Revendication 3] Bactérie L. animalis pour son utilisation selon l’une quelconque des re-

vendications 1 ou 2, caractérisée en ce que ledit traitement et/ou
prévention comprend une diminution de l’infiltration leucocytaire et une
augmentation des populations pulmonaires lymphocytes Th17 que de
lymphocytes Tregs.

[Revendication 4] Bactérie L. animalis pour son utilisation selon la revendication 3, ca-
ractérisée en ce que les lymphocytes Tregs sont des lymphocytes iTregs.

[Revendication 5] Bactérie L. animalis pour son utilisation selon la revendication 4, ca-
ractérisée en ce que les lymphocytes iTregs sont des lymphocytes
biTregs.

[Revendication 6] Bactérie L. animalis pour son utilisation selon l’une quelconque des re-
vendications 1 à 5, caractérisée en ce que la maladie respiratoire est la
tuberculose.

[Revendication 7] Bactérie L. animalis pour son utilisation selon l’une quelconque des re-
vendications 1 à 5, caractérisée en ce que ladite bactérie est la souche de
L. animalis déposée à la Collection nationale des cultures de microor-
ganismes (CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex 15,
France) sous le numéro I-5314.

[Revendication 8] Souche de L. animalis déposée à la Collection nationale des cultures de
microorganismes (CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex
15, France) sous le numéro I-5314.

[Revendication 9] Composition pharmaceutique comprenant la souche de la revendication
8 et au moins un excipient pharmaceutiquement acceptable.

[Revendication 10] La composition de la revendication 9 caractérisée en ce que la souche
est inactivée.

[Revendication 11] La composition de la revendication 10 caractérisée en ce que la souche
est inactivée par la chaleur.

[Revendication 12] La composition de la revendication 10 caractérisée en ce que la souche
est présente sous forme d’extraits.
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Abrégé
La présente invention a pour objet l’utilisation de la bactérie Lactobacillus animalis dans le

traitement des maladies respiratoires chez les humains tout comme chez les animaux. Il est
notamment décrit une souche particulière de cette bactérie et des compositions pharmaceutiques
la comprenant.
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Résumé 
 

Utilisation de bactéries du microbiote pulmonaire pour moduler le système immunitaire 

local à l’état basal et pendant l’infection par Mycobacterium tuberculosis chez la souris 

Les muqueuses du corps humain (notamment l’intestin) sont colonisées dès la naissance par des 

milliards de microorganismes formant le microbiote (ou flore commensale) et qui vivent en symbiose 

avec lui. La survie de notre organisme (l’hôte) et de son microbiote dépend de l’état d’activation de 

notre système immunitaire. Alors qu’une trop faible activation nous rend susceptibles aux infections, 

une trop forte activation ou inflammation altère nos tissus. Certaines bactéries du microbiote 

intestinal, interagissent avec les cellules du système immunitaire pour moduler cette balance. Leur 

administration en tant que probiotique améliore de nombreuses pathologies et est envisagée pour le 

traitement d’infections respiratoires. L’infection causant le plus de décès dans le monde est la 

tuberculose, une maladie respiratoire causée par Mycobacterium tuberculosis et dans laquelle une 

hyper-activation du système immunitaire détruit les tissus pulmonaires. Dans ce projet de thèse, j’ai 

cherché à savoir si des bactéries du microbiote peuvent influencer la réponse du système immunitaire 

à la tuberculose, évaluant ainsi le potentiel d’une stratégie probiotique pour améliorer les traitements 

de cette maladie. En particulier, j’ai fait l’hypothèse que des bactéries commensales isolées du 

microbiote pulmonaire (récemment décrit) pourraient, par un effet local, fortement modifier cette 

réponse comme c’est le cas dans l’asthme, chez la souris. Dans un premier temps, j’ai montré que 

certaines bactéries du microbiote pulmonaire, administrées à des souris saines par voie intranasale, 

ont une forte capacité à moduler les lymphocytes T CD4+ des poumons tels que les Th1 ou Th17, 

impliqués dans l’immunité pro-inflammatoire, et les T régulateurs (Treg) réduisant l’activation 

immunitaire. En particulier, elles induisent la prolifération d’un sous type de Treg exprimant RORt 

(facteur de transcription caractéristique des Th17), nommé RORt+ Treg, récemment identifié dans 

l’intestin où l’activation de ces cellules par le microbiote limite les maladies inflammatoires de l’intestin 

comme la colite. Nous avons montré pour la première fois que ces cellules sont induites dans les 

poumons de souris traitées avec des bactéries isolées du microbiote pulmonaire appartenant aux 

genres bactériens Lactobacillus, Staphylococcus et Neisseria et avons caractérisé leur phénotype. 

Comme dans l’intestin, ces cellules semblent avoir un fort potentiel anti-inflammatoire, soutenu par 

leur forte expression des molécules inhibitrices CTLA-4, ou PD-1, du marqueur d’activation ICOS et de 

la cytokine anti-inflammatoire TGF- associée à une faible sécrétion de cytokines pro-inflammatoires 

telles que le TNF-. De façon intéressante, j’ai observé que des souches de Lactobacillus pulmonaires 

induisent les mêmes populations leucocytaires dans le modèle murin de tuberculose que dans des 

souris naïves, et notamment les RORt+ Treg. Tandis qu’aucune des souches testées ne diminuent la 

charge bactérienne de M. tuberculosis dans les poumons ou la rate des souris infectées, une souche 

de Lactobacillus murinus (CNCM I-5314) qui augmente fortement les Th17 et les RORt+ Treg, réduit 

l’infiltration leucocytaire pulmonaire, suggérant sa capacité à réduire l’inflammation associée à cette 

infection. Bien que la détermination du rôle des Th17 et des RORt+ Treg dans ce phénotype reste à 

élucider, nos résultats démontrent d’ores et déjà que l’administration de bactéries commensales 

pulmonaires peut fortement moduler l’immunité locale même au cours d’infections comme la 

tuberculose. Une meilleure caractérisation des composants du microbiote pulmonaire et des 

mécanismes par lesquels ils interagissent avec notre système immunitaire pour maintenir la santé 

respiratoire devrait donc permettre l’émergence d’une nouvelle génération de probiotiques, d’origine 

pulmonaire, pour prévenir et améliorer le traitement des maladies respiratoires.  


